

S. Martín-Santana

Máster en Ingeniería Informática

Universidad de La Laguna, Tenerife, Spain

e-mail: Sergio.MS.91@gmail.com

C.J. Pérez-González

Depto. de Matemáticas, Investigación Operativa y Computación

Universidad de La Laguna, Tenerife, Spain

e-mail: cpgonzal@ull.edu.es

M. Colebrook (), J.L. Roda-García

Departamento de Ingeniería Informática y de Sistemas

Universidad de La Laguna, Tenerife, Spain

e-mails: mcolesan@ull.edu.es, jlroda@ull.edu.es

Pedro González-Yanes

Centro de Cálculo de la Escuela Superior de Ingeniería y Tecnología (Secc. Ing. Informática)

Universidad de La Laguna, Tenerife, Spain

e-mail: pgonyan@ull.edu.es

Deploying a scalable Data Science environment

using Docker

Sergio Martín-Santana, Carlos J. Pérez-González , Marcos Colebrook,

José L. Roda-García, Pedro González-Yanes

Abstract Within the Data Science stack, the infrastructure layer supporting the

distributed computing engine is a key part that plays an important role in order to

obtain timely and accurate insights in a digital business. However, sometimes the

expense of using such Data Science facilities in a commercial cloud infrastructure

is not affordable to everyone. In this sense, we present a computing environment

based on free software tools over commodity computers. Thus, we show how to

deploy an easily scalable Spark cluster using Docker including both Jupyter and

RStudio that support Python and R programming languages. Moreover, we present

a successful case study where this computing framework has been used to analyze

statistical results using data collected from meteorological stations located in the

Canary Islands (Spain).

1 Introduction

The NIST Big Data Working Group (NBD-WG) [1][2] provides a nice definition

on the concept of Data Science:

“Data Science is the extraction of actionable knowledge directly from data through a

process of discovery, or hypothesis formulation and hypothesis testing. It can also be

understood as the activities happening in the processing layer of the system architecture,

against data stored in the data layer, in order to extract knowledge from the raw data.”

2

This definition implies a data life cycle, which is the set of processes that trans-

form raw data into valuable and actionable knowledge, by means of principles,

techniques and methods from many disciplines and domains (see Fig. 1) within

the context of Big Data Engineering. For a brief introduction and a recent state-of-

the-art on the concept of Big Data, the reader is referred to [3].

Furthermore, such data life cycle is developed inside a Data Science stack (see

Fig. 2), in which the infrastructure layer supporting the distributed computing en-

gine plays an important role in order to obtain timely and accurate insights in a

digital business.

Fig. 1. Data Science definition from the point of view of the skills needed (adapted from [4])

Fig. 2. Data Science stack (adapted from [6])

3

Indeed, the market research company Forrester [5] pointed out that a new type

of company has arisen nowadays: the insights-driven business, which builds sys-

tems using Data Science platforms to create competitive advantage through data.

Moreover, it is predicted that these companies will earn a revenue of $1.2 trillion

in 2020.
In this sense, companies that adopt a Data Driven Decision Making (DDDM)

achieve a 5-6% increase in productivity and production growth [7]. Besides, the

relationship between DDDM and performance appears also in other performance

indicators such as asset utilization, return on equity and market value.
According to [8] there is no alternative: 65% of the firms think that there is a

high risk of becoming uncompetitive if they do not implement a data driven mind-

set, since data is becoming a key component of their market value.
Forrester [5] also suggests that Data Science platforms, which comprise data

integration, data exploration, model development and deployment, could acceler-

ate insights maturity if the firms follow some key recommendations:

 Unify the Data Science technology into a single platform.

 Treat Data Science platforms as a strategic and transformative investment.

Within this enterprise context, Linden et al. from the consulting firm Gartner

[9] define a Data Science platform as:

“A cohesive software application that offers a mixture of basic building blocks essential

for creating all kinds of data science solutions, and for incorporating those solutions into

business processes, surrounding infrastructure and products.”

Additionally, their analysis of the 16 top vendors in Data Science platforms

yields the following conclusions:

 The implementation of open source platforms is increasing the adoption of Da-

ta Science.

 Apache Spark is becoming a de facto Data Science foundation for the vendors.

 Open source languages like Python, R and Scala dominate this market. Even

more, almost all Data Science platform vendors support Python and R.

Therefore, in order to facilitate the adoption of Data Science platforms, the Big

Data Senior Steering Group (BD-SSG) [10] suggests to enhance infrastructures to

support handling and analyzing large amounts of data, since state-of-the-art infra-

structures are essential in a data-driven industry sector. They also noticed that

there is a need to invest in infrastructure pilot programs, testbeds, and sandboxes

for testing new techniques at scale, across a variety of application domains, and to

engage in proofs of concept with both open source and proprietary solutions.

