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Objective: To determine and compare the diagnostic precision in glaucoma of two  deep learn-

ing  models using infrared images of the optic nerve, eye fundus, and the ganglion cell layer

(GCL).

Methods: We  have selected a sample of normal and glaucoma patients. Three infrared images

were  registered with a spectral-domain optical coherence tomography (SD-OCT). The first

corresponds to the confocal scan image of the fundus, the second is a cut-out of the first

centered on the optic nerve, and the third was the SD-OCT image of the GCL. Our deep

learning models are developed on the MatLab platform with the ResNet50 and VGG19 pre-

trained neural networks.

Results: 498 eyes of 298 patients were collected. Of the 498 eyes, 312 are glaucoma and 186 are

normal. In the test, the precision of the models was 96% (ResNet50) and 96% (VGG19) for the

GCL  images, 90% (ResNet50) and 90% (VGG19) for the optic nerve images and 82% (ResNet50)

and  84% (VGG19) for the fundus images. The ROC area in the test was 0.96 (ResNet50) and

0.97  (VGG19) for the GCL images, 0.87 (ResNet50) and 0.88 (VGG19) for the optic nerve images,

and 0.79 (ResNet50) and 0.81 (VGG19) for the fundus images.

Conclusions: Both deep learning models, applied to the GCL images, achieve high diagnostic

precision, sensitivity and specificity in the diagnosis of glaucoma.
©  2020 Sociedad Española de Oftalmologı́a. Published by Elsevier España, S.L.U. All rights

reserved.

� Please cite this article as: Díaz-Alemán VT, Fumero Batista FJ, Alayón Miranda S, Pereira DÁ, Arteaga-Hernández VJ, Sigut Saavedra JF.
nálisis  de la capa de células ganglionares con deep learning en el diagnóstico de glaucoma. Arch Soc Esp Oftalmol.2021;96:181–188.
∗ Corresponding author.

E-mail address: vtdac@hotmail.com (V.T. Díaz-Alemán).
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Análisis  de  la  capa  de  células  ganglionares  con  deep  learning  en  el
diagnóstico  de  glaucoma

Palabras clave:

Glaucoma

Aprendizaje profundo

Tomografía

Células ganglionares

r  e  s  u  m  e  n

Objetivo: Determinar y comparar la precisión diagnóstica en glaucoma de dos modelos de

aprendizaje profundo, usando imágenes en infrarrojo del nervio óptico, del fondo de ojo y

de  la capa de células ganglionares (CCG).

Métodos: Hemos seleccionado una muestra de pacientes normales y con glaucoma. Se

recogieron tres imágenes en infrarrojo con un tomógrafo de coherencia óptica de tipo

spectral-domain (SD-OCT). La primera corresponde a la imagen de barrido confocal del

fondo de ojo, la segunda es un recorte de la primera centrada en el nervio óptico, y la tercera

fue  la imagen del corte SD-OCT de la CCG. Nuestros modelos de aprendizaje profundo se

desarrollaron en la plataforma MATLAB con las redes neuronales preentrenadas ResNet50

y  VGG19.

Resultados: Se recogieron 498 ojos de 298 pacientes. De los 498 ojos, 312 son glaucomatosos

y  186 son normales. En la prueba, la precisión de los modelos fue de 96% (ResNet50) y 96%

(VGG19) para las imágenes de la CCG, de 90% (ResNet50) y 90% (VGG19) para las imágenes

del  nervio óptico y de 82% (ResNet50) y 84% (VGG19) para las de fondo de ojo. El área ROC

en  la prueba fue de 0,96 (ResNet50) y 0,97 (VGG19) para las imágenes de la CCG, de 0,87

(ResNet50) y 0,88 (VGG19) para las imágenes del nervio óptico, y de 0,79 (ResNet50) y 0,81

(VGG19) para las imágenes de fondo de ojo.

Conclusiones: Los dos modelos de aprendizaje profundo analizados, aplicados sobre las imá-

genes  de la CCG, ofrecen una alta precisión diagnóstica, sensibilidad y especificidad en el

diagnóstico de glaucoma.

