Ergodic and dynamical properties of m-isometries

T. Bermúdez, A. Bonilla, V. Müller and A. Peris *

May 15, 2019

Abstract

An example of a weakly ergodic 3-isometry is provided in [3], we give new examples of weakly ergodic 3-isometries and study numerically hypercyclic *m*isometries on finite and infinite dimensional Hilbert spaces. In particular, all weakly ergodic strict 3-isometries on a Hilbert space are weakly numerically hypercyclic. Adjoints of unilateral forward weighted shifts which are strict *m*-isometries on $\ell^2(\mathbb{N})$ are shown to be hypercyclic.

1 Introduction

Throughout this article X stands for a Banach space, the symbol B(X) denotes the space of bounded linear operators defined on X.

Given $T \in B(X)$, we denote the *Cesàro mean* by

$$M_n(T)x := \frac{1}{n+1} \sum_{k=0}^n T^k x \quad \text{for all } x \in X.$$

We need to recall some definitions concerning the behaviour of the sequence of Cesàro means $(M_n(T))_{n \in \mathbb{N}}$.

Definition 1.1. A linear operator T on a Banach space X is called

- 1. Uniformly ergodic if $M_n(T)$ converges uniformly.
- 2. Mean ergodic if $M_n(T)$ converges in the strong operator topology of X.
- 3. Weakly ergodic if $M_n(T)$ converges in the weak operator topology of X.
- 4. Absolutely Cesàro bounded if there exists a constant C > 0 such that

$$\sup_{N \in \mathbb{N}} \frac{1}{N} \sum_{j=1}^{N} \|T^j x\| \le C \|x\| \quad \text{for all } x \in X.$$

^{*}The first, second and fourth authors were supported by MINECO and FEDER, Project MTM2016-75963-P. The third author was supported by grant No. 17-27844S of GA CR and RVO: 67985840. The fourth author was also supported by Generalitat Valenciana, Project PROME-TEO/2017/102.

- 5. Cesàro bounded if the sequence $(M_n(T))_{n \in \mathbb{N}}$ is bounded.
- 6. Uniformly Kreiss bounded if there is a C > 0 such that

$$||M_n(\lambda T)|| \le C \quad \text{for } |\lambda| = 1 \text{ and } n = 0, 1, 2, \cdots.$$
(1)

An operator T is said *power bounded* if there is a C > 0 such that $||T^n|| < C$ for all n.

Remark 1.1. 1. On finite-dimensional Hilbert spaces, the classes of uniformly Kreiss bounded and power bounded operators are equal, [21, page 762].

2. Any absolutely Cesàro bounded operator is uniformly Kreiss bounded.

The class of absolutely Cesàro bounded operators was introduced by Hou and Luo in [18].

The following implications for operators on Hilbert spaces among various concepts in ergodic theory are a direct consequence of the corresponding definitions and results in [6]:

Figure 1: Relations between different definitions in ergodic theory in Hilbert spaces.

In general, the converse implications of the above figure are not true. See [6] and references therein.

Let H be a Hilbert space. For a positive integer m, an operator $T \in B(H)$ is called an *m*-isometry if for any $x \in H$,

$$\sum_{k=0}^{m} (-1)^{m-k} \binom{m}{k} ||T^k x||^2 = 0.$$

We say that T is a *strict* m-isometry if T is an m-isometry but it is not an (m-1)-isometry.

- **Remark 1.2.** 1. For $m \ge 2$, the strict *m*-isometries are not power bounded. Moreover, $||T^n|| = O(n)$ for strict 3-isometries and $||T^n|| = O(n^{\frac{1}{2}})$ for strict 2-isometries, [8, Theorem 2.1].
 - 2. There are no strict *m*-isometries on finite dimensional spaces for *m* even. See [2, Proposition 1.23].
 - 3. An example of a weakly ergodic 3-isometry is provided in [3].

We recall the following definition that allow us to study some properties of orbits of the m-isometries or adjoint of m-isometries.

A point $x \in X$ is called a *periodic point* of $T \in B(X)$ if there is some $n \ge 1$ such that $T^n x = x$.

An operator $T \in B(X)$ is said to be *hypercyclic* if there exists a point $x \in X$ such that for every nonempty open subset U of X, the set $\{n \in \mathbb{N} : T^n x \in U\}$ is nonempty, T is *mixing* if for every nonempty open sets $U, V \subset X$, there exists $n_0 \in \mathbb{N}$ such that $T^n(U) \cap V \neq \emptyset$ for all $n \ge n_0$ and T is *Devaney chaotic* if it is hypercyclic and has a dense set of periodic points.

Examples of absolutely Cesàro bounded mixing operators on $\ell^p(\mathbb{N})$ are given in [6] (see also [18], [10], [11]).

