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Abstract: The planning of industrial maintenance associated with the production of electricity is vital, as it 

yields a current and future snapshot of an industrial component in order to optimize the human, technical 

and economic resources of the installation. This study focuses on the degradation due to fouling of a gas 

turbine in the Canary Islands, and analyzes fouling levels over time based on the operating regime and local 

meteorological variables. In particular, we study the relationship between degradation and the suspended dust 

that originates in the Sahara Desert. To this end, we use a computational procedure that relies on a set of 

artificial neural networks to build an ensemble, using a cross-validated committees approach, to yield the 

compressor efficiency. The use of trained models makes it possible to know in advance how the local fouling 

of an industrial rotating component will evolve, which is useful for maintenance planning.  

Keywords: Gas Turbine, Compressor Fouling, Neural Networks Ensemble, Saharan dust, Canary Islands.  

1. Introduction 

 
A typical gas turbine assembly for generating electricity, as seen in Figure 1, basically consists of a gas 

generator section and an energy conversion section. The gas generator section consists of a compressor, a 

combustion chamber and a turbine, which extracts enough energy to drive the compressor. The result of this 

is a gas at high temperature and pressure at the turbine outlet. Different types of gas turbines can be designed 

by adding several components at the inlet and outlet to the gas generator. 
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Figure 1. General diagram of a Gas Turbine for electricity generation with a multi-stage inlet air filtration system. 

 

In order for a gas turbine to work properly, large volumes of air have to be compressed. The flow path in an 

axial flow compressor is parallel to the axis of rotation. The axial flow compressor consumes between 55%-

65% of the power produced by the turbine section in the gas turbine [1].  

To adapt gas turbines to a wide variety of environments and maximize their efficiency and reliability, it is 

necessary to process the air they intake (Figure 1). Even in relatively clean environments, a gas turbine can 

ingest a large amount of foreign matter every year whether or not this creates a problem depends on the 

quantity of this material, its mechanical properties and its chemical composition [2]. Compressor fouling is 

typically caused by airborne salt, industrial pollution, mineral deposits, or airborne materials [3]. 

Due to its design and to the large amount of air consumed, any gas turbine is sensitive to air quality. Filtration 

is applied to provide protection against the effects of contaminated air that can degrade the performance and 

life of the gas turbine: erosion, scaling, corrosion and obstruction of the cooling duct. Therefore, adequate 

filtration is vital to this technology [4], [5].  

The conventional structure of a filtration block at the compressor inlet of a gas turbine consists of a prefilter 

stage and a set of high-efficiency filters [4]. Depending on the type of filtration system used, small particles 

in the 0.1 - 2.0 μm range could enter the turbine [5].  

These particles are too small to cause erosion problems, but they are the right size to adhere to the blade 

surfaces and cause fouling. A study of dirty compressors has revealed contamination on both the suction and 

pressure sides of compressor blades. Fouling identified in the field has shown that only the first few stages 

are affected by deposits, and that the absence of centrifugal force in the stator blades leads to more severe 

fouling in comparison to the gas turbine rotor [2], [6].  The study by Aker revealed that fouling can progress 

in around 40 to 50% of the compressor stages [7]. 

The fouling that occurs gradually and exponentially as the operating hours of the turbine increase, will affect 

the first stages of the compressor blades, reducing parameters such as the inlet air flow, and its compressor 

discharge temperature and pressure[8], [9].  This will result in an increase in fuel consumption and, ultimately, 

in the heat rate of the gas turbine[3]. Losses derived from compressor fouling are classified as recoverable, 

since they can be eliminated through washing. There is a percentage of losses that, depending on the hours 

of operation, become “non-recoverable” and can only be fixed with a long outage and/or by replacing 

components [10], [11]. It is estimated that between 70-85% of the recoverable losses of a gas turbine are 

linked to compressor fouling [12].  



Inteligencia Artificial 68(2021)   55 

 
 

The main solution is to do a series of off-line washes and to replace the inlet filter elements in order to reset 

the thermal parameters to their initial conditions. Operating hours are proportional to this fouling factor, and 

reach their critical value at around 2000-2500 hours [13], [14]. According to Tarabrin et al., fouling tends to 

occur during initial operation and roughly follows an exponential law, stabilizing after 1000 to 2000 hours 

[6].  

