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Abstract
This study was undertaken to assess the effects of fish oil (FO) substitution by a mix-
ture of alternative vegetable oils (VO) on Seriola dumerili culture performance. A 154-
day feeding experiment was conducted using juveniles (39.2 ± 1.6 g average weight). 
Three isolipidic and isoenergetic meal-based diets were formulated varying their lipid 
component. The control diet contained 100% FO (FO100), whereas diets VO50 and 
VO100 included 1/2 of oil blend and all the oil from blend of palm oil (PO) and linseed 
oil (LO) as substitute for FO, respectively. Dietary regime did not significantly affect 
growth performance, biometric indices, feed efficiency, plasma chemistry and liver 
and muscle lipid contents. Nonetheless, dietary VO inclusion impacted on the fatty 
acid profile of target tissues, especially in the liver. Fatty acid profiles of the fillets re-
flected those of the dietary oils except that there was apparent selective utilization of 
palmitic acid (C16:0) and oleic acid (C18:1n-9) and apparent selective retention of 
long-chain polyunsaturated fatty acids, especially eicosapentaenoic acid (EPA, 
C20:5n-3) and docosahexaenoic acid (DHA, C22:6n-3). The nutritional value and the 
potential ability to prevent the development of coronary heart diseases of the flesh 
lipid fraction decreased with gradual FO substitution.
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1  | INTRODUCTION

Marine fish oils (FO) have conventionally been used as the major di-
etary lipid component in aquaculture feeds, especially for fast-growing 
marine carnivorous fish which require the supply of long-chain polyun-
saturated fatty acids (LC-PUFA) such as eicosapentaenoic acid (20:5n-3,  
EPA), docosahexaenoic acid (22:6n-3, DHA) and arachidonic acid 
(20:4n-6, AA), considered essential fatty acids (EFA) for most marine 

finfish species. Supplying EFA-balanced diets is indispensable to sus-
tain not only growth, survival and feed efficiency but also health and 
flesh nutritional quality in cultured specimens (Sargent, Tocher, & Bell, 
2002; Tocher, 2010).

Formulating suitable compound feeds is currently one of the main 
challenges for the aquaculture industry. The fast expansion of aqua-
culture production worldwide and the increasing demand of marine 
products along with the declining availability of fish meal (FM) and FO 
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make relying on finite marine natural resources both economically and 
environmentally unsustainable (Kaushik, Coves, Dutto, & Blanc, 2004; 
Tacon & Metian, 2008).

Consequently, replacement of marine ingredients by terrestrial 
sources in aquafeeds is being a fairly widespread practice looking for 
suitable alternatives for the long-term sustainability of the aquaculture 
industry, and vegetable oils (VO) have received an important attention 
as substitutes of the marine oil due to their comparatively reduced 
cost, lower concentration of dioxins and other organic pollutants, and 
their suitable production levels (Sales & Glencross, 2011). Numerous 
of these studies have covered a wide variety of fish species such as gil-
thead seabream (Benedito-Palos, Saera-Vila, Calduch-Giner, Kaushik, 
& Pérez-Sánchez, 2007; Benedito-Palos et al., 2008; Fountoulaki 
et al., 2009), European seabass (Izquierdo et al., 2003; Mourente & 
Bell, 2006), red seabream (Huang, Oo, Higgs, Brauner, & Satoh, 2007), 
turbot (Regost, Arzel, Robin, Rosenlund, & Kaushik, 2003), cobia 
(Trushenski et al., 2011) and Atlantic salmon (Ruyter, Moya-Falcon, 
Rosenlund, & Vegusdal, 2006; Torstensen, Li, & Frøyland, 2000). Little 
or no effect on fish performance has been observed in most of these 
investigations as far as the minimum EFA requirements were cov-
ered. Nonetheless, fish fed VO have shown important modifications 
in their tissue fatty acid (FA) composition, including increased levels 
of C18 PUFA and reduced proportions of n-3 LC-PUFA, especially 
EPA and DHA, which may affect not only fish health (Alves-Martins 
et al., 2012; Bell & Sargent, 2003; Bell et al., 2001) but also compro-
mise the nutritional quality of flesh for human consumption, as n-3 
LC-PUFA are human health-promoting compounds (Khankari et al., 
2015; Simopoulos, 2008, 2011, 2016; Siriwardhana, Kalupahana, & 
Moustaid-Moussa, 2012).

A blend of palm oil (PO) and linseed oil (LO) at a proportion of 4:1 
was used in our present work to minimize potential changes derived 
from dietary substitution of FO. PO has high levels of C16 saturated 
fatty acids (SFA) and C18 monounsaturated fatty acids (MUFA), which 
are preferred substrates for energy production in fish species favour-
ing diet-to-tissue transfer of LC-PUFA (Henderson, 1996; Kiessling & 
Kiessling, 1993), whereas LO is rich in PUFA, especially linolenic acid 
(C18:3n-3), which may result in tissues and organs of more favourable 
balanced FA. This combination of VO should supply sufficient energy 
to maintain high growth, an n-6/n-3 PUFA ratio <1 which is regarded 
as beneficial to human health and should not be detrimental to fish 
health (Bell, Tocher, Henderson, Dick, & Crampton, 2003), and moder-
ate levels of linoleic acid (C18:2n-6) trying to avoid an excessive depo-
sition of this fatty acid which is reported as one of the most negative 
indicators to be taken into account when evaluating alternative lipid 
sources to FO for aquafeeds (Turchini, Torstensen, & Ng, 2009).

