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Abstract
Purpose  Fever of intermediate duration (FID) is defined as a fever in the community without a specific origin or focus, 
with a duration between 7 and 28 days. FID is often caused by pathogens associated with animal contact or their arthropods 
parasites, such as ticks, fleas, or lice. The purpose of this work is to design a collection of molecular tools to promptly and 
accurately detect common bacterial pathogens causing FID, including bacteria belonging to genera Rickettsia, Bartonella, 
Anaplasma, and Ehrlichia, as well as Coxiella burnetii.
Methods  Reference DNA sequences from a collection of Rickettsia, Bartonella, Anaplasma, and Ehrlichia species were 
used to design genus-specific primers and FRET probes targeted to conserved genomic regions. For C. burnetii, primers 
previously described were used, in combination with a newly designed specific probe. Real-time PCR assays were optimized 
using reference bacterial genomic DNA in a background of human genomic DNA.
Results  The four real-time PCR assays can detect as few as ten copies of target DNA from those five genera of FDI-
causing bacteria in a background of 300 ng of human genomic DNA, mimicking the low microbial load generally found 
in patient’s blood.
Conclusion  These assays constitute a fast and convenient “toolbox” that can be easily implemented in diagnostic laboratories 
to provide timely and accurate detection of bacterial pathogens that are typical etiological causes of febrile syndromes such 
as FID in humans.

Keywords  Molecular toolbox · Fever of intermediate duration · Arthropod-borne bacteria · Real-time PCR · FRET probes · 
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Introduction

Fever of intermediate duration (FID) is defined as a fever 
in the community without a specific origin or focus, with a 
duration between 7 and 28 days [1]. This febrile syndrome 
is frequently caused by pathogens associated with animal 
contact or their arthropods parasites. Zoonotic bacterial 
pathogens causing fever of intermediate duration (FID) are 
a significant public health concern due to their increasing 
incidence and geographic range, as well as their potential to 
cause severe illness and death [2]. In Spain, the most recent 
studies include Q fever and rickettsiosis as the most reported 
bacterial causes of FID [3–5]; similarly, other viral patho-
gens, such as cytomegalovirus (CMV) or Epstein-Barr virus 
(EBV), and more recently SARS-CoV-2, have been described 
as causative agents of fever and particularly FID all over the 
world [3–6]. Particularly, there is a group of bacterial patho-
gens including Rickettsia spp., Coxiella burnetii, Bartonella 
spp., and species of Anaplasma/Ehrlichia that are typical 
etiological causes of febrile syndromes associated to contact 
with animals and their arthropod parasites (fleas, ticks, etc.). 
These pathogens can affect both human and animal health, 
and many of them have animal vectors and/or reservoirs.

Species of Rickettsia genus are etiological agents of rick-
ettsiosis in humans and animals and are traditionally divided 
into the spotted fever group (SFG) and the typhus group 
(TG). In Europe, Rickettsia species transmitted by Ixodidae 
ticks include Rickettsia conorii, Rickettsia helvetica, Rickett-
sia monacensis, Rickettsia massiliae, and Rickettsia aeschli-
mannii, among others [7]. Infection by these species of the 
SFG in humans causes from mild (such as fever, rash, and 
eschar) to severe and life-threatening clinical signs, depend-
ing on the species [8]. Flea-borne species comprise Rickett-
sia typhi (causing murine typhus) and Rickettsia felis, widely 
found in fleas but rarely described as a human pathogen [7].

Several species of the Anaplasmataceae family are tick-
borne gram-negative obligate intracellular bacteria that 
have been found causing acute infection in humans and 
a broad range of wild and domestic mammals, including 
horses, dogs, cats, deer, goats, sheep, and cattle [9, 10]. 
Anaplasma phagocytophilum (causing Human Granu-
locytic Anaplasmosis), Ehrlichia chaffeensis (causing 
Human Monocytic Ehrlichiosis), and Ehrlichia ewingii 
(agent of Human Granulocytic Ehrlichiosis) are the main 
species of this family reported as human pathogens, but 
other species (Anaplasma marginale, Anaplasma centrale, 
Anaplasma bovis, Anaplasma ovis, Anaplasma platys or 
Ehrlichia muris) are typical animal pathogens and should 
not be discarded as etiological agents of disease [11].

