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ABSTRACT Graphics Processing Units (GPUs) have evolved from very specialized designs geared towards
computer graphics to accommodate general-purpose highly-parallel workloads. Harnessing the performance
that these accelerators provide requires the use of specialized native programming interfaces, such as CUDA
or OpenCL, or higher-level programming models like OpenMP or OpenACC. However, on managed pro-
gramming languages, offloading execution into GPUs is much harder and error-prone, mainly due to the need
to call through a native API (Application Programming Interface), and because of mismatches between value
and reference semantics. The Fancier framework provides a unified interface to Java, C/C++, and OpenCL
C compute kernels, together with facilities to smooth the transitions between these programming languages.
This combination of features makes GPU acceleration on Java much more approachable. In addition, Fancier
Java code can be directly translated into equivalent C/C++ or OpenCL C code easily, which simplifies
the implementation of higher-level abstractions targeting GPU or parallel execution on Java. Furthermore,
it reduces the programming effort without adding significant overhead on top of the necessary OpenCL and
Java Native Interface (JNI) API calls. We validate our approach on several image processing workloads
running on different Android devices.

INDEX TERMS Application programming interfaces, hardware acceleration, heterogeneous systems, image
processing, mobile computing, parallel programming, performance analysis.

I. INTRODUCTION
Heterogeneous computing devices based on parallel archi-
tectures, composed by multi-core processors and accelera-
tors, have become ubiquitous on most domains. Whereas
previously the performance advantages of these architec-
tures benefitted only large-scale high-performance comput-
ing systems, now even low-power mobile and embedded
devices are based on these architectures. This has enabled
opportunities to use mobile architectures for increasingly
compute-intensive applications, such as image process-
ing, computer-generated imagery, etc. Taking advantage
of these architectures requires software to be developed
taking their specific features into account. Consequently,
compute-intensive applications can see dramatic perfor-
mance improvements if these architectures are efficiently
exploited, but this can require the development of parallel
code. Existing programming models, tools, and techniques
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for parallel code development can be still greatly improved,
as there currently exists a significant programmability barrier
compared to traditional programming. Parallel programming
models are more complex, which adds development cost,
resulting in a much lower adoption and eventually lower
application performance. This is an issue present on the desk-
top and server space as well, but the mobile and embedded
domains are in particularly early stages of adoption of these
types of programming models.

Since public adoption of mobile platforms is so perva-
sive and their unused performance potential is so high, it is
important to consider compatibility with these platforms in
the design of new parallel programming models and tools.
The vast majority of modern mobile devices are running the
Android or iOS Operating Systems (OS), the former being
much more widespread. The development of Android appli-
cations is mainly done in the Java and Kotlin programming
languages, both seamlessly interoperating and running on
top of the same runtime due to them being compiled into
Java bytecode as part of the build process. Using this type

164570 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0003-0838-8057
https://orcid.org/0000-0002-2517-2867


S. Afonso, F. Almeida: Fancier: Unified Framework for Java, C, and OpenCL Integration

of managed high-level programming languages simplifies the
development of interactive applications, at the cost of adding
overhead that hinders execution performance. Consequently,
providing parallel and accelerated execution capabilities to
Java-based applications can provide important performance
benefits for server, desktop, mobile, and embedded appli-
cations, due to the widespread adoption of this language
among all these platforms which are also commonly based
on heterogeneous parallel architectures. This potential has
been explored for several years, evidenced by all the work
around Java Grande [1], or using Java for large scale par-
allel applications. However, we believe that, even though
the programmability problem of creating these types of Java
applications has not been completely solved, the demands of
the mobile sector make this issue more relevant than ever.

Typically, managed programming languages, such as Java,
tend to run slower than native ones, like C/C++, due to the
overhead of their runtime systems and their higher level of
abstraction from the hardware and OS. However, some of
these shortcomings have improved over time due to improve-
ments on Virtual Machine optimizations and Just-in-Time
(JIT) compilation techniques [2]. Nevertheless, Java execu-
tion on accelerators still requires the use of specialized Java
Virtual Machines (JVMs) or libraries, or code translation
tools integrating Java bytecode execution and native libraries
with low-level access to such accelerators. There exist multi-
ple approaches that tackle the issue of accelerating Java appli-
cations by reducing the programming complexity in different
ways. Project Sumatra [3] and TornadoVM [4] are built on
top of JVMCI (Java-Level JVM Compiler Interface) [5], a
Java API allowing the integration of custom Java compilers
into a running JVM. They can implement transparent code
optimization techniques as if they were part of the JVM, but
their main disadvantage is their requirement for the underly-
ing JVM to support this interface. Due to security concerns
arising from the given ability to completely replace code at
runtime, it is unlikely this feature will be exposed to non-
system code in Android. This limitation can be circumvented
through the use of GraalVM Native Images [6] in place of
the officially supported Android SDK and runtime, but that
would result on a significant increase in development effort.
On the other hand, working through JVMCI has the benefit
of being able to decide at runtime, through a JIT compilation
process, what processor to target for each task, migrating
tasks to different processors according to observed behavior
over time, and to seamlessly integrate with existing standard
Java APIs. Tools like Paralldroid [7], Aparapi [8], Root-
beer [9], or ParallelME [10], on the other hand, do not impose
that requirement, and they can translate Java code or compiled
bytecode into native or accelerated implementations. Each
of these alternatives define their own parallel programming
model on top of Java, adding certain restrictions over what
Java code is supported for parallel or accelerated execution.
This makes it difficult to port parallel code written for one
of these environments to another, and most of them have to
solve a similar set of challenges, mainly relating to mem-

ory management, on top of making their particular parallel
programming model work efficiently. There is a need for
middleware that could handle their common issues, so that
tools designers can focus on the parallel programmingmodels
and their runtime performance, while reducing the learning
curve for application developers using them. Other alterna-
tives such as language bindings like JCUDA [11] are targeted
towards experts and do not reduce the programming effort
significantly.

Despite these efforts, none of the existing approaches has
been widely adopted by the developer or scientific commu-
nity, so there does not exist a standard system implementing
hardware acceleration of Java code yet. This means there
is still room for new alternatives. In all mentioned tools,
many features of the Java language are unsupported or highly
inefficient to use on accelerators or even parallel or sequen-
tial native execution. In this work, where we present our
Fancier framework,1 we propose a common Java API that
simplifies the automatic production of efficient native code
for acceleration, which can be used as a platform to build
independent automatic acceleration tools. This API, built on
top of the OpenCL 1.1 standard libraries, includes fixed-size
vector data types, a math library, and multiple containers for
primitive data types and images, and it is designed to emulate
value semantics used in native languages, allowing a simpler
mapping of Java code to C/C++ or OpenCL for accelerators.
OpenCL 1.1 has been chosen as the hardware acceleration
backend due to its low overhead, support for general-purpose
computations, fine-grained hardware control, and widespread
adoption among all types of architectures, from low-power
SoC to state-of-the-art high-performance computing acceler-
ated distributed systems. The Java math library included in
Fancier unifies the functions provided by the standard Java
Math class and the OpenCL standard math library. Further-
more, the provided containers feature transparent zero-copy
memory support on unified memory systems, while giv-
ing direct access to the memory from the Java, native, and
OpenCL contexts. This is especially relevant on mobile SoC,
where this type of memory architecture is the most common
and where memory copy overhead can easily become a per-
formance bottleneck. In addition to the Java API, Fancier
provides a C/C++ API providing the same operations as the
former, both being modeled after the OpenCL C language for
accelerators. This means that Fancier unifies these three lan-
guages so that code can be easily ported from one to another,
depending on the requirements for its execution. Lastly, the
Fancier Native API provides functions and data structures to
help with the integration of C/C++ execution within a Java
application, greatly reducing the effort demanded by the use
of the Java Native Interface (JNI) and improving readability
without resulting on a measurable performance overhead.
Our approach does not demand any modification to the Java
compiler or the JVM, and it only depends on OpenCL.

