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2020

Universidad de La Laguna

Facultad de ciencias
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Resumen

La distribución de materia bariónica en el Universo contiene una vasta riqueza de
información tanto cosmológica como astrof́ısica. Viene dada como resultado de la forma-
ción de estructuras, dominada por la materia oscura en un Universo en expansión, dentro
del contexto de la interacción con una serie de complejos procesos f́ısicos. Las simulacio-
nes hidrodinámicas que pueden llevarse a cabo en la actualidad incluyen la mayoŕıa de
los procesos f́ısicos involucrados en los fenómenos que incumben a la materia bariónica,
produciendo una descripción bastante fehaciente de ésta en el Universo. Sin embargo,
estas simulaciones son extremadamente costosas en términos de tiempo y memoria de
cómputo, y, por lo tanto, ni los volúmenes cosmológicos equivalentes a los que se ob-
tendrán de los diferentes sondeos astronómicos observacionales venideros, ni el número
necesario de este tipo de simulaciones, están disponibles para poder desarrollar análisis
estad́ısticos en profundidad. Este hecho hace que sea de vital importancia el desarrollo
de diferentes técnicas que permitan extraer la información estad́ıstica y cosmológica de
esos costosos cálculos, aprenderla y poder mapearla sobre simulaciones que únicamente
incluyan part́ıculas de materia oscura, mucho menos costosas en todos los términos.
Este trabajo de fin de máster explora esta última posibilidad, enfocándose en una serie
de cantidades derivadas de diferentes procesos involucrados en la f́ısica bariónica, tales
como la densidad de gas, la densidad de hidrógeno neutro, o la temperatura, presentes
tanto en galaxias como en medio intergaláctico. Para ello, se dispone de una simulación
hidrodinámica de referencia obtenida a partir del código GADGET3-OSAKA, de la que
se comentan las particularidades en el tratamiento de la formación estelar, de la creación
de elementos metálicos y de polvo a través de la retroalimentación en explosiones de
supernova (tanto de tipo II como Ia) y en estrellas de la rama asintótica de las gigantes,
aśı como del tratamiento que se le da a la evolución de la abundancia de polvo con el
tiempo, además de las generalidades básicas presentes en toda la simulación hidrodiná-
mica. Se extrae aqúı la relación de bias presente entre esas cantidades y el campo de
materia oscura subyacente a todas ellas como función de la densidad local de materia
oscura. Asimismo, se extiende este estudio para tener en cuenta algunas relaciones no
locales a esta densidad presentes en la relación de bias a través del análisis del tensor de
mareas. Para llevar a cabo esta tarea, este trabajo se cimentará sobre el recientemente
desarrollado Bias Assignment Method, describiendo el método seguido para poder re-
producir la estad́ıstica de dos puntos con precisión a partir de la extracción de la relación
de bias directamente de la simulación de referencia y de la calibración de un kernel en
un proceso iterativo, y poder generar catálogos que sigan esta estad́ıstica únicamente
a partir de las condiciones iniciales de la simulación de referencia, y lo extenderá para
lidiar con distribuciones continuas más allá de la distribución discreta de un número de
halos para el que fue originalmente concebido este método. Además, se implementarán
una serie de configuraciones para los intervalos de clase de los histogramas empleados
para obtener la relación de bias distintas a la original en un intento de representar de
forma óptima cada una de las cantidades mencionadas anteriormente con un número
finito de estos intervalos. Esta serie de experimentos numéricos demuestran que es po-
sible mapear la densidad de gas, con un error relativo por debajo del uno por ciento
en el espectro de potencias en diferentes resoluciones. En particular, se obtiene una
distribución tridimensional del campo de densidad de gas completamente indistinguible
de aquél provisto directamente por la simulación hidrodinámica de referencia a escalas
de Mpc. A escalas por debajo de los Mpc comienzan a encontrarse discrepancias entre
los campos generados y los de la referencia, que deberán ser investigadas en el futuro
mediante relaciones de bias más complejas. Asimismo, se investiga la distribución de
hidrógeno neutro y se obtienen espectros de potencia que no se desv́ıan más allá de un
dos por ciento de aquel de la referencia. Sin embargo, al acudir a las distribuciones tri-



dimensionales de hidrógeno neutro producidas experimentalmente, las diferencias entre
éste y el campo de la referencia empiezan a ser visibles en escalas de Mpc. Como paso
final, se estudia el mapeado del campo de temperaturas. Este último tiene una dificultad
añadida a los anteriores, pues la temperaturas se encuentran mucho más difundidas que
el campo de densidad de materia oscura. El uso de una configuración espećıfica para
los intervalos de las clases del histograma, como se ha comentado con anterioridad, y la
transformación a una escala logaŕıtmica que se hace sobre el campo de materia oscura
en todos los casos, parecen atenuar este problema. De hecho, se obtiene convergencia
para el caso de la temperatura, aplicando esta configuración, para escalas mayores a
k = 2hMpc−1 (en espacio de Fourier). Asimismo, la distribución tridimensional produ-
cida experimentalmente se asemeja a la de la referencia hasta escalas de Mpc. De todo
esto, se concluye que las técnicas de mapeado son muy prometedoras como herramienta
para el futuro y podŕıan ayudar a reproducir este tipo de simulaciones hidrodinámicas,
si bien es necesario implementar una serie de mejoras, especialmente en lo que respecta
a la relaciones de bias no locales. Estos resultados podŕıan ser de especial interés para
los próximos sondeos de corrimiento al rojo de galaxias que mapearán la distribución
del bosque de Lyman alpha, como DESI y WEAVES-JPAS.



Abstract

The distribution of baryonic matter in the Universe has a wealth of cosmological
and astrophysical information. It results from structure formation dominated by dark
matter in an expanding background Universe within the interplay of a series of complex
physical processes. State-of-the-art hydrodynamical simulations include the majority of
the involved physics to produce a fair description of the baryonic matter in the Universe.
However, they are extremely expensive to run, and thereby neither the cosmic volumes,
which will be provided by forthcoming astronomical observational campaigns, nor the
required number of simulations to perform robust statistical analysis are available. This
calls for the development of techniques which permit us to learn extract the information
from such expensive calculations and map them onto a far less expensive dark matter
only simulation. The present master thesis explores this possibility by focusing on a
series of baryonic quantities such as the gas density, the neutral hydrogen, and the tem-
perature. We extract the bias relation between those quantities and the underlying dark
matter field as a function of the local density. We further extend the study to account for
non-local bias through the tidal field tensor. To this end we rely on the recently devel-
oped Bias Assignment Method and extend it to cope with continuous quantities beyond
halo number counts, for which it was conceived. Furthermore, we implement different
binning schemes in the aim of optimally representing each quantity with a finite number
of bins. Our numerical experiments demonstrate that we can map the gas to percentage
accuracy in the power spectrum to different resolutions. In particular, we obtain a three
dimensional gas density distribution which is indistinguishable with respect to the one
from the hydrodynamical simulation at Mpc scales. On sub-Mpc scales we start to see
deviations, which should be further investigated with more complex bias relations. We
also investigate the neutral hydrogen density and obtain power spectra in agreement
with the reference one within a few percent. However, in this case the differences in the
distribution are visible already at Mpc scales. Finally, we investigate the mapping of the
temperature. This quantity shows some additional difficulty, because the temperature
of the baryonic gas is further extended than the cold dark matter density. Our specific
binning of the temperature in the bias extraction, and the logarithmic transformation
of the dark matter density field mitigate this problem. In fact we obtain convergence of
the temperature beyond k = 2hMpc−1. Also the three dimensional distribution resem-
bles the reference one. We conclude that mapping techniques are very promising and
could help to reproduce hydrodynamical simulations, but further improvements need
to be done, especially in the non-local bias relation. These findings could be of special
interest for upcoming galaxy redshift surveys which will map the Lyman alpha forest,
such as DESI and WEAVES-JPAS.



1. Introduction

Structure formation in the Universe is a complex process resulting from the interplay
between baryonic matter and dark matter through gravity and a series of physical phenom-
ena, such as the forces that govern fluid dynamics, star formation, active galactic nuclei
(AGN) or supernovae (SN) feedback. The great amount of data provided by large galaxy
surveys such as eBOSS (Dawson et al., 2016) or DES (The Dark Energy Survey Collab-
oration, 2005), or the huge cosmological volumes that are expected to be explored with
experiments such as Euclid (Amendola et al., 2018) and DESI (Levi et al., 2013), repre-
sent a great challenge in terms of analysis and will lead to set constraints to the model
of Universe that is currently accepted, requiring a quickly evolution of Cosmology into a
much more precise and accurate science. For instance, those last surveys have demanded
the measure of covariance matrices for appraising the uncertanties in the measurements of
cosmological observables such as redshift space distorsions (e.g. Kaiser, 1987) and baryonic
acoustic oscillations (e.g. Eisenstein & Hu, 1998), and, ultimately, galaxy clustering analysis
(e.g. Dodelson & Schneider, 2013; Taylor et al., 2013; Percival et al., 2014; Paz & Sánchez,
2015; Pearson & Samushia, 2016; Howlett & Percival, 2017; O’Connell & Eisenstein, 2019).

The production of large sets of mock catalogues based on detailed N-body simulations
has been the path chosen as the way to obtain that covariance matrices and estimates on
the errors of cosmological observables. However, the generation of such catalogues with this
approach could be described as unpractical, as N-body simulations require a large amount
of computation time and memory to get to the desired cosmological volumes and resolu-
tions. Producing mock catalogues with a different approach of that resource-consuming
based on N-body simulations has also been considered: some of them rely on dark matter
fields obtained from approximate gravity solvers and populate it with dark matter halos
or galaxies following a pre-defined bias relation (bias mapping technique). The precision of
this type of approach in the resulting halo catalogs is only acceptable, according to scien-
tific requirements of forthcoming surveys, until intermediate scales (k ∼ 0.2−0.3hMpc−1 in
Fourier space), (see e.g. Kitaura et al., 2016; Blot et al., 2019; Colavincenzo et al., 2019;
Lippich et al., 2019).