Definition 1.2. Let H be a Hilbert space. $T \in B(H)$ is called *numerically hyper-cyclic* if there exists a unit vector $x \in H$ such that the set $\{\langle T^n x, x \rangle : n \in \mathbb{N}\}$ is dense in \mathbb{C} .

Clearly numerical hypercyclicity is preserved by unitary equivalence but in general not by similarity, [23, Theorem 1.13 & Remark 1.17]. This leads to the following definition:

Definition 1.3. Let $T \in B(X)$. It is said that T is weakly numerically hypercyclic if T is similar to a numerically hypercyclic operator.

In [23, Proposition 1.5], Shkarin proved that $T \in B(H)$ is weakly numerically hypercyclic if and only if there exist $x, y \in H$ such that the set $\{\langle T^n x, y \rangle : n \in \mathbb{N}\}$ is dense in \mathbb{C} .

The paper is organized as follows: Section 2 studies ergodic properties of *m*isometries on finite or infinite dimensional Hilbert spaces. For example, strict *m*isometries with m > 3 are not Cesàro bounded, and we give new examples of weakly ergodic 3-isometries. In Section 3, we analyze numerical hypercyclicity of *m*-isometries. In particular, we obtain that the adjoint of any strict *m*-isometry unilateral forward weighted shift on $\ell^2(\mathbb{N})$ is hypercyclic. Moreover, we prove that weakly ergodic 3-isometries are weakly numerically hypercyclic.

2 Ergodic properties for *m*-isometries in Hilbert spaces

The purpose of this section is to study ergodic properties of m-isometries. It is clear that isometries (1-isometries) are power bounded. What can we say about strict m-isometries and the definitions of Figure 1 on finite or infinite Hilbert spaces?

The following example is due to Assani. See [15, page 10] and [3, Theorem 5.4] for more details.

Example 2.1. Let H be \mathbb{R}^2 or \mathbb{C}^2 and $T = \begin{pmatrix} -1 & 2 \\ 0 & -1 \end{pmatrix}$. It is clear that

$$T^{n} = \begin{pmatrix} (-1)^{n} & (-1)^{n-1}2n \\ 0 & (-1)^{n} \end{pmatrix}$$

and $\sup_{n \in \mathbb{N}} \|M_n(T)\| < \infty$. Then T is Cesàro bounded and $\frac{\|T^n x\|}{n}$ does not converge to 0 for some $x \in H$. Hence T is not mean ergodic. Note that T is a strict 3-isometry.

The above example shows that on a 2-dimensional Hilbert space there exists a 3-isometry which is Cesàro bounded, not mean ergodic, and so not weakly ergodic. This example could be generalized to any Hilbert space of dimension greater or equal to 2.

Let H be a Hilbert space and $T \in B(H)$. Tomilov and Zemánek in [24] considered the Hilbert space $\mathcal{H} = H \oplus H$ with the norm

$$||x_1 \oplus x_2||_{H \oplus H} = \sqrt{||x_1||^2 + ||x_2||^2}$$

and the bounded linear operator \widehat{T} on \mathcal{H} given by the matrix

$$\widehat{T} := \left(\begin{array}{cc} T & T - I \\ 0 & T \end{array} \right) \ .$$

Lemma 2.1. [24, Proof of Lemma 2.1] Let $T \in B(H)$ and n a positive integer number. Then

$$\widehat{T}^n = \left(\begin{array}{cc} T^n & nT^{n-1}(T-I) \\ 0 & T^n \end{array}\right) \ .$$

In [24], the authors obtained the following relations of ergodic properties between the operators \hat{T} and T.

Lemma 2.2. [24, Lemmma 2.1] Let $T \in B(H)$. Then

- 1. \hat{T} is Cesàro bounded if and only if T is power bounded.
- 2. \widehat{T} is mean ergodic if and only if T^n converges in the strong topology of H.
- 3. \widehat{T} is weakly ergodic if and only if T^n converges in the weak topology of H.

Recall some properties of m-isometries.

Lemma 2.3. Let $T \in B(H)$ and $m \in \mathbb{N}$. Then

- 1. [8, Theorem 2.1] T is a strict m-isometry if and only if $||T^n x||^2$ is the value at n of a polynomial of degree less than or equal to m-1 for all $x \in H$, and there exists $x_m \in H$ such that $||T^n x_m||^2$ is a polynomial of degree exactly m-1.
- 2. [9, Theorem 2.7] If H is a finite dimensional Hilbert space, then T is a strict m-isometry with odd m if and only if there exist a unitary $U \in B(H)$ and a nilpotent operator $Q \in B(H)$ of order $\frac{m+1}{2}$ such that UQ = QU with T = U+Q.
- 3. [9, Theorem 2.2] If $A \in B(H)$ is an isometry and $Q \in B(H)$ is a nilpotent operator of order n which commutes with A, then A + Q is a strict (2n 1)-isometry.