1https://github.com/HPC-ULL/Fancier
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There are several advantages to our approach. Program-
ming models and tools for the automatic acceleration of Java
code need to limit language features in order to produce
performant and portable native code, and we propose a single
independent and extensible Java subset easily translatable to
native programming languages. Its adoption as an underlying
platform would result in a significant reduction in the cost
of creating such tools, as well as giving application develop-
ers using them a more homogeneous and stable set of data
structures and functions, reducing their learning curve and
simplifying the process of porting code from one parallel
programming model for Java to another. Considering that
the Fancier framework is designed to support many differ-
ent approaches to defining parallel Java kernels for acceler-
ated execution, it is clear that it needs to support particular
requirements over memory management or runtime behavior
demanded by those. Fancier features a native plugin system
through which reusable components supporting particular
behaviors and runtime requirements can be created easily.
Plugins have access to the core Fancier Native API, greatly
simplifying their implementation due to the seamless pass-
ing of data across Java, C/C++ and OpenCL. These plu-
gins can support higher level parallel programming models
built on top of Java while maintaining the core features of
Fancier, and they can also implement specialized behaviors
or code optimizations that multiple applications can benefit
from. Given the ever-increasing amount of hardware archi-
tectures for multi-core processors and accelerators, program-
ming models for parallel execution must be cross-platform
in order to be widely adopted. For that reason, the Fancier
framework is based exclusively on stable and well sup-
ported multi-platform standards such as Java, JNI, C, and
OpenCL. In addition, it does not introduce any dependencies
on specific Java compilers or JVMs and only runs on user-
space, requiring no particular support from the underlying
OS.

The main contributions of this work are the following:
1) The acceleration of Java applications is not prevalent

in part due to the characteristics of the language and
its runtime behavior, and in part due to development
difficulty. We work towards a solution to these issues
by introducing the Fancier framework, which facili-
tates the translation of Java to C/C++ and OpenCL,
and their runtime integration by creating a unified
interface and library. It defines a Java and C/C++
subset of features and functions where the mismatch
between reference semantics of Java and the value
semantics of C/C++ and OpenCL is addressed. By
adopting this framework, the process of accelerating
code within a Java application can be divided into
stages, allowing a progressive and seamless acceler-
ation of that code. Initially, an easy to develop and
debug Fancier Java implementation would be cre-
ated, porting that to Fancier Native after it has been
debugged, and finally replacing the native kernel for an
high-performance OpenCL one. The unification of the

Java, Native, and OpenCL languages provided by our
framework enables this methodology, which greatly
reduces development cost and has no performance
penalty.

2) The information flow between Java, C/C++ and
OpenCL is complicated and requires manual manage-
ment. There exist multiple ways of performing this, but
most incur performance penalties that may go unno-
ticed. We analyze these alternatives and implement an
optimal strategy for Fancier container data types that
works transparently and significantly reduces devel-
opment cost. Unified memory systems introduce the
possibility of sharing memory buffers between a host
processor and accelerators, which can provide great
performance gains. However, the optimal management
of this type of memory becomes difficult when buffers
must be accessed from managed, native, and accel-
erated contexts. Our presented memory management
strategy features efficient and transparent zero-copy
read and write access from all contexts.

3) We evaluate the performance of Fancier Java, Native,
and OpenCL implementations of a wide range of image
processing kernels on various Android devices using a
reliable methodology to present reproducible metrics.
In these benchmarks, we show that Fancier Native code
is highly optimized and can outperform regular C/C++
implementations in many cases, and Fancier Java code
can be easier to develop, understand, and translate, or to
give good performance depending on the use case.

This paper is structured as follows: Section II intro-
duces the process by which Android applications are com-
piled and executed, Sect. III presents the Fancier framework
in detail, Sect. IV includes the performance experiments
used to validate our approach, and in Sect. V we give our
conclusions and future related lines of work. We include
extended performance data produced by our experiments in
Appendix A.

II. APPLICATION EXECUTION ON ANDROID
A. MANAGED EXECUTION
Android applications aremainly developed using the Java and
Kotlin managed programming languages. These languages
simplify the development of interactive applications while
providing the performance they require. As they both are
compiled into Java Bytecode, different parts of an Android
application can be implemented using any of these managed
languages and their interoperation is close to transparent.
However, their higher level of abstraction from the hardware
comes with a performance cost over native programming
languages. In order to mitigate that, since Android 5.0, Java
Bytecode is transformed and optimized in various stages until
it gets ahead-of-time (AOT) compiled into binaries that run
natively with help from the Android Runtime (ART) [12].
Figure 1 shows the compilation and execution stages of an
accelerated Android application.
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FIGURE 1. Compilation and execution of an Android application.

More recent Android releases, instead of AOT-compiling at
install-time all Dalvik executables produced from Java byte-
code, use a hybrid just-in-time (JIT) and AOT profile-guided
optimization process [13]. This helps reduce install-time
overhead without giving up noticeable application perfor-
mance over time, but this behavior needs to be taken into
account to properly benchmark managed code affected by it.
Previous Android releases relied on a pure JIT process, more
similar to standard Java Virtual Machine (JVM) implemen-
tations like HotSpot [14]. Even though this multi-stage opti-
mization process allows for very highly efficient execution of
Java and Kotlin code, there are cases where their performance
becomes insufficient. This is where native programming lan-
guages are better suited to the problem.

B. NATIVE EXECUTION
Java applications can interface with native code through the
use of the Java Native Interface (JNI) [15]. In Android,
this is possible as well since Android’s Native Development
Kit (NDK) supports JNI [16]. It is a standard consisting of a
series of C data types and functions that allow the interaction
of C code with a running JVM–calling Javamethods, creating
and managing objects, and reading and writing to managed
memory. For a Java application to offload some computa-
tion into native code, it needs to declare and call a method
or methods marked as native, which in turn need to be
implemented natively and compiled into a shared library to
be loaded by the Java application. The native implementation
of the method would use some JNI API calls as a bridge
between Java and C in addition to the actual work to be done
by it, adding some development complexity and execution

overhead. These shortcomings, however, come with several
advantages as well:

• It allows applications to link to and use Android-
supported native system libraries, such as OpenGL and
Vulkan. Additionally, other native libraries may bemade
independently available by device vendors.

• If non-trivial amounts of an application depend on exist-
ing native code, it makes sense using JNI to integrate it
instead of re-implementing it in Java or Kotlin.

• Some highly compute or memory-intensive codes may
still see important performance improvements if imple-
mented natively, in spite of the multiple stages of opti-
mization that are applied to managed languages.