New observational campaigns will deliver an unprecedented map of the inter-galactic
medium, which is even more challenging, since the above mentioned baryonic physics will
have to be included in the cosmological anaysis. However, running hydrdynamical simu-
lations which include all the necessary physics is computationally extremely expensive. In
addition to gravity, cooling of the gas, star formation, AGN, SN, stellar winds feedback
and chemical reactions have to be modelled. These efforts are necessary, and need to be
compared to observations to unveil and calibrate the relevant physical processes yielding
our observable Universe. However the available computational resources do not allow to
make these efforts covering the volumes which will be available by the next generation of
surveys such as DESI, EUCLID, WEAVES-JPAS (Benitez et al., 2014). These surveys will
also provide a better picture of the Lyman alpha forest distribution on high redshift, which
will be huge importance on assessing the structure of the Universe at scales that have not
yet been investigated (Bautista et al., 2017).
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Having this in mind, we explore in this work the extension of the recently developed
Bias Assignment Method (BAM) (Balaguera-Antoĺınez et al., 2019, 2020; Kitaura et al.,
2020), which has shown to reach higher precision (∼ 1−2%) towards smaller scales beyond
k = 1hMpc−1 (including the Nyquist frequency) than any other method mentioned above,
to map baryonic properties onto a dark matter mesh. The production of mock catalogues
including as much baryonic physics as possible with that accuracy and without the need
of consuming a huge amount of resources is, without any doubt, a very powerful tool that
must be investigated. In particular, the first step will be to analyze detailed hydrodynamical
simulations and their products. Subsequently the bias relations between those properties
and the underlying dark matter field will be extracted. Then the required kernel will be
sampled within a Markov Chain Monte Carlo approach the required kernel, which will
enable to reproduce the property’s three dimensional distribution. The results from a series
of numerical tests at different resolutions and the conclusions are presented below.

2. Hydrodynamical simulation

In this section the reference hydrodynamical simulation is described, which is aimed to
be mapped from the dark matter field.

In particular, the cosmological smoothed particle hydrodynamics (SPH) code, GADGET3-

OSAKA (Aoyama et al., 2018; Shimizu et al., 2019), is the one on which this work relies,
being a modified version of GADGET-3 (originally described as GADGET-2 by Springel,
2005). This code includes the density-independent formulation of SPH (Hopkins et al.,
2013; Saitoh & Makino, 2013) and the time-step limiter (Saitoh & Makino, 2009). The
quintic spline kernel (Morris, 1996) is adopted, and the number of neighbour particles for
each SPH particle is set to 128±8. The radiative cooling is calculated using the Grackle-3

chemistry and cooling library 1 (Smith et al., 2017), which solves the primordial chemistry
network for atomic H, D, He, as well as molecular H2 and HD. The library also includes
photo-heating and photo-ionization under the UV background (UVB), for which Haardt &
Madau (2012) model is adopted.

In order to avoid artificial numerical fragmentation when the Jeans mass at low temper-
atures is not resolved, a Jeans pressure floor is introduced, following Hopkins et al. (2011);
Kim et al. (2016):

PJeans =
1
γπ

N2
JeansGρgasr2

sys, (1)

where γ = 5/3, NJeans = 4.0 and rsys is chosen from the larger one of either the smoothing
length or the gravitational softening of an SPH particle. In this prescription, it is ensured
that the Jeans length is always resolved with NJeans system lengths.

A total of 2×5123 particles are employed for dark matter and gas in a comoving volume
of (100h−1 Mpc)3. The mass of a dark matter particle is 5.38×108 h−1M�, and that of a gas

1https://grackle.readthedocs.org/
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particle is initially 1.00×108 h−1M�. The softening length for the gravitational force is set
to be 6h−1 kpc in comoving units.

The CELib library (Saitoh, 2016, 2017), which allows a separate treatment of Type
II supernovae (SN-II), Type Ia SNe (SN-Ia), and asymptotic giant (AGB) stars, is also
employed. Stellar lifetimes, metallicity-dependent metal yields, and mass losses from SN-II,
SN-Ia and AGB stars with time-dependent SN rate are considered. The CELib library can
treat the evolution of 13 important elements with H, He, C, N, O, Ne, Mg, Si, S, Ca, Fe,
Ni, and Eu, which are the major coolants in the ISM.

The following cosmological parameters (Planck Collaboration et al., 2016) are adopted:
baryon density parameter Ωb = 0.049, total matter density parameter Ωm = 0.32, cosmologi-
cal constant parameter ΩΛ = 0.68, Hubble constant H0 = 67 km s−1 Mpc−1, power spectrum
index ns = 0.9645, and density fluctuation normalization σ8 = 0.831. The non-dimensional
Hubble constant is also used as follows h ≡ H0/(100 km s−1 Mpc−1) = 0.67.

A brief summary of the main equations that are studied in cosmological simulations
of structure formation, focusing on the discretised form of the equations, —describing the
dynamics of a collisionless component (dark matter or stars in galaxies) and of an ideal gas
(ordinary baryons, mostly hydrogen and helium), both subject to and coupled by gravity in
an expanding background space— is presented here, following the model of Springel (2005),
as long as a recapitulation of the main processes involving other physical phenomena that
are taken into account in the code, following Aoyama et al. (2018); Shimizu et al. (2019).

2.1. Collisionless dynamics

Dynamics of non-interacting dark matter are described by the collisionless Boltzman
equation coupled to the Poisson equation in an expanding Friedmann-Lemâıtre-Robertson-
Walker model of Universe. These equations are solved with the N-body method, where
phase-space density is sampled with a finite number N of tracer particles. With this scheme,
the dynamics are described by the Hamiltonian

H =
∑

i

~p2
i

2mi a(t)2 +
1
2

∑
i j

mim jϕ(~xi− ~x j)
a(t)

, (2)

where H = H(~p1, . . . , ~pN , ~x1, . . . , ~xN , t). The ~xi are comoving coordinate vectors, given ~pi =

a2mi̇~xi; the dependence with time comes from the evolution a(t) of the scale factor.

Assuming periodic boundary conditions for a cube of size L3, the interaction potential
ϕ(~x) is the solution of

∇2ϕ(~x) = 4πG

− 1
L3 +

∑
~n

δ̃(~x−~nL)

 , (3)

where the sum over ~n = (n1,n2,n3) extends over all integer triplets. Actually, the solution
corresponds to the peculiar potential, being the dynamics of the system driven by ∇2φ(~x) =
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4πG[ρ(~x)−ρ], as the mean density is subtracted here. In a discretised particle system, that
potential is defined as

φ(~x) =
∑

i

miϕ(~x− ~xi). (4)

Density distribution profile for each particle, δ̃(~x), is defined as the Dirac δ-function con-
volved with a normalised gravitational softening kernel of comoving scale ε: the quintic
spline kernel (Morris, 1996) as previously mentioned, setting δ̃(~x) = W(|~x|,αε), where W(r) is
given by

W(r,h) = σ


(3− r

h )5−6(2− r
h )5 + 15(1− r

h )5, 0 ≤ r
h < 1,

(3− r
h )5−6(2− r

h )5, 1 ≤ r
h < 2,

(3− r
h )5, 2 ≤ r

h < 3,
0, r

h > 3.

(5)

with σ = [1/120,7/478π,1/120π] for each case.

If the scale factor is set to 1, the dependence of time in the Hamiltonian disappears; for
vacuum boundary conditions, the interaction potential simplifies to its Newtonian form, i.e.
ϕ(~x) = −G/|~x| for a point mass —modified for small separations by the softening. Indepen-
dently of the type of boundary conditions, the computation of the gravitational force results
in a N2-scaling for computational cost, as each particle interacts with the rest of them, im-
plying a double sum. However, the force accuracy needed for this kind of dynamics, where
particles do not collide, allow the use of approximate force computations by methods such
as TreePM, the one that is used on GADGET.

2.2. Hydrodynamics

Smoothed particle hydrodynamics (SPH) uses a set of discrete tracer particles to describe the
state of a fluid, with continuous fluid quantities being defined by a kernel interpolation technique.
Lagrangian specification, following each fluid element as a particle with coordinates ~ri, velocities ~vi,
and masses mi is the one followed here. The thermodynamic state of each element is defined in terms
of the entropy per unit mass, si, although an entropic function defined by A ≡ P/ργ will be used to
work, as it is more convenient, being A = A(s).

The density is estimated in the form

ρi =

N∑
j=1

m jW(|~ri j|,hi), (6)

where ~ri j ≡ ~ri −~r j, and W(r,h) is the SPH smoothing kernel defined in equation (5). The smoothing
lengths of each particle, hi, is defined following

4π
3

h3
i ρi = Nsphm, (7)

where Nsph is the typical number of smoothing neighbours, and m is an average particle mass.

The equations of motion for each SPH particle is given by (Springel & Hernquist (2002))

d~vi

dt
= −

N∑
j=1

m j

 fi
Pi

ρ2
i

∇iWi j(hi) + f j
P j

ρ2
j

∇iWi j(h j)

 , (8)
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where Wi j(h) = W(|~ri−~r j| and the coefficients fi are defined by

fi =

[
1 +

hi

3ρi

∂ρi

∂hi

]−1

, (9)

The particle pressures are given by Pi = Aiρ
γ
i , and Ai stays constant in such a flow.