Tarabrin also observed the following relationship due to compressor fouling. A drop in the discharge pressure 

of around 5.5% resulted in a loss of electricity generated at the gas turbine output of 13%, and a increase in 

heat rate of 6%. 

In the study carried out by Inamul et al., the drops in compressor efficiency obtained were on the order of 

0.8% and 0.5% over the hours of operation (1290h) [15].  

In another case, the fouling that diminishes the intake air flow by 5% will cause a drop in compressor 

efficiency of about 2.5%. This will result in an 8 to 10% drop in the power output and a 4% drop in thermal 

efficiency [16]. 

Other researchers have detailed and modeled the problem of compressor fouling, such as [17]-[19], where, 

for example, Mohammadi et al. simulated changes in compressor fouling depending on different electricity 

production scenarios under both full and partial loading, reaching the conclusion that the fouling was not the 

same, and thus changed with each gas turbine production scenario [20]. 

To evaluate the above, some studies have applied artificial neural network models to the prognosis and 

diagnosis of gas turbines. Kiakojoori et al. proposed using dynamic neural networks to measure the 

degradation due to compressor fouling; however, they stated that their solution could be improved by 

employing ensemble learning strategies with neural networks [21]. Tahan et al. developed a multi-net  artitial 

neural network (ANN) model where they achieved the best performance in an architecture with a single 

hidden layer with training with Bayesian regularization, before eventually combining the different partitions 

generated by the cross-validation method with k-fold=4. They applied this model to detect compressor 

fouling and their research showed that the employment of several networks in the form of a multi-nets model 

instead of using a single network model promotes diagnostic reliability and ensures the detection of faults at 

an earlier stage [22]. 

The main concept behind an ensemble learning model is the simple intuitive idea of a committee of experts 

working together to solve a problem. All members contribute their own experience and initiatives, and the 

group as a whole can choose to uphold or reject a new idea on its own merits [23]. Other similar  works[24]-

[26], have studied the application of ensemble methods to gas turbines. 

In line with Saviozzi et al., the ensemble-averaging method is usually implemented to achieve more accurate 

results than a single ANN [27]. The main idea of this method is to train different networks and combining 

their outputs in order to have a better prediction. In terms of the methodologies used in the ensemble 

averaging approach, Siddhartha et al. observed that the predictive algorithms outperformed the generalized 

additive model [28]. Weng et al. shows in their experiment with ensemble methods, an improvement of on 

average 30% in test performance metrics compared to a single two-layer neural network with the same 

characteristics and features, including number of neurons [29]. Other recent studies conducted that use a 

combination of multiple artificial neural networks through an ensemble method have exhibited better 

performance and yielded improved results. This can be useful to deal with real world applications [30]-[33]. 

Amozegar et al. propose working with dynamic ensembles to monitor gas turbines; specifically, they 

distinguish between a type of homogeneous ensemble that uses the same learning algorithm, and a 

heterogeneous one in which each member of the ensemble uses a different learning algorithm. In both cases, 

the performance exceeds that of the models that were trained individually [17].  
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Accordingly, the main contributions of this paper are summarized below: 

(1) We will develop an artificial neural network (ANN) model where we apply a cross-validated committee 

(CVC) ensemble architecture so that we can estimate compressor fouling, taking into account the 

condition of the intake filters and the composition of an axial compressor in a gas turbine for power 

generation in the Canary Islands. 

 

(2) In order to evaluate the strength of our adaptation of ensemble learning via cross-validation, we propose 

comparing different learning models for regression problems and compare different k-fold combinations 

to observe its evolution in statistical performance indices. 

 

(3) We will measure the effect that calima, which is the local term used in the Canary Islands to refer to dust 

from the Sahara Desert, has on the thermal efficiency of the compressor and its inlet filters. For this 

purpose we will use the final ANN-CVC, where we propose a series of simulation matrices with the 

result of compressor cleaning activities in any season of the year depending on hours of operation, local 

climatic conditions and the current operating conditions of the machine, which will allow us to study 

how the degradation due to fouling evolves over time. 

The paper is organized as follows. Section 2 describes the calculation methodology for both the isentropic 

efficiency of the compressor and for constructing the Sahara sand totalizer, how the hours of operation 

between maintenance activities are calculated, the data structure for training and testing,  the main architecture 

of the ANN, its training algorithm and the computational architecture designed. Section 3 presents our results 

and validates the processing of the original data and proposes the maintenance simulation matrices. The paper 

concludes with a final assessment of the objectives achieved. 