Thus, future infrastructures may help moving the computation to the data.
Besides, the Big Data Value Association [11] also recommends building good

infrastructures to develop a Data Economy, raising as a challenge a distributed

trust infrastructure for data management, with flexible structures based on data

microservices in a decentralized way. Regarding this matter, the European Union

4

[12] is currently working in the development of enabling technologies, infrastruc-

tures and skills for the benefit of the SME (Small & Medium-sized Enterprises).
Likewise, the Edison Data Science Framework [2] promotes infrastructures, in-

cluding typical frameworks such as Hadoop [13] and Spark [14], to support data

handling during the whole data lifecycle. On the other hand, the NBD-WG [15]

suggests creating a vendor-neutral, technology- and infrastructure-independent

framework that could enable stakeholders using the best analytics tools on the

most suitable computing platform and cluster. Besides, in order to support Big Da-

ta stores and processing, the infrastructure should be scalable in terms of easy ad-

dition of new resources, with possible platforms including public and/or private

clouds [1].
Nevertheless, digital businesses investing only in infrastructure projects are not

guaranteed to succeed, as pointed out by the UK’s Science and Technology Com-

mittee of the House of Commons [16]. Acquiring more digital skills, trusting on

public data sharing, progressing in open data and data protection are essential fac-

tors to remain in the right pace for Big Data and Data Science. Furthermore, the

UK’s government has been committed to creating a coordinated infrastructure,

and access to advanced software and hardware to the small businesses (SME).
From the above paragraphs, it is clearly stated that the infrastructure layer plays

an outstanding role within the Data Science stack. However, sometimes the ex-

pense of using such Data Science facilities in a private and commercial cloud in-

frastructure is not affordable to a small business. Accordingly, in the next sections

we present a Data Science computing environment based on open source software

tools that can be easily deployed over commodity (personal) computers.
Finally, the remainder of the chapter is organized as follows. In Sect. 2, we

show the most important tools and environments for Data Science nowadays. Sect.

3 presents the full project and simple guides on how to deploy our Data Science

stack in Windows, Linux or Mac. This stack has been used to analyze data from

meteorological stations located in the Canary Islands (Spain), and the results are

presented in Sect. 4. Finally, the conclusions are provided in Sect. 5.

2 Tools and frameworks for Data Science

In Data Science there are many tasks that must be carried out frequently. For in-

stance, loading and processing datasets, obtaining summarized statistics, visualiz-

ing the information in tables and charts, etc. The amount of tools and applications

that are available to accomplish these jobs has increased in the last years, which

implies installing programs and libraries in desktop or server computers with all

the problems derived of this process.

Among the main difficulties that usually arise are those concerning to errors

due to not complying with the dependencies between the required software ver-

sions or the lack of experience of the users in dealing with these computer system

aspects. In this sense, virtualization is the solution to afford these issues since it

5

provides the possibility to create and deploy software-based systems (so called

virtual machines and containers) that emulate the physical ones.

A virtual machine consists in a guest system that packages both the computer

architecture and the software applications along with the operating systems (plus

all the code and dependencies required) to be executed in the host system. A con-

tainer represents another level of virtualization where the host operating system

kernel and its resources are shared to allow the execution of multiple light-weight

and isolated processes. Consequently, each container takes up less space than vir-

tual machines (container images are typically moderate in size), and run almost in-

stantly.

The containers technology helps setting up the collection of useful tools for dif-

ferent stages in a Data Science project. Thus, each container represents a recipe

for each application that can be shared and versioned. In the following sections,

we describe and discuss the most usual programming languages and developing

frameworks in order to create the stack of containers for Data Science.

2.1 Containers in Data Science

Since its first appearance in 2013 [17], Docker containers have implied a big im-

pact in simplifying the process to create Data Science stacks. Basically, containers

are lightweight versions of traditional virtual machines but without the need of

large amounts of storage space on servers (see Fig. 3). Besides, they can be easily

created and deleted, and they boot up quickly. Restoring a normal virtual machine

usually can imply excessive time to get going, but Docker containers start up al-

most immediately.

The containers run from images that are essentially snapshots of a running con-

tainer at a particular time point. These images can be used as templates to create

and run other containers. This is the main reason why they are important in Data

Science, since images are created containing the required tools for doing data

analysis, either for a general use or for specific analyses. Lots of base images of

containers can be downloaded for free from registries like Docker Hub [18]. The

key idea is that many containers can be launched as required and, consequently, it

turns into an easy task creating reproducible Data Science environments.

Running a container with the libraries and tools for a particular analysis reduc-

es the effort to debug packages across different environments because they run

identically on systems as Mac OS X, Windows or Linux. Due to this feature,

Docker containers are very convenient to allow the users launching a variety of

isolated applications in a platform as, for example, Jupyter [19] and RStudio [20]

sessions configured with a set of basic packages, but also lending the users the

possibility to install other libraries.

