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Abstract

Study of physical systems with
machine learning techniques:

Lorenz63 system

The dissertation presented in this document comprises the study of a physical system,
in particular, the Lorenz63 system of equations in a chaotic solution range[1]. To
do so, up-to-date machine learning techniques are applied. In such a framework,
a description of the Lorenz63 system is presented, together with a description of
the Neural Network models used in the study. Moreover, these Machine Learning
models are trained in a novel approach that attempts to boost their generalisation
abilities. Then, they are implemented to simulate the dynamics of the system given
an initial point in phase space. The success of such simulations is assessed using
chaos measuring techniques for time-series of data such as the Correlation Dimension
(D2) and Lyapunov Exponents (⁄). In addition, not only short-range predictions but
also the learning of the overall dynamic behaviour of the system is analysed and
compared with a Runge-Kutta numerical integration of the equations, leading to
success for some of the chosen Neural Networks. The main goal of the project is to
present a guideline and example of how to confront the study of a physical system
implementing Neural Networks as well as introducing some innovative alternatives
for studying and solving numerical problems. In this context, Reservoir Computing
is introduced as a concept and derived Neural Networks models are shown to success-
fully simulate the Lorenz63 system’s behaviour, in agreement with [2]. Lastly, a set
of conclusions—with the purpose of widening the scope of the previous discussion—
wraps up the dissertation, providing the first steps to guide future research on the
same lines.

The fulfilment of this project took place with the support of a collaboration scholarship
granted by the MECD (Ministry of Education, Culture and Sport) conducted in the
Department of Physics in the University of La Laguna, located in San Cristóbal de
La Laguna, Tenerife, Spain.
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Resumen

Estudio de sistemas físicos con
técnicas de aprendizaje automático:

Sistema Lorenz63

Este trabajo comprende el estudio de sistemas físicos, en particular el sistema de
ecuaciones diferenciales Lorenz63, en un rango de soluciones caótico[1]. A tal efecto,
se aplican técnicas actuales de aprendizaje automático. En esta línea de trabajo, se
presenta una descripción del sistema Lorenz63 así como de los modelos de Redes
Neuronales empleados en el estudio. Dichos modelos son entrenados a través de una
aproximación novedosa que busca potenciar las capacidades de generalización de los
mismos para, a continuación, ser implementados en la simulación de la dinámica del
sistema dado un punto inicial. El éxito y calidad de dichas simulaciones se evalúa
mediante técnicas diseñadas para cuantificar el caos en series temporales de datos,
como son la Dimensión de Correlación (D2) y los Exponentes de Lyapunov (⁄). En
dicha evaluación no solo se atiende a la predicción a corto plazo sino también al
aprendizaje del comportamiento dinámico general del sistema, que ha mostrado ser
satisfactorio para algunos de los modelos aplicados. El principal objetivo del proyecto
es plantear una guía, correspondientemente ejemplificada, de cómo afrontar el estudio
de un sistema físico empleando Redes Neuronales, además de introducir técnicas
innovadoras que puedan ser de utilidad en la resolución de problemas numéricos. En
este contexto, se menciona y aplica el concepto de reservorio computacional a través
de una arquitectura específica de Red Neuronal, que muestra ser eficaz y exitosa en
la tarea abordada. Este resultado concuerda con lo presentado en [2]. Para finalizar,
se expone una serie de conclusiones que tratan de ampliar el ámbito de la discusión
previa, aportando una base de partida para futuras investigaciones en este campo.

La realización de este proyecto tuvo lugar bajo el amparo de una beca de colaboración
concedida por el MECD (Ministerio de Educación, Cultura y Deporte) y llevada a
cabo en el Departamento de Física de la Universidad de La Laguna, emplazada en
San Cristobal de La Laguna, Tenerife, España.
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1. Introduction: Lorenz63 System
and Neural Networks

Esta primera sección introductoria asienta las bases para el posterior
seguimiento del proyecto. Se comienza describiendo brevemente el estado
del arte sobre Inteligencia Artificial (IA), Machine Learning (ML) y más en
concreto, Redes Neuronales (RN). Seguidamente, se exponen los conceptos
básicos sobre Redes Neuronales y algunos tipos y estructuras comunes que
serán utilizados a posteriori. Para finalizar la introducción, se introduce el
sistema objeto de estudio: Lorenz63. Para ello se presentan las ecuaciones
de movimiento, seguidas del pertinente desarrollo para su obtención y rango
de soluciones.

Resumen

1.1 Brief overview of Machine Learning and Arti-
ficial Intelligence

1.1.1 AI vs. ML
Artificial Intelligence and Machine Learning are concepts often use indi�erently,

however the latter is a branch or subcategory of the former. The University of
Columbia, NY, defines Machine Learning as a pathway to Artificial Intelligence
in which algorithms are used during learning to process data, gain insight and apply
that learning to make better decisions. By exploring ML tools, programmers are
testing the limits of how much the cognition and performance of a computer can
be improved. This is a basic stone in Artificial Intelligence development, which
ends supplying humanity with computers and robots that are able to analyse and,
what is more, contextualise data in order to provide information and make decisions
without human interference[3].

It seems that AI and ML techniques are nowadays applied in almost every aspect
of human’s live, nonetheless, the origins of such concepts and ideas began around the
middle of the last century, closely attached to the study of the human brain, neurons
and how the information travelled among them. The mathematical tools needed
to found those studies were developed hundreds of years ago with the help of the
greatest in calculus like Leibniz, Euler or Taylor. What pushed the implementation
of such techniques was the expansion of computers since the 1950s. A short revision
of how the present situation was reached is presented in the next section.

1.1.2 Machine Learning: Origins and State of the Art
It all started with a cell, as it has happened with several developments in science

and natural history. In this case, it was a brain cell—a neuron— and how information
and communication travelled and occurred between a group of them. The first
description of a neuron using logic and setting the starting point for Neural Networks
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was given by McCulloch and Pitts in 1943[4]. A few years later, in 1949, Donald
Hebb presented a model of brain cell interactions and set the information theory
basis to further developments[5]. Really close in time, Arthur Samuel presented a
novel computer program for playing checkers in 1950 while working for IBM, which
involved the computer in choosing the next move by measuring the chances of winning
for each possible move based on a scoring function using the position of the pieces.
He also designed a number of mechanisms that made possible for his algorithm to
become better, laying the basic definitions and ideas1 behind Machine Learning[6].
It is usually considered as the father of the term “Machine Learning”, but it has not
been able to prove such an assumption.

With respect to the brain cell study, the baton was taken by Frank Rosenblatt in
1958 when he presented the Perceptron[7], merging the concepts from Hebb and the
ML learning e�orts from A. Samuel. The Perceptron was intended to be an IBM
machine but ended up being a computer program designed for image recognition
(the program would now be known as a binary classifier). The next step was the
addition of more complexity to the model, multilayer perceptrons arrived in the
1960s to stay2, giving birth to FeedForward Neural Networks and the design and
application of the backpropagation algorithm. Backpropagation had been presented
in 1970 but not applied in this context[8], however, in 1982 it was first applied to a
Multilayer Perceptron as it is now known[9]. In 1986 D.E.Rumelhart, et al. published
an experimental analysis of the technique applied to Neural Networks[10].

Despite the seemingly impressive progress and possibilities of the new ML tech-
niques, the decade of the 70s witnessed the separation between ML and AI. Mainly
because AI researchers were more focused in logical, knowledge-based approaches
rather than in algorithms, but also because Neural Networks were abandoned by ML
and AI technicians. After the separation, ML experts worked on providing services
by solving practical problems instead of training AI, running down the sector almost
to extinction. It was not until 1990 when Neural Networks bloomed again as the
availability of digital data increased with the growth of Internet. From then, ML
was relocated as a key sector and progress started to quickly accumulate. In 1997,
S.Hochreiter introduced a novel type of Neural Network called LSTM[11], which
would outperform traditional speech recognition models in the coming years.

By the arrival of the new millennium, ML and AI had been shot to the moon
and they still are now. With the help of big companies such as Google or Microsoft,
there are very large departments destined to specifically investigate, progress and
develop AI and ML, having shown unbelievable results to the world: Autonomous
driving, face recognition, voice assistants, natural language processing, real-time
recommendations and customisation and more that it is to come. All this work has
converged in tools that are completely changing how the world is perceived or even
how information is assimilated and taught: Chat GPT, Dall-E-2 O, Jenni AI,...

A sharp turn has been taken in the technology world and Physics should not
be less than other scientific fields and adapt to the use of these revolutionary tools
to make the best out of the already acquired knowledge and the one that will be
discovered. But, is it not really complicated to use ML tools in a Physics’ problem?
The quick answer would be no. Nevertheless, deep knowledge of how the tools
work and how the chosen system or problem is described and behaves, are crucial if
plausible and useful results are desired.

1
A. Samuel stated that computers could be programmed to learn from experience, eventually

eliminating the need for more programming e�orts.
2
The own Rosenblatt introduced a perceptron with three layers but did not implement learning

in all three layers.
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1.1.3 A Use Case: Atmospheric Physics
Atmospheric Physics and Meteorology comprise one of the best use cases of ML

and AI applied to Physics. Weather forecasting and the ability of providing a final
forecast that pops up in the smartphones of millions of people is a complex task, but
can be broken down into a few steps:

1. Data Assimilation: Data of the current state of the atmosphere needs to be
collected and processed. The amount of meteorological data gathered every
few hours all over the world is enormous and comes from very unalike sources.
From weather stations on land or buoys in water, to satellites or airplanes.
Combining all this information is a big challenge.

2. Data processing: Once the data has been collected, it has to be contextualised.
Where, when and how it was obtained a�ects its reliability and quality. Also,
it has to be merged with the rest of the data acquired and this needs of large
computational and memory facilities to be achieved.

3. Forecasting: With the current state of the atmosphere sorted out and depicted
by the data, it is used to evolve the atmospheric dynamical system using models
that resemble the behaviour of the real Earth-Atmosphere couple. The main
problem with the models is their size and complexity, since to give something
similar to a forecast, physics systems of di�erent scales need to be taken into
account, for example, cloud micro-physics, which happens within a range of
centimetres or large convective cells between latitudes, in grids with lengths
of hundreds of kilometres. Both need to be considered working together.
Supercomputers are indispensable in this step to be able to solve the equations
of motion in a human-time scale.

4. Estimating and correcting errors: Once the forecast is produced by running
the models in vast supercomputers, an estimation of the errors and a correc-
tion of them is compulsory in order to produce accurate results. Combining
information from previous results and applying complex statistical techniques,
the forecast is improved in accuracy.

5. Managing the results and sharing them globally: How to manage the
amount of data produced and how to present that information to the final user is
another not easy task. User’s location and properly assigning the corresponding
forecast is one of the issues, as well as storing all the new forecasts produced
to use them in further improvements.