2. Methods 

 
The general computation procedure in this study is represented by Figure 2 where, the calculated isentropic 

efficiency of the compressor is estimated using actual humidity, atmospheric pressure, turbine inlet 

temperature, gross electric output, operating hours without cleaning the compressor, differential pressure at 

the inlet filters and a totalizer for sand of Saharan origin, which was designed from an on-site analysis of a 

sample of dust from a gas turbine compressor. All the data were collected in the south of the island of 

Tenerife. 
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Figure 2. Flowchart of the main procedure used in this work. Section 2.1 to Section 2.4. 

 

2.1. Study design 

 

The data set is divided into two main blocks (Figure 3). The first consists of an initial dataset (DS1) containing 

the input and output data from January 2013 to December 2017, with one sample per minute for the 

environmental input data. This set will be used exclusively to conduct the entire training process. 

The second set of independent data (DS2), not used to train the neural network ensemble, is from the January 

2018 to December 2018 timeframe and also contains input and output data. It is intended exclusively for the 

testing and results verification phase.  

 

 
Figure 3. Data sets DS1 and DS2, used to train and test the neural network. 
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2.2. Data collection 
 

The efficiency of a machine, whether it produces or consumes work, is expressed as a relationship between 

the work that would be transferred in the ideal transformation and that transferred in the actual 

transformation. Since the operation of turbo machines is practically adiabatic, the process that is taken as 

ideal is the isentropic process and the resulting efficiency is called isentropic efficiency. To have a 

measurement close to the thermal reality of a gas turbine, a method of calculating the isentropic efficiency of 

the compressor  is proposed  (Eq. (2)), where the adiabatic coefficient to be calculated takes into account the 

specific heat, represented by the fraction of humidity in the environment and the range of actual average 

temperatures measured in the compressor (Eq. (1))[34], [35]. 

γ =
(𝑐𝑝𝑎(

𝑤

𝑚𝑎
)·𝑐𝑝ℎ)

(𝑐𝑣𝑎(
𝑤

𝑚𝑎
)·𝑐𝑣ℎ)

   (1) 

Where 𝑤  is the absolute moisture flow and 𝑚𝑎the mass flow of dry air entering the compressor. To 

approximate the real value of the incoming moist air, we define a set of specific heats (𝑐𝑝): 𝑐𝑝𝑎  at a constant 

pressure of dry air, 𝑐𝑝ℎ at a constant pressure of the fraction of moist air, 𝑐𝑣𝑎 at a constant volume of dry 

air and 𝑐𝑣ℎ at a constant volume of moist air. All of them are obtained from the real average of compressor 

inlet and outlet temperatures [36]. 

Grouping them yields the calculated isentropic efficiency of the compressor: 

 

𝝁𝒄𝒐 =

((𝑇1·(
𝑃2
𝑃1

)

𝛾−1
𝛾 )−  𝑇1)

(𝑇2−𝑇1)
 ·100     (2) 

For this process, the actual measurements of 𝑃2(𝑏𝑎𝑟𝑎) and 𝑃1(𝑏𝑎𝑟𝑎), which are the compressor inlet and 

discharge pressures respectively, are available. The inlet pressure takes into account the pressure drop due to 

fouling of the filter bank. In addition, 𝑇1 and 𝑇2 are the temperatures at the compressor inlet and outlet, 

respectively. The value of γ is determined in Eq. (1). 

The concentration of Saharan dust (µgr/m3) on the surface of the island of Tenerife was obtained from the 

BSC-DREAM8b v2.0 model (Figure 4a). 

To complete the historical dataset, the data from the BSC model was combined with the data obtained by 

the artificial neural ensemble model for Saharan Dust in the Canary Islands developed by Gonzalez [30]. 

 

       
Figure 4a. Data from the BSC-DREAM8b-Dust model for the Canary Islands, operated by the Barcelona Supercomputing Center. 

(http://www.bsc.es/ESS/bsc-dust-daily-forecast). Figure 4b. Sample taken from filter area at gas turbine inlet. Source: adaptation of Guideline for Gas 

Turbine Inlet Air Filtration Systems [37]. 

http://www.bsc.es/ESS/bsc-dust-daily-forecast
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A dust sample was taken from the gas turbine, specifically from the inlet filters (Figure 4b), and analyzed. 

