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Abstract  Within the Data Science stack, the infrastructure layer supporting the 

distributed computing engine is a key part that plays an important role in order to 

obtain timely and accurate insights in a digital business. However, sometimes the 

expense of using such Data Science facilities in a commercial cloud infrastructure 

is not affordable to everyone. In this sense, we present a computing environment 

based on free software tools over commodity computers. Thus, we show how to 

deploy an easily scalable Spark cluster using Docker including both Jupyter and 

RStudio that support Python and R programming languages. Moreover, we present 

a successful case study where this computing framework has been used to analyze 

statistical results using data collected from meteorological stations located in the 

Canary Islands (Spain). 

1 Introduction 

The NIST Big Data Working Group (NBD-WG) [1][2] provides a nice definition 

on the concept of Data Science: 

“Data Science is the extraction of actionable knowledge directly from data through a 

process of discovery, or hypothesis formulation and hypothesis testing. It can also be 

understood as the activities happening in the processing layer of the system architecture, 

against data stored in the data layer, in order to extract knowledge from the raw data.” 
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This definition implies a data life cycle, which is the set of processes that trans-

form raw data into valuable and actionable knowledge, by means of principles, 

techniques and methods from many disciplines and domains (see Fig. 1) within 

the context of Big Data Engineering. For a brief introduction and a recent state-of-

the-art on the concept of Big Data, the reader is referred to [3]. 

Furthermore, such data life cycle is developed inside a Data Science stack (see 

Fig. 2), in which the infrastructure layer supporting the distributed computing en-

gine plays an important role in order to obtain timely and accurate insights in a 

digital business. 

 

Fig. 1. Data Science definition from the point of view of the skills needed (adapted from [4]) 

 

Fig. 2. Data Science stack (adapted from [6]) 
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Indeed, the market research company Forrester [5] pointed out that a new type 

of company has arisen nowadays: the insights-driven business, which builds sys-

tems using Data Science platforms to create competitive advantage through data. 

Moreover, it is predicted that these companies will earn a revenue of $1.2 trillion 

in 2020. 
In this sense, companies that adopt a Data Driven Decision Making (DDDM) 

achieve a 5-6% increase in productivity and production growth [7]. Besides, the 

relationship between DDDM and performance appears also in other performance 

indicators such as asset utilization, return on equity and market value. 
According to [8] there is no alternative: 65% of the firms think that there is a 

high risk of becoming uncompetitive if they do not implement a data driven mind-

set, since data is becoming a key component of their market value. 
Forrester [5] also suggests that Data Science platforms, which comprise data 

integration, data exploration, model development and deployment, could acceler-

ate insights maturity if the firms follow some key recommendations: 

 Unify the Data Science technology into a single platform. 

 Treat Data Science platforms as a strategic and transformative investment. 

Within this enterprise context, Linden et al. from the consulting firm Gartner 

[9] define a Data Science platform as: 

“A cohesive software application that offers a mixture of basic building blocks essential 

for creating all kinds of data science solutions, and for incorporating those solutions into 

business processes, surrounding infrastructure and products.” 

Additionally, their analysis of the 16 top vendors in Data Science platforms 

yields the following conclusions: 

 The implementation of open source platforms is increasing the adoption of Da-

ta Science. 

 Apache Spark is becoming a de facto Data Science foundation for the vendors. 

 Open source languages like Python, R and Scala dominate this market. Even 

more, almost all Data Science platform vendors support Python and R. 

Therefore, in order to facilitate the adoption of Data Science platforms, the Big 

Data Senior Steering Group (BD-SSG) [10] suggests to enhance infrastructures to 

support handling and analyzing large amounts of data, since state-of-the-art infra-

structures are essential in a data-driven industry sector. They also noticed that 

there is a need to invest in infrastructure pilot programs, testbeds, and sandboxes 

for testing new techniques at scale, across a variety of application domains, and to 

engage in proofs of concept with both open source and proprietary solutions. 