The Carangidae family is a group of fish with exceptional consumer 
acceptance, considered of great potential for aquaculture diversifica-
tion (updated by Sicuro & Luzzana, 2016). Recently, several species 
within this family have been abundantly targeted for research, includ-
ing the effects of replacing marine ingredients by terrestrial sources 
in yellowtail kingfish (Seriola lalandi) (Bowyer, Qin, Smullen, & Stone, 
2012; Bowyer, Rout-Pitt, Bain, Stone, & Schuller, 2012; Bowyer et al., 
2013; Collins, Ball, Qin, Bowyer, & Stone, 2014), Japanese yellowtail 

(Seriola quinqueradiata) (Khaoian, Nguyen, Ogita, Fukada, & Masumoto, 
2014; Nguyen, Khaoian, Fukada, Suzuki, & Masumoto, 2015; Sarker, 
Satoh, Kamata, Haga, & Yamamoto, 2012; Seno-O et al., 2008) and 
pompano (Trachinotus spp.) (Lech & Reigh, 2012; Lin et al., 2012; Rossi 
& Davis, 2012). A further carangid species, the greater amberjack, 
Seriola dumerili, is a carnivorous pelagic fish with a broad geographical 
distribution, fast growth rate and large size which make it suitable for 
product diversification and development of value-added products, ex-
cellent flesh quality and high market price (Nakada, 2000). However, 
very scarce knowledge about EFA requirements or FO substitution in 
this species is available; the studies published till date have focused 
on the optimization of protein inclusion rates and the search of al-
ternative plant protein sources to FM (Takakuwa, Fukada, Hosokawa, 
& Masumoto, 2006; Tomás, De La Gándara, García-Gomez, Pérez, & 
Jover, 2005; Uyan et al., 2009; Vidal, De la Gándara García, Gómez, 
& Cerdá, 2008).

Therefore, the present study was conducted to determine whether 
partial 1/2 or total dietary FO substitution by a blend of PO and LO 
(4:1) affects growth performance, feed efficiency, plasma chemistry 
and the degree of modification of the FA profile of liver and muscle of 
greater amberjack (S. dumerili) juveniles, including flesh lipid nutritional 
value. To the best of our knowledge, this work may be considered as 
the first attempt to assess on the impact of FO replacement in this 
species.

2  | MATERIALS AND METHODS

2.1 | Fish and rearing conditions

A total of 185 S. dumerili juveniles were obtained from a fish farm 
(Futuna Blue S.A., Cádiz, Spain) and transported to the Fish Nutrition 
Laboratory of Universitat Politècnica de València (UPV, Spain). Prior 
to the feeding trial, fish were acclimatized to the experimental rearing 
conditions for 4 weeks by feeding a standard commercial diet. After 
this period, groups of 20 fish (average weight 39.2 ± 1.6 g) were ran-
domly distributed into nine 1,750-L cylindrical fibreglass tanks, three 
tanks per treatment.

The culture was carried out under natural photoperiod conditions 
in a recirculating seawater system of 75 m3 capacity equipped with a 
rotary mechanical filter and a gravity biofilter (6 m3). During the course 
of the trial, water temperature (21.5 ± 2.4°C), salinity (31.5 ± 4.1 g/L), 
pH levels (7.5–8.0) and dissolved oxygen (6.6 ± 1.3 mg/L) were mon-
itored daily.

2.2 | Experimental diets and feeding regime

Three isolipidic and isoenergetic practical feeds were formulated to 
contain 510 g crude protein and 140 g crude lipid per kilo feed in a 
dry-weight basis. All ingredients were weighed individually before 
thoroughly mixed with water to form homogeneous dough and pel-
leted using a semi-industrial twin-screw extruder (CLEXTRAL BC-45, 
St. Etienne, France) at the Institute of Animal Science and Technology 
(UPV). All diets were stored at −20°C for the duration of the trial. Fish 
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were fed by hand to apparent satiation one of the three experimental 
diets for 154 days, twice a day (09:00 hr and 17:00 hr), 6 days a week. 
Any uneaten feed was collected daily to determine fish feed intake (FI).

The ingredients, proximate and FA composition of the experimen-
tal diets are shown in Table 1. Briefly, the diet containing FO as the sole 
lipid source was used as the reference diet (FO100) whereas a blend of 
VO consisting of PO and LO (4:1) replaced 1/2 and all the oil from oil 
blend of the FO in the VO50 and VO100 diets, respectively. In all diets, 

16:0 accounted for the bulk of saturated fatty acids (SFA), 18:1n‐9 for 
monounsaturated fatty acids (MUFA), 18:2n‐6 for n‐6 PUFA, and EPA 
and DHA for n‐3 LC-PUFA. Moreover, gradual inclusion of the VO mix-
ture increased dietary C16:0 and total SFA (30.2%–36.1% of total FA), 
C18:1n-9 and total MUFA (22.4%–29.3%), and C18:2n-6 and total n-6 
PUFA (8.2%–12.3%) while decreased EPA, DHA and total n-3 PUFA 
(32.4%–19.1%) despite C18:3n-3 raised from 1.1% to 6.0% of total 
FA. DHA/EPA and EPA/ARA ratios remained unchanged among diets 
(Table 1).

2.3 | Fish sampling and growth evaluation

Fish were anaesthetized with 10 mg/L clove oil containing 87% 
eugenol (Guinama®, Valencia, Spain) for individual weight and fork 
length measurements at the beginning, end, and regularly at 30-day 
intervals after the start of the feeding trial. In addition, at the end 
of the experiment eight fish from each treatment were collected for 
blood, liver and muscle sampling. Blood was drawn via the ventral 
aorta using 5-ml heparinized syringes, centrifuged at 3,000 g for 
5 min at 4°C to separate the plasma which was stored at −30°C until 
further analyses. Next, the fish were euthanized with an overdose of 
clove oil and portions of liver and dorsal muscle rapidly excised, fro-
zen in liquid nitrogen and stored at −80°C for subsequent biochemi-
cal determinations.

The effect of dietary treatments on culture performance was de-
termined by evaluating growth, survival and nutrient utilization indices, 
including weight gain (WG), specific growth rate (SGR), feed intake (FI) 
and feed conversion ratio (FCR) at the end of the feeding trial (Table 2).

All procedures were carried out in accordance with the European 
Directive 2010/63/EU and Spanish national legislation (Spanish Royal 
Decree 53/2013), which regulate animal usage in experimentation 
and/or other scientific purposes.

