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Abstract: The lipid and fatty acid profiles of 14 marine
macroalgal species from theMadeiraArchipelago, including
two green (Ulvales and Dasycladales), three red (Cor-
allinales, Bonnemaisoniales, and Ceramiales) and nine
brown (Fucales, Dictyotales, and Sphacelariales) species
were characterised in order to determine their potential use
for animal and human nutrition. The total lipid content of
species analysed was generally low, varying from 0.2 to
5.2%ofdryweight. All species presentedan omega 6/omega
3 (n-6/n-3) ratio lower than 10, as recommended by the
World Health Organization for proper human health. Poly-
unsaturated fatty acids (PUFA), including linoleic acid and
alpha-linolenic acid were exceptionally high in the green
macroalga Ulva sp. Red macroalgae were rich in n-3 long-
chain PUFA, particularly Asparagopsis taxiformis, which
contained 6.6% of docosahexaenoic acid, and Halopithys
incurva with 9.3% of eicosapentaenoic acid. Within Ochro-
phyta, Dictyota dichotoma is an interesting source of n-3
PUFA due to its high stearidonic acid proportion (8.0%). In
addition, H. incurva contained a high proportion of both
mono- and digalactosyldiacylglycerols. According to their
lipid profiles, most macroalgae analysed might be consid-
ered of particular interest for their potential exploitation for
human nutrition and livestock and aquaculture production.

Keywords: lipid profile; macroalgae; nutrition; poly-
unsaturated fatty acids.

1 Introduction

Marine macroalgae are fast-growing multicellular, photo-
synthetic organisms, classified into threemajor groups based
on their pigmentation: green macroalgae (Chlorophyta), red
macroalgae (Rhodophyta) and brown macroalgae (Ochro-
phyta). Seaweeds are traditionally consumed as food in Asia,
mainly Japan, China and Korea (Roleda et al. 2018). However,
their demand as food has also extended to occidental soci-
eties, mainly due to a change in consumer preferences, being
increasingly recognized as a type of healthy “superfood” that
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leads to the production of algal-derived innovative products
(FAO 2018a). Marine macroalgae are rich in nutritional and
bioactive compounds, including minerals such as iodine,
fibre, vitamins, carbohydrates, proteins, lipids, chiefly poly-
unsaturated fatty acids (PUFA), phytosterols (PTS), and
phenolic compounds. Seaweedsalsopossesshigh contents of
pigments that exert antioxidant and anticancer activities
(Chandini et al. 2008; Nunes et al. 2020; Stengel et al. 2011;
Zárate et al. 2020). In addition, several other compounds of
macroalgae are described to have potential medical applica-
tions, including antitumor, anticoagulant, antiviral, anti-
protozoal, antifungal, and antibacterial properties (for
details, see Barzkar et al. 2019).

Given the versatility of seaweeds for their application
in industries, their global production is expected to in-
crease in the coming decades. Seaweed aquaculture has
been practiced for decades in Asian countries (Campbell
et al. 2019), especially in China, themainworld producer in
both value and volume (FAO 2018a). Farmed macroalgae
represent 96% of the total global supply (Harwood 2019),
and this is almost exclusively used for direct human con-
sumption (FAO 2018a, b). In Western countries, seaweeds
are mainly exploited for the industrial production of phy-
cocolloids such as alginate, agar-agar and carrageenan
(Dellatorre et al. 2020), although its production by aqua-
culture has been recently established as a commercial ac-
tivity (Campbell et al. 2019).

Seaweeds are a promising protein source, presenting a
higher content of essential amino acids than vegetables
(Fleurence 1999). In this regard, seaweed consumption is
expected to increase due to the growing demand for protein
sources that can overcome the anticipated challenges of a
growing world population and food scarcity, and the de-
mand for alternative proteins in Western countries. In
recent years, lipid composition of macroalgae has also
raised considerable interest due to their valuable content of
omega-3 (n-3) PUFA and of a certain type of lipids. In
general, marine macroalgae have low lipid levels (<5% of
dry weight, DW) (Dellatorre et al. 2020; Schmid et al. 2018),
and fluctuating fatty acid (FA) profiles, which vary greatly
among taxa (Stengel et al. 2011). These variations have
been attributed to several factors, including seasonal and
geographical changes, environmental parameters, physi-
ological status, and even molecular mechanisms in
response to environmental factors (Verma et al. 2017).

Glycolipids andphospholipids are themajor lipid classes
in algae (Guihéneuf et al. 2015), togetherwith triacylglycerols
(TAG) (Harwood 2019). Glycolipids are mainly located in
photosynthetic membranes playing a crucial role in main-
taining optimal photosynthesis efficiency (Nakamura and
Li-Beisson 2016), and are predominantly represented by