Thus, future infrastructures may help moving the computation to the data. 
Besides, the Big Data Value Association [11] also recommends building good 

infrastructures to develop a Data Economy, raising as a challenge a distributed 

trust infrastructure for data management, with flexible structures based on data 

microservices in a decentralized way. Regarding this matter, the European Union 
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[12] is currently working in the development of enabling technologies, infrastruc-

tures and skills for the benefit of the SME (Small & Medium-sized Enterprises). 
Likewise, the Edison Data Science Framework [2] promotes infrastructures, in-

cluding typical frameworks such as Hadoop [13] and Spark [14], to support data 

handling during the whole data lifecycle. On the other hand, the NBD-WG [15] 

suggests creating a vendor-neutral, technology- and infrastructure-independent 

framework that could enable stakeholders using the best analytics tools on the 

most suitable computing platform and cluster. Besides, in order to support Big Da-

ta stores and processing, the infrastructure should be scalable in terms of easy ad-

dition of new resources, with possible platforms including public and/or private 

clouds [1]. 
Nevertheless, digital businesses investing only in infrastructure projects are not 

guaranteed to succeed, as pointed out by the UK’s Science and Technology Com-

mittee of the House of Commons [16]. Acquiring more digital skills, trusting on 

public data sharing, progressing in open data and data protection are essential fac-

tors to remain in the right pace for Big Data and Data Science. Furthermore, the 

UK’s government has been committed to creating a coordinated infrastructure, 

and access to advanced software and hardware to the small businesses (SME). 
From the above paragraphs, it is clearly stated that the infrastructure layer plays 

an outstanding role within the Data Science stack. However, sometimes the ex-

pense of using such Data Science facilities in a private and commercial cloud in-

frastructure is not affordable to a small business. Accordingly, in the next sections 

we present a Data Science computing environment based on open source software 

tools that can be easily deployed over commodity (personal) computers. 
Finally, the remainder of the chapter is organized as follows. In Sect. 2, we 

show the most important tools and environments for Data Science nowadays. Sect. 

3 presents the full project and simple guides on how to deploy our Data Science 

stack in Windows, Linux or Mac. This stack has been used to analyze data from 

meteorological stations located in the Canary Islands (Spain), and the results are 

presented in Sect. 4. Finally, the conclusions are provided in Sect. 5. 

2 Tools and frameworks for Data Science 

In Data Science there are many tasks that must be carried out frequently. For in-

stance, loading and processing datasets, obtaining summarized statistics, visualiz-

ing the information in tables and charts, etc. The amount of tools and applications 

that are available to accomplish these jobs has increased in the last years, which 

implies installing programs and libraries in desktop or server computers with all 

the problems derived of this process. 

Among the main difficulties that usually arise are those concerning to errors 

due to not complying with the dependencies between the required software ver-

sions or the lack of experience of the users in dealing with these computer system 

aspects. In this sense, virtualization is the solution to afford these issues since it 
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provides the possibility to create and deploy software-based systems (so called 

virtual machines and containers) that emulate the physical ones. 

A virtual machine consists in a guest system that packages both the computer 

architecture and the software applications along with the operating systems (plus 

all the code and dependencies required) to be executed in the host system. A con-

tainer represents another level of virtualization where the host operating system 

kernel and its resources are shared to allow the execution of multiple light-weight 

and isolated processes. Consequently, each container takes up less space than vir-

tual machines (container images are typically moderate in size), and run almost in-

stantly. 

The containers technology helps setting up the collection of useful tools for dif-

ferent stages in a Data Science project. Thus, each container represents a recipe 

for each application that can be shared and versioned. In the following sections, 

we describe and discuss the most usual programming languages and developing 

frameworks in order to create the stack of containers for Data Science. 

2.1 Containers in Data Science 

Since its first appearance in 2013 [17], Docker containers have implied a big im-

pact in simplifying the process to create Data Science stacks. Basically, containers 

are lightweight versions of traditional virtual machines but without the need of 

large amounts of storage space on servers (see Fig. 3). Besides, they can be easily 

created and deleted, and they boot up quickly. Restoring a normal virtual machine 

usually can imply excessive time to get going, but Docker containers start up al-

most immediately. 

