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Abstract—Modern standards in High Performance Computing (HPC) have started to consider energy consumption and power draw as

a limiting factor. New and more complex architectures have been introduced in HPC systems to afford these new restrictions, and

include coprocessors such as GPGPUs for intensive computational tasks. As systems increase in heterogeneity, workload distribution

becomes a more core problem to achieve the maximum efficiency in every computational component. We present a Multi-Objective

Dynamic Load Balancing (DLB) approach where several objectives can be applied to tune an application. These objectives can be

dynamically exchanged during the execution of an algorithm to better adapt to the resources available in a system. We have

implemented the Multi–Objective DLB together with a generic heuristic engine, designed to perform multiple strategies for DLB in

iterative problems. We also present Ull Multiobjective Framework (UllMF), an open–source tool that implements the Multi-Objective

generic approach. UllMF separates metric gathering, objective functions to be optimized and load balancing algorithms, and improves

code portability using a simple interface to reduce the costs of new implementations. We illustrate how performance and energy

consumption are improved for the implemented techniques, and analyze their quality using different DLB techniques from the literature.

Index Terms—Dynamic load balancing, energy efficiency, iterative algorithms, heterogeneous computing
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1 INTRODUCTION

THE urge to reduce energy consumption in computational
systems in the past decade has driven hardware archi-

tecture in high performance computing (HPC). New archi-
tectures in HPC incorporate specialized hardware to
accelerate parallel codes, such as Field–Programmable Gate
Arrays (FPGAs) and General Purpose Graphical Processing
Units (GPGPUs). These architectures are more efficient
both for execution time and energy consumption in numer-
ous scientific applications, but introduce heterogeneity due
to the specialization of the hardware. Systems that imple-
ment these technologies have appeared in the most power-
ful parallel computers listed in the Top500. The difference
in computational capabilities for all the resources in a sys-
tem node introduce a new difficulty layer to achieve the
optimal use of computational resources. As the natural
outcome for next years is to increase the computing capa-
bilities of these systems, power consumption has also
become a major issue. In order to be able to tune appli-
cations for this new metric, energy measurements have to
be performed before, during and after parallel codes are
executed. The numerous measurement devices and soft-
ware available [1], [2], [3] to obtain metrics increase the

heterogeneity of the scientific community applications,
further increasing the number of difficulties to address. To
improve the performance of applications in heterogeneous
environments, load balancing algorithms are crucial. Load
balancing makes use of metrics in order to improve appli-
cation performance, a task that can be difficult to address
if these metrics have to be gathered and utilized at run-
time. We propose to follow a Multi-Objective approach for
load balancing where the applications can be dynamically
tuned according to several objectives (time, energy, com-
munications, ..., or their combinations). The method adapts
to the objective that provides a better use of the resources
at any moment through a dynamic objective function,
which can change over time. This is particularly useful
when the metrics used on any objective are asynchronous
and differ in accuracy.

As a first contribution of this paper we present a generic
dynamic load balancing heuristic engine that allows this
adaptive Multi–Objective approach. Our previous work
targeted performance or energy using specialized techni-
ques [4], [5], the first based on the computational capacity
of each process and the latter using energy efficiency met-
rics. As a step towards generalization, we developed a
new approach for single objective dynamic workload bal-
ancing in iterative problems [6]. In this work, we present a
new engine that allows to switch from the performance
analysis to energy analysis, and to use metrics combining
both. At the same time, we have built a development
Framework (Ull Multiobjective Framework (UllMF) [7]) that
allows an efficient and friendly use of the method over het-
erogeneous architectures.
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We enumerate the contributions in this paper:

� An in–depth analysis of various objective functions
for the proposed generic heuristic engine. The
Multi–Objective approach uses the energy delay
product (EDP) to reduce the disadvantages of energy
measurement. We have implemented the perfor-
mance version of the heuristic to compare the EDP
to both their time and energy Single–Objective
counterparts.

� A new technique to use dynamic objective functions
during the dynamic load balancing algorithm. We
propose two different approaches, time–then–energy
(TTE) and time–energy–switch (TES), that lessens the
delay caused in the load balancing phase when using
only energy consumption metrics at runtime.

� An open source tool, Ull Multiobjective Framework
(UllMF), designed to perform dynamic load balanc-
ing over heterogeneous systems. UllMF implements
the previous contribution with very low code intru-
sion. Its abstraction hides the computational intrica-
cies to provide non–expert users the capacity to port
their codes to different architectures. The portability
is also achieved by offering independence to gather
energy consumption metrics. Additionally, in UllMF
we present the following contributions:
– The implementation of our generic heuristic to

perform dynamic load balancing as a program-
ming skeleton. To apply a new restriction to per-
form dynamic load balancing, only the new
objective function has to be added.

– A mechanism to switch the load balancing algo-
rithm, the objective function or the measurement
tool at runtime, which could be used to develop
dynamic load balancing techniques, such as
some cases presented in this work.

– An easily extensible design using modules. Algo-
rithms, objective functions and measurement
devices are abstracted to each other. A user can
implement a new algorithm using the existing
objective functions or measurement devices with-
out considering specific details of the modules.

To validate all ourwork, we have performed a set of experi-
ments using an heterogeneousmulti GPU cluster over iterative
problems. Iterative problems are a class of problems that
appear in multiple scientific fields. Examples of these prob-
lems in the literature are the Jacobi method, the stencil codes,
the longest common sub–sequence problem, sparse triangular
solvers and in general any dynamic programming algorithm
[8], [9]. Existing implementations for these algorithms can be
executed in modern architectures. However, due to the high
heterogeneity of the computational environments, both execu-
tion time and energy consumption would be heavily affected
for them.Moreover, parallel implementations need tobe tuned
to specific systems to achieve themost efficient resource usage,
a very difficult task. Load balancing techniques address this
task redistributing the workload of an application in order to
decrease execution time or to reduce energy consumption,
among other possibilities. Four different types of dynamic
programming iterative problems have been tested in our
computational experience. Our results are compared against

an homogeneous distribution of the work, a dynamic load bal-
ancing algorithm [4] that optimizes execution time, and our
previous work. In every case, we improve the use of resources
when compared to the homogeneous distribution and at least
one of the provided implementations is equal or better than
the previous dynamic load balancing techniques.

This paper is structured as follows: In Section 2 an over-
view of related work in the field is presented. Section 3
presents the heuristic algorithm that allows for the Multi–
Objective and dynamic approach. UllMF is described in
depth in Section 4. Section 5 describes our computational
experience with various dynamic programming algorithms.
Finally, our conclusions and future work are outlined in
Section 6.

