Curso 2010/11

CIENCIAS Y TECNOLOGIAS/13
I.S.B.N.: 978-84-15287-34-6

IVAN CASTILLA RODRIGUEZ

Explotacion de los sistemas multi-nucleo para
la simulacion paralela de eventos discretos con Java.
Ejemplo de aplicacion en un modelo orientado
al proceso de un centro hospitalario

Directora
ROSA MARIA AGUILAR CHINEA

SERVICIO DE PUBLICACIONES
UNIVERSIDAD ‘l‘l DE LA LAGUNA

Serie Tesis Doctorales

A Arelis. ..

A mis padres. ..

Agradecimientos

Esta tesis estd escrita en inglés, lengua franca de la ciencia. Aunque agradecer tie-
ne algo de ciencia, manejar con sutileza esta ecuaciéon de sincero reconocimiento
requiere un lenguaje en el que muestre mayor destreza.

En primer lugar, querria agradecer a la Dra. Diia. Rosa M?* Aguilar Chinea
su direccién, guia y apoyo durante la realizacion de este trabajo. Su ambicién e
impulso me han empujado a cotas que, de haber dejado en mis conservadoras
manos, nunca me hubiese planteado alcanzar. Congresos, estancias, publicacio-
nes. .. son producto de su insistencia y su confianza incondicional en mi trabajo.
Gracias Rosi.

Al Dr. D. Lorenzo Moreno Ruiz le debo mi incorporacién al mundo de la in-
vestigacion en el Departamento de Ingenieria de Sistemas y Automadtica y Ar-
quitectura y Tecnologia de Computadores de la ULL (todavia Grupo de Compu-
tadoras y Control por aquellos dias). Sin su tutela y sus consejos durante mis
primeros afios, esta tesis no hubiese sido posible.

Quiero agradecer muy especialmente la colaboracién y ayuda desinteresada
del Dr. D. Félix Garcia Lopez. Durante estos tltimos meses he gastado com-
pletamente la expresion “gracias” con él, asi que s6lo me queda dedicarle este
pequefio reconocimiento.

D. Roberto Mufioz Gonzalez y D. Antonio Yeray Callero de Leén han sido mis
“segundos de a bordo” en dos etapas sucesivas (entiéndase “segundos” como
una cuestiéon de antigiiedad, nunca de importancia) y han sido el mejor apoyo
para mi trabajo y esa oreja fresquita para escuchar mis interminables divagacio-
nes. A Rober, como ya era amigo de antes, tengo que agradecerle que, pese a mi
chéchara, siga siéndolo todavia; a Yeray, que se haya convertido en uno.

A D. Carlos Martin Galan le debo, literalmente, la idea de esta tesis. Su trabajo
es la base sin la que todo esto no seria posible.

Throughout this research I have had the invaluable opportunity to visit two
foreign research groups: the Department of Management Science at Lancaster
University (UK), and the Communication Systems Group of the University of

Agradecimientos

Bonn (Germany).

In Lancaster, I would like to thank Dr. Murat Giinal (currently at the Turkish
Naval Academy - Turkey) and Dr. Mike Pidd for their amazing hospitality. I
learnt a lot about simulations and hospitals with them, but especially about good
research techniques. I would also like to thank Murat for the only nice meal I had
in England (of course, it was Turkish food), and Mike for showing me the Lake
District.

In Bonn, I would like to especially thank Dr. Patrick Peschlow and Dr. Peter
Martini. I would like to thank Patrick for the long discussions about parallelism
and his smart ideas and contributions to my research. Moreover, Patrick took
care of every little detail and made my visit the most pleasant experience ever.
Thanks to him, hardly noticed my complete ignorance of the German language.
Of course, I have to include my appreciation to all of Patrick’s colleagues, who
took me with them to Mensa and treated me like family: Jakob Bieling, Simon
Schwarzer, Matthias Frank, Alexander Willner, Lukas Pustina. .. Vielen Dank!

Volviendo al mundo hispano, tengo que dar las gracias al personal del Hospi-
tal Universitario Nuestra Sefiora de Candelaria, en especial a D. Carlos Berm1-
dez Pérez y D. Juan Antonio Gil Martin.

Del otro hospital tinerfefio, el Hospital Universitario de Canarias, debo darle
las gracias a Dfia. Gregoria Torres Gonzélez, por la informacion sobre la orga-
nizacién hospitalaria y a Dia. Concepcién Rodriguez Gonzélez, por la colabo-
racion para la validacién del modelo conceptual del hospital. En la citada vali-
dacién colaboré también el Dr. D. Alfonso Castilla Garcia, del Servicio Canario
de Salud. Como, casualmente, Diia. Concepcién y D. Alfonso son también mis
padres, no puedo limitarme a agradecer el apoyo moral de la familia, que lo ha
habido en ingentes cantidades (gracias también a mis hermanos Ana y Pablo),
sino que debe resaltar la importancia de su aportacién en la finalizacién de una
parte tan compleja como es el modelo del hospital. Gracias, de corazén.

Debo agradecer al Dr. Juan Albino Méndez Pérez (Alexis) por haber sido un
gran consejero y un mejor AMIGO durante todo este tiempo.

Tengo que destacar a D. Jonatan Felipe Garcia, D. Pedro Antonio Toledo Del-

gado y al Dr. D. Jests Torres Jorge porque llevamos muchos afios (y més de un
verano) en esto. Su compafia, su ayuda y su amistad han aparecido més veces
de las que puedo recordar. A Jests, especialmente, le debo esta tesis, o al menos
la plantilla latex con la que esta hecha.

Quiero agradecer también a los chicos (y chica) del laboratorio, compafieros
sempiternos de desayunos y/o mesa y soporte de mi dcido humor, mds y mas
corrosivo segln se acercaba el final de este trabajo. No me olvido de D. Rafael
Arnay del Arco, D. Jests Javier Espelosin Ortega, Diia. Angela Hernandez L6-
pez, D. Néstor Morales Herndndez, D. Daniel Perea Strom y el Dr. D. Santiago
Torres Alvarez.

Por supuesto, quiero dar las gracias al resto de compafieros del departamen-
to que en uno u otro momento me han ayudado, como el Dr. D. José Ignacio
Estévez Damas, el Dr. D. José Francisco Sigut Saavedra o el Dr. D. Evelio José
Gonzélez Gonzélez, asi como al resto de compafieros: Dr. D. Leopoldo Acosta
Sanchez, Dr. D. José Demetrio Pifieiro Vera, Dr. D. José Luis Sanchez de la Rosa,
Dr. D. Alberto Francisco Hamilton Castro, D. Juan Julidn Merino Rubio, Dr. D.
Graciliano Nicolds Marichal Plasencia, Dr. D. Roberto Luis Marichal Plasencia,
Dra. Diia. Marta Sigut Saavedra, Dra. Diia. Carina Soledad Gonzalez Gonzalez,
Dra. Diia. Silvia Alayén Miranda, Dra. Diia. Vanesa Mufioz Cruz, Dr. D. Jonay
Tomas Toledo Carrillo, D. Germén Carlos Gonzélez Rodriguez, D. Hector Javier
Reboso Morales, D. Sid Ahmed Ould Sidha, D. Ginés Coll Barbuzano y D. Eladio
Hernandez Diaz.

No me olvido de los bravos muchachos que han colaborado para hacer crecer
a SIGHOS: Diia. Yurena Garcia-Hevia Mendizédbal, Diia. Alicia de Fuentes Artea-
ga, D. Rayco Herndndez de Leén, D. Rayco Diaz Batista y D. José Carlos Diaz
Rodriguez.

Pese a la extension de estos agradecimientos, no puedo dejarme atras a mis
amigos Jorge Paiz Sosa, Abraham Medina Herrera, Israel Pérez Pérez y Leticia
Quintana Expésito, que han colaborado a rebajar el nivel de stress hasta 1imi-
tes tolerables. También quiero agradecer el apoyo incondicional de Juan Ramén

Gonzalez Gonzélez, Isabel Sdnchez Berriel y Virginia Gutiérrez Rodriguez. Los

Xi

Agradecimientos

“dones” les sobran a todos ellos.

Probablemente he dejado para el final a quien quizas es la persona méas impor-
tante de este proceso. Arelis ha convivido conmigo la mayor parte del tiempo
que he estado trabajando en esta tesis y ha soportado mal humor, depresiones,
nervios y pesimismo exacerbado...pero nunca me ha dejado solo ni ha dejado
de animarme. Si alguien sabe cudnto ha costado esto, es ella.

Finalmente, debo agradecer al Ministerio de Educacién por haber financiado
mi trabajo estos tltimos cuatro afios con una beca de Formacion de Profesorado
Universitario (FPU) n® AP2005-2506.

Xii

Contents

Introduction XXiX
OVerview o e e e XXiX
Research Objectives xxxiii
Structureof the Thesis XXXV

Chapter 1. Theoretical Foundations for Parallel Discrete Event Simulation 1
1.1. Discrete-Event System Simulation 2
1.2. DESWorldViews e
1.3. Parallel Discrete Event Simulation 11

Chapter 2. Process-Oriented Implementation 23
2.1. Basics of Implementing a Process-Oriented Simulator 24
2.2. Direct (Threaded) Translation 25
23, Coroutines o v i e e e e e 26
24. StackSwapping L o 27
2.5. Continuations 28
2.6. Stack Reconstruction 31
2.7. Converting Process Interaction into Event Scheduling 34
2.8. Java for Process-Oriented Simulation 35

Chapter 3. SIGHOS: a Process-Oriented Simulator 39
3.1. Basic Definitions of Business Processes 40

Xiii

Contents

3.2.
3.3.
3.4.
3.5.
3.6.

Workflow Patterns
SIGHOS: A Process-Oriented Simulation Tool
Inside SIGHOS: an EventHeart
Inside SIGHOS: Managing Workflows
Inside SIGHOS:... Why It Matters?

Chapter 4. Parallel SIGHOS

4.1.
4.2.
4.3.
44.
4.5.
4.6.
4.7.
4.8.
4.9.
4.10.
4.11.
4.12.
4.13.
4.14.

From Sequential to Parallel
Limits to Parallelism: Resource Contention
Resource Contention in SIGHOS
A Test Benchmark for SIGHOS
A Performance Analysis of the Sequential SIGHOS
Using External Event Executors
Integrating the Pool in the Simulation Tool
Exploiting Event Locality
Block Dispatching
A Hybrid Event Manager - Executor
Going Beyond Limits: like-3-Phase Approach
Some Final Notes about the Implementation
Putting It All Together: Hybrid EME like-3-Phase Approach . . .
Summary: Comparing the Different Approaches

Chapter 5. Case Study: A Model for Hospital Management

Xiv

5.1.
5.2.
5.3.
54.
5.5.
5.6.
5.7.
5.8.

OverviewofaHospital
Hospital Performance: Why Modelling and Simulation?
Background oL
Review of the Literature on Modelling a Whole Hospital
A Modular Model for a Whole Hospital
Conceptual Model,
Computational Model
Results

67

71
72
75
77
87
89
93
95
98
98
101
105
116
123
125

Contents

59. Conclusions e 184
Conclusions 187
Contributions 189
Further Research 195
Apéndice A. Resumen 199
A.l. Planteamientodel Problema 199
A2. ObjetivosdelaTesis 202
A.3. Resultados y Contribuciones 203
A4 Conclusiones e 213
ADb5. Lineas Abiertas 215
Appendix B. PSIGHOS: User Interface 219
Appendix C. Other Java DES Tools 251
C.1 JSIM . . . e e 252
C2. SimkKit. 253
(GG T) 253
C4. DESMO-] e e e 254
C.5. JAPROSIM e 256
Appendix D. Other Java PDES Tools 259
D.1. JUST: Java Ubiquitous Simulation Tools 259
D.2. SPADES/Java e e 259
D.3. D-SOL 260
D.4. CSA&S/PV: Complex Systems Analysis & Simulation - Parallel
Versiono e e e 261
D.5. Summary of JavaPDESTools 262
Appendix E. Workflow Patterns 265

XV

Contents

Appendix F. Computational Concurrency 279
E1. Awareness Level in the Interaction Between Processes 279
E2. Competition between Processes for Resources 280
E3. Cooperation between Processes by Sharing 281
E4. Control Mechanisms 282

Bibliography 287

XVi

List of Tables

2.1.

3.1.

4.1.
4.2.
4.3.
44.
4.5.
4.6.
4.7.
4.8.
4.9.
4.10.
4.11.
4.12.

5.1.
5.2.

5.3.
54.

Features of a process-oriented simulation 24
Support of control flow patterns 65
Main goals of the intended solution 72
Simple example of the resource booking phase 86
Advanced example of the resource booking phase 87
Testplatform o 89
Sequential parameters 0L 90
10,000 Vs 100,000 iterations (x =8) 90
Three consecutive RoleOn events with the same timestamp 106
Combination of parallel optimisations 126
Parallel parameters 127
Final comparison of performance fora =4 127
Final comparison of performance fora =8 128
Speedupfor H3P, 129
Preliminary schedule of operating theatres for GS 139
Real usage of OTs: Elective surgical procedures in the morning

shift2004-2005 140
Main classes of the hospital model 157
Simulation components for central services 160

XVii

List of Tables

5.5. Parameters for central services 161
5.6. Simulation components for central laboratories 163
5.7. Parameters for central laboratories 167
5.8. Simulation components for medical departments 168
5.9. Parameters for medical departments 171
5.10. Simulation components shared by surgical departments 173
5.11. Parameters for shared surgical departments resources 173
5.12. Simulation components for surgical departments 174
5.13. Parameters for surgical departments 176
5.14. Resources of the HUC’s central laboratories 179
5.15. Resource types and activities in the computational model 180
5.16. Number of RTs, As and AMs in each scenario 182
5.17. Speedup for different whole hospital model scenarios 183
B.1. Class TimeUnit 221
B2. ClassTimeStamp 221
B.3. Class TimeFunction 222
B.4. Class PeriodicCycle 222
B.5. ClassTableCycle. 223
B.6. Class Condition 223
B.7. Class Variable 223
B.8. ClassSimulation. 224
B.9. ClassResourceType 225
B.10.ClassResource 226
B.11.Class WorkGroup 228
B.12. Class TimeDrivenActivity 229
B.13.Class FlowDrivenActivity 230
B.14.Class ElementType 231
B.15. Class TimeDrivenGenerator 232
B.16.Class ElementCreator 232
B.17.Class Element 233

XViii

List of Tables

B.18.Class SingleFlow 234
B.19.Class ParallelFlow 234
B.20. Class ExclusiveChoiceFlow 235
B.21.Class MultiChoiceFlow 236
B.22. Class ProbabilitySelectionFlow 237
B.23.Class SimpleMergeFlow 238
B.24.Class MultiMergeFlow 238
B.25. Class SynchronizationFlow 239
B.26.Class DiscriminatorFlow 239
B.27.Class PartialJoin 240
B.28. Class InterleavedParallelRoutingFlow 240
B.29.Class DoWhileFlow 241
B.30.Class WhileDoFlow 242
B.31.Class ForLoopFlow 243
B.32. Class StaticPartialJoinMultipleInstancesFlow 244
B.33. Class StructuredPartialJoinFlow 245
B.34. Class StructuredSynchroMergeFlow 246
B.35. Class InterleavedRoutingFlow 246
B.36. Class StructuredDiscriminatorFlow 247
B.37.Class ThreadSplitFlow 248
B.38.Class ThreadMergeFlow 248
Cl. SummaryJSIM 252
C2. Summary Simkit o o oo 253
C3. SummarySS] 255
C4. Summary DESMO-J. 257
C.5. Summary JAPROSIM 258
D.1. Summary of JavaPDEStools 262
E.1. Basic control flow patterns 266
E.2. Advanced branching and synchronisation patterns 267

XiX

List of Tables

XX

E.3.
E4.
E.5.
E.6.
E7.
E.8.

Multiple instance patternso o o0 271
State-based patterns. o oL 273
Cancellation and force completion patterns 275
Iteration patterns L 276
Termination patterns00 0L 277
Trigger patterns Lo o 278

List of Figures

1.1.
1.2.
1.3.
1.4.
1.5.

3.1.
3.2
3.3.
3.4.
3.5.
3.6.
3.7.
3.8.

4.1.
4.2.
4.3.
44.

Schematic structure of thisthesis XXXV
Events, activities and processes 5
Event and activity orientations 7
Three-phase approach and process orientation 9
Logical Process Simulation 16
Different PDES approaches 22
Basic workflow terminology L. 41
Resource availability 45
Lifecycleofan Element 49
LifecycleofaResource 55
Basic workflow interfaces in SIGHOS 60
Initializer workflows L Lo L 61
Finalizer workflows, . 62
Structured workflowso Lo Lo 63
Basic schema of the Master-Slave approach 75
Overlapping timetableentries 78
Construction of Activity Managers 80

Resource simultaneously available for roles belonging to different

activity managers Lo o 82

XXi

List of Figures

XXii

4.5.
4.6.
4.7.
4.8.
4.9.

4.10.
4.11.
4.12.
4.13.
4.14.
4.15.
4.16.
4.17.

4.18.
4.19.
4.20.

4.21.

4.22.

4.23.
4.24.

4.25.

4.26.

Example of several elements requesting activities in different AMs 85

Comparison of influence of |E| and |A| fora =8andf=1.... 91
Effect of varying « for different problem typesand f =1 92
Effect of varying p for different problem typesanda =8 92
Speedup using Java thread pool with |[E| =512anda =8 9%
Speedup using Java thread pool with |[E| =512anda =4 95
Speedup using an ad hoc thread pool with |[E| =512anda =8 . 97
Basic schema of the optimised Master-Slave approach 99
Speedup exploiting event locality with |[E| =512anda =8 100
Speedup exploiting block dispatching with |E| =512anda =8 . 101
Relaxed MS approach by using the hybrid EME 102
Speedup compared with |E| = |A| =512, a =4and p=1 103
Performance comparison with |[E| = |A| =512, a =4and f =1

for different grain-rest configurations 104
Relationships amongevents 112

Speedup for the like-3-phase approach with |E| =512anda =8 . 115
Comparison between the like-3-phase approach and the block dis-
patching method with |E| = |A] =512, a =8andf=1. 116
Comparison between using java.util.concurrent.Semaphore and a

spinlock with a java.util.concurrent.atomic.AtomicBoolean with

E|=|A] =512, a =4and =1 118
Comparison between extending Thread and implementing Run-

nable with |E| = |A| =512, a =4and =1 120
Performance of different implementations of barriers 122

Speedup comparison among a pure master EM, a hybrid EME,
and a hybrid EME using a tournament barrier for synchronisation 123
Speedup for the hybrid EME like-3-phase approach with |E| =

S12and =8 124
Comparison between the like-3-phase approach and its hybrid
EME version with |E| = |A| =512, a =8and f=1 125

List of Figures

5.1.
5.2.

5.3.
54.
5.5.
5.6.
57.
5.8.
5.9.

5.10.

5.11

5.12.
5.13.
5.14.
5.15.
5.16.

Al
A2.
A3.

HUC’s organisational chart 132
Basic diagram of the decision aiding tool. Source: (Moreno et al.,
2000) . .. 135
Basic schema for surgical patients at the HUNSC 137
IO schema of the simulationmodel 139
Comparing two scenarios with different OT configurations 141
Hospital Model. Source: (Giinal and Pidd, 2008) 143
HADA. Source: (Castillaetal.,2008) 145
High-level conceptual model of a hospital 148
Flow for a medical patient 150
Flow for a surgical patient 151
. Flow for ambulatory and short-stay surgical patients 152
Flow for an ordinary surgical patient 153
Diagnostictests 154
Standard diagnostictest 0oL 155
Laboratorytests 156
Execution time for different whole hospital model scenarios . . . 183
Aceleracion de PSIGHOS sobre SIGHOS 210
Modelo conceptual del hospital 212

Tiempo de ejecucion para diferentes escenarios de un modelo com-

pletodeunhospital o0 o 213

XXiii

List of Code and Pseudocode
Listings

2.1. Example for applying continuations 29
2.2. The previous example with continuations 30
2.3. Example for applying stack reconstruction 32

2.4. Method “one” from the previous listing with stack reconstruction 33

3.1. RequestActivityevent 53
3.2. FinalizeActivityevent 53
3.3. AvailableElementevent 54
3.4. SIGHOS algorithm for event scheduling 56
4.1. EventManagermainloop 74
4.2. Basic definition of an ad-hoc Event Executor 96
4.3. First optimisation of an ad-hoc Event Executor 96
4.4. Modified main loop of an ad-hoc Event Executor 97
4.5. The schedule(e@ts) operation modified to exploit event locality . 98
4.6. Event Manager main loop using block dispatching 99
4.7. Main loop of an EE and the hybrid EME 102
4.8. RequestActivityevent 107
49. FinalizeActivityevent 107
4.10. AvailableElementevent 108

XXV

List of Code and Pseudocode Listings

XXVi

4.11.
4.12.
4.13.
4.14.
4.15.
4.16.
4.17.
4.18.
4.19.

5.1.
5.2.
5.3.
54.
5.5.
5.6.
5.7.

E1l.
F2.
E3.

RoleOnevent 109
RoleOffevent 109
AM.notifyAvailableResource method 110
AMevent. 112
Modified main loop of a like-3-phase Event Executor 113
Event Manager main loop using a like-3-phase approach 114
await() method with java.util.concurrent.Semaphore 117

await() method with java.util.concurrent.atomic.AtomicBoolean . 118
Modified main loop of a hybrid EME like-3-phase Event Executor 124

A factory of simulationobjects 0L 159
Model of the USS service with SIGHOS 161
Model for the workflow of the USS service with SIGHOS 162
Model for central lab specialist nurses with SIGHOS 165
Model for a central lab laboratory test with SIGHOS 166
Model of a “waiting” activity with SIGHOS 170
Model for a flow-driven activity within SIGHOS 170
Use of Lock accessmethods 282
Comparison between Lock and RLock acquisition 283
Typical algorithm withabarrier 284

List of Acronyms

API
BP
BPR
BPS
cz
DES
DESS
DEVS
EE
EM
EME
FEL
GC
GVT
HLA
IT
JVM

Application Programming Interface 160
Business Process 187
Business Process Reengineering ...l 42
Business Process Simulation. ... 187
Conflict Zone. ... 83
Discrete-Event System Simulation............................ ... 251
Differential equation system specification........................... 260
Discrete Event System Specification 260
Event Executor.......... ... 188
Event Manager............... .. i 190
Event Manager Executor ... 191
Future Event List........ i 190
Garbage Collector......... ..o 36
Global Virtual Time ... 20
High Level Architecture................. ... 21
Information Technologies. ...l 40
Java Virtual Machineo i 26

XXVii

List of Code and Pseudocode Listings

LP

LVT
(010
PDES
PDEVS
TWLP
vC
V&V
WIMC

A&E
GP
GS
HES
ICU

MD
NHS
opP
or
PACU
PAS
SD

XXViii

Logical Process............oooiiiiiiiiiiiiiiiiiii i 15
Local Virtual Time.oooin i e 15
Object Orientation. ... 36
Parallel Discrete Event Simulation................ 259
Parallel Discrete Event System Specification 14
Time Warp Logical Processoooiiiiiiiiiiii.., 19
Virtual Clocko 190
Verification and Validationooo i 142
Workflow Management Coalition.......................o ool 40
Hospital

Accidentand Emergency ... 194
General Practitioner...... ... 143
General and Digestive Surgery ... 137
Health Episode Statistics 194
Intensive Care Unit. ... 195
inpatient......... ... 133
Medical Department i 147
National Health Systemo, 134
outpatient.......... ... 133

operating theatre

Postanaesthesia Care Unit........oovuneeiie . 195
Patient Administration System 194
Surgical Department oo 147

Introduction

Overview

Nowadays, information constitutes one of the most important values of an orga-
nisation. As a result, Information Technologies (IT) have risen to the forefront of
investment and research for both private companies and public institutions. IT
are defined by the Information Technology Association of America (ITAA) as

« ...the study, design, development, implementation, support or
management of computer-based information systems, particularly

software applications and computer hardware. »

Though the information systems of complex organisations offer a more sui-
table scenario for benefiting from technology, at the same time, the implementa-
tion of an efficient and effective system requires further and more careful plan-
ning and design as the size of the organisation increases and the interrelations
among its departments, employees and material resources become more intri-

cate.

Business Process

Service organisations are typically structured based on the division of labour prin-
ciple, that is, workers are grouped and specialised in certain tasks and roles and

arranged in a hierarchical manager-supervised structure. Within this context,

XXiX

Introduction

three different types of processes can be defined: material, information and busi-
ness (Medina-Mora et al., 1992).

Material and information processes represent different views of an organisation,
and focus respectively on the physical products that the organisation handles,
and on the information that is created, processed, managed and provided. The
Workflow Management Coalition (WfMC, 1999) describes a Business Process
(BP) as:

« A set of one or more linked procedures or activities that collecti-
vely realise a business objective or policy goal, normally within the
context of an organisational structure defining functional roles and

relationships. »

In contrast to material and information processes, BPs allow for a holistic ap-
proach to the organisation in terms of higher-level market-centred goals. Hence,
the correct identification and modelling of an organisation’s BPs represents a
great opportunity to both properly exploit and improve the performance of IT

in a business context.

Simulation as a Tool for Decision Making

Though the advantages of the division of labour are undeniable, over time, this
way of working leads to a fragmentation of the business that negatively impacts
on costs and on staff motivation. Furthermore, managers have to supervise more
and more complicated processes due to an increase in the number and variety
of tasks to be performed. This, along with the changes taking place in corporate
settings, such as more demanding clients, the need for increased competitiveness
and market innovation means that a rigid organisational structure is not the best
option for today’s companies, which must be organised around their processes.

One of the disciplines that has emerged to address this problem is Business
Process Reengineering (BPR). Muthu et al. (2006) expose that

XXX

Overview

« Reengineering is the fundamental rethinking and radical rede-
sign of business processes to achieve dramatic improvements in cri-
tical, contemporary measures of performance such as cost, quality,
service and speed. »

Reengineering, like any other decision-making process, whether in compa-
nies, industry or government, requires an in-depth understanding of the un-
derlying problem. Control actions cannot be taken based only on assumptions.
There is a pressing need for reliable analysis techniques that minimise the costs
resulting from decision-making errors. One such technique is computer simula-
tion. Hence, Business Process Simulation (BPS) has emerged as an important tool
within BPR. As described by Wynn et al. (2008), BPS is intended to achieve two
main goals:

1. To analyse a process’s behaviour, by developing accurate simulation mo-
dels;

2. To understand the effects of running that process by executing simulation
experiments.

Of course, these goals are unaffordable if a suitable BPS is not available. A
well-designed BPS requires:

e basic model building blocks, including entities, resources, activities and

connectors;
e activity modelling constructs, such as split, join, branch and assemble;

¢ and advanced modelling functions, such as attributes, expressions and re-
source schedules.

Bosilj-Vuksic et al. (2007) show that Discrete-Event System Simulation (DES)
is well-suited to coping with the aforementioned goals.

XXXi

Introduction

The Importance of Parallelism in Simulation

There are many circumstances in which the appearance of complex models is
inevitable (Chwif et al., 2000). For example, BPS is a field that generally involves
complex models due to the dimensions and existing interrelationships between
systems.

Though no conclusive studies exist that characterise the relationship between
complexity and computational cost, it seems logical to assume that the greater
the model complexity, the greater the simulation’s need for computational re-
sources in terms of both CPU and memory. Moreover, the quality of a simulation
study can be seriously affected by the efficiency of the simulation tool: correc-
ting a modelling error after a two-minute simulation is completely different than
having to wait several days to obtain the same result.

Parallel/Distributed simulation is a technology that enables a simulation pro-
gram to be executed on a computer system comprising multiple processors in-
terconnected by a communication network. The distinction between parallel
and distributed simulation lies in the characteristics of the computer system on
which the simulation is to be run. A parallel computer generally consists of se-
veral processors that are physically close and share memory and I/O devices.
Hence, the communication latency, that is, the delay in transmitting a message
from one processor to another, is relatively low. In contrast, distributed com-
puters typically consist of several heterogeneous computers interconnected by
means of standard communication protocols, such as Ethernet, thus resulting in
higher communication latencies.

Though distributed simulations can achieve multiple goals, such as increasing
fault tolerance, integrating simulation environments and handling a geographi-
cally distributed simulation, parallel simulations are more appropriate when the
aim is to reduce a complex simulation’s execution time.

Having mentioned that DES is well-suited to BPS, Parallel Discrete Event
Simulation (PDES) (Fujimoto, 2000) is the logical option to try to exploit the pa-
rallelism in these problems.

XXXii

Research Objectives

Multi-Core Systems for Parallelism

Parallelism has been traditionally regarded as a pure research topic: a technique
that is unaffordable for most organisations since it requires very expensive pa-
rallel computers or a complex and maintainance-intensive computer cluster. In
recent years, the popularisation of multi-core computers for the home market
has changed the previous scenario and opened the door to a wider selection of
parallel software applications.

Multi-core computers, initially called on-chip multiprocessing or single-chip mul-
tiprocessing, consist of two or more processor cores placed on a single die. The
multiple cores generally share some structures, such as second- or third-level
cache or memory, and I/O buses. Nowadays, a typical desktop computer consists
of no more than eight cores, and servers can feature 16, 32 and even more proces-
sors (if several tens of cores are involved, the term many-core computers is used).
Hennessy and Patterson (2007) review the main concepts involving multi-core
computers in their chapter on Multiprocessors and Thread-Level Parallelism.

Research Objectives

The overview makes it clear that BPS is a powerful tool and that parallelism is
well-suited to improving the efficiency of a simulator. However, parallel BPS is
a term that rarely appears in the literature. Parallel simulation and, more spe-
cifically, PDES is typically applied to simulate not only telecommunication net-
works and physical systems (biological, medical...), but also distributed multi-
player gaming. Examples of PDES applications in the military area include bat-
tlefield simulations and emergency event training exercises.

To the best of our knowledge, only two previous contributions tried to im-
prove the efficiency of a BPS by means of parallelism. Ferscha and Richter
(1996) utilise Petri Nets to model BPs, which are subsequently simulated in a
massively parallel simulation engine. Zarei (2001) also proposes the use of PDES

to reduce the execution time of a BPS that is modelled by using control flow

XXXiil

Introduction

graphs (CFGs). Both present a case study and apply domain decomposition (see
Subsection 1.3.6).

In our opinion, these approaches have two main drawbacks. First, they are
based on low-level or very schematic constructs (Petri Nets and CFGs respecti-
vely). While this is not counterproductive in and of itself, it does mean that a
strong background in BP modelling is not enough to cope with their methodo-
logies. Second, parallelism cannot be automatically exploited in their problems.
Instead, a prior analysis and a explicit construction of the parallel simulation is
required.

This thesis is intended to further this field by adhering to three main prin-

ciples:

o Generality. This thesis does not focus on a specific problem or model within
the BPS field. We are not interested in obtaining an extremely efficient
parallel simulation for a specific organisation, but rather a sufficiently good
parallel simulation algorithm that can be used to model and simulate any
set of BPs.

o Automation. Parallelism must be exploited in a way that is transparent to

the user, that is, without the user’s intervention.

o Efficiency. Given a model, the parallel simulator must outperform a se-

quential simulation.

In conclusion, this thesis aims to explore the feasibility of a generic BPS that can
automatically and efficiently exploit the parallelism of the model being simulated
in a multi-core system.

Several sub-objectives can be derived from the main research goal:

1. Identify the characteristics that make DES and, more specifically, process-

oriented simulation a suitable approach for modelling and simulating BPs.

2. Discuss the feasibility of automatically exploiting the parallelism in a BP
model.

XXXV

Structure of the Thesis

3. Establish the potential of a generic PDES to model and simulate organisa-

tions.

4. Explore techniques to reduce resource contention in a shared-memory pa-

rallel simulation.
5. Analyse techniques and algorithms that improve simulation performance.

6. Establish the suitability of Java as a language for implementing the propo-

sed simulation.

7. Study the performance of this kind of parallel simulator in a multi-core

computer.

8. Validate the usefulness of the approach by applying it to a real-world pro-
blem.

Structure of the Thesis

Figure 1 summarises the structure of this thesis. The remaining chapters are
organised as follows:

Chapter 1 provides a theoretical background on DES and PDES. With respect
to DES, the main concepts on the representation of time in a simulation and the
different DES world views are reviewed. The main approaches to PDES are also
analysed and organised into three main groups: application-level parallelism,
simulation-level parallelism and model-level parallelism.

Process-interaction is one of the most widely used DES world views. Chapter 2
presents an in-depth review of the different techniques utilised to create a simu-
lator that implements said world view. Special emphasis is placed on the way
Java can be used to solve the problems posed by this approach.

Chapter 3 establishes the basis for the need for simulation tools in organisatio-

nal environments, and defines the most important terms pertaining to BPS and

XXXV

Introduction

DES PDES

Process-Oriented
DES
Business Process
: . SIGHOS PSIGHOS
Simulation
Whole Hospital
] Topic (@] Chapter Model

Figure 1. Schematic structure of this thesis

workflow modelling. Then, SIGHOS, a process-oriented DES library implemen-
ted in Java and intended for BPS, is described.

Chapter 4 studies the different approaches for automatically exploiting the pa-
rallelism in a DES tool like SIGHOS. The role of the resource contention problem
is emphasised and several mechanisms for reducing its negative effect on the
performance of the simulation are proposed. In an effort to maximise efficiency
and performance, different techniques are applied and several modifications of
the original algorithm are proposed. Every enhancement is validated with a
practical implementation of the parallel simulator, called PSIGHOS.

Chapter 5 presents a case study to test the real-world utility and performance
of PSIGHOS. The case study is based on research conducted by the Simulation
Group from the Universidad de La Laguna, and describes the modelling and

simulation of a whole hospital.

XXXVI

Chapter

Theoretical Foundations for
Parallel Discrete Event Simulation

According to systems theory, a system is a set of entities that interact to reach
a specific common objective. Any “real” system, whether already existent or
merely planned, is usually denoted as a physical system.

When a system is placed under study (Banks et al., 2000), not only do the
system’s objects of interests (entities) have to be identified, but so do their pro-
perties or attributes, which can be used to distinguish among different entities of

the same type, or to define their state over time.

Simulation is the imitation of a physical system’s behaviour over time, and can
be carried out by developing a simulation model. A model represents the entities
of the physical system and their interactions, either mathematically, logically or
structurally. Generally, with the exception of very simple problems, computer-

based simulation is the standard tool for performing simulations.

The system state is defined as the set of variables (henceforth state variables) re-
quired to completely describe the system at any simulated time. The description
is complete whenever the objectives of the simulation study are covered. Conse-
quently, developing a simulation model generally involves simplifications. It is
unusual (and, generally, unaffordable) to make use of all the entities (and much
less all the attributes) of the physical system in the model.

Chapter 1. Theoretical Foundations for Parallel Discrete Event Simulation

1.1. Discrete-Event System Simulation

Systems are often categorised as continuous and discrete. On the one hand, a
discrete system involves changes of the state variables only at a discrete set of
points in time. On the other hand, state variables change continuously over time
in a continuous system. A system is rarely completely encompassed within one of
these two categories, but this classification is still used for convenience.

Continuous and Discrete models can be defined in an analogous manner to
systems. However, a discrete simulation model can be used to model continuous
systems and vice versa.

This thesis focuses on Discrete-Event System Simulation (DES). This kind of
simulation mimics systems in which the state variables change only at a dis-
crete set of non-regular time intervals. The instantaneous occurrences that may

change the state of the system are termed events.

1.1.1. A Theoretical Framework for Representing Time in DES

The time concept is very important in DES and should be defined so as to avoid
any kind of ambiguity. Loper (2002) defines in her thesis a theoretical framework
to represent time in DES, divided into five dimensions: Time, Clock, Time Flow,
State Updates and Interactions.

Time

Time can be seen from three different points of view (Fujimoto, 2000):

o Physical time is the time as it is expressed in the real or physical system

being modelled.
o Simulation time is the simulator’s representation of time.

o Wallclock time is the time the simulation execution lasts for.

1.1. Discrete-Event System Simulation

Clock

Simulation time is used to order the events and is controlled by a clock. Such
a clock holds the local notion of time during the simulation and assigns times-
tamps to every new event in order to define the instant at which that event will
occur.

A simulation clock can be either physical or virtual. Any processor includes
a hardware clock that can be employed as a simulation’s physical clock. Since
clocks belonging to different physical processors are not intended to be synchro-
nised, a physical clock is useless in a distributed simulation unless there is a
global wallclock time clock, keeping all the local clocks accurately synchronised.
Continuous models are typically supported by physical clocks.

Virtual clocks were first introduced by Lamport (1978), when defining logical
time. A virtual clock can assign to an event not only the current simulation time,
but a time stamp that is greater than the current simulation time. An event with
a timestamp greater than the current simulation time is scheduled for execution

in the future. Discrete models are typically supported by virtual clocks.

Time Flow Mechanisms

Any simulation requires strategy for advancing time. Time flow mechanisms
are also known as timing routines, event scheduling procedures or simulation
executives. Time-slicing and the next-event technique (Pidd, 1998) are their most
notable exponents.

Using a fixed time increment, which is the idea behind the time-slicing tech-
nique, the simulation model is examined and updated according to some pre-
defined regular intervals. The size of the interval must be carefully chosen in a

way that
e information is not lost;

e execution time is not degraded due to excessive clock updates with no

changes in the system state.

Chapter 1. Theoretical Foundations for Parallel Discrete Event Simulation

The next-event technique is more suitable for models where consecutive events
are irregularly distributed over time. The model is only examined and updated
when a system state change is detected, that is, a new event occurs. Most DES
tools employ this mechanism.

Nance (1971) presents a set of algorithms covering the whole spectrum from
time-slicing to next-event. His conclusions state that the proper selection of the

time flow algorithm has a dramatic influence on the simulation performance.

State Update

Any simulation defines a set of variables to represent the state of the physical
system being modelled. When an event is executed, it modifies the value of
one or more variables, thus updating the system state. State updates are conse-

quently tied to the execution of events at a specific simulation time.

Interactions

Whereas state updates of an entity Ey are changes due to the evolution of Egy
itself, interactions account for the influence of other entities Eq, E; ... E,, on Ej.
An interaction can be defined as an action of one simulation entity that explicitly
affects another simulation entity. Contrary to state updates, which are persistent
in time, an interaction is an immediate action that may affect the state of a per-

sistent entity. Interactions are normally scheduled to be executed in the future.

1.2. DES World Views

DES involves several conceptual frameworks or world views. Balci (1988) des-
cribed perfectly how to implement each one of these orientations, based on three

basic components: event, activity and process.

e Event (e) is an instantaneous occurrence that modifies the state of an entity

or the whole system.

1.2. DES World Views

o Activity (a) is a period of time that must pass before the state of an entity is
modified. Generally, the start and end of an activity can be seen as events.

e Process (p) is a time-ordered sequence of events or activities.

Figure 1.1 represents the relationship among these three components, which are
the basis of the world views described henceforth.

Process 1
< >
Activity 1 Activity 2 Activity 3
y N y N y N a Time
Event1l Event2 Event 3 Event 4

Figure 1.1. Events, activities and processes

1.2.1. Event Scheduling

Event oriented simulation is based on managing a Future Event List (FEL), contai-
ning all the events scheduled to occur at a future time. Events are allocated in
the FEL in non-decreasing timestamp order. Therefore, let e@f denote an event e
scheduled to be executed at timestamp .

The algorithm in Figure 1.2(a) shows how event orientation manages the FEL.
Basically, the next-event technique, as formerly introduced in Subsection 1.1.1,
is used. First, the simulation clock is advanced to t;, with e;@¢; being the front
event from the FEL. Next, all events e, @1y, e3@t3, ...e;@t;,th = t3 = ... =t;, = H
are moved to an execution queue. If the execution of an event produces new
events, they are inserted in the FEL. When all events ¢,@ty, ty = t; have been
executed, the simulation clock is advanced again by taking the first event from

the FEL. This process is repeated until the clock reaches the simulation end.

Chapter 1. Theoretical Foundations for Parallel Discrete Event Simulation

1.2.2. Activity Scanning

Using the activity orientation requires associating a series of pre-conditions to
each activity. A time-slicing technique is usually applied to this kind of simu-
lation. Every time the simulation clock advances, the associated pre-conditions
are checked to determine if the activity can start, as seen in Figure 1.2(b).

Activity scanning is considered a simple, easy to understand and highly sca-
lable approach. However, a computer execution of such an approach results in
slow runtime because many useless scans have to be done each clock cycle. A
logical and much more efficient evolution of this design is the three-phase ap-
proach, which will be introduced later this section.

1.2.3. Process Interaction

Process interaction is one of the most popular DES approaches, especially be-
cause of the use of high-level blocks to build models. The low-level simulation
engine is responsible for handling the interactions among such blocks in a way
that is transparent to the final user.

When this orientation is used, the life cycle of each entity is defined as a pro-
cess. During a simulation, entities “flow” through the system, advancing as
much as possible through their processes. Two different situations can make an

entity stop:

o Unconditional delay: The entity is halted during a specified simulation time
that is known or can be calculated at the instant the delay begins. Activities

are generally considered unconditional delays.

o Conditional delay: The entity is halted until a certain condition is met, such
as some system state variables reaching certain specified values. More of-
ten, conditions are based on the availability of certain resources required

to perform an activity.

As mentioned earlier, process interaction has the advantage of offering the

1.2. DES World Views

Start) Start

Y Y
el@ts Update
first event simulation
in FEL clock
S Activity
simulation scanning
clock t=ts

l

Execute events
from FEL
e@ts, ts=t

Simulation
end?

Simulation
end?

(a) Event scheduling (b) Activity scanning

Figure 1.2. Event and activity orientations

modeller high-level structures for creating a model. At the same time, at a lower
level, these processes are transformed into simpler structures (usually events).
This approach, then, combines scalability and simplicity of design with efficient

performance. Figure 1.3(a) shows a simplified scheme of this orientation. The

Chapter 1. Theoretical Foundations for Parallel Discrete Event Simulation

low level of the process interaction world view will be thoroughly examined in
Chapter 2.

1.2.4. Three-Phase Approach

The three-phase approach combines characteristics from both event scheduling
and activity scanning. Assuming as the starting point that events are activities

lasting zero time units, activities/events! can be categorised into:

o B activities/events. Let eb@t be the Bounded event eb, scheduled to be exe-
cuted at simulation time ¢. Since the time instant when a B event is going
to occur can be determined in advance, they can be scheduled in a future

event list similarly to the event orientation.

o C activities/events. Let ec@{cond) be the Conditional event ec, which will be
executed if condition cond is met.

The three-phase approach is drawn in Figure 1.3(b). Three phases are involved
in the life cycle of this approach:

e Phase A: The simulation clock is advanced to ¢, as in the event scheduling

approach.
o Phase B: B events eb;@ts; whose timestamp ts; = t are executed.

e Phase C: C events are executed as in the activity scanning approach, accor-
ding to a priority-based order. The execution of a C event can modify the
system state, and thus some condition outcomes. Consequently, this phase
has to be repeated until no more changes are detected.

IDepending on the reference, the unit of work in the three-phase approach may be called an
activity or an event.

1.2. DES World Views

(Start

Y
Update
simulation
clock

l

Select process
to execute

l

Advance
process until a
delay is found

Update

clock

simulation

'

Execute
B events

withts=t

i’

Check and
execute
C events

Simulation
end?

(a) Process interaction

end?

Simulation

(b) Three-phase approach

Figure 1.3. Three-phase approach and process orientation

Chapter 1. Theoretical Foundations for Parallel Discrete Event Simulation

1.2.5. Comparing the Four Approaches

Generally, simulation experts note the efficiency of event orientation when com-
pared to other world views. Moreover, most modelling formalisms, such as Petri
nets and Discrete Event System Specification (DEVS), are mainly geared toward
analysing event-oriented models. Nevertheless, experts also agree on the diffi-
culty of modelling using a pure event orientation. This difficulty arises mainly
from the need to cover all the possible system evolutions within the event defini-
tion. This problem is further aggravated should the model have to be improved
or extended.

The benefits and drawbacks of activity orientation pros and cons can be sum-
marised in three main points: simple to model, easy to understand, but hardly
efficient.

Process orientation is the most widely used worldview in both free and com-
mercial simulation tools. Organisations find this approach well suited to their
needs, specifically when modelling distribution and manufacturing processes.
Not only is translating such systems into process-oriented simulation models
very straightforward, but a process-oriented simulation also usually relies on an
event-based simulation engine, thus improving performance.

The three-phase approach combines, according to its supporters, the simpli-
city of activity orientation and the efficiency of event orientation. Pidd (1998)
adds an additional statement in support of this approach over process orienta-
tion: event ordering. Since the three-phase approach orders the execution of the
events, conflicts when accessing shared resources are avoided. Therefore, the
execution is deadlock free. Pidd’s statement is based on the sequential nature of

the computer:

« Any discrete simulation model that contains parallel and simul-
taneous activities that are to be run on a computer which is essentially

serial in operation must have some strategy to avoid deadlock. »

This assertion, legitimate in 1998, is open to discussion nowadays. Multi-core

computers are widely used today, even in the field of personal computers. Thus,

10

1.3. Parallel Discrete Event Simulation

having at one’s disposal 2, 4, 8 and even more processors to execute a simulation

has become commonplace.

1.3. Parallel Discrete Event Simulation

Executing a simulation can take a long time. The complexity of the model or the
length of time being simulated may result in the simulation lasting for hours,
days or weeks, even in high-performance computers. Consequently, parallelism
presents a good opportunity for reducing the execution time of a simulation.
Broadly speaking, techniques for exploiting simulation parallelism can be ca-

tegorised into three main groups:

o Application-level parallelism. Techniques that do not modify the simula-
tion core but which search for parallelism in the simulator’s source code
or simply distribute the simulator’s main components. Very little or no
knowledge of either the model or the simulation engine is required to im-
plement these techniques. Among the techniques requiring no knowledge
of the simulation at all, automatic program parallelisation stands out. Addi-
tionally, distributed experimentation, which can be applied to any stochastic
simulation, and dedicated execution, which only requires modifying the in-
terface among the main independent modules comprising the simulation

tool, would fall into this category.

o Simulation-level parallelism. This category includes techniques that modify
the simulation engine but that do not depend on the model being simula-
ted. Dedicated execution would also fall into this category, although tan-
gentially. The distributed execution use of a centralised event list is perhaps
the only pure approach, since it modifies the simulation engine but not the
model being used. Domain decomposition and cloning, roughly applied,
would be included here, but the performance gain would not be remar-
kable.

11

Chapter 1. Theoretical Foundations for Parallel Discrete Event Simulation

o Model-level parallelism. It is not only the simulation engine that is modified
when applying these techniques. Both the conceptual and computational
models are defined so the parallelism present in the system being simu-
lated is exposed. Domain decomposition, hierarchical decomposition and, to
a lesser extent, cloning fall into this category. Since these techniques rely
on specific knowledge of the system, impressive results can be achieved
when correctly applied. However, by being so intertwined with the speci-
fic problem, they require a greater development effort when compared to
the techniques discussed earlier. Moreover, most new problems must be
developed completely from scratch.

The rest of this section is devoted to a more in-depth review of these techniques.

1.3.1. Automatic Code Parallelisation by Using a Specific Compiler

Automatic code (or program) parallelisation is a research area that has no di-
rect bearing on simulation. Dependence analysis techniques detect regions of a
source code that can be parallelised. Then, straight-line code parallelisation, do loop
transformations and parallelisation of recursive routines are applied to automatically
transform a sequential code into a parallel one. Banerjee et al. (1993) clearly
present the main topics related to this area, whereas Hall et al. (1996) reference
the Stanford University SUIF compiler, a tool specifically created for this pur-
pose.

The generality of this approach is both its major drawback as well as its grea-
test advantage. On the one hand, high-level knowledge about the implicit pa-
rallelism in the simulation or the model cannot be exploited; on the other hand,

the simulator developer does not need to explicitly design a parallel tool.

1.3.2. Replicated Trials or Distributed Experimentation

Stochastic simulation requires executing several replicas of the same simulation
to obtain results that are statistically significant. Therefore, distributing the dif-

12

1.3. Parallel Discrete Event Simulation

ferent replicas among a set of a processors is an extremely simple way to achieve
speedup. Indeed, by having these replicas be completely independent, this ap-
proach ensures almost linear speedup with negligible programming effort. The
limit to this linearity is imposed by communication costs, which should be insi-
gnificant when compared to the execution time of a simulation.

Memory constraints clearly limit distributed experimentation. If using a phy-
sically distributed environment, the entire simulated model must fit in each com-
puter’s physical memory. Furthermore, when trying to apply this technique in
an multi-core computer, enough memory must be available to simultaneously
allocate N replicas.

Heidelberger (1988) analyses the statistical properties of the estimators obtai-
ned by running parallel independent replications on a multiple processor com-
puting system. In addition, Biles and Kleijnen (2005) place the emphasis on the
use of the world-wide web in conducting large-scale simulation studies by dis-
tributing simulations created with generic software, such as Silk and Arena.

1.3.3. Dedicated Execution

A well designed simulator may be seen as a set of loosely coupled modules that
interact one with another. A typical stochastic simulation consists of (at least):

e arandom number generator;

¢ asimulation engine, which can be a simple event list manager;
e some kind of graphical interface;

e and some tools for compiling (and processing) statistics.

(Comfort, 1984) presented one of the first examples of dedicated execution.
The performance of this technique strongly relies on the fine balance among
the execution of the different modules. Unfortunately, event list management is
quite often constrained by bottlenecking, as noted by Kesidis and Singh (1995).

13

Chapter 1. Theoretical Foundations for Parallel Discrete Event Simulation

1.3.4. Hierarchical Decomposition

When using hierarchical decomposition, events are decomposed into sub-events
that may be concurrently executed. This approach requires a thorough know-
ledge of the system being modelled.

Hierarchical decomposition is strongly tied to DEVS theory (Zeigler et al.,
2000) and was formerly introduced by Concepcion (1989). Parallel Discrete Event
System Specification (PDEVS) appears as its most natural evolution (Chow et al.,
1994). There is a large community of researchers focused on this sound forma-
lism, which establishes a robust theoretical basis for analysing, modelling and
simulating any system. However, such a strong theoretical basis makes simu-
lation professionals very reluctant to adopt this approach in the private field,
where adaptability, ease of design and immediacy are generally prioritised over
robustness and even formal solution validation.

Despite the large amount of research being conducted in this field, such as that
by Himmelspach et al. (2007), some authors are trying to “flatten” the hierarchi-
cal distribution in an attempt to gain more parallelism (Glinsky and Wainer,
2006).

1.3.5. Distributed Events (with Centralised Event List)

A different approach relies on maintaining a centralised future event list, as in
traditional sequential DES, but profiting from the availability of several proces-
sing units to distribute the events. The simplest algorithm would look for the
next available processor to execute the event with the lowest timestamp.

At first, this approach seems easy to implement and would avoid the need
to completely redesign an already built simulator: a simple piece-by-piece sub-
stitution of the event engine would suffice. The use of a centralised event list
is especially well suited to shared memory systems, where every processor can
easily access the list. Unfortunately, it is precisely this global event list that bot-
tlenecks this approach as the number of processors simultaneously accessing the
list increases.

14

1.3. Parallel Discrete Event Simulation

Obtaining good speedup by using this technique depends on the number of
events that can “safely” be executed concurrently. Therefore, determining the
“safety” of the events becomes the hardest task for the simulation to perform.

The use of a centralised event list will be revisited in subsequent chapters.

1.3.6. Domain Decomposition

The impact of the bottleneck caused by a centralised event list may be reduced
by decomposing and distributing such a list among the available processors.
Domain decomposition treats the physical system under study as a set of sub-
systems, each one sequentially simulated in a Logical Process (LP). An LP ma-
nages its own list of internal or local events, and maintains a set of communication
channels with other LPs to send and receive external or remote events. The impor-
tance of LPs is reflected in the name sometimes used to refer to this approach:
Logical process simulation (Ferscha and Tripathi, 1996). The main components of

this kind of simulation are shown in Figure 1.4 and enumerated below:

o The Communication Channel is the media used by the LPs to exchange mes-

sages.

o A Communication Interface (Cl) is used to gain access to the communication
channel.

e Region (R). Let S be the set of system state variables; each LP; can access
a subset S; C S, disjoint to state variables assigned to any other LP. This
approach, therefore, does not allow for different LPs to share variables.

e The Simulation Engine (SE) executes the internal events of each LP, and
creates new internal and external events, by advancing its Local Virtual Time
(LVT). An internal event ei is any event affecting only variables belonging

to S; C S; whereas external events ee affect variables belonging to S; C

S(i #)-

15

Chapter 1. Theoretical Foundations for Parallel Discrete Event Simulation

Communication channel

e o

@ SE1 @ SE2 * @

R1 R2 Rn

LP1 LP2 LPn
CI: Communication Channel SE: Simulation Engine
R: Region (subset of state variables) LP: Logical Process

Figure 1.4. Logical Process simulation. Source: (Ferscha and Tripathi, 1996)

LPs must preserve the logical execution order of the events. With respect to
local events, maintaining the order is as simple as executing events in times-
tamp order. However, since clocks from different LPs can have different values,
it would be possible to receive a remote event ee, @ty with t; < Ivt. A causal error
appears if an already executed local event ei;@t; with t; < t; depended on egy.
Preventing such causal errors from affecting the ”correctness” of the simulation,
which is known as the synchronisation problem, is the main research field for LP
simulation experts. Here, “correctness” is not used to mean “validity,” as in Vali-
dation and Verification, but simply to denote a parallel simulation that produces
the same results as the sequential one.

Consider the order in which the events are executed in a sequential simulation.
Reproducing exactly the same global order in an LP simulation is the most trivial
solution to the synchronisation problem, since it would ensure no causal errors
at all. Unfortunately, no gain may be obtained by strictly adhering to a global
sequential ordering. Breaking the order and executing events concurrently, thus

16

1.3. Parallel Discrete Event Simulation

reducing the amount of synchronisations required, is the only way to improve
upon sequential performance.

Generally, the synchronisation strategy falls into one of two categories: conser-
vative or optimistic. The former is a proactive strategy, which tries to avoid causal
errors; whereas the latter is a reactive strategy, which detects and fixes causal

errors whenever they appear.

Conservative Synchronisation

As mentioned earlier, a correct simulation can be achieved if the global event
ordering prevents the appearance of causal errors. A sufficient, but not neces-
sary, condition to ensure correctness is that each LP adhere to the local causality
constraint. As defined in Fujimoto (2000):

« A discrete-event simulation, consisting of (LPs) that interact ex-
clusively by exchanging time stamped messages obeys the local cau-
sality constraint if and only if each LP processes events in nondecrea-

sing timestamp order. »

This condition is not necessary since two events ei1@t; and ei,@t2, with t; <
t, and belonging to the same LP, may be executed in any order if there is no
dependency relationship between ei; and ei;. Consequently, the “safety” of the
next event ei@t; from the FEL has to be established before the event is actually
executed. When adhering to the local causality constraint, ei will be “safe” if
and only if it can be determined that no external event ee@t, with t, < t; will be
received.

Chandy and Misra (1979) and Bryant (1977) set the basis for conservative al-
gorithms (and for Parallel Discrete Event Simulation (PDES) in general). They
also highlighted the importance of using null messages (0@t) to avoid deadlocks
among different LPs. A null message 0@t,ull is an LP commitment that no event
ee@t with t < t,ull will be sent. Therefore, local events ei@t with t < f,ull can
be considered “safe.”

17

Chapter 1. Theoretical Foundations for Parallel Discrete Event Simulation

The definition of lookahead is another important milestone in the definition
of conservative algorithms. An LP with local virtual time /ot = t is said to
have a lookahead L if said LP can accurately predict all the internal events to
be generated until t + L. Combining null messages and lookahead allows an
LP to move forward its event safety horizon. Computing the lookahead requires
a detailed knowledge of the model being simulated, including characteristics of
the communication pattern between LPs, minimum reaction time when a new

event is received, conditional behaviour, precomputation of activity times, etc.

Conservative Time Window

The original conception of conservative algorithms is focused mainly on mes-
sage passing schemes, used primarily in asynchronous distributed environments.
Synchronism can be increased if suitable multiprocessor hardware is available
and a time window W; is used. A time window basically defines a set of events
e € W; that are causally independent from any event ¢’ € W, j # i. This idea was
initially proposed by (Lubachevsky, 1988; Nicol, 1991) and is usually referred to
as Conservative Time Window (CTW). The algorithm can be decomposed into two
phases:

o Phase 1: Window identification. For each LP;, an ordered series of events W;
is identified, such that for every event e € W;, e is causally independent of
any ¢’ € W;,j # i.

o Phase 2: Event processing. Each LP; executes the events e € W; sequentially

and in chronological order.

A barrier is used to synchronise the two phases. Therefore, the benefits of
this technique basically hinge on two main parameters: the efficiency of the syn-
chronisation operations of the barrier, and the event structure of the model being
simulated.

18

1.3. Parallel Discrete Event Simulation

Optimistic Synchronisation

As conservative algorithms avoid the appearance of causal errors by adhering to
the local causality constraint, optimistic algorithms allow breaking such constraints
while offering a mechanism to recover (roll back) from any causal errors that do
occur.

Despite the many algorithms that have been used, Time Warp (Jefferson, 1985)
stands out as the most widespread and well known of these techniques, whose
main concepts are commonly applied to establish the base for optimistic syn-
chronisation. The Time Warp algorithm is generally split into the local control

and the global control mechanisms.

The local control mechanism resides within each LP. A Time Warp Logical
Process (TWLP) can be seen as a sequential discrete event simulator but for recei-
ving events from different LPs, and not discarding events after processing them.
Events are not discarded because a TWLP does not wait for synchronisation like
conservative LPs, but optimistically executes all events in the FEL. As a result,
a TWLP can receive an event from another TWLP with a timestamp preceding
that of the last event processed. Such events are called straggler events. Upon re-
ceipt of a straggler event, the TWLP is aware that every event already processed
whose timestamp is larger than that of the straggler event breaks the local cau-
sality constraint and is, consequently, incorrect. Therefore, the TWLP has to roll
back or “undo” these events, and process them again after the straggler event has
been processed. Such an “undo” operation poses two main problems: changes
in state variables and events already sent to different TWLPs.

