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Bose-Einstein Condensates of Dilute Alkali Gases

Resumen

Los condensados de Bose-Einstein han sido uno de los sistemas mas estudiados en
los ultimos anos, desde que en 1995, se logro por primera vez un experimento en el
que se generaran con éxito condensados practicamente puros. No es de extranar el
interés que hay sobre este estado de la materia, pues se encuentra en multitud de sis-
temas en la naturaleza y tiene importantes aplicaciones en interferometria atomica
y computacion cudntica, ademds de ser la base del desarrollo del ldser de dtomos.
En este trabajo desarrollamos el marco teorico usual para trabajar con condensados
a temperaturas cercanas al cero absoluto, para luego, abordar el formalismo adecuado
para el tratamiento de condensados alargados.

A continuacion, aplicamos las ecuaciones obtenidas a una serie de condensados
alargados utilizando técnicas computacionales, comparando los resultados numéricos
con expresiones analiticas aplicadas al mismo problema.
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1 Introduction: Objectives and Methodology

Este trabajo estd dividido en dos partes principales: Un teorica formada por las Sec-
ciones 2, 3y 4; y otra prdactica, que corresponde a las Secciones 5, 6 y 7.

En la primera parte, el objetivo es introducir aspectos generales de la condensacion
de Bose-Finstein, tales como el concepto de condensado, las técnicas utilizadas para
obtenerlos y el interés de estos sistemas. Para completar esta descripcion, se deduce
la ecuacion de Gross Pitaevskii, que gobierna la dinamica de cualquier condensado a
temperatura cero. Ademds, se estudia el caso de interés de los condensados alarga-
dos, desarrollando una ecuacion que los describe a partir de la ecuacion de Gross-
Pitaevskisi.

En base a las ecuaciones obtenidas, se da paso a la sequnda parte del trabajo, donde
se desarrolla un programa de ordenador que permita el estudio de condensados quasi-
unidimensionales. Para ello, se utilizan técnicas numéricas como el método de
Crank-Nicolson a la hora de escribir el codigo, comparando los resultados obtenidos
con expresiones analiticas.

This work is divided in two main parts: Sections 2, 3 and 4, which correspond to

the theoretical part; and Sections 5, 6 and 7, which correspond to the practical part.
In the first part, the objective is to make an introduction about general aspects of
Bose-Einstein condensation. In order to achieve this goal, some notions about this
topic are expounded, such as the concept of Bose-Eintein Condensate (BEC), the
ways to obtain them and the interest of these systems. Following this idea, the Gross-
Pitaevskii equation (GPE), which describes a general condensate near the absolute
zero, is obtained. A specific formalism is shown in order to study the interesting
case of elongated condensates, whose equation is obtained.
The aim of the second part is to develop a computer program that permits the study
of the dynamics of a quasi-onedimensional BEC. Numerical techniques such as the
Crank-Nicolson method are used in order to write the program, which is tested by
comparing the results with analytical expressions.
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2 Bose-Einstein Condensation of Dilute Alkali Gases

Primero, se introduce en este apartado el concepto de condensado de Bose-FEinstein,
especificando las condiciones necesarias para su creacion, asi como sus caracteristicas
mas importantes. Luego, se indaga con mayor profundidad en los mecanismos in-
volucrados en la obtencion de estos sistemas, explicando el proceso de enfriamiento
y el papel de las trampas magneto-dpticas (dando algunos ejemplos de estas). Para
acabar esta introduccion, se especifican algunos campos de estudio donde los conden-
sados tienen un papel importante y se especifican sistemas en los que se encuentran.

A Bose-Einstein condensate is a system of bosons which occupy the same single-
particle state and show quantum coherence on a macroscopic scale. The achievement
of such a coherent state requires specific density and temperature conditions. BECs
can be understood as another state of matter.

In this work, we are interested in dilute alkali gases. These systems are particularly
suitable for being cooled using laser techniques and magnetic traps, which are the
best cooling techniques known nowadays. In addition, alkali atoms interact mainly
via two-body elastic interactions, which allows the system remain in its gaseous state
till the condensation is achieved.

In alkali gases, temperatures near absolute zero are needed to assure the system is
cold enough (fractions of microkelvins or less) that all the particles are in the same
single-particle state, the one of minimum energy possible before the gas solidifies.
At such low temperatures, the kinetic energy of the bosons is so small that their de
Broglie wavelength becomes of the order of the interparticle distance. Under these
circumstances, single-particle wave functions overlap giving rise to a macroscopic
condensate wave function.

Density has an important role in the experimental realization of Bose-Einstein con-
densation: It should be high enough to get the atomic wave functions overlap
and, however, low enough to avoid the atoms to form molecules. Since BECs are
metastable states of matter (with life-times typically of the order of seconds or min-
utes), if their atoms form molecules the gas solidifies rapidly and the life-time of the
condensate is reduced.

One important characteristic that defines a BEC is that a peak in a near-zero value
appears in the momentum representation as a consequence of all the particles be-
ing in their lowest energy state. Since the magnetic traps we are interested in are
harmonic ones, another peak appears in the coordinate representation. For BECs
trapped in uniform potentials, only the peak in the momentum representation exists.
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It is not a trivial issue to obtain a BEC. Not only is important the identification
of systems that are suitable for staying gaseous all the way to the BEC transition,
but development of cooling and trapping techniques is also needed to reach the par-
ticular temperatures and densities required for the condensation.

The cooling method consists of two parts: Laser cooling and evaporative cooling.
Laser cooling is used to pre-cool the gas. The incident photons of the laser in-
terchange momentum with the particles of the gas in such a way that, after the
scattering process, the photons have increased their momentum, decreasing the ki-
netic energy of the particles and cooling the gas.

After the pre-cooling, we need our gas to be trapped in a magnetic or laser field
(magneto-optical trapping, MOT). This kind of trapping is used instead of a box for
example, because in this latter case the gas interacts with the walls of the container,
facilitating the creation of molecules, which brings the system to a solid phase. The
first stage of this trapping consists in applying a weak magnetic field with laser fields.
The second, consists in the use of a stronger inhomogeneous magnetic field, achieving
an appropriate density which assures enough elastic collisions among the atoms.
When this density is reached, it is time to apply evaporative cooling. It consists in
reducing the trap depth, allowing the most energetic atoms to scape, thus decreasing
the temperature of the remainder system.