However, it is in this intricate procedure in which Machine Learning has been proved
to be of the greatest help. Di�erent algorithms and techniques are being applied in
all the steps of weather forecasting. Managing the data and checking for anomalies
depending on the geography location is now being assessed by AI tools. Physics
Models that solve Navier-Stokes equations, are being faced with Graph Neural
Networks that simulate the complete Earth-Atmosphere system, outperforming the
former in e�ciency and accuracy. Moreover, forecasts’ errors are being corrected
with the help of algorithms that identify patterns and apply statistical corrections,
being able to learn from previous forecasts and inaccuracies. There is no single part
in weather forecasting in which ML has not made his place to stay, and the results
are not open to debate: faster and more accurate forecasts, innovative research
and new discoveries about the behaviour of the atmosphere and even new physics
that has been accounted for thanks to the implementation of such techniques. The
relevance is so, that the European Centre for Medium Range Weather Forecasting
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(ECMWF), in collaboration with the International Foundation on Big Data and
Artificial Intelligence for Human Development (IFAB), has launched a Massive Open
Online Course (MOOC) on Machine Learning in Weather and Climate during 2023.
The objective is to train a wider community on the impact and use of machine
learning in numerical weather and climate predictions[12].

1.1.4 Ingredients for a Machine Learning Project
As mentioned before, Physics should not be di�erent from other fields like

Business or the Automotive Industry in which ML models can be applied. In fact,
the ingredients needed to study a problem with ML techniques are the same as they
would be in any other field: knowing the problem, data, models and metrics.

• Problem and system to study: First of all, what is going to be studied
needs to be clear. In this case, the physics involved in the system, how to
describe them, approximations done and which are the relevant features and
variables which are useful when describing the system. Having some insight
and intuition about the system would help choosing the right ML tools and
techniques, especially during the first attempts.

• Data: It is the source of information and the fuel of any ML algorithm. All
information is extracted from the data and not any data source is valid for
its study. It needs to be of a certain size, usually large, it also needs to be
varied, representing the most possible behaviours of the system in question,
and last but maybe the most important, it needs to be of good quality. This
leads to the first step in any project of this kind, which is data preprocessing.
Once acquired from the available sources, it needs to be treated in order to
be useful. Managing missing values, di�erent data types (boolean, categorical
or numerical) or di�erent numerical ranges that need to be scaled are some
examples. If there is no knowledge about the working dataset, no success will
be reached.

• Model: There is a huge variety of models available from where to choose.
Neural Networks, Boosting Algorithms, Decision Trees, Nearest Neighbours and
multiple modifications and evolutions of the basic classification and regression
algorithms. Choosing the proper approach for the problem —and consequently
the proper model— would make a big di�erence and can bring the desired
results. However, it is usually not a simple decision. One can decide the type
of model depending on the problem, maybe a Neural Network or a Decision
Tree, but once in that group, hundreds of specific models have been designed
to serve particular purposes. FeedForward Neural networks, Recurrent Neural
Networks, Graph Neural Networks, Physics Informed Neural Networks or
AdaBoost, XGBoost, LogitBoost as examples of these two types. The options
could be endless because the most suitable one might be a combination of some
of them, applied at di�erent points during the implementation.

• Metrics: The measuring rule. Is the model producing good results in compar-
ison with, for example, a physical model that numerically solves the equations?
To answer this, metrics are needed. They are also called Key Performance
Indicators (KPIs), since they indicate how well or bad is the model performing.
As well as the models, there are di�erent metrics depending on the type of
the problem and some of them could be more appropriate than others. They
usually work all the same way, comparing the results output by the model with
previous results that are considered to be true. In which way the comparison

4



is done is what di�ers from one metric from the other. Classification and
Regression Metrics are the two main categories. While the first are intended
to measure the number of correct classifications against the incorrect ones
(Confussion Matrix, Accuracy or AUC-ROC curves), the Regression ones are
more related with the concept of error treatment in measures or deviation.
There is a true value and a numerical output that might be close or not and
metrics which measure such distance (Mean Squared Error, Mean Absolute
Error or Mean Absolute Percentage Error). Nonetheless, defining or finding
alternative metrics suitable for the problem is possible, as long as they fulfil
their purpose and make it possible to compare model results with true results
and extract conclusions.

The four above-mentioned ingredients will be considered, assessed and discussed for
the case of study of this dissertation in the following sections.

1.2 Neural Networks in a Nutshell
Plenty of descriptions and introductions to Neural Networks (NN) or Artificial

Neural Networks (ANN) can be found online or even in books[13][14][15]. However,
for the purpose of presenting the inexperienced reader a brief introduction into what
Neural Networks are, the very basics are now presented.

1.2.1 Neurons: the Basic Computational Units
As it happens with the human Brain, it is the union of all neurons what creates a

functioning machine able to work with information. To be able to understand such a
system, the basic units need to be firstly studied. In the case of ANN, neurons3 are
the basic units of computation which process information at the most simple level:
they receive some input data, apply simple mathematical operations and provide
some output data which has been transformed with respect to the input. Let’s break
down this with some more detail:

• Input data [ X ]: The neuron can receive the input data from more than one
source which could be other neurons or directly various external sources.

• Assimilating the data: Values coming from the inputs are combined using a
weighted sum in which each weight, wi, is associated with an input. At this
point, it can also be added some bias, b, that shifts the values upwards or
downwards.

• Producing the output [ y ]: The neuron produces an output by evaluating
the assimilated data using an activation function f . The activation function is
a non-linear function which is in charge of introducing non-linearity in order
to explore these kind of relations among the data. There are several types of
activation functions, being the most used the Hyperbolic Tangent [tanh(x)],
the Sigmoid function [‡(x)] or the Rectified Linear Unit [max(0, x)].

The two parameters mentioned, the weights and biases (wi, b) are the learnable
parameters which will be updated during the training process of the model. A
schematic representation of a neuron with its inputs, weights and biases, outputs
and three examples of possible activation functions is pictured in Fig.1.1.

3
They are also called nodes.
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(a) Diagram of the Basic Computational Unit.

(b) Example of three activation func-

tions: Tanh, Sigmoid and ReLU.

Figure 1.1: Scheme of a neuron and examples of activation functions f(x).

1.2.2 Building an ANN from Scracth
Structure

Now that the building blocks are known, as if they were puzzle pieces, neu-
rons can be used to build a Neural Network following some simple structure-wise
recommendations:

• Layers: the nodes need to be organised in layers, which are nodes aligned
in a sequence and often represented in vertical. Every Neural Network has
two permanent layers. Those would be the input layer and the output layer.
Between them, the rest of the desired layers, which are called hidden layers
and in which the large part of the computation occurs. The data is fed into the
network via the input layer, processed in between the hidden layers and then
passed to the output layer from which the data arises already transformed. The
Layers are connected between them and how these connections are designed
would define the type of layer or even the type of NN. The basic layer type is
the dense layer in which every neuron is fully connected with all the neurons
in the next layer.

• Input Layer’s Dimension: the number of units or neurons in the input layer
is commonly defined by the input data, in particular, by the number of features
in the data. For example, if the data contains cartesian positions of an object
in 3D space, it would be common to use 3 neurons, as the input data would
often be a three-featured vector.

• Output Layer’s Dimension: As it happens with the input layer, the output
layer should have as many units as elements in the desired output. In the
above example, for the case of using the NN for predicting the global Energy
of the system, the output layer could work with only one unit, since the NN
should return one value given the 3D position vector.

• Activation Function: The selection of the activation function for all the
neurons in a layer is also important. Some activation functions work better
for certain type of problems4. However, it is usually a parameter that needs
to be explored and it is a common practice to consider it within a range of
functions to check which one gives better results. The activation functions

4
ReLU is generally used in Regression problems while Tanh or Sigmoid are more used in

Classification tasks.
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will also impose the range in which the input data should be scaled. Scaling
is one of the key preprocessing steps before running data through a model
since activation functions work only within a certain range, often being (0,1)
or (-1,1).

Training and Learning

It has been explained how to build a ANN, however, about how they work and
how they are able to learn little have been said. The main pillar on which the learning
process is sustained is training. During training, the Neural Network processes the
main part of the available dataset and will try to find the relations and connections
hidden in the data. The goal is that after training, whenever some data is fed to
the network, it will be able to produce an output that is in line with the true data
used for training. Such a process of learning from the data is done by adjusting the
weights and biases depending on how close the output is to the true data, using a
loss function to measure this proximity.

Once the error inferred has been measured, the network needs to adapt its
parameters in an attempt of minimising the loss and improving its results. In
charge of that update is the backpropagation algorithm which, in a few words, would
use Leibniz’s chain rule to compute the gradient of the Loss Function in terms
of the learnable parameters (again, weight and biases) and find the minimum for
this function. It is called backpropagation because the error is obtained in the
output layer and then the derivatives are calculated backwards until reaching the
parameters in the input layer. The search for the minima can be done with di�erent
algorithms within which are found Stochastic Gradient Descent(SGD) or Adam. A
detailed description of how backpropagation and SGD work can be found in a series
of educating and brilliantly made videos done by Josh Starmer in the StatQuest5

Youtube Channel[16]. Also a great introduction to how ANN works, with examples
of these concepts, is artfully presented by C. Arrizabalaga[17].

Implementation

Bearing this in mind and with some programming skills, one should be able to
build a simple ANN. In the case of this project, everything has been programmed in
Python. In particular, the tools selected were Tensorflow and Keras, since they are
a good basis onto which to build knowledge about programming NN and ML and
lots of information is available. The former is an end-to-end open source platform
for Machine Learning, as defined in its documentation[18]. It provides the structure
for managing data, building and training models, checking their performance and
implementing them. It is suitable for learners and expert users with di�erent
interface’s levels in which to have more or less control over each step of the process.

Built over Tensorflow, Keras is the high-level
API, providing building blocks for the user to
control the project as well as di�erent levels
of abstraction[19]. It is intended to reduce the
number of user’s actions to run common cases.

While Tensorflow contains and maintains
the support structure for working with ML mod-
els (models, metrics, data structures, ...), Keras

presents a user-friendly way of working with all these parts and tools, making possible
5
StatQuest presents hundreds of videos about not only ML but also statistics and Data Science

concepts in short and easy to follow format.
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to build up a model from scratch with little knowledge on how Tensorflow works. To
familiarise and learn about Tensorflow and how to create di�erent types of models, a
tutorial is referenced[20].

1.2.3 Feed-Forward Neural Networks
If one follows the scheme presented in the previous section, the NN built would be

a Feed-Forward Neural Network or FFNN. As the name states, the information and
data only travels forward through the network: data goes in through the input layer,
crosses the layers till the output layer and goes out through it. There are no loops or
connections through which the data could be fed back into the network. This types
of NN present the simplest architecture and its workflow is easy to understand. An
example is presented in Fig.1.2 where a FFNN with two hidden layers is depicted.
The architecture would be described as having 3 neurons in the input layer, 5 and
4 neurons in the 1st and 2nd hidden layers, respectively, and 1 neuron in the final
output layer. The activation functions would be f1(x) and f2(x) and as each neuron
is connected with all the neurons in the next layer, the layers would be called dense
layers.

Figure 1.2: Example of a FFNN in which one of the paths that the data will follow
is highlighted in pink. Weights and biases sets are also indicated for each connection
between two layers.