The containers run from images that are essentially snapshots of a running con-

tainer at a particular time point. These images can be used as templates to create 

and run other containers. This is the main reason why they are important in Data 

Science, since images are created containing the required tools for doing data 

analysis, either for a general use or for specific analyses. Lots of base images of 

containers can be downloaded for free from registries like Docker Hub [18]. The 

key idea is that many containers can be launched as required and, consequently, it 

turns into an easy task creating reproducible Data Science environments. 

Running a container with the libraries and tools for a particular analysis reduc-

es the effort to debug packages across different environments because they run 

identically on systems as Mac OS X, Windows or Linux. Due to this feature, 

Docker containers are very convenient to allow the users launching a variety of 

isolated applications in a platform as, for example, Jupyter [19] and RStudio [20] 

sessions configured with a set of basic packages, but also lending the users the 

possibility to install other libraries. 
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Fig. 3. Difference between Virtual Machines (left) and Docker containers (right) (adapted from 

[17]) 

2.2 The R language 

The R language [21] represents the most well-known free, open source program-

ming language and environment for statistical computing and graphics. Indeed, it 

is powerful and highly extensible with more than 10,000 add-on packages. 

There are many large and active communities (for instance, the LinkedIn’s R 

group has more than 100,000 members), and there are currently hundreds of R 

Meetup groups. This proves the increasing interest in the R statistics language, es-

pecially for data analysis. The programming environment allows for command-

line scripting and, therefore, the data analysis steps can be serialized in such a way 

that can be reused with other data in contrast with interfaces guided with option 

menus. 

The variety of tasks that can be accomplished in R are, among others, the fol-

lowing (we describe in parenthesis the aspects of data analysis that could be ac-

complished with these simple tasks): 

 Exploring and manipulating data (ETL processing) 

 Fitting and validation of predictive or classification models (machine learn-

ing) 

 Creating visually attractive graphs (data visualization)  

 Connecting with different data sources (systems integration) 

 Making illustrative reports or dashboards (business intelligence) 

The reader may find many R language tutorials in the Internet, some of them 

designed even for novice users without any programming background. These tuto-

rials help users to understand the basics and fundamentals of R about importing 

and exporting data, exploring and manipulating data and, for advanced users, how 

to use loops and create functions. 
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R is one of the key tools in Data Science because it covers several data mining, 

machine learning and statistical techniques. There are also complete tutorials 

which explain how to perform descriptive statistics and make inferences on data, 

apply linear and logistic regression models as well as classification and clustering 

techniques, fit time series, apply variable selection and dimensionality reduction, 

etc. 

2.3 RStudio 

RStudio is an integrated development environment (IDE) that enhances the stand-

ard R and eases the work of R programmers [20]. It is available as open source for 

free, but there are also enterprise versions with additional features (administrative 

tools, enhanced security and authentication for multiple users, metrics and moni-

toring functionality, etc.). 

RStudio is a very interesting application because it supports several premium 

characteristics such as intelligent code completion, syntax highlighting, integration 

of R help and the management of structured R documentation, and a tool for inter-

active debugging (see Fig. 4). The product can be used in a personal desktop in-

stallation or in a server version to centralize access and computation. 

 

Fig. 4. The RStudio IDE (source: [20]). 
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2.4 The Python language 

Python [21] is a general purpose programming language and one of the most pop-

ular tools for data analysis. It is very frequent to use it when analyzing huge 

amounts of data due to several strengths. In a similar way to R, Python provides 

many powerful libraries appropriate to process very large and growing data sets, 

and there is a wide support from open source community users. 

It is relatively easy to write code in Python and to make this code understanda-

ble by other users. Python also integrates very well with other open source plat-

forms commonly used in Data Science, as Spark [14] and Hadoop [13]. These are 

the reasons that have contributed to the enthusiastic adoption of Python by the 

programmers. 