6

Fig. 3. Difference between Virtual Machines (left) and Docker containers (right) (adapted from

[17])

2.2 The R language

The R language [21] represents the most well-known free, open source program-

ming language and environment for statistical computing and graphics. Indeed, it

is powerful and highly extensible with more than 10,000 add-on packages.

There are many large and active communities (for instance, the LinkedIn’s R

group has more than 100,000 members), and there are currently hundreds of R

Meetup groups. This proves the increasing interest in the R statistics language, es-

pecially for data analysis. The programming environment allows for command-

line scripting and, therefore, the data analysis steps can be serialized in such a way

that can be reused with other data in contrast with interfaces guided with option

menus.

The variety of tasks that can be accomplished in R are, among others, the fol-

lowing (we describe in parenthesis the aspects of data analysis that could be ac-

complished with these simple tasks):

 Exploring and manipulating data (ETL processing)

 Fitting and validation of predictive or classification models (machine learn-

ing)

 Creating visually attractive graphs (data visualization)

 Connecting with different data sources (systems integration)

 Making illustrative reports or dashboards (business intelligence)

The reader may find many R language tutorials in the Internet, some of them

designed even for novice users without any programming background. These tuto-

rials help users to understand the basics and fundamentals of R about importing

and exporting data, exploring and manipulating data and, for advanced users, how

to use loops and create functions.

7

R is one of the key tools in Data Science because it covers several data mining,

machine learning and statistical techniques. There are also complete tutorials

which explain how to perform descriptive statistics and make inferences on data,

apply linear and logistic regression models as well as classification and clustering

techniques, fit time series, apply variable selection and dimensionality reduction,

etc.

2.3 RStudio

RStudio is an integrated development environment (IDE) that enhances the stand-

ard R and eases the work of R programmers [20]. It is available as open source for

free, but there are also enterprise versions with additional features (administrative

tools, enhanced security and authentication for multiple users, metrics and moni-

toring functionality, etc.).

RStudio is a very interesting application because it supports several premium

characteristics such as intelligent code completion, syntax highlighting, integration

of R help and the management of structured R documentation, and a tool for inter-

active debugging (see Fig. 4). The product can be used in a personal desktop in-

stallation or in a server version to centralize access and computation.

Fig. 4. The RStudio IDE (source: [20]).

8

2.4 The Python language

Python [21] is a general purpose programming language and one of the most pop-

ular tools for data analysis. It is very frequent to use it when analyzing huge

amounts of data due to several strengths. In a similar way to R, Python provides

many powerful libraries appropriate to process very large and growing data sets,

and there is a wide support from open source community users.

It is relatively easy to write code in Python and to make this code understanda-

ble by other users. Python also integrates very well with other open source plat-

forms commonly used in Data Science, as Spark [14] and Hadoop [13]. These are

the reasons that have contributed to the enthusiastic adoption of Python by the

programmers.

A Python environment can be easily set up. There are free distributions like

Anaconda [23] or Canopy [24] containing the core Python language, as well as

other essential libraries for data analysis including the following:

 Numpy and Scipy: fundamental scientific computing

 Pandas: data manipulation and analysis

 Matplotlib: plotting and visualization

 Scikit-learn: machine learning and data mining

 StatsModels: statistical modeling, testing, and analysis

Again as in the R case, there are many excellent internet resources (among oth-

ers, DataCamp [25] and Codecademy [26]) to learn how to code in Python. They

are an excellent option to gain knowledge in programming concepts that will be

useful and valuable in working with data.

2.5 Jupyter notebooks

One of the most important Python extensions is the Jupyter notebook (also known

as IPython notebook) [19]. The notebooks are executable documents that, when

launched from the Jupyter web interface, a browser is opened to show an envi-

ronment to place not only code and executing data analysis, but even to introduce

rich text, formatted expressions and embedded images and videos.

With Jupyter is possible to include several kernels that are computational en-

gines for executing code of many other languages apart from Python (as for ex-

ample R). The notebooks also provide options to export the content in several

formats including PDF, HTML and Markdown. Consequently, notebook docu-

ments can be used as reports containing both the analysis description and the final

results (figures, tables and graphics).

Other interesting Python IDE for data analysis is Rodeo [27], from the Yhat

company. This program is similar to RStudio for R, and can be seen as a simple,

lightweight alternative front-end to the Python notebooks.

9

Fig. 5. An example of the Jupyter notebook (source: [19])

The R and Python languages described above, as well as the RStudio and Jupy-

ter development environments (IDE), are included within the applications layer,

whereas the Docker containers are used in the infrastructure layer to ease the de-

ployment process (see Fig. 2). The reader might have noticed that the data layer is

missing in the previous schema. Such layer can be connected from inside the user

container, as we explain in the following section where we describe the develop-

ment of the Data Science Stack project.