TABLE  1  Ingredients, proximate and main fatty acid composition 
of experimental diets

FO100 VO50 VO100

Ingredients (g/kg)

Fish meal 525 525 525

Wheat meal 235 235 235

Wheat gluten meal 130 130 130

Fish oil 90 45 0

Linseed oil 0 9 18

Palm oil 0 36 72

Vitamin and mineral premixa 20 20 20

Proximate composition

Dry matter (DM, g/kg  
wet weight)

886 894 899

Crude protein (g/kg DM) 452 456 461

Crude lipid (g/kg DM) 123 133 135

Ash (g/kg DM) 91 87 87

N free extract (g/kg DM) 237 245 240

Fatty acids (% total fatty acids)

Total SFAb 30.17 33.28 36.13

14:0 5.65 4.24 2.33

16:0 19.96 24.26 28.56

18:0 3.67 3.77 4.17

Total MUFAb 22.42 26.09 29.29

16:1c 7.74 5.70 3.12

18:1c 13.24 18.73 24.94

20:1c 0.95 0.79 0.49

22:1c 0.50 0.42 0.37

Total PUFAb 44.71 38.51 32.87

18:2 n-6 7.04 9.31 11.77

18:3 n-3 1.08 3.14 5.99

18:4 n-3 2.11 1.46 0.83

Total n-6 LC-PUFA 1.13 0.85 0.51

20:4 n-6 0.78 0.56 0.30

22:5 n-6 0.35 0.28 0.21

Total n-3 LC-PUFAb 29.19 20.77 12.24

20:5 n-3 15.05 10.70 5.85

22:5 n-3 1.88 1.37 0.84

22:6 n-3 11.06 7.87 5.11

(continues)

FO100 VO50 VO100

Ratios

PUFA/SFA 1.48 1.16 0.91

n-6/n-3 0.25 0.40 0.64

DHA/EPAd 0.735 0.736 0.874

EPA/ARAd 19.178 19.038 19.228

aContaining choline, 10 g; DL-α-tocopherol, 5 g; ascorbic acid, 5 g; 
Ca3(PO4)2, 5 g; and a premix, 25 g. This premix contains (per kg) retinol 
acetate, 1,000,000 IU; calciferol, 500 IU; DL-α-tocopherol, 10 g; menadi-
one sodium bisulphite, 0.8 g; thiamine hydrochloride, 2.3 g; riboflavin, 
2.3 g; pyridoxine hydrochloride, 15 g; cyanocobalamine, 25 mg; nicotina-
mide, 15 g; pantothenic acid, 6 g; folic acid, 650 mg; biotin, 70 mg; ascorbic 
acid, 75 g; inositol, 15 g; betaine, 100 g; polypeptides 12 g; Zn, 5 g; Se, 
20 mg; I, 500 mg; Fe, 200 mg; CuO, 15 g; Mg, 5.75 g; Co, 0.02 g; methio-
nine, 1.2 g; cysteine, 0.8 g; lysine, 1.3 g; arginine, 0.6 g; phenylalanine, 
0.4 g; tryptophan, 0.7 g.
bIncluding some minor components not shown.
cIncluding other isomers not shown. Mainly n-7 isomer for C16 and n-9 
isomer for C18, C20 and C22.
dDHA/EPA, 22:6 n-3/20:5 n-3; EPA/ARA, 20:5 n-3/20:4n-6.

TABLE  1  (Continued)
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2.4 | Analytical procedures

Plasma glucose concentration (mg/dl) and activities of glutamate–
oxalacetate transaminase (GOT) (AST) (EC 2.6.1.1) and glutamate–
pyruvate transaminase (GPT) (ALT) (EC 2.6.1.2) (U/L 37°C) were 
determined by enzymatic kits according to the manufacturer’s instruc-
tions (Human, Wiesbaden, Germany). One unit (U) of aminotrans-
ferases activity was defined as 1 μmol of NADH disappearance per 
minute. Concentrations of triglyceride (mg/dl) and cortisol (ng/ml) 

were measured with a diagnostic kit (Gernon, Barcelona, España) and 
an enzyme immunoassay kit (Arbor Assays, MI, USA), respectively. 
Lipase (E.C. 3.1.1) activity (U/L 30°C) was assayed by slight modifi-
cations of the method previously described by Gisbert, Giménez, 
Fernández, Kotzamanis, and Estevez (2009) considering one unit of 
activity equivalent to 1 μmol of p-nitrophenol myristate hydrolysed 
per min.

Proximate composition of the experimental diets and whole-body 
fish were determined according to the following procedures: mois-
ture by oven thermal drying at 110°C to constant weight, ash by com-
bustion in a muffle at 550°C overnight, and crude protein (N x 6.25) 
by sample digestion using the Kjeldahl method. Quantification of 
crude fat was performed by ether extraction with an Ankom XT10 
Extraction System (NY, USA) (AOCS, 2005). Energy was calcu-
lated according to Brouwer (1965), from the C (g) and N (g) balance 
(GE = 51.8 × C − 19.4 × N).

Liver and muscle total lipid (TL) was extracted by homogenization 
in chloroform/methanol (2:1, v/v) according to Folch, Lees, and Sloane-
Stanley (1957). The organic solvent was evaporated under a stream of 
nitrogen, the lipid content gravimetrically determined (Christie, 1982) 
and stored in chloroform/methanol (2:1) containing 0.01% butyl-
ated hydroxytoluene (BHT) at −20°C until further analysis. The lipid 
extract was subjected to acid-catalysed transmethylation with 1% 
sulphuric acid (v/v) in methanol, and the resultant fatty acid methyl 
esters (FAME) purified by thin layer chromatography (TLC) (Christie, 
1982). During acid-catalysed transmethylation, FAME are formed si-
multaneously with dimethyl acetals (DMA) which originate from the 
1-alkenyl chain of plasmalogens. FAME and DMA were separated 
and quantified on a TRACE-GC Ultra gas chromatograph (Thermo 
Scientific, Milan, Italy) equipped with an on-column injector, a flame 
ionization detector and a fused silica capillary column, Supelcowax 
TM 10 (30 m × 0.32 mm × 0.25 μm film thickness) (Supelco Analytical, 
Bellefonte, PA, USA). Helium at a flow of 1.5 ml/min was used as the 
carrier gas. Individual FAME and DMA were identified by reference to 
authentic standards, and further confirmation of identity was carried 
out by mass spectrometry when necessary.