C. ACCELERATED EXECUTION
Support for hardware acceleration of code execution is impor-
tant for applications that contain very compute-intensive
parallel code. By offloading execution of these types of
codes to specialized processors like GPUs, dramatic perfor-
mance improvements can be achieved. Officially, the accel-
eration of regular Android applications has been possible
through the use of Renderscript, an Android-specific SIMT-
based (Single Instruction, Multiple Threads) parallel pro-
gramming language [17]. After a Renderscript kernel is writ-
ten, an associated Java class is generated by the Android
Build Tools, which lets the Java or Kotlin code control the
integration between said kernel and the rest of the applica-
tion. Even though this has been the only supported method
for acceleration of general-purpose code on Android, it has
been announced that it would be deprecated starting in
version 12.

Conversely, OpenCL is a multi-platform standard and
framework for general-purpose accelerated execution that
has existed for longer than Renderscript, and it has enjoyed
continued support by most of the main SoC vendors at
the core of modern smartphones, such as Arm, Qualcomm,
MediaTek, and HiSilicon. Even though this alternative has
not seen official support from Android, its widespread
adoption among platforms ranging from energy-efficient
SoC to high-performance computing systems, together with
its higher performance potential and finer-grained control,
makes it an interesting alternative. Additionally, the offi-
cially supported framework for Android acceleration from
version 12 is Vulkan, a multi-platform standard focused on
computer graphics for which work is being done to allow
running OpenCL kernels [18]. OpenCL is our best option
as this work is focused on general-purpose cross-platform
acceleration.

The main disadvantage of OpenCL or Vulkan compared to
Renderscript is that, by being native libraries, they demand
a higher development effort to integrate into a managed
application written in Java or Kotlin. Furthermore, their high
level of control and granularity over execution comes with
a steeper learning curve. This is why approaches like those
presented in this paper are still relevant and necessary.
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FIGURE 2. Overview of the different layers of the Fancier framework.

III. THE FANCIER FRAMEWORK
A. OVERVIEW
The Fancier framework is a multi-platform, modular, and
extensible programming interface to facilitate the acceler-
ation of Java applications without requiring any special
features from the JVM they are running in. It achieves this
by defining a Java and Native API modeled after the OpenCL
C programming language for accelerators, and by providing
several utilities that simplify the integration of C/C++ and
OpenCL execution to a Java application efficiently. Fancier
Java code is designed to be used as an expressive subset
of Java that can easily be mapped into high-performance
Fancier Native or OpenCL C code by an automated code
transformation tool, and Fancier Native code is designed
to be either a result of such a transformation or devel-
oped by hand. An overview of the mapping between the
programming models defined on the various Fancier API
layers is represented in Fig. 2. In simpler terms, Fancier
defines a standardized Java subset for accelerated execution
and provides a runtime to efficiently integrate C/C++ and
accelerated execution into a Java application as described
in Sect. III-B. This facilitates both the design and imple-
mentation of parallel accelerated programming models on
top of Java and the manual development of accelerated Java
applications.

The actual structure of this framework, which is
template-based and targets Linux and Android platforms
through various Java and native libraries, bundled with cer-
tain OpenCL C helper code, is discussed in Sect. III-C.
Section III-D details the process by which Fancier Java
code can optimally share memory with C/C++ and OpenCL
on unified memory systems, avoiding unnecessary mem-
ory copies while transferring control between programming
languages or processors.

B. DESIGN
Fancier uses OpenCL as the high-performance multi-
platform backend for accelerated execution. OpenCL is a
dual-source programming framework where code running on
the host CPU and code for accelerators (kernels) are defined
separately and have different purposes. Whereas host code
manages memory buffers and sets up the execution parame-
ters, kernel code defines the actual parallel computation.With
regards to this, it is important to note that OpenCL tradi-
tionally features a partitioned memory space, where host and
accelerator memory are separate, and updating data in both
spaces must be done manually by OpenCL host code. In the
Java to OpenCL execution path, the transition from managed
Java memory to OpenCL host memory must be manually
orchestrated, as well, making it a non-trivial interaction that
Fancier resolves as described in Sect. III-D. Fancier augments
Java and C/C++ code in a manner such as to make them the
same as the equivalent OpenCL kernel code, so that they are
as equal as possible – unifying them. Fancier significantly
reduces the programming overhead of OpenCL host code
by automatically handling memory buffers and runtime ker-
nel compilation in an efficient manner. The multi-platform
characteristic of OpenCL is the main reason why it has been
chosen as the platform on top of which to build Fancier, as that
allows it to accelerate applications in systems ranging from
high-performance servers with accelerators to low-power het-
erogeneous devices.

One of the main obstacles for transforming Java code in
order to run on accelerators is its reference semantics. Any
object in Java, except primitive data types, is handled via
references. This is in contrast to the type of native pro-
gramming languages used for accelerated execution, such as
OpenCL or CUDA, where value semantics are used instead.
This provides them with code optimization advantages. Java
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code only using primitive Java data types and Fancier objects,
designed with this feature, can easily be transformed into a
native implementation, since they are almost equal to Fancier
Native and OpenCL C kernel code. Modularity is another
one of Fancier’s advantages, as it has been designed to
be extended depending on particular needs. Native runtime
extensions can be defined using its plugin system, ensuring
that the core Fancier functions can support their execution.

There are three main layers to Fancier: Java, Native, and
OpenCL. The Fancier Java API is designed for conciseness,
ease of use and simplicity to transform into a native imple-
mentation. Performance is not a consideration in this case
because it is not intended to be executed directly. However,
we provide an alternative higher-performing set of Java meth-
ods on the same Java classes with the purpose of remov-
ing the main performance bottleneck of that API, which is
the creation of small objects. The way Fancier forces value
semantics is by always returning a new result object when
operating with Fancier objects, so by pre-allocating objects
for all intermediate results we reduce pressure on the Java
memory management system. We see the main use case for
this higher-performing API would be debugging, since it still
closely matches the simplest possible Fancier implementa-
tion, but it runs significantly faster, as we show in Sect. IV-D.
We believe that higher-performing Fancier Java implementa-
tions should be automatically generated from concise Fancier
Java code, so that application developers could write a single
implementation and target different Fancier APIs depending
on the task. The Fancier Java API defines fixed-size vector
data types, primitive and vector arrays, 2D images, and a
math library, giving it the main functions exposed by the
OpenCL C programming model. Vectors of sizes 2, 3, 4,
and 8 are supported, for the types of Byte, Short, Int,
Long, Float, and Double. The Fancier math library con-
tains the main functions from the standard Java Math class,
and the math functions included in the OpenCL C standard
library. These are implemented natively and called through
JNI from Java. Fancier vector data types include methods for
applying these math functions to each element of the vector.
Fancier Java arrays (e.g., IntArray, Byte4Array, . . . )
and RGBAImages are allocated natively to be able to take
advantage of the unified memory between main CPU and
accelerators, so they are not guaranteed to be automatically
garbage collected if there are no more references pointing
to them. However, they can be created in try-with-resources
statements to prevent memory leaks, as well as manually call-
ing their release() method. The way in which these con-
tainers are allocated and managed is detailed in Sect. III-D.
In Fig. 3 we show a possible Fancier Java implementation
of a conversion to gray scale. It is a simple sequential imple-
mentation that uses vector data types and operations to reduce
the development workload. Classes andmethods of the public
Fancier Java API are highlighted.