3 The Data Science Stack Project

The integration of different languages, libraries and platforms for use in a real en-

vironment is a complex task. It is really crucial to model the ecosystem in which

you are going to work. In this section, we describe the starting situation of this

10

project, as well as the reasons to justify the change of the model towards a more

efficient one.

We rely on the TOGAF architecture framework [28] that allows us to model,

through the points of view, the existing system at the beginning of the project

called AS-IS and after a set of change recommendations, model the target system

called TO-BE. The Layered Viewpoint diagrams designed with the Archimate tool

[29] will be used to describe both situations, and they are composed of three main

layers: business, application and technology.

The key idea is to reflect in a single diagram the complete system. Besides, the

Layered Viewpoint diagrams offer a joint vision of the actors, the main existing

business processes, the software components and the technological infrastructure.

3.1 Initial situation

Currently, there exists an infrastructure where the researcher users request the cre-

ation of different systems for data storage, data analysis and information visualiza-

tion. One way to accomplish these tasks is through virtual machines that are gen-

erated from templates by system administrators. In this case, it is necessary to

reserve the appropriate computing resources. This step involves several problems

for the end user like waiting until the resources are available or the administration

staff can complete the work.

To understand the starting point of our project, we will use a TOGAF-based di-

agram, which visually represents the AS-IS model [28]. This model is divided in

layers where actors, processes, components and infrastructure are presented (the

aforementioned business, application and technology layers).

In the current model, the execution for a research user of our system is present-

ed, who may ask for a new infrastructure or simply use it in the system. To do so,

this request should be solved by a system administrator. The application will be

registered and, once accepted, it will be created. Then, the system can be really

deployed. The business processes are executed in an application for the manage-

ment of the forms and will have a mechanism to create virtual machines for later

deployment. Finally, the complete system is executed according to the infrastruc-

ture layer presented, in which a web and virtualization servers are available (see

Fig. 6).

11

Fig. 6. The situation of the current system described as a TOGAF AS-IS diagram

12

3.2 Evolution of the model to a more efficient solution

In order to speed up the deployment and implementation of Data Science systems,

we propose a different strategy based in the dockerization of the system. Under

this strategy, computer resources will be optimized, since no system resources res-

ervation will be needed.

The proposed model aims to minimize and simplify the Administrator's task.

Using the system described below, we could meet the requirements of the re-

searchers without adding complex tasks. Initially, this solution will have two de-

velopment environments, such as Jupyter and RStudio, which allow the applica-

tions development through languages such as Python and R. Besides, Spark is

considered for the massive processing of data, and it also provides real-time data

processing. All of these components run on a single Docker container, making a

lot easier its maintenance and future evolution.

Hence, from the system administrator’s point of view, his/her work could focus

on creating a single, equal based recipe for all researchers that would include all

the required tools. From the point of view of the data scientist, he/she would have

a complete set of tools for researching, with low cost extensibility to add new li-

braries, languages or tools.

This new solution avoids, or at least diminishes, the high costs of the equip-

ment to allocate test systems. Now the researcher will be able to carry out small

tests on his personal equipment, and to later transfer them to a production system

in a large infrastructure.

The final solution is presented in Fig. 7 through a TOGAF-based model where

the architecture of the system is visually displayed.

3.3 Solution development: A container based in Docker

We have developed an environment with different applications installed as mod-

ules by executing a Dockerfile, which consists of several scripts doing specific

tasks. Our proposal of this system uses the latest version of Ubuntu Xenial OS, but

other operating systems can be used as Debian, CentOS, Alpine, etc., although this

might imply some modifications of the steps described in the following para-

graphs.

13

Fig. 7. The TOGAF TO-BE diagram as an evolution of the TOGAF AS-IS diagram

14

When the Dockerfile is executed, the first script (base.sh) installs some addi-

tional base system libraries and applications (e.g. wget, default-jre, tar,

openssl, libssl, etc.) that are required for our Data Science environment.

In the next step of the Dockerfile execution, the scripts to install and configure

the different applications of the Data Science stack are placed inside the container.

This aspect provides modularity to our system because each tool is aggregated in

an easy and independent way.

Thus, the first applications to be installed are versions 2.7 and 3.6 of the Python

programming language using the instructions contained in the script named py-
thon.sh.

In addition to Python, the next scripts (R.sh and Rstudio.sh) install the last

version of the R language, along with the integrated development environment

(IDE) RStudio server. Both applications are configured to place the packages li-

braries into our system project folder and define the web server ports to access the

programs by using a simple web browser (Chrome, Firefox, Safari, etc.).

The installation of the Spark framework for distributed computing is carried out

by a script called spark.sh. This application can be used only with one master

node (standalone mode), but the execution in cluster mode (with additional worker

nodes) is possible by configuring some environment variables defined in the script

SparkConf.sh. This script allows the users to modify several characteristics of

the worker nodes as the number of CPUs assigned to them or the RAM available

for each one.