A Python environment can be easily set up. There are free distributions like 

Anaconda [23] or Canopy [24] containing the core Python language, as well as 

other essential libraries for data analysis including the following: 

 Numpy and Scipy: fundamental scientific computing 

 Pandas: data manipulation and analysis 

 Matplotlib: plotting and visualization 

 Scikit-learn: machine learning and data mining 

 StatsModels: statistical modeling, testing, and analysis 

Again as in the R case, there are many excellent internet resources (among oth-

ers, DataCamp [25] and Codecademy [26]) to learn how to code in Python. They 

are an excellent option to gain knowledge in programming concepts that will be 

useful and valuable in working with data. 

2.5 Jupyter notebooks 

One of the most important Python extensions is the Jupyter notebook (also known 

as IPython notebook) [19]. The notebooks are executable documents that, when 

launched from the Jupyter web interface, a browser is opened to show an envi-

ronment to place not only code and executing data analysis, but even to introduce 

rich text, formatted expressions and embedded images and videos. 

With Jupyter is possible to include several kernels that are computational en-

gines for executing code of many other languages apart from Python (as for ex-

ample R). The notebooks also provide options to export the content in several 

formats including PDF, HTML and Markdown. Consequently, notebook docu-

ments can be used as reports containing both the analysis description and the final 

results (figures, tables and graphics). 

Other interesting Python IDE for data analysis is Rodeo [27], from the Yhat 

company. This program is similar to RStudio for R, and can be seen as a simple, 

lightweight alternative front-end to the Python notebooks. 
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Fig. 5. An example of the Jupyter notebook (source: [19]) 

The R and Python languages described above, as well as the RStudio and Jupy-

ter development environments (IDE), are included within the applications layer, 

whereas the Docker containers are used in the infrastructure layer to ease the de-

ployment process (see Fig. 2). The reader might have noticed that the data layer is 

missing in the previous schema. Such layer can be connected from inside the user 

container, as we explain in the following section where we describe the develop-

ment of the Data Science Stack project. 

3 The Data Science Stack Project 

The integration of different languages, libraries and platforms for use in a real en-

vironment is a complex task. It is really crucial to model the ecosystem in which 

you are going to work. In this section, we describe the starting situation of this 
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project, as well as the reasons to justify the change of the model towards a more 

efficient one. 

We rely on the TOGAF architecture framework [28] that allows us to model, 

through the points of view, the existing system at the beginning of the project 

called AS-IS and after a set of change recommendations, model the target system 

called TO-BE. The Layered Viewpoint diagrams designed with the Archimate tool 

[29] will be used to describe both situations, and they are composed of three main 

layers: business, application and technology. 

The key idea is to reflect in a single diagram the complete system. Besides, the 

Layered Viewpoint diagrams offer a joint vision of the actors, the main existing 

business processes, the software components and the technological infrastructure. 

3.1 Initial situation 

Currently, there exists an infrastructure where the researcher users request the cre-

ation of different systems for data storage, data analysis and information visualiza-

tion. One way to accomplish these tasks is through virtual machines that are gen-

erated from templates by system administrators. In this case, it is necessary to 

reserve the appropriate computing resources. This step involves several problems 

for the end user like waiting until the resources are available or the administration 

staff can complete the work.  

To understand the starting point of our project, we will use a TOGAF-based di-

agram, which visually represents the AS-IS model [28]. This model is divided in 

layers where actors, processes, components and infrastructure are presented (the 

aforementioned business, application and technology layers). 

In the current model, the execution for a research user of our system is present-

ed, who may ask for a new infrastructure or simply use it in the system. To do so, 

this request should be solved by a system administrator. The application will be 

registered and, once accepted, it will be created. Then, the system can be really 

deployed. The business processes are executed in an application for the manage-

ment of the forms and will have a mechanism to create virtual machines for later 

deployment. Finally, the complete system is executed according to the infrastruc-

ture layer presented, in which a web and virtualization servers are available (see 

Fig. 6). 
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Fig. 6. The situation of the current system described as a TOGAF AS-IS diagram 
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3.2 Evolution of the model to a more efficient solution 

In order to speed up the deployment and implementation of Data Science systems, 

we propose a different strategy based in the dockerization of the system. Under 

this strategy, computer resources will be optimized, since no system resources res-

ervation will be needed. 