© 2020 Sociedad Española de Oftalmologı́a. Publicado por Elsevier España, S.L.U. Todos

los derechos reservados.
Introduction

Glaucoma is the leading cause of irreversible blindness world-
wide. Approximately 80 million people1 are affected by
glaucoma, and it is estimated that 112 million will have the
disease by 20402. However, several surveys suggest that most
glaucoma patients do not know they have the disease3,4. There
are several reasons for this phenomenon, including limited
knowledge of the disease4,5 and the fact that the first symp-
toms of glaucoma do not appear until very advanced stages6.

Since the last decade, the diagnosis of glaucoma has
improved with the introduction of optical coherence tomogra-
phy (OCT), which has become a necessary tool for quantifying
morphological damage to the optic nerve in patients with
glaucoma7. Both the measurement of the thickness of the peri-
papillary fiber layer and of the neuroretinal ring fibers by OCT
have proved to be reproducible and sensitive in the diagno-
sis of glaucoma, also enabling to determine the presence of
progression and to establish a rate of change8–10. Finally, OCT
has also shown that damage to the ganglion cell layer (GCC)
is prevalent among patients with incipient glaucoma11,12 and
therefore is useful for the diagnosis and control of progres-
sive change in glaucoma patients13. The glaucomatous lesion
in this layer presents as patterns with different intensities
and color shades (RGB) and shape, depending on the den-

sity of cells, with the lower temporal thinning being the most
frequent14.
Recently, deep learning models have been applied with
great diagnostic precision, sensitivity and specificity in
the screening of diabetic retinopathy, based on color
retinographies15,16. These techniques have also demonstrated
their usefulness in the identification of optic nerves with glau-
comatous damage using retinography17,18. The diagnosis of
glaucoma involves several challenges: while in the diagnosis
of diabetic retinopathy a series of well-established patterns are
analyzed (microaneurysms, hard exudates, etc.), the diagnosis
of glaucoma is more  complex because patterns suggestive of
glaucoma may be present in normal people but their morphol-
ogy may change in relation to the severity of the disease, and
they may even be absent or practically imperceptible to the
ophthalmologist in early stages of the disease. Finally, their
study must be supplemented with data from clinical examina-
tions, with functional and structural tests. All this constitutes
a diagnostic challenge for the clinician and for deep learning
models.

The authors propose that GCC images may be more  useful
because the lesion patterns in this layer are based on changes
in color tone and intensity, are usually asymmetrical to hemir-
retin and have no morphological structures to analyze. This
could favor the diagnosis of glaucoma through deep learning.
Therefore, the main objective of this work is to compare accu-
racy in the diagnosis of glaucoma of infrared images of the

GCC, the optic nerve and the fundus using these techniques.

Currently, there is not much literature that applies deep
learning models of GCC imaging for glaucoma diagnosis, so
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Table 1 – Study demographics.

Glaucoma Normal Meaning

Eyes 312 186
Age 68.1 (12.7*) 53 (16.9) p < 0.001
MD (dB) 10.6 (7.5) 2.03 (4.4) p < 0.001
IOP (mmHg) 30.8 (5.6) 16.3 (2.9) p < 0.001
Male sex 165 68 p < 0.001
a r c h s o c e s p o f t a l m

e  consider this approach quite novel. Only one recent related
ork, by Lee et al. has been found, in which a model was
eveloped to predict the density of the ganglion cell layer and
he internal plexiform. In this work a good correlation was
btained between the prediction of the model and OCT19.

ethods

n order to carry out this work, a sample of normal and
laucoma patients from the database of patients who attend
utpatient clinics at the Glaucoma Unit of the Ophthalmology
ervice of the University Hospital of the Canary Islands dur-

ng the year 2019 were retrospectively selected. The protocol of
his work was evaluated and approved by the Research Ethics
ommittee of the authors’ hospital and all methods adhere to

he principles of the Declaration of Helsinki for research with
atients.

The selection of the patients was made by a member of
he research team with more  than 10 years of experience in
he field of glaucoma. Patients with a diagnosis of primary or
econdary open-angle glaucoma with untreated intraocular
ressure greater than 21 mmHg  were included. The diagnosis
f glaucoma was based on the presence of reproducible defects

n the white-white perimetry and/or morphological criteria
ased on a spectral domain optical coherence tomograph
D-OCT Spectralis (Heidelberg Engineering, GmbH, Dossen-
eim, Germany) with the Glaucoma Premium and Posterior
ole module. The morphological criteria of glaucoma were the
ollowing: significant changes in neuroretinal ring thickness
ogether with significant changes in the peripapillary nerve
ber layer measured at 3.5 mm and hemirretinal asymmetry

n the GCC. Both eyes were included if they met  the inclusion
riteria.