Example 2.2. Let H be a Hilbert space and $T \in B(H)$ such that T = I + Q where $Q^n = 0$ for some $n \ge 2$ and $Q^{n-1} \ne 0$. Define the Hilbert space \mathcal{H} and the bounded linear operator \widehat{T} on \mathcal{H} as above. By construction $\widehat{T} = A + \mathcal{Q}$ where

$$A := \begin{pmatrix} I & 0 \\ 0 & I \end{pmatrix} , \qquad \mathcal{Q} := \begin{pmatrix} Q & Q \\ 0 & Q \end{pmatrix}$$

where $Q^n = 0$ and $Q^{n-1} \neq 0$. By part (3) of Lemma 2.3, T is a strict (2n - 1)isometry and hence not power bounded. Thus, by Lemma 2.2 we have that \hat{T} is not Cesàro bounded. Newly by part (3) of Lemma 2.3, \hat{T} is a strict (2n - 1)-isometry.

Example 2.3. Let λ be a unimodular complex number different from 1. Then

$$\widehat{I}_{\lambda} := \left(\begin{array}{cc} \lambda & \lambda - 1 \\ 0 & \lambda \end{array}\right)$$

is a Cesàro bounded operator on \mathbb{C}^2 by Lemma 2.2 (since $\sup_n |\lambda^n| < \infty$), it is not mean ergodic (since $\lambda^n x$ does not converge) and by Lemma 2.3, \widehat{I}_{λ} is a 3-isometry on \mathbb{C}^2 .

Now we give some ergodic properties of *m*-isometries.

Example 2.1 is a Cesàro bounded 3-isometry. However, an uniformly Kreiss bounded operator on a Hilbert space satisfies that $\lim_{n\to\infty} n^{-1} ||T^n|| = 0$, [6, Theorem 2.2] and by Lemma 2.3, we obtain the following.

Corollary 2.1. There is no uniformly Kreiss bounded strict 3-isometry.

Theorem 2.1. Assume that H is a finite n-dimensional Hilbert space. Then

- 1. If $n \ge 2$, then there exists a Cesáro bounded strict 3-isometry.
- 2. The isometries are the only mean ergodic strict m-isometries on H.

Proof. (1) Let

$$\widehat{I}_{\lambda} := \left(\begin{array}{cc} \lambda & \lambda - 1 \\ 0 & \lambda \end{array} \right)$$

be the operator on \mathbb{C}^2 considered in Example 2.3. Write $H = \mathbb{C}^2 \oplus \mathbb{C}^{n-2}$ and let $\mathcal{B} := \widehat{I}_{\lambda} \oplus I_{\mathbb{C}^{n-2}}$. Then \mathcal{B} is a strict 3-isometry which is Cesàro bounded (and not power bounded).

(2) Suppose that T is a strict m-isometry with m > 1 on a finite dimensional Hilbert space, then $m \ge 3$ by part (2) of Remark 1.2. Using part (1) of Lemma 2.3, it is easy to prove that $\frac{||T^n x||}{n}$ does not converges to 0 for some $x \in H$. So, T is not mean ergodic.

In Hilbert space of infinite dimensional we can say more.

Theorem 2.2. Let H be an infinite-dimensional Hilbert space and $T \in B(H)$ be a strict m-isometry. Then

- 1. If m > 3, then T is not Cesàro bounded.
- 2. If $m \geq 3$, then T is not mean ergodic.

Proof. By part (1) of Lemma 2.3, there exists $x \in H$ such that $||T^n x||^2$ is a polynomial at n of order m - 1 exactly. Since

$$\frac{T^n}{n+1} = M_n(T) - \frac{n}{n+1}M_{n-1}(T) , \qquad (2)$$

the proof is complete.

Since any weakly ergodic operator is Cesàro bounded, in particular there is no weakly ergodic strict *m*-isometry for m > 3.

Theorem 2.3. There exists a Cesàro bounded and weakly ergodic strict 3-isometry.

Proof. Let U be the bilateral shift. Define

$$\widehat{U} := \left(\begin{array}{cc} U & U - I \\ 0 & U \end{array} \right) \ .$$

First observe that \widehat{U} is Cesàro bounded, by part (1) of Lemma 2.2. Since $U^n \to 0$ in the weak operator topology, \widehat{U} is weakly ergodic by part (3) of Lemma 2.2. Therefore, $\widehat{U} = \mathcal{A} + \mathcal{Q}$, where

$$\mathcal{A} := \begin{pmatrix} U & 0 \\ 0 & U \end{pmatrix} \text{ and } \mathcal{Q} := \begin{pmatrix} 0 & U - I \\ 0 & 0 \end{pmatrix}.$$

The conclusion is derived by part (3) of Lemma 2.3.