Q fever is an emerging zoonotic disease caused by the 
intracellular bacterium Coxiella burnetii, capable of infect-
ing humans and a wide spectrum of animals worldwide, 

including wild and domestic mammals, birds, reptiles, and 
arthropods [12, 13]. Infection generally occurs by inhala-
tion of contaminated aerosols during contact with animals, 
particularly their birth products, milk, faeces, and urine, 
although ticks also play a role in the wild and peridomestic 
epidemiological cycles of C. burnetii [14]. In humans, Q 
fever presentation can range from mildly symptomatic (a 
self-limited febrile illness) to a fatal disease [12].

Bartonella spp. comprise at least 35 potentially zoonotic spe-
cies of Gram-negative bacilli included in the class Alphaproteo-
bacteria [15]. The most frequently reported human or animal 
pathogen of this genus is Bartonella henselae, the causative agent 
of Cat Scratch Disease [16]. Infections cause lymphadenopa-
thy, and sometimes endocarditis, febrile illness, hepatosplenic 
abscesses, and bacillary angiomatosis, among others [16, 17]. 
Bartonella spp. are mainly transmitted by contact with fleas and 
lice faeces, although several animals have been described as hosts 
and reservoirs of species of this genus [15]. Bartonella infections 
are considered emerging and re-emerging infections in humans.

Serological testing is the most common method for the diag-
nosis of patients suffering FID, although the interpretation of 
results is hindered by the need for paired specimens, low or 
delayed serological responses in some patients, and cross-reac-
tivity among closely related bacterial species [1, 18]. Pathogen 
DNA detection using conventional and quantitative real-time 
PCR analysis is helpful if performed on blood or tissue samples 
in the first 5–10 days after symptom onset [8, 19–21], but there 
is still a need for improved laboratory capacity, diagnostic tools, 
and awareness among clinicians to detect and control vector-
borne diseases from a “one health” perspective [22].

In this paper, a collection of four real-time PCR assays is 
designed to detect as few as ten copies of target DNA of Rick-
ettsia spp., Bartonella spp., Anaplasma/Ehrlichia spp., and Cox-
iella burnetti DNA in a background of human genomic DNA, 
as a proxy for the diagnostic procedure on human samples. All 
assays follow the same PCR thermal profile and are coupled 
to an end-point melting analysis of probe/amplicon duplexes, 
in order to provide additional information about the detection 
process and, in some cases, the pathogen involved. These assays 
constitute a fast and convenient “toolbox” that can be easily 
implemented in diagnostic laboratories to provide timely and 
specific detection of bacterial pathogens that are typical etiologi-
cal causes of febrile syndromes such as FID in humans.

Methods

Genomic DNA samples

The design of this work conforms to European legal and 
ethical standards and was approved by Comité de Etica de 
la Investigación con Medicamentos (CEIm) of Hospital 
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Universitario de Canarias (Tenerife, Spain) and coded 
2017_81. All patient’s written consents were obtained.

Human blood samples were collected by venous puncture 
in vials containing EDTA as anticoagulant. Genomic DNA 
(gDNA) was purified from 250-µL aliquots of whole blood 
using the E.Z.N.A.® Blood DNA Mini Kit (Omega Bio-Tek), 
following manufacturer’s instructions and eluting gDNA with 
60 µL of 10 mM Tris–HCl, pH 8.0. The concentration and 
purity level of these gDNA preparations were estimated by 
spectrophotometry, and then concentration of gDNA samples 
was adjusted to 50 ng/µL using the same buffer.

Human gDNA used as negative control or as nucleic 
acid background was purified from a healthy volunteer. The 
gDNA samples used as positive controls for Anaplasma 
phagocytophilum and Ehrlichia chaffeensis were obtained 
from a mixture of 150 µL of whole blood from a healthy 
volunteer and 100 µL of a commercial bacterial suspension 
(Exact Diagnostics), containing approximately 1000 cells 
of the corresponding species. Positive controls for Coxiella 
burnetii and Rickettsia typhi were gDNA samples purified 
from infected patients in acute phase, which were subse-
quently diagnosed through immunological testing (COX-
IELLA BURNETII I + II IFA IgG/IgM/IgA and RICKETT-
SIA TYPHI IFA IgG, Vircell Microbiologists). Rickettsia 
conorii and Bartonella henselae controls consisted of gDNA 
purified from a culture of Vero cells infected with R. conorii 
or from blood agar culture of B. henselae (AmpliRun®—
Vircell), which were afterwards mixed with the human 
gDNA negative control, in such a way that 6 µL of this mix 
contained approximately 1000 bacterial genome equivalents 
in a background of 300 ng human gDNA.