Although these equations define fluid dynamics in SPH, given no discontinuities, flows of ideal
gases usually develop them in the form of different shocks. The entropy generated by this kink of
phenomena need to be captured using an artificial viscosity, that generate entropy at a rate

dAi

dt
=

1
2
γ−1

ρ
γ−1
i

N∑
j=1

m jΠi j~vi j · ∇iW i j , (10)

transforming kinetic energy of gas motion irreversibly into heat. W i j denotes the arithmetic average
of the two kernels Wi j(hi) and Wi j(h j), and the viscosity can take a wide spectrum of parametrisations,
such as the one derived by Monaghan (1997),

Πi j = −
α

2

[
ci + c j−3wi j

]
wi j

ρi j
, (11)

where wi j = ~vi j ·~ri j/
∣∣∣~ri j

∣∣∣ is the relative velocity projected onto the separation vector, provided the
particles approach each other, i.e. for ~vi j ·~ri j < 0, otherwise set wi j = 0, and ci, c j are the sound
speeds of each particle. Viscosity adds an excess pressure to the particles in their motion equation
Pvisc '

1
2ρ

2
i jΠi j. To avoid angular momentum transport when shear-flows appear, a viscosity-limiter

is used, multiplying the viscous tensor by a factor that measures the relative amount of shear flow
around a particle.

2.3. Additional physics

In this simulation, stars are formed in dense and cold gas particles whose number density is
nth > 0.1 cm−3 and temperature is Tth < 104 K, using the following SFR:

dρ∗
dt

= ε∗
ρgas

tff
, (12)

where ρ∗ and ρgas are the local mass density of formed stars and gas, ε∗ is the star formation

efficiency given a free-fall time (ε∗ = 0.05 in this simulation), and tff ≡
√

3π/
(
32Gρgas

)
is the local

free-fall time. The thresholds applied to temperature and density are chosen so that the conditions
to meet gas collapse (where Lyman α cooling already allows it, Sutherland & Dopita (1993)) and
bounded objects like molecular clouds (following Larson’s law, Larson (1981)) are given, respectively.
The gas particles that satisfy above conditions spawn star particles stochastically with Chabrier IMF
with mass range 0.1 to 120 M� (Chabrier (2003)).

Metal and dust production by SNe II, SNe Ia and AGB stars is also included in the code. With
the mentioned implementation of the CELib package the formation of heavy elements is also taken
into account. SN feedback is treated as follows. As the Sedov-Taylor solution (Sedov (1959); Taylor
(1950)) gives very small scales both in space and time to resolve the size and the duration of a SN, a
subgrid model needs to be implemented. Using the duration time of hot phase (thot) and the hot SN
bubble radius (Rbub) obtained by Chevalier (1974) and McKee & Ostriker (1977), in the code only
the gas particles within this size are affected by the SN feedback; cooling is turned off for ∆t < thot.
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To avoid the instantaneous feedback of energy and metal, it takes place following a logarithmic time
interval, and the energy and metals deposited in this interval are computed using the mentioned
CELib library. The energy that an i-th gas particle takes from SN explosions in its surroundings is,
then

∆Ei =
miW(ri,Rbub)∑N

j=1 mjW(rj,Rbub)
ESN, (13)

where ESN is the SN energy from the star particle, W is the SPH kernel function as defined above
and ri is the distance between i-th gas particle and the star particle; Rbub is used as the smoothing
length for SN feedback. Gas and metals ejected by the SN are distributed in the same manner. SN
II and SN Ia just have a different time delay in their treatment, being similar in all other ways. The
wind velocity of the SN is computed as follows

Vwind =

√
2ESN

K

mgas
, (14)

to avoid energy conservation violation. ES N
K is the kinetic SN feedback energy received by a gas

particle (the energy of the SN is received by each particle fractionated in kinetic energy and thermal
energy) , and mgas is the mass of a gas particle. The direction of wind particles is randomly chosen.

Energy input from massive stars (stellar feedback) is also considered. UV radiation and stellar
winds emitted by young, massive stars ionize and heat up the gas in its surroundings, suppressing
star formation and changing the gas distribution because of the thermal pressure. This ’early stellar
feedback’ (ESFB) may be one of the solutions to overcome the overcooling problems in cosmological
simulations. In order to reproduce the stellar-halo mass ratio, it has been stated that 10% of total
stellar radiation from massive young stars is necessary (Stinson et al. (2013)); however, other authors
argued it is not necessary to reproduce the observations (Dalla Vecchia & Schaye (2012); Keller et al.
(2014, 2015, 2016)). So far, a model similar to Stinson et al. (2013) has been implemented in the
code, without artificially turning off radiative cooling, and setting and small enough minimum time
step to resolve ESFB and SN events.

The model presented above is successful in reproducing the main statistical properties of star
formation and stellar content in galaxies, especially, the cosmic star formation rate density (SFRD)
and the stellar mass function at z = 0 (Schiminovich et al. (2005); Bouwens et al. (2009); Reddy
& Steidel (2009); Moustakas et al. (2013); Tomczak et al. (2014)), except at the very massive end
of the stellar mass function; this might be resolved by including feedback of active galactic nuclei
(AGN), that is currently not taken into account in the code.

The dust evolution model that is used in the code is the one presented in Hou et al. (2017). The
whole grain population is represented by small grains (radius a < 0.03µ) and large grains (a > 0.03µ),
according to Hirashita (2015). The typical radii are set as 0.1 µm and 5×10−3 µm, respectively. The
abundances of each population are represented by the ratio between the mass of dust grain an the
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mass of a gas particle. Time evolution of the two population’s abundances is given by

dDL(i)(t)
dt

= −

(
DL(i)(t)
τsh

−
DS(i)(t)
τco

)
−
DL(i)(t)
τsp(aL)

+

[
dDL(i)(t)

dt

]
Source

−

[
dDL(i)(t)

dt

]
SNe

−
DL(i)(t)

mg(i)

dmreturn
g(i)

dt
, (15)

dDS(i)(t)
dt

=

(
DL(i)(t)
τsh

−
DS(i)(t)
τco

+
DS(i)(t)
τacc

)
−
DS(i)(t)
τsp(aS)

−

[
dDS(i)(t)

dt

]
SNe

−
DS(i)(t)

mg(i)

dmreturn
g(i)

dt
, (16)

where DL and DS are the abundances of each population (large and small), (i) refers to the gas
particle with which the mass is being compared, τsh, τco, and τacc are different time-scales associated
with dust grains (shattering, coagulation and accretion), dmreturn

g(i) /dt is the gas ejection rate from

stars, τsp(a) is the sputtering time-scale as a function of grain size in the hot gas not associated
with SNe, and the terms with ‘Source’ and ‘SNe’ account for the dust production in stars and dust
destruction in SN. Every time-scale depends on gas density, dust abundance and metallicity in this
model. Accretion and coagulation occur in scales that cannot be resolved in this simulation, in
dense gas particles, so a subgrid model is adopted for these phenomena. Shuttering, on the contrary,
occurs only in the diffuse gas particles. Finally, where the temperature is high enough (& 106 K),
dust grains are destroyed by sputtering; as dust destruction has been already counted in SN shocks, a
density threshold is considered to avoid overcounting. To differentiate the dust associated to galaxies
and that contained in the IGM, the code uses P-Star groupfinder (Springel et al., 2001).

2.4. Outputs of the simulation

With this configuration, the simulation that has been provided to work with consists of the
following outputs, in the form of mesh data grids:

Dark matter density field, in units of g/cm3

Gas density field, in units of g/cm3

Neutral hydrogen number density (nHI), in cm−3

Gas temperature, in K

Optical depths (τ) with the line of sight from 3 different directions: x, y and z

Every field comes in three different resolutions: 1283 particles, 2563 particles and 5123 particles.
Also, the size of the side of the simulation is 100h−1Mpc, and the data corresponds to z ∼ 2. Initial
conditions have been generated with MUSIC (Hahn & Abel (2011)).
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3. Methodology: Bias Assignment Method (BAM)

In this section, the methodology used to map the baryonic physics extracted from hydrodynam-
ical simulations, as presented in section 2, onto a dark matter field is described.

In particular the Bias Assignement Method (BAM) developed by Balaguera-Antoĺınez et al. (2019,
2020) is used. As this computing code was envisaged to reproduce integer halo number counts per
cell in a mesh, it had to be extended to deal with continuous quantities. In the following the BAM

code will be recapped and the novel contributions of this work will be described in detail.

The former idea behind BAM is to extract a bias scheme from the dark matter halo distribution
from a time costly, high resolution, reference N-body simulation, and use it to map it onto a dark
matter field obtained by applying approximate gravity solvers, such as FastPM (Feng et al., 2016)
or the Augmented Lagrangian perturbation theory (ALPT, Kitaura & Hess, 2013), to the same
initial conditions of the reference simulation in a lower resolution. Previous works, such as PThalos
(Scoccimarro & Sheth, 2002), MoLUSC (Sousbie et al., 2008), PATCHY (Kitaura et al., 2014), QPM

(White et al., 2014), EZMOCKS (Chuang et al., 2015) and HALOGEN (Avila et al., 2015), have studied
the idea of mapping the halo distribution onto a downgraded dark matter density field, but BAM

does not assume any analytical form for the halo-bias relation, using a statistical interpretation of
the halo-bias (e.g. Dekel & Lahav, 1999), and computing a parameter-free probability distribution,
leading to the extraction of all possible unknown dependencies or non-linearities. The power of the
method is that, then, the mapping can be applied onto any other initial conditions that contain the
same cosmological parameters. This lays on the concept of the extension to a multi-dimensional bias
relation of the rank ordering method proposed by Weinberg (1992).