In [3, Section 5.2], an example of a Cesàro bounded strict 3-isometry T on a Hilbert space H for which the sequence $\left(\frac{T^n}{n}\right)_{n\in\mathbb{N}}$ is bounded below for all $x \in H \setminus \{0\}$ is given. In particular, $(M_n(T)x)_{n\in\mathbb{N}}$ diverges for each $x \in H \setminus \{0\}$, and T is weakly ergodic.

We give a characterization of this property.

Given an *m*-isometry T, the covariance operator of T is defined by

$$\Delta_T := \frac{1}{(m-1)!} \sum_{j=0}^{m-1} (-1)^{m-1-j} \binom{m-1}{j} T^{*j} T^j .$$

Theorem 2.4. Let T be a strict 3-isometry on a Hilbert space H. Then the sequence $\left(\frac{T^n x}{n}\right)_{n \in \mathbb{N}}$ is bounded below for all $x \in H \setminus \{0\}$ if and only if the covariance operator Δ_T is injective.

Proof. If T is a strict 3-isometry and Δ_T is injective, then $\inf_n \frac{||T^n x||}{n} > 0$ for all $x \in H \setminus \{0\}$ (see the proof of [7, Theorem 3.4]).

If Δ_T is not injective, then there exists x such that $\langle \Delta_T x, x \rangle = 0$. By [7, Proposition 2.3], we have that $\inf_n \frac{||T^n x||}{n} \to \langle \Delta_T x, x \rangle = 0$, and thus the sequence $\frac{T^n x}{n}$ is not bounded below.

There exist weakly ergodic strict 3-isometries with the covariance operator Δ_T injective by [3, Section 5.2] and not injective, see the proof of Theorem 2.3.

The Uniform ergodic theorem of Lin [20, Theorem] asserts that if $\frac{||T^n||}{n} \to 0$, then T is uniformly ergodic if and only if the range of I - T is closed. On the other hand, T is uniformly ergodic if and only if $\frac{||T^n||}{n} \to 0$ and 1 is a pole of the resolvent operator, [14, Theorem 3.16].

Corollary 2.2. For m > 1, there is no uniform ergodic strict m-isometry on a Hilbert space.

Proof. By part (2) of Theorem 2.2, there is no mean ergodic strict *m*-isometry for $m \geq 3$. For m = 2 the result follows from the fact that the spectrum of any strict 2-isometry is $\sigma(T) = \overline{\mathbb{D}}$ and, thus, 1 is not an isolated point of $\sigma(T)$.

There exists a strict 3-isometry T which is weakly ergodic (thus Cesàro bounded), but it is not mean ergodic. For 2-isometries something else can be established.

Proposition 2.1. Let H be an infinite dimensional Hilbert space and let T be a strict 2-isometry. Then the following assertions are equivalent:

- 1. T is mean ergodic.
- 2. T is weakly ergodic.
- 3. T is Cesàro bounded.

Proof. It is a consequence of part (1) of Lemma 2.3, since $\frac{T^n x}{n}$ converges to zero for all $x \in H$.

The following example provides a 2-isometry that is not Cesàro bounded.

Example 2.4. On $\ell^2(\mathbb{N})$ we consider the operator T given by $T(x_1, x_2, \ldots) := (x_1, x_1, x_2, x_3, \ldots)$. Then, it is clear that

$$||T^{2}x||^{2} - 2||Tx||^{2} + ||x||^{2} = 0,$$

for any $x \in \ell^2(\mathbb{N})$. Notice that $T^k e_1 = e_1 + e_2 + \cdots + e_k$, so

$$||M_n(T)e_1|| = \frac{1}{n+1}\sqrt{\frac{(n+1)(n+2)(2n+3)}{6}}$$

is not bounded. Then T is a 2-isometry which is not Cesàro bounded.

Proposition 2.2. There is no Cesàro bounded weighted forward shift on $\ell^2(\mathbb{N})$, which is a strict 2-isometry.

Proof. Assume that T is a weighted forward shift with weights $(w_n)_{n \in \mathbb{N}}$. By [1, Theorem 1] (see also [8, Remark 3.9]), if T is a strict 2-isometry, then

$$|w_n|^2 = \frac{p(n+1)}{p(n)}$$
,

where p is a polynomial of degree 1, that is, p(n) := an + b.

First, suppose that b = 0. Then $w_n = \sqrt{\frac{n}{n-1}}$, since $a \neq 0$. Hence $T^*e_n := \sqrt{\frac{n}{n-1}}e_{n-1}$. By [6, Proposition 2.1], T^* is not Cesàro bounded. Since Cesàro bounded edness is preserved by taking adjoints, T is not Cesàro bounded.