The Fancier Native API is a C library containing the
same public functions and data structures as its Fancier Java
counterpart, but it also provides several other facilities to

FIGURE 3. Example Fancier Java sequential implementation of gray scale.

simplify Java to C/C++ and C/C++ to OpenCL interactions.
Each math function, initialization and release, and getter and
setter method of container classes, is implemented natively
by the way of two functions: a JNI wrapper, and the C
implementation that gets called by said wrapper and other
native code. Vector data types mirror the design of the Java
counterparts, as well, so they are closely matched. Figure 4,
showing a Fancier Native implementation of the Gray Scale
kernel, is a clear example of how closely this API follows
the Fancier Java counterpart, and what the development effort
for using this API is. The required Java code is trivial, as it
only needs to declare the method signature and mark it as
native. Then, up to line 27, the Fancier Native sequential
implementation of the kernel contains the equivalent function
calls the Fancier Java implementation shown in Fig. 3 used.
Additionally, the JNI code bridging Java and native execution
is shown, starting on line 29. It is responsible for obtain-
ing the C/C++ representation of the Java objects passed as
parameters, ensuring that they can be read and written by
native code, and passing them to the previously described
Fancier Native implementation. Thanks to the use of Fancier
Native utilities for JNI and Fancier Java classes, this code is
much simplified from the alternative of using JNI on its own,
while adding no execution overhead. Additionally, it provides
a simple logging API and a method of reporting errors as
Java exceptions that the main application can capture and
handle. In contrast to Fancier Java, the Fancier Native API is
high-performance, although it has a higher development cost
if used manually. Its strength is that its added development
cost could be completely eliminated by the creation of a code
transformation tool, due to simpler Fancier Java implemen-
tations containing all the information necessary to produce
Fancier Native counterparts.

During initialization, Fancier automatically configures
the OpenCL environment, by creating the global and appli-
cation-accessible cl_platform_id, cl_device_id,
cl_context, and cl_command_queue objects, as well
as an information structure holding various features about the
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FIGURE 4. Example Fancier native sequential implementation of gray
scale.

selected accelerator, as reported byclGetDeviceInfo()
function calls. The current implementation chooses a single
OpenCL platform and device, which it uses to create the
context and command queue objects that would be used by
the application. This simplifies targeting single-accelerator
mobile and embedded systems like those on which we
are currently evaluating our approach, but it would be

of great interest to also cover the multi-accelerator case
that is more common on desktop and server environments,
as well as some next-generation high-performance SoC.
This addition is entirely feasible within the bounds of the
presented approach, as it is designed for such extensions and
its impact on the public Fancier APIs would be localized.
We enable the community to investigate interesting related
features by making our framework open source.

Accelerated Java applications using Fancier for OpenCL
execution are able to take full advantage of the complete
set of features of the OpenCL 1.1 standard, with the advan-
tage that the passing of data between the Java, C/C++ and
OpenCL layers is much simpler, and the control flow between
Java and C/C++ is more seamless. In this sense, Fancier
OpenCL applications can do what any OpenCL application
can, but with a reduced development workload. Application
developers would use standard OpenCL functions and global
OpenCL objects created by Fancier directly from C/C++ to
set up the execution of parallel kernels, and take advantage of
Fancier containers to take care of memory buffer creation and
movements. The transparent process by which these buffers
are managed, detailed in Sect. III-D, is currently tailored to
unified memory architectures, but the implementation can
be easily extended to improve performance on non-unified
memory systems, which is the case for most desktops and
servers. Parallel kernels can be executed synchronously or
asynchronously, depending on application needs, but consid-
ering that the command queue created by Fancier is in-order
and the memory synchronization functions of Fancier con-
tainers are blocking, safe and efficient asynchronous execu-
tion of Fancier OpenCL code is easily attainable. Just as with
any other OpenCL-accelerated application, the simultaneous
execution of multiple Fancier applications would result in a
reduction of performance due to competition for computing
resources. In that case, the OS would be responsible for
scheduling the access to the accelerator, as Fancier applica-
tions do not communicate among themselves.

All Fancier containers are allocated through OpenCL API
calls. This means that, no matter if a Fancier array or image
is created in Java or C/C++ code, it has associated with
it an OpenCL memory buffer that can be used to support
parallel execution on accelerators. The provided functions
that developers would need to use in order to manage these
memory buffers, as detailed in Sect. III-D, are much simpler
than the alternative of manually writing JNI and OpenCL
API calls to accelerate the execution of a Java application.
The Fancier Native API provides some utilities for obtaining
and compiling OpenCL C kernels at runtime. These utili-
ties automatically add certain math functions supported by
Fancier Java and Fancier Native which are not included in the
OpenCL C standard library. This way we ensure that every
function supported by the Fancier framework is available in
Java, C/C++, and OpenCL C. In Fig. 5, an implementation
of the Gray Scale kernel in OpenCL C, matching closely
the previously described Fancier Java and Fancier Native
implementations, is shown. It is important to note that this
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FIGURE 5. Example OpenCL C parallel implementation of gray scale.

is a parallel implementation, and that its contents match the
code inside the sequential loops presented in Figs. 3 and 4.
Fancier Java is designed to allow a wide range of parallel
programming models to be built on top, each with their own
approach to letting application developers define, implicitly
or explicitly, the kernels that can be executed in parallel and
what their iteration range would be. This last step of the
process would enable the automatic generation of parallel
Fancier OpenCL code from sequential Fancier Java.

C. IMPLEMENTATION
Vector structures and operations on all layers of Fancier
(Java, Native, andOpenCL) are implemented using language-
independent templates. The use of templates allows writing a
single implementation for each layer to provide support for all
vector types and sizes. OpenCL C already supports these data
types, and its standard libraries can operate on them, so only a
very reduced set of operations are provided and implemented
in this way by Fancier. Templates are written using the Mako
template library for Python [19], which allows embedding
Python definitions and control statements with other text,
so that the resulting text can be dynamically produced. This
is a common approach used on web applications, which in
this case adds a step to the build process of Fancier. Java
has support for templates, but it is limited, as it cannot
have primitive data types as template parameters without
encapsulation in Object subclasses, difficulting low-level
access to the data, and it is not possible to parametrically
generate methods. In C, macros can be used for this purpose,
but they become increasingly hard to develop, debug, and
read as they become more complex. Therefore, we decided
to instead create a set of language-independent templates
that we can use to produce the final Java and C imple-
mentations of the vector structures and functions of the
framework.