2.5 | Indices of the nutritional quality of lipids

The influence of increasing levels of FO substitution on the nutritional 
quality of the fish fillet lipid fraction was monitored through indi-
ces based on the functional effects of its constituent FA. Equations  
(1–3) were used to determine the index of atherogenicity (IA) (Ulbricht 
& Southgate, 1991), the index of thrombogenicity (IT) (Ulbricht 
& Southgate, 1991), and the flesh lipid quality (FLQ) (Abrami et al., 
1992), respectively.

(1)IA=
C12:0+ (4∗C14:0)+C16:0

∑

MUFA+n6PUFA+n3PUFA

(2)

IT=
C14:0+C16:0+C18:0

(0.5∗
∑

MUFA+0.5∗n6PUFA+3∗n3PUFA)+ (n3PUFA∕n6PUFA)

(3)
FLQ=

C20:5n−3+C22:6n−3
∑

total FA

TABLE  2 Growth performance and feed utilization of Seriola 
dumerili juveniles fed the experimental diets for 154 days

FO100 VO50 VO100

Initial weight (g) 39.6 ± 3.7 37.9 ± 1.0 40.2 ± 2.9

Final weight (g) 390 ± 23.2 397 ± 24.4 375 ± 30.8

WG (%)a 894 ± 96 940 ± 75 840 ± 16

SGR (% per 
day)b

1.49 ± 0.07 1.50 ± 0.05 1.47 ± 0.02

FI (g 100 g fish/
day)c

1.82 ± 0.26 1.81 ± 0.13 1.79 ± 0.02

FCRd 1.75 ± 0.27 1.75 ± 0.14 1.72 ± 0.03

Survival (%) 75 ± 6 74 ± 6 74 ± 7

Data are expressed as mean ± SD.
aWeight gain = 100 × [(final weight – initial weight)/initial weight]
bSpecific growth rate = 100 × (ln final weight – ln initial weight)/feeding 
days
cFeed intake = 100 × feed consumption (g)/average biomass (g) x days
dFeed conversion ratio = dry food fed (g)/wet weight gain (g).

TABLE  3 Biometric indices and proximate composition of Seriola 
dumerili juveniles fed the experimental diets for 154 days

FO100 VO50 VO100

CF1 1.37 ± 0.17 1.30 ± 0.24 1.28 ± 0.10

VSI (%)2 4.32 ± 0.62 4.18 ± 1.10 4.33 ± 0.52

HSI (%)3 0.87 ± 0.20 0.78 ± 0.15 0.84 ± 0.10

MSI (%)4 0.18 ± 0.17 0.05 ± 0.15 0.10 ± 0.09

IFR (%)5 38.4 ± 4.17 34.1 ± 3.23 34.6 ± 4.60

IER (%)6 21.7 ± 0.91 20.6 ± 1.12 21.4 ± 0.83

Whole-body proximate composition g/kg w.w.

Moisture 696.5 ± 0.9a 706.3 ± 0.9b 702.5 ± 0.2ab

Crude protein 192.2 ± 1.3 189.1 ± 1.5 188.7 ± 2.3

Total lipid 77.8 ± 2.9 72.9 ± 2.0 74.7 ± 1.6

Ash 28.1 ± 0.9 27.6 ± 0.3 26.9 ± 0.8

w.w., wet weight; data are expressed as mean ± SD. Means with different 
superscript letters are significantly different (p < .05).
1Condition factor = 100 × (final weight/total length3)
2Viscerosomatic index = 100 × (viscera weight/final weight)
3Hepatosomatic index = 100 × (liver weight/final weight)
4Mesenteric fat index = 100 × (viscera fat/final weight)
5Ingested fat retention = 100 × (fish fat gain/crude fat intake)
6Ingested energy retention = 100 × (fish energy gain, kJ/gross energy in-
take, kJ).
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Briefly, the two-first indices indicate that C12:0, C14:0 and C16:0 
are atherogenic (favouring the adhesion of lipids to cells of the immu-
nological and circulatory systems), and that C14:0, C16:0 and C18:0 
are thrombogenic, facilitating the formation of clots in the blood ves-
sels. The third equation, reveals the percentage relationship in which 
the main n‐3 LC-PUFA (EPA and DHA) appear in muscle with respect 
to the totality of the lipids.

2.6 | Statistical analysis

Prior to analysis, all data expressed as percentage were arcsine-
transformed. Normal distribution was checked with the Kolmogorov–
Smirnov test and homogeneity of variances by the Levene test. 
Comparisons among dietary groups (FO100, VO50 and VO100) were 
assessed by one-way ANOVA and significant differences identified 
by the Tukey post hoc test. When homoscedasticity and/or nor-
mality was not achieved, data were subjected to the nonparametric 
Kruskal–Wallis test followed by the Games–Howell test for post hoc 
comparisons. Differences among means were accepted when p  <  .05. 
Statistical analyses were carried out using the SPSS package version 
20.0 for Windows (SPSS, Inc., Chicago, IL, USA).

3  | RESULTS

3.1 | Growth performance and feed utilization

At the end of the feeding period, no negative effects were found with 
either the partial half of the fish oil or complete FO substitution with 
the mixture of PO and LO (4:1) in growth and feed performance, al-
though values were generally numerically inferior in fish fed the no-
FO diet. Briefly, all dietary groups presented similar final body weight 
(390, 397 and 375 g for FO100, VO50 and VO100, respectively) 
which resulted in steady weight gains of 894%, 940% and 840%, re-
spectively. All diets were readily accepted by the fish, with the mean 
daily FI being 1.81 g 100 g fish/day, and the average FCR, 1.74. Final 
survival rate was 75% for all dietary groups (Table 2).