monogalactosyldiacylglycerol (MGDG), digalactosyldiacyl-
glycerol (DGDG) and sulfoquinovosyldiacylglycerol (SQDG).
Furthermore, major phospholipids are phosphatidylcholine
(PC), phosphatidylethanolamine (PE) and phosphatidylgly-
cerol (Guihéneuf et al. 2015), which are mostly localized in
non-plastidmembranes, except for the latterwhich is present
in the chloroplast envelope (Nakamura and Li-Beisson 2016).
MGDG, DGDG or phosphatidylglycerol have been described
as anti-inflammatory and anti-thrombotic compounds, while
PTS are known to lower total and low-density lipoprotein
cholesterol levels in humans (Ibañez and Cifuentes 2013).
Despite the low lipid level reported inmacroalgae (Dellatorre
et al. 2020; Schmid et al. 2018), their PUFA content is greater
than that of terrestrial plants (Kendel et al. 2015). Within
PUFA, the long-chain PUFA (LC-PUFA) are physiologically
important molecules (Trushenski and Rombenso 2019)
involved in cell membrane structure, transcription, regula-
tion and cellular signalling (Lee et al. 2016; Zárate et al. 2017).
Furthermore, a high dietary intake of n-3 LC-PUFA has been
shown to prevent somehumandiseases, including colon and
breast cancers, neurodegenerative or inflammatory illnesses,
and even to reduce the prevalence of dementia (Harwood
2019; Lee et al. 2016; Zárate et al. 2017). Particularly, eicosa-
pentaenoic acid (EPA; 20:5n-3) and docosahexaenoic acid
(DHA; 22:6n-3) have been demonstrated to reduce cardio-
vascular disease and arthritis, and to improve brain function
(Harwood 2019). Consequently, global demand for n-3 FAhas
significantly increased over the last decades. Fish and other
marine products are almost the only natural source of n-3
LC-PUFA for humans (Zárate et al. 2017). However, the source
of these FA is generally not fish itself but marine phyto-
plankton and macroalgae, which form their major dietary
source (Colombo et al. 2019). Algae possess not just the ca-
pacity to synthesize de novo alpha-linolenic acid (ALA; 18:3n-
3) and linoleic acid (LA; 18:2n-6), but also LC-PUFA, whose
content differs among taxa (Bourgougnon et al. 2011). To
date, the feeding of aquatic captive-reared species has relied
heavily on fishmeal and fish oils obtained from wild pelagic
fish populations, whose stocks are currently either fully
exploited or overexploited (FAO 2018b). Recently, various
plant-based sources have been tested to replace marine in-
gredients due to their higher availability, sustainability and
reducedcost.Nonetheless, terrestrial alternativespresent low
digestibility, contain some antinutritional factors, and are
deficient in certain essential amino acids and n-3 LC-PUFA,
resulting ina significant reductionof thenutritionalqualityof
the edible product (Welker et al. 2016). By contrast, the in-
clusion of small amounts of macroalgae in aquafeeds seems
to positively affect fish growth performance and feed effi-
ciency due to their high nutritional value and balanced
composition (Norambuena et al. 2015).
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For all these reasons, awide variety of seaweeds can be
potentially exploited as a main source of n-3 LC-PUFA, not
just for direct human consumption but also for animal feed
production, offering a continuous and sustainable supply
of these essential compounds and contributing to satis-
fying the world population’s needs. The main objective of
the present study was to broadly characterize the lipid and
FA profiles of the still understudied, but most representa-
tive 14 macroalgal species from the Madeira Archipelago,
in order to evaluate their potential as sources for both n-3
LC-PUFA and other healthy lipid molecules with marked
anti-hypercholesterolemic and anti-hypertriglycerolemic
properties for human and animal nutrition.

2 Materials and methods

2.1 Specimens of seaweeds

Single samples were collected from representative species of the
Madeira Archipelago, including two green macroalgal species
(Chlorophyta, Ulvophyceae) Dasycladus vernicularis (Scopoli) Krasser
(Order Dasycladales) andUlva sp. (Order Ulvales), three species of red
macroalgae (Rhodophyta, Florideophyceae) Corallina officinalis Lin-
naeus (Order Corallinales), Asparagopsis taxiformis (Delile) Trevisan
(Order Bonnemaisoniales) and Halopithys incurva (Hudson) Batters
(Order Ceramiales), and nine species of brown macroalgae (Ochro-
phyta, Phaeophyceae) Cystoseira compressa (Esper) Gerloff et Niza-
muddin (Order Fucales), Cystoseira usneoides (Linnaeus) M. Roberts
(Order Fucales), Cystoseira humilis Schousboe ex Kützing (Order
Fucales), Sargassum vulgare C. Agardh (Order Fucales), Dictyota
dichotoma (Hudson) J.V. Lamouroux (Order Dictyotales), Lobophora
J. Agardh sp. (Order Dictyotales), Padina pavonica (Linnaeus) Thivy
(Order Dictyotales), Halopteris filicina (Grateloup) Kützing (Order
Sphacelariales), andHalopteris scoparia (Linnaeus) Sauvageau (Order
Sphacelariales), and were analysed in triplicate.

The seaweeds were haphazardly harvested, taking the entire
algal thallus (between 0.5 and 1 kg) at a maximum depth of 10 m by
free diving, from different beaches of the Madeira Archipelago
including Madeira and Porto Santo islands (Portugal; Figure 1). The
sampling was carried out from March to June 2017, when water
temperature ranged from 18.5 to 21 °C. After collection, samples
were transported to the laboratory in seawater, where they were
gently washed with filtered freshwater, frozen at −35 °C and freeze-
dried under reduced pressure (4 × 10−4 mbar) with a cooling trap
(Scanvac Coolsafe Model 55-4, Labogene, Lynge, Denmark) set
at −56 °C for five days. Lyophilized samples were later milled to
200 µm particle size in an electric mill (IKA Werke Model M20,
Staufen, Germany), packed under vacuum with a vacuum sealer
(AudionVac Model VMS 153, Derby, UK) and stored at −35 °C until
biochemical analysis.

2.2 Lipid extraction

Total lipid (TL) was extracted using 10ml of chloroform/methanol (2:1,
v/v) per 100 mg sample, according to the method described by Folch
et al. (1957)with smallmodifications (Christie andHan 2010). The lipid
content was gravimetrically determined after evaporation of the
organic solvent under a stream of nitrogen. TL extracts were stored at
10 mg ml−1 in chloroform/methanol (2:1, v/v) containing 0.01% (w/v)
of butylated hydroxytoluene (Sigma-Aldrich Co., St. Louis, Missouri,
USA) as an antioxidant, under an inert atmosphere of nitrogen
at −20 °C.