2 RELATED WORK

The load balancing problem is present in the literature and
has been discussed thoroughly to improve performance in
high performance systems. Multiple linear algebra packages
implement solvers and computational models based on
Directed Acyclic Graphs. Such is the case of MAGMA [18],
Flame [19] and PLASMA [20]. Load balancing is also
applied outside of the HPC context, mainly to improve per-
formance based on a different resource usage. Peer Virtual
Machines (VMs) aggregation [21] is proposed to perform a
communication–aware placement for parallel applications.
VMs in this environment are rescheduled based on deter-
mined communication patterns. Load balance techniques
are also combined with data–aware scheduling through a
work stealing technique for data intensive applications [22].

Multiple performance and power/energy–aware algo-
rithms have been developed following load balancing tech-
niques. In Table 1, we have included a collection of relevant
contributions available in the literature. First, even if they
are not directly related to our proposal, it is worth mention-
ing energy–aware scheduling algorithms. CEEDMIP [10], is
a Contention-aware, Energy Efficient, Duplication based
Mixed Integer Programming formulation, which focuses on
optimizing the use of energy and the duplication for com-
munication intensive applications. The high amount of task
scheduling techniques available in the literature for hetero-
geneous multiprocessors also motivated the development
of QHA [11], a quantum–inspired energy–aware hyper–
heuristic that tackles the power and performance trade–off
optimization problem automatically managing low-level
heuristics. On a higher scale, EPPADS [12], a high–
performance light–weight scheduler for improving job proc-
essing in large scale clusters, combining performance opti-
mization with power saving management schemes to avoid
the limitations of MapReduce schedulers. At a GPU level,
KSRE [13] is a kernel scheduling approach for saving energy
consumption for concurrent GPU kernels. KSRE extracts the
features of a kernel, classifies it and obtains and potential
energy savings using a regressionmodel in order to schedule
any task. In integrated CPU–GPUarchitectures, all the differ-
ent automatic powermanagement implementations by hard-
ware vendors hinders the resource usage optimization, and
many are not exposed to the end–user. A black–box
approach was introduced [14] to avoid these issues, parti-
tioningwork across the CPU andGPU cores.
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Our contribution, built as the UllMF framework, is a
technique to use multi–objective objective functions in a
dynamic load balancing algorithm using metrics gathered at
runtime. The objective of some previous works align with
ours, however, the technique we propose targets completely
different algorithms that are provided as a high level library
instead of scheduling tasks directly. This high level library
only deals with workloads reassignments for data already
distributed among the processes. Task scheduling use to
involve more complex strategies to manage processes
or tasks. This line of work is closer to other techniques
presented in the literature.

In E-ADITHE [15] a technique for redistributing work-
load between processors is applied. Prior to the load balance
phase, it executes a heuristic to select the optimal number of
processing units in system–on–chips (SoCs), applying a two
step algorithm. Our algorithm tries to optimize using all the
available processes in the parallel program and is integrated
as a fully developed framework, usable by non–expert
users. ALEPH [16] is another energy–aware optimization
technique, where performance and energy consumption
are addressed as a bi–objective optimization problem.
This technique models the objective system to estimate an
optimal workload distribution in a many core device.

Still, our proposal is a novel multi–objective dynamic
load balancing approach in iterative problems, where

the objective functions can be dynamically modified at
runtime.

Programming Skeletons is a different technique that is
based on the development of highly efficient generic struc-
tures designed to abstract the programmer from the under-
lying system architecture. SkelCL [23] and Marrow [24] are
skeletons that generate OpenCL code. SkePU2 [25] is a
more modern approach that uses C++11 constructs to
jtarget multiple heterogeneous architectures, including
OpenMP, CUDA and OpenCL. Our heuristic engine con-
ceptually follows an approach similar to the generic frame-
works Mallba [26], ParadisEO [27], jMetal [28] and
Metco [29] that allow a flexible design of metaheuristics, or
the DPSKEL [30] skeleton,that provides a generic solver for
dynamic programming algorithms. By only defining the
specifications of a problem, these frameworks are able to
provide implementations for various parallel architectures.
The proposed heuristic engine apply the same principle in
an smaller scope, abstracting the user from the objective
function to solve. All these solutions have as common
defining characteristic that they isolate specific problem
details from the algorithm resolution steps.

In UllMF, we implement the heuristic engine as a module
to perform dynamic load balancing and, following the flexible
design ideas from these works, isolates metric gathering, the
algorithms and objective functions tomaximize code reuse.

TABLE 1
Comparative Between Optimization Techniques in Parallel Environments

Author Optimization Metric Description Remarks

Singh et al. [10] Energy efficiency Contention–aware duplication based
mixed integer programming model for
scheduling task graphs on heterogeneous
multiprocessors.

Uses Mixed Integer Programming to
optimize energy efficiency

Chen et al. [11] Performance, Energy
efficiency

Quantum–inspired hyper–heuristic for
energy–aware scheduling on
heterogeneous computing systems

Addresses energy-constrained
performance optimization and
performance-constrained energy
optimization

Hamandawana
et al. [12]

Performance and Energy
efficiency

Enhanced Phase-based Performance
Aware Dynamic Scheduler (EPPADS)
proposed as an alternative to MapReduce
schedulers

Coordinates scheduling with power
saving management schemes to
improve energy usage

Li et al. [13] Performance, Energy
efficiency

Kernel scheduling approach for reducing
energy consumption (KSRE) of concurrent
kernels in GPU environments

Extracts the features of the kernels,
classifies them, and obtain potential
energy savings through a regression
model

Barik et al. [14] Energy efficiency Black-box scheduling technique to
improve energy usage by partitioning
work in System–on–chip CPU–GPU
arquitectures across both the CPU and
GPU cores

Combines a power model with
runtime information of a specific
workloads

Cabrera et al. [6] Generic Single Objective Generic Single-Objective Heuristic to
tackle a target objective function using
dynamic load balancing in iterative
problems

Requires defining the target single
objective function

Garz�on et al. [15] Energy consumption Load balancing algorithm for System–on–
chip CPU–GPU arquitectures

Two–step procedure to determine
allocation of processes and workload
distribution

Reddy et al. [16] Performance, Energy
consumption

Bi–objective optimization technique for
multicore homogeneous clusters

Models the target system to estimate
optimal workload distributions

Rodr�ıguez-Gonzalo
et al. [17]

Energy consumption,
Performance–per–watt

Dynamic spawn of MPI processes to
optimize the chosen metric in a parallel
application

Models the target system using
performance counters
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3 HEURISTIC ALGORITHM

We propose a new Multi–Objective approach to address the
dynamic load balancing problem, using various optimization
objectives. A generic heuristic engine has been developed as
an adaptive technique that dynamically exchanges different
objectives.Whether the optimization goal is to improve perfor-
mance, reduce energy consumption or achieve multiple objec-
tives, the objective function can be selected at runtime. This
technique lessens the impact of asynchronousmetric gathering
as better and faster metrics could be used to find improved
workload distributions in earlier stages of a parallel process.