Design of amplification primers and probes

Different genomic loci and a set of reference DNA sequences 
were considered for designing detection assays based on real-
time PCR (Table 1). For the monospecific genus Coxiella, 
we used the primers described previously by Willems et al. 
[23], which are targeted to a repeated DNA element of the 
C. burnetii genome. The genomic targets for Rickettsia and 

Bartonella genera were the internal transcribed spacer (ITS) 
between genes encoding 23S-5S or 16S-23S ribosomal RNAs 
(rRNA), respectively. In the case of Bartonella, we modified 
the primers designed by Parra et al. [24]. Oligonucleotides 
for Anaplasma and Ehrlichia detection were designed on the 
gene encoding 16S rRNA (rrs gene).

First, reference sequences from R. conorii, B. henselae, 
A. phagocytophilum, and E. chaffeensis were used to iden-
tify homologous sequences within the corresponding genus 
by BLASTn searching. Chosen sequences were downloaded 
from GenBank database (NCBI) and aligned with MEGA X 
software [25]. Conserved regions in the alignment of DNA 
sequences were selected for the design of oligonucleotides 
used as primers or hybridization probes with the software 
Gene Runner version 6.5.52 (Hastings Software Inc.). The 
melting temperature (Tm) of the oligonucleotides was cal-
culated as the average of predictions made by three different 
applications: Gene Runner, Oligo Calc (http://​bioto​ols.​nubic.​
north​weste​rn.​edu/​Oligo​Calc.​html), and OligoAnalyzer™ 
Tool (https://​eu.​idtdna.​com/​pages/​tools/​oligo​analy​zer). Oli-
goAnalyzer™ Tool was also used to estimate the decrease in 
oligonucleotide Tm caused by different mismatches.

Real‑time PCR

Real-time PCR assays were performed using the thermal cycler 
LightCycler® 480 (Roche). Each 50-µL reaction contained 
300 ng of gDNA template, 1X reaction buffer (Thermo Fisher), 
additional MgCl2 (depending on amplicon), 0.2 mM of dNTP 
mix, 0.2 µM of forward primer, 0.2 µM of reverse primer, 
0.2 µM of each probe, and 0.5 µL of Phire Hot Start II DNA 
Polymerase (Thermo Fisher). It is highly recommended to use 
a thermostable DNA polymerase lacking 5′-to-3′ exonuclease 
activity in order to avoid probe degradation.

PCR thermal profile consisted of an initial denaturation 
at 98 °C for 30 s, followed by 45 amplification cycles with 
denaturation at 98 °C for 5 s, annealing at 56 °C for 5 s, 
and extension at 72 °C for 10 s. Fluorescence emission was 
measured during the annealing step using excitation/emission 
filters with a wavelength of 483/670 nm. After amplification, 

Table 1   Genomic loci and species considered for designing DNA oligonucleotides

Loci Species

Transposon-like 
sequence IS1111

Coxiella burnetii

23S-5S rRNA ITS Rickettsia aeschlimannii; R. africae; R. akari; R. amblyommatis; R. australis; R. bellii; R. conorii; R. felis; R. heilongjian-
gensis; R. helvetica; R. honei; R. japonica; R. massiliae; R. monacensis; R. mongolotimonae; R. montanensis; R. parkeri; 
R. prowazekii; R. raoultii; R. rickettsii; R. slovaca; R. typhi

16S-23S rRNA ITS Bartonella alsatica; B. ancashensis; B. australis; B. bacilliformis; B. doshiae; B. elizabethae; B. grahamii; B. henselae; B. 
kosoyi; B. krasnovii; B. quintana; B. schoenbuchensis; B. taylorii; B. tribocorum; B. vinsonii

16S rRNA Anaplasma bovis; A. marginale; A. phagocytophilum; A. platys; Ehrlichia canis; E. chaffeensis; E. ewingii; E. muris; E. 
ruminantium

http://biotools.nubic.northwestern.edu/OligoCalc.html
http://biotools.nubic.northwestern.edu/OligoCalc.html
https://eu.idtdna.com/pages/tools/oligoanalyzer
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probe melting analysis was performed with the following 
thermal profile: 95 °C for 1 min, 40 °C for 90 s (55 °C for 10 s 
in Anaplasma/Ehrlichia assay) and a continuous fluorescence 
monitoring from 40/55 to 95 °C with three acquisitions/°C.