The analysis was done in an external laboratory (CSIC-ICTJA), where a diffraction spectrum was obtained 

using a Bruker D8-A25 diffractometer in a θ/θ geometry, equipped with a Cu X-ray tube (wavelength λ = 

1.5405 Å), Soller slits and an ultra-fast PSD detector (Lynxeye). A scan from 4° to 60 ° of 2θ was performed 

in 0.05° increments and an equivalent measurement time per increment of 576s. The following working 

conditions were applied to the tube for the measurements: voltage of 40kV, current of 40mA. 

The diffraction spectra were interpreted using the Bruker Diffrac.SuiteTM program, while the crystalline 

phases were identified using the PDF-2 database from the International Centre for Diffraction Data (ICDD). 

 

 
Figure 5.  Adaptation of the diffractogram analysis of the sand, prepared by an external laboratory (CSIC-ICTJA), and the resulting composition of 

the local sample in the filter zone.  

 

The diffractogram of the sample analyzed (Figure 5), reveals the presence of the following crystalline phases: 

plaster (15%), halite (20%), quartz (5%), feldspar (sanidine (20%) and albite (5%)), the clay phase 

Muscovite/illite (5%) and the zeolite phillipsite (30%).  

The local foci were associated with the Macaronesian conditions, and the temporary composition attributable 

to a one-time human contribution is discarded.  

Saharan dust comprises 10% of the fouling sample taken from the filter bank of the gas turbine. Quartz and 

Muscovite are common minerals in Saharan sand [38]-[41]. 

 

In order to establish a system for tracking Saharan dust that can be used to monitor the accumulation of sand 

and differentiate all material that does not come from calima, the following accumulation methodology is 

proposed 𝑡 with a one-minute frequency:  

𝑸𝒅𝒖𝒔𝒕(𝑡) = 𝑄𝑑𝑢𝑠𝑡(𝑡 − 1) + 𝒂 · ((
𝑞𝑎𝑖𝑟 · 𝐶𝑑𝑢𝑠𝑡

𝜌𝑎𝑖𝑟
) · 10−6)    (3) 

Where 𝑄𝑑𝑢𝑠𝑡(𝑔𝑟) represents the amount of sand from the calima, which accumulates in the gas turbine 

compressor,  𝑞𝑎𝑖𝑟 (
𝑘𝑔

𝑠
) is the actual total mass of air entering the compressor, 𝐶𝑑𝑢𝑠𝑡 (

µ𝑔𝑟

𝑚3
) is the 
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concentration of sand measured on the surface, determined in combination with the BSC model for the 

Canary Islands (Figure 4a), 𝜌𝑎𝑖𝑟 (
𝑘𝑔

𝑚3
)  is the density of the moist air as a function of temperature, relative 

humidity and atmospheric pressure, calculated using the CIPM-81/91 procedure [42]. 

Finally, the constant 𝒂 (%) represents how much of the sample analyzed in the local area corresponds to 

Saharan dust. That is, the result of the analysis performed, which yielded a value of 10%. 

 
Maintenance condition is calculated based on the length of time the gas turbine has been running with a gross 

output power generation above one megawatt electric (MWe) during the entire period studied. An aggregate 

runtime counter is used that will be reset after maintenance. This means that it will be reset to zero when the 

compressor is taken off-line and cleaned, after which the counter will begin to accumulate hours of operation 

until the next cleaning cycle. 

The sand counter, and thus the 𝑄𝑑𝑢𝑠𝑡 total  Eq. (3), will also be reset to zero when the compressor is cleaned. 

The actual maintenance tasks associated with changing filters and cleaning the gas turbine compressor 

adhered to the following historical sequence outlined in Table 1, and will be associated with DS1 and DS2. 

Table 1.  Record of maintenance done (•) on the gas turbine  

Data set distribution DS1 DS2 

Type of Maintenance 2013 2014 2015 2016 2017 2018 
Offline Washing of Compressor • •  • • • 
Replacement of Prefilters • •  • • • 
Replacement of High-Efficiency 
Filters 

 •    • 

 

2.3. Training, validation and test procedure 

 

The type of neural network presented in this paper is defined as a Feedforward Back-propagation Neural 

Network (FFBP-NN). Starting below, we propose the main architecture of the baseline model. Its basic 

architecture consists of eight inputs (Ambient temperature; atmospheric pressure; relative humidity; month 

number; power output; differential pressure inlet filters; operating hours without compressor washing; 

Saharan dust total counter), a single hidden layer with eight nodes with an activation function that uses the 

hyperbolic tangent, and an output layer with a linear activation function (Compressor isentropic efficiency) 

(Figure 6).  The number of nodes in the hidden layer was adjusted by adapting the method proposed by 

Huang, which relates the number of inputs to the output variables using artificial neural models in a hidden 

layer [43].   