Algorithm 1 illustrates the generic structure of the parallel
iterative method where our heuristic is able to improve the
workload distribution. This type of algorithm requires to
determine the amount of work assigned to every process (the
workload), and in the case of using a Message Passing imple-
mentation, an explicit gathering of the data after each com-
puted iteration. Then, for each state of the problem, work has
to be redistributed, solved, and gathered back to all processes
to continue the following iteration. Workload has to be redis-
tributed at each state due to the total workload variability that
certain iterative problems show in between iterations. Gather-
ing the results forces a synchronization phase where every
process has to wait until all the current work is finalized. In
what follows we will assume a Message Passing implementa-
tion based onMPI.

Algorithm 1. Iterative Algorithm Structure

1: procedure ITERATIVE PROBLEM

2: for all process p do
3: workloads½p�  1=num procs
4: for all state 2 IterativeAlgorithm do
5: distribute workðworkloadsÞ
6: solveðworkloads½p�; stateÞ
7: gather resultsðworkloadsÞ

This scheme presents disadvantages for homogeneous
workload distributions, which could be unbalanced if any
of the following characteristics are present:

� The problem to solve has an irregular nature. Two of
the problems presented in our computational experi-
ence have this behavior. An homogeneous workload
could be problematic, causing long waiting times in
the synchronization phase.

� Our target system has an heterogeneous architecture.
The computational capabilities of each process can
be different, leading to the same circumstance hap-
pening in regular problems.

Algorithms 2 and 3 illustrate how an iterative problem
has to be modified to incorporate our heuristic. Applying a
dynamic load balancing technique, we find better workload
distributions to minimize the misuse of resources in these
situations, which ensue the improvement of our desired
objective. Based on the principles of the metaheuristic
frameworks, the problem constraints are isolated from the
procedures to search different workload distributions. This
characteristic allows to apply the same algorithm structure
to improve any of the objectives we intend to optimize, be it
energy consumption, execution time, or any other resource
required by the user.

Algorithm 2.Heuristic Applied to an Iterative Algorithm

1: procedure ITERATIVE PROBLEM

2: for all process p do
3: workloads½p�  1=num procs
4: search distance 1=num procs
5: reset probability smallvalue
6: for all state 2 IterativeAlgorithm do
7: distribute workðworkloadsÞ
8: solveðworkloads½p�; stateÞ
9: gather resultsðworkloadsÞ
10: measurements gather resource usageðÞ
11: if search distance < threshold then
12: if randomðÞ < reset probability then
13: reset probability smallvalue
14: search distance 1=num procs
15: workloads heuristic searchð
16: workloads;measurements; search distance
17: )
18: else
19: Increase(reset probability)
20: else
21: workloads heuristic searchð
22: workloads;measurements; search distance
23: )

Algorithm 3.Heuristic Search Algorithm

1: function HEURISTIC_SEARCH ▷ Input: workloads
2: ▷ Input: measurements
3: ▷ Input: search_distance
4: ▷ Output: new_workloads
5: for all process p do
6: resources½p�  measurements½p�=workloads½p�
7: candidates 
8: generate distributionsðnum procs; search distanceÞ
9: new workloads nil
10: bestresource eval  1
11: for all c 2 candidates do
12: cresource eval  
13: evalue workload distributionðresources; cÞ
14: if cresource eval < bestresource eval then
15: new workloads c
16: bestresource eval  cresource eval

17: return new workloads

The following notation was used in Algorithms 2 and 3:

� num procs, total number of parallel processes in the
execution.

� p, a parallel process.
� workloads, vector of workload allocated to each

processor.
� search distance, maximum workload movement for

each processor.
� threshold, smallest workload movement allowed.
� reset probability, probability of restarting the

dynamic load balancing technique.
� resources, vector of resource usages per workload

unit assigned to each processor.
� c, candidate workload distribution.
� cresource eval, estimated resource usage of a candidate

workload distribution c.
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Using our heuristic in an iterative problem, as presented
in Algorithm 2, does not require to modify the iterative
algorithm. The execution starts from an homogeneous
workload distribution, and the core behavior of the execu-
tion (distribute, solve and gather the partial results) remain
unmodified. Once an iteration is executed, we gather the
metrics related to one or many of the objectives we are opti-
mizing. After the metrics are gathered, the main procedure
of our method is applied and a new workload distribution
is obtained. Initially, the solution space is explored broadly
to avoid local optima. Subsequent iterations reduce the
search distance for a new solution, until it is settled near to
an optimal workload distribution. This behavior is con-
trolled in the generate distributions function. A threshold is
set as a stop condition, which determines the optimality of
our workload distribution. As this methodology is not
deterministic, we require to establish a limitation to avoid
very fine corrections of the solution. Without it, the heuristic
algorithm would continue for negligible improvements, and
the overhead of the heuristic search would hinder the over-
all performance of the iterative algorithm. This design is
inspired by the Variable Neighborhood Search (VNS) [31]
metaheuristic. Once the improved workload distribution is
determined and the search distance is smaller than the
threshold, the heuristic stops.

Finally, as previously discussed, the irregularity of cer-
tain problems may cause an optimal workload distribution
at a definite iteration, to be a poor quality solution in a sub-
sequent state. Hence, we defined a mechanism to reinitialize
the heuristic search with a certain probability. This reset is
also inspired by a metaheuristic, the Simulated Annealing
(SA) [32]. The SA metaheuristic accepts new solutions based
on a probability, which decreases over time to reach a local
optima. In this algorithm, we increase the reset probability
as the execution progresses, to evaluate if the solution has
deteriorated. The reset probability can be set to 0 in regular
problems. However, in this work, we will address each
problem as a completely unknown execution to illustrate
the quality of our proposal.

In Algorithm 3, we present the steps to find a new work-
load distribution in each iteration of the iterative problem.
First, we determine which are the candidate workload dis-
tributions based on the current search distance. Then, using
the resource usage per unit of work assigned to each pro-
cess, the candidate workloads are evaluated. The core of
our contribution lies in how we have improved the evalua-
tion of the different workload distributions. We use the
resource usage to estimate the quality of each candidate,
based on current measurements. As a result of the heuristic
structure, we can apply multiple–objectives to evaluate
workload distributions, which can also change dynamically
to lessen the impact of difficult metric gathering, bad accu-
racy or changes in the restrictions determined by the user.
evalue workload distribution is a procedure that returns the
resource consumption estimation of candidate workload
distributions. This procedure, in fact, implements the objec-
tive to be optimized, so a dynamic exchange in this proce-
dure would be enough to implement a dynamic objective
function to optimize the desired resources, as long as appro-
priate measurements are gathered. In the next section, we
will further explain how this is implemented to avoid

gathering unnecessary metrics and reducing the overhead
of our algorithm at the sametime.

In our experimentation, the resource estimation for the
candidates can be improved, as using current measure-
ments to estimate the future behavior of irregular problems
could lead to worse solutions. However, we prove in this
work our methodology improves the resource usage in a
parallel system despite using simple estimations.