BAM has been developed to generate mock catalogues with a power spectrum that matches the
one of the high resolution halo distribution reference, based on the calibration of the halo bias
obtained from one realisation of that reference, by producing both a kernel —whose main purposes
are to correct any large scale contributions coming from non-local dependencies that may have not
been taken into account inside BAM (see McDonald & Roy, 2009) and to correct any aliasing effects
arisen when placing the dark matter field and the halo distribution on a mesh, instead of the original
algorithm used on the reference— and a halo-bias that will be used on the production of that mocks.
Here it will be shown how that calibration and mock generation processes work, which changes
have been introduced to generalize this method from a discrete distribution (namely, halo number
counts) to a continuous one (i.e. gas density fields, described in section 2), and the particularities
of the reference simulation used. To illustrate the procedures involved in the method, a flow-chart
describing the steps has been made and represented on Fig. 1 (credits to Balaguera-Antoĺınez et al.,
2020); its notation will be used hereafter.

3.1. Calibration

The first step that is taken in a general process is to down-sample the original initial conditions of
the reference into a lower resolution white noise. Then, the Fourier Transform is carried out onto this
white noise, multiplying the result by the square root of the linear matter power spectrum in spherical
shells (Plin(|k|)) evaluated at the redshift of that initial conditions. The result will be evolved using
approximate gravity solvers, as mentioned before, up to z = 1, generating an approximated dark
matter density field δi

dm(r), using a cloud-in-cell mass assignment scheme. Phase-space mapping
(Abel et al., 2012; Hahn et al., 2013) is also used on this step, so three-point statistics are reasonably
reproduced on the mocks obtained (see Pellejero-Ibañez et al., 2020). Particularly, this first step has
not been carried out in the case of the reference simulation used in this work, as the dark matter field
was already downgraded to a maximum resolution of a 5123 mesh and evolved to z = 2 by default.
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Figure 1: Credit to Balaguera-Antoĺınez et al. (2020). Flow-chart representing the operations performed
within BAM. On the left-hand side box (BAM Calibration) the iterative process developed in order to calibrate
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h },
in combination with a dark matter density field obtained from the approximated gravity solver with the
corresponding initial conditions δi ref

WN(q) is shown. Solid line arrows denote the process involving the reference
N-body simulation, performed once. Dotted-line arrows denote the iterative process, which finishes once the
relative residuals (see text) are below 1%. The index α is assigned to quantities being updated within the
iterative process, while i identifies a white noise from the reference simulation. For the first iteration the
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mock halo density fields based on the outputs of BAM.
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Iteration zero of the method starts with the measurement of the halo-bias (given its stochastic
interpretation, see Dekel & Lahav, 1999; Sigad et al., 2000), calculated as the probability of finding
a number of dark matter haloes, Nh, within a cell of the approximated dark matter density field,
conditional to number of local or non-local properties of that cell, Np. To extend the analysis
from just considering the dependence of the halo-bias with the dark matter density field, there
are two non-local properties that are taken into account in the analysis if desired: the cosmic-web
classification (CWC) into knots, sheets, filaments and voids, based on the eigenvalues of the tidal
tensor of the dark matter field (Hahn et al., 2007; Paranjape et al., 2018), and the mass of collapsing
regions —established using a friend-of-friends algorithm in the cells classified as knots—, Mk (Zhao
et al., 2015). The kernel —a Dirac’s delta function on this first iteration— is meant to take into
account any other non-local dependencies that have not been considered, although adding them
to the analysis could, of course, could improve the three-point statistics. The halo-bias is then
computed considering the joint probability distribution of Nh and the properties of the dark matter
density field mentioned above, and normalizing that distribution, as follows:

B(Nh|Θdm) =

∑Ncells
i=1 1Nh (Nh(ri))

∏Np
κ=1 1γκ ({Θdm(ri)}κ)∑Ncells

i=1
∏Np

κ=1 1γκ ({Θdm(ri)}κ)
, (17)

where Θdm is the set of Np used to characterize the dark matter cell (in particular, with the properties
mentioned above, Θdm ≡ {log10(2 +δdm),CWC,MK}, and being δdm the dark matter overdensity), γ` ≡
[{Θdm}` −∆`/2, {Θdm}` + ∆`/2) represents the bins in which the field is divided, with a width of ∆`,
defined for each of the ` properties of the dark matter density field described in Θdm. 1A(x) is an
indicator function that indicates membership of an element in a subset A of x, having the value 1 for
all elements of A and the value 0 for all elements of x outside A. This kind of representation of the
halo-bias does not account for different effects that appear in the bias, such as correlation between
particles placed in different property bins; however, the iterative process that takes place afterwards
captures those aspects.

The iterative process now begins: for each α-th iteration the bias B(Ni ref
h |Θi

αdm) is computed

using Eq. (17), being Ni ref
h the halo number counts in each cell, using a mass assignment scheme

such as nearest-grid-point or cloud-in-cell, from the reference. Then, the dark matter density field
is convoluted with the kernel obtained on the previous iteration, as shown in Eq. 18. Finally, a halo
number count Ni

αh(r) is assigned to each point of the mesh following the halo-bias extracted in the
first step, therefore obtaining the halo density field; this process is represented on Eq. 19, and it is
constructed on a way that the new halo density field maintain the statistics and the total number
of counts as the reference.

δ̃i
αdm(r) ≡

(
Kα−1

i ⊗δi
dm

)
(r) (18)

{Ni
αh(r)}x B

(
Ni ref

h | Θi
dm = Θi

αdm(r)
)
, (19)

A phase-independent transfer function is built using the power spectrum of the halo density field ob-
tained at α-th iteration, Pαih(k), following Eq. 20. Carrying out a Metropolis-Hasting (MH) algorithm

in each spherical shell where the power spectrum is measured, computing min(1,exp(H2
0 j−H

2
1 j)) with

Hi j = (P j,ref −Pi, j)/σ j, σ j the variance associated to the reference power spectrum, assumed to be a
gaussian (Feldman et al., 1994). Whether the MH algorithm accepts a certain value or not, a weight
ωαi is defined, following Eq. 21.

T α
i (k) ≡

Pi ref
h (k)

Pαih(k)
, (20)
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ω(α)
i (k) ≡

T α
i (k) if MH = 1

1 if MH = 0,
(21)

The kernel is then updated as the product of the α-th weigth and all the previous ones, basically
assigning to the kernel its previous value if the α-th transfer function is not accepted.

K
(α)
i (k) =

`=α∏
`=1

ω(`)
i (k) (22)

Finally, Eq. 18 is applied again, convoluting the new obtained kernel with the dark matter density
field to step into the next iteration. The method is considered to converge when the residuals of this
transfer function over the number of spherical shells in Fourier space NF used to measure the power
spectra, namely

∑
κ |Tα

i (kκ)−1|/NF, reach a value under 1%; after that, the outputs required for mock
generation are computed.

3.2. Generation of mock density fields

The steps followed on the production of mock halo density field are presented on the right-
hand side panel of Fig. 1. A set of new approximate dark matter density fields δ

j
dm are generated

by evolving a set of different realisations of the initial conditions of the reference simulation, after
down-sampling them if necessary. These dark matter density fields are then covolved with the kernel

obtained from the iterative process, following Eq. 18 (for each j on the set), δ̃
j(i ref)
dm (r) ≡

(
Ki⊗δ

j
dm

)
(r).

Non-local properties that are now implemented in the method, previously mentioned, are computed
for the new δ̃

i( j)
dm . Then, on a similar approach as the one followed on the iterative process, halo

number counts are assigned to each point of the dark matter density fields, recalling Eq. 19:

{N j(i ref)
h (r)}x B

(
Ni ref

h | {Θi
dm}` = {Θ

j(i ref)
dm (r)}`

)
, (23)

Here j(i ref) denotes that the i-th realisation has been used as the calibration for the j-th halo density
field.

With this approach, BAM is able to account different contributions to the stochastic nature of the
bias relation, such as the one that arises from relate number count of objects with a dark matter field,
or the one that comes from the limited volume of the reference simulation (cosmic variance). As the
whole bias relation is extracted from the reference simulation, the first contribution is completely
taken into account. Regarding the second contribution, it has already been shown (Balaguera-
Antoĺınez et al., 2020) that the effect of cosmic variance in the halo bias has little relative importance
when they come from the calibration process described above. Also related to this contribution comes
the fact that the mean large scale power spectrum are impacted significantly by the distribution of
halo number counts; using the same initial conditions as the reference simulation and a proper-
computed kernel take into account this effect.

3.3. Extension of the BAM method to a continuous distribution

As it has been previously mentioned, BAM was conceived as a method to extract a bias scheme
from a density field populated with dark matter haloes. BAM measured the number counts of haloes
associated to each point of the dark matter density field in a reference N-body simulation, that
number belonging to the discrete distribution of the natural numbers, N. For each new iteration, a
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natural number had to be assigned to each cell following what the halo-bias was pointing out, and
a new halo density field was generated.

However, the reference simulation that has been used in this work does not follow a discrete
distribution, based on number counts, for the density fields of the tracers that are being taken
into consideration, but a continuous one, based on physical quantities such as the gas, the neutral
hydrogen density, the temperature or the optical depth, as it has been stated in section 2. These
magnitudes cannot be represented by the set of natural numbers, but by the set of real numbers, R,
so BAM could not be applied with its original configuration to the reference simulation. Therefore,
some changes had to be considered in the method to generalize it to this kind of distributions, while
maintaining all of its features untouched, as it has demonstrated to be a powerful tool. In practice
Eq. 23 is generalized to

{δ
j(i ref)
X (r)}x B

(
δi ref

X | {Θi
dm}` = {Θ

j(i ref)
dm (r)}`

)
, (24)

with X being the target continuous quantity.