2.3 Lipid classes and fatty acid composition

Lipid classes were separated by one-dimensional double-develop-
ment high-performance thin-layer chromatography (HPTLC), using
1-propanol/chloroform/methyl acetate/methanol/0.25% potassium
chloride (5:5:5:2:1.8, v/v) for polar lipids, and hexane/diethyl ether/
acetic acid (20:5:0.5, v/v) for neutral lipids. Lipid classes were then
quantified by calibrated densitometry using a dual-wavelength flying
spot scanner CAMAG TLC Visualizer (Camag, Muttenz, Switzerland), as
described by Reis et al. (2019). Lipid class identification was performed
by comparison to external lipid standards (cod roe lipid extract; DGDG
and SQDG (Avanti Polar Lipids, Inc., Alabaster, Alabama, USA)) placed
on the same HPTLC plate (Supplementary Figure S1).

Fatty acid methyl esters (FAME) were obtained by acid-catalyzed
transmethylation of 1 mg of lipid extracts using 1% sulphuric acid in
methanol (v/v) for 16 h at 50 °C (Christie and Han 2010). FAME were
purifiedby thin-layer chromatography (TLC)withhexane/diethyl ether/
acetic acid (90:10:1, v/v) as solvents (Christie and Han 2010), and
subsequently separated and quantified using a TRACE-GC Ultra gas
chromatograph (Thermo Fisher Scientific Inc., Waltham, Massachu-
setts, USA) equipped with an on-column injector, a flame ionization
detector and a fused silica capillary column, Supelcowax TM 10
(30 m × 0.32 mm I.D. × 0.25 µm; Sigma-Aldrich Co., St. Louis, Missouri,
USA). Helium was used as carrier gas and temperature programming
was 50–150 °C at 40 °Cmin−1 slope, then from 150 to 200 °C at 2 °Cmin−1,
to 214 °C at 1 °Cmin−1 and, finally, up to 230 °C at 40 °Cmin−1. Individual
FAME were identified by reference to a mixture of authentic standards
(Mix C4-C24 and PUFA No. Three from menhaden oil (Supelco Inc.,
Bellefonte, Pennsylvania, USA) and awell characterized cod roe oil (for
details, see Supplementary Figure S2), and the identity of FAME
confirmed, when necessary, by GC–MS (DSQ II, Thermo Scientific).

2.4 Nutritional indices

Nutritional quality of macroalgal FA composition was assessed by
calculating atherogenicity and thrombogenicity indices following
Cardoso et al. (2017) and the ratio between hypocholesterolemic and
hypercholesteloremic FA as described by Santos-Silva et al. (2002):

Atherogenicity index (AI) = [(4 × 14: 0) + 16: 0 + 18: 0]/(∑MUFA

+∑n − 6 PUFA +∑n − 3 PUFA)
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Thrombogenicity index (TI) = (14: 0 + 16: 0 + 18: 0)/(0.5 ×∑MUFA

+ 0.5 ×∑n − 6 PUFA + 3 ×∑n
− 3 PUFA + n − 3/n − 6 ratio)

Hypocholesterolemic (h)/hypercholesterolemic (H) ratio (hH)
= (18: 1n − 9 + 18: 2n − 6 + 20: 4n − 6 + 8: 3n − 3 + 20: 5n − 3

+ 22: 5n − 3 + 22: 6n − 3)/(14: 0 + 16: 0)

2.5 Statistical analysis

Before analysis, normality and homogeneity of data were
confirmed within groups and, where necessary, appropriate vari-
ance stabilizing transformations were performed. When trans-
formations did not succeed, Welch test followed by the Dunnett T3
test were used. Significant differences in lipid classes and FA

Figure 1: (A) Location ofmacroalgal sampling
collection on Madeira island. Caniçal (1),
Halopteris scoparia; Santa Cruz (2),
Sargassum vulgare; Seixal (3), Padina
pavonica and Cystoseira humilis. (B)
Location of macroalgal sampling collection
on Porto Santo island. Calhau Serra de
Dentro (1), Dasycladus vermicularis and
Halopithys incurva; Abas do Rio (2),
Dictyota dichotoma and Halopteris filicina;
Calhau da Baleia (3), Lobophora sp.; Praia
do Zimbralinho (4), Corallina officinalis and
Asparagopsis taxiformis; Porto das
Salemas (5), Ulva sp., Cystoseira
compressa and Cystoseira usneoides.
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composition of red and brown macroalgae were assessed by one-
way ANOVA followed by the Tukey HSD post-hoc test. Differences
between green macroalgae were determined by Student’s t-test or
Mann-Whitney tests for normal or non-normal distribution of data,
respectively. In addition, comparisons of TL, AI, TI, and
hH indices between all species studied were also determined by
one-way ANOVA.

Two principal component analyses (PCA), one for the lipid clas-
ses and the other for the main FA, of all macroalgae were carried out.
Two hierarchical cluster analyses subsequently used factor scores to
identify macroalgae with similar lipid classes and FA profiles. The
hierarchical cluster analysis were performed with the Ward linkage
method and the squared Euclidean distances.

Results are presented as mean ± standard deviation (SD, n = 3)
and the statistical significance was set at p < 0.05. All statistical ana-
lyses were performed using IBM® SPSS Statistics 25.0 software pack-
age (IBM Corp., New York, USA) for Windows.