3.2 | Biometric parameters and body proximate 
composition

None of the somatic parameters studied (condition factor, viscero-
somatic, hepatosomatic and mesenteric fat indices, ingested fat 

retention and ingested energy retention) significantly varied with 
increasing FO replacement (Table 3). Similarly, no trend in protein, 
lipid or ash of fish whole body was apparent in dietary groups. Only 
moisture content varied among treatments, being significantly 
lower in fish fed the control diet (FO100) than in those receiving 
VO50.

3.3 | Plasma biochemical determinations

As it is shown in Table 4, glucose, triglyceride and cortisol concen-
trations remained fairly constant among treatments (186–223 mg/dl, 
89–98 mg/dl, and 54–56 ng/ml, respectively). Likewise, the activities 
of the enzymes GOT (10.9–20.6 U/L), GPT (3.9–6.1 U/L) and lipase 
(7.1–7.8 U/L) were not affected by the diet.

3.4 | Tissue biochemical composition

The TL contents of liver and muscle did not vary among treatments, 
neither when compared to the initial sample, although the liver pre-
sented significantly higher values than muscle ranging from 79 to 
88 g/kg of fresh weight, and 7.3 to 9.5 g/kg of fresh weight, respec-
tively (Figure 1). Both tissues followed similar patterns of FA profiles 
and variations with respect to the initial sample in response to increas-
ing FO substitution (Tables 5 and 6, respectively). Briefly, despite the 
relative proportion of C16:0 was higher in fish fed the no-FO diet 
(VO100), no significant variations among treatments existed in the 
total percentage of SFA. Total MUFA raised significantly with higher 
VO inclusion, whereas total PUFA, n-6 and n-3 LC-PUFA showed the 
opposite trend. Individually, C18:1n-9 (which represented 50%–80% 
of total MUFA), C18:2n-6 and C18:3n-3 were higher when complete 
FO substitution, whereas ARA, EPA, C22:5n-3 (DPA, docosapentae-
noic acid) and DHA, reached higher values in fish fed the VO100 diet. 
Hepatic DHA/EPA ratio increased and EPA/ARA ratio decreased with 
reduced dietary FO (Table 5), which, conversely, remained unchanged 
in muscle (Table 6).

Muscle and liver showed a tissue-specific fatty acid profile, with 
muscle containing lower proportions of MUFA, and higher PUFA, n-3 
and n-6 LC-PUFA than liver. DMA were present exclusively in muscle 
(2.5%–3.0% of total FA). Irrespective to diet, C18 MUFA and C18:2n-6 
proportions were 1.5 to 2-fold lower in muscle than in the liver (9.2, 
12.7 and 16.5 versus 15.9, 23.9 and 29.7;, 7.2 and 10.7 versus 9.7, 
12.4 and 15.3, respectively), whereas C22:6n-3 was 3 to 4-fold higher 

FO100 VO50 VO100

Glucose (mg/dl) 223.4 ± 31.8 190.9 ± 24.3 185.9 ± 32.4

GOT (U/L) 20.6 ± 8.8 12.6 ± 2.8 10.9 ± 1.2

GPT (U/L) 6.1 ± 1.4 4.9 ± 1.1 3.9 ± 0.8

Triglycerides (mg/dl) 94.4 ± 12.3 89.0 ± 21.4 97.8 ± 12.7

Cortisol (ng/ml) 54.2 ± 16.0 56.1 ± 11.5 55.2 ± 8.7

Lipase (U/L) 7.8 ± 0.9 7.6 ± 0.5 7.1 ± 0.5

Data are expressed as mean ± SD (n = 3).

TABLE  4 Plasma parameters of greater 
amberjack juveniles fed the experimental 
diets for 154 days
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in the muscle (29.7, 26.9 and 22.2 versus 9.9, 7.2 and 5.4% of total 
FA, respectively).

3.5 | Indices of the nutritional quality of lipids

The indices used to assess the nutritional value of the flesh lipid frac-
tion are shown in Table 6. Both PUFA/SFA and n-6/n-3 ratios were 
more favourable in terms of nutritional value in fish fed the diet with 
FO as the unique lipid source, decreasing with higher inclusion of the 
VO mixture. IA remained unchanged irrespective of dietary FO sub-
stitution (0.38-0.40) whereas complete FO replacement promoted a 
significant increase in IT (0.25 ± 0.01) compared to FO100 and VO50-
fed fish (0.21 ± 0.01 and 0.22 ± 0.01, respectively). Finally, FLQ de-
creased with gradual FO replacement (39.39 ± 1.83, 34.88 ± 3.09 and 
28.63 ± 2.89, respectively).

4  | DISCUSSION

In the present study, the plant-based oil mixture consisting of PO 
and LO (4:1) used to partially (50%) or totally substitute FO did not 
significantly affect greater amberjack, S. dumerili growth performance 
and feed efficiency (Table 2). Both SGR and FCR of fish fed the VO-
based blend are similar or even better than most values reported for 
fish of the same size class fed either fish scraps or FO-based diets in 
the western Mediterranean coast (reviewed by Mazzola, Favaloro, & 
Sará, 2000).

A number of previous studies have reported that a large frac-
tion aproximately 2/3 of dietary FO may be replaced by VO blends 
without compromising fish production (Benedito-Palos et al., 2008; 
Fountoulaki et al., 2009; Izquierdo et al., 2003; Menoyo et al., 2004; 
Mourente & Bell, 2006; Peng et al., 2008). However, some species 
are negatively affected by total substitution of FO (Nasopoulou & 
Zabetakis, 2012; Regost et al., 2003; Sales & Glencross, 2011) while 
other reports show not effect (Glencross et al., 2016; Mozanzadeh 
et al., 2016), so it becomes necessary to study carefully FO substi-
tution effects for any particular fish species. Big pelagic marine car-
nivorous fish species such as S. quinqueradiata did not vary growth 