For the same DS1 set, and to train it, the data will be divided into the training and testing sub-sets using k-

fold cross-validation. This division will follow the computational procedure specified in the application of 

the ensemble method, discussed in this section. 

In the data preparation, rows containing constant values were removed and min-max normalization scaling 

was applied. A technique which provides linear transformation on original range of data [44]. 
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Figure 6. Topology of the main structure of the neural network designed with eight inputs, eight nodes in the hidden layer with 

a hyperbolic tangent activation function, and one node in the output layer with a linear activation function.  

 

The main optimization method which was applied during the training phase for the entire set of neural 

networks in this paper is the Levenberg–Marquardt algorithm, modified with Bayesian regularization, was 

applied as a back-propagation (BP) supervised learning rule and will be used as the basis for the computational 

procedure proposed  [45]. 

The Nguyen-Widrow algorithm was used to initialize the adaptive weights in each neural network and 

shorten the training phase [46]. 

The statistical performance indices used were the determination coefficient (R2) and the mean absolute 

error (MAE). According to Willmott et al., the MAE offers a natural measure of the mean error (unlike 

RMSE) [47].  

The MAE is calculated as follows: 

    𝑀𝐴𝐸 =
∑ |𝑦𝑖−𝑥𝑖|𝑛

𝑖=1

𝑛
    (4) 

Where 𝑛 is the total number of data sampling points,  𝑦𝑖 is the prediction and 𝑥𝑖 is the real value.  

The coefficient of determination (R2) is taken as a measure of the validity of a regression model or a regression 

estimate. It is calculated as follows: 

    𝑅2 =
∑ (𝑦�̂�−�̅�)2𝑛

𝑖=1

∑ (𝑦𝑖−�̅�)2𝑛
𝑖=1

    (5) 

Where 𝑛 is the total number of points in the data sample, �̂�𝑖  is the estimated value of the dependent variable 

for the 𝑖th observation, as computed with the regression equation, 𝑦𝑖 is the observed value of the dependent 

variable for the 𝑖th observation and �̅� is the mean of all 𝑛 observations of the dependent variable. 

The closer the regression model’s estimated values �̂�𝑖 lie to the observed values 𝑦𝑖 , the closer the coefficient 

of determination is to 1 and the more accurate the regression model is [48].  

2.4. Model architecture 

We define a type of ensemble learning with a homogeneous configuration since nk artificial neural network 

sets will be defined that use the same learning algorithm and feature the same layer architecture proposed in 

Figure 6 [24].  
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We use the cross-validated committees (CVC) ensemble method with k-fold partitioning, similar to that used 

by Parmanto et al., Xia et al.  and Dong et al. [30], [49]-[51]. 

Specifically, we apply and adapt the computational procedure proposed by Gonzalez et al. (Figure 7), where 

each fold set will be used to build a FFBP-NNnk, where each nk represents the number of the corresponding 

ANN set associated with the CVC (Figure 7) [30]. 

 

 
Figure 7. Main diagram of the training algorithm used, with detailed views of the Ensemble Learning k-fold partitioning and Final Test blocks [30].  
 

In order to make this set with different partitions, the k-fold cross-validation method is applied to DS1. This 

method will use k-1 folds to select the training part and the last fold to evaluate it. This algorithm will repeat 

the process k times, always maintaining a different fold each time for the test phase in each iteration (Figure 

2). 

This iterative cycle involving DS1 is used to generate each individual set, which is grouped in the 

corresponding FFBP-NNnk, thus ensuring that all the data contained in DS1 at some point participate in the 

training and test stages in the CVC. 

In our case, each FFBP-NNnk is trained using the learning procedure specified in Section 2.3. Moreover, each 

of the nk outputs obtained will be used to determine the final average of the nk sets, and thus construct the 

final value that will be evaluated using the statistical performance methods proposed: the mean absolute error 

(MAE0) and the determination coefficient (R2
0), which result from comparing this estimated average output 

with the actual output of DS1.  