3 Results

3.1 Total lipid content

The lipid content of analysed seaweeds strongly varied
among species, from 0.2%DW (Dasycladus vermicularis) to
5.2% DW (Dictyota dichotoma) (p < 0.05; Table 1).

3.2 Lipid class profiles

All species studied presented higher proportions of total
neutral lipids (TNL; from 31 to 62% of TL) than of total polar
lipids (TPL; from 14 to 37% of TL) (Tables 2–4), except for
Dasycladus vermicularis (Chlorophyta) and Padina

Table : Total lipid content (% of dry weight) of macroalgae.

Group/Phylum Species TL content

Chlorophyta Dasycladus vermicularis . ± .a

Ulva sp. . ± .ab

Rhodophyta Corallina officinalis . ± .bcd

Asparagopsis taxiformis . ± .de

Halopithys incurva . ± .acd

Ochrophyta Cystoseira compressa . ± .bcd

C. usneoides . ± .ab

C. humilis . ± .e

Dictyota dichotoma . ± .f

Halopteris filicina . ± .ac

H. scoparia . ± .acd

Lobophora sp. . ± .acd

Padina pavonica . ± .ab

Sargassum vulgare . ± .ce

Results are presented as mean ± SD (n = ). Different superscript
letters indicate significant differences among all macroalgal species
(p < .). TL, total lipid.

Table : Main lipid class composition of green macroalgae (% of
total lipid).

Dasycladus vermicularis Ulva sp.

PC . ± . . ± .
PS + PI . ± . . ± .
SQDG + PE . ± . . ± .
DGDG . ± . . ± .
MGDG . ± . . ± .*
UkPL . ± . . ± .
TPL . ± . . ± .
P . ± . . ± .*
DAG . ± . . ± .
PTS . ± . . ± .
FFA . ± . . ± .*
TAG . ± . . ± .*
SE . ± . . ± .
UkNL nd . ± .
TNL . ± . . ± .*

Results are presented as mean ± SD (n = ). *Indicates significant
difference between the species (p < .). PC, phosphatidylcholine;
PS, phosphatidylserine; PI, phosphatidylinositol; SQDG,
sulfoquinovosyldiacylglycerol; PE, phosphatidylethanolamine;
DGDG, digalactosyldiacylglycerol; MGDG,
monogalactosyldiacylglycerol; UkPL, unknown polar lipids; TPL, total
polar lipids;
P, pigments; DAG, diacylglycerols; PTS, phytosterols; FFA, free fatty
acids; TAG, triacylglycerols; SE, sterol esters; UkNL, unknown neutral
lipids; TNL, total neutral lipids; nd, not detected.

Table : Main lipid class composition of red macroalgae (% of total
lipid).

Asparagopsis
taxiformis

Corallina
officinalis

Halopithys
incurva

PC . ± . . ± . . ± .
PS + PI . ± . . ± . . ± .
SQDG + PE . ± .a

. ± .a
. ± .b

DGDG . ± .b
. ± .a

. ± .c

MGDG . ± .a
. ± .b

. ± .b

UkPL . ± . . ± . . ± .
TPL . ± .a

. ± .a
. ± .b

P . ± . . ± . . ± .
DAG . ± . . ± . . ± .
PTS . ± .a

. ± .b
. ± .b

FFA . ± .ab
. ± .b

. ± .a

TAG . ± .b
. ± .a

. ± .a

SE . ± .a
. ± .b

. ± .ab

TNL . ± .b
. ± .b

. ± .a

Results are presented as mean ± SD (n = ). Different superscript
letters within each row indicate significant differences between
species (p < .). PC, phosphatidylcholine; PS, phosphatidylserine;
PI, phosphatidylinositol; SQDG, sulfoquinovosyldiacylglycerol;
PE, phosphatidylethanolamine; DGDG, digalactosyldiacylglycerol;
MGDG, monogalactosyldiacylglycerol; UkPL, unknown polar lipids;
TPL, total polar lipids; P, pigments; DAG, diacylglycerols; PTS,
phytosterols; FFA, free fatty acids; TAG, triacylglycerols; SE, sterol
esters; TNL, total neutral lipids.
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pavonica (Ochrophyta) which contained similar levels of
both lipid fractions (31–34% of TL).

Ulva sp. contained higher levels of free fatty acids (FFA)
and TAG (20.2 and 11.3%, respectively) than Dasycladus
vermicularis (5.8 and 4.5%) (p < 0.05). Among polar lipids,
only MGDG varied significantly among species (Table 2).

Within red macroalgae, TAG was highest in Aspar-
agopsis taxiformis (30.0%) whereas TAG was only 4.1 and
5.2% of TL in Corallina officinalis and Halopithys incurva,

respectively. On the other hand, H. incurva (p < 0.05) con-
tained the highest SQDG + PE and DGDG (Table 3).

PTS was particularly abundant in brown macroalgae
(10.9–24.7% TL; Table 4). Cystoseira compressa had the
highest TAG levels (18.9%), while in the other Ochrophyta
analysed, values ranged between 1.4 and 6.8% of TL.
Phosphatidylserine (PS) + phosphatidylinositol (PI) (9.6%),
and SQDG + PE (15.8%) were remarkably high in C. usneoides
(p < 0.05; Table 4).