Although the local control mechanism ensures that the execution of the paral-
lel simulation yields the same results as a sequential simulation, two additional
problems remain which are solved by the global control mechanism: operations
that cannot be rolled back, such as I/O; and the managing of the huge amount of
memory required for roll back operations and which is no longer needed. Both
problems can be solved if the simulation can safely determine that no straggler

event will be received with a timestamp smaller than the simulation time T. This

19

Chapter 1. Theoretical Foundations for Parallel Discrete Event Simulation

lower bound is generally called Global Virtual Time (GVT). All events and system
state information prior to GVT can be safely deleted (or fossil collected). Compu-
ting the GVT is one of the most important problems in optimistic simulation.

Semi-automatic Domain Decomposition

Boszormenyi and Stopper (1999) present a complementary approach for domain
decomposition that tries to minimise causality conflicts at runtime by advancing
the parallelisation to the earliest possible stage. The key idea is to enhance the
model description with hints that describe the estimated workload and commu-
nication costs among simulation objects. Based on this information, a graph is
created that is automatically partitioned, as expected in a classical domain de-
composition.

The main advantage of this approach is its independence from the synchroni-
sation strategy: both optimistic and conservative approaches are valid. Actually,
the authors implement the latter for simplicity though, according to them, the
former would be better suited to the system.

The main drawback is the difficulty in choosing the proper hints in advance.

Time Decomposition

Domain decomposition is classically defined as mapping spatial partitions of the
simulated system into LPs. A different approach is to decompose the system
temporarily, assigning different time intervals to different processors. In this case,
combining the results from each time interval is the main challenge to using this
approach.

Jones (1986) outlines this technique, whereas Chandy and Sherman (1989)
present a framework and an algorithm to implement this idea. Heidelberger
and Stone (1990); Lin and Lazowska (1991) cope with the problem of combining
results. Fujimoto and Nicol (1994) also treat this kind of parallel simulation and
note its limited scope: only problems that can be expressed as systems of recur-
rence relations can benefit from this technique; that is, systems whose temporal

20

1.3. Parallel Discrete Event Simulation

behaviour does not depend on a previous state, and that can be recomposed with
some simple operations. Kiesling (2006) recovers these ideas and introduces a
progressive time-parallel simulation, a technique based on the successive refine-

ment of solutions.

Final Remarks on Domain Decomposition

Domain decomposition is usually synonymous with PDES. This idea is rein-
forced by classical reference books such as (Fujimoto, 2000), which addresses
this approach almost exclusively. Moreover, other techniques such as cloning
(see next section), and IEEE standards such as High Level Architecture (HLA), in-
volving many important research and investor partners (like the US Army), are
based on domain decomposition. It follows, therefore, that most of the scientific
publications on PDES would fall into this research area.

Besides the aforementioned book by Fujimoto, Ferscha and Tripathi (1996)
provide an in-depth review of the basic conservative and optimistic techniques,
whereas (Perumalla, 2006) presents the most up-to-date survey on the state-of-

the-art in domain decomposition.

1.3.7. Cloning

Cloning is a relatively recent PDES field based on the concurrent evaluation of
several simulated futures (Hybinette and Fujimoto, 2001). The use of decision
points distributed along the simulation timeline is a key feature of this approach.
Decision points define highlighted instants when several copies of the currently
running simulation are dynamically created, each one modelling a possible fu-
ture outcome.

This technique mainly benefits from the fact that, independently of how many
clones are created, computations performed before the cloning are required to be
executed only once. Furthermore, the fact that it is based on domain decompo-
sition means that only those parts (LPs) that actually change have to be cloned
instead of the entire simulation.

21

Chapter 1. Theoretical Foundations for Parallel Discrete Event Simulation

Cloning, as introduced by (Hybinette and Fujimoto, 2001), is built atop LP si-
mulation though, conceptually, it could be applied to any other parallel or even
sequential approach. The use of LPs makes possible the incremental cloning of
the simulation: only when an LP is affected by the decision is it actually clo-
ned. A careful study of the moment when the LPs are cloned can lead to better
results (Hybinette, 2004). Furthermore, clones that are detected as being equal
can later be merged (Agarwal and Hybinette, 2005), thus avoiding unnecessary
computation.

The main drawback of this approach, according to its authors, is that benefits
from using cloning in stochastic simulations remain unclear, since computations

with random numbers would differ very quickly.

1.3.8. Summary

Figure 1.5 comprehensively shows all the alternatives to PDES presented above.
The different approaches are tentatively located along the X axis based on two
opposing principles: on the one hand, approaches closer to the right require a
deeper knowledge of the model and the simulation engine, and are thus more
specific; on the other hand, approaches closer to the left are more generic, thus
allowing for a more automated application. Certainly, the location of the al-
ternatives is intended to be tentative, since hybrid approaches are possible and

different variations of the pure alternatives are allowed.

&
&’i‘oo &oo
& & a
s $ 5 &
) & o
& QSQ C S &)
Co N & G e »
& S & > & % Q X
X7 X & NS X0
S P & PORCH o 5 ©
&OQ\Q\\% & g & o’\‘& & e‘&
. &)
re 9O i T & &
-« —eo .- ° —>
Automation Model-awareness

Figure 1.5. Different PDES approaches

22

Chapter

Process-Oriented Implementation

Process interaction is perhaps the most popular approach for implementing dis-
crete event simulators. This popularity arises from several factors (Cassel, 2000):

e [t is intuitive.

e Most popular simulation languages directly or indirectly support its use,
from SIMULA (Dahl and Nygaard, 1966), the foundational simulation lan-
guage, to SIMAN (Pedgen et al., 1995), heart of Arena, one of the most used
simulation tools around the world.

e Processes seem to be the obvious way to link object-orientation and DES.

However, when dealing with parallel simulation, event scheduling is the prefer-
red option. This statement may sound counterintuitive, since process orientation
involves many processes concurrently interacting with one another. Therefore, a
parallel approach should be suitable to implement such a world view. The rest
of this section will try to shed light on this apparent contradiction by outlining
the main techniques employed to implement the process interaction worldview

in both sequential and parallel computers.

23

Chapter 2. Process-Oriented Implementation

2.1. Basics of Implementing a Process-Oriented Simulator

According to (Perumalla and Fujimoto, 1998), a pure process-oriented simulator
must offer the features shown in Table 2.1.

Table 2.1. Features of a process-oriented simulation

F1 | Processes can declare and use local variables

F2 | Process calls can be nested

F3 | Processes can be recursive and re-entrant

F4 | Primitives to advance simulation time can be invoked in any process

F5 | Primitives to advance simulation time can be invoked wherever a
conditional, looping or other statements can appear

Features 1-3 are covered by any high-level language supporting procedural
programming styles. However, features 4-5 are simulation-specific and require
further effort to be properly implemented. Certainly, depending on the applica-
tion field, not all of these features are required, and the design of the simulator
may be simplified.

Frequently, object-orientation is stated as being ideally suited for implemen-
ting process interaction (Jacobson, 1992) since an object’s state is defined by a
combination of variables, and its behaviour by a set of methods. The funda-
mental data structures in object-oriented programming are the different object
classes. Therefore, to describe a process-based system, each of its elements must
be modelled using an object that is an instance of one of the possible classes that
exist in the system. Each particular instance of an object has its own state, even
if the generic definition of its behaviour is set by the class to which it belongs.

An object-orientated language, such as Java or C++ can easily cope with fea-
tures 1-3. However, features 4 and 5 involve the definition of an operation that
may be invoked from the process body to suspend the current process during a
conditional or unconditional delay. This operation has different names depen-

ding on the simulation tool: suspend, hold, wait. ..In spite of the different names,

24

2.2. Direct (Threaded) Translation

using such an operation always implies that:

1. the simulation engine is able to halt the current process, thus allowing for
a different process to be executed;

2. the state of the current process must be stored in order to be subsequently

resumed.

The second implication involves storing not only local variables, but the exact
execution point where the process was halted.

The rest of this section will thoroughly examine the different approaches in-
volved in the efficient implementation of a suspend/resume scheme and high-

light the details associated with a possible Java implementation.

2.2. Direct (Threaded) Translation

Threads are a convenient tool for circumventing the concurrent nature of pro-
cess interaction. Threads can communicate and synchronise with each other,
and generally include suspend /resume primitives. Therefore, each (simulation)
process could be directly mapped onto a thread, and the suspend/resume pri-
mitives used to mimic the progression of the simulation timeline.

The main advantage of using threads is that the simulation engine becomes a
simple thread scheduler and very little additional programming effort is requi-
red to capture the semantics of the process interaction. However, an extensive
use of threads on a sequential computer is extremely inefficient, since thread
creation and maintenance consumes a considerable amount of both CPU and
memory resources.

The recycling of threads appears to offer a suitable alternative by limiting the
cost of using direct thread mapping. A simulation mainly consisting of short-
term processes (with respect to the entire simulation timeline) would derive
some benefit from recycling threads mapped to already finished processes. Ho-

wever, the positive effect of this solution is bounded by the total amount of si-

25

Chapter 2. Process-Oriented Implementation

multaneous processes in the simulation. A simulation of several thousand enti-
ties would rarely profit from this approach, even in a multi-core computer, which
nowadays typically includes no more than 8 processors.

An additional problem, which only appears when Java is used, is that the
Thread.stop(), Thread.suspend() and Thread.resume() methods are deprecated, that
is, their use is discouraged by Sun because they can lead to deadlock-prone code.
Consequently, extra hardcoding is required to re-implement such methods. For-
tunately, the last versions of the Java Virtual Machine (JVM) include semaphores,
locks and a variety of tools that make this task easier.

Mascarenhas and Rego (1996) apply this idea to create a distributed architec-
ture that supports thread migration. Examples of sequential DES tools using
this approach include Silk (Healy and Kilgore, 1997) and JAPROSIM (Abdelha-
bib and Brahim, 2008).

2.3. Coroutines

The efficiency problems of the direct translation make the adopting this ap-
proach impractical. Apart from being a convenient abstraction for process in-
teraction, threads are not well suited to extensive use on a sequential, or even a
standard multi-core, computer. A different approach is, thus, desirable.

As seen in Section 2.1, mimicking the process interaction approach on a se-
quential computer requires a mechanism for stopping a process whenever a condi-
tional or unconditional delay arises; and for being able to restore the process
state later, by resuming the execution at exactly the same point where it was pre-
viously interrupted.

Actually, the very first object oriented simulation language, SIMULA (Dahl
and Nygaard, 1966), included a solution for this problem: the use of coroutines.
According to Conway (1963), a coroutine can be defined as:

«...an autonomous program that communicates with adjacent mo-

dules as if they were input or output subroutines. Thus, coroutines

26

2.4. Stack Swapping

are subroutines all at the same level, each acting as if it were the mas-

ter program when in fact there is no master program. »

In other words, coroutines generalise subroutines to allow multiple entry
points to suspend and resume execution at certain locations. Unfortunately,
most general purpose languages such as C or Java implement subroutines using
a stack-based approach (Koopman, 1989), which prevents the inclusion of corou-
tine primitives.

Certainly, coroutines can be mapped onto threads. Precisely, Helsgaun (2004)
makes a thread-based implementation of coroutines in Java to support a pro-
cess oriented simulation. Helsgaun proposes using a wait-notify scheme to sus-
pend/resume such threads. Coroutines/threads already finished can be used
again, thus saving some resources and reducing thread creation overhead. Ho-
wever, none of the disadvantages of this approach, as introduced in the previous
section, are solved with Helsgaun’s solution.

A different path is taken by (Weatherly and Page, 2004), who provide sup-
port for coroutines by modifying the IBM Jikes Reference Virtual Machine (The
Jikes Team, 2010). Since the stack-based approach seems to be the problem, they
replace the normal call stack by a cactus stack (Sardesai et al., 1998), which can
easily deal with operations to suspend and later resume coroutines. Although
their proposal appears suitable, their paper includes only very preliminary re-

sults.

2.4. Stack Swapping

Using high-level structures to introduce coroutine primitives in general purpose
languages appears as a straightforward, but inefficient, mechanism. The use of
low-level structures, then, is the next step.

As noted earlier, most general purpose languages use a stack for code opti-
misation. The stack is used to store a method’s current state, thus allowing for

subsequent resumption at the same point where it was interrupted to invoke

27

Chapter 2. Process-Oriented Implementation

another method. Considering methods as simulation processes, and directly ma-
nipulating the stack would be a suitable approach for performing coroutine-like
behaviour.

(Wiedemann, 2008) introduces assembler code that manually implements a
stack swapping method. His approach allows for quickly switching context but
requires storing stack pointer addresses for every process, thus buying perfor-
mance with memory. The direct use of assembler code leads to several draw-
backs, the most important being the strong dependency on the underlying OS/-
hardware on which the simulator is to be executed. Furthermore, recurrent or
re-entrant processes seems not to have been taken into account.

A similar approach is followed by (Jacobs and Verbraeck, 2004), who use the
Java “assembler” code (bytecode) instead. Java does not compile into platform-
specific machine code, but utilises an intermediate representation called byte-
code. This intermediate code is interpreted by the JVM, which translates it into
the platform-specific code. Being at a higher level, Java does not provide any
language constructs to access the stack of a thread. Jacobs and Verbraeck (2004)
dodge this problem by implementing a second Java interpreter on top of the real
JVM. This new layer recodes the low-level bytecode operations and the struc-
tures used to interpret the code itself, but also adds primitives to access the in-
terpreted stack. Hence, the process code is interpreted in the higher level layer,
and the rest of the simulation code is executed as normal Java code. A simula-
tion based on this mechanism is, according to the authors, around 6 times slower
than an equivalent event scheduling simulation when there are more than 1000
simultaneously created entities. The time penalty is even higher when creating
fewer entities.

2.5. Continuations

Continuations (Appel, 1992) have been also used to implement process interac-

tion. This concept comes from compilers theory and, more specifically, from the

28

2.5. Continuations

tield of denotational semantics (Tennent, 1976). Programming with continua-
tions implies explicitly telling each method about its successor (continuation).
Let us consider, for example, the pseudocode in Listing 2.1.

Listing 2.1. Example for applying continuations

method f(x) {
statementl ;
statement?2;

return r;

main {

y = £(x);
mainStatementl ;

mainStatement2;

Let k be a function enclosing the statements that take place immediately after
the call y = f(x). Listing 2.2 shows the result of applying the transformation.

Hence, k is the continuation of f. By reproducing the same transformation for
the entire program, none of the methods would return except upon program
termination. Consequently, the use of continuations obviates the program’s need
for a call stack.

One of the main difficulties with continuations is how to keep the context
safe for local variables. Booth and Bruce (1997) solve this issue by ensuring that
all local variables are constant (both values or references), and by defining a
closure environment containing the references for external variables. Their simu-
lator, named APOSTLE, implements an interpreter that translates a simulation
expressed as a pure process-oriented language into C++ code that makes use of
continuations. Unfortunately, once again, the results of applying such a solution
are vaguely presented.

29

Chapter 2. Process-Oriented Implementation

Listing 2.2. The previous example with continuations

method f(x, k) {
statementl ;
statement2;

k(r);

method k(r) ({
mainStatementl ;

mainStatement2;

main {

y = f(x, k);

The authors say that

« We found that an interpreter for APOSTLE based on this technique
was about as fast as our first generation compiler. »

By their “first generation compiler,” the authors mean a simulator that trans-
lates the process-oriented world-view into an event-scheduling approach, as will
be explained later. They also claim that, by using continuations, they can take
advantage of several optimisations that could be applied when transforming the
code, such as merging two consecutive delays into a single one.

A different approach is that of Kunert (2008), whose efforts focus on the use of
Java to develop an optimistic PDES. As the author says,

« Java does not provide a direct support for continuations. Moreo-

ver, it is impossible to implement generic continuations using pure

30

2.6. Stack Reconstruction

Java when one design goal is to keep the end-user unaware of the

continuation implementation. »

Consequently, the only solution is to rewrite Java bytecode by using a specific
continuation framework, such as (The Apache Software Foundation, 2010) and
(The RIFE team, 2010).

2.6. Stack Reconstruction

Continuations try to completely avoid the use of the stack. In contrast, stack
reconstruction (Perumalla and Fujimoto, 1998) involves not only using the stack,
but adding further runtime information so that the stack can be reconstructed to
the same state it was in when the process was suspended.

This technique consists of two main steps:

1. identifying (and labelling) all the lines of a procedure at which a process

can be suspended;

2. and using a switch and a set of “goto” statements at the beginning of the
process to select the proper part of the code to jump to.

Of the features introduced in Table 2.1, almost all of them are covered by this
approach. The example in Listing 2.3 includes features 2, 4 and 5. It remains
unclear how recursion (feature 3) is supported. However, the problems of local
variables and procedure parameters (feature 1) are solved by creating a memory
buffer or frame. Variables in the frame can be accessed by using indirect refe-
rences, whereas the frame is kept together with the correct jump label.

Listing 2.4 illustrates how this technique can be applied. A variable “jumplIn-
dex” would be required per process

Stack reconstruction is intended to overcome the classical difficulties that ap-
pear when applying process orientation in an optimistic PDES. Since the state
information is stored in an abstract structure and not in the native stack, the so-

lution’s portability is improved. Not only this, saving the abstract stack is less

31

Chapter 2. Process-Oriented Implementation

expensive than performing a brute-force blind copy of the native stack. Finally,
the performance of the examples presented by the authors resembled that of a

pure event scheduling simulation.

Listing 2.3. Example of applying stack reconstruction (adapted from Perumalla and Fuji-
moto (1998))

method one () {
statementl ;
if (L..) |
statement?2 ;
wait(condl);
statement3 ;

}

for (...) {
statement4;
two () ;
statement5 ;

method two () {

wait(cond2);

main {

one () ;

32

2.6. Stack Reconstruction

Listing 2.4. Method “one” from the previous listing with stack reconstruction (adapted from

Perumalla and Fujimoto (1998))

method one() {
switch (jumplIndex) {
case 0: goto START;
case 1: goto LBL1;
case 2: goto LBL2;

}

START:
statementl ;
if (...) {

statement2;
wakeup = condl;
jumplndex = 1;
return SUSPENDED;

LBL1:
statement3;
}
for (...) {
statement4;
LBL2:

flag = two();

if (flag == SUSPENDED) ({
jumpIndex = 2;
return SUSPENDED;

}

statement5 ;

}

jumpIlndex = 0;
return DONE;

33

Chapter 2. Process-Oriented Implementation

2.7. Converting Process Interaction into Event Scheduling

The advantages of using process interaction, like being intuitive and providing
a direct link to object orientation, were introduced earlier. Event scheduling is
known for being the most efficient world view, but not at all easy to use, sca-
lable or intuitive. However, Figure 1.1 already highlighted the relationship bet-
ween both approaches, that is, a process can be easily seen as a succession of
events. Consequently, the code executed between two consecutive suspensions
of a process can be mapped to an event. Thus, each event is only responsible for

scheduling the next piece of the process, which would be, in turn, a new event.

2.7.1. Manual Implementation

A process interaction model can be manually rewritten into an event scheduling
one. This task can be carried out by detecting the conditional and unconditional
delays of the process and placing the code up to the next delay in a new event.

This procedure has several drawbacks:
e A comprehensive review of the previously created model is required;
e it is error prone;

e the semantics of the process recursion are difficult to capture by using

events;

e local variables require special attention.

In the end, the main question is why an event-oriented simulator was not built
in the first place.
2.7.2. Automated Translation

Having a more automated mechanism to carry out the transformation from pro-
cess orientation to event orientation would be highly desirable. Possible solu-

tions include using an interpreter or pre-compiling the model by applying some

34

2.8. Java for Process-Oriented Simulation

kind of transformations to the source code. An automated translation could cer-
tainly suffer from some of the same drawbacks as a manual one; that is, local
variables remain a problematic issue and recursion is difficult to handle.

When implementing a process-oriented simulation in a sequential computer,
this is often the preferred approach since event scheduling is more efficient than
process interaction, and the transformation itself can be, in some cases, almost

trivial.

2.8. Java for Process-Oriented Simulation

Up to this point, the main techniques used to implement a process-oriented si-
mulation tool have been reviewed, with Java TM being the target language for
many of the examples presented. Java is an object-oriented programming lan-
guage, originally developed by Sun Microsystems, with a syntax derived from ¢
and C++. Generally, a Java program is not directly compiled into machine code.
Instead, an intermediate representation termed bytecode is used. Bytecode is sto-
red in .class files and run on a Java Virtual Machine (JVM).

In essence, Java defines four types of components, organised into packages:

classes, interfaces, enumerated types and exceptions.

e Classes are the blueprints from which object instances are created. A class
comprises a collection of fields and methods that define the properties and

capabilities of an object.

e An interface is a list of methods to be implemented. Hence, it simply works
as a statement of intent. Though Java does not permit multiple inheri-

tances, a class can implement more than one interface.

e Enumerated types are a set of named values. Since Java treats enumera-
ted types as a special compiler-generated class, they can declare instance
methods and fields.

35

Chapter 2. Process-Oriented Implementation

o Exceptions are special classes that handle the occurrence of extraordinary

events or errors during the execution of a program.

The remaining of this section will survey the main reasons supporting Java as
a suitable language for implementing the process interaction approach.

2.8.1. Object Orientation

Object Orientation (OO) has traditionally been put forth as a highly suitable pa-
radigm for supporting DES (Pidd, 1995). Indeed, the first object-oriented lan-
guage, SIMULA (Dahl and Nygaard, 1966), was developed to create and run
simulation models. Furthermore, Fujimoto (1993) insists on the similarities bet-
ween PDES and OO.

2.8.2. Portability

“Write once, run everywhere.” Sun Microsystems’ slogan is perhaps Java’s win-
ning hand. Almost any system has a corresponding JVM: Linux, Windows, Sola-
ris, Mac OS, HP-UX, cell phones, routers, washing machines. . . Portability means
that a developer can focus on high-level characterisation and ignore hardware

constraints such as word size, register file size and operating system.

2.8.3. Lack of Pointers: the Garbage Collector (GC)

Java avoids explicit memory management by the user. Thus, memory leaks and
bad address arithmetic completely disappear, and Java stands as a safer lan-
guage than, for example, C or C++. Not only this, the lack of pointers improves
the security of the language. The automatic mechanism used for handling me-
mory, the GC, allows the compiler and JVM to be further optimised.

36

2.8. Java for Process-Oriented Simulation

2.8.4. Multithreading

Java threads are built directly into the language. Actually, Java core support for
threads can be considered as simple and elegant, but also quite rudimentary. Ho-
wever, Java 1.5 included an extended package, java.util.concurrent, with thread
pools, a framework for asynchronous task execution, collection type classes op-
timised for concurrent access, synchronisation utilities such as semaphores, ato-
mic variables, blocks and condition variables (Lea, 2005). Such an array of fea-

tures enables the user to more easily exploit multithread programming.

2.8.5. Network Aware

Java was created with network communications in mind. Several features can
be highlighted that make Java network aware:

e Java supports network communication via sockets and provides support
for higher level protocols, such as HTML and FTP.

e Remote Method Invocation (RMI) is an extra abstraction layer over sockets.
RMI allows a method of a class located on a remote computer to be invo-
ked almost transparently from another computer. Since RMI is sometimes
regarded as inefficient and unnecessarily complex, Philippsen et al. (2000)
presented an alternative design called KARMI, which also includes an al-

ternate serialisation mechanism.

e Java objects can be serialised, that is, disassembled, sent through a commu-

nication stream, and finally assembled again.

e Javasupports the execution of small applications that can be invoked from
a web browser. Despite the fact that Applets are still a widespread option
for developing client front-ends, the Java Web Start (or javaW$) framework

is gaining ground.

37

Chapter

SIGHOS: a Process-Oriented
Simulator

Managers of complex organisations face the constant challenge of making strate-
gic decisions that require a holistic view of their companies. Nowadays, the use
of sophisticated information systems allows to better exploit the organisation’s
data to convert it into useful information. However, most decisions demand a
global evaluation of the Business Processes (BPs) and a comprehensive review
of the resources and entities that interact within the organisation. Modelling
and simulation provide a powerful tool to analyse, understand and, eventually,
change an organisation’s processes so to improve its performance while redu-

cing costs.

Though Business Process Simulation (BPS) (Wynn et al., 2008) represents an
invaluable instrument to support the modelling and simulation of BPs, suitable
tools (and experts) are required to fully benefit from this technique. The rest of
this chapter goes through the basics of business process modelling and simula-
tion. Furthermore, SIGHOS, a generic process-oriented simulator, developed in

Java for the purpose of simulating organisations, is described.

39

Chapter 3. SIGHOS: a Process-Oriented Simulator

3.1. Basic Definitions of Business Processes

The first step to take advantage of a business-centred view of an organisation is
to accurately model the business processes. A comprehensive process definition
includes all the relevant subprocesses and, ultimately, activities; their relationships;
and the criteria to indicate the start and the end of the process.

However, a process definition is nothing but a static view of the organisation.
In order to profit from Information Technologies (IT), such a definition should be
integrated into an automated tool that is able to “execute” and monitor the BPs.
Therefore, the Workflow Management Coalition (WfMC) defines the concept of

workflow as:

«The partial or total automation of a business process during which
documents, information or tasks are passed from one participant to

another for action, according to a set of procedural rules. »

Having defined what a workflow is, a workflow management system would be
such an automated tool, intended to interpret process definitions, interact with
workflow participants, and even invoke IT tools and applications. A workflow
management system creates instances of the processes and activities described in

the process definition. An instance is defined by the WfMC as:

« The representation of a single enactment of a process, or activity
within a process, including its associated data. Each instance repre-
sents a separate thread of execution of the process or activity, which
may be controlled independently and will have its own internal state
and externally visible identity, which may be used as a handle, for
example, to record or retrieve audit data relating to the individual

enactment. »

Within the process definition, an activity is considered an atomic piece of work
or logical step of the process, and generally requires human and/or machine
resources. The WIMC distinguishes between automated activities, which are

40

3.2. Workflow Patterns

executed by the workflow management system, and manual activities, which are
out of the workflow management system’s scope and are included for modelling
purposes only.

Figure 3.1 shows the relationship among the different workflow concepts.

Business Process

is defined in a is managed by a

Workflow Management
System

Process Definition

used to create and manage via

Sub-processes (e---------- composed of

Process Instance

Activities
i includes one
whch may or more
¢ during execution are
represented by
Manual Activities Automated Activities ———————»Activity Instances

Figure 3.1. Basic workflow terminology. Adapted from (WfMC, 1999)

3.2. Workflow Patterns

Van Der Aalst et al. (2003) explain how there is little consensus in the workflow
specification due to the lack of universal concepts for modelling business pro-
cesses. This, according to them, accounts for most of the differences between the
workflow languages. There are different perspectives to the workflow specifica-

tions:

e The control-flow perspective describes the activities and their execution or-

dering through different constructors.

41

Chapter 3. SIGHOS: a Process-Oriented Simulator

o The data perspective layers business and processing data on the control
perspective.

o The resource perspective provides an organisational structure anchor to the
workflow in the form of human and device roles responsible for executing

activities.

o The operational perspective describes the elementary actions executed by
activities, where the actions map onto underlying applications.

From the point of view of Business Process Reengineering (BPR), the control-
flow perspective offers the best opportunities for use in a simulation project. The
data perspective basically rests on the control-flow one, whereas the resource
and operational perspectives are ancillary.

As stated by Kiepuszewski et al. (2003), the basic control-flow constructs are
sequence, iteration, split (AND and OR) and join (AND and OR). The concepts of
sequence and iteration are trivial; however, split and join involve the appearance

of multiple concurrent execution threads for a process instance:

e AND-Split is a point within the workflow where a single control thread

splits into two or more threads that are executed in parallel.

e AND-Join is a point in the workflow where two or more parallel executing
tasks converge into a single common control thread.

e OR-Split is a point within the workflow where a single control thread de-
cides on which branch to take when faced with multiple alternative work-
flow branches.

e OR-Join is a point within the workflow where two or more alternative task
workflow branches re-converge to a single common task as the next step
within the workflow.

The basic workflow constructs are useful but their expressive power is limited.
Thus, Russell et al. (2006) propose 43 control-flow patterns (numbered WCP1

42

3.2. Workflow Patterns

— 43) that delineate the fundamental requirements for modelling the different
scenarios defined within the control-flow perspective. These patterns are based
on a study of countless practical cases involving real companies, and establish
both a language- and technology- independent framework to describe, analyse
and compare different workflow languages and tools.

Generally, workflow patterns are organised into several categories:

e Basic control flow patterns capture elementary aspects of process control,
such as sequence of activities, parallel branches and conditional nodes. Ba-

sically, these patterns comprise the basic constructs mentioned above.

o Advanced branching and synchronisation patterns complete the basic ones with

more complex and flexible branch and join structures.

e Multiple instance patterns involve activities that are able to initiate multiple
instances of themselves when invoked. Some of the patterns already in-
troduced in former categories may concurrently run multiple instances of
the same activity, but these specific patterns are different since they usually

require further synchronisation.

o State-based patterns reflect situations where the current system state is used

to make a decision regarding the way the workflow is executed.

o Cancellation and force completion patterns refer to situations where one or
several activity instances (or even the entire workflow) are withdrawn.

Handling of exceptions relies on these patterns too.
e Iteration patterns capture repetitive behaviours.

o Termination patterns represent the different circumstances under which a

workflow may be considered to be completed.

o Trigger patterns stand for tasks that are started when a certain external si-

gnal is received.

43

Chapter 3. SIGHOS: a Process-Oriented Simulator

Appendix E describes each of the 43 patterns individually, whereas (Workflow
Patterns Initiative, 2010) offers the most updated information and interactive

contents.

3.3. SIGHOS: A Process-Oriented Simulation Tool

The Simulation Group from the Department of Systems Engineering and Au-
tomation (SIMULL) has been working on business process simulation for many
years. Originally, their efforts were focused on the simulation of hospitals. Thus,
a specific tool, SIGHOS (Mufioz and Castilla, 2010), was designed. SIGHOS stands
for the Spanish SImulacion para la Gestion HOSpitalaria, that is, Hospital Manage-
ment Simulation. Soon, it became clear that the main ideas applied to simulate
a hospital could be generalised and extended to deal with other organisations,
such as call centres. Moreover, by adopting workflow patterns to model and
simulate business processes, the scope of the tool significantly increased.

The rest of this section presents the main features and modelling capabilities
of SIGHOS. Most of the concepts are adaptations of those defined in Chapter 1,
and will be introduced by abstracting the final implementation in Java. Never-
theless, the translation from those definitions into a practical implementation is

trivial.

3.3.1. Simulation

The first and most important modelling component of SIGHOS is Simulation.!
Definition 3.1. Simulation

A Simulation S(t.,4, R, RT, A, WF,G) is a container for the rest of the modelling
components, as well as the framework for performing the simulation itself. A

Simulation has an associated finalisation timestamp ¢4, and comprises a set of

!While a more suitable name might be Model, for “historical” reasons, we have preserved the
Simulation class as the model container.

44

3.3. SIGHOS: A Process-Oriented Simulation Tool

Resources R, Resource Types RT, Activities A, Workflows WF and Element

Generators G.

3.3.2. Resources

SIGHOS uses Resources to represent any human or material assets needed to
carry out a task. Simulation tools do not, in general, treat resources as indivi-
dual entities of the model. For example, any level 1 operator in a call centre can
answer a call. What tools like Arena (Kelton et al., 2002) do is to define roles or
Resource Types and then, for each of these roles, describe a function of the num-
ber of time-dependent Resources available. SIGHOS takes a completely different
approach by calculating the availability function for each role dynamically based
on each individual Resource’s availability function. This availability is defined
by a set of triplets (c;, ta;, rt;) referred to as Timetable Entries, as shown in
Figure 3.2.

ci.tp

A

A 4

taj

i Gbhd
\ 4

rt; rti rt;
A A "

Time
ci.ts t1 t2

Figure 3.2. Resource availability for a Timetable Entry (c;, ta;, rt;). The Resource is avai-
lable as rt; at t; but not at £;.

Definition 3.2. Timetable Entry
A Timetable Entry tte(c;, ta;, rt;) € rindicates that Resource r will be available

during time period ta; > 0 for role rt;, following the time pattern indicated by c;.

c; is normally defined as a cyclic time pattern:

45

Chapter 3. SIGHOS: a Process-Oriented Simulator

Definition 3.3. Cycle

A Cycle c(tstart, tend, tpmod) is a time pattern defining a time interval that starts at
timestamp ts4+ > 0, ends at timestamp t,,,; > tsiqt, and defines the occurrence
of an event with period tperiod (0 < tperiod < tend — tstart)- A Cycle c(tstart, K, tperiod)
can be also defined as a time interval that starts at timestamp g0+ > 0 and
which, for k iterations, defines the occurrence of an event with period tpemd(O <

tperiod < tend — tsturt)-

Definition 3.4. Timestamp included in a Timetable

A Timetable Entry sets the start and end timestamps of each availability period
of a Resource. A timestamp ts is said to be included in a Timetable tte,(cp, tay,
Ttn), Cn = (tstarts tends tperioa) T (Estart + K * tperiog < t5 < tstart + K * tperioq + tan) A
(ts < tena). The inclusion operation will be denoted as ts C tte,.

Definition 3.5. Resource availability

A Resource r is available for a Resource Type rf, at simulation time ¢ iff a
Timetable Entry tte,(cn, tan, rt,) exists such that t C tte,. |rt,|(t) will denote
the number of Resources available for role rt, at timestamp ¢.

The availability of a Resource describes not just the timetable, but the func-
tion performed by such Resource in that time period. In other words, the same
Resource can have different roles at different times, and may even play more
than one role at a time. For example, a surgeon in a hospital can operate in the
mornings (role: surgeon), and see patients as a doctor in the afternoons (role:
doctor).

Timetable Entries allow a user to express complex temporal behaviour for
the availability of a Resource. However, certain circumstances require additio-
nal mechanisms to model unavailability. For example, failures of a machine, ill-
ness of a human resource, an irregular work schedule, etc. are concepts that
are difficult to introduce in a regular availability time pattern, and which can be
better identified and expressed by using a specific unavailability or cancellation

46

3.3. SIGHOS: A Process-Oriented Simulation Tool

time pattern. A Cancellation Entry cte(c;, ta;, rt;) is normally defined together
with its counterpart availability pattern and completes the previous definition
of Resource availability.

Definition 3.6. Resource availability
A Resource r is available for a Resource Type rf, at simulation time t iff
(Ittey(cp, tay, rty) /t C ttey) N (Vetey (Cm, tam, ty) /1ty = thy = t & ctey).

It is important to note that a Cancellation Entry will always override any
Timetable Entry making reference to the same Resource Type.

Obviously, the way SIGHOS handles the Resources adds additional complexity
to the control of the simulation but, in exchange, it allows for the behaviour
of Resources to be modelled much more accurately. When modelling the Re-
sources of a complex organisation, such as a hospital, individual modelling

provides two advantages:
1. It makes for a more direct translation from reality to simulation;

2. and it allows the schedule timetables to be adjusted, much as the manager

of the organisation would do.

3.3.3. Activities

SIGHOS uses the definition of activity given in Section 3.1. However, the interac-
tion between Activities and Resources requires some additional definitions.
Since any Activity usually requires more than one Resource to be carried out,

the concept of Workgroup needs to be introduced.

Definition 3.7. Workgroup
Avorkgroup WG({(rty, k1), (rt2,ka), ..., (rtn, ky)}) is a set of pairs (rt;, k;) where
rt; is a role and k; > 0 is the number of Resources of that Type.

47

Chapter 3. SIGHOS: a Process-Oriented Simulator

Definition 3.8. Workgroup availability
A Workgroup WG is available at time ¢ iff |rt;|(t) > k;V(rt;, k;) € WG.

Thus, a more usable definition of Activity can be given:

Definition 3.9. Activity
An Activity a({(WGy, t1, pr1), ..., (WG, tm, prm) }) is a task that can be solved
intime t; > 0if WG;,1 < i < m is available.

The use of different Workgroups in an Activity allows, for example, for the
“operation” Activity to be carried out with a Workgroup consisting of a surgeon,
two assistant surgeons and two nurses and to last 1 h. The same Activity could
be performed by one surgeon and two nurses and last 2 h. The different triplets
(WG, t;, pri) may be ordered in non-decreasing order and assigned a priority
pri, such that the Activity is carried out by using WG; available in time ¢ iff
Ak < i/WGy available at time f.

Definition 3.10. Feasible Activity
Activity a is said to be feasible at time t iff 3(WG;, t;, pr;) € a/WG; is available

at time f£.

3.3.4. Elements

Elements represent the main actors of the simulation, that is, the entities that ac-
tively interact with the system by carrying out Activities. Patients in a hospital,
calls in a call centre, documents in a document management system. .. they can
all be considered Elements of a simulation.

Linking with the definitions of the WfMC, an Element e(wf) can be conside-
red a process instance of the Workflow defined in wf. Thus defined, the life cycle
of an Element e(w /) consists of carrying out all the Activities referenced in wf,
as seen in Figure 3.3. When there are not enough Resources to carry out an Ac-

tivity, the requesting Element is enqueued until new Resources are available.

48

3.3. SIGHOS: A Process-Oriented Simulation Tool

Each Activity implicitly includes an Element queue.

Element created

No more
activities left

Checking Finalize activity

workflow

Carrying out
activity

Activity left /
Request activity

Activity not feasible /

Checking Enqueue

activity
feasibility

Enqueued

Resource available

Figure 3.3. Life cycle of an Element

Definition 3.11. Carrying out an Activity

Consider an Activity a({(WGy, t1, pr1),..., (WG, tm, prm)}) and an Element
e(wf) / a € wf. e(wf) is said to carry out the Activity a with a Workgroup
WG;(i € 1...m)iff ais feasible with WG; and e(wf) acquires as many Resources
as are indicated by WG; during a simulation time interval ¢;.

Elements are classified into several Element Types (ef;). The reason is twofold:
on the one hand, Element Types can be useful for statistical purposes when col-
lecting the simulation results, and simply obey the logical structure of the system
being modelled; on the other hand, different priorities can be associated with
each Element Type. Priorities serve to create urgent Elements, for example, pa-
tients with a more serious illness, or incidents that should be treated promptly.

49

Chapter 3. SIGHOS: a Process-Oriented Simulator

The workflow patterns introduced in Section 3.2 constitute the basis for the
Workflow constructs in SIGHOS. This topic will be thoroughly explained in Sec-
tion 3.5.

Elements appear in the system following a temporal pattern or in response to
a simulation event. Thus, a modeller can define both time-driven and condition-
driven Element Generators. Time-driven Generators can be used to model
the arrival of patients at a hospital, which adheres to a time pattern. Condition-
driven Generators can be used, for example, to model the arrival of incidents
at a customer service centre. Although most of the user incidents will adhere to
a time pattern, some may give rise to new incidents. For example, the receipt of
many incidents of users being unable to access Internet could lead to a “check
organisation’s network” incident.

When and how many are questions that are treated separately when generating
Elements. Element Generators answer the first question (when), whereas the
second (how many) relies on a different structure, usually called a creator. A crea-
tor consists of a quantity N, which can be fixed, random and even clock-related;
and a set of triplets ({et1,wf1, p1), (et2, wfa, p2),..., (etx, WSk, pk>),2§{:1 pi = 1.
Every time the Generator is invoked, N new Elements are created based on the
triplets. p;,i € [1,k] denotes the probability of creating an Element belonging to
Type et; and carrying out a Workflow wf;.

3.4. Inside SIGHOS: an Event Heart

One of the main objectives of SIGHOS is to make modelling easier by isolating the
modeller from the implementation details of the simulator. Consequently, most
of the design decisions of this simulator take into consideration this principle.
However, it is undeniable that the implementation details of a simulation tool
may dramatically affect the results obtained, as shown in (Schriber and Brunner,
1994) and later in (Schriber and Brunner, 2006). Actually, the importance of this

topic is assessed by the selection of the first paper as one of the ten Landmark

50

3.4. Inside SIGHOS: an Event Heart

Papers of the 40th anniversary of the Winter Simulation Conference in 2007.
In this and subsequent sections we will go through the implementation details
of SIGHOS, which may impact the performance and results of executing simula-

tion experiments.

3.4.1. First Approach: Threads

Being a process-oriented simulator, and having selected Java as the program-
ming language, the first approach for implementing SIGHOS was to use a direct
translation process — thread. Therefore, by using the most natural expression of
a process-oriented simulation, the objective of isolating the modeller from the
implementation details would be easily fulfilled.

The problems with this approach, as previously explained in Section 2.2, also
apply to this case. Specifically, the kind of systems that SIGHOS is targeted at
(that is, organisations such as hospitals) may involve thousands of entities si-
multaneously interacting (e.g. patients in a hospital). The limit to the number of
threads that many operating systems impose prevents this solution from being
considered a practical choice for simulating a model of an organisation.

Furthermore, as stated before, several workflow patterns involve the use of
more than one thread of control per entity. Consequently, the number of threads
required to implement a direct translation would quickly exhaust the system

resources.

3.4.2. Using Event Scheduling

After discharging direct translation, a different approach is required. Such an
approach must preserve the independence of the modeller from the simulation
engine, while at the same time facilitating the adaption to a parallel execution.
Therefore, SIGHOS is based on an automated translation into an event scheduling
approach (see Section 2.7).

As seen in Subsection 1.2.1, the event scheduling approach defines an event

(e@ts) as a set of actions to be performed at simulation time ¢s. SIGHOS establishes

51

Chapter 3. SIGHOS: a Process-Oriented Simulator

a common framework for all the components of the simulation that are prone to
creating events, named Basic Element.

In order to implement the event scheduling approach, SIGHOS requires a
Virtual Clock (VC) and a FEL. The VC maintains the current simulation time
(hereafter CST), and sets the timestamps for future events. The FEL contains a
time-ordered list of the events with ts > CST. For simplicity, we will assume
that there is a single Simulation object that contains such structures and defines

two basic operations with Events:

o schedule(e@ts). Schedules an Event e to be executed at timestamp ts. If
ts = CST, e is directly sent to be executed; whereas if ts > CST, the des-
tination is the FEL. Events may be scheduled during the initialisation of
the simulation or as part of the code associated with a former Event. An
Event e;@fs; cannot schedule an Event e;@ts, / (tsp < tsq), thus preserving
the causality constraint.

o execute(e@ts) Executes the code or actions associated with the Event e. It
may involve scheduling new Events or accessing shared simulation re-
sources. We will pay special attention to the access to shared resources in
Chapter 4.

3.4.3. Event Types Defined by SIGHOS

From the simulation components defined in Section 3.3, only Resources, Ele-
ments and Generators create events (and consequently extend the Basic Ele-
ment framework).

Regarding Elements, the translation into an event scheduling approach takes
advantage of the fact that SIGHOS describes the processes using predefined Work-
flow structures, whose leaf nodes are Activities. An Element behaves as a
process instance and traverses its associated Workflow, as already shown in Fi-
gure 3.3. Every time an Element finds an Activity in the Workflow, the following
Events are created:

52

3.4. Inside SIGHOS: an Event Heart

e RequestActivity (Listing 3.1) checks whether an Activity is feasible. If
so, the Element seises the corresponding Resources, computes a duration d
for the Activity and launches a FinalizeActivity event with timestamp

CST + d. Otherwise, the Element is queued in the Activity.

Listing 3.1. RequestActivity event

RequestActivity (Element e, Activity a) {
if (a.isFeasible(e)) {
e.carryOut(a);
Simulation.schedule (new FinalizeActivity (e, a,
Simulation.CST + a.duration));
}
else {
a.enqueue(e);

e FinalizeActivity (Listing 3.2) is launched when an Activity is finished.
The Element releases the Resources previously took and continues with
the subsequent Activities in the associated Workflow. Consequently, not
only other Activities are notified of the newly available Resources, but

additional RequestActivity events may be scheduled.

Listing 3.2. FinalizeActivity event

FinalizeActivity (Element e, Activity a) {

a.releaseResources(); // All the Activities using the
released Resources are notified

forall ag; € (list of activities currently requested by e)
do {
Simulation.schedule (new AvailableElement (e, 4;,

Simulation .CST));

}

// Make e advance its associated workflow

forall a; € (subsequent activities to be requested
according to the associated workflow) do {

53

Chapter 3. SIGHOS: a Process-Oriented Simulator

Simulation.schedule (new RequestActivity (e, a4;,
Simulation .CST));

e AvailableElement (Listing 3.3). Most process definitions may include cases
when an Element is waiting in the queue of several Activities at the same
time. Whenever such an Element completes an Activity, it has to inform

the waiting Activities of its availability.

Listing 3.3. AvailableElement event

AvailableElement (Element e, Activity a) {
if (a.isFeasible(e)) {
e.carryOut(a);
Simulation.schedule (new FinalizeActivity (e, a,
Simulation .CST + a.duration));
a.dequeue(e);

Despite the fact that Elements are the main source of events, other simula-
tion entities contribute with additional event types. Resources, due to the par-
ticular approach of SIGHOS, has to dynamically translate its availability, as de-
fined in the Timetable Entries, into a set of RoleOn and RoleOff events. Let
(c,ta,rt)/c = (tstart, tend, tperiod) be a Timetable Entry for the Resource r (an
analogous definition could be given for a Cycle ¢’ = (tstart, k, tperioa)); the follo-

wing events are created:

e RoleOn. An event of this type is scheduled at simulation time t =t +
tperiod * k < tena, k € Z™", making the Resource r available to role rt.

e RoleOff. An event of this type is scheduled at simulation time t = g+ +
tperiod ¥ k +ta < tenq, k € Z7, stopping the Resource r from being available

to role rt.

54

3.4. Inside SIGHOS: an Event Heart

These events tell the Resource Types to increase or decrease their available
Resource counter, respectively. Moreover, any Activity using said Resource
Type in any of its Workgroups is also notified in case of an increment. Hence, the
Activity checks whether the new available Resources make it feasible for any
of the Elements waiting in its queue.

SIGHOS defines two additional events (CancelOn and CancelOff) for the Can-
cellation Entries, analogously to the above RoleOn/RoleOff.

Figure 3.4 shows the life cycle of a Resource, according to the different events

that may happen.

Resource created

Cancel On

Unavailable

Cancel Off

Cancelled

Cancel Off

Available (Idle)

Cancel On

Is the activity
feasible?

Figure 3.4. Life cycle of a Resource

55

Chapter 3. SIGHOS: a Process-Oriented Simulator

Element Generators are the last source of events for the simulation. As pre-
viously explained in Subsection 3.3.4, Generators can react to changes in the
system state, but are more frequently used to create Elements according to a
time pattern. In this last case, the Generator invokes a Generate event following
a time pattern defined by a Cycle c.

3.4.4. An Event Scheduling Algorithm for SIGHOS

Based on the event types and structures presented in the previous subsections,
SIGHOS adapts the algorithm for event scheduling already introduced in Figure
1.2(a), as shown in Listing 3.4.

Listing 3.4. SIGHOS algorithm for event scheduling
// Phase 0: Initialisation: The initial events for the
simulation entities are scheduled
forall r; € Simulation.R do {
forall ttejer; do {
startTs = ttej.C.lstart;
Simulation . schedule (RoleOn;@startTs) ;

}
forall g; € Simulation.G do {
startTs = gj.c.tsart;
Simulation .schedule (Generate;@startTs) ;
}
while (Simulation.CST < Simulation.t,,;) {
// Phase 1: Update clock
e1@ts = First event from FEL;
Simulation.CST = ts;
// Phase 2: Execution
forall e@ts / e; € Simulation.FEL A ts = Simulation.CST do {
Simulation . execute (¢;@ts) ;

56

3.5. Inside SIGHOS: Managing Workflows

3.5. Inside SIGHOS: Managing Workflows

Events appear from a straightforward interpretation of the basic entities of the
simulation. However, at a higher level of abstraction, the way workflow patterns
are introduced in SIGHOS must be carefully considered since the behaviour of
such patterns may be subtly modified depending on the specific implementation
details.

3.5.1. A Review on Workflow Models

Kiepuszewski (2002) conducts a study on various commercial products and eva-
luates the different workflow modelling languages used, as well as their com-
patibility with the control-flow patterns. His study relies on the modelling tech-

nique used to generalise and classify the different models as follows:
e Standard Workflow Models
e Safe Workflow Model
e Structured Workflow Model
e Synchronising Workflow Models

Standard Workflow Models represent what would appear to be the most “natu-
ral” interpretation of the WEMC definitions. This kind of workflow model has
no restrictions on the way the patterns are used. The result of this “freedom” is
that arbitrary loops and multiple instances are allowed; by contrast, deadlocks
may arise. Furthermore, the absence of strict rules describing the way to proceed
when faced with possible deadlocks or infinite loops may result in ambiguity.

A Standard Workflow Model that does not allow multiple instances becomes
a Safe Workflow Model. However, deadlocks are still possible.

Intuitively, a Structured Workflow Model is a model where each OR-Split has
a corresponding OR-Join and each AND-Split has a corresponding AND-Join,

57

Chapter 3. SIGHOS: a Process-Oriented Simulator

with no arbitrary cycles or multiple instances allowed, thereby avoiding dead-
locks. At the same time, the expressive power of this kind of workflows is redu-
ced.

Both Safe Workflow Models and Structured Workflow Models can be conside-
red subsets of Standard Workflow Models. The use of the former in a simulation
is discouraged since obviating the information from concurrent threads may af-
fect the results of the running simulations. With respect to the latter, a structured
framework makes the implementation easier, at the expense of reducing the ex-
pressive power of the models, which is highly undesirable.

Synchronising Workflow Models appear from a different interpretation of the
WIMC definitions of basic control flow constructs. AND-Join and OR-Join are
considered to typically follow an AND-Split and an exclusive OR-Split, respec-
tively. Consequently, both AND-Join and OR-Join may be seen as constructs
that synchronise a number of threads. In the case of the AND-Join, a number
of active threads are synchronised; whereas in the case of the OR-Join, it may be
considered that one active thread and several inactive ones are synchronised. A
true/false token identifies whether a branch is active or not. Upon receipt of the
token, each node in the model has to propagate a token indicating the validity
of the process instance, true or false, to which the control flow is passed. This
way, deadlocks are avoided. Unfortunately, according to Kiepuszewski et al.
(2003), the formal definition of the Synchronising Workflow Models prevents a
modeller from using multiple instances or representing arbitrary loops.

SIGHOS takes advantage of the token-based strategy introduced with Synchro-
nising Workflow Models, but uses several strategies to relax the limitations re-
garding multiple instances and arbitrary loops that those workflow models im-

pose.

3.5.2. SIGHOS and Workflow Patterns

SIGHOS defines a complex hierarchy of classes and interfaces that represent dif-

ferent behaviours from the workflow patterns, or a workflow pattern itself. All

58

3.5. Inside SIGHOS: Managing Workflows

of these classes include the suffix Flow in their names but, for the sake of simpli-
city, this suffix will be omitted hereafter. Figure 3.5 shows the basic classes. The
first important distinction is made between SingleSuccessor and MultiSuccessor
flows, that is, nodes allowing a single successor or several ones. Based on these

two kinds of nodes, SIGHOS implements four basic constructs:
e Initializer node
e Finalizer node
e Task node
e Structured node

An Initializer node (see Figure 3.6) is a MultiSuccesor node that represents a
source of new tokens, so that the generation of a token involves a new branch
execution. AND-Split, OR-Split and Conditional nodes are based on this node.
If a true token is received, the node propagates a true token through the active
outgoing branches, and a false token through the inactive ones. In the event
that a false token is received, the node propagates a false token through each
outgoing branch.

Conditional nodes are a special case of OR-Split. Upon receipt of a true token,
the node checks each associated condition, changing the resulting token value
depending on the check result. Upon receipt of a false token, a false token is sent
to each outgoing branch.

A Finalizer node (see Figure 3.7) is a SingleSuccesor node that represents a sink
of tokens. A token removal represents the finalisation of an execution branch.
Finalizer is the base for AND-Join or OR-Join nodes. The propagation of tokens
depends on the criteria present at each node for yielding flow control.

e An AND-Join node generates a new token from the confluence of incoming
tokens. This node defines an acceptance value as the number of true to-
kens that it must receive through each incoming branch. When enough
tokens are received, a true token is sent to the node’s successor and the

59

Chapter 3. SIGHOS: a Process-Oriented Simulator

Single
successor

Multiple
successor

Task Fmahzer Structured In1t1a11zer

AND]om é AND- Spht OR-Split

Figure 3.5. Basic workflow interfaces in SIGHOS

token count is reset. This type of node has two operating modes: safe and
unsafe. Using one or the other operating mode affects the way the concur-
rent receipt of tokens through the same incoming branch is treated. In safe
mode, only one token per branch and simulation timestamp is taken into
account; the rest are simply discharged. In unsafe mode, all the tokens are

considered, and taken as valid.

e An OR-Join node simply lets through the same token that arrived at the

60

3.5. Inside SIGHOS: Managing Workflows

Parallel

Thread
Split

Exclusive

OR-Split

Multiple

Figure 3.6. Initializer workflows

successor. The only control action that is taken involves the concurrent
arrival of tokens. At that moment, the control state has to decide if all
or only one thread is subsequently sent to the successors. If none of the

incoming branches carries a true token, a false token is propagated.

A Task node is also a SingleSuccesor node, and represents the execution of an
Activity. Using a explicit node to wrap an Activity is useful if the same Acti-
vity appears repeatedly in a Workflow. Being the same Activity means sharing
the Element queue, but different user actions can be programmatically added
depending on the specific step of the Workflow when said Activity is invoked.
A task is executed upon receipt of a true token. Once the execution is complete,
a true token is propagated again. However, if the execution is cancelled or the
node receives a false token (meaning the execution is not to be carried out), a
false token is propagated.

Structured nodes (see Figure 3.8) are SingleSuccesor nodes and consist of one
node that defines the structure’s starting point and another one that defines its
end. All kinds of complex branches can be defined that link such starting and

end points. The arrival of a false token implies the propagation of a false token

61

Chapter 3. SIGHOS: a Process-Oriented Simulator

Finalizer

Simple Merge

Multi Merge

AND-Join Thread Merge

Synchronization

Discriminator

Partial Join

Figure 3.7. Finalizer workflows

without yielding control of the subnodes contained in the structure. If the op-
posite occurs, control is yielded to the sub-flow contained within the structural
node.

Going back to Kiepuszewski et al. (2003), Synchronising Workflow Models
were limited with regards to arbitrary loops and multiple instances. SIGHOS
handles the patterns of arbitrary loops by implementing a system of environ-
ment variables, associated with the model or defined by the user, and an expres-
sion set that allows the conditions associated with these variables to be defined.
There is also a set of user events that allows the values of these variables to
be modified at different points in the model. These structures allow arbitrary
cycles to be modelled, maintaining control over the possible appearance of in-
finite loops. When a true token enters one of these cycles, the set of conditions

62

3.5. Inside SIGHOS: Managing Workflows

Structured

Structured

Synchronized Merg

Nl

(S

Structured
Discriminator

Structured
Multiple Instance

Interleaved
Parallel Routing

Structured Loop

Structured
Partial Join

Static Partial Join
Multiple Instances

Do While Loop

While Do Loop

Interleaved Routin

A A A A A A A

&

L/L/L/&FJL/L/L/

For Loop

Figure 3.8. Structured workflows

associated with this cycle will control the exit from the cycle for that token. In

contrast, when a false token enters one of these cycles, this token propagates,

both to the exit branch for a cycle as well as to the branch that generates the

loop. This leads to an infinite propagation of the false token, which results in an

improper execution of the simulation. This undesirable situation can be solved

if each false token keeps track of the nodes it has visited. Should a false token

return to a node through which it has already passed, it is assumed to be immer-

63

Chapter 3. SIGHOS: a Process-Oriented Simulator

sed in a loop and is deleted from the simulation since it is no longer producing
relevant information.

Regarding multiple instances, SIGHOS defines process threads. A process thread
represents a light process instance, in the same way that a thread represents a
light process in an operating system. Process threads (implemented in a class
WorkThread) are linked to the process instance and carry all the local informa-
tion required for this execution branch, including local variables and even the
true/false token. When a split node is encountered, a new process thread is
created per outgoing branch, whether the branch is activated or not. A process
thread, including a true token, would be created for the former, whereas a false
one would be included in the latter.

Nevertheless, the real difficulties arise from those patterns that do not reflect
multiple instances. These patterns, defined with Petri nets by Russell et al.
(2006), have “safe places” where no concurrent process instances can exist. Se-

veral strategies have been developed to overcome this problem.

o There are patterns where safe places can be found before a node that repre-
sents the execution of an Activity. These places mean that said executions
must be sequential, without concurrency for each process. SIGHOS allows
the Activities to be categorised into two types: in person and in absentia.
This concept comes from the modelling of hospital systems in which the
patient, that is, the process instance, is faced with Activities that require
his/her presence in order to be executed. This means that the patient is
held by the Activity until its conclusion. Therefore, two instances of the
same process that attempt to execute an in person Activity are forced to

execute them sequentially.

o In the case of Join, Split or Structured nodes, the safe places indicate that
the control of the branches leading to and from a node must be individua-
lised for each process instance. To this end, specific control structures are

implemented for each node.

64

3.5. Inside SIGHOS: Managing Workflows

To finalise this section, Table 3.1 shows whether SIGHOS supports each pattern

or not.