Now, assume that $b \neq 0$, then $w_n(c) := \sqrt{\frac{cn+1}{c(n-1)+1}}$ with $c \neq 0$. Denote $T_c e_n := w_n(c)e_{n+1}$ and the diagonal operator $Ve_n := \alpha_n e_n$, where $\alpha_n := \sqrt{\frac{c(n-1)+1}{n}}$. Then V is invertible and satisfies that $VT_1 = VT_c$. Moreover, T_1 is not Cesàro bounded, by following an argument as in [6, Proposition 2.1]. Using that Cesàro boundedness is preserved by similarities, we obtain that T_c is not Cesàro bounded.

Corollary 2.3. There is no absolutely Cesàro bounded strict 2-isometry on a Hilbert space.

Proof. It is immediate by [6, Theorem 2.5] and part (1) of Lemma 2.3. \Box

Question 2.1. Is it possible to construct a Cesàro bounded strict 2-isometry on an infinite dimensional Hilbert space?

3 Numerically hypercyclic properties of *m*-isometries

In this section we study numerically hypercyclic m-isometries. For simplicity we discuss only operators on Hilbert spaces.

Recall that an operator $T \in B(X)$ is called weakly hypercyclic (weakly supercyclic) if there is a vector on X with a weakly dense orbit (weakly projective dense orbit).

Faghih and Hedayatian proved in [16] that *m*-isometries on a Hilbert space are not weakly hypercyclic. Moreover, *m*-isometries on a Banach space are not 1-weakly hypercyclic [5]. However, there are isometries that are weakly supercyclic [22] (in particular cyclic). Thus the first natural question is the following: are there numerically hypercyclic *m*-isometries?

Let H be a Hilbert space. Denote

$$I_m(H) := \{T \in B(H) : T \text{ is } m \text{-isometry}\}$$

If H is an n dimensional Hilbert space, then by [9, Theorem 2.7] we have that

$$I_1(H) = I_2(H) \subsetneq I_3(H) = I_4(H) \subsetneq \dots \subsetneq I_{2n-3}(H) = I_{2n-2}(H) \subsetneq I_{2n-1}(H) = I_m(H)$$

for all $m \ge 2n - 1$.

Theorem 3.1. There are no weakly numerically hypercyclic m-isometries in $B(\mathbb{C}^n)$ for $n \leq 3$.

Proof. If n = 1, there are not weakly numerically hypercyclic operators. Let n = 2. By [23, Theorem 1.13], if $T \in B(\mathbb{C}^2)$ is a weakly numerically hypercyclic operator, then there exists $\lambda \in \sigma(T)$, with $|\lambda| > 1$ and thus T is not an m-isometry. For n = 3, it is the same by [23, Theorem 1.14].

We discuss the existence of weakly numerically hypercyclic *m*-isometries on *n*-dimensional spaces for $n \ge 4$.

We say that $\lambda_1, \lambda_2 \in \mathbb{T}$ are rationally independent if $\lambda_1^{m_1} \lambda_2^{m_2} \neq 1$ for every nonzero pair $m = (m_1, m_2) \in \mathbb{Z}^2$, or equivalently if $\lambda_j = e^{i\theta_j}$ with $\theta_j \in \mathbb{R}$ with π, θ_1, θ_2 are linearly independent over the field \mathbb{Q} of rational numbers.

If $T \in B(X)$ and there are rationally independent $\lambda_1, \lambda_2 \in \mathbb{T}$ such that $ker(T - \lambda_j I)^2 \neq ker(T - \lambda_j I)$ for $j \in \{1, 2\}$, then T is weakly numerically hypercyclic [23, Theorem 1.9]. Moreover if X is a Hilbert space, then T is numerically hypercyclic [23, Proposition 1.12]. The following result gives an answer to the above question for some m-isometries.

Theorem 3.2. There exists a numerically hypercyclic strict (2m - 1)-isometry on $B(\mathbb{C}^n)$, with $n \ge 4$, for $2 \le m \le n - 2$.

Proof. Let $\ell \in \{2, 3, ..., n-2\}$. We will construct a numerically hypercyclic strict $(2\ell - 1)$ -isometry. Define D the diagonal operator with diagonal

$$(\underbrace{\lambda_1,\cdots,\lambda_1}_{\ell},\lambda_2,\lambda_2,\underbrace{1,\cdots,1}_{n-\ell-2})$$

where λ_1 and λ_2 are rationally independent complex numbers with modulus 1 and Q by

$$Qe_i: = e_{i-1} \text{ for } i \in \{2, 3, \cdots, \ell\} \cup \{\ell+2\} \text{ and} Qe_i: = 0 \text{ for } i = 1, i = \ell+1 \text{ and } i \ge \ell+3.$$

It is clear that $Q^{\ell} = 0$ and $Q^{\ell-1}e_{\ell} = e_1 \neq 0$. Moreover,

$$QDe_i = DQe_i = \lambda_1 e_{i-1} \text{ for } 2 \le i \le \ell$$

$$QDe_{\ell+2} = DQe_{\ell+2} = \lambda_2 e_{\ell+1}$$

$$QDe_i = DQe_i = 0 \text{ for } i = 1, \ell+1 \text{ and } \ge i \ge \ell+3.$$

By part (3) of Lemma 2.3, T := D + Q is a strict $(2\ell - 1)$ -isometry for any $\ell \in \{2, 3, \dots, n-2\}$.