1.2.4 Recurrent Neural Networks
Usually referred to as RNN, Recurrent Neural Networks di�er from traditional

FFNN because they are intended to work with sequential or time-series data. They
introduce loops inside the workflow in such a manner that previous inputs can
influence current inputs and outputs. In addition, they also share parameters across
the layers, whereas FFNN had di�erent sets of weights and biases per layer. This
provides the NN with some kind of “memory”. In comparison with FFNN that
assume inputs to be independent, RNN work under the assumption that output
depends on previous values within the sequence that has been fed in[21]. They
are really powerful in language translation, speech recognition or natural language
processing. Some of the most common architecture variants are LSTMs, already
mentioned before, and Gated Recurrent Units or GRUs which are similar to LSTMs
but with di�erent number of components and slightly di�erent functioning. As
LSTMs will be implemented in this project, a more detailed explanation is further
presented.
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Long Short-Term Memory Neural Networks

Recurrent Neural Networks use loops to deal with sequential data. Instead of
passing the first element of the input sequence straight to the output, the first
element is passed through a loop and combined with the second, then the result goes
through the next loop and combines with the third... and this keeps going until the
end of the input sequence, where the data finally passes to the output. However this
recurrent use of the loops provokes the vanishing/exploding gradient problem, which,
in a few words, can be explained as the uncontrolled increase or decrease of the
values going through the network due to its recursive multiplication with the weights
associated to each loop6. To solve this issue, LSTMs contain two separate paths for
the information, one for Long-Term Memory and one for Short-Term Memory. Data
going through the Long-Term path su�ers only slight changes and flows easily to
the output. The Short-Term path is more complex and the data is transformed and
combined sequentially with previous data from the sequence using di�erent weights
and biases.

Figure 1.3: LSTM cell with all individual elements. Notice that there are two sets of
four weights, the ones associated with the input (w, in black) and the ones associated
with the hidden state coming from the previous cell (u, in red).

All these elements are combined in a basic unit called cell. The LSTM cell is built
on three gates that manage the information that is contained and goes in and out
of both memory paths. Inside the gates there are two types of activation functions,
sigmoid and tanh, which determine what is forgotten or transformed, respectively.
Each of these cells has two outputs, one corresponding to the Long-Term Memory
and one corresponding to the Short-Term Memory which are called cell state and
hidden state, respectively. This basic unit is the construction brick for LSTMs and is
shown in Fig.1.3. The equations (1.1) describe the cell functioning:

ft = ‡g(Wf ◊ xt + Uf ◊ ht≠1 + bf )
it = ‡g(Wi ◊ xt + Ui ◊ ht≠1 + bi)
ot = ‡g(Wo ◊ xt + Uo ◊ ht≠1 + bo) (1.1)
ct = ft · ct≠1 + it · ‡c(Wc ◊ xt + Uc ◊ ht≠1 + bc)
ht = ot · ‡h(ct)

6
For weights greater than one, the value will grow radically and vice-versa, for values lower than

1, it will quickly go to zero.
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This set of equations can be followed with the help of Fig.1.3 and contain:

1. The activation functions tanh and sigmoid (‡c and ‡g).

2. The weight matrices for the hidden state and input data (Uf and Wf ).

3. The previous cell and hidden state (ct≠1 and ht≠1).

4. The input data (xt) and the biases for each gate (bj)

Each of these cells will process one time-step coming from the sequence. Hence, if
the data is made of samples, for example, of three time-steps, three basic cells would
be needed together one after the other. As a visual example, a LSTM with one layer
for data of this type (three time-steps) and three neurons is depicted in Fig.1.4. How
each individual cell is connected to the adjacent one is seen in the picture.

Figure 1.4: Example of a three neuron LSTM layer for working with sequence of
three time instants. Highlighted in red is the hidden state vector, which contains as
many hidden states as neurons in the layer.

In terms of functioning, LSTMs are trained as any other NN, however, having
more trainable parameters, the training is heavier in terms of computation and takes
longer.

Echo State Networks

Echo State Networks (ESN) were designed as an alternative RNN architecture
which was looking for a simpler and more e�cient training process for RNNs. The
concept had been discussed in the 90s but it was translated and adapted to the
Machine Learning context in 2002 by Herbert Jaeger[22]. The basic structure consists
in a hidden layer or reservoir of sparsely connected neurons in which the weights and
connectivity scheme is fixed and is randomly assigned when creating the model. Then,
an output layer is added and the connections between the output neurons and the
reservoir are the only parameters that are modified during training. This fact makes
the training processes lighter in terms of computation and possible to be done using
quadratic regressions like Least Squares Fit, Ridge Regression or Lasso Regression,
avoiding the tedious Backpropagation algorithm. Despite looking simple, the dynamic
of the reservoir provides the non-linearity needed to be able to e�ciently learn complex
time series and datasets. A schematic representation of an ESN is shown in Fig.1.5.
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Figure 1.5: ESN structure scheme.

Nowadays, ESNs are found
under the more general con-
cept of Reservoir Comput-
ing, which is a computational
framework derived from RNN.
Such systems map input sig-
nals into a higher dimensional
and non-linear space, the reser-
voir, to then translate the re-
sponses induced in each neu-
ron by the input signal using
a simple readout mechanism

which is trained to map the state of the reservoir to the desired output.
When building an ESN, one can configure how the reservoir is created in terms

of number of neurons, connectivity between them or the inertia that previous states
have. The readout can also be customised regarding the fitting algorithm that uses
or the regularisation parameter in the case of Lasso or Ridge Regression. Some other
aspects of the model can be controlled, like how the input and output weights are
initialised. Together, input, reservoir and readout can be connected in sequence in
the basic configuration, with the data travelling from the input to the reservoir and
then to the readout. However, more complex flows can be designed by the addition
of loops between readout and reservoir as well as connecting more than one readouts
or reservoirs.

While the rest of the models are implemented with the mentioned tools (Tensorflow
and Keras), the reservoirs are going to be built using the Python module ReservoirPy[23],
which provides an easy way of constructing and using this kind of RNN.

1.3 Lorenz System
The Lorenz system is a set of three Ordinary Di�erential Equations (ODEs) which

are deterministic and non-linear. It was originally proposed by Edward Lorenz7, Ellen
Fetter and Margaret Hamilton back in 1963 while studying a simple mathematical
model for atmospheric convection in a two-dimensional layer which was uniformly
heated from below and similarly cooled from above[1]. The system in question is
presented below:

Y
__]

__[

Ẋ = ‡ · (Y ≠ X)
Ẏ = X · (fl ≠ Z) ≠ Y

Ż = X · Y ≠ — · Z

(1.2)

where unknowns X, Y and Z are related with physical magnitudes of the system of
study and so are the dimensionless parameters —, fl and ‡. Their exact meaning and
definitions can be found in the process —which is not straightforward— through
which (1.2) is derived. While the equations look rather simple, a diverse spectrum of
solutions is obtained depending on the values of the parameters, which define the
behaviour of the variables in the di�erent situations. From simpler periodic solutions
to aperiodic or transient periodic and chaotic solutions, Lorenz system is the classical
example of non-linear set of ODEs and it has been widely studied since its discovery

7
Edward Norton Lorenz was an American mathematician and meteorologist who found the basis

of atmospheric weather predictability and computer-aid studies and simulations of atmospheric

physics. He is also known due to his contributions to the theory of modern chaos.
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in 1963 in the frame of non-linearity and chaos theory. Several versions considering
higher dimensions and reformulations of the equations have appeared over the years,
including a 1996 iteration by the own Lorenz and others authors[24][25].

1.3.1 Derivation of the Equations
In order to reach the final set of equations, several steps and assumptions

need to be done. A two-dimensional problem in the atmosphere is considered,
in which thermal convection occurs between two parallel horizontal plates. The
initial description of such a system would be represented by the momentum equation
for viscous fluids in the most general situation:

fl
Dv
Dt

= Fvol ≠ Òp + µ�v + +
3

µ

3 + ⁄
4

grad div(v) (1.3)

where v is the velocity field, fl the density of the fluid, p the pressure and Fvol
the volume forces acting on the system. Moreover, µ and ⁄ are the first and
second coe�cients of viscosity, being µ often referred to as the dynamic viscosity
coe�cient. Assuming the fluid to be incompressible and considering buoyancy as the
unique volume force acting on the system, Navier-Stokes equations appear naturally.
Choosing x and z as the directions of study and expanding the Lagrangian derivative8,
the decomposed Navier-Stokes system of equations:

fl
Dv
Dt

= flg ≠ Òp + µ�v (1.4)

fl
ˆvx

ˆt
+ flv · Òvx = ≠ˆp

ˆx
+ µÒ2vx (1.5)

fl
ˆvz

ˆt
+ flv · Òvz = ≠flg ≠ ˆp

ˆz
+ µÒ2vz (1.6)

From this point, some assumptions and reexpressions will take place. One of them
will be applying the Boussinesq approximation, considering that density variations
are only of relevance in the buoyancy term. The Boussinesq approximation is a
widely known and used assumption applied in several physics studies for fluids since
it provides a simple scheme suitable for a first approach to a variety of problems in
fluid dynamics. However, it is often the first assumption dropped from the theoretical
framework when searching for finer details of the system of study. In addition, it
will be needed to consider the thermal e�ect of the heating in the lower plate of
the layer and for that, a thermal forcing term is introduced. Considering the initial
non convective state (motionless), the temperature variation in the layer will closely
resemble a linear profile, which can be assessed as

T (x, z, t) = Tbot ≠ z

h
”T (1.7)

being z a certain height, h the layer width and ”T = (Ttop ≠ Tbot), with Ttop and Tbot

the values at the top and bottom of the layer respectively. Once convective motions
have appeared, the temperature profile will departure from this linearity and, in fact,
it is this departure what is measured and introduced in the equation through the
function ·(x, z, t):

·(x, z, t) = T (x, z, t) ≠ Tbot + z

h
”T (1.8)

8
Details for

Dv
Dt can be found in Appendix A.
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It can be proved[26] that (1.8) fulfils the equation for thermal di�usion9 giving an
extra equation for the system of study:

ˆ·

ˆt
+ (v · Ò)· = DT · Ò2· (1.9)

The next step is to account for the density variations in the layer, which can
be related with temperature variations through the thermal expansion coe�cient
– = ≠ 1

fl0
ˆfl
ˆT , being fl0 the density value for fl(T ) = fl(T = Tbot). The full function for

the density is:
fl(T ) = fl0 ≠ –fl0

5
≠z

h
”T + ·(x, z, t)

6
(1.10)

Introducing this in the z-component of Navier-Stokes equation (1.4) and assuming
now that the perturbations in density are only of relevance in the buoyancy forces
(Boussinesq approximation), the equation is expressed as:

fl0
ˆvz

ˆt
+ fl0v · Òvz = ≠fl0g ≠ –fl0

z

h
”T ≠ ˆp

ˆz
+ –fl0g· + µÒ2vz (1.11)

Since the first three terms on the right are zero when no convective motion is present
(mind that when no motion is present, no departure from the linear temperature
profile exists), it is possible to introduce an e�ective pressure gradient that also
equals to zero when the fluid is motionless. This e�ective gradient is detailed below:

pÕ = p + fl0gz + –fl0
z2

h

”T

2 ; ˆpÕ

ˆz
= ˆp

ˆz
+ fl0g + –fl0

z

h
”T (1.12)

Making use of it, the 2D system of equations states:

ˆvx

ˆt
+ v · Òvx = ≠ 1

fl0

ˆpÕ

ˆx
+ ‹Ò2vx

ˆvz

ˆt
+ v · Òvz = ≠–g· ≠ 1

fl0

ˆpÕ

ˆz
+ ‹Ò2vz

(1.13)

(1.14)

where the kinematic viscosity or momentum di�usivity ‹ = µ
fl [ J

Kg s] has been
introduced.