Another important development tool that we aggregated to the Data Science

stack is Jupyter, which provides the functionality to use both Python and R in the

notebooks. The script jupyter.sh installs the main program and the kernel li-

braries to allow the execution of those languages in a notebook, as well as the con-

figuration of the port to access the application through the web browser.

Table 1 shows the list of the applications configured in the Data Science stack

with their corresponding ports and addresses to be run using a web browser. Be-

sides, Table 2 summarizes the list of scripts and files used in the deployment.

Table 1. Web applications with default and configured ports in the Data Science stack, and links

for accessing them

Application Default port Configured ports

in deployment

Address link of application

RStudio 8787 10087 http://localhost:10087

(user: rstudio, password: rstudio)

Spark 8080, 8081, 7077 10080 http://localhost:10080

Jupyter 8888 10088 http://localhost:10088

http://localhost:10087/
http://localhost:10080/
http://localhost:10088/

15

Table 2. A summary of all the files used in the deployment

Located in File name Function

/ build_image.bat Builds the container image in

Windows

build_image.sh Builds the container image in Ub-

untu or Mac

Dockerfile Docker instructions to build the

images

install/ base.sh Installs base system libraries and

applications

custom_python.sh Allows installing certain versions

of additional python libraries

jupyter.sh Installs Jupyter notebook and lan-

guages’ kernels

jupyter_notebook_config.py Jupyter notebook configuration file

PyLibraries.sh Basic Python libraries

python.sh Installs versions 2.7 and 3.6 of Py-

thon

R.sh Installs the R programming lan-

guage

Rconfig.R Installs the R kernel in Jupyter

RStudio.sh Installs the RStudio IDE

spark.sh Installs Spark

SparkConf.sh Spark configuration file

start.sh Entry point in Dockerfile: runs the

container

Start/Ubuntu_Mac/ Docker_install.sh Installs Docker in Ubuntu or Mac

execute_worker.sh Deploys one Spark worker node

start_master.sh Starts the Spark master

start_workers.sh Deploys additional worker nodes

for Spark

Start/Windows/ runworker.bat Deploys one Spark worker node

start_master.bat Starts the Spark master

start_workers.bat Deploys additional worker nodes

for Spark

After the Dockerfile execution, the user can access the different applications by

typing the links of Table 1 in the address bar of any browser, so now the system is

ready to be used for the required Data Science tasks.

16

3.4 Deployment of the system

In the procedure to launch the environment, two scripts called start_master

and start_workers are provided. The first one creates the network to run the

container or cluster, and creates the user folder to place the notebooks in the host

machine of the system. This folder is mounted as a data volume of the container

and allows the users to access the files of the data stack environment from the host

computer where this system is running. Besides, several R and Python libraries

will be installed only the first time this script is run.

The second script is optional and enables the user to configure a cluster of N

additional system instances to be run as workers. This cluster is valid for using the

Spark framework, where the number of instances can be introduced in the NWork-
ers argument of the script.

In the following paragraphs, we describe the steps to deploy the data stack en-

vironment in a host computer with Windows and Linux Ubuntu operating systems.

Install and run in Windows (64 bits)

1. Open a command prompt (CMD) or Powershell using the Windows menu op-

tions.

2. Download the Github project typing:

git clone https://github.com/taroull/DockerForScience.git --config

core.autocrlf=input

3. Change to working directory typing: cd DockerForScience

4. If Docker is not installed yet, the user can download and install it from the offi-

cial web page [17]. When Docker is installed, a process window is started and

pinned into a quick access of the desktop. Before proceeding, users must enable

the “Shared Drives” option in the settings.

In some systems, the user might need to configure appropriately the firewall

or antivirus program to avoid problems when executing the following steps.

5. Optionally, the script install\custom_python.sh might be edited to in-

clude in variable Libraries some additional python libraries (separated by

spaces) that the user wants to install in the stack. For example:

#!/bin/bash

#Specify as "<library>[==version] ... [<libraryN>[==version]]"

Libraries="pandas==0.21.0 scipy bokeh plotly"

6. Execute the script .\build_image.bat, placed in the root folder of the pro-

ject, to generate the Docker image in the host system. This process may take

some minutes depending on file sizes and the internet connection speed.

17

7. After creating the image, the system can be started by executing

Start\Windows\start_master.bat.

8. Consequently, all applications in Table 1 are accessible by typing the corre-

sponding address link within a web browser.

9. Optionally, we can use the script Start\Windows\start_workers.bat
<NWorkers> to deploy additional worker nodes for Spark. The number of

slaves is specified in <NWorkers>, being 2 the default value of this parameter.