The approach behind the changes that have been implemented is to transform, in some way, the
continuous distribution into a discrete one, so BAM could address its treatment maintaining all the
procedures in which it relies on. The first step taken is to transform the continuous density field
into an overdensity field, and then take the logarithm of base 10 out of it, following Eq. 25.

δ =
ρ(r)−ρmean

ρmean
→ Y = log10(2 +δ) (25)

The next step is to define a binning between two numbers, one below min(Y) and the other above
max(Y), as if a histogram of the overdensity field were to be made. A set of bins is therefore created,
being the first being numbered as 1, and the last bin numbered as N, where N is the desired number
of bins used for the tracer density field, each of them with its associated limits. The mesh of the
tracer density field is then analyzed, assigning to the density on each point the bin where it is placed,
getting as a result a new field that can be assimilated to a number count, discrete, density field, that
BAM can use in its calibration procedure, as pointed in section 3.1. After the calibration has ended,
a mock number count density field is generated, so it has to be turned into a continuous field again,
using Eq. 26.

ρ(r) = ρmean(1 + 10Ymin+(nbin+ 1
2 )∗∆bin−2) (26)

Where Ymin is the minimum value of Y as calculated with Eq. 25, nbin is the bin number where
a certain point of the mesh is placed, and ∆bin is the width of the bin. As it can be seen, the value
assigned to the density field is the middle value of the limits of each bin.

4. Results and analysis

Here, the results from running the BAM process of calibration —as shown in section 3.1— to the
reference hydrodynamical simulation, after modifying it as specified in section 3.3 to adapt it to the
characteristics of the simulation, are presented. The evolution of the power spectra calculated by
BAM in different steps of the calibration process, as well as that same picture for the so named kernel,
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Figure 2: Both images present the dark matter density field on its 1283 resolution. Left:
dark matter density field map; the original field has been converted to δ, and afterwards
converted into a logarithmic scale using log10(2+δTemp). The Z direction of the 3D field has
been averaged over 5 .Right: dark matter power spectrum.

will be shown. For every calibration done, the tracer density field generated by BAM will be compared
to the one of the reference, so its differences and similarities can be appreciated. Along this, the
steps taken into improving some of the non-successful initial results will be explained, showing the
results brought by this process. As explained above the dark matter field defined on a mesh is taken
as the basis (shown for the low and high resolution cases in Figures 2 and 3, respectively).

The method has been applied to map the gas density field in both the 1283 and the 5123

resolutions; being the first of them a way to approach how the method worked and understanding
which changes had to be introduced in the code so that it could be applied to the reference simulation
used, and the second of them a way to confirm that the modifications were effective and that BAM

could be used in such a way that a continuous distribution is mapped correctly. After that, BAM was
applied to the neutral hydrogen number density field on its 1283 resolution; although the method
was working, some problems that dealt to not satisfactory results arose, and different approaches
were taken into solving them, before trying to use the non-local information of the dark matter field
that have been accounted into BAM, the cosmic web classification and the mass of the collapsing
regions. With this last approach, the results improved greatly; however, there are still some loose
ends that will be solved with further —and ongoing— work. The performance has also been tried
out with the gas density field, proving to be a powerful tool, as will be shown. Finally, BAM has been
applied to the 1283 resolution temperature field, showing how the method did not converge with its
initial configuration, and leading to an attempt of a more efficient binning on the tracer distribution
that improved the convergence up to k ≈ 2hMpc−1.
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Figure 3: Both images present the dark matter density field on its 5123 resolution. Left:
dark matter density field map; the original field has been converted to δ, and afterwards
converted into a logarithmic scale using log10(2+δTemp). The Z direction of the 3D field has
been averaged over 5 .Right: dark matter power spectrum.

4.1. Gas density field

4.1.1. Low resolution case: mesh with 1283 cells

The bias relation between the dark matter density field and the gas density field extracted from
the reference is shown at Figure 4. There is a clear correlation between the gas density and the
underlying dark matter field; although the scatter relation is not trivial, it will be mapped with BAM.
The power spectrum of the gas density field on its 1283 resolution configuration is firstly investigated.
For this analysis, no non-local properties of the dark matter field have been taken into consideration
within the process. Figure 5 shows the evolution of the power spectrum calculated by BAM during its
iterative process (section 3.1), extracted from the gas density field obtained from mapping the bias
relation onto each point of the mesh in each iteration. The process has been represented in different
panels so it could be clearly seen how the evolution takes place. In the first panel (a) it can be seen
how, for the very first iteration (iteration 0), the power spectrum generated by BAM (red, dashed
line) does not fit well enough with the reference one (black, solid line), assigning approximately a
25% more power to every mode up to k ≈ 2.5hMpc−1; after that, it assigns up to a ∼ 60% less power
to small scales than they have in the reference. After only 20 iterations, its remarkable how the
maximum deviation from the reference power spectra is just about a ∼ 15% below its actual level,
and just for a single mode; larger and smaller scales are all within a 5% deviation (light grey in the
lower subpanel of every graphic), and just in the middle scales there are some modes whose deviation
is above a 10%. After 40 iterations, every mode is below a 5% deviation from the reference, and
most of them are contained below a 1% deviation (dark grey in the lower subpanel of every graphic).
In approximately 60 iterations, the method seems to have converged, capturing every mode below a
1% deviation.

Every iteration that has occurred after this point does not change the picture very much, as the
Metropolis-Hasting algorithm has ceased to accept new values for the transfer function defined in
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Figure 4: Two-dimensional histogram relating dark matter density field with gas density
field for the 1283 resolution simulation. Both fields have been converted to δ, and afterwards
converted into a logarithmic scale using log10(1 +δ).

Eq. 20, assigning a value of 1 to almost every new weight that is computed, following Eq. 21. Of
course, some fluctuations can be seen, as some values might get accepted, but the final result does
not change very much, with almost every mode within a 1% deviation from the unity.

These results can now be complemented by the image shown in Figure 6, where the evolution of
the kernel, computed following Eq. 22, is represented. Noticeably, and in well agreement with how
the concept of kernel is conceived inside BAM, the one associated to the very first iteration resembles
the ratio between the power spectra of the reference and that generated by the method —actually,
they are the same, as the transfer function is precisely defined as that quotient, and the only term of
the kernel is that one. On agreement with what has been previously stated, the difference between
the kernel at iteration 40 and the one at iteration 100 is still perceptible, but after iteration 60, the
kernel has converged to its final form, with only slight fluctuations amongst iterations 60, 80 and
100.

Finally, the density field of the reference and the one generated by BAM at it last iteration are
presented on Figure 7. Both of the gas density fields have been converted to overdensity, and then to
a logarithmic scale, following Eq. 25; also, in both cases, an average of the same five adjacent slices
along Z axis have been done so the fields can be fairly compared. On the left panel, the gas density
field of the reference is shown; on the right panel, the same for the mock generated by BAM. The
exact same structures can be observed in both of them, showing the power of the method to generate
mock density fields: a box of 100h−1 Mpc of side, as this one, with a resolution of 1283, shows how
structures up to a scale of ∼ 1h−1 Mpc can be reproduced without any important noticeable difference
with respect to the reference. Voids might be slightly more populated than the reference’s, however,
but that could be an effect of not having used any non-local property in this analysis.

15



10 1 100

k (h/Mpc)

100

101

102

103

P(
k)

(h
1 M

pc
)3

Gas power spectrum for 1283 simulation
Reference sim
BAM iteration 0

10 1 100

k (h/Mpc)

1.0

1.5

Ra
tio

P r
ef

/P
it

(a) Iteration 0

10 1 100

k (h/Mpc)

101

102

103

P(
k)

(h
1 M

pc
)3

Gas power spectrum for 1283 simulation
Reference sim
BAM iteration 20

10 1 100

k (h/Mpc)

0.9

1.0

Ra
tio

P r
ef

/P
it

(b) Iteration 20

10 1 100

k (h/Mpc)

101

102

103

P(
k)

(h
1 M

pc
)3

Gas power spectrum for 1283 simulation
Reference sim
BAM iteration 40

10 1 100

k (h/Mpc)

0.95

1.00

1.05

Ra
tio

P r
ef

/P
it

(c) Iteration 40

10 1 100

k (h/Mpc)

101

102

103

P(
k)

(h
1 M

pc
)3

Gas power spectrum for 1283 simulation
Reference sim
BAM iteration 60

10 1 100

k (h/Mpc)

0.95

1.00

1.05
Ra

tio
P r

ef
/P

it

(d) Iteration 60

10 1 100

k (h/Mpc)

101

102

103

P(
k)

(h
1 M

pc
)3

Gas power spectrum for 1283 simulation
Reference sim
BAM iteration 80

10 1 100

k (h/Mpc)

0.95

1.00

1.05

Ra
tio

P r
ef

/P
it

(e) Iteration 80
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(f) Iteration 100

Figure 5: Gas’ power spectrum from the reference 1283 simulation is represented with a
black line. BAM’s generated mock’s power spectrum is represented with a red line. As it
can be seen, as BAM advances in its iterations, updating its Kernel, it subsequently creates
a mock whose power spectrum approaches the reference’s until it is on top of it, with an
accumulate residuals < 1%. On the bottom panel corresponding ratios with respect to the
reference are shown. The different shaded areas stand for 1 and 5% difference with respect
to 1.
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Figure 6: Evolution of BAM’s kernel as iterations advance, for the 1283 gas reference.
Kernel value is computed for each k mode with Eq. 22. As it can bee seen, it approaches a
certain value, as the power spectrum generated by BAM approaches the reference’s, and the
Metropolis-Hasting algorithm ceases to accept new values, as specified in Eq. 21.
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(a) Gas density field, reference
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(b) Gas density field, BAM