4 ULL MULTIOBJECTIVE FRAMEWORK

We present a tool to address the classic load balancing
problem dynamically in iterative problems. Implemented
in C, UllMF offers various mechanisms to cope with
different objectives for workload redistribution between
processors.

We considered the development of UllMF as we found
multiple challenges to implement the heuristic algorithm
from its pseudo–code. First, the end user codes have to be
minimally modified. If we compare Algorithms 1 and 2, the
amount of code intrusion in the iterative structure is very
high, triplicating the amount of lines of code in the algo-
rithm. Multiple metric gathering options also have to be
implemented as well to use this heuristic. Energy metrics
also entail additional difficulties to apply load balancing
dynamically. Despite using existing state–of–art solutions
from the scientific community, metrics are slow for a per–
iteration usage, and measurement is often performed asyn-
chronously. Finally, to put in practice the dynamic objective
function, the heuristic implementation needs an inter-
changeable abstract method to evaluate workloads.

The main objective of UllMF is to provide abstraction
over the underlying heterogeneous hardware and a porta-
ble tool to perform load balancing. UllMF offers a set of
library calls that hide the specifics of measurement, provid-
ing portability to the experimental codes. The tool has sev-
eral tasks to accomplish in order to deal with heterogeneity
in the system. Two Single–Objective functions are imple-
mented by default, minimizing energy consumption and
the classic performance maximization, and one Multi–
Objective approach using the energy delay product, EDP.
The objective dynamic fuctions are obtained by combining
the former.

Furthermore, it provides the implemented heuristic
engine that can be modified with a custom objective func-
tion to fulfill specific needs for the user. To simplify its
implementation, the framework is divided in multiple mod-
ules, illustrated in Fig. 1.

� The user interface provides the required functions and
procedures to initialize the dynamic load balancing.
It also provides the data structures required within
its context. All the components of the library are
named with the prefix ullmf_.

� The strategy selector allows the user to select the cali-
bration modules to perform the load balancing at
runtime. This module allows to tune parameters for
the different calibration modules, or to swap load
balancing algorithms during an execution.

� The calibration modules are different implementa-
tions of load balancing algorithms. Currently there
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are available four modules, two of which calibrate
minimizing execution time, one for energy efficiency,
and the Multi–Objective approach using EDP.

These modules are:
– An adaptation of the Ull_Calibrate_Lib

load balancing technique, which redistributes
workload proportionally to the processing capa-
bilities of every processor in each iteration.

– An implementation of the heuristic algorithm for
minimizing execution time. It shares the objec-
tive of the previous module, but searches the
workload distribution using the algorithm from
Section 3.

– An implementation of the heuristic algorithm for
minimizing energy consumption.

– A multi–objective implementation of the heuris-
tic, using the energy delay product (EDP).

The measurement interfacemodule, which provides an
abstraction to gather specific metrics. Currently, we
only offer access to energy measurements trough
the use of EML [33], although any other could be
integrated. As our calibration modules work with
energy and time, EML covers our needs with the
aforementioned due to its capability to detect the
available measurement devices at runtime, while
the latter is covered through the use of MPI_Wtime.
This interface is provided to allow easy implementa-
tions of personalized measurement devices or com-
plex metrics. The energy heuristic implementation is
portable due to this module, which provides general-
ization for measurements.

Fig. 1 also depicts the interconnection between all these
modules through the white lines. The highlighted modules,
user interface and strategy selector, are the ones used or con-
figured by the final user to perform the load balance. The
rest of the modules provide their functionalities without
requiring to interact explicitly with them.

Listing 4.1 illustrates a basic example of UllMF usage.
The code is structured to take advantage of iterative
methods. Once initialized in line 6, a strategy has to be
selected as shown in lines 7 and 8. The chosen strategy
ullmf_strategy_heuristic_energy is the imple-
mentation of the heuristic algorithm for energy

efficiency. When set, the memory and initial values are
allocated using ullmf_mpi_setup in line 9, which
needs as parameters the calibration structure calib, the
amount of work counts for each process, the location of
that work in the data array displs and the strategy.
The dynamic load balance is then performed using the
procedures ullmf_mpi_start and ullmf_mpi_stop,
which modify the workload distribution stored within
the variables counts and displs.

The ullmf_mpi_start and ullmf_mpi_stop proce-
dures manage the flow of the calibration process, starting and
stopping the appropriatemeasurements though the use of the
calibration functions selected by the chosen strategy.

4.1 Strategy Selector

The strategy selector provided by UllMF, is connected
through the user interface to provide the main functionalities
to perform the dynamic load balancing. This interface hides
the calibration modules from the user and provides access
to them through the ullmf_calibration_t datatype.
ullmf_calibration_t contains the strategy selector mod-
ule options and decision making, composed by another
data structure, ullmf_strategy_t. Specific parameters
can be used to tune the modules within the strategy struc-
ture. ullmf_calibration_t uses ullmf_strategy_t

to implement a strategy pattern in order to modify the cali-
bration decision making at runtime.

Listing 4.2 illustrates with a dummy code this function-
ality. The strategies, once imported, can be changed within
the code as desired, shown in lines 6 and 11. In this code,
we make use of two strategies provided by UllMF. This
kind of approach can be used to differentiate critical sec-
tions of an algorithm, that can be balanced for performance,
and less important sections that can be rebalanced to
improve energy efficiency. A user–defined strategy can
also be provided in the same fashion, if the user implements
its own development of ullmf_strategy_t. Notice how
the calibration modules are hidden from the user, which
are never used directly in the code. Complex decision mak-
ing could be used inside the program to swap strategies.
With this module, we can perform dynamic optimization
by varying the objective function.

Fig. 1. UllMF component diagram.

2426 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 10, OCTOBER 2020

Authorized licensed use limited to: Univ La Laguna. Downloaded on December 29,2023 at 12:20:15 UTC from IEEE Xplore.  Restrictions apply. 



Listing 4.1. Calibration Code Example

1 // num_procs = Number of processors;

2 // id = ProcessID; N = ProblemSize

3 workload[id] = 1 / num_procs;

4 displs[id] = id * N * workload[id];

5 ullmf_calibration_t* calib;

6 ullmf_mpi_init();

7 ullmf_strategy_t* strategy =

8 ullmf_strategy_heuristic_energy;

9 ullmf_mpi_setup(calib, workload, displs,

strategy);

10 for (i = 0; i < n; i++)

11 {

12 ullmf_mpi_start(calib);

13 counts[id] = N * workload[id];

14 for (i = displs[id]; i < displs[id] + counts

[id]; i++)

15 {

16 // ... Work ...

17 }

18 ullmf_mpi_stop(calib, workload, displs);

19 MPI_Allgather(&problem[displs[id]], counts

[id], ...);

20 // ... Share results with other processes

21 }

22 ullmf_mpi_shutdown(); // Calibration module

finish

23 ullmf_mpi_free(calib);

Listing 4.2. Dynamic Objective Function Swap Example

1 #include ’’ullmf.h’’

2 #include ’’ullmf/strategy_heuristic_time.h’’

3 #include’’ullmf/strategy_heuristic_energy.h’’

4 ullmf_calibration_t* calib;

5 // ... initialization ...