Let us prove that T satisfies that $Ker(\lambda_i - T) \neq Ker(\lambda_i - T)^2$ for i = 1, 2. By definition $e_2 \in Ker(\lambda_1 - T)^2 \setminus Ker(\lambda_1 - T)$ and $e_{\ell+1} \in Ker(\lambda_2 - T)^2 \setminus Ker(\lambda_2 - T)$. So by [23, Proposition 1.9], T is numerically hypercyclic.

As a consequence of the proof of Theorem 3.2, we obtain

Corollary 3.1. Let H be a complex Hilbert space with dimension at least 4. Then there exists a numerically hypercyclic strict 3-isometry on H.

Proof. If H is an infinite dimensional Hilbert space, then $H = \mathbb{C}^4 \oplus H'$, where H' is an infinite dimensional Hilbert space. Then $S := T \oplus I$, where T is defined in Theorem 3.2 on \mathbb{C}^4 is a numerically hypercyclic strict 3-isometry on H.

Theorem 3.3. An *n*-dimensional Hilbert space supports no weakly numerically hypercyclic strict k-isometry with k = 2n - 3 or k = 2n - 1.

Proof. Let H be a finite-dimensional Hilbert space, dim $H = n < \infty$. Suppose on the contrary that $T \in B(H)$ is a weakly numerically hypercyclic strict (2n-1)-isometry. Since $||T^k x||^2$ grows polynomially for each $x \in H$ and there exists $u \in H$ such that $||T^k u||^2$ is a polynomial of degree 2n - 2, the Jordan form of T has only one block corresponding to an eigenvalue λ with $|\lambda| = 1$. Since, if T has more than one Jordan block, then $||T^n x||^2$ is bounded by a polynomial of degree strictly less than 2n - 2, for each $x \in H$, which is a contradiction. Thus $T = \lambda I + Q$ where $Q^n = 0$. Thus

$$T^{k} = \sum_{j=0}^{k} \binom{k}{j} \lambda^{k-j} Q^{j} = \lambda^{k} \sum_{j=0}^{k} \binom{k}{j} \lambda^{-j} Q^{j}$$

for all $k \in \mathbb{N}$.

Let $x, y \in H$ and suppose that the set $\{\langle T^k x, y \rangle : k \in \mathbb{N}\}$ is dense in \mathbb{C} . We have $\langle T^k x, y \rangle = \lambda^k p(k)$ for some polynomial p of degree $\leq n - 1$. If deg $p \geq 1$ then $|\langle T^k x, y \rangle| \to \infty$ so the set $\{\langle T^k x, y \rangle : k \in \mathbb{N}\}$ is not dense in \mathbb{C} .

If deg p = 0 then the set $\{\langle T^k x, y \rangle : k \in \mathbb{N}\}$ is bounded and again is not dense in \mathbb{C} . Hence T is not weakly numerically hypercyclic.

The case of (2n-3)-isometries can be treated similarly. If $T \in B(H)$ is a strict (2n-3)-isometry then the Jordan form of T has two blocks: one of dimension n-1 corresponding to an eigenvalue λ , $|\lambda| = 1$ and the second one-dimensional block corresponding to an eigenvalue μ , $|\mu| = 1$. For $x, y \in H$ we have $\langle T^k x, y \rangle = \lambda^k p(k) + a\mu^k$ for some polynomial $p, \deg p \leq n-2$ and a number $a \in \mathbb{C}$. Again one can show easily that the set $\{\langle T^k x, y \rangle : k \in \mathbb{N}\}$ cannot be dense in \mathbb{C} . Hence there are no weakly numerically hypercyclic (2n-3)-isometries on H.

Theorem 3.4. For $m \ge 2$, there exists a numerically hypercyclic strict m-isometry on $\ell^2(\mathbb{N})$.

Proof. For $m \geq 2$, no strict *m*-isometry is power bounded [13, Theorem 2]. Also by [4, Proposition 8], there exist forward weighted shifts on $\ell^2(\mathbb{N})$ that are strict *m*-isometries for $m \geq 2$. Since a forward weighted shift on $\ell^p(\mathbb{N})$, 1is numerically hypercyclic if and only if*T*is not power bounded ([19] & [23]), weobtain the result.