Figure 7: Left: reference gas density field for the 1283 resolution simulation. Right: gas
density field generated by BAM for the 1283 resolution simulation. For the generation of
this mock, no cosmic web classification has been used. In both cases, the original field has
been converted to δ, and afterwards converted into a logarithmic scale using log10(2 + δgas).
The Z direction of the 3D field has been averaged over the same 5 slices in both fields.
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10 1 100 101
10 1

100

101

102

103

P(
k)

(h
1 M

pc
)3

Gas power spectrum for 5123 simulation
Reference sim
BAM iteration 0
BAM iteration 22
BAM iteration 44
BAM iteration 67
BAM iteration 89
BAM iteration 111
BAM iteration 133
BAM iteration 156
BAM iteration 178
BAM iteration 200

10 1 100 101

k (h/Mpc)

1.0

1.5

Ra
tio

P r
ef

/P
it

(b) Power spectrum evolution, CWC
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(c) BAM’s last iteration, no CWC
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(d) BAM’s last iteration, CWC

Figure 8: Every image presents results from the gas density field, 5123 resolution. Upper
left: on the top panel, power spectrum generated by BAM with respect to the reference’s
(black, solid line) as iterations advance with no cosmic web classification applied. Upper
right: on the top panel, same as (a), but applying cosmic web classification. Bottom left:
on the top panel, power spectrum generated by BAM with respect to the reference’s for the
last iteration with no cosmic web classification applied. Bottom right: on the upper panel,
power spectrum generated by BAM with respect to the reference’s (black, solid line) for the
last iteration using cosmic web classification. The bottom panel of the four images shows
the corresponding ratios with respect to the reference; the different shaded areas stand for 5
and 10% difference with respect to 1 on the left panel, 1 and 5% difference with respect to 1
on the right one.
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Figure 9: Evolution of BAM’s kernel as iterations advance, for the 5123 gas reference.
Kernel value is computed for each k mode with Eq. 22. As it can bee seen, it approaches a
certain value, as the power spectrum generated by BAM approaches the reference’s, and the
Metropolis-Hasting algorithm ceases to accept new values, as specified in Eq. 21.

4.1.2. High resolution case: mesh with 5123 cells

The power spectrum of the gas density field generated by BAM in its calibration is shown on
Figure 8. The results of the method not using the cosmic web classification should be analyzed
in the first place: again, the very first iteration generated a power spectrum that is above the
reference’s on most of the possible modes until k ∼ 1hMpc−1, and although the difference is smaller
for larger scales than for the case presented in section 4.1.1, it reaches about the same ∼ 25% of
deviation from the reference before the generated power spectrum takes values below the reference’s,
reaching a ∼ 60% deviation at the smaller scales. However, after ∼ 60 iterations the method seems
to have converged, generating a power spectrum that is on top of the reference’s. On panel (a), the
evolution throughout the iterations is represented, being the last iteration shown on panel (c). As it
can be seen in the lower subpanel of (c), the ratio between the generated and the reference’s power
spectrum is below 1% for every mode. On Figure 9, panel (a), the evolution of BAM’s kernel through
the iterative process can be seen: as stated before, after about 60 iterations the kernel converges to
a certain value.

The gas density field generated by BAM after this calibration is presented on panel (b) of Figure 10,
and can be compared with the reference’s (on panel (a) of the same Figure). Both of the gas density
fields have been converted to overdensity, and then to a logarithmic scale, averaging the same five
adjacent slices along Z axis. The same structures are observed in both fields, but there are some
differences on small scales, were structures such as filaments and sheets seem to be slightly broken,
and voids seem to have been somewhat more populated than those on the reference. For this reason,
and although the results are still pretty good, an analysis including the cosmic web classification
into knots, sheets, filaments and voids has been carried out.

On panels (b) and (d) of Figure 8 the evolution of the power spectrum through the iterative
process using the cosmic web classification is presented. As it can be appreciated, the deviation
from the reference’s power spectrum is slightly smaller on the first iteration when compared to that
in the previous analysis, with the large scale values of k being within a 5% difference with unity,
and growing only to ∼ 50% on small scales. The iterative process rapidly solves that discrepancies,
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(c) Gas density field, BAM, CWC

Figure 10: Upper left: reference gas density field for the 5123 resolution simulation. Upper
right: gas density field generated by BAM for the 5123 resolution simulation. For the
generation of this mock, no cosmic web classification has been used. Bottom: gas density
field generated by BAM for the 5123 resolution simulation. For the generation of this mock,
no cosmic web classification has been used.In the three cases, the original field has been
converted to δ, and afterwards converted into a logarithmic scale using log10(2 + δgas). The
Z direction of the 3D field has been averaged over the same 5 slices in both fields.
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and after only 20 iterations the small scales have been captured under the 1% deviation threshold.
Between iterations 40 and 60, the power spectrum generated by BAM is placed on top of the reference’s,
not changing after it reaches its final iteration, 200 in this case. This analysis can be confirmed by
taking a look at panel (b) on Figure 9, where it can be noticed that after iteration 67 the kernel does
not change at all, reaching convergence. It is remarkable how, using the cosmic web classification,
the shape of the kernel changes slightly for the modes associated with larger scales, assigning lower
values than in the previous result.

The classification into the cosmic web type associates 0.76% of the particles to knots, 20.59%
to filaments, 60.30% to sheets and 18.35% to voids. On panel (c) of Figure 10 it can be seen how,
including this non-local property in the analysis, the filamentary structure of the gas density field
is conserved in a more obvious way, besides the voids being somewhat more populated than those
in the reference. Finally, it is necessary to notice how, both using the cosmic web classification or
not using it, the structures generated by BAM are slightly less smooth that those for the reference,
as well as the appearance of a granulated pattern on the smaller scales, but this is considering that
structures on a scale of 100h−1 Mpc/512 are to be reproduced here.

4.2. Neutral hydrogen: HI number density field

4.2.1. Low resolution case: mesh with 1283 cells
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(a) Bias relation between nHI and dark matter (b) Same, but with a 2 in the log

Figure 11: Two-dimensional histogram relating dark matter density field with HI num-
ber density field for the 1283 resolution simulation. Both fields have been converted to δ,
and afterwards converted into a logarithmic scale, using log10(1 + δ) in panel (a) and using
log10(2 +δ) in panel (b).

The bias relation between the dark matter density field and the neutral hydrogen density field
extracted from the reference follows a much more complex distribution than the gas’, with two
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(b) BAM’s last iteration

Figure 12: Every image presents results from the neutral hydrogen number density field,
1283 resolution. Left: on the top panel, power spectrum generated by BAM with respect
to the reference’s (black, solid line) as iterations advance with no cosmic web classification
applied. Right: on the top panel, same as (a), but applying cosmic web classification. The
bottom panel of both images shows the corresponding ratios with respect to the reference; the
different shaded areas stand for 5 and 10% difference with respect to 1 on the left panel, 1
and 5% difference with respect to 1 on the right one.
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Figure 13: BAM’s last iteration power spectrum for different approaches trying to improve
the performance of the one showed on Fig. 12, explained in the text. The only method that
provided a good result was including the cosmic web classification and the mass of collapsing
regions in the analysis (blue, dashed line). The bottom panel shows the corresponding ratios
with respect to the reference; the different shaded areas stand for 5 and 10% difference with
respect to 1.
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(b) BAM’s last iteration

Figure 14: Every image presents results from the neutral hydrogen number density field,
1283 resolution, using the cosmic web classification. Left: on the top panel, power spectrum
generated by BAM with respect to the reference’s (black, solid line) as iterations advance.
Right: on the top panel, same as (a), but applying cosmic web classification. The bottom
panel of both images shows the corresponding ratios with respect to the reference; the different
shaded areas stand for 5 and 10% difference with respect to 1 on the left panel, 1 and 5%
difference with respect to 1 on the right one.

different lobes, one of them associated to very low densities of neutral hydrogen, as can be seen in
Figure 11, panel (a). The power spectrum of the neutral hydrogen number density field on its 1283

resolution configuration has caused some troubles during the calibration of BAM, and the process
followed in trying to solve them and improve the results will be set forth here. As a first approach,
the calibration was done without considering the cosmic web classification. This dealt to a first
generated power spectrum that was above the reference’s on almost a 50% for every mode up to
k = 2hMpc−1, much more than when the method was applied with this configuration to the gas
density field in any of its setups (see section 4.1); after that mode, the power spectra generated by
BAM followed a similar trend as those calculated for the gas, turning its value below the reference’s.
As opposed with what happened in the previous calibration processes, the iterative scheme did not
achieved a satisfactory result, as can be seen in Figure 12: the power spectrum that were being
generated seemed to converge to a certain shape, but it systematically failed to be settled on top
of the reference’s, as it can be seen in panel (a). After even 300 iterations, the deviation from the
reference on most of the modes was around 20%, although for small scales the power spectrum of
the reference and the obtained from the calibration differed on less than a 5%, as it can be seen on
panel (b). As a confirmation of the non convergence of the method, one can notice that the kernel
was not converging for any value of k except for those greater than k ≈ 1hMpc−1, that is, the same
smaller scales that seemed to reach a better sampling on the power spectrum; the kernel did not
stop decreasing its value elsewhere as iterations go on, as can be seen on panel (a) of Figure 15.

To solve the problem, and as it seemed that it caused that the power spectra were to high on large
scales, an attempt was made to substract some power from that scales, applying transformations
to the dark matter density field that dealt on a reduction of its power. The first test consisted on
applying a non-linear transformation to the dark matter density field, as follows:

1. δDM = (1 +δDM)α, 0 < α < 1
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Figure 15: Evolution of BAM’s kernel as iterations advance, for the 1283 neutral hydrogen
number density reference. Kernel value is computed for each k mode with Eq. 22. As
it can bee seen, it approaches a certain value, as the power spectrum generated by BAM
approaches the reference’s, and the Metropolis-Hasting algorithm ceases to accept new values,
as specified in Eq. 21.