6 calib->strategy = ullmf_strategy_heuristic

_time;

7 ullmf_mpi_start(calib);

8 // ... Work ...

9 ullmf_mpi_stop(calib, counts, displs);

10 // Strategy change

11 calib->strategy = ullmf_strategy_heuristic_

energy;

12 ullmf_mpi_start(calib);

13 // ... More work ...

14 ullmf_mpi_stop(calib, counts, displs);

4.2 Calibration Modules

We provide four modules to be utilized by UllMF users.
These load balancing strategies have simple logic and exist
to select and tune some parameters of the chosen load cali-
bration method.

4.2.1 Ull_calibrate_lib

The Ull_Calibrate_Lib module was designed based on
the technique presented by their original authors in the liter-
ature [4]. This load balance strategy redistributes workload
between the different processors depending on their

performance solving a given problem. The speed of each
process is calculated by measuring the time spent solving
the assigned tasks, taking into account the amount of work
given to every process and the size of the problem. This
load balance technique is performed by proportionally
redistributing the workload based on this previously calcu-
lated performance. The objective achieved through these
operations is to minimize the time difference between the
fastest and the slowest process at every iteration to reduce
waiting times between iterations.

4.2.2 Heuristic Implementation: Energy, Time, and EDP

The provided heuristic modules are developed following the
principles of skeleton programming. It differentiates from
Ull_Calibrate_Lib in how new workload distributions
are generated. The skeleton generates new candidates, the
different workload distributions, and selects the best based
on a user developed function, evalue workload distribution.

Listing 4.3. UllMFHeuristic Search Implementation

1 void heuristic_search(ullmf_calibration_t*

calib)

2 {

3 ullmf_strategy_heuristic_t * heuristic =

4 (ullmf_strategy_heuristic_t *) calib->strat

egy;

5 // Calculate resources per unit of work

6 double resource_ratios[calib->num_procs];

7 for (int i = 0; i < calib->num_procs; i++)

8 resource_ratios[i] = get_resource_ratios(

9 calib->measurements[i], calib->workload

10 );

11 // Generate heuristic population of candidates

12 ullmf_workload_t** candidates;

13 int num_candidates =

14 generate_distributions(calib->workload, &

candidates);

15 // Evaluate heuristic population

16 double best_resource_eval =

17 heuristic->evalue_workload_distribution(

18 calib, calib->workload, resource_ratios

19 );

20 double candidate_resource_eval;

21 for (int i = 0; i < num_candidates; i++)

22 {

23 candidate_resource_eval =

24 heuristic->evalue_workload_distribution(

25 calib, candidates[i], resource_ratios

26 );

27 if (candidate_resource_eval < best_resource_

eval)

28 {

29 candidate_resource_eval = best_resource_

eval;

30 calib->strategy->best_candidate = candida

tes[i];

31 }

32 }

33 }

Part of the heuristic code is provided in Listings 4.3
and 4.4. These two functions, heuristic_search and
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heuristic_calibrate are our implementation of Algo-
rithms 2 and 3. The only user developed function,
evalue workload distribution, is called in the heuristic_-
search procedure, in lines 17 and 24.

evalue workload distribution returns a numerical value,
candidate_resource_eval, which quantifies the
resource usage of the given workload, i. e., the amount of
time spent or the energy consumed. This value is the vari-
able cresource eval in the Algorithm pseudocode. In our imple-
mentaion, a smaller value of cresource eval represents a better
candidate workload distribution.

Listing 4.4. UllMF Heuristic Dynamic Load Balancing
Implementation

1 int heuristic_calibrate(ullmf_calibration_

t * calib)

2 {

3 // Energy measurements are time dependent

4 if (calib->strategy->mdevice->is_measuring)

5 return ULLMF_TAG_CALIBRATED;

6 ullmf_heuristic_heuristic_t* heuristic =

7 (ullmf_heuristic_heuristic_t*) calib->str

ategy;

8 if (heuristic->search_distance < heuristic-

>threshold)

9 {

10 // Search distance too small, trying to reset

11 double reset = random();

12 if (reset < heuristic->reset_probability)

13 {

14 heuristic->search_distance = heuristic-

>reset_distance;

15 heuristic->reset_probability = heuristic-

>initial_reset;

16 }

17 else

18 {

19 heuristic->reset_probability += heuristic-

>increment

20 return ULLMF_TAG_CALIBRATED;

21 }

22 }

23 // Listing IV.3

24 heuristic_search(calib);

25 return ULLMF_TAG_RECALIBRATING;

26 }

The function described in Listing 4.3 is inside the
heuristic_calibrate function that determines whether
the heuristic gets executed or not, as shown in Listing 4.4.
This function envelops the heuristic procedure, and is
located within ullmf_mpi_stop in the experimental code.
The general overview of the algorithm as a whole, is that it
performs the following tasks, necessary for the dynamic
load balancing:

� The generation of candidate workload distributions
is inspired by the Variable Neighborhood Search. At
the beginning of the problem, workload candidates
are disperse i.e., with great variation respecting the
current distribution. Less modifications are allowed
between the candidates as the execution progresses.

� The stop condition, determined in the line 8 of List-
ing 4.4. The stop condition, related to the VNS,
determines that the method should stop when the
distance to the new workload distributions is very
small.

� The Simulated Annealing (SA) inspired reset. The
distance for the generated candidates used as stop
condition resets with a probability, which restarts
the heuristic dynamic load balance. Since we
expect problem irregularity, a reset allows to
search a new optimal workload distribution as it
changes over time.

We also provide implementations for evaluate workload
distribution to define how to interpret the metrics. For the
Energy Heuristic, evaluate workload distribution returns the
sum of all the energies consumed by each process. This con-
sumption is estimated for the candidate workload with help
of the current resource usage per unit of work. For the Time
Heuristic, the implementation is the maximum execution
time from all the processes.

4.2.3 Dynamic Objective Functions

As previously stated, all the algorithmic implementations
can be changed during the execution of an algorithm. This
functionality, illustrated in Listing 4.2, has been used as
basis for implementing two complex dynamic load balanc-
ing techniques.

They have the objective of reducing the resources wasted
during the first iterations of the iterative problems when the
desired metric is energy consumption. These complex strat-
egies are not included in UllMF, but have been imple-
mented using the mechanisms described in this section.

The first and most simple implementation developed to
diminish the waste of resources during energy measure-
ment is time–then–energy (TTE). As its name indicate, the
dynamic load balancing starts using time metrics to balance
the workload using the heuristic algorithm. Once the search
is finished and the restarting phase starts, the strategy is
changed to perform the heuristic using energy metrics.
With this procedure, we achieve an improvement of the
overall energy consumption of an iterative problem, and
reduce the startup impact caused by energetic measure-
ment. Once the beginning phase is avoided, the energy heu-
ristic search can be applied normally.