The Ioffe-Pritchard trap is an example of magnetic trap usually found in Bose-
Einstein condensation. The form of the magnetic field applied in this trap is:

5 B// 1

B=DByl,+ B (1, - 1,) + 5 KZZ -3 («® + y2)> 1, —2zl, —yzl,|, (1)
where By is the minimum of the axial magnetic field, B’ = % = —88—? and B" =
92B,

5.2+ Lhe potential associated with a magnetic field BisV = —ﬁé , Where p =
gritpmp is the magnetic momentum induced in an atom of the condensate in the
hyperfine state |F,mg). This potential, can be approximated with high accuracy by
the following potential:

. m B/Q B//
V(r_’) — gFPJBmF‘B’ ~ W% [(F _ 7) (1.2 + yZ) + B//ZZ : (2)
0

where g is the Landé g-factor and up is the Bohr magneton.
In general, any typical potential associated with a trap used in condensation can be
approximated using a harmonic potential. In particular, as occurs in the case of the
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Ioffe-Pritchard trap, it is common to work with axisymmetric potentials:

V(F) = Vi(r) + Va(e) = gm (3} +we?) (3)
where 7| = y/x? + y? is the transversal coordinate and z is the axial coordinate.
This potential is characterized by the oscillator lengths a, = y/h/mw, and a, =
VhA/mw,.

Periodic grids created using stationary lasers are the usual device in the case of
optical traps, being common to find the one formed by two identical lasers beams
propagating in opposite directions. In this case, the oscillating electric field is

& = & [cos (wt — kz) + cos (wt + kz)] 1, (4)

where the spatial step in the grid is defined as d = 7. The dipolar electric momentum
induced in the atoms, generates the following effective potential:

V(z) = —%a(w) (|6 D), = Vacos(k=), (5)

where a(w) is the dynamical polarizability of the atoms, (|&(z,¢)[?), is the intensity

of the radiation and Vy = S(Z’:r)f where typically 0 < s < 20.

Many other traps have been created, for examples the Dark Spot trap or the TOP
trap, but those considered above (specially the loffe-Pritchard trap) are simpler and
more convenient.

By changing the form of the potentials, one can generate spherical, disk-shaped or
cigar-shaped condensates. In this work, we are going to study the general case of a
condensate in an arbitrary potential (at 7' = 0K) and the case of the cigar-shaped
potential (which will bring us to the quasi-onedimensional case).

We can find BECs everywhere in nature. Some examples are the alkali gaseous

systems near the absolute zero; at higher temperatures (and densities), they can be
found in neutron stars and white dwarf stars; they also appear in some cosmology
theories, where we find them related to dark energy and mass; in superfluidity; and
also in superconductivity, where the concept of condensation can be applied because
the electrons form Cooper pairs.
Research on gaseous BECs can be divided in two main areas: The study of the
atomic condensate as a coherent gas, for which it is needed as little interactions as
possible (low densities) and the condensate as a many body system, for which the
study of the interaction of the atoms is the goal (high densities).

8
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In the first case, the experiments are focused on atom optics (coherent amplification
of atoms or atom lasers, interference phenomena, diffraction, ...), precision studies,
solitons (which are related to nonlinear phenomena in dissipative environments) and
exploration of basic aspects of quantum mechanics. In the second, we find the study
of vortices, which characterize the superfluid and superconducting properties of the
gases. In soliton and vortex studies, it is usual to turn off the trap confining the
BEC, and leave the system evolve freely for a few seconds (ballistic expansion).
Interference of atoms is analogous to the interference of light (actually, matter waves
are similar to light waves), and had been studied almost since the first realization
of Bose-Einstein condensation. In fact, this kind of experiments were developed in
order to study the coherence of the BECs. The first experiment consisted in two con-
densates, created using a tool to split a condensate into two halves. The two BECs
were separated and overlapped in ballistic expansion. In order to assure that the
results were matter wave interference patterns, and not some kind of self-diffraction
due to the sharp edge in the confinement, one of the condensates was eliminated by
focusing resonant yellow light on it. In that moment, the fringes vanished, confirming
that the result was indeed true interference. That was an important and remarkable
outcome, since the destructive interference, in some way, means that atoms plus
atoms add up to vacuum.

Amplification of atoms is called atom laser too due to its similarities with the light
laser. A number of atoms pass through a BEC, which is acting as an active medium
and is being illuminated by a laser light, provoking their “amplification”, which is
slightly different from light laser. While in light lasers we generate photons using
atomic transitions, in atom amplifiers we transform the quantum state of the atoms
from the active medium into the state of the input atoms. It is possible to use this
device in order to amplify light, as in a light laser. Besides, this atom lasers can be
used to improve the performance of atom interferometers, which are used as precise
gravity and rotation sensors.
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3 Gross-Pitaevskii Equation

En esta Seccion se aborda la deduccion de la ecuacion de Gross-Pitaevskii, en base a
un principio varitacional. Primero, utilizando un anzat de Hartree-Fock, se obtiene
el funcional de la energia, a partir del cual se deduce la ecuacion para estados esta-
cionaros. Luego se generaliza esta para estados dependientes del tiempo. Ademds,
se interpreta la aparicion del término no lineal en la ecuacion estacionaria (que se
identifica con el potencial quimico).

3.1 The Energy Functional

As is well known, the problem of a system with more than two particles has not
analytical solutions. Since for BECs the typical number of particles is over one hun-
dred, it is necessary to simplify the Hamiltonian governing the condensate. One can
approximate the interparticle interaction contribution to achieve this goal.

We are working at T' = 0K, the energy is minimum, so one can consider that the
scattering of two particles! corresponds to an s-wave scattering process. In these cir-
cumstances, the scattering is fully characterized by a single parameter: the scattering
length ag, which is positive in the cases we are interested in (repulsive interparticle
interaction). Thus, we can choose any interaction potential provided that it leads to
the same s-wave scattering length that can be measured experimentally, in particu-
lar, we take one of the form V(r; — 1) = Upd(r; — 7;) . We know from scattering
theory [1] that, in the Born approximation (which, for low energies, is valid for short
range potentials) the s-wave scattering length is

/:l — —
05 = ot [ V(7). (6)

where f1 is the reduced mass of the two particles in the scattering and 75; = 75 — 7.
Substituting the reduced mass of two bosons ji = m/2 and the chosen expression for
the potential V(7; — 1), we find

B Arh2a

Uo = (7)

m

!The two body interaction dominates over the other ones for dilute gases [2].

10
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Taking this into account, the Hamiltonian of the system is the following:

H= Z(——A + V(7 >+U026 (8)

1<)

where N is the total number of particles in the condensate, A; = 612 is the Laplace
operator, and V(r;) is the time independent external potential that confines the
BEC.