All patients with concomitant ocular pathology other than
laucoma, lower visual acuity of 20/40, refractive error greater
han five diopters of spherical equivalent or three diopters of
stigmatism, level of false positives, negatives and fixation
rrors equal to or greater than 25% in the visual field were
xcluded from the study. Patients with hypoplastic or oblique
ptic nerves were also excluded.

Three images were collected with a Spectralis SD-OCT. The
rst correspond to the confocal scanning image  of the fun-
us in infrared (815 nm), the second is a clipping of the first
entered on the optic nerve and the third is the SD-OCT clip-
ing image  (880 nm)  of the GCC, with density represented
y changes in color intensity (RGB) (Fig. 1). The images were
xtracted raw, with a minimum quality index of 20. Data on
ge, sex, eye (right/left), intraocular pressure (IOP), and mean
efect (MD) were collected from the patients using an Octopus
01 campimeter (Haag-Streit AG, Köniz, Switzerland) with TOP
trategy.

For deep learning analysis the MATLAB platform was
sed (Massachusetts, USA). MATLAB (short for MATrix LAB-
ratory, m̈atrix laboratory)̈  is a numerical computing system
hat provides an integrated development environment with
 proprietary programming language (M language). Its basic
eatures include matrix manipulation, data and function rep-
esentation, algorithm implementation, user interface (GUI)
reation, and communication with programs in other lan-
∗ The numbers in parentheses represent the standard deviation.

guages and with other hardware devices. In addition, the
capabilities of MATLAB can be extended with toolboxes. One
such toolbox is the deep learning toolbox, which provides an
environment for designing and implementing deep neural
networks.

There are several types of deep neural networks. Convolu-
tional neural networks are of greater interest for the present
study due to being the most suitable type for working on
images. Their architecture is specially designed to recognize
specific elements in the images, and to process them faster.

Two pre-trained convolutional networks were used in the
MATLAB environment, i.e. ResNet50 and VGG 19. ResNet50
comprises 50 layers, and VGG19 has 19.

In order to be processed, the images were scaled to a res-
olution of 224 × 224 pixels. 80% of the image  sample was
randomly selected for training and network validation, and
the remaining 20% for testing. The data augmentation tech-
nique was used to increase the number of images in the
sample, by means of random transformations that would
provide new images with a consistent appearance with the
originals. This reduces the possibility of overfitting and allows
the network to learn the most relevant features. Overfitting
occurs when the trained model is too close to the input data,
and therefore is not able to make good predictions later. A
larger set of input data makes this phenomenon more  difficult.

During the training process the internal parameters of the
model are adjusted iteratively. In our case, the models were
trained with a miniBatchSize of 10 (number of images used for
each update of the model parameters) and a LearnRate of 3e-
4 (value that limits the magnitude of the modifications that
can be made to the internal parameters of the model in each
iteration). Under these conditions the two models were trained
three times, once for each group of images in the study.

The accuracy, sensitivity and specificity of the system was
calculated for each image  group and model. We used the area
under the curve (ROC) with 95% confidence intervals to eval-
uate the performance of the models.

Results

The study samplecomprised 498 eyes from 298 patients. Of the
498 eyes, 312 had glaucoma and 186 were normal. The average
age of the sample was 62.4 years (SD 16.18). The MD  of the eyes
with glaucoma was 10.6 dB (SD 7.5) and of the normal eyes was
2.03 dB (SD 4.4). Of the glaucomas, 112 were classified as mild

(MD 2.86 dB), 72 as moderate (MD 8.79 dB) and 128 as advanced
(MD 18.42 dB). Table 1 shows the demographic data and clinical
characteristics of the study sample.



184
 

a
 r

 c
 h

 s
 o

 c
 e

 s
 p

 o
 f

 t
 a

 l
 m

 o
 l

 .
 2

 0
 2

 1
;9

 6
(4

):181–188

Table 2 – Accuracy, sensitivity, specificity and ROC area of ResNet50 and VGG19.