The second approach imitates the behavior of the EDP
without using a Multi–Objective approach. To do so, we
alternate between the time and energy heuristic implemen-
tations. Starting with the time algorithm to avoid the issues
solved by the TTE, both methods are used alternatively
once a reset phase of the algorithm is reached. A positive
aspect of this technique, denominated time–energy–switch
(TES), is that by optimizing both objectives alternatively we
avoid local optima caused by each function individually.

5 EXPERIMENTATION

UllMF and the proposals have been tested in an heteroge-
neous cluster composed by 4 GPU nodes. Table 2 has a sum-
mary of the characteristics of the hardware used in the
experimentation. The kernel installed in each node is
4.9.0-6-amd64 #1 SMP Debian 4.9.82-1+deb9u3
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(2018-03-02). The build and execution environments use
the same software. Every library was compiled using GCC
Version 4.8.5, OpenMPI 3.0.0 and the CUDA sdk version
7.5. Energy metrics were gathered using the NVidia Man-
agement Library driver (NVML) EML module.

Our computational experience was gathered with multi-
ple executions of four different iterative problems, imple-
mented using dynamic programming: the Knapsack
Problem (KP), the Resource Allocation Problem (RAP), the
Triangulation of Convex Polygons (TCP) and the Cutting
Stock Problem (CSP) [34]. The KP provides an example of a
regular fine grained problem, where most of the perfor-
mance is lost during the communication phases. The RAP
exemplifies the regular counterpart, a compute bound,
coarse grained problem. Additionally, its workload is irreg-
ular within each iteration, as every partial solution depends
on the previous calculated ones. The TCP and CSP are also
coarse grained, similar to the RAP. However, they differ in
the workload distribution between each iteration. The
dynamic programming table is filled diagonally, increasing
the total amount of operations per iteration as the problem
progresses. At the beggining of the problem, both CSP and
TCP have very low computational requirements. As the
problem progresses, the workload is increased until a maxi-
mum size is reached. Finally, the total workload diminishes
until the problem is completely solved.

The implementations of these four dynamic program-
ming algorithms were developed using DPSkel [35]. DPSkel
already provides the solving mechanisms for various
dynamic programming algorithms, and we only required to

provide the problem specific GPU implementation and the
UllMF code instrumentation. Since every process requires
all the calculations performed in the previous iterations,
data communication is solved through an MPI_Allgather

call after the data has been copied from the GPU to the
main memory. This communication phase forces a barrier,
which we use to perform the load balancing phase to mini-
mize the impact of the workload redistribution.

5.1 UllMF Implementation Analysis

In order to better understand how each different heuristic
behaves, we have performed an extense study of the solu-
tion space for our objective algorithms. Figs. 2 and 3 illus-
trate a representative part of these studies in two different
GPUs: a Tesla K20c and a Tesla M2090. In every surface, the
axis labeled as Tesla K20c  ! Tesla M2090 represent the
workload assigned to one of the two processes, while the
remaining workload to reach the problem size is assigned
to the other one. This translates as, the left side of the chart
gives all workload to process 0, the right side gives all work-
load to process 1, and the middle of the axis represents the
homogeneous distribution. The axis labeled as Iterations
depicts how the problem evolves during its execution. In
Figs. 2b and 3b, the beginning of the execution is at the bot-
tom while the last iteration is at the top of the chart. The
energy consumed for each combination of workload distri-
bution and current iteration is represented through the col-
ormap, where darker colors represent less energy
consumption. The elevation in the 3d surfaces, Figs. 2a and
3a, further illustrates the change in the workload through
the space of the problem. Finally, the optimal workload dis-
tribution for each iteration is marked with the symbol þ
and an example of a load balancing algorithm is represented
through a solid trace line.

Fig. 2a illustrates an execution of the RAP, size 3,000. In
this Figure, we can observe the irregularity mentioned ear-
lier within each iteration. It is not caused solely by the dis-
parity in the computational capabilities of each GPU, but it
is part of the problem definition. If the hardware was homo-
geneous, distributing the workload equally would not
achieve an optimal usage of resources. The optimal distribu-
tion and the load balancing trace is illustrated in Fig. 2b, at
the right region of the chart. Our heuristics reach the

TABLE 2
Experimentation Cluster

Nodes CPUs (Xeon) Memory GPU

Verode16 2x E5-2660 64 GB M2090
Verode17 2x E5-2660 64 GB K20c
Verode18 2x E5-2660 64 GB K40m
Verode20 2x E5-2698 v3 128 GB M2090
GPU # Cores RAM Mem BW Power
K20c 2496 5GB 208 GB/s 225 W
K40m 2880 12GB 288 GB/s 235 W
M2090 512 6GB 177.6 GB/s 225 W

Fig. 2. Resource Allocation Problem (RAP) analysis. (a) RAP 3d solution space. (b) RAP solution space dynamic load balancing execution trace.
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optimal workload distributions relatively fast. We could
argue that a static load balancing technique would be suffi-
cient for this problem and our methodology is not justified.
However, a static workload balancing technique would
require previous knowledge for the target problem, which
is not the case for our methodology.

Fig. 3a represents a different case which fits better a
dynamic load balancing technique. In the CSP executions,
the optimal workload distribution is a trajectory in the
solution space, instead of the presented RAP static region.
The first iterations, the total workload is very small and
using a single process yields the optimal energy consump-
tion. As the execution progresses, the increasing total
workload starts to impact the energy consumption and the
optimal distribution changes. Once half of the problem is
solved, the total workload starts to decrease until the single
process is optimal again. Fig. 3b depicts the optimal distri-
bution and the load balancing trace for the performance
implementation of our heuristic. Using UllMF we are able
to find workload distributions with very low overhead that
approximates to the optimal trajectory.

We analyzed the overhead introduced by UllMF and its
implementation. The results were gathered by performing
executions of our heuristic algorithm and saving the work-
load distribution at each step of the problem, as a trajectory.
Afterwards, these workload trajectories were used to exe-
cute the problems, without our library code. The obtained
results, presented in Table 3, show that the overhead is
caused by a constant cost of initialization, that is reduced as
the problem size increases.

The smallest execution, of size 1,000, is around 7.5 percent,
but as the size increases, the overhead settles around 1.4

percent for execution time. Energy consumption is affected
similarly, ranging from 11.0 to 0.8 percent for the biggest prob-
lem size. We concluded that the overhead is negligible, even
more when we consider the potential improvement of the
resource usage shown in the following section.