1.3.2 Dimensionless Equations
In order to have a better understanding of the equations and how they describe the

system, a dimensionless version is searched for. Through this procedure, important
parameters controlling the behaviour of the system will arise and the dependence
with ”T will be removed. It will also help to develop intuition about the balance
between the di�erent terms in the motion equations. Each variable is scaled by its
range in which it can vary and re-labelled with a dash-variable:

• Time: tÕ = DT
h2 t, where h2

DT
is the

typical time for thermal di�usion to
occur over a distance h.

• Distances: xÕ = x
h ; zÕ = z

h

• Temperature: · Õ = ·
”T

• x-Velocity: vÕ
x = xÕ

tÕ = DT
h vx

• z-Velocity: vÕ
z = zÕ

tÕ = DT
h vz

• Laplacian operator: ÒÕ2 = h2Ò2

9 ˆT
ˆt + (v · Ò)T = DT · Ò2T ; DT = thermal di�usion coe�cient.
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Introducing the new variables and multiplying by the factor h3

‹Dt
:

DT

‹

C
ˆvÕ

x

ˆtÕ + vÕ · ÒÕvÕ
x

D

= ≠ h2

‹DT fl0

ˆpÕ

ˆxÕ + Ò2vÕ
x (1.15)

DT

‹

C
ˆvÕ

z

ˆtÕ + vÕ · ÒÕvÕ
z

D

= ≠–g”Th3

‹DT
· Õ ≠ h2

‹DT fl0

ˆpÕ

ˆzÕ + ÒÕ2vÕ
z (1.16)

At this point it is possible to introduce some dimensionless parameters, in particular,
the Prandtl number and the Rayleigh number.

1. Prandtl number ‡: It is the ratio between kinematic viscosity and the
thermal di�usion coe�cient, which compares the dissipation of energy due to
friction (shear flow) and due to heat (thermal energy flow). Its definition is
‡ = ‹

Dt

2. Rayleigh number R: It is a dimensionless measure of the di�erence in
temperatures (Ttop ≠ Tbot) which resembles a balance between the tendency to
rise due to buoyant force associated with thermal expansion or the tendency
to dissipate energy due to viscosity and thermal di�usion. Its definition is:
R = –gh3”T

‹DT

Moreover, as it had not appeared by itself earlier, a dimensionless pressure is now
introduced and defined through � = pÕh2

‹DT fl0
. Gathering everything together, the final

system of three equations is complete:

1
‡

C
ˆvx

ˆt
+ v · Òvx

D

= ≠ˆ�
ˆx

+ Ò2vx
ˆT

ˆt
+ v · Ò· ≠ vz = Ò2·

1
‡

C
ˆvz

ˆt
+ v · Òvz

D

= ≠R· ≠ ˆ�
ˆz

+ Ò2vz

Dashed notation has been removed for the sake of simplicity.

1.3.3 Reduced Equations
The next step in obtaining the Lorenz system as stated in (1.2) is out of the

scope of this text in terms of complexity and mathematical procedures. As some of
the procedures are commonly used in fluid dynamics, the sequence will be briefly
commented.

First, once the information of the system is contained in the three before-stated
equations, it is compressed into a stream function, �(x, z, t), which is defined as
vx = ≠ˆ�(x,z,t)

ˆz ; vz = ˆ�(x,z,t)
ˆx . This provides a system of equations for · and �.

In second place, a Fourier expansion is applied, rewriting · and � as a series
of sines and cosines. However, it is necessary to reduce the infinite set of ODEs
that appear from the Fourier expansion. For this purpose, a Galerkin Truncation is
applied using boundary conditions for · and �10,11 . This limits the possible sine
and cosine terms in the solutions, giving for · and �:

Y
]

[
·(x, z, t) = T1(t) sin (fiz) cos (ax) ≠ T2(t) sin (2fiz)
�(x, z, t) = �(t) sin (fiz) cos (ax)

10Tbot and Ttop are fixed due to linear profile, hence ·(z = 0, 1) = 0

11
As the fluid is retained within the plates,

ˆvx
ˆz |z=0,1 = 0. Also assuming no vertical motion in

the boundary plates, vz(z = 0, 1) = 0.
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where T1(t) contains the di�erence in temperature between upper and downward
moving parts of the convective cell and T2(t) the deviation from linear behaviour in
the centre of the convective cell in terms of z. The parameter a is a coe�cient of the
Fourier expansion to be determined.

After some manipulations and trigonometric operations, a final change in variable
is needed, introducing the X, Y and Z appearing in the original system (1.2):

X(t) = afi

(fi2 + a2)
Ô

2
�(t) ; Y (t) = rfiÔ

2
�(t) ; Z(t) = rfiT2(t) (1.17)

where r is the reduced Rayleigh number r = a2

(fi2+a2)3 R. Introducing a new parameter
labelled — = 4fi2

(a2+fi2) and using fl instead of r, the expression in (1.2) is reached:
Y
__]

__[

Ẋ = ‡ · (Y ≠ X)
Ẏ = X · (fl ≠ Z) ≠ Y

Ż = X · Y ≠ — · Z

From now on, this system of ODEs will be referred to as Lorenz63, in agreement with
the bibliography that identifies it with respect to other versions, such as Lorenz96.

1.3.4 Spectrum of Solutions for Lorenz63 System
The main advantage of the system of equations (1.2) being dimensionless is that

its behaviour can be described almost entirely by the values of the three parameters:
‡, fl and —. Depending on those, the solutions for the system will be completely
di�erent, comprising from chaotic and transient chaotic solutions, to simpler cases
where trajectories converge to a single point when time evolves. A thorough study
of this spectrum of possible solutions has been and it is still being done [27][28][29].
However, to understand the di�erent possibilities that arise from the equations, some
mathematical concepts are needed such as the definition of attractors or bifurcations.
Some of them are presented in the Appendix B. As an example, the solutions for
four di�erent sets (‡, fl, —) are presented in Fig.1.6.

Figure 1.6: Phase Space for 4 di�erent sets of the parameters (‡, fl, —)
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Similar graphics to those in Fig.1.6 are often found in the bibliography showing
the phase space of solutions, constructed by representing the values of the three
coordinates [X(t), Y (t), Z(t)] in a 3D plot. The trajectories in this space consist of
the sequence of states S = {X1, X2, X3, ...} ; Xi = [X(ti), Y (ti), Z(ti)] explored by
the system. A globally stable solution is shown in the upper left corner, a case with
a single attractor in the upper right and two chaotic solutions with two attractors
each can be seen in the lower line of Fig.1.6.

Over the years, two particular cases that provide chaotic solutions have been the
object of study. Lorenz originally focused on (‡ = 10.0, fl = 28.0, — = 8/3), shown in
Fig.1.6, but a large number of papers and publications related with the dynamics of
the Lorenz system have worked with the set (‡ = 16.0, fl = 45.92, — = 4.0), which
provides a similar solution regarding the number of attractors and topology but
di�erent amplitudes12. However, the entirety of this project is based on the Lorenz63
system with (‡ = 10.0, fl = 28.0, — = 8/3). A detailed look over the three variables’
time-series, X(t), Y (t) and Z(t) for this set is framed in Fig.1.7:

Figure 1.7: Time-series for the three variables corresponding to (‡ = 10.0, fl =
28.0, — = 8/3) within a 70 secs. integration.

12
Example shown in Appendix C
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2. Methodology

La presente sección aborda la metodología del proyecto, describiendo con
detalle los diferentes elementos necesarios para el estudio. En primer lugar, se
presenta el conjunto de datos empleados en el entrenamiento. Seguidamente,
se aporta una descripción completa de las arquitecturas usadas para cada
tipo de Red Neuronal y una explicación del proceso de entrenamiento y ajuste
de las mismas. Para finalizar, se presentan, teórica y computacionalmente,
las métricas empleadas para la evaluación y comparación de los modelos.

Resumen

2.1 Training Dataset
The dataset used for training the di�erent models has been obtained by integration

of the equations (1.2) using a Runge-Kutta1 fourth order method improved with
Richardson’s extrapolation method[30][31]. A time step of 0.01 was chosen and fifty
one individual integrations of 104 iterations, departing each from a di�erent initial
point, were performed. In total, the dataset is composed of 51 · 104 samples which
are then split into train, test and validation datasets covering 88%, 2% and 10%
respectively. The test set is of such small size because it is made just by taking
the last individual integration of 104 samples to be able to test the model with a
complete and independent run for certain initial conditions.

In terms of statistics, each individual integration could not be considered a set of
independent-identically distributed (IID) samples since each value has been obtained
from the previous one through an integration method. Indeed, they are more closely
identified with Markov sequences in which it can be assumed that each value depends
only on the state in the previous time instant. However, while both cases are taken
as assumptions in order to simplify the mathematical treatment underlying the
computation of statistical analysis techniques like averages or probabilities, they are
not often the real distribution of the data.

Once the data has been obtained, it is scaled between [0,1] or [-1,1] depending
on the model and its activation function. Scaling is compulsory before feeding the
models since Neural Networks work weighting the data run through it with weights
w œ (0, 1).

2.1.1 Training Process
With the dataset, models are trained carefully managing the interfaces between

di�erent integrations, since they are packages of data completely independent of
each other. The idea behind the use of such a dataset is to provide the models with
information from a variety of cases. This way, the generalisation skills of the NN are
boosted, trying to avoid having to re-train the models with new information. The
only exception was made with the novel ESN-RC model, since the implementation
with ReservoirPy had some limitations in respect of the control of the training

1
The integration rutine was programmed by the author in earlier years of the bachelor.
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procedure. Despite trying di�erent possibilities, such as 50 individual training
processes and averaging the tuned weights, the model was only trained with one
integration randomly selected from the set of 50. This opened the opportunity to
push the abilities of this type of NN to the extreme, since it will be compared with
the rest of the models having seen much less data than the rest.

2.2 Models

2.2.1 Feed-Forward Neural Networks
Illustrative baseline: one hidden layer Neural Netwrok

The basic configuration for a Neural Network is a FeedForward Neural Network
in which the data is run through the model sequentially and there are no loops inside.
The input data is passed from one layer to the next one until it reaches the output
layer. It corresponds with the basic concept of the multi-layer perceptron mentioned
in the introduction and exemplified in Fig.1.2. The dimension of the di�erent layers
depends directly on the data and the problem. The number of units in the input
layer often coincides with the shape of the input data. Similarly, the number of
neurons in the output layer is defined by the desired output of the model and it
could be, for example, just one if the model performs a binary prediction (0 or 1).
For the Lorenz system, each input data consists of a point in 3D phase space and
the output should be the evolved state, another point in 3D space. Hence, input and
output layers for the FFNN have 3 neurons each, a dimension that will be kept fixed.

As there are hyperparameters that can be tweaked (number of hidden layers,
number of neurons, activation functions,...), multiple architectures could be chosen,
giving di�erent performances and results. Despite existing specific algorithms to tune
this set of hyperparameters, this process has been implemented manually with loops
in a way called “gridsearch”. It is important to mention that the training of a neural
network has a random component which can lead to worse or better results. In order
to avoid or reduce that, the models are trained three times for each configuration and
the best result is chosen. While this increases the running time of the programme, it
provides better results. To illustrate the process, a simple network with one hidden
layer has been trained using di�erent number of neurons in the hidden layer (since
input and output have fixed size) and di�erent activation functions: Tanh, Sigmoid,
ELU and ReLu. The results of such training are presented in Fig.2.1.