2. Get overdensity of the new δDM

3. δDM = exp(β δDM)

4. Get overdensity of the new δDM

5. δDM = (1 +δDM)γ, γ > 1

The results obtained from this method are presented on a dashed, green line on Figure 13.
As it can be seen, not only it did not solve the problem, but it got it worse: the ratio between
the reference and the generated power spectrum grows above 5 for some modes, and in smaller
scales a white noise pattern began to appear, as the kernel made the dark matter density field grow
uncontrollably, dealing to the fact that the points of the mesh that already had high values grew
above the limits that were defined. Different values for α, β and γ were tried, but none of them
turned out to be satisfactory.

As a second test, a rank ordering was applied to the probability distribution function of the
dark matter density field, so that it resembles that of the neutral hydrogen number density field.
The results obtained are represented on a dashed, red line on Figure 13. Although the problem
occurring with the previous method is avoided, the power spectrum generated is worse than the
original method, being above the reference’s until k ≈ 1hMpc−1, and having greater values than the
first attempt for every mode before that one.

Finally, the two non-local properties of the dark matter that are included in BAM were taken
into consideration: the cosmic web classification and the mass of the collapsing regions. With
this approach, the results are much more convincing, as can be seen on the dashed, blue line of
Figure 13, and will be analyzed separately. On Figure 14, panel (a), the evolution of the power
spectra generated by BAM can be seen: for the first iteration, the difference with the reference goes
up to ∼ 50%, reaching a deviation of less than a ∼ 10% in 20 iterations. The main difference between
this configuration and the previous one with no cosmic web classification is that the method seem
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Figure 16: Left: reference neutral hydrogen number density field for the 1283 resolution
simulation. Right: neutral hydrogen number density field generated by BAM for the 1283

resolution simulation. For the generation of this mock cosmic web classification has been
used. In both cases, the original field has been converted to δ, and afterwards converted into
a logarithmic scale using log10(2 + δnHI). The Z direction of the 3D field has been averaged
over the same 5 slices in both fields.

to converge and place its power spectrum on top of the reference at about iteration 60, reaching
deviations of around 1% for almost every mode, as can be seen on the lower subpanel in panel (b)
of the figure. The classification into the cosmic web type associates 0.024% of the particles to knots,
0.058% to filaments, 0.293% to sheets and 99.625% to voids.

To confirm this analysis, one can take a look at Figure 15. As it has been said, the kernel
generated by BAM when the cosmic web is not taken into account does not converge to any value
except for the modes corresponding to the smaller scales, as panel (a) shows. On the contrary, as
shown in panel (b), the kernel converges to a certain value, although the speed with which it occurs
is much slower than those that took place for the gas density field, as expounded on section 4.1.

Finally, on Figure 16 the neutral hydrogen number density field of the reference (on panel (a) of
the figure) can be compared with the density field generated by BAM after the calibration has ended,
with cosmic web classification and mass of the collapsing regions taken into account in the analysis
(on panel (b) of the figure). Although at a large scale structures seem to be conserved, it is pretty
obvious that filamentary structures get broken and that mock voids have some structures that in
the reference do not exist.

The solution to this might come from considering a more efficient binning after applying Eq. 25
to the density field. As it can be seen in Figure 17, panel (a), the probability distribution function of
the reference density field has two distinguishable lobes, one around log10(δnHI +1) = −4 —which will
be associated to regions with a very low density of neutral hydrogen, almost null— and the other
around log10(δnHI + 1) = 1 —which corresponds to regions where there is actually high densities of
neutral hydrogen—. This leads to the fact that most of the field is empty and there are only some
points where all the neutral hydrogen is located. When dealing with this fact inside BAM, where it is
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Figure 17: Left: probability distribution function of the neutral hydrogen number density
for the 1283 resolution simulation, adding 1 inside the logarithm when transforming the
overdensity into a logarithmic scale. Right: probability distribution function of the neutral
hydrogen number density for the 1283 resolution simulation, adding 2 inside the logarithm
when transforming the overdensity into a logarithmic scale.

necessary to use Eq. 25 (adding a 2 inside the logarithm when transforming the overdensity into a
logarithmic scale), the probability distribution function turns into the one in panel (b) of the same
figure: the great majority of the points of the field, up to a factor 100, are contained in the very first
bin of the distribution. These issue can also be seen in panel (b) of Figure 11. What this means
is than, when using a linear binning between the minimum and the maximum of that distribution,
most of points (actually, about a 95%) will fall in the first bin, being the density field produced by
the method, therefore, poorly sampled for most of the possible values of the reference density field.

4.3. Temperature field

4.3.1. Low resolution case: mesh with 1283 cells

The bias relation between the dark matter density field and the temperature field extracted from
the reference also follows a complex relation, with two different populations associated to the same
dark matter density, as it is shown at Figure 18. The power spectrum of the temperature field on
its 1283 resolution configuration has caused major troubles during the calibration of BAM, as the
method did not converge at all with the previous configurations. As it is shown on Figure 19, panels
(a), the power spectra were always below the reference one and the code stopped its calibration
process only after 6 iterations, causing a core dump. This can be explained by panel (b) on that
same figure: the kernel is growing above 1 in each iteration on an attempt to provide more power
to the spectrum for almost every k, and this leads to an uncontrolled growth of the density of
the dark matter density field that is being mapped, causing that BAM has to abort its calibration.
However, applying a different binning for the bias extraction (that was originally conceived to solve
the problem mentioned on the neutral hydrogen distribution, but did not work well) seems to solve
the problem, at least for every mode up to k ∼ 2hMpc−1. This specific binning is defined as follows:
taking the first ∼ 95% smaller values of the field, define a lower threshold as their minimum, and an
upper threshold as their maximum —note that those first values where gathered together into the
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Figure 18: Two-dimensional histogram relating dark matter density field with temperature
field for the 1283 resolution simulation. Both fields have been converted to δ, and afterwards
converted into a logarithmic scale using log10(1 +δ).

first bin with the basic configuration. Force that half of the bins that are to be used will be placed
there, and fill each one of them with a fixed number of cells; the limits of each bin are defined, then,
by the lower and higher value of the first and last cell placed in the bin. The second half of the bins
will be defined as they were previously, but only contain a rough ∼ 5% of the cells. This leads to an
irregular distribution of the binning, where the first half of them have a different width for each bin,
but the same amount of cells in everyone, and the second half of them has the same width for each
bin, but with a different amount of cells in each of them.

As it is shown on panel (c) of Figure 19, the power spectra generated by BAM are on top of
the reference’s for every mode up to k ∼ 2 h−1 Mpc, being above the reference for smaller scales; on
panel (e) it can be seen how the deviation between the reference and the power spectrum generated
by the method is well below 5% at those scales. On panel (d), the kernel using this binning is
presented, showing a clear convergence at the mentioned scales, and a clear problem on smaller
scales, where it does not reach any stable value and keeps decreasing. In Figure 20 the temperature
field is represented, both the reference’s and the generated by BAM after its calibration, with this bin
configuration. As it can be seen, the granulation appears on the mock field at Mpc scales, but at
large scales the picture is maintained between both fields.
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Figure 19: Panel (a): power spectrum generated by BAM with respect to the reference’s
(black, solid line) as iterations advance, applying cosmic web classification, for the 1283

resolution. Panel (b): Evolution of BAM’s kernel as iterations advance. Panel (c): power
spectrum generated by BAM with respect to the reference’s as iterations advance, applying
cosmic web classification and the binning described in the text, for the 1283 resolution.
Panel (d): Evolution of BAM’s kernel as iterations advance, using the binning described
in the text. Panel (e): Power spectrum of the last iteration of BAM, applying cosmic web
classification and the binning described in the text.
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Figure 20: Left: reference temperature field for the 1283 resolution simulation. Right:
temperature field generated by BAM for the 1283 resolution simulation. For the generation
of this mock, cosmic web classification has been used, along with the binning defined in the
text. In both cases, the original field has been converted to δ, and afterwards converted into
a logarithmic scale using log10(2 +δTemp). The Z direction of the 3D field has been averaged
over the same 5 slices in both fields.

5. Summary and conclusions

In this work a mapping technique which allows to paint the dark matter field defined on a
cubical mesh with baryonic properties obtained from detailed hydrodynamical simulations has been
presented. This can be of major importance in cosmological studies which require hydrodynamical
baryonic physics.

The distribution of baryonic matter in the Universe has a wealth of cosmological and astrophys-
ical information. It results from structure formation dominated by dark matter in an expanding
background Universe within the interplay of a series of complex physical processes. State-of-the-art
hydrodynamical simulations include the majority of the involved physics to produce a fair description
of the baryonic matter in the Universe. However, they are extremely expensive to run, and thereby
neither the cosmic volumes, which will be provided by forthcoming astronomical observational cam-
paigns, nor the required number of simulations to perform robust statistical analysis are available.
This calls for the development of techniques which permit us to learn extract the information from
such expensive calculations and map them onto a far less expensive dark matter only simulation.
The present master thesis explores this possibility by focusing on a series of baryonic quantities such
as the ionised gas density, and the neutral hydrogen.