5.2 Computational Results

Tables 4, 5, 6 and 7 contain the time and energy experimen-
tal measurements. The reference time, labeled as Ref, is
gathered from the iterative problems executed without the
UllMF instrumentation using an homogeneous distribution.
The columns labeled as Calib show the experimentation per-
formed with the adapted Ull_Calibrate_Lib module.
Labels EnerH and TimeH represent the data gathered from
the heuristic algorithm implementations for energy and
time respectively. The Multi–Objective implementation is
labeled as EDP, and finally, the dynamic objective functions,
TTE and TES for the time–then–energy and time–energy–

Fig. 3. Cutting Stock Problem (CSP) analysis. (a) CSP 3d solution space. (b) CSP solution space dynamic load balancing execution trace.

TABLE 3
UllMF Overhead

Time (s) Energy (J)

CSP Manual UllMF Diff. (%) Manual
UllMF

Diff. (%)

1000 7.15 7.74 7.5 1082 1216 11.0
1500 22.89 23.62 3.1 3631 3775 3.8
2000 52.63 53.38 1.4 8473 8620 1.7
2500 100.40 101.72 1.3 16351 16634 1.7
3000 170.52 172.95 1.4 28619 28850 0.8

TABLE 4
KP Experimental Data

Time (s)

KP Ref Calib EnerH TimeH EDP TTE TES

2000 0.93 1.03 1.03 1.04 1.03 1.01 1.08
4000 3.39 3.25 3.40 3.23 3.40 3.05 3.43
6000 7.12 6.74 7.12 6.78 7.13 6.10 6.87
8000 12.53 11.40 11.85 11.39 11.88 10.11 10.63
10000 19.05 18.67 19.13 18.38 19.17 16.20 20.15
12000 27.08 25.95 26.79 25.14 26.85 22.62 24.11
14000 35.48 34.76 35.49 33.78 35.57 29.99 31.58
16000 46.21 44.16 45.97 42.38 46.08 37.57 39.99

Energy (J)

KP Ref Calib EnerH TimeH EDP TTE TES

2000 136 146 148 150 148 144 155
4000 507 476 497 473 498 447 499
6000 1067 995 1049 999 1051 899 1010
8000 1882 1689 1756 1683 1759 1496 1566
10000 2873 2762 2831 2714 2838 2394 2971
12000 4064 3843 3971 3720 3979 3340 3558
14000 5364 5172 5300 5027 5312 4441 4681
16000 7037 6557 6849 6271 6865 5589 5947

Best results in bold.
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switch implementations. The best performing algorithm
uses a bold font to help understand these computational
results. In what follows, resource usage will be addressed
as ðtime; energyÞ tuples.

The KP is the least compute intensive problem from the
set. The experimentation clearly shows that for the smallest
size, applying load balancing is slightly detrimental, as the
workload redistribution and the library overhead demand
more resources than the improvement achieved by applying
any dynamic load balancing technique. As the problem size
increases, resource usage improves, starting from size 4,000.
Without considering the smallest case, as the absolute error
is in a much smaller magnitude, resources are improved
using the Ull_Calibrate_Lib method by (4.44, 6.11 per-
cent), the Energy Heuristic by (0.91, 2.57 percent), the Time
Heuristic by (6.04, 7.84 percent), the EDP by (0.69, 2.36 per-
cent), the TTE dynamic objective function by (15.58, 17.19
percent) and, finally, the TES by (6.74, 8.70 percent). Table 4
presents the numerical data from these experiments. When
the load balancing techniques are applicable, the best option
is to apply the dynamic objective functions, as they improve
the workload distribution much better than the mono–
objective and Multi–Objective counterparts.

The RAP is our first compute intensive problem from the
selected test cases. It introduces irregularity in the workload
as every operation computes all the previous values, thus
the cost of every operation increments with time. Thus, an
homogeneous distribution will always be suboptimal. This
behavior is reflected in the high improvements in resource
consumption despite the technique used to perform the
load balancing. Computational results, gathered in Table 5,
show an average improvement of (75, 75 percent) when
using any of the load balancing techniques proposed in
this work. The Energy Heuristic improves only by an aver-
age of (61.76, 62.43 percent) due to its behavior in smaller
problem sizes. However, when the size increases, its
improvements are as notable as the other heuristic techni-
ques. In this case, Ull_Calibrate_Lib only achieves an
average of (66.31, 65.98 percent), and takes longer than the

Energy Heuristic to reach the efficiency of the other algo-
rithms. This experimentation also illustrates that the
Multi–Objective approach and the dynamic objective func-
tions hides the slow energy measurement, with TTE
achieving the best solutions. These techniques also
improve the solution provided by the Energy Heuristic by
(29.07, 29.07 percent) However, compared against the Time
Heuristic, only the TTE presents an improvement of the sol-
utions, by an average of (3.54, 3.22 percent).

The next case, the TCP, introduces irregularity between
iterations, as the workload changes in different phases of its
execution. Table 6 illustrates that both Ull_Calibrate_-

Lib and Time Heuristic obtain similar results, with the Time
Heuristic being slightly better than the Ull_Calibrate_-

Lib. Ull_Calibrate_Lib improves the homogeneous
distribution by (28.43, 26.94 percent), while the Time Heuris-
tic improves them by (28.87, 27.36 percent) on average. On
the other hand, gathering energy consumption metrics
require more time than measuring the execution time, the
dynamic workload balance techniques that involve energy
consumption will be a disadvantage in these kind of irregu-
lar problems. The Energy Heuristic improves the original dis-
tribution by (22.56, 21.82 percent). Using the EDP Multi–
Objective approach, the impact of using slow metrics is
reduced. Compared to the Energy Heuristic, it performs
slightly better due to supporting the energy metrics with
time. The EDP improves the solutions by (25.40, 24.48 per-
cent). In this case, there is no clear advantage for using a
dynamic objective function. Still, the original workload dis-
tribution is improved by (23.40, 22.51 percent) using TTE
and by (21.77, 21.21 percent) using TES.

Finally, the CSP implementation, in Table 7, is a most
compute heavy problem of the set, and introduces the big-
gest irregularities in the workload between iterations. The
best solutions are again achieved by the Time Heuristic,

TABLE 5
RAP Experimental Data

Time (s)

RAP Ref Calib EnerH TimeH EDP TTE TES

1000 1.36 0.77 1.10 0.66 0.67 0.69 0.64
2000 6.81 2.98 5.39 2.23 2.16 2.21 2.20
3000 20.13 7.21 5.04 4.76 4.75 4.67 5.18
4000 46.03 12.79 8.36 8.43 8.02 7.79 8.45
5000 87.78 17.44 12.25 12.37 13.38 11.45 11.99
6000 149.07 27.17 17.81 18.14 17.75 16.68 17.96

Energy (J)

RAP Ref Calib EnerH TimeH EDP TTE TES

1000 182 105 145 87 89 93 84
2000 967 424 750 309 300 312 302
3000 2850 1030 699 676 673 666 733
4000 6623 1853 1189 1226 1155 1126 1222
5000 12790 2607 1757 1830 1979 1681 1765
6000 21888 4011 2635 2716 2610 2486 2686

Best results in bold.