Table 3.1. Support of control flow patterns

Pattern family Pattern

WCP1: Sequence
WCP2: Parallel Split
Basic Control Flow WCP3: Synchronisation
WCP4: Exclusive Choice
WCP5: Simple Merge
WCP6: Multi-Choice

WCP?: Structured Synchronising Merge
WCPS8: Multi-Merge

WCP9: Structured Discriminator
WCP28: Blocking Discriminator
WCP29: Cancelling Discriminator
Advanced Branching and | WCP30: Structured Partial Join
Synchronisation WCP31: Blocking Partial Join

WCP32: Cancelling Partial Join
WCP33: Generalised AND-Join
WCP37: Local Synchronising Merge
WCP38: General Synchronising Merge
WCP41: Thread Merge

WCP42: Thread Split

AN N N N N N N N N N N NN

65

Chapter 3. SIGHOS: a Process-Oriented Simulator

Table 3.1 — Continued

Pattern family Pattern

WCP12: Multiple Instances without Syn-
chronisation

WCP13: Multiple Instances with a Priori

ign-Time K
Multiple Instance Design-Time Knowledge

WCP14: Multiple Instances with a Priori
Run-Time Knowledge

WCP15: Multiple Instances without a Priori
Run-Time Knowledge
WCP34: Static Partial Join for Multiple Ins-

tances

WCP35: Cancelling Partial Join for Multiple
Instances

WCP36: Dynamic Partial Join for Multiple

Instances

>

WCP16: Deferred Choice

WCP17: Interleaved Parallel Routing
State-based WCP18: Milestone

WCP39: Critical Section

WCP40: Interleaved Routing

WCP19: Cancel Task

WCP20: Cancel Case

WCP25: Cancel Region

WCP26: Cancel Multiple Instance Activity

Cancellation and Force
Completion

WCP27: Complete Multiple Instance Acti-
vity

X X X X X [N X X N X%

66

3.6. Inside SIGHOS:. .. Why It Matters?

Table 3.1 — Continued

Pattern family Pattern
WCP10: Arbitrary Cycles v
Iteration WCP21: Structured Loop v
WCP22: Recursion X
o WCP11: Implicit Termination v
Termination
WCP43: Explicit Termination X
) WCP23: Transient Trigger X
Trigger
X

WCP24: Persistent Trigger

From the set of patterns not yet supported, non-local semantics (Aalst et al.,
2002) supposes the main source of problems. Non-local semantics make refe-
rence to those situations where a node requires information that is not local to
the node (that is, which belongs to a different part of the model) in order to
make a decision on the propagation of a process instance. The token strategy
copes with some of the problems derived from such semantics, but others re-
main unsolved.

Cancellation patterns (WCP19, WCP20, WCP25, WCP26, WCP27, WCP29,
WCP32 and WCP35) perfectly illustrate the problems derived from the use of
non-local semantics. These patterns require explicitly breaking the execution lo-
gic of the simulator. A cancel pattern normally affects a process instance or a set
of process instances. However, the process instance that activates the cancella-
tion can be located in a completely different part of the model. Locating such
instances implies complex memory structures and an efficient search algorithm,
thus increasing the simulator memory and CPU requirements.

3.6. Inside SIGHOS:.. .. Why It Matters?

As previously introduced in Section 3.4, the implementation details are impor-

tant when trying to understand the specific behaviour of a simulation tool when

67

Chapter 3. SIGHOS: a Process-Oriented Simulator

faced with different situations. This section will review the same questions
posed in (Schriber and Brunner, 2006, 1994). These papers are based on the
transaction-flow world view, which is considered a subtype of process interac-
tion.

« In the transaction-flow world view, a system is visualised as
consisting of discrete units of traffic that move (“flow”) from point
to point in the system while competing with each other for the use
of scarce Resources. The units of traffic are sometimes called transac-

tions, giving rise to the phrase transaction flow. »

This definition is clearly in keeping with the objectives of SIGHOS, by exchanging
transaction by Element. Therefore, the different components of this approach
will not be described again, but the definitions introduced at the beginning of
this chapter will be used.

3.6.1. Trying to Recapture a Resource Immediately

The first case, as stated in (Schriber and Brunner, 1994), makes reference to an
Element that releases a Resource and then immediately attempts to recapture
the Resource. The modeller might want - or not - a different Element (perhaps
one with a higher priority) to capture the Resource next. There are at least three
different alternatives to solve this situation:

1. The availability of the Resource is announced before the current Element is

effectively considered a “contender.”

2. The availability of the Resource is announced only when the current Ele-

ment can be considered a valid “contender.”

3. The current Element recaptures the Resource while ignoring the other

“contenders.”

Resources are not directly “captured” in SIGHOS. Instead, Elements request
Activities, which make reference to the Resources required to carry them out.

68

3.6. Inside SIGHOS:. .. Why It Matters?

The case described here would be translated into an Element requesting two
consecutive Activities, both of them making use of the same Resource. In
such a case, the inner implementation obeys the first behaviour, that is, the rest
of the “contenders” will be aware of the availability of the Resource before the

current Element is effectively “freed.”

3.6.2. The First in Line is Still Delayed

The second case involves two Elements both requesting the same Resource Type.
The first Element requests only one Resource, whereas the second one requests
two. If no Resources are available, both Elements have to wait but, what hap-
pens when a single Resource becomes available? At least three courses of action

are possible:
1. Neither Element uses the Resource.
2. The first Element “books” the Resource and waits for a second one.
3. The second Element captures the Resource.

Taking into account the use of Activities in SIGHOS, the problem formulation
changes as follows: Consider an Element ¢;, which is requesting an Activity
a; that requires one Resource of Type rt,;; and a second Element ¢;, requesting
an Activity a; that requires two Resources of Type rt,. When a Resource 7y
becomes available for rt, at time ts, the behaviour of SIGHOS corresponds to the
last course of action, that is, Resources required to carry out an Activity a are

captured only when a is feasible; otherwise, the Resources remain idle.

3.6.3. Yielding Control

An Element that is currently being processed can yield control to other Element,
and then take control again before the simulation clock advances. This can be
useful if certain actions that affect other Elements need to be carried out before

the current Element is completely processed.

69

Chapter 3. SIGHOS: a Process-Oriented Simulator

From the point of view of a pure process-oriented approach, this case makes
sense, since processes advance “as much as possible” (as seen in Subsection 1.2.3).
Since SIGHOS transforms processes into a set of events, Elements can certainly
yield control to other Elements when scheduling new events with delay 0. This
feature is normally hidden from the final user but implicitly used, for example,
when an Element is finalising an Activity and releasing Resources, as shown
in the first case in this section.

The remaining cases in (Schriber and Brunner, 1994) are based on making Ele-
ments wait for the fulfilment of complex conditions. SIGHOS makes use of condi-
tions as part of the Workflow definitions, but does not support trigger patterns.
Therefore, only “wait for Resources” and “delay until time t is reached” are na-

turally implemented in the library.

70

Chapter

Parallel SIGHOS

As stated in the introduction, parallelism plays an important role in simulations
due to the complexity of the models. Furthermore, a simulation, as used by a ma-
nager in an organisational environment, is intended to be integrated with other
tools as part of the decision-making process. This use of a simulation generally
involves many replications with different parameters. In this context, even with
simple models, any reduction in the execution time of a simulation experiment
would be valuable.

Unfortunately, despite being a valuable tool, parallelism is normally beyond
the manager’s scope. Modelling and simulation, in the end (and especially as
expressed with SIGHOS), handle abstractions that can be easily mapped onto
specific concepts that are familiar to a manager: processes, resources, activi-
ties. .. Contrarily, parallelism demands a strong background in computer science.
Consequently, while playing with a simulation is a reasonable objective for a
managet, fine tuning the parameters of a parallel simulation would clearly go
beyond his / her skills.

Before analysing the possible alternatives for incorporating parallelism into
SIGHOS, Table 4.1 enumerates the main goals of the intended solution, hereafter
PSIGHOS (for Parallel SIGHOS).

Some additional explanations are required with respect to goal G4. When an
algorithm that solves a specific problem is parallelised, the desired result is to
obtain better execution time than the equivalent sequential algorithm. SIGHOS is

71

Chapter 4. Parallel SIGHOS

Table 4.1. Main goals of the intended solution

G1 | The way the modeller uses SIGHOS must be preserved, that is, the mo-
delling approach cannot change.

G2 | Solutions from parallel and sequential SIGHOS for the same input model
must be equivalent.

G3 | The parallel implementation must be transparent to the user. Paralle-
lism should be automatically exploited and not require any interven-
tion from the user.

G4 | The execution time of the parallel simulation must outperform that of
the sequential one.

focused on a specific area (simulation of organisations) but not on a specific pro-
blem. This, together with the achievement of goals G1, G2 and G3, considerably
increases the probability of finding systems that are mostly non-parallelisable.
As a consequence, it would be possible to obtain an execution time for the paral-
lel algorithm that is worse than the sequential one under certain circumstances.
The key to this problem is to try to minimise the appearance of those cases by
looking for a sufficiently flexible parallel solution; and to ensure that whenever
the loss of performance is unavoidable, it is constrained to reasonable levels.

The rest of this chapter details the approach followed to exploit parallelism in
SIGHOS so to take advantage from multi-core computers while fulfilling the goals
stated in Table 4.1.

4.1. From Sequential to Parallel

In Section 1.3, we divided the main approaches to PDES into three groups depen-
ding on the extent to which the parallelism is exploited: application, simulation
and model.

Application-level parallelism (which would include automatic code paralle-
lisation, replicated trials and dedicated execution) clearly fulfils the previously

72

4.1. From Sequential to Parallel

stated requirements. However, this solution neglects the high-level knowledge
of the simulator (and certainly of the model), thus limiting the potential gain of
this approach.

Contrarily, model-level parallelism fully exploits the parallelism present in the
model. Thus, these techniques (cloning, domain decomposition and hierarchi-
cal decomposition) should result in the best performance. Unfortunately, these
techniques require using characteristics that are specific to the model. A gene-
ric solution based on any one of these approaches would quickly degrade its
performance.

Simulation-level parallelism, being half way between the two previous ap-
proaches, offers the best scenario for obtaining a generic parallel simulator that
does not require changing the modelling approach. It also keeps the modeller
from having to handle problems related to parallelism. We have noted several
times over the course of this thesis that the FEL is one of the main bottlenecks
of a DES. Perhaps the main proof supporting this statement is that the most po-
pular approach to PDES, that is, domain decomposition, is specifically designed
to create a partition of the FEL. While the performance of a centralised event
list with distributed events would certainly never reach that of a specific solu-
tion created by using model-level parallelism, the possibility of reusing the same
simulation engine would offset the moderate loss in performance.

The algorithm introduced in Listing 3.4 can be easily adapted to a centrali-
sed list with distributed events approach by using a master-slave (MS) paradigm.
Hence, a master execution thread, or Event Manager (EM), executes the main si-
mulation loop by updating the VC and distributing the current events into a set
of slave worker threads, or Event Executors (EEs), which effectively execute the
events. This means that there is a difference between sending or dispatching an
event to be executed, and effectively executing such event. The EM is in charge
of the former, and the EEs of the latter. The deferred event execution involves
adding a mechanism to inform the EM that an event has been definitely execu-
ted. Listing 4.1 shows the modifications required to the EM algorithm so that it

can handle the new parallel features.

73

Chapter 4. Parallel SIGHOS

Listing 4.1. Event Manager main loop (adapted from Listing 3.4)

// Phase 0: Initialisation: The initial events for the
simulation entities are scheduled
forall r; € Simulation.R do {
forall ttejer; do {
startTs = ttej.c.tsmrt;
Simulation . schedule (RoleOn;@startTs) ;

}
forall g; € Simulation.G do {
startTs = gj.Ctstart;
Simulation.schedule (Generate;@startTs) ;
}
while (Simulation.CST < Simulation.t,,;) {
// Phase 1: Update clock
e1@ts = First event from FEL;
Simulation .CST = ts;
// Phase 2: Execution
forall e@ts / e; € Simulation.FEL
A ts = Simulation.CST do {
ee = Next Available Event Executor;
ee.dispatch (e;@ts) ;
}
// Synchronisation of Phase 2
Wait until all the events have been effectively executed

Within this scheme, only the EM would remove events from the FEL; whereas
the EEs would access and modify the simulation state and add new events to the
FEL. Figure 4.1 illustrates the interactions among the EM, the EEs and the basic
structures of the simulation engine.

74

4.2. Limits to Parallelism: Resource Contention

update() Event pop()
Manager FEL

Event

Executor 0

Figure 4.1. Basic schema of the Master-Slave approach

4.2. Limits to Parallelism: Resource Contention

In contrast to domain decomposition, which generally uses some kind of loo-
kahead, our proposal is limited to executing the events corresponding to the
current simulation time. Hence, this strategy imposes two obvious limits on the

exploitable parallelism:
1. The average number of events with the same timestamp.

2. Concurrent events accessing the same simulation structures or components

(Elements, Resources, Activities...).

With respect to the first limit, it is clear that the greater the number of events
to be executed at the same timestamp, the more the parallelism that may be ex-
ploited. Certainly, models that are sufficiently large and complex should involve
the execution of multiple events per timestamp.

Regarding the second item, resource contention (see Appendix F for an in-
depth discussion on this topic) is a classical problem in the field of concurrency
and parallelism, but one that has received surprisingly little treatment in the

75

Chapter 4. Parallel SIGHOS

PDES literature. The main reason can be attributed to the way a classical LP
simulation works: each LP simulates a physical process and updates its state
as it advances through time. Generally, LPs only communicate by exchanging
messages. Within this scheme, access to resources is implicitly handled by the
synchronisation algorithm.

Among the few references considering this problem, Reynolds (1982) proposes
the Shared Resource Algorithm for Distributed Simulation (SRADS), later refi-
ned in (Nicol and Reynolds, 1985; Reynolds, 1983). This algorithm defines sha-
red resources as communication channels among LPs and calls them Shared Fa-
cilities (SFs). As defined, an LP can access a SF if all the other LPs connected to
this SF have clock values equal to or higher than the requesting LP. According

to the authors:

«SRADS is best suited for applications where the relative frequency
with which LPs must access SFs is low in comparison to the amount
of time spent simulating non-communication related events. »

Consequently, for a resource-intensive simulation tool like SIGHOS, using SRADS
would be counterproductive.

A more recent proposal, already cited in Section D.1, is (Cassel and Pidd,
2001). Although focused on domain decomposition, Cassel and Pidd substi-
tutes the classical event orientation, which constitutes the basis for this kind of
parallel technique, with a slightly more sophisticated three-phase approach. As
previously explained in Subsection 1.2.4, the three-phase approach distinguishes
between two kinds of events: Bs and Cs. Mapping Cs (or conditional) events onto
a single LP is problematic, since they generally involve accessing more than one
shared resource. Cassel and Pidd solve this issue by combining ideas from cellu-
lar simulation (Carvalho and Crookes, 1976), and push processing and replicated
routes (Fatin, 1996).

o Cellular simulation starts by considering that not all Cs nor Bs require access
to the whole set of shared resources. Therefore, Cs and Bs that access the

same resources are grouped into “cells”.

76

4.3. Resource Contention in SIGHOS

e Fatin (1996) suggests that each LP should have a copy of the resources it
shares with one or more LP(s); not only this, each message sent to an LP
should be also sent to its “competitors”. The replicated routes serve to
reduce communications but complicate the design of the LPs.

The result of linking both cellular simulation and Fatin’s work is the creation of a
set of CentralCs. A CentralC combines a set of conditions (related to C events) and
the resources required by these conditions into “cells”. LPs then communicate
with these CentralCs, thus preventing the replication of resources and reducing

the amount of messages required by Fatin’s proposal.

4.3. Resource Contention in SIGHOS

Subsection 3.4.3 described the event types that comprise the SIGHOS core. From
those events, we can identify and enumerate the most relevant situations invol-

ving a concurrent access risk.
1. An Element may request / finalise several Activities
2. An Activity may be requested / finalised by several Elements

3. Several Resources are made / stop being available for the same Resource

type
4. Several Elements requesting different Activities need the same Resource

Of all these problems, accessing Resources is the most challenging. Consi-
der the following situation: Activity a; requires Resources of Type rt; and rt»,
and Activity a, requires Resources of Type rt; and rt3. If a Resource with role
rt; becomes available and is assigned to a1, and another Resource with role rt;
becomes available and is assigned to a;, neither of the two Activities can be
carried out. If, however, a different assignment is made, then at least one of
the tasks can be executed. The example above can be further complicated by a
circular wait resulting in a deadlock.

77

Chapter 4. Parallel SIGHOS

To avoid this problem, the Resource acquisition process is made in two stages:
book and capture. In the first stage, the Element ensures that enough Resources
are available to carry out the Activity; and, in the second, the Element actually
acquires the Resources. This two-stage division is not arbitrary; rather, it allows
for access to essential Resources to be restricted. Without this division, the entire
set of simulation Resources would have to be blocked while an Element checked
the feasibility of an Activity.

The way in which a Resource’s timetable entries are defined determines the
level of difficulty and, therefore, the complexity of the concurrent solution to be
applied. Some additional definitions are needed to describe the various cases.

Definition 4.1. Timetable entry intersection (M)
Given two timetable entries ttey, tte,, their intersection is defined as the time
interval when both are simultaneously available, that is, Vt/t C ttey At C tte;.

Definition 4.2. Overlapping timetable entries
Two timetable entries tte; and tte overlap iif ttey N ttey # @

Figure 4.2 is a schematic representation of two overlapping timetable entries

for a Resource.

ttep /%rt D | rto

v

tteq | rt1 W rt
+—>

tteq N ttep

y

—>
Time

Figure 4.2. Overlapping timetable entries

78

4.3. Resource Contention in SIGHOS

4.3.1. No Overlapping Entries

Suppose only Resources r{(cy, tay, rt1),...{Cm, tam, rty)} are used, such that

none of their timetable entries overlap in time, that is:

Vr{{c1, tar, rtr), ... (Co tam, rtm) } = () (ci taj, rt;) =@
i=1.m
In this case, a problem arises when several Activities require the same Re-
source Type in order to be carried out, which could result in a deadlock. This
problem is solved through the use of structures called Activity Managers (AMs).
An AM;(RT}, A;) is a partition in the set of Activities A and Resource Types
RT in the Simulation, such that

VAM;, AM;/i#j= RT;NRTj=ONANA; =0

In other words, the Activities belonging to a subset of this partition are in-
dependent from those in other subsets in terms of possible conflicts in Resource
Type.

Though developed completely independently, this idea clearly parallels that
of the CentralCs (Cassel and Pidd, 2001) defined in the previous section. The
main difference lies in the parallel model used: message-passing in a distributed
platform for CentralCs versus shared-memory for AMs.

The Activities and roles have to satisfy the following conditions:

1. If WG; € a; requires rty, and WG; € a; requires rt; = a; and a; must belong
to the same AM.

2. (Vrt; € WG]‘ € ap) A (ap € AM;) = rt; € AM,.

3. Any modification to the Resource Types and Activities belonging to an
AM must be mutually exclusive.

Constructing an AM;(RT;, A;) is equivalent to finding the connected compo-
nents in a graph G = (V, E) such that each vertex v € V is a Resource Type and

79

Chapter 4. Parallel SIGHOS

every edge e € Eisan Activity that makes use of the Resource Types indicated
at its vertices.

The following example, in which the Workgroups have been omitted for sim-
plicity, clarifies the construction of this graph:

Suppose that A = (a3, az, a3, as4), RT = (rty, rta, rt3, rty, rts), and that the fol-
lowing associations between Activities and Resource Types hold: a; requires
(rt1, rt2), ap requires (rts, rty), a3 requires (rty, rty), and a4 only requires (rts).

Firstly, a graph representing the associations is built (Figure 4.3). Then, this
graph is split into connected components which can be mapped to obtain the

following activity managers:

/_\

/

@\
S ©

op “

‘/

—

Figure 4.3. Construction of Activity Managers

e AMi(RTy, A1) = RTy = {rty, rty, rt3, 14}, Ay = {1y, a2, a3}

° AMz(RTz, Az) = RTZ = {T’t5},A2 = {114}

Each group of Activities and the associated Resource Types resulting from
the partition is controlled by a different AM.

80

4.3. Resource Contention in SIGHOS

4.3.2. Overlapping Entries in Roles Belonging to the Same AM

Now consider a Resource r whose timetable entries overlap in time for Resource
types belonging to the same AM, thatis, r{(c1, tai, rt1), ... (Cm, tam, rtm) }/Vrt; €
AMy,1 < i < m. Since all the roles belong to the same AM, the same control
mechanism from the above case can be used. The possibility of having the same
Resource appear more than once in the same Activity, however, presents a new
problem, the solution to which has nothing to do with concurrence, but rather
with the detection of this situation and its subsequent solution via an algorithm
that allows for the available Resources to be optimally distributed among the
different Resource Types requested by the Activity.

Given the nature of simulation problems, the definition of an Activity should
not require a very high number of Resource Types. Further, we should not ex-
pect to have a very high number of Resources of each type. Consequently, a
simple Backtracking algorithm can be adopted to solve the problem.

4.3.3. Overlapping Entries in Roles Belonging to Several AMs

In this case, the limitation in the above scenario disappears, that is, the roles
for which a Resource can be available at the same time can belong to different
AMs. Consider Figure 4.4 as an example. This figure shows two Elements, e;
and ey, which request a; € AM; and a, € AM), respectively. Workgroups have
been omitted for simplicity, the assumption being that each Activity requires
just one Resource Type. Resource r1{(cy,tay, rt1),(ca, tas, rtz)} has two time-
table entries such that (cy, tay, rt1) N (ca, tas, rt2) # @, meaning it will be simul-
taneously available to both rt; and rt,. The access protection provided by the
AMs is insufficient in this situation.

Since timetable entries are dynamic and can use any probability distribution
in their definition, the simulation engine cannot know beforehand if a Resource
will be available to an AM at a given timestamp. An extremely conservative so-
lution would be to survey all of a Resource’s timetable entries prior to commen-

cing the simulation. Resource Types for which the Resource is made available

81

Chapter 4. Parallel SIGHOS

Figure 4.4. Resource simultaneously available for roles belonging to different activity
managers

would be taken, and all the AMs containing those Resource Types combined.
Hence, the AM’s access control would act as a safety mechanism, the compro-
mise being the sequencing of the simulation. The process we will use instead
consists of dynamically isolating only truly conflicting Resources. To clarify this
concept, let us establish the following definitions:

Definition 4.3. Potentially conflicting resources
A Resource r{(cs, tas, rts),...(ct tas, rt;) } has a potential conflict due to rt; and
rtr < ({cs, tas, rts) N (c, tag, rty)) = D Arts € AM; N1ty € AMy,j # k.

Definition 4.4. Conflicting resources

A Resource r{(cs, tas, rts), ... {(cs, tas, rty) } has a conflict at simulation time ¢ iif
o 1 has a potential conflict due to rt; and rt;

e ¢ requests Activity a; at simulation time ¢, and a; requires rt;

82

4.3. Resource Contention in SIGHOS

e ¢, requests Activity ap at simulation time ¢, and a, requires rt;

The last definition can be extended to regard e; and e, as having a conflict. Ac-
cess to conflicting Resources must be arbitrated. Taking advantage of the two-
stage Resource acquisition mechanism, the idea is to allow unrestricted access
to Resources during the book phase. Then, and only if a conflict was detected
during the first stage, would access to the Resources during the capture stage be
arbitrated.

Book Phase

The conflicting Resources are identified during this phase. Each Resource has an
associated booking list where the Elements that are simultaneously requesting
an Activity that requires this Resource are inserted.

Initially, each Element is associated with a critical zone, which we will call
Conflict Zone (CZ). A CZ contains a list of conflicting Elements, along with a
synchronising mechanism that manages access to the zone itself.

Suppose an Element e tries to book a Resource r. The first thing to do is to
check whether s booking list contains more Elements. If so, e’s CZ must be
merged with that of the Elements in the list. The merge operation requires exclu-
sive access to both CZs, meaning that, in order to avoid deadlocks, the merge is
always done from the CZ of the higher index Element (or source) to that with the
lower index (or destination). The merge operation adds all the Elements in the
source CZ to that of the destination CZ. Once this is done, the Elements in the

source zone are surveyed and targeted to the destination zone.

Capture Phase

During the capture phase, only one Element in the CZ should be able to acquire
Resources at a time. Given what we have seen up to now, it would suffice to use
a synchronisation mechanism associated with the CZ such that the Resource

acquisition is mutually exclusive.

83

Chapter 4. Parallel SIGHOS

There is a serious drawback to this solution, since other Elements in the conflict
zone may still be booking their Resources, meaning the composition of the
conflict zone is susceptible to change with the addition of new Elements. Even
that would not pose a problem as long as the new CZs being merged did not
have any Elements already in their acquisition phase.

The problem with merging two conflict zones is what to do with the synchro-
nisation mechanisms being used in each zone. Given that the goal is to have the
synchronisation encompass the new merged zone without continuing to main-
tain the synchronisation independently for each subset of Elements, we propose
the use of a structure comprising a stack of synchronisation mechanisms. Each
CZ starts out with an empty synchronisation stack during the booking phase.
When the first Element arrives at the capture phase, a synchronisation mecha-
nism is added to the stack. Any new Elements arriving in this CZ during the
capture phase will use this mechanism.

If the current CZ has to be merged with another one, the stack from both zones
will be merged as well. If no Element in the second CZ has reached the capture
phase, the merge does not alter the stack. Contrarily, if the stack in the second
zone is not empty, the synchronisation mechanisms from this zone are added to
those in the first.

Whenever an Element in the CZ reaches the capture phase, it receives a copy
of the synchronisation stack and surveys the mechanisms contained within it
until exclusive access to the Resources can be guaranteed. When the Element
completes the capture phase, it uses its copy of the stack to release said mecha-
nisms in order. The use of a copy instead of the original stack which stores the
CZ assures the immutability of the stack for a given Element.

An Example of Using Conflict Zones

The following example is intended to clarify the operation of the mechanism
for managing conflicting Resources. The example has been divided into two
phases: first, note how the CZs are merged when two Elements are competing

84

4.3. Resource Contention in SIGHOS

for the same Resource; then, note the usefulness of the synchronisation stack
as the two CZs whose stack is already in use are merged. Figure 4.5 shows the

simulation components that intervene in the example. !

o ap ° as

=T — &

(S5 o e I3
3

0 az . Ay

1o b ome

e nn e I3 Ip

Figure 4.5. Example of several elements requesting activities in different AMs

The first part of the example is shown in Table 4.2, which represents the concur-
rent execution of Elements e and e;. The “execution” column indicates the stage
each Element is in. The “conflict zone” column shows how the components in
the CZ are modified. Finally, the “book list” column represents the progress in
the Resource booking lists.

Table 4.2 shows how e; and e; initially have different CZs, containing only the
corresponding Element and their own empty synchronisation stack. At stage 2,
a conflict is detected and both CZs are merged. Now, at stage 3, e; and e, share
the same CZ. Thus, when ey is in the capture phase, a synchronisation mecha-
nism appears (represented by a traffic light) to properly arbitrate the exclusive
access to the shared Resources. Consequently, when e, reaches the same phase
(stage 4), the synchronisation mechanism prohibits this Element from accessing
the Resources (represented as a STOP sign).

At this point, e; and e, share a CZ that is managed with one stack containing a
single mechanism. The second part of the example includes Elements e3 and ey,
whose execution is analogous to that of e; and e, up to step 3. Table 4.3 shows
the execution of e3 and e4 from that point on, and continues the example above.

INote that Workgroups and even Resource Types are obviated for the sake of simplicity.

85

Chapter 4. Parallel SIGHOS

Table 4.2. Simple example of the resource booking phase

4 Execution Conflict Zone Book list
€1 €2 CZ(el) CZ (82) r1 ra

1 Init Init S PRy @ %)
Book rq egp. @

Book 1 Merge(CZ(el), CZ(ez))
J’ r \5

2 —— — e1, €2 %)
Capture —- e, 60 D

4 Book e1,6 €
5 Capture _. e1,6 €

At stage 5, e3 is given exclusive access to the CZ that it shares with e4. For this
purpose, a new synchronisation mechanism (this time represented as a darker
traffic light) is added. When e4 books r;, the CZ for e; and e; has to be merged
with that for e3 and es. Now, at stage 7, e; and e3 can continue accessing the
Resources since they do not really share any Resource. However, e4 has to wait
for e3 and e; to finish before it can gain access to the shared Resources. This
situation is represented by having both synchronisation mechanisms impede the
progress of e4. Once ¢; finishes, e; can gain access to the CZ, but e; will wait until

both e, and ej3 finish.

86

4.4. A Test Benchmark for SIGHOS

Table 4.3. Advanced example of the resource booking phase

Execution

€1 (5] €3 €4

Conflict Zone
CZ(el,ez) CZ(€3,€4)

Capture

/ .\ / .\
/ rn*\ / ﬁ\
\ g \
Coa g | |V Ce /)| T
" 12/ \!34/
\

- ~ - ~

/ \ 7
- ~ -

Book 1,

Merge(CZ(el,ez) CZ(€3,€4))

- ~

N\
\
mrw O
e e .'ee)
\\12\/!34/
.

Capture

A
/ (== em
o
8
o
g
<

End

\
/

-
/ (== Em
]
£
N

End

\

p
/ (== Em

4.4. A Test Benchmark for SIGHOS

The following sections explain the different techniques applied to achieve an
efficient and effective parallel version of SIGHOS. A test benchmark is required
to compare the influence of the successive enhancements on the performance of
the tool. The base test model is defined as follows:

e Let E be the set of Elements in the model. Let |E| be the cardinal of E. All

87

Chapter 4. Parallel SIGHOS

the Elements are created at the beginning of the simulation.

Let A be the set of Activities in the model, and let |A| = kx |E|,k € Z*
be the cardinal of A.

Each Activity a; € A has a unique Workgroup WG;({(rt;, 1), (rt2,1),...,
(rte,1)}), with each Resource Type being used solely in a single Work-
group, thatis, Vrt; € WG; = rt; € WGy, k # j. Hence, |IRT| = a x |Al.

All the Activities have the same length.
There are as many Resources R as Resource Types, thatis |R| = a x |A].

The Workflow associated with Element ¢; € E involves iteratively reques-
ting N times the Activity a; € A.

This simple test is intended to generate a large amount of simultaneous events

at any simulation timestamp. Having as many Resources as Resource Types,

all the Elements are always able to perform their requested Activities. We use

this simple test to study how the simulator responds to several stress conditions

by modifying certain input parameters (|E|, N, |A|, «, B):

1.

88

|E| denotes the number of simultaneous events at any simulation times-

tamp.

. N is a scale parameter which reduces the noise produced by other pro-

grams when measuring execution time (exclusive access to the processors

during the execution cannot be granted).

|A| defines the independence among events. Hence, if (|A| = |E|), all the
Elements would request a different Activity, and all the events would be
independent; in contrast, if (|A| < |E|), several Elements would request
the same Activity, thus requiring mutual exclusion and creating depen-

dencies among events.

. & can be used to increase the workload of the request events.

4.5. A Performance Analysis of the Sequential SIGHOS

5. This simple model can be made more complex by adding an extra parame-
ter € ZT < |A|. B would denote the number of multiple roles for which a
Resource is potentially available. If B = 1 we would have a model equiva-
lent to the simple model presented up to now; however, if B > 1, the same
Resource ry would be available for several Resource Types (rty,rt2, ... rtg).
The Resource Types are chosen so that Vrt;,1 < i < = /:"Irtj, 1<) <
BAj#i/rti € AMy Artj € AMy. Hence, the mechanisms introduced in
Subsection 4.3.3 would be put to the test.

All the experiments were executed on the platform described in Table 4.4.

Table 4.4. Test platform

Processors | 16 (4 Quad Core AMD Opteron (2.2 GHz))
RAM 32 GB

(OF) Linux 64 bits

JVM 1.6.0_11

4.5. A Performance Analysis of the Sequential SIGHOS

Now that a sufficiently flexible test benchmark has been established, let us ana-
lyse the performance of this model for the sequential version of SIGHOS on the
platform described above. Table 4.5 enumerates the parameters used to charac-
terise the different scenarios for the experiments.

We have selected large values for N to prevent external programs from in-
fluencing the measurements. The smaller value (10,000 iterations) can be used
to check whether shorter simulations yield sufficiently accurate results. For
example, Table 4.6 compares the execution time for the 10,000 and 100,000 itera-
tion version by combining all the parameters for « = 8. The “Rate” column is
the quotient of the 100,000 and 10,000 iteration versions, which is, as expected,
very close to 10 in most cases. Similar results are obtained for &« = 4 and a = 16.

89

Chapter 4. Parallel SIGHOS

Table 4.5. Sequential parameters

Parameter | Values

N 10,000, 100,000
|E]| 512, 1024

|A| 128,512,1024
% 4,8,16

B 1,2,4

Consequently, the execution times for the 10,000 iteration version are accurate

enough to produce valid conclusions whenever required.

Table 4.6. 10,000 Vs 100,000 iterations (« = 8)

Execution time (ms)
[Al IEl | 10000 iter. 100000 iter. | Rate
128 512 90,542 873,146 | 9.64
512 512 111,849 1,121,297 | 10.03
128 1024 195,057 1,950,204 | 10.00
512 1024 219,317 2,189,258 | 9.98
1024 1024 225,418 2,268,404 | 10.06
128 512 101,291 991,693 | 9.79
512 512 125,197 1,244,973 | 9.94
128 1024 225,737 2,259,927 | 10.01
512 1024 249,601 2,483,356 | 9.95
1024 1024 258,614 2,581,552 | 9.98
128 512 125,280 1,234,935 | 9.86
512 512 149,781 1,479,116 | 9.88
128 1024 287,201 2,860,710 | 9.96
512 1024 305,232 3,032,064 | 9.93
1024 1024 319,118 3,167,985 | 9.93

= RN DNDNNMNDNMNDNR, PR R PR

90

4.5. A Performance Analysis of the Sequential SIGHOS

If treated independently, both |E| and |A| are scale factors, but their impact on
the execution time is dramatically different, as shown in Figure 4.6. On the one
hand, |E| has a strong influence on the execution time, since its value is directly
proportional to the number of events executed. On the other hand, when |A]|
grows, the execution time only increases slightly.

250 -

200

150

100

Execution time (s)

50

128-512 512-512 128-1024 512-1024 1024-1024

[Al-|EI

Figure 4.6. Comparison of influence of |E| and |A| fora =8and g =1

« and f also have a scale effect. Certainly, the sequential SIGHOS never uses the
algorithm introduced in Subsection 4.3.3, thus increasing f simply means that
more Resources are available for the same Resource Type. As seen in Figure 4.7
and Figure 4.8, a’s effect on execution time is almost linear, whereas ’s influence

is much smoother.

In conclusion, SIGHOS behaves as expected and most parameters show a linear
effect on the execution time.

91

Chapter 4. Parallel SIGHOS

Execution time (s)

450 -
400
350
300
250
200
150
100

50

H4
k8
16

128-512 512-512 128-1024 512-1024 1024-1024
|Al - |El

Figure 4.7. Effect of varying a for different problem types and g =1

Execution time (s)

350 ~
300
250

200

150 m]

100 M2

M4
50

128-512 512-512 128-1024 512-1024 1024-1024

|Al-1EI

92

Figure 4.8. Effect of varying j3 for different problem types and &« = 8

4.6. Using External Event Executors

4.6. Using External Event Executors

Having studied the performance of the sequential version of SIGHOS, we will
now describe successive approaches for obtaining an efficient parallel version.

To start with, a direct mapping can be established between the concepts defi-
ned at the end of Section 4.1 and the usage of a thread pool (Goetz et al., 2006). A
thread pool simply consists of a set of threads available to the application. Ins-
tead of creating a thread each time a task is to be performed, the task is placed in
the pool manager’s queue. As soon as one of the pool threads becomes available,
it is assigned to this task.

The use of this pool in Java is as easy as choosing the ExecutorService class
from the java. util .concurrent package, which can be parameterised with a wide
variety of options for optimising the execution, depending on the problem’s cha-
racteristics. A suitable starting point is defining the thread pool as having a fixed

number of threads which are created when the executor is started.

ExecutorService tp = Executors.newFixedThreadPool(nThreads) ;

Obviously, EEs can be mapped to the threads of a thread pool. Further, the
algorithm defined in Listing 4.1 can remain unaltered. The only requirement is
to make Events extend the Runnable interface.

We can analyse the performance of the simulator when adding a thread pool
by using the test benchmark previously defined. Nevertheless, the effects of
some of the parameters in PSIGHOS are considerably different from those in SI-
GHOS.

1. Although |E| and |A| continue being scale factors, the quotient |E|/|A|
acquires a remarkable prominence in PSIGHOS. The closer the quotient is
to 1, the higher degree of parallelism PSIGHOS may exploit. Consequently,
contrarily to the sequential simulator, increasing |A| should lead to better

results when using several threads.

2. Now B > 1 involves using the algorithm explained in Subsection 4.3.3. A
priori, this should result in poorer performance.

93

Chapter 4. Parallel SIGHOS

Hereafter, speedup is defined as the execution time of a sequential simulation
performed with SIGHOS divided by the execution time of a parallel simulation
performed with PSIGHOS. Let us select a scenario with |[E| = 512 and « = 8.
Figure 4.9 shows the speedup obtained by using the thread pool with respect to
the sequential simulator. At most 15 worker threads can be used, since the main
thread is handling the future event list and sending events to be executed. None

of the results are satisfactory except when 4 threads are used. Even in that case,

when |E|/|A| < 1 the speedup is less than 1.

Speedup

2 4 8 15
IEEI
—o— | A1=128, beta=1 | A1=128, beta=2
—a— | A1=512, beta=1 —— | A|=512, beta=2

Figure 4.9. Speedup using Java thread pool with |E| =512 and &« = 8

The main reason for this poor performance is the overload introduced to
control the concurrent access to the simulator structures if compared to the small
workload of the events. This effect can be observed if we lighten the workload

by choosing & = 4, as shown in Figure 4.10. In this case, none of the configura-

tions achieves a speedup > 1.

94

4.7. Integrating the Pool in the Simulation Tool

1
§* —
@
o
(<
)
0 T T T
2 4 8 15
|EE|
—o— | A1=128, beta=1 | A1=128, beta=2
—A— | A1=512, beta=1 —>— | A1=512, beta=2

Figure 4.10. Speedup using Java thread pool with |E| =512 and « = 4

4.7. Integrating the Pool in the Simulation Tool

Java utilities for creating and handling a thread pool are simple and clean, and
the development times are considerably reduced; nevertheless, an ad hoc solu-
tion may easily surpass the efficiency of a generic tool like this when applied to
a specific problem. Therefore, an EventExecutor class is explicitly created within
the library. Each EE is a thread whose basic behaviour is described in Listing 4.2.

This scheme allows for some optimisation if we take into consideration the fact
that every event (save for those generated during the initialisation phase) is crea-
ted by other events. Sending these events to the master thread to be distributed
again is expensive, as opposed to keeping them in the same EE for execution.
While this could certainly lead to an unbalanced load, the costs of migrating
(small pieces of) work would be more harmful. The implementation of this op-

95

Chapter 4. Parallel SIGHOS

timisation involves adding an execution cache to the EE. This cache temporarily
keeps the new events generated during the execution of the event sent by the
EM. This can be done by modifying the schedule(e@ts) operation, and the main
EE loop, as seen in Listing 4.3 and in Listing 4.4 respectively.

Listing 4.2. Basic definition of an ad-hoc Event Executor

EventExecutor {

startEvent = Event used as an atomic flag;

method dispatch(e@ts) {
// Atomic CAS operation

if (startEvent # @) {

startEvent = e@ts;

method mainLoop () {
while (Simulation.CST < Simulation.EndTs) {
if (startEvent #Q@) {
execute (startEvent);
startEvent = @;

Listing 4.3. First optimisation of an ad-hoc Event Executor

method schedule(e@ts) {
if (ts = Simulation.CST) ({
ee = Event Executor where the current event is being executed
ee.executionCache.add(e@ts) ;
}
else if (ts > Simulation.CST) {
Simulation .FEL.add (e@ts);

96

4.7. Integrating the Pool in the Simulation Tool

Listing 4.4. Modified main loop of an ad-hoc Event Executor

while (Simulation.CST < Simulation.EndTs) {

if (startEvent # @) {
execute (startEvent);
forall e@ts € executionCache do {

execute (e@ts) ;

}
startEvent = ©;

Figure 4.11 illustrates the benefits of the ad hoc solution. The resulting spee-
dup is still small, but the simulator’s behaviour when the number of threads is

increased is much more stable.

Speedup

2 4 8 15
|EEI
—o— | A =128, beta=1 | A1=128, beta=2
—A— | A1=512, beta=1 —>— | A1=512, beta=2

Figure 4.11. Speedup using an ad hoc thread pool with |E| =512 and « = 8

97

Chapter 4. Parallel SIGHOS

4.8. Exploiting Event Locality

One of the major drawbacks of the previous approach is the inefficiency of ac-
cessing the FEL, since both the EM and the EEs concurrently try to gain access to
this structure. We solve this problem by modifying the schedule(e@ts) operation
again, as shown in Listing 4.5.

Listing 4.5. The schedule(e@ts) operation modified to exploit event locality

method schedule (e@ts) {
ee = Event Executor where the current event is being executed
if (ts = Simulation.CST) ({
ee.executionCache.add(e@ts) ;

}
else if (ts > Simulation.CST) ({

ee.FELCache.add (e@ts) ;

The new schedule@ts operation extends the optimisation introduced in the pre-
vious section to future events, that is, events with timestamps in the future may
be stored in caches until all the events corresponding to the current timestamp
are executed. The EM updates the FEL by checking those caches before advan-
cing the VC. Thus, only the EM accesses the FEL and no mechanisms to protect
that structure are needed. Figure 4.12 schematises the interaction among the EM,
EEs and the simulation structures after applying the optimisation.

Figure 4.13 illustrates the results obtained with this optimisation. The most
notable effect is a higher scalability, especially for |EE| > 8, where the speedup
almost doubles the previous one.

4.9. Block Dispatching

In Section 4.2 we stated that sufficiently large and complex simulations have
multiple events per timestamp. Starting from this hypothesis, the dispatch(e@ts)
operation may be replaced by a dispatch(E) operation, where E is a set of events.

98

4.9. Block Dispatching

/ Event \
Executor 0 (EE1) o oo EEN)

< :execute(e@ts) = | e e e e e e .
C :sE};ec—iule-(e—@-tss =
ey
ts=CST - Y. ts>CST
) N

M N

he | |
%cution Cache FEL Cache

Figure 4.12. Basic schema of the optimised Master-Slave approach

Hence, events would be grouped and dispatched in blocks, as shown in Lis-
ting 4.6.

Listing 4.6. Event Manager main loop using block dispatching

Let executor[]] be an array containing all the Event Executors
// Phase 0: Initialisation

while (Simulation.CST < Simulation.endTs) {
// Phase 1: Update clock

// Phase 2: Execution
E =V e@ts € Simulation.FEL / (ts = Simulation.CST);
block = E.length / executor.length;

for i € [0 .. executor.length — 1] {
E’” = E[(i * block) .. ((i + 1) % block)];
executor[i]. dispatch(E");

}

// Synchronisation of Phase 2

99

Chapter 4. Parallel SIGHOS

Speedup
N

2 4

—o— | A1=128, beta=1
—A— | A1=512, beta=1

IEEI

8 15

| A1=128, beta=2
—— | Al=512, beta=2

Figure 4.13. Speedup exploiting event locality with |E| = 512 and & = 8

The practical implementation of this algorithm distinguishes between two spe-

cial cases:

1. If there are fewer events than EEs, all the events are sent to the first execu-
tor since the workload is not worth the penalty imposed by the synchroni-

sation operations.

2. If E.length mod executor.length != 0, the remaining events are sent to the last

EE.

Figure 4.14 shows the speedup in the simulator when using block dispatching
in addition to the previous enhancements. The new results are a considerable

improvement on those obtained earlier.

100

4.10. A Hybrid Event Manager - Executor

\
\

2 4 8 15
|EE|
—o— | A1=128, beta=1 | A1=128, beta=2
—A— | A1=512, beta=1 —>— | A1=512, beta=2

Figure 4.14. Speedup exploiting block dispatching with |E| =512 and a« = 8

4.10. A Hybrid Event Manager - Executor

In a scenario like the one presented in the previous section, it is clear that the
workload of the EM has been considerably reduced with respect to that of the
EEs.

This observation presents an opportunity to improve the performance of the
simulator, since the EM may play the role of an additional EE, and execute part
of the events corresponding to the current simulation time. Moreover, there is
no need for said EM to dispatch the events: each EE could simply be notified as
soon as the VC is updated and access its corresponding event subset based on its
index. Figure 4.15 schematises this new approach. A kind of “master” EE (the
hybrid EM-EE, hereafter EME) is still required to perform the common tasks, but
the original MS paradigm is considerably relaxed.

101

Chapter 4. Parallel SIGHOS

FEL

@(m)[EEO(EME)] [HE 1] oo
y S T

Figure 4.15. Relaxed MS approach by using the hybrid EME

Listing 4.7 presents the modified EE’s main loop. EE with id = 0 is conside-
red the hybrid Event Manager Executor (EME) and substitutes the former EM.
Since the dispatch(e@ts) operation is no longer used, two operations, notify () and
await(), are included for synchronisation purposes.

Listing 4.7. Main loop of an EE and the hybrid EME

while (Simulation.CST < Simulation.EndTs) {
E =V e@ts € Simulation.FEL / (ts = Simulation.CST);
block = E.length / executor.length;
executionCache = E[(id % block) .. ((id + 1) % block)];
forall e@ts € executionCache do {
execute (e@ts) ;
}
// If this is the EME
if (id == 0) {
// Synchronisation
Wait until all the events has been effectively executed
// Update FEL
for i € [1 .. executor.length — 1] {
FEL.addAll (executor[i].FELCache);
}
// Update clock
e’ @ts = First event from FEL;
Simulation.CST = ts;

102

4.10. A Hybrid Event Manager - Executor

for i € [1 .. executor.length — 1] {

executor[i]. notify ();

}
// If this is a “‘normal’’ EE waits until the EME notifies

else {
await () ;

Unfortunately, the experimental results do not support the previous assump-
tion. Figure 4.16 compares the speedup obtained when the EM dispatches and
when it dispatched and executes events. Note how the former outperforms the
latter. The last column compares the maximal configuration for each version:
even with an additional EE, the hybrid EME cannot reach the speedup obtained

with the previous version.

Speedup

2 4 8 16/15
|EEI

i EM dispaches + executes B EM only dispatches

Figure 4.16. Speedup compared with |[E| = |A| =512, x =4and p =1

103

Chapter 4. Parallel SIGHOS

This counterintuitive result leads us to more carefully analyse the workload of
the EME compared to that of the EEs. Hence, we design a mechanism to control
how many events are dispatched to each worker based on two parameters: grain
and rest. The events that must be executed are organised into b bundles, where
b = |EE| % grain + rest. Let A be the number of events to be dispatched. Each
EE executes |A/b| * grain events, whereas the EME executes the remaining A —
|A/b| % grain = |EE| events. Figure 4.17 compares the performance for 6 different
configurations: the first one (Simple EM) uses the original simulation engine with
an EM exclusively devoted to dispatching events; the remaining configurations
set different (grain, rest) parameter values for the EME engine. Note that, this
time, the chart is comparing the results with respect to the number of threads,
not only the EEs. Hence, the 2-thread bar for the Simple EM configuration has a

single EE.
1200
1000
C)
() -
g 800
-
.5 600 -
S 400 -
*
28
200 - |
0 -
2 4 8 16
Threads (IEE| + EM)
W Simple EM @ (1,0) ®(1,1) ®@(1,4) ®(21) (1)

Figure 4.17. Performance comparison with |E| = |A| = 512, « = 4 and B = 1 for different
grain-rest configurations

104

4.11. Going Beyond Limits: like-3-Phase Approach

The different configurations tested shed light on the unexpected behaviour of
the hybrid EME simulation engine. Hence, the (1,0) (grain = 1 and rest = 0)
configuration serves to validate the Simple EM configuration, since it involves
an EM that does not execute events.

The strictly fair distribution of events (1,1) even outperforms the Simple EM
case when only two threads are available. Obviously, the (1,1) case effectively
has two threads for executing events, whereas only one thread from the Simple
EM configuration is an EE. However, when more than two threads are involved,
this good behaviour disappears.

The EME is assigned a considerably higher workload than the EEs when (1,4)
is chosen. All but the 2-thread scenario offer the worst performance, thus corro-
borating the fact that a high workload in the EME is counterproductive.

Finally, the EEs are assigned twice/eight times the workload of the EME ((2,1)
/(8,1)). None of these configurations achieves better performance than either
the Simple EM or the (1,0) configuration. Moreover, some other different grain
values were tested (4, 6...) with similar results. This suggests that lowering
the workload of the EME does not reduce the execution time. In conclusion,
what penalises the performance is not the execution of events, but the EME tasks

involving dispatching events and synchronising the simulation.

4.11. Going Beyond Limits: like-3-Phase Approach

Caches and block dispatching are techniques that considerably improve the per-
formance of PSIGHOS. Nevertheless, the results for the best scenarios in our test
benchmark (|A| = |E| and B = 1) are far from satisfactory, especially in terms of
the poor scalability as the number of threads increases.

The source of the problem lies in an excessive amount of protected simulation
components: Elements, Resources, ActivityManagers...require controlling the
access to their state, since several events may be concurrently trying to modify
them.

105

Chapter 4. Parallel SIGHOS

A coarse grain access control is exerted on these structures, since we cannot
predict which events will execute concurrently or what simulation components
they will affect.

A second problem is the redundancy of actions. Consider a scenario with
a single Activity a; that requires one of each Resource (rty, rty, rt3). Hence,
only AM; is needed to manage the accesses to a;, rt;, rtp and rt3. Currently
(CST = t), there are no available Resources, but an Element e; is already waiting
in a1’s queue. Assume there is one Resource per RT (r,72,73), and all three
Resources becoming available, that is, scheduling a RoleOn event, at timestamp
t + 1. When the VC reaches t + 1, those three events are executed. A RoleOn
event notifies the corresponding AM that a new Resource is available, and checks
if any of the Activities € AM with non-empty Element queues are now feasible.
Suppose that the events are executed in the order shown in Table 4.7. Then,
r1.RoleOn@(t + 1) is the first event to launch the check routine, preventing the
control mechanism of AM; from executing this action simultaneously with any
other event. r1.RoleOn@(t + 1) will check if a; is feasible and will fail (since
we still require at least one Resource for rt; and rt3). The same action and the
same result will occur with the second event. The third event will succeed, but
two events have been wasted because the simulation engine cannot know in
advance that more Role0On events affecting the same AM will occur. Furthermore,
if we analyse the costs, in terms of concurrent access, related to executing each of
these unnecessary events, we realise that exclusive access to AMj, e, and each of
the resources is required, thus limiting other opportunities to exploit parallelism

with these simulation components.

Table 4.7. Three consecutive RoleOn events with the same timestamp

Event rt1 rty rtz Isaq feasible?

ri.RoleOn v X X X
rp.RoleOn v Vv X X
r3.Roledn v VvV V v

106

4.11. Going Beyond Limits: like-3-Phase Approach

4.11.1. Events Revisited

From the example above, we deduce that the order in which the events are exe-
cuted and, more specifically, the knowledge regarding how many events are left
that affect the same simulation component, have a dramatic influence on the
performance of the simulation engine. A careful assessment of the operations
performed within SIGHOS events, and the simulation components they affect,
may lead to a reformulation of the events themselves. Hence, a review of the
event code is required. Let acquire() and release () be operations defined within
any simulation object (AM, Element, Resource...) to acquire and release exclusive
access to such object, respectively. The entire code between object.acquire() and
object. release () is executed atomically from the point of view of object. Listings
4.8,4.9 and 4.10 complete the pseudocode already shown in listings 3.1, 3.2 and

3.3 with the corresponding acquire/release operations.

Listing 4.8. RequestActivity event

RequestActivity (Element e, Activity a) |{
// a€ am
am. acquire () ;
e.acquire () ;
if (a.isFeasible(e)) { // May involve invocations to r
.acquire/release
e.release () ;
e.carryOut(a); // May involve invocations to r.acquire/release
Simulation.schedule(new FinalizeActivity (e, a, Simulation.CST + a
.duration));
}
else {
e.release () ;
a.enqueue(e);
}

am. release () ;

107

Chapter 4. Parallel SIGHOS

Listing 4.9. FinalizeActivity event

FinalizeActivity (Element e, Activity a) {

// a.releaseResources () is inlined

AMSet = ©;

forall r; € (list of resources captured by e to carry out a) do {
r;.AMSet = set of AMs where r; is currently available
AMSet = AMSet U r;. AMSet;

}

forall am; € AMSet do {
am;.acquire () ;
am;.notifyAvailableResource () ;
am;.release () ;

}

// The rest of the pseudocode is kept the same

forall a; € (list of activities currently requested by e) do {
Simulation.schedule (new AvailableElement(e, a4;, Simulation.CST));

J

// Make e advance its associated workflow

forall a; € (next activities to be requested according to the
associated workflow) do {
Simulation.schedule (new RequestActivity (e, 4;, Simulation.CST));

Listing 4.10. AvailableElement event

AvailableElement (Element e, Activity a) {

// a€ am

am. acquire () ;

e.acquire () ;

if (a.isFeasible(e)) { // May involve invocations to r
.acquire/release
e.release () ;
e.carryOut(a); // May involve invocations to r.acquire/release
Simulation.schedule(new FinalizeActivity (e, a, Simulation.CST + a

.duration));

a.dequeue (e) ;

108

4.11. Going Beyond Limits: like-3-Phase Approach

else {
e.release();

}

am.release () ;

The contents of the RoleOn and RoleOff events are also displayed in listings
411 and 4.12. These events simply increment/decrement the counter of cur-
rently available Resources; update the Resource state to take into account that it
is available /unavailable for certain roles; and notify the AM (in the case of Role0On)

that a new resource is available.

Listing 4.11. RoleOn event

RoleOn(Resource r, TimeTableEntry fte) {
// ttert € am
am. acquire () ;
ttert.incAvailable (7);
r.acquire () ;
r.AMSet.add (am); // AMSet is the set of AMs where r is available
r.release () ;
am.notifyAvailableResource () ;
am.release () ;
Simulation.schedule (new RoleOff(r, tte))

Listing 4.12. RoleOff event

RoleOff(Resource r, TimeTableEntry tte) {
// ttert € am
am.acquire () ;
ttert. decAvailable(r);
r.acquire () ;
r.AMSet.remove(am); // AMSet is the set of AMs where r is available
r.release () ;
am.release () ;
if (tte.c.hasNext())
Simulation.schedule (new RoleOn(r, tte))

109

Chapter 4. Parallel SIGHOS

The AM.notify AvailableResource method appears in both RoleOn and Finali-
zeActivity. Listing 4.13 shows the pseudocode corresponding to that method.

Listing 4.13. AM.notifyAvailableResource method

method notifyAvailableResource () {
forall a; € current AM do {
forall ¢ € a;.queue do {
e.acquire () ;
if (a.isFeasible(e)) { // May involve invocations to r
.acquire/release
e.release () ;
e.carryOut(a); // May involve invocations to r
.acquire/release
Simulation.schedule(new FinalizeActivity (e, a,
Simulation.CST + a.duration));
a.dequeue(e);

}
else {
e.release () ;

From the listings above we can conclude that, although the exclusive access
to both Elements and Resources does not appear very often and is reasonably
localised, the EEs spend most of the time accessing AMs in mutual exclusion (he-
reafter mutex). Furthermore, within the code inside the AM’s mutex area, a pair
of operations appears very frequently: a.isFeasible (e) and e.carryOut(a). These
operations are part of the two-phase acquisition of resources required to carry
out an activity (checking if an activity is feasible with a. isFeasible (¢), and then
effectively acquiring the corresponding resources with e.carryOut(a)), and com-
prise a significant portion of the computational load in SIGHOS. Therefore, mutex

access to AMs represents a good starting point for optimising PSIGHOS.

110

4.11. Going Beyond Limits: like-3-Phase Approach

4.11.2. Reducing Contention in AMs

In spite of being a suitable mechanism for preventing resource contention and
deadlocks, AMs seem to be limiting the amount of parallelism that may be exploi-
ted in PSIGHOS. After all, the problem continues to be that the simulation engine
has to handle many concurrent events that affect the portion of the system state
protected by the AM.

Suppose we can assure that an AM will be always accessed from the same EE.
In this case, we could avoid the AM’s acquire/release operations. Unfortunately,
there is no direct map Event-AM, since some events involve accessing more than
one AM. Further, some events whose main action involves one AM may generate
new events to be executed immediately on a different AM. For example, consider
an Element performing a workflow consisting of two consecutive Activities
a; and ap (a1 € AM; Nay € AMp). Immediately after a FinalizeEvent@ts is
invoked on a7, a RequestEvent@ts on 4, is called.

Figure 4.18 schematises the order in which events are invoked. A distinction
is made between two different invocation types: events that are scheduled for
future execution (after At); and events that are scheduled for immediate execu-
tion, generally if a certain condition holds. This distinction clearly meets the
definitions of the B and C events in the three-phase approach (Subsection 1.2.4).
Hence, Generate, FinalizeActivity, RoleOn and RoleOff would be B events;
whereas RequestActivity, AvailableElement would be Cs2. Nevertheless, this
rough assignment is useless if the events are not more precisely decomposed.

Let us focus on the operations performed within the mutex area of the AMs.
More specifically, let us concentrate on the pair a.isFeasible (e) - e.carryOut(a).
There are two triggers that may result in those operations being invoked:

1. One or more resources become available (RoleOn and FinalizeActivity)

events.

2. An element becomes available (AvailableElement event).

2The “Start...” events may also be considered Cs, but we will exclude them from this discussion
for the sake of simplicity

111

Chapter 4. Parallel SIGHOS

Start Generator ¢ ----~- Generator.Generﬂ Element.AvailableElement
A
& . — M] .
Start Element -------- » Element.RequestActivity - _-_~. Element.FinalizeActivity

_— >
Start Resource -------1 » Resource.RoleOn = Resource.RoleOff

et AT —>
Invoke if certain condition meets Invoke after At

Figure 4.18. Relationships among events

The first case requires checking all the Activities belonging to an AM, as seen
in notifyAvailableResource; whereas the second one can be reduced to a check
of whether the Element that just became available can now perform any of the
Activities it was waiting for. A few conclusions can be drawn from these pre-

mises:
e Case 1 should be executed only once per simulation clock.
e Case 1 includes case 2.
o Case 2 focuses on specific elements and specific activities.