The proposed model aims to minimize and simplify the Administrator's task. 

Using the system described below, we could meet the requirements of the re-

searchers without adding complex tasks. Initially, this solution will have two de-

velopment environments, such as Jupyter and RStudio, which allow the applica-

tions development through languages such as Python and R. Besides, Spark is 

considered for the massive processing of data, and it also provides real-time data 

processing. All of these components run on a single Docker container, making a 

lot easier its maintenance and future evolution. 

Hence, from the system administrator’s point of view, his/her work could focus 

on creating a single, equal based recipe for all researchers that would include all 

the required tools. From the point of view of the data scientist, he/she would have 

a complete set of tools for researching, with low cost extensibility to add new li-

braries, languages or tools. 

This new solution avoids, or at least diminishes, the high costs of the equip-

ment to allocate test systems. Now the researcher will be able to carry out small 

tests on his personal equipment, and to later transfer them to a production system 

in a large infrastructure. 

The final solution is presented in Fig. 7 through a TOGAF-based model where 

the architecture of the system is visually displayed. 

3.3 Solution development: A container based in Docker 

We have developed an environment with different applications installed as mod-

ules by executing a Dockerfile, which consists of several scripts doing specific 

tasks. Our proposal of this system uses the latest version of Ubuntu Xenial OS, but 

other operating systems can be used as Debian, CentOS, Alpine, etc., although this 

might imply some modifications of the steps described in the following para-

graphs. 
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Fig. 7. The TOGAF TO-BE diagram as an evolution of the TOGAF AS-IS diagram 
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When the Dockerfile is executed, the first script (base.sh) installs some addi-

tional base system libraries and applications (e.g. wget, default-jre, tar, 

openssl, libssl, etc.) that are required for our Data Science environment. 

In the next step of the Dockerfile execution, the scripts to install and configure 

the different applications of the Data Science stack are placed inside the container. 

This aspect provides modularity to our system because each tool is aggregated in 

an easy and independent way. 

Thus, the first applications to be installed are versions 2.7 and 3.6 of the Python 

programming language using the instructions contained in the script named py-
thon.sh. 

In addition to Python, the next scripts (R.sh and Rstudio.sh) install the last 

version of the R language, along with the integrated development environment 

(IDE) RStudio server. Both applications are configured to place the packages li-

braries into our system project folder and define the web server ports to access the 

programs by using a simple web browser (Chrome, Firefox, Safari, etc.). 

The installation of the Spark framework for distributed computing is carried out 

by a script called spark.sh. This application can be used only with one master 

node (standalone mode), but the execution in cluster mode (with additional worker 

nodes) is possible by configuring some environment variables defined in the script 

SparkConf.sh. This script allows the users to modify several characteristics of 

the worker nodes as the number of CPUs assigned to them or the RAM available 

for each one. 

Another important development tool that we aggregated to the Data Science 

stack is Jupyter, which provides the functionality to use both Python and R in the 

notebooks. The script jupyter.sh installs the main program and the kernel li-

braries to allow the execution of those languages in a notebook, as well as the con-

figuration of the port to access the application through the web browser. 

Table 1 shows the list of the applications configured in the Data Science stack 

with their corresponding ports and addresses to be run using a web browser. Be-

sides, Table 2 summarizes the list of scripts and files used in the deployment. 

Table 1. Web applications with default and configured ports in the Data Science stack, and links 

for accessing them 

Application Default port  Configured ports 

in deployment 

Address link of application 

RStudio 8787 10087 http://localhost:10087 

(user: rstudio, password: rstudio) 

Spark 8080, 8081, 7077 10080 http://localhost:10080  

Jupyter 8888 10088 http://localhost:10088   

 

  

http://localhost:10087/
http://localhost:10080/
http://localhost:10088/
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Table 2. A summary of all the files used in the deployment 