Since the particles are bosons all in the same single-particle state, we can approximate
the total wave function as the symmetrized product of the identical single-particle
wave functions, which leads us to a Hartree-Fock anzat:

N
i=1
Thus, the energy functional of the system is
N 52
Ey = /dﬂ...dﬁv (Zl(—%w*(ﬂ,...,FN)Aﬂ/)(Fl, e TN+

+* (7, o, TNV (T, FN)) +/CZF1...dFNUO Z (7, o, TN )0 (T —T5) (1, o, T)
i<j
(10)
To calculate this functional, we can divide it in two contributions, one which corre-
sponds to the sum of the single-particle energies of all the particles and the other
which corresponds to the interparticle interaction.
The first contribution is given by

E, :/dFL--dFN(w*(Fla e TN) P (T, o P) (L L ) A (7, -~-7FN)> =

:/dﬂ...dFN<|¢(F2)\2...| ()2 & FSF) + . + |6 ...

BN o)) = N [dF( — 25 (A6 + 'V (A6, (1)

where we have used h; = —%Ai + V(7;) and [ dr; \¢(ﬁ)|2 = 1. This result agrees
with the energy of a system of non-interacting bosons all in the same state, which is

11
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just the number of particles times the energy of one of those bosons.
The second contribution is

E, = UO/dFI...dFNZW(Fl, o PN)O(Fy =TT, ooy ) =

1<j
— U, { // 47 diy |67 2 [6(7) 2 6(7 — ) / 0y |6 . / 0y (N2 + ..
ot [l . [driijonl [f dndss oGP 106 - 7).
.../diy¢(fN)|2+..} = U, [//dfld@]¢(F1)|2]¢(F2)|25(F1 — )+
+//dF1dF3|¢(F1)|2|¢(F3)|25(F1—F3)+...+// didig |67 167 2 0(F — ) + .

ot [ drdry o) P o 507 - 7) + ] — 1), { [arlor+ } =

UsN(N -1 L Uy N*? .
= DAY Laroo)t = 2 [ ario)” (12)
where we have used again the normalization condition [ d7|¢(7)[> = 1. Since

N > 1, we have approximated N (N — 1) ~ N2 The number of terms of the sum cor-
responds to the result of combinations in pairs without repetition of indistinguishable
elements, which is the combinatorial number

N N N(N—1)(N=2)! N(N-1)
(2) -

2 N_20 aN-2! 2 (13)

Finally, the energy functional is

h? Uy N
Enlorso = N [ dF |5 (800 + 0 (V@0 + ol (1
And the energy functional per particle reads
E *
Bl ¢) = 2Pl / E (", ) drf (15)

12
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3.2 Stationary Gross-Pitaevskii Equation

We will use a variational principle based on the energy functional (15) to find the
wave function that minimizes the energy. Because the wave functions are normalized,
we introduce, using a Lagrange multiplier, the constrain [ d |6(7)|* = 1 into the
energy functional. The result is

Bl = [ 7[00 @000 —nloF] = [ €10 @.00dr (16)

We can take either ¢*(7) or ¢(7) as the “trajectory variable” in phase space [3], so we

use ¢*(7) for simplicity, because the functional does not depend on ¢*(7), which

means that the Euler-Lagrange equations 6 (‘%d)*) — 37‘;: = 0 reduce to

g 0 d
dp* Dp*

NUO

(= A + 67V (0 +

o) — |¢<f>|ﬂ 0 an

Thus, after performing the partlal derivative, one finally obtains
h2
AV U 60— 1] 8 =0 (18)

The chemical potential p satisfies the relation aEN = p. From Eq. (18), we have

A
— i) = [ drs (~g AV UV I0F) 0 (19)
Performing the derivative 2 8N with Ey given by Eq. (14), one obtains
OEN A 2

which is just the expression for n found above, so it follows that 6EN = 7. This
allows us to identify the Lagrange multiplier n as the chemical potentlal i of the
condensate. This chemical potential is the amount of energy needed to remove or
add one particle to the condensate. With this, we find

(—h—QA L V() + UoN \¢(F)\2) 6(7) = o (), (21)

2m

13
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where we can see that because of the nonlinearity of the Gross-Pitaevskii Hamilto-
nian, its stationary states correspond to well defined values of the chemical potential
(instead of the energy, as occurs in linear systems).

3.3 Time Dependent Gross-Pitaevskii Equation

Now that we have obtained the GPE for stationary states, we may look for the
corresponding time dependent equation. Such equation can be deduced analogously
to the stationary one, by starting from the energy per particle functional E[¥*, U] for
time dependent states W(7, t) normalized to unity, and using the variational principle
[2, 4]

(22)
The derivative of a functional of the form E[U*] = [ drE(U*, v U*) is defined as

SB[V e - 0E
= — = 23
o+ o va(vq;*) (23)

Since £ does not depend on 6\11*, we finally get

OF o€ 0 o€
v ~ov "o = ow 24
Using Eq. (24) and the energy functional (15), one obtains
A v LN wE D) v = inlwi (25)
Sy T 0 T, rt) = iho U(T 1),

which is the time-dependent Gross-Pitaevskii equation governing the dynamics of
dilute BECs at temperatures near absolute zero. It is easy to see that for stationary
states W (7, t) = ¢(F)e /" Eq. (25) reduces to Eq. (21).

14
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4 Highly Elongated Condensates

En este apartado, a partir de la ecuacion de Gross-Pitaevskii se obtiene la ecuacion
que gobierna la dindmica de condensados muy alargados (caso quasi-unidimensional),
utilizando la aproximacion adiabdtica. Para determinar la forma completa de la
ecuacion, se identifica en ella el término de potencial quimico local ) y se obtiene
una expresion para este, a partir de cdlculo variacional. Los resultados obtenidos
serdn utilizados para la parte prdactica del trabajo.

4.1 Quasi-1D Equation of Motion

In this Section, we consider a BEC in a highly elongated trap. In these traps,
the transverse motion is much faster than the axial one (w; > w,), so we can
use an adiabatic approximation. In this regard, we consider that the transverse
motion adjusts instantaneously to the axial configuration. Thus, we can factorize the
condensate wave function as the product of an axial wave function and a transverse
wave function.

Taking these considerations into account, the wave function describing the quasi-
onedimensional condensate can be written as

U(rt) = o(FL; 2, 0)P(2,t) = (P n1(2,1)P(2, 1), (26)

where we have specified that the dependence of ¢ on the parameters z and ¢ is
only through nq(z,t), advancing later results. The parameter ni(z,t) is the local
condensate density per unit length characterizing the axial configuration, which is

defined as
ni(z,t) = N/dﬂ \\IJ(F)|2 (27)

Since we normalize the transverse wave function as [ dry [¢(71;n1)]* = 1, we find
for nq(z,1t)

ni(z,t) = N |®(z,t) (28)

We are interested in cases where the relation p 2 hw; > hw, is fulfilled too. In
situations where > hw,; > hw,, the Thomas-Fermi approximation can be used in
both the axial and the transverse directions, while in many cases of practical interest
this approximation is only valid for the axial dynamics.