Figure 2.1: Gridsearch results for the 1 hidden layer FFNN using four di�erent
activation functions for a total of 300 epochs with each architecture.

18



There, the training error, measured over the validation data and using Root Mean
Squared Error, is plotted versus the number of neurons in the hidden layer.

From Fig.2.1 it can already be seen how the training error measured through a
RMSE, no longer decreases significantly after increasing the number of neurons to a
certain number. In the blue box, what could be a good trade-o� between complexity
and performance has been highlighted. Nevertheless, this simple model has proved
to be nowhere near to learn the chaotic system, though not being considered as a
case of study.

Two hidden layer Neural Network

Architecture

A two hidden layer FeedForward neural network is considered as one of the models
to study. Increasing complexity from the previous example, an architecture with
input layer, two hidden layers and output layers is put to test. To decide the final
architecture, a gridsearch process is also conducted. The results of such a search
are plotted using the measured training error with RMSE. As there are now two
hidden layers, adding the RMSE creates the 3D plots in Fig.2.2. There, a general
tendency to improve when the number of neurons in both hidden layers increases
can be seen. This means that the deeper the model, the better the result, given
that deeper is a common term to refer to a high number of neurons in hidden layers.
It is worth mentioning the irregular behaviour of the ReLu and Sigmoid function.
While providing the lowest errors, as presented in Table 2.1, they also randomly
give really bad results. This fact is something that needs to be put into perspective
when choosing the activation functions, since smoother behaviours, like the one
shown by ELU, could ensure better and more consistent results. The best and worst
configurations for each activation function are presented in Table 2.1.

Figure 2.2: Gridsearch results for the 2 hidden layer FFNN using four di�erent
activation functions for a total of 300 epochs with each architecture.
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Layer 1 Layer 2 RMSE Layer 1 Layer 2 RMSE
Tanh 8 16 0.003466 2 4 0.027465
ELU 32 128 0.002198 2 4 0.034180
ReLu 16 32 0.000757 2 6 0.174188

Sigmoid 64 128 0.001244 2 4 0.014391

Table 2.1: Best and worst configurations obtained from the 2 hidden layer FFNN.
ReLu shows lowest RMSE for 16 and 32 neurons respectively.

In the light of these results and the di�erence in performance between ReLu and
the other functions, the architecture that gave the best result is the one chosen: 16
and 32 neurons in the 1st and 2nd hidden layer, respectively, and ReLu as activation
function.

2.2.2 Long-Short Term Memory Neural Networks
Architecture

Next model considered in the study belongs to the Recurrent Neural Networks
(RNNs) and is the case of the LSTMs. As it happens with any neural network
and was exemplified with the FFNN, almost infinite configurations exist for the
set of hyperparameters. However, the LSTM is chosen to have one hidden layer
with the LSTM structure (presented previously in Fig.1.4) and an input and output
dense layers with the size fixed by the number of variables. The data re-structure
step is crucial for LSTMs since it establishes how many time steps are going to
be used to predict and how many time steps into the future are going to be pre-
dicted. The first number is called lookback and the second, lookforward. This
reshaping is often done through a windowing process in which sub samples of the
time series are extracted according to the lookback and lookforward parameters.

Figure 2.3: Windowing process exam-
ple.

Such procedure is illustrated in Fig.2.3. The
new data structure introduces two other
numbers whose ideal values need to be
found. Therefore, the gridsearch for this
kind of model will explore di�erent values
for the dimension of the hidden layers as
well as di�erent lookbacks, while the look-
forward has been fixed to one for the sim-
ulation purposes of the model. Slightly dif-
ferent types of LSTM models are also ex-
plored.

Vanilla LSTM

Vanilla in the Machine Learning jargon stands for “simple” or “soft” and in the
case of LSTMs it refers to a model with the architecture and functioning described
above, a single LSTM layer that retains the state of the long term memory during
each sample, this is, during the lookback time steps. When varying the number of
units in the LSTM layer, the lookback and the activation function in the output layer,
the gridsearch outputs the results depicted in Fig.2.4. There, increasing the number
of neurons shows to improve the training result, although some good configurations
are also found between those with lower dimension. In concordance with Fig.2.2,
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ReLu and Sigmoid present irregularities and the di�erence between the best ReLu
architecture and the second best, is smaller than in the previous case. While the
number of neurons is not determinant, in Table 2.2 can be seen how, using 25 time
steps as input, provides the best results in all cases.

Figure 2.4: Gridsearch results for the LSTM model using four activation functions
in the output layer.

Best and worst results are gathered in Table.2.2:

Lookforward Units RMSE Lookforward Units RMSE
Tanh 25 50 0.000487 2 5 0.004932
ELU 25 100 0.000355 2 5 0.004433
ReLu 25 10 0.000266 5 40 0.529048

Sigmoid 25 75 0.000504 2 100 0.001401

Table 2.2: Best and worst configurations obtained from the LSTM. ReLu shows
lowest RMSE for lookback = 20 and 10 units.

From the gridsearch, the architecture chosen for future training and simulation
should be (ReLu, lookback = 25, units = 10). However, the di�erence in perfor-
mance with ELU is not drastically bigger and the latter is chosen to ensure regular
results and smoother behaviour, making benefit of using a higher number of neurons
in the LSTM layer. The final architecture will use input data with lookback = 25,
100 units in the LSTM layer and ELU activation function in the output layer (ELU,
lookback = 25, units = 100).
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Stateful LSTM

In contrast to what is commonly believed, “Long-Term Memory” in LSTM is
not that “long-term”. Indeed, the number of time steps through which information
is retained in a LSTM unit is defined by lookback and after each sample of shape
(lookback, variables) is processed, the hidden and cell states of the unit are reset. This
means that it does not matter if the whole dataset is time related —as it is the case
here for each 104 samples that conform an integration—, the LSTM will only store
information from the data in each individual sample created during the windowing
process. Despite this sounding useless or at least not a big improvement from a
normal FFNN, this configuration is the most common one in LSTM applications
and its referred to as a stateless model. In a situation in which retaining information
for longer subsets of data could be useful, there is an option of going for a stateful
model[32]. However, while making possible to explode auto-correlation features in a
time series data, it also imposes some restrictions during training and simulation in
terms of data splitting and processing with Keras. If implemented right, the LSTM
will store information for a whole batch, meaning that the unit states will not be
reset until a complete batch of n samples has run through the network. This new
operational scheme seemed suitable for the problem that is being studied and the
same architecture that was chosen previously is checked to be compatible. As it is
the case, the same architecture used for the Vanilla LSTM, is now implemented but
in stateful mode.

Predicting Individual Variables

A di�erent approach from Vanilla LSTM structure is also explored and imple-
mented as an extension of the use of LSTMs. In all preceding cases, only one model
was being trained and used to predict the value of the three variables X(t), Y (T )
and Z(t). Another possible framework could be to use three identical models to
predict the variables individually while taking the same input data.

In order to put this to practice, the architecture needs to be adjusted —since
the output is now one variable instead of three— by changing the dimension of the
output layer from three to one. Next, these three identical models are trained with
the same data as earlier models. In addition, the prediction and simulation scheme
also needs corrections because it is necessary to combine the output of the three
models into a 3D vector containing the three variables predicted in order to feed the
models again. The performance of this structure is also tested.

2.2.3 Echo State Network
Similarly to other NNs, ESNs contain hyperparameters which optimum values

need to be found. Some of them and their common baseline values are shown in Table
2.3. Detailed information and examples of the impact of each of the hyperparameters
can be found in the ReservoirPy documentation and GitHub page[33][34].

Reservoir Hyperparamters
Units = 2000 Connectivity = 0.3
Leak Rate = 0.25 Input Connectivity = 0.3
Spectral Radius = 1.0 Regularisation = 10≠8

Activation Funct. = Tanh Input Scaling = 1.0

Table 2.3: Basic ESN Reservoir hyperparameters and baseline values.
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The tuning process of the model can be done using a similar gridsearch scheme to the
ones described previously. However, for the sake of simplicity, the basic configuration
in Table 2.3 is chosen, together with a readout based on the Ridge Regression with a
regularisation parameter of 10≠8.

2.3 Key Performance Indicators (KPIs)

2.3.1 Conventional Regression KPIs
Whenever a regression problem is faced in Machine Learning, the perfomance’s

metrics or Key Performance Indicators (KPIs) are usually well known and defined:
Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), Mean and Weighted
Mean Absolute Percentage Error (MAPE and WMAPE), the Pearson Coe�cient
(R) or even a custom made metric that follows the lines of the above-mentioned
ones[35][36][37]. While some of them are not applicable to all regression problems,
RMSE, MAE, MAPE and WMAPE are flexible and should be suitable in general,
providing an indicator of the di�erences between the model output data and the true
data. This can be checked in the RMSE definition (2.1), where ytrue is the true data
and ypred the data predicted by the model, with N number of samples conforming
the data.

Nonetheless, the Lorenz system is chaotic and the roots of this behaviour lie
in the sensitivity to initial conditions, which can be translated into responsive-
ness to small variations in the trajectories. Previously mentioned metrics could
be useful for short-term predictions. However, for long-term simulations, as the
model will not predict the exact same values contained in the dataset2, the dif-
ferences between true and predicted data will rapidly end in two diverging tra-
jectories. The issue is pictured in Fig.2.5. In fact, this divergence is exponential
in time3 and it is bounded, in the case of an attractor, by the size of its basin.

Figure 2.5: Divergence of initially coin-
cident trajectories where d represents
the distance between the ti and tÕ

i data.

Having said that the classic metrics mea-
sure this di�erences, their values will quickly
increase not providing a real image of the
performance of the model.

RMSE =
ÛqN≠1

i=0 (ypred,i ≠ ytrue,i)2

N
(2.1)

It is important to mention that due to this
fast divergence, the goal of the model would
not be to emulate the Lorenz dataset for long-
time ranges, but to capture the structure
of the phase space and reproduce the two-
attractor arrangement. Despite this, short
range simulations will do be assessed to check

how well the model emulates the system starting from a common initial point. Such
a task will be done by attending to the time horizon until which the predicted data is
significantly close to the true time-series. Exponential divergence of the trajectories
leads to one major problem regarding metrics: How will the long-term or overall
performance of the di�erent models be measured and compared?

2
It does not matter how good the model is, there will always be di�erences due to computational

precision.
3
The exponent ⁄ will be studied and explained in the next section.
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2.3.2 Long-Term Behaviour: Invariant Characteristics for
Classifying Systems

Going back to the root of the problem, the sensitivity to initial conditions, it is
necessary to find some kind of measure that eludes this responsiveness. Here, two
features are introduced that come to be invariant under the evolution of the system
and therefore are independent of changes in the initial conditions, as well as being
independent on the coordinate system in which the trajectories are observed. It is
precisely the lack of sensitivity what is remarkable about these two concepts, Fractal
Dimensions and Lyapunov Exponents.