Located in File name Function 

/ build_image.bat Builds the container image in 

Windows 

build_image.sh Builds the container image in Ub-

untu or Mac 

Dockerfile Docker instructions to build the 

images 

install/ base.sh Installs base system libraries and 

applications 

custom_python.sh Allows installing certain versions 

of additional python libraries  

jupyter.sh Installs Jupyter notebook and lan-

guages’ kernels 

jupyter_notebook_config.py Jupyter notebook configuration file 

PyLibraries.sh Basic Python libraries 

python.sh Installs versions 2.7 and 3.6 of Py-

thon  

R.sh Installs the R programming lan-

guage 

Rconfig.R Installs the R kernel in Jupyter 

RStudio.sh Installs the RStudio IDE 

spark.sh Installs Spark 

SparkConf.sh Spark configuration file 

start.sh Entry point in Dockerfile: runs the 

container 

Start/Ubuntu_Mac/ Docker_install.sh Installs Docker in Ubuntu or Mac 

execute_worker.sh Deploys one Spark worker node 

start_master.sh Starts the Spark master 

start_workers.sh Deploys additional worker nodes 

for Spark 

Start/Windows/ runworker.bat Deploys one Spark worker node 

start_master.bat Starts the Spark master 

start_workers.bat Deploys additional worker nodes 

for Spark 

 

After the Dockerfile execution, the user can access the different applications by 

typing the links of Table 1 in the address bar of any browser, so now the system is 

ready to be used for the required Data Science tasks. 



16  

3.4 Deployment of the system 

In the procedure to launch the environment, two scripts called start_master 

and start_workers are provided. The first one creates the network to run the 

container or cluster, and creates the user folder to place the notebooks in the host 

machine of the system. This folder is mounted as a data volume of the container 

and allows the users to access the files of the data stack environment from the host 

computer where this system is running. Besides, several R and Python libraries 

will be installed only the first time this script is run. 

The second script is optional and enables the user to configure a cluster of N 

additional system instances to be run as workers. This cluster is valid for using the 

Spark framework, where the number of instances can be introduced in the NWork-
ers argument of the script. 

In the following paragraphs, we describe the steps to deploy the data stack en-

vironment in a host computer with Windows and Linux Ubuntu operating systems. 

Install and run in Windows (64 bits) 

1. Open a command prompt (CMD) or Powershell using the Windows menu op-

tions. 

2. Download the Github project typing: 

git clone https://github.com/taroull/DockerForScience.git --config 

core.autocrlf=input 

3. Change to working directory typing: cd DockerForScience 

4. If Docker is not installed yet, the user can download and install it from the offi-

cial web page [17]. When Docker is installed, a process window is started and 

pinned into a quick access of the desktop. Before proceeding, users must enable 

the “Shared Drives” option in the settings. 

In some systems, the user might need to configure appropriately the firewall 

or antivirus program to avoid problems when executing the following steps. 

5. Optionally, the script install\custom_python.sh might be edited to in-

clude in variable Libraries some additional python libraries (separated by 

spaces) that the user wants to install in the stack. For example: 

#!/bin/bash 

#Specify as "<library>[==version] ... [<libraryN>[==version]]" 

Libraries="pandas==0.21.0 scipy bokeh plotly" 

6. Execute the script .\build_image.bat, placed in the root folder of the pro-

ject, to generate the Docker image in the host system. This process may take 

some minutes depending on file sizes and the internet connection speed. 
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7. After creating the image, the system can be started by executing 

Start\Windows\start_master.bat. 

8. Consequently, all applications in Table 1 are accessible by typing the corre-

sponding address link within a web browser. 

9. Optionally, we can use the script Start\Windows\start_workers.bat 
<NWorkers> to deploy additional worker nodes for Spark. The number of 

slaves is specified in <NWorkers>, being 2 the default value of this parameter. 

 

Install and run in Ubuntu/Debian or Mac OSX 

1. Open a linux terminal. 

2. Download the Github project using: 

git clone https://github.com/taroull/DockerForScience.git --config 

core.autocrlf=input 

3. Change to the working directory by typing: cd DockerForScience 

4. If Docker is not installed already, the user can execute the install script 

Start/Ubuntu_Mac/Docker_install.sh 

5. Optionally, the script install/custom_python.sh might be edited to in-

clude in variable Libraries some additional python libraries (separated by 

spaces) that the user wants to install in the Data Science stack. See the exam-

ple shown in point 5 of the previous section. 