TABLE 6
TCP Experimental Data

Time (s)

TCP Ref Calib EnerH TimeH EDP TTE TES

500 0.60 0.59* 0.65 0.59* 0.60 0.61 0.62
1000 3.93 3.17 3.39 3.12 3.22 3.28 3.41
1500 12.51 8.45 9.36 8.38 8.74 9.07 8.97
2000 29.48 19.20 20.88 19.02 19.85 20.45 21.46
2500 55.20 38.37 41.48 38.33 39.99 41.13 40.73
3000 95.41 67.31 72.83 66.99 70.92 73.63 75.24
3500 149.73 109.77 118.23 109.25 115.53 118.70 119.85
4000 224.64 166.87 179.03 167.04 177.78 179.30 187.71

Energy (J)

TCP Ref Calib EnerH TimeH EDP TTE TES

500 86* 87 96 87 87 89 92
1000 589 491 522 483 498 506 522
1500 1913 1325 1450 1319 1363 1415 1396
2000 4590 3064 3285 3034 3136 3230 3363
2500 8707 6183 6602 6177 6379 6556 6500
3000 15286 10956 11737 10905 11440 11856 12098
3500 24314 18066 19220 17985 18840 19325 19478
4000 37122 27891 29576 27902 29319 29686 30743

Best results in bold. ’*’ indicates when a value is different for Time and Energy.
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with an average improvement of (23.48, 20.23 percent). In
the CSP, the extreme workload irregularity between itera-
tions causes all the techniques based on energy measure-
ments to react poorly to the change in total workload. TTE
is the algorithm that is affected the most, causing a perfor-
mance degradation of (-3.6, 7.38 percent). By applying the
Multi–objective function, EDP, the effect of using energy
metrics is softened and solutions are improved by (15.63,
11.72 percent). The rest of the algorithms improve the
workload distribution only after a certain size of the prob-
lem, 1,000 for Ull_Calibrate_Lib and 1,500 for the
Energy Heuristic and the TES. On average, Ull_Calibra-
te_Lib improves the workload distribution by (5.25, 2.78
percent), the Energy Heuristic by (5.29, 2.45 percent), and
the TES by (8.13, 4.99 percent).

These experiments indicate that despite there are some
differences, our architecture shows high correlation
between the energy and performance metrics, and faster
solutions yield the better energy efficiency. The algorithm
that achieves the lower execution time also consumes less
energy to execute the iterative problems. More over,
improvements in % respecting the reference for each case
differ by an average of 1 percent.

After reviewing the whole set of experiments, we can con-
clude that the size of the problem or the iteration irregularity
does not affect the optimal metric to apply to a given problem.
From the results gathered executing the KP and the RAP, we
can observe that energy measurements are not the best option
for dynamic load balancing. However, if the energy metrics
are supported by time measurements to perform dynamic
load balancing, workload distributions are greatly improved
in both, energy consumption and performance. We show how
the dynamic objective function TTE is strictly better.

The irregularity in between iterations heavily disrupts
the dynamic load balancing algorithm for energy metrics

as we can see with the TSP and CSP problems. By observ-
ing the heuristic trajectories from the previous section and
the experimental results, we can conclude energy metrics
are not suitable if this feature is present. The polling rate
of energy measurements and its asynchronous nature
makes using them appropriately in real time very difficult
with this kind of constraints. Moreover, only the Multi–
Objective approach is able to mitigate its downsides, and
the dynamic objective functions algorithms are not able to
solve this issue.

Finally, we can conclude that in the case of low variation
among iteration workload Multi–Objective dynamic objec-
tive function TTE is recommended, while using the perfor-
mance approach has presented the best results in the case of
high irregularity.

6 CONCLUSION

We presented a Multi–Objective dynamic load balancing
approach for heterogeneous architectures using multiple
GPUs. Several objectives can be applied to tune an applica-
tion and we proved they can be dynamically exchanged to
improve the resource usage in iterative algorithms. All con-
tributions are implemented in an open source tool, the Ull
Multiobjective Framework (UllMF), using a generic heuristic
engine designed to easily perform the presented strategies.
In UllMF, metric gathering, algorithms and objective func-
tions are isolated to maximize code reuse and provides a
simple interface to reduce costs associated to custom user
implementations. The whole experimentation set illustrates
the strong and weak points of the presented techniques,
which improve the execution time and the energy consump-
tion when compared to executions using an homogeneous
distribution. In problems where the workload is regular in
between iterations, energy metrics are proven to be very
useful, specially if they are supported with execution time
metrics using the dynamic Multi–Objective function TTE.
For problems where the workload is irregular in between
iterations, energy metrics have a negative effect and, while
the Multi–Objective approach mitigates it, the best results
are obtained using our Time Heuristic.

In future work, we intend to study multiple opportunities
that appeared with the development and study of UllMF. Our
first goal is to analyze how energy metrics affect our different
dynamic load balancing implementations on architectures
where the best performance do not imply the best energy effi-
ciency. For longer–term research possibilities, we will focus in
the effects of different powercap technologies in dynamic load
balancing algorithms for parallel applications.

ACKNOWLEDGMENTS

This work was supported by the Spanish Ministry of Sci-
ence, Innovation and Universities through the TIN2016-
78919-R project, the Government of the Canary Islands,
with the project ProID2017010130 and the Grant
TESIS2017010134, which is cofinanced by the Ministry of
Economy, Industry, Commerce and Knowledge of Canary
Islands and the European Social Funds (ESF), operative pro-
gram integrated of Canary Islands 2014-2020 Strategy Aim
3, Priority Topic 74(85 percent); the Spanish network
CAPAP-H, and the European COST Action CHIPSET.

TABLE 7
CSP Experimental Data

Time (s)

CSP Ref Calib EnerH TimeH EDP TTE TES

500 1.46 1.58 1.75 1.34 1.45 1.50 1.76
1000 9.03 9.25 9.90 7.74 8.54 11.33 10.58
1500 29.59 28.76 32.68 23.62 26.59 29.52 29.76
2000 69.37 65.58 64.71 53.38 62.24 79.34 64.19
2500 136.93 127.64 116.37 101.72 107.31 137.38 111.77
3000 235.09 218.63 205.70 172.95 196.57 228.48 204.06
3500 374.26 341.82 323.97 271.95 287.83 356.24 305.98
4000 558.00 510.68 505.15 405.19 432.57 517.91 460.83

Energy (J)

CSP Ref Calib EnerH TimeH EDP TTE TES

500 218 238 263 203 220 227 265
1000 1386 1434 1515 1216 1324 1757 1640
1500 4582 4518 5067 3775 4183 4666 4692
2000 10845 10434 10330 8620 10457 12659 10284
2500 21515 20546 18893 16634 18030 22388 18203
3000 37291 35871 34206 28850 33027 38213 33981
3500 59638 56682 54428 45863 48361 59855 51411
4000 89507 85515 86786 69134 72680 88979 78407

Best results in bold.
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