We can implement cases 1 and 2 as a large like-C event attached to an AM, as
can be seen in Listing 4.14. Case 1 simply invokes AM.notify AvailableResource.
The condition for launching this event may be a simple boolean flag (flagRes),
activated if at least one resource has become available for a resource type belonging to
this AM. The main condition for case 2 is that the code for case 1 was not already
executed, and requires a list of pairs <e;, a;> such that ¢; has become available A
aj was requested (and not yet carried out) by e;. Let requestList be the name of
that list.

112

4.11. Going Beyond Limits: like-3-Phase Approach

Listing 4.14. AM event

AMEvent(am) {
if flagRes = true {
am.notifyAvailableResource () ;
}
else |
forall pairs <e;, aj> € requestList do {
e.acquire () ;
if (a.isFeasible(e)) { // May involve invocations to r
.acquire/release
e.release ();
e.carryOut(a); // May involve invocations to r
.acquire/release
Simulation.schedule (new FinalizeActivity (e, a,
Simulation.CST + a.duration));
a.dequeue(e) ;
}
else {
e.release () ;

This large event not only avoids any kind of redundancy, but it prevents the AM
from requiring a coarse-grain mutex access. Only flagRes and requestList demand
a fine-grain protected access. Each AMEvent is assigned to a single EE and exe-
cuted after the other regular events have finished, as seen in Listing 4.15 (which
also includes some modifications due to the block dispatching). Actually, regular
events are reduced to Generate, Role0ff; RoleOn, which only sets the correspon-
ding flagRes to true; and FinalizeActivity, which only adds a new pair <e;, a;>
to the corresponding AMs.

113

Chapter 4. Parallel SIGHOS

Listing 4.15. Modified main loop of a like-3-phase Event Executor

startEvents = ©@; // Empty set of events
while (Simulation.CST < Simulation.EndTs) {
if (startEvents # @) {

}

executionCache = startEvents;
forall e@ts € executionCache do {
execute (e@ts) ;

}

startEvents = @;

// Synchronisation of Phase 2

Wait until all the events have been effectively executed
// Phase 3: AM Conditional execution

forall am; € (set of assigned AMs) do |{

execute (am;. Event@ts) ;

The assignment of AMs is performed during the initialisation phase of the EM’s

main loop, as seen in Listing 4.16. Whereas EEs have to synchronise during the

second phase by detecting that all the regular events have been executed, the

EM’s main loop sets a second synchronisation after all the AM events have been

completed.

Listing 4.16. Event Manager main loop using a like-3-phase approach

Let executor[]] be an array containing all the Event Executors
// Phase 0: Initialisation

forall am; € Simulation .AM do {

executor[i % executor.length].assign (am;);

}

while (Simulation.CST < Simulation.endTs) {
// Phase 1: Update clock

// Phase 2: Execution

114

4.11. Going Beyond Limits: like-3-Phase Approach

E = V e@ts € Simulation.FEL / (ts = Simulation.CST);
block = E.length / executor.length;
for i € [0 .. executor.length — 1] {
E’ E[(i % block) .. ((i + 1) x block)];
executor[i]. dispatch(E");

}
// Synchronisation of Phase 3

Wait until all the AM events have been executed;

Figure 4.19 shows the speedup with this new approach, and Figure 4.20 com-
pares the results of this approach with the block dispatching method.

10

A

: o
—

Speedup
a1

2 4 8 15
|EEI
—o— | A =128, beta=1 | A1=128, beta=2
—A— | A1=512, beta=1 —>— | A1=512, beta=2

Figure 4.19. Speedup for the like-3-phase approach with |E| =512 and a« = 8

A considerable improvement is obtained, especially noticeable for |EE| = 8§,
where the new speedup almost doubles the previous one. The result for |EE|
= 4 requires more attention since it appears to be superlinear. There are seve-
ral reasons that justify this value. First, as mentioned earlier, the like-3-phase

115

Chapter 4. Parallel SIGHOS

10

Speedup
(6]

|EEI

M Like-3-Phase Approach M Using Block dispatching

Figure 4.20. Comparison between the like-3-phase approach and the block dispatching me-
thod with |[E| = |A| =512, a =8and =1

algorithm avoids many redundant operations that must be performed in the ori-
ginal algorithm. Second, the more processors, the more the cache available to
carry out the simulation. Finally, even when the speedup may be considered to
be superlinear with respect to | EE|, it must be noted that, in reality, |EE| + 1
processors are being used due to the EM. Hence, we cannot properly talk about

superlinear speedup in this case.

4.12. Some Final Notes about the Implementation
Java and, more specifically, Java for concurrent programming, exhibits unpre-

dictable behaviour that strongly affects the development of an efficient applica-
tion. In this section we will discuss some subtle problems involving the practical

116

4.12. Some Final Notes about the Implementation

implementation of the solutions presented in this chapter. The conclusions deri-
ved from this chapter will be used for subsequent enhancements to PSIGHOS.

4.12.1. Spinlock vs Semaphore

The modifications introduced in Section 4.10 did not serve to achieve better re-
sults, but they do offer a suitable framework for discussing an implementation
detail that strongly affects the performance of an application. When applying
this approach, the EM is replaced by a hybrid EME that updates the VC and no-
tifies the remaining EEs that new events are available for execution. An await()
operation implements the wait for new EEs events. This section will show that
the practical implementation of such an operation can considerably affect perfor-
mance. Specifically, two implementations will be compared: using a Semaphore,
like the one included in the java. util .concurrent package; and using an atomic
variable in a spinlock.

Listing 4.17 describes the corresponding await() and notify () methods for the
Semaphore approach.

Listing 4.17. await() method with java.util.concurrent.Semaphore

Semaphore lock = new Semaphore(0);
void notify () {
lock.release () ;

}

void await() {

try {
lock.acquire () ;
} catch (InterruptedException e) {

}

The second implementation is supported by the classes for implementing ato-
mic variables provided by the java. util .concurrent.atomic. Listing 4.18 shows an

example using an AtomicBoolean.

117

Chapter 4. Parallel SIGHOS

Listing 4.18. await() method with java.util.concurrent.atomic.AtomicBoolean

AtomicBoolean flag = new AtomicBoolean(false);

void notify () {
flag.set(true);

void await() {
// Spinlock
while (!flag.compareAndSet(true, false));

On the surface, the semaphore solution seems more elegant and Java sound.
However, Figure 4.21 offers some relevant results on the advantages of using the
second approach over the first one. The differences are minimal for a reduced
number of EEs (2-4), but a gain of around 40% is obtained for 15-16 EEs.

Speedup

2 4 8 15 16
IEEI

Bl Semaphore M Spinlock

Figure 4.21. Comparison between using java.util.concurrent.Semaphore and a spinlock
with a java.util.concurrent.atomic.AtomicBoolean with |[E| = |A| =512, a =4and =1

118

4.12. Some Final Notes about the Implementation

The semaphore strategy for blocking/unblocking a thread relies on the invo-
cation of LockSupport.park()/LockSupport.unpark() (Lea, 2005), that is, the thread
is suspended and later resumed. This strategy is generally preferred to using a
spinlock, since it wastes fewer CPU cycles, precludes starvation and scales bet-
ter when the number of threads is higher than the number of physical computer
processors. Nevertheless, there are two main reasons that make spinlock more

appealing for our problem:

1. Using more threads than physical processors makes no sense in a tool that

is supposed to perform extensive computations.

2. The objective is to maximise the performance of the simulator, even if the
throughput of the computer on which the simulator is running is redu-
ced. In other words, wasting a few CPU cycles is worth it if the general

performance of the simulator is improved.

4.12.2. Thread vs Runnable

Java reference books describe two ways to create a thread: extending the Thread
class, and implementing the Runnable interface. Programmers generally use the
former or the latter according to their specific needs and the semantics they want
to express. Nevertheless, due to the limited inheritance power of Java, the pre-
ferred approach is usually to implement the Runnable interface, just in case the
new class is going to be inserted into an existing class hierarchy.

Performance is neglected as a factor to consider when choosing one or the other
alternative. However, as we will prove, the simulation execution time can vary
considerably depending on the method selected.

As seen in Section 4.6, SIGHOS events implement the Runnable interface since
Java classes for a thread pool require so. While there was no need to keep this
interface once the thread pool disappeared from the SIGHOS design, it was main-
tained for backward compatibility. Although Runnable is implemented, events

are never started as threads, but rather are used as pieces of work or tasks. Ne-

119

Chapter 4. Parallel SIGHOS

vertheless, there is no reason (apart from good practice) not to extend Thread
instead of implementing Runnable. Surprisingly, the results shown in Figure 4.22
prove that extending Thread strongly penalises the execution time.

600

500

400

300 -

200

Execution time (s)

100 -+

|EEI

H ..extends Thread M ...implements Runnable

Figure 4.22. Comparison between extending Thread and implementing Runnable with
|[E| =|A| =512, a =4and B =1

The reasons are twofold. On the one hand, the constructor of the Thread class
is much more expensive than the very simple constructor of the Event class.
This effect is even more noticeable since the benchmark test creates more than
150,000,000 events. On the other hand, a Thread object (or an object extending
Thread) requires more memory than an object simply implementing Runnable.
When such an object has to be moved to a different cache in a different processor,
it entails a more severe penalty than a lighter object. Therefore, as the number of
threads increments, so does the penalty of moving heavier objects.

120

4.12. Some Final Notes about the Implementation

4.12.3. Barriers

Barrier synchronisation is a common technique in shared memory parallel pro-
gramming (Ball and Bull, 2003). Insofar as the execution of a parallel program
can be divided into episodes, a barrier represents a synchronisation point where a
set of threads must wait for each other before reaching the same episode.

After executing the events corresponding to simulation time ts, EEs have to
wait for each other before advancing the simulation clock and executing the next
events. Hence, the barrier implementations presented next offer a different al-
ternative to the synchronisation mechanisms implemented in Subsection 4.12.1.

Javaincludes a centralised barrier (CyclicBarrier) in the java. util .concurrent pa-
ckage. However, the set of experiments conducted by the Communication Sys-
tems Group of the University of Bonn shows that this barrier has poor perfor-
mance when compared to other designs, such as the Tournament barrier they
incorporate in their simulator (Peschlow et al., 2009).

A Java library called jbarrier has beeen developed that adapts and com-
prises generic implementations of several barriers, such as tournament, butter-
fly and dissemination. The jbarrier algorithms support an action that can be
executed after all the threads have reached the barrier and before the next epi-
sode has started. It is also possible to introduce global reduction operations. In
order to illustrate the advantages of the barriers in jbarrier when compared to
(CyclicBarrier), a small test is defined. The test consists of N threads that per-
form a certain amount W of workload and then synchronise at the barrier. This
operation is repeated K times. Figure 4.23 shows the results for W = 1024 and
K = 1000000.

All the barriers from jbarrier present similar execution times and good sca-
lability as the number of threads increases. Contrarily, the inefficiency and poor
scalability of CyclicBarrier is highlighted with this simple test. The overhead may
be caused by the centralised scheme of the CyclicBarrier, which increments the
contention of threads, and also by the amount of features offered by this barrier

so to adapt it to any particular usage.

121

Chapter 4. Parallel SIGHOS

25

20 E=d CENTRAL
(CyclicBarrier)
w0
g 15 Lot DISSEMINATION
:
.g bsssd TOURNAMENT
B 10
g I Gb G G &G &G &b &b &
M B BUTTERFLY

e = SEQUENTIAL

Threads

Figure 4.23. Performance of different implementations of barriers

As shown in Figure 4.23, all the implementations exhibit almost equivalent
performance. PSIGHOS makes use of a tournament barrier, since the results ob-
tained from many other tests corroborate that it usually shows the best execution
time, especially as the number of threads increases. The associated action is a sui-
table place to execute the tasks originally assigned to the EM, that is, updating
the VC, distributing events, updating the FEL, and so on.

Although the results obtained in Section 4.10 discourage retaking that path,
the availability of a decentralised barrier with an associated action invites the use
of a fully distributed simulation engine and forgetting about the EM. Figure 4.24
completes Figure 4.16 with this new implementation, and clearly illustrates that
the scheme from Section 4.10 augmented with a well-configured barrier outper-
forms the previous approaches.

122

4.13. Putting It All Together: Hybrid EME like-3-Phase Approach

6
5
H EM only dispatches
4
o .
2 i EM dispaches +
3 3 executes
o
»n
5 M EM dispaches +
executes (new
barrier)
1 -
0 4
2 4 8 15 16
Threads

Figure 4.24. Speedup comparison among a pure master EM, a hybrid EME, and a hybrid
EME using a tournament barrier for synchronisation

4.13. Putting It All Together: Hybrid EME like-3-Phase
Approach

In the previous section it was shown that a well designed barrier beats other
synchronisation strategies and boosts the hybrid EME architecture. Neverthe-
less, the best strategy in absolute numbers is the like-3-phase approach introdu-
ced in Section 4.11. The next logical step is to combine both ideas, as shown in
Listing 4.19.

The speedup obtained with the modified algorithm can be seen in Figure 4.25.
As expected, the results are very similar to those of the pure MS approach, but
the possibility of using an extra thread offers an additional gain. Figure 4.26
directly compares both approaches and highlights the benefits of the additional
thread.

123

Chapter 4. Parallel SIGHOS

Listing 4.19. Modified main loop of a hybrid EME like-3-phase Event Executor

while (Simulation.CST < Simulation.EndTs) {
// Phase 2: Execute events
E =V e@ts € Simulation.FEL / (ts = Simulation.CST);
block = E.length / executor.length;
executionCache = E[(id * block) .. ((id + 1) * block)];
forall e@ts € executionCache do {
execute (e@ts) ;
}
// Synchronisation of Phase 2
Wait until all the events have been effectively executed
// Phase 3: AM Conditional execution
forall am; € (set of assigned AMs) do {
execute (am;.Event@ts) ;
}
// Synchronisation of Phase 3: The action of the barrier will
update the VC and the FEL
barrier.await();

10

Speedup

2 4 8 15 16
|EEI|
—o— | A1=128, beta=1 | A1=128, beta=2
—a&— | A1=512, beta=1 —>— | Al=512, beta=2

Figure 4.25. Speedup for the hybrid EME like-3-phase approach with |E| = 512 and & = 8

124

4.14. Summary: Comparing the Different Approaches

10

Speedup
o

'S

2 4 8 15 16
|EEI

B EM dispaches + executes B EM only dispatches

Figure 4.26. Comparison between the like-3-phase approach and its hybrid EME version
with |[E| = |A| =512, a =8and p =1

In this case, the superlinear speedup already observed in Section 4.11 is effec-
tively present, since | EE| = 4 means that exactly four threads are being used.

4.14. Summary: Comparing the Different Approaches

The previous sections of this chapter depicted the process used to obtain a paral-
lel discrete event simulator that achieves the objectives enumerated in Table 4.1.
Objectives G1-G3, related to transparency for the final user, were preserved by
developing a solution based on a centralised list with distributed events, which
changes the low level of the simulator without affecting the modelling strategies.
Furthermore, an automated mechanism to identify and exploit the parallelism of
the model, based on the creation of Activity Managers, was introduced.

125

Chapter 4. Parallel SIGHOS

Objective G4, related to efficiency, was successively refined by using several

techniques:

1.

2.

6.

7.

Execution in a Java thread pool

Integration of the thread pool

. Block dispatching

algorithm)

. Exploitation of event locality

Hybrid scheme EME

. Redefinition of events and partition of the execution phase (like-3-phase

Fine-grain adjustment of implementation details

A final set of experiments was run to carry out a comprehensive comparison

of the performance of PSIGHOS by applying the different optimisations, as shown
in Table 4.8.

126

Table 4.8. Combination of parallel optimisations

Name

Techniques applied

Explained in...

EXT
INT

LOC
BLO
3PH
HBL
XBL
H3P

1

2

243

2+3+4
2+3+4+5
2+3+4+6
2+3+4+6+7
2434+4+5+6+7

Section 4.6
Section 4.7
Section 4.8
Section 4.9
Section 4.11
Section 4.10
Subsection 4.12.3
Section 4.13

4.14. Summary: Comparing the Different Approaches

Table 4.9 shows the different combinations of parameters used to create the

experiment scenarios. Each scenario was run either 10 iterations (when a0 = 4)

or 5 iterations (« = 8).

Table 4.9. Parallel parameters

Parameter | Values

N 10,000

|E| 512

|A] 128,512

o 4,8

B 1,2

Tables 4.10 and 4.11 summarise the average execution time obtained for each
scenario.
Table 4.10. Final comparison of performance for o = 4
Execution time (s)
IAl B | IEEI
EXT INT LOC BLO 3PH HBL XBL H3P

128 1 81276 65496 70274 59916 30.117 71504 43.680 28.867
128 1 97.458 54173 42131 33.081 16775 40562 24.280 16.676
128 1 164230 73461 27.898 20092 12198 29.167 20.773 11.666
128 1| 15 | 197499 77.026 23235 17.621 11241 24998 18726 11332
128 1| 16 - - - - - 25196 18524 10.887
128 2 95921 89.181 93579 93100 45699 182071 71.696 46.129
128 2 90.972 58202 56489 45975 24440 123247 36.694 24.361
128 2 150.702 71798 35380 28587 16857 68557 24771 16,580
128 2| 15 | 207492 74143 27739 20390 15491 33821 22.882 15247
128 2| 16 - - - - - 41514 22102 14753
512 1 2 83193 65257 59.588 43366 41.367 67.778 41.149 41177
512 1 4 98771 55034 34251 24396 18.897 41319 23.876 18583
512 1 8 | 167439 72176 24100 17.888 12984 24463 17.888 12.783
512 1| 15 | 195413 75897 19.938 16274 11703 19432 17.064 11.645
512 1| 16 - - - - - 19313 18568 11.654
512 2 90.729 83.827 79747 63.619 58.894 99359 64.678 53410
512 2 102.540 51.627 44.061 29.886 25803 62352 33.993 25360

127

Chapter 4. Parallel SIGHOS

Table 4.10 — Continued

LAl |EE| Execution time (s)

EXT INT LOC BLO 3PH HBL XBL H3P

512 8 148936 71.381 27.782 20.084 17.447 30.531 20.019 17.015

512 15 201.161 74423 22.164 17.285 15.842 23.243 17.889 15455

512 16 - - - - - 23424 18255 15.116

Table 4.11. Final comparison of performance for o« = 8
Al B | IEEI Execution time (s)

EXT INT LOC BLO 3PH HBL XBL H3P
128 1 126.507 130.347 134960 134.350 52.676 125.936 78.609 58.126
128 1 85.043 77.204 76.672 76.399 24.307 73.972 41.809 25.179
128 1 133.186 69.689 48.307 35.453 16.779 49.993 38.005 16.810
128 1 15 202.476 76.528 35.848 28.293 16.070 40.251 29.146 15.974
128 1 16 - - - - - 43.684 30.494 15.460
128 2 2 181.685 192436 187.117 216.119 94.691 318.678 127.931 91.102
128 2 4 110.176 106.576 109.916 110.933 39.522 215.936 65.921 40.609
128 2 8 128.476 69.005 66.614 57.448 25.550 121.440 38.997 25.819
128 2 15 215.699 80.691 49.515 36.442 23.397 62.092 36.983 23.603
128 2 16 - - - - - 77.281 39.238 22.139
512 1 112570 119.151 110.181 85.018 81.933 124.054 77.001 82.394
512 1 97.663 63.314 59.101 38.875 27.188 66.635 39.507 27.100
512 1 134.958 72.254 39.274 28.991 18.558 39.823 28.981 18.295
512 1 15 203.964 73.399 32.546 26.776 16.547 32.595 28.203 16.198
512 1 16 - - - - - 32.406 27.939 16.242
512 2 2 126.641 148.034 139.255 112.697 105.865 175.084 132.816 116.982
512 2 4 88.203 75.947 73.102 52.978 42423 104.214 65.079 42.084
512 2 132.770 66.194 50.261 34.577 26.951 59.122 41.282 27.256
512 2 15 208.307 76.038 35.929 28.173 23.462 41.056 29.840 23.555
512 2 16 - - - - - 41.325 29.620 22.785

If we consider the first approaches, the longest gap in absolute values appears

between the external pool (EXT) and the internal one (INT). However, the hi-

ghest relative reduction in execution time is brought about by exploiting of event

locality. Furthermore, the simulator starts being scalable only after applying this

technique.

128

4.14. Summary: Comparing the Different Approaches

The like-3-Phase algorithm exhibits the best behaviour for all the scenarios.
More specifically, the hybrid EME version of the algorithm (H3P), by being able
to take full advantage of the available processors, achieves the best performance.
Among the approaches using the original algorithm, only BLO and XBL achieve
a reasonably good performance. Nevertheless, the 8-processor (and sometimes
the 4-processor) like-3-Phase version outperforms the best results obtained with
these approaches when all the available processors are utilised.

Table 4.12 shows a more in-depth analysis of the speedup of the H3P version

of the simulator.

Table 4.12. Speedup for H3P

o 4 8
[Al 128 512 128 512
Threads B 1 2 1 2 1 2 1 2
2 1.601 1.168 1.952 1.608 1.574 1.233 1.491 1.110
4 2772 2212 4325 3386 3.633 2766 4534 3.086
8 3.962 3.250 6.288 5.047 5.441 4351 6.716 4.764
16 4246 3653 6.897 5.680 5916 5.074 7.565 5.699

The results above confirm that PSIGHOS can handle several scenarios generi-
cally. However, the characteristics of the different scenarios being modelled have

a significant impact on the final performance:

e PSIGHOS requires a considerable rate of simultaneous events. Hence, the
more complex and expansive the model is, the more noticeable the perfor-

mance gain will be.

e Models incorporating complex user actions within their events also bene-
fit. Bare events are extremely lightweight tasks, so adding extra complexity
will improve the computation/communication rate of the tool. This is ob-
served by comparing the speedup for « = 4 and & = 8, especially when

more threads are involved.

129

Chapter 4. Parallel SIGHOS

e Loosely coupled systems, where resources have specific uses, and entities
carrying out specialised activities will benefit from PSIGHOS approach. Ob-
viously, the best results are obtained for scenarios with the maximum fea-
sible amount of parallelism (1Al = |El and g =1).

130

Chapter

Case Study: A Model for Hospital
Management

The synthetic test benchmark described in Section 4.4 is suitable both to verify
the correct behaviour, and to measure the performance of PSIGHOS. Neverthe-
less, a more realistic model is required to prove the usefulness of the tool. This
chapter will present a prototype of a generic full hospital model. The model is
not intended to be an accurate representation of a real hospital, but a sufficiently
realistic proving ground for both 1) the expressive power of PSIGHOS and 2) the

potential advantages of the parallel approach when modelling a real system.

5.1. Overview of a Hospital

Hospitals, whether publicly or privately financed, are service-oriented organisa-
tions devoted to the diagnosis and treatment of patients.

Hospitals can be classified according to several parameters, such as size, scope
or financing. Another classification used, as in Spain, for example, focuses on
the health care target. Hence, there are hospitals that cater mainly to surgical
procedures, paediatrics or psychiatry. General Hospitals attend to patients with a
variety of pathologies, and comprise medical and surgical diagnosis and treat-
ment, obstetrics, gynaecology and paediatrics. The term General is also applied
to hospitals where one or more of these areas have been scarcely developed,

131

Chapter 5. Case Study: A Model for Hospital Management

whenever none of the remaining areas concentrate the resources and efforts of
the institution.

The head of a hospital is the Manager, who is assisted by several advisors, and
typically assigns sub-managers to different areas of the hospital, such as human
resources, nursing, medical, etc. For example, Figure 5.1 shows the organisatio-

nal chart of the Hospital Universitario de Canarias (HUC).

Manager
Legal Advisor ister an.d
Documentation
Internal Auditing and
Administrative Control
Medical Director of Director of Director of
Director Nursing Administration Human Resources

Figure 5.1. HUC's organisational chart

Hospitals are generally organised into departments according to specialties,
such as rheumatology, dermatology, neurosurgery, urology, traumatology, and
others. Departments, in turn, are divided into units.

Besides the specialised departments, hospitals also provide diagnostic tests
(such as X-rays, scans, ultrasound, and nuclear medicine) and laboratory ser-
vices (such as haematology, microbiology and anatomopathology). These ser-
vices are generically referred to as central services.

Patient appointments and surgical operations take place in surgeries and ope-
rating theatres (OTs) respectively. In general, surgeries are associated with spe-
cific departments, whereas OTs can be shared by several departments.

Each department allocates its admitted patients into wards. Other specialised
units including beds are Intensive Care Unit (ICU), Postanaesthesia Care Unit
(PACU), the elderly care services, and others.

132

5.2. Hospital Performance: Why Modelling and Simulation?

Patients are directed to one department or another depending on their patho-
logy. However, patients are not categorised based solely on the pathology. For
example, a clear distinction is made between emergency and elective patients. The
former are attended to in the Accident and Emergency (A&E) department, whe-
reas the latter voluntarily receive diagnosis and treatment from another medical
or surgical department. Furthermore, patients who are admitted and stay in a
hospital bed to receive medical or surgical treatment are called inpatients (IPs);
whereas patients having an appointment with a doctor, getting a diagnostic test
or receiving a treatment not requiring an over-night stay are termed outpatients
(OPs).

Although each department comprises its own material and specialised human
resources, most departments interact with each other and with other services.
For example, every department depends on central services, and A&E not only
requests diagnostic tests from central services, it also sends patients to be admit-
ted by other departments.

5.2. Hospital Performance: Why Modelling and Simulation?

Hospitals and, in general, healthcare institutions require substantial funding.
The management of such organisations involves smart and careful decision ma-
king processes, especially in healthcare systems such as Spain’s, which are finan-
ced through taxation and are free to all citizens. The financial support received
is intended to improve the quality of service at the hospital, which results in ma-
nagement’s need to properly measure the performance of the organisation they
are overseeing.

According to Neely et al. (1995), a performance measure is

«...ametric used to quantify the efficiency and effectiveness of an

action. »

Contrarily to other systems, such as manufacturing, where finding suitable

Performance Indicators (PIs) to quantify the performance of the organisation is

133

Chapter 5. Case Study: A Model for Hospital Management

straightforward, hospitals present additional difficulties to measuring effective-
ness or efficiency. The complexity and size of the organisation have a strong
influence, but the lack of a properly identified “production” parameter aggra-

vates the problem.

Among the possible PIs, wait times are generally considered a reasonable choice
for managers. Both the Quality Plan for the National Health System of Spain
(SNS, 2007) and the UK National Health System (NHS) take into account this pa-
rameter. The perception that patients have of the quality of the service depends
on many other factors, but these are probably more subjective and difficult to
quantify.

Due to the interaction between the different hospital departments and ser-
vices, trying to measure wait times by considering a single department or service
will probably prove erroneous. Hence, the significance of highlighting the use-
fulness of a holistic view of a hospital, where the most important relationships

among units are carefully considered.

Hospital management requires comprehensive tools that aid in understanding
the complex relationships present in their organisation and provide valuable in-
formation to the decision-making processes. This provides the perfect setting,

then, for a modelling and simulation scenario.

5.3. Background

Some of the reasons supporting the selection of a hospital as a case study have
already been exposed. However, another relevant factor in making this choice
is the strong background that the Simulation Group from the Universidad de La
Laguna has in this area. This group has been working on simulation as a tool to
aid in hospital management for many years. Indeed, SIGHOS, as already stated
in Section 3.3, was originally planned as a hospital simulation tool. Only later

was it extended to generically handle all kinds of organisations.

134

5.3. Background

Within this context, the line of research followed by our Simulation Group is
motivated by two main factors:

1. The strong need to accelerate and justify the effectiveness and efficiency of
the actions performed by hospital management.

2. Cost reduction through optimising the use of existing resources.

Although there were some existing preliminary contributions, this line of re-
search was formalised in (Aguilar, 1998). Aguilar focuses on the development

of a decision aiding tool that comprises three subsystems (see Figure 5.2):

Internal

Staff system variables

Hospital
management

Control

Update actions
Contracts Static Dynamic Patients
—— ! human resources patient flow >
model model

Figure 5.2. Basic diagram of the decision aiding tool. Source: (Moreno et al., 2000)

e Subsystem 1 is a database with the hospital resources.

e Subsystem 2 is a tool that simulates the patient flow through the various
hospital departments, and the interaction of those patients with the avai-
lable resources. Developed using Modsim (CAC, 1995), this subsystem is a
process-oriented DES precursor of SIGHOS.

e Subsystem 3 is a knowledge-based system consisting of the manager’s heu-
ristic knowhow on how to distribute and handle resources.

135

Chapter 5. Case Study: A Model for Hospital Management

This tool is intended to work with the hospital’s information systems in or-
der to obtain meaningful information about the hospital’s current status. Hence,
the manager obtains further information about the behaviour of the organisa-
tion. Moreover, the tool can predict the effect of adding new departments to the
hospital, as well as their impact on existing ones (especially on central services).

This line of research, aided by our close collaboration with the management of
the Hospital Universitario Nuestra Sefiora de Candelaria (HUNSC), has led our
research group to publish papers in several journals (Aguilar et al., 2005b, 2009;
Moreno et al., 2000, 2003), as well as to contribute to international conferences
(Aguilar et al., 2005a, 2006; Castilla and Aguilar, 2009; Castilla et al., 2008).

5.3.1. First Steps: a Model of the General and Digestive Surgical
Department of the HUNSC

As part of the Simulation Group, the author of this thesis has been working
alongside the staff of the HUNSC to analyse information systems by attempting
to find suitable sources and accurate data for the simulation models. Specifically,
a national award-winning simulation model to 1) analyse and 2) predict the be-
haviour of their surgical departments was presented in (Bermudez et al., 2008).
Since the hospital model that will be presented later in this chapter is partially
based on this collaboration, further comments on this topic are warranted.
Some time ago, HUNSC management started scheduling surgeries in the af-
ternoon shift in an effort to reduce waiting lists. The outcome of this measure
was not as positive as expected. Hence, a simulation model was needed that

could answer the following questions:
1. How do flexible OT timetables affect patient wait times?

2. Can the system deal with surgeries scheduled in the afternoon? How much
would it cost? If the answer to the first question is affirmative, why was

the real system not able to do it?

136

5.3. Background

The simulation model focuses on a single department, the General and Diges-
tive Surgery (GS) department, which exhibits the typical problems of that hospi-
tal’s departments. Figure 5.3 shows the basic workflow of patients who have to
undergo surgery.

Emergency & Elective
gency .
patient patient

Ambulatory?

Wait for
available bed

»

y

Pre-surgery

Wait for
available OT

v

Surgery

Yes

Ambulatory?

No
A
Post-surgery Discharge

Resurgery?

Figure 5.3. Basic schema for surgical patients at the HUNSC

137

Chapter 5. Case Study: A Model for Hospital Management

This schema assumes independent surgical procedures (thus neglecting the
effect of the patient’s current pathology on his/her future state), and avoids, for
the sake of simplicity:

e The admission procedure. All patients are assumed to require surgery.

e Any previous or subsequent stay in observation or recovery units.

e Resurgery for ambulatory patients.

o Exitus (death), transfers, etc. The discharge stage will involve all these cases.

The conceptual model involves only two resource types: OTs and beds. A
different and perhaps more detailed approach would take into account the sur-
gical team but, by carefully managing the OT timetable, an upper bound for the
hospital’s real capacity can be obtained.

With respect to beds, the model only needs the number that are assigned to

GS. OTs are treated in slightly more detail, and can be categorised into:
e Emergency (E), devoted to emergency surgical procedures.
o Ambulatory (A), devoted to ambulatory elective surgical procedures.
o Scheduled (S), devoted to non-ambulatory elective surgical procedures.

These categories are not exclusive, that is, scheduled OTs can host emergency
surgical procedures if required, and vice versa. Even ambulatory OTs can be
used for non-ambulatory surgery from time to time.

The computational model for the workflow described above is implemented
in SIGHOS and is fed with data extracted from the HUNSC information systems.
The simulation experiment can be defined as an input/output schema, as shown
in Figure 5.4.

According to their databases, HUNSC uses six OTs for GS. The preliminary
schedule shown in Table 5.1 is used to determine the weekly usage of each OT.

138

5.3. Background

Arrival of patients l

Length of surgeries }—) SIGHOS

------ e

Figure 5.4. 10 schema of the simulation model

J

HUNSC
Patient
Database

OT number and type

OT usage

Table 5.1. Preliminary schedule of operating theatres for GS

Operating Theatre
Dayofweek | ;1 35 3.6 45 46 AMB
Monday - E E S S A
Tuesday - E E S S -
Wednesday - E E S S -
Thursday - E E S S -
Friday S E E S S -

This preliminary schedule can be contrasted with the real usage of the OTs
for the 2004-2005 time period. A careful study of the length and scheduling of
the surgical procedures at the hospital offers many insights into the proper mo-
delling of such a system. For example, Table 5.2 shows the total number and
length of elective surgical procedures in the morning shift. The correct usage row
represents the percentage of elective surgical procedures that match the prelimi-
nary schedule. The percentage of wrong usage corresponds to scheduled surgical
procedures taking place in the wrong time slot, as defined by being either not
previously scheduled or devoted to a different purpose. A surgical procedure is
considered exogenous if it is performed in an OT different from the planned OT.

As we can see, more than 90% of the usage matches the preliminary sche-

dule. The main divergence occurs with ambulatory surgical procedures, since

139

Chapter 5. Case Study: A Model for Hospital Management

Table 5.2. Real usage of OTs: Elective surgical procedures in the morning shift 2004-2005

Ordinary Ambulatory
Number Length (m) | Number Length (m)
Total 2,837 653,318 824 34,718
Correct usage 95.62 97.65 94.20 90.59
Wrong usage 2.93 0.67 5.68 8.95
Exogenous 1.45 1.68 0.12 0.46

more than 5% were performed in the wrong OTs. Being simpler procedures, the
person in charge of arranging the final schedule probably filled the gaps in the
non-ambulatory (ordinary) schedule with ambulatory surgeries.

The same validation process can be applied to emergency surgical procedures
and afternoon-shift elective surgical procedures. The idea is to check the suita-
bility of using the preliminary schedule in the computational model, thus esta-
blishing a direct link between the patient type (elective - emergency, ambulatory
- non-ambulatory) and the OT used to carry out the patient’s surgery.

Both the arrival of patients and the length of the surgical procedure can be
obtained by carrying out a statistical analysis of the hospital’s databases. For
the sake of simplicity, interarrival times are assumed to be independent and ex-
ponentially distributed. With respect to the length of the surgical procedures, a
curious effect appears: since data are collected by humans, they normally round
the samples to the nearest five-minute multiple. Different lengths can be asso-
ciated with each patient type.

A Microsoft Excel interface complements the simulation model developed.
The interface allows a user with a limited knowledge of simulations to parame-
terise the model and create different“what-if” scenarios. For example, a scenario
with the OTs defined in Table 5.1 could be compared to a new scenario where
one of the OTs can be used to perform both ordinary and ambulatory surgical
procedures. Figure 5.5(b) and Figure 5.5(a) show the wait time for ordinary and

ambulatory surgeries, respectively. Note how ordinary surgeries are not affec-

140

5.4. Review of the Literature on Modelling a Whole Hospital

ted by the change, but a considerable reduction in the wait time is obtained for

ambulatory patients.

1400 500

400 I

300

1200 I

1000

800 -

Patients
Patients

600 1 200

400 E
100 - &

200 -

0 0 -

<lday <2days <3days >=3days <lday <2days <3days >=3days
Waiting time Waiting time
M Initial configuration ki Q4-5 Ambulatory M Initial configuration & Q4-5 Ambulatory
(a) Ordinary surgical procedures (b) Ambulatory surgical procedures

Figure 5.5. Comparing two scenarios with different OT configurations

5.4. Review of the Literature on Modelling a Whole Hospital

Although we are not interested in the formal validation of the test model, it
would be highly desirable to obtain a prototype that could later be improved
and further developed so to achieve a more valuable tool.

In this sense, a review of the literature on modelling of a whole hospital is
required. Fortunately, a PhD Thesis from the University of Lancaster (Giinal,
2008) includes a comprehensive, if compact, review of the literature on this topic.
Such a review will be used as the basis for this one.

There are several comprehensive surveys on modelling and simulation in the
area of health care. To cite some examples, Fone et al. (2003), Jun et al. (1999)
and very recently Mustafee et al. (2010) thoroughly and systematically cover
the related literature. Another noticeable reference, though not formally publi-
shed, is the Master’s Thesis of Alla (2005), who analyses a considerable num-

141

Chapter 5. Case Study: A Model for Hospital Management

ber of papers and simulation projects spanning from 1990 to 2005. The dif-
ferent simulation studies are classified according to the scope of the model, the
type of questions posed, level of detail, data sources, software, Verification and
Validation (V&V) techniques, and other aspects.

Focusing on the scope of the models, all these reviews agree that the A&E
department is the most common objective for simulation studies, followed by
individual departments, clinics and, finally, whole hospitals. Giinal and Pidd
(2005) state that the lack of simulation studies comprising the whole hospital is
evidence of the complexity of such a system: hospitals consist of many interac-
tive components, which makes measuring the final performance a difficult and
subtle exercise in combining outcomes from different sources.

Aguilar’s hospital model from is one of the few simulation studies that ac-
tually deals with the modelling of a whole hospital. A different approach is
described in (Brailsford et al., 2004), who do not use DES, but rather a System
Dynamics (SD) model of emergency and on-demand health care in Nottingham,
UK, which represents the flow of patients through different departments in the
hospital. Although, in light of the requirement for a holistic and dynamic sys-
tem model, SD seems like a natural alternative, Giinal and Pidd (2008) defend
the use of DES due to the importance of stochastic effects in congested systems.

Cochran and Bharti (2006) present a two-stage methodology for balancing bed
unit utilisation in a 400-bed hospital. The first stage uses Queuing Network
Analysis (QNA) to find an optimal bed reallocation distribution at peak demand.
Stakeholder targets, priorities and constraints are taken into account during this
first phase. The aspects that QN A cannot handle, such as time dependent arrival
patterns and non-exponential lengths, are evaluated during the second stage
using DES.

Meer et al. (2005) focus on reducing the wait times for elective patients, both
for a first outpatient appointment and for the subsequent inpatient treatment.
Their model is specific to orthopaedics, but is very detailed, and covers every

stage involving an elective patient.

142

5.4. Review of the Literature on Modelling a Whole Hospital

Finally, Giinal and Pidd (2008) present DGHPSim, a suite of DES models for
evaluating wait time performance in hospitals in the UK NHS. DGHPSim com-

prises 4 interconnected submodels (see Figure 5.6):

Emergencies]
é) to AXE S @
Discharged
Emergency GP referrals 2: Inpatient
| model 'Rﬁ

5= *

:3: Outpatient model ! 4: Inpatient

! waiting list
Diagnostics model

Outpatients

Figure 5.6. Hospital Model. Source: (Giinal and Pidd, 2008)

o A&E department is the main entry point into a hospital for emergency pa-
tients. Both walk-in and ambulance arrivals are taken into account. Re-
gistration, triage and tests are considered as part of the patient flow before
admission or discharge. Giinal and Pidd (2006) present further results by
using this model.

The inpatient submodel focuses on the utilisation of the main wards of a
hospital, including patients moving between different wards. Patients pro-
ceeding from both the A&E department and the waiting lists are conside-
red.

The outpatient submodel considers patients after they are referred from
General Practitioners (GPs). Patients then have one or more outpatient ap-
pointments, diagnostic tests, and, in some cases, are placed on the waiting
list.

143

Chapter 5. Case Study: A Model for Hospital Management

o The waiting list submodel is used as a bridge between inpatients and out-
patients. In essence, this submodel consists of a set of rules that define the
way inpatients are admitted from the outpatient submodel.

All but the last submodel can be run independently, but a complete execution
provides a holistic view of the hospital’s performance and allows a manager to
answer questions related to the expected wait time for a given investment.

DGHPSim is a generic model that is parameterised to adapt to a particular
hospital by means of two data sources: local data from the hospital’s Patient
Administration System (PAS); and the Health Episode Statistics (HES), collected
nationally by the UK Department of Health. Those data sources cannot be used
directly, and require a specific software to transform raw data into meaningful

and structured information.

5.4.1. HADA: Hospital Activity Data Analyser

A standalone software program called HADA (Castilla et al., 2008) has been deve-
loped by the author of this thesis together with Dr. Murat Giinal to analyse both
PAS and HES data for understanding a hospital’s past performance, as well as
for estimating parameters of a hospital simulation model (such as DGHPSim).
Figure 5.7 schematises the interrelation between the application and the DGHP-
Sim modules.

HES analysis

HADA embodies one software module per data source. The first works with HES,
a UK-wide, routinely collected dataset capturing details of all inpatient and out-
patient hospital episodes in the NHS. HES includes two huge datasets: one for
outpatients (HESOP), which includes data on all outpatient appointments; and
one for inpatients (HESIP), which considers decisions to admit, admission and
operations. HESIP and HESOP structures are defined in the HES-Online Data
Dictionary (The NHS Information Centre, 2008).

144

5.4. Review of the Literature on Modelling a Whole Hospital

ol
— I A L Validation __ _ _

Hospital

Episode

Statistics Outpatient
T . Simulation

Model
< — | ADA
s
—— Other
Patient Outputs
Admission

Database Inpatient

sl Simulation
Model

HADA Hospital Activity Data Analyser
WTMg Ward Transition Matrix for specialty s
RTT-STMg RTT State Transition Matrix for specialty s
LoSyy Length of Stay distribution of wardw [5.y lg - ---- Validation_ _ _ _
Occp Occupancy of ward w

Figure 5.7. HADA. Source: (Castilla et al., 2008)

Though these data provide a general picture of the Referral-To-Treatment
(RTT) path taken by a hospital patient, there is no unique identifier matching
registers from HESIP and HESOP. HADA identifies some key fields and utilises
heuristic knowledge to link events from both datasets in order to create a com-
plete path. Based on the events of the path, HADA computes patient wait times
and the RTT state transition matrix. The latter is input to the outpatient submo-
del, whereas the former is used for validation.

PAS analysis

Hospital information systems provide more detail on the specific characteristics
of the organisation. Nevertheless, being specific to each particular hospital, PAS
data are generally heterogeneous, and errors and inconsistencies appear more
frequently than in HES.

HADA’s PAS module relies on the user to identify some key fields in the hos-
pital’s local databases, such as patient identifier, spell number, patient classi-
fication, ward code and admission date. Then, HADA computes three different

145

Chapter 5. Case Study: A Model for Hospital Management

outputs: bed occupancy, length of stay and transitions between wards. With res-
pect to wards, they can be considered independently or grouped, thus allowing
the user to control the model’s level of detail by combining similar wards.

5.5. A Modular Model for a Whole Hospital

From the review of the literature, it is clear that developing a detailed and realis-
tic hospital model is an extensive task that is beyond the scope of this thesis. We
will limit ourselves to presenting a model that combines some of the findings
from Aguilar (1998), Bermudez et al. (2008) and Giinal (2008).

Even when the model is not intended to be actually utilised in a real simula-
tion study, some of the model’s basic objectives must be established in advance.
These objectives will help the modeller to focus on the relevant characteristics
of the system and to orient the decisions made during the design of the concep-
tual model. Therefore, let the aim of the model be the study of the patient flow
through the departments of the hospital, and how different resource configura-
tions affect patient wait times.

The purpose of the simulation study is to exploit the modelling advantages of
PSIGHOS. The strong focus on patient flows and resources not only indicates the
suitability of a process-oriented approach, but it is intended to benefit from the
expressive power of the tool. The functional goals of the model can be summari-

sed as follows:
o To serve as a basis for more realistic models in the future
o To offer an easily customisable scale and level of detail
e To be complex enough to provide a high rate of simultaneous events

The PSIGHOS implementation of the hospital’s computational model must be
preceded by the development of a conceptual model. The conceptual model
helps the modeller to better understand the system under study; to shape and set

the objectives or main questions that the simulation study is intended to answer;

146

5.6. Conceptual Model

and to clearly identify the inputs, outputs, entities and attributes of the system,

as well as its boundaries.

5.6. Conceptual Model

Following the steps of Giinal (2008), a divide and conquer approach is utilised in
order to deal with the complexity of a system like a hospital. In the schema al-
ready presented in Figure 5.6, Giinal and Pidd apply the divide and conquer
strategy to split a patient’s entire path into different stages, each of which be-
come a submodel. Hence, a patient can start in the A&E submodel, then pass
to the inpatient submodel before finally being discharged. A different patient
can be referred by a GP and start in the outpatient submodel, then pass to the
waiting list submodel and eventually be admitted as an inpatient.

We propose a similar approach where different functional modules are defined.
Since we want to stress the importance of resources, our division will take them
into account when splitting the model. Therefore, we will define four modules.

o The AGE department receives emergency patients, both walk-in and am-
bulance arrivals. Some of the patients are subsequently discharged, but

others are sent to the corresponding medical or surgical department.

e The Surgical Departments (SDs) module comprises all the SDs of the hospi-
tal, as well as some common units and facilities, such as the PACU and
ICU. The only interaction between SDs involve the utilisation of these
common facilities. Patients with pathologies that may require surgery are
input to this module. Both emergency patients from the A&E department,
and elective patients referred by a GP are attended to.

e The Medical Departments (MDs) module is defined analogously to the SD.
Instead of patients with pathologies requiring surgery, they attend to pa-

tients requiring a medical diagnosis and treatment.

147

Chapter 5. Case Study: A Model for Hospital Management

o Central services not only attend to requests from any other module, but from

peripheral centres.

Figure 5.8 shows a high-level block diagram with the interrelations among the
different basic modules. Modularity allows a modeller to focus on the specific
needs of each submodel. Furthermore, each submodel can be considered as a
black box, which allows a simulation user to replace said submodel with an
equivalent probability distribution to serve as a patient generator, as noted by
Giinal and Pidd (2007). The result is a model where the level of detail can be

reduced in favour of a faster execution time.

Elective 1 Medical
medical patients departments

]
Walk-in and A&E Central Rquests from
ambulance patients) department services peripherals
%
/g’/ .
Elective U Surgical
—>

surgical patients departments

Figure 5.8. High-level conceptual model of a hospital

This model focuses on the patient flow through the various hospital depart-
ments. Hence, patients will be treated as individual entities. However, different
paths can appear for the same patient due to the simultaneous presence of se-
veral pathologies. Our approach considers each path as a different patient be-

148

5.6. Conceptual Model

cause a detailed model of the interaction of the pathologies on the same patient
is beyond the scope of this study.

The decision to always treat patients as individual entities within the model is
arguable. For example, due to the limits imposed by Micro Saint Sharp, Giinal’s
approach to the outpatient submodel substitutes the individual patients by a
patient-state changing machine. Not only this, since his simulation study is not
interested in the in-clinic waiting times, he argues that a higher level of detail
is not required. Given that our main concern is to put the performance of the
simulation tool to the test, we will not simplify the model in this sense.

The following sections will describe each module or submodel, except for the
A&E department, which has been omitted from the final model. The absence
of this module stems mainly from time restrictions in the development of the
model. As noted earlier, the A&E department could be substituted with some
patient generators. Nevertheless, the final decision was even more drastic, and
only elective patients have been taken into account. This assumption clearly pre-
vents the model from being fully validated, but leads to faster development. At
the same time, removing the emergency patients limits the accuracy and realism
of the model, but does not preclude the model from being used to check the
performance of PSIGHOS.

The definition of this conceptual model is based on numerous visits and in-
terviews with staff from the HUNSC, and has been validated with staff from the
HUC.

5.6.1. Medical Departments

The typical patient flow in a MD can be schematised as shown in Figure 5.9.
After referral, elective medical patients have an initial appointment with a doc-
tor in a surgery. The doctor examines the patient and makes a decision, which
may include: 1) discharging the patient; 2) ordering diagnostic tests on the pa-
tient for review in a follow-up appointment; 3) admitting the patient for medi-
cal treatment. The same decisions apply after each follow-up appointment. A

149

Chapter 5. Case Study: A Model for Hospital Management

m

1st medical
appointment

Yes

Diagnosis and treatment

Diagnostic
tests

.

appointments?

Yes

Diagnostic
tests

v

Follow-up medical
appointment

|

Figure 5.9. Flow for a medical patient

patient may also be redirected to a different department, or even to another hos-
pital. However, in this case, a new path (and consequently, a new “patient”)

would appear.

150

5.6. Conceptual Model

5.6.2. Surgical Departments

The patient flow in a SD, as shown in Figure 5.10, shares some similarities with
the MD patient flow. The main difference involves the path of surgical inpa-
tients. Here, a distinction is made between three different types of surgeries:
ambulatory, for patients who are admitted and discharged from the hospital on
the same day; short-stay, for patients who require a bed for a short period, that
is, 1-2 days; and ordinary, for all other patients.

1st surgical
appointment

N . Yes
Admission?

No Ambulatory Ordinary

Surgery
type?

appointments?

Short-stay
Diagﬁostic Ambulatory Shorf-stay Ordinary
tests surgery surgery surgery

v

Follow-up surgical
appointment

4
Discharge

Figure 5.10. Flow for a surgical patient

A subtle difference between the conceptual model for medical patients ap-

pears after a patient undergoes surgery: whereas medical patients (and more

151

Chapter 5. Case Study: A Model for Hospital Management

specifically, chronic medical patients) may continue their path after being ad-
mitted, surgical patients are always discharged. We assume that patients who
start again with an outpatient appointment are new patients, that is, a patient’s
path is considered finalised as soon as the patient undergoes surgery.

Ambulatory patients follow the simplest path (Figure 5.11(a)). They undergo
surgery and recover in the PACU before finally being scheduled for attend for a
post-operative appointment. Requiring resurgery, though possible, is very rare,
and has not been considered in the model.

Short-stay patients require a bed in the hospital (generally, a limited number
of beds is reserved for these patients). Usually, a few diagnostic tests are or-
dered before the patient leaves the hospital. Once again, resurgery is ignored.
Figure 5.11(b) schematises the main steps of the trip for a short-stay patient.

Start short-stay
surgery process

Stay in bed
Short-stay
Start ambulatory surgery
surgery process +
PACU
Ambulatory
surgery +
+ Diagnostic
tests
PACU
Postop Postop
appointment appointment

End ambulatory
surgery process

End short-stay
surgery process

(a) Ambulatory surgical patient (b) Short-stay surgical patient

Figure 5.11. Flow for ambulatory and short-stay surgical patients

152

5.6. Conceptual Model

Ordinary patients also require a bed but, being their stay longer, their treat-
ment involves more frequent tests. Furthermore, since we are talking about more
complex surgical procedures, the probabilities of being passed to the ICU or re-
quiring a resurgery increase. Figure 5.12 depicts the flow for a patient in need of

ordinary surgery.
Start ordinary
surgery process

v

Postop
appointment

End ordinary
surgery process

Figure 5.12. Flow for an ordinary surgical patient

153

Chapter 5. Case Study: A Model for Hospital Management

This broad approach to surgery procedures may be refined by taking into ac-
count pathologies and specific surgical procedures. However, for the sake of
simplicity, we will always define a typical surgical team as consisting of a sur-
geon, a scrub nurse, an anaesthetist and a circulating nurse. Anaesthetists are
shared resources, whereas the remaining staff is normally attached to a depart-

ment.

5.6.3. Central Services

Diagnostic tests, which appear in most flowcharts, are requested from central ser-
vices and may include X-ray, USS, laboratory tests, etc., as shown in Figure 5.13.

Start diagnostic
tests

End diagnostic
tests

Figure 5.13. Diagnostic tests

While each test involves specific procedures and personnel, at a very high le-
vel of abstraction, the activity can be reduced to the test itself, that is, taking an
X-ray, blood sample, etc., and the analysis of the test results, summarised in a re-
port. Figure 5.14 presents this simplified schema. Specialised staff (technicians,
nurses or doctors depending on the test) are in charge of those steps.

154

5.7. Computational Model

Start diagnostic
test

End diagnostic
test

Figure 5.14. Standard diagnostic test

It would certainly be possible to adjust the level of detail of the different ser-
vices. For example, some additional stages could be added to laboratory tests, as
shown in Figure 5.15. This schema represents the typical flowchart for a hospital
with a central laboratory in charge of taking and preparing the samples. Nurses
take the samples, whereas lab technicians and specialised nurses carry out the
tests.

5.7. Computational Model

The computational model developed with PSIGHOS is intended to fulfil the objec-
tives previously introduced in Section 5.5. The use of Java simplifies the adop-
tion of a modular design, which establishes a basis for handling the scalability
of the model, and for future enhancements. The main classes are summarised in
Table 5.3.

155

Chapter 5. Case Study: A Model for Hospital Management

Start laboratory
test

Take a
blood sample

equires
entrifugation?

Centrifugation

End laboratory

test

Figure 5.15. Laboratory tests

156

5.7. Computational Model

Table 5.3. Main classes of the hospital model with SIGHOS

Class Description

HospitalModel The core class for building the whole model. The
remaining classes for defining different submo-
dels are invoked within this class.

CentralServicesSubModel This class describes the resources, activities and
workflows involving the hospital’s central ser-
vices.

CentralLlabModel This class describes the resources, activities and
workflows involving the hospital’s central labo-
ratories. The level of detail of the central labo-
ratories, as already introduced in the conceptual
model, is somewhat higher than that of the remai-
ning central services.

StdMedicalDptModel This class describes the resources, activities and
workflows involving the average hospital MD.
Instead of creating a unique module for the hos-
pital’'s MDs, a single department is modelled.
HospitalModel invokes as many instances of this
class as there are MDs in the hospital, and para-
meterises each instance to meet the characteristics
of a specific department.

StdSurgicalDptModel This class is the SD equivalent of the StdMedi-
calDptModel class.

SurgicalDptSharedModel This class incorporates the resources and activi-
ties that are shared by all the SDs. A similar class
could be created for MDs if needed.

157

Chapter 5. Case Study: A Model for Hospital Management

Though adaptable to user needs, PSIGHOS encourages a methodological ap-

proach to develop a computational model. Hence, the construction of a model

can be accomplished by adhering to a set of ordered steps:

1.

2.

Identifying the different Element Types that appear in the system

Identifying Resource Types

. Identifying individual Resources and defining timetables by associating

resource scheduling with roles

. Identifying typical Workgroups required to perform tasks in the system

. Identifying Activities

. Associating Workgroups and durations with each time-driven Activity
. Defining the Workflows executed by the Elements in the system

. Associating Workgroups and Workflows with each flow-driven Activity

. Associating Element Types with Workflows and with creation patterns by

means of Element Creators and Generators.

The following sections will describe each submodel in Table 5.3 by focusing

on the identification of the modelling components and on the user-customisable

parameters.

5.7.1. Some Basic Features of the Computational Model

Before describing each specific submodel, it is advisable to establish some shared

features and basic characteristics of the computational model.

First, the time unit of the simulation is the minute. Using a higher temporal

resolution does not provide any advantage, nor does it increase the accuracy

of the simulation. Actually, according to the data analysis performed on the

information systems of the HUNSC (see Subsection 5.3.1), a 5-minute resolution

158

5.7. Computational Model

is more suitable for most activities. Hence, we will attempt to adhere to this last

resolution as much as possible.

The computational model comprises both human and material resources. With
respect to material resources, they are considered to be continuously available
(no failures, shutdowns or any other periods of unavailability are taken into ac-
count). Human resources (save for a few exceptions) start their work day at 8
am and work eight hours a day from Monday to Friday.

Since the model involves only elective patients, their arrival pattern has been
simplified. There is a regular influx of patients who arrive daily at 7:50 am,
the rate depending on the service and the type of patient. By using this arrival
pattern, we avoid the need to design a strategy for scheduling referred patients.
Obviously, if the objectives of the simulation model were different, this could be

easily changed.

The distinction between medical and SDs can be considered too broad, since
many departments do not perfectly fit into either of these categories. The key is
to keep the model as simple and general as possible. However, if a certain de-
partment required a more detailed model, adding another class and connecting

it to the schema designed would be trivial.

PSIGHOS utilises the factory design pattern (Gamma et al., 1995) to instantiate
simulation objects. The factory pattern defines an interface for creating objects,
instead of providing a direct access to the class constructor. The reasons that
support the use of this pattern are twofold. On the one hand, the creation of new
simulation objects is homogenised, and some innternal implementation details,
such as assigning a unique identifier to the object, are hidden from the user of
the library. On the other hand, PSIGHOS allows a user to incorporate customised
code to the simulation objects by means of hooks. The code is introduced as a
string and must be dynamically compiled. Thus, the factory hides the dynamic
compilation mechanism. Listing 5.1 shows some methods included in a factory

of simulation objects.

159

Chapter 5. Case Study: A Model for Hospital Management

Listing 5.1. A factory of simulation objects

public interface SimulationObjectFactory {
Simulation getSimulation () ;
ResourceType getResourceTypelnstance(String description) throws
ClassCastException;
ResourceType getResourceTypelnstance(String description,
SimulationUserCode userMethods) throws ClassCastException;

The complete PSIGHOS Application Programming Interface (API) is described
in Appendix B.

5.7.2. Central Services

The description of the central services in the conceptual model is very simple.
Hence, the translation into a computational model is almost trivial.

Table 5.4 enumerates the simulation components defined for the central ser-
vices. This prototype includes only two of the central services, USS and X-rays,

but adding extra services would be straightforward.

Table 5.4. Simulation components for central services

Resource USS Technician
Types Radiology Technician

USS Technicians
Resources

Radiology Technicians

{<USS Technician, 1>}
Workgroups

{<Radiology Technician, 1>}

USS Test
Time-driven Radiology Test
Activities USS Report

Radiology Report

160

5.7. Computational Model

Table 5.5 summarises the parameters that can be modified to customise this
submodel. In this case, a user can change the number of technicians and the
duration of the activities.

Table 5.5. Parameters for central services

Parameter Description

NTECHUSS Resources available for Nuclear Medicine
LENGTH_USSTEST Duration of the test
LENGTH_USSREPORT Duration of the preparing the results report
NTECHRAD Resources available for Radiology
LENGTH_RADTEST Duration of the test
LENGTH_RADREPORT | Duration of preparing the results report

The code required to create the simulation components listed above invokes
the corresponding methods of the factory. The example in Listing 5.2 illustrates

the final implementation of the central services.