Install and run in Ubuntu/Debian or Mac OSX

1. Open a linux terminal.

2. Download the Github project using:

git clone https://github.com/taroull/DockerForScience.git --config

core.autocrlf=input

3. Change to the working directory by typing: cd DockerForScience

4. If Docker is not installed already, the user can execute the install script

Start/Ubuntu_Mac/Docker_install.sh

5. Optionally, the script install/custom_python.sh might be edited to in-

clude in variable Libraries some additional python libraries (separated by

spaces) that the user wants to install in the Data Science stack. See the exam-

ple shown in point 5 of the previous section.

6. Execute the script ./build_image.sh (it may require preceding a sudo

command if the user has no admin privileges), placed in the root folder of the

project, to generate the Docker image in the host system. The building pro-

cess may take some minutes depending on file sizes and the internet connec-

tion speed.

7. After creating the built image, the system can be started by executing

Start/Ubuntu_Mac/start_master.sh.

8. Now the applications in Table 1 are accessible by typing the corresponding

address link in a web browser.

9. Furthermore, and only for Spark, we can use the script

Start/Ubuntu_Mac/start_workers.sh <NWorkers> to start addition-

al worker nodes, where the number of instances is set through the parameter

NWorkers. The default value of this parameter is two instances.

Finally, and regardless of the system considered (Windows, Ubuntu or Mac),

the user might access the container through the following command:

docker exec –ti master bash

Bear in mind that the deployment process might take a while depending on the

speed of both your computer and the internet connection. Once we have set up our

Data Science stack, the three main applications shown in Table 1 are now running

18

in their corresponding ports at localhost, and ready to be used in a web browser

(see Fig. 8, Fig. 9 and Fig. 10). Therefore, we can now proceed to show a case

study in the next section.

Fig. 8. The Jupyter notebook running in a web browser at localhost:10088

Fig. 9. RStudio running in a web browser

19

Fig. 10. The Spark Master deployed and running at localhost:10080

4 A case study

This section presents an illustrative example of data analysis by using the Data

Science stack developed in this chapter. In particular, the problem consists in

studying the hourly observations collected in meteorological stations located in the

Canary Islands (Spain) in order to obtain different statistical results using a Jupy-

ter notebook and several R libraries. These stations are included in the United

States Air Force (USAF) Master Station Catalog and registered in the National

Climatic Data Center's (NCDC) archive of weather and climate data.

The notebook can be downloaded by running the following command in the

notebooks folder:

git clone https://github.com/taroull/Notebook-DataSciencewithR

For a given station, we can collect information by providing the beginning and

ending years. Particularly, using the appropriate function in R, we get a data frame

with information on hourly meteorological observations specifying a geographical

bounding box and/or time bounds.

In this sense, the geographical position of the stations can be represented by us-

ing the ggmap library in R. The subsequent map (see Fig. 12) is easily obtained

(see Fig. 11), and it can give us a good reference of the main locations where the

data processed in the study were collected.

20

Fig. 11. R script to draw the stations in a map

Fig. 12. The meteorological stations drawn on a map of the Canary Islands

In particular, we are interested in studying the weather conditions in 2017 in

the Teide National Park, located in the island of Tenerife. Consequently, we get

hourly information of the nearest station about time, wind speed and direction, and

temperatures through 2017 by using the script described in Fig. 13, and the result

is shown just underneath as a formatted table.

Fig. 13. The meteorological data of the Teide National Park’s station

21

In order to analyze these data, first we can plot all these values (see Fig. 14) to

represent the evolution of daily temperatures in the National Park in 2017 using

ggplot. The plot (see Fig. 15) uses a color gradient to appreciate the transition

from the cold temperatures (blue) to the warm ones (red), and includes a smooth

regression model fitting to the data.

Fig. 14. R script that plots the data of the Teide National Park

Fig. 15. Daily temperatures and local smooth fitting in Teide National Park in 2017

Another interesting result consists in representing the distribution of low and

high temperatures along the different daily hours in 2017. The chart (see Fig. 17)

22

allows us to make a comparison study of which parts of the day are colder or

warmer. Again, we can observe that this result is relatively simple to obtain with

the ggplot library (see Fig. 16).

Fig. 16. R script to plot the histogram of temperatures by hour

Fig. 17. Daily low and high temperature distribution by hour

Lastly, if the volume or complexity of the data is too large to be processed in a

normal way using R, the user could easily connect to a Spark cluster in order to

run the required analysis and get the final insights.

23

In this sense, and following the same example used in this section, we could

now connect our notebook to a Spark master node to run some basic analysis (see

Fig 18).

Fig. 18. R script to connect to a Spark master node

Then, we copy our data to a Spark data frame to run some typical lazy Spark

operations. In this case, we calculate the average temperatures grouped by month,

as shown in Fig. 19.

Fig. 19. Example of some Spark lazy operations

Finally, we use the usual collect() function in Spark to run query and return

the results back to R (see Fig. 20).