The Fancier Java API is divided between its Android vari-
ant and its JRE variant. Applications would use one of the
two variants depending on the system to be deployed on. For
the most part, both variants contain the same core API, and

FIGURE 6. Build process of Fancier libraries.

their main difference is the support for creating RGBAImage
objects from an Android Bitmap, and the ability to update
a Bitmap with the contents of an RGBAImage. Further
specializations could be added in the future. The Fancier
Native API is implemented as a C library, which provides
maximum support and interoperation with other libraries
and languages. Apart from its core features, such as the
JNI and OpenCL integration functions, vectors, images, and
containers, it supports the addition of plugins built on top
of this core. By creating Fancier Native plugins, specific
native functionality can be added to multiple applications,
while making use of the Fancier Native system to reduce the
development workload. A Java application can easily load
and unload native plugins as required. In Fig. 6, we show
the build process for the Fancier framework. Any modifi-
cations to vector structures or functions, math, or contain-
ers have to be made to the corresponding templates. Then,
Mako is used to produce the final Java, C, and OpenCL
C source codes. Other source files not generated through
templates can be directly modified. Fancier OpenCLC source
code has to be bundled directly with the final binaries and
only compiled at runtime together with the particular ker-
nels for the application, a task that is automatically man-
aged by the fcOpenCL_compileKernelFile() and
fcOpenCL_compileKernelAsset() Fancier Native
functions. The Fancier Native core and plugins are built using
Make [20] for standard Linux builds, and ndk-build [21]
for Android builds, producing the libfancier.so core
shared library and one shared library for each plugin.
Fancier Java code is built using Gradle [22], producing
the fancier-jre.jar and fancier-android.jar
libraries both containing the core Fancier Java classes.

Most Fancier Java functions are implemented natively
and integrated via JNI. This makes it so that there are no
duplicate implementations for any given function, and the
Java API is kept as simple as possible while providing the
same features as the Fancier Native API. As an example
of the execution flow of a call to a Fancier Java method,
we show in Fig. 7 the call diagram for the creation of an
RGBAImage from an array of integers representing pixel
data. When the application invokes the Java constructor,
it calls the native initNative() method that allocates a
C structure linked to that Java object by storing a pointer to it
on a long private attribute of the class. This is performed by
the fcRGBAImage_allocJava() native function, where
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FIGURE 7. Fancier Java image creation call diagram.

first the fcJava_getNativePtrFieldID() function
that gets the field ID of the mentioned attribute of the
RGBAImage Java class is called, unless the ID was already
cached from a previous access to it. Then the fcRGBAIm
age native structure is allocated in the heap, and the Set
LongField() JNI function is used to store the pointer
of the newly allocated structure in that class field as a long
integer. After that, the native structure is initialized in fcRG
BAImage_initPixels() after extracting the native data
from the Java parameters, which is done through the GetAr
rayLength() and GetIntArrayElements() JNI
functions. The fcRGBAImage_initPixels() function
involves initializing a reference counter to the native structure
in fcRGBAImage_init(), and passing the array data
coming from Java to the fcByte4Array_initArray()
function, which is the one that initializes a new
fcByte4Array object that will hold the actual data of
the image and store it in an OpenCL memory buffer.
For that, the fcByte4Array_initArray() function
calls the clCreateBuffer() function to create the
buffer to where pixel data is then copied through the
fcByte4Array_setArray() function. The copy is
made while the memory buffer is mapped to host memory,
and ensuring proper memory alignment. At the end, after
releasing the native reference to the Java parameters thro-
ugh the ReleaseIntArrayElements() JNI function,

control is returned back to the Java application. The Fancier
Java math class is similarly implemented, by forwarding Java
calls to C, but without the handling of complex structures and
OpenCL interactions.

D. MEMORY OPTIMIZATIONS
On compute-intensive workloads, such as those that would
benefit the most from offloading Java to native or even accel-
erated execution using Fancier, it is of paramount impor-
tance to consider memory management. Data movements and
copies can have great performance implications and should
be avoided whenever possible. However, on an OpenCL-
accelerated Java application there exist three independent
memory spaces. These spaces are the Java-managed heap, the
OS-managed native heap, and the OpenCL device memory.
There are various ways in which memory buffers can be
moved and accessed across memory space boundaries, but
our goal is finding a way to guarantee that only unavoidable
memory movements are performed. Each of the different
methods discussed in this section is shown and numbered
in Fig. 8, and these numbers are used in the text where the
corresponding method is described.

At the transition between Java and C, Java-managed
primitive arrays may be accessed by native code using the
Get<Type>ArrayElements() family of JNI functions
with a chance that direct access to the underlying memory
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FIGURE 8. Memory spaces on an accelerated Java application.

is provided (1). However, this is not a guarantee and may
result in memory copies. Alternatively, Java provides the
ByteBuffer class designed for native I/O operations that,
created via its allocateDirect()method, allows native
and Java code to read and write its contents directly in
exchange for a higher allocation cost (2). Additionally,
through JNI’s NewDirectByteBuffer, they can be cre-
ated and point to already-allocated native memory (3). Their
main issue is that their use is more cumbersome than plain
Java arrays and it can be more inefficient if accessed very
frequently. Additionally, the ByteBuffer class loses type
information about what it is carrying, which can be solved by
creating a view buffer of a given type pointing to the same
native data (e.g., FloatBuffer, IntBuffer, . . . ).
Many accelerator architectures feature physically sep-

arated memory for the host processor and accelerators.
OpenCL exposes this separation by not allowing native
memory to be directly passed and used by accelerated ker-
nels, but instead forcing the use of memory buffers that
must be allocated on the corresponding accelerator through
calls to the clCreateBuffer() function (4). However,
modern mobile SoC feature architectures similar to that
shown in Fig. 9, where CPU and GPU share the same
main memory while having separate caches. This means
that sharing memory buffers between CPU and GPU should
be possible without copies if caches are handled correctly.
OpenCL allows the creation of these zero-copy shared mem-
ory buffers by adding the CL_MEM_ALLOC_HOST_PTR
flag to a clCreateBuffer() call (5). It is impor-
tant to note that OpenCL on these devices only sup-
ports the allocation of shared memory buffers through
that method, and already-allocated native memory via,
e.g., malloc() cannot be used in this way. Shared
OpenCL memory buffers are only available for write access
either on the host or one accelerator at a time, which
is handled by using the clEnqueueMapBuffer() and
clEnqueueUnmapMemObject() functions. This avoids
issues related to race conditions and keeps cache coherence
between CPU and accelerators.

Fancier takes these factors into account and implements
a method to optimally manage memory allocations on all
image and array containers provided (6), which we describe
next. As mentioned in Sect. III-B, associated to each of
the native structures for these container objects there is an
OpenCL memory buffer and a pointer to a native memory
allocation, together with a flag that tells from where memory
can currently be accessed. These buffers are initially created
using the clCreateBuffer() function, using the previ-
ously described CL_MEM_ALLOC_HOST_PTR flag to make
them available to the native memory space without copies.
Initialization from external Java arrays is done through simple
calls to memcpy(), whereas, depending on where memory
is currently accessible from, other Fancier containers may
be copied by calling clEnqueueCopyBuffer(), clEn
queueWriteBuffer(), clEnqueueReadBuffer()
or memcpy(). These copies are only necessary on copy
constructors, and it is possible to share a single native buffer
between multiple Fancier Java containers. They can be at any
time accessible either from an accelerator or the host pro-
cessor, and the public Java and C functions syncToOCL()
and syncToNative() are provided in order to manually
manage this mapping. Fancier keeps track of where each
buffer is mapped and automatically calls these functions,
when necessary, as well. These sync functions, in turn,
make blocking calls to clEnqueueMapBuffer() and
clEnqueueUnmapMemObject() as needed. In addition,
containers in the Fancier Java API have a getBuffer()
method that returns a ByteBuffer pointing to the same
native buffer that is being shared by the host CPU and
OpenCL accelerator, usable any time said buffer is updated in
the host. Fancier also provides utilities to simplify the access
to these structures from Java, via indexed versions of the
getBuffer() and setBuffer() methods, which han-
dle memory alignment and byte-order issues. Furthermore,
Fancier provides methods to create primitive arrays with a
copy of the contents of the buffers, for these cases when
copying memory has less overhead than accessing it through
a ByteBuffer, or when a copy of the data only available
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TABLE 1. Hardware platforms.

from Java is needed. This presented API provides a very
close to transparent way of taking advantage of the unified
memory architectures of modernmobile SoC by avoiding any
unnecessary memory movements, while enabling read and
write access from all three layers: Java, Native, and OpenCL.
The current implementation assumes a unifiedmemory archi-
tecture, so it is not tailored for systems where accelerator
and main system memory are independent. Nevertheless, the
presented design and approach can still support those other
types of memory systems, and modifications for these cases
are simple. Multi-accelerator systems, on the other hand, may
require API changes to allow specifying which accelerator
should have access to updated memory at every point.