6. Execute the script ./build_image.sh (it may require preceding a sudo 

command if the user has no admin privileges), placed in the root folder of the 

project, to generate the Docker image in the host system. The building pro-

cess may take some minutes depending on file sizes and the internet connec-

tion speed. 

7. After creating the built image, the system can be started by executing 

Start/Ubuntu_Mac/start_master.sh. 

8. Now the applications in Table 1 are accessible by typing the corresponding 

address link in a web browser. 

9. Furthermore, and only for Spark, we can use the script 

Start/Ubuntu_Mac/start_workers.sh <NWorkers> to start addition-

al worker nodes, where the number of instances is set through the parameter 

NWorkers. The default value of this parameter is two instances. 

 

Finally, and regardless of the system considered (Windows, Ubuntu or Mac), 

the user might access the container through the following command: 

docker exec –ti master bash 

Bear in mind that the deployment process might take a while depending on the 

speed of both your computer and the internet connection. Once we have set up our 

Data Science stack, the three main applications shown in Table 1 are now running 
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in their corresponding ports at localhost, and ready to be used in a web browser 

(see Fig. 8, Fig. 9 and Fig. 10). Therefore, we can now proceed to show a case 

study in the next section. 

 

Fig. 8. The Jupyter notebook running in a web browser at localhost:10088 

 

Fig. 9. RStudio running in a web browser 
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Fig. 10. The Spark Master deployed and running at localhost:10080 

4 A case study 

This section presents an illustrative example of data analysis by using the Data 

Science stack developed in this chapter. In particular, the problem consists in 

studying the hourly observations collected in meteorological stations located in the 

Canary Islands (Spain) in order to obtain different statistical results using a Jupy-

ter notebook and several R libraries. These stations are included in the United 

States Air Force (USAF) Master Station Catalog and registered in the National 

Climatic Data Center's (NCDC) archive of weather and climate data. 

The notebook can be downloaded by running the following command in the 

notebooks folder: 

git clone https://github.com/taroull/Notebook-DataSciencewithR 

For a given station, we can collect information by providing the beginning and 

ending years. Particularly, using the appropriate function in R, we get a data frame 

with information on hourly meteorological observations specifying a geographical 

bounding box and/or time bounds. 

In this sense, the geographical position of the stations can be represented by us-

ing the ggmap library in R. The subsequent map (see Fig. 12) is easily obtained 

(see Fig. 11), and it can give us a good reference of the main locations where the 

data processed in the study were collected. 
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Fig. 11. R script to draw the stations in a map 

 

Fig. 12. The meteorological stations drawn on a map of the Canary Islands 

In particular, we are interested in studying the weather conditions in 2017 in 

the Teide National Park, located in the island of Tenerife. Consequently, we get 

hourly information of the nearest station about time, wind speed and direction, and 

temperatures through 2017 by using the script described in Fig. 13, and the result 

is shown just underneath as a formatted table. 

 

 

Fig. 13. The meteorological data of the Teide National Park’s station 
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In order to analyze these data, first we can plot all these values (see Fig. 14) to 

represent the evolution of daily temperatures in the National Park in 2017 using 

ggplot. The plot (see Fig. 15) uses a color gradient to appreciate the transition 

from the cold temperatures (blue) to the warm ones (red), and includes a smooth 

regression model fitting to the data. 

 

 

Fig. 14. R script that plots the data of the Teide National Park 

 

Fig. 15. Daily temperatures and local smooth fitting in Teide National Park in 2017 

Another interesting result consists in representing the distribution of low and 

high temperatures along the different daily hours in 2017. The chart (see Fig. 17) 
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allows us to make a comparison study of which parts of the day are colder or 

warmer. Again, we can observe that this result is relatively simple to obtain with 

the ggplot library (see Fig. 16). 