Fig. 20. Returning the average result from Spark back to R

24

The notebook is completed with further interesting results that provide a brief

overview of the collected information. As a result, the notebook allows publishing

not only the analysis but even the R script along with the data. This turns to be ex-

tremely useful in case other researchers want to reproduce and validate the study

without the complexity of installing all the required tools individually. Therefore,

containers help to develop and deploy these complex setups in a simple way and

run them in any environment.

5 Conclusions

By virtue of what has been stated in previous sections of this chapter, it has been

clearly established that the infrastructure layer plays a key role within the Data

Science stack. Indeed, there is a great concern on building good infrastructures to

allow the stakeholders to run testbeds, sandboxes and proofs of concept (see [10],

[11], [12] and [15]).

On the other hand, a new type of company defined as the insights-driven busi-

ness [5], that uses Data Science to create competitive advantage has arisen in the

last years. Furthermore, companies that make data driven decisions can raise up to

a 5-6% their productivity [7], or become completely uncompetitive otherwise [8].

However, some of these businesses cannot afford such Data Science services in

a commercial cloud. Accordingly, and following the recommendations indicated

in [9], we have developed a Data Science platform that can be easily deployed

over commodity computers using open source software that includes Spark as the

current de facto standard, as well as the R and Python languages.

To summarize, the main advantages of our Data Science stack approach are the

following:

 The R libraries and the Python packages that are installed within the notebooks

folder after the Docker image is created, can be reused when the container or

the image are run again.

 The scripts can update in the future the applications already installed by just

changing the variables defined inside them.

 The shared volume inside the Docker container allows the user saving the data

and related files in a folder inside the host computer.

 As a result, the notebook allows publishing not only the analysis but even the R

script along with the data. This turns to be extremely useful in case other re-

searchers want to reproduce and validate the study.

Likewise, from the point of view of the main actors the advantages are:

 System administrators take less time to configure.

 Data analysts or researchers can really focus to accomplish their main duties ra-

ther than wasting time in administration tasks.

25

 The academia can benefit from the easiness to develop executable examples in

a very simple way.

Besides, the project presented in this chapter can be very helpful for teaching

and researching activities, and has been already used in subjects regarding Laws

and Regulations, Computer Vision, and Bioinformatics, and in a project on Earth

and Atmosphere Observation Research. In this sense, the Data Science stack pro-

vides the students with the necessary tools for accomplishing different tasks in or-

der to solve problems concerning Data Science (preprocessing data, statistical

analysis, etc.), and preventing all the problems that usually arise when installing

and configuring software.

In conclusion, our key objective has been essentially twofold. On the one hand,

we have developed a simple, easy and fast platform to deploy a scalable Data Sci-

ence stack that includes the main foundation tools. On the other hand, it has been

designed for use in insights-driven businesses, as well as for obtaining reproduci-

ble results in research, and for teaching academic subjects easier.

Finally, the lines of future research are mainly focused in improving the current

stack by including new Data Science environments like Zeppelin [30], and in-

stalling Deep Learning applications such as TensorFlow [31].

Acknowledgments This work is partially supported by the Spanish Ministry of Education and

Science, Research Projects MTM2016-74877-P and CGL2015-67508-R, National Plan of Scien-

tific Research, Technological Development and Innovation. The authors wish to thank Adrián

Muñoz-Barrera and Luis A. Rubio-Rodríguez for their support and assistance both in the config-

uration and deployment of the cluster and in the development of the solution.

References

[1] NIST (2015a) Big Data Interoperability Framework: Volume 5, Architectures White Paper

Survey. http://dx.doi.org/10.6028/NIST.SP.1500-5. Accessed October 2017.

[2] EDSF (2017) The EDISON Data Science Framework, Release 2: http://edison-

project.eu/edison/edison-data-science-framework-edsf. Accessed October 2017.

[3] Plaza-Martín V, Pérez-González CJ, Colebrook M, Roda-García JL, González-Dos-Santos T,

González-González JC (2016) Analyzing Network Log Files Using Big Data Techniques. In:

García-Márquez FP, Lev B (ed) Big Data Management. Springer International Publishing, p

227–256

[4] NIST (2015b) Big Data Interoperability Framework: Volume 1, Definitions,

http://dx.doi.org/10.6028/NIST.SP.1500-1. Accessed October 2017.

[5] Forrester (2016) Data Science Platforms Help Companies Turn Data Into Business Value.

https://www.datascience.com/resources/white-papers/forrester-data-science-platforms. Ac-

cessed October 2017.

[6] Hazard C (2014) Stacking the Deck: The Next Wave of Opportunity in Big Data

https://www.kdnuggets.com/2014/05/stacking-deck-next-wave-opportunity-big-data.html.

Accessed October 2017.