Figure 2: Hierarchical cluster analysis in a
dendrogram format showing six clusters of
macroalgae according to the lipid class
composition.
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The PCA of macroalgal lipid classes showed five
components with eigenvalues >1, which accounted for
more than 88% of the total variance. Factor loadings and
communalities are shown in Supplementary Table S1. Ac-
cording to the dendrogram obtained, the macroalgae were
classified into six clusters (Figure 2). Mean factor scores for
each cluster of the dendrogramare given in Supplementary
Table S2. Thus, Cluster one grouped most Ochrophyta
species including Cystoseira usneoides, Halopteris sco-
paria, Lobophora sp., Padina pavonica, Sargassum vulgare,
and one replicate of H. ficilina, all of which were mainly
characterized by a high average content of PTS. Two of the
three red macroalgae studied, Corallina officinalis and
Halopithys incurva, formed Cluster 2, with high average
proportions of FFA, sterol esters, PC and MGDG. Cluster
three consisted of the third Rhodophyta species, Aspar-
agopsis taxiformis, and C. compressa (Ochrophyta), which
contained high average TAG and PS + PI. Cluster 4, which
included the rest of the Ochrophyta species, C. humilis,
Dictyota dichotoma and two replicates ofH. ficilina, showed
the highest average percentage of diacylglycerol. Finally,
the green algae Ulva sp. and Dasycladus vermicularis were
the only components of Clusters 5 and 6, which were
characterized by high average SQDG + PE, DGDG and FFA
content, and high SQDG + PE, DGDG and P, respectively.

3.3 Fatty acid profile

The FA profiles of green seaweeds strongly differed among
species. Ulva sp. had higher contents of saturated fatty
acids (SFA), mainly palmitic acid (16:0), and n-3 PUFA
(p < 0.05; Table 5), while Dasycladus vermicularis was
richer in monounsaturated fatty acids (MUFA). The n-3
LC-PUFA content was low in both species, where DHA
represented only 0.5 and 0.8%of total FA inD. vermicularis
and Ulva sp., respectively.

Similarly, the FA profiles varied considerably within
the Rhodophyta. Only total SFA and 16:0 were not signifi-
cantly different among the species, with the latter being the
most abundant FA in all three species (Table 6). Aspar-
agopsis taxiformis had the highest amount of DHA (22:6n-3;
6.6% of total FA), while Halopithys incurva was richer in
arachidonic acid (ARA, 20:4n-6), ALA and EPA, leading to
higher total n-6 and total n-3 PUFA contents. The n-6/n-3
ratio was highest in Corallina officinalis (1.6) and lowest in
A. taxiformis (0.4; Table 6).

Brownmacroalgae contained the highest levels of SFA
of all species studied (from 34.1 to 52.3% of total FA in
Dictyota dichotoma and Halopteris scoparia, respectively),
followed by MUFA (26.2% in Cystoseira usneoides and

34.2% in Padina pavonica) (Table 7). Within Ochrophyta,
n-3 PUFAwas remarkably high inD. dichotoma,mainly due
to the higher levels of EPA (5.0% of total FA) and stear-
idonic acid (SDA, 18:4n-3; 8.0%), while DHA was only
0.5% of total FA. On the other hand, C. compressa showed
the highest value of DHA (3.9%). Total n-6 PUFA was more
abundant in C. usneoides and Sargassum vulgare due to the
high proportions of both LA and ARA.

PCA for seaweed FA revealed that five components had
eigenvalues >1 and together accounted formore than 86%of
the total variance. Factor loadings and communalities after
applying varimax rotation to enhance the interpretability of
the results are displayed in Supplementary Table S3. The
dendrogram obtained from the hierarchical cluster anal-
ysis, which used the factor scores as input variables,
revealed that macroalgae could be classified into six
clusters (Figure 3). Supplementary Table S4 shows factor

Table : Main fatty acid composition (% of total FA) of green
macroalgae.

Dasycladus vermicularis Ulva sp.

: . ± . . ± .*
: . ± . . ± .
: . ± . . ± .*
: . ± . . ± .*
: . ± . . ± .
Ʃ SFA

. ± . . ± .*
:#

. ± . . ± .*
:##

. ± . . ± .*
Ʃ MUFA

. ± . . ± .*
:n- . ± . . ± .
:n- nd . ± .
:n- . ± . . ± .*
Ʃ n- PUFA

. ± . . ± .
:n- nd . ± .
:n- . ± . . ± .*
:n- . ± . . ± .*
:n- . ± . . ± .
:n- . ± . . ± .*
Ʃ n- PUFA

. ± . . ± .*
Ʃ n- LC-PUFA

. ± . . ± .*
Ʃ PUFA,,

. ± . . ± .*
n-/n- . ± . . ± .*
DHA/EPA . ± . . ± .*
ARA/EPA . ± . . ± .*

Results are presented as mean ± SD (n = ). *Indicates significant
difference between the species (p < .). SFA, saturated fatty acids;
MUFA, monounsaturated fatty acids; PUFA, polyunsaturated fatty
acids; LC-PUFA, long chain polyunsaturated fatty acids (≥C and ≥ 

double bonds); DHA, docosahexaenoic acid; EPA, eicosapentaenoic
acid; ARA, arachidonic acid; nd, not detected. Also includes :;
also includes :, :, :n- and :; also includes :n-
and :n-; also includes :n-;  also includes :n- and
:n-. #Mainly n- isomer; ##mainly n- and n- isomers.
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scores for each cluster given as mean ± SD Hence, Cluster
1, grouping together Ulva sp. (Chlorophyta), and three
Ochrophyta species (Cystoseira usneoides, C. humilis and
Sargassum vulgare), was characterized by the highest
average percentage of 16:0 and medium-high average
content of LA and 20:3n-6. Clusters 2–4 comprised only
one species each: Halopithys incurva (Cluster 2) had the
highest average proportion of ALA, ARA and EPA; Dictyota
dichotoma (Cluster 3) was characterized by the lowest
average percentage of DHA, and high 14:0 and 20:3n-6;
Dasycladus vermicularis (Cluster 4) had the highest average
proportions of 15:0, 17:0, 18:0 and LA, and low ARA and
EPA contents. Cluster five contained the red macroalga
Asparagopsis taxiformis and the brown Cystoseira com-
pressa, which had the highest proportion of DHA and low

percentages of ALA, ARA and LA. Finally, the red macro-
alga Corallina officinalis, and the four brown macroalgae
(Lobophora sp., Halopteris ficilina, H. scoparia and Padina
pavonica) were grouped in Cluster 6, and were character-
ized by medium-high average content of all SFA.