The final test block will be evaluated using the final average value, which results from running DS2 k times 

for each FFBP-NNnk trained in the previous step with DS1, as long as the safety limits determined by the 

MAE and R2 are not exceeded. 

It applies the Shewart c-chart for the limit value of the MAE, a statistical quality control method called the 

control chart for nonconformities, and a limit value of R2 that exhibits a strong degree of correlation, as 

indicated by Taylor in his research on this correlation coefficient. (Eq. (6)), [30], [52], [53]. Where 𝑐̅ represents 

the average value of the DS1 set for the target output variable (Eq. (7)). 

 

  𝑅2
𝑙𝑖𝑚𝑖𝑡  ≥ 𝟎. 𝟕    (6) 

𝑀𝐴𝐸𝑙𝑖𝑚𝑖𝑡 = �̅� + 𝟑√�̅�    (7) 
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The standard division we propose initially for the CVC is k =10, which seems optimal in terms of statistical 

performance for application to this type of ensemble structure. According to Kohavi, the best method to use 

for model selection is a ten-fold stratified cross validation, even if computational power allows using more 

folds [54], [55].  

This means that for this particular case where k = 10, each set nk will use 90% of the set for training and the 

remaining 10% for the test phase.  

However, we will evaluate the robustness of the CVC by comparing its results, along with the application of 

other classical regression methods (Table 2). For our comparative case, the Gradient Boosting(GB) and 

Random Forest(RF) models have been trained for a total of 520 and 300 estimators respectively, following 

the procedure indicated in Table 2. 

The GB and RF methods are tree-based models, used to deal with nonlinear problems. Among various 

machine learning methods, the GB method proposed by Friedman has been considered as a powerful 

algorithm with many successful applications for both classification and regression problems in different fields 

[56]. 

RF is a popular machine learning procedure which can be used to develop prediction models. Introduced by 

Breiman, random forests are a collection of classification and regression trees which are simple models using 

binary splits on predictor variables to determine outcome predictions [57].  Moreover, in order to define and 

verify the definitive k-fold number in the CVC, we will propose different combinations of the k value, which 

will be evaluated in Section 3.2. 

 
Table 2.  Summary of the comparison study with other computation methods for regression problems  

The compressor performance is calculated using GB, RF, FFBP-NN and three different combinations of the k-
fold value through FFBPNN-CVC. 
For each comparison method, the same data set is used, DS1, 90% of which is used for training and 10% for testing.  

The hyperparameters, numbers of leaves and estimators for the GB and  RF models are configured iteratively with 
until the best configuration is obtained in terms of the statistical performance provided by MAE and R2. 
Finally, all the models are evaluated with DS2, which was not involved in the training phase, to calculate their MAE 
and R2 . The FFBPNN-CVC models are evaluated with DS2, as explained in Section 2.6 

2.5. Maintenance simulations 

 

On the basis of the ensemble models, three types of simulations were defined to observe the results that are 

obtained for the target output variable (the isentropic efficiency of the compressor) under different 

environmental and operating scenarios for the gas turbine (Table 3).  

Table 3.  Summary of the compressor simulations (CS) 

 

Maintenance 

Simulation  
Main scenarios Manipulated variable 

CS1  
Six scenarios increasing the operating hours and using the monthly 

average value (Dec-18) for the environmental variables. 

The degree of fouling (𝑄𝑑𝑢𝑠𝑡) and the 

differential pressure of the filters are 

increased. 

CS2 

Six scenarios with different filter differential pressures and using the 

monthly average value (Dec-18) for the environmental variables and 

720 operating hours. 

The degree of fouling (𝑄𝑑𝑢𝑠𝑡) is increased. 

CS3 
Four scenarios for different output power. The rest of the 

environmental variables are set to the average of DS2. 

The cleaning counters are reset to zero to 

simulate a compressor cleaning. 

The average ambient temperature is 

modified according to Tenerife season. 
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In the first simulation (CS1), the baseline input data is that associated with a snapshot of the gas turbine in 

the last month of DS2 (December-2018), selecting the monthly average for the ambient temperature, relative 

humidity, atmospheric pressure and the operating regime of the gas turbine in that period, in terms of gross 

electric output. On that basis, the total hours of operation will be simulated assuming no compressor cleaning 

maintenance, as the values of the total Saharan sand counter and the differential pressure values at the filter 

inlet, in intervals of +20 μgr/m3 and +5 mmH2O respectively, are increased for each runtime scenario. 