performance when receiving diets with increasing olive oil inclusion 
to completely replace FO (Seno-O et al., 2008) in a short-term feeding 
trial of 40 days. On the contrary, both cobia (Rachycentron canadum) 
and yellowtail kingfish (S. lalandi) juveniles production performance 
was compromised when FO was totally substituted by sunflower or 
canola oil, respectively (Bowyer, Qin et al., 2012; Trushenski et al., 
2011). Overall, successful fish performance may be achieved when 
FO sparing with alternative oils of terrestrial origin as long as their 
minimum EFA requirements are met. In our work, FO100, VO50 and 
VO100 diets provide 2.7, 2.1 and 1.2% n-3 LC-PUFA of dry matter re-
spectively, which is sufficient to cover the EFA requirements for most 
marine fish species (Glencross, 2009; Tocher, 2010). Consequently, 
although S. dumerili nutritional requirements are still unknown and 
the EFA requirements vary qualitatively and quantitatively with both 
species and growth stage, it seems that formulation with 525 g/kg of 
FM contributes to supply enough LC-PUFA to meet fish needs even 
in the absence of FO, as FM usually contains up to 80-150 g of crude 
lipid/kg feed, with a 300-350 g/kg of n-3 LC-PUFA (Bimbo, 2000). In 
fact, our present results seem to indicate that the EFA requirements of 
greater amberjack juveniles may be met by levels of n-3 LC-PUFA up 
to 12 g/kg of the dry weight of the diet. As far as we know, this is the 
first reference on the quantitative EFA requirements for this species.

Regardless of whether FO replacement affects fish growth and 
feed performance, its impact on tissue lipid deposition and fatty acid 
composition is controversial, varying depending on the species, di-
etary lipid content and substitute lipid source (Turchini et al., 2009). 
Previous research suggest that SFA-  and MUFA-rich lipid diets can 
make LC-PUFA utilization and/or diet-to-tissue transfer more efficient 
(Bowzer, Jackson, & Trushenski, 2016; Pérez, Rodríguez, Bolaños, 
Cejas, & Lorenzo, 2014; Turchini et al., 2009). The PO:LO (4:1) mix-
ture used here seem to provide balanced proportions of SFA: MUFA: 
PUFA and n-6/n-3 ratio for maintaining or even improving DHA/EPA 
and EPA/ARA ratios in muscle (3.3 and 5.6 for VO50; 3.4 and 5.7, for 
VO100, respectively) with respect to the initial fish (2.32 and 7.48) 
and fish receiving the total replaced FO diet (3.0 and 5.8, respectively). 
The same tendency for both proportions was observed in the liver of 
VO-fed groups (0.76 and 9.10; 0.74 and 10.53; 0.88 and 8.79; 1.17 
and 7.53; for the initial, FO100, VO50 and VO100 fish, respectively). 
In addition, physiologically important DHA/EPA and EPA/ARA ratios 
obtained in our present work are similar to those previously reported 
for farmed greater amberjack adults and similar to wild counterparts 
(Rodríguez-Barreto et al., 2012; Saito, 2012).

The liver is the major site of lipid storage in the majority of marine 
fish species being commonly used as indicator of unsuitable dietary fat 
ingestion. The diagnosis of healthy liver should allow optimized diets 
to be devised for a given species. It is well established that replacing 
dietary FO by terrestrial oils may produce the accumulation of fat in 
fish liver giving rise to a fatty liver syndrome (Benedito-Palos et al., 
2008; Díaz-López et al., 2010; Piedecausa, Mazón, García-García, & 
Hernández, 2007; Sargent et al., 2002), which may be associated with 
increased lipid peroxidation and impaired function such as inefficient 
nutrient utilization and necrosis (Craig, Washburn, & Gatlin, 1999; 
Tucker, Lellis, Vermeer, Roberts, & Woodward, 1997). In our study, both 

F IGURE  1 Total lipid content (g/kg wet weight) of liver and 
muscle of S. dumerili juveniles fed the experimental diets for 154 
days. The bars represent the mean of N replicates plus the SD
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the liver fat content and the HSI of VO50- and VO100-fed fish were 
similar to the control and initial fish, suggesting no hepatic affection 
with increasing levels of PO:LO inclusion. These observations agree 
well with previous research on turbot (Psetta maxima) (Regost et al., 
2003), European seabass (Richard, Mourente, Kaushik, & Corraze, 
2006) and gilthead seabream (Bouraoui et al., 2011) where no impair-
ment of lipogenic activity and lipid content in fish liver was detected 
when using PO and/or LO to replace FO. In line with this, Lemaire et al. 
(1991) found correlations between plasma biochemical parameters 
and hepatic histopathological condition. Thus, plasma parameters are 
often regarded as suitable monitoring tools of the physiological status 
of the fish (Bowyer, Qin et al., 2012; Coz-Rakovac et al., 2008; Díaz-
López et al., 2009; Kowalska et al., 2012) and could also be used as 
physiological indicators of lipogenesis affection with FO substitution 
(Richard et al., 2006). Under our experimental conditions, the inclusion 

of PO and LO did not affect plasma chemistry suggesting that fish 
were in acceptable nutritional status adding more evidences to the 
proper hepatic functioning even under FO absence. However, the 
higher relative content of C18:1n-9 and C18:2n-6, along with lower 
proportions of LC-PUFA, especially ARA, EPA and DHA, in the liver 
of VO-fed fish might have a long-term detrimental impact on lipid/
lipoprotein metabolism, as they have been reported to modulate lipid 
metabolism at different levels (reviewed by Turchini et al., 2009). Thus, 
longer-term studies are needed to rule out possible hepatic damage 
caused by the PO:LO mixture not detected in the present 5-month 
feeding trial.