IV. EVALUATION
A. HARDWARE PLATFORMS
We used two Android mobile devices in order to evaluate
the overhead or performance improvements of the different
Fancier APIs over reference implementations. Their results
are representative of a wide range of older and newer smart-
phones. On one hand we use the Sony Xperia Z (SXZ),
representing older hardware, and on the other hand we use the
Huawei P8 Lite (P8L), a more modern smartphone. Table 1
summarizes the relevant features of each of these devices.

The main architectural difference between these devices
is the presence of an Arm big.LITTLE CPU cluster in
the P8L, which is a feature prevalent in modern devices.
Figure 9 contains a simplified block diagram of the SoC of
this device, showing its memory organization and main com-
pute elements. Apart from the absence of two CPU clusters,
the basic architecture of the SXZ is very similar, as mobile
SoC are unified memory architectures where all processors
and accelerators share access to a single main memory.

B. KERNEL IMPLEMENTATIONS
We developedmultiple equivalent implementations of several
image filters in order to evaluate the performance of the dif-
ferent Fancier Java and Native APIs, compared to reference
Java and C/C++ implementations using Android Bitmap
objects [23], which are the standard method of representing
and processing images in this OS. We chose image process-
ing kernels for evaluation because these are the predomi-
nant type of high-performance operations that many Android

FIGURE 9. HiSilicon Kirin 655 System-on-Chip diagram.

applications contain. Furthermore, we chose embarrass-
ingly parallel kernels that would easily map into the SIMT
programming model used by OpenCL, in order to show
the potential advantages of accelerated execution in these
devices, evenwithout developing any hardware-specificman-
ual optimizations. The image processing kernels we imple-
mented, using a 32-bit RGBA pixel format, are:

• Bilateral (BL): An edge-preserving smoothing filter. It is
a stencil code where each neighbor is weighted accord-
ing to its color and distance to the center pixel.

• Gaussian Blur (GB): A smoothing filter based on the
Gaussian function. It is implemented as two successive
passes where one applies the filter considering the hori-
zontal neighbors and the other considers only the vertical
neighbors of each pixel. This reduces computation and
provides the same result as a single-kernel variant due to
it being separable [24]. Execution time includes creation
and release of an intermediate buffer.

• Contrast (CO): A pixel-wise kernel that applies a param-
eterized contrast enhancement of an image.

• Convolve 3× 3 (C3): A convolution kernel using a 3×
3 mask, implemented without loops.

• Convolve 5× 5 (C5): A convolution kernel using a 5×
5 mask, implemented without loops.

• Fisheye (FE): A distortion kernel which applies a fish-
eye lens effect to an image. The coordinates of each pixel
are transformed using several math functions, and the
resulting output pixel is calculated through a bilinear
interpolation of these transformed coordinates.

• Gray Scale (GS): A pixel-wise kernel that converts a
color image to gray scale.

• Levels (LV): A pixel-wise kernel that applies a satura-
tion and contrast levels change to an image.
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• Median (ME): A median filter, which is a stencil code
that evaluates the neighbors of each pixel within a given
radius and applies the median intensity of these input
pixels to the output. Our implementation only uses the
red pixel channel, producing a gray scale output.

• Posterize (PO): A filter that applies pre-selected colors
to given ranges of input pixel intensity. It is a pixel-wise
kernel that is called multiple times, one per range.
We use five ranges in our testing.

Each of these kernels has been implemented in several
variants, described below:

• Bitmap Java: A reference Java implementation that
uses Android classes Bitmap and Color to extract,
process, and write pixel data.

• Fancier Java: A Java implementation using the Fancier
Java API. It is expected to be low performance due to its
creation of high amounts of small objects. Its advantages
are its relative simplicity to translate into Fancier Native
or OpenCL C code and its low programming effort.

• Fancier Java Perf.: A higher-performance Fancier Java
implementation, which reuses small objects and avoids
creating them within a loop. It is harder to develop and
read, but it could be automatically produced from regular
Fancier Java code.

• Bitmap Native: A reference C/C++ implementation
using Bitmap objects and the NDK’s jnigraphics
native library to access their data from native code.
It uses JNI for the interaction between Java and C,
without the use of the utilities provided by Fancier.
This represents the performance potential of executing
compute-intensive kernels natively in Android, as well
as its associated development effort.

• Fancier Native: A C/C++ implementation called from
Java using Fancier images, JNI utilities for Java and C
interaction and exception handling, and Fancier Native
vector types and operations. This can be compared to
Bitmap Native in order to measure the overhead of the
Fancier Native libraries and functions, and its improve-
ments in programmability.

• Fancier OpenCL: A parallel OpenCL implementation
using Fancier JNI utilities for Java and C interaction,
and Fancier images for transparent OpenCL host and
device buffer management. OpenCL C kernel imple-
mentations are equivalent to the corresponding Fancier
Java implementations, in that they use the same data
types, operations, and control structures, in a manner
such that one can be directly deduced from the other.
However, OpenCL host code needs to bridge the gap
between Java and OpenCL execution as well, adding
some development overhead diminished by the Fancier
Native utilities. This variant represents the potential that
GPU-accelerated execution on these devices can have,
and how using Fancier lowers its complexity.

Our study does not include a Bitmap OpenCL implemen-
tation, as it would not add any new relevant information over

FIGURE 10. Overhead calculation example.

theBitmap Native,Fancier Native, andFancier OpenCL vari-
ants. The OpenCLC kernel code for these examples would be
the same as the one for the Fancier OpenCL implementation.
On the other hand, the integration between Java and C/C++
execution required in order to run OpenCL implementations
is evaluated through the comparison between Bitmap Native
and Fancier Native. Lastly, OpenCL host code is not signifi-
cantly changed on the Fancier OpenCL variant over any reg-
ular OpenCL application, only being able to reduce memory
management to a single pair of function calls.

C. EVALUATION METHODOLOGY
Performance experimentation on mobile devices is a sensi-
tive task that needs to be carefully designed and managed
to obtain representative, precise, and reproducible results.
This is mainly because of the highly dynamic performance
characteristics of the SoC they are based on, due to the
power and thermal constraints they have. We implemented
the reliable benchmarking methodology presented in [25],
within the framework introduced in that publication, which
we used to make all performance evaluations. The bench-
marking application was compiled in release mode, produc-
ing native binaries in Arm mode (32-bit), and targeting SDK
version 29.