15
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As is usual, we consider potentials of the form of the equation (3). If we substitute
this potential and Eqgs. (26) and (28) into (25), we find

L0 n? . .
iy ot )@z, 0] = =g+ V) + U (7o) ) pl7im) (.0 -

L in 2 0 )] o) = — (i) (1) — T (e, )AL ()~
[/ 5’15 Za 90 7]_,711 2 SD rJ_anl a 2 Za 2m Z, J_SD TJ_anl

(VL) + Va(2)(Tis m) (2, 1) + U [o(Fusm) [P o(PLsm) (2, 8) —

0 h* o? .
(zhatq)(z t)+ 5 —®(z,t) = V,(z )‘I)(Z,t)> p(r;m1) =

2m 022
w2 " 2 .
= —Q—AMP(H, ny) + V(7)o ne) + Ugng |o(7;na)|” (P ng) | @(z,t),
(29)
whereAL—a‘fQ%—gj

Then, if we multiply equation (29) by ¢*(7.;n;) and integrate on the transverse
coordinates, taking into account that [ di' |p(7L;n1)|° = 1, we obtain

L0D(z,t) [ B2 0P
th ot = (—%@‘F‘/z(z)—i_/“- (I)(Z>t)7 (30)

which is the equation that governs the axial dynamics of the condensate. Here, we
have defined

2o ) o 3
po =—=— [ dr. (<P (FLsn1) AL p(FLym) + V(L) (7)) P+ Usna |90(7l;"1)|4)

2m
(31)
Substituting Eq. (30) into Eq. (29), multiplying by ®*(z,¢) and integrating on the
axial coordinates, we obtain the equation that governs the transverse dynamics of
the condensate

h? . .
(—%AL VLR + U |97 n1)|2) S(Fm) = pro(Fin), (32)

4.2 Local Chemical Potential

The local chemical potential y; corresponds to the chemical potential associated to
the transverse dynamics, which is justified by Eq. (32). Furthermore, if we apply

16
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the Thomas-Fermi approximation in the axial coordinates, we find that uy =V, +
[5, 6], so it can be interpreted as the transversal part of the total chemical potential
L.

To obtain the final form of Eq. (30), we only need to determine p, . For condensates
with ag > 0 (repulsive interatomic interactions) p, is bounded from below, so we
can use a variational approach in order to minimize the chemical potential functional
given by the equation (31) to find an estimation for y, in the ground state [5, 6].
An approximation for (7 ;n;) is needed to perform this variational treatment.
Since we have for this kind of condensates 1 2 fw, > hw,, the quantum of energy
in the transversal coordinates is of the order of the total energy of the system while
the quantum of energy in the axial coordinates is much smaller. In consequence,
there can be only a few possible excited states in the transverse direction, so the
corresponding wave function is near the ground state of a harmonic oscillator char-
acterized by a,. Thus, we use the Gaussian function of the ground state, with a
variational parameter v (which characterizes the width of the function), as an anzat:

1 1
p(r;n) = ——=e¢ oo’ (33)
m(aay)?

Using this, we can minimize p [ in terms of the variational parameter a. Before
that, we need the following results 2

B ? 10 1 0 .
ALp(Ting) = W—'—E%—'—E@ o(r;m) =

_ 1 (( ri ~ —2) o(7 1 m1) (34)

(aay)? \(aay)
/ diirip? = / driro* = (aay)? (35)
—00 0
/Oodflgozlz/ooerrLgo‘L:; (36)
e 0 2m(aay)?

2Here, we have used
[m-&-l:l

> m_—ax? _ 2
/0 z™e dr = Sqmin/z

D(n+ 1) =nl, if n is integer.

17
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Substituting Egs. (34)—(36) into Eq. (31), and using that [ dr| |g0\2 =1, we obtain

h2 U()?’Ll _ ]_
L = (% + o ) (vag) 2+ §mwi(acu)2, (37)

and differentiating with respect to a and setting to zero
a=+/1+4dagny, (38)

where we have used the definition of Uy and the oscillator length a .
With this result, we find the following estimation for u :

11 = heou VT + dagny = hoiy/1+ dag [0(z, 1), (39)

so the final quasi-onedimensional equation governing the axial dynamics of the con-
densate becomes:
0PD(z,1) n* 9?

ot 2m 022

g

+ V.(2) —|—7ml\/1—|—4a5N|<I>(z,t)|2 ®(z,t) (40)

18
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5 Numerical Calculation

Una vez obtenidos los resultados para el caso quasi-unidimensional, procedemos a la
parte numérica del trabajo. FEn este apartado, se llevan a cabo las adimensionaliza-
ciones necesarias para poder trabajar con las ecuaciones numéricamente. Tras esto,
se utilizan y explican el método de Crank-Nicolson y el algoritmo de Thomas, nece-
sartos para la construccion posterior del codigo en Python. Finalmente, se presentan
las ecuaciones con las que se compararan los resultados calculados por el programa.

5.1 Dimensionless Equations

Before carrying out the numerical treatment, we need to get the dimensionless equa-
tions we are going to use. Working with dimensionless quantities will allows us to
identify the physical variables relevant to the problem as well as their typical range
of values. In particular, it will allows us to estimate the proper space and time nu-
merical steps.

In this work we will express lengths in units of a,, energies in units of hw,, and time
in units of w; !, which leads to the following dimensionless quantities

oz 9 o R P
z = a—z — & CLZa 822 = CLZ@ (41)
. 8 190
(1) = (=, 1) (43)
- Vi(z)  #
V) =t =3 (44)

Substituting Eqgs. (41)—(44) in Eq. (40), dividing by hw, and using the definition of
a,, we find the dimensionless quasi-onedimensional equation

8<I>ézt*t)_ _%aa_Z+V() wz\/1+4 N‘(I) ﬂé(ﬁ) (45)

We also need the total chemical potential functional. Since the axial wave function
depends explicitly on time, using stationary states of the form W (7, ¢) = ¢(7)e #/" —
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®(z,t) = ®(2)e” /" we obtain

* > * h2 82 2
where we have substituted the stationary state into the equation (40), multiplied by
®(2)* and integrated on z.

Repeating the procedure to obtain Eq. (45), we find the dimensionless chemical
potential

~PE Sk OO~~*~ 182 ~ . CL)J_\/ as ~ .