Construction of standard curves

First, the specificity of positive PCRs from gDNA controls 
was confirmed by amplicon sequencing. Selected amplicons 
were purified with MicroElute® Cycle-Pure Kit (OMEGA 
Bio-Tek) following manufacturer’s instructions and 
quantified by spectrophotometry. Next, purified amplicons 
were subjected to serial dilution from 106 to 101 molecules 
per 6 µL, using human gDNA control at 50 ng/µL as diluent. 
Standards of amplicon concentration were assayed in 
triplicate by real-time PCR. Fluorescence thresholds used for 
estimating quantification cycles (Cq) [26] were manually set. 
The logarithm of the number of amplicon molecules for each 
standard, and the corresponding average Cq were entered into 
an Excel spreadsheet for calculating correlation coefficients 
(R2). Amplification efficiencies for each primer pair were 
calculated from standard curves as E = 10(−1/slope) − 1 [26].

Results

The set of oligonucleotides selected for the detection of these 
five genera of arthropod-related bacterial pathogens by real-
time PCR, and subsequent identification of the corresponding 
species by amplicon sequencing, is shown in Table 2. Although 
highly conserved genomic loci were used to design oligonu-
cleotides for Rickettsia, Bartonella, and Anaplasma/Ehrlichia 
detection assays, it was necessary to incorporate degenerate 
positions in the sequence of some primers to deal with the 
high number of different species within these bacterial genera 
(Table 1). In our real-time PCR assays intended for Coxiella, 
Rickettsia, and Bartonella detection, Fluorescence Resonance 
Energy Transfer (FRET) occurs between a labelled primer 
and a probe, whereas in the Anaplasma/Ehrlichia assay FRET 
occurs between two labelled probes [27, 28].

First, each detection assay was tested with its 
corresponding positive control; 300 ng of human gDNA was 
included in each amplification reaction, in order to overcome 
the low microbial load generally found in patient’s blood and 
therefore increase the likelihood of successful detection of 
patients with rickettsioses. Since DNA acts as a sequestering 
agent of Mg2+, it was necessary to optimize the concentration 
of MgCl2 in the amplification reaction. In this sense, the 
lowest Cq values were obtained with 4.5 mM MgCl2 for 
Coxiella and Anaplasma/Ehrlichia PCR assays, 6 mM for 
Rickettsia and 6.5 mM for Bartonella assays. The sequences 
of the amplicons obtained in these PCRs matched with the 
correct genomic loci and the corresponding bacterial species.

To check the specificity of the real-time PCR assays in 
terms of taxon detection, each one was confronted to the 
complete panel of gDNA samples described in Methods 
section, including gDNA from a healthy human donor. As 
can be seen in Fig. 1, amplification signal was only observed 
with the gDNA sample from the bacterial genus for which the 
PCR test was devised. Furthermore, end-point melting analy-
sis of probe/amplicon duplexes provided more confidence to 
the detection assay and, in some cases, additional informa-
tion about the pathogen (Fig. 2). While for the 15 Bartonella 
species listed in Table 1 the same Tm value is expected, a 
mismatch in the mentioned DNA duplex decreases the Tm 
registered for R. conorii (and the expected for R. akari and 
R. australis) in comparison to R. typhi (Fig. 2) and the 18 
remaining Rickettsia species in Table 1. Also due to a sin-
gle mismatch, the Tm observed with Anaplasma spp. is 
lower than with Ehrlichia spp., so that both genera could be 
detected and differentiated in a single assay (Fig. 2). 

The technical sensitivity of the detection assays and 
their suitability for quantification of the bacterial load were 
assessed with a series of concentration standards from 101 to 
106 copies of target DNA in a sample of 6 µL. All four tests 
could detect as low as ten copies of the corresponding DNA 
sequence, with Cq values between 33.4 and 35.7 depend-
ing on the assay. In general, the calibration curves showed a 
very good linearity (R2 > 0.99) over the whole range of tested 
concentrations, but some slight inaccuracy may arise when 
it is required to quantify less than 100 copies of the target 
sequence (Table 3). The amplification efficiencies of the dif-
ferent real-time PCR assays, calculated from the calibration 
curves, were maximal (1 or 100%) or near maximal (Table 3).

Discussion

The set of primers and probes presented in this work poten-
tially allows detection by real-time PCR of a wide range of 
bacterial species belonging to five genera, typical causative 
agents of FID. This collection enables diagnostic laborato-
ries with molecular capacities to provide detection of Rick-
ettsia spp., Bartonella spp., Anaplasma/Ehrlichia spp., and 
C. burnetti DNA in human blood samples in just a few hours, 
providing timely diagnosis during the acute phase of the dis-
ease. Moreover, since all assays share the same PCR thermal 
profile, all can be performed simultaneously, using 56 °C as 
the adequate annealing temperature during PCR, therefore 
improving turnaround time and patients’ management.