Regardless of dietary inputs, muscle displayed higher relative 
content of n-3 LC-PUFA than the liver or diet. This indicates that LC-
PUFA, particularly DHA, are selectively retained in greater amberjack 
fillets, as previously reported in salmon (Bell, McGhee, Campbell, & 

TABLE  5 Total FA (g kg/DM) and main fatty acid composition (% total fatty acids) of liver TL from cultured Seriola dumerili juveniles fed the 
experimental diets for 154 days

Initial FO100 VO50 VO0

Total FA 211.74 ± 29.09 191.63 ± 20.2 222.07 ± 16.3 186.53 ± 24.6

Total SFA1 30.31 ± 1.00 30.25 ± 0.89 31.54 ± 0.86 31.28 ± 2.50

14: 0 4.96 ± 0.18 4.62 ± 0.23c 2.95 ± 0.12b 1.69 ± 0.10a

16: 0 20.52 ± 0.87 20.33 ± 0.76a 22.71 ± 1.03b 23.85 ± 2.30b

18: 0 3.63 ± 0.16 4.24 ± 0.45 5.04 ± 0.47 4.99 ± 0.61

Total MUFA1 28.39 ± 1.62 24.92 ± 1.03a 30.52 ± 1.32b 33.86 ± 1.68b

16: 12 9.27 ± 0.18 7.71 ± 0.06c 5.39 ± 0.05b 3.22 ± 0.09a

18: 12 18.08 ± 1.14 15.89 ± 1.22a 23.92 ± 0.92b 29.73 ± 1.56c

20: 12 0.61 ± 0.18 0.55 ± 0.06 0.52 ± 0.08 0.54 ± 0.16

Total PUFA1 38.16 ± 2.65 43.92 ± 0.90b 37.37 ± 1.13a 34.48 ± 1.81a

18: 2 n-6 8.80 ± 0.36 9.70 ± 0.31a 12.40 ± 0.72b 15.31 ± 1.09c

18: 3 n-3 0.93 ± 0.04 1.23 ± 0.11a 3.25 ± 0.03b 5.29 ± 0.66c

18: 4 n-3 1.29 ± 0.16 1.32 ± 0.14c 0.73 ± 0.03b 0.29 ± 0.05a

Total n-6 LC-PUFA1 1.56 ± 0.06 1.96 ± 0.16c 1.47 ± 0.06b 1.13 ± 0.09a

20: 2 n-6 nd 0.26 ± 0.05 0.29 ± 0.05 0.31 ± 0.09

20: 4 n-6 1.26 ± 0.05 1.28 ± 0.08c 0.92 ± 0.03b 0.61 ± 0.09a

22: 5 n-6 0.29 ± 0.02 0.29 ± 0.01b 0.20 ± 0.03a 0.18 ± 0.04a

Total n-3 LC-PUFA1 23.77 ± 2.65 27.75 ± 0.87c 18.50 ± 0.71b 12.03 ± 1.04a

20: 4 n-3 0.76 ± 0.01 0.94 ± 0.12c 0.67 ± 0.06b 0.34 ± 0.05a

20: 5 n-3 11.50 ± 1.03 13.48 ± 0.31c 8.07 ± 0.31b 4.59 ± 0.30a

21: 5 n-3 0.39 ± 0.03 0.46 ± 0.01c 0.31 ± 0.01b 0.16 ± 0.01a

22: 5 n-3 2.37 ± 0.13 2.92 ± 0.35c 2.28 ± 0.22b 1.43 ± 0.06a

22: 6 n-3 8.75 ± 1.46 9.95 ± 1.12b 7.18 ± 0.89a 5.36 ± 1.19a

Ratios

 PUFA/SFA 1.26 ± 0.13 1.45 ± 0.04b 1.19 ± 0.03a 1.11 ± 0.13a

 n-6/n-3 0.40 ± 0.05 0.39 ± 0.02a 0.62 ± 0.06b 0.93 ± 0.06c

 DHA/EPA3 0.76 ± 0.06 0.74 ± 0.07a 0.88 ± 0.04a,b 1.17 ± 0.23b

 EPA/ARA3 9.10 ± 0.53 10.53 ± 0.66b 8.79 ± 0.42a,b 7.53 ± 1.23a

Results are expressed as means ± SD (n = 3). Means with different superscript letters indicate significant differences (p < .05), nd = not detected.
1Including some minor components not shown.
2Including other isomers not shown. Mainly n-7 isomer for C16 and n-9 isomer for C18 and C20.
3DHA/EPA, 22:6 n-3/ 20:5 n-3; EPA/ARA, 20:5 n-3/ 20:4 n-6.
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Sargent, 2003; Bell et al., 2001; Torstensen, Frøyland, & Lie, 2004), 
and other marine fish species (Bowyer, Qin et al., 2012; Mourente 
& Bell, 2006; Pérez et al., 2014). The high supply of SFA, especially 
C14:0 and C16:0, and MUFA, chiefly C18:1n-9, in VO50 and VO100 
diets may have promoted their preferential use as metabolic energy 
for swimming (Bell, McGhee et al., 2003; McKenzie, 2001; Stubhaug, 
Lie, & Torstensen, 2007; Torstensen et al., 2004) enhancing muscle 
deposition of LC-PUFA.

There is currently increasing interest on the intake of marine-based 
feedstuff for its health-promoting benefits to humans. Several FA ra-
tios and indices have been defined to assess the nutritional quality of 
food lipid for human consumption. According to nutritional recom-
mendations, the PUFA/SFA ratio in human diets should be above 0.45 
(Wood et al., 2004) and, within the PUFA, a ratio of 1:1 to 2:1 n-6/n-3 
should be the target ratio for health (Simopoulos, 2011). Lower ratios 
of PUFA/SFA in the diet may increase the incidence of cardiovascular 

TABLE  6 Total FA (g kg/DM) and main fatty acid composition (% total fatty acids) of muscle TL, and indices of nutritional quality of lipids 
from cultured Seriola dumerili juveniles fed the experimental diets for 154 days