Each implementation of every image-processing kernel
described in Sect. IV-B was evaluated by applying it over
a set of inputs of different sizes repeatedly, measuring exe-
cution time on each instance. The used inputs, together with
their respective resolutions in pixels are the following: VGA
(640 × 480); XGA (1024 × 768); HD1 (1280 × 720); HD2
(1366 × 768); HD+ (1600 × 900); FHD (1920 × 1080);
QHD (2560× 1440); UHD (3840× 2160). The benchmark-
ing application was launched 10 times for each combina-
tion of image-processing kernel and implementation, with
30-second intervals separating each launch. Within each one
of these launches, the corresponding kernel implementation
was run over each input. Each of these runs consisted of
at least 4 repetitions, up to 10 repetitions or 5 minutes,
whichever happened first. Executions had to be kept relatively
short, hurting the precision of results, because the application
could get killed or the device could shut down or reboot on
its own. That is the reason why we offset this issue by exe-
cuting each implementation on a separate application launch,
running for a bounded amount of time, and repeating this
several independent times. The performance of each kernel
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FIGURE 11. Overhead of multiple implementations of Convolve 5× 5 relative to the reference C/C++ implementation. Red line is 0% overhead,
lower is better.

implementation and input size combination on each device
wasmeasured between 40 and 100 times in total. Benchmarks
were set up to run in a thread separate from the main one
responsible for the user interface (UI thread), to help allevi-
ate this problem and prevent ‘‘Application not responding’’
errors.

This is an Android-specific problem, which may be related
to the OS detecting these high-load prolonged time intervals
as an indication that the application is malfunctioning, and
to a stringent GPU watchdog timer affecting OpenCL imple-
mentations. In some cases, we were unable to reliably run
enough repetitions to obtain meaningful data, so for these
particular combinations we did not collect any data. Fancier
Java implementations of all kernels were only evaluated for
the smallest input sizes due to its much higher execution
time, demonstrating its unfitness for direct execution without
conversion into one of the other Fancier alternatives.

D. PERFORMANCE RESULTS
We use the overhead metric to represent our performance
results, which we define as the relative difference between
the measured execution time and a reference. We use Bitmap
Native as the reference to compare each other implementa-
tion to. That one being the fastest reference implementation,
we expected overheads to be high on Java implementations,
small on Fancier Native versions and negative on Fancier
OpenCL, where a GPU was used to execute in parallel.

As described in Sect. IV-C, for each combination of image-
processing kernel, implementation, input, and device, we ran
a series of benchmarks providing several execution timemea-
surements. This provides us not with a single representative

value, but a distribution of values. The larger the number
of measurements, the more confidence we can have on the
results. In order to calculate an overhead metric between two
of these distributions, we need to consider all values from
both distributions, obtaining an overhead distribution as a
result. If we consider each measurement of a distribution a
possible value that said distribution could have, the over-
head distribution between two execution time distributions
must contain all possible overhead measurements obtained
by operating on each pair of measurements from the cartesian
product of the values from the two distributions.2 Assuming
an execution time distribution called T and a reference exe-
cution time distribution called R, the overhead distribution
O(T ,R) would be calculated as shown in (1).

O(T ,R) =
{
t − r
r
| t ∈ T , r ∈ R

}
(1)

Overhead figures in this paper have been produced by
plotting the median value of the corresponding overhead
distributions, together with the 10th and 90th percentiles in
the form of error bars. This way we are able to compare
distributions of performance measurements while consider-
ing their associated imprecision. The horizontal red line in
these graphs represents the 0% overhead baseline. Higher
positive bars represent higher overheads, or less performance,
whereas negative bars below the baseline indicate speed-ups.
Figure 10 displays in a box plot format an example calculation
of the overhead between two synthetic normal distributions T
andR, designed with mean values of 1.2 and 0.6, respectively,

2Distributions in this case are unordered lists, where equal values may
appear multiple times, as opposed to sets.
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FIGURE 12. Overhead of multiple kernels and implementations relative to the reference C/C++ implementation. Red line is 0% overhead, lower is
better.

and standard deviations of 0.1 and 0.05, respectively, in order
to obtain an overhead distribution comparable within the
same scale. We can see that, as expected, O(T ,R) is centered
around 1, or 100% (1.2 is double 0.6, so a 100% overhead),
and the imprecision of T and R both contribute towards the
imprecision of the overhead distribution. In that figure, the
information that we can extract is that T has an 80% probabil-
ity of being between 1.10 and 1.35,R has the same probability
of being within 0.5 and 0.65 and, consequently, O(T ,R) has
an 80% probability of being in the range from 75% to 135%.
This approach, which we have intuitively defined, does not
require T or R to be normal and it can be applied in order to
produce combined metrics between distributions defined by
a list of samples.

In Fig. 11 we show the overheads calculated for all imple-
mentations of the C5 kernel and all inputs. As we found
performance behavior across inputs was similar across all
kernels, we extrapolate our analysis of this figure to the other
cases. For more detail, Appendix A contains a summary of
all experiments. What we find is that the overhead stays
relatively consistent across inputs, except from Bitmap Java
implementations on the P8L, which perform much worse on
the HD2 input. The fact that this only happens on that device
and input, but on all kernels, seems to indicate a possible
Bitmap implementation anomaly that has a poor interaction
with images of that particular size. We can also see that,
even if an implementation runs faster on one device, the
best alternative on another device might be different. As an
example of this, we can see Fancier Native is faster than
Bitmap Native on the P8L but slower on the SXZ. Another
trend we can observe on these graphs is that the relative
performance order among implementations does not depend

TABLE 2. Programmability evaluation based on source lines of code.
Reference Bitmap implementations and relative difference to Fancier
implementations shown.

on the input. For instance, if a given kernel implementation
on a device is slightly faster than the reference on the HD1
input, it will be nearly the same on the UHD input.

Figure 12 summarizes the calculated overheads on both
devices, and for all kernels and implementations, excluding
Fancier Java, using the HD1 input. We can see that Fancier
Java Perf. implementations on the P8L are all, to varying
amounts, an improvement over the Bitmap Java counterparts.
On the SXZ, the highest-performing Java implementation
depends on the kernel. On 30%of cases,Bitmap Java is faster,
while on 60% of them Fancier Java Perf. performs better.
We believe the different Java execution methods on Android
versions 8.0 and 5.1.1 could be the main reason why the
difference between implementations is not the same in both
devices. It is important to note the large overhead that, to vary-
ing degrees, all Java implementations have on all devices and
kernels. Despite all the effort put towards optimizing Java
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TABLE 3. Summarized results of all performance evaluations on the P8L device. The median execution times in seconds (s) are shown, and the
magnitude of the inter-quartile range relative to the median is given to represent the relative spread of measurements.

164584 VOLUME 9, 2021



S. Afonso, F. Almeida: Fancier: Unified Framework for Java, C, and OpenCL Integration

TABLE 3. (Continued.) Summarized results of all performance evaluations on the P8L device. The median execution times in seconds (s) are shown, and
the magnitude of the inter-quartile range relative to the median is given to represent the relative spread of measurements.

execution on Android, for compute-intensive kernels, such as
the ones we are evaluating, C/C++ implementations are still
clearly the best choice. This performance disparity together
with the increased programming effort required to develop
native implementations, as shown in Sect. IV-E, is what
creates the need for tools like Fancier.