LT

—00

5.2 Crank-Nicolson Method and Thomas Algorithm

Now, we need to make approximations to transform equations (45) and (47) into
equations that can be used for numerical calculation®. We use for this a Crank-
Nicolson method, which approximate the derivatives by finite differences. In this
context, we define a temporal and spatial grid, where our system is placed, defined
by the temporal step t,41 — t, and the spatial step 211 — z;.

We write ®(z;,1,) as 7 and develop ®7,, and ®7*' as Taylor series centered at
Zj, tn

n n n 1 n
q)jJrl = q)j + (9j<1>j (Zj+1 - Zj) + 585@% (Zj+1 - Zj)2 + ... (48)

n n n 1 n
q)j—l = (I)j — ajq)j (Zj — Zj,1> + 58]2(IJJ (Zj — Zj*1>2 + ... (49)
I = B + 9,07 (b1 — tn) + ...\ (50)

where we have denoted

afr afn
n _— _~Jj*l — JJ
) = . —_— = 1
ajf] azji1|zjjzlfzj aZJ (5 )
o2 fr Q2 fr
2 J*l — J
2 — - 2
anJ 82]2‘:‘:1 ‘Zjil—zj aZJQ (5 )
o ofn
anf] = ati+1 ‘tn+1:tn = 81;1 (53)

3From here on, the tildes are going to be omitted because from this point, we are going to work
only with the dimensionless equations.

20



Bose-Einstein Condensates of Dilute Alkali Gases

Truncating Eqgs. (48) and (49) to second order and summing them, we obtain the
spatial derivative approximation

2HN n n n
022 Az2

J

(54)

where Az = (z; — zj_1) is the spatial step. Similarly, truncating Eq. (50) to first
order, we can obtain the time derivative approximation

n n+1 n
8CI>J. B CI)j — (I)j

— 55
oty At (55)
with At = (t,41 — t,) being the time step.
Using these results, Eq. (45) takes the form
O = (5 — IALH]) B —
— @ = (1 —iAtH™) d", (56)

where we have defined:

n 1 2 Wi as n|2
Hily = =535 Okien — 2055 + 0k5) + éékj + W—Z\/1 + 4@—2]\/ |7 "0k, (57)
oy
" =] ¢ (58)
Yy
Now, comparing the equation (56) with the series of an exponential function e* =

n .
Yoo &p, we can write at first order

—1
. n At rn At
(I)nJrl e iAtH o (61—2 H > e i H (I)n’ (59)

and going back to the series expansion at first order

A - A 1
Pt = (]1 + zgm) (11 - ng"> P = (Qm - 1) P =T" — ", (60)

where we have called Q™ = 1 (1 +i4H").
This equation can be obtained too as an average between an explicit Euler method
and an implicit Euler method. Here, we have deduced it using approximations of
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exponential functions at first order, which can be interpreted in terms of evolution
operators acting on the wave function.

We will look for the stationary states of the condensates by using the imaginary time
method which essentially consists in making the change At — —iAt in the evolution
operator. It can be easily seen that for a linear system governed by a Hamiltonian
H, satisfying the eigenvalue equation H.” = E}.%, the evolution in imaginary time
leads to the ground state of the system. Indeed, starting from any normalized wave
function ®(0), one has

d(t) = e HO(0) =t Z LSy = Z cpe Br .S (61)
k

Thus, as t increases the higher modes decay more rapidly than the lower ones, so,
eventually, only the lowest-energy stationary state survives.

Since the stationary states of a nonlinear Hamiltonian are not necessary orthonormal,
justifying the validity of the imaginary time method for this kind of systems is more
involved. However, as shown in Ref. [7], this method is also applicable to nonlinear
systems. In this case, Eq. (60) becomes

P = (;L~—1)($"55T”——®”, (62)
Qn
where Q" = 1 (L + §LH").
Solving the equation above requires to solve the equation Q" Y" = ®" for T", which
is a simple task because () is a tridiagonal matrix.
This simple kind of equation system can be solved by using the Thomas algorithm.
Writing the matrices as

aq bl 0 0

Cy QA9 bg 0 T? (I)?
0 o CpM—1 Qpr—1 bM—l TRL/[ (I)nM
_O 0 Cmr apnr ]

the Thomas algorithm can be summarized as

%, 1=1
b, = (64)
{ b =23, M—1
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(bn

i i=1
(D;n = n m (65)
e =23, M
i—Ci0 g
b=
{ (66)
Yo =P YT i=M—1,M—2, .1

The Crank-Nicolson method is very stable (specially for imaginary time) and con-
verges whenever the condition At < BAz? is satisfied, where usually 8 = 1/2 [8].
Anyway, the best time and space steps can be found by trial and error.

On the other hand, the imaginary time method does not conserve the norm [7], so
it is necessary to normalize in each iteration the wave function obtained.

Using the Crank-Nicolson method with imaginary time, we obtain the ground state
wave function ® for various condensates, and from this wave function we calculate
the chemical potential pu by approximating the integral of Eq. (46) with the trape-
zoidal rule.

In order to calculate @, an initial trial wave function is needed. One could start, for
instance, from the Gaussian function of the ground state of a harmonic oscillator of
width a, or from the Thomas-Fermi approximation for the axial wave function of
the condensate. The larger N, the further the former function from the final result
and the nearer the latter. Nevertheless, both functions eventually give converged
solutions, the only difference being the number of iterations needed. In our case, we
have chosen to start the iterations from the dimensionless Gaussian

PY(z) = mier? (67)

5.3 Reference Equations and Data

In order to check the results of the computer program, we will make use of the follow-
ing analytical (dimensionless) expressions derived in Refs. [5, 6] that reproduce the
results of the three-dimensional Gross-Pitaevskii equation with an accuracy typically
better than 1% at least for N > 1000:

1 IL?
=315 (68)
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L2 42 <\/XL2>4 42 2
aSnl(z)_{ T( _ﬁ>+ 16 <1—ﬁ> 2l <L (69)
0, |z| > L
1 ( 1 1 1 )
=—= + + , (70)
VA N(5X)Y5 + 1 7 574345 (3x)*3

where L is the dimensionless axial half-length of the condensate, A = w,/w, and
X = AN Z—i It is worth noting that the parameter y characterizes completely the
ground state properties of the elongated condensate, so in order to test our program
with different quasi-onedimensional BECs; it is sufficient to vary y (for instance, by
varying the number of particles N).

Since for elongated condensates w;, > w,, we have A < 1. In this work we take
A = 0.1, which corresponds to the most stringent case. Besides, in order to compare
|®|* with agny, we need to multiply by %N, since agny = 2N |®|* .