Listing 5.2. Model of the USS service with SIGHOS

// Creates the resource type
ResourceType rtUSS = factory.getResourceTypelnstance("USS Technician");

// Creates the resources
for (int i = 0; i < NIECHUSS; i++) {
Resource res = factory.getResourcelnstance("USS Technician " + i);
// Associates resources with timetables and resource types
// Methods getStdHumanResource... return standard values
res.addTimeTableEntry (getStdHumanResourceCycle () ,
getStdHumanResourceAvailability () , rtUSS);

// Creates the workgroup
WorkGroup wgUSS = factory .getWorkGrouplnstance (new ResourceType|]
{rtUSS}, new int[] {1});

161

Chapter 5. Case Study: A Model for Hospital Management

// Creates the activities

// The test has priority 2 and none of the possible modifiers

TimeDrivenActivity actUSSTest =
factory.getTimeDrivenActivityInstance ("USS Test", 2,

EnumSet.noneOf (TimeDrivenActivity . Modifier. class));

// The report has the same priority but does not require the patient
to be present

TimeDrivenActivity actUSSReport =
factory.getTimeDrivenActivityInstance ("USS Report", 2,

EnumSet. of (TimeDrivenActivity . Modifier .NONPRESENTIAL)) ;

// Associates the activities with the workgroups, and sets their
duration

actUSSTest.addWorkGroup (LENGTH_USSTEST, wgUSS) ;

actUSSReport.addWorkGroup (LENGTH_USSREPORT, wgUSS) ;

This submodel does not comprise new Element Types but creates the simple
workflows already depicted in Figure 5.14. Listing 5.3 shows the code required
to create the workflow for the USS diagnostic test.

Listing 5.3. Model for the workflow of the USS service with SIGHOS

'

SingleFlow test = (SingleFlow)factory.getFlowInstance("SingleFlow",
actUSSTest) ;

SingleFlow report = (SingleFlow)factory.getFlowInstance("SingleFlow",
actUSSReport) ;

test.link (report);

5.7.3. Central Laboratories

According to the conceptual model, laboratory tests are more thoroughly descri-
bed than the other central services. As listed in Table 5.6, more specialised roles
and activities are taken into account.

Some of the Resources require additional clarification. For example, 24/7 Lab
Technicians have the role of Lab Technicians but work 24 hours a day, 7 days a

week. While no worker with such a schedule exists, each of these Resources

162

5.7. Computational Model

comprises three real shiftwork resources. In a more realistic hospital model,
where measures of employee workload are significant, the actual employee shifts
of the workers would be utilised. However, from the point of view of this simu-
lation study, this approach leads us to the same results while at the same time

considerably simplifying the model.

Table 5.6. Simulation components for central laboratories

Lab Technician

Test slot

Centrifugation slot

Lab Nurse

Lab Specialist Nurse
Haematology Lab Technician
Resource Haematology Lab Nurse
Types Haematology Lab Test slot
Microbiology Lab Technician
Microbiology Lab Nurse
Microbiology Lab Test slot
Anatomopathology Lab Technician
Anatomopathology Lab Nurse

Anatomopathology Lab Test slot

Lab Technicians

24 /7 Lab Technicians
Test slots
Resources Centrifugation slots
Lab Nurses

Lab Specialist Nurses

Haematology Lab Technicians

163

Chapter 5. Case Study: A Model for Hospital Management

Table 5.6. Simulation components for for central laboratories — Continued

Resources

Haematology Lab Nurses
Haematology Lab Test slots
Microbiology Lab Technicians
Microbiology Lab Nurses
Microbiology Lab Test slots
Anatomopathology Lab Technicians
Anatomopathology Lab Nurses

Anatomopathology Lab Test slots

Workgroups

{<Lab Nurse, 1>}

{<Centrifugation slot, 1>}

{<Test slot, 1>, <Lab Technician, 1>}

{<Test slot, 1>, <Lab Specialist Nurse, 1>}

{<Haematology Lab Test slot, 1>, <Haematology Lab Technician, 1>}
{<Haematology Lab Test slot, 1>, <Haematology Lab Nurse, 1>}
{<Microbiology Lab Test slot, 1>, <Microbiology Lab Technician, 1>}
{<Microbiology Lab Test slot, 1>, <Microbiology Lab Nurse, 1>}

{<Anatomopathology Lab Test slot, 1>, <Anatomopathology Lab Techni-
cian, 1>}

{<Anatomopathology Lab Test slot, 1>, <Anatomopathology Lab Nurse,
1>}

Time-driven

Activities

164

Take a sample OP
Centrifugation OP
Test OP
Haematology Test OP
Microbiology Test OP

Anatomopathology Test OP

5.7. Computational Model

Table 5.6. Simulation components for for central laboratories — Continued
Take a sample IP

Centrifugation IP

Time-driven Test IP

Activities Haematology Test IP
Microbiology Test IP

Anatomopathology Test IP

An example of Resources having multiple roles are Specialist and Haemato-
logy Nurses, who can also play the role of regular Lab Nurses. Hence, they not
only perform specific tests, but can take blood samples if required. This can be
done by simply associating an additional timetable entry with a Resource, as
Listing 5.4 illustrates.

Listing 5.4. Model for central lab specialist nurses with SIGHOS

// Creates the resource types

ResourceType rtNurse = factory.getResourceTypelnstance("Lab Nurse");

ResourceType rtXNurse = factory.getResourceTypelnstance("Lab
Specialist Nurse");

// Creates the resources
for (int i = 0; i < NXNURSES; i++) {
Resource res = factory.getResourcelnstance("Lab Specialist Nurse
+ i);

"

// We simply associate two timetable entries with each resource

res.addTimeTableEntry (getStdHumanResourceCycle () ,
getStdHumanResourceAvailability () , rtNurse);

res.addTimeTableEntry (getStdHumanResourceCycle () ,
getStdHumanResourceAvailability () , rtXNurse);

The notion of slot demands further explanation too. Laboratories carry out
a wide variety of tests, both manual and automated. It is beyond the scope of

165

Chapter 5. Case Study: A Model for Hospital Management

this approach to present a detailed and comprehensive model for the different
tests. Instead, our model dramatically simplifies this schema and defines a test
as an Activity that requires one Specialised Nurse or Technician and some kind of
machine slot. A slot is an abstraction that represents the “portion” of a machine
required by a member of the staff to carry out a single test.

Table 5.6 shows the same Activities twice, the only difference being the suf-
fix: OP and IP, which stand for OutPatient and InPatient Activities. Indeed,
the homologous Activities use the same Workgroup and take the same time.
The difference is the priority: inpatients are generally attended to with a higher
priority than outpatients. Hence, a higher priority value is assigned to IP Acti-
vities upon creation. This approach may be easily extended to emergency or
ICU patients, who require an even higher priority.

As noted earlier, our model allows any test to be performed either by a Specia-
lised Technician or a Specialised Nurse. Listing 5.5 exemplifies this.

Listing 5.5. Model for a central lab laboratory test with SIGHOS

ResourceType rtSlot = factory.getResourceTypelnstance("Test Slot");
ResourceType rtTech = factory.getResourceTypelnstance("Lab
Technician");

WorkGroup wgTestl = factory.getWorkGroupInstance (new ResourceType][]
{rtSlot, rtTech}, new int[] {1, 1});

WorkGroup wgTest2 = factory.getWorkGrouplnstance (new ResourceType][]
{rtSlot, rtXNurse}, new int[] {1, 1});

// A priority 2 non—presential activity is created for the OP
laboratory test

TimeDrivenActivity actOutTest =
factory.getTimeDrivenActivityIlnstance("Test OP", 2,

EnumSet. of (TimeDrivenActivity . Modifier .NONPRESENTIAL)) ;

// According to the priorities , Technicians are preferable to
Specialised Nurses

actOutTest.addWorkGroup (LENGTH_TEST, 0, wgTestl) ;

actOutTest.addWorkGroup (LENGTH_TEST, 1, wgTest2);

166

5.7. Computational Model

The usage of priorities in the Workgroups involves a preference of the simula-
tion engine for Technicians over Specialised Nurses; that is, only if no Technicians
are available will a Specialised Nurse be assigned. Priorities here try to prevent
the monopolisation of Specialised Nurses by this Activity, since they may be re-
quired in different tasks.

Table 5.7 lists the parameters that a user can modify to affect the behaviour of
the central laboratories. In essence, the number of Resources of each type and
the length of each Activity can be customised.

Table 5.7. Parameters for central laboratories

Parameter Description

NTECH Number of technicians

N24HTECH Number of technicians working 24 hours
NNURSES Number of nurses

NXNURSES Number of specialist nurses

NSLOTS Test “Slots”

NCENT Centrifugation “Slots”

LENGTH_SAMPLE
LENGTH_CENT
LENGTH_TEST

Time required to take a sample
Time required to centrifuge

Duration of test slot

NHAETECH Number of Haematology Lab technicians
NHAENURSES Number of Haematology Lab nurses
NHAESLOTS “Slots” for Haematology Lab tests
LENGTH_HAETEST Duration of Haematology Lab test slot
NMICROTECH Number of Microbiology Lab technicians
NMICRONURSES Number of Microbiology Lab nurses
NMICROSLOTS “Slots” for Microbiology Lab tests
LENGTH_MICROTEST Duration of Microbiology Lab test slot
NPATTECH Number of Anatomopathology Lab technicians

167

Chapter 5. Case Study: A Model for Hospital Management

Table 5.7. Parameters for central laboratories — Continued

Parameter Description

NPATNURSES Number of Anatomopathology Lab nurses
NPATSLOTS “Slots” for Anatomopathology Lab tests
LENGTH_PATTEST Duration of Anatomopathology Lab test slot

Neither the central laboratory nor central services submodel defines Element

Types, though they do define the Workflows schematised in Figure 5.15. Labo-

ratory tests are performed based on a probability, which depends on the specific

department requesting the tests.

5.7.4. Medical Departments

Table 5.8 summarises the main components required to create the model of a

medical department.

Table 5.8. Simulation components for medical departments

Element Types

Elective Patient

Chronic Patient

Doctor (First Appointment)

Resource
Types Doctor (Follow-up Appointment)
Bed
Doctors
Resources
Beds
{<Doctor (First Appointment), 1>}
Workgroups {<Doctor (Follow-up Appointment), 1>}
{<Bed, 1>}
Time-driven First OP Appointment

Activities

168

Follow-up OP Appointment

5.7. Computational Model

Table 5.8. Simulation components for for medical departments — Continued

Waiting for Next Appointment
Time-driven Waiting for Admission
Activities Waiting for Recovery

Waiting for Next IP Test
Flow-driven Ward Stay
Activities

Two different types of patients appear, since they involve different decisions
in the workflow. Chronic Patients, due to their pathologies, are always present
in the system. An enhanced model should include some triggers that may lead
these patients to leave the hospital, such as exitus, moving house or simply a
personal decision. Elective Patients on the other hand, have a finite number of
appointments, and are eventually admitted or simply discharged if no inpatient
medical treatment is required.

Doctors split their timetable into first and follow-up appointments. A real hos-
pital utilises more complex strategies to decide which doctor attends to a specific
patient, based on characteristics of the patient (first or follow-up appointment,
pathology...) and the doctor’s experience. These strategies could be added to
the model by incorporating new roles for the doctors, and new Element Types
resulting in a finer division of patients according to their characteristics.

Although surgeries seem to be missing from the model, they are in fact aggre-
gated to the notion of doctor. Aggregation is a technique to reduce complexity
that involves the implicit representation of some parts of the model in others.
Therefore, the availability of doctors is regarded as implying the readiness of
surgeries.

A final remark is required regarding the Activities defined within this sub-
model. The workflow of a medical patient includes some wait periods. For
example, a certain time must pass between successive appointments. Waits are

included in the patient’s workflow with PSIGHOS by means of Activities that

169

Chapter 5. Case Study: A Model for Hospital Management

do not require any Resource. Listing 5.6 describes the creation of one such Ac-

tivities.
Listing 5.6. Model of a “waiting” activity with SIGHOS

// First, a “‘dummy’’ WG is created
WorkGroup dummyWG = factory .getWorkGrouplnstance (new ResourceType][]
{}, new int[] {});

// A non—presential activity with maximum priority

TimeDrivenActivity act =
factory.getTimeDrivenActivitylnstance ("Waiting for next App.", 0,
EnumSet. of (TimeDrivenActivity . Modifier .NONPRESENTIAL)) ;

// The lenght of the wait is assigned
act .addWorkGroup (LENGTH_OP20P, dummyWG) ;

Ward Stay is a Flow-Driven Activity, that is, its duration does not depend
directly on time, but on the execution of an inner workflow. Specifically, a patient
stays in the ward for a certain number of days (Waiting for Recovery) but, at the
same time, a set of diagnostic tests and treatments may be performed. Listing 5.7
presents a sketch of the code required to create a Flow-Driven Activity.

Listing 5.7. Model for a flow-driven activity within SIGHOS

// A "'stay in bed’’ single flow is created with the Waiting for
Recovery activity

SingleFlow stayInBed =
(SingleFlow) factory . getFlowInstance ("SingleFlow",
actWaitingRecovery) ;

// An interleaved routing flow (WCP40) invokes...

InterleavedRoutingFlow parallelStay = (InterleavedRoutingFlow)
factory . getFlowlInstance ("InterleavedRoutingFlow ") ;

// ...the previously defined activity...

parallelStay .addBranch(stayInBed) ;

// ...and a method that builds a workflow of diagnostic tests

parallelStay .addBranch(getDiagnosticTests ());

170

5.7. Computational Model

// The flow—driven activity is created

FlowDrivenActivity actStay = (FlowDrivenActivity)
factory.getFlowDrivenActivityInstance ("Ward Stay");

// The workgroup wgBed <BED, 1> is used

actStay .addWorkGroup (parallelStay , wgBed) ;

Table 5.9 lists the parameters of this submodel. The number of resources as well
as the length of the activities are shown as usual. As mentioned in the previous
section, every department defines the probabilities of performing each kind of
test by means of the PROB_XXX_OP and PROB_XXX_IP parameters.

Table 5.9. Parameters for medical departments

Parameter Description

NDOCTORS Doctors available

NBEDS Beds available

LENGTH_OP1 Length of First appointment
LENGTH_OP2 Length of successive appointment

LENGTH_OP20P
LENGTH_OP2ADM
PROB_RAD_OP

PROB_NUC_OP

PROB_LAB_OP

PROB_LABCENT_OP

PROB_LABLAB_OP

PROB_LABHAE_OP

Time between successive appointments
Time between last appointment and admission

Probability of performing an X-Ray test during ap-

pointments

Probability of performing a scanner test during ap-
pointments

Probability of performing a lab test during appoint-
ments

Probability of centrifugation of sample during appoint-
ments

Probability of performing a central lab test during ap-

pointments

Probability of performing a Haematology lab test du-

ring appointments

171

Chapter 5. Case Study: A Model for Hospital Management

Table 5.9. Parameters for medical departments — Continued

Parameter

Description

PROB_LABMIC_OP

PROB_LABPAT _OP

PROB_RAD_IP
PROB_NUC_IP
PROB_LAB_IP
PROB_LABCENT_IP
PROB_LABLAB_IP
PROB_LABHAE_IP

PROB_LABMIC_IP

PROB_LABPAT IP

LOS
PROB_ADM
NCPATIENTS

NPATIENTS
INTERARRIVAL
ITERSUCC
PROB_1ST_APP

HOURS_INTERIPTEST

Probability of performing a Microbiology lab test du-
ring appointments

Probability of performing an Anatomopathology lab
test during appointments

Probability of performing an X-Ray test during stay
Probability of performing a scanner test during stay
Probability of performing a lab test during stay
Probability of centrifugation of sample during stay
Probability of performing a central lab test during stay
Probability of performing a Haematology lab test du-
ring stay

Probability of performing a Microbiology lab test du-
ring stay

Probability of performing an Anatomopathology lab
test during stay

Length of stay after admission
Probability of being admitted

Number of chronic patients that arrive at the depart-
ment

Number of patients that arrive at the department
Time between successive patient arrivals
Number of successive appointments

Probability of a doctor being assigned to first appoint-
ment

Time (in hours) between successive IP tests

172

5.7. Computational Model

5.7.5. Surgical Departments

Since the developed model includes some facilities and resources shared among
the different SDs, two classes have been declared: SurgicalDptSharedModel de-
fines the shared structures, whereas StdSurgicalDptModel represents a single pa-
rameterised surgical department model.

The shared facilities and resources defined in the model are the PACU, the ICU
and the Anaesthetists, as shown in Table 5.10.

Table 5.10. Simulation components shared by surgical departments

PACU Bed
Resource

ICU Bed
Types

Anaesthetist

PACU Beds
Resources ICU Beds

Anaesthetists

{<PACU Bed, 1>}
Workgroups

{<ICU Bed, 1>}
Time-driven PACU stay
Activities ICU stay

The number of Resources can be set by means of the parameters listed in
Table 5.11.

Table 5.11. Parameters for shared surgical departments resources

Parameter Description

NBEDS _PACU Number of beds available in P.A.C.U.
NBEDS_ICU Number of beds available in I.C.U.
NANAESTHETISTS Number of anaesthetists

173

Chapter 5. Case Study: A Model for Hospital Management

SDs make use of the shared resources but also define their own modelling
components, similar to those of MDs. Table 5.12 shows the contents of the SD
computational model.

Table 5.12. Simulation components for surgical departments

Surgical Patient
Element Types | Short-stay Patient

Ambulatory Patient

Bed
Short-stay Bed

Doctor (First Appointment)

Resource Doctor (Follow-up Appointment)
Types Surgeon
Operating Theatre

Scrub Nurse

Circulating Nurse

Beds

Short-stay Beds
Doctors
Resources Surgeons
Operating Theatres
Scrub Nurses

Circulating Nurses

{<Doctor (First Appointment), 1>}

{<Doctor (Follow-up Appointment), 1>}
Workgroups

{<Short-stay Bed, 1>}

{<Bed, 1>}

174

5.7. Computational Model

Table 5.12. Simulation components for for surgical departments — Continued

Workgroups {<Operating Theatre, 1>, <Surgeon, 1>, <Scrub Nurse, 1>, <Anaesthetist,
1>, <Circulating Nurse, 1>}

First OP Appointment

Follow-up OP Appointment

Waiting for Next Appointment
Waiting for Post-Surgery Appointment

Waiting for Admission

Time-driven Waiting for Next IP Test
Activities Post-Surgery Appointment
Surgery

Surgery (Short-stay)
Ambulatory Surgery
Recovering after Surgery

Recovering after Surgery (Short-stay)

Flow-driven Ward Stay

Activities Ward Short-stay

As derived from the conceptual model described in Subsection 5.6.2, surgi-
cal departments comprise three patient types, depending on the characteris-
tics of the surgical procedure they require: ambulatory, short-stay and ordinary.
Three different activities, one per element type, represent a surgery in the model.
Though a different duration can be assigned to each activity, all three utilise the
same workgroup (OT + Surgeon + Scrub Nurse + Anaesthetist + Circulating Nurse).
A more detailed model would include a different surgery type per pathology
and more flexible workgroups.

All the members of a surgical team except for Circulating Nurses are associated
with a single surgery. Circulating Nurses are a special resource that is not bound
to a specific surgery, but is rather shared between two and even more OTs per-

175

Chapter 5. Case Study: A Model for Hospital Management

forming simultaneous operations. A simple and straightforward solution for
this problem is stated by Giinal and Pidd (2006). They propose the use of a Mul-
titasking factor M to fragment each resource into M parts. Each part is considered
a mini Circulating Nurse and can be fully utilised by any activity requiring it.
The main drawback of this approach may be an underestimation of the resource
usage. However, since wait times and patient flows are our main concern, the
use of a mini Circulating Nurse can be regarded as a suitable simplification.

The parameters available to customise a SD are summarised in Table 5.13.

Table 5.13. Parameters for surgical departments

Parameter Description

NBEDS Beds available

NSBEDS Beds available for short stays

NOPTHEATRES Operating Theatres available for the department
NSURGEONS Surgeons available for the department

NDOCTORS Doctors available for the department
NSCRUBNURSES Scrub Nurses available for the department
NCIRCNURSES Circulating Nurses available for the department
PROB_RAD_OP Probability of performing an X-Ray test during ap-

PROB_NUC_OP

PROB_LAB_OP

PROB_LABCENT_OP

PROB_LABLAB_OP

PROB_LABHAE_OP

176

pointments

Probability of performing a scanner test during ap-

pointments

Probability of performing a lab test during appoint-

ments

Probability of centrifugation of sample during appoint-
ments

Probability of performing a central lab test during ap-
pointments

Probability of performing a Haematology lab test du-

ring appointments

5.7. Computational Model

Table 5.13. Parameters for surgical departments — Continued

Parameter

Description

PROB_LABMIC_OP

PROB_LABPAT_OP

PROB_RAD_IP
PROB_NUC_IP
PROB_LAB_IP
PROB_LABCENT_IP
PROB_LABLAB_IP
PROB_LABHAE_IP

PROB_LABMIC_IP

PROB_LABPAT _IP

LENGTH_OP1
LENGTH_OP2
LENGTH_POP
LENGTH_OP2ADM
LENGTH_OP20P
LENGTH_SUR2POP
LENGTH_SUR
LENGTH_SSUR
LENGTH_ASUR
LENGTH_SPACU
LENGTH_APACU
LENGTH_PACU

Probability of performing a Microbiology lab test du-
ring appointments

Probability of performing an Anatomopathology lab
test during appointments

Probability of performing an X-Ray test during stay
Probability of performing a scanner test during stay
Probability of performing a lab test during stay
Probability of centrifugation of sample during stay
Probability of performing a central lab test during stay
Probability of performing a Haematology lab test du-
ring stay

Probability of performing a Microbiology lab test du-
ring stay

Probability of performing an Anatomopathology lab
test during stay

Length of First appointment

Length of successive appointment

Length of post-surgery appointment

Time between last appointment and admission
Time between successive appointments

Time between surgery and post-surgery appointment
Length of surgery

Length of surgery (short-stay)

Length of ambulatory surgery

Length of P.A.C.U. stay after surgery (short-stay)
Length of PA.C.U. stay after ambulatory surgery
Length of PA.C.U. stay

177

Chapter 5. Case Study: A Model for Hospital Management

Table 5.13. Parameters for surgical departments — Continued

Parameter

Description

LENGTH_ICU
LENGTH_SUR2EXIT
LENGTH_SSUR2EXIT
PROB_ADM
NPATIENTS
INTERARRIVAL
NAPATIENTS

AINTERARRIVAL

NSPATIENTS

SINTERARRIVAL

ITERSUCC
PROB_1ST_APP

HOURS_INTERIPTEST

Length of L.C.U. stay

Minimum stay after surgery

Minimum stay after surgery (short-stay)
Probability of being admitted

Number of patients that arrive at the department
Time between successive patient arrivals

Number of patients that arrive at the department for
ambulatory surgery

Time between successive patient arrivals for ambula-
tory surgery

Number of patients that arrive at the department for
surgery (short-stay)

Time between successive patient arrivals for surgery
(short-stay)

Number of successive appointments

Probability of a doctor being assigned to first appoint-
ment

Time (in hours) between successive IP tests

5.8. Results

The computational model described in the previous section, though far from

being considered realistic, is a highly parameterisable and scalable example.

Initially, the parameters for defining the hospital’s central services and central

laboratories are defined. Clearly, the model for central services is too simple and

cannot be parameterised to resemble the real system. We have, however, tried

to adhere as much as possible to the characteristics of the HUC’s central labo-

178

5.8. Results

ratories by using the real number of nurses, technicians and other resources, as
shown in Table 5.14. Still, the model is only an approximation since no resources

for emergencies have been considered.

Table 5.14. Resources of the HUC’s central laboratories

Parameter Value
Technicians 23
24 /7 Technicians 5
Nurses 16
Specialist nurses 10
“Slots” for tests 150
“Slots” for centrifugation 160
Haematology technicians 2
Haematology Nurses 5
“Slots” for Haematology tests 40
Microbiology Technicians 10
Microbiology Nurses 0
“Slots” for Microbiology tests 50
Anatomopathology Technicians 6
Anatomopathology Nurses
“Slots” for Anatomopathology tests 50

We have created three MD and three SD templates. Each template is intended
to highlight certain characteristics of a department. Hence, a traumatology-like
SD is created that makes extensive use of X-rays; or an ophthalmology-like MD
that only requests a few clinical tests in the central laboratories.

Having fixed the parameters of the central services and central laboratories
submodels, the different testing scenarios are defined based on the number of
departments per template (hereafter DxT) included in the simulation model. Three

179

Chapter 5. Case Study: A Model for Hospital Management

scenarios are utilised that simply vary the amount of DxT: 1, 2 and 4, which
results in scenarios with 6, 12 and 24 departments.

As explained in Section 4.3, concurrent access to simulation Resources can af-
fect the performance of PSIGHOS. Two main structures were introduced to solve
this problem: Activity Managers (AMs) and dynamic Conflict Zones (CZs). The
former creates a static partition of the model based on the Resource Types and
Activities, whereas the latter makes used of a dynamically built “zone” where
conflicts between specific Resources simultaneously requested by several ele-
ments can be solved. As already shown with the test benchmark presented in
Section 4.4, PSIGHOS yields more opportunities to exploit the parallelism of a mo-
del as the number of AMs increases, and the number of Resources with overlap-
ped timetable entries decreases. Hence, we can analyse these characteristics of
the computational model prior to its execution in order to enhance its potential
parallelism. Table 5.15 summarises the number of Resource Types and Activi-
ties created within the hospital model.

Table 5.15. Resource types and activities in the computational model

Submodel Resource Types Activities
Central Services 2 4
Central Laboratories 14 12
Surgical Departments (shared) 3 2
Surgical Department 8 14
Medical Department 3 7

The Activities and Resource Types defined within the central services/la-
boratories are shared among all the surgical and medical departments. Hence,
there are 19 shared Resource Types and 18 shared Activities. The number
of Resource Types for the model |RT| can be computed by using the formula
below. Also, let |[MD| and |SD| be the number of medical and surgical depart-
ments, respectively. |[RT| can be computed as follows:

180

5.8. Results

IRT| =19+ 3 % [MD| + 8 % |SD|

where

|MD)| is the number of medical departments. Since there are three MD tem-
plates, [MD| = DxT 3.

|SD| is the number of surgical departments, with |SD| = DxT % 3.

Analogously, the number of Activities |A| can be computed as

|A| =18 47 % |MD| + 14 % |SD|

A careful analysis of the model’s Activities and Resource Types led us to
detect the following groups of AMs:

e Central services use the same Resource Type for both the test and the re-
port Activities. Thus, each service included in the model, that is, X-rays
and USS, defines its own AM.

e Central laboratories perform IP and OP Activities that vary in priority
but not workgroup. Thus, each pair of IP-OP Activities is grouped into
the same AM.

e Anaesthetists are shared among all the surgery Activities. Hence, they
all are placed in the same AM

e Follow-up OP appointments and post-operative OP appointments for a
SD are performed by the same Resource type, and are thus handled by
the same AM.

e Each of the remaining Activities is handled by a different AM.

The number of AMs, |AM]|, can be computed similarly to |[RT| and |A].

|AM| = 10(shared) + 1(surgery) +7 * [MD| + 10 * |SD|

181

Chapter 5. Case Study: A Model for Hospital Management

Table 5.16 summarises the number of components for each scenario. Taking
into account the number of cores in the test machine (16) or typical personal
computers (2-8), the number of AMs seems sufficient to provide opportunities

for exploiting parallelism.

Table 5.16. Number of RTs, As and AMs in each scenario

DxT | [RT| |A] |AM]|
1 52 81 62

2 85 144 113
4 151 270 215

With respect to resources with overlapping timetables, Haematology and Spe-
cialised nurses, as mentioned in Subsection 5.7.3 can also play the role of nurses.
Thus, taking a sample and testing a different sample could try to use the same
Resource, even though these Activities are handled by different AMs. Doctors
also have two timetable entries (for first and follow-up OP appointments), but
they are set to be active at non-overlapping time periods.

The static analysis above is useful for detecting problematic situations and es-
tablishing an upper bound to the parallelism that can be exploited from the mo-
del. Nevertheless, the simulation of the model will only profit from the potential
parallelism if the Elements and their Workflows produce enough simultaneous
events. Hence, only the execution of the simulation will offer accurate conclu-
sions.

Executing these tests yielded the results summarised in Figure 5.16 and in
Table 5.17. Figure 5.16 shows the average execution time for each scenario, whe-
reas Table 5.17 shows the speedup of the parallel version over the sequential
SIGHOS. Each scenario was run for 24 simulated months and executed 5 times on
the platform previously introduced in Table 4.4. The replicas were tested with
the sequential SIGHOS and the version of PSIGHOS that showed the best perfor-
mance in the synthetic tests, that is, the Hybrid EME like-3-Phase Approach (see

182

5.8. Results

Section 4.13). In this last case (PSIGHOS), 2, 4, 8 and 16 threads (Event Executors)
were tried.

180
160
140
C
E 120 M Sequential
": 100 id Parallel (2 threads)
5
"‘3 80 H Parallel (4 threads)
o
E 60 H Parallel (8 threads)
40 i Parallel (16 threads)
20 -
0 -4
1 2 4
Departments / template

Figure 5.16. Execution time for different whole hospital model scenarios

Table 5.17. Speedup for different whole hospital model scenarios

DxT
1 2 4
21 1.08 1.395 1.505
411301 1.739 1.753
8 | 1.457 1984 2.055
16 | 1.317 2.075 2.174

Threads

Every DxT = 1 scenario exhibits low efficiency. Not only this, the speedup
with 16 threads is even worse than that with 8 threads, probably due to this
scenario’s limited scale.

183

Chapter 5. Case Study: A Model for Hospital Management

The scenarios with DxT = 2 and DxT = 4 present a similar behaviour. The
efficiency with 2 threads is highly satisfactory, and is also adequate for 4 threads.
However, adding more threads does not produce a significant increment in the
speedup.

In spite of creating twice the events (around 14 million against 7 million), the
gain of the scenario with DxT = 4 against that with DxT = 2 is barely noti-
ceable. Clearly, adding a new department involves creating more independent
activities that may be executed in parallel. However, since every department
must access the central services/laboratories, requesting activities from these
submodels bottlenecks the simulation.

5.9. Conclusions

In this chapter, a generic model of a whole hospital has been presented. The
model is not intended to be an accurate representation of a hospital, but rather
to illustrate the modelling capabilities of PSIGHOS and to test the performance of
the simulator when faced with a practical case.

PSIGHOS’ modelling capabilities were put to the test by capturing complex re-
source behaviours, such as multi-tasking, complex timetables and specialisation.
A sophisticated treatment of the system entities, that is, the hospital patients,
is also possible since several categories can be defined (thus opening the door
to distinguishing between emergency and elective patients, and even based on
their pathology), and different workflows can be associated with each. Further-
more, two types of activities were used: simple tasks, whose length is defined
according to a predefined time function; and compound tasks, which are consi-
dered complete as an associated subprocess finishes.

With respect to the results, the simulation shows low scalability with the num-
ber of processors. Clearly, central services and laboratories, as well as the shared
surgical resources (PACU, ICU and anaesthetists), bottleneck the execution of

the model. Still, taking into consideration that the model is generic and has not

184

5.9. Conclusions

been especially adapted to exploit a parallel platform, its performance can be
considered satisfactory when executing fewer than 4 threads.

185

Conclusions

The breakthrough in multi-core technology has given rise to a new scenario
where parallelism is no longer part of the scientific playground, but a sensible
choice for every application with high computational requirements. Business
Process Simulation (BPS) is one of the fields that can profit from this technology,
since large and complex models appear as the size of the organisation grows or
the level of detail required to capture the system’s semantics increases.

Traditionally, Parallel Discrete Event Simulation (PDES) has rarely been used
beyond the scientific world due to a lack of generic solutions that can be applied
to different models. Domain decomposition, which is the most popular PDES
technique, requires a design that explicitly exploits the parallelism of a simula-
tion model. This leads to ad-hoc solutions and requires a parallelism expert to
develop the simulation.

Given this situation, this thesis has explored the feasibility of using multi-
core computers to automatically and efficiently exploit parallelism for simulating
Business Processs (BPs) models.

The advances presented in this thesis can be grouped into three different areas:

1. Generality. Focusing as it has on the field of BPS, this thesis has not merely
treated a specific case study or system. Instead, workflow patterns have
been posed as a suitable formalism for generically describing the organisa-
tion’s BPs. This thesis has offered several demonstrations to prove how the
use of workflow patterns, along with the definition of high-level model-

187

Conclusions

188

ling structures adapted to the organisational language (such as activities,
human resources or timetables), establish a well-suited simulation frame-
work that allows a non-expert simulation user to quickly become familiar
with the components required to create a model. A practical implementa-
tion in Java, called SIGHOS, has been presented that comprises all of these

features.

. Automation. Having established a suitable generic BPS framework, the next

step was to allow the simulation engine to automatically exploit the paral-
lelism present in the model being simulated by profiting from the resources
of a multi-core computer. The automation concept implicitly involved hi-
ding the implementation and handling of the parallel mechanisms from
the simulation user. This thesis has presented a new algorithm that auto-
matically distributes the simulation events to a set of Event Executors (EEs)
by carefully managing the access to shared simulation resources. The al-
gorithm combines concepts from the Three-Phase approach (see Subsec-
tion 1.2.4), the master-slave paradigm, and a parallel architecture with a
centralised list and distributed events (see Subsection 1.3.5). PSIGHOS, a
practical implementation of a parallel simulation tool using this algorithm,
has been presented that preserves the modelling interface of the original
SIGHOS.

. Efficiency. BPS is a problem in which both resource contention and the

communication among entities usually limit the degree to which the pa-
rallelism can be exploited. This thesis has analysed these problems and
presented several advances in the static and dynamic management of sha-
red resources so as to reduce resource contention. The experimental results
have corroborated the efficiency of our proposal when faced with synthetic
problems and shown encouraging speedups when tested using a generic,

real-world model.

Contributions

To the best of our knowledge, there is no similar approach in the field of BPS
that combines these three features.

Contributions

Apart from the above advances, several research objectives are posed in the In-
troduction to this thesis. This section will present our contributions within each

objective.

Identify the characteristics that make Discrete-Event System
Simulation (DES) and, more specifically, process-oriented simulation
a suitable approach for modelling and simulating BPs

Chapter 1 and Chapter 2 show that process-oriented simulation is the most
widely used DES worldview in both free and commercial simulation tools. This
stems from the use of high-level blocks to build models that hide the low-level
implementation.

Then, Chapter 3 refines the main concepts used in BPS and highlights the im-
portance of workflow patterns in obtaining a standard and usable definition of
a BP. By carefully examining those definitions, mapping the BPS concepts onto
those of process-oriented DES is a straightforward procedure. Based on those
concepts, a Java BPS library called SIGHOS is presented.

Discuss the feasibility of automatically exploiting the parallelism in
a BP model

Automated exploitation of parallelism is based on two main milestones: 1) the
isolation of the model definition and the simulation execution and 2) the use of
a parallel approach that focuses on the simulation engine and not on the specific
model being simulated.

The first milestone is achieved by choosing an automated event translation

for the low-level implementation of the process-oriented DES, as explained in

189

Conclusions

Section 3.4. Hence, the modelling interface is kept separate from the simulation
engine.

The second milestone is analysed in Section 4.1. After conducting a survey of
the most important techniques used to create a parallel simulation in Section 1.3,
three categories are defined that group all of these techniques depending on
the extent to which the parallelism is exploited: application-level parallelism,
simulation-level parallelism and model-level parallelism. Those levels establish
the level of knowledge of the specific system being modelled and simulated that
is required to be applied by each technique. Our focus being on the simulation
engine, it was determined that a simulation-level parallelism approach would
best fulfil our objectives. A master-slave paradigm based on a centralised list
with distributed events is adopted to create the framework for the parallel si-
mulation, comprising a master Event Manager (EM) to handle the Future Event
List (FEL) and the Virtual Clock (VC), and a set of slave EEs, in charge of execu-
ting the simulation events.

Explore techniques to reduce resource contention in a shared-memory
parallel simulation
The way resource contention affects the parallel architecture designed is stu-

died in Section 4.2 by focusing on two main situations:

1. several Elements simultaneously requesting different Activities that use

the same Resource types;

2. and several Elements simultaneously requesting different Activities that

use the same Resource.

The first problem involves the static structure of the model. Activity managers
are introduced as a mechanism for creating a static partition of the model that
allows protecting the concurrent access to shared simulation components only
when needed.

The second problem stems from the rich definitions of the Resources’ time-

tables, which allow the same Resource to be available to several Resource Types

190

Contributions

simultaneously. Since timetables are dynamically interpreted as the simulation
time advances, a dynamic solution is proposed that detects and later arbitrates
the conflicts for Resources. This mechanism, built on top of the activity mana-
gers, is based on the construction of Conflict zones that dynamically detect the
conflicts caused by several Elements trying to capture the same Resource. After
the conflicts are detected, this structure arbitrates the access of the contenders
to the Resources by means of a dynamically created stack of synchronisation
mechanisms.

Analyse techniques and algorithms that improve simulation perfor-
mance

Sections 4.6 to 4.13 are devoted to further enhancing and optimising the paral-
lel framework proposed by applying different techniques and algorithms. The
following enhancements are studied and their effect on overall performance ana-
lysed:

1. Execution of the EEs in a Java thread pool.
2. Integration of the thread pool into the simulator code.

3. Exploitation of event locality by means of local buffers both for the FEL
and for events currently in execution.

4. Block dispatching, that is, grouping the events before they are sent to the
EEs for execution.

5. Redefinition of events and partition of the execution phase by drawing

inspiration from concepts in the 3-phase algorithm.

6. Development of a hybrid scheme Event Manager Executor (EME), where
the EM also executes events.

7. Fine-grain adjustment of those implementation details that have a strong
influence on execution time.

191

Conclusions

An analysis of the performance of the different enhancements shows that using
an external pool is not capable of outperforming sequential SIGHOS, except in
very favourable scenarios. The integration of the thread pool into the simulator
code improves the results but the scalability remains very poor. The simulator
starts to become scalable only after event locality is applied.

Though block dispatching reduces the execution time even more, a modified
version of the Three-Phase approach algorithm described in Subsection 1.2.4 is
introduced that exhibits the best behaviour for all the scenarios. This algorithm
redesigns the events used in the simulation to 1) remove several synchronisa-
tion structures required in the original algorithm and 2) reduce the number of
redundant actions performed by simulation clock tick.

A curious effect appears when a hybrid EME scheme is applied in order to
fully utilise all the available processors: though the block dispatching version
outputs worse results, the like-3-Phase algorithm profits from this scheme.

Finally, several implementation details that heavily influence the final perfor-

mance are examined and compared in terms of their practicality.

¢ Using an atomic variable in a spinlock is proven to notably outperform a

passive wait in a Java semaphore.

e Extending the Thread class is shown to be extremely inefficient when com-

pared to implementing the Runnable interface.

e The usage of a specific barrier implementation notably affects the perfor-
mance of the simulation. The poor efficiency of the standard Java imple-

mentation is also demonstrated.

Establish the potential of a generic PDES to model and simulate or-
ganisations

Achieving the previous goal makes possible a practical implementation of a
generic PDES for BPS by using SIGHOS as a case study. The resulting parallel

192

Contributions

version of SIGHOS (PSIGHOS) is used to establish the effects of the model charac-
teristics on the performance of the proposed solution:

e “Saturated” systems, with a large rate of simultaneous events per simula-

tion clock, benefit from this approach.

e PSIGHOS events are able to be customised so as to allow complex opera-
tions to be performed during the simulation. Our approach benefits from
a higher computing load.

e Loosely coupled systems with specialised resources and activities create
more activity managers, which increase the amount of parallelism exploi-

table during the simulation.

Establish the suitability of Java as a language for implementing the
proposed simulation

Section 2.8 reviews the main characteristics that make Java a suitable language
for DES, including object-orientation, portability, the lack of pointers, multi-
threading support and its network-aware architecture. Further, all of Chapter 2
highlights the role of Java as a suitable language for dealing with the most im-
portant techniques utilised to implement the process-oriented worldview.

Study the performance of this kind of parallel simulator in a multi-
core computer

PSIGHOS is also used to study the performance of a PDES tool based on the
hybrid EME architecture, the like-3-phase algorithm, and to fine tune several
implementation details. A parameterisable test benchmark is defined to be run
on a 16-core test platform with 32 GB RAM.

In the best case scenarios, the speedup over the sequential simulation exceeds
avalue of 9 for 16 threads, even offering superlinear results for 4 threads. Clearly,
the generic tool developed is potentially capable of profiting from the resources

of a multi-core computer.

193

Conclusions

Validate the usefulness of the approach by applying it to a real-world
problem

Chapter 5 presents a prototype simulation model of a whole hospital. Said
prototype is intended to be used as a case study to corroborate both the mo-
delling capabilities and performance of PSIGHOS when applied to a real-world
problem. The chapter starts by describing the main components of a hospital as
a system and the utility of modelling and simulating in aiding hospital manage-
ment to measure the performance of their organisation. Patient wait times are es-
tablished as one of the few objectively quantifiable Performance Indicators (PIs).

A specific hospital was chosen due to its long history of cooperation with the
Simulation Group from the Universidad de La Laguna in this area. Hence, a na-
tionally awarded simulation model of the Hospital Universitario Nuestra Sefiora
de Candelaria (HUNSC)’s general and digestive surgical department is depicted
as an earlier contribution of said research group.

A brief survey of the literature shows the difficulties of modelling a whole
hospital by reviewing some earlier contributions. Special attention is devoted to
Dr. Giinal’s thesis (Giinal, 2008) and, more specifically, to HADA, a tool developed
by both Dr. Giinal and the author of this thesis. HADA analyses two different data
sources (the UK nationally collected Health Episode Statistics (HES) and local
Patient Administration System (PAS)) as a way of understanding a hospital’s
past performance as well as for estimating parameters for a hospital simulation
model.

Having established a proper background for creating a hospital model, a
patient-centred conceptual model of the whole hospital is presented. A divide and
conquer approach is applied to simplify the modelling by creating four functio-
nal submodels: an Accident and Emergency department, Surgical Departments,
Medical Departments and Central Services. This division allows the model-
ler to focus on the specific needs of each submodel. Since PSIGHOS’ perfor-
mance and modelling capabilities could be validated anyway, the Accident and
Emergency (A&E) department as well as emergency patients were deleted from

the final model for the sake of simplicity, which, while it prevented the model

194

Further Research

from being fully validated for practical applications, considerably shortened the
development time.

A highly parameterisable computational model is implemented with PSIGHOS
so as to prove its modelling capabilities.

e Complex resource behaviours, such as multi-tasking, complex timetables

and specialisation are captured.

e The combined usage of workflows and Element types is shown to be a
suitable mechanism for modelling the sophisticated behaviour of the sys-
tem’s entities, that is, the patients of the hospital.

e Two types of activities are used: simple tasks whose length is defined ba-
sed on a predefined time function; and compound tasks, which are consi-
dered complete once their associated subprocess finishes.

PSIGHOS performance is checked by designing several scenarios for different
problem sizes. Scalability does not increase with the number of processors since
the activities involving central services, laboratories and the shared surgical re-
sources (Postanaesthesia Care Unit (PACU), Intensive Care Unit (ICU) and anaes-
thetists) bottleneck the simulation. Considering that the model is generic and
not especially adapted to exploit a parallel platform, the performance observed
is relatively satisfactory for fewer than 4 threads.

Further Research

The parallel simulation tool developed over the course of this thesis shows ex-
cellent performance when applied to the different scenarios tested with the syn-
thetic model introduced in Section 4.4. A satisfactory result is also obtained
when dealing with a more realistic problem, like the one proposed in Chapter 5.
Further research is required, however, if new approaches are to be found that are
able to enhance performance by benefiting from the strengths of PSIGHOS, that
is, generality and automated exploitation of parallelism.

195

Conclusions

Temporal Uncertainty

The main drawback of the parallel architecture developed in this thesis is its
zero-lookahead nature. Hence, only events with timestamps that are strictly si-
multaneous can be parallelly executed. Fujimoto (1999) studies this problem in
federated simulation systems, which are a widely used example of domain de-
composition in PDES. He proposes a synchronisation algorithm for exploiting
temporal uncertainty that is later refined by Loper (2002), and that reduces the
number of global synchronisation computations required to causally order the
events in a domain-decomposition parallel simulation. Considering that tempo-
ral uncertainty is inherent in the length of the activities as defined by PSIGHOS,
this approach seems a suitable mechanism for increasing the number of events
that may be concurrently processed. Nevertheless, three main problems arise
that must be solved before temporal uncertainty can be applied to PSIGHOS.

1. Would it be possible to adapt this technique to a different parallel architec-
ture? In other words, would simulation-level parallelism profit from this

technique?

2. Would PSIGHOS” modelling interface remain unaltered? Something simi-
lar to the pre-sampling algorithm, introduced by Loper (2002), would be
required to prevent a user from explicitly declaring time intervals while
maintaining an uncertainty based on probability distributions.

3. The third problem derives from the like-3-phase algorithm used by PSI-
GHOS. Initially, since two synchronisations are involved per simulation clock
tick, this algorithm precludes the use of approximate time. Hence, this
technique would not profit from the advantages of the most efficient PSI-
GHOS algorithm.

196

Further Research

Time Decomposition

A completely different technique is to apply time instead of domain decompo-
sition (Subsection 1.3.6). A steady-state simulation would benefit from this ap-
proach insofar as the adjustment errors between successive time intervals could
be ignored. Kiesling (2006) proposes an innovative technique that relies on com-
bining time decomposition and a progressive refinement of results. Hence, a si-
mulation can output imprecise results very quickly and, if more accurate results
are required, the simulation can be allowed to continue running. Since Kiesling
presents an application example with a queuing simulation, it is reasonable to

consider its application to the simulation of organisations.

GPU-Based Simulation

Turning our attention to state-of-the-art technologies, the use of Graphics Proces-
sing Units (GPUs) is becoming popular among the simulation community. Park
and Fishwick (2008) utilise an algorithm that is very similar to the pseudocode
introduced in Listing 4.1. Their approach takes a list of events and sends it to the
GPU processors. The list not only selects events with the same timestamp, but a
modified relaxed synchronisation is used that allows all the events within a time
interval to be concurrently executed at the expense of accuracy. Then, a detection
and compensation technique adapted to the specific system being simulated is
utilised to minimise the error. The case studies proposed by the authors of this
paper are very simple, but combining their ideas with the approach presented
in this thesis seems like a sensible idea.

Advances in Real Applications

Focusing on real applications, there are several fields in which PSIGHOS can be
enhanced.

e PSIGHOS lacks of a graphical interface. A Master’s thesis currently being

written by Rayco Diaz Batista is expanding on the work developed in

197

Conclusions

198

(Mufioz, 2006) in order to obtain a flexible and easy-to-use interface where
a user is able to define the simulation components and launch basic simu-

lation experiments.

Though simulation itself is a useful tool for organisation management, it is
highly desirable to provide said management with tools that help them in
their decision-making processes. Hence, integrating simulations in control
panels or holistic business solutions offers management the best opportu-
nities for achieving their business goals. Earlier contributions by our Si-
mulation Group, such as (Aguilar et al., 2005a), rely on the combined use
of a Multi-Agent System (MAS) and a simulation as a tool to aid in the
decision-making processes. Such an approach presents a promising line of
research.

Although PSIGHOS is not currently intended to be used in a distributed
environment, future releases of the tool will take advantage of the net. Ac-
tually, there is a Master’s thesis (Garcia-Hevia, 2008) that describes how to
interact with the simulator by using web services.

In this thesis, PSIGHOS has been applied to model a hospital. However, se-
veral other systems can be modelled and simulated with this tool. Several
examples actually exist that show some real applications of the simulator,
such as helpdesks and call centres (Baquero et al., 2005; Castilla et al., 2007)
or eGovernment process development (Callero and Aguilar, 2009).

Apéndice

Resumen

En este anexo se presenta un resumen en espafiol de la tesis con especial énfasis

en las contribuciones y conclusiones de este trabajo.

A.1. Planteamiento del Problema

Las organizaciones empresariales han ido asimilando con el paso de los afios que
la informacién es uno de sus bienes mds preciados. Las Tecnologias de la Infor-
macion (TI) se han erigido como una importante fuente de inversién tanto para
las empresas privadas como para las ptiblicas. El resultado es una bisqueda de
la mejora de los mecanismos que les permiten manejar la informacién y obtener
rédito de ella, ya sea en términos econémicos o de calidad.

Una visién global de la organizacion requiere de modelos que permitan resal-
tar los aspectos fundamentales que influyen en el correcto funcionamiento de la
empresa, y descartar aquéllos que no aporten informacién valiosa al proceso de
su comprension y andlisis. Los procesos de negocio, tal como los define (WfMC,
1999), aparecen como una visién de alto nivel centrada en el mercado que se
prestan con facilidad a los objetivos deseados.

La simulacién de estos procesos de negocio (SPN) es una herramienta que se
emplea dentro del campo de la reingenieria de procesos de negocio (RPN) (Mut-
hu et al., 2006) con dos objetivos fundamentales (Wynn et al., 2008): 1) analizar

199

Apéndice A. Resumen

el comportamiento de un proceso mediante el desarrollo de modelos de simu-
lacién precisos; y 2) comprender lo que ocurre al instaurar estos procesos en la
organizacion mediante la ejecucién de experimentos de simulacién.

Una herramienta de SPN requiere:

e Bloques bésicos para la construccién de un modelo: actividades, entidades,

recursos 'y conectores.

e Estructuras que permitan ordenar la ejecucién de las actividades: separa-

ciones, uniones, ramificaciones y sincronizaciones.

¢ Funciones avanzadas de modelado, como atributos, expresiones y planifi-

caciones horarias para los recursos.

Tal como demuestra (Bosilj-Vuksic et al., 2007), la simulacién de eventos dis-
cretos (SED) se adapta perfectamente a los requerimientos listados.

Desafortunadamente, los modelos de simulacién de los procesos de negocio
son generalmente complejos debido al tamafio de las organizaciones y la exis-
tencia de multiples relaciones entre las diferentes entidades de la empresa. Esta
complejidad desemboca habitualmente en simulaciones muy “pesadas” que re-
quieren tiempos de ejecucién elevados. La simulacién paralela incluye un con-
junto de técnicas que permiten reducir el tiempo de ejecucién de una simulaciéon
al aprovechar multiples procesadores conectados por algin tipo de red de comu-
nicaciones. Generalmente, una simulacién paralela se ejecuta sobre procesadores
fisicamente cercanos que comparten memoria y dispositivos de entrada/salida.
Estas plataformas se caracterizan por una latencia de comunicacién, definida
como el tiempo que tarda un mensaje en llegar de un procesador a otro) relati-
vamente baja.

Las plataformas que quieren explotarse en esta tesis son los sistemas multi-
ntcleo. Un sistema multi-nticleo consiste en dos o més ntcleos de procesamien-
to ubicados en el mismo “paquete” o circuito integrado. Los diferentes nticleos

comparten ciertas estructuras, como las cachés de segundo o tercer nivel y buses

200

A.1. Planteamiento del Problema

de entrada/salida. Habiendo mencionado la idoneidad de la SED para la simu-
lacién de procesos de negocio, la eleccion légica para aplicar paralelismo es la
simulacion paralela de eventos discretos (SPED).

Si se atiende a la literatura existente, hasta ahora la SPED se ha restringido
al dominio cientifico o militar y, casi siempre, se ha aplicado a modelos de sis-
temas muy concretos (Perumalla, 2006), lo que impide la reutilizacién de pro-
yectos terminados para enfrentarse a nuevos problemas. La disponibilidad de
una plataforma econémica y accesible donde poder ejecutar aplicaciones para-
lelas, tal como es un ordenador multi-ntcleo, presenta una oportunidad tinica
de investigar en el aprovechamiento de estas tecnologias para mejorar la expe-
riencia de los usuarios con las aplicaciones de simulacién. Teniendo en cuenta,
ademads, que la utilizaciéon del paralelismo requiere una amplia experiencia en
lenguajes y paradigmas de programacion que no son triviales, se plantea en esta
tesis la busqueda de mecanismos que permitan una explotaciéon del paralelismo
transparente al usuario.

Sélo dos trabajos previos tratan de avanzar en la mejora del rendimiento de
la simulacién de procesos de negocio a través del uso del paralelismo. Ferscha
y Richter (1996) utiliza redes de Petri para modelar los procesos de negocio, que
son posteriormente simulados con un motor de simulacién masivamente para-
lelo. Zarei (2001) propone también el uso de la SPED para reducir el tiempo de
ejecucion de una SPN modelada usando grafos de flujo de control. Ambos traba-
jos presentan un pequefio caso de estudio y aplican descomposiciéon por dominio
(Fujimoto, 2000) como la técnica para explotar el paralelismo.

Desde el punto de vista del autor de esta tesis, estos trabajos son mejorables en
dos aspectos fundamentales. Por un lado, el uso de formalismos o constructores
demasiado abstractos (como son las redes de Petri o los grafos de flujo de con-
trol) implica que una experiencia notable en el campo del modelado de procesos
de negocio no es suficiente para poder trabajar con estas herramientas. Seria
deseable disponer de herramientas de modelado que usaran un lenguaje mas
cercano al del usuario final sin por ello comprometer el poder expresivo o la efi-

ciencia del simulador. Por otro lado, ambas alternativas requieren de un estudio

201

Apéndice A. Resumen

del sistema para exponer explicitamente el paralelismo durante la creacién del

modelo conceptual. Esto limita la portabilidad y reutilizacién de las soluciones.

A.2. Objetivos de la Tesis

Teniendo claro el contexto de este trabajo de investigacion, se han establecido los

siguientes objetivos:

202

. Identificar las caracteristicas que hacen de la simulacién de eventos dis-

cretos y, mds especificamente, la orientacién al proceso, una aproximacion

adecuada al modelado y simulacién de procesos de negocio.

Discutir la viabilidad de la explotaciéon automatizada del paralelismo en

modelos de procesos de negocio.

. Explorar técnicas que reduzcan la incidencia de los problemas de contien-

da por recursos en una simulacién paralela en una plataforma de memoria

compartida, tal como son los sistemas multi-ntcleo.

Establecer el potencial de una simulacién paralela de eventos discretos ge-

nérica para simular organizaciones.

. Analizar las técnicas y algoritmos que mejoran el rendimiento de la simu-

lacién.

Establecer la adecuacién de Java como lenguaje para implementar la simu-

lacion propuesta.

. Estudiar el rendimiento de este tipo de simulacién paralela en ordenadores

multi-ntcleo.

. Validar la utilidad de esta aproximacién mediante su aplicacién a un pro-

blema real basado en la simulacién de un centro hospitalario.

A.3. Resultados y Contribuciones

A.3. Resultados y Contribuciones

Atendiendo a los objetivos planteados, las contribuciones de esta tesis pueden
resumirse en los siguientes apartados:

Identificar las caracteristicas que hacen de la simulacién de eventos
discretos y, mas especificamente, la orientacién al proceso, una aproxi-
macién adecuada al modelado y simulacién de procesos de negocio.

Después de estudiar las distintas aproximaciones a la SED, se ha comprobado
que la orientacién al proceso (o interaccién de procesos) es la orientaciéon mas
adecuada para modelar y simular los procesos de negocio. Por un lado, esta
orientacion ofrece constructores de alto nivel que permiten al usuario abstraerse
de los detalles de implementacion. Por otro lado, la interaccién de procesos utili-
za estructuras que permiten representar muy facilmente los componentes de un
modelo de procesos de negocio. Para verificar estas conclusiones se ha construi-
do SIGHOS (Mufioz y Castilla, 2010), una libreria para la simulacién de procesos
de negocio que utiliza los conceptos relacionados con los patrones de flujos de
trabajo (Van Der Aalst et al., 2003) y (WfMC, 1999) como referencia para defi-
nir constructores que permiten la creaciéon de modelos usando terminologia mas
proxima al experto en la gestion de organizaciones SIGHOS define, entre otros,

los siguientes componentes:

e Recurso. Cualquier bien material o0 humano requerido para realizar una
tarea. Los recursos emplean con una serie de “entradas horarias” para es-
tablecer no sélo sus horas de disponibilidad, sino los “roles” para los que
estaran disponibles. Los médicos o las maquinas de rayos X de un hospital
son ejemplos de recursos.

e Tipo de recurso. Es cada rol o categoria a la que se asocia un recurso. Las
tareas se definen en funcién a estos roles y no a los recursos especificos que
pueden realizarlas. En el esquema que se propone, un mismo recurso pue-
de tener varios roles simultdineamente, estando, por tanto, potencialmente

203

Apéndice A. Resumen

204

disponible para realizar varias tareas diferentes. Un cirujano puede tener
horas de cirugia y también horas de consulta de su especialidad; podrian

definirse, por tanto, un rol “cirujano” y un rol “doctor en consulta”.

Grupo de trabajo. Describe un conjunto de pares <tipo de recurso, canti-
dad>que son necesarios para realizar una tarea. Un equipo quirtrgico se
compone de uno o mds cirujanos, una enfermera de instrumentacion, el

anestesista. .. Todos ellos conformarian un equipo de trabajo.

Actividad. Describen cualquier tarea que requiere un tiempo determinado
y uno o varios recursos para ser terminada. Los recursos que requiere una
actividad se definen a través de los grupos de trabajo, pudiendo la misma
actividad ser llevada a cabo con diferentes grupos y diferentes duraciones.
Una intervencién quirdrgica, una consulta con un médico, la atencién de
una llamada a un centro de atencién al usuario (CAU)...pueden ser mo-

delados como actividades.

Flujo de trabajo. Una descripciéon del orden en que deben ejecutarse las
actividades del sistema para llegar a un fin determinado. Por ejemplo, el
flujo tipico de un paciente que va a ser operado se podria componer de
una actividad de preanestesia, una serie de actividades preoperatorias, la
intervencién quirtrgica en si, la recuperacion en la URPA y la posterior
estancia en planta hasta recibir el alta.