With regards to native implementations, as expected,
Fancier OpenCL code is significantly faster than the equiv-
alent Bitmap Native counterparts. The only instance where
this is not the case is on the ME kernel, which consists
of a series of branches and loops that prevent GPUs from
performing optimally. Performance results on different inputs
for this kernel have a much higher variability than the rest
as well, possibly hinting at an important dependence on
the grouping of work items or memory organization. With
respect to the comparison betweenFancier Native andBitmap
Native implementations we find that, in 10%3 of the evalu-
ated kernels on the P8L and 60%4 on the SXZ, their differ-
ences are within margin of error. This means that, in these
instances, our benchmarks show that there are not enough
differences to reject the hypothesis that both implementations
are the same regarding performance. Or, more simply, that
we did not measure any overhead or performance improve-
ment there. Additionally, in 30%5 and 20%6 of the cases in
the P8L and SXZ, respectively, performance differences are
reduced enough to make programming effort the deciding
factor.

Considering one of the main goals of Fancier is to simplify
the integration of native code execution in Java applications,

3C3.
4GB, CO, C3, GS, ME, PO.
5BL, GB, ME
6BL, C5.

but not to improve performance over what it is typically
achieved by hand, it is especially surprising finding that in
50%7 and 10%8 of the kernels on the P8L and SXZ, respec-
tively, Fancier Native significantly improves performance
over the reference Bitmap Native implementation.We believe
the factors that could bemaking a difference in these cases are
related to compiler optimizations and memory. For the first
factor, many of the simpler element-wise vector operations
were implemented in headers allowing inlining, and a wider
range of pure functions were annotated to allow memoriza-
tion of results. With respect to the second factor, by allocating
memory as shared through the OpenCL API, the OpenCL
driver forces a certain memory alignment, which could have
resulted in a better cache performance in exchange for a
slower allocation time. Conversely, the Fancier Native imple-
mentation of the FE kernel displays a significant reduction
of performance compared to the reference on both devices.
A preliminary inspection of the generated assembly code
seemed to suggest that there were some compiler optimiza-
tions that could not be applied to the Fancier variant, showing
that there are still some corner cases to be studied where
Fancier Native adds significant overhead.

E. PROGRAMMABILITY RESULTS
In addition to performance differences, it is also important
to evaluate the differences in programmability by using the
various Fancier APIs compared to only Java and C/C++
implementations. We used source lines of code as an easily
obtainable and comparable proxy for programmability, and
we show our results in Table 2.

7CO, C5, GS, LV, PO.
8LV.
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TABLE 4. Summarized results of all performance evaluations of Java implementations on the SXZ device. The median execution times in seconds (s) are
shown, and the magnitude of the inter-quartile range relative to the median is given to represent the relative spread of measurements.
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TABLE 4. (Continued.) Summarized results of all performance evaluations of Java implementations on the SXZ device. The median execution times in
seconds (s) are shown, and the magnitude of the inter-quartile range relative to the median is given to represent the relative spread of measurements.

It can be clearly seen that native implementations take
more effort than pure Java ones. This is due to the need
to use JNI as a bridge between the main Java application
and the C/C++ implementation of an image-processing
kernel. Fancier Java implementations are between 10% to
60% smaller than the reference Bitmap Java implementation,
which is a very significant improvement. Fancier Java Perf.
versions take more lines of code due to the need to explicitly
declare and create a temporary object for each operation,
making it more verbose than the reference Java counterparts
on shorter kernels. However, for longer kernels it tends to
improve due to the relative simplicity of the Fancier Java API.
Regarding native implementations, the differences between
Fancier Native and Bitmap Native versions of each kernel are
more pronounced than their respective Java implementations.
This is mainly due to the significant programming overhead
of JNI, which the Fancier Native set of structures, functions,
and macros reduces to the bare minimum.

OpenCL is known to be a verbose programming model,
which it requires in order to provide its low-level control
over the accelerated execution. It demands the definition of
independent source code for the accelerator and the host pro-
cessor, adding a significant development overhead. Through
the use of the Fancier Native API, the interaction between
Java and OpenCL accelerators is greatly simplified, but it
does not remove the need to properly set up kernel parame-
ters and kernel launches. Compared to the reference C/C++
implementation of the same kernels, Fancier OpenCL needs
extra work, but it is significantly less than manually integrat-
ing OpenCL execution within a Java application. Crucially,
Fancier Java code is very close to OpenCL C, so a translation
layer can be designed to eliminate the added development
cost of this alternative.

V. CONCLUSION
We have presented Fancier, a multi-language framework that
simplifies the execution of native and accelerated OpenCL

code within a Java application. This is achieved by the defi-
nition of various Java data structures with a C/C++ counter-
part, and several utilities to seamlessly read and modify them
from both programming languages. An optimized memory
management system is implemented, which avoids memory
copies of Fancier containers on unified memory systems
while allowing access from Java, C/C++, and OpenCL code.

The Fancier Java API is highly streamlined, and it has been
modeled after OpenCL C with the goal of defining a subset
of Java that can be easily transformed into high-performance
native or accelerated implementations. In our analysis, it
requires less code than Android Bitmap for image process-
ing kernels. If executed directly, it suffers from poor perfor-
mance, so alternative Java methods are provided to avoid this
overhead. This alternative still matches closely the simpler
Java counterpart, making it useful for debugging purposes
before porting it to C/C++ or OpenCL. We have found its
performance to be, in many cases, greater than a reference
Java implementation using Bitmap objects, making it a
good alternative if a pure Java application is the goal.

The Fancier Native API greatly reduces the effort of inte-
grating C/C++ into a Java application, by simplifying JNI
calls, managing containers automatically and efficiently, and
providing logging and exception handling features. By fea-
turing a similar kernel API to Fancier Java, it can be easily
derived from it. Our experimentation showed this API to be
very high performance, even significantly outperforming our
reference C/C++ implementations. The automatic manage-
ment of memory provided by Fancier and the usage of its
native API for the bridge between Java and OpenCL makes
the acceleration of compute-intensive kernels in Java much
simpler. This opens the way for the acceleration of more Java
applications by reducing their development overhead.

Even though Fancier has promising features to help appli-
cation developers integrate high-performance native execu-
tion into Java applications, its main strength is that native
and OpenCL implementations can be automatically produced
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from the much simpler Fancier Java code. Parallel program-
ming models built on top of Java can adopt this framework
and benefit from its ease to program and optimize.

As a continuation of this work, Fancier is being adapted to
and validated on Linux systems and non SoC-based archi-
tectures. Future work includes designing and developing a
high-performance Java parallel programmingmodel based on
this framework, and further investigation should be carried
out in order to understand the origin of performance edge
cases of Fancier Native implementations. The interaction of
native parallel programming models, such as OpenMP or
OpenACC, with Fancier Native code could be explored as
an interesting avenue for large-scale, desktop and embedded
multicore or accelerated computing systems. We believe this
would represent a promising backend to investigate for par-
allel programming models built on top of Fancier.

.

APPENDIX A PERFORMANCE RESULTS SUMMARY
See Tables 3 and 4.
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