The calculations have been carried out for a 8’Rb condensate. In this case, we have

vi(Hz)

a; = 10784270 ()
(71)

as = (5.29)1073(um)

where v; (i =1, z), are the trap frequencies.
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6 Python Program

En esta Seccion se muestran y explican brevemente los programas desarrollados du-
rante el trabajo. Primero, se presenta el programa principal, con el cual se obtienen el
potencial quimico y la funcion de onda del estado fundamental para distintos nimeros
de particulas. Luego, se desarrolla un programa capaz de resolver sistemas de ecua-
ciones de matrices tridiagonales siguiendo el algoritmo de Thomas. A pesar de que
este programa en Python proporciona resultados correctos, hemos optado por usar la
subrutina solve() en el programa principal, dado que resulta algo mds rdpida.

6.1 Program: Crank-Nicolson Method

When one runs this program, it asks for the following input data (as shown in Figs.
1 and 2):

e Number of particles.
e Transversal frequency in Hz (v, ).

e Starting iteration: The program is conceived in order to start from either the
initial trial Gaussian function or from a (usually, not fully converged) wave
function obtained in a previous run. In this latter case, one must specify the
file where the wave function was saved. This option is useful because it permits
us to refine previous results.

e Number of steps in L: Half of the number of spatial steps. Since L is determined

by choosing N, it is sufficient to specify the desired number of steps to obtain
Az.

e Number of steps in time: It is the number of iterations of the method.

e Conversion factor: The program uses automatically the expression At = A222,

where f is a factor that the user determines. It allows us to change the time
step At.

e The names of the files where our results are saved (numerical g and ®). The
program will create another file named ‘Datos_entrada_<fi file name> .txt’,
where all the input data are saved.
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X andrea@andrea-Aspire-5755G: ~/Documentos/TFG

:~/Documentos/TFGS python TFG.py
TFG
The calculations are made for Rubidium 87
Give the name of the files including the extension
Number of particles (N): 180
Transversal frequency (Hz): 580
Do you want to start from iteration zero? (yes, no): yes
Number of steps in L: 200
Number of steps in time: 50
Conversion factor (f) At=f*@.5*Az~2: 0.4
File name where you want to save fi_n: fi_100.txt
File name where you want to save mu: mu_100.txt

Figure 1: Terminal. Collecting data when starting from the first iteration.

. andrea@andrea-Aspire-5755G: ~/Documentcs/TFG

A

numerical mu 12.2184733044
Iteration number 2999
Chi at zero 1.33582482571
fi at zero 0.668182919834
mu 12.246567149
numerical mu 12.2184347351
Iteration number 3000
Chi at zero 1.33579173249
fi at zero 0.668166367225
mu 12.246567149
numerical mu 12.2183961789
Press enter to close the program
:~fDocumentos/TFGS python TFG.py
TFG
The calculations are made for Rubidium 87
Give the name of the files including the extension
Number of particles (N): 180
Transversal frequency (Hz): 580
Do you want to start from iteration zero? (yes, no): no
Number of steps in time: 10600
Conversion factor (f) At=f*@.5*Az~2: 0.5
File name of fi_@: fi.txt
File name where you want to save fi_n: fi_final.txt
File name where you want to save mu: mu.txtl]

Figure 2: Terminal. Collecting data when starting from the wave function obtained
in a previous iteration. We can also see above the end of the program.

With this input data, the program calculates the numerical approximation for ®
and p and compares them to the theoretical predictions from the analytical expres-
sions given in Section 5.3. The results for each iteration are displayed in the terminal
(see Fig. 2) in order to check if the chosen parameters are adequate. If it is not the
case, we can stop the program (Ctrl+C') and use another ones (the old ones are
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specified in the file ‘Datos_entrada_<fi file name>.txt’, so we can check it in order
to make sure that we do not repeat any bad parameter).
Now, we show the code of the program:

#!/usr/bin/env python
# -*- coding: utf-8 -*-
#Pylab and scipy.linalg modules are imported
from pylab import *
import scipy.linalg as sl
#Data
print ‘TFG\n’ ‘The calculations are made for Rubidium 87\n’ ‘Give the name of the files
including the extension’
a_l=raw_input(‘Number of particles (N): ’)
a_2=raw_input(‘Transversal frequency (Hz): ’)
a_6=raw_input(‘Do you want to start from iteration zero? (yes, no): ’)
if a6 == ‘yes’ or a6 == ‘Yes’ or a6 == ‘YES”:
a_3=raw_input(‘Number of steps in L: ’)
a_4=raw_input(‘Number of steps in time: ’)
a_b=raw_input(‘Conversion factor (f) At=f*0.5%AzA2: )
if a6 == ‘no’ or a_6 == ‘No’ or a_6 == ‘NO”:
a_T=raw_input(‘File name of fi_0: ’)
f=loadtxt(‘/home/andrea/Documentos/ TFG /% s’%a_7, skiprows=1)#If we are not start-
ing in iteration zero, this is the file were fi_0 is.
fi-0=_]:,1]
z={[:, 0]
a_3=size(z)/2. -1
Az=2[1]-z[0]
a_8=raw_input(‘File name where you want to save fi_n: ’)#z, fi
a_9=raw_input(‘File name where you want to save mu: ’)#Iteration number, mu
ifa6 == ‘no’ or a_6 == ‘No’ or a_6 == ‘NO”:
datos=loadtxt(‘/home/andrea/Documentos/ TFG/%s’%a_9, skiprows=1)
it=datos[:, 0]
a_12=it[-1] +1
if a6 == ‘yes’ or a_6 == ‘Yes’ or a6 == ‘YES”:
#Create the new file if it is iteration zero
fichero=open(‘%s’%a-9, ‘w+’)
fichero.close
a_3=int(a-3)
a_l=int(a-1)
a_2=float(a_2)
a_4=int(a-4)
a_b=float(a_5)
#Rubidio 87 data
N=a_l #Number of particles
landa=0.1
wt=2*pi*a_2 #(Hz)
wz=wt*landa #(Hz)
at=10.784270/((wt/(2.*pi))**0.5) #micrometers
az=10.784270/((wz/(2.*pi))**0.5) #micrometers
aS=5.29%10**(-3) #micrometers
#Chi and L:
X=landa*N*(aS/at) #Chi
L=(landa**(-0.5))*( (1./((15*X)**(4./5) + (1./3))) + (1./(57*X + 345)) + (1./((3*X)**(4./3))))**(-
0.25) #Dimensionless axial half-length
#Spatial and temporal steps
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if a6 == ‘yes’ or a_6 == ‘Yes’ or a6 == ‘YES”:
Az=(L+2)/a_3#Spacial
z=arange(-2-L, L+2+4Az, Az) #Frame centered in the center of the condensate
At=a_5*0.5%Az**24# Temporal
T=a4
t=arange(0, T)
#Analytical mu and n_1
mu=(1./landa+0.5%(L)**2) # chemical potential (dimensionless, wz )
Z=arange(-L, L+Az, Az)
n=((landa* (L)**2) /(4))* (1.-((Z*%2) /(L**2))) + ((L*landa**(0.5))**4)/(16))*(1.-((Z**2)/(L**2)))**2
#Actually, it is aS*n1, but it is simpler this way
n[0]=0
n[-1]=0
#Fi_0 Gaussian anzat:
if a6 == "yes’ or a_6 == "Yes’ or a6 == "YES”:
fi-0=((pi)**(-0.25))*e**(-0.5*z**2)
a_12=0
£i.0[0]=0
fi_0[-1]=0#Boundery conditions
#Create a file with the data
fichero=open(‘Datos_entrada_ %s’%a-8, ‘a’)
fichero.write(‘N=%i\n’%N)
fichero.write(‘v_t=%f\n"%a_2)
fichero.write(‘M=%i\n’%a_3)
fichero.write(‘n=%i\n’%a-4)
fichero.write(‘convert. fact. (f) At=f*0.5*AzA2: %f\n’%a-5)
fichero.write(‘At=%f\n’%At)
fichero.write(‘Az=%f\n’%Az)
fichero.close
#Cronecker’s delta:
def delta(u,v):
if u==wv:
return 1
elif ul=v:
return 0
#Function that returns the diagonals:
def diago(A):
O=shape(A)
d=array([])
for i in arange(0, O[0]):
d=concatenate((d, array([Ali, i]])))
return d
def diag_sup(A):
O=shape(A)
d=array([)
for i in arange(0, O[0]-1):
d=concatenate((d, array([A[i, i+1]])))
return d
def diag_inf(A):
O=shape(A)
d=array ([}
for i in arange(1, O[0]):
d=concatenate((d, array([Ali, i-1]])))
return d
##Iterations:
ion()
fi=fi 0
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iteracion=0
for 1 in arange(0, size(t)):
print ‘Iteration number %i’ % iteracion
iteracion=iteracion+1
Qearray([)
for i in arange(0, size(z)):
for j in arange(0, size(z)):
H=-(0.5/(Az**2))*(delta(i,j-1)-2*delta(i,j) + delta(i,j+1)) + (0.5*(z[j})**2 +
(1./landa)*(1 + 4*(aS/az)*N* (f[j]*fi[j]))**(0.5))*delta(i,j)
Q=concatenate((Q, array([0.5%(delta(i,j)+(At*0.5)*H)])))
Q=reshape(Q, (size(z), size(z)))
g-1=concatenate((array([0]), diag-sup(Q)))
q-2=diago(Q)
g-3=concatenate((diag-inf(Q), array([0])))
brian=array([q-1, q-2, q-3])
freddy=sl.solve_banded((1, 1), brian, fi)#Q**(-1) * fi
print ‘Chi at zero’, freddy[size(z)/2]
fi=freddy-fi
fi[0]=0
fi[-1]=0#Boundery conditions
#Calculation of the norm:
Norma=0
for v in arange(0, size(fi)):
Norma=Norma+Az*fi[v]*fi[v]
fi=fi/(Norma)**(0.5)
print ‘fi at zero’, fi[size(z)/2]
muu=0
for k in arange(0, size(z)-1):
y=(-(0.5/(Az**2))*(fik+1]-fi[k])**2)+(0.5% (z[k] ) **2+(1. /landa)*(1+4*N*(aS/az) *fi[k] *fi[k]) **0.5) *fi[k] *fi[k]
muu=muu+y*Az
print ‘mu’, mu
print ‘numerical mu’, muu
#Mu file
fichero=open(‘%s’%a_9, ‘a’)
fichero.write(‘%s %f\n’%(l+a-12,muu))
fichero.close
#Last fi file
fichero=open(‘%s’%a_8, ‘w+’)
fichero.close
for i in arange(0, size(fi)):
fichero=open(‘%s’%a_8, ‘a’)#
fichero.write(‘%f %f\n’%(z[i], fi[i]))
fichero.close
#Plot of the wave function (grosso modo)
fig, ax1 = subplots()
grid()
left, bottom, width, height = [0.7, 0.65, 0.25, 0.3]
ax2 = fig.add-axes([left, bottom, width, height])
#Big plot
#ax1.plot(array([Z[0], Z[1]]), array([n[0], n[1]]), ‘0", label= r‘§N \frac{a_S} {a_z} \left —
\phi A0 \right — A2%’)
ax1.plot(Z, n, color=‘mediumseagreen’, label=r‘$a_s n_1$’, linewidth=1.5)#aS*n1
jack=N*(aS/az)
axl.plot(z, jack*fi*fi, -, color=‘k’, label=r‘$N \frac{a_S} {a_z} \left | \phiA { %i} \right |
A28 %(T+a-12+41), linewidth=2)#N*(aS/az)*(Modulo de fi)
xlabel(‘z’, fontsize=16)
#Little plot
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grid()

ax2.plot(Z, n, color=‘mediumseagreen’, linewidth=1.5, label=r’$a_s n_1$’)#aS*n1
jack=N*(aS/az)

ax2.plot(z, jack*fi*fi, ‘-.’, color="k’, linewidth=2, label=r‘$N \frac{a_S} {a_z} \left | \phi A
{ %i} \right | A28’ %(T+a_12+1))#N*(aS/az)*(Modulo de fi)

fi_ 0=((pi)**(-0.25))*e**(-0.5%*z**2)

ax2.plot(z, jack*fi_0*fi_0, color=‘red’, linewidth=1.5, label= r‘$N \frac{a_S} {a_z} \left |
\phi A0 \right | A28’)#N*(aS/az)*(Modulo de fi_0)

legend (loc="‘best’)

#ploteo mu

datos=loadtxt(‘/home/andrea/Documentos/ TFG/%s’%a_9, skiprows=1)
l=datos[:, 0]

muu=datos[:, 1]

figure(2)

grid()

axhline(mu, color=‘r’, linewidth=1.5, label=r‘$ \mu $’)

plot(l, muu, ‘-k’, label=r‘$ \mu_ {numerical} $’, linewidth=1.5)
text((T+a-12)/2., (muu[0]-mu)/2. +1 +mu, ‘%f’%muul-1])

text((T+a-12)/2., (muu[0]-mu)/2. +mu, ‘%f’%mu, color="r’)

legend (loc="‘best’)

xlabel(r‘$Iteration$ $number$’, fontsize=16)

ylabel(r‘$ \mu &, fontsize=16)

a=raw_input(‘Press enter to close the program’)