Since both numerical hypercyclicity and m-isometry are properties preserved by unitary equivalence, we have that

Corollary 3.2. Let H be an infinite dimensional separable complex Hilbert space and $m \ge 2$. Then there exists a numerically hypercyclic m-isometry on H.

Theorem 3.5. There exists a numerically hypercyclic Cesàro bounded strict 3-isometry on \mathbb{C}^4 .

Proof. Let T be the operator considered in the proof of Theorem 3.2

$$T := \begin{pmatrix} \lambda_1 & \lambda_1 - 1 & 0 & 0 \\ 0 & \lambda_1 & 0 & 0 \\ 0 & 0 & \lambda_2 & \lambda_2 - 1 \\ 0 & 0 & 0 & \lambda_2 \end{pmatrix}$$

where $\lambda_1, \lambda_2 \in \mathbb{T}$ are rationally independent. By the proof of Theorem 3.2, it is clear that T is numerically hypercyclic.

Since both blocks

$$\begin{pmatrix} \lambda_1 & \lambda_1 - 1 \\ 0 & \lambda_1 \end{pmatrix} \quad \text{and} \quad \begin{pmatrix} \lambda_2 & \lambda_2 - 1 \\ 0 & \lambda_2 \end{pmatrix}$$

are Cesàro bounded by Lemma 2.2, it is easy to see that T is Cesàro bounded. \Box

We know that there exist examples of numerically hypercyclic and weakly ergodic 3-isometries. The following result goes further in this direction.

Theorem 3.6. Any weakly ergodic strict 3-isometry on a Hilbert space is weakly numerically hypercyclic.

Proof. If T is a weakly ergodic strict 3-isometry, then there exists x such that $\frac{T^n x}{n}$ is weakly convergent but it is not norm convergent. Indeed for a strict 3-isometry T, there exists x such that $\frac{T^n x}{n}$ does not converge to zero in norm.

Then, since $x_n = \frac{T^n x}{n}$ is weakly convergent but it is not norm convergent, by [23, Lemma 6.1] there is $y \in H$ such that $\{n\langle x_n, y \rangle : n \in \mathbb{N}\}$ is dense on \mathbb{C} . Hence T is weakly numerically hypercyclic.

In particular, the example of a weakly ergodic 3-isometry defined in [3, Section 5.2] is weak numerically hypercyclic.

Question 3.1. Do there exist numerically hypercyclic weakly ergodic 3-isometries?

Let T be an m-isometry. By part (1) of Lemma 2.3, it is clear that T is not hypercyclic. What can we say about dynamical properties of T^* ? In general we can not say anything. By [12, Theorem 1], it is obtained that for any m-isometry T on H satisfying that $\bigcap_{n=0}^{\infty} T^n(H) = \{0\}$ and $T^*T \ge I$, T^* is hypercyclic. Moreover, the following result gives a positive answer for forward weighted shift operators.

Theorem 3.7. Let S_w be a forward weighted shift strict *m*-isometry on $\ell^2(\mathbb{N})$. Then

- 1. S_w^* is mixing if and only if $m \ge 2$.
- 2. S_w^* is chaotic if and only if $m \geq 3$.

Proof. By [1, Theorem 1], a unilateral weighted forward shift on a Hilbert space is an *m*-isometry if and only if there exists a polynomial *p* of degree at most m - 1such that for any integer $n \ge 1$, we have that p(n) > 0 and $|w_n|^2 = \frac{p(n+1)}{p(n)}$. Thus for $m \ge 2$, S_w^* satisfies condition ii) of (b) from [17, Theorem 4.8] and S_w^* is mixing. For $m \ge 3$, S_w^* satisfies condition ii) of (c) from [17, Theorem 4.8] and S_w^* is chaotic.

Notice that, if S_w is a unilateral forward weighted shift and a strict *m*-isometry on $\ell^2(\mathbb{N})$ with $m \geq 2$, then S_w^* is hypercyclic operator.

By [1, Corollary 20], there exist bilateral forward weighted shifts which are strict *m*-isometries on $\ell^2(\mathbb{Z})$ for odd *m*, then we have

Theorem 3.8. Let S_w be a bilateral forward weighted shift strict m-isometry on $\ell^2(\mathbb{Z})$ with m > 1. Then S_w^* is chaotic.

Proof. By [1, Theorem 19 & Corollary 20], a bilateral weighted forward shift on a Hilbert space is a strict *m*-isometry if and only if there exists a polynomial *p* of degree at most m-1 such that for any integer *n*, we have p(n) > 0 and $|w_n|^2 = \frac{p(n+1)}{p(n)}$ and *m* is an odd integer. Hence, for $m \ge 3$, S_w^* satisfies condition ii) of (c) from [17, Theorem 4.13]. Thus S_w^* is chaotic.