Entidad. Las entidades (o elementos) son instancias de los procesos defini-
dos mediante los flujos de trabajo. Asi, el ciclo de vida de una entidad con-
siste en la finalizacién de su flujo de trabajo asociado. Teniendo en cuenta
el ejemplo de flujo de trabajo, un paciente seria tratado como entidad de la
simulacién, aunque podria aplicarse a conceptos més abstractos como un

documento de un sistema de gestion documental o una incidencia en un
CAU.

A.3. Resultados y Contribuciones

e Generador de elementos. Las entidades aparecen en el sistema bien obede-
ciendo un patrén temporal (se puede suponer que llega un paciente cada
3 minutos de media al servicio de urgencias), bien en respuesta a algo que
ocurre en el sistema (la recepcion de muchas incidencias del tipo “fallo al
leer mi correo electrénico” pueden llevar a la generacién de una incidencia

“chequear servidor de correo de la organizacién”).

Discutir la viabilidad de la explotacién automatizada del paralelismo
en modelos de procesos de negocio.

Se han establecido dos hitos que, desde el punto de vista del autor de esta
tesis, permiten la explotacién automatizada del paralelismo: 1) el aislamiento
entre la definicién del modelo y la ejecucién de la simulacién; y 2) el uso de
una aproximacion al paralelismo enfocada en el motor de simulacién y no en el
modelo especifico que va a simularse.

Para conseguir el primer hito, se ha planteado el uso de una traduccién au-
tomatica de procesos a eventos para la implementacién a bajo nivel de la si-
mulacién. Esta transformacién permite mantener una interfaz de modelado de
alto nivel con un lenguaje mas cercano al que define el problema (procesos de
negocio), mientras deja el bajo nivel en manos de un motor de simulacién maés
eficiente y flexible basado en eventos.

Con respecto al segundo hito, se han establecido tres categorias para agrupar
las diferentes técnicas empleadas para paralelizar una simulacién, dependiendo
del nivel de dependencia de la técnica con las caracteristicas del sistema bajo
estudio. De esta manera, se puede hablar de paralelismo a nivel de aplicacién,
de simulacién o de modelado. El nivel de aplicacién no utiliza (o emplea muy
poco) conocimiento especifico sobre el motor de simulacién o el modelo, y per-
mite claramente el desarrollo de soluciones que no requieran la intervencion del
usuario en este proceso. Sin embargo, al ser soluciones demasiado genéricas, la
ganancia potencial de esta aproximacion es bastante limitada. En el otro lado del
espectro, el nivel de modelado permite obtener las mejores ganancias a costa de

un disefio explicito del modelo conceptual primero, y computacional despusés,

205

Apéndice A. Resumen

que exponga el paralelismo presente en el sistema bajo estudio. El nivel de simu-
lacién modifica el motor de simulacién sin tener en cuenta las caracteristicas del
modelo especifico a simular y permite la construccioén de soluciones que puedan
enfrentarse a cualquier problema de forma genérica. El equilibrio entre gene-
ralidad y eficiencia que ofrece esta aproximacion es el principal motivo que ha
llevado al autor de esta tesis a optar por estas técnicas.

Para implementar esta aproximacion se ha planteado inicialmente un esque-
ma basado en el paradigma maestro-esclavo, en el que un gestor de eventos
“maestro” maneja la lista de eventos futuros y el reloj de simulacién, mientras

un conjunto de hilos “esclavos” ejecutan los eventos.

Explorar técnicas que reduzcan la incidencia de los problemas de con-
tienda por recursos en una simulacién paralela en una plataforma de
memoria compartida, tal como son los sistemas multi-ntcleo.

Existen dos problemas fundamentales con respecto al acceso a los recursos de

simulacién compartidos en el esquema paralelo que se plantea:

1. Varias entidades pueden estar solicitando simultdneamente diferentes ac-
tividades que usan, en alguno de sus grupos de trabajo, el mismo tipo de

recurso.

2. Varias entidades pueden estar solicitando simultdneamente diferentes ac-
tividades que tienen disponible, para alguno de los tipos de recurso de
alguno de sus grupos de trabajo, el mismo recurso.

El primer problema tiene que ver con la estructura estdtica del modelo. Para
solucionarlo se ha planteado el uso de los Gestores de actividades, que son un me-
canismo para crear una particion estatica del modelo. Cada gestor de actividades
agrupa las actividades que usan los mismos tipos de recurso y afiade estructuras
para proteger el acceso concurrente a estos componentes de simulacién.

El segundo problema se deriva de la forma de definir los horarios de los recur-
sos que, tal como se han planteado, permiten una gran flexibilidad que incluye

206

A.3. Resultados y Contribuciones

la posibilidad de que un recurso esté disponible simultdneamente para varios ti-
pos de recurso o roles. Como los horarios son interpretados dindmicamente por
el motor de simulacién, es necesaria una solucién que detecte primero y arbitre
después cualquier posible conflicto también de forma dindmica. Este mecanis-
mo, que usa como base los gestores de actividades, se basa en la identificacién
de los conflictos causados por multiples entidades tratando de acceder al mismo
recurso. Una vez detectado el conflicto, se construye una zona de conflicto que
sirve para ordenar el acceso de las diferentes entidades al recurso mediante una

pila de mecanismos de sincronizacion.

Analizar las técnicas y algoritmos que mejoran el rendimiento de la
simulacion.

Una parte considerable de esta tesis se ha dedicado a proponer técnicas y al-
goritmos que mejoraran el rendimiento del esquema paralelo propuesto. Las
siguientes mejoras han sido propuestas y su impacto en el rendimiento de la
simulacion estudiado:

1. Explotacion de la localidad de los eventos mediante el uso de cachés lo-
cales tanto para los eventos futuros como para los eventos actualmente en

ejecucion.

2. Envio en bloque de los eventos, es decir, los eventos se agrupan antes de
ser enviados a los ejecutores de eventos.

3. Redefinicion de los eventos y particién de la fase de ejecuciéon tomando
como inspiracion conceptos de la aproximacion en tres fases (Pidd, 1998).

4. Desarrollo de un esquema hibrido en el que el gestor de eventos también
ejecuta eventos.

5. Ajuste fino de los detalles de implementacién que tienen una mayor in-

fluencia en el rendimiento final.

El andlisis de las diferentes mejoras mostré que la explotacion de la localidad

de los eventos ofrecfa unos resultados que mejoraban los tiempos de ejecucion

207

Apéndice A. Resumen

del equivalente secuencial, a la vez que ofrecia una moderada escalabilidad a
medida que se aumentaba el ntimero de hilos de ejecucion.

La técnica del envio de eventos en bloque permitié reducir un poco mas el
tiempo de ejecucion, pero fue la redefinicion del algoritmo de simulacién que
adoptaba los conceptos de la simulacién en tres fases la que supuso un salto
cualitativo notable. Este nuevo algoritmo redisefiaba los eventos de la simula-
cién eliminando algunas de las estructuras de sincronizacion requeridas por el
algoritmo original y reduciendo el namero de acciones redundantes ejecutadas
en cada ciclo de relo;.

El esquema hibrido no aporté ninguna mejora al algoritmo original pese a
aprovechar un hilo mds para ejecutar eventos. Sin embargo, el algoritmo similar
a las tres fases si pudo aprovecharse de este nuevo esquema.

Entre los detalles de implementacién estudiados, cabe destacar:

e Eluso de una variable atémica en una espera activa mostré un rendimiento

superior al de las esperas pasivas implementadas con seméforos de Java.

e Se demostré que crear objetos para ejecutar tareas que extendieran la clase
Thread era considerablemente mds ineficiente que implementar la interfaz

Runnable.

e La implementacion especifica de las barreras de sincronizacién usadas en
la simulacién afectaba notablemente al tiempo de ejecuciéon. Se pudo com-
probar que la implementacién estdndar incluida en Java ofrecia una esca-

labilidad muy pobre.

Establecer el potencial de una simulacién paralela de eventos discre-
tos genérica para simular organizaciones.

Mediante la consecucién de los objetivos anteriores fue posible la implemen-
tacion practica de PSIGHOS, un SPED genérico para la simulacién de procesos
de negocio basado en SIGHOS. Al explotar autométicamente el paralelismo, se

208

A.3. Resultados y Contribuciones

estudié la influencia de las caracteristicas del modelo en la eficiencia de la simu-

lacién:

e Los sistemas “saturados”, con una gran tasa de eventos simultdneos se

benefician de este tipo de simulacion paralela.

e Los eventos de PSIGHOS disponen de “anclajes” donde afiadir cédigo de
usuario para realizar cdlculos o modificar atributos de la simulacién. In-
crementar las exigencias de procesamiento es beneficioso para esta aproxi-

macion.

e Los sistemas débilmente acoplados, en los que hay més recursos y activi-
dades especializados aumentan el ntimero de gestores de actividades. Es-
to, a su vez, incrementa el paralelismo potencial que puede ser explotado

durante la simulacion.

Establecer la adecuacién de Java como lenguaje para implementar la
simulaciéon propuesta.

En numerosos trabajos se ha justificado la idoneidad de Java como lenguaje
de programacién para implementar herramientas de SED (Cassel y Pidd, 2001;
Ferscha y Richter, 1997; Jacobs et al., 2002; Martin, 1997). En general, se desta-
ca el uso que hace de la orientacion a objetos, su portabilidad y la ausencia de
punteros. El que sea un lenguaje construido con primitivas para manejar hilos,
lo convierte en una més que razonable alternativa para enfrentarse a una aplica-

cién que va a ejecutarse en una maquina con multiples nicleos.

Estudiar el rendimiento de este tipo de simulacién paralela en orde-
nadores multi-ntcleo.

Para medir el rendimiento de PSIGHOS se disefié un problema sintético que
tratara de poner de relevancia las diferentes caracteristicas que podian tener un
mayor efecto en el tiempo de ejecucién de la simulacién. De esta manera, se de-

finieron pardmetros para establecer el ratio de eventos simultdneos, la escala del

209

Apéndice A. Resumen

problema, el nimero de gestores de actividades que se iban a crear, la propor-
cién de recursos en situacion de crear conflictos, etc. Los diferentes escenarios se
pusieron a prueba en una mdquina con 16 ntcleos y 32 GB de RAM.

La figura A.1 muestra la aceleracién obtenida sobre la ejecucién del mismo
escenario con SIGHOS para distintas configuraciones de pardmetros. El eje x re-

presenta el niimero de ejecutores de eventos utilizados en cada prueba.

10

P

/’
] o
i e

3 =
i P
=

Aceleracion

2 4 8 16
Hilos de ejecucion

—&o— Escenario 1 Escenario 2 —a— Escenario 3 —>—Escenario 4

Figura A.1. Aceleracion de PSIGHOS sobre SIGHOS

Validar la utilidad de esta aproximacién mediante su aplicacién a un
problema real basado en la simulacién de un centro hospitalario.

Para comprobar en un escenario més realista la eficiencia y capacidad expre-
siva del simulador, se ha presentado como caso de estudio un modelo del flujo
de pacientes a través de un hospital. El modelo recoge aportaciones de (Aguilar,
1998) y (Giinal, 2008), pero introduce una nueva perspectiva en la que se realiza

210

A.3. Resultados y Contribuciones

una descomposicién funcional de la organizacion que remarca la especializacion
de los recursos del hospital. De esta manera, el modelo, validado con personal
del Hospital Universitario de Canarias (HUC), descompone el hospital en los

siguientes modulos:

e Servicio de urgencias, que recibe los pacientes urgentes. Estos pacientes
son dados de alta o ingresados en algtin otro servicio del hospital.

e Servicios quirtrgicos, que comprende todos los servicios del hospital que
realizan actividades quirtargicas. La URPA y la UCI, compartidas por todos

los servicios quirtrgicos, se incluyen también en este médulo.

e Servicios médicos, que incorpora todos aquellos servicios que no realizan
intervenciones quirtrgicas. Los pacientes acuden a estos departamentos a

recibir un diagnéstico o tratamiento médico.

e Servicios centrales, que proporcionan al resto de servicios los medios hu-
manos y materiales para realizar todo tipo de pruebas clinicas tales como

andlisis, rayos X y medicina nuclear.

La figura A.2 esquematiza las relaciones entre los médulos. Se trata de un
modelo genérico y altamente parametrizable que puede adaptarse a las caracte-
risticas de diferentes centros.

Para el estudio de la eficiencia de los algoritmos desarrollados, se ha presenta-
do un modelo computacional que omite el servicio de urgencias, asi como la in-
cidencia de los pacientes urgentes en general. Esto impide que el modelo compu-
tacional pueda utilizarse para obtener resultados reales, pero no obstaculiza su
utilizacién para los fines previstos de medir la eficiencia de la simulacién para-
lela y comprobar la capacidad expresiva de los objetos de modelado propuestos.

Con respecto a la capacidad expresiva, se ha comprobado que los objetos de
modelado propuestos permiten capturar comportamientos complejos de los re-
cursos humanos, como dedicacién multi-tarea, horarios complicados y diferen-

tes grados de especializacion. Las entidades del sistema, es decir, los pacientes,

211

Apéndice A. Resumen

Pacientes médicos 1 Servicios
programados médicos
o
o o
P& &
& O
P
LN
&
&S
>
&
Pacientes Servicio Servicios Peticiones de
urgentes) de urgencias —3 centrales periféricos
Pacientes quirargicos w) Servicios
programados quirtrgicos

Figura A.2. Modelo conceptual del hospital

pueden ser agrupados en categorias de forma sencilla, permitiendo la distinciéon
por patologias, gravedad del estado, etc. Ademas, cada tipo de paciente puede
seguir un flujo de trabajo diferente. En el modelo también se usaron capacidades
para definir tareas dependientes del tiempo y tareas cuya finalizacién depende
de la terminacién de un flujo de trabajo asociado.

Se probaron distintas escalas de modelo variando el niimero de servicios. Pa-
ra ello, se definieron una serie de seis plantillas de servicios (servicio “similar” a
dermatologia, servicio “similar” a reumatologfa. ..) y se dimensionaron los esce-
narios en funcién de la cantidad de servicios que se creaban por plantilla. De esta
manera, se prob6 con 1, 2 y 4 servicios por plantilla, es decir, 6, 12 y 24 servicios
en toda la simulacion. La configuracion de los servicios centrales se mantuvo fija
y similar a la informacién del equipamiento real del HUC.

Al tratarse de un sistema en el que las actividades de los servicios centrales

hacen de cuello de botella, se pudo comprobar que, para un tamafio de proble-

212

A.4. Conclusiones

ma moderado, la aceleracion de la simulacién escalaba bastante bien hasta los
4 hilos, tal como se ve en la figura A.3. Los tiempos seguian mejorando usando

mas hilos, pero de forma mucho mas moderada.

180
160
¥ 140
=
:8 120 H Secuencial
=
3 100 i Paralelo (2 hilos)
y 80 M Paralelo (4 hilos)
]
g o M Paralelo (8 hil
g aralelo (8 hilos)
240 .
= H Paralelo (16 hilos)
20 -
0 -
1 2 4
Servicios / plantilla

Figura A.3. Tiempo de ejecucion para diferentes escenarios de un modelo completo de un
hospital

A.4. Conclusiones

El trabajo realizado para esta tesis puede resumirse como la exploracién de las
posibilidades que ofrecen las arquitecturas multi-nticleo para la explotacién au-
tomatizada del paralelismo en la simulacién de modelos genéricos de procesos
de negocio.

Tres conceptos destacan en el parrafo anterior:

1. Generalidad: Las soluciones planteadas se encuadran en el campo de la si-
mulacién de organizaciones pero no en la simulacién de un modelo o pro-

blema especifico. En su lugar, se han presentado los patrones de flujo de

213

Apéndice A. Resumen

214

trabajo como una alternativa viable para describir genéricamente los pro-
cesos de negocio de una organizacion. Esta tesis ha evidenciado que el
uso combinado de los patrones de flujo de trabajo junto a la definicién de
estructuras de modelado de alto nivel adaptadas al lenguaje empresarial
(con términos como actividades, recursos humanos u horarios) permite a
un usuario con poca experiencia en el campo de la simulacién familiari-
zarse rapidamente con los componentes requeridos para crear un modelo.
Para corroborarlo, se ha desarrollado una implementacién practica de es-

tos conceptos en una libreria de simulacién en Java llamada SIGHOS.

. Automatizacion: A partir de una plataforma genérica para SPN, se ha explo-

rado la explotacién automatizada del paralelismo presente en los modelos
de simulacién en un ordenador multi-ntcleo. En este caso, el concepto de
automatizacion implica la ocultacién al usuario final de los mecanismos
que explotan el paralelismo en la simulacién. Esta tesis ha presentado un
nuevo algoritmo que distribuye autométicamente los eventos de simula-
cién entre un conjunto de hilos ejecutores de eventos, poniendo especial
atencion a los problemas derivados de la ejecucién concurrente de eventos
que acceden a recursos compartidos de la simulacién. El citado algoritmo
combina conceptos de la aproximacion en tres fases, el paradigma maestro-
esclavo, y una arquitectura paralela que utiliza una lista de eventos futuros
centralizada que posteriormente son distribuidos. Como en el caso ante-
rior, una implementacién practica de este algoritmo llamada PSIGHOS ha
sido presentada. PSIGHOS preserva la interfaz de modelado de SIGHOS, pe-
ro cambia el ntcleo secuencial de la librerfa por un ntcleo paralelo.

. Eficiencia: La simulacién de procesos de negocio es un problema en el que

la contienda por recursos y la frecuente comunicacion entre entidades li-
mita normalmente el grado de explotacién potencial del paralelismo. Es-
ta tesis ha analizado estos problemas y presentado nuevos avances en la
gestion estdtica y dindmica de los recursos compartidos para reducir la so-
brecarga que produce la contienda por recursos en un entorno paralelo.

A.5. Lineas Abiertas

Los resultados experimentales obtenidos han corroborado la eficiencia de
esta proposicién al enfrentarse con problemas sintéticos, y han mostrado
aceleraciones esperanzadoras frente a problemas genéricos y més realistas,

como el caso de estudio presentado.

Estos tres conceptos se combinan de una manera tinica que no encuentra ejem-
plos similares en la literatura relacionada con el campo de la simulacién de pro-

cesos de negocio.

A.5. Lineas Abiertas

Este trabajo ha demostrado que es posible obtener un excelente rendimiento con
una herramienta genérica que explote automaticamente el paralelismo al enfren-
tarse a diferentes escenarios creados sintéticamente. No sélo eso, los resultados
obtenidos cuando el escenario estd planteado desde las premisas de un proble-
ma con las caracteristicas de un sistema real son generalmente satisfactorios. Sin
embargo, la biisqueda de una mayor eficiencia en este tltimo caso, a la vez que
se preservan los principios de generalidad y automatizacién, permiten plantear

algunas lineas abiertas para esta investigacion.

A.5.1. Incertidumbre Temporal

La mayor dificultad que tiene el algoritmo propuesto para explotar eficiente-
mente el paralelismo en la simulacién es su fuerte dependencia con el ratio de
eventos simultaneos. Esto es asi porque no puede utilizar, como hacen otras al-
ternativas cldsicas de la literatura, una prediccién (lookahead) para poder eje-
cutar eventos cuya etiqueta de tiempo es mayor que el tiempo de simulacién
actual. Fujimoto (1999) propuso un algoritmo de sincronizacién para ser aplica-
do en sistemas federados de simulacién, un ejemplo de la descomposiciéon de
dominio bastante usado en el &mbito militar. Dicho algoritmo, posteriormente

refinado por Loper (2002) explotaba la incertidumbre temporal, es decir, la falta

215

Apéndice A. Resumen

de certeza del instante exacto de ocurrencia de un evento, para reducir el nime-
ro de sincronizaciones necesarias para mantener el orden causal de los eventos.
Dado que esta incertidumbre temporal puede encontrarse asociada a la dura-
cién de las actividades tal como las define PSIGHOS, este algoritmo podria ser

aplicado para incrementar el nimero de eventos a procesar concurrentemente.

A.5.2. Descomposicion Temporal

Existen dos ramas principales en la descomposicién por dominio: descompo-
sicién espacial, que es la mds frecuentemente usada y a la que dedica casi la
totalidad de su libro Fujimoto (2000), y la descomposicién temporal. Este segun-
do tipo de descomposicién o divisiéon del modelo, simula en paralelo diferentes
periodos de tiempo del sistema modelado, lo que puede ser ttil en simulaciones
estacionarias. Ciertamente, el mayor desafio de esta técnica es tratar adecuada-
mente el error que se produce en los puntos de unién entre periodos sucesivos.
Kiesling (2006) propone una nueva técnica que combina la descomposiciéon tem-
poral y un refinamiento progresivo de los resultados. De esta manera, una simu-
laciéon podria devolver un resultado impreciso muy rapidamente y, si se requie-
ren resultados mds exactos, continuar su ejecucion el tiempo que sea preciso. El
ejemplo que presenta Kiesling estd basado en la simulacién de colas, con lo que

resulta una idea de posible aplicacién en los problemas que trata esta tesis.

A.5.3. Simulacion en Unidades de Procesamiento Grafico

Si se atiende al estado de las investigaciones, las unidades de procesamiento
grafico (UPG o GPU en sus siglas inglesas) estdn ganando cada vez mas adeptos
entre los miembros de la comunidad cientifica dedicada a la simulacién. Park
y Fishwick (2008) proponen un algoritmo muy parecido al algoritmo maestro-
esclavo que se presenta en esta tesis antes de aplicarle las sucesivas mejoras. Su
algoritmo toma una lista de eventos y la distribuye entre un conjunto de procesa-
dores de una UPG. En lugar de enviar tinicamente eventos con la misma etiqueta

de tiempo, el uso de un algoritmo de sincronizacién relajada permite que todos

216

A.5. Lineas Abiertas

los eventos en un intervalo de tiempo puedan ser ejecutados concurrentemente
a costa de una ligera pérdida de precision. Esto obliga a los autores a afiadir un
mecanismo de deteccién y compensacién adaptado a cada problema especifico
que minimice el error. Aunque los casos de estudio que presenta ese articulo son
bastante simples, parece bastante razonable pensar en combinar estas ideas con

la propuesta de esta tesis.

A.5.4. Avances en Aplicaciones Reales

Atendiendo a las aplicaciones practicas que pueden derivarse de esta tesis, hay
varios campos en los que se puede mejorar PSIGHOS:

e PSIGHOS carece de interfaz gréfica. Actualmente, un proyecto de fin de
carrera con el alumno de Ingenieria Informatica Rayco Diaz Batista esta
expandiendo el trabajo de (Mufioz, 2006) para dotar al simulador de una
interfaz facil de usar y flexible con la que un usuario pueda acceder a todos

los componentes de modelado y lanzar experimentos de simulacién.

e Aunque la simulacién puede usarse por si misma como mecanismo para
ayudar en la gestién de organizaciones, es altamente deseable disponer de
herramientas que ayuden a los gestores en los procesos de toma de de-
cisiones de forma maés efectiva. Por tanto, la integraciéon de la simulacién
en paneles de control o soluciones sofisticadas de gestiéon de procesos de
negocio ofrece a los gestores una mejor oportunidad de conseguir sus ob-
jetivos empresariales. Trabajos anteriores del Grupo de Simulacién de la
ULL, tales como (Aguilar et al., 2005a) ya han presentado el uso combi-
nado de los sistemas multi-agente con la simulacién como herramienta de

ayuda a la toma de decisiones, y constituyen un camino a seguir.

e Aunque PSIGHOS no estd actualmente enfocado a su uso en entornos distri-
buidos, trabajos como el proyecto de fin de carrera de Yurena Garcia-Hevia
Mendizabal (Garcia-Hevia, 2008) describen cémo interactuar con el simu-
lador usando servicios web.

217

Apéndice A. Resumen

e Aunque el caso de estudio presentado en esta tesis estd enfocado a la ges-
tiéon hospitalaria, PSIGHOS ha sido utilizado con éxito en estudios de si-
mulacién enfocados a otros campos como centros de atencién al usuario
(Baquero et al., 2005; Castilla et al., 2007) o estudio de los procedimientos

electrénicos en la administracion publica (Callero y Aguilar, 2009).

218

Appendix

PSIGHOS: User Interface

PSIGHOS includes a comprehensive set of modelling components. This appendix
reviews those modelling classes included in PSIGHOS, and enumerates the most
relevant attributes and methods, the “hooks” added so that the user is able to
incorporate customised behaviour, and the pieces of information that the object
produces and the simulation engine collects.!

Before describing the modelling classes, let us review the package structure of
PSIGHOS:

e es.ull.isaatc.simulation Main modelling classes and the core classes for defi-

ning time units, timestamps, etc.
e es.ull.isaatc.simulation.flow Classes required to define workflows.

e es.ull.isaatc.simulation.condition The Condition interface and some predefi-

ned conditions.

e es.ull.isaatc.simulation.variable The Variable interface and some primitive

type variables.

e es.ull.isaatc.simulation.info Classes declaring the pieces of information that
the simulation emits and a user can handle by means of the InfoReceiver

interface.

ISince it describes the modelling components, this API can be used for SIGHOS as well.

219

Appendix B. PSIGHOS: User Interface

220

es.ull.isaatc.simulation.inforeceiver Core classes and interfaces that handle the
information produced by the execution of the simulation model.

es.ull.isaatc.simulation.inforeceiver.view Some predefined views that facilitate
the processing of information produced by the execution of the simulation

model.

es.ull.isaatc.simulation.factory Factories of simulation objects, required when
dynamic compilation is needed, or in case the simulation is going to be

created from other application.
es.ull.isaatc.simulation.test.” Test classes.
es.ull.isaatc.function The core classes used to define temporal behaviours.

es.ull.isaatc.util Several utilities, such as cycle classes and statistical func-

tions.

dureysewuny 0, e sumiay ()oxez3e8 durejgewt],
dwreysawny , HIONIA T, © SUINISY ()eanutpael dureqagewt],
dureysowmn ,MNOH T,, & SUITNIay () anogae8 dureqgewrt],
duwreysowy , Xy 1, & SWINY (O £eqare3 dureagewt],
dwreysawiny , HIM 1, © SUINISY () MoepM3e8 dureagemt],
SPOYIdIA

jiun urpuodsariod sy} ur passazdxe anfea awn y enrea SuoT
anfeA dyj Jo Jrun durmy Ay J, 3TUN 3TUNSWTL]

saMquUpy

‘<3uor qrunaury > 1red e se passardxa anjea swn v

uondumsag

dweigawi] sse|D z'd 2qeL

AVHA pue
HINOW YHIM ‘AVA “{MNOH ‘ALNNIA ‘ANODES ‘ANODHASI TTIA ‘UOHR[NWIS B UL Pasn 3q Ued Jey} SHUN swn jusiefi(q

uondinsag

nunawiy sse|d r'd AqeL

221

Appendix B. PSIGHOS: User Interface

porrad A12A8 urgyim pajress sppAoqng a1oLnqns oT12£H

SUOT}eId)T
9)TUIJUT S3)LDTPUL () "PaNISXD SI 9[04D ST} sawir) Auewr MO SUOT]BID}T JUT
ystuyy 03 pajoadxe s 9[2AD SI} USYM dUIT} ATIR[OY] sipue dwreageuwr],
JUSAD
Ue JO S3DUILINDIO0 DAISSIOONS OM) UIIMII] [LAIDIUL W], potxad UOT3OUNIOWTL],
}1e3S 0} Pajdadxd ST [DAD SIY} USYM dUIT} DATIR[OY] sliaels dwreageuwr],
SNqUINY

*9[040d yuared sy jo porrad a3 urgiim
payouner axe Yorym ‘sa[d£dqns UTejuod ued sa[oAD) *(SUOTIRIST () S[OAD SJIULUT Ue U UdAd AeW dU() "SUOTRINT JO IDqUINU
oy1ads e 19)ye sdojs ey paurjep aq ued 9[24Ad e ‘puey IS0 aY} uo ‘paydeas st (s pus) durejsawry rernonred e uaym sdois jeyy
pauyap aq ued 924> e “puel] SUO 3} UO :SALM JUIIDJIP OM] UI PAULSP 3¢ UED }] "SJUaAd Jo aduanbas pajeadar Afjeorporied v

uondumsag
9|2AD01IpoLad sse)D b°d d1qeL

“uormqrnsip Jequunu

wiopueI e MO[[0J pue awr} Uuo puadsp ued yorym ‘uonouny pagoads e 03 Surpuodsariod sanjea suinjar ey ssep oddeim y

uondumsag

uonoduNgawi] ssed ‘g'g dqeL

222

d[qerreA Y} Jo anfea Y, snTea 2309(qQ
SNqLINY
‘s9[qeLIeA Uoe[nuIlg

uondunsag

3|qeLieA sse|D “z'd d[qeL

UOTTPUOD SIY} 10§ S$3dayp Jeipy uonerado [ed13o1 ayy seuge (® queweTH){OOUD UESTOOq
SooH
“SUOT}EN}IS UTR}ISdUN IO SPUTRIISUOD [9POW 0} Pasn SI Jetj} UOHIPUod [ed130]

uondumsag

UoRIpUOD Sse|D '9'd d[qeL

sdurejsowiry om} A19A9 UTYIIM PajIe)s aAdqng a1oLpqns oT12£)H
924> S} 10§ SJULISUT UOTJRATIOR Y, sdureqsewrty []dureqgemty],
sNqLINY

‘91245 juazed) Jo suoneAnde
9ATINDASUOD OM) AI9Ad UMD Paypune| st jey} pauyap aq ued apAogns y suaddey Sunpiawos uaym sjyuejsur jo 39S y

uondumsag

9]oADR| R SSB|D S'd 21qeL

223

Appendix B. PSIGHOS: User Interface

UOT)eULIOJUT $S9001d 0} M3IA e SppY (I9AT®D9I ISATOD9YOFUT) ISATOD9YOFUIPPR PTOA

SPOYIPIN

3SI] 103eIoUd3 JUSWIS[Y 1STTI01RIDUSS <I04RIBUSH>ISTT
ST MOTJS[IOM 1STTMOTF <MOTq ‘Ixe8equr>dey
3s11 2d £} yusurarg astTedf1qusuweTe <odfljusweTy ¢xelejur>dej
3s11 2d £} s01no0say qast7odf10o0In0se1 <odf1eoanosey ‘Ie8equi>del
IsT] A31ATOY 1sTTL3TATI0® <K3TAT30y ‘ae8equl>dejy
3SI[92IN0SAY 1STTOOIN0SaI <o2anosay ‘Iel8equl>dej
JTUN W} UOTe[NWIIG 1TUN 3TUNSWT],
dwreysown puyg slpue dureageuwrt],
dureysownn J1e3g s13xeas dweggewr],
Toynusp] PT 3jurt
uondrsag uotqdraosep Suriag

Sanquyy

"9[qe[TeA. Ik SJUIAS dIOW OU IO
STPUD SaYJLaI YD0[d [eN}IIA U} USYM SPUS UOTIETNUIIS S], "YO0[d UOTIe[NWIS Y} JO AdeINdde 3} SOUTWISIP JTU)SWI], WNU
-IUTW 7 "9dueApe 0} durejsawn jxau 9) SUIULIS)SP 0} pasn ST anbruiyps) JusAs-)xau y 'SI0JISUIDHUSALI([OWIL], PUL SIDINOSIY
‘U 9y} Aq paonpoid syuans oY) 03 SUIpIoddE SIdULAPE PUE S[IIL)S JE S)IeIS Jey) YOO [eN}IIA PIJeIOSSe Ue Sey uorn
-e[NWIS "MO[, PUE J0JeISUIDHUSALI(OWIL], ‘@dATuswa[y “(ANATIDYUSALI(JMO[] Pue AJATIOYUSALI(JAWIL]) ANARDY ‘dnoin
-I0pA ‘901N 0SaY “9d A 90IN0SIY :SIINIONIIS JUSISJJIP JO SULIW Aq PIULIP [OPOUIL B S9INIDXD YITYM “SSB[D UOTJR[NUILS UTLW S],

uondumsag

uone[nwis sse|D 'g'd 3[qeL

224

225

IOYTIULP] pPT 3ut
uondrsag uotqdraosep Suriag
saINqUPY

*S9DINOSAI A} JO suonesIferdads 10 S9[0I sauyga("921nosai jo adAy oy,

uondunsag

odA]221n0say sse|D 6°d dqeL

(o) uoTyEINUIIS) SdDULAPE YO0[d UOTIR[NIIS oFuToSuey)HLWTL],
(dwm voneMWIs ‘oW NJD) PUS UoHENWIS OJUIPUJUOTIRTNUIS
(dwm vonewIs ‘Ow} N JD) }EIS UoRe[NWIg 0JUT1Ie1SUOTIRTNUTS
uorjeuriojuy
S9dUBAPE 20> UOTe[NWIS Y} IOY Y ()F5TL¥o0TDIO e pTOA
S0URAPE XD0[D UOTIe[NuIIs a1} 310Jag (O)FOTIYO0TDaI0F2q PIOA
SpUd UoT}eTNWIS dY} Jo3je Isn | (Opue pToa
S11€)S UOT)e[NUIIS 9} 910Jo¢g ()atur proa
SOOH
8ngap sajqeug (ano andanQ)andangaes proa
J[qELIBA B SUINIY| (eureyres 3urilg)Ieple8 oTqeTIRp
d[qerLIeA e sppy (enTea 20o(qp ‘eureyres Jutiag)repand proa

paNURUOD — UONRNWIS SSe]D 'g'd J[qEL

Appendix B. PSIGHOS: User Interface

uondrsacy uotqdraosep Sutaag

saMqUPY

*90IN0S3I AY)

jo Aymiqerreaeun augap ‘sporrad Aji[Iqe[reae Jo pesjsur nq ‘SaLIUL S[qeiawn 0} A[SNOZo[eUR PaULIP Ik SILIJUS UOT)R[[2IUR))
‘A[snoauejnuurs sad£) 901N 0sa1 JUSISJJIP 10§ dqefrear A[eryuajod aq 03 901nosax 9y Surmoire snyy ‘ouwr ut defIoA0 ued SLus
a1qeyauur], ‘porrad Ajifiqerreae yoea jo uoryenp a3 pue 924> Ajiqereae ue ‘od4£) sdmosai e sauyap yey) <3uof ‘9[pL)) ‘odA1a0
-INOSY> OII} © S3sN ATUS S[eIdWT} Y "SILIIUS J[LIdUIT]} JO SUeaw £q PI[[OIU0D ST AJI[ICe[TEAL 3SOUM 3DINOSIIT UOTe[NIS Y

uondumsag

921N0say sse|D 0r°d 2[qeL

92INn0sal SIY} I0J o[qefreae wﬂﬂwn— mQOum 92INno0sal e Iajje amSH Av FF0°TOoYI=231Je pPTIOA

drqerreae Suraq sdois A[panooy
-JO 90INOSAI A} 210§9q Pappe 3 ued Ae[dp enxd uy -ad4y
90IN0SaI SIy} 10§ d[qe[reae Juraq sdois 20Ino0saI e d10jog () ¥30°T0YeI0F0q OTQUOP

90INOSAI ST} 10J S[E[TeAE dPEW ST DINOSII B Id3Je Isn ()upeToyieije proa

d[qe[TeAe apew A[PA

-1309JJ3 SI 92INOS3I Y} 2I0JAq PapPe 3q Ued Ae[op enxe uy

*2d4£) 901osa1 SNy} 10§ S[qe[TeAk dpeW SI ADINOSII B dI0Jg ()upeToyeiogyeq oTqnOp
SOOH
d[qerreA e SUININY (sureNIea Surilg)aIep3el8 oTqeTIR)
d[qerIeA e sppy (enTea 200(qp ‘eureyres Jutiag)repand proa
SPOYIRIA

panunuo)) — odA1901mosay sse) “6'q d[qeL

226

(ouIn uoTyRINWIS “JUsWa]d ‘MOP[IoM ‘Ay1aTioe ‘0dA} 9d1nos
-a1 “901n0sar) Aj1anoe ue o A1red 03 parnjded SI 90I0sal

(owm uonemw
-IS “9DIN0SAI) UOTJR[[DUED B Id)je Urede s[qe[leA. SI 9dIN0say]

(s uoney
-nwits ‘a21nosar) porrad parads e 10§ Pa[aoued SI 90IN0SAY]

(oun uoryenuuts ‘od £} 901mosai ‘92mosar)
ad A} somosar oywads e 105 a[qereae 3uraq sdois ad1osay

(owny uonyernuurs ‘od£) aornosax

‘921nosa1) ad4) a01nosa1 oywads e 10y S[qeTeA® ST 90IN0SAY

(W) UOTIE[NUUIS “9DINO0SAI) UOIINIIXS SPUS DINOSIY

(WL} UOTYRTNUUIS “9DINOSDI) UOTNIAXD S}IL)S 3DINOSIY
uorjeuriojuy

S[(eLIBA € SUIN}I}

LHHAYD ' oFulsdespaoInosay

AA0THDONYD " OFUTS0IN0SdY

NOTHONYD "oFuledoanosasy

A407T0Y " oFursdanosay

NOTI0Y ' oFuIsdanossy

AN oFuresInosay

IHYVILS " OJUIS0Inosay

(sureyres Suriyg)Ieple8 STqeRTIRp\

d[qerreA e sppy (entea 30slqQ ‘eureyresa Jutazg)xepsnd proa

A1yus uorje[[EOUEd MAU € SPPY

Anyus a[qeiown Mau e sppy
SPOYPR

SILIJUD 9[qeIawl],

IYUIP]

(' ")L1qugsTqelTeoUR)PPE PIOA
(" ")£LxqugeTqerewtppe prOA

oTqelowTd <AIIUFeTqRleWIL>3STT

pT qur

paNUIIUOD) — 3DINOSAY SSe[D)

‘0T°d °19eL

227

Appendix B. PSIGHOS: User Interface

(y8uaysadhifaoinosal == jySuaj pap

-oou) -adA} soanosax 1od parmbar s3dmosar jo junowry pepesu []aut
dnoi3yiom sty ur pasn sad£} a01nosaz jo 3sr] sedf1eoanosex []Jedfledinosey

saMqUPY
(£31am0Y ue AqTeordAy)

Suryiowos op 03 parmbai are ad4A) yoes woiy sadrnosar Auewr moy saurgep ey <1a8auy ‘odA1e01nosay> sired jo 398

uondusag
dnoiDpom sse|d “Tr'd d1qeL
(dwm uonenuuIs

JUaWRR ‘MOPIoM “Ay1anioe “0dA} 90IN0SaI “9dIN0SaI) AJIATY
-Dk Ue Ino A11ed 0} pasn uaaq Suraey] 19)je pasiy SI 9dIN0SaI QASYATHY ' oFulelesnedInosay

PonuUnUO) — 22IN0SIY Sse[D ‘0L°d 2[qeL

228

syuawnre euondo are uonrpuod pue Ayond (puod uotqatpuo) ‘Aqrrorad qur ‘3m dnoxpgrop
9y ‘uoneInp pajernosse ay} Yim Sm dnoidyiom ayj sppvy ‘uorgeanp uotjoungeuwt])dnornyIomppe proa
SPOYIoN
arqudni
-I93ul 10 Tenuasaid se AjIAToe ue SSLId)ORILYD 0} SISUIPOIA SISTITPOU <ISTFTPON>1OGUNUY
Kyranoe sy
I0J pasn ueaq JurAey JIoyje S[qe[leArun sawodaq ad4Ay siyy
JO 901nosa1 e awy jo porad ayy pue sadA} 901n0saI Jo 319G q1sTTUOTqRTTeoURD <Juo] ‘odfleoanosays>de|
a1qelrdnoinyron
asn ued Ayranoe ayj yey; sdnorInIop jo 3195 <dnoanyIomL1TATIOY>0TqRIPOZTITIOTI]
Ayianoe ays jo Ayorr g Latxotad qut
TYRUSP] pT gut
uondrnsa uotadraosep SuTIlg
SNqUPY

‘pauriojrad 3ureq st Ay1anoe ayy a[rym
J[qe[IEARUN SW03(SIDINOSII A} JT USAS ‘PIYSIUT SI I [FUN SIDINOSII s3T Sdaay A31A1ioe 9y ‘pajress aouo a1 ‘o[qudnrmjurun
pue ‘Aj1anoe repuasaid 1ayjo Aue wroyrad A[snosueymnuurs jouued £j1anoe sy yno Jurdired Juswaye ue ‘st jey ‘Tenuasard are
SINTAIOR UDALIP-aUIN “Jnejap Ag -Ayranoe siy} ysiuy o} axe} [[Im 31 Suo] Moy sjas pajos[es dnoidsyrom oy -sndoidyrom jo
30s e pue Aniqndnaisyur “Arenjussard ‘anfea Ajrorad e Aq pastaoereyd aq ued AJIATOe Jo puny SN, ‘dwm jo porrad e 1ayye
S9USIUL pUe S9dIN0SAI YINOUS a1k I} UayMm s}Ie)s AJ1anioe oy} -1 ‘dureysawur) e Aq USALIP ST UOHBSI[RUL 9SOUM AJIATPOY UY

uondinsag

Aianoyusau@awi] sse|) “grd 21qeL

229

Appendix B. PSIGHOS: User Interface

Ay1apoe s1y) 10§ pasn
u9aq 3uraey Iajje d[qe[rearun sowodaq 9d4} Siyj Jo 9dInosax
e yorym Surmp swr jo porrad ayj pue sad4) aoinosar jo 399

asn ued Aj1anoe ayj 1ey) sdnornyIops Jo 195

Ay1anoe ayj jo Lyurorr g

asTTUOTqReITooURD <Juo] ‘odf1eoanosey>dej
a1qelrdnoinyron
<dnoanyIoMLaTATIOY>0TqRIPOZTIATIOTIJ

LatI0Tad qur

JToynuosp] PT 3urt
uondrsag uotqdraosep 3uriag
saINqUPVY

“19)3€] 93 0} Je[rwuls Sureq INOIALYI(ST ‘MO[IPAINIdNIG - AJALDY PLIGAL B PIISPISU0D 3q ued AJIAT)oe
SIUL, "MOT, [EUISIUI Ue JO UOTJeSITeUl 9} U0 spuadap uoreInp asoym pue ‘Jusws[y ue £q jno paLired aq ued jey AAnOY uy

uondumsag

AMARDYUSALMO|4 SSe|D “€L°d [qEL

O[qPLIRA B SUIN}oy

J[qeLIeA € SPPY

porzad paygmoads ayy s[qerearun sawodsq

90IN0SaI Y} ‘saystuyy Ajranoe ay 1e3je isnl ‘Ajranoe sy o
A1xed 0y pasn st (31) adAy payroads oY) Jo 90IN0SaI € UYL

(eureyres 3uriyg)Ieple8 oTqeTIERp

(enTea 20o(qp ‘eureyres Jutiag)repand proa

(potxad oTqnop

‘a1 adf1e51n0S9Yy) UOTIRTSOUR)SDINOSSYPPE PIOA

panunuo) — AJABIYUSATIAWIL, SSe[D TI'd d[qeL

230

Ppayean st yeys 2d4} siyy jo yuswoP

Uoes UM PajeIdosse A[[enpIAIpuUl SI jey} d[qeriea e sppy (enTea 309(qp ‘eweu SuTILg)IB)\JUSWSTHPPE PIOA
SPOYIdIA

ad 4y sy Jo syjuawale ay) Jo AJLIOLLJ LatI0Tad qur

TPYHUSP] pT aur

uondrsacy uotqdraosep SutIag
saquUpy

‘sasodand [eonsiye)s 103 pasn St pue ‘engriie
aandrmsap e Ajdwis st snpy ‘Ayurorrd e Sunyes worg jredy “Uowod Ur SUNIDUWIOS dARY UYDTYM SJUSWI[S JO }3S B Sa]LISI(]

uondumsag
odAuswa|g sse|D PI'g dqeL
S[geLIkA B SUINIY| (sureyres Suriyg)Ieple8 STqRTIRp\

d[qerreA e sppy (entea 30slqQ ‘euweyres Jutazg)xepsnd proa

payads porrad a3 10§ a[qe[TEARUN SIUWI0D9]

90INO0SAI Y} “SAYSIUY Ayanoe oy 193je isnl ‘AjIAToe SIy} o (potxad aTqnop
A1xed 03 pasn st (31) 9dA3 pagwads ayj JO 90INOSAI € UIYAM ‘91 adf1eoInosey) UOTIBTEOUR)SDINOSSYPPR PIOA

syuoum e feuondo (puod uwotatpuo) ‘£3raorad
are uonrpuod pue Lyuord sy -jurod jxe ayy 0} Anus oy qut ‘8m dnoipyiom ‘MOTITRUTF MOTJISZTITRUTI

WoIj paurap MO[J pajerdosse ue Yim dnoiSyiom e sppy ‘MOTJTeTATUT MOTJIszITeTaTul)dnoInyioyppe pIoa

SPOYIRIA

panunuo) — AJATIYUSAIJMO]] Sse[D "€T°d d[qEL

231

Appendix B. PSIGHOS: User Interface

Pajeald usa(oA Sjualliafe 9] Ja}je ams.m AVMPQOE@HMQPMOHUH@PH@ PIOoA

POYIaW ST} UTYIIM PaTPOW 9q Ued YdTYM “91ea1d

0} SJUBWISd JO JUNOWIE A} ST U *SJUSWII[D A} Jur)eaId 31059 (U 3UT)SjuUsWeTHolROINSI0FS] JUT
SOoOH
Pa1e3I1d 9 0] JUAWIATA Jo 2dA} mau e sppy (9Tqnop ‘MOTJIszITeTaTul ‘odLlrusweTd)ppe pProA
SPOYIdIA
<Ayqeqoi g ‘mory ‘edA1yuswarg> se
passaidxa “pajeard 9q 03 SUSWS[D Y} JO SOTISLIAIORILD AT, 0TIIUSS <OTIJUOTIRISUSH>AST]
awT) AT9Ad Pa)eaId SIk SJUSWS[S AULW MOL] WoTHU UOTFOUNJOWT],
saINqUPy

*039 “3uoaq Aoy Yorym 03 ad 43 Juswa[d “yunouwe ‘st yey) “pajeard a1e Syuswd[d Aem a3 sauga(]

uondunsag

lojealdjuawialg sse|d ‘9T°g A[qeL

syuaura[a Juryead jo adIeyd Ut sserd) JI03e9Id I01B8I)IUSWSTHOTSRY
SJUDUIS[A A} 911D 03 UdYM SUTUTjap IDAD oToLo oT2£)H
saINqUPVY

‘urayjed awrn e SUIMO[[OF SUSUWID[S S9)LId YDTYM IojeIduad v

uondumsag

lojelauanuaALawl] sse|d ST d[qel

232

(owm uonyernuuts ‘A)1A10R S} JuTUTEIUOD MOTJ [3UTS ‘AJTATIOR
uawdd) Ayranpoe pajdnrrajur Asnorasid e sawnsar jusurs[g IOVSHY - 0JUTUOTIOyIUSWaTH

(swumy uoryeNWIS ‘A3TATIOR S} SUTUTLIU0D
MoTJ a[3urs “AJ1ATior “Juswald) Ayanoe ue sydnizejur jusuwrs[g LOVINI " OFUIUOTIOYIUSWTH

(9un uoryernuurs ‘Ayranoe a3 Surureyuod

MOTJ 9[3uIs “AJIATIO® ‘JUSWDA) AJIATIOR Ue SIUSIUY JUSWS[Y IOVANT ' 0FJUTUOTIOyIUSWaTH

(pamyded sadmosal ‘awr) uorenuIs ‘AJIAT)oe oy} Sururejuod
Mmopy 98urs “AJIArioe “JUaWd[E) AJALOER UR SHIRIS JUSUIS[H IOVVI1S 0JUTUOTAOyIUSWaTH

(owury uoTyRNWIS ‘AJTATIOR S} SUTUTLIU0D

Moty a13urs “Ajanoe quaurs[a) Ajranoe ue sysenbar jusurs[g IOVhAY - 0JUTUOT 10 uswa Ty
(9wm) UOTYETNWITS ‘JUSWID) UOTINIIXD SPUS JUIWS[H ANE - oFUTIUSWSTH
(SWIT} UOT)R[NUIIS JUSWIS[) UOTINIIXD S}IE)S JUSWIS[JUV1S oJuTqusweTy

uonewIoyu
R_YRUIP] PT 3urt
JUSWIS3 ST} YIIM PIJRID0SSe MOTJIOM 3 Jo dois 3sI1y oy, MOTATRTIATUT MOTJISZTTRIATUT
Juawad sy} jo adAT, adf1qucweTe odAjusweTq

saMqUPY

“103ea1 Ul SurpuodsarIod Ay Ul paquLIdsap se pajeald Af[edonewoine are ng ‘[dpow 3y jo jred se pare[dap
Apordxe jou are sjuswa[g ‘MOT pajenosse ue pue ad4£) e aary sjuswaly ‘SjuLAd uonenuils Sureaid jo siqeded Ljnus uy

uondinsag

JuswWs|3 sse[D 'LI'd 21qeL

233

Appendix B. PSIGHOS: User Interface

J YIIM MOTJ JUSLIND a3 Sunyul] Aq youeiq Suro8imno ue sppy

SPOYPRN

(¥ MOTA)YUTT PTOA

(2dDM) UAa13vd 111ds ja1p48 g 93 SISO “seydueIq SUTOSINO [EISASS OJUI UOHNIIXD 3} SIS Jey) MO[j 10ssa0ons apdunur y

uondusaq

MO|{|9]|eled Sse|D ‘61°d °IqeL

Ayan
-DE 9Y} JO UOTINIIXD Y} S}ILIS A[[enjdoe JUSW[D Y} 193¢ jsn(

S92IN0SY J[qe[reae

103 Sunrem ‘A31A1)oY ue ut pananbus st juswspe ue 193ye Jsn(
dajs s1y3 paysiuy sey a Juawa(e Sy} Ia3Je Isn|
MOTJ ST} sysenbai a yusura[e sy a105og

SOOH

]
M MOTJ JuaLImnd a3 Sunyul] Aq (T JIM) douanbas e sajear)

SPOYIRIA
moty sy £q padderm Ayanoe ayy,
sNqUPY

{} (o ausweTq)3rIelgIoqJe proA

{} (o jusweTy)enenbur proa
(o qusweTH)OZTITRUT JI93Je PTIOA

(@ qusweTy)asenbeysrogeq uesTooq

(¥ MOTA)YUTT PTOA

1oe £9T1AT9OY

‘sananoe 10y 1addeim e :mofj e Jo apou jea] oYL,

uondumsag

MO|43|3ulS sse|D) "8T°d d[qeL

234

MmoTj STy sysenbai o Juswa[d oY) a10j9g (@ qusweTy)asenbaysrogeq uesTooq
SOOH

1SI'IOONS UI SMO[J (3ST'TPUOD <UOTATPUOD>UOTADSTTOD

are a1dy) se saypuelq 3uroSino [eUOIPUOd Auew se Sppy ‘9STTOONS <MOTJ>UOTIDSTTOD)HUIT PIOA
J Ym moyy

Jua1Ind 93 Sunyury Aq ypueiq 3uro$ino [eUorIpuod € sppy (Puod UOTQTPUO) ‘J MOTJI)HUIT PTOA
JsSroons

UT SMO[J 91€ 919} Se saypuelq Suro8ino Auew anij se sppy (1ST'IOONS <MOTJA>UOTIDSTTO))HUTT PIOA
Fym

MOTJ Juarmd oy} Sunyur] Aq youeiq 3uro8no any e sppy (F MOT){UIT proOA

SPOYRIA

‘FIDM) Udazgvd 9910y7) 2015119XT S SI9BIN “SNI) Se Pajenead youelq 3uro3Ino ISIry Sy} erA SSNUNUOD
MOTJ 9L, "POILATIOR 3] 0} “I9PIO Ul PIjen[eAs aIe YdIym ‘saypueiq 3uroSino ayj Jo auo AJUoO SMO[[e Jey} MO[j [EUOIPUOD Y

uondumsag

MO 432104DPAISN|IXT Sse|D “0T'd dqeL

MOTJ ST} sysanbai o Juswa[d Y} a10J9g (@ quesweTy)asenbeysrogeq uesTooq
SOOH
ST
-ONS UT SMO[J a1k 319y} sk sayouelq Surodino Auew se sppy (3ST'IOONS <MOTJ>UOTIDSTTOD)HUTIT PIOA

panunuo) — MoJ[e[TeIed sse[D ‘61°d [qeL

235

Appendix B. PSIGHOS: User Interface

MmoTj s1y) sysenbai o Juswa[d oY) a10j9g (@ qusweTy)asenbaysrogeq uesTooq

SOOH

JSI'TOONS UT SMO[J (3STTPUOD <UOTFTPUOD>UOTIDSTTOD

aIe 219y} Sse saypuelq 3urodmo [euonIpuod Auew se sppy ‘4STTOONS <MOTJ>UOT3DSTTOD)HUIT PIOA
3 Yim mopy

JuaLINd ay} Supyurl 4q Youerq SuroSno reuonIpuod e sppy (PUOD UWOTRTPUO) ‘J MOTJ)YUIT PIOA
jsroons

Ul SMOJJ a1e a1ay) sk saypuelq 3uroSno any Auews se sppy (3ST'IOONS <MOTJ>UOTIDSTTOD)HUIT PIOA
Fynm

Mo[J JuarImd dy) unjur] Aq youeiq 3uroSino ani e sppy (F MOTJ){UTIT PIOA

SPOYIdIA

(9dDM) uiavd
2010y -1 Y} SI9IIA] "PIILANDIE 3 0} UOIIIPUOD IV} J99W PIYM saypueiq Suro3ino [[e SMO[[e Jey} MO[j [EUOLIPU0Dd Y

uondumsag

MOJJaD10yDNINN sse[) T d 919BL

236

MOTJ ST} sysenbai a yusurare ayy 2105og (e jusuweTy)asenbaysiofeq ueaTooq
SoOoH
JSIIOONS UL SMOJJ (3STIPUOD <OTQNOI>UOTIDSTTOD
are a1y} se sayoduelq urodno onsiiqeqoid Auew se sppy €4STTOONS <MOTJ>UOTIOSTTOD)NUIT PIOA
J pm mopy
JuaINd Ay Sunyury £q youeiq 3urodino onsifiqeqoid e sppy (qoxd oTqnop ¢y MOTJ){UIT PTOA

‘a1qeqoxdmba pazaprsuod are saypuelq [y ISITO
-ONS UT SMO[J a1 919} Se saypuelq Suro8no Auew se sppy (1ST'IOONS <MOTJA>UOTID9TTO))HUTIT PIOA

"0 03398 ST ypueIq siyy Jo Liqeqod ay, 7
UM MOTJ Juarmd a3 Sunyur £q youeiq 3urodino ue sppy (F MOT4)YUTIT pProOA

SPOYIdIA
‘uasoyd 3uraq jo Aypiqeqoad sy Surssaxdxa [T - 0°0) onfea e sey youeiq Jurodino yoey
-anfea Ajiqeqoxd e Sursn £q way) jo jos e Juowre woiy Yourelq 3uroSno suo s303[as Jey} MO[J 310 dAISNXY pajdepe uy

uondinsag

MO|JUOIIR[RSAN|IGRqOId SSe|D "TT'd AIqeL

237

Appendix B. PSIGHOS: User Interface

MOTJ ST} sysanbai o Juswa[d Y} a10J9g (@ qusweTy)asenbeysrogeq uesTooq
SOOH

J
M MOTJ JUaLInd a3 Sunyury Aq (TJIM) douanbas e sajear) (F MOTI)YUTIT proOA

SPOYPRN
(8ADM) Udapgvd a81a)N-131 N 9 SISO “ssed 0} saypueIq Juruodur sy [[e SMO[[E ey} MO[J YO Ue S9)ed1))

uondusa

MO|49BIWNIN SSe|D FT°d d[qeL

Mmofj sty sysenbai o jusws[d oy} a10j9g (@ queweTy)asenbeysiogeq uesToOq
SYO0O0H
]
M MOTJ JuaLmd ay Sunyury Aq (T JIM) @ousnbas e sajear) (F MOTJ){UTIT PIOA
SPOYIRIA

(SIDM) uda13vd a81ap a1duirg ay) SI91IA *90U0 ATUO pajeAnde SI youelq SUroSino ayj ‘owr) UOTJe[NUIIS

dwIes 9y} Je dALLIE SaUPUeIq SUTWodUr [e19Ads UaYM, ‘ssed 03 sayduerq Surwodur ayj [[e SMO[e Jey} MO[J YO Ue sajear))

uondumsag

mo|4e8iewalduis sse)d *€zd d1qeL

238

MOTJ sTyj sysanbai o Juswaa oy 21098 (@ queweTy)asenbeysrogeq uesTooq
SOOH
)
UM MOTJ JuazInd oy Sunjury Aq (TJIM) 20uanbas e sajear) (F MOTI)YUTIT proOA
SPOYION

(8TADM) uta33vd sogpuniriosi] Suryoorg au3 sy99A “ssed 03 youeiq Suruodur 3siy ayy A[uo smofre yeyy mofy urol NV uy

uondumsag

MO[4JojeUIWDSI SSB|D *97'd dIqeL

NSO@ mﬁﬂ_ mummﬁwwh o uﬁmgwﬁw oy} m.HOwwm— AO PQQEQHMV meﬂ.muw.mwu..o Foq uesTOOQq
SYOOH
J
M MO} Juarmd a3 Sunyur] Aq (T JIM) @ousnbas e sajear) (F MOT4)YUTIT pProOA
SPOYIRIN
“(edDM) uroned