Overall, the grouping of macroalgae based on their FA
profile did not follow a similar pattern to that described for
their lipid class composition (Figure 2). Only the pairs Hal-
opteris scoparia and Padina pavonica; Cystoseira usneoides
and Sargassum vulgare; and Asparagopsis taxiformis and
C. compressawere similar in their lipid class andFAprofiles.
Of all species analysed, Dasycladus vermicularis (Chlor-
ophyta) had a particular and unique lipid profile.

3.4 Nutritional indices

Dasycladus vermicularis had the lowest AI (0.6) andDictyota
dichotoma the lowest TI (0.4), whereas Halopteris scoparia
had thehighest AI (1.6) andTI (1.3) values (Table 8).Ulva sp.,
H. scoparia and Padina pavonica showed the lowest hH
ratios (0.7), while D. dichotoma and Sargassum vulgare had
the highest values.

4 Discussion

The seaweeds analysed differed greatly in their lipid con-
tent, lipid classes and FA profiles providing evidence of
strong interspecific variations. Several factors have been
suggested to affect the biochemical composition of algae,
including the part of the macroalgal thallus used for the
analysis (Alsufyani et al. 2014; Pereira et al. 2012), which
was strictly controlled in the present study. However, our
one-off collection methodology did not allow us to eval-
uate seasonal, environmental or even geographical factors,
or the impact of species-dependent fatty acid trans-
formation and decomposition that should be considered in
future research to provide a complete lipid description of
the selected macroalgae.

The TL content of themacroalgae studiedwere broadly
similar to the low levels described in earlier literature
(Bourgougnon et al. 2011; Kendel et al. 2015; Mæhre et al.
2014; Nunes et al. 2020; Verma et al. 2017). Nevertheless,
some differences, probably related to both geographical
and seasonal factors, were detected. Thus, the two Chlor-
ophyta species had lower lipid contents than other species
of Ulva, such as Ulva lactuca and U. reticulata from India,
U. lactuca fromHong Kong, andU. rigida from South Africa
(Foster and Hodgson 1998; Verma et al. 2017; Wong and
Cheung 2000). In contrast, the lipid level of Ulva sp. was

Table : Main fatty acid composition (% of total FA) of red
macroalgae.

Asparagopsis
taxiformis

Corallina
officinalis

Halopithys
incurva

: . ± .b
. ± .a

. ± .a

: . ± .a
. ± .b

. ± .a

: . ± . . ± . . ± .
: . ± .a

. ± .b
. ± .a

: . ± .b
. ± .c

. ± .a

Ʃ SFA
. ± . . ± . . ± .

:#
. ± .b

. ± .ab
. ± .a

:##
. ± .b

. ± .b
. ± .a

Ʃ MUFA
. ± .b

. ± .b
. ± .a

:n- . ± .b
. ± .b

. ± .a

:n- nd nd . ± .
:n- . ± .a

. ± .b
. ± .c

Ʃ n- PUFA . ± .a
. ± .b

. ± .c

:n- . ± .a
. ± .a

. ± .b

:n- . ± .b
. ± .ab

. ± .a

:n- . ± .a
. ± .a

. ± .b

:n- . ± .c
. ± .b

. ± .a

Ʃ n- PUFA
. ± .b

. ± .a
. ± .c

Ʃ n-
LC-PUFA

. ± .b
. ± .a

. ± .b

Ʃ PUFA,
. ± .a

. ± .a
. ± .b

n-/n- . ± .a
. ± .c

. ± .b

DHA/EPA . ± .c
. ± .a

. ± .b

ARA/EPA . ± .a
. ± .c

. ± .b

Results are presented as mean ± SD (n = ). Different superscript
letters within each row indicate significant differences between
species (p < .). SFA, saturated fatty acids; MUFA,
monounsaturated fatty acids; PUFA, polyunsaturated fatty acids;
LC-PUFA, long chain polyunsaturated fatty acids (≥C and ≥  double
bonds); DHA, docosahexaenoic acid; EPA, eicosapentaenoic acid;
ARA, arachidonic acid; nd, not detected. Also includes : and :;
also includes :, :, :, :n- and :; also includes
:n-, :n- and :n-; also includes :, :n-, :n-
and :n-. #Mainly n- isomer and n- isomers; ##mainly n-
isomer.
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slightly higher than that of U. lactuca collected in North
Yorkshire, UK (Marsham et al. 2007).

Among Rhodophyta, Asparagopsis taxiformis stood
out from the rest in its high lipid content (∼2% of TL
in DW) and Corallina officinalis had a higher lipid
content than that reported by Marsham et al. (2007) for
the same species. Gosch et al. (2012) described that
Ochrophyta, chiefly species from the Dictyotales, such as

Dictyota bartayresii, Dictyota dichotoma and Spato-
glossum macrodontum, had large lipid contents of
10–12%. In our present work, D. dichotoma had the
highest lipid content (5.2%) of all species studied, higher
than that cited by Verma et al. (2017), which is probably
related to the recognized higher lipid levels of Dictyota
species in temperate climates (McDermid and Stuercke
2003).