Fractal Dimensions: Correlation Dimension(D2)

The geometry that an attractor shows in its phase space and its dimensionality
are strongly related with the nature of the dynamic behaviour of the system. What
is more, this dimensionality is important in defining the possible dynamic behaviours.
What departures from the general intuition about the idea of dimension is that there
are some mathematical objects which have non-integer dimensionalities and those
are the ones who play an important role in the dynamics of chaotic systems. These
geometric objects are called fractals[38] and the attractors that show non-integer
dimensionalities are referred to as strange attractors4.

The term fractal dimensions refers to a host of dimensionality measures each of
them with di�erent, but sometimes close, definitions. The Correlation Dimension
is one of the most used definitions, mainly because it is easy to compute and it gives
better results even if there is a small amount of data available. Firstly, the fraction
of observed points y(k) within a sphere of radius r centred in a certain phase space
point x is considered. This number is given by

n(x, r) = 1
N

Nÿ

k=1
◊(r ≠ |y(k) ≠ x|) (2.2)

where ◊(a) is the Heavyside function. Secondly, focus on the moment (q ≠ 1) of the
function n(x, r) and use the density of points in phase space fl(x) —which is usually
inhomogeneous for strange attractors— to evaluate the moment selected. Being then
f(x) = n(x, r)(q≠1) the object to evaluate, the function C(q, r) of two variables is
defined by the mean of f(x) over the attractor using the density as weighting factor:

C(q, r) =
⁄

ddxfl(x)n(x, r)(q≠1) (2.3)

The idea of using this kind of sums for studying strange attractors is due to Grassberg
and Procaccia[39], who discussed the case q = 2 introducing a concept of dimension
based on the behaviour of the correlation integral (2.3), from where it inherits its
name (Correlation Dimension, D2). The Grassberg-Procaccia algorithm[39] takes
advantage of the linear behaviour when r is small, range in which fulfils a power law:

C(q, r) = r(q≠1)Dq ≠æ rD2 ; q = 2 (2.4)

D2 can then be extracted by adjusting carefully the logarithm of the correlation sum
versus the logarithmic variation of r, both computed from the phase space trajectories.
This can be done using observational data, in this case, time-series data from the
single variable X(t) in the Lorenz system but first, it requires a reconstruction of the
phase space. To do so, a technique called Delay-Coordinate Embedding “re-inflates”

4
This is an alternative definition for strange attractors di�erent from the one in the Appendix B.
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from 1D to n·D the phase space using a time-delayed set of vectors and an embedding
dimension n = dE. While being extremely interesting and not di�cult to follow,
the detail of the process is out of the scope of this work but is worth mentioning
that parameters of importance in this reconstruction such as dE or the lag applied
to create the delayed vectors are of relevance in the Grassberg-Procaccia algorithm
and, consequently, in the resulting value of D2. Further details and a complete
explanation of this reconstruction can be found in[40][41].

D2 Computation

For the purpose of calculating the Correlation Dimension from time-series data
simulated by the models, the function corrDim[] from MatLab was used due to its
better performance. An example of the logarithmic representation and straight line
fit required to obtain the dimension is presented in Fig.2.6:

Figure 2.6: Correlation Dimension calculation via least squares fit to the straight
part of the data. 500 values of the Corr. Integrals were taken using r œ [0.002, 1.600].

Lyapunov Exponents(⁄)

Lyapunov Exponents measure how small perturbations to an orbit in the attractor
evolve. Considering a short trajectory, y, and a small perturbation, ”, the linearised
dynamics provide the equation (2.5) for the time evolution of the perturbations:

ẏ + ”̇ = F(y + ”) = F(y) + J(y) · ” + ...

”̇ ¥ J(y) · ” + ... (2.5)

The system shows exponential time divergence ruled by the eigenvalues of the
Jacobian matrix J(y). If a small trajectory segment is considered, the eigenvalues are
known as local Lyapunov Exponents and when they are averaged over the whole
attractor, they converge to the Global Lyapunov Exponents (⁄) of the system.
The whole set of eigenvalues is usually referred to as the spectrum of Lyapunov
Exponents {⁄1, ⁄2, ..., ⁄n} and there should be one per number of characteristic
variables describing the system. In order to obtain the spectrum it is necessary
to find a way of computing the Jacobian matrix and their eigenvalues with good
accuracy, which is not an easy task. The mutiplicative ergodic theorem of Osledet[42]
provides the theoretical background for the computation of the Jacobian to be correct,
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whereas the evaluation of the eigenvalues lies on the ideas presented by Eckmann et al.
[43]. There were some previous works on the calculation of the exponents from series
of data by Wolf et al. [44], but the one of interest in this dissertation is the algorithm
published by Rosenstein et al. in 1993 [45]. In such article, Rosenstein presents
an alternative calculation which simplifies the process if only the largest Lyapunov
Exponent is needed, which is usually enough to show whether the system behaves or
not chaotically. The solution bypasses the complex management of the trajectories’
tangent vectors which led to the Jacobian matrix in the other algorithms. Those
required continuous re-normalisation to ensure that the correct directions (Lyapunov
directions) were being followed, increasing the complexity and computational costs.
Instead, Rosenstein relied on the Oseledet theorem to justify the use of an arbitrary
direction and stated that the largest Lyapunov Exponent can be obtained from the
relation (2.6):

d(t) = C · e⁄1t (2.6)

where d(t) is the average distance at time t and C is a normalisation constant related
to the initial separation of the trajectories followed. A more visual idea of the concept
can be given if one imagines a volume in phase space at a certain moment and tracks
how it shrinks or expands during time. In that situation, the Lyapunov Exponents
would define the rate of stretching or shrinkage (depending on the sign of ⁄i) of line
segments, areas and various dimensional subvolumes in phase space. It is not only
more visual but it is also the approach behind some of the calculation methods that
provide the full spectrum of Lyapunov Exponents. It also presents visual proof of all
three exponents for the system. The case for Lorenz63 system (⁄1 = 0.906, ⁄2 = 0,
⁄3 = ≠14.572)[46][47] has been exemplified in Fig.2.7. There, an initial spherical
volume in phase space comprised by the green dots, has evolved freely for 7 · 10≠2

seconds, giving the resultant pink set of points.

Figure 2.7: Evolution and consequent deformation (pink points) of an initial spherical
volume in phase space (green points). There is an expanding direction (⁄1), a second
direction in which it shrinks (⁄3) and a third one with respect to which responses
statically (⁄2).

26



Di�erent plane views are added to appreciate the di�erent deformation depending
on the direction. For example, along the Z direction there is little contraction or
expansion and, consequently, the Lyapunov direction corresponding to ⁄2 = 0 can be
identified with it. More radical shapes are adopted along the XY directions. Notice
that the Lyapunov directions do not strictly coincide with X, Y and Z directions.
However, there is a great contraction in a direction close to X, corresponding to
⁄3 < 0 and an expansion in a direction forming an angle with respect to Y , related
with ⁄1 > 0.

Largest Lyapunov Exponent Computation

Having mentioned the main algorithms for Lyapunov Exponents calculation,
plenty of iterations and modifications to them have appeared over the years. Working
with the Rosenstein algorithm, since it is the most computationally e�cient for the
needs of this project, several Python implementations were tried before deciding
to use a custom implementation of the original algorithm designed by R.Hegger,
H.Kantz and T.Schreiber. Such code was developed as part of their software project
for Time Series Data Analysis(TISEAN)[48] and it was written in C and Fortran but
adapted to Python for this work. Exponents are obtained starting from (2.6) and
assuming that the jth pair of nearest neighbours should diverge at a rate close to

dj(i) = Cj · e⁄1(i�t) (2.7)

were Cj is initial separation. By taking logarithms on both sides and considering
several values of j over a trajectory, the Lyapunov Exponent is obtained by a
least-squares fit to the average line:

ln dj(i) ¥ ln Cj + ⁄1(i�t) ≠æ y(i) = 1
�t

Èln dj(i)Í (2.8)

The execution of the algorithm requires again the reconstruction of the phase
space using the Delay-Embedding technique mentioned previously, since the only
data available is a 1D time-series. It is worth mentioning that all algorithms and
implementations found for computing Lyapunov Exponents were highly sensitive
to small changes in the parameters. Modifying the number of steps during which
the neighbour trajectories are tracked or selecting a di�erent lag for the delayed
reconstruction had a huge impact on the output. It was decided then to tune the
algorithm with the aim of providing the best possible results with true data (Runge-
Kutta) and then, without changing the parameters, apply it to the data simulated
by the models. This manual tuning was done individually for the 50 simulations
performed with the trained models.

2.3.3 Recurrence Time
Recurrence of states of a dynamical system have been important in the study

of statistical mechanics as well as in the study of chaos. The concept of recurrence
makes reference to how often a region in phase-space is visited, and the calculation of
this time frequency is rather simple compared to the previous concepts introduced in
this section. In spite of this concept not being an invariant of the system as it happens
with D2 and ⁄, it is helpful when studying long-term behaviour of chaotic systems
and will be also useful when comparing such behaviour between the models[49].

The definition of the recurrence time considers a neighbourhood of radius fl
centred in a point of the attractor, X0, and the recurrence to this neighbourhood.
This is, all the points X within a distance d Æ fl to X0. Then, the attention is
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focused on a trajectory with a certain length and denote by M the subset of points
from the trajectory that belong to the neighbourhood, M = {Xt1 , Xt2 , Xt3 , ...}.
With such set, the recurrence time is T (i) = ti+1 ≠ ti, i = 1, 2, ... How-
ever, it could happen that as fl increases, for trajectories with small time-step
(·), several consecutive points of the trajectory lay inside the neighbourhood,
giving T (i) = · . For those kind of points, the measured recurrence time is
not correct since it is not the time between two di�erent visits to the neigh-
bourhood. The former are called Poincare points and the latter Soujorn points,
which wrongly a�ect statistics for T and ought to be removed during computation.

Figure 2.8: Recurrence point dia-
gram.

Having the set of T (i), the scaling law for the
mean values resembles a power law:

T (fl) = fl≠“ (2.9)

where the exponent is negative, since an in-
crease in fl diminish the re-visit time because
the neighbourhood covers a larger part of the
phase space. Here gamma can be related with
some of the fractal dimension definitions since,
as it was mentioned before, those dimensional-
ities determine the dynamical behaviour of the
chaotic system, consequently having influence
on the recurrence time to a certain zone of the
attractor. It is important to consider that the
recurrence time may not (and it will usually

not) be the same throughout the whole phase space, having strong dependence
with X0. This coincides with the statement of having an inhomogeneous point
density mentioned in (2.3). This fact should also be considered when calculating the
recurrence time.

Recurrence Time Computation

The Python algorithm designed to implement the recurrence time calculation
evaluates the distances between the points in the phase space and the randomly
chosen X0

5 for a certain value of fl. Those distances are then checked to belong or
not to the neighbourhood and for those which fulfil the condition, revisit time is
calculated using the location of those points in the time-series that comprises the
trajectory. At this point, Soujorn samples are removed and the whole process is
repeated for the next value of fl in the range selected. The main parameters in the
algorithm are the fl range, the number of values in that range, which defines the
number of points used for the curve, and the time step (·) of the time-series, which
scales the recurrence times.
To obtain the value of “, logarithms are taken on both sides of (2.9) giving:

log T (fl) = ≠“ ln fl (2.10)

Using the least squares method, a straight line is fitted to the points and the slope is
extracted. In order to tackle the above-mentioned dependence on the X0 point, a
hundred di�erent points are taken and the results averaged. The fl range selected is
fl œ (10≠3, 1)

5
As the density of points is not homogeneous, the X0 selection is not completely free but

constrained to a certain zone of the attractor. Inside that zone its location is truly random.
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2.3.4 Evaluating Models’ Performance
Armed with the tools described in previous sections, the process followed to

compare the output and results from di�erent NN models is now described:

1. A single trajectory with a starting point (X0, Y0, Z0) is integrated using Runge-
Kutta method with time step 0.01. With the same starting point, the di�erent
models are left free to simulate their own trajectories. The time-series that
arise from the Runge-Kutta method and the models are the ones that will be
analysed.