In particular, the ability of the Bias Assignment Method (BAM), described in Balaguera-Antoĺınez
et al. (2019, 2020), to surpass its original idea of mapping a halo distribution onto a dark matter
density field using a high resolution N-body simulation as a reference and produce mock catalogues
out of it, has been assessed. To that aim, the code has had to be adapted from its previous config-
uration, which computed the number counts of a discrete density field distribution, to a new one,
which is able to compute continuous fields that stand for baryonic matter distributions, such as gas
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densities, neutral hydrogen densities, temperatures of gas or optical depths. A high resolution hydro-
dynamical simulation produced with the GAGDET3-OSAKA code (Aoyama et al., 2018; Shimizu
et al., 2019), whose basic features have been discussed throughout this text, has been used to fulfill
that purpose, taking advantage of the provided 1283, 2563 and 5123 resolution dark matter, gas and
neutral hydrogen density fields.

The approach of the method is based on the extraction of the non-linear and non-local bias
relations from a N-body simulation (extended to a cosmological SPH simulation here) using an
explicit, parameter-free model. Among the non-local quantities, BAM currently takes into account
the cosmic web classification, based on the eigenvalues of the tidal field, and the mass of the collapsing
regions (namely, the knots). The method is not able to mirror the power spectrum from the references
in its first measure, as a set of additional non-local relations are not included in the analysis, such
as the missing power of Lagrangian perturbation theory based methods (see Munari et al., 2017) or
third order contributions (see McDonald & Roy, 2009). The treatment given, for instance, to the
computation of the eigenvalues, could also lead to some aliasing effects on small scales, even only
considering the second order bias description which BAM uses. However, the iterative process used
to compute the bias relation and compute a kernel (following Equations (17) and (22) respectively)
handles with all the unknown dependencies, leading to the generation of power spectra in, roughly,
a ∼ 1% agreement with the reference’s, for every density field analyzed, showing how the effects that
are not modelled are absorbed in the calibration process of the kernel.

This process can be interpreted as a machine learning method where the power spectrum repre-
sents the cost function. However, deep learning techniques usually require large number of samples
as a training set, and for purposes like the one presented here that represents a problem, as N-body
simulations are highly demanding in terms of computation time and power, even restricting to vol-
umes smaller than the one needed to cover the current galaxy surveys, as the one used in this work.
In order to loosen this need, more physical and statistical relations between the tracer distribution
and the dark matter have been included into the method. Also, limiting the cost function to second
order statistics functions such as the power spectrum could be problematic, as the bias relation is
degenerated at the three-point statistics level (Kitaura et al., 2015; Vakili et al., 2017). However,
as BAM completely extracts the bias relation from the reference, it is acceptable to use second order
statistics.

The method, as has been shown, is able to reproduce the two-point statistics and main structures
present in a cosmological volume of 100 h−1 Mpc for the gas density field in both a resolution of 1283

and 5123 particles, extracting the non-linear and non-local information from the reference simulation,
with the unknown dependencies contained in a kernel. In terms of three points stadistics, it is very
likely that these two cases would reproduce the three-point statistics on a fairly good manner.
However, the results were not so good when dealing with the neutral hydrogen number density field,
and although the two-point statistics where reproduced with deviations of only a ∼ 1%, it is clear
that three-point statistics would not bring good results. To solve this problem, it has been shown
that a more efficient binning might be necessary, as most of the particles of the density field are
contained in the first bin of the distribution with the current configuration. Along this, another
problem will need to be faced when dealing with the temperature and optical depths fields. BAM is
not able to reproduce the power spectrum from the reference, as can be seen in Figure 19, panel
(a), as the power spectrum generated by the method is always below the reference’s, and the kernel
grows above 1 (panel (b)), leading to the uncontrolled increase on the values of the density fields
for almost every scales except the small ones. On an aim to solve these problems, some different
transformations and binnings are being tried to alleviate the loss of power at certain scales, and
new analysis are being done with the dark matter field obtained with an NGP scheme, instead a
CIC one. Using a new approach based on the tidal tensor invariants (Kitaura et al., 2020), instead
of some restricted combinations of its eigenvalues, as it is usually done in cosmic web classification
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studies, could also improve the performance of the method.

In summary, it has been shown that the BAM method can be extended to be applied to map
baryonic physics onto a dark matter density field, extracting the relation between that field and a
continuous one measuring different physical properties from a reference simulation and taking ad-
vantage of some non-local properties of the dark matter field such as the eigenvalues of the tidal
tensor or the mass of the collapsed regions. Some problems have arisen, though, but there is an
ongoing, promising effort on solving them, and produce precise and accurate effective hydrodynam-
ical simulations on cosmological scales in large numbers. This will enable us to analyse upcoming
surveys mapping the inter-galactic medium.
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Kitaura F.-S., Balaguera-Antoĺınez A., Sinigaglia F., Pellejero-Ibáñez M., 2020, arXiv e-prints, p.
arXiv:2005.11598

Larson R. B., 1981, MNRAS, 194, 809

Levi M., et al., 2013, arXiv e-prints, p. arXiv:1308.0847

Lippich M., et al., 2019, MNRAS, 482, 1786

McDonald P., Roy A., 2009, J.Cosm.Astr.Phys., 2009, 020

32

http://dx.doi.org/10.3847/0004-6256/151/2/44
https://ui.adsabs.harvard.edu/abs/2016AJ....151...44D
http://dx.doi.org/10.1086/307428
https://ui.adsabs.harvard.edu/abs/1999ApJ...520...24D
http://dx.doi.org/10.1103/PhysRevD.88.063537
https://ui.adsabs.harvard.edu/abs/2013PhRvD..88f3537D
http://dx.doi.org/10.1086/305424
https://ui.adsabs.harvard.edu/abs/1998ApJ...496..605E
http://dx.doi.org/10.1086/174036
https://ui.adsabs.harvard.edu/abs/1994ApJ...426...23F
http://dx.doi.org/10.1093/mnras/stw2123
https://ui.adsabs.harvard.edu/abs/2016MNRAS.463.2273F
http://dx.doi.org/10.1088/0004-637X/746/2/125
https://ui.adsabs.harvard.edu/abs/2012ApJ...746..125H
http://dx.doi.org/10.1111/j.1365-2966.2011.18820.x
https://ui.adsabs.harvard.edu/abs/2011MNRAS.415.2101H
http://dx.doi.org/10.1111/j.1365-2966.2006.11318.x
https://ui.adsabs.harvard.edu/abs/2007MNRAS.375..489H
http://dx.doi.org/10.1093/mnras/stt1061
https://ui.adsabs.harvard.edu/abs/2013MNRAS.434.1171H
http://dx.doi.org/10.1093/mnras/stu2617
https://ui.adsabs.harvard.edu/abs/2015MNRAS.447.2937H
http://dx.doi.org/10.1111/j.1365-2966.2011.19306.x
https://ui.adsabs.harvard.edu/abs/2011MNRAS.417..950H
http://dx.doi.org/10.1093/mnras/stt688
https://ui.adsabs.harvard.edu/abs/2013MNRAS.433...69H
http://dx.doi.org/10.1093/mnras/stx877
https://ui.adsabs.harvard.edu/abs/2017MNRAS.469..870H
http://dx.doi.org/10.1093/mnras/stx2342
https://ui.adsabs.harvard.edu/abs/2017MNRAS.472.4935H
http://dx.doi.org/10.1093/mnras/227.1.1
https://ui.adsabs.harvard.edu/abs/1987MNRAS.227....1K
http://dx.doi.org/10.1093/mnras/stu1058
https://ui.adsabs.harvard.edu/abs/2014MNRAS.442.3013K
http://dx.doi.org/10.1093/mnras/stv1789
https://ui.adsabs.harvard.edu/abs/2015MNRAS.453.3499K
http://dx.doi.org/10.1093/mnras/stw2029
https://ui.adsabs.harvard.edu/abs/2016MNRAS.463.1431K
http://dx.doi.org/10.3847/1538-4357/833/2/202
https://ui.adsabs.harvard.edu/abs/2016ApJ...833..202K
http://dx.doi.org/10.1093/mnrasl/slt101
https://ui.adsabs.harvard.edu/abs/2013MNRAS.435L..78K
http://dx.doi.org/10.1093/mnrasl/slt172
https://ui.adsabs.harvard.edu/abs/2014MNRAS.439L..21K
http://dx.doi.org/10.1093/mnras/stv645
https://ui.adsabs.harvard.edu/abs/2015MNRAS.450.1836K
http://dx.doi.org/10.1093/mnras/stv2826
https://ui.adsabs.harvard.edu/abs/2016MNRAS.456.4156K
https://ui.adsabs.harvard.edu/abs/2020arXiv200511598K
https://ui.adsabs.harvard.edu/abs/2020arXiv200511598K
http://dx.doi.org/10.1093/mnras/194.4.809
https://ui.adsabs.harvard.edu/abs/1981MNRAS.194..809L
https://ui.adsabs.harvard.edu/abs/2013arXiv1308.0847L
http://dx.doi.org/10.1093/mnras/sty2757
https://ui.adsabs.harvard.edu/abs/2019MNRAS.482.1786L
http://dx.doi.org/10.1088/1475-7516/2009/08/020
https://ui.adsabs.harvard.edu/abs/2009JCAP...08..020M


McKee C. F., Ostriker J. P., 1977, ApJ, 218, 148

Monaghan J. J., 1997, Journal of Computational Physics, 136, 298

Morris J. P., 1996, PASA, 13, 97

Moustakas J., et al., 2013, ApJ, 767, 50

Munari E., Monaco P., Koda J., Kitaura F.-S., Sefusatti E., Borgani S., 2017, J.Cosm.Astr.Phys.,
2017, 050

O’Connell R., Eisenstein D. J., 2019, MNRAS, 487, 2701

Paranjape A., Hahn O., Sheth R. K., 2018, MNRAS, 476, 3631

Paz D. J., Sánchez A. G., 2015, MNRAS, 454, 4326

Pearson D. W., Samushia L., 2016, MNRAS, 457, 993
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