UOT}ESTUOIOUAG 31} S}99JA] *9DUO PIjeATIOR Udaq dALY Sayduelq Suruiodur ay} [[e uaym AJuo sassed jeyy mofj urol NV Uy

uondumsag

MO[{UOIBZIUOIYDUAS sse|D *ST°d d[qeL

239

Appendix B. PSIGHOS: User Interface

"MOTJ ST} UTJIIM PIJNIIXD SIPTATIOR Y, SOT]TATIO® <K3TAT3IOY>UOTIOSTTO)D

s qUNVY

(L1dDM) udapvd

Suymoyy a11pav pacvajiau] S} s} ‘Teryuasard oIk SAIATIOR AU} [k J] "UO 0S PUR ‘CY 9I10J9q ¢V TV 210J3q Pajndaxa dq jsnur
1V “snyj ‘suonjear souapadaid saumep [uy - ‘gv ‘TV] Aeire yoeq ‘sAerre £)1A1)oe JO UOTOST[0D e SUISN pauygap aI1e sSULIIPIO
renae ‘sSurrapio fenred jo jas paungepaid e 0} Surprodde paurioyiad 9q 03 SOYIAIOR JO 39S B SUTBJUOD JeY} MOJj PaINdoNIs y

uondumsag

MO|48unnoy|a||eledpaAeajialu] sse|) g7 d d[qelL

MmoTj STy sysanbai o Juswa[d Y} a10j9g (@ qusweTy)asenbeysrogeq uesTooq
SOOH
MOTJ U3 2)BATIOR YDTYM SapueIq SUTUodur JO IaqUINN antepldeoor jur
saINqUNRVY
]
UM MOTJ Juaznd oy Sunjury Aq (TJIM) 0uanbas e sajear) (F MOTI){UIT proOA
SPOYIRIN

(TE€IDM) uda3vd utof jrzavg Suiydorg ays s399I “ssed 03 ypueiq Surwodur Yj-u ayy A[uo smoffe yeyy mofj urol NV uy

uondumsag

ulofjenJed sse|d Lz'd [qeL

240

J
PIM MOTJ Juarmd ay Sunyury Aq (T JIM) @ousnbas e sajear) (F MOTA){UTIT PIOA
SPOYIdIA
uoryerado doof a3 S[OIFU0D Jey} UOLTPU0I-}SOJ puOd UWOTQTPUO)
sINqUPy

(TZdDM) U4a33vd dooT Saianjonij§ d) SI9SIN "SOUSIUL MOTJ ST} ‘OSIMID}O ‘Urede pajndaxs SI MO[J ISUUL S} ‘Oni}
ST uonIpuod-3s0d ayy J| "PaxaYd SI UOTPpu0d-}sod S} UsY} pue SWI) JSITj S} Pajndaxa st MO[j Jouutl ay [‘doof a[iym-op y

uondumsag

MO[J9[IYMOQ SSB|D "6¢°d 1qEL

dajs s1y) paysIury sey @ JUsWaTe ay Id)je isn| (o queweTH)OZTITRUT JI93Je PTIOA
Mmofj sty sysenbai o Juswa[d oY) a10j9g (® qusweTy)asenbeysiogeq uesToOq
SO0OH
J
M MOTJ JuaLmd a3 Sunyul] Aq (T JIM) @ousnbas e sajear) (F MOTJ){UTIT PIOA
SPOYIRIA

"UO 0S puUe ‘€Y 910J2q ¢V ‘CV 910Jo(Pajndoaxa 9q
}snwr Ty ‘snyj ‘suone[ar aduspadaid ssugep [uy TV ‘IV]
Kexre yoeq -sferre jo uoryd[[0d € ursn paugap a1e sSuLep
-I0 TenIeJ '2INJONI)S SIY) 10§ paunap sSurrepio renred ayf, sotouspuadep <[]L1TATIOY>UOTIDSTTO)D

panunuo)) — Mo[I3UnNOY[a[[ere JPaAL[IdIU] Sse) ‘§T'q d[qeL

241

Appendix B. PSIGHOS: User Interface

MOTJ sTyj sysanbai o Juswaa oy 21099 (@ queweTy)asenbeysrogeq uesTooq

SOOH
Moty d13urs e aq 03 doo[a3 JO MO[J IdUUT 3} S}aG (youeiq MoTq)youeigppe proA
youeIgreury je pua (UYoueIgTeuUTy MOTJISZITRUTJ
pue ypueIgrenur Yim 3rejs oy doof ayy Jo mofy 1auut ay) s3og ‘YoURIGTRTITUT MOTJISZTTRTATUI)YOURIgPPE® PIOA
J
M MOTJ JuaLInd a3 Sunyury Aq (TJIM) douanbas e sajear) (F MOTI)YUIT proOA
SPOYION
uonjerado doof a3 s[oruod Jey) uonTPUO0IAIJ pUOD UOTJTPUO)
saINqUNRVY

(12dDM) uia33vd doo saingoni§ aygy 199N
"SOYSIUL MO[J SIY} ‘S[e} ST uonIpuodaid ay3 J| "MO[J I9UUL 3y} SURNdXe 310§9q paydaYyp st uonipuodaid y dooy op-a[ym v

uonduwsag

MO[J0d3[IYM SSB|D "0€°d 2[qEL

days snyy paysiuy sey a juswafe 9y} Ia3je Isn| (® qusweTH)oZITRUTJI93Je PTIOA
MOTJ st sysanbaz o yuswaa oy 210399 (@ queweTy)asenbeysrogeq uesTooOq
SOOH
morpj a13urs e aq 03 doof 9y} Jo MOTJ IUUT Y} SIS (youeiq MoTq)youeigppe proAa
youeIgeuy je pua (UYoueIgTRUTJ MOTJISZITRUT]
pue ypueIgrentur Yim 3rejs oy doof sy Jo Moy Iauur ay) s)og ‘YOURIGTRTATUT MOTJISZTTRTATUI)YdURIgGPPE® PIOA

panunuo) — MOLIRYMO SSeD "6Z°d IqeL

242

days sry3 paysiuy sey a juawafe Sy} Ia3Je Isn| (e queweTH)OZTITRUTJI93Je PTIOA
MOTJ ST} s3sanbai o Juswa[a 9y} a10J9g (@ queweTy)asenbeyerogeq uesTooq
SOOH
Moty 913urs e aq 03 doo[33 JO MO[J IdUUT 3} S}OG (youeIq MoTq)youeigppe proA
youergeurj je pua (UYoueIgTeUT MOTJISZITRUTJ]
pue ypueIgrenur Yim 3rejs oy doof ayy Jo mofy 1auut ay) s3ag ‘YoURIGTRTITUT MOTJIOZTTRTATUI)YOURIgPPE® PTIOA
J
M MOTJ JuaLImnd a3 Sunyury Aq (TJIM) douanbas e sajear) (F MOTI)YUTIT proOA
SPOYIPIN
suorjerayr doof jo requmu ayy, SUOT]RIS]T UOTIOUNJOWT]
saINqUNV

(12dDM) Uda33vd dooT sain3oniig ayy SI99A] "SOWIT) N PaINdaxa St mofj teuut ay], ‘doof 10§ v

uondumsag

mojjdooio] sse|d '1¢'d 21qelL

dajs snyy paysruy sey a Juswafe Sy} Ja3Je Isn| (® qusWSTH)SZTITRUT JI93Je PTIOA

PaNUIUOD) — MO[IOCAITYM SSe[D ‘0€°d 1qeL

243

Appendix B. PSIGHOS: User Interface

dajs sty paysIury sey @ JUSWaTe) Idje isn| (o quesweTH)OZTITRUT JI93Je PTIOA

Mmofj s1y) sysanbai o Juswa[d oY) a10j9g (@ qusweTy)asenbaysrogeq uesTooq
SOOH
MOTJ 9[3UIS € 9 0} 9INIONI)S S} JO MOJJ ISUUI Y} S)9G (youeiq MoTq)youeigppe proa
YoueIgeUul e pus pue (UoueIgTRUT] MOTJISZITRUTJ
UoueIgenIul YIIM 31e)s 03 INIONI)S 9} JO MO[J IOUUI 31} S}9G ‘YoURIGTRTITUT MOTJIOZTTRTATUI)YOURIgPPE® PTIOA
J
M MOTJ JuaLmd a3 Sunyul] Aq (T JIM) @ousnbas e sajear) (F MOTJ){UTIT PIOA
SPOYRIA
UOTINIIXS SNUKRUOD 0} SINIONIS I}
JO PUd 3y} YoeaI JSNUI Je) SIDULISUL PedIy) Jo Joquinu Y], snrepldeooe jur
2IN30N0S ST} UIYIIM PIJEIID SIOUE)SUT PLAI} JO IDqUINU Y], S9OUB]SUIU JUT
SNqUINY

‘(esodind suues ayj 10§ pasn aq ued sse[d Mo JaoueisuR[diNAPIZIUOIPULG
1) (ETIDM) ua3gvd aSpajmouy auul-uS1Sa(10LJ U Y1 SIOUDISUT a]diinjA) S}99UWT ‘Oures U} dIe SaURISUT JO IaqUInu
9y} pue anyea sdueidadoe ayy Yjoq J| "9INIONIS ST} UIYHIM PIjeaId SDURISUT PESIY} JO I9qUINU) Ukl SS9 pue | uey)
193213 ST anfea adueydadoe auy J1 (FEIDM) Udaigvd saouvysu] ajdymn 40f uof [1ivd 213v3S SU3 S}I9AW Jey) MOJJ PaINIPNLS Y

uondumsag

Mo|{saouejsula|dijnyulofjeniedonels sse|) “ze d d[qeL

244

dajs s1yj paysIury sey @ JUsWaTe ay Idje isn| (o quesweTH)OZTITRUT JI99Je PTIOA
MoTJ STy} sysanbai o Juswa[d oY) a10j9g (@ qusweTy)asenbaysrogeq uesTooq
SOOH
MOTJ 9[3UIS © ST Jelj} 9INONIIS Y} 0} MO[J ISUUL Ue SPPY (youeiq MoTjq)youeigppe proA
Uouelrgeurj je spus pue youeig (YoueIgTeurJ MOTJISZTITRUT]
-[eTTUL YIIM S}T€)S Jey) INJONIIS 9} 0} MO[J IdUUI Ue Sppy ‘YoURIGTRTITUT MOTJISZTTRTATUI)YOURIgPPE® PTIOA
J
M MOTJ JuaLmd a3 Sunyul] Aq (T JIM) @ousnbas e sajear) (F MOTJ){UTIT PIOA
SPOYIRIA
UOT)NI9XS SNUTFUO0D
0] J9PIO Ul PaysIuy aq ISNuW Jey) saypuelq Jo Joquinu ayJ, snrepldeooe jur
sNqLINY

(0EdDM) Uda33vd uzof
101340 paingoniis gy s} ‘mopy urof renred e st doys [eury asoym pue moij [ayrered e st dajs enrur asoym Mmofj paInjonis y

uondinsag

MO[{UlOf[enIedpPaInionig sseD) e d[qeL

245

Appendix B. PSIGHOS: User Interface

]
UM MOTJ Juaznd oy Sunjury Aq (TJIM) 20uanbas e sajear) (F MOTI)YUIT proOA

SpoYylaN
‘Tenuasaxd are sanranOe oY) [18 J1 (0FdOM) Uo33vd Surnoy
Pa0va]123U] A} SI9IIA] "MOJJ UOTJESTUOIYDUAS e st dojs [eury asoym pue mofy [arrered e st dajs [enTur 9soym mofj paInionys y

uondusag

MO|{8unnoypaneajialu| sse|) ‘ge'd dqel

days sny3 paysiuy sey a juawafe a3 Ia3je Isn| (° JUSWETH)SZITRUTIISLJE PTIOA
MoTJ Sty sysenbaz o yuswdd Yy 210§9g (e jusuweTy)asenbaysiofeq ueaTooq
SooH
Moty o13urs e urstrdwod (puo>
‘SUOTITPUOD UTR}IAD I9PUN PIINIIXD ST YDTYM “Youeiq € SppVY UOTITPUO) ‘YOURIQ MOTJYSe])YdUeIgppe PIOA
MOTJ ST} JO 31x2 pue Anjus paunspaid ayy Surpauuod (PUod UOT3TIPUO) ‘YOURIGTRUTJ MOTJISZITRUT]
‘SUOTITPUOD UTE}ISD I9PUN PIINIIXD ST YDTYM “YoUriq € SppVY ‘YOURIGTRTITUT MOTJISZITERIATUT)YoURIgPPe PIOA
J
M MOTJ JuaLmd ay Sunyury Aq (T JIM) @ousnbas e sajear) (F MOTJI)YUTT PIOA
SPOYIdIA

(LdDM) uda3gvd uovsiuoiyouhs

Pa4n3oniis ay})99I "UOTJESTUOIYOUAS e ST da)s [eurj asoym pue Mo[j 9d1oyd-jnur e st dajs [enIur asoym MO[j paInjonnys y

uondumsag

MO|438I3NOIYDUAGPaINIONIS SSe|D) “FEd d[qelL

246

da)s snyy paysruy sey a Juawale a3 Io3ye Y3nY (® qusWETH)SZITRUT JIS3Je PTIOA
Mmofj sty sysenbai o juswa[d oy} 210j9g (@ queweTy)asenbeysrogeq uesToOq
SoOoH
MOTJ S[3UTS © ST JElj} 3INJONIS dY) 0} MO[J ISUUT Uk SPPY (youeIq MoTJ)ysueigppe proa
oueIgeuTj Je Spud pue youelyg (UYoueIgTRUTJ MOTJISZITRUT]
-[eTTUL Y3IM S}IE)S Jey} 9IMONas 9y} 0} MOJJ I9UUl Ue Sppy ‘YoURIGTRTITUT MOTJISZTTRTATUI)YoURIgPPE® PTIOA
]
PIM MOTJ Juarmd ayy Sunyury Aq (T JIM) 2ousnbas e sajear) (F MOT){UTIT proOA
SPOYIRIA

“(6dDM) U4a33vd 4ojvutnuiriosiq
painjonii§ dyj S}I9IIN "MOJJ IOJRUTWLIISIP e ST dajs [euy asoym pue mof [o[fered e st dajs [erjur asoym mo[j paInionis y

uondunsa

MO]4J0JBUIWILIDSIPaINIONAS SSe|D "9€°g d[qeL

days snyy paysruy sey a juswafe Sy} Ia3je Isn| (® qusweTH)oZITRUTI93Je PTIOA
MmoTj sty sysenbaz o Juswd[d oy} 210§9g (e queweTy)asenbeysrogeq uesToOq
SooH
MOTJ S[3UIS € ST Jelj} 2INJONLS Y} 0} MO[J ISUUI Uk SPPY (youeiq MoTq)youeigppe proA
UourIg[eulj Je Spud pue youelg (YoueIgTeUTI MOTJISZITRUTJ
-[enIUL Y3IM S)IeIs Jey) 9Injongs aYj 03 MO[J JdUUl Ue sppy ‘YOURIGTRTATUT MOTJISZTTRTATUI)YdURIgPPE® PTIOA

panunuo)) — MO[I3UNNOYPIALS[IIU] SSe[D) "S€°d d[qeL

247

Appendix B. PSIGHOS: User Interface

9310w a3y a1eAnOE 0] Padadxa speary) Jo Jqunu Y], enTepa1deooe qut

19531 ST 9POU SI} 10Jaq pajdadxa spearyy Jo quunu Ay, S9OUBQSUIU UL
SNqLINY

"pasn SI SadUBISUTU Uel]} J9MO] pUe dUOo Uely} J91eard anfea 1ajo Aue Ji utof renred peanyp

© Se 10 !] 0} 39S SI an[eA1dadde JI JOJeUTWLIDSIP PEdIY) € Se SYIOpA "SInjedj exyxa sey osfe g ‘(1§ JIDM) U4a3ivd aSiap\ pvaiy]
9y} s399I ‘MoLJiT[dgpeary] ay) ‘1redIajunod s)1 Yim pasn aq PINOYS 3] “SadUR)SUT JO Iaquuinu paynads e sedraw jey) Moy v

uondumsag

MO|4a8IBNpeaIY] SSe|D "8€"d d[qeL

MoTJ STy sysenbaz o Juswdd oy} 210§9g (o queweTy)asenbeysrogeq ueeTo0q
SooH
)
PIM MOTJ Juarmd ayy Sunyury Aq (TJIM) 2ousnbas e sajear) (F MOTI){UIT proOA
SPOYIRIA
pajeaid are jey) Youelq 3uro3Ino aiy) Jo SadURISUT JO JUNOWY S9OUB}SUIU JUT
SNqLINY

(2% dIDM) u42330d 111ds pvay] oy
S}9IIAl “MO[931 praIY [, }1edI9junod sy y3rm pasn aq pnoys 3] youeiq SUroSino sy} Jo SadUR)SUI [EIAIS SI}LID Je} MO[J

uondumsag

mo|q)i|dspealy] sse|D “Lg'd d1qeL

248

MOJJ ST} sysenbai a yuauwrare ay a10jog

SYO0OY

)
m mofy Juarind ay Sunjur £q (T JIM) 2ouanbas e sajear)

SPOYIRIA

(e queweTy)asenbeysrogeq uesToOq

(¥ MOTA)YUTT PTOA

panunuo)) — MO[JI3IBA P, SSe[D) "8¢"d d[qeL

249

Appendix

Other Java DES Tools

There is a large collection of Java-based software for Discrete-Event System
Simulation (DES). A few examples, which can currently be downloaded and

used, are:

e JSIM (Miller et al., 1997)

simJava (Howell and Mcnab, 1998)

Simkit (Buss, 2002)

javaSimulation (Helsgaun, 2004)

Psim] (Garrido and Im, 2004)

SSJ (Lecuyer and Buist, 2005)

DESMO-] (Page and Kreutzer, 2005)
e JAPROSIM (Abdelhabib and Brahim, 2008)

This list expands more if ad-hoc solutions for specific problems are included.

This appendix reviews some of the pre-eminent Java-based DES tools.

251

Appendix C. Other Java DES Tools

C.1. JSIM

JSIM (Miller et al., 1997, 2000) is one of the first attempts to develop a discrete
event simulator with Java. Like many other similar tools, reducing the user’s
coding effort is its final aim. The major assets of this tool are flexibility and the
stress on graphical and animation capabilities, all of them intended to reinforce

the use of the tool on the web. Both event and process orientation are supported.

Two formalisms support JSIM: graph theory and query-driven simulation
(Miller et al., 1991). The main idea behind the use of this tool is having a da-
tabase with simulation models and results. Users wishing to know the outcome
of simulating a certain model would obtain their answer transparently either by
looking for previous simulation executions (thus saving the users from having
to wait for the simulation to be executed) or by launching a new simulation.

JSIM consists of five basic packages: queue, which offers different queue struc-
tures; statistic, which collects and analyses data from the simulation; wvariate,
which includes random number generators; process, which implements process-

oriented models; and event, which implements event-oriented models.

Table C.1. Summary JSIM

Name JSIM

URL http:/ /www.cs.uga.edu/“jam/jsim/
Last version available 1.4 (2007)

Licence BSD

Source code Yes

Graphical interface Yes

Statistics Yes

Manuals No (only installation support)
Related publications 9

Most recent publication | 2001

252

C.2. Simkit

C.2. Simkit

Simkit (Buss, 2002), like JSIM, is based on graph theory, more specifically, on
the Event Graph formalism (Schruben, 1983). An event graph maps events onto
nodes, and edge weights indicate the time required to schedule the next event.
Edges can contain conditions as well, which are used to determine whether or
not an event must be executed. The use of event graphs makes Simkit an event-
oriented tool. Any other worldview is not directly supported.

Another interesting aspect of Simkit is the use of the Listener software design
pattern (Gamma et al., 1995). By using such a pattern, not only can the simula-
tion be implemented as a set of loosely-coupled components, but changes in the

system state variables can be observed more easily.

Table C.2. Summary Simkit

Name Simkit

URL http:/ /diana.nps.edu/Simkit/
Last version available 1.3.8 (4th, January 2009)
Licence LGLP

Source code Yes

Graphical interface -

Statistics Yes

Manuals Yes (lab examples)

Related publications 5
Most recent publication | 2005

C.3. S§J

SSJ is a Java library for stochastic simulation. It provides facilities for genera-
ting uniform and nonuniform random variates, computing different measures

related to probability distributions, performing goodness-of-fit tests, applying

253

Appendix C. Other Java DES Tools

quasi-Monte Carlo methods, collecting statistics, and programming discrete-
event simulations with both event-oriented and process-oriented approaches.
The library comprises the following packages:

e probdist Probability distributions.

e gof Univariate goodness-of-fit statistical tests, such as Kolmogorov-Smir-
nov, Chi-square and Anderson-Darling.

e rng Uniform Random number generation.

e hups Highly uniform point sets and sequences (HUPS) over the
s-dimensional unit hypercube [0,1)°, and tools for their randomisation.
These techniques are used for quasi-Monte Carlo (QMC) and randomised
QOMC numerical integration.

o randvar Non-uniform random variate generation, primarily from standard

distributions.

e stat Basic tools for collecting statistics and computing confidence intervals.

Most classes implement the observer software design pattern.

o simevents Classes for handling event scheduling simulation, including a

simulation clock and different implementations of the event list.

o simprocs Classes for handling process interaction simulation, including pro-

cesses themselves, resources, bins and conditions.

C.4. DESMO-)

DESMO-] (Page and Kreutzer, 2005) is an object-oriented framework that ex-
tends Java to provide the modeller with different tools to make building a DES
model easier. Such tools include:

254

C.4. DESMO-)

Table C.3. Summary SS)

Name

SS]

URL

Last version available
Licence

Source code

Graphical interface
Statistics

Manuals

Related publications
Most recent publication

http:/ /www.iro.umontreal.ca/
“simardr/ssj/indexe.html

2.4 (8th September 2010)

GPL

Yes

Yes (only for displaying results)
Yes

Yes

4

2005

e Several classes that represent common modelling components, such as

queues, random number generators, data collection utilities, etc.

e Abstract classes that can be adapted to create models, entities, events and

processes with customised behaviour. The user can select either events

and entities (for an event-oriented simulation) or processes (for a process-

oriented simulation).

e An “Experiment” class comprising a scheduler, event list and simulation

clock, as well as tools for report generation and tracing simulation runs.

This design is intended to isolate the model from the experiment, thus suppor-

ting the execution of different models within the same experiment for the pur-

pose of evaluating several scenarios, and also of different experiments within

the same model.

DESMO-] consists of the following packages:

e desmoj.core Basic modelling classes.

255

Appendix C. Other Java DES Tools

o desmoj.core.simulator Basic classes for model building and experiment pre-
paration. This package also includes modelling components such as
queues, entities, events and processes.

e desmoj.core.dist Probability distributions based on the linear congruential
random number generator by Donald Knuth.

o desmoj.core.exception Internal exceptions.
o desmoj.core.report Automated report generation (HTML and XML).

e desmoj.core.statistic Simulation data collectors: counters, averages, histo-
grams. .. All the statistics are displayed in the final report.

o desmoj.core.advancedModellingFeatures Process-oriented modelling classes

with a higher abstraction level.

o desmoj.extensions.applications Extensions to build models in different appli-

cation fields.

o desmoj.extensions.experimentation Classes to define a basic graphical inter-

face to execute experiments and view results.

C.5. JAPROSIM

This library (Abdelhabib and Brahim, 2008) is clearly inspired by the concepts of

the foundational language SIMULA. Hence, active entities, that is, transient en-

tities that move through the system, are used to describe the system’s behaviour.

Active entities can be seen as processes in the process interaction worldview.
JAPROSIM includes the following packages:

o kernel Active entities, scheduler, queues and resources.

e random Random number generation.

256

C.5. JAPROSIM

Table C.4. Summary DESMO-

Name DESMO-]

URL http:/ /desmoj.sourceforge.net/home. html
Last version available 2.2.0 (June 2010)

Licence Apache

Source code Yes

Graphical interface Yes (only for displaying results)

Statistics Yes

Manuals Yes

Related publications 1 book

Most recent publication | 2009

e distributions Probability distributions.
e statistics Statistical variables.

e qui Graphical user interface classes to use for project parameterisation,

trace and simulation result presentation.
o utilities Classes for model development.
The authors claim that

« It JAPROSIM) has the major key future of automatic and implicit

collection of statistics over other similar frameworks. »

Only Simkit offers something similar, but it remains unclear why this feature
makes a difference with tools like Desmo-J, where the statistics package has to
be explicitly used. Moreover, the memory and CPU costs of collecting everything
by default are evident if all of these data are not specifically required by the
simulation. Insisting on efficiency, the tool uses a direct translation from active

entities into Java threads, whose dangers were already discussed in Section 2.2.

257

Appendix C. Other Java DES Tools

Table C.5. Summary JAPROSIM

Name JAPROSIM

URL http:/ /sourceforge.net/projects/japrosim/
Last version available - (10th January 2007)

Licence -

Source code Yes

Graphical interface Yes (only for defining experiment parameters)
Statistics Yes

Manuals Yes

Related publications 1

Most recent publication | 2008

258

Appendix

Other Java PDES Tools

Java-based Parallel Discrete Event Simulation (PDES) are not as numerous as
Java-based DES. Indeed, only a few examples can be considered as generic si-
mulators. We will review the most significant Java PDES tools in the following

sections.

D.1. JUST: Java Ubiquitous Simulation Tools

Cassel and Pidd (2001) propose a distributed DES based on the three-phase ap-
proach (see Subsection 1.2.4).

The initial version of the tool was a client-server package: the server managed
the simulation and the clients implemented the model.

A second version, JUSTDistributed, is a PDES with conservative synchronisa-
tion, featuring null message and lookahead. JUSTDistributed is multithreaded
and uses RMI for communication. The way the authors deal with the resource

contention and shared states problems will be explained later in Section 4.2.

D.2. SPADES/Java

SPaDES /Java is a PDES library, intended to isolate the user from the implemen-

tation details involving event synchronisation and parallelisation (Teo and Ng,

259

Appendix D. Other Java PDES Tools

2002).

This process-oriented simulator supports both sequential and parallel execu-
tion. The latter uses a conservative null-message protocol for synchronisation.

When modelling with the library, the conceptual model consists of permanent
and temporary processes. Resources are treated as permanent processes and
modelled as LPs, whereas any other entity is treated as a temporary process
and modelled as a time-stamped message passed between LPs. Actually, only
permanent processes are implemented as Java threads.

Programming a parallel simulator with SPaDES/Java requires using a tem-
plate comprising four main parts: process definitions, process routines that de-
fine the simulation logic, code for initialising and starting the simulator, and a

message abstraction and reconstruction routine for parallel simulations.

D.3. D-SOL

Jacobs et al. (2002) presents a fully distributed simulation environment called
D-SOL. This tool is an example of a dedicated execution simulator.

The simulation framework consists of two remote network services: an event-
based DES remote simulation service and a system representation service, which
includes representation and statistical libraries. Such service-oriented architec-
ture is intended to enhance flexibility, distribution of simulation models, and
integration and interaction with real-time information systems.

The simulation library core is event-based, since the authors insist on the ad-
vantages of this world-view over the activity scanning and the process interac-
tion approaches (see Section 1.2). However, a porting of the process interaction
approach to be supported by the event-based core is presented (Jacobs and Ver-
braeck, 2004), as already explained in Section 2.4.

The last versions of D-SOL, as explained in (Jacobs, 2005), include multifor-
malism support. Thus, the simulation framework allows a user to base its deve-
lopment on the Discrete Event System Specification (DEVS), Differential equa-

260

D.4. CSA&S/PV: Complex Systems Analysis & Simulation - Parallel Version

tion system specification (DESS) or mixed DEVS-DESS formalisms (Zeigler et al.,
2000).

D.4. CSA&S/PV: Complex Systems Analysis & Simulation -
Parallel Version

Niewiadomska-Szynkiewicz et al. (2003) have developed a parallel software en-
vironment based on an earlier design programmed in C. This tool is intended to
aid a user when designing and simulating complex physical processes.

The parallelism is exploited by using a conservative LP approach, but the user
can configure each LP local clock to be either event- or time-driven (i.e., a clock
which advances at regular intervals). The tool developed consists of five mo-
dules:

e Shell. The user graphical interface.

e Calculation module or manager: The system kernel, which handles com-

putation and interprocess communication.

e Communication library: An interface that provides communication facili-

ties between the shell and the calculation module.

e User application: The simulation model as defined by the user. The LPs

are defined in this module.

e User library: A set of methods to communicate the user application and

the manager.

CSA&S/PV has been applied mainly to computer and water networks, but it
is intended to be a general purpose simulation tool.

261

Appendix D. Other Java PDES Tools

D.5. Summary of Java PDES Tools

Table D.1 summarises the characteristics of the tools mentioned earlier in this
section, plus further parallel simulators: JTED (Cowie, 1998), Fornax (Halderen
and Overeinder, 1998), JWarp (Bizarro et al., 1998). Most of these simulators
exploit spatial domain decomposition, that is, the classical LP approach. Only
D-SOL follows a different path and focuses on dedicated execution. The most
(negatively) noticeable aspect is that, out of the tools presented here, only D-
SOL is currently available for free download and use. Actually, the SPaDES/-
Java website is online, but the form for requesting the software does not work

correctly, and we have not been able to download the simulator.

Table D.1. Summary of Java PDES tools

PDES tool Parallelism exploitation Worldview
JUST Domain Decomposition (Conserva- Three-Phase
tive)

SPaDES/Java | Domain Decomposition (Conserva- Process-oriented

tive)

D-SOL Dedicated Execution Multiformalism

CSA&S/PV Domain Decomposition (Conserva- Event-based
tive)

JTED Domain Decomposition (Conserva- Event-based
tive)

Fornax Domain Decomposition (Optimis- Process-oriented

tic and Conservative)

JWarp Domain Decomposition (Optimis- Event-based
tic)

The unavailability of the Java PDES tools listed limits not only possible com-

parisons, but the opportunity to benefit from solutions that have already been

262

D.5. Summary of Java PDES Tools

developed. Furthermore, the goals of D-SOL, the only tool available, differ
greatly from those listed in Table 4.1. D-SOL is intended to be distributed, in
the sense of being executed in a loosely coupled system, whereas PSIGHOS tries
to exploit parallelism in tightly coupled systems, such as multi-core compu-
ters. Hence, when being executed in a distributed environment, D-SOL’s main
concern is not reducing the execution time, but offering the final user the possi-

bility to easily access and reuse models and results.

263

Appendix

Workflow Patterns

The 43 control-flow patterns proposed by Russell et al. (2006) (numbered WCP1
- WCP43) delineate the fundamental requirements for modelling the different
scenarios defined within this perspective. These patterns are based on a study of
countless practical cases involving real companies, and set both a language- and
technology- independent framework to describe, analyse and compare different
workflow languages and tools.

The rest of this appendix will review the main categories these patterns are or-
ganised into. For a comprehensive review on these patterns, (Workflow Patterns
Initiative, 2010) offers the most updated information and interactive contents.

265

Appendix E. Workflow Patterns

youeiq jusanbasqns ayy 03 passed

3uraq [0I1U0D JO PEAIY) S} UI S}{NSSI YdUelq SUTWODUL Uk JO JUIWSeUs deq

“youeiq jusanbasqns o[3Urs e 0JUI SaYDURI] SIOW IO OM} JO DUISISAUOD], 81N opdurlg sIDM
youeIq 9y} YIm pajerosse
uorssadxa [e2130] e JO aW0d)NO A} U0 paseq saydueiq 3urogIno ayj jo auo
Aesaid 03 passed A[oyerpaurwr St [013UO0D JO PeSIY} Y} ‘PI[QRUS SI YdueIq
Sururoour 8} USYAA "S9UDURI(SIOW 10 OM) OJUI YDURI] B JO dDUSSIDAIP YL, 10D 2AISNPXT FIDM
PaqeuL udaq aary saydueiq yndur
ITe uaym youeiq yuanbasqns ayy 03 passed s [013U0D JO PEIIY} 3} Jey) Yons
youeiq yuanbasqns o[3uls € OJUI SaYPULRI] dIOW IO OM] JO DUSSISAU0D YT, UOTJBSTUOIPUAS €IDM
AFUSIINDUOD S9JNIOXD
UDTYM JO Uord saypuelq [o[fered 210w 10 0M} OJUI YDURI] € JO OUISISATP YL, ndg prrered zddM
ssado1d awres ay
ut ysey Surpadaid e jo uonadwod ay} I93je PI[qeUd ST MO[JIOM © Ul Sk} Y ouanbag TIDM
uondrso(g uree PI

sulaped mojj [o13u0D Diseq “T'q [qeL

266

PI[qeUS Usaq dARY SAYDURI] SUIWODUI [[e UM S}ISDI JONIISUOD
IOJeUrWILDSIP Sy [uo passed Sursq [01U0d JO PeIIY} SY} UL JNSAI JOU Op
saypueIq SUTWodUr JO JusWS[qeud juanbasqng “pajqeus ussq sey youeiq
Surwoour 381§ 33 UsYM oueiq juanbasqns ayj 03 passed St [013U0D JO peary}
YL ‘Ppow ssadoxd ay; ur 1arpres sduadoarp Surpuodsariod e Furmoroy
youeiq juanbasgns s[3urs e 0jur saYPULRIQ SIOW IO OM] JO dDUIZIIAUOD Y],

youeiq juanbasqns ayy 03 passed
3uraq [01U00 JO PEAIL) S} UT SJINSAI YourIq SUTUIOdUT Uk JO JUSWII[JeUD ok
“youeiq jusnbasqns o[3urs e 0JuI SaYDULI] SIOW IO OM} JO DUSZISAUOD Y],

Pa[qeus Udaq sey youelq Suruodut
9ATIOR Prd Uaym ypueiq juanbasqns ayy 03 passed st joruod jo peany ayJ,
‘youeiq jusnbasqns a[3urs e ojur (yurod sqeynuapt Afenbrun e je ssadoxd
9U) Ul JOI[IES PASISAIP UDIYM) SIUDURI(SIOW IO OM} JO 9DUIZISAU0D AT,

saypueIq 9} JO Yord UM P}
-RID0SSE SUOISSAIdXa [22180] JDUTISIP JO SWODINO A} UO pased saydueiq 3urto
-JNO 3} JO dI0W IO dUO 0} Passed SI [0IJUOD JO PEAIY) A} ‘PI[eUD SI [PueIq
Suruoour sy} USYAA "SaYDURI(SIOW IO OM) 0JUT YOURI] € JO 9DUISIDAIP A,

100U
-TWLDSK] PaInionig

aZI_N-IMIN

93101\ Surs
-TUOIYDUAG PaInionig

IOYD-BIMN

6dOM

8dOM

LdOM

9dOM

uonpdridsa(g

upeJ

sulaped uonesiuolyduAs pue Suiyouelq padueApY ' d[qeL

PI

267

Appendix E. Workflow Patterns

Pa[qeus Usaq dARY SadURIq SUIOdUT AT)OR
[Te UayMm s39sa1 Jonasuod urof sy “uo passed 3uraq [01U0d JO peany) 9y} ur
J[NSaI Jou Op SaYdULIq UTWOdUT JO Judwd[qeud juanbasqng ‘pajqeus usaq
dAeY SaydURI] SUTWOdUL 3y} JO N Uaym youeiq jusnbasqns ay3 03 passed st
[OI)U0D JO peaIy) 9], ‘[opou ssa001d a3 UT I91[1ed 90U 3I3ATp urpuodsariod
e SuImo[[oy youeiq yuanbasqns s[3urs e ojur saydueIq JA JO 9IUSSISAU0D Y],

JONIISU0D dY} S)asal
pue saypueiq SUTUIOdOUT IS0 A} JO [E JO UOHNIIXS S} S[9OUED OS[E I0JeUT
-si(] SurEoue)) ayy Sured3Li], “pajqeus usdq sey Youelq Surodur dARdeR
3811y A} uaym pueiq yuanbasqns ayy 03 passed st [o13U00 Jo peaIy) YT [OP
-ow ssa001d ay} U I91[IEd sadUASIAAIP Surpuodsaiiod a1ow 10 auo FUrMof[oy
youeiq yuanbasqns o[3urs € ojur saypuULRIq SI0W IO OM] JO dDUISISAUOD AT,

39591 SeY I0JeUTUILIISIP A} [Hun
P3O0 a1k saydueIq SUTWOdUI JO JudUId[qeUd juanbasqng -aouesur ssadoid
QuIES 9} 10 9DUO PA[EUD U] ALY SaIURI] SUTWOdUL SAT}OR [[€ USYM S}3S
-91 JONIISUOD IOJEUTUWILIISIP S, "PO[qBUD Uddq Sey oueiq SUTWOdUT AT}
3811y A} uaym pueiq yuanbasqns ayy 03 passed st [o13uod Jo peaIy) YL [Op
-ow ssa001d 9y} Ut 1a1[IEs seduadIaarp Surpuodsaiiod arow 10 auo IUrmor[oy
youeiq yuanbasqns a[3uts e ojur saypURIq AIOW IO OM} JO DUISIIAUOD Y],

uro([erireJ parnionng

103RU
SIS SurpEoue)

10}
-eurwiLS] Sunporg

0€dOM

6CdOM

8¢dOM

uondrosa(g

panunuo) - g d[qelL

urapeJ

PI

268

s3uuy
aImjny 10y paurejar are pue sisiad urof sy jo s3urIy usamiaq sayoueIq SIOW
IO SUO UO PIAIIRI S193311} [PUOIPPY “PI[eud Uadq aAery sayduelq yndut
ITe uaym youeq jusanbasqns ay 03 passed s1 [013U0D Jo peaIy) A ey} Yons
youeiq yuanbasgns a[3urs e ojur saypdurIq 2IOW IO 0M} JO dDUISIDAU0D Y],

1ONIISUOD d} S}9SAT pue
SsaypUeIq SUTWOdUT J9YJ0 d) JO [[€ JO UOTNIIXD d} S[edued os[e urol ay Surr
-93311], "W ueY} SSI] SI U aI9UM PI[qeUS Udd(dARY SaydueIq Surodur ayy Jo
U uaym ypuelq jusnbasqns sy 03 passed ST [013U0D JO PeAIY] Y], [OPOUW SO
-o1d oy} ut I91[1e3 SadUR3IDATP SUrpUOdsaLIod 10U I0 SUO JUIMO[[O] Ydueiq
juanbasqns a[3urs e ojur (w Aes) SaYdULRIQ SIOW I0 OM} JO IDUIZIDAUOD Y],

jasaz sey urof
AU} [IIUN PIYDO[q a1k SaypueIq SUTWOdUL JO JUdWd[qeud juanbasqng -ooue)
-suT ssa001d dures sy} I0J 9DUO PI[eUD U ALY SAYDURI(JUTWOdUT dAT)OR
[[e USYM S}3saI JONIISU0od urof sy ‘pa[qeus uaaq aAey sayduerq Suruodur
3y} Jo N uaym ypueiq juanbasqns ayy 03 passed st [o13uod jo peany; ayJ, Top
-ow ssa001d oy ur 1a1[IEs saduadiaarp Surpuodsariod arow 10 auo Jurmor[oy
youeiq yuanbasgns a[3uts e ojur saypuRIq AIOW IO 0M} JO DUISIDAU0D Y],

UI0[-(NV Pasi[erauaD)

uro| enyreJ Sur[eoue))

urof renred Sunporg

€EdOM

€dOM

L1EdOM

uondrosa(g

panunuo) - g d[qeL

urepeJ

PI

269

Appendix E. Workflow Patterns

doueysur ssadoxd aures oy Jo Youeiq S[SUIS e UI pajenIuL 9q

UBD SPEAI) UOHINISXS JO IDqUINU pajeurwiou e “ssadoid e ur jurod usats e 3y
UOHNIIXS JO peaIy; o[3urs e

ojur 1a32303 padiow aq PINoys aduesur ssadoxd awres ayy jo youelq o(3urs
© UI SpEaIy} UOTINISXD JO IoquINu pajeuruou e ‘ssaooid e ur jurod usais e 3y

W) 2IniNJ Aue Je pajqeus 3 [[IM Pa[qeud
u23q 124 jou sey jey youeiq Aue jey) d[qissod jou s1 31 () 10 pI[qeus usaq
sey youeIq Suruodul dATIOR oed (1) IS uaym youelq juanbasqns ayy 03
passed st {01300 Jo peany; ay) Jey) Yons ypueid yuenbasqns ay3urs e ojur ssad
-01d ayj Ut J91[1ed PISISATP UYDTYM SIUDURI] SIOW IO OM] JO 3DUSSISAUOD],

a81awr a3 Je SUIALLIE [0IJUO0D JO SPEAI) ALy} Se ons ejep
[€D0] JO SISBq Y} U0 PIUIUIdOP 9 UED T A[ARjeUIs)e 10 3onnsuod 3urd
-1A1p Surpadaid oy Aq a31owr 9y} 03 AOIIp PAjedIUNWIWOD 3 AP SIYJ,
“JoNISU0d 9319w Y} 0} J[qe[reAe A[[ed0[UOTJRULIOJUI JO SISEq 9} U0 apewt
SI uoTjestuoIyduAs armbai saydueiq Auew Moy JO UOTJRUTULISR(] PI[qeud
udaq sey oueliq SUTOdUI 9AT)OE ded Usym yduelq yuanbasqns a3 03 pas
-sed st [013U0D JO peaIy} Y} JeY) YoNs youriq juanbasqns s3urs e ojur ssad
-01d ayj ur 191[1ed PISISATP UYDTYM SIUDURI] 2IOW IO OM] JO DUIZISAUO0D Y],

ydg pearyl ZFdOM

O8I peaIyL IFIOM

a31o1\ Surs
-IUOIYPUAG [eIdUdD) 8EIDM

98101
Suistuonpuig 8007 ZEIDM

uondrosa(g

panunuo) - g d[qelL

urepeJ PI

270

pa198311y 9q ued sysey}
jusnbasqns Aue a10joq uona[dWOd Je SIdUR)SUT S} ISIUOIYDUAS 0} ATESS90aU
ST1] "ATJUSIINOUOD UNJI PUe IS0 ded Jo Juspuadapur are saduejsur asay ‘paj
-BI)TUT 90U PaJLaId 3 JSNUWI SIDUL)ISUT Se) 9} dI0Joq UMOUY SI JNg ‘SUOT)Ed

-IuNWwod ssadoxd-1a3ur pue AJfIqe[reae 92Ino0sal ‘eyep djes Jurpnur ‘sioy 93parmouy| awry,
-dBJ WIPUNI JO IdqUINU € U0 puadep Aewr sadue)sur Jo raqunu parmbaray] -uny WO e yim
“PoyeaId 3¢ Ued Sk} Jo saduejsur apdnmnuu ‘edue)sur ssa001d UdAIS B UTYIIA - SedURISUf o[dumN - FLADM
pa19831xy 9q ued sanIAROR
jusnbasqns Aue a10joq uone[dwod Je sadueISUL AJATIOR 3} SSIUOIYDUAS 0}
AI18SS903U ST §] AJJUSLINDUOD UM pue ISY30 yoea jo juapuadapur are sadue) 93parmouy| awy,
-SUT 9S3U[[, oW} USISAP Je UMOUY| SI S9DUB)SUI JO Ioquinu paimbar oy 'pay -ulsaq Lo e yim
-B2ID 9 ULd AJIATIOR Ue JO sadueisur o[diy[nuu ‘oduejsur ssadoxd usard e unpipy - sadueisuy odumiN €LdDM
uonardwod uodn wayy asruondUAs 03 yuawaimbaz ou st a1y, uon
‘A[FUSIINDUOD UNI PUB IS0 Yoed Jo judpuadapur a1e seduejsur 9say], ‘Pa) -BSIUOIYOUAS JNOUYIM
21D 9 ULd AJIATIOR Ue JO saduesur ofdrynuu ‘aduejsur ssadoxd usard e Uiz - sadueIsuf odumiN ZLdDM
uonpdridsa(g wpeJ PI

suioped souejsul o|dinw *€°q d[qeL

271

Appendix E. Workflow Patterns

P3[[20UEd 3T SIDULISUT U-W SUTUTeUTI
oy} pue para33in st ssadoxd Ay uT se) IXU Y} ‘(W Uy} SSI ST U 2I9yM)
parardwod aaey sedueISUL M) A3 JO U 9DU() *SIOUSUWIIOD dDUL)SUT Sk) ISITY
9} USYM UMOWY ST SDUBISUI JO Iaquunu parmbar ay], pajeard aq ued (W

sooue)su] o[dnmA 10§

Aes) ysey e JO sadur)SUI JUSLINDUOD S[d nur ‘Odueisur ssadoid UsAId e unyjipy - ulof fenreJ 3urEoue) SEIDM
reryuanbasuoour axe saduerysuI N-JA Sururewa ayy
jo suonsdwod juenbasqng “parad3in st ssevoid a3 ur Aj1anoe Jxau 9y} ‘pay
-orduroo aaey saduEISUT AJIATIOR A} JO N 9DU(Q) "SOUSWILIOD dDURISUT AJIALOR
JSII 9} USUM UMOWY ST S9DUBISUL JO Jaquunu parmbal o], pajyesrd oaq ued soouessuy o[duny
AJIAT)OR UR JO SEdUB)SUT JUDLINDUOD S[dnul ‘oduejsur ssaooid UsAI3 e UIyjipN - 10§ UIof [ended dnuels FEIDM
pa198311y 9q ued syse} yuanbasqns Aue a1059q
uona[duwod je SadURISUT S} ISIUOIYDUAS 0} ATeS9000U ST J] "PSJeTIUL 9] O}
S90UR)SUI [eUOT}Ippe 0§ 3[qIssod ST T “SUTUUNI 918 SaDUR)SUI JS[IYM ‘DuiT} Aue
}V AUSLINDOUOD UNI PUe IYJ0 oed Jo juspuadopur a1e SodUe)SUl asaly} ‘pa}
-BIIUL 90U "Pa3o[duIod Sey 9oUeSUL [eUl 943 [IFUN UMOUY JOU ST pUB SUOT}ed
-IUNWWOD $$9001d-193Ut pue AJIqe[reAr 92IN0SaI “ejep d3els JUIpNUI ‘S10) 93PI[MOUY] dWIL] -Uny
-DBJ SUIKUNI JO IdqUINU € U0 puadep Aew saduejsur Jo roqumu parmbaray] womg e noyim
"pa3eaId 9q ued Yse} e jo saduesur opdnnu ‘oduejsur ss9001d USAIS B UTYIIAL S90UR)SU] oidumiN STIDM
uondrosa(g urapeJ PI

panunuo) - ¢ d[qelL,

272

UMEBIPYIIM dI€ PIJII[IS dUO 3} Uy} JOYI0 SadukIq Ul SIARUId)[E UOT)
-NDIXd ‘Opeu ST UOISIDAP A} 19}V "SaUdueIq JUSISJJIP UM S0kl B Iajel
Inq 2010y J2I[dXa OU ST 313} "9'T SAYDURI] Y} JO dUO UL XSk} }SIj 9} Sunen
-Tutr Aq 9peu SI UOISIaP S, “UOHNIAXI JO S3SIN0d a1njng a[qrssod jusasardar
saydueIq [[€ ‘UOISIAP Sy} 0} IOL] ‘Juswuoiiaus Surerado ay3 yim uonde
-I9JUT UO Paseq Uaso ST SaydueI([eIdAS JO U0 araym ssadoxd e ur jurod v

010D parIdyR

9ILdOM

uondrosog

sulaped paseq-aleis “pq 2[qeL

uraneJ

PI

P31BaID 3¢ UkD S3DUBISUT MAU OU pue Terjuanbasuoour are saduejsur ysey Suru
-rewas Y} jo suona[dwod jusnbasqng ‘pa1a88ixy st ssevoid a3 ur yse) 3xau
Ay} ‘anj 03 sajenyeAd uonIpuod uona[dwod ay) U ‘saparduwod yse; ayy jo
30UBISUT UB SWT) oed Pajenyeas sI yprym paymads st uonrpuod uonajdurod
V "Po[qesIp usaq jou pey os op 03 Lifiqe 9y Surpraoxd pajeniur aq 03 sedue)
-sul TeuonTppe 10y 3[qrssod st J1 “SuUTUUNI Ik SIOUR)SUT JS[IYM ‘owr) Aue Jy
“pajo[dwod sey 9due)sul [eury ayj [HUN UMOUY JOU SI PUe SUOT}edTUNIOd
ssadoxd-1a3ur pue AJJIqe[TeAe 9dINO0SAI ‘ejep dje)s SUIPNOUT ‘SI030eJ SWIUNT
jJo Jaquunu e uo puadap Aew sadue)sur Jo Jaquinu pasmbai oy ‘pajeaid aq
Ued Sk © JO SadURISUT JUSLIMOU0D S[dinuu “0due)sur ssadoxd UaATS e Uunppg

saoueysu] o[dnnIA 10§
uro TenreJ drureud(g

9€dOM

uondrosa(g

panunuo) - €'F AqeL

urepeJ

PI

273

Appendix E. Workflow Patterns

SDOUSWIWIOD ULD |, UOT}OdS RO, Ijoue
910§9q 939[dwIod SN 1 “SIOUSWWOD |, UOTJIIS [BIHLID, SUO UL SYSE} 3} JO
UOHNIXS DU duly UdALS Aue je aAT)OE 9 Ued ,,SUOT}IS [EdNLID,, 3SaY} JO
auo ur syse} AJuo ‘@duelsur ssadoid usaAId e 10§ Swmuni 3y -, SUOIIS [ed1}
-110,, Se paynuapI a1k [opow ssaoo1d e jo syderdqns pajoouuod 210w 10 OMm],

193311} B URY) I9Y)eI }S9) B SI }1 Sorudpuadep MOTJ-[OIIU0D
[EULIOU SXI[UN *3'T ‘J[9S}T 93L}S Y} IDUSN[FUI JOU SI0P UOTINIIXS 3} JEL]} dJON
‘(paxrdxa sey aurpesp ayj ‘9°T) awir} 21NNy AUk je I0 MOU PI[qeud 3] Jou
-ued YSe} 93 Udy} ‘93ess siy} puokaq passardoid sey adueisur ssadoxd ayy I
“Pa[qeUL 8¢ UED XSt} Pajeurwiou oy} payoeai st juriod UoRndaxa SIy} USYpM
‘[Ppow ssadoxd oy} ur (sSuojsafiu e se umowy os[e) jurod uorndexs dyads
e 9q 0} pawmsse sI aje)s oyl ‘(youerq rered e AreordA)) ojeys ogads e

uonoag 1edonl) 6edOM

ur st (3red st 31 yorym Jo) aouejsur ss9d01d Sy uaym pa[qeud AJUo SI se} QUOISATIAN SLIDM
(ourmy aures a3 ye dduejsur ssad01d swes Ay 10§
QAT}OR 3q ULD SOTIATIOR OM]} OU "d°T) SUWIT} SWES JY} Je PIINIIXS 9] URD SITIA
-[}0B 0M} OU “Juswiarmbai feuonippe ue se “19AdMOL] Topio Tenred ayj yiim
SpI0dDE Jey} JOPIOo Aue Ul pajorduiod aq ued A3y} pue 9dUO0 Pajndaxe aq }snur
39S 9} Ul AJIA[DE UYdey "Pajndaxa aq jsnuw Ay} UYdTYM Ul I9pIo a3y} 03 30ad Sunmnoy
-s1 UM syuawaimbai oy Sururyep Suriepio fenpred e sey saniAnpOe JO RS Y [O[[eIe] POARIMIONI] ZILADM
uondrosa(g urapeJ PI

panunuo) - $°g dqelL

274

[epowr ss9001d [[EISA0 A} JO JOSNS PIJOSUUOD B 3 JOU PIdU SYSe)} A,
UMBIPY}IM a1k A3} Usy} ‘(pa[qeus Appuaiimd are 10) Sunnoaxa Apeaife are
syse} ayy jo Aue J1 -aduejsur ssadoid e ur syse} Jo 39s e J[qesip 03 AJ[Iqe YT,

ATmyssaoonsun pajarduod 3uraey se papIrodal st adue)sur ssadoxd sy,
*$9559001d-Ns [e puE JW SINJNJ SWOS J€ JNIIXS ALUI YDIYM SO} “SySe)}
Sunnoaxa A[JUaLIND SOPNIOUL S, "PIAOUISI ST 9due)sur ssado1d ajardwod vy

paAOuIaI pue pajfey st
ddueIsUr Juruuni APULIInd ayy ‘o[qssod a1aym ‘pue pa[qesIp SI 1 ‘pajiels sey
Sk} A} JT "UOTINDEX3 SUTOUSWIWOD 3T 0} JOLId UMBIPYIIM SI XSk} PI[qeus Uy

uor3ay [eoue))

ase)) [poue))

yse], [9oue))

S¢dOM

02dOM

6LdOM

uondridsa(

uraneJ

suiaped uona|dwod 9210} pue uone|jdue) ‘G'g [qeL

PI

Pa)enIur 9q Ued SS3D
-o1d oy} ur £31AT30€ 3x0U B} ‘paje[dod sAeY SanIATIOR AU} JO [[e U “(duin
auIres A} Je 9dUeISUT SS001d Sures Ay} J0J AT} 3 UED SANTATIOE OM] OU “I°T)
SWIT) SWES JY) J& PINIAX3 3¢ ULd SINIANOL 0M] OU Jng J9PIo Aue Ul pajnd
-9Xd 3 Ued A3], "90UO PIANIAXD 3 JSNUW SANTATIOE JO 1S © JO JOqUIdW Loey

Sunnoy paaespIu]

07doOM

uondrosa(g

panunuo) - §'F qeL

urepeJ

PI

275

Appendix E. Workflow Patterns

jurod 31xa 10 A1yu

JUO UeY} 2I0W dARY Jey} [Ppow ssadoid e ur sa[Ad yuasaidar 03 AIqe ayfJ,

SOPAD A1enIqIy OLdDM

uondroso(g

suioned uoneid)| 9°g [qer,

urayeJ PI

syse} Juanbasqns o3 passed st [o13u00 Jo peanyy ayy pue

UMBIPU}IM dI€ saduejsur Jururewal Aue jeys yons pajo[dwod A[qri1of aq o3
Spaau ysey ay3 ey d[qrssod st 31 “Uonndaxs Jo asinod ay Jurm(] ‘pared3iny
aq ued syse) Juanbasqns Aue a105oq uonardurod je sadURISUT S} SSIUOIYDUAS
0} A18SS909U ST 3] "A[FUSLINDIUOD UNLI PUR I2JJ0 UYded Jo juspuadapur a1e sadue}
-SUT 9SaU], oW} USISAP Je UMOUY| SI S9OUB)SUI JO IaquInu paimbai ayy, pay
-B2ID 3q UEd sk} e Jo saduejsur ardnnuw ‘eouejsur ssedoxd usAId e unpp
paoageun

are paja[dwod Apealfe aAeY jJely) SedURISUL SE], "UMBIPUIIM a1 pajorduod
JOU dABY UDTYM SIDURJSUI AUB pue Pa[[adued g Ued se} aduejsur ofdnnu
ayy ‘own) Aue 3y "AJUSIINDOUOD UNI pue Iayj0 yoes jo juspuadapur are saoue)
-SUT 9S9U [, "oW} USISAP Je UMOWD| SI S9OUBJSUI JO Ioquinu paimbai sy pa3
-B2ID 9q UEd Yse} e Jo saduejsul rdiynuw ‘eouejsur ssadoxd UdAIS e uryIp

A31IAOY douesul
sidumpy avdwod ZzdDM

AyiATyoy 2ouey
-sul o[dum [PouURD 9TdOM

uondrosa(g

panunuo) - g d[qelL,

urepeJ PI

276

paImdaxa aq 0}
Sururewas 10 ssaxdoxd ur syse} Aue are a1ay} IBYDYM JO SSI[pIedal ‘ATnyssad
-ons pajarduwod Suraey se pap10dal ST 9dURISUL $S9001d [[RIDA0 33 pue P
-ued ST due)sur $s3001d oy Ul yrom Sururewar Aue ‘payoear ST apou pus SIy}
UM -opou pud diyads e Aq pajouap st styy A[pedtdA], -9jels pajeurwiou e
S9DEAI JT UM 9)BUIULId) P[NOYS dduesur (ssa0o1d-gns 10) ssad01d uea1d v
parordwod A[nyssaoons sey aduejsur ssadoxd ay) jey) SUruruLIalep Jo sueswt
9A103[qO Uk ST AIDY], "YOO[PEap UI J0U SI 9dUe)SUl ss3201d oy} pue a1njny a3
UT 9WIT} AU J© IO MOU IS} SUOP 9] 0} [Ik Jelf} SWT JI0m Fururewas ou
dIe 919} USYM d}eUruiIo) pInoys aduejsur (ssadoxd-qns 10) ssadord uaaid v

uoryeurwiiay, yordxyg

uoneuruidy, yidu

€VdOM

LILdOM

uondrosa(g

suioped uoneulwia| /g dqeL

urepeJ

PI

P33eID0SSE ST T UDIYM IIM 9INJONI}S UOTHISOdUIOdSP [[BISA0 S} JO SULID}
Ul 10}S90UE Ue IO UOHNIIXa S} SULINp J[9S}T aOAUL 0} se} e Jo AJjiqe 9y,

jurod 31xe pue Anjus a1durs e sey arnjongs Surdooy ayJ, -onunuod
PINoys 1 ayjeym auruiajep o3 dooy ays jo pus 10 Suruurdaq ayy je pajeny
-BAD IOUJIA ST JeY) 3T YIIM POJRIDOSSE UOTTPUO0D 3893-3s0d 10 3s93-a1d e 19310
sey dooy ayJ], ‘A[pareadar ssadord-gns 10 Ajranoe ue 9)ndaxa 03 Aiqe ayJ,

UOTISINDIY

doo pamnjonng

CCdOM

TZdOM

uondrosa(g

panunuo) - 9'g A[qeL

urepeJ

PI

277

Appendix E. Workflow Patterns

yse}

Sura1e021 a3 Aq U0 pajoe oq ued Aayy [un ssadoid sy Aq paurejal a1e pue
wiIog ur yue)sisiad are s193811) 9SaY], “JUSWIUOIIAUS [RUIS)XS dY} WOIJ 10 SSD
-o1d ay jo 3red 1ayjoue woig [eudis e Aq pa1a33iy 9q 03 ysey e 10§ AJ[Iqe YT,
POAISDAI ST 31

awir) 9Y) Je 31 10§ SULTeM dOURISUL XS} B SI I3 JT PasI[in aq AJuo ued 10831
Vv ser Suraredar ayy Aq A[1eIpawiuur U0 pajoe JOu JT }SO[Ik pue aInjeu ur
juaIsuer) are 193311} 9SaY [, ‘JUSWIUOIIAUD [BUIS)XD dY} WOIJ 0 ssad01d oy} Jo
yred 1ayjoue woig reults e Aq pa198311) 9q 03 SdURISUI Sk} e 10§ A[Iqe Y,

193311y JuasIsId] FTIDM

19831y Justsuel], €ZIDM

uondrosa(g

suloped 19331] *g°q dqelL

urayeJ

PI

278

Appendix

Computational Concurrency

Concurrency is a property of systems in which several computational processes
! are executing at the same time, and potentially interacting with each other.
The concurrent processes may be executing truly simultaneously, such as when
they are run on separate processors, or their execution steps may be interlea-
ved to produce the appearance of simultaneousness, as in the case of separate
processes running on a multitasking system. Because the processes in a concur-
rent system can interact with each other while they are executing, the number of
possible execution paths in the system can be extremely large, and the resulting

behaviour can be very complex (Roscoe et al., 1997).