2. The time-series data will be plotted in a short-range scale to compare the
prediction horizon and when, the di�erent models, start to diverge in comparison
with the Runge-Kutta data. Figures like Fig.1.7 will be presented.

3. Then, the overall behaviour of the models will be assessed by computing
the three concepts described: Correlation Dimension (D2), Largest Lyapunov
Exponent (⁄) and Recurrence Time (“). As they are intrinsic characteristics
of the system, which itself is defined by the equations (1.2), had the models
really captured and learned the dynamics, values should be close to those
obtained from Runge-Kutta simulations and also reported in the correspondent
bibliography.

4. In an attempt of providing some robustness to the results, fifty di�erent
simulations beginning in random initial points are run and their performance
is measured. Final results represent the average of those runs.
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3. Results and Discussion

En esta sección se presentan los resultados correspondientes a la aplicación
de los modelos descritos en la Sección 2.2 construidos y entrenados siguiendo
el esquema reflejado en la Secciones 2.2.1, 2.2.2 y 2.2.3. Dichos resultados se
evalúan atendiendo a dos aspectos diferentes: las prediciones de los modelos
a corto plazo y la eficacia al aprender y reproducir la dinámica general del
sistema Lorenz63.

Resumen

After having trained the models with the architectures and hyperparameters
described in the previous section, their performance is tested by performing several
di�erent simulations. Given a random initial point [X,Y ,Z] as input, each model
freely simulates for 104 time-steps of 0.01 secs. A simulation is understood as the
process in which the model outputs are repeatedly fed as input for the next prediction.
The main implication of such a procedure is that the errors made by the model in
each prediction will accumulate iteration after iteration. This situation tries to test
the NN in the framework in which they would work when substituting the original
system of equations (1.2). It is important to remember that the main goal of the NN
in this project is to completely replace the equations and correspondent numerical
integration of them in the Lorenz attractor problem. In total, 50 distinct initial
points randomly selected within a range where used, providing 50 time-series of the
before-mentioned length for all three variables. An example of how this time-series
look was introduced in Fig.1.7 and the X(t) variable is recovered again in Fig.3.1.

Figure 3.1: Time-series data example for X(t).

To have a glance of how the di�erent models behave in a simulation and as
a prelude of the detailed upcoming results, the 3D phase space is considered in
Fig.3.2, providing a visual comparison between the shape of the di�erent attractors
reproduced by the models and the Runge-Kutta integration.

For further analysis, the focus is put on two di�erent aspects of the simulations.
The first one attends to the ability of the model to perform accurate short-term
predictions given a random initial point in phase space. In this situation, models are
compared straightaway and their prediction horizons in time are assessed. The second
one will study the overall skills of the di�erent NN in reproducing the dynamics
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of the Lorenz system, so as to try to answer if the Networks truly captured and
e�ectively learnt the system dynamics.

(a) (b)

Figure 3.2: Visual comparison of the simulations performed by the di�erent models in
3D phase space with a common initial point (X = 1.5, Y = 1.5, Z = 7.5). (a) Phase
space of Runge-Kutta and LSTMs simulations. (b) Phase space ofRunge-Kutta,
Vanilla LSTM, ESN-RC and FFNN simulations.

3.1 Short-Term Simulations
Some of the time-series arising from the simulations made by the models are now

presented. In the horizontal axis, the time is represented in seconds (s), whereas
the value of the variable X(t), Y (t), or Z(t), is plotted in the vertical axis. The
models are arranged in di�erent groups for the sake of clearness and to avoid
overloading the graphics. For the upcoming results, the simulation with the initial
point (X = 1.5, Y = 1.5, Z = 7.5) is chosen.

In Fig.3.3 the time-series for the three variables are plotted, showing the simulated
series by the three LSTM variations compared with the Runge-Kutta integration.
The vertical lines represent the prediction horizon, time until which the predictions
are considered accurate. It is worth mentioning that the results are consistent for the
three variables, something a priori not evident since each of them behaves di�erently
in terms of amplitude and frequency.

A quick look at the prediction horizons highlights the Vanilla LSTM as the
best performing model in this simulation among the ones depicted. In Fig.3.4, the
ESN-RC model is shown against the Vanilla LSTM and Runge-Kutta. The results
achieved by the ESN-RC, bearing in mind the particular training dataset mentioned
in 2.1.1, are of relevance. It outperforms the best LSTM in all three variables, almost
doubling its prediction horizon. The orange zone in Fig.3.4 corresponds to a series
of 100 predictions, corresponding to 1 sec., used by the ESN-RC to warmup. This is
needed to correctly initialise the reservoir state with respect to the input data and it
is conceived under the assumption that after the warmup, the state of the reservoir
somehow resembles a representative sample of the data.
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Figure 3.3: 12 secs. X(t), Y (t) and Z(t) time-series from Runge-Kutta and LSTMs
simulation.

Figure 3.4: 12 secs. X(t), Y (t) and Z(t) time-series from Runge-Kutta, Vanilla
LSTM and ESN-RC simulation. The warmup stage is marked in orange.

More detailed comparisons are done focusing on the X(t) time-series. In Fig.3.5, the
simulation performed by the FFNN is also depicted. It can be seen how, despite
the similar beginning, the FFNN behaves completely di�erent to the Runge-Kutta
simulation. This anomaly could be expected and is coherent with the shape of the
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phase space shown in Fig.3.2b, where only one attractor was reproduced, causing all
trajectories to converge to a single point.

Figure 3.5: 12 secs. X(t) time-series from Runge-Kutta, Vanilla LSTM, ESN-RC
and FFNN simulation. Failure of the FFNN model is easy to notice in red.

Given the performance of the di�erent LSTMs and FFNN1, the attention from now
on will be set on the Vanilla LSTM and ESN-RC models in order to test them in
diverse simulation cases. While the Individual Variables LSTM also provides some
good results, in particular for simulations of small amplitude and periodic behaviour,
it is always surpassed by the Vanilla version, hence the decision.

In Fig.3.6, another simulation, in this case with the initial point (X = 13.5, Y =
16.0, Z = 6.0), is represented . The trajectory starts with small amplitude dynamics,
almost resembling a periodical signal, however, it gradually increases in amplitude
and suddenly changes in behaviour. In the phase space, the first section illustrates
a repeated motion around one of the attractors, just before jumping to the other
attractor and starting to alternate between both. These jumps are identified by the
high peaks and deep valleys in the time-series after the more regular first 25 secs.
In spite of the di�culty that these abrupt deviations could imply for a numerical
method, the ESN-RC is able, not only to extend the prediction horizon until 26 secs.,
but also to cope with the strong fluctuation (not without sacrificing some accuracy).
The Vanilla LSTM was also able to correctly simulate for a larger time but not to
do the latter as shown in the augmented frame in Fig.3.6. As mentioned before,
the small amplitude and regular pattern at the beginning of the time-series help to
predict further in time, since previous examples had prediction horizons below the
10 secs. for the LSTM and below 12 secs. for the ESN-RC.

Figure 3.6: 30 secs. X(t) time-series from Runge-Kutta, Vanilla LSTM and ESN-RC
1
Their lack of skills was tested in di�erent simulation, some of them shown in Appendix C.2
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Once again, it is important to recall on the prediction skills of the ESN-RC. It can not
be forgotten that the system is highly chaotic, with quickly diverging trajectories and,
in such a situation, the model is able to predict more than 10 secs. and even 20 secs.
in some of the cases presented. The 20 secs. stamp implies 2000 calculations in which
numerical di�erences are accumulated and can quickly separate the Runge-Kutta
simulation from the NN simulation. Despite that, the ESN-RC manages to produce
such first-rate results. Moreover, the structure and training dataset of the ESN-RC
makes the feat more awe-inspiring if possible.

3.2 Dynamical Behaviour
Due to the chaotic dynamics of the Lorenz system, long-term predictions are

not suitable to be compared with, for example, a Runge-Kutta integration, since
trajectories will diverge at a certain point and will continue doing so. However,
turning to invariants of the system and topology, it is possible to evaluate if the
model has learnt the dynamics of the Lorenz attractor and to what extent. The
KPIs described in Chapter 2 will serve for this purpose. This is needed because just
by analysing the visual aspect of the phase space, as in Fig.3.2, no conclusions can
be extracted except for extreme bad performing cases such as the FFNN, already
showing a di�erent structure. The various metrics are now compared using boxplots
that represent their values for the 50 simulations studied.

3.2.1 Largest Lyapunov Exponent
The largest Lyapunov Exponents for the simulation with the initial point (X=1.5,

Y =1.5, Z=7.5) are outlined in Fig.3.7:

(a) (b)

Figure 3.7: Example of Lyapunov Exponent calculation for all models during a
common individual simulation with initial point (X=1.5, Y =1.5, Z=7.5). (a)
Lyapunov Exponent Least Squares Fit of the Runge-Kutta and LSTMs. (b) Lyapunov
exponent Least Squares Fit of the Runge-Kutta, Vanilla LSTM, ESN-RC and FFNN.

The calculation already indicates that the FFNN reproduced a completely di�erent
dynamical behaviour, since a negative Lyapunov Exponent indicates converging
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trajectories instead of diverging ones. However, the result is in line with the 3D plot
in Fig.3.2 because it shows the trajectory collapsing to a single point, which will
explain the negative character of the Lyapunov Exponent.

Accordingly to the value found in the bibliography (⁄ = 0.906)[46][47], the Runge-
Kutta integration is correct, despite some minor di�erences that can be assigned to
the numerical precision of the computer and the algorithm used. In addition, Vanilla
LSTM shows again to be the best performing model between the LSTM variations
and, in this case, the absolute best model, since it also outperforms the ESN-RC for
this particular simulation.

Computing the exponents for all 50 simulations provides the results illustrated in
Fig.3.8. Runge-Kutta integrations show consistency, as it could be expected given
that the dynamics are fixed in the equations, which are numerically solved only
changing the initial point. The values obtained from the FFNN are also within the
expected range, confirming by being negative that the two attractors’ structure and
dynamics of the system were not successfully learnt.

Figure 3.8: Largest Lyapunov Exponent boxplot obtained from the 50 Runge-Kutta,
LSTMs, ESN-RC and FFNN simulations.

The Lyapunov Exponents extracted from the Stateful and Individual Variables
LSTMs present a wider distribution, in particular in the case of the latter, which
could indicate that the model is more likely to provide irregular results. Nonetheless,
both values are below the 5% error margin with respect to the Runge-Kutta and
theoretical value. For better performing models such as the Vanilla LSTM and ESN-
RC, the error decreases to a value between 1%-2%, which, again, is a satisfactory
result. Additionally, the ESN-RC shows a narrower distribution, which could lead to
better consistency when simulating in di�erent situations. A detailed look over these
boxplots can be done using variations of Fig.3.8 located in Appendix C.2.