Figure 3: Hierarchical cluster analysis in a
dendrogram format showing six clusters of
macroalgae according to the fatty acid
composition.
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Despite their low lipid levels overall, the proportions of
physiologically important PUFA in themacroalgae analysed
were higher than those of terrestrial plants (Wielgosz-Collin
et al. 2016). C18 PUFA such as LA and ALA are considered
essential FA for vertebrates since they cannot be synthesized
de novo, and therefore, their incorporation through diet
becomes necessary. The human capacity to endogenously
produce LC-PUFA from their C18 PUFA precursors through
successive elongation and desaturation processes was re-
ported to be much lower than presumed (Metherel and
Bazinet 2019). Since nearly 70% of the world’s population
does not reach the minimum recommended daily intake of
n-3, due either to unhealthy nutritional habits or to diffi-
culties accessing them, it ismandatory to include sources of
n-3 LC-PUFA in the human diet for general health and
wellbeing (D’Angelo et al. 2020; Taha 2020).

The present work demonstrates that the lipid class and
FA composition should not be considered to be useful
biomarkers for taxonomic studies in seaweeds, due to the
high interspecific variability detected (Figures 2 and 3).
However, green macroalgal species are often described as
being characterized by high amounts of C16 FA (including
16:3n-3 and 16:4n-3) and C18 PUFA (LA and ALA, similar to
terrestrial plants), with LC-PUFA being usually absent
(Kendel et al. 2015; Nakamura and Li-Beisson, 2016; Santos
et al. 2019). Likewise, the green species analysed here
showed high proportions of 16:0, oleic acid (18:1n-9; OA),
and C18 PUFA, such as LA in Dasycladus vermicularis
and ALA in Ulva sp., while LC-PUFA contents were low.
DHA was found in trace amounts in both species, as
previously reported by McCauley et al. (2016). In contrast,

red macroalgae were characterised by high levels of 16:0,
OA and ARA, which also constitute an important source of
EPA (Sánchez-Machado et al. 2004; Schmid et al. 2018). In
the present study,Halopithys incurva displayed the highest
proportions of ARA (∼12% of total FA) and EPA (∼9% of
total FA), while DHA was highest in Asparagopsis taxi-
formis (6.6% of total FA). Therefore, the red macroalgae
studied might be considered attractive sources of n-3
LC-PUFA (Sánchez-Machado et al. 2004), potentially pro-
moting animal and human health and wellbeing (Murata
and Nakazoe 2001; Zárate et al. 2017). In particular,
H. incurva andA. taxiformismight be promising candidates
to partially substitute for marine ingredients in aquafeed
formulation, as with other red macroalgal species (Morais
et al. 2020; Younis et al. 2018). However, some safety fac-
tors, such as the production of the halogenated toxic
compounds described in A. taxiformis (Machado et al.
2016), must be considered before recommending this
seaweed as a food or feed ingredient.

In the present study, the FA profiles of Dictyotales and
Fucales were similar to those previously described by
Kumari et al. (2010) and Santos et al. (2019) where 14:0,
16:0, OA, and C18-C20 PUFAwere reported as themajor FA.
Among Ochrophyta, Dictyota dichotoma presented a high
n-3 PUFA, especially SDA (18:4n-3) with 8.0% of total FA.
SDA is the first metabolic intermediate in the conversion of
ALA into EPA and DHA (Whelan 2009). The consumption
of vegetable oils containing high SDA, such as Echium oil,
was reported to improve the incorporation of n-3 PUFA,
and especially EPA, into human tissues compared with
vegetable oils containing ALA (Guil-Guerrero 2007).

Table : Atherogenicity index (AI), thrombogenicity index (TI) and hypocholesterolemic/hypercholesteloremic fatty acids ratio (hH) of
macroalgae.

Group/Phylum Species AI TI hH

Chlorophyta Dasycladus vermicularis . ± .a
. ± .bc

. ± .e

Ulva sp. . ± .abc
. ± .bc

. ± .a

Rhodophyta Asparagopsis taxiformis . ± .fg
. ± .bc

. ± .ac

Corallina officinalis . ± .deg
. ± .ef

. ± .ab

Halopithys incurva . ± .be
. ± .ab

. ± .abcd

Ochrophyta Cystoseira compressa . ± .def
. ± .bc

. ± .ad

C. usneoides . ± .ab
. ± .bc

. ± .cd

C. humilis . ± .ce
. ± .bc

. ± .bcd

Dictyota dichotoma . ± .bcd
. ± .a

. ± .d

Halopteris filicina . ± .be
. ± .c

. ± .ac

H. scoparia . ± .g
. ± .f

. ± .a

Lobophora sp. . ± .fg
. ± .cd

. ± .ac

Padina pavonica . ± .eg
. ± .de

. ± .a

Sargassum vulgare . ± .abc
. ± .c

. ± .d

Results are presented as mean ± SD (n = ). Different superscript letters in the same column indicate significant differences among all
macroalgal species (p < .).
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Nonetheless, the importance of SDA in animal and human
health might go beyond its function as a precursor of EPA
and DHA, and offer beneficial effects similar to those of
EPA (Whelan 2009).

The n-3 and n-6 PUFA families often show opposite
physiological functions, with their relative proportions
having implications for animal physiological and patho-
logical mechanisms (Liu et al. 2015; Simopoulos 2016;
Tocher et al. 2019). High n-6/n-3 ratios hamper the biosyn-
thesis of n-3 LC-PUFA (Smink et al. 2012) and impair eicos-
anoid and docosanoid production (Zárate et al. 2017). All the
macroalgae analysed had an n-6/n-3 FA ratio well below 10,
as recommended by WHO (Matanjun et al. 2009) for poten-
tial human and animal health and wellbeing applications.