A second simulation was run (CS2) where the total operating hours without washing the compressor was set 

to a constant value of 720 hours, increasing only the total accumulated sand value for various differential 

pressure scenarios at the inlet filters. 

The third simulation (CS3) shows the result of compressor cleaning depending on the time of year and under 

different gross electric output conditions in the gas turbine. Four scenarios were chosen where only the 

temperature of the air at the compressor inlet is adapted to the average conditions of each season. The 

remaining environmental input variables will be the average of the DS2 set and the sand counter, operating 

hours and differential pressure of the filters will be reset to their initial values, thus simulating a compressor 

wash and replaced inlet filters.  

3. Results 

3.1. Performance analysis for the FFBPNN-CVC ensemble model 

 

The results predicted by the main ensemble set (k = 10) that exceeded the statistical limits proposed in the 

computational procedure in Section 2.4 are shown (Figure 8). For the training data set DS1, we obtained a 

regression coefficient R2 ≈0.932 and an absolute mean error MAE≈0.36% in terms of the isentropic 

efficiency of the compressor. The good prediction results of the model were confirmed when the data set 

DS2, that did not participate in the learning phase yielded an R2≈0.925 and an MAE≈ 0.53%. 

Note that ensemble model not only learned to satisfactorily relate the measurement of the compressor's 

isentropic efficiency, but when it is informed that at a certain point in the time series, an off-line compressor 

cleaning event occurred, it reacts with an upward jump similar to the actual figures obtained following 

cleaning maintenance. 

 

 
Figure 8. Results and performance of the final FFBPNN-CVC (k=10) model based on real DS2 data. Expanded detail of the learning model for an 

offline compressor wash. 
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Moreover, as indicated in Section 2.3, the output power produced was integrated as an input parameter to 

the ANN for the baseline architecture, thus reflecting the power oscillations in the final trained model. 

It is important to keep in mind that the isentropic performance data for the compressor were calculated for 

a gas turbine that generates electricity inside an isolated insular electricity grid. Its gross electricity production 

regime is constrained by the secondary regulation of the electrical frequency on the island [58]. In other 

words, this gas turbine is not maintained at a constant base load; rather, its output oscillates based on the grid 

frequency determined by the daily production/demand balance on the island, with a spinning reserve 

production margin. This is why, when we look at its performance trend (Figures 8) over a reduced time 

window, we see a constant oscillation in this performance value of approximately +-4%, resulting from this 

fact. 

3.2. Evaluation and comparison of regression models 

 

In comparison with our performance results, Pawełczyk et al. presented a comparison of machine learning 

predictions models, including a single ANN of three hidden layers for prediction of gas turbine operating 

characteristics and its potential failures. However, ANN models were reviewed, and their performance checks 

inferior to Random Forest algorithm-based model [59].   

 

The ensemble average performance, confirms what Amiq et al. observed. That if different models are 

combined by averaging their output the prediction accuracy is enhanced [60]. However, we note that this 

reasoning would have to be combined with values of k-fold, greater than 10  if we look at the results in terms 

of MAE and R2 (Table 4). 

When comparing statistical returns with other decision tree-based ensemble computation models and a 

simple FFBP-NN model, we can see how combinations of a CVC ensemble of k = 10, and k = 15 can 

provide the lowest range in statistical performance in relation to the real model (Table 4).  

Kohavi and Borra placed their research findings at an optimal value of k-fold = 10. However, for this work 

and after studying the applied CVC ensemble method, we noted that even with a value of k = 15, the 

performance obtained is satisfactory (Table 4) [55], [61]. 

 

Table 4.  Results obtained for each computation method for regression problems 

 

 

 

 

 

 

3.3. Simulation based on FFBPNN-CVC to plan maintenance 

 
The model created is confirmed to have learned the different maintenance tasks involving the off-line 

cleaning of the compressor and its corresponding dynamics. We were able to carry out various simulations 

in different operating scenarios and present them in terms of compressor efficiency that yielded a response 

similar to the real case in order to obtain other relevant results that can help when planning the maintenance 

of the facility.  