The use of specific fluorescent primers and probes for 
each genus is a guarantee that the genuine DNA sequence 
is being amplified in all these real-time PCR assays, and 
the target sequence is present in the DNA sample used as 
template. Furthermore, FRET probes used in this work pro-
vide an additional verification for amplification specificity, 
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Fig. 1   Specificity assessment of the real-time PCR assays. Detec-
tion tests for Coxiella (A), Rickettsia (B), Bartonella (C), and 
Anaplasma/Ehrlichia (D) were run in duplicate with gDNA samples 
from the following bacterial species: C. burnetii, R. conorii, R. typhi, 

B. henselae, A. phagocytophilum, and E. chaffeensis. Two replicates 
using human gDNA as template and two negative controls (water) 
were also included

ruling out spurious or artifactual generation of fluorescence 
through the melting analysis of probe/amplicon duplexes. It 
should be noted that Tm values predicted in silico (Table 2) 
are algorithm-dependent and they can differ appreciably 
from those calculated empirically. Since actual Tm values 
are affected by the particular composition of the PCR mix, 
they should be annotated after running amplification reac-
tions with validated positive controls as template in any 
laboratory that uses this type of DNA probes.

After a positive result using the real-time PCR assays 
presented in this work for the detection of Rickettsia, 
Bartonella, and Anaplasma/Ehrlichia, particular species 
can be identified by amplicon sequencing, since all bacteria 
species mentioned in Table 1 can be clearly differentiated 
in this way. Perhaps the unique challenging case would be 
to distinguish between A. phagocytophilum and A. platys, 
because only three nucleotide substitutions are expected in 
the 572-bp amplicon derived from the coding sequence of 
rrs gene.

A widely used procedure to address the technical sensi-
tivity (detection limit) of a real-time PCR assay is using a 
standard curve made up with cloned target DNA sequences 

(i.e., amplicons or plasmids). The correlation between the 
absolute quantification using standard curves and actual bac-
terial load depends on the target: since the corresponding 
targets are single copy sequences in the genome of Rick-
ettsia, Anaplasma, and Ehrlichia species, in these cases 
the number of target copies in a sample equals the number 
of bacterial genome equivalents (1:1 ratio). However, for 
Bartonella spp., the ratio is 2:1 because the genome of this 
species has two copies of the 16S-23S rRNA ITS sequence. 
Finally, the copy number for the target transposon-like 
sequence oscillates between 3 and 103 in the genome of dif-
ferent C. burnetii strains, and about a third of the complete 
genome sequences of this species that have been deposited in 
databases (more than 170) have 20 copies of this mobile ele-
ment. Although this introduces a substantial uncertainty in 
the quantification approach, at the same time confers a great 
technical sensitivity (potentially one genome equivalent) to 
the C. burnetii detection assay.

Several in-house DNA-based methods have been devel-
oped in the last decades for the detection of bacterial 
fever-causing pathogens in a variety of samples such as 
human blood or tissue biopsies, but also animal samples 
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and arthropod vectors. These methods range from multi-
plex-conventional PCR combined to reverse-line blotting 
to nested PCR and amplicon sequencing [29–32]. The 
increasing availability of real-time PCR instruments in 
hospitals has turned real-time PCR into a very conveni-
ent point-of-care test for acute febrile patients [19]. In this 

context, the collection of primers and probes described in 
this paper constitute a useful “toolbox” that can be readily 
used in diagnostic laboratories to promptly and accurately 
detect common bacterial pathogens genera, including spe-
cies responsible for causing febrile syndromes like FID in 
humans.

Fig. 2   Melting curves of probe/amplicon duplexes. End-point analy-
sis was performed on positive PCRs shown in Fig. 1. The annotated 
Tm values were 69.4 °C (C. burnetii), 62.0 °C (R. conorii), 65.2 °C 

(R. typhi), 69.2 °C (B. henselae), 63.7 °C (A. phagocytophilum), and 
71.5 °C (E. chaffeensis)

Table 3   Dynamic range for 
quantification and amplification 
efficiency of the real-time PCR 
assays

a Target copies in 6 µl of DNA sample

Target Correlation coefficient (R2) Amplification efficiency

101–106 range a 102–106 range

Coxiella burnetii 0.9999 0.9999 0.990
Rickettsia typhi 0.9993 0.9996 1
Bartonella henselae 0.9946 0.9973 1
Anaplasma phagocytophilum 0.9969 0.9993 1
Ehrlichia chaffeensis 0.9968 0.9994 0.987
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