It is widely accepted that a reduction of SFA con-
sumption and an increase in PUFA ingestion impacts hu-
man health positively by decreasing blood cholesterol
(Moussa et al. 2014). AI, TI and hH indices indicate the
relationship between pro-thrombogenic (saturated) and
anti-thrombogenic (unsaturated) FAs (Özden et al. 2020),
and they have been proposed as both nutritional fat quality
indicators and measures of dietary propensity to influence
the incidence of coronary heart disease (Moussa et al. 2014;
Pérez et al. 2014; Santos-Silva et al. 2002). Therefore, lower
dietary AI, TI, and higher hH would prevent the risk of
appearance of coronary diseases (Gerasimenko and Log-
vinov 2016). In this sense, Dasycladus vermicularis (green
alga), Cystoseira usneoides and Sargassum vulgare (brown
algae), displayed the most favourable values of all species
analysed for these cardiovascular health indicators.

In animal nutrition, the type of lipid in which FA is
provided seems to be particularly relevant (Lund et al. 2018;
Reis et al. 2021). Algal lipids can be divided into neutral
lipids as storage compounds and polar lipids, including
glycolipids and phospholipids, with major structural
functions. Betaine lipids, not isolated in our study, are
also common lipids in non-plastid membranes of algae,
especially in green and brown seaweeds, and are being
considered as replacement compounds for phosphatidyl-
choline (PC) under phosphorus deficiency (Huang et al.
2019). In fact, a reciprocal relationship between certain
betaine lipids and PC has been proposed (Künzler and
Eichenberger 1997; Nakamura and Li-Beisson 2016).

Although several studies have shown that Dictyotales,
Fucales (Ochrophyta) and Ulvales (Chlorophyta) do not
have PC (Wielgosz-Collin et al. 2016), our study supports
that of Jones and Harwood (1992), where small amounts of
PC were detected in fucoids such as Fucus vesiculosus and
Ascophyllum nodosum. On the other hand, PC is expected
in Rhodophyta species, being reported to represent up to
55–75% of total phospholipids (Wielgosz-Collin et al.

2016). PC is an interesting source of LC-PUFA-rich marine
lecithin, which is of increasing interest for cosmetic, food,
and pharmaceutical sectors (Alhajj et al. 2020).

All themacroalgae studied here had a higher content of
glycolipids than phospholipids. Thus, Chlorophyta species
had remarkably high percentages of both SQDG and DGDG,
in contrast to other studies where MGDG was higher than
SQDGandDGDG ingreenmacroalgae (Khotimchenko2002).
Furthermore, MGDG and DGDG have been described as the
most characteristic glycolipids in red algae (Wielgosz-Collin
et al. 2016), although Khotimchenko (2002) reported high
variability inglycolipid content amongspecies. Inour study,
Halopithys incurva had the highest contents of SQDG, DGDG
and MGDG among red seaweeds, while brown macroalgae
had low contents of MGDG. According to Wielgosz-Collin
et al. (2016), glycolipids do not seem to be valuable as a
taxonomic character since they are present in all brown
species.

The glycolipids MGDG and DGDG from marine or-
ganisms have been reported to have antifungal, fibrino-
lytic and antitumor activities (Gerasimenko and Logvinov
2016; Kendel et al. 2015; Wielgosz-Collin et al. 2016),
which make seaweeds potentially interesting dietary
components for human and animal nutrition, in addition
to their higher LC-PUFA content than in terrestrial plants
(Sahaka et al. 2020).

Corallina officinalis, Halopithys incurva, Cystoseira
usneoides, Lobophora sp. and Sargassum vulgare, had high
contents of phytosterols (PTS). Macroalgal PTS include
severalmolecules such as fucosterol, stigmasterol, sitosterol
and saringosterol, together with variable amounts of
cholesterol (Schepers et al. 2020). PTS present benefits for
cardiovascular diseases and anti-inflammatory processes
(Kendel et al. 2015), and also decrease intestinal cholesterol
absorption, reducing low-density lipoprotein-cholesterol
(LDL-C) and therefore, reduce cardiovascular disease risk
factors (Patch et al. 2006). Humans cannot biosynthesize
PTS de novo (Kendel et al. 2015), again suggesting that
macroalgae might be a potential source of these beneficial
compounds for human nutrition.

5 Conclusions

The present study provided evidence of a high variability in
the lipid contents, lipid classes and FA profiles of macro-
algae,making a definition of a characteristic patternwithin
each phylum highly complex. Seasonal, environmental
and even geographical factors affect these lipid profiles
and should be considered in future research to ensure
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biochemical stability or even to identify algal specieswith a
sufficiently high or diverse content of lipid molecules to be
of commercial interest.

Overall, the species analysed contained lower lipid
levels but higher PUFA proportions than terrestrial plants,
and had low n-6/n-3 FA ratios as recommended by WHO.
Redmacroalgae are an attractive source of n-3 LC-PUFA for
human consumption and might also be considered as a
potential substitute for marine ingredients in aquafeed
formulations and production. The high contents of DGDG,
MGDG, and PTS, together with the high levels of EPA, and
low n-6/n-3 ratios makes Halopithys incurva an interesting
macroalga from a nutritional point of view. Asparagopsis
taxiformis (Rhodophyta) also contained a high proportion
of DHA, and Dictyota dichotoma (Ochrophyta) an unusu-
ally high content of the nutraceutical SDA.
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