F.1. Awareness Level in the Interaction Between Processes

It is possible to classify the interactions between processes based on the level
of awareness each process has of the existence of the others (Burns and Davies,

1993). There are three levels of awareness:

IFrom the point of view of Operating Systems theory, there is a clear difference between process
and thread. A process is an abstraction of a program in execution whose main objective is
to group related resources; whereas a thread or light process is a piece of a process that can
be executed. For the sake of simplicity, we will assume both concepts as synonymous. A
comprehensive review on this topic can be found in (Tanenbaum, 2007).

279

Appendix F. Computational Concurrency

The processes are unaware of each other The processes are not designed to operate
together; hence, the results of a process are independent of the other pro-
cesses’ actions. The Controlling System has to manage any competition for

the available resources.

The processes are indirectly aware of each other Although the processes are not di-
rectly aware of each other, they share access to some system objects, mea-
ning the results of a process may depend on information obtained from
others. Cooperation is thus established to share the common object. This
is the least common level of knowledge, but the most involved because
the information has to be kept updated. Each process stores a copy of the
information to allow for simultaneous access. These copies also allow for
changes to be written locally and let the underlying system update all the

other copies so as to keep the data consistent.

The processes are directly aware of each other The processes are able to communi-
cate directly with each other and are designed to work together on acti-
vities. These processes exhibit cooperative communication such that the

results of one process can depend on information obtained from others.

F.2. Competition between Processes for Resources

Concurrent processes conflict with each other when competing for the same re-
source. The state of said resource should remain unaltered after being used by
a process. Even if there is no exchange of information between competing pro-
cesses, the execution of a process could influence the behaviour of said processes.
Specifically, if two processes wish to access the same resource, the controlling
system must resolve and control the access to the resource among the competing
processes such that one will be assigned the resource while the other is forced
to wait. The process that is denied access is blocked and will be delayed. In a

worst case scenario, this means the blocked process will not gain access to the

280

F.3. Cooperation between Processes by Sharing

resource and will not finish its task successfully. Three control problems have to
be addressed when faced with competing processes:

Mutual exclusion Suppose two processes wish to access a single, non-shareable
resource. These so-called critical processes are used by that part of the
program known as the critical section. It is important that only one process
gain access to the critical section at any given time. Solving this mutual

exclusion gives rise to the two following problems.

Deadlock Consider two processes, P; and P>, and critical resources R; and R».
Suppose each process needs to access both resources to carry out part of
its function. In this case, the system controller may assign R; to P, and
R, to P;. Each process is waiting on one of the two resources and neither
will relinquish its own process until it can access the other and execute its
critical section. Both processes are deadlocked. Another situation leading
to deadlock is when the processes are input-locked, waiting for a message

that is never going to arrive.

Starvation This occurs when a process waits indefinitely for a resource. This is
solved by assigning a higher priority to processes to grant them quicker

access to the resource being requested, thus avoiding starvation (aging).

F.3. Cooperation between Processes by Sharing

Several processes can have access to shared resources. The processes can use
and update the data associated with these shared resources without referencing
the other processes, all the while being aware that said processes can access the
same data. The processes thus have to cooperate to ensure that the shared data
are handled correctly. The control mechanisms have to ensure the integrity of
the data. The only difference with the access described in the preceding section
is that the data may be accessed in two different ways, one to read and the other

to write. Only write operations have to be mutually exclusive. Before these pro-

281

Appendix F. Computational Concurrency

blems are addressed, however, a new requirement must be introduced: data co-
herence. In this case, each process’s complete sequence can be labelled as critical
to ensure the integrity of the data, even if no critical resources are involved.

F.4. Control Mechanisms

Both cooperation and competition require a series of control mechanisms, some
of which are briefly described below. For an in-depth review of these structures,
there are many books on computational concurrency such as (Andrews, 2000).

F.4.1. Locks

A lock is the most basic mechanism for synchronising processes. A lock can be
acquired at any given moment by one or by no processes. If a process P4 tries
to acquire a lock already acquired by another process P, P4 will stop running
until Pp releases the lock.

Locks are normally used to synchronise access to a shared resource, each of
which has an associated Lock object. Considered pseudo-code, there are two
main methods for handling locks:

o The acquire method takes the lock, allowing the process to access the re-
source. Upon calling the method, the process is forced to wait for the re-

source if necessary.
o The release method frees the lock.

Listing F.1 shows the use of these methods.

Listing F1. Use of Lock access methods

lock = new Lock() ;

lock.acquire(); // will block if lock is already held
// ... access shared resource

lock.release () ;

282

F.4. Control Mechanisms

F.4.2. Re-entrant locks (RLock)

A re-entrant lock (RLock) is a version of the Lock that only blocks if the me-
chanism has already been acquired by another process. Unlike the simple Lock,
RLock does not block if the same process tries to acquire it twice, as shown in
Listing F.2.

Listing F.2. Comparison between Lock and RLock acquisition

lock = new Lock();
lock.acquire () ;
lock.acquire(); // this will block

lock = new RLock () ;
lock.acquire () ;
lock.acquire(); // this will not block

The main use of RLock is with nested access to shared resources. Since this
mechanism stores the recursion level, the number of release and acquire calls
has to be balanced.

F.4.3. Monitor

The definition of monitor was first proposed by Hansen (1973) and later refi-
ned by Hoare (1974). Monitors provide a structured mechanism that ensures
exclusive access to resources, while easing synchronisation and communication
between different processes. The monitor achieves this by encapsulating both
the resource definition as well as a series of operations for its exclusive manipu-
lation. Only one of the calls to these operations can be active at once, thus protec-
ting the interior of the monitor from being accessed simultaneously by multiple
processes. This achieves exclusively mutual access that blocks and queues those
processes trying to access a busy monitor. These tasks are synchronised within
the monitor through the use of conditional variables that allow for a process
being executed by the monitor to be delayed. Two operations, wait and signal,

are associated with each condition. The wait operation is used to block/suspend

283

Appendix F. Computational Concurrency

the execution of the process invoking it if the condition is true. When the pro-
cess is blocked, another process is allowed to use the monitor. When the same
condition becomes false, a signal call continues the execution of one of the pro-
cesses suspended after a wait. If there are several processes, only one continues;
if there are no processes, the signal call is ignored. These operations allow for

multiple processes to be in a monitor at once, although only one will be active.

F.4.4. Barrier Synchronisation

Many problems can be solved using iterative algorithms. In some cases, the ope-
rations to be performed during an iteration or episode can be distributed among
several processes and executed in parallel. Since the results of an episode gene-
rally depend on the results of the previous episode, a synchronisation mecha-
nism is required that prevents a new episode from starting before the previous
one has been completed.

A barrier constitutes a point where a process arrives and waits until the remai-
ning processes have reached the same point. Listing F.3 shows the typical use of

a barrier.

Listing E3. Typical algorithm with a barrier

Process worker {
while (true) {
// Performs work of the current iteration
barrier.await(); // Waits for all the workers to complete
work

A barrier can be implemented in many ways, two popular structures being
centralised and tree-based. A centralised barrier uses a shared variable (usually
a simple counter) that keeps track of the processes as they reach the barrier. Ob-
viously, the use of a single shared variable evolves into a severe memory conten-

tion. Hence, for a large number of processors, tree-based barriers represent a

284

F.4. Control Mechanisms

reasonable alternative. Tree-based barrier utilises a set of distributed flags that
are combined in successive stages, thus reducing the contention. Butterfly, dis-
semination and tournament are different examples of tree-based barriers.

A user can profit from barriers by performing global operations (a sum, com-
puting the minimum value. ..) with all the processes during a synchronisation.
Well-known parallel languages, such as MPI (Snir et al., 1998), refer to these ope-

rations as global reductions.

285

Bibliography
The following references are author-ordered.

W. V.D. Aalst, J. Desel, and E. Kindler. On the semantics of epcs: A vicious circle.
In Proceedings of the EPK 2002: Business Process Management using EPCs, pages
71-80, 2002.

B. Abdelhabib and B. Brahim. JAPROSIM: A Java framework for Process In-
teraction Discrete Event Simulation. Journal of Object Technology, 7(1):103-119,
2008.

A. Agarwal and M. Hybinette. Merging Parallel Simulation Programs. Work-
shop on Principles of Advanced and Distributed Simulation (PADS’05), pages 227—
233, 2005. doi: 10.1109/PADS.2005.10. URL http://ieeexplore.ieee.org/
lpdocs/epic03/wrapper . htm?arnumber=1443328.

R. M. Aguilar. Aportaciones Metodologicas Basadas en Simulacion e Inteligencia Arti-
ficial para la Toma de Decisiones en la Gerencia Hospitalaria. Phd thesis, Universi-
dad de La Laguna, 1998.

R. M. Aguilar, I. Castilla, V. Mufioz, J. I. Estévez, C. A. Martin, and M. L. Pre-
dictive Simulation for Multiagent Resource Distribution: An Application in
Hospital Management. In 17th European Modeling & Simulation Symposium pro-
ceedings (vol. I), Marseille, France, 2005a.

287

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1443328
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1443328

Bibliography

R. M. Aguilar, C. A. Martin, I. Castilla, V. Mufioz, and L. Moreno. Libreria Java
para la Simulacién de Sistemas de Eventos Discretos y su Aplicacién en la Ge-

rencia Hospitalaria. Revista Iberoamericana de Automdtica e Informdtica Industrial,
2(4):66-77, 2005b.

R. M. Aguilar, I. Castilla, R. Mufioz, C. A. Martin, and J. Pifieiro. Verification and
validation in discrete event simulation: A case study in hospital management.
In International Mediterranean Modeling Multiconference. EMSS 2006, 2006.

R. M. Aguilar, I. Castilla, and R. Mufioz. Hospital Resource Management. In
Simulation-Based Case Studies in Logistics. Education and Applied Research, pages
65-84. Springer-Verlag, 2009.

M. Alla. Simulation applications in health care. Master thesis, Riga Technical Uni-
versity, 2005.

G. R. Andrews. Foundations of Multithreaded, Parallel, and Distributed Program-
ming. Addison Wesley, Reading, Massachusetts, 2000. ISBN 0-201-35752-6.

A. W. Appel. Compiling with continuations. Cambridge University Press, New
York, NY, USA, 1992. ISBN 0-521-41695-7.

O. Balci. The implementation of four conceptual frameworks for simulation
modeling in high-level languages. In Proceedings of the 20th conference on
Winter simulation - WSC '88, pages 287-295, New York, 1988. ACM Press.
ISBN 0911801421. doi: 10.1145/318123.318204. URL http://portal.acm.org/
citation.cfm?doid=318123.318204.

C. Ball and M. Bull. Barrier Synchronisation in Java. Technical report, UK
High-End Computing, 2003. URL http://www.ukhec.ac.uk/publications/
reports/synch_java.pdf.

U. Banerjee, R. Eigenmann, a. Nicolau, and D. Padua. Automatic program pa-
rallelization. Proceedings of the IEEE, 81(2):211-243, 1993. ISSN 00189219.

288

http://portal.acm.org/citation.cfm?doid=318123.318204
http://portal.acm.org/citation.cfm?doid=318123.318204
http://www.ukhec.ac.uk/publications/reports/synch_java.pdf
http://www.ukhec.ac.uk/publications/reports/synch_java.pdf

Bibliography

doi: 10.1109/5.214548. URL http://ieeexplore.ieee.org/lpdocs/epic03/

wrapper .htm?arnumber=214548.

J. Banks, J. S. Carson, B. L. Nelson, and D. M. Nicol. Discrete-Event System Simu-
lation. Prentice-Hall, Inc, New Jersey, 3rd edition, 2000.

P. J. Baquero, R. M. Aguilar, A. Ayala, and I. Castilla. Simulation of an IT User
Support Center. In 17th European Modeling & Simulation Symposium proceedings
(vol. I), Marseille, France, 2005.

C. Bermudez, R. M. Aguilar, and I. Castilla. Simulacién de eventos discretos
para la gestion de las listas de espera quirtrgicas y no quirtrgicas. In Pre-
mios Profesor Barea a la Gestion y Evaluacién de Costes Sanitarios, pages 157-171.
Fundacién Signo, 2008.

W.E. Biles and]J. P. C. Kleijnen. International Collaborations in Web-based Simu-
lation: A Focus on Experimental Design and Optimization. In Proceedings of the
Winter Simulation Conference, 2005., pages 218-222. IEEE, 2005. ISBN 0-7803-
9519-0. doi: 10.1109/WSC.2005.1574254. URL http://ieeexplore.ieee.org/
lpdocs/epic03/wrapper.htm?arnumber=1574254,

P. Bizarro, L. M. Silva, and J. a. G. Silva. JWarp: a Java library for parallel discrete-
event simulations. Concurrency: Practice and Experience, 10(11-13):999-1005,
1998.

C. J. M. Booth and D. I. Bruce. Stack-free process-oriented simulation. ACM
SIGSIM Simulation Digest, 27(1):182-185, julio 1997.

V. Bosilj-Vuksic, V. Ceric, and V. Hlupic. Criteria for the Evaluation of Business
Process Simulation Tools. Interdisciplinary Journal of Information, Knowledge, and
Management, 2:73-88, 2007. URL http://citeseerx.ist.psu.edu/viewdoc/
download?doi=10.1.1.103.9869%&rep=repl&type=pdf.

L. Boszormenyi and A. Stopper. Semi-automatic parallelization of object-

oriented simulations. Simulation Practice and Theory, 7(4):295-307, junio

289

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=214548
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=214548
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1574254
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1574254
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.103.9869&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.103.9869&rep=rep1&type=pdf

Bibliography

1999. ISSN 09284869. doi: 10.1016/50928-4869(99)00014-2. URL http:
//linkinghub.elsevier.com/retrieve/pii/S0928486999000142.

S. C. Brailsford, V. A. Lattimer, P. Tarnaras, and J. C. Turnbull. Emergency and
on-demand health care: Modelling a large complex system. The Journal of
the Operational Research Society, 55(1):pp. 34-42, 2004. ISSN 01605682. URL
http://www.jstor.org/stable/4101825.

R. E. Bryant. Simulation of packet communication architecture computer sys-
tems. Technical report, Massachusetts Institute of Technology, Cambridge,
MA, USA, 1977.

A. Burns and G. Davies. Concurrent programming. Addison Wesley Longman
Publishing Co., Inc., Redwood City, CA, USA, 1993. ISBN 0-201-54417-2.

A. Buss. Component based simulation modeling with simkit. Proceedings of the
Winter Simulation Conference, pages 243-249, 2002. doi: 10.1109/WSC.2002.
1172891. URL http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?
arnumber=1172891.

Modsim II. The Language for Object-Oriented Programming. Reference Manual. CACI
Products Company, 1995.

Y. Callero and R. M. Aguilar. Use of Simulation in eGovernment Process Deve-
lopment. A Case Study Using the Simulation Tool SIGHOS. In 21st European
Modeling & Simulation Symposium proceedings, Tenerife, Spain, 2009.

R. S. d. Carvalho and J. G. Crookes. Cellular simulation. Operational Research
Quarterly (1970-1977), 27(1):31-40, 1976. ISSN 00303623. URL http://wuw.
jstor.org/stable/3009208.

R. A. Cassel. Web-Based Simulation: The Three-Phase Worldview and Java. PhD

thesis, Lancaster University, Lancaster, 2000.

R. A. Cassel and M. Pidd. Distributed discrete event simulation using the three-
phase approach and Java. Simulation, 8:491-507, 2001.

290

http://linkinghub.elsevier.com/retrieve/pii/S0928486999000142
http://linkinghub.elsevier.com/retrieve/pii/S0928486999000142
http://www.jstor.org/stable/4101825
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1172891
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1172891
http://www.jstor.org/stable/3009208
http://www.jstor.org/stable/3009208

Bibliography

I. Castilla and R. M. Aguilar. Java for Parallel Discrete Event Simulation: a Sur-
vey. In R. M. Aguilar, A. G. Bruzzone, and M. A. Piera, editors, 21st European
Modeling & Simulation Symposium proceedings (vol. 1), pages 72-79, Puerto de la
Cruz, Tenerife, Spain, 2009.

I. Castilla, R. Mufioz, P.]. Baquero, and R. M. Aguilar. Helpdesk Modeling and
Simulation with Discrete Event Systems and Fuzzy Logic. In 19th European
Modeling & Simulation Symposium proceedings, Genoa, Italy, 2007.

L. Castilla, M. M. Gtinal, M. Pidd, and R. M. Aguilar. Hada: Towards a gene-
ric tool for data analysis for hospital simulations. In European Modeling and
Simulation Symposium EMSS 2008, 2008.

K. Chandy and R. Sherman. Space-Time and Simulation. In Proceedings of the SCS
Multiconference on Distributed Simulation, pages 53-57, Tampa, Florida, USA,
1989.

K. M. Chandy and J. Misra. Distributed simulation: A case study in design
and verification of distributed programs. IEEE Trans. Softw. Eng., 5(5):440-452,
1979. ISSN 0098-5589. doi: http://dx.doi.org/10.1109/TSE.1979.230182.

A. C. Chow, B. P. Zeigler, and D. H. Kim. Abstract simulator for the parallel
DEVS formalism. In Fifth Annual Conference on Al, and Planning in High Auto-
nomy Systems, pages 157-163, Gainesville, FL, USA, 1994. IEEE Comput. Soc.
Press. ISBN 0-8186-6440-1. doi: 10.1109/AIHAS.1994.390488. URL http:
//ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=390488.

L. Chwif, M. R. P. Barretto, and R. J. Paul. On simulation model complexity.
In J. A. Joines, R. R. Barton, K. Kang, and P. A. Fishwick, editors, 2000 Win-
ter Simulation Conference Proceedings, pages 449-455. IEEE, 2000. ISBN 0-7803-
6579-8. doi: 10.1109/WSC.2000.899751. URL http://ieeexplore.ieee.org/
lpdocs/epic03/wrapper . htm?arnumber=899751.

J. K. Cochran and A. Bharti. A multi-stage stochastic methodology for whole

hospital bed planning under peak loading. International Journal of Industrial

291

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=390488
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=390488
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=899751
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=899751

Bibliography

and Systems Engineering, 1(1/2):8, 2006. ISSN 1748-5037. doi: 10.1504/1JISE.
2006.009048. URL http://www.inderscience.com/link.php?id=9048.

J. C. Comfort. The simulation of a master-slave event set processor. Simulation,

42(3):117-124, 1984. ISSN 0037-5497. doi: 10.1177/003754978404200304. URL
http://sim.sagepub.com/cgi/doi/10.1177/003754978404200304.

A. Concepcion. A hierarchical computer architecture for distributed simula-
tion. IEEE Transactions on Computers, 38(2):311-319, 1989. ISSN 00189340.
doi: 10.1109/12.16512. URL http://ieeexplore.ieee.org/lpdocs/epic03/

wrapper .htm?arnumber=16512.

M. E. Conway. Design of a separable transition-diagram compiler. Commun.
ACM, 6(7):396-408, 1963. ISSN 0001-0782. doi: http://doi.acm.org/10.1145/
366663.366704.

J. Cowie. Jted: parallel discrete-Event simulation in java. Concurrency:
Practice and Experience, 10(11-13):993-997, septiembre 1998. ISSN 1040-
3108. doi: 10.1002/(SICI)1096-9128(199809/11)10:11/13<993:: AID-CPE405>
3.0.CO;2-C. URL http://doi.wiley.com/10.1002/%28SICI%291096-9128%
28199809/11%2910%3A11/13%3C993%3A%3AAID-CPE405%3E3.0.C0%3B2-C.

O.-]. Dahl and K. Nygaard. Simula: an algol-based simulation language. Com-
mun. ACM, 9(9):671-678, 1966. ISSN 0001-0782. doi: http://doi.acm.org/10.
1145/365813.365819.

E. Fatin. A Programming Structure for Parallel Simulation. PhD thesis, Brunel Uni-
versity, 1996.

A. Ferscha and M. Richter. Massively parallel simulation of business process
models. In European Simulation Multiconference 1996, pages 377-381, Budapest,
Hungary, 1996.

A. Ferscha and S. K. Tripathi. Parallel and Distributed Simulation of Discrete
Event Systems. Technical report, University of Maryland at College Park, 1996.

292

http://www.inderscience.com/link.php?id=9048
http://sim.sagepub.com/cgi/doi/10.1177/003754978404200304
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=16512
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=16512
http://doi.wiley.com/10.1002/%28SICI%291096-9128%28199809/11%2910%3A11/13%3C993%3A%3AAID-CPE405%3E3.0.CO%3B2-C
http://doi.wiley.com/10.1002/%28SICI%291096-9128%28199809/11%2910%3A11/13%3C993%3A%3AAID-CPE405%3E3.0.CO%3B2-C

Bibliography

D. Fone, S. Hollinghurst, M. Temple, A. Round, N. Lester, A. Weightman,
K. Roberts, E. Coyle, G. Bevan, and S. Palmer. Systematic review of the
use and value of computer simulation modelling in population health and
health care delivery. Journal of Public Health Medicine, 25(4):325-335, 2003.
doi: 10.1093/pubmed/fdg075. URL http://jpubhealth.oxfordjournals.
org/cgi/content/abstract/25/4/325.

R. M. Fujimoto. Feature Article-Parallel Discrete Event Simulation: Will
the Field Survive? INFORMS JOURNAL ON COMPUTING, 5(3):213-230,
1993. doi: 10.1287/ijoc.5.3.213. URL http://joc. journal.informs.org/cgi/
content/abstract/5/3/213.

R. M. Fujimoto. Exploiting temporal uncertainty in parallel and distributed si-
mulations. In Proceedings Thirteenth Workshop on Parallel and Distributed Simula-
tion. PADS 99. (Cat. No.PR00155), pages 46-53, Atlanta, GA, 1999. IEEE Com-

put. Soc. ISBN 0-7695-0155-9. doi: 10.1109/PADS.1999.766160. URL http:
//ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=766160.

R. M. Fujimoto. Parallel and Distributed Simulation Systems. John Wiley & Sons,
Inc, New York, NY, USA, 2000.

R. M. Fujimoto and D. M. Nicol. Parallel simulation today. Annals of
Operations Research, 53(1):249-285, diciembre 1994. ISSN 0254-5330. doi:
10.1007/BF02136831. URL http://www.springerlink.com/index/10.1007/
BF02136831.

E. Gamma, R. Helm, R. Johnson, and]. Vlissides. Design patterns: elements of
reusable object-oriented software. Addison-Wesley Professional, 1995.

Y. Garcia-Hevia. Modelado y simulacién en Internet. Master thesis, Escuela

Técnica Superior de Ingenieria Informética. Universidad de La Laguna, 2008.

J. M. Garrido and K. Im. Teaching object-oriented simulation with psimj simu-
lation package. In ACM-SE 42: Proceedings of the 42nd annual Southeast regional

293

http://jpubhealth.oxfordjournals.org/cgi/content/abstract/25/4/325
http://jpubhealth.oxfordjournals.org/cgi/content/abstract/25/4/325
http://joc.journal.informs.org/cgi/content/abstract/5/3/213
http://joc.journal.informs.org/cgi/content/abstract/5/3/213
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=766160
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=766160
http://www.springerlink.com/index/10.1007/BF02136831
http://www.springerlink.com/index/10.1007/BF02136831

Bibliography

conference, pages 422-427, New York, NY, USA, 2004. ACM. ISBN 1-58113-870-
9. doi: http://doi.acm.org/10.1145/986537.986643.

E. Glinsky and G. A. Wainer. New Parallel Simulation Techniques of DEVS and
Cell-DEVS in CD++. In 39th Annual Simulation Symposium (ANSS’06), pages
244-251, Washington, DC, 2006. IEEE Comput. Soc. ISBN 0-7695-2559-8. doi:
10.1109/ANSS.2006.32. URL http://ieeexplore.ieee.org/lpdocs/epic03/
wrapper .htm7arnumber=1612865.

B. Goetz, T. Peierls, J. Bloch, J. Bowbeer, D. Holmes, and D. Lea. Java Concurrency
in Practice. Addison-Wesley Professional, Upper Saddle River, NJ, 2006.

M. Giinal and M. Pidd. Simulation Modelling for Performance Measure-
ment in Healthcare. In Proceedings of the Winter Simulation Conference, 2005.,
pages 2663-2668. IEEE, 2005. ISBN 0-7803-9519-0. doi: 10.1109/WSC.2005.
1574567. URL http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?
arnumber=1574567.

M. M. Giinal. Simulation Modelling for Understanding Performance in Healthcare.
Phd thesis, Lancaster University Management School, 2008.

M. M. Giinal and M. Pidd. Understanding Accident and Emergency Depart-
ment Performance using Simulation. In Proceedings of the 2006 Winter Si-
mulation Conference, pages 446—452. IEEE, Dec. 2006. ISBN 1-4244-0501-7.
doi: 10.1109/WSC.2006.323114. URL http://ieeexplore.ieee.org/lpdocs/
epic03/wrapper.htm?arnumber=4117638.

M. M. Giinal and M. Pidd. Interconnected DES models of emergency, outpatient,
and inpatient departments of a hospital. In 2007 Winter Simulation Conference,
pages 1461-1466. IEEE, Dec. 2007. ISBN 978-1-4244-1305-8. doi: 10.1109/WSC.
2007.4419757. URL http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.
htm?arnumber=4419757.

294

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1612865
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1612865
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1574567
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1574567
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4117638
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4117638
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4419757
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4419757

Bibliography

M. M. Giinal and M. Pidd. DGHPSim: Supporting smart thinking to im-
prove hospital performance. In 2008 Winter Simulation Conference, pages 1484—
1489. IEEE, Dec. 2008. ISBN 978-1-4244-2707-9. doi: 10.1109/WSC.2008.
4736228. URL http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?
arnumber=4736228.

B. A. W. V. Halderen and B.]. Overeinder. Fornax: Web-based
distributed discrete event simulation in Java. Concurrency: — Practice
and Experience, 10(11-13):957-970, septiembre 1998. ISSN 1040-3108.
doi: 10.1002/(SICI)1096-9128(199809/11)10:11/13<957::AID-CPE393>3.0.CO;
2-4. URL http://doi.wiley.com/10.1002/%283ICI%291096-91287,28199809/
11%2910%3A11/13%3C957%3A%3AAID-CPE393%3E3.0.C0%3B2-4.

M. Hall, J. Anderson, S. Amarasinghe, B. Murphy, and E. Bu. Maximizing multi-
processor performance with the SUIF compiler. Computer, 29(12):84-89, 1996.
ISSN 00189162. doi: 10.1109/2.546613. URL http://ieeexplore.ieee.org/
lpdocs/epic03/wrapper.htm?arnumber=546613.

B. P. Hansen. Operating System Principles. Prentice-Hall, Englewood Cliffs, NJ,
1973.

K.]J. Healy and R. A. Kilgore. Silk: A Java-based Process Simulation Language.
In S. Andradbttir, K. J. Healy, D. H. Withers, and B. L. Nelson, editors, Procee-
dings of the 1997 Winter Simulation Conference, pages 475-482. IEEE, 1997.

P. Heidelberger. Discrete Event Simulations and Parallel Processing: Statistical
Properties. SIAM Journal on Scientific and Statistical Computing, 9(6):1114-1132,
1988. ISSN 01965204. doi: 10.1137/0909077. URL http://link.aip.org/
1link/SJOCE3/v9/i6/pl114/s1&Agg=doi.

P. Heidelberger and H. S. Stone. Parallel trace-driven cache simulation by time
partitioning. In O. Balci, R. P. Sadowski, and R. E. Nance, editors, Proceedings
of the 22nd conference on Winter simulation, pages 734737, New Orleans, Loui-
siana, USA, 1990. IEEE Comput. Soc. Press.

295

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4736228
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4736228
http://doi.wiley.com/10.1002/%28SICI%291096-9128%28199809/11%2910%3A11/13%3C957%3A%3AAID-CPE393%3E3.0.CO%3B2-4
http://doi.wiley.com/10.1002/%28SICI%291096-9128%28199809/11%2910%3A11/13%3C957%3A%3AAID-CPE393%3E3.0.CO%3B2-4
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=546613
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=546613
http://link.aip.org/link/SJOCE3/v9/i6/p1114/s1&Agg=doi
http://link.aip.org/link/SJOCE3/v9/i6/p1114/s1&Agg=doi

Bibliography

K. Helsgaun. Discrete Event Simulation in Java. Technical report, Roskilde Uni-
versity, 2004.

J. Hennessy and D. Patterson. Computer Architecture - A Quantitative Approach.
Morgan Kaufmann, 4th edition, 2007.

J. Himmelspach, R. Ewald, S. Leye, and A. M. Uhrmacher. Parallel and distri-
buted simulation of Parallel DEVS models. In Proceedings of the 2007 spring
simulation multiconference, volume 1, pages 249-256, Norfolk, Virginia, 2007.
Society for Computer Simulation International.

C. A. R. Hoare. Monitors: an operating system structuring concept. Commun.
ACM, 17(10):549-557, 1974. ISSN 0001-0782. doi: http://doi.acm.org/10.
1145/355620.361161.

E. Howell and R. Mcnab. simjava: a discrete event simulation library for java.
In International Conference on Web-Based Modeling and Simulation, pages 51-56,
1998. doi: 10.1.1.52.2940.

M. Hybinette. Just-in-time cloning. In 18th Workshop on Parallel and Distribu-
ted Simulation, 2004. PADS 2004., pages 45-51. IEEE, 2004. ISBN 0-7695-2111-
8. doi: 10.1109/PADS.2004.1301284. URL http://ieeexplore.ieee.org/
lpdocs/epic03/wrapper.htm?arnumber=1301284.

M. Hybinette and R. M. Fujimoto. Cloning parallel simulations. ACM Transac-
tions on Modeling and Computer Simulation, 11(4):378-407, 2001. ISSN 10493301.
doi: 10.1145/508366.508370. URL http://portal.acm.org/citation.cfm?
doid=508366.508370.

P. Jacobs. The DSOL simulation suite - Enabling multi-formalism simulation in a
distributed context. Phd thesis, TU Delft, 2005.

P. Jacobs and A. Verbraeck. Single-Threaded specification of process-Interaction
formalism in java. In Proceedings of the 2004 Winter Simulation Conference,

296

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1301284
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1301284
http://portal.acm.org/citation.cfm?doid=508366.508370
http://portal.acm.org/citation.cfm?doid=508366.508370

Bibliography

pages 479-486. IEEE, 2004. ISBN 0-7803-8786-4. doi: 10.1109/WSC.2004.
1371497. URL http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?
arnumber=1371497.

P. Jacobs, N. Lang, and A. Verbraeck. D-Sol; a distributed java based discrete
event simulation architecture. In Proceedings of the Winter Simulation Confe-
rence, pages 793-800. IEEE, 2002. ISBN 0-7803-7614-5. doi: 10.1109/WSC.2002.
1172962. URL http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?
arnumber=1172962.

I. Jacobson. Object-Oriented Software Engineering: A Use Case Driven Approach.
Addison Wesley Longman Publishing Co., Inc., Reading, Massachusetts, 1992.

D. R. Jefferson. Virtual time. ACM Transactions on Programming Languages and
Systems, 7(3):404-425, julio 1985. ISSN 01640925. doi: 10.1145/3916.3988. URL
http://portal.acm.org/citation.cfm?doid=3916.3988.

D. W. Jones. Concurrent simulation. ACM Press, New York, New York, USA,
1986. ISBN 0911801111. doi: 10.1145/318242.318468. URL http://portal.
acm.org/citation.cfm?doid=318242.318468.

J. B. Jun, S. H. Jacobson, and J. R. Swisher. Application of discrete-event simula-
tion in health care clinics: A survey. Journal of the Operational Research Society,
50(2):109-123, 1999.

W. D. Kelton, R. P. Sadowski, and D. A. Sadowski. Simulation with Arena.
McGraw-Hill, Inc., New York, NY, USA, 2nd edition, 2002. ISBN 0071122397.

G. Kesidis and A. Singh. An Overview of Cell-Level ATM Network Simulation.
In Proc. High Performance Computer Systems, Montreal, PQ, 1995. URL http:

//citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.57.1610.

B. Kiepuszewski. Expressiveness and Suitability of Languages for Control Flow Mo-
delling in Workflows. Phd thesis, Queensland University of Technology, 2002.

297

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1371497
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1371497
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1172962
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1172962
http://portal.acm.org/citation.cfm?doid=3916.3988
http://portal.acm.org/citation.cfm?doid=318242.318468
http://portal.acm.org/citation.cfm?doid=318242.318468
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.57.1610
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.57.1610

Bibliography

B. Kiepuszewski, A. ter Hofstede, and W. van Der Aalst. Fundamentals of
control flow in workflows. Acta Informatica, 39(3):143-209, marzo 2003. ISSN
0001-5903. doi: 10.1007 /s00236-002-0105-4. URL http://www.springerlink.
com/Index/10.1007/s00236-002-0105-4.

T. Kiesling. Progressive Time-Parallel Simulation. 20th Workshop on Principles
of Advanced and Distributed Simulation (PADS’06), pages 82-91, 2006. doi:
10.1109/PADS.2006.31. URL http://ieeexplore.ieee.org/lpdocs/epic03/
wrapper.htm?arnumber=1630712.

P. J. Koopman, Jr. Stack computers: the new wave. Halsted Press, New York, NY,
USA, 1989. ISBN 0-470-21467-8.

A. Kunert. Optimistic-parallel, process-oriented des in java using bytecode re-
writing. Technical report, Institut fiir Informatik, Humboldt-Universitat zu
Berlin, Berlin, Germany, May 2008.

L. Lamport. Time, clocks, and the ordering of events in a distributed sys-
tem. Communications of the ACM, 21(7):558-565, 1978. ISSN 00010782. doi:
10.1145/359545.359563. URL http://portal.acm.org/citation.cfm?doid=
359545.359563.

D. Lea. The java.util.concurrent synchronizer framework. Science of Compu-
ter Programming, 58(3):293-309, Dec. 2005. ISSN 01676423. doi: 10.1016/
j-s€ico0.2005.03.007. URL http://linkinghub.elsevier.com/retrieve/pii/
50167642305000663.

P. L'ecuyer and E. Buist. Simulation in java with ssj. In Proceedings of the
Winter Simulation Conference, 2005., pages 611-620. IEEE, 2005. ISBN 0-7803-
9519-0. doi: 10.1109/WSC.2005.1574301. URL http://ieeexplore.ieee.org/
lpdocs/epic03/wrapper.htm?arnumber=1574301.

Y.-B. Lin and E. D. Lazowska. A time-division algorithm for parallel simula-
tion. ACM Transactions on Modeling and Computer Simulation, 1(1):73-83, 1991.

298

http://www.springerlink.com/Index/10.1007/s00236-002-0105-4
http://www.springerlink.com/Index/10.1007/s00236-002-0105-4
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1630712
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1630712
http://portal.acm.org/citation.cfm?doid=359545.359563
http://portal.acm.org/citation.cfm?doid=359545.359563
http://linkinghub.elsevier.com/retrieve/pii/S0167642305000663
http://linkinghub.elsevier.com/retrieve/pii/S0167642305000663
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1574301
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1574301

Bibliography

ISSN 10493301. doi: 10.1145/102810.214307. URL http://portal.acm.org/
citation.cfm?doid=102810.214307.

M. L. Loper. Approximate Time and Temporal Uncertainty in Parallel and Distributed
Simulation. PhD thesis, Georgia Institute of Technology, 2002.

B. D. Lubachevsky. Bounded lag distributed discrete event simulation. In SCS
Multiconference on Distributed Simulation, pages 183-191, 1988.

E. Mascarenhas and V. Rego. Ariadne: Architecture of a Portable Threads Sys-
tem Supporting Thread Migration. Software: Practice and Experience, 26(3):327-
356, 1996. ISSN 0038-0644. doi: 10.1002/(SICI)1097-024X(199603)26:3<327::
AID-SPE12>3.0.CO;2-H. URL http://doi.wiley.com/10.1002/%28SICI%
291097-024X%28199603%2926%343%3C327%3A%3AAID-SPE12),3E3.0.C0%3B2-H.

R. Medina-Mora, T. Winograd, R. Flores, and F. Flores. The action workflow
approach to workflow management technology. In CSCW "92: Proceedings of
the 1992 ACM conference on Computer-supported cooperative work, pages 281-288,
New York, NY, USA, 1992. ACM. ISBN 0-89791-542-9. doi: http://doi.acm.
org/10.1145/143457.143530.

R. B. v. d. Meer, L. A. Rymaszewski, H. Findlay, and J. Curran. Using or to sup-
port the development of an integrated musculo-skeletal service. The Journal of
the Operational Research Society, 56(2):pp. 162-172, 2005. ISSN 01605682. URL
http://www.jstor.org/stable/4102167.

J. A. Miller, K. Kochut, W. D. Potter, E. Ucar, and A. Keskin. Query-driven simu-
lation using active kdl: A functional object-oriented database system. Interna-
tional Journal in Computer Simulation, 1(1), 1991.

J. A. Miller, R. Nair, Z. Zhang, and H. Zhao. JSIM: A Java-based simulation
and animation environment. Proceedings of 1997 SCS Simulation Multiconfe-
rence, pages 31-42, 1997. doi: 10.1109/SIMSYM.1997.586473. URL http:
//ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=586473.

299

http://portal.acm.org/citation.cfm?doid=102810.214307
http://portal.acm.org/citation.cfm?doid=102810.214307
http://doi.wiley.com/10.1002/%28SICI%291097-024X%28199603%2926%3A3%3C327%3A%3AAID-SPE12%3E3.0.CO%3B2-H
http://doi.wiley.com/10.1002/%28SICI%291097-024X%28199603%2926%3A3%3C327%3A%3AAID-SPE12%3E3.0.CO%3B2-H
http://www.jstor.org/stable/4102167
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=586473
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=586473

Bibliography

J. A. Miller, A. F. Seila, and X. Xiang. The JSIM web-based simulation environ-
ment. Future Generation Computer Systems, 17(2):119-133, octubre 2000. ISSN
0167739X. doi: 10.1016/50167-739X(99)00108-9. URL http://linkinghub.
elsevier.com/retrieve/pii/S0167739X99001089.

L. Moreno, R. M. Aguilar, J. Pifieiro, J. Sigut, J. Estévez, C. A. Martin, and J. San-
chez. Patient-Centered Simulation to Aid Decision-Making in Hospital Mana-
gement. Simulation-Transactions of the Society for Modeling and Simulation Inter-
national, 74(5):290-303, 2000.

L. Moreno, R. M. Aguilar, J. Pifieiro, J. Sigut, J. Estévez, and C. Gonzélez. Using
KADS methodology in a simulation assisted knowledge based system: appli-
cation to hospital management. Expert System with Applications, 20:235-249,
2003.

R. Mufioz. XMLGHOS: Una Interfaz para Especificar Modelos de Eventos Dis-
cretos Usando SIGHOS. Master thesis, Escuela Técnica Superior de Ingenieria
Informaética. Universidad de La Laguna, 2006.

R. Mufioz and I Castilla. SIGHOS sourceforge. Web site:

http:/ /sourceforge.net/projects/sighos/ [Last accessed: 29 September
2010], 2010.

N. Mustafee, K. Katsaliaki, and S.]. Taylor. Profiling Literature in Heal-
thcare Simulation. SIMULATION, 86(8-9):543-558, 2010. doi: 10.1177/
0037549709359090. URL http://sim.sagepub.com/content/86/8-9/543.
abstract.

S. Muthu, L. Whitman, and S. H. Cheraghi. Business process reengineering:
A consolidated methodology. In Proceedings of the 4 th Annual International
Conference on Industrial Engineering Theory, Applications, and Practice, 1999 U.S.
Department of the Interior - Enterprise Architecture, pages 8-13, 2006.

R. E. Nance. On Time Flow Mechanisms for Discrete System Simulation. Manage-
ment Science, 18(1):59-73,1971. URL http://www.jstor.org/stable/2629293.

300

http://linkinghub.elsevier.com/retrieve/pii/S0167739X99001089
http://linkinghub.elsevier.com/retrieve/pii/S0167739X99001089
http://sim.sagepub.com/content/86/8-9/543.abstract
http://sim.sagepub.com/content/86/8-9/543.abstract
http://www.jstor.org/stable/2629293

Bibliography

A. Neely, M. Gregory, and K. Platts. Performance measurement system design:
A literature review and research agenda. International Journal of Operations and
Production Management, 15(4):80-116, 1995.

D. M. Nicol. Performance bounds on parallel self-initiating discrete-event simu-
lations. ACM Trans. Model. Comput. Simul., 1(1):24-50, 1991. ISSN 1049-3301.
doi: http://doi.acm.org/10.1145/102810.102812.

D. M. Nicol and P. E. Reynolds, Jr. Problem oriented protocol design. ACM
SIGSIM Simulation Digest, 16(2):27-30, 1985. ISSN 01636103. doi: 10.
1145/1102958.1102961. URL http://portal.acm.org/citation.cfm?doid=
11029568.1102961.

E. Niewiadomska-Szynkiewicz, M. Zmuda, and K. Malinowski. Application of
a java-based framework to parallel simulation of large-scale systems. Applied
Mathematics and Computation, 13(4):537-547, 2003.

B. Page and W. Kreutzer. The Java Simulation Handbook — Simulating discrete Event
Systems with UML and Java. Shaker Publishing, Aachen, Germany, 2005. ISBN
978-3832237714.

H. Park and P. A. Fishwick. A fast hybrid time-synchronous/event approach
to parallel discrete event simulation of queuing networks. 2008 Winter Si-
mulation Conference, pages 795-803, diciembre 2008. doi: 10.1109/WSC.2008.
4736142. URL http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?
arnumber=4736142.

C.D. Pedgen, R. E. Shannon, and R. P. Sadowski. Introduction to Simulation Using
SIMAN, 2nd Ed. McGraw-Hill, Inc., New York, 1995.

K. Perumalla and R. Fujimoto. Efficient large-scale process-oriented parallel
simulations. In D. Medeiros, E. Watson, J. Carson, and M. Manivannan,
editors, 1998 Winter Simulation Conference. Proceedings (Cat. No.98CH36274),
pages 459-466. IEEE, 1998. ISBN 0-7803-5133-9. doi: 10.1109/WSC.1998.

301

http://portal.acm.org/citation.cfm?doid=1102958.1102961
http://portal.acm.org/citation.cfm?doid=1102958.1102961
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4736142
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4736142

Bibliography

745022. URL http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?
arnumber=745022.

K. S. Perumalla. Parallel and distributed simulation: traditional techniques and
recent advances. In Proceedings of the 2006 Winter Simulation Conference, pages
84-95. IEEE, diciembre 2006. ISBN 1-4244-0501-7. doi: 10.1109/WSC.2006.
323041. URL http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?
arnumber=4117594.

P. Peschlow, A. Voss, and P. Martini. Good news for parallel wireless network
simulations. In Proceedings of the 12th ACM international conference on Mode-
ling, analysis and simulation of wireless and mobile systems - MSWiM '09, pages
134-142, New York, New York, USA, 2009. ACM Press. ISBN 9781605586168.
doi: 10.1145/1641804.1641828. URL http://portal.acm.org/citation.cfm?
doid=1641804.1641828.

M. Philippsen, B. Haumacher, and C. Nester. More efficient serialization and
RMI for Java. Concurrency: Practice and Experience, 12(7):495-518, mayo 2000.
ISSN 1040-3108.

M. Pidd. Object-orientation, discrete simulation and the three-phase approach.
The Journal of the Operational Research Society, 46(3):362-374, 1995. ISSN
01605682. URL http://www.jstor.org/stable/2584330.

M. Pidd. Computer Simulation in Management Science. John Wiley & Sons, Inc.,
New York, NY, USA, 1998. ISBN 0471979317.

P. F. Reynolds. Active Logical Processes and Distributed Simulation: An analyi-
sis. In S. Roberts, J. Banks, and B. Schmeiser, editors, Proceedings of the 1983
Winter Simulation Conference, pages 263-265, Arlington, Virginia, USA, 1983.
IEEE Comput. Soc. Press.

P. F. Reynolds, Jr. A shared resource algorithm for distributed simulation. In
Proceedings of the 9th annual symposium on Computer Architecture, pages 259—
266, Austin, Texas, USA, 1982. IEEE Comput. Soc. Press.

302

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=745022
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=745022
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4117594
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4117594
http://portal.acm.org/citation.cfm?doid=1641804.1641828
http://portal.acm.org/citation.cfm?doid=1641804.1641828
http://www.jstor.org/stable/2584330

Bibliography

A. W.Roscoe, C. A. R. Hoare, and R. Bird. The Theory and Practice of Concurrency.
Prentice Hall PTR, Upper Saddle River, NJ, USA, 1997. ISBN 0136744095.

N. Russell, A. H. M. Hofstede, W. M. P. Van Der Aalst, and N. Mulyar. Work-
flow Control-Flow Patterns: A Revised View. Technical report, BPMcenter.org,
2006.

S. Sardesai, D. Mclaughlin, and P. Dasgupta. Distributed Cactus Stacks: Run-
time Stack-Sharing Support for Distributed Parallel Programs. In H. Arabnia,
editor, Proceedings of the International Conference on Parallel and Distributed Pro-
cessing Techniques and Applications, pages 57-65, Las Vegas, Nevada, 1998.

T. Schriber and D. Brunner. Inside Discrete-Event Simulation Software: How
it Works and Why it Matters. In L. F. Perrone, F. P. Wieland, J. Liu, B. G.
Lawson, D. M. Nicol, and R. M. Fujimoto, editors, Proceedings of the 2006
Winter Simulation Conference, pages 118-128. IEEE, 2006. ISBN 1-4244-0501-7.
doi: 10.1109/WSC.2006.323044. URL http://ieeexplore.ieee.org/lpdocs/
epic03/wrapper.htm?arnumber=4117597.

T. J. Schriber and D. T. Brunner. Inside simulation software: how it works and
why it matters. In Proceedings of the 1994 Winter Simulation Conference, pages
45-54, Washington, DC, USA, 1994. IEEE Computer Society.

L. Schruben. Simulation modeling with event graphs. Commun. ACM, 26(11):
957-963, 1983.

M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and J. Dongarra. MPI-The Com-
plete Reference, Volume 1: The MPI Core. MIT Press, Cambridge, MA, USA, 1998.
ISBN 0262692155.

SNS. Indicadores Clave del Sistema Nacional de Salud. Ministerio de Sani-
dad y Consumo, March 2007. URL http://www.msc.es/estadEstudios/
estadisticas/sisInfSanSNS/pdf/indicadoresClaveCISNS.pdf.

303

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4117597
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4117597
http://www.msc.es/estadEstudios/estadisticas/sisInfSanSNS/pdf/indicadoresClaveCISNS.pdf
http://www.msc.es/estadEstudios/estadisticas/sisInfSanSNS/pdf/indicadoresClaveCISNS.pdf

Bibliography

A. S. Tanenbaum. Modern Operating Systems. Prentice Hall Press, Upper Saddle
River, NJ, USA, 2007. ISBN 9780136006633.

R. D. Tennent. The denotational semantics of programming languages. Commun.
ACM, 19(8):437-453, 1976. ISSN 0001-0782. doi: http://doi.acm.org/10.1145/
360303.360308.

Y. M. Teo and Y. K. Ng. Spades/java: object-Oriented parallel discrete-Event
simulation. Proceedings 35th Annual Simulation Symposium. SS 2002, pages 245
252, 2002. doi: 10.1109/SIMSYM.2002.1000160. URL http://ieeexplore.
ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1000160.

The Apache Software Foundation. JavaFlow homepage. Web site:
http:/ /commons.apache.org/sandbox/javaflow/ [Last accessed: 29 Septem-
ber 2010], 2010.

The Jikes Team. Jikes homepage. Web site: http:/ /jikes.sourceforge.net/ [Last
accessed: 29 September 2010], 2010.

The NHS Information Centre. HES Online Data. Web site:
http:/ /www.hesonline.org.uk [Last accessed: 29 September 2010], 2008.

The RIFE team. RIFE homepage. Web site: http:/ /www.rifers.org/ [Last acces-
sed: 29 September 2010], 2010.

W. M. P. Van Der Aalst, A. H. M. T. Hofstede, B. Kiepuszewski, and A. P. Barros.
Workflow Patterns. Distributed and Parallel Databases, 14(1):5-51, 2003. doi:
10.1023/ A:1022883727209.

R. M. Weatherly and E. H. Page. Efficient process interaction simulation in java:
implementing co-Routines within a single java thread. In Proceedings of the
2004 Winter Simulation Conference, pages 373-379. IEEE, 2004. ISBN 0-7803-
8786-4. doi: 10.1109/WSC.2004.1371483. URL http://ieeexplore.ieee.org/
lpdocs/epic03/wrapper.htm?arnumber=1371483.

304

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1000160
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1000160
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1371483
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1371483

Bibliography

WEMC. Workflow Management Coalition Terminology & Glos-
sary. Technical Report WFMC-TC-1011, Workflow Mana-
gement Coalition, Winchester, Hampshire, UK, February
1999. URL http://www.wfmc.org/Download-document/

WFMC-TC-1011-Ver-3-Terminology-and-Glossary-English.html.

T. Wiedemann. Discrete Event Simulation with Universal Programming Lan-
guages on Multicore Processors. In Proceedings of the 20th European Modeling
and Simulation Symposium - EMSS 2008, Campora San Giovanni, Amantea,
Italy, 2008.

Workflow Patterns Initiative. =~ WorkFlow Patterns homepage. @~ Web site:
http:/ /www.workflowpatterns.com/ [Last accessed: 29 September 2010],
2010.

M. T. Wynn, M. Dumas, C.]. Fidge, A. H. M. Hofstede, and W. M. P. V. D. Aalst.
Business Process Simulation for Operational Decision Support. In A. Hof-
stede, B. Benatallah, and H.-Y. Paik, editors, Business Process Management Work-
shops, volume 4928 of Lecture Notes in Computer Science, pages 66—77. Sprin-
ger Berlin Heidelberg, Berlin, Heidelberg, 2008. ISBN 978-3-540-78237-7. doi:
10.1007 /978-3-540-78238-4\ _8. URL http://www.springerlink.com/index/
10.1007/978-3-540-78238-4.

B. Zarei. Parallel Simulation for Business Process Re-engineering. In M. Papr-
zycki, L. Tarricone, and L. T. Yang, editors, Practical parallel computing, pages
163-183. Nova Science Publishers, Inc, 2001.

B. P. Zeigler, T. G. Kim, and H. Praehofer. Theory of Modelling and Simulation.
Academic Press, Inc., Orlando, FL, USA, 2nd edition, 2000.

305

http://www.wfmc.org/Download-document/WFMC-TC-1011-Ver-3-Terminology-and-Glossary-English.html
http://www.wfmc.org/Download-document/WFMC-TC-1011-Ver-3-Terminology-and-Glossary-English.html
http://www.springerlink.com/index/10.1007/978-3-540-78238-4
http://www.springerlink.com/index/10.1007/978-3-540-78238-4

	Portada

	Dedicatoria

	Agradecimientos
	Contents
	List of Tables
	List of Figures
	List of Code and Pseudocode Listings
	List of Acronyms
	Introduction
	Overview
	Research Objectives
	Structure of the Thesis

	Chapter 1. Theoretical Foundations for Parallel Discrete Event Simulation
	1.1. Discrete-Event System Simulation
	1.1.1. A Theoretical Framework for Representing Time in DES

	1.2. DES World Views
	1.2.1. Event Scheduling
	1.2.2. Activity Scanning
	1.2.3. Process Interaction
	1.2.4. Three-Phase Approach
	1.2.5. Comparing the Four Approaches

	1.3. Parallel Discrete Event Simulation
	1.3.1. Automatic Code Parallelisation by Using a Specific Compiler
	1.3.2. Replicated Trials or Distributed Experimentation
	1.3.3. Dedicated Execution
	1.3.4. Hierarchical Decomposition
	1.3.5. Distributed Events (with Centralised Event List)
	1.3.6. Domain Decomposition
	1.3.7. Cloning
	1.3.8. Summary

	Chapter 2. Process-Oriented Implementation
	2.1. Basics of Implementing a Process-Oriented Simulator
	2.2. Direct (Threaded) Translation
	2.3. Coroutines
	2.4. Stack Swapping
	2.5. Continuations
	2.6. Stack Reconstruction
	2.7. Converting Process Interaction into Event Scheduling
	2.7.1. Manual Implementation
	2.7.2. Automated Translation

	2.8. Java for Process-Oriented Simulation
	2.8.1. Object Orientation
	2.8.2. Portability
	2.8.3. Lack of Pointers: the Garbage Collector (GC)
	2.8.4. Multithreading
	2.8.5. Network Aware

	Chapter 3. SIGHOS: a Process-Oriented Simulator
	3.1. Basic Definitions of Business Processes
	3.2. Workflow Patterns
	3.3. SIGHOS: A Process-Oriented Simulation Tool
	3.3.1. Simulation
	3.3.2. Resources
	3.3.3. Activities
	3.3.4. Elements

	3.4. Inside SIGHOS: an Event Heart
	3.4.1. First Approach: Threads
	3.4.2. Using Event Scheduling
	3.4.3. Event Types Defined by SIGHOS
	3.4.4. An Event Scheduling Algorithm for SIGHOS

	3.5. Inside SIGHOS: Managing Workflows
	3.5.1. A Review on Workflow Models
	3.5.2. SIGHOS and Workflow Patterns

	3.6. Inside SIGHOS:…Why It Matters?
	3.6.1. Trying to Recapture a Resource Immediately
	3.6.2. The First in Line is Still Delayed
	3.6.3. Yielding Control

	Chapter 4. Parallel SIGHOS
	4.1. From Sequential to Parallel
	4.2. Limits to Parallelism: Resource Contention
	4.3. Resource Contention in SIGHOS
	4.3.1. No Overlapping Entries
	4.3.2. Overlapping Entries in Roles Belonging to the Same AM
	4.3.3. Overlapping Entries in Roles Belonging to Several AMs

	4.4. A Test Benchmark for SIGHOS
	4.5. A Performance Analysis of the Sequential SIGHOS
	4.6. Using External Event Executors
	4.7. Integrating the Pool in the Simulation Tool
	4.8. Exploiting Event Locality
	4.9. Block Dispatching
	4.10. A Hybrid Event Manager - Executor
	4.11. Going Beyond Limits: like-3-Phase Approach
	4.11.1. Events Revisited
	4.11.2. Reducing Contention in AMs

	4.12. Some Final Notes about the Implementation
	4.12.1. Spinlock vs Semaphore
	4.12.2. Thread vs Runnable
	4.12.3. Barriers

	4.13. Putting It All Together: Hybrid EME like-3-Phase Approach
	4.14. Summary: Comparing the Different Approaches

	Chapter 5. Case Study: A Model for Hospital Management
	5.1. Overview of a Hospital
	5.2. Hospital Performance: Why Modelling and Simulation?
	5.3. Background
	5.3.1. First Steps: a Model of the General and Digestive Surgical Department of the HUNSC

	5.4. Review of the Literature on Modelling a Whole Hospital
	5.4.1. HADA: Hospital Activity Data Analyser

	5.5. A Modular Model for a Whole Hospital
	5.6. Conceptual Model
	5.6.1. Medical Departments
	5.6.2. Surgical Departments
	5.6.3. Central Services

	5.7. Computational Model
	5.7.1. Some Basic Features of the Computational Model
	5.7.2. Central Services
	5.7.3. Central Laboratories
	5.7.4. Medical Departments
	5.7.5. Surgical Departments

	5.8. Results
	5.9. Conclusions

	Conclusions
	Contributions
	Further Research

	Apéndice A. Resumen
	A.1. Planteamiento del Problema
	A.2. Objetivos de la Tesis
	A.3. Resultados y Contribuciones
	A.4. Conclusiones
	A.5. Líneas Abiertas
	A.5.1. Incertidumbre Temporal
	A.5.2. Descomposición Temporal
	A.5.3. Simulación en Unidades de Procesamiento Gráfico
	A.5.4. Avances en Aplicaciones Reales

	Appendix B. PSIGHOS: User Interface
	Appendix C. Other Java DES Tools
	C.1. JSIM
	C.2. Simkit
	C.3. SSJ
	C.4. DESMO-J
	C.5. JAPROSIM

	Appendix D. Other Java PDES Tools
	D.1. JUST: Java Ubiquitous Simulation Tools
	D.2. SPADES/Java
	D.3. D-SOL
	D.4. CSA&S/PV: Complex Systems Analysis & Simulation - Parallel Version
	D.5. Summary of Java PDES Tools

	Appendix E. Workflow Patterns
	Appendix F. Computational Concurrency
	F.1. Awareness Level in the Interaction Between Processes
	F.2. Competition between Processes for Resources
	F.3. Cooperation between Processes by Sharing
	F.4. Control Mechanisms
	F.4.1. Locks
	F.4.2. Re-entrant locks (RLock)
	F.4.3. Monitor
	F.4.4. Barrier Synchronisation

	Bibliography