 

 

Fig. 16. R script to plot the histogram of temperatures by hour 

 

Fig. 17. Daily low and high temperature distribution by hour 

Lastly, if the volume or complexity of the data is too large to be processed in a 

normal way using R, the user could easily connect to a Spark cluster in order to 

run the required analysis and get the final insights. 
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In this sense, and following the same example used in this section, we could 

now connect our notebook to a Spark master node to run some basic analysis (see 

Fig 18). 

 

 

Fig. 18. R script to connect to a Spark master node 

Then, we copy our data to a Spark data frame to run some typical lazy Spark 

operations. In this case, we calculate the average temperatures grouped by month, 

as shown in Fig. 19. 

 

 

Fig. 19. Example of some Spark lazy operations 

Finally, we use the usual collect() function in Spark to run query and return 

the results back to R (see Fig. 20). 

 

 

Fig. 20. Returning the average result from Spark back to R 
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The notebook is completed with further interesting results that provide a brief 

overview of the collected information. As a result, the notebook allows publishing 

not only the analysis but even the R script along with the data. This turns to be ex-

tremely useful in case other researchers want to reproduce and validate the study 

without the complexity of installing all the required tools individually. Therefore, 

containers help to develop and deploy these complex setups in a simple way and 

run them in any environment. 

5 Conclusions 

By virtue of what has been stated in previous sections of this chapter, it has been 

clearly established that the infrastructure layer plays a key role within the Data 

Science stack. Indeed, there is a great concern on building good infrastructures to 

allow the stakeholders to run testbeds, sandboxes and proofs of concept (see [10], 

[11], [12] and [15]). 

On the other hand, a new type of company defined as the insights-driven busi-

ness [5], that uses Data Science to create competitive advantage has arisen in the 

last years. Furthermore, companies that make data driven decisions can raise up to 

a 5-6% their productivity [7], or become completely uncompetitive otherwise [8]. 

However, some of these businesses cannot afford such Data Science services in 

a commercial cloud. Accordingly, and following the recommendations indicated 

in [9], we have developed a Data Science platform that can be easily deployed 

over commodity computers using open source software that includes Spark as the 

current de facto standard, as well as the R and Python languages. 

To summarize, the main advantages of our Data Science stack approach are the 

following: 

 The R libraries and the Python packages that are installed within the notebooks 

folder after the Docker image is created, can be reused when the container or 

the image are run again. 

 The scripts can update in the future the applications already installed by just 

changing the variables defined inside them. 

 The shared volume inside the Docker container allows the user saving the data 

and related files in a folder inside the host computer. 

 As a result, the notebook allows publishing not only the analysis but even the R 

script along with the data. This turns to be extremely useful in case other re-

searchers want to reproduce and validate the study. 

Likewise, from the point of view of the main actors the advantages are: 

 System administrators take less time to configure. 

 Data analysts or researchers can really focus to accomplish their main duties ra-

ther than wasting time in administration tasks. 
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 The academia can benefit from the easiness to develop executable examples in 

a very simple way. 

Besides, the project presented in this chapter can be very helpful for teaching 

and researching activities, and has been already used in subjects regarding Laws 

and Regulations, Computer Vision, and Bioinformatics, and in a project on Earth 

and Atmosphere Observation Research. In this sense, the Data Science stack pro-

vides the students with the necessary tools for accomplishing different tasks in or-

der to solve problems concerning Data Science (preprocessing data, statistical 

analysis, etc.), and preventing all the problems that usually arise when installing 

and configuring software. 

In conclusion, our key objective has been essentially twofold. On the one hand, 

we have developed a simple, easy and fast platform to deploy a scalable Data Sci-

ence stack that includes the main foundation tools. On the other hand, it has been 

designed for use in insights-driven businesses, as well as for obtaining reproduci-

ble results in research, and for teaching academic subjects easier. 

Finally, the lines of future research are mainly focused in improving the current 

stack by including new Data Science environments like Zeppelin [30], and in-

stalling Deep Learning applications such as TensorFlow [31]. 
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