References

- [1] B. Abdullah and T. Le, The structure of *m*-isometric weighted shift operators, Operators and Matrices, **10** (2016), no 2, 319-334.
- [2] J. Agler, M. Stankus, *m*-isometric transformations of Hilbert space. I, Integral Equations Operator Theory, **21** (1995), no 4, 383–429.
- [3] A. Aleman and L. Suciu, On ergodic operator means in Banach spaces, Integral Equations Operator Theory, 85 (2016), 259-287.
- [4] A. Athavale, Some operator-theoretic calculus for positive definite kernels. Proc. Amer. Math. Soc. 112 (1991), 701-708.
- [5] T. Bermúdez, A. Bonilla and N. Feldman, The convex-cyclic operator, J. Math. Anal and Appl., 434 (2016), 1166-1181.
- [6] T. Bermúdez, A. Bonilla, V. Müller and A. Peris, Cesàro bounded operators in Banach spaces, to appear in J D'Analyse Math.
- [7] T. Bermúdez, I. Marrero, A. Martinón, On the orbit of an *m*-isometry, Integral Equations Operator Theory, 64 (2009), 487-494.
- [8] T. Bermúdez, A. Martinón and E. Negrín, Weighted shift operators which are m-isometries, Integral Equations Operator Theory, 68 (2010), no. 3, 301–312.
- [9] T. Bermúdez, A. Martinón and J. A. Noda, An isometry plus a nilpotent operator is an *m*-isometry, Applications. J. Math. Anal. Appl., 407 (2013), no. 2, 505-512.
- [10] N. C. Bernardes Jr, A. Bonilla, V. Müller and A. Peris, Distributional chaos for linear operators, J. Funct. Anal., 265 (2013), 2143-2163.
- [11] N. C. Bernardes Jr, A. Bonilla, A. Peris and X. Wu, Distributional chaos for operators in Banach spaces, J. Math. Anal. Appl., 459 (2018), 797-821.
- [12] S. Chavan, Co-analytic, right-invertible operators are supercyclic. Colloq. Math. 119 (2010), no. 1, 137-142.
- [13] M. Cho, S. Ota and K. Tanahashi, Invertible weighted shift operators which are m-isometries, Proc. Amer. Math. Soc., 141 (2013), no. 12, 4241-4247.
- [14] N. Dunford, Spectral Theory I. Convergence to projections, Trans. Amer. Math. Soc., 54, (1943),185-217.
- [15] R. Emilion, Mean-bounded operators and mean ergodic theorems, J. Funct. Anal., 61 (1985), no. 1, 1-14.
- [16] M. Faghih Ahmadi and K. Hedayatian, Hypercyclicity and supercyclicity of m-isometric operators, Rocky Mountain J. of Math., 42 (2012), no 1, 15-23.

- [17] K.-G. Grosse-Erdmann and A. Peris, Linear Chaos, Springer, London, 2011.
- [18] B. Hou and L. Luo : Some remarks on distributional chaos for bounded linear operators, Turk. J. Math., 39 (2015), 251-258.
- [19] S. G. Kim, A. Peris and H. G. Song, Numerically hypercyclic operators, Integral Equations Operator Theory, 72 (2012), no. 3, 393-402.
- [20] M. Lin, On the uniform ergodic theorem, Proc. Amer. Math. Soc., 43 (1974), 337-340.
- [21] A. Montes-Rodríguez, J. Sánchez-Álvarez and J. Zemánek, Uniform Abel-Kreiss boundedness and the extremal behavior of the Volterra operator, Proc. London Math. Soc., 91 (2005),761-788.
- [22] R. Sanders, An isometric bilateral shift that is weakly supercyclic, Integral Equations Operator Theory, 53 (2005), no. 4, 547-552.
- [23] S. Shkarin, Numerically hypercyclic operators, arXiv:1302.2483v1
- [24] Y. Tomilov and J. Zemánek, A new way of constructing examples in operator ergodic theory, Math. Proc. Cambridge Philos. Soc., 137 (2004), no. 1, 209-225.

T. Bermúdez

Departamento de Análisis Matemático, Universidad de La Laguna, 38271, La Laguna (Tenerife), Spain.

 $e\mathchar`e\mathcha$

A. Bonilla

Departamento de Análisis Matemático, Universidad de La Laguna, 38271, La Laguna (Tenerife), Spain.

e-mail: abonilla@ull.es

V. Müller

Mathematical Institute, Czech Academy of Sciences, Zitná 25, 115 67 Prague 1, Czech Republic.

e-mail: muller@math.cas.cz

A. Peris

Institut Universitari de Matemàtica Pura i Aplicada, Universitat Politècnica de València, Edifici 8E, Acces F, 4a planta,

46022 València, Spain.

e-mail: aperis@mat.upv.es