GCC Optic nerve Fundus

ResNet50 VGG19 ResNet50 VGG19 ResNet50 VGG19

Accuracy (training) 92.13% 95.51% 92.14% 93.26% 89.89% 92.13%
Accuracy (test) 96% 96% 90% 90% 82% 84%
Sensitivity 96.80% 93.50% 100% 96.80% 90.30% 93.50%
Specificity 94.70% 100% 73.75% 78.60% 68.40% 68.40%
ROC (test) 0.96 0.97 0.87 0.88 0.79 0.81
ROC 95% CI 0.94–0.98 0.95–0.99 0.86–0.88 0.87–0.89 0.78–0.80 0.80–0.82
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Fig. 1 – Confocal image in background infrared (left), of the optic nerve (center) and the layer of ganglion cells (right),
c
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orresponding to a glaucoma patient included in the study.

In training, the models achieved diagnostic accuracy for
CC images of 92.13% (ResNet50) and 95.51% (VGG19), for
ptic nerve images of 92.14% (ResNet50) and 93.26% (VGG19),
nd for background images of 89.89% (ResNet50) and 92.13%
VGG19). During the test, the accuracy of the models was 96%
ResNet50) and 96% (VGG19) for GCC images, 90% (ResNet50)
nd 90% (VGG19) for optic nerve images and 82% (ResNet50)
nd 84% (VGG19) for fundus images. The sensitivity and
pecificity values and ROC area of the models are shown in
able 2.

The two models have the best ROC areas and the best
atio between sensitivity and specificity with GCC images:
OC 0.96 (ResNet50), ROC 0.97 (VGG19), sensitivity 96.80%

ResNet50), 93.50% (VGG19), and specificity 94.70% (ResNet50),
00% (VGG19). As can be seen in Table 2, the specificity data of
he two models with the fundus image  group are lower than
he other two  groups, sensitivity 90.30% (ResNet50), 93.50%
VGG19) and specificity 68.40% (ResNet50 and VGG19). Finally,
oth models offer very good sensitivity with the optic nerve

mage  group (100% ResNet50 and 96.80% VGG19), but their
pecificity does not exceed 80%, with an ROC area of 0.87
ResNet50) and 0.88 (VGG19).

An example of correct classification by our deep learning
odels is shown in Fig. 2. The upper images (Fig. 2a–c) cor-

espond to GCC images, where a focal loss of ganglion cells
an be clearly seen at a lower temporal level. The lower ones
Fig. 2d–f) are images of the optic nerve where an increase of
he optic cup is predominant in different stages, with evident
asal rejection of the vascular package.

Fig. 3 shows the cases where the two models made erro-
eous diagnosis. The possible reasons for these errors will be
iscussed in detail in the Discussion section.

iscussion

his study investigated the accuracy of two deep learn-
ng models in identifying glaucomatous optic neuropathy in
nfrared images of the GCC, optic nerve and fundus. The two

odels showed good performance with GCC images, followed
y optic nerve and fundus images. Recently, several published
apers have reported the use of deep learning for glaucoma

valuation18,20–22. Li et al., with a volume of 48,116 color retino-
raphies, reported that the deep learning system achieved
2.9% accuracy and ROC area of 0.9818. Ahn et al., using color
etinographies and the Inception V3 model, achieved 84.5%
accuracy and 0.9320 ROC area. Shibata et al., working with color
images and using the ResNet model, achieved 96% accuracy,
with 0.9621 ROC area. Christopher et al., using preprocessed
retinographies to locate and extract the optic nerve, evaluated
three different models: VGG16, Inception V3 and ResNet50,
with ResNet50 achieving a higher overall ROC area of 0.9122.