Computation methods 
DS1  

MAE 

DS1 

R2 

DS2  

MAE 

DS2 

R2 

Gradient Boosting (GB)  0.34 0.89 0.49 0.80 

Random Forest (RF) 0.38 0.86 0.62 0.7 

FFBP-NN  0.44 0.93 0.54 0.91 

FFBPNN-CVC (k=5) 0.37 0.93 0.51 0.90 

FFBPNN-CVC (k=10) 0.36 0.932 0.53 0.925 

FFBPNN-CVC (k=15) 0.37 0.93 0.54 0.93 
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Figure 9.  Predictive simulation for planning maintenance (CS1 & CS2); (1) Operating Hours scenario; (2) DP Inlet Filters scenario. 

 

In the first simulation of CS1, when working with different numbers of operating hours, we see a faster 

degradation in the compressor as the amount of Saharan sand and differential pressure in the inlet filters 

increase, for shorter times between compressor washings (Figure 9.1). However, the levels of isentropic 

efficiency are higher than in those cases where we start with a high number of hours of operation without 

maintenance. We may thus consider two blocks, the first one between 720 and 4320 hours, where the trend 

is similar and the efficiency of the compressor loses between 0.4 and 0.5%. The second one comes after 6480 

hours of operation without washing, for which the degradation is 1 to 1.5% below the value that it would 

have in an operating scenario with the maintenance performed. 

In all the scenarios, up to 6480 hours of operation, for values of the sand totalizer with 60 gr and a differential 

pressure of the filter zone of 55 mmH2O, and higher (Table 5), the accumulation of Saharan sand in the 

compressor and the differential pressure of the inlet filters practically reach a steady state. 

 

Table 5. Results of the simulation matrix for maintenance planning - Operating Hours Scenario 

  
  

OPERATING HOURS WITHOUT COMPRESSOR OFF-LINE WASHING 

S.D. D.P. 720 2160 4320 6480 8760 

(gr) (mm H2O) Compressor Isentropic Efficiency (%) 

0 40 85.35 85.17 84.9 84.53 83.72 

20 45 84.84 84.74 84.49 84.37 83.78 

40 50 84.22 84.16 83.97 84.13 83.75 

60 55 83.73 83.7 83.48 83.74 83.57 

80 60 83.37 83.39 83.19 83.4 83.32 

100 65 83.07 83.12 83.05 83.15 83.16 

 

 

In parallel, we noticed that for the same operating scenario after a wash, the efficiency levels of the 

compressor were around 0.6% higher when the differential pressure at the inlet filters is decreased by 

approximately 20 mmH2O. This means that the efficiency of the compressor will be greater as long as the 

filters are adequately maintained. 

In this case we also see a stabilization region in the simulation matrix for every level of inlet filter differential 

pressure calculated (CS2), starting from an approximate sand accumulation of 60 gr (Figure 9.2). From that 

point, there is a reduction in the compressor degradation rate due to fouling. 
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Applying the simulation matrix CS3, proposed in Section 2.5, we find the relationship between the behavior 

of the compressor efficiency values for each time of year and for each operating scenario of the gas turbine 

(Figure 10). Note that the winter and autumn seasons exhibit the lowest efficiency following an off-line 

compressor washing in this period.  This result matches that found by Dorta and Criado[38], [39], who 

identified in these same periods a greater number of calima events in the Canary Islands. 

 

Figure 10.  Predictive simulation for maintenance planning (CS3); Scenario for off-line compressor cleaning and filter maintenance by season. 

 

4. Conclusion  

 

The models obtained from the FFBBNN-CVC system, after being subjected to new, previously unknown 

data, exhibited good statistical performance in terms of the isentropic efficiency of the gas turbine 

compressor.  

 

The studies conducted in this work also showed a direct relationship between the effect that a local weather 

variable that is typical of the climate of the Canary Islands has on the fouling of a gas turbine compressor. 

This relationship, defined using a final counter integrated into an artificial neural model with an ensemble 

architecture, allows for simulations and predictions that reflect the actual evolution of the degradation over 

time of an industrial rotating component as a function of Saharan dust build-up and operating hours. 

Their predictions are thus reflective of the real measurements, even when estimating an actual maintenance 

activity involving an industrial component, as they are able to predict the evolution of its degradation due to 

fouling based on the time in service. Moreover, comparing results with other ensemble computation models, 

our ensemble procedure can provide the more balanced interval in statistical performance in relation to the 

real model. 

Finally, the good results allowed us to simulate different local weather conditions so as to study combinations 

of maintenance activities and verify their effectiveness at specific times of the year and under different 

operating scenarios. This provides us with a medium-term snapshot that can be used to optimize and select 

the ideal frequency for performing new cleaning maintenance activities. 
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