6.2 Program: Thomas Algorithm

The subroutine solve() (from the Scipy.linalg library) used in the program above,
uses the three diagonals of the matrix Q™ and the matrix T" as input data in order to
solve the tridiagonal system of equations. For this purpose, we have also created an
analogue function that takes the same input data based on the Thomas algorithm:

#Now, we need to write q-i as:
q-l1=concatenate((array([0]), diag-sup(Q)))
q-2=diago(Q)
q-3=concatenate((diag_inf(Q), array([0])))
#Here is the Thomas algorithm:
def thomas(q-1, q-2, ¢ q-3, fi):
A=size(fi)
a1[0]=a1[0]/4-2[0]
for i in arange(1, A-1):
a-1fi]=a-1]/(a-2{i-a-1[-1*a-3[])
[0)=A[0]/4.2[0)
for j in arange(1, A):
Aij)=(6[-a_30]*6[5-1))/ (a-20i]-a_1[-1]*a_3])
x=concatenate((ones(A-1), array([fi-1]])))
U=arange(0, A-1)
UU=U[::-1]
for k in UU:
x[KJ=fi[l] - q_1[i*xic+1]
return x
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7 Results and Discussion

Se muestran en este apartado los resultados obtenidos por el programa para diferentes
numeros de particulas N, dentro del rango de validez de las ecuaciones presentadas
en la Seccion 5.3. En concreto, se calculan el potencial quimico p y la funcion de
onda ® para N=1000, N=10000, N=100000 y N=1000000, y se comparan con los
resultados analiticos del potencial quimico i y la densidad local por unidad de longi-
tud ny respectivamente.

In this Section, we show the numerical results obtained from our computer program
for condensates with different number of particles N within the range of validity of
the equations of motion derived in previous Sections (N > 1). In particular, we
calculate the chemical potential 1 and the wavefunction ® for the ground state of
elongated condensates with N=1000, N=10000, N=100000 and N=1000000. The

numerical results for the chemical potential compared with the corresponding theo-
retical predictions obtained from the analytical expression (68), are displayed in Fig.
3. As shown in the figure, numerical and theoretical results agree, for the different
values of N, within 0.236%, 0.089%, 0.094% and 0.033%, respectively.

The calculations were made for condensates in a trap with radial frequency v, =
500Hz and aspect ratio A=w, /w; =0.1 and for 1000 iterations, which is more than
enough, because all the results are fully converged before 600 iterations, as we can
see in the plots.

In each case, we choose the proper spatial step: In ascending order of N, Az = %,

Az = %, Az = 1’:@ and Az = FLO' We do the same for the temporal step: For

N=1000 and N=10000 we choose At = A2ZQ, for N=100000, At = O.5A2Z2 and for
N=1000000, At = 0.14%

The numerical results for the square of the norm of ®" multiplied by Z—SN compared
with the dimensionless analytical local density per unit length agni (see Eq. (69))
are displayed in Figs. 4 and 5. As is apparent, the agreement is excellent.

Figure 6 shows a comparison between the numerical chemical potential x4 and the
corresponding analytical prediction as a function of the number of particles N. Sim-
ilarly, Fig. 7 compares numerical and analytical results for the condensate peak
density as a function of N. As can be seen from the figures, the agreement is again
excellent, which proves the validity of our computer codes.
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Figure 3: Numerical calculations for p (black) are compared with the corresponding analytical
predictions (red) for the different values of N. The final value of the converged solution of the

numerical chemical potential and that obtained from the analytical expression (68) are also shown.
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Figure 4: Module of the wave funtions (I). Numerical calculation for SN || (red), for N =1000
(a) and N =10000 (b), in comparison with the analytical calculation of agn; (black). In the right
corner it is shown the squared norm of the Gaussian function used for starting the iterations
multiplied by the same factor, 45N |<I>0|2 (blue).
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Figure 5: Module of the wave funtions (II). Same as Fig. 4, for N =100000 (a) and N = 1000000
(b).
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Figure 6: Comparison between the numerical chemical potential p (black dots) and the corre-

sponding analytical prediction (blue curve) as a function of the number of particles N.
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Figure 7: Comparison between the numerical peak density (black dots) and the corresponding

analytical prediction agny (red curve) as a function of the number of particles N.
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8 Conclusions

En este trabajo, hemos dado una introduccion teorica a la condensacion de Bose-
Finstein, desarrollando las ideas claves en torno a este fenomeno, describiendo
las condiciones necesarias para producirlos y explicando los métodos utilizados para
obtenerlos y sus aplicaciones. Hemos derivado la ecuacion de Gross-Pitaevskii, que
nos da una comprension completa de la dindmica de cualquier condensado a tem-
peratura T = 0K. A partir de ella, hemos utilizado la aprozimacion adiabdtica para
obtener las ecuaciones que gobiernan la dindmica de un condensado alargado.
Finalmente, nos hemos centrado en este ultimo caso y hemos aplicado técnicas
numéricas para luego poder hacer un tratamiento computacional del problema, com-
parando los resultados obtenidos con soluciones analiticas. Hemos creado un pro-
grama capaz de calcular la funcion de onda del estado fundamental y el potencial
quimico de un condensado quasi-unidimensional, una vez aportados los datos del
paso temporal y espacial. Este codigo también calcula las soluciones con las expre-
stones analiticas para comparar con nuestros resultados. En lo que a estos respecta,
tal como hemos visto con anterioridad, nuestros programas consiguen precisiones
mejores del 0.5%, lo que demuestra su validez.

In this work, we have provided a theoretical introduction to Bose-Einstein con-

densation. We have developed the main ideas about this phenomenon, describing the
conditions needed in order to obtain them, the methods used to achieve these con-
ditions, as well as their physical applications. We have derived the Gross-Pitaevskii
equation, which fully describes the dynamics of any BEC at T'= 0K . Based on this
equation, we have used the adiabatic approximation in order to obtain the equations
governing the dynamics of an elongated condensate.
Finally, we have focused on this latter case and applied numerical techniques in order
to make a computational treatment of the problem, comparing our numerical results
with the corresponding analytical predictions. We have created a computer program
which is able to calculate both the ground state wave function and the chemical
potential of cigar-shaped condensates. This program also calculates the analytical
expressions in order to check the validity of our numerical code. In this regard, as
already seen in previous Sections, our program provides results with an accuracy
typically better than 0.5%, which proves its validity.
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