There are several characteristics among the data sets of
the cited works that can explain the difference in results vis-
a-vis the present study. First, the dataset used in these works
is larger than ours. The work of Li et al. contains a greater
number of images (48,116 vs. 498) and obtains a greater ROC
area and precision (0.98 vs. 0.88) and (92.9% vs. 90%). Due to
the high data requirements of deep-learning models, the addi-
tion of thousands of background images would substantially
improve model performance. Second, the present study uses
infrared images instead of color retinographies. Infrared imag-
ing has some advantages over color imaging such as greater
penetration of media opacity which makes it suitable for imag-
ing cataract patients23. They also have the potential to provide
deeper visualization of the retina, as they comprise longer
wavelengths, compared to the green channel commonly used
in color retinographies24. Finally, it has been shown that there
is good agreement among researchers in assessing the super-
ficial vasculature of the retina with color retinographies and
infrared images25. The use of confocal imaging with deep
learning models is less developed than the use with color
retinography images. The ease of acquisition and lower cost of
retinography makes it an excellent method of screening and
object analysis. Nevertheless, some authors have worked with
confocal imaging. Christopher et al., using a sample of 948
cases of glaucoma with infrared confocal imaging, obtained
an ROC area of 0.81 for the overall sample, and 0.92 if only
moderate and severe glaucomas were selected for analysis26.
Despite the difference in sample size, this data is close to ours.

The present study shows that more  precision is obtained
with the image  centered on the optic nerve instead of on the
fundus image.  This difference between the analyses of the two
groups of images can be explained because it is on the region
of the optic nerve where the most significant morphological
changes of the disease develop. Focusing only on this region
allows a better use of glaucomatous patterns and, therefore,

27
better performance . However, an excessive reduction in the
field of vision of the models could hinder their ability to learn
alternative characteristics not previously valued or known in
other regions28.
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Fig. 2 – GCC and optic nerve images correctly diagnosed by deep learning models. G: glaucoma.

s (a,
Fig. 3 – Examples of false positives (c, d, f) and negative

The two tested models offer good performance with all
three sets of images studied. The best performance is obtained
with the GCC images, followed by the optic nerve and fundus
images. Specifically, the GCC model VGG19 offers 96% diag-

nostic accuracy in the test, with an ROC area of 0.97. While
these results are superior to those obtained from analysis of
optic nerve or fundus images, we must interpret them with
 b, e) of deep learning models. N: normal; G: glaucoma.

caution. The patterns produced by glaucoma in this layer can
be focal or diffuse, the most frequent being lower temporary
focal loss. These patterns are, in principle, simpler to interpret
than those present in images of the optic nerve, where there

are various anatomical structures involved in the detection
of the lesions. This difference between the number and com-
plexity of the patterns could explain why our models obtain
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a r c h s o c e s p o f t a l m

etter accuracy with GCC images. An et al., in 357 eyes and
sing an OCT device (3D OCT-2000, Topcon Corp, Tokyo, Japan)
rained the VGG19 model and found an ROC area of 0.94 for the
mages centered on the optic nerve and 0.944 for the GCC29

mages. We have obtained a greater difference between the
OC areas by analyzing these two groups of images with the
ame model. This discrepancy between the results may be due
o the difference in sample size between both studies, to the
ifferent adjustment parameters of the VGG19 model or to dif-
erences in the image  due to the fact that the OCT devices of
oth studies are different.

In what concerns the GCC images misclassified by the net-
orks studied (Fig. 3), a possible reason could be the absence of

 focal pattern (Fig. 3a–c). With respect to misclassified cases
f the optic nerve, image  quality is an important factor. In two
ases presented there is a slight blurring of the image  and
his may be the cause of the error (Fig. 3d, e). In the last case
Fig. 3f), the absence of an optical cup could be another cause
f misinterpretation. The optical cup is present in both nor-
al  and glaucomatous patients. The increase of the optical

up is a critical sign of glaucoma that deep learning mod-
ls tend to consider as pathological. However, its absence has
een associated with classification errors30.

Our work has its limitations. The first is the size of the sam-
le. In deep learning models a large sample size would help to

mprove the performance of the model, decreasing overfitting,
aking the model more  reproducible. Second, another aspect

hat affects the model is the balance between the samples. In
ur case, there is a mismatch between the number of patients
ith glaucoma and normal subjects. Despite these two limi-

ations, the models were able to learn because the precision
alues, both in training and in testing, are very close for GCC
nd optic nerve images.

onclusion

n conclusion, the results of the present study suggest that
eep learning analysis of the infrared images of the optic
erve, the fundus and the GCC are useful in the diagnosis
f glaucoma. In the analysis with our two models, the GCC
chieved high diagnostic precision, sensitivity and specificity
n the diagnosis of glaucoma, followed by the images of the
ptic nerve and the fundus.
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