3.2.2 Correlation Dimension
The targeted value of the Correlation Dimension is D = 2.05 ± 0.01, as men-

tioned in [50][51]. Using the scheme indicated in 2.3.2, the dimension D2 is obtained
from each simulation. A boxplot is used to present the results of such calculations in
Fig.3.9:
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Figure 3.9: Correlation Dimension obtained from the Runge-Kutta, LSTMs, ESN-RC
and FFNN 50 simulations.

The overall distribution of the results is similar to the one of the Lyapunov Exponent,
which supports having chosen both metrics. The deviation from the Runge-Kutta
value also matches with those of the before-mentioned metric. In this case, the
dimension obtained from the ESN-RC simulations even lays inside the error margin
provided by the bibliography, something of great significance. The Vanilla simulation
also provides a great result, with a slight deviation lesser than 2%. In the case of the
FFNN, it is once again confirmed by a di�erent measurement that its reproduction
of the Lorenz system is not correct, reflecting a totally di�erent topology and a value
that is close to the 94% of error with respect to the Runge-Kutta. Furthermore, the
Correlation Dimension is a fractal dimension, a strong invariant of the system. This
invites one to consider small deviations from the expected value as appreciable errors
to take into account. Consequently, the wide distribution aroused from the Indivudal
Variables LSTM could indicate significant discrepancies between the dynamics of the
real and simulated systems. However, the Stateful LSTM seems to have captured
the correct behaviour of the Lorenz equations even if its short-range prediction skills
are second-rate, as proved in the previous section.

3.2.3 Recurrence Time
The third measurement of the overall performance is the Recurrence Time. The

results are portrayed in Fig.3.10. Surprisingly, even the Runge-Kutta simulations
show a wide distribution of values. This might be due to the fact that its value
strongly depends on the point in the phase space where the algorithm is initialised.
It can be deduced from the drawing of the trajectories in phase space that the time
elapsed between two visits to a neighbourhood is not the same in an area close to one
of the attractors than in a peripheral zone. In an attempt of providing robustness
to the calculation, the starting point was always taken in the zone between both
attractors, where trajectories jump from one to the other. This area is chosen because
it roughly shows the same density of trajectories in most of the simulations. This
procedure reduces the variability by situating the average values closer between them.
This sensitivity also means that no unique values of the recurrence time can be found
in bibliography.

36



Figure 3.10: Recurrence Time boxplot obtained from the 50 Runge-Kutta, LSTMs,
ESN-RC and FFNN simulations.

The fact that the behaviour of this metric, in comparison with Lyapunov Exponent
and Correlation Dimension, does not follow the same line, could indicate that it
is second-rate if considered as a metric. Notice how the best performing models
(Vanilla LSTM and ESN-RC), also present significant dispersion when compared
to, for example, the Stateful LSTM (the worst between LSTMs). However, the
recurrence time is enough to reassure that the FFNN failed the learning task, since
its deviation with respect to the Runge-Kutta mean value is greater than 60%. Other
boxplots comparing the di�erent models in more detail are contained in Appendix
C.2.
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4. Conclusions

Para concluir el proyecto, se muestra en esta última sección una evaluación
completa y global de los resultados, así como las conclusiones extraídas
del estudio. Además, se realiza una crítica sobre publicaciones previas
relacionadas, para finalizar con sugerencias orientadas a posibles futuros
estudios.

Resumen

4.1 Comprehensive Assessment of the Results
The first question that one may ask when using a Machine Learning model to

emulate a physical system would be if the system accurately mimics the original
one, reproducing with exactitude its behaviour. With respect to this, short-range
predictions were studied, from where the ESN-RC model stepped out as the uppermost
in terms of performance. Its prediction horizons vastly surpassed the rest. Moreover,
the simple structure and its generalisation abilities need to be taken into account
if one considers that it was trained with only a 2% of the original training dataset
used on the rest of the models. A training time of 22.57 secs. was enough to
provide the results presented in this dissertation. Although its performance was
outstanding, the lack of training data reduces the confidence on the simulation aspect,
leading towards considering also the Vanilla LSTM configuration. While being a
more computationally heavy model in terms of training and architecture, it also
performed consistently and provided accurate results. However, even if its prediction
horizon is higher than any of the other LSTM configurations, it is greatly improved
by the ESN-RC. Finally, the worst execution of more complex LSTM configuration,
coincides with the results achieved by Chattopadhyay et al. [2] proving that the
stateless Vanilla LSTM outclasses the Staetful one. In the same work, novel Reservoir
Computing models similar to the ones applied here, also show greater prediction
skills for the Lorenz96 system.

Ongoing with the study of the dynamics of the learnt systems, it was found
that one of the biggest challenges when studying the viability of Machine Learning
techniques to confront physical systems is to find adequate metrics to evaluate the
performance of the di�erent models. Being chaos native to the system of equations
(1.2), classical regression metrics based on deviations from a reference value were not
appropriate for the task. A comprehensive literature review on chaotic time-series was
required in order to find plausible solutions, finally opting for Lyapunov Exponents
(⁄), Correlation Dimension (D2) and Recurrence Time (“). These set of measures
made able to discuss the success or failure of the learning processes committed by the
di�erent Neural Network models. Results discussed in the previous section make it
possible to rea�rm the ESN-RC as the model to highlight. The values obtained from
the 50 simulations for the di�erent metrics showed low dispersion and deviations
(below 2%) from the reference mean values. This was the case for the first two metrics.
Having mentioned this fact, the remaining models aside from the FeedForward Neural
Network, successfully captured the general dynamics of the system, as it can be
seen in Fig.3.2 and in the numerical values of ⁄ and D2. Despite the failure of
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the FeedForward architecture, both metrics have been proved to be consistent and
trustworthy, since they reassured the expected results even in the outlier behaviour
of this last model. The negative Lyapunov Exponent was the best example of such
achievement. Having found these two measurements of significant usefulness, it is
also important to discard the Recurrence Time as a purposeful metric in the required
situation. As detailed in section 2.3.3, there is no unique reference value and the
distribution arising from the 50 simulations is wide and disperse. Nonetheless, it is a
simple concept, easy to implement and that could be useful to check performance in
other types of dynamics and problems.

Despite the good results provided by Lyapunov Exponents and Correlation
Dimension, its computational implementation, while widely studied over the years, is
based on algorithms claimed to be robust against changes in their hyperparameters.
Such a�rmation was found to be inexact and, in occasions, misleading. Individual
tuning of the algorithms was required to reach coherent and worthy results, a detail
that was not able to be tracked down in the available bibliography. Some authors
present results based on these metrics and similar comparisons to the ones described
in this project that were not possible to be reproduced without further information
that the one available in the published documents. This fact, together with the
need of such individual fine tuning, creates concerns about some of the dissertations
published about the use of these concepts. Due to this, the novel application of
such techniques in a more general dataset framework (as it was the case) and the
obtaining of sound results, support the e�ort and reinforce the value of the current
study.

Taking everything into consideration, conducting a Machine Learning study in
the field of Physics, requires clear knowledge of the problem itself and familiarity with
Machine Learning models and their implementation in a computational language
such as Python, C++ or Spark if further scaling steps are desired. In addition, a
reliable and generous data source is compulsory, as well as deciding the most suitable
metrics for evaluating the results. The combination of these ingredients will be
boosted if the scientist already has some experience in the field and is used to face
with problems and the consequent search for solutions and answers. This recipe
needs to be clear whenever facing a problem with novel AI techniques.

4.2 Future Research
The success of the ESN-RC structure, considering its simple architecture and

the low amount of training data needed, furnish promising prospects for the im-
plementation of such Neural Networks in these kind of problems. More complex
architectures, combining various reservoirs and readouts or even creating hybrid
models with LSTMs, could support the spread of these novel structures among the
scientific community.

With respect to metrics, Machine Learning is now being applied to almost any
possible field and not all the problems can be classified in one of the classical
regression or classification groups. Further studies on how to measure and assess the
learning, performance and general behaviour of the models, mainly long-term, could
directly benefit upcoming projects.

For further extension of this study of the Lorenz System with the use of more
powerful models, a possible option would be to implement Physics Informed Neural
Networks (PINNs). These structures can be trained to numerically solve di�erential
equations and have already been stated as fruitful techniques in a wide variety of
applications. A brilliant review on the state of the art of such Neural Networks was
published by Karniadakis et al. in [52].
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Appendices

A. Lagrangian derivative
The mathematical definition of the Lagrangian derivative is presented in (A.1).

The decomposition in components of the divergence term is detailed in (A.2), where
i can represent, for example, each cartesian variable.

Da
Dt

= ˆa
ˆt

+ (v · Ò)a (A.1)

[(v · Ò)a]i =
nÿ

i=1
v · Òai (A.2)

B. Understanding Lorenz63 spectrum
of solutions.

B.1 Chaos
In a few sentences, chaos can be understood as a long-term aperiodic behaviour
expressed by a deterministic system that also shows sensitivity to initial conditions.
The roots of this behaviour and characteristics are mainly in the non-linearity of the
system. Usually chaos is misunderstood as instability, but the last one usually does
not fulfil the three features mentioned before.

B.2 Attractor and Strange Attractor
A rigorous definition can be di�cult to find, but vaguely, an attractor is a set of points
to which all trajectories in a neighbourhood of the points converge. In mathematical
terms, an attractor should be a closed set A with the properties below:

1. Any trajectory starting in A, stays in A. This is, A is an invariant set.

2. A attracts an open set B of initial conditions that are within a certain distance.
This means that if a point x(0) œ B, when t =∆ Œ, its distance with A will
go to zero. The set B is called the Basin of the attractor A.

3. There is no subset of A that fulfils conditions 1 and 2

Finally, if there is an attractor —satisfying then the three conditions— that also
exhibits sensitive dependence on initial conditions, it is called strange attractor.
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C. Complementary Figures
C.1 Chapter 1: Introduction

Lorenz63 for (‡ = 16.0, fl = 45.92, — = 4.0)

Figure C.1: Phase Space for (‡ = 16.0, fl = 45.92, — = 4.0)

C.2 Chapter 3: Results

Short-Term Simulation Figures

Figure C.2: Example 1 of bad performance by Stateful and Individual Variables
LSTMs, as well as FFNN.
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Figure C.3: Example 3 of bad performance by Stateful and Individual Variables
LSTMs, as well as FFNN.

Figure C.4: Example 3 of bad performance by Stateful and Individual Variables
LSTMs, as well as FFNN.

Lyapunov Exponents

Figure C.5: Lyapunov Exponent additional boxplot Nº.1 comprising Runge-Kutta
and LSTMs simulations
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Figure C.6: Lyapunov Exponent additional boxplot Nº.2 comprising Runge-Kutta,
LSTMs and ESN-RC simulations.

Correlation Dimension

Figure C.7: Correlation Dimension additional boxplot Nº.1 comprising Runge-Kutta,
LSTMs and ESN-RC simulations.
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Recurrence Time

Figure C.8: Recurrence Time additional boxplot Nº.1 comprising Runge-Kutta and
LSTMs simulations

Figure C.9: Recurrence Time boxplot Nº.2 comprising Runge-Kutta, Vanilla LSTM,
ESN-RC and FFNN simulations.
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