[7] Brynjolfsson E, Hitt LM, Kim HH (2011) Strength in Numbers: How Does Data-Driven De-

cisionmaking Affect Firm Performance?. SSRN Electronic Journal.

doi:10.2139/ssrn.1819486

http://dx.doi.org/10.6028/NIST.SP.1500-5
http://edison-project.eu/edison/edison-data-science-framework-edsf
http://edison-project.eu/edison/edison-data-science-framework-edsf
http://dx.doi.org/10.6028/NIST.SP.1500-1
https://www.datascience.com/resources/white-papers/forrester-data-science-platforms

26

[8] Capgemini Consulting (2015) Big & Fast Data: The Rise of Insight-Driven Business,

http://ww.capgemini.com/wp-content/uploads/2017/07/big_fast_data_the_rise_of_insight-

driven_business-report.pdf. Accessed October 2017.

[9] Linden A, Krensky P, Hare J, Idoine CJ, Sicular S, Vashisth S (2017) Magic Quadrant for

Data Science Platforms. https://www.gartner.com/doc/reprints?id=1-

3TK9NW2&ct=170215&st=sb. Accessed October 2017.

[10] NITRD (2016) The Federal Big Data Research and Development Strategic Plan,

http://ww.nitrd.gov/PUBS/bigdatardstrategicplan.pdf. Accessed October 2017.

[11] BDV (2017) Big Data Value Strategic Research and Innovation Agenda.

http://ww.bdva.eu/sites/default/files/EuropeanBigDataValuePartnership_SRIA__v3_0.pdf.

Accessed October 2017.

[12] COTEC (2017) Generación de talento Big Data en España (in Spanish).

http://cotec.es/media/BIG-DATA-FINAL-web.pdf. Accessed October 2017.

[13] Apache Hadoop. http://hadoop.apache.org. Accessed October 2017.

[14] Apache Spark. https://spark.apache.org. Accessed October 2017.

[15] NIST (2015c) Big Data Interoperability Framework: Volume 3, Use Cases and General Re-

quirements. http://dx.doi.org/10.6028/NIST.SP.1500-3. Accessed October 2017.

[16] HC-STC (2016) The big bata dilemma.

http://www.publications.parliament.uk/pa/cm201516/cmselect/cmsctech/468/468.pdf. Ac-

cessed October 2017.

[17] Docker: the container platform provider. http://www.docker.com. Accessed October 2017.

[18] Docker hub. https://hub.docker.com. Accessed October 2017.

[19] Project Jupyter. http://jupyter.org. Accessed October 2017.

[20] RStudio: the open source and enterprise-ready profesional software for R.

https://www.rstudio.com. Accessed October 2017.

[21] Python. https://www.python.org. Accessed October 2017.

[22] The R Project for Statistical Computing. https://www.r-project.org. Accessed October 2017.

[23] Anaconda Python distribution., https://www.anaconda.com/download/. Accessed October

2017.

[24] Enthought Canopy Python distribution., https://www.enthought.com/product/canopy/. Ac-

cessed October 2017.

[25] Datacamp: Learn Data Science Online. https://www.datacamp.com. Accessed October

2017.

[26] Codecademy: Learn to code interactively for free. https://www.codecademy.com. Accessed

October 2017.

[27] Rodeo: a Python IDE built for analyzing data. https://www.datascience.com/blog/docker-

containers-for-data-science. Accessed October 2017.

[28] The Open Group Architecture Framework (TOGAF) Version 9.1. The Open Group.

http://www.opengroup.org/togaf. Accessed October 2017.

[29] Lankhorst MM (2004) Enterprise architecture modelling—the issue of integration. Ad-

vanced Engineering Informatics 18(4):205–216

[30] Zeppelin. https://zeppelin.apache.org. Accessed October 2017.

[31] Tensorflow. https://www.tensorflow.org. Accessed October 2017.

https://www.capgemini.com/wp-content/uploads/2017/07/big_fast_data_the_rise_of_insight-driven_business-report.pdf
https://www.capgemini.com/wp-content/uploads/2017/07/big_fast_data_the_rise_of_insight-driven_business-report.pdf
https://www.gartner.com/doc/reprints?id=1-3TK9NW2&ct=170215&st=sb
https://www.gartner.com/doc/reprints?id=1-3TK9NW2&ct=170215&st=sb
https://www.nitrd.gov/PUBS/bigdatardstrategicplan.pdf
http://www.bdva.eu/sites/default/files/EuropeanBigDataValuePartnership_SRIA__v3_0.pdf
http://cotec.es/media/BIG-DATA-FINAL-web.pdf
http://hadoop.apache.org/
https://spark.apache.org/
http://dx.doi.org/10.6028/NIST.SP.1500-3
http://www.publications.parliament.uk/pa/cm201516/cmselect/cmsctech/468/468.pdf
http://jupyter.org/
https://www.rstudio.com/
https://www.datacamp.com/
https://www.codecademy.com/
https://www.datascience.com/blog/docker-containers-for-data-science
https://www.datascience.com/blog/docker-containers-for-data-science