Initial FO100 VO50 VO100

Total FA 33.04 ± 6.45 16.95 ± 2.47 20.31 ± 4.93 23.94 ± 6.34

Total SFA1 28.44 ± 1.70 34.28 ± 0.28 33.64 ± 0.76 33.36 ± 0.47

14: 0 2.47 ± 0.38 1.09 ± 0.29 0.95 ± 0.26 0.69 ± 0.13

16: 0 17.79 ± 1.06 20.51 ± 0.17a 20.44 ± 0.05a 21.07 ± 0.12b

18: 0 7.27 ± 0.61 9.36 ± 0.22 9.38 ± 0.71 8.76 ± 0.37

Total MUFA1 20.22 ± 0.14 12.92 ± 1.41a 16.15 ± 2.20a,b 19.24 ± 2.32b

16: 12 5.27 ± 0.50 2.67 ± 0.48b 2.22 ± 0.44a,b 1.73 ± 0.27a

18: 12 13.31 ± 0.44 9.19 ± 0.87a 12.71 ± 1.79a,b 16.46 ± 2.15b

20: 12 0.76 ± 0.14 0.33 ± 0.06 0.32 ± 0.04 0.31 ± 0.04

Total PUFA1 49.20 ± 2.13 51.71 ± 1.42b 49.83 ± 1.61a,b 47.13 ± 1.90a

18: 2 n-6 5.08 ± 0.11 4.70 ± 0.30a 7.14 ± 0.52b 10.69 ± 0.32c

18: 3 n-3 0.65 ± 0.04 0.38 ± 0.01a 1.38 ± 0.29b 2.59 ± 0.31c

18: 4 n-3 0.91 ± 0.16 0.39 ± 0.08b 0.30 ± 0.07b 0.18 ± 0.04a

Total n-6 LC-PUFA1 2.01 ± 0.06 2.60 ± 0.12b 2.37 ± 0.25a,b 2.02 ± 0.25a

20: 2 n-6 nd 0.14 ± 0.01a 0.18 ± 0.01b 0.19 ± 0.01b

20: 4 n-6 1.43 ± 0.05 1.65 ± 0.08b 1.44 ± 0.15a,b 1.18 ± 0.17a

22: 5 n-6 0.58 ± 0.03 0.72 ± 0.06 0.72 ± 0.08 0.64 ± 0.07

Total n-3 LC-PUFA1 39.29 ± 2.06 43.08 ± 1.80c 38.26 ± 2.34b 31.45 ± 2.34a

20: 4 n-3 0.52 ± 0.11 0.29 ± 0.03b 0.30 ± 0.04b 0.20 ± 0.02a

20: 5 n-3 10.73 ± 1.29 9.78 ± 0.43c 8.02 ± 0.24b 6.40 ± 0.50a

21: 5 n-3 0.35 ± 0.04 0.19 ± 0.03b 0.20 ± 0.04b 0.14 ± 0.02a

22: 5 n-3 3.05 ± 0.22 2.87 ± 0.07b 2.87 ± 0.08b 2.47 ± 0.07a

22: 6 n-3 24.64 ± 1.55 29.65 ± 2.33b 26.86 ± 2.88a,b 22.23 ± 2.06a

Total DMA1 1.02 ± 0.11 2.91 ± 0.04 2.77 ± 0.35 2.57 ± 0.46

16: 0 DMA 0.63 ± 0.03 1.50 ± 0.08 1.48 ± 0.17 1.45 ± 0.31

18: 0 DMA 0.39 ± 0.11 0.79 ± 0.05b 0.72 ± 0.07a,b 0.63 ± 0.06a

Ratios

 PUFA/SFA 1.74 ± 0.17 1.51 ± 0.04b 1.48 ± 0.03a,b 1.41 ± 0.04a

 n-6/n-3 0.17 ± 0.01 0.17 ± 0.01a 0.24 ± 0.02b 0.37 ± 0.02c

 DHA/EPA3 2.32 ± 0.33 3.02 ± 0.34 3.34 ± 0.19 3.46 ± 0.12

 EPA/ARA3 7.48 ± 0.70 5.93 ± 0.19 5.56 ± 0.51 5.42 ± 0.39

 IA 0.40 ± 0.02 0.39 ± 0.03 0.38 ± 0.02

 IT 0.21 ± 0.01a 0.22 ± 0.01a 0.25 ± 0.01b

 FLQ 39.39 ± 1.83b 34.88 ± 3.09b 28.63 ± 2.89a

Results are expressed as means ± SD (n = 3). Means with different superscript letters indicate significant differences (p < .05), nd = not detected.
1Including some minor components not shown.
2Including other isomers not shown. Mainly n-7 isomer for C16 and n-9 isomer for C18 and C20.
3DHA/EPA, 22:6 n-3/ 20:5 n-3; EPA/ARA, 20:5 n-3/ 20:4 n-6.
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disease (WHO 2003). Further, fats with lower indices of atherogenicity 
(IA) and thrombogenicity (IT) can inhibit the aggregation of platelets 
and decrease the levels of esterified FA, cholesterol and phospholip-
ids, thereby preventing the appearance of micro- and macrocoronary 
diseases (Turan, Sönmez, & Kaya, 2007). The indices of lipid quality 
selected in the present work clearly indicate that flesh from greater 
amberjack juveniles is a nutritionally adequate food for human con-
sumption although the gradual inclusion of the PO:LO mixture tended 
to partially reduce its value. In brief, and regardless of dietary treatment, 
both PUFA/SFA and n-6/n-3 are well within values recommended for 
healthy human. Although there is no recommended values for IA and 
IT, it is generally accepted that the lower the values the healthier the 
ratios. So, the low values of both IA and IT indices together with high 
FLQ present in flesh suggest that its consumption may help to prevent 
the development of coronary heart diseases, being more favourable in 
terms of lipid quality for human consumption than gilthead seabream 
or European seabass (Grigorakis, 2007; Pérez et al., 2014).

In summary, the present work provides valuable information to the 
successful and economically viable culture of greater amberjack. The 
mixture of PO and LO (4:1) can effectively replace completely dietary 
FO in FM-based diets for S. dumerili juveniles without affecting growth 
performance, feed utilization and fish health. Based on these results, 
it appeared that a 12 g/kg of EFA in a dry-weight basis may cover 
the EFA requirements for juveniles of this species. In terms of prod-
uct quality, and regardless of dietary lipid, flesh of cultured specimens 
displayed good nutritional and healthy characteristics for human con-
sumption, in line with current global guidelines for fat intake.
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