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Prólogo (español)

Durante las últimas cuatro décadas, la planificación en redes de telecomunicaciones ha

constituido un problema muy fértil para desarrollar y aplicar modelos de optimización.

Dos aspectos principales alientan estos esfuerzos: las enormes inversiones de capital en

comunicaciones ofrecen oportunidades significativas para reducir costes, incluso con mejo-

ras en los diseños y en la administración de las redes; y los rápidos cambios tecnológicos

proporcionan constantes alternativas de diseño y entornos de operación.

Los diversos desarrollos llevados a cabo en las últimas décadas, aśı como el incremento

del volumen de demanda han derivado en una nueva era en telecomunicaciones, con

la sustitución de transmisión analógica por tecnoloǵıa digital, disminuyendo costes e

incrementando anchos de banda con equipo de transmisión de fibra óptica sustituto de

los tradicionales cables de cobre.

La tecnoloǵıa de fibra óptica se ha convertido rápidamente en una de las principales

componentes de las redes de comunicación. Este medio de transmisión es de coste efec-

tivo, fiable y proporciona capacidad casi ilimitada. Esta combinación permite establecer

nuevos servicios que requieren grandes cantidades de ancho de banda. De forma paralela,

las caracteŕısticas únicas de esta tecnoloǵıa implican la necesidad de nuevos métodos de

planificación.

Se define red óptica como una red de telecomunicaciones con fibras ópticas como

enlaces de transmisión, y con una arquitectura diseñada para explotar las caracteŕısticas

de las fibras. Estas arquitecturas involucran dispositivos ópticos y electrónicos. Por lo

tanto, el término red óptica no implica necesariamente red puramente óptica, pero śı algo

más que un conjunto de fibras que terminan en dispositivos electrónicos.

En teoŕıa, la fibra óptica tiene un ancho de banda extremadamente alto. Sin embargo,

dado que la tasa a la cual puede acceder un usuario final está limitada a velocidad

electrónica, sólo pueden ser alcanzadas velocidades de unos pocos gigabits por segundo.
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Por tanto, la conversión óptica-electrónica impide explotar el ancho de banda de una sóla

fibra. La multiplexación por división de longitudes de onda (WDM - wavelength division

multiplexing) y los amplificadores de fibra (EDFA - erbium-doped fiber amplifier) son dos

desarrollos recientes que permiten superar estas limitaciones.

WDM es la transmisión de múltiples señales láser a diferentes longitudes de onda

(colores) en la misma dirección, al mismo tiempo, y sobre el mismo hilo de fibra. Las

tecnoloǵıas tradicionales tales como SDH (Synchronous Digital Hierarchy) o su equiv-

alente americano SONET (Synchronous Optical network) están con frecuencia basadas

en anillos interconectados, mientras que la tecnoloǵıa WDM usualmente no restringe a

ninguna arquitectura de red especial.

El sistema WDM está equipado con amplificadores que permiten la transmisión en

un canal. El desarrollo reciente más importante ha sido la comercialización de los EDFA,

que amplifican las señales en diferentes longitudes de onda simultáneamente.

Las implementaciones actuales de las redes de telecomunicaciones no tienen la capaci-

dad suficiente para soportar las demandas inminentes de ancho de banda. La tecnoloǵıa

WDM permite incrementar la capacidad de las redes de fibra óptica existentes siendo

compatible con el equipamiento instalado en las mismas. En esta memoria se aborda el

estudio de un problema real que surge en este marco. El problema consiste en incremen-

tar la capacidad, a mı́nimo coste, de una red de fibra óptica existente para satisfacer un

conjunto de requerimientos de demanda. Por tanto, estudiamos el Problema de Provisión

y Conducción (Provisioning and Routing Problem) en redes ópticas WDM.

La alta capacidad que proporcionan las redes WDM da lugar a diseños de red más

dispersos que los asociados con la tecnoloǵıa de cobre. Consecuentemente, el tráfico

conducido a través de un único enlace, y por tanto también la interrupción de servicios

si falla un enalce o nodo de red, es significativamente mayor. Todo ello implica que

además de la reducción de costes, la supervivencia frente a fallos es uno de los aspectos

más importantes en el diseño de redes ópticas. Se llama supervivencia a la habilidad de
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restaurar los servicios de red en caso de un fallo en la misma.

Los algoritmos y las formulaciones de modelos generalmente consideran que los datos

de los problemas dados están perfectamente determinados. Sin embargo, en la mayoŕıa de

los problemas que surgen en el mundo real esto no es aśı. Por el contrario, los problemas

reales suelen incluir datos inciertos debido a procedimientos de medida y errores. Este

problema surge, por ejemplo, cuando los datos representan demands futuras de tráfico y

costes de productos que no pueden ser determinados con certeza.

El caṕıtulo 1 de esta memoria proporciona una descripción de las redes de teleco-

municaciones ópticas, aśı como de los problemas que surgen al planificar redes ópticas.

También se proporciona una descripción de la tecnoloǵıa óptica utilizada en esta memo-

ria.

El caṕıtulo 2 presenta una introducción a las metaheuŕısticas centrada en el análisis

de la integración de varias metaheuŕısticas en un procedimiento h́ıbrido. Se describen

los problemas de optimización en general y la programación lineal como una herramienta

para aportar soluciones a un problema. Se plantea como alternativa el diseño de meta-

heuŕısticas, describiendo los elementos de las heuŕısticas constructivas y las mejoras

locales. Se describen brevemente los elementos fundamentales de las metaheuŕısticas

básicas. Se analizan las caracteŕısticas más importantes de las metaheuŕısticas que se

integran posteriormente para construir un h́ıbrido que las aproveche. Se presta especial

atención a las caracteŕısticas más relevantes de las metaheuŕısticas de búsqueda tabú, de

búsqueda dispersa y del arranque múltiple que se usan para construir el procedimiento

h́ıbrido presentado en el siguiente caṕıtulo. Finalmente se consideran las propiedades

que seŕıa deseable que tuvieran las metaheuŕısticas.

El caṕıtulo 3 realiza una descripción del problema general objeto del estudio sin re-

stringir la posible tecnoloǵıa a instalar, mostrando sus aplicaciones aśı como una revisión

de la literatura de las mismas. La siguiente sección contiene una revisión de la literatura

del problema de Provisión y Conducción en redes ópticas WDM. Se describe en detalle el
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problema, analizando las caracteŕısticas del mismo que pueden ser importantes para su

resolución. Se considera un modelo de Programación Matemática Lineal Entera basado en

el propuesto por otros autores y se analizan las dimensiones del mismo. Se propone como

método de resolución un procedimiento metaheuŕıstico h́ıbrido, que combina la búsqueda

dispersa (scatter search), la búsqueda tabú (tabu search), y el multiarranque (multistart).

Este h́ıbrido se compara con otro metaheuŕıstico, con dos variantes de un procedimiento

basado en permutaciones y con un optimizador comercial. El modelo propuesto tiene un

número muy elevado de variables y restricciones, lo cual impide que sea resuelto de forma

óptima por procedimientos de solución exactos cuando se consideran problemas reales de

tamaño moderado o grande. El metaheuŕıstico h́ıbrido propuesto es capaz de obtener

diseños de red con costes inferiores a los proporcionados por otras metaheuŕısitcas y por

optimizadores comerciales después de un cierto tiempo de ejecución.

En el caṕıtulo 4 proponemos un modelo heuŕıstico alternativo para el problema objeto

de estudio que tiene un menor número número de varibles y restricciones. Los resultados

obtenidos por un optimizador comercial, que porporciona soluciones óptimas, son com-

parados con los proporcionados por el metaheuŕıstico h́ıbrido desarrollado en el caṕıtulo

anterior.

El caṕıtulo 5 se dedica a desarrollar métodos de resolución para el problema de su-

pervivencia en redes ópticas WDM y proponemos modelos de programación lineal entera

para diferentes esquemas de protección de redes. Los trabajos anteriores que aparecen

en la literatura considerando estos esquemas de protección para el problema en estudio,

obtienen en una primera fase la red de trabajo o red de servicio, que permite satisfacer

los requerimientos de demanda, y en una segunda fase, comenzando con la mejor red de

trabajo obtenida, la red de protección, que protege contra fallos únicos en los enlaces de

red. Los modelos propuestos en este caṕıtulo tienen como dato de entrada la mejor red de

trabajo. Sin embargo, proponemos un método de resolución basada en el metaheuŕıstico

h́ıbrido desarrollado que detemina la red de protección no solamente para la mejor red
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de trabajo alcanzada, sino para el conjunto de redes de trabajo con costes inferiores

proporcionadas por el metaheuŕıstico. Hemos comprobado que el mejor diseño total, es

decir, el que incurre en menos costes de incremento de capacidad para obtener las redes

de trabajo y protección, no es en la mayoŕıa de los casos obtenido al considerar la mejor

red de trabajo, sino alguna otra incluida en el conjunto de las “buenas” (conjunto de

referencia).

En el caṕıtulo 6 estudiamos el problema de provisión y conducción en redes ópticas

WDM bajo incertidumbres en las demandas. Proponemos varios modelos matemáticos

alternativos y métodos de resolución.
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Resumen (español)

CAPÍTULO 1.- Redes de Telecomunicaciones Ópticas.

Las redes y los sistemas de telecomunicaciones han evolucionado de forma explosiva

en las últimas décadas, proporcionando nuevas oportunidades para la modelización y

aplicación de procedimientos de optimización en problemas de planificación. Nuestro

actual desarrollo social requiere tener acceso a la información cuando la necesitemos

y donde la necesitemos. La información se proporciona a través de redes globales de

comunicación, cuyas implementaciones actuales no disponen de capacidad suficiente para

soportar las demandas de ancho de banda inminentes.

El mundo de las telecomunicaciones evoluciona vertiginosamente con la constante

introducción de nuevas tecnoloǵıas en el mercado. Dado que la economı́a evoluciona de

un pasado industrial a un futuro basado en la información, la demanda de más ancho de

banda se está convirtiendo en un conductor dominante en la mayoŕıa de las sociedades.

La mayoŕıa de las redes de telecomunicaciones están divididas en tres niveles princi-

pales [3], [41], [93]: la red de larga distancia, la red metropolitana, y la red de acceso

local. La red de larga distancia es la que t́ıpicamente conecta pares de ciudades a través

de los nodos de paso. La red metropolitana interconecta oficinas centrales en diferentes

grupos de clientes y proporciona acceso a los nodos de paso. Finalmente, la red de ac-

ceso local, conecta clientes individuales, pertenecientes a un grupo, a la correspondiente

oficina central.

Estos tres niveles del sistema de comunicación se diferencian en diversos aspectos

incluyendo los criterios de diseño particulares. Idealmente, el diseño de una red de tele-

comunicaciones debeŕıa considerar simultáneamente estos tres niveles. Sin embargo, de-

bido a su complejidad, el problema de planificación completo se descompone considerando

cada uno de los niveles independientemente. Se planifica la red de larga distancia con la
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información sobre las necesidades globales. En cada área metropolitana, se planifica la

correspondiente red de comunicaciones. Finalmente, cada grupo de usuarios aborda el

diseño de su propia red de acceso local.

Aunque la mayoŕıa de las redes de telecomunicaciones actuales tienen fibra óptica,

esto no las convierte en redes ópticas. En la mayoŕıa de los casos en los que es usada

la fibra, ésta sólo se despliega en los enlaces de transmisión para reemplazar a los cables

de cobre. Sin embargo, una red óptica es una red de telecomunicaciones con fibras

ópticas como enlaces de transmisión, y con una arquitectura diseñada para explotar las

caracteŕısticas ópticas de las fibras. Tales arquitecturas involucran tanto dispositivos

ópticos como electrónicos. Por lo tanto, el término red óptica no implica exclusivamente

red de conexiones puramente ópticas, sino algo más que un conjunto de fibras ópticas

que terminan en dispositivos electrónicos.

La tecnoloǵıa de fibra óptica se ha convertido rápidamente en una de las principales

componentes de las redes de comunicación. Este medio de transmisión es de coste efectivo

y fiable, y proporciona capacidad casi ilimitada. Esta combinación permite establecer

nuevos servicios que requieren grandes cantidades de ancho de banda. De forma paralela,

las caracteŕısticas únicas de esta tecnoloǵıa implican la necesidad de nuevos métodos de

planificación.

Multiplexación por División de Longitudes de Onda

En teoŕıa, la fibra óptica tiene un ancho de banda extremadamente alto. Sin embargo,

dado que la tasa a la cual puede acceder un usuario final está limitada a velocidad

electrónica, sólo pueden ser alcanzadas velocidades de unos pocos gigabits por segundo.

Por tanto, es la conversión óptica-electrónica la que impide explotar el ancho de banda

de una fibra. La multiplexación por división de longitudes de onda (WDM - wavelength

division multiplexing) y los amplificadores de fibra (EDFA - erbium-doped fiber amplifier)
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son dos desarrollos recientes que permiten superar estas limitaciones.

La tecnoloǵıa de multiplexación por división de longitudes de onda (WDM) es la trans-

misión de múltiples señales láser a diferentes longitudes de onda (colores) en la misma

dirección, al mismo tiempo, y sobre el mismo hilo de fibra. Las tecnoloǵıas tradicionales

tales como SDH (Synchronous Digital Hierarchy) o su equivalente americano SONET

(Synchronous Optical network) están con frecuencia basadas en anillos interconectados,

mientras que la tecnoloǵıa WDM usualmente no restringe a ninguna arquitectura de red

especial. A tales redes generales se les denomina redes de tipo malla.

Cada longitud de onda utilizada en la transmisión se convierte en un canal WDM.

El sistema debe estar equipado con amplificadores que permiten la transmisión en un

canal. El desarrollo reciente más importante ha sido la comercialización de los am-

plificadores EDFA, que amplifican las señales en muchas longitudes de onda diferentes

simultáneamente. La mayor parte del coste de capacidad cuando se usan sistemas WDM

está relacionado con las tarjetas de canal, que se añaden cuando se requieran. Esto sig-

nifica que es posible instalar un sistema WDM con capacidad de hasta 96 canales donde

sólo ocho canales están activos, y el diseño sólo implicaŕıa el coste de equipar los ocho

canales activos.

Para usar tecnoloǵıa WDM, se debe contar con una unidad de equipo en ambos

extremos de cada enlace de fibra. Además, para cada longitud de onda o canal en uso,

se debe instalar el equipo de canal en ambos extremos del canal. Cada canal WDM es

bidireccional y tiene la misma capacidad que un par de fibras.

La amplificación es el proceso de restaurar la señal óptica a su poder óptico original y

sin distorsión después de que la señal haya perdido poder al pasar a través de un hilo de

fibra. Este proceso es particularmente importante en entornos WDM. Los amplificadores

estándares no tienen elementos electrónicos y consecuentemente no precisan la clásica

conversión eléctrico-óptico y óptico-eléctrico, eliminando aśı la necesidad de ancho de

banda adicional.
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Nodos de Redes Ópticas

Los nodos de red pueden tener distintos tipos de funcionalidad. Se pueden clasificar

en orden creciente de complejidad del siguiente modo:

• Nodos Estáticos. Son los acopladores direccionales y los conductores estáticos.

• Nodos Dinámicos. El nodo dinámico más simple es un interruptor de división de

espacio, que es comúnmente llamado dispositivo de conexión óptica cruzada (OXC -

Optical Cross-Connect). Las redes WDM pueden interconectar datos ópticamente

mediante el uso de dispositivos OXC. Un sistema OXC puede incluir conversión

óptico-electrónico o ser completamente óptico. Los sistemas que requieren con-

versión están equipados con transmisores y receptores. Estos sistemas convierten

los datos del dominio óptico al electrónico, seguidamente los interconectan mediante

el uso de un centro de cambio eléctrico, y finalmente convierten los datos nueva-

mente el dominio óptico. Los sistemas OXC completamente ópticos interconectan

los datos enteramente en el dominio óptico.

La restricción de continuidad de longitud de onda significa que la señal óptica debe

tener la misma longitud de onda desde su origen hasta su destino. Es posible evitar esta

restricción mediante la instalación de convertidores de longitudes de onda en los sistemas

OXC completamente ópticos. Un convertidor de longitudes de onda es un dispositivo

óptico capaz de trasladar la señal desde una longitud de onda entrante a una longitud

de onda saliente posiblemente diferente entre las longitudes de onda disponibles en el

sistema. Los convertidores de longitudes de onda relajan la restricción de continuidad de

longitud de onda. Sólo es necesario que esté disponible alguna longitud de onda saliente

entre las disponibles en el sistema. De esta manera se reduce el número de longitudes

de onda necesarias para conducir un conjunto de demandas. Rećıprocamente, serán

xx



necesarias menos longitudes de ondas distintas para conducir la demanda, resultando en

un mejor aprovechamiento del ancho de banda.

Arquitecturas de Redes Ópticas WDM

Según el nivel de control en los nodos de red, se consideran tres clases de arquitecturas

de redes ópticas WDM: redes de emisión y selección, redes de conducción de longitudes

de onda, y redes de ondas luminosas lineales.

Trabajamos con redes de conducción de longitudes de onda, que pueden incluir se-

lectividad estática o dinámica en los nodos de red. Estas redes no están restringidas

a ninguna topoloǵıa f́ısica particular. Una longitud de onda puede ser seleccionada en

un nodo de red y ser conducida individualmente. Los nodos contienen transmisores y

receptores que pueden seleccionar cualquier longitud de onda de un rango determinado.

Entonces los caminos ópticos son punto-a-punto y para obtener conectividad multipunto

es necesario el uso de múltiples conexiones ópticas punto-a-punto ópticas (WDM) y un

par transmisor-receptor para casa conexión. Además es posible incluir conversión de

longitudes de onda en la red.

Problemas en redes de conducción de longitudes de onda

Los problemas más relevantes que surgen en la conducción de longitudes de ondas

son los siguientes.

Conducción y Asignación de Longitudes de Onda.

La conducción y asignación de longitudes de onda (RWA - Routing and Wavelength

Assignment) es uno de los problemas fundamentales en redes de conducción de longitudes

de onda. Este problema consiste en asignar una longitud de onda disponible a una
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conexión y establecer dicha longitud de onda en el transmisor y en el receptor. El

problema está presente como subproblema en la mayoŕıa de los problemas que surgen en

la planificación de sistemas WDM. Un estado del arte muy completo sobre este problema

aparece en [142].

Redes Convertibles.

La restricción de continuidad de longitudes de onda puede ser eliminada mediante la

instalación de convertidores en los nodos de red. Las redes de conducción de longitudes de

onda que poseen esta capacidad son llamadas redes convertibles. Un nodo con capacidad

de conversión de longitudes de onda es llamado nodo convertidor de longitudes de onda.

Las redes convertibles reducen la pérdida de ancho de banda, aunque pueden llegar a ser

muy costosas. Los problemas de planificación surgen al estudiar la conveniencia de dotar

a la red de convertidores y de determinar los nodos seleccionados para su instalación.

Diseño de la Topoloǵıa Virtual.

Aparte de la topoloǵıa f́ısica de la red determinada por los nodos y los enlaces f́ısicos

que los enlazan, las conexiones que se pueden realizar efectivamente condicionan el uso

y gestión de la misma. La topoloǵıa virtual de una red WDM está formada por un

conjunto de caminos de luz establecidos entre un subconjunto de pares de nodos en

la red. El problema de establecer la topoloǵıa virtual de la red es similar al problema

RWA de conducción y asignación de longitudes de onda, excepto que surgen en diferentes

niveles de la red.

Reconfiguración de la Topoloǵıa Virtual.
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Dado que la topoloǵıa virtual se diseña para satisfacer el tráfico estimado entre pares

de nodos, esta topoloǵıa puede no ser óptima para patrones de flujo diferentes. Por lo

tanto, al cambiar las demandas de tráfico que debe soportar la red, es necesario realizar

la reconfiguración de la topoloǵıa virtual cuando mediante la eliminación de caminos

de luz existentes y la adición de nuevos caminos. En este contexto se plantean dos

objetivos, conseguir que la nueva configuración sea óptima y posteriormente determinar la

forma más rentable de realizar los cambios (minimizando las interrupciones inevitables del

servicio) o bien, cuando la configuración actual no permita soportar el tráfico demandado,

determinar la forma más rentable de llegar a una nueva configuración que lo permita.

Redes con Supervivencia.

La alta capacidad que proporcionan las redes WDM da lugar a diseños de red más

dispersos que los asociados con la tecnoloǵıa de cobre. Consecuentemente, el tráfico

conducido a través de un único enlace es significativamente mayor, y por lo tanto también

lo es la interrupción de servicios si falla un enlace o nodo de red. Por tanto, además de la

reducción de costes, la supervivencia contra fallos es uno de los aspectos más importantes

durante el diseño de redes ópticas. La supervivencia de la red de comunicaciones es la

posibilidad de restaurar los servicios de red en caso de un fallo catastrófico de la pérdida

de conexión. Los proveedores de redes generalmente usan la supervivencia como un

elemento competitivo con otros proveedores.

Los posibles fallos en una red óptica son producidos en los enlaces o en los dispositivos

de interconexiones instalados en los nodos. Los fallos en enlaces son frecuentemente

ocasionados por causas externas, mientras que los fallos de equipo en los nodos de red

son debidos a causas internas.

Las técnicas de recuperación de las conexiones se clasifican en dos tipos: restauración

y protección. Las técnicas de restauración deben restaurar el servicio reconduciendo
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dinámica y rápidamente el tráfico afectado usando la capacidad proporcionada en la red

[66]. Las técnicas de protección usan rutas de protección para las demandas de tráfico

que se determinan en el momento del establecimiento de las rutas de servicio [38], [116].

Dado que los servicios de red pueden ser generalmente restaurados en cuestión de horas

o d́ıas en caso de que se produzca un fallo, los planificadores de redes no consideran la

posibilidad de tener que afrontar más de un único fallo porque la probabilidad de otro

fallo durante el peŕıodo de reparación es pequeña. En los problemas de planificación de

redes con sistemas WDM consideramos mecanismos de protección para fallos de un único

enlace.

Los enfoques para proteger fallos de un único enlace están basados en dos mecanismos

de supervivencia básicos: protección de camino y protección de enlace. La protección

de camino asigna estáticamente un camino de protección entre los extremos de una

conexión. La capacidad sobrante instalada en la red para proporcionar protección a un

fallo puede ser o no compartida entre los distintos caminos de protección. Si no se permite

compartir los recursos y se dedica un camino enlace-disjunto para el fallo, entonces se

usa un esquema de protección de camino dedicado (también llamado protección 1+1).

Si es posible compartir recursos, entonces se usa un esquema de protección de camino

compartido.

En protección de enlace, el tráfico conducido a través del enlace defectuoso se recon-

duce alrededor de dicho enlace. Si durante el establecimiento de los caminos de servicio

se reserva una ruta de protección entre los extremos del enlace que ha fallado, entonces

se considera un esquema de protección de enlace dedicado. Si las rutas de protección

pueden compartir la capacidad instalada sobre la red para proporcionar protección a la

misma, entonces se considera un esquema de protección de enlace compartido.

Control y Gestión de Red
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Un mecanismo de control debe ser capaz de determinar una ruta y asignar una lon-

gitud de onda a una conexión para responder dinámicamente a la demanda y configurar

los centros de conexión a lo largo de la ruta. Los objetivos son maximizar el número de

conexiones, minimizar los tiempos de establecimiento de las conexiones, y minimizar el

ancho de banda usado por las señales de control.

Ventajas Económicas en Redes Ópticas de Múltiples Longitudes de Onda.

La tecnoloǵıa DWDM puede reducir el coste de añadir capacidad de fibra en redes de

larga distancia en más de un 50%. Se denomina tecnoloǵıa DWDM (dense wavelength

division multiplexing) o tenconolǵıa WDM densa a la que permite utilizar más de 8 longi-

tudes de onda distintas. Algunas empresas de transporte competitivas tales como Qwest

y Comunicaciones IXC están creando nuevos mercados de capacidad óptica mediante el

arrendamiento de longitudes de onda espećıficas a otras empresas. Algunas empresas

fabricantes de equipos tales como Nortel, Lucent, Ciena y Alcatel, invirtieron casi $3B

en equipo WDM en 1998. Como dato, el equipo WDM/DWDM desplegado en Norte

América ha permitido aliviar la congestión en la red de larga distancia experimentada

en 1997 y 1998 debida a internet y al tráfico de datos. Quizás más importante es que

la tecnoloǵıa WDM supone una mejora para los usuarios en las redes de telecomunica-

ciones ópticas, en las cuales el tráfico que fluye puede ser agregado y conducido más

eficientemente, y restaurado más rápida y fiablemente tras fallos en la red.

El crecimiento de las demandas y los cambios en los patrones de tráfico conducen

a que la red de acceso local deba soportar diferentes interfaces de servicio y, al mismo

tiempo, ser escalable, permitir asignar ancho de banda a las demandas y ser fiable. La red

metropolitana entre oficinas no es menos dinámica, pues los cambios que tienen lugar en

la red de acceso tienen un impacto directo sobre la red entre oficinas. Consecuentemente,

es crucial una respuesta rápida ante cambios impredecibles.
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Las ventajas económicas de la implantación de los sistemas DWDM comparadas con el

tendido de nueva fibra han sido menos claras para redes de acceso local y área metropoli-

tana que para los transportes de larga distancia. Sin embargo, muchas compañ́ıas de

acceso local están empezando a ver a las redes metro ópticas como una alternativa atrac-

tiva para los empujes de la nueva fibra. Mientras tanto, los vendedores trabajan para

reducir los costes suficientemente tal que las uniones WDM/DWDM y equipo asociado

tal como OXCs, que conducen y cambian longitudes de onda, sean claramente ventajosos

para redes de corta distancia (área metropolitana y acceso local).

CAPÍTULO 2.- Metaheuŕısticas

En este caṕıtulo se estudian los aspectos fundamentales de las metaheuŕısticas en su

aplicación a los problemas de planificación de redes con tecnoloǵıa WDM.

Introducción

Las metaheuŕısticas son estrategias maestras que gúıan y modifican otras heuŕısticas

más allá de lo que lo hacen normalmente las encaminadas a la optimalidad local. La

Teoŕıa de la Optimización se refiere a los estudios de las soluciones óptimas de los proble-

mas y los métodos para encontrarlas. La formulación estándar del modelo de un problema

de optimización es:

mininimizar f(s), sujeto a g(s) ≥ 0.

En este modelo f representa la función objetivo a minimizar y g el conjunto de re-

stricciones a que están sometidas las soluciones. En la programación lineal, ambas son

funciones lineales. Para estos problemas existen potentes resultados para su resolución.

Por tanto, se considera como una forma usual de abordar los problemas de optimización
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la representación mediante un modelo lineal y resolverlo mediante un optimizador com-

ercial. Además de la posible inadecuación de las funciones lineales para representar

situaciones reales, la cuestión determinante es el número de variables y restricciones del

modelo resultante. Se plantea el dilema usual de obtener una solución exacta de un

modelo aproximado o una solución aproximada de un modelo más ajustado como pueden

aportar las metaheuŕısticas.

El problema de la conducción y asignación de longitudes de onda (RWA-Routing

and Wavelength assignment) aparece frecuentemente como subproblema relevante en la

planificación de redes ópticas, y permite introducir de manera clara los elementos básicos

de las metaheuŕısticas constructivas y las mejoras locales. Este problema sirve para

mostrar la importancia de los procedimientos basados en establecer el orden en que se

conducen las demandas en la red y las dificultades a que puede dar lugar. Se plantea el

esquema básico de una búsqueda local de mejora y la adopción de la estrategia voraz o

greedy en su conducción.

Metaheuŕısticas Básicas

Las principales metaheuŕısticas básicas se describen brevemente aportando los ele-

mentos fundamentales. Las estrategia de arranque múltiple o Multistart consistente en

aplicar una búsqueda de mejora local desde una serie de soluciones de arranque. Aparte

de su gran simplicidad, la caracteŕıstica fundamental es el riesgo de que se produzca la

denominada “catástrofe” del Teorema Central de Ĺımite. La forma de abordar esta difi-

cultad aparece en estudios sobre las caracteŕısticas topológicas del espacio de soluciones

como el que hemos realizado en [95].

La metaheuŕıstica de Búsqueda Tabú (TS Tabu Search) representa la forma elemental

de introducir la memoria histórica de la búsqueda en su conducción. Básicamente, se trata

de mantener información selectiva del proceso de búsqueda para reemplazar el entorno de
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la solución actual por un entorno modificado por la historia y orientar los movimientos

aplicados en el recorrido. La modificación del entorno implica prohibir ciertos atributos

o valores en las variables, pero también incluir soluciones candidatas no contempladas en

principio. La metaheuŕıstica también contempla la modificación de la función objetivo

que gúıe la selección de las soluciones del entorno.

La búsqueda dispersa (SS, Scatter Search) es una metaheuŕıstica basada en pobla-

ciones que usa un conjunto de referencia para combinar sus soluciones y construir otras.

El método genera un conjunto de referencia desde una amplia población de soluciones.

Se seleccionan subconjuntos del conjunto de referencia cuyas soluciones son combinadas

para obtener soluciones de arranque para mejoras locales. El resultado de estas mejo-

ras puede dar lugar a una actualización del conjunto de referencia e incluso de toda la

población de la que volver a extraer el conjunto de referencia.

La estrategia de búsqueda dispersa incluye seis procedimientos y tres criterios de

parada. Se incluyen los procedimientos de creación de la población inicial, de generación

del conjunto de referencia, de selección del subconjunto a combinar, de combinación

de soluciones seleccionadas, de mejora de la solución combinada y de actualización del

conjunto de referencia.

La metaheuŕıstica de recocido simulado (SA, Simulated Annealing) se ha convertido

desde su introducción a mediados de los 80 en una metaheuŕıstica importante en la res-

olución de problemas de optimización. Esta metaheuŕıstica aplica una búsqueda global,

que escapa de los mı́nimos locales mediante un criterio probabiĺıstico de aceptación de

soluciones. El procedimiento está inspirado en un proceso f́ısico de aplicación indus-

trial. Se engloba dentro de los procedimientos que establecen un umbral para aceptar

movimientos de no mejora. El recocido simulado utiliza un umbral probabiĺıstico de

tipo exponencial controlado por un parámetro denominado temperatura. La cuestión

fundamental en su aplicación se encuentra en la selección del mecanismo apropiado de

actualización de este parámetro que proporcione garant́ıas de convergencia.
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La metahueŕıstica de entorno variable (VNS, Variable Neighborhood Search), por el

contrario, es una metaheuŕıstica reciente basada en un principio simple: el cambio sis-

temático de la estructura de entorno sobre la que se articula la búsqueda. Desde su

introducción avanzados los años 90 han crecido considerablemente las aplicaciones ex-

itosas en la resolución de problemas de gran tamaño. Se emplea una serie finita de

estructuras de entornos diferentes que pueden venir generadas por algún concepto de dis-

tancia entre soluciones o por la aplicación anidada de una estructura de entornos básica.

La metaheuŕıstica se basa en tres hechos básicos: los mı́nimos locales con respecto a una

estructura de entornos no lo son necesariamente con respecto a otra, el óptimo global es

un óptimo local con respecto a todas las posibles estructuras de entornos, y finalmente,

el hecho de que los mı́nimos locales, con respecto a la misma o distinta estructura de

entornos, tienen caracteŕısticas similares.

Aplicando el principio del cambio de entorno sistemático en una búsqueda local de-

scendente se obtiene la búsqueda descendente de entorno variable (VND, Variable Neigh-

borhood Search). La versión básica de la búsqueda de entorno variable (BVNS, Basic

Variable Neighborhood Search) usa cambios determińısticos en la estructura de entornos

para perturbar o agitar la solución actual y proporcionar nuevas soluciones de arranque

para la aplicación de una búsqueda local de mejora. La versión que recientemente ha

obtenido mayores éxitos es la búsqueda general de entorno variable que sustituye en

la versión básica la búsqueda local por una búsqueda descendente de entorno variable

(VND). Este procedimiento utiliza dos familias (posiblemente distintas) de estructuras de

entornos para la agitación y para la mejora o descenso. Se han propuesto diversas exten-

siones para solventar las dificultades que se observan, destacando la búsqueda de entorno

variable con descomposición (VNDS, Variable Neighborhood Decomposition Search) que

aplica el cambio sistemático de la estructura de entorno en dos niveles: el del problema

original y el de una descomposición basada en los entornos.

Los algoritmos genéticos (GA, Genetic Algorithm) son la última de las metaheŕısticas
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básicas descritas. Se trata de una metaheuŕıstica de tipo evolutivo basada en una

población de individuos que evoluciona de forma controlada sobre el espacio de búsqueda.

Está inspirada en fenómenos naturales asociados a la evolución y se basa en una repre-

sentación de las soluciones mediante ristras de śımbolos denominados genes. Los ele-

mentos fundamentales de los algoritmos genéticos son las operaciones de cruzamiento y

mutación. Estas operaciones utilizan la información de dos o una solución interpretada

como individuo de una población para dar lugar a nuevos individuos. Estos individuos

se seleccionan de acuerdo a la evaluación de su grado de ajuste en el que juega un papel

fundamental la función objetivo del problema. Las generaciones de individuos hacen

evolucionar la población mejorando sus individuos persiguiendo obtener soluciones de

alta calidad.

Finalmente sólo se mencionan otras metaheuŕısticas importantes que han surgido en

este campo.

Una cuestión clave para la aplicación de metaheuŕısticas en problemas reales es la

posibilidad de explotar el paralelismo en su aplicación. Las metaheuŕısticas basadas

en búsquedas locales pueden ser paralelizadas siguiendo, en principio tres tipos de es-

trategias. Una primera posibilidad consiste en paralelizar el tratamiento de los entornos

distribuyendo diversas partes de los mismos entre los distintos procesadores. Esta seŕıa

la forma de abordar los procedimientos estándares de búsqueda local como la estrategia

voraz. Otra posibilidad de aprovechar el paralelismo consiste simplemente en replicar

la metaheuŕıstica en cada uno de los procesadores, que realizan búsquedas independi-

entes. Ésta corresponde a la forma natural de paralelizar un h́ıbrido entre la estrategia

de arranque múltiple y la metaheuŕıstica de que se trate. La tercera v́ıa alternativa in-

termedia consiste en involucrar en el paralelismo alguna de las componentes propias de

la metaheuŕıstica. Estas tres v́ıas han sido exploradas en [39] and [40] donde se con-

sideran respectivamente paralelizaciones de la metaheuŕıstica de entorno variable (VNS)

y la búsqueda dispersa (SS). Para la búsqueda de entorno variable (VNS) se considera
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la paralelización del proceso de agitación para generar soluciones de arranque para cada

procesador que aplica la búsqueda con o sin actualización de la mejor solución encontrada.

Para la búsqueda dispersa (SS) se considera la paralelización del proceso de combinación

para proporcionar varios mı́nimos locales con los que actualizar el conjunto de referencia

si fuera preciso.

El Papel de la Metaheuŕısticas

Las metaheuŕısticas proporcionan una forma de mejorar significativamente el rendimiento

de los procedimientos heuŕısticos sencillos en la resolución de problemas dif́ıciles. Se

ha comprobado el éxito de las metaheuŕısticas al abordar problemas de complejidad y

tamaños realistas en aplicaciones industriales y en el campo de las telecomunicaciones.

Generalmente los mejores procedimientos alcanzan altas cotas de eficiencia aprovechando

información del contexto.

El contraste entre los primeros procedimientos heuŕısticos orientados exclusivamente

a la optimalidad local y las estrategias metaheuŕısticas de búsqueda global que escapan de

este estancamiento hace cada vez más relevantes sus aplicaciones industriales. El impacto

de la posibilidad de aportar soluciones de alta calidad con procedimientos metaheuŕısticos

sencillos a problemas reales de gran complejidad ha sido importante.

La evolución actual del campo de las metaheuŕısticas está condicionada por las dis-

tintas interpretaciones de lo que constituye una búsqueda inteligente. Diversas carac-

teŕısticas relevantes han contribuido al éxito de las distintas propuestas en mayor o menor

medida. Por tanto, al contemplar la aplicación de una metaheuŕıstica h́ıbrida que integre

las caracteŕısticas relevantes de diversos procedimientos procede realizar un análisis de la

relevancia de estos aspectos en las distintas metehauŕısticas. Entre tales caracteŕısticas

se encuentran el uso de memoria adaptativa para conducir la búsqueda, la elección del

tipo de estructura de entorno sobre la que se articula la búsqueda o la interacción entre
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los atributos de las buenas soluciones para mejorarlas aún más.

Se analizan varios de estos aspectos como son, aparte de los ya mencionados, la

necesidad de bordear la frontera de factibilidad para acercarse a los óptimos fronterizos,

la estrategia de oscilación en los aspectos contrapuestos presentes en la búsqueda, la

perturbación aleatoria de aspectos demasiado ŕıgidos de las búsquedas o la inclusión de

umbrales regulables dinámicamente. Algunos de los aspectos importantes que intervienen

en el éxito del procedimiento h́ıbrido son caracteŕısticos de las metaheuŕısticas que se in-

tegran en el h́ıbrido. Por ejemplo, en la búsqueda tabú son caracteŕısticas la memoria

adaptativa del proceso y la información que permite la exploración de regiones promete-

doras. La memoria opera en cuatro dimensiones principales: la basada en frecuencia, la

centrada en lo reciente, la de calidad del resultado y la de influencia en el proceso. Se

contemplan dos tipos de memoria: la memoria expĺıcita y la de atributos. Una compo-

nente importante en la búsqueda tabú, y en la práctica totalidad de las estrategias de

búsqueda es la regulación entre la intensificación y diversificación de la búsqueda.

Entre las caracteŕısticas relevantes de la búsqueda dispersa destaca la propuesta de

realizar una combinación inteligente de las caracteŕısticas de buenas soluciones en lugar

de dejar esta responsabilidad al azar como ocurre con los algoritmos genéticos y otros

algoritmos evolutivos. Es también relevante en la metaheuŕıstica de búsqueda dispersa el

uso de un conjunto de referencia que contiene una representación de buenas soluciones.

En el concepto de buenas soluciones intervienen no sólo cuestiones de calidad individual

de las soluciones incluidas en el conjunto de referencia sino también la diversidad de las

mismas. Sin embargo se trata de un conjunto de soluciones de un tamaño mucho menor

que los de una población que incluso puede ser importante para obtener como resultado

de la búsqueda, no sólo una única solución presumiblemente óptima, sino un conjunto

disperso de tamaño moderado de soluciones de alta calidad. Estas soluciones pueden ser

proporcionadas al decisor para que opte por una de ellas o utilizadas para fases posteriores

de optimización. Esta última propiedad de la metaheuŕıstica de búsqueda dispersa se
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utiliza aqúı para abordar el problema de supervivencia de la red WDM partiendo, no de

una sóla red de servicio, sino de un conjunto de buenas redes de servicio.

Entre las caracteŕısticas rentables de la metaheuŕıstica de arranque múltiple, aprove-

chadas en el diseño del procedimiento h́ıbrido se encuentra la posibilidad de utilizar

procedimientos constructivos inteligentes que aprovechen la información obtenida durante

el proceso de búsqueda para realizar buenas elecciones. Estas caracteŕısticas se apoyan

en el principio de la persistencia atractiva y la validez marginal condicional.

Por último es importante realizar un análisis de las propiedades deseables de los pro-

cedimientos metaheuŕısticos. Una relación de tales propiedades es: sencillez, precisión,

coherencia, eficiencia, efectividad, eficacia, generalidad, adaptabilidad, robustez, interac-

tividad, multiplicidad, autonomı́a e innovación. Estas propiedades indican diversas direc-

ciones en las que se pueden mejorar las prestaciones de las metaheuŕısticas. Algunas de

ellas están estrechamente relacionadas o pueden incluso ser relativamente contrarias. Las

propiedades de sencillez, precisión y coherencia posibilitan la rápida implementación de

algoritmos rentables incluso para problemas poco estudiados. La eficiencia, efectividad y

eficacia son tres aspectos en los que se puede analizar el rendimiento práctico de los algo-

ritmos resultantes; hacen referencia al consumo de recursos computacionales, el grado de

optimalidad de la solución aportada y la frecuencia con que se aporta la solución óptima.

La generalidad, adaptabilidad y robustez son las que sustentan la amplia aplicabilidad de

las metaheuŕısticas posibilitando la adaptación a distintas circunstancias, pero sin exigir

un gran esfuerzo para las modificaciones pertinentes. La interactividad, multiplicidad y

autonomı́a son las que propician su utilidad en los sistemas de ayuda a la decisión donde

debe tener cabida el aprovechamiento del conocimiento experto del usuario por parte

de la metaheuŕıstica, la posibilidad de proporcionar varias soluciones de alta calidad,

pero diferentes y la conveniencia de que la metaheuŕıstica pueda funcionar sin agobiar

al usuario con el ajuste de una gran cantidad de parámetros. Finalmente, las innova-

ciones asociadas a las metaheuŕısticas, tanto en el campo de aplicaciones exitosas como
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la incorporación de ideas novedosas facilita su popularización como ha ocurrido con las

metaheuŕısticas inspiradas en fenómenos naturales estudiados por la f́ısica, la medicina,

la economı́a o la bioloǵıa.

CAPÍTULO 3.- El Problema de Provisión y Conducción (PRP)

Este caṕıtulo presenta y describe las aplicaciones de un problema real que resulta

de la necesidad de incrementar la capacidad de redes de telecomunicaciones ópticas. El

contenido se organiza siguiendo el siguiente esquema:

• Realizar una introducción del problema de provisión y conducción o problema de

śıntesis y describir sus aplicaciones;

• Proporcionar una revisión bibliográfica del problema;

• Describir el problema;

• Desarrollar un modelo matemático y plantear algunas restricciones adicionales;

• Realizar una descripción detallada de un procedimiento metaheuŕıstico h́ıbrido

basado en las estrategias multiarranque, búsqueda dispersa y búsqueda tabú; y

• Estudiar la efectividad del procedimiento propuesto anteriormente mediante com-

paración con otros métodos metaheuŕısticos y usando Cplex [28], que proporciona

procedimientos exactos para resolver problemas de optimización lineal y entera.

En la literatura de las telecomunicaciones se han tratado principalmente dos proble-

mas de flujo en redes: el problema de factibilidad y el problema de análisis. Dado un

grafo y arcos con capacidades, el primer problema hace referencia a la factibilidad de un

conjunto de flujos. Si además se considera un conjunto de requerimientos de demanda,

el segundo problema hace referencia a la determinación de flujos factibles de tal manera
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que los requerimientos sean satisfechos. En esta memoria tratamos un tercer problema

de flujo en redes: el problema de provisión (también referido como problema de śıntesis

o de dimensión), que consiste en minimizar el coste total de incrementar la capacidad

de una red dada de manera que se satisfagan los requerimientos de demanda. En estos

problemas, la topoloǵıa f́ısica de la red y los requerimientos de demanda son conocidos y

las variables de decisión están relacionadas con la capacidad que es necesario instalar en

enlaces y nodos a mı́nimo coste.

Una topoloǵıa de red existente, una estructura de costes y un conjunto de requerim-

ientos de demanda caracterizan un ejemplo t́ıpico de un problema de provisión de red.

La estructura de costes depende de cada situación, aśı como de la tecnoloǵıa disponible.

Cuando se resuelve este problema se asume que el sistema no incluye costes de conducción

una vez que el equipo ha sido instalado.

Cuando el conjunto de requerimientos está formado por una única demanda, el prob-

lema de provisión y conducción se reduce a resolver un problema de camino más corto en

un grafo con costes incrementales en los arcos. Los costes incrementales están asociados

con el equipo requerido para conducir la demanda. Sin embargo, es más probable que el

conjunto de requerimientos de demanda esté constituido por varios pares origen-destino.

En este caso, las demandas son conducidas considerando la capacidad existente en la

red actual. El problema de uso de la capacidad existente es un objetivo principal del

estudio dado que el equipo instalado en enlaces y nodos para conducir una demanda

bajo consideración, puede ser usada para conducir una demanda a ser considerada a

continuación.

El problema de provisión tiene las siguientes aplicaciones adicionales en el mundo de

las redes de telecomunicaciones: Problema Multi-hora, donde el conjunto de nodos en

los que originan y finalizan las demandas depende de la hora del d́ıa; y Problema de

Supervivencia, descrito anteriormente.
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Problema de Provisión y Conducción en Redes WDM: Contribuciones

Previas.

En la literatura hay varios trabajos relacionados con la expansión de capacidad en

redes ópticas WDM. Estos trabajos pueden ser clasificados en dos categoŕıas: el caso

en el que se limita la fibra desplegada, donde el objetivo del problema de provisión es

minimizar el número de longitudes de onda [4], [5], [108], [137]; y el caso en el que se

limita el número de longitudes de onda por fibra, donde se trata de minimizar la cantidad

de fibra requerida [109] o maximizar el tráfico establecido [114].

Caenegem, y otros [131] proponen una estrategia metaheuŕıstica basada en recocido

simulado para incrementar la capacidad de redes WDM minimizando el coste total para

una determinada demanda estática de tráfico. Consideran dos tipos diferentes de re-

des; redes que no usan conversión de longitudes de onda y redes que usan conversión en

los nodos. Tratan además el problema de protección usando tres estrategias de recon-

ducción en caso de fallo de un único enlace. Estos autores no estudian el problema con

incertidumbre en las demandas de tráfico, que es uno de los objetivos de esta memoria.

Alanyali y Ayanoglu [2] se centran en métodos heuŕısticos para incrementar la capaci-

dad sobre una red óptica WDM dado un conjunto estático de conexiones. Consideran

que existe número fijo de longitudes de onda disponibles sobre cada fibra. Sin embargo,

fijan un coste positivo para cada uno de los enlaces sin tener en cuenta los costes en los

que se incurre al instalar las tarjetas de canal en cada canal WDM.

Kennington, y otros. [74] presentan un estudio emṕırico comparando soluciones a las

que se les impone la restricción de continuidad con soluciones que permiten conversión

para el problema de conducción y asignación de longitudes de onda en redes WDM. En

[72] estos autores desarrollan un modelo de optimización y heuŕısticas para la versión sin

conversión de longitudes de onda.

Kennington, y otros. en [73] estudian el problema de provisión y conducción en una
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red WDM considerando incertidumbre en las demandas. Para ello usan optimización ro-

busta. Establecen el modelo para el PRP con demandas inciertas y fijan un presupuesto.

Cox, y otros. [27] proponen el problema de planificación en redes ópticas WDM que

incluye simultáneamente los problemas de provisión, conducción y protección. Resuelven

el problema usando un algoritmo genético, basado en la instalación de dispositivos ópticos

en la red de forma incremental con el objetivo de minimizar el coste de conducción de cada

demanda. Este algoritmo representa las soluciones mediante permutaciones de las de-

mandas. Una permutación representa el orden según el cual se consideran las demandas,

una a una, para propósitos de conducción. Dado que el equipo se instala para satisfacer

la demanda actual, sin considerar las demandas que aún no han sido conducidas, cada

permutación puede proporcionar un diseño de red diferente. Este enfoque no garantiza

la existencia de una ordenación de las demandas que resulte en un diseño óptimo.

Descripción del Problema

El problema de optimización de expansión de capacidad trata con un conjunto de

demandas que deben ser conducidas a través de una red óptica existente. Cada demanda

está asociada con un nodo origen, un nodo destino y un tamaño, expresado en unidades

OC-48. Cada demanda puede ser conducida enteramente sobre una o más fibras sin

sistemas WDM instalados en ellas, sobre uno o más canales de un sistema WDM o puede

ser cambiada de un WDM a otro a través de dispositivos OXC. El objetivo del problema

es minimizar el coste total, que es la suma del coste de fibra adicional, de sistemas WDM

y de equipos OXC.

Definimos el concepto de segmento como una secuencia de enlaces individuales que

no pasan a través de ningún sistema OXC. En este caso, la fibra o sistema WDM pasa

a través de cualquier nodo intermedio sin añadir o eliminar tráfico y sin requerimiento

adicional de equipo en dichos nodos. Cada unidad OC-48 usa dos fibras sin WDM o un
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canal de un sistema WDM. Llamamos canal a la capacidad requerida por un OC-48. En

un diseño de red óptimo, cada segmento debeŕıa seguir un camino de mı́nimo coste (con

respecto al coste de fibra) desde su origen hasta su destino. Dado que el camino más

corto entre cualesquiera dos nodos es un segmento potencial, la red de segmentos resulta

en un grafo completo, que es intratable en la mayoŕıa de los casos. Por lo tanto se genera

un subconjunto de segmentos prometedores como una de las estrategias de la búsqueda.

Modelo Nodo-Segmento

En este caṕıtulo presentamos un modelo de programación lineal entera para el PRP.

Proporcionamos una formulación nodo-segmento para el problema con múltiples requer-

imientos de flujo sin incertidumbre en las demandas y sin protección. El modelo está

basado en el propuesto por Cox, y otros en [27].

La topoloǵıa de la red es representada por un grafo no dirigido G = (N, E), donde

N denota el conjunto de nodos y E ⊆ N ×N denota el conjunto de segmentos. En esta

formulación los enlaces y segmentos son equivalentes en el sentido de que representan

una conexión entre dos puntos. El coste de usar un enlace individual o un segmento está

incluido correctamente en la función objetivo. El conjunto de demandas está representado

por D = (o1, d1, R1), (o2, d2, R2), · · ·, (oq, dq, Rq), donde oi representa el nodo origen, di el

nodo destino, Ri el tamaño.

El coste de los segmentos se divide en dos componentes: el coste relacionado con la

fibra y el coste relacionado con los canales si algún sistema WDM ha sido instalado en la

fibra. Además, el coste de fibra se subdivide en tres cantidades diferentes: el coste de los

sistemas WDM instalados sobre la fibra, que es una catidad fija; el coste de la fibra, que

depende de la longitud del segmento; y el coste de los amplificadores, que depende del

número de ellos instalados sobre la fibra. Estos tres costes diferentes se suman al coste

total para cada fibra usada sobre cada segmento. Por cada canal WDM activo, deben
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sumarse al coste total el coste de las tarjetas de canal y del convertidor de longitud de

onda. Finalmente, los costes de los nodos incluyen el coste de instalar el OXC y los

puertos requeridos como origen y destino de cada canal, que puede ser un canal WDM o

un par de fibras.

La formulación presentada usa las siguientes definiciones:

Datos de Costes

• CF
e = coste de una fibra sobre el segmento e.

• C
Wj
e = coste de un WDM tipo j ∈ J en el segmento e.

• COl = coste de un OXC tipo l ∈ L.

• Ccj = coste de un canal de un WDM tipo j.

• Cpl = coste de un puerto de un OXC tipo l.

Datos de Capacidad

• Mwj = capacidad de una unidad WDM tipo j.

• M ol = capacidad de una unidad OXC tipo l.

Infraestructura existente

• gj
e = canales WDM disponibles sobre sistemas WDM tipo j en el segmento e.

• hl
n = puertos OXC disponibles en sistemas OXC de tipo l en el nodo n.

Variables de Decisión

• xie = cantidad de demanda i conducida sobre el segmento e.

• xF
ie = cantidad de demanda i conducida sobre el segmento e en dirección directa.
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• xR
ie = cantidad de demanda i conducida sobre el segmento e en dirección inversa.

• fe = número de pares de fibra sin WDM sobre el segmento e.

• wj
e = número de unidades WDM tipo j en el segmento e.

• vj
e = número de canales WDM tipo j en el segmento e.

• yl
n = número de unidades OXC tipo l instaladas en el nodo n.

• ul
n = número de puertos OXC tipo l instalados en el nodo n.

Función Objetivo

La función objetivo a ser minimizada es la suma de los costes de fibra (primer término),

costes de WDM (segundo término) y costes de OXC (tercer término).

min
∑

e∈E

2CF
e fe +

∑

e∈E

∑

j∈J

((
CF

e + CWj
e

)
wj

e + Ccjvj
e

)
+

∑

n∈N

∑

l∈L

(
COlyl

n + Cplul
n

)

Restricciones

Las siguientes restricciones imponen que todas las demandas sean conducidas a través

de la red, que no sea asignada a un enlace más demanda de la que su capacidad permita

conducir y que los elementos de cambio tengan suficiente capacidad.

Conservación de Flujo

∑

e∈E,oi=start(e)

xF
ie +

∑

e∈E,oi=end(e)

xR
ie −

∑

e∈E,oi=end(e)

xF
ie−

xl



∑

e∈E,oi=start(e)

xR
ie = Ri,∀(oi, di, Ri) ∈ D

∑

e∈E,di=end(e)

xF
ie +

∑

e∈E,di=start(e)

xR
ie −

∑

e∈E,di=start(e)

xF
ie−

∑

e∈E,di=end(e)

xR
ie = Ri,∀(oi, di, Ri) ∈ D

∑

e∈E,j=end(e)

xF
ie +

∑

e∈E,j=start(e)

xR
ie −

∑

e∈E,j=start(e)

xF
ie−

∑

e∈E,j=end(e)

xR
ie = Ri,∀(oi, di, Ri) ∈ D, ∀j ∈ N, j 6= oi, di

xF
ie + xR

ie = xie,∀(oi, di, Ri) ∈ D, ∀e ∈ E

Capacidad de Segmento

∑

(oi,di,Ri)∈D

xie ≤ fe +
∑

j∈J

vj
e,∀e ∈ E

vj
e ≤ wj

eM
wj + gj

e,∀e ∈ E, ∀j ∈ J

Capacidad de OXCs

∑

n=end(e)


fe +

∑

j∈J

vj
e


 ≤ ∑

l∈L

ul
n,∀n ∈ N
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ul
n ≤ yl

nMOl + hl
n, ∀n ∈ N, ∀l ∈ L

Todas las variables son enteras no negativas.

La formulación estudiada tiene el siguiente número de variables:

|E|+ 2|E||J |+ 2|N ||L|+ 3|D||E|,

y el siguiente número de restricciones:

2|D|+ |D|(|N | − 2) + |D||E|+ |E|+ |E||J |+ |N |+ |N ||L|.

El número de variables y restricciones escala con el número de enlaces y nodos en la

red y con el número de demandas.

La función objetivo precedente, las variables de decisión, y las restricciones especi-

fican una versión formal del problema de expansión de capacidad. En la práctica, sin

embargo, las demandas y los costes son t́ıpicamente inciertos, mientras que las opciones

de tecnoloǵıa disponible, tales como capacidades de los sistemas WDM y OXC, cambian

frecuentemente al introducirse nuevos productos en el mercado. Por lo tanto, esta versión

formal del problema es una aproximación de un problema de expansión más complejo,

que incluye incertidumbre en los datos. Este problema es uno de los problemas en estudio

de esta memoria.

Enfoque de Solución Metaheuŕıstico

El objetivo de esta sección es presentar un procedimiento metaheuŕıstico desarrollado

para resolver el problema de provisión y conducción en redes WDM. Para problemas

de planificación de pequeño tamaño, la formulación presentada anteriormente puede ser

resuelta en una cantidad razonable de tiempo computacional. Sin embargo, la solución
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exacta de este modelo proporciona sólo una cota inferior del problema real pues no limita

el número máximo de segmentos entre los puntos origen y destino de una demanda, lo

cual es una restricción impuesta por las limitaciones de la tecnoloǵıa actual.

Nuestro enfoque de solución usa la noción de red base, que inicialmente está formada

por el diseño de red actual. Una red base es un diseño de red incompleto que no satisface

el conjunto de requerimientos de demanda que debeŕıa ser capaz de satisfacer un diseño

de red completo. A medida que el proceso itera, la red base evoluciona y el coste estimado

de conducir una demanda a través de la red es más exacto. Una red base que ha sido

evolucionada incluye equipo adicional, que ha sido añadido a la red base original. Cuando

se considera una demanda que debe ser conducida por la red que ha evolucionado, esta

demanda puede compartir la capacidad adicional con otros requerimientos de demanda,

derivando en una estimación de costes más exacta.

El enfoque de solución propuesto genera una lista de caminos para cada demanda

haciendo uso de una implementación eficiente del algoritmo de k-caminos más cortos.

Los caminos obtenidos para cada demanda se obtienen calculando el coste incremental

de conducir la demanda entera a través de la red base.

Los cuatro elementos básicos comunes a cualquier búsqueda heuŕıstica, independien-

temente de la estrategia considerada, son: la representación de la solución, el objetivo,

la función de evaluación, y el mecanismo de movimiento.

• Representación de la solución. La construcción de una solución comienza con la

selección de un camino para cada demanda. Tras la asignación de una demanda a

un camino, se calcula el coste del diseño resultante. El coste se asocia al equipo

requerido para satisfacer las demandas usando los caminos elegidos. Una solución

está perfectamente determinada mediante una estructura de datos que almacena

las asignaciones demandas a caminos y el equipo requerido en cada elemento de la

red original.
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• Objetivo. El objetivo del problema es minimizar la suma de los costes de fibra

adicional, de equipo WDM, y sus equipos OXC terminales correspondientes.

• Evaluación. Cuando cada demanda ha sido asignada a un camino en su lista po-

tencial, la evaluación de la solución consiste en calcular el incremento de capacidad

requerido en los elementos de la red para conducir las demandas a través de los

caminos asignados.

• Mecanismo de Movimiento. Cada solución tiene asociado un entorno, constitu-

ido por todas las soluciones factibles que pueden ser alcanzadas cambiando una

demanda de un camino a otro.

La estrategia de solución propuesta es un método metaheuŕıstico h́ıbrido que combina

ideas de la búsqueda dispersa [82], búsqueda multiarranque [51], y la búsqueda tabú [50].

La búsqueda tabú contribuye con un componente de memoria diseñada para evitar el

ciclado de soluciones. La búsqueda dispersa incluye un mecanismo de generación de

nuevas soluciones mediante la combinación de soluciones almacenadas en un conjunto de

referencia. Finalmente, el componente multiarranque usa una memoria a largo plazo que

permite construir nuevas soluciones en un rango amplio del espacio de soluciones.

El procedimiento h́ıbrido desarrollado comienza con la generación de un conjunto de

segmentos prometedores usando el algoritmo de camino más corto con distancias como

pesos en las aristas. El procedimiento usa estos segmentos para ejecutar el algoritmo de

generación de los k-caminos más cortos para cada demanda (usando costes incrementales

como pesos en las aristas). Una vez determinada la red base original formada por seg-

mentos, se obtiene la capacidad existente sobre la red, para asignar costes incrementales

de conducción de cada demanda. Se genera un conjunto de referencia inicial haciendo

uso de un método constructivo, que asigna las demandas a aquellos caminos que utilicen

más eficientemente la capacidad existente en la base. Las soluciones del conjunto de

referencia se ordenan según su coste total de menor a mayor. La solución actual, que
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al comienzo es la primera solución del conjunto de referencia, es usada para determinar

el orden de las demandas según su coste por unidad. Se ejecuta una búsqueda local en

el entorno de la solución actual usando la ordenación de las demandas determinada con

anterioridad. Esto es, el primer movimiento candidato es reasignar la primera demanda

dada por la ordenación. Si la nueva solución es mejor que la peor solución en el conjunto

de referencia, entonces se actualiza el mismo. Si no existe ningún movimiento de mejora

que involucre la reasignación de la primera demanda, entonces se considera la segunda

demanda. Se itera el proceso hasta que la reasignación de alguna de las demandas pro-

duzca un movimiento de mejora. Si se consideran todas las demandas y no se produce

ninguna mejora, se finaliza la búsqueda local. Una vez finalizada la búsqueda se analiza

el conjunto de referencia. Si no se ha introducido ninguna nueva solución en el mismo,

se reconstruye.

Numerosos estudios demuestran que los procedimientos metaheuŕısticos efectivos mantienen

un balance entre diversificación e intensificación de la búsqueda. Para proporcionar este

balance, se evoluciona la red base original usando la información proporcionada por el

conjunto de referencia. Uno de los principales criterios usados en el procedimiento de

evolución de la base está relacionado con el número de veces que aparece un segmento

en los caminos asignados a las demandas en las soluciones del conjunto de referencia. El

procedimiento usa información global (referida a todo el proceso de búsqueda) y local

(referida al conjunto de referencia actual) mediante contadores que almacenan el número

de canales usados en cada segmento con el objetivo de determinar dónde añadir equipo

en la base actual. La diferencia entre el máximo número global y local de canales usa-

dos en cada segmento muestra su importancia. Cuanto menor sea esta diferencia, más

importante es el segmento en el diseño de red final.

Cuando la red base ha sido evolucionada, la capacidad existente cambia y por tanto

los costes incrementales de conducir las demandas a través de la red. Por lo tanto, se

obtienen nuevamente los k-caminos más cortos con costes incrementales como pesos en

xlv



las aristas para cada una de las demandas. Se genera una nueva solución actual, que usa

de forma eficiente la capacidad añadida en la red base, y se ejecuta el procedimiento de

búsqueda local desarrollado. El proceso finaliza después de un número especificado de

iteraciones, donde una iteración es una búsqueda local.

Resultados Computacionales

Los experimentos realizados con datos reales y datos generados aleatoriamente mues-

tran el mérito del procedimiento metaheuŕıstico h́ıbrido cuando se compara con un en-

foque basado en permutaciones y con las cotas inferiores generadas al resolver el modelo

matemático con Cplex. Usamos un test estad́ıstico no paramétrico para comparar nue-

stro procedimiento y dos variantes del enfoque basado en permutaciones. El test muestra

la efectividad de nuestra búsqueda local, la cual mejora las soluciones construidas con

el enfoque basado en permutaciones hasta un punto en el que el método resultante es

estad́ısticamente comparable con el metaheuŕıstico h́ıbrido propuesto.

CAPÍTULO 4.- El Problema de Provisión y Conducción: Un Modelo Al-

ternativo

El propósito de este caṕıtulo es proponer un modelo de programación lineal entera

para resolver el problema de incremento de capacidad de una red existente a mı́nimo coste.

Este modelo es referenciado como modelo segmento-camino, y tiene significativamente

menos variables y restricciones que el modelo presentado anteriormente y propuesto por

Cox, y otros. Este modelo usa las siguientes definiciones adicionales:

• An = conjunto de segmentos adyacentes al nodo n.

• Jod = conjunto de caminos posibles desde el origen o hasta el destino d, que pueden
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ser usados para conducir la demanda (o, d).

• xod
p = 1 si la demanda (o, d) es conducida a través del camino p, y 0 en otro caso.

El modelo es establecido como sigue:

Función Objetivo

min
∑

e∈E

2CF
e fe +

∑

e∈E

((
CF

e + CW
e

)
we + Ccve

)
+

∑

n∈N

(
COyn + Cpun

)

Restricciones

∑

p∈Jod

xod
p = 1,∀(o, d) ∈ D

∑

(o,d)∈D

Rod

∑

p∈Jod,e∈p

xod
p ≤ ve + fe,∀e ∈ E

ve ≤ MW we + ge,∀e ∈ E

∑

e∈An

(ve + fe) ≤ un,∀n ∈ N

un ≤ MOyn + hn,∀n ∈ N

Todas las variables de decisión son enteras no negativas.

El objetivo es minimizar la suma de los costes de fibra, sistemas WDM y equipos

OXC. El primer conjunto de restricciones impone la satisfacción de las demandas. El

siguiente convierte la capacidad sobre los caminos a capacidad sobre los segmentos y ésta

a fibras y canales. Los tres conjuntos de restricciones siguientes convierten la capacidad
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de los segmentos en unidades WDM, acumulan los canales sobre los enlaces para añadir

el número de puertos requeridos en cada nodo, y convierten la capacidad de los nodos en

unidades OXC, respectivamente.

CAPÍTULO 5.- El Problema de Supervivencia

El propósito de este caṕıtulo es resolver el problema real de incremento de capacidad

de una red óptica a mı́nimo coste incorporando protección ante posibles fallos de enlaces.

Desarrollamos varios modelos con el objetivo de resolver el problema usando un esquema

basado en enlace compartido y un esquema basado en camino compartido. Cuando se

usa el primer esquema, se reserva un camino de protección alrededor de cada enlace,

permitiendo que las rutas de protección de distintos enlaces compartan la capacidad

reservada. Cuando se usa el segundo esquema de protección, se determina una ruta de

protección para cada demanda cuyo camino de trabajo contenga un enlace defectuoso.

Esquema de protección de enlace compartido

Presentamos un modelo segmento-camino que obtiene las rutas de protección para

cada enlace defectuoso comenzando con una solución al modelo sin protección. El modelo

usa las definiciones siguientes:

• NCe = número de canales sobre el segmento e requeridos para obtener los caminos

de trabajo. Entonces, si falla el segmento e, el tráfico NCe debe ser reconducido

entre los nodos origen y destino de e.

• Je = conjunto de rutas de protección alternativas entre los nodos extremo del

segmento e.

• ye
q = 1 si el tráfico sobre el segmento e es reconducido sobre el camino q ∈ Je, y 0
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en otro caso.

El modelo asume que el tráfico sobre un segmento no puede ser dividido al ser recon-

ducido. El modelo se establece de la siguiente forma:

min
∑

e∈E

2CF
e fe +

∑

e∈E

((
CF

e + CW
e

)
we + Ccve

)
+

∑

n∈N

(
COyn + Cpun

)

Sujeto a:

∑

q∈Je

ye
q = 1, ∀e ∈ E

∑

q∈Je′ ,e∈q

NCe′yq,e′ ≤ ve + fe, ∀e ∈ E, ∀e′ 6= e ∈ E

ve ≤ MW we + ge,∀e ∈ E

∑

e∈An

(ve + fe) ≤ un,∀n ∈ N

un ≤ MOyn + hn,∀n ∈ N

El objetivo es minimizar el coste total, que es la suma del coste de fibra (primer

término), el coste de los equipos WDM (segundo término), y el coste de las unidades

OXC (tercer término).

Cuando falla el segmento e, el tráfico de trabajo sobre ese segmento debe ser recon-

ducido a través de una de las posibles rutas de protección en Je. Por lo tanto, se debe

satisfacer el primer conjunto de restricciones. El segundo conjunto de restricciones ase-

gura que, si falla el segmento e, la capacidad sobrante sobre otros segmentos debe ser

suficiente para conducir el flujo que circula sobre las rutas de protección.
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Esquemas de protección de camino compartido

En este esquema, es necesario restaurar cada camino de trabajo interrumpido. Una

de las rutas de protección alternativas debe conducir el tráfico del camino de trabajo

correspondiente a una demanda. Proponemos dos esquemas de protección de camino

compartido: un esquema de protección en el que cada camino de trabajo tiene diversos

conjuntos de rutas de protección alternativas dependiendo del enlace que haya fallado,

y un esquema de protección en el que las rutas de protección y los caminos de trabajo

correspondientes no pueden tener ningún enlace común. En este caso, sólo se genera un

conjunto de rutas alternativas para cada camino de trabajo.

El modelo para el primero de estos esquemas usa las siguientes definiciones:

• Je,od = conjunto de rutas de protección alternativas entre el origen y el destino de

la demanda (o, d) ∈ D que no contienen al segmento e.

• yod
q,e = 1 si la demanda (o, d) es reconducida sobre el camino q ∈ Je,od si el segmento

e falla, y 0 en otro caso.

• WPod = camino de trabajo de la demanda (o, d) ∈ D.

El modelo asume que la demanda conducida sobre cada camino de trabajo no puede

ser dividida cuando se reconduce. El modelo se establece como sigue:

min
∑

e∈E

2CF
e fe +

∑

e∈E

((
CF

e + CW
e

)
we + Ccve

)
+

∑

n∈N

(
COyn + Cpun

)

Sujeto a:

∑

q∈Je,od

yod
q,e = 1,∀(o, d) ∈ D, ∀e ∈ WPod

∑

(o,d)∈D,e′∈WPod

∑

q∈Je′,od,e∈q

Rodyod
q,e′ ≤ ve + fe,∀e, e′ ∈ E, e′ 6= e
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ve ≤ MW we + ge,∀e ∈ E

∑

e∈An

(ve + fe) ≤ un,∀n ∈ N

un ≤ MOyn + hn,∀n ∈ N

El modelo para el segundo esquema de camino compartido usa las siguientes defini-

ciones:

• Jod = conjunto de rutas de protección alternativas entre los nodos origen y destino

de la demanda (o, d) ∈ D.

• yod
q = 1 si la demanda (o, d) es reconducida sobre el camino q ∈ Jod si falla el

segmento e, y 0 en otro caso.

El modelo, cuyo objetivo es minimizar el coste total, se establece como sigue:

min
∑

e∈E

2CF
e fe +

∑

e∈E

((
CF

e + CW
e

)
we + Ccve

)
+

∑

n∈N

(
COyn + Cpun

)

Sujeto to:

∑

q∈Jod

yod
q = 1,∀(o, d) ∈ D

∑

(o,d)∈D,e′∈WPod

∑

q∈Jod,e∈q

Rodyod
q ≤ ve + fe, ∀e, e′ ∈ E, e′ 6= e

ve ≤ MW we + ge,∀e ∈ E

∑

e∈An

(ve + fe) ≤ un,∀n ∈ N
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un ≤ MOyn + hn,∀n ∈ N

En ambos modelos, las variables de decisión son enteras no negativas.

El problema de incremento de la capacidad de una red WDM para proporcionar

supervivencia en la misma ha sido abordado en la literatura después de obtener la mejor

red de trabajo que permite satisfacer los requerimientos de demanda. En este caṕıtulo

hemos propuesto una variante de la metaheuŕıstica h́ıbrida desarrollada anteriormente.

Este metaheuŕıstica, basada en la búsqueda dispersa, está dividida en dos fases. La

primera fase resuelve el problema de expansión de capacidad para satisfacer el conjunto

de demandas dadas, proporcionando un conjunto de referencia formado por las mejores

redes de trabajo obtenidas durante la búsqueda. En la segunda fase, se considera cada

una de las soluciones del conjunto de referencia y se resuelve el problema de protección

comenzando con ellas. Dado que el problema de protección es también un problema de

expansión de capacidad, pero que permite que la demanda sea compartida para restaurar

fallos de distintos enlaces, se usa la metaheuŕıstica h́ıbrida sin más que cambiar el método

de evaluación de las soluciones.

Resultados Computacionales

Finalmente, se realiza la experiencia computacional usando los tres esquemas de pro-

tección. El primer experimento llevado a cabo en este caṕıtulo consiste en resolver la

formulación matemática presentada para el esquema de protección de enlace compartido.

Para ello, se consideran como soluciones de partida las mejores redes de trabajo obtenidas

para los ejemplos reales y aleatorios presentados en los caṕıtulos anteriores. Además, se

resuelven los mismos ejemplos usando el metaheuŕıstica h́ıbrida, que proporciona, para

cada ejemplo, un conjunto de referencia de redes con supervivencia.

Los resultados obtenidos demuestran que el mejor diseño de red obtenido, que permite
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satisfacer los requerimientos de demanda y que proporciona supervivencia, no es obtenido,

en la mayoŕıa de los casos, comenzando con la mejor red de trabajo, sino una red de

trabajo con mayor coste.

El siguiente experimento realizado en este caṕıtulo consiste en resolver el problema

de protección para los esquemas de camino compartido. Para cada uno de estos esque-

mas se utiliza una versión modificada de la metaheuŕıstica h́ıbrida que permite evaluar

correctamente las soluciones. Se comparan los resultados obtenidos y se concluye que el

esquema de protección que proporciona mejores diseños de red es el esquema de camino

compartido en rutas de enlaces disjuntos.

CAPÍTULO 6.- Problema de Provisión y Conducción en redes WDM bajo

Incertidumbres en las Demandas.

Una consideración importante al planificar redes ópticas WDM es la incertidumbre.

Claramente, las demandas futuras de ancho de banda no se pueden considerar conocidas

en un entorno como la industria de las telecomunicaciones.

Los algoritmos y modelos usualmente asumen que los datos son conocidos exacta-

mente. Sin embargo, en la mayoŕıa de las aplicaciones del mundo real esto no sucede.

Este hecho es particularmente importante cuando los datos representan demandas futuras

de tráfico y costes de productos que no se conocen con certeza. Las técnicas usuales que

permiten tratar problemas de optimización con incertidumbre en los datos son el análisis

de sensibilidad, la optimización difusa, la programación estocástica, y la optimización

robusta.

Modelo de Programación Estocástica

En este apartado usamos el marco de modelización de la programación estocástica con
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el propósito de desarrollar un modelo usado para resolver el problema de expansión de

capacidad con incertidumbre en las demandas. Denotamos por S = 1, · · ·, s∗ el conjunto

de posibles escenarios de demandas de tráfico. El modelo usa las siguientes definiciones:

• zods = bajo aprovisionamiento para cada escenario s ∈ S y cada demanda (o, d) ∈
Ds. El bajo aprovisionamiento es la cantidad de demanda ods que no puede ser

conducida usando la capacidad instalada en la red.

• Ps = probabilidad de ocurrencia del escenario s.

• Cu = coste de bajo aprovisionamiento.

• xods
p = 1 si la demanda (o, d) ∈ Ds es conducida sobre el camino p, y 0 en otro caso.

Para cada coste de bajo aprovisionamiento Cu, el objetivo a ser minimizado es la

suma del coste de diseño más un coste de penalización.

min
∑

e∈E

2CF
e fe +

∑

e∈E

((
CF

e + CW
e

)
we + Ccve

)
+

∑

n∈N

(
COyn + Cpun

)
+

Cu


∑

s∈S

Ps

∑

od∈Ds

zods




Sujeto a:

∑

p∈Js
od

xods
p Rs

od + zods = Rs
od, ∀(o, d) ∈ Ds,∀s ∈ S

∑

(o,d)∈Ds

∑

p∈Js
od

,e∈p

xods
p Rs

od ≤ ve + fe,∀e ∈ E, ∀s ∈ S

ve ≤ MW we + ge,∀e ∈ E

∑

e∈An

(ve + fe) ≤ un,∀n ∈ N
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un ≤ MOyn + hn,∀n ∈ N

0 ≤ zods ≤ Rs
od,∀(o, d) ∈ Ds,∀s ∈ S

Desarrollamos una metaheuŕıstica de búsqueda dispersa para resolver el problema de

expansión de capacidad con incertidumbres en las demandas. Comparamos los resulta-

dos obtenidos al resolver esta formulación mediante un optimizador comercial con los

resultados proporcionados por un enfoque de resolución basado en búsqueda dispersa.

La metaheuŕıstica permite considerar funciones de penalización, y por tanto, funciones

objetivo tanto lineales como no lineales.

El enfoque de programación estocástica presentado obtiene soluciones que pueden

no ser factibles para alguno o ninguno de los escenarios. Por este motivo, proponemos

además un modelo robusto basado en el enfoque robusto propuesto por Kouvelis y Yu

[76], que genera soluciones factibles incluso para el peor de los escenarios. El modelo se

establece como sigue:

min y

Sujeto a:

∑

e∈E

2CF
e fe +

∑

e∈E

((
CF

e + CW
e

)
we + Ccve

)
+

∑

n∈N

(
COyn + Cpun

)
≤ y + zs,

∀s ∈ S

∑

p∈Js
od

xods
p = 1, ∀(o, d, s) ∈ Ds, s ∈ S

∑

p∈Js
od

,e∈p

xods
p Rs

od ≤ ve + fe, ∀e ∈ E, ∀s ∈ S
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ve ≤ MW we + ge,∀e ∈ E

∑

e∈An

(ve + fe) ≤ un,∀n ∈ N

un ≤ MOyn + hn,∀n ∈ N

Dado que para resolver este modelo se precisa tener la solución óptima para cada

uno de los escenarios, se resuelve este modelo mediante un optimizador usando aquellos

ejemplos para los que fue posible obtener la solución óptima en un tiempo de ejecución

de dos horas.
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Conclusiones (español)

La planificación en redes de telecomunicaciones ópticas constituye un campo de estu-

dio muy reciente, mientras se trata de sustituir las redes existentes basadas en anillos

f́ısicos por mallas ópticas y mientras evoluciona la tecnoloǵıa óptica. En esta memo-

ria se aborda la resolución metaheuŕıstica del problema real de utilización efectiva de

nueva tecnoloǵıa diseñada para incrementar la capacidad en redes de telecomunicaciones

ópticas. El problema surge cuando la demanda de ancho de banda en una red óptica

excede la capacidad existente en la red. La tecnoloǵıa de multiplexación por división

de longitudes de onda (WDM) proporciona una alternativa eficiente para expandir la

capacidad de redes ópticas existentes. El problema de decisión consiste en determinar

la mejor combinación de nueva fibra y sistemas de multiplexación por división de longi-

tudes de onda que permita incrementar la capacidad a mı́nimo coste satisfaciendo ciertos

requerimientos de demanda.

En la planificación de redes de telecomunicaciones, como en otros campos de apli-

cación industrial, surgen problemas de optimización a los que hay que dar respuesta ade-

cuada en un tiempo moderado. La modelización matemática y el uso de optimizadores

comerciales proporciona soluciones óptimas para algunos problemas espećıficos y de

pequeño tamaño, pero no es rentable para los problemas complejos de mayor tamaño

que surgen en circunstancias reales. Las metaheuŕısticas tratan de dar respuesta a estas

cuestiones evitando métodos heuŕısticos excesivamente dependientes de la estructura del

problema considerado y procedimientos diseñados para cada problema particular. Una

metaheuŕıstica es una estrategia que gúıa y modifica otras heuŕısticas con el propósito de

generar soluciones más allá de las generadas normalmente en una búsqueda de optimali-

dad local. Los procedimientos derivados de las metaheuŕısticas, diseñados para obtener

óptimos globales, no garantizan que la solución obtenida al finalizar la búsqueda sea la

solución óptima del problema. Sin embargo, permiten obtener soluciones de alta calidad
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en problemas reales dif́ıciles con un coste computacional moderado.

Las conclusiones más importantes obtenidas durante la elaboración de esta memoria

son expuestas a continuación.

1. Tras la realización de un estudio en el caṕıtulo 1 sobre los problemas reales que sur-

gen en general en el área de las telecomunicaciones, y en particular los que aparecen

al planificar redes con tecnoloǵıa de multiplexación por división de longitudes de

onda, se identifica el problema a considerar como uno de los más relevantes.

2. En la revisión bibliográfica, recogida en el caṕıtulo 3, se constata que el problema

de expansión de capacidad en redes ópticas mediante el uso de tecnoloǵıa WDM

presentado en esta memoria no ha sido abordado suficientemente. El trabajo más

importante propone un modelo de programación lineal entera precisamente para

este problema y lo aborda mediante el desarrollo de un algoritmo genético basado

en permutaciones de las demandas. Incluso una búsqueda exhaustiva del espacio

de permutaciones de las demandas puede no proporcionar la solución óptima del

problema, por lo que se precisa un enfoque de solución alternativo.

3. En otros trabajos se resuelven problemas similares al tratado en esta memoria sim-

plemente proponiendo un modelo matemático y usando un optimizador comercial

para ejemplos de pequeñas dimensiones. Los optimizadores comerciales no propor-

cionan soluciones óptimas a los modelos de programación matemática propuestos

para llevar a cabo la resolución del problema sobre redes reales en un tiempo com-

putacional razonable.

4. Un estudio de las caracteŕısticas y propiedades deseables de las metaheuŕısticas,

realizado en el caṕıtulo 2, permite seleccionar las más apropiadas para abordar el

problema que surge en la planificación de redes ópticas WDM y desarrollar sistemas

h́ıbridos que aprovechen las ventajas de cada una de ellas.

lviii



5. En el caṕıtulo 2 también se constata que la paralelización de metaheuŕısticas es

una de las v́ıas en las que se puede mejorar el rendimiento de las mismas en su

aplicación práctica a problemas reales.

6. Para evitar las deficiencias establecidas en los puntos anteriores sobre el tratamiento

que han recibido los problemas de planificación de redes de telecomunicaciones, se

desarrolla en el caṕıtulo 3 un procedimiento metaheuŕıstico h́ıbrido que combina

las buenas propiedades y caracteŕısticas de la búsqueda dispersa (scatter search),

de la búsqueda multiarranque (multistart), y de la búsqueda tabú (tabu search).

7. Se comprueba la efectividad del metaheuŕıstico h́ıbrido al ser comparado con dos

variantes de un procedimiento metaheuŕıstico basado en permutaciones y con las

soluciones óptimas proporcionadas por un optimizador comercial al resolver el mod-

elo propuesto por otros autores.

8. Se propone en el caṕıtulo 4 un modelo heuŕıstico de programación lineal entera al-

ternativo con el fin de determinar la capacidad requerida para conducir un conjunto

de requerimientos de demanda a través de una red. Este modelo tiene la ventaja

de incluir significativamente menos variables y restricciones que la formulación an-

terior.

9. Del análisis comparativo entre los resultados obtenidos usando el metaheuŕıstico

h́ıbrido y los resultados obtenidos resolviendo la formulación matemática de forma

óptima, se concluye que el modelo alternativo propuesto permite resolver ejemplos

reales de dimensiones mayores que el anterior.

10. El problema de supervivencia en redes de telecomunicaciones ópticas de múltiples

longitudes de onda se aborda en el caṕıtulo 5. Se proponen tres modelos matemáticos

alternativos para resolver el problema usando tres esquemas de protección difer-

entes.
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11. De la revisión bibliográfica de este problema, presentada en el caṕıtulo 1 de esta

memoria, se observa que el problema de expansión de capacidad para proteger la

red ante cualquier fallo de un elemento de la misma se aborda una vez obtenido el

diseño de red que permite satisfacer el conjunto de demandas. El estudio realizado

para concluir si la mejor red de servicio o red de trabajo (la que satisface el conjunto

de requerimientos de demanda) proporciona la mejor red con supervivencia lleva a

la conclusión de que esto no sucede en la mayoŕıa de los casos.

12. Se propone una versión modificada de la metaheuŕıstica h́ıbrida desarrollada en

el caṕıtulo 3, que incluye caracteŕısticas de la búsqueda dispersa y proporciona

un conjunto de referencia de buenas redes de servicio alternativas. Entonces se

resuelve el problema de protección considerando cada diseño de red del conjunto

de referencia como solución de partida. Se corrobora que la mejor red que permite

satisfacer las demandas y que además protege el tráfico en caso de fallo, no se

obtiene, en la mayoŕıa de los ejemplos, al considerar la mejor red de servicio. Se

concluye además que la mejor alternativa para garantizar la supervivencia es uno

de los esquemas de protección propuestos.

13. Los modelos desarrollados en los caṕıtulos anteriores y las herramientas meta-

heuŕısticas correspondientes se extienden para contemplar una importante consid-

eración en esta área que es la de abordar la incertidumbre presente en las aplica-

ciones reales.

14. De la revisión bibliográfica se deduce que es la primera vez que se considera pre-

cisamente este problema con incertidumbre en las demandas.

15. Se proponen varios modelos matemáticos con el fin de resolver el problema de

expansión de capacidad con demandas inciertas.

16. Se propone un modelo de programación estocástica, un procedimiento metaheuŕıstico
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que permite considerar funciones objetivo lineales y no lineales, y un enfoque ro-

busto que obtiene soluciones factibles incluso para el peor caso.
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Ĺıneas Futuras (español)

Las posibles ĺıneas de investigación futura se resumen en los siguientes puntos.

• La aplicación de paralelismo a los procedimientos metaheuŕısticos h́ıbridos desarrol-

lados para resolver el problema de expansión de capacidad en redes ópticas WDM.

• El diseño de metaheuŕısticas h́ıbridas para abordar otros problemas relevantes que

surgen al planificar redes ópticas WDM, tales como el problema de conducción y

asignación de longitudes de onda y el problema de localización de convertidores.

• La aplicación de metodoloǵıa Fuzzy para tratar el problema de provisión y con-

ducción bajo incertidumbres en las demandas.
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Aportaciones (español)

Esta memoria incluye los resultados de diversos trabajos de investigación que han sido

presentados en Congresos Internacionales o en Revistas Internacionales de los campos de

las heuŕısticas y de las telecomunicaciones.

El caṕıtulo 2 introduce un estudio detallado de algunos procedimientos metaheuŕısticos

básicos. Algunas metaheuŕısticas, tales como la búsqueda multiarranque, permiten in-

corporar las ventajas de la estructura global de la función objetivo de determinados

problemas. Esto permite identificar un conjunto de regiones del espacio de soluciones en

las cuales un procedimiento de búsqueda local desde cualquiera de sus soluciones con-

verge con alta probabilidad a un óptimo local determinado. Estos resultados han sido

desarrollados en el art́ıculo “A Multistart Clustering Technique for Combinatorial Opti-

mization” presentado en el congreso internacional MS’2000 y publicado en la serie The

best of MS2000 International Conference on Modelling and Simulation (2000).

El caṕıtulo 2 también describe la posibilidad de considerar las ventajas proporcionadas

por los métodos de paralelización, que permiten incrementar la exploración del espacio

de soluciones o bien reducir el tiempo de computación total. Estas ventajas han sido

probadas mediante el uso de las metaheuŕısticas de búsqueda dispersa y de entornos

variables. Los art́ıculos The Parallel Variable Neighborhood Search for the p-median

Problem” (2002), que ha sido publicado en la revista Journal of Heuristics, y “Paral-

lelization of the Scatter Search for the p-median problem” (2003), que ha sido publicado

en la revista Parallel Computing son los resultados de esta investigación. Además, un

art́ıculo sobre búsqueda tabú, resultado de la colaboración con el profesor Fred Glover,

aparecerá en la revista internacional Inteligencia Artificial.

El caṕıtulo 3 introduce el problema de provisión y conducción que surge en la planifi-

cación de redes ópticas WDM. Con el propósito de resolver este problema eficientemente

se desarrolló un procedimiento metaheuŕıstico h́ıbrido, que combina caracteŕısticas de la
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búsqueda dispersa, del multiarranque y de la búsqueda tabú. El h́ıbrido ha sido com-

parado con un procedimiento basado en permutaciones teniendo en cuenta las considera-

ciones propuestas por otros autores y con los resultados obtenidos al resolver de forma

óptima el modelo propuesto por otros autores. Los resultados obtenidos, que corrobo-

ran la efectividad del método, se recogen en el art́ıculo “Minimizing the Cost of Placing

and Sizing Wavelength Division Multiplexing and Optical Cross-Connect Equipment in

a Telecommunications Network”, que está en segunda revisión en la revista Networks.

Una versión preliminar de este trabajo fue presentada en el congreso 9th International

Conference on Telecommunication Systems, Modelling and Analysis, en Marzo de 2001.

En el caṕıtulo 4 se propone un modelo matemático que incluye un menor número de

variables y restricciones que el propuesto por otros autores. El metaheuŕıstico h́ıbrido se

comparó con los resultados obtenidos al resolver la formulación propuesta con un opti-

mizador existente, y los resultados se recogen en el art́ıculo “Capacity Expansion of Fiber

Optic Networks with WDM Systems: Problem Formulation and Comparative Analysis”.

Una versión preliminar de este trabajo fue presentada en el congreso internacional de tele-

comunicaciones Symposium on Informatics and Telecommunications September (SIT’02)

y una versión mejorada fue presentada como conferencia invitada en el congreso IN-

FORMS Annual Meeting 2002. El art́ıculo ha sido aceptado para su publicación en la

revista Computers and Operations Research.

Finalmente, el documento de trabajo “Provisioning of Survivable WDM Mesh Net-

works Under Demand Uncertainty and Single Link Failure Protection”, que incluye los

resultados de los caṕıtulos 5 y 6, será presentado en el congreso International Network

Optimization Conference (INOC2003), que tendrá lugar el próximo mes de octubre.
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Preface

In the last four decades, problems related to planning and routing in telecommunication

networks have become a fertile ground for developing and applying optimization tech-

niques. Two main events have driven these efforts: (1) the large investment in telecom-

munication, which offers significant opportunities for reducing costs and improving net-

work designs, and (2) the rapid changes in technology, which result in new operational

environments.

Several developments that occurred during the last decade as well as the increase

in the volume of demand have triggered a new era in telecommunications where analog

technology is being substituted with digital technology. The replacement of traditional

copper wires with optical transmission equipment not only increased bandwidth but also

reduced operational cost.

It is evident that the world of networking in telecommunications is rapidly changing as

new technologies are introduced. Where once demand was measured in kilobits, it is now

measured in megabits. Where customers demanded megabits, they now demand gigabits.

And where gigabits of capacity are now available, customers will soon be demanding

terabits. As economies evolve from an industrial past to an information-based future,

the economics of businesses and institutions are also shifting on their axes and the demand

for more bandwidth is becoming a key driver in most societies.

Optical fiber technology has become the preferred choice to build telecommunication

networks, due to its cost effectiveness, reliability and its almost unlimited capacity. Such

combination enables telecommunication companies to offer a multitude of new services

that require large amounts of bandwidth. Technology advances have motivated the de-

velopment of appropriate planning tools that respond to the characteristics of a new

structural and operational environment.

An optical network is a telecommunications network with optical fibers as transmis-

sion links, and with an architecture that is designed to exploit the features of fibers.
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Despite the fact that the fiber has extremely high bandwidth, since the rate at which

an end user can access the network is limited by electronic speed, only speeds of a few

gigabits per second can be achieved. Therefore, the optical-electronic conversion does

not allow to exploit the bandwidth of a single fiber. Wavelength Division Multiplexing

(WDM) and the erbium-doped fiber amplifier (EDFA) are two recent developments that

overcome these limitations.

Wavelength Division Multiplexing is the transmission of multiple laser signals at dif-

ferent wavelengths (colors) in the same direction, at the same time and over the same

strand of fiber. While traditional technologies such as Synchronous Digital Hierarchy

(SDH) or its American equivalent Synchronous Optical Network (SONET) are often

based on networks consisting of interconnected rings, WDM technology usually does not

restrict to any special network connection. The DWDM system is equipped with ampli-

fiers that allow transmission in one channel. The most important recent development has

been the erbium-doped fiber amplifiers (EDFAs), which amplify signals at many different

wavelengths simultaneously.

The current optical communications networks do not have enough capacity to cover

the bandwidth demands. WDM and its related equipment are a new technology for

increasing the capacity of an existing fiber network while reducing costs. The problem

that we address in this dissertation is a real world problem that results from the need to

expand capacity of telecommunication networks built with fiber optics technology. This

problem is referred to as the Provisioning and Routing Problem in WDM networks.

The high capacity in optical fiber links provided by WDM systems results in network

designs that are sparser than those associated with copper technology. Consequently, the

traffic routed through a single link is significantly larger in optical fiber networks and so

is the disruption of services if any single link or node were to fail. Therefore, along with

cost reduction, survivability against failures is one of the most important aspects that

are considered when designing fiber networks. Survivability is defined as the ability to
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restore network services in the event of a catastrophic failure such as a faulty link or a

defective node.

An important consideration for additional research in this area deals with tackling

uncertainty. Clearly, the demands cannot be considered known in an environment such

as the telecommunications industry. The availability of a MIP formulation that can

be used to find near-optimal solutions to the capacity expansion problem represents a

stepping-stone toward the solution of a stochastic version of the problem that treats the

demands as uncertain.

Chapter 1 provides an overview on optical telecommunication networks and the prob-

lems that arise when planning optical networks as well as a literature review. It also

provides a description of the optical technology that is used in this dissertation.

Chapter 2 presents an introduction of Metaheuristics, that are master strategies that

guide and modify other heuristics to produce solutions beyond those that are normally

generated in a quest for local optimality. Metaheuristics provide a means for approx-

imately solving complex optimization problems, as those that arise in Communication

Network Planning. These methods are designed to search for global optima. However,

they cannot guarantee that the best solution found after termination criteria are satisfied

is indeed a global optimal solution to the problem. Experimental testing of metaheuris-

tic implementations show that the search strategies embedded in such procedures are

capable of finding solutions of high quality to hard problems in industry, business and

science.

Chapter 3 introduces the general provisioning and routing problem, giving a wide

description without considering the technology that has to be installed, including its ap-

plications in the real world, and a detailed literature review. This chapter also provides

a literature review and a description of the provisioning and routing problem in WDM

optical networks. It provides a mathematical model and a hybrid metaheuristic solution

approach, that is then compared with others metaheuristics and with the model solved
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to optimality. Chapter 4 provides an alternative mathematical model for solving the

problem. The proposed metaheuristic in then compared with the model solved to opti-

mality. The Survivability problem in WDM optical networks is approached in Chapter 5,

which provides several integer linear programming models for some protection schemes

and proposes solution procedures. Finally, the provisioning and routing problem under

demand uncertainties is approached in Chapter 6, in which several alternative mathe-

matical models are developed.
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Chapter 1

Optical Telecommunications

Networks

This chapter provides an introduction of Optical Telecommunication Networks. The main

aim is to present different problems that arise when planning WDM optical networks.

1.1 Introduction

Telecommunications networks and systems have evolved and grown at an explosive rate

in the last decades creating new opportunities for modeling and the application of opti-

mization in planning problems. Our society requires that we have access to information

when we need it and where we need it. The information is provided to us through the

global mesh of communication networks, whose current implementations do not have the

capacity to support the bandwidth demands.

Several developments that occurred during the last decade as well as the increase

in the volume of demand have triggered a new era in telecommunications where analog

technology is being substituted with digital technology. The replacement of traditional

1
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copper wires with optical transmission equipment has not only increased bandwidth but

also reduced operational cost. During this time, the industry also has experienced both

increased competition between providers of telecommunication services and the evolution

of a wide range of user services that combine voice, data, graphics and video. In addition,

corporative intranets and extranets have felt the need to increase the connectivity and

bandwidth among several locations of a company, its clients and its providers.

The world of networking in telecommunications is rapidly changing as new technolo-

gies are introduced. As economies evolve from an industrial past to an information-based

future, the economics of businesses and institutions are also shifting on their axes and

the demand for more bandwidth is becoming a key driver in most societies.

Most of the telecommunication networks are divided into three main levels [3], [41],

[93]:

1. The long distance or backbone network that typically connects pairs of cities

through the gateway nodes;

2. The metropolitan interoffice network that interconnects switching centers in differ-

ent clusters (groups of clients) and allows the access to the gateway nodes; and

3. The local access network that connects individual clients, that belong to a cluster,

to the corresponding switching center.

These three different levels in a telecommunication system differ in several aspects,

including their design criteria. Ideally, the design of a telecommunication network should

simultaneously consider these three levels. However, due to its complexity, the overall

planning problem is typically divided into subproblems, where each level is considered

separately.

Two special network flow problems have been the focus in the telecommunications

literature: the feasibility problem and the analysis problem. Given a graph and capaci-

tated links, the first problem refers to the feasibility of a set of flows. If a set of demand
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requirements is also considered, the second problem refers to the determination of fea-

sible flows such that the demand requirements are satisfied. In this thesis, however, we

deal with a third type of network flow problem: the network synthesis or provisioning

problem, which consists of minimizing the total cost of installing capacity on links of a

given network so that demand requirements are satisfied. In this problem, both the phys-

ical network topology and the demand requirements are given and the decision variables

relate only to adding capacity to links at minimum cost. When the problem includes

also the design of the network topology, that is, determining which links to install, then

a complete graph and installation costs are considered.

A given network topology, a cost structure and a set of demand requirements char-

acterize a typical instance of a network synthesis problem. The cost structure depends

on the problem at hand and on the available technology. It is customary to assume

that the system does not add routing costs once the equipment has been installed. Also,

these problems typically deal with commodities involving a single source and a single

sink. A requirement between two nodes is a single commodity flow requirement. Multi-

commodity flow requirements are also considered as long as the commodities involve

different origins and destinations while sharing the capacity of the network.

1.2 Optical Networks

Networks allow a geographically distributed community of users to communicate and

share information. Although most of the telecommunication networks in use today have

optical fiber in them, this does not make them optical networks. In almost all cases in

which fiber is used, it is deployed in transmission links as a substitute for copper wires.

An optical network is a telecommunications network with optical fibers as transmission

links, and with an architecture that is designed to exploit the features of fibers. These

architectures involve combinations of both electronic and optical devices. Therefore, the
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term optical or lightwave network does not necessarily imply purely optical network, but

it does imply more than a set of fibers terminated by electronic switches.

Whenever a new technological development comes on the scene, there is a technology

push toward deploying new systems that make use of it. This has been the case with fiber

optic technology. Since the fabrication of the first low-loss optical fiber in a Corning lab

in 1970, which made fiber practical for communications, the optical global information

industry has grown at an explosive rate. Ever since this event, a vision of an all-optical

network has intrigued researchers, service providers, and the general public. Despite the

deployment of optical fiber throughout the world, its capacity has not been exploited

efficiently.

Optical fiber technology is nowadays the premier component in telecommunication

networks, due to its cost effectiveness, reliability and its, for all practical purposes, un-

limited capacity. Such combination enables telecommunication companies to offer a mul-

titude of new services that require large amounts of bandwidth. Technology advances

have motivated the development of appropriate planning tools that respond to the char-

acteristics of a new structural and operational environment.

A large percentage of the total fiber capacity remains unused. One reason is that the

distribution network, that is the bridge between the high-speed fiber backbone and the

end users, is still in a relatively primitive state at this time. Another reason is that the

fibers in the ground are not organized into an architecture that makes their huge capacity

available for new broadband services. In addition, economic, legal, administrative and

political impediments make it difficult to succeed in using fiber capacity. However, the

main barrier is that the demand for services that could be supported by a new optical

infrastructure awaits the realization of that infrastructure, but the massive investment

required to realize it will not materialize until the potential investors see some sign of a

market for these new services.
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1.3 Wavelength Division Multiplexing - WDM

In theory, fiber has extremely high bandwidth (about 25 million MHz) in the 1.55 low-

attenuation band. However, since the rate at which an end user can access the network

is limited by electronic speed, only speeds of a few gigabits per second can be achieved.

Therefore, it is not possible to exploit the bandwidth of a single fiber due to the optical-

electronic conversion. Wavelength Division Multiplexing (WDM) and the erbium-doped

fiber amplifier (EDFA) are two major recent developments that overcome these limita-

tions.

Wavelength Division Multiplexing is the transmission of multiple laser signals at dif-

ferent wavelengths (colors) in the same direction, at the same time and over the same

strand of fiber. WDM with more than eight frequencies, called Dense Wavelength Di-

vision Multiplexing (DWDM), which creates multiple bi-directional ‘virtual fibers’ per

physical fiber, currently enables a low cost per bit [116]. DWDM solves the bandwidth

bottleneck resulting from growth in data traffic, because it is an emerging technology

that increases transportation capacity while preserving optical fiber equipments previ-

ously installed. Hence, DWDM provides carriers the flexibility and scalability they need

to deploy capacity when and where it is needed. While traditional technologies such as

Synchronous Digital Hierarchy (SDH) or its American equivalent Synchronous Optical

Network (SONET) are often based on networks consisting of interconnected rings, WDM

technology usually does not restrict to any special network connection, i.e., it assumes a

so-called mesh topology.

The DWDM system is equipped with amplifiers that allow transmission in one chan-

nel. The most important recent development has been the commercialization of erbium-

doped fiber amplifiers (EDFAs), which amplify signals at many different wavelengths

simultaneously, regardless of their modulation scheme or speed.

Most of the capacity cost when using DWDMs is related to the channel cards, which

are added as needed and their cost is charged to the design accordingly. This means
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that a system capable of handling up to 96 channels can be installed where only eight

channels are active, and the design would only consider the cost of equipping the eight

active channels. To use WDM technology, an equipment “unit” must be placed at both

endpoints of each fiber link. For each wavelength, or channel in use, channel equipment

must be also placed at both endpoints of the channel. Each WDM channel is bidirec-

tional and has the same capacity as a pair of fibers. Amplification is the process restoring

the optical signal to its original optical power and without distortion after the signal has

lost power when passing through a strand of fiber. This process is particularly impor-

tant in DWDM environments. The typical amplifiers do not have electronic elements,

that is, they are completely optical. Consequently, they do not require the classical

electrical-optical and optical-electrical conversions, thereby avoiding the associated need

for additional bandwidth.

1.3.1 Layers of the multiwavelength network architecture

The operations research literature approaches the network planning problem as a mul-

tilayered model due to the size and complexity of the networks. Figure 1.1 shows the

different layers and sublayers of a multiwavelength network. The higher layers represent

the logical network. The architecture presented in this section is representative of a Wide

Area Network (WAN). In smaller networks, some of the functions may not exist.

The logical-physical layer interface is located at the external ports of a network access

station (NAS), which connects user terminals and other nonoptical end systems to the

network. Then, a NAS is the boundary between the electronic and optical domain. The

interface between the physical and logical layers is in the ports of the NASs. Each NAS

connects an optical network node (ONN) through one or more pairs of fibers. Each node

is connected to other nodes using pairs of fibers, which are the network links. The graph

that consists of the network links and the network nodes is called the physical topology

of the network. If the network link is too long, in order to avoid the attenuation in
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Figure 1.1: Layered view of optical network connections

the fiber, optical amplifiers are installed, so that a fiber link consists of a series of fiber

sections between amplifiers.

The sublayers in the optical layer include the λ-channels, each of which has an assigned

wavelength and is routed separately by the optical network node. Each point-to-point

optical connection (OC) is routed on a λ-channel. The transceivers at origin and desti-

nation nodes must be tuned to a selected wavelength. In addition, the optical connection

is created by establishing an optical path (OP) through a sequence of network nodes to

carry that wavelength from the origin to the destination.

A logical connection (LC) is a connection between ports on a pair of source and

destination network access stations. Each logical connection is carried on an optical

connection through the intermediary of a transmission channel. The optical connections

are established through the actions of the nodes and stations. The nodes also create an

optical path on the assigned wavelength.

The optical layer is subdivided in several sublayers to provide multiplexing, multiple

access at several layers, and switching. Multiplexing allows to combine various logical
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channels on a λ-channel originating from one station. The multiple access allows λ-

channel originating from distinct stations carry multiple logical connections to the same

destination. Finally, through switching, distinct optical paths may be created on different

fibers in the network, using λ-channels on the same wavelength.

An optical path is routed on a succession of fiber links connecting network nodes.

Each of the internodal connections along an optical path is called an optical hop.

Figure 1.2 shows the concepts described above. A virtual connection (VC) between

a pair of end systems is carried on a logical path (LP), which consists of two logical

connections terminated by logical switching nodes. The first and second LCs are carried

on two- and three-hop optical connections, respectively. The access links are not counted

as hops.
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Figure 1.2: Typical connection
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1.3.2 Network Links

Each network link can support a number of concurrent connections through successive

levels of multiplexing. Typically, a link consists of a cable containing several bidirectional

pairs of fiber. This way if installing the fibers is an instance of space-division multiplex-

ing in the fiber layer. We consider wavelength division as the multiplexing technique

used to carry on each fiber several connections on many distinct wavelengths (channels).

The wavelengths assigned to each channel must be spaced sufficiently to avoid signal

overlapping, that is, interference among the signals at the optical receiver.

1.3.3 Optical Network Nodes

The functions of the optical path layer are implemented in the optical network nodes.

Therefore, the more functionality these nodes have, the more flexible the network is

in reacting to fluctuating user demand, changing loads, and equipment problems. The

different types of node functionality, classified in increasing order of complexity, are the

following:

• Static nodes: Directional Couplers and Static Routers.

A 2 × 2 directional coupler is an optical four-port, represented as in Figure 1.3,

with ports 1 and 2 designated as input ports and 1′ and 2′ designated as output

ports. An optical signal enters the coupler through fibers connected to the input

ports and leaves through fibers connected to the output ports. Static nodes can

also be constructed by interconnecting 2× 2 couplers.

A static router has n input and n output fibers, each carrying up to n distinct

channels with different wavelengths. Each input fiber is connected to an 1 × n

wavelength demultiplexer (WDMUX), which separates the wavelengths on the fiber.

Each output fiber is connected to an n×1 wavelength multiplexer (WMUX), which
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combines the different wavelengths on that fiber. The WDMUXs, WMUXs and

their interconnecting fibers act as a single node.

• Dynamic (switching) nodes.

The simplest dynamic node is a space-division switch, that is commonly called op-

tical cross-connect (OXC). WDM networks are capable of switching data optically

by using optical cross-connects (OXCs). An optical cross-connect can be one of the

following types:

1. OXCs with opto-electro-opto (OEO) conversion, which are equipped with

transmitters and receivers and convert data from optical domain to electronic

domain, switch data with an electrical switch and convert data back to optical

domain. This type of OXCs are called “OEO switches”.

2. All-optical OXCs, which have photonic switch fabrics and switch data entirely

in the optical domain. All-optical OXCs are also called “all-optical switches”,

“OOO OXCs”, and “OOO switches”.

1 →

2 →

→ 1′

→ 2′

PPPPPPPPP³³³³³³³³³

Figure 1.3: Directional Coupler

When an optical signal has to remain on a fixed wavelength from end to end, the

condition called wavelength continuity is satisfied. One possible way to overcome this

constraint is to use wavelength converters inside an all-optical switch. A wavelength con-

verter is an optical device capable of shifting an input wavelength to a possibly different

output wavelength among the W wavelengths in the system (see Figure 1.4). Wave-

length converters relax the continuity constraint at a node. Therefore, they reduce the
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number of wavelengths needed to route a set of demands, resulting in better bandwidth

utilization. Wavelength convertes have been referred to in the literature as wavelength

shifters, wavelength translators, wavelength changers and frequency converters.

λs λc
- -Wavelength Converter

s = 1, 2, ..., W
c = 1, 2, ..., W

Figure 1.4: Functionality of a Wavelength Converter

For the purpose of illustrating the wavelength continuity constraint, consider a wave-

length routed network with five nodes and two wavelengths per fiber as shown in Figure

1.5.
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Figure 1.5: Wavelength Routed Network
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The mechanism of communication in a wavelength network is a lightpath, which is

an all-optical communication channel between two nodes in the network and may span

on more than one fiber link. Lightpaths have to be established for the node pairs (1, 3),

(2, 4), (3, 5), (4, 1), and (5, 2). There is only one physical path for each node pair. Figure

1.5 shows the lighpaths for node pairs (1, 3), (2, 4), (3, 5), (4, 1), which are denoted by p1,

p2, p3, and p4, respectively. However, due to the wavelength continuity constraint it is not

possible to establish lightpaths for all five node pairs. Despite the fact that bandwidth

is available on links 5 → 1 and 1 → 2, the wavelengths on these two links are different

and therefore no lightpath can be obtained for the node pair (5, 2). This bandwidth loss

caused by the mentioned constraint can be overcome by using a wavelength converter.

1.4 WDM Optical Network Architectures

This section summarizes how connectivity is created, taking into account the relations

among physical constraints, device functionality, and connectivity. Based on the level

of controllability in network nodes, three classes of WDM optical network architectures

are considered: broadcast-and-select networks, wavelength routed networks, and linear

lightwave networks.

1.4.1 Broadcast-and-Select Network

In the broadcast-and-select method, a receiver can make a logical connection with any

transmitter by selecting the information which is interesting for it and discarding the

rest. Different nodes transmit messages at the same time on different wavelength and

the coupler combines all messages and broadcasts the combination to all nodes. A node

selects a wavelength to receive its message.
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1.4.2 Wavelength Routed Network (WRN)

A Wavelength Routed Network includes either static or dynamic wavelength selectivity in

the network nodes, wherein wavelength reuse becomes possible through the use of appro-

priate connection control algorithms. These networks are not restricted to a particular

physical topology. A wavelength can be selected in the optical network node and routed

individually. The nodes contain transceivers tunable over the range of wavelengths. Then

the optical paths are point-to-point and to get multipoint connectivity it is necessary the

use of multiple point-to-point optical connections (WDM) and an optical transceiver for

each connection. There also could be wavelength conversion in the network.

In a WRN, the traffic is sent from one node to another using a lightpath without

requiring any optical-electronic-optical conversion. The lightpath is routed through the

intermediate nodes using their wavelength cross-connects. The origin and destination

nodes for a lightpath use a transceiver and a receiver that are tuned to the wavelength

on which the lightpath operates. As mentioned before, if the wavelength continuity

constraint is imposed, the same wavelength must be used on all the links along the

selected route.

1.4.3 Linear Lightwave Networks (LLN)

The properties of the LLN are more general than the properties of WRN, since they

are waveband rather than wavelength routed, and they can support multipoint optical

connections in addition to point-to-point connection. The routing nodes in a WRN

switch wavelength, whereas in a LLN switch wavebands, but not wavelengths within a

waveband. Then the number of optical switches at nodes reduces from the number of

wavelengths to the number of wavebands. The individual wavelengths in a waveband are

separated at the end nodes using optical receivers.
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1.5 Issues in Wavelength-Routed Networks

This section briefly describes some relevant issues in wavelength-routed networks includ-

ing routing and wavelength assignment, minimizing the bandwidth loss due to wavelength

continuity constraint, design, reconfiguration, and survivability of virtual topology, and

control and management.

1.5.1 Routing and Wavelength Assignment (RWA)

The RWA problem is one of the fundamental subproblems when designing wavelength

routed networks (WRNs). The wavelength assignment problem consists in allocating

an available wavelength to a connection and tuning the transmitter and receiver to the

assigned wavelength. Solving the routing problem consists of determining a path for the

selected wavelength and setting the switches in the intermediate nodes. Since an optical

path is associated to a wavelength, such path cannot be established until a wavelength

is allocated. A survey for the RWA problem may be found in [142], [143].

A connection is supported by a lightpath in a wavelength-routed WDM network and

it may span multiple fiber links. The traffic demands between pairs of nodes can be either

static or dynamic. In static routing, traffic requirements is a set of known point-to-point

demands. In this case, the goal is to assign routes and wavelength to each requirement

minimizing the number of wavelengths used. This problem, that is also known as Static

Lightpath Establishment (SLE) problem, is NP-complete [24] and, therefore, algorithms

that reach a solution close to the optimal in reasonable computational time are used.

The SLE problem under the wavelength continuity constraint can be formulated as an

Mixed Integer Linear Program (MIP) [114] in which the objective is to minimize the flow

on each link. The wavelength continuity constraint increases the blocking probability,

that is the percentage of connections rejected.

In dynamic routing, traffic requirements have to be routed or not in a random manner.
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The established lightpaths remain in the network for a finite time. The dynamic problem

arises under changes in traffic patterns or network components failures. The goal of

this problem is to set up lightpaths and assign wavelengths in order to maximize the

number of connections established in the network. This problem is also called Dynamic

Lightpath Establishment (DLE). Dynamic RWA algorithms reach worst solutions than

static RWA algorithms since a dynamic algorithm has no knowledge about future demand

requirements.

The SLE problem can be divided into two subproblems: (1) routing and (2) wave-

length assignment; and each problem can be solved independently. Banerjee, et al.

[4] proposed algorithms to solve the SLE problem for large networks, and used graph-

coloring algorithms to assign wavelengths to lightpaths once the they have been routed.

The DLE problem is more difficult to solve and heuristics need to be employed. Al-

gorithms for solving the routing subproblem can be broadly classified in three types:

fixed routing, alternate routing, and exhaust routing [90], [117]. The fixed routing pro-

vides for each node pair only a candidate route, which is computed offline. The route

for a node pair does not change with changing traffic conditions. The alternate routing

generates, for each node pair, a set of k candidate routes, which are also computed of-

fline. For the wavelength assignment subproblem, several heuristics have been proposed

[15], [23], [67], [69]. These heuristics are Random Wavelength Assignment, First-Fit,

Least-Used/SPREAD, Most-Used/PACK, Min-Product, Least Loaded, MAX-SUM, Rela-

tive Capacity Loss, Wavelength Reservation, and Protecting Threshold.

1.5.2 Wavelength-Convertible Networks

To overcome the bandwidth loss due to the wavelength continuity constraint, wavelength

converters can be installed at network nodes. Wavelength routed networks with this ca-

pability are referred to as wavelength-convertible networks [115]. A node with wavelength

conversion capability is called a wavelength converting node. If a wavelength converter
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can convert any wavelength to any other (it is said that the converter has full degree

of conversion) and if there is a wavelength converter for each fiber link in every node

of the network, then the network is said to have full wavelength-conversion capabili-

ties. If a wavelength-convertible network with full wavelength-conversion capabilities is

considered, then only the routing problem needs to be addressed, and the wavelength

assignment is not an issue.

Wavelength-convertible networks reduce the bandwidth loss due to the wavelength

continuity constraint. However, such a network is too costly since the converters are

expensive. This leads to questioning how many nodes should be wavelength converting

nodes, how do we choose the converting nodes, and where (optimally) to place a few

converters in an arbitrary network.

1.5.3 Virtual Topology Design (VTD)

The virtual or lightpath topology (optical layer), which is superposed on the fiber layer,

consists of a set of lightpaths established between a subset of node pairs in the network.

The RWA problem and the VTD problem are similar, except that the design has to be

done within the optical layer.

Two nodes can communicate on one-(light)hop if they are connected by a lightpath.

On the other hand, if they are connected by a sequence of lightpaths, they communicate

on muti-(light)hop. In this case, the connection between two consecutive lightpaths is

performed via electronic processing.

The virtual topology is designed to route the traffic in such a way as to optimize a

certain performance metric. This metric can be the average message delay, which can be

a measure of the number of lightpaths traversed by it, or network congestion, which can

be the maximum traffic carried by any lightpath.
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1.5.4 Virtual Topology Reconfiguration

Since the virtual topology is designed to satisfy the estimated traffic between the node

pairs, this topology may not be optimal for different patterns of flow. Therefore, it is

necessary to perform the reconfiguration of the virtual topology when the traffic pat-

tern changes by removing existing lightpaths and adding new ones. Wavelength cross-

connects, which allow changing the switching patterns of wavelengths, facilitate the pro-

cess of reconfiguration.

Two different approaches have been proposed to migrate one topology to another

avoiding expensive service disruption. The first approach consists of designing an optimal

topology for the new traffic pattern and obtaining the number of steps required to migrate

the current topology to the new one. The second approach selects the feasible topology

that requires the minimum changes to the current topology.

1.5.5 Survivable Networks

The high capacity in WDM networks results in network designs that are more sparse

than those associated with copper technology. As a result, the traffic routed through a

single link is significantly larger and so is the disruption of services if any single link or

node were to fail. Hence, survivability, together with fault protection and restoration, is

a growing area of concern.

Along with cost reduction, survivability against failures is one of the most important

aspects that are considered when designing fiber networks. Survivability is defined as the

ability to restore network services in the event of a catastrophic failure such as a faulty

link or a defective node. Network providers typically use survivability as a competitive

differentiator or offer it as a premium service.

Failures in an optical network can be links or switching devices failures. Links faults

are often caused by external causes, whereas equipment failures in the network nodes are
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due to internal causes.

The fault-recovery techniques can be roughly classified in two types: restoration and

protection. Restoration techniques should reroute the affected traffic dynamically and

rapidly using the capacity provided in the network [66]. Protection techniques pre-

compute in advance backup routes for each possible failure [38], [116]. If only single

failures are considered, protection techniques can be used, whereas restoration is used

if two or more failures occur at the same time. However, since services can be restored

in hours or days, most network planners do not consider more than a single node or

link failure when designing for survivability because the probability of another failure

during the repair period is small. We consider only protection mechanisms for single-link

failures.

Some criteria can be assumed in order to classify the protection techniques. A first

classification criterium may be associated with the network topology. Two alternatives

can be distinguished: ring network protection and mesh network protection. The ring

network architecture has been widely used to implement survivability in the event of

single link or node failures, because inherently it provides two different paths between

any two points in the network. Although rings have desirable features in terms of network

survivability, users who are transporting sensitive information across the network might

be reluctant to be on the same ring as another user in a different building.

The approaches to survive single-link failures in an optical network are based on two

basic survivability mechanisms: path protection/restoration and link protection/restoration.

Path protection statically allocates a backup path between the origin and destination

nodes of a connection (see Figure 1.6). In path restoration, the origin and destination

nodes dynamically find a backup route after the link failure. If sharing among backups

is not allowed and a link-disjoint backup path is dedicated to the fault, then we are

under a dedicated-path protection scheme (also called 1+1 protection). The switches on

the backup paths can be configured at the beginning. This type of recovery is very fast,



Chapter 1. Optical Telecommunications Networks 19

but is not capacity efficient. If sharing among backups is allowed, then we are under a

shared-path protection scheme. A link-disjoint backup path is also reserved to recover the

fault. The switches on the backup paths cannot be configured until the fail occurs. The

recovery time is longer, but the system is more capacity efficient.
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Figure 1.6: Path Protection

In link protection, all the traffic that is routed on the failed link is rerouted around

that link (see figure 1.7). During demand setup, backup paths are reserved around each

link in the primary path. In link restoration, the origin and destination nodes of a link

dynamically reroute the traffic around the link. If at the time of demand setup, a backup

path is reserved around each link of the primary path, this is known as a dedicated-link

protection scheme. In shared-link protection, at the time of demand setup, for each link

of the primary path, a backup path is reserved around the link, allowing other backup

paths to share the reserved capacity.

There have been several authors who have applied ring-protection schemes in WDM

mesh networks. One such approach include the development of p-cycles (preconfigured
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Figure 1.7: Link Protection

protection cycles). The p-cycle concept was introduced by Grover and Stamatelakis in

[58], [59], [129]. Techniques based on ring protection offer very fast recovery times, but

the ratio between the spare capacity and the primary resources is at leat 100% [59].

However, for mesh protection techniques, the ratio can typically be in the range of only

50-70% [59]. Using p-cycles both the efficiency of mesh protection and the recovery

speed of ring networks are achieved [58]. The applicability of the p-cycle concept has

been focused on SDH/SONET Networks. Schupke, et al. in [125] study the efficiency of

p-cycles applied to WDM networks with and without wavelength conversion. The results

obtained by these authors in particular for wavelength converting networks show that

p-cycles achieve high efficiency. Their goal is to minimize the cost of using the spare

channels to generate the p-cycles used to protect the network. However, they do not

consider the possibility of increasing the capacity of the network by adding more fiber,

WDM and OXC systems. If wavelength conversion is not allowed, then the problem

becomes more complex since it is necessary to take care of the individual wavelengths of
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the system.

1.5.6 Optical Multicasting Routing

So far it has been assumed that the traffic demands are point-to-point. However, in

many real applications the traffic has to be routed from an origin to several destinations.

This one-to-many communication is referred to as multicasting, which is used for video

conferencing, distance learning, real time work groups, etc.

1.5.7 Network Control and Management

The control mechanism should be able to find a route and assign a wavelength to the

connection to respond dynamically to customer demand and configure the switches along

that route. The objectives are to maximize the number of connections, minimize the

connection setup times, and minimize the bandwidth used for control signals.

1.6 Economic Advantages in Multiwavelength Opti-

cal Networks

WDM technology can reduce the cost of adding fiber capacity in long-haul carrier net-

works. There is no question about the usefulness of this technology, as it would cost

millions to lay new fiber to meet constantly increasing demand. In fact, the first systems

in the market were optimized for long-haul inter-exchange applications. Competitive

inter-exchange carriers have already created new markets for optical capacity by leasing

specific wavelengths to other carriers. The WDM/DWDM equipment deployed in North

America has already helped to relieve long-haul network congestion experienced in 1997

and 1998 as Internet and data traffic put unprecedented demands on existing capacity.

Perhaps more importantly, WDM is enabling a new “optical layer” of telecommunication
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networks, in which traffic flows can be aggregated and routed more efficiently (by suitable

wavelength grooming) and restored more quickly and reliably after network failures.

The local network presents several challenges to carriers. Rapid growth in demand

and changes in traffic patterns imply that the access network must support many dif-

ferent service interfaces and at the same time, it must be scalable, it must be able to

allocate bandwidth on demand, and it must be reliable. It is important to note that the

metropolitan interoffice network is not less dynamic than the access network, because the

changes in the access network directly impact the interoffice network. Therefore, rapid

response to changes in the access network is crucial for the telecommunications industry.

While long-haul carriers have generally understood the economic advantages of DWDM,

local access companies did not immediately perceive an advantage of deploying this tech-

nology when compared to adding more fiber. Recently, however, some local access com-

panies are starting to see metro optical networks based on DWDM technology as an

attractive alternative to new fiber pulls. Meanwhile, vendors have been able to reduce

costs to a point where WDM/DWDM links and associated equipment that route and

switch wavelengths, such as optical cross-connects (OXCs), have become clearly cost-

advantageous for short-haul (metropolitan area and local access) networks.

We study the economic advantages for the architectures WDM point-to-point systems

and WDM cross-connected mesh networks.

Currently, the long-haul networks and some local exchange networks do not have

enough capacity to support the traffic that has to be routed on them. In a conduit there

can be several fiber cables (e.g., 4), each of which containing several single fibers (e.g.,

96). The term fiber exhaust means that a single cable is full of fibers, but there might be

space in the conduit to install more cables. The term conduit exhaust means that there

is not room to install any more cables in the physical structure. It is costly to dig up the

ground to build new conduit facilities. Under this scenario there are two ways to increase

the capacity of an existing network: dig up the ground to install new fiber conduits and
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deploy traditional systems or increase the capacity of the remaining by installing WDM

systems.

1.6.1 Point-to-Point WDM Networks

WDM point-to-point systems are being deployed by several carriers to increase the capac-

ity of their existing fiber networks without installation of new fiber due to the increasing

demands on communication bandwidth.

Figure 1.8 shows a links between two nodes that is running at exhaust capacity.

Laying new fiber in the ground currently costs about 60,000 dollars per mile. Then the

cost of laying new fiber to increase the capacity of the link A −→ B would cost 6 million

dollars.

mA mBCapacity Exhaust
100 miles

Figure 1.8: Network Link

The capacity of the fiber link A −→ B in figure 1.9 is now increased by a factor

of 3, the number of wavelength channels used. The first systems were deployed with 8

wavelengths per fiber. However, the number of wavelengths carried by recently installed

systems has increased to 128. The cost of a WDM terminal with 16 wavelengths can

be less than 1 million dollar. The total cost (two WDM terminal are required in a

point.to-point configuration) is less than 2 million dollars.

Even when there is still fiber on links, WDM can be an attractive solution, especially in

long-haul carrier networks. There is no question about the usefulness of this technology

if there is fiber exhaust, as it would cost millions to lay new fiber to meet constantly

increasing demand. In addition, the length of a long-haul transmission link might be as
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Figure 1.9: Point-to-Point WDM System

long as 600 km, with several electronic regenerators, which are required every 40 km,

whereas the optical amplifiers (EDFAs) can be spaced as far as 120 km. Finally, only one

optical amplifier is required to amplify multiple wavelength, whereas in the electronic

case is required one regenerator for each wavelength.

1.6.2 WDM Cross-Connect Networks

Figure 1.10 shows the current mode of operation in a central office using WDM. A

central office is a facility that contains switching, multiplexing, transmission, and end

system equipment. The switching and multiplexing equipment showed in the figure is

electronic based on DCSs (Digital Cross-Connects).

Figure 1.10 shows an electronic switching system installed in the network node. This

situation is compared with the situation in figure 1.11 with an optical cross-connect

approach.

In Figure 1.10 each transport system carries 16 wavelengths, each of which terminates

on a SONET terminal (MUX in the figure). Each SONET terminal demultiplexes the

2.5-Gbps (OC-48) signals into their constituent DS3 tributaries (48 DS3s in an OC-48).

In this mode of operation, the individual DS3s (running at 45 Mbps) are terminated

onto a large digital cross-connect, which is responsible for grooming, provisioning, and

protecting the individual DS3 channels. This makes sense if there is a need to access these

individual DS3s; that is, if all of them terminate at the switching node at DS3 speeds,

and none are terminated at higher speeds or passed through. However, in the current

market, switches with direct OC-48 or higher speed interfaces will be available. It is
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Figure 1.10: Network node with DCS

therefore unnecessary and costly to demultiplex these optical signals into their low-speed

components.

To compare the optical and electronic switching approaches, let us assume that the

network is dominated by data traffic that terminates on equipments with OC-48 inter-

faces, so that demultiplexing to DS3 speeds at the cross-connect is unnecessary. Let the

cost of each DS3 termination on the digital cross-connect be 1, 000, and let the cost of

the SONET terminal (unprotected; protection provided at the cross-connect) be 40,000

dollars. In the electronic switching approach of Figure 1.10, a 2, 880 × 2, 880 DCS is

required to switch signals at the DS3 level, assuming that most of the traffic is pass-

through, with 576 DS3 local access ports. Now compare this with the case in which
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an optical cross-connect is installed at the node to switch the high-speed optical signals

without demultiplexing them to DS3 level. The connections between the WDM termi-

nal and the OXC are short lengths of fiber. As shown in figure 1.11, the local traffic

is now dropped at the node in the form of 12 OC-48s, which are then demultiplexed

into 576 DS3s. Replacing the DCS by the optical cross-connect reduces the number of

SONET terminals from 48 to 12 and the size of the low-speed digital cross-connect from

2, 880 × 2, 880 to 1, 152 × 1, 152. (The smaller DCS is still needed for switching local

traffic.) This can result in savings of more than $3 million, depending on the cost of the

cross-connect.
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Metaheuristics

2.1 Introduction

A Metaheuristic is a master strategy that guides and modifies other heuristics to produce

solutions beyond those that are normally generated in a quest for local optimality. Meta-

heuristics provide a means for approximately solving complex optimization problems, as

those that arise in Communication Network Planning. These methods are designed to

search for global optima. However, they cannot guarantee that the best solution found

after termination criteria are satisfied is indeed a global optimal solution to the problem.

Experimental testing of metaheuristic implementations show that the search strategies

embedded in such procedures are capable of finding solutions of high quality to hard

problems in industry, business and science.

2.1.1 Optimization

The theory of optimization refers to the quantitative study of optima and the methods

for finding them. The technical verb optimize means to achieve the optimum and opti-

mization is the act of optimizing. To achieve the optimum entails in some cases to obtain

the most of some measure of success (e.g., revenue) or in some other cases to obtain the

27
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least of another measure (e.g., cost). Choosing a quantitative measure of effectiveness

and then optimizing it has become the typical way in which many important decisions

are made. Decisions involving how to design, build or operate a physical or economics

system are reached in three steps:

1. Identify the decision variables in the system and determine, accurately and quali-

tatively, how they interact.

2. Identify a measure of system effectiveness that can be expressed in terms of the

system variables. This measure is often referred to as the objective function.

3. Choose those values of the system variables that yield optimum effectiveness.

In classical optimization methods, such as linear programming, these three steps result

in a model formulation of the type:

Minimize f(s), subject to g(s) ≥ b

In this formulation, f(s) is the quantitative measure of quality (or objective function)

and s are the decision variables. The set of constraints is also formulated in terms of the

decision variables and represented as bounds on the function g(s). In the case of linear

programming both f(s) and g(s) are linear functions.

2.1.2 Linear Programming

Linear programming is considered a general-purpose tool because the only requirement

is to represent the optimization model as a linear objective function subject to a set

of linear constraints. The state-of-the-art linear programming solvers are quite pow-

erful and can successfully solve models with thousands and even millions of variables

employing reasonable amounts of computer effort. Evidently, however, not all business,

industrial and scientific problems can be expressed by means of a linear objective and
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linear equalities or inequalities. Many complex systems may not even have a convenient

mathematical representation, linear or nonlinear. Techniques such as linear programming

and its cousins (nonlinear programming and integer programming) generally require a

number of simplifying assumptions about the real system to be able to properly frame

the problem.

Linear programming solvers are designed to exploit the structure of a well-defined and

carefully studied problem. The disadvantage to the user is that in order to formulate the

problem as linear program, simplifying assumptions and abstractions may be necessary.

This leads to the well-known dilemma of choosing between finding the optimal solution to

a model that does not represent the real system accurately and developing a model that

is a good abstraction of the real system but for which only inferior sub-optimal solutions

can be obtained. When dealing with the optimization of complex systems, a course of

action taking for many years has been to develop specialized heuristic procedures that,

in general, do not require a mathematical formulation of the problem. These procedures

were appealing from the standpoint of simplicity, but generally lacked the power to

provide high quality solutions to complex problems.

Example

Let us consider the routing and wavelength assignment (RWA) problem described

in chapter 1. Many problems in WDM networks have RWA as a subproblem. The

RWA problem consists of selecting routes and wavelengths to establish lightpaths. The

static RWA problem consists of assigning routes and wavelengths (lightpaths) to source-

destination pairs of a set of static connection requests (traffic demands).

In a wavelength routed WDM optical network, a connection is realized by a lightpath.

The requirement that the same wavelength must be used on all the links along the selected

route is referred to as the wavelength continuity constraint. The distinct wavelength

assignment constraint is that two lightpaths cannot be assigned the same wavelength

on any fiber. Therefore, a lightpath between two nodes is a pair consisting of a route
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between these nodes and a wavelength.

Consider the problem of assigning routes and wavelengths (lightpaths) to source-

destination pairs of a set of static connection requests (traffic demands). The objective

is to assign lightpaths to all the demands in order to minimize the required number of

wavelengths. This is the static lightpath assignment problem that have been shown to

be NP-complete (see [24]).

2.1.3 Constructive Heuristics

Constructive heuristics are procedures that heuristically select the components of initially

empty structure to get a solution of the problem. A simple constructive heuristic for

this problem may be to select the highest demand and finding the shortest path from

the origin to the destination and choose a wavelength of the set of used wavelengths

that can be used (distinct wavelength assignment constraint). If there is not such a

wavelength choose a new one, that is introduced in the set of used wavelengths. Then

choose from a candidate list the highest demand and repeat the process. Once a demand

is chosen, it is deleted from the candidate list of unsatisfied demands. While this heuristic

may occasionally give acceptable results in some problems in general, its performance is

predicted to be poor. This procedure falls within the class of heuristics called myopic,

because they make decisions based on limited (also called “local”) information without

considering the consequences of implementing those decisions.

Consider a network consisting of 5 nodes A, B, C, D, and E in a cycle. Let the set

of demands be: A-C, D-E, C-E, B-D. Using the above rule to assign lightpaths in this

order we will need 3 wavelengths. The assignments would be: A-C: λ1, D-E: λ1, C-E:

λ2, B-D: λ3. However, using the same rule with the permutation of demands A-C, C-E,

D-E, B-D we will need only 2 wavelengths. The assignments now are: A-C: λ1, C-E: λ1,

D-E: λ2, B-D: λ2.
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2.1.4 Local Improving

In addition to heuristics designed to construct solutions, there are also procedures for

improving solutions. The most common way of improving a solution is via the application

of a local search (LS). To continue with our RWA illustration, let us consider the network

with 5 nodes A, B, C, D, and E in a cycle. Suppose that a manager is asked to try to

satisfy the demands in the following order:

1:A-C, 2:D-E, 3:C-E, 4:B-D.

Also suppose that the permutation of demands was constructed using the “highest

demand” rule discussed above. A local search procedure would attempt to modify the

current permutation by performing a move (or change). One possible move is to exchange

the position of two demands in the order in which they are satisfied and measure the

impact on the objective function.

If we limit our local search to moves that exchange demands that immediately follow

each other in the current solution, then we only have to test 4 moves, i.e., (1,2), (2,3),

(3,4), and (4,5). We would select the “best” of those moves. Note that move (2,3) will

result in the solution with two wavelength.

However, if we want to test all possible exchanges of two demands as part of the local

search effort, there are 10 moves to be examined. The amount of exploration, which is

directly related to the amount of computational effort, is an important design issue in

local search procedures. The effort to explore the neighborhood of a solution (that is the
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set of solutions reachable from the current solution by applying a move mechanism) can

vary considerably. In a problem with n demands, there are n−1 neighbors if the move is

defined as exchanging the positions of two demands that immediately follow each other

in the current solution. However, if the move is defined as the exchange of positions of

any two demands, the size of the neighborhood (i.e., the cardinality of the set of solutions

reachable with such a move) is (n2 − n)/2.

Regardless of the move mechanism, local search typically explores only a small fraction

of the solution space. In the case of this problem, for example, the solution space consists

of n! solutions. Then, local search procedures that explore in the order of n2 or even n3

solutions are only dealing with a fairly small fraction of the entire solution space as the

dimension of the problem increases.

Heuristics designed for constructing solutions are typically combined with improving

local search procedures to create what is called a hill climbing method. These methods

start from a solution and apply a local search in an attempt to find an improved solution.

A local search is a procedure that analyze the neighborhood of the current solution to

continue the search. If an improved solution is found, the search moves to it and the

local search is applied again. The method stops when the local search is not capable of

finding a solution that improves upon the current solution, i.e., when the “best” possible

move cannot improve upon the objective function value of the current solution. The

hill climbing terminology refers to the trajectory of the objective function values in a

maximization problem.

The basic LS pseudocode can be stated as shown in figure 2.1.

The usual stopping criteria are designed to guess when the current solution is a local

minimum; a solution that has not a better neighbor. Typical conditions are related to

the number of iterations without improvements.

The usual greedy strategies try to improve as much as possible at every iteration.

The steps of the greedy local search are shown in figure 2.2.
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Initialization.

Select a neighborhood structure N that will be used in the search.

Find an initial solution s and compute f(s).

Iterations.

Repeat the following sequence until the stopping condition is met:

(1) Exploration of neighborhood.

Find a neighbor s′ of s (s′ ∈ N (s)).

(2) Move or not.

If f(s′) < f(s)then s ← s′.

Figure 2.1: Basic Local Search.

The stoping criterion is that there is not a better solution in the neighborhood of the

current solution; i.e., the current solution is known a local minimum.

The main shortcoming of an improving local search method is its inability to escape

local optimality. The search strategies proposed by metaheuristic methodologies result in

iterative procedures with the ability to escape local optimal points. Three are the main

ways to do it: to generate a new starting solution to apply the improving local search,

to consider a new set of moves or neighborhood definition and to allow non improving

moves. These provide the three basic metaheuristics: the Multistart Search, the Variable

Neighborhood search and the Global Search. In the global search are included those

that allow back moves that are controlled by memory (like Tabu Search) or probabilistic

(like Simulated Annealing). In addition, several metaheursitics use sets of solutions that

interact and evolve in the solution space (like Genetic Algorithms, Scatter Search or

Estimation Distribution Algorithms)
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Initialization.

Select a neighborhood structure N that will be used in the search.

Find an initial solution s and compute f(s′).

Iterations.

Repeat the following sequence until the stopping condition is met:

(1) Exploration of neighborhood.

Find the best neighbor s′ of s (s′ ∈ N (s)) and compute f(s′).

(2) Move or not.

If f(s′) < f(s) then set s ← s′. Otherwise stop.

Figure 2.2: Greedy Local Search.

.

2.2 Basic Metaheuristics

In this section we briefly describe the following well-known basic metaheuristics: mul-

tistart search, tabu search, simulated annealing, variable neighborhood search, scatter

search and genetic algorithms. The descriptions focus on the main features of these

methodologies.

2.2.1 Multistart Metaheuristic

A very simple metaheuristic is the Multistart Search (MS) [17], [51], [94]. A Multistart

Search consists of applying a search to a series of initial solutions. They are designed

from any search procedure by including it in a greater loop. Usually, the search procedure

is an improving local search. The stopping condition of the local search is then taken as

restarting criterium.
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Initialization.

Select a neighborhood structure N that will be used in the search.

Take a set of starting solutions.

Iterations.

Repeat the following sequence until the stopping condition is met:

(1) Start the LS.

Take a new starting solution s and compute f(s).

(2) Performing the LS.

Apply a the local search from s to get s′ If s′ is better than the current best

solution s∗ set s∗ ← s′.

Figure 2.3: Basic Multistart

As indicated above, the main disadvantage of the improving local search is the possi-

bility of being trapped in a non-optimal local minimum. The Multistart procedure is an

easy way to scape a local minimum.

The basic MS pseudocode is shown in figure 2.3.

Recent analysis of objective function surfaces in some problems show that as its sizes

grow large, random local minima are almost surely of average quality, implying that cur-

rent random multistart heuristics, which rely on random starting solutions, are doomed

to a central limit catastrophe. A key question for the performance of the Multistart

Metaheuristics is to use the information about the topology of the neighborhood cor-

responding to the distance between solutions defined using the move used in the local

search. A study in this matter can be found in [95]. The Greedy Multistart heuristic can

be described as shown in figure 2.4.
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Initialization.

Select a neighborhood structure N that will be used in the search.

Take a set of starting solutions.

Iterations.

Repeat the following sequence until the stopping condition is met:

(1) Start the greedy LS.

Take a new starting solution s and compute f(s).

(2) Performing the greedy LS.

Repeat the following steps until no improvement is met

(a) Find the best neighbor s′ of s and compute f(s′).

(b) If f(s′) < f(s) then set s ← s′ and go to (a).

(3) Improve or not.

If s′ is better than the current best solution s∗ set s∗ ← s′.

Figure 2.4: Greedy Multistart Search.
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2.2.2 Tabu Search

Basic Tabu Search (TS) [42], [43], [44], [45], [47], [48], [49], [50], [52] maintains a selective

history H of the states encountered during the search, and replaces the neighborhood of

the current solution N(s) by a modified neighborhood, which may be denoted N(H, s).

History therefore determines which solutions may be reached by a move from the current

solution, selecting s′ from N(H, s).

In the TS strategies based on short term considerations, N(H, s) characteristically is

a subset of N(s), and the tabu classification serves to identify elements of N(s) excluded

from N(H, s). In the intermediate and longer term strategies, N(H, s) may contain so-

lutions not in N(s), generally consisting of selected elite solutions (high quality local

optima) encountered at various points in the solution process. Such elite solutions typi-

cally are identified as elements of a regional cluster in intermediate term intensification

strategies, and as elements of different clusters in longer term diversification strategies.

TS also uses history to create a modified evaluation of currently accessible solutions.

This may be expressed formally by saying that TS replaces the objective function f(s) by

a function f(H, s), which has the purpose of evaluating the relative quality of currently

accessible solutions. It is provided by the use of frequency based memory. The relevance

of this modified function occurs because TS uses aggressive choice criteria that seek a

best s′; i.e., one that yields a best value of f(H, s), over a candidate set drawn from

N(H, s). Moreover, modified evaluations often are accompanied by systematic alteration

of N(H, s), to include neighboring solutions that do not satisfy customary feasibility

conditions.

For large problems, where N(H, s) may have many elements, or for problems where

these elements may be costly to examine, the aggressive choice orientation of TS makes it

highly important to isolate a candidate subset of the neighborhood, and to examine this

subset instead of the entire neighborhood. Because of the significance of the candidate

subset, we refer to it explicitly by the notation N ′(H, s).
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Initialization.

Select a neighborhood structure N that will be used in the search.

Find an initial solution s.

Start with the history record H empty.

Iterations.

Repeat the following sequence until the stopping condition is met:

(1) Exploration of neighborhood.

Select a non tabu neighbor s′ of s (s′ ∈ N ′(H, s)) to minimize f(H, x).

(2) Update.

Update the history record H.

Figure 2.5: Basic Tabu Search.

Therefore, the Tabu Search procedure, instead simply selecting the best neighbor s′

of s with respect to f as the greedy local search do, selects the solution in N ′(H, s) that

minimizes f(H, s). The selected solution s′ is called a highest evaluation candidate.

The TS pseudocode is shown in figure 2.5.

Formally the tabu search method is quite straightforward to state. The essence of

the method depends on how the history record H is defined and utilized, and on how the

candidate neighborhood N ′(H, s) and the evaluation function f(H, s) are determined.

2.2.3 Scatter Search

Scatter Search (SS) [35], [77], [79], [80], [81], [82], [83], [84], [85], [86], [87] is a population-

based metaheuristic that uses a reference set to combine its solutions and construct

others. The method generates a reference set from a population of solutions. Then a

subset is selected from this reference set. The selected solutions are combined to get
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starting solutions to run an improvement procedure. The result of the improvement can

motivate the updating of the reference set and even the updating of the population of

solutions.

The initial population must be a wide set of disperse solutions. However, it must

also include good solutions. Several strategies can be applied to get a population with

these properties. The solutions to be included in the population can be created, for

instance, by using a random procedure to achieve a certain level of diversity. Then a

simple improvement heuristic procedure must be applied to these solutions in order to

get better solutions. The initial population can also be obtained by a procedure that

provides at the same time disperse and good solutions like GRASP procedures [36].

A set of good representative solutions of the population is chosen to generate the

reference set. The good solutions are not limited to those with the best objective values.

By good representative solutions we mean solutions with the best objective values as

well as disperse solutions. Disperse solutions should reach different local minima by the

local search. Indeed, a solution may be added to the reference set if the diversity of the

set improves. The criteria for updating the reference set, when necessary, must be based

on comparisons and measures of diversity between the new solutions and the existing

solutions.

A subset of solutions from the reference set is selected as input data for performing

a combination method to get good starting solutions for an improvement procedure. In

general, the method consists of selecting all the subsets of a fixed size. The combination

procedure tries to combine good characteristics of the selected solutions to get new current

solutions. The aim is to get better solutions, which are not similar to those already in

the reference set.

The possible improvement solution methods applied to the solutions range from sim-

plest local searches to a very specialized search. A very simple procedure is a local search

based on basic moves consisting of selecting the best improving move or a first found
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Repeat the following sequence until the stopping condition is met:

Generate a population of solutions P .

Repeat the following sequence until a new population needs to be obtained:

• Generate a reference set R from the population.

• Repeat the following sequence until a new reference set needs to be obtained:

1 Select a subset of solutions S from the reference set.

2 Apply the combination procedure to the subset S to get s.

3 Apply the improvement method to s to get s′.

4 Update the reference set according to the results of the improvements.

Figure 2.6: The Basic Scatter Search

improving move. The procedure must allow to use tools like recent or intermediate mem-

ory, variable neighborhoods, or hashing scanning methods of the neighborhood. Then

the method applied could be a Tabu Search [43], [44], a Variable Neighborhood Search

[61], [62] or any sophisticated hybrid heuristic search.

The metaheuristic strategy includes the decision on how to update the reference set

taking into account the state of the search. The algorithm must also realize when the

reference set does not change and seek to diversify the search by generating a new set of

solutions for the population.

Usual stopping conditions are based on allowing a total maximum computational time

or a maximum computational effort since the last improvement. The computational effort

is measured by the number of iterations, number of local searches or real time.

A pseudocode of the Scatter Search is shown in figure 2.6.

The Scatter Search strategy involves six procedures and three stopping criteria to

solve an optimization problem. The procedures are the following:
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1. The Initial Population Creation Method. This procedure creates a random

initial population P of good and disperse solutions.

2. The Reference Set Generation Method. This procedure selects some of the

best representative solutions in the population to be included in the reference set

R.

3. The Subset Generation Method. This procedure generates subsets, which

consist of good solutions in the reference set, to apply the combination procedure.

4. The Solution Combination Method. This procedure, which includes parame-

ters used to modulate the intensification and/or diversification, combines the solu-

tions in the previously selected subset to get the new current solution s.

5. The Improvement Solution Method. This procedure, which includes parame-

ters to modulate the specialization of the method, improves the current solution s

to get an improved solution s′.

6. The Reference Set Updating Method. This procedure updates the reference

set by deciding when and how the obtained improved solutions are included in the

reference set replacing some solutions already in it.

In addition to these six procedures, the metaheuristic involves three stopping proce-

dures that implement the criteria to decide when generating a new reference set, a new

population or when stopping the search.

1. New Reference Set Criterion. The first criterion decides when to generate a

new reference set from the population.

2. New Population Criterion. The second criterion decides when to generate a

new population.
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3. Termination Criterion. Finally, the third criterion decides when to stop the

whole search.

2.2.4 Simulated Annealing

Simulated Annealing (SA) [75], [133], [134] is an important metaheuristic technique for

solving optimization problems. The fundamentals of SA were introduced by Kirkpatrick

et al. (1983) and by Cerny (1985) following an analogy with the physical annealing

process used to find low-energy states of solids.

Simulated Annealing applies a global search where probabilistic criteria for solution

acceptance are used. The probabilistic criteria consist of accepting any movement that

improves the current solution and only with probability p (0 < p < 1) any other move-

ment. Normally p depends on the modification of the objective function and is modified

dynamically. The search starts with an initial solution and an initial value of a control

parameter, called temperature and denoted by c. For each value of c a loop is performed

l times, that can be fixed or dynamically updated. For every fixed temperature c, the

search is a Markov chain and the parameter l is referred to as the length of the chain. The

loop consists of the following steps. Generate at random a solution s′ from the neigh-

borhood of the current solution s, and evaluate the new solution. Let ∆ = f(s′)− f(s).

If ∆ ≤ 0 then do s ← s′, otherwise do it with probability p = e−∆/T . This is done

by generating a random number x ∈ (0, 1) and accepting s′ (i.e., s′ ← s) if x < p and

rejecting it otherwise. After each execution of the loop the temperature is updated by

decreasing it in a multiplicative factor α (i.e., α ← αT ).

The basic SA pseudocode is shown in figure 2.7.

The SA belongs to a wider class of threshold accepting local search algorithms [33] that

continually select a neighbor of a current solution and compare the difference between

the objective value of the neighbor and the objective value of the current solution to

a threshold. If the difference is within the threshold, the neighbor replaces the current
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Initialization.

Select a neighborhood structure N that will be used in the search.

Find an initial solution s and an initial temperature T .

Iterations.

Repeat the following sequence until the stopping condition is met:

(1) Perform the following loop L times:

(a) Exploration of neighborhood. Find and evaluate a neighbor s′ of s (s′ ∈
N (s)) and compute ∆ = f(s′)− f(s).

(b) Move or not.

If the solution thus obtained s′ is better than s (∆ < 0), set s ← s′.

Otherwise, generate at random x ∈ (0, 1) and if x < e−∆/t set s ← s′.

(2) Set T ← αT .

Figure 2.7: Basic Simulated Annealing.
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Initialization.

Select a neighborhood structure N that will be used in the search.

Set k → 0.

Iterations.

Repeat the following sequence until the stopping condition is met:

(1) Set k ← k + 1.

(2) Perform the following loop l times:

(a) Exploration of neighborhood. Find a neighbor s′ of s (s′ ∈ N (s)) and

compute ∆ = f(s′)− f(s).

(b) Move or not. Get the new threshold value tk. If ∆ < tk set s ← s′.

Figure 2.8: Basic Threshold accepting.

solution. Otherwise, the search continues with the current solution. The pseudocode for

these threshold-accepting algorithm is presented in figure 2.8.

The number l of loops that use the same threshold can be only one. The sequence

of thresholds tk, k = 1, 2, ..., used at iteration k of the algorithm are modified along the

execution. The basic SA takes tk from a random variable with exponential distribution

and expected value ck. This is a control parameter called temperature that is decreased

according to a cooling rule. Other threshold algorithms use deterministic rules to modify

the threshold tk.

The cooling schedule specifies the parameters that govern the convergence of the

Simulated Annealing. Namely, the cooling schedule gives:

• The initial value of the control parameter.

• The decrement function for lowering the control parameter.
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• The final value of the control parameter.

• The length of the loop for every value of the control parameter.

Typical cooling schedules start at a sufficient large value of ck such that all movements

are virtually accepted. There must be a trade-off between the decrement of the control

parameter and the length of the loops. One can use small decrements of ck with large

lengths l for the loops or large decrements with small lengths. Usually the decrement

of the control parameter is made by a geometric rule like ck+1 = αck where α is a

positive constant smaller but near to 1 (typically a value between 0.8 and 0.99). Typical

values for c0 are related to the maximal difference between the objective function for two

solutions. The final values for ck are related to the smallest possible difference between

the objective function for two solutions. The values for the lengths are related to the size

of the neighborhoods [1].

2.2.5 Variable Neighborhood Search

Variable Neighborhood Search (VNS) [62], [63], [64] is a recent metaheuristic for solving

combinatorial and global optimization problems based upon a simple principle: system-

atic change of neighborhood within the search. Its development has been rapid, with a

lot of papers already published and its applications have been numerous and successful.

Many extensions have been made, mainly to be able to solve large problem instances. In

most of them, an effort has been made to keep the simplicity of the basic scheme.

Let Nk, (k = 1, . . . , kmax) be a finite set of neighborhood structures, and Nk(s) be

the set of solutions in the kth neighborhood of a solution s. Neighborhoods Nk may be

induced from metric functions introduced into a solution space S. If d(., .) is this distance

then take increasing values dk, k = 1, ..., kmax and set Nk(s) = {s′ ∈ S : d(s, s′) ≤ dk}.
Most local search heuristics use only one neighborhood structure N . Therefore a series of

nested neighborhoods are obtained from a single neighborhood by taking N1(s) = N (s)
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and Nk+1(s) = N (Nk(s)), for every solution s. This means that a move to the k-th

neighborhood is performed by repeating k times a move to the original neighborhood. A

solution s′ ∈ S is a local minimum with respect toNk if there is no solution s ∈ Nk(s
′) ⊆ S

better than s′ (i.e., such that f(s) < f(s′) where f is the objective function of the

problem).

The Variable Neighborhood Search metaheuristic is based on three simple facts:

1 A local minimum with respect to one neighborhood structure is not necessary a

local minimum with another.

2 A global minimum is a local minimum with respect to all possible neighborhood

structures.

3 Local minima with respect to one or several neighborhood structures are usually

similar to each other.

The last observation is empirical. By similar local minima we mean, for instance, that

they have several variables with the same value in common. This implies that a local

optimum often provides some information about the global one. However, it is usually

not known which ones are such. However, a search in these “neighborhoods” of a local

minimum will meet other local minima, and the global minimum among them.

By applying the VNS principle to an improving local search we get the Variable

Neighborhood Descent (VND). The method consists of changing the neighborhoods

systematically within a local search. The basic VND is presented in figure 2.9.

The final solution should be a local minimum with respect to all kmax neighborhoods,

and thus the probability of reaching the global minimum is higher than by using a single

structure. Beside this sequential order of neighborhood structures in VND above, one

can develop a random strategy by choosing the successive values for k at random.
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Initialization.

Select the set of neighborhood structures Nk, for k = 1, . . . , kmax, that will be used

in the descent.

Find an initial solution s.

Iterations.

Repeat the following sequence until no improvement is obtained:

(1) Set k ← 1;

(2) Repeat the following steps until k = kmax:

(a) Exploration of neighborhood.

Find the best neighbor s′ of s (s′ ∈ Nk(s)).

(b) Move or not.

If the solution thus obtained s′ is better than s, set s ← s′ and k ← 1;

otherwise, set k ← k + 1.

Figure 2.9: Variable Neighborhood Descent.
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Basic Variable Neighborhood Search

Most local search heuristics use in their descents a single or sometimes two neighbor-

hoods (kmax ≤ 2). A usual strategy with two neighborhoods consists of performing local

searches for the first neighborhood from points s′ that belong to the second neighbor-

hood of the current solution (i.e. s′ ∈ N2(s)). The perturbation strategy consists of

applying a local search using the first neighborhood and then perturbing the current

solution by choosing a random solution in the second neighborhood to perform a new

local search. The Basic Variable Neighborhood Search (BVNS) method uses deter-

ministic changes in the neighborhood structure for perturbation or shaking. Its steps are

given in Figure 2.10.

The stopping condition may be the maximum cpu time allowed, the maximum num-

ber of iterations, or the maximum number of iterations between two improvements. The

Reduced Variable Neighborhood Search (RVNS) method is obtained if random points

are selected from Nk(s), without being followed by descent. It is useful for very large

instances for which local search is costly.

The local search step (2b) in the basic VNS may be replaced by VND. This gives the

General Variable Neighborhood Search (GVNS) that is the version with the most

recent success. Its steps are shown in figure 2.11.

Several extensions of the VNS have also been proposed. The basic VNS is a first

improvement descent method with randomization. It is transformed into a descent-

ascent method if, Step 2c sets also s ← s” with some probability even if the solution is

worse than the incumbent (or the best solution found so far). It is changed into a best

improvement method by making a move to the best neighborhood k∗ among all kmax of

them. Other variants of the basic VNS are to find a solution s′ in Step 2a as the best

among b (a parameter) randomly generated solutions from the kth neighborhood, or to

introduce kmin and kstep, two parameters that control the change of the neighborhood

process. In the previous algorithm, instead of setting k ← 1 set k ← kmin and instead of
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Initialization.

Select the set of neighborhood structures Nk, for k = 1, . . . , kmax.

Find an initial solution s.

Choose a stopping condition.

Iterations.

Repeat the following sequence until the stopping condition is met:

(1) Set k ← 1.

(2) Repeat the following steps until k = kmax:

(a) Shaking.

Generate a point s′ at random from the kth neighborhood of s (s′ ∈ Nk(s)).

(b) Local search.

Apply some local search method with s′ as initial solution; denote with

s′′ the so obtained local optimum.

(c) Move or not.

If this local optimum is better than the incumbent, move there (s ← s′′),

and continue the search with N1 (k ← 1); otherwise, set k ← k + 1.

Figure 2.10: Basic Variable Neighborhood Search.
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Initialization.

Select the set of neighborhood structures Nk, for k = 1, . . . , kmax for the shaking.

Select the set of neighborhood structures N ′
j , for j = 1, . . . , jmax for the descent.

Find an initial solution s.

Choose a stopping condition.

Iterations.

Repeat the following sequence until the stopping condition is met:

(1) Set k ← 1.

(2) Repeat the following steps until k = kmax:

(a) Shaking.

Generate a point s′ at random from the kth shaking neighborhood of s

(s′ ∈ Nk(s)).

(b) Descent.

Apply to s′ the VND with N ′
j , j = 1, . . . , jmax as neighborhoods to get a

new solution s′′.

(c) Move or not.

If f(s′′) < f(s) set s ← s′′ and k ← 1; otherwise, set k ← k + 1.

Figure 2.11: General Variable Neighborhood Search.
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setting k ← k + 1 set k ← k + kstep.

The Variable Neighborhood Decomposition Search (VNDS) method extends

the basic VNS into a two-level VNS scheme based upon decomposition of the problem.

The only difference between the general or basic VNS and VNDS is in step 2b. Instead

of applying the VND or other local search descent method in the whole solution space

S (starting from s′ ∈ Nk(s)), the VNDS solves at each iteration a subproblem in some

subspace Vk ⊆ Nk(s) with s′ ∈ Vk. When the procedure used in this step is also VNS, the

two-level VNS-scheme arises. VNDS can be viewed as embedding the classical successive

approximation scheme

2.2.6 Genetic Algorithms

A genetic algorithm (GA) GA [21], [31], [55], [65], [99], [103] is an iterative procedure

for solving an optimization problem that uses an evolving constant-size population of

individuals. Each individual of the population is represented by a finite string of sym-

bols, known as the genome, and encodes a possible solution of search space. Solutions

to a problem were originally encoded as binary strings due to certain computational

advantages associated with such encoding. Also the theory about the behavior of al-

gorithms was based on binary strings. However, the solution representation has been

extended in recent years to include character-based encoding, real-valued encoding, and

tree representations.

The standard genetic algorithm proceeds as follows. An initial population of indi-

viduals is generated at random or heuristically. Every evolutionary step, known as a

generation, the individuals in the current population are decoded and evaluated accord-

ing to some predefined quality criterion, referred to as the fitness, or fitness function. To

form a new population (the next generation), individuals are selected according to their

fitness. Many selection procedures are currently in use, one of the simplest being fitness-

proportionate selection, where individuals are selected with a probability proportional
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to their relative fitness. This ensures that the expected number of times an individual

is chosen is approximately proportional to its relative performance in the population.

Thus, high-fitness (“good”) individuals stand a better chance of “reproducing”, while

low-fitness ones are more likely to disappear.

Genetically inspired operators are used to introduce new individuals into the popula-

tion, i.e., to generate new points in the search space. The best known of such operators

are crossover and mutation. Crossover is performed, with a given probability pc (the

“crossover probability” or “crossover rate”), between two selected individuals, called

parents, by exchanging parts of their genomes (i.e., encoding) to form two new individ-

uals, called offspring; in its simplest form, sub-strings are exchanged after a randomly

selected crossover point. This operator tends to enable the evolutionary process to move

toward “promising” regions of the search space. The mutation operator is introduced

to prevent premature convergence to local optima by randomly sampling new points in

the search space. Mutation entails flipping bits at random, with some (small) probabil-

ity pm. Genetic algorithms are stochastic iterative processes that are not guaranteed to

converge; the termination condition may be specified as some fixed, maximal number of

generations or as the attainment of an acceptable fitness level for the best individual.

Let us consider the following example to illustrate the genetic algorithm. The pop-

ulation consists of 4 individuals, which are binary-encoded strings (genomes) of length

8. The fitness value equals the number of ones in the bit string, with pc = 0.7, and

pm = 0.001. More typical values of the population size and the genome length are in

the range 50-1000. Also note that fitness computation in this case is extremely simple

since no complex decoding nor evaluation is necessary. The initial (randomly generated)

population might look like this:
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Label Genome Fitness

A 00000110 2

B 11101110 6

C 00100000 1

D 00110100 3

Using fitness-proportionate selection we must choose 4 individuals (two sets of par-

ents), with probabilities proportional to their relative fitness values. In our example,

suppose that the two parent pairs are B,D and B,C (note that A did not get selected

as our procedure is probabilistic). Once a pair of parents is selected, the crossover op-

eration is performed with probability pc, resulting in two offspring. If the crossover

operation is not performed (with probability 1− pc), then the offspring are exact copies

of each parent. Suppose, in our example, that crossover takes place between parents B

and D at the (randomly chosen) first bit position, forming offspring E = 10110100 and

F = 01101110, while the crossover operation is not performed between parents B and

C, forming offspring that are exact copies of B and C. Next, each offspring is subject to

mutation with probability pm per bit. For example, suppose offspring E is mutated at

the sixth position to form E ′ = 10110000, offspring B is mutated at the first bit position

to form B′ = 01101110, and offspring F and C are not mutated at all. The next genera-

tion population, created by the above operators of selection, crossover, and mutation is

therefore:

Label Genome Fitness

E’ 10110000 3

F 01101110 5

C 00100000 1

B’ 01101110 5

Note that in the new population, although the best individual with fitness 6 has been

lost, the average fitness has increased. Iterating this procedure, the genetic algorithm
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will eventually find a perfect string, i.e., with maximal fitness value of 8. More sophisti-

cated implementations of Genetic Algorithms include the use of local search and several

crossover operators that are chosen probabilistically to be applied to each pair of selected

parents.

2.2.7 Other Metaheuristics

In the literature, there is a high number of other Metaheuristics. Some of the most

recent books on Metaheuristics are the following: [11], [25], [52], [78], [92], [100], [26],

[118], [120], [135]. Among these other metaheuristics we can mention the following.

Memetic Algorithms, that combine the features of genetic algorithms with local searches

[106]. The Estimation of Distribution Algorithm (EDA) is a evolutionary algorithm in

which populations of individuals are created by estimation and simulation of the joint

probability distribution of the selected individuals [88]. Greedy randomized adaptive

search heuristic (GRASP) is an iterative process in which each iteration consists of two

phases, a construction phase in which a feasible solution is produced, and a local search

phase in which a local optimum in the neighborhood of the constructed solution is sought

[36], [119]. The Reactive Search that also uses special types of memory [7], [8], [9]. The

Path Relinking, that is an intensification strategy for exploring trajectories connecting

high quality solutions mainly used in TS [50] and SS [53]. The neural network (NN) is

another metaheuristic that uses an associative form of memory [127], [139]. Ant System

is a metaheuristic that takes inspiration from the behavior of real ant colonies [32].

Iterated Local Search (ILS) is based on building a sequence of locally optimal solutions

by perturbing the current solution applying a local search to that modified solution

[91]. Extreme Optimization (EO) is another evolutionary local-search algorithm [18],

[19], [20]. Concentration Heuristic that uses the information from a set of local minima

to concentrate the search in a region of the search space [122], [123], [124].

The Guided Local Search (GLS) metaheuristic explores efficiently and effectively the
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search space by exploiting prior information known about the problem in conjunction

with historical information gathered during the search process [101], [102], [136], [140].

The Fuzzy Adaptive Nieghborhood Search (FANS) metaheuristics use a new mechanism

to scape a local minimum where solutions are evaluated in terms of fuzzy valuation

[16]. The Particle Swarm Optimization (PSO) is an evolutionary computation technique

inspired by social behavior of bird flocking or fish schooling [34], [70]. The Very Large-

Scale Neighborhood Search (VSLN) metaheuristic uses special tools for searching very

vast space solutions [111], [112].

2.2.8 Parallelization of Metaheuristics

A key question in the applications of the Metaheuristics for real problems is to exploit

the possible parallelization of the procedures. The Metaheuristics based of local searches

like Tabu Search, VNS, Simulated Annealing, and Scatter Search can be parallelized

following three main strategies. A first parallelization is the low-level parallelization

consisting of replacing the local search by the parallel version of the local search. This is

done by dividing the neighborhood of the current solutions in subsets that are assigned

to the processors and each returns an improving neighbor in its part of neighborhood.

A second parallelization consists of replicating the metaheuristic in each processors. It

corresponds to a natural parallelization of the hybrid between the metaheuristic and a

Multistart search. The third strategy for the parallelization of the metaheuristcs is a

specific parallelization for the metaheuristic that consists of parallelizing a characteristic

tool of the search process. We have analyzed these three parallelization strategies in [39]

and [40].

In [40] the three strategies for parallelizing the Scatter Search are compared. The third

considered strategy of parallelization for the Scatter Search consists of selecting several

subsets from the reference set that are then combined and improved by the available

processors. These procedures are replicated as many times as the number of available
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processors. The local optima found by the processors are used to update the reference

set. This procedure, called Replicated Combination Scatter Search, shows better results

than parallelizing the local search and than replicating the scatter search, where each

processor uses its own population and reference sets.

In [39], where several parallelizations for the VNS are developed, two of them got

better performance than the other strategies. The first one consists of increasing the

number of solutions drawn from the current neighborhood in the shake stage and doing

local search in parallel from each of them. The second one do the same as the first, but

updating the information about the best solution found. The second of these paralleliza-

tions gave the best results and its steps are presented in figure 2.12.

2.3 The Role of Metaheuristics

Metaheuristics provided a way of considerably improving the performance of simple

heuristic procedures. The search strategies proposed by metaheuristic methodologies

result in iterative procedures with the ability to escape local optimal points. Metaheuris-

tics have been developed to solve complex optimization problems in many areas, with

combinatorial optimization being one of the most fruitful. Generally, the best procedures

achieve their efficiencies by relying on context information. The solution methods can be

viewed as the result of adapting several metaheuristic strategies to specific optimization

problems.

The term metaheuristic was coined by Fred Glover in 1986 and has come to be widely

applied in the literature, both in the titles of comparative studies and in the titles of

volumes of collected research papers. A metaheuristic refers to a master strategy that

guides and modifies other heuristics to produce solutions beyond those that are normally

generated in a quest for local optimality. The heuristics guided by such a meta-strategy

may be high level procedures or may embody nothing more than a description of available
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Initialization.

Select the set of neighborhood structures Nk, for k = 1, . . . , kmax.

Find an initial solution s.

Choose a stopping condition.

Iterations.

Repeat the following sequence until the stopping condition is met:

(1) Set k ← 1.

(2) Repeat, for each processor i = 1, ..., p in parallel, the following steps until

k = kmax:

(a) Shaking.

Generate a point si at random from the kth neighborhood of s (si ⊆
Nk(s)).

(b) Local search.

Apply the local search method with si as initial solutions to get the local

minimum s′i.

(c) Move or not.

Denote with s′ the best among the local optima s′i obtained by the pro-

cessors. If s′ is better than s set s ← s′ and set k ← 1; otherwise, set

k ← k + 1.

Figure 2.12: Parallel Variable Neighborhood Search.
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moves for transforming one solution into another, together with an associated evaluation

rule.

The contrast between the metaheuristic orientation and the “local optimality” orien-

tation is significant. For many years, the primary conception of a heuristic procedure (a

conception still prevalent today) was to envision either a clever rule of thumb or an iter-

ative rule that terminates as soon as no solutions immediately accessible could improve

the last one found. Such iterative heuristics are often referred to as descent methods,

ascent methods, or local search methods. (A sign of the times is that “local search” now

sometimes refers to search that is not limited to being local in character.) Consequently,

the emergence of methods that departed from this classical design - and that did so by

means of an organized master design - constituted an important advance. Widespread

awareness of this advance only began to dawn during the last decade, though its seeds

go back much farther.

2.3.1 Metaheuristic Features

The evolution of metaheuristics during the past ten years has taken an explosive upturn.

Metaheuristics in their modern forms are based on a variety of interpretations of what

constitutes “intelligent” search. These interpretations lead to design choices that in turn

can be used for classification purposes. However, a rigorous classification of different

metaheuristics is a difficult and risky enterprise, because the leading advocates of alter-

native methods often differ among themselves about the essential nature of the methods

they espouse. This is later illustrated by considering the classification of metaheuristics

in terms of their features with respect to three basic design choices:

(1) the use of adaptive memory,

(2) the kind of neighborhood exploration used, and

(3) the number of current solutions carried from one iteration to the next.

In addition to the three basic design elements used in the classification, metaheuris-
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tics incorporate other strategies with the goal of guiding the search. A metaheuristic

may strategically modify the evaluation provided by a component heuristic (which nor-

mally consists of identifying the change in an objective function value produced by a

move). For example, simulated annealing relies on a problem objective function to pro-

vide each evaluation, but then amends this evaluation based on the current solution.

In the amended form, all improving moves are considered equally attractive, and any

such move encountered is accepted. Moves that deteriorate the value of the objective

function are accepted or rejected by a probabilistic criterion that initially assigns a high

probability (when the temperature is high) to accepting any move generated, regardless

of its quality. However, a bias is incorporated that favors smaller deteriorating moves

over larger ones, and over time this bias is increased, ultimately reducing the probability

of accepting a non-improving move to zero. The set of available moves can be taken from

another heuristic, but classical Simulated Annealing preempts all other move generation

processes to generate moves randomly from the proposed domain.

A metaheuristic may also modify the neighborhood of moves considered to be avail-

able, by excluding some members and introducing others. This amended neighborhood

definition may itself necessitate a change in the nature of evaluation. The strategic oscil-

lation approach of tabu search illustrates this intimate relationship between changes in

neighborhood and changes in evaluation.

A standard neighborhood that allows moves only among feasible solutions is enlarged

by this approach to encompass infeasible solutions. The search is then strategically

driven to cross the feasibility boundary to proceed into the infeasible region. After a

selected depth is reached, the search changes direction to drive back toward feasibility,

and upon crossing the feasibility boundary similarly continues in the direction of increased

feasibility. (One-sided oscillations are employed in some variants to remain predominantly

on a particular side of the boundary.) To guide these trajectories, the approach modifies

customary evaluations to take account of the induced direction of movement and the
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region in which the movement occurs. The result generates a controlled behavior that

exploits the theme of non-monotonic exploration.

The emphasis on guidance differentiates a metaheuristic from a simple random restart

procedure or a random perturbation procedure. However, sometimes these naive restart-

ing and perturbation procedures are also classed as low-level metaheuristics, since they

allow an opportunity to find solutions that are better than a first local optimum en-

countered. “Noising” procedures, which introduce controlled randomized changes in

parameters such as cost or resource availability coefficients, provide one of the popular

mechanisms for implementing such approaches. Another popular mechanism is simply

to randomly modify evaluations, or to choose randomly from evaluations that fall within

a chosen window. Such randomized processes are also applied to selecting different types

of moves (neighborhood definitions) at different junctures.

In contrast to an orientation that still often appears in the literature, the original

conception of a metaheuristic does not exclude consideration of constructive moves for

generating initial solutions, but likewise allows these moves to be subjected to metaheuris-

tic guidance. (A popular orientation in the literature is to suppose that metaheuristics

are only used in connection with “transition” moves, which operate on fully constructed

solutions.) ¿From a broader perspective, a partial solution created by a constructive

process is simply viewed as a solution of a particular type, and procedures for generating

such solutions are natural candidates to be submitted to higher-level guidance. This

view has significant consequences for the range of strategies available to a metaheuristic

approach.

Strategic oscillation again provides an illustration. By the logical restructuring theme

of tabu search, constructive moves are complemented by creating associated destructive

moves, allowing the oscillation to proceed constructively to (and beyond) a stipulated

boundary, and then to reverse direction to proceed destructively to various depths, in

alternating waves. Transition moves permit refinements at varying levels of construction
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and destruction.

The perspective that restricts attention only to transition moves is gradually eroding,

as researchers are coming to recognize that such a restriction can inhibit the development

of effective methods. However, there remain pockets where this recognition is slow to

dawn. (For example, methods that alternate between construction and transition moves

- affording a simple subset of options provided by strategic oscillation - have recently

been characterized in a segment of the literature as a “new development.”)

The use of population-based strategies and adaptive memory strategies, are often

taken to be fundamental distinctions in the literature. Population-based strategies ma-

nipulate a collection of solutions rather than a single solution at each stage. Such pro-

cedures are now often referred to as composing the class of evolutionary methods. A

prominent subclass of these methods is based on strategies for “combining” solutions, as

illustrated by genetic algorithms, scatter search and path relinking methods. Another

prominent subclass consists of methods that are primarily driven by utilizing multiple

heuristics to generate new population members. This incorporation of multiple heuristics

for generating trial solutions, as opposed to relying on a single rule or decision criterion,

is a very old strategy whose origins are probably not traceable.

Some of the recent evolutionary literature occasionally cites work of the mid 1960s as

embodiments of such ideas, but such work was clearly preceded by earlier developments.

The key to differentiating the contributions of such methods obviously rests on the novelty

of the component heuristics and the ingenuity of the strategies for coordinating them.

Such concerns are more generally the focus of parallel processing solution methods, and

many “evolutionary” contributions turn out chiefly to be a subset of the strategies that

are being developed to a higher level of sophistication under the parallel processing rubric.

The adaptive memory classification provides a more precise means of differentiation,

although it is not without pitfalls. From a naive standpoint, virtually all heuristics other

than complete randomization induce a pattern whose present state depends on the se-
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quence of past states, and therefore incorporate an implicit form of “memory.” Given

that the present is inherited from the past, the accumulation of previous choices is in a

loose sense “remembered” by current choices. This sense is slightly more pronounced in

the case of solution combination methods such as genetic algorithms and scatter search,

where the mode of combination more clearly lends itself to transmitting features of se-

lected past solutions to current solutions. Such an implicit memory, however, does not

take a form normally viewed to be a hallmark of an intelligent memory construction. In

particular, it uses no conscious design for recording the past and no purposeful manner

of comparing previous states or transactions to those currently contemplated. By con-

trast, at an opposite end of the spectrum, procedures such as branch and bound and A*

search use highly (and rigidly) structured forms of memory - forms that are organized to

generate all non-dominated solution alternatives with little or no duplication.

Adaptive memory procedures, properly conceived, embody a use of memory that falls

between these extremes, based on the goal of combining flexibility and ingenuity. Such

methods typically seek to exploit history in a manner inspired by (but not limited to)

human problem solving approaches. They are primarily represented by tabu search and

its variations that sometimes receive the “adaptive memory programming” label. In

recent years, as previously intimated, other approaches have undertaken to incorporate

various aspects of such memory structures and strategies, typically in rudimentary form.

Developments that produce hybrids of tabu search with other approaches at a more

advanced level have become an important avenue for injecting adaptive memory into

other methods, and constitute an active area of research.

Another distinction based on memory is introduced by neural network (NN) ap-

proaches. Such methods emphasize an associative form of memory, which has its primary

application in prediction and pattern matching problems. Neural network procedures

also implicitly involve a form of optimization, and in recent years such approaches have

been adapted to several optimization settings. Performance is somewhat mixed, but
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researchers in optimization often regard neural networks as appropriate to be included

within the metaheuristic classification. Such an inclusion is reinforced by the fact that

NN-based optimization approaches sometimes draw on standard heuristics, and produce

solutions by transformations that are not limited to ordinary notions of local optimal-

ity. A number of initiatives have successfully combined neural networks with simulated

annealing, genetic algorithms and, most recently, tabu search.

Metaheuristics are often viewed as composed of processes that are intelligent, but in

some instances the intelligence belongs more to the underlying design than to the par-

ticular character (or behavior) of the method itself. The distinction between intelligent

design and intelligent behavior can be illustrated by considering present day interior point

methods of linear programming. Interior point methods (and more general barrier func-

tion methods) exploit a number of ingenious insights, and are often remarkably effective

for achieving the purposes for which they were devised. Yet it seems doubtful whether

such methods should be labelled intelligent, in the sense of being highly responsive to

varying conditions, or of changing the basis for their decisions over time as a function

of multiple considerations. Similar distinctions arise in many other settings. It must

be conceded that the line that remarks intelligent methods from other methods is not

entirely precise. For this reason it is not necessary for a master procedure to qualify as

intelligent in a highly rigorous sense in order to be granted membership in the category

of metaheuristics.

2.3.2 Tabu Search features

Tabu search is based on principles of intelligent search. The TS premise is that problem

solving is qualified as intelligent because it incorporates adaptive memory and responsive

exploration. Consider these two features:

• The adaptive memory feature of tabu search allows the implementation of proce-

dures that are capable of searching the solution space economically and effectively.
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Adaptive memory is shown in the local choices in tabu search that are guided by

information collected during the search. The use of adaptive memory contrasts

with memoryless methods like simulated annealing and with the use of rigid mem-

ory typical of branch and bound strategies. Some types of evolutionary procedures

that operate by combining solutions embody a form of implicit memory.

• The emphasis on responsive exploration in tabu search, whether in a deterministic

or probabilistic implementation, derives from the supposition that a bad strategic

choice can yield more information than a good random choice. In a system that

uses memory, a bad choice based on strategy can provide useful clues about how the

strategy may profitably be changed. Even in a space with significant randomness

a purposeful design can be more adept at uncovering the imprint of structure.

Responsive exploration integrates the basic principles of intelligent search, i.e.,

exploiting good solution features while exploring new promising regions.

Tabu search is concerned with finding new and more effective ways of taking advantage

of the mechanisms associated with both adaptive memory and responsive exploration.

The development of new designs and strategic mixes makes TS a fertile area for research

and empirical study.

Dimensions of memory

The memory structures in tabu search operate by reference to four principal dimen-

sions, consisting of: recency, frequency, quality, and influence.

1. Recency-based memory refers to the length of the interval of time since the last

time a feature appeared in the search.

2. Frequency-based memory refers to the number of times a feature appeared in the

search. Recency-based and frequency-based memory complement each other.

3. The quality dimension refers to the ability to differentiate the merit of solutions

visited during the search. In this context, memory can be used to identify elements
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that are common to good solutions or to paths that lead to such solutions. Opera-

tionally, quality becomes a foundation for incentive-based learning, where induce-

ments are provided to reinforce actions that lead to good solutions and penalties

are provided to discourage actions that lead to poor solutions. The flexibility of

these memory structures allows the search to be guided in a multi-objective envi-

ronment, where the goodness of a particular search direction may be determined

by more than one function. The tabu search concept of quality is broader than the

one implicitly used by standard optimization methods.

4. The fourth dimension, influence, considers the impact of the choices made during

the search, not only on quality but also on structure. Recording information about

the influence of choices on particular solution elements incorporates an additional

level of learning. By contrast, in branch and bound, for example, the separation

rules are pre-specified and the branching directions remain fixed, once selected, at

a given node of a decision tree. It is clear however that certain decisions have

more influence than others as a function of the neighborhood of moves employed

and the way that this neighborhood is negotiated (e.g., choices near the root of a

branch and bound tree are quite influential when using a depth-first strategy). The

assessment and exploitation of influence by a memory more flexible than embodied

in such tree searches is an important feature of the TS framework.

Types of memory

The types of memory used in tabu search are both: explicit and attributive.

• Explicit memory records complete solutions, typically consisting of elite solutions

visited during the search. An extension of this memory records highly attractive

but unexplored neighbors of elite solutions. The memorized elite solutions (or their

attractive neighbors) are used to expand the local search.
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• Attributive memory records information about solution attributes that change in

moving from one solution to another. TS uses this type of memory for guiding

purposes. For example, in a graph or network setting, attributes can consist of

nodes or arcs that are added, dropped or repositioned by the moving mechanism.

In production scheduling, the index of jobs may be used as attributes to inhibit or

encourage the method to follow certain search directions.

Intensification and Diversification

Two highly important components of tabu search are intensification and diversifica-

tion strategies.

• Intensification strategies are based on modifying choice rules to encourage move

combinations and solution features historically found good. They may also ini-

tiate a return to attractive regions to search them more thoroughly. Since elite

solutions must be recorded in order to examine their immediate neighborhoods, ex-

plicit memory is closely related to the implementation of intensification strategies.

The main difference between intensification and diversification is that during an

intensification stage the search focuses on examining neighbors of elite solutions.

Here the term “neighbors” has a broader meaning than in the usual context of

“neighborhood search.” That is, in addition to considering solutions that are ad-

jacent or close to elite solutions by means of standard move mechanisms, intensi-

fication strategies generate “neighbors” by either grafting together components of

good solution or by using modified evaluation strategies that favor the introduction

of such components into a current (evolving) solution.

• The diversification stage on the other hand encourages the search process to ex-

amine unvisited regions and to generate solutions that differ in various significant

ways from those seen before. Again, such an approach can be based on generating

subassemblies of solution components that are then “fleshed out” to produce full
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solutions, or can rely on modified evaluations as embodied, for example, in the use

of penalty / incentive functions.

Intensification strategies require a means for identifying a set of elite solutions as basis

for incorporating good attributes into newly created solutions. Membership in the elite

set is often determined by setting a threshold that is connected to the objective function

value of the best solution found during the search. However, considerations of clustering

and “anti- clustering” are also relevant for generating such a set, and more particularly

for generating subsets of solutions that may be used for specific phases of intensification

and diversification. The TS notions of intensification and diversification are beginning

to find their way into other metaheuristics. It is important to keep in mind that these

ideas are somewhat different than the old control theory concepts of “exploitation” and

“exploration,” especially in their implications for developing effective problem solving

strategies.

2.3.3 Scatter Search Features

Scatter search, from the standpoint of metaheuristic classification, may be viewed as

an evolutionary (or also called population-based) algorithm that constructs solutions

by combining others. It derives its foundations from strategies originally proposed for

combining decision rules and constraints (in the context of integer programming). The

goal of this methodology is to enable the implementation of solution procedures that can

derive new solutions from combined elements. The way scatter search combines solutions

and updates the set of reference solutions used for combination sets this methodology

apart from other population-based approaches.

Combining solutions

The approach of combining existing solutions or rules to create new solutions orig-

inated in the 1960s. In the area of scheduling, researchers introduced the notion of

combining rules to obtain improved local decisions. Numerically weighted combinations
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of existing rules, suitably restructured so that their evaluations embodied a common met-

ric, generated new rules. The conjecture that information about the relative desirability

of alternative choices is captured in different forms by different rules motivated this ap-

proach. The combination strategy was devised with the belief that this information could

be exploited more effectively when integrated than when treated in isolation (i.e., when

existing selection rules are selected one at a time). In general, the decision rules created

from such combination strategies produced better empirical outcomes than standard ap-

plications of local decision rules. They also proved superior to a “probabilistic learning

approach” that used stochastic selection of rules at different junctures, but without the

integration effect provided by generating combined rules.

In integer and nonlinear programming, associated procedures for combining con-

straints were developed, which likewise employed a mechanism for creating weighted

combinations. In this case, nonnegative weights were introduced to create new constraint

inequalities, called surrogate constraints. The approach isolated subsets of constraints

that were gauged to be most critical, relative to trial solutions based on the surrogate

constraints. This critical subset was used to produce new weights that reflected the

degree to which the component constraints were satisfied or violated.

The main function of surrogate constraints was to provide ways to evaluate choices

that could be used to create and modify trial solutions. A variety of heuristic processes

that employed surrogate constraints and their evaluations evolved from this foundation.

As a natural extension, these processes led to the related strategy of combining solutions.

Combining solutions, as manifested in scatter search, can be interpreted as the primal

counterpart to the dual strategy of combining constraints.

Reference set

Scatter search operates on a set of solutions, the reference set, by combining these

solutions to create new ones.

Unlike a “population” in genetic algorithms, the reference set of solutions in scatter
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search tends to be small. In genetic algorithms, two solutions are randomly chosen from

the population and a “crossover” or combination mechanism is applied to generate one or

more offspring. A typical population size in a genetic algorithm consists of 100 elements,

which are randomly sampled to create combinations. In contrast, scatter search chooses

two or more elements of the reference set in a systematic way with the purpose of creating

new solutions.

Since the combination process considers at least all pairs of solutions in the reference

set, there is a practical need for keeping the cardinality of the set small. Typically, the

reference set in scatter search has 20 solutions or less.

In general, if the reference set consists of b solutions, the procedure examines ap-

proximately (3b− 7)b/2 combinations of four different types. The basic type consists of

combining two solutions; the next type combines three solutions, and so on and so forth.

Limiting the scope of the search to a selective group of combination types can be used

as a mechanism for controlling the number of possible combinations in a given reference

set.

Scatter Search Template

The scatter search process, building on the principles that underlie the surrogate

constraint design, is organized to

(1) capture information not contained separately in the original vectors,

(2) take advantage of auxiliary heuristic solution methods to evaluate the combinations

produced and to generate new vectors.

Specifically, the main scatter search features may be sketched as follows:

• Initial Population. Generate a starting set of solution vectors to guarantee a critical

level of diversity and apply heuristic processes designed for the problem considered

as an attempt for improving these solutions. Designate a subset of the best vectors
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to be reference solutions. (Subsequent iterations of this operation, transferring from

below, incorporate advanced starting solutions and best solutions from previous

history as candidates for the reference solutions.) The notion of “best” in this step

is not limited to a measure given exclusively by the evaluation of the objective

function. In particular, a solution may be added to the reference set if the diversity

of the set improves even when the objective value of such solution is inferior to

other solutions competing for admission in the reference set.

• Structured combinations. Create new solutions consisting of structured combina-

tions of subsets of the current reference solutions. The structured combinations

are:

a) chosen to produce points both inside and outside the convex regions spanned

by the reference solutions.

b) modified to yield acceptable solutions. (For example, if a solution is obtained

by a linear combination of two or more solutions, a generalized rounding pro-

cess that yields integer values for integer-constrained vector components may

be applied. Note that an acceptable solution may or may not be feasible with

respect to other constraints in the problem.)

• Further improvements. Apply the heuristic processes used for the initial population

Step 1 to improve the solutions created by combinations. (Note that these heuristic

processes must be able to operate on infeasible solutions and may or may not yield

feasible solutions.)

• “Best solutions”. Extract a collection of the “best” improved solutions and add

them to the reference set. The notion of “best” is once again broad; making the

objective value one among several criteria for evaluating the merit of newly created

points.
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• Diversifying the reference set

Repeat generation, combination and improvements until the reference set does not

change. Diversify the reference set, by re-starting from initial population genera-

tion. Stop when reaching a specified iteration limit.

The first notable feature in scatter search is that its structured combinations are

designed with the goal of creating weighted centers of selected subregions.

This adds non-convex combinations that project new centers into regions that are

external to the original reference solutions. The dispersion patterns created by such

centers and their external projections have been found useful in several application areas.

Another important feature relates to the strategies for selecting particular subsets of

solutions to combine in Step 2. These strategies are typically designed to make use of a

type of clustering to allow new solutions to be constructed “within clusters” and “across

clusters”. Finally, the method is organized to use ancillary improving mechanisms that

are able to operate on infeasible solutions, removing the restriction that solutions must

be feasible in order to be included in the reference set.

The following principles summarize the foundations of the scatter search methodology:

• Useful information about the form (or location) of optimal solutions is typically

contained in a suitably diverse collection of elite solutions.

• When solutions are combined as a strategy for exploiting such information, it is

important to provide mechanisms capable of constructing combinations that ex-

trapolate beyond the regions spanned by the solutions considered. Similarly, it is

also important to incorporate heuristic processes to map combined solutions into

new solutions. The purpose of these combination mechanisms is to incorporate

both diversity and quality.

• Taking account of multiple solutions simultaneously, as a foundation for creating
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combinations, enhances the opportunity to exploit information contained in the

union of elite solutions.

The fact that the mechanisms within scatter search are not restricted to a single

uniform design allows the exploration of strategic possibilities that may prove effective

in a particular implementation.

The success of scatter search and related strategies is evident in a variety of application

areas such as vehicle routing, arc routing, quadratic assignment, financial product design,

neural network training, job shop scheduling, flow shop scheduling, crew scheduling,

graph drawing, linear ordering, unconstrained optimization, bit representation, multi-

objective assignment, optimizing simulation, tree problems, mixed integer programming.

2.3.4 MultiStart Features

Recent studies confirmed that intelligent uses of adaptive memory would create improved

forms of multistart methods [51]. ¿From a perspective in global metaheuristics, a mul-

tistart approach is an extreme version of the strategic oscillation principle. Strategic

oscillation operates by alternating constructive and destructive phases. Solutions are

generated by a constructive phase and then they are dismantled to a detail degree by the

destructive phase, after a new constructive builds the solutions anew. This strategies can

be applied to oscillation patterns that destroy large parts of solutions during destructive

phases.

The principle of Persistent Attractiveness says that good choices derive from making

decisions that often appeared attractive, but that have not previously been made within

a particular phase of search. A way to take advantage of this principle is by creating

measures of attractiveness for the purpose of modifying customary evaluations of con-

structive moves. It is made by using persistent attractiveness measures derived from an

operation of creating a component evaluator.
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The principle of Marginal Conditional Validity derives from the facts that constructive

methods make decisions sequentially, and the evaluation of potential decisions depends

on those decisions made earlier. Therefore the effect of conditionally is one of the primary

determinant of the effectiveness of sequential constructive procedures.

2.3.5 A Classification

The evolution of metaheuristics during the past ten years has taken an explosive upturn.

Metaheuristics in their modern forms are based on a variety of interpretations of what

constitutes “intelligent” search. These interpretations lead to design choices that in turn

can be used for classification purposes. However, a rigorous classification of different

metaheuristics is a difficult and risky enterprise, because the leading advocates of alter-

native methods often differ among themselves about the essential nature of the methods

they espouse. This may be illustrated by considering the classification of metaheuristics

in terms of their features with respect to three basic design choices:

(1) the use of adaptive memory,

(2) the kind of neighborhood exploration used, and

(3) the number of current solutions carried from one iteration to the next.

These options can be embedded in a classification scheme of the form x/y/z, where

the choices for x are A (if the metaheuristic employs adaptive memory) and M (if the

method is “memoryless”).

The choices for y are N (for a method that employs some systematic neighborhood

search either to select the next move or to improve a given solution) and S (for those

methods relying on random sampling). Finally, z may be 1 (if the method moves from

one current solution to the next after every iteration) or P (for a population-based

approach with a population of size P ). This simple 3-dimensional scheme gives us a

basis of classification, which discloses that agreement on the proper way to label various

metaheuristics is far from uniform.
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Metaheuristic Classification 1 Classification 2

Genetic algorithms M/S/P M/N/P

Scatter search M/N/P A/N/P

Simulated annealing M/S/1 M/N/1

Tabu search A/N/1 A/N/P

MultiStart M/N/1 A/S/1

Variable Neighborhhod M/N/1 A/N/1

Table 2.1: Metaheuristic classification

We show this by providing classifications for some well-known metaheuristics in Table

2.1.

Two different ways are given for classifying each of these procedures. The first clas-

sification most closely matches the “popular conception” and the second is favored by a

significant (if minority) group of researchers. The differences in these classifications oc-

cur for different reasons, depending on the method. Some differences have been present

from the time the methods were first proposed, while others represent recent changes

that are being introduced by a subgroup of ardent proponents. For example, the original

form of simulated annealing has come to be modified by a group that believes stronger

elements of neighborhood search should be incorporated. A similar change came about

in genetic algorithms, a few years before it was introduced in simulated annealing, in

the mid 1980s. Still, it should be pointed out that not all the advocates of simulated

annealing and genetic algorithms view these changes as appropriate.

On the other hand, among those examples where different classifications were present

from the start, the foundation papers for tabu search included population-based elements

in the form of strategies for exploiting collections of elite solutions saved during the search.

Yet a notable part of the literature has not embraced such population-based features of
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tabu search until recently.

Similarly, scatter search was accompanied by adaptive memory elements as a result

of being associated with early tabu search ideas, but this connection is likewise only

beginning to be pursued.

A few proponents of simulated annealing and genetic algorithms have recently gone

farther in modifying the original conceptions than indicated in Table 2.1, to propose the

inclusion of elements of adaptive memory as embodied in tabu search.

Such proposals are often described by their originators as hybrid methods, due to

their marriage of aspects from different frameworks.

2.3.6 Desirable properties

Desirable properties of metaheuristics are those which would guarantee both their prac-

tical and theoretical interest. A possible list of such properties is the following:

1. Simplicity: The metaheuristic should be based on a simple and clear principle.

2. Precision: The metaheuristic should be formulated in precise mathematical terms.

3. Coherence: The steps of the procedure should follow naturally from the metaheuris-

tic’s principle.

4. Efficiency: The algorithm should take moderate computing time to provide the

solutions;

5. Effectiveness: The heuristics should provide optimal or near-optimal solutions for

all or at least most realistic instances.

6. Efficacy: The heuristics should provide optimal solutions for a great majority of

problems.

7. Generality: The metaheuristic should be largely applicable to a wide set of prob-

lems.
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8. Adaptive: The metaheuristic should have tools to change and fit different kind of

problems or instances

9. Robustness: The performance of heuristics should be consistent over a variety of

instances.

10. Interactive: Heuristics should be user-friendly, easy to understand and easy to use.

11. Multiple: The Metaheuristic should provide several high quality and different solu-

tions.

12. Autonomous: The heuristics should be parameter-free or have as few parameters

as possible.

13. Innovative: The metaheuristic characteristics should lead to new types of applica-

tions that lead to innovation.



Chapter 3

Provisioning and Routing Problem

An introduction on the Provisioning and Routing Problem (PRP) is provided in this

chapter. The aim is to give a wide description of the general problem. Section 3.2 pro-

vides a literature review of the general problem and of the problem when using WDM

technology. Next section describes the main features of the problem when considering

WDM technology. Section 3.4 describes an Integer Linear Programming model proposed

for the PRP. Section 3.5 reports the development of a metaheuristic solution approach

for solving the problem. Last section summarizes the comparative analysis between the

proposed metaheuristic, two variants of a permutation-based approach, and the lower

bounds generated by solving the formulation with Cplex using real and randomly gener-

ated data.

3.1 Introduction

Two special network flow problems have been the focus in the telecommunications liter-

ature: the feasibility problem and the analysis problem. Given a graph and capacitated

links, the first problem refers to the feasibility of a set of flows. If a set of demand re-

quirements is also considered, the second problem refers to the determination of feasible

flows such that the demand requirements are satisfied. We deal with a third type of

77
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network flow problem: the network provisioning problem (also referred to as synthesis or

dimensioning), which consists of minimizing the total cost of installing capacity on links

of a given network so that demand requirements are satisfied. In these problems, both

the physical network topology and the demand requirements are given and the decision

variables relate only to adding capacity to links and nodes at minimum cost. When the

problem includes also the design of the network topology, that is, determining which links

to install, then a complete graph and installation costs are considered.

A given network topology, a cost structure and a set of demand requirements charac-

terize a typical instance of a network provisioning problem. The cost structure depends

on each situation as well as on the available technology. It is customary to assume that

the system does not add routing costs once the equipment has been installed. Also,

these problems typically deal with commodities involving a single source and a single

destination. A requirement between two nodes is a single commodity flow requirement.

Multi-commodity flow requirements are also considered as long as the commodities in-

volve different origins and destinations while sharing the capacity of the network.

Another typical assumption is that the optical traffic is expressed in OC-48 units, i.e.,

Optical Carrier level 48 SONET channels. Each such channel carries 2.488 × 109 bits

per second, equivalent to 48,672 voice-grade digital channels digitized at 64,000 bits per

second each, after subtracting out overhead bits used for routing and control.

When the set of requirements consists of a single demand, the provisioning and routing

problem reduces to solving a shortest path problem on a graph with incremental costs

as arc weights. The incremental costs are associated with the equipment required to

route the smallest allowed demand increment (i.e., one OC-48 if demand splitting is

allowed, and the entire demand if no splitting is allowed). More likely, however, the

set of demand requirements consists of several origin-destination pairs. In this case, the

demand requirements are routed taking into account the spare capacity in the current

network. The spare capacity problem is carefully studied because the equipment installed
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on links and nodes to route a given demand under consideration can also be used to

route another demand to be considered later, making the design more cost effective.

Provisioning problems also consider non-simultaneous demand requirements, where the

capacity installed to route one demand at a given time can be used to route another

demand at a different time without additional cost.

The provisioning problem has the following additional applications in the world of

telecommunications networking: Multi-hour problems and Survivability problems.

Multi-hour problems. The set of nodes at which demands originate and termi-

nate depends on the time of the day. The capacity installed on the network to satisfy

the demand for bandwidth at a given time can be used to route the requirements at

a different time without additional cost. Therefore, the total cost of adding capacity

is minimized by solving a non-simultaneous multiple requirements problem where each

multiple requirement corresponds to a matrix of demands in a period.

The study of this problem was initiated in 1961 by Gomory and Hu [56], who work

on a special case of the multi-hour problem with single commodity flow requirements,

fractional capacities and the graph is complete with capacity installation costs on all

edges equal to 1. In [57] they consider multi-commodity flow requirements and capacity

costs given by a linear function of the edge length. The larger instance studied in this

work has 10 nodes and 20 edges.

The problem introduced by Gomory and Hu in 1961 has been also studied by Talluri

[130] . Some applications have a certain setup cost associated with edges, and it is of

interest to design the network with as few edges as possible. This variant of the network

synthesis problem was studied by Gusfield [60], who developed two algorithms to build

networks with the number of edges less than or equal to those in the networks constructed

by Gomory and Hu. Talluri proposes for this variant a new algorithm, which guarantees

to use, at most, the number of edges as in the networks of Gusfield’s algorithms. In

addition, Sridhar and Chandrasekaran [128] gave a polynomial-time algorithm that solves
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the integer network synthesis problem.

The Survivability problems have been described above.

3.2 Provisioning and Routing Problem in WDM Net-

works: Previous Contributions

WDM/DWDM technology and its related equipment have several advantages when telecom-

munication companies consider increasing the capacity of an existing fiber network. The

first step is increasing the capacity of point-to-point links by using the multiple channels

provided by the WDM system. The next step is the switching of the channels in the

optical layer by using all-optical cross-connects. In this work we consider WDM net-

works with wavelength conversion in the cross-connects. In this case, the path on which

a point-to-point static demand is carried can have different wavelengths on subsequent

links.

When planning WDM optical networks it is important to define the number of wave-

lengths per fiber to be used (8, 16, 32) and the channel spacing. We assume that only

one type of WDM system with 32 wavelengths is used when solving the problem, i.e., we

consider only homogeneous networks. Then the planning consists of selecting the paths

to route the set of estimated point-to-point demands and provisioning the network. In

order to increase the capacity of the network at a minimum cost, it is necessary to decide:

• Where to place WDM and OXC systems;

• How to route the traffic within the resulting network; and

• How to restore the network in the event of any single link failure.

In the literature there are several works related to provisioning of WDM optical

networks. This works can be roughly classified in two categories: the case of limited
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deployed fiber, where provisioning seeks to minimize the number of wavelengths [4], [5],

[108], [137]; and the case of limited number of wavelengths per fiber, where provisioning

seeks to minimize the amount of required fiber [109] or to maximize accommodated traffic

[114].

Caenegem, et al. [131] propose a simulated annealing metaheuristic for designing

a fiber topology and optical path layer for WDM Networks minimizing the total cost

for a given static traffic demand. They consider two different types of WDM networks;

networks that do not use wavelength conversion and networks that use wavelength con-

version in the cross-connects. They also consider the protection problem using three

rerouting strategies for single link failures: link protection, path protection and path

protection with link-disjoint route. They do not take into account uncertainty in traffic

demands, which is under the scope of this thesis and will be studied in chapter 6.

Alanyali and Ayanoglu [2] focus on heuristic methods for provisioning a static set

of connections on a given WDM optical network topology. They consider that there is

a fixed set of wavelengths available on each fiber, which has a cost reflecting the fiber

material, optical amplifiers, and the optical termination equipment at both endpoints of

the link. However, they consider a fixed positive weight as cost for each link without

taking into account the costs of the channels cards required to route traffic on a WDM

channel. The design should only consider the cost of equipping the active channels.

Baroni, et al. [6] present several ILP models that attempt to minimize the total

number of fibers needed to meet demand for different variations of the routing and

wavelength assignment problem. They develop heuristics for large instances and solve to

optimality small instances.

Kennington, et al. [74] present an empirical study comparing solution that forbids

wavelength conversion with those that permit conversion for the routing and wavelength

assignment problem. They address a planning problem with connection requests known

with certainty at the time the network is planned and they seek to minimize or maximize
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some objective function measuring the quality of the assignments. For the extreme cases

of no conversion and conversion at every node the instances are solved using [28]. For

the more difficult instances, they used a tabu search heuristic. In [72] they developed an

optimization model and heuristic for the version without wavelength conversion.

Kennington, et al. [73] study issues concerning uncertain demand forecasts by us-

ing robust optimization. They model the wavelength division multiplexing routing and

provisioning problem with uncertain demands and a fixed budget as a multicriteria opti-

mization problem. The primary objective is to minimize a quadratic regret function that

models the total amount of over and/or under provisioning in the network resulting from

uncertainty in the demand forecast. The secondary objective is to minimize the equip-

ment cost that achieves the optimal value for regret. They propose a two-phase robust

optimization strategy based on mixed integer linear programs. In the basic provision-

ing model for each scenario, the objective is to minimize the total cost for provisioning

the network with terminal equipment located at each node and optical amplifiers and

regenerators associated with the needed links.

DWDM telecommunication network planning is often divided into four main phases:

design of the network, routing of the demands, multiplexing and survivability. We assume

that there is a current network design such that our problem consists of dealing with the

remaining steps of the planning process. In this chapter we do not tackle the problem of

protecting the network for link failures. However, since the protection problem can also

be treated as a provisioning problem, the proposed formulation for the service network

is essentially the same for the protection network, which is typically obtained after the

service network has been configured.

Cox, et al. [27] proposed the planning problem that simultaneously addresses the

provisioning, routing and survivability problems. The problem was approached using a

genetic algorithm (GA), which is based on incrementally adding equipment to minimize

the cost of routing each demand. The GA uses permutations to represent solutions. A
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permutation represents the ordering in which the demands are considered, one by one,

for routing purposes. Therefore, a permutation is mapped into an actual solution by

a procedure that uses the given order to route the demands in the most cost-effective

way. Since the equipment is added to satisfy the current demand without considering

the demands that are yet to be routed, each permutation typically results in a different

network design. (It is possible, but unlikely, for two different permutations to be mapped

to the same network design.) The approach cannot guarantee the existence of an ordering

of the demands that would result in an optimal design. In other words, even an exhaustive

search of all permutations may result in a sub-optimal network design.

3.3 Problem Description

This dissertation is concerned with the provisioning and routing problem in WDM net-

works. This optimization problem deals with a set of demands to be routed through the

existing optical network. Associated with each demand is an origin node, a destination

node, and a size, expressed in OC-48 units. Optical fiber joining pairs of nodes is used to

route demands through the network. Each demand can be routed either entirely on one

or more bare fibers, over one or more channels of a WDM system or it can be switched

from a WDM to another through OXCs. The goal of the network planner is to minimize

the total cost, which consists of the cost of additional fiber, WDM systems and OXC

equipment.

The existing physical network design (i.e., the set of exiting links) constrains where

new optical fibers and WDM systems can be placed. A segment is defined as a sequence of

individual links that do not pass through any OXC system. In this case, any intermediate

node will be called glass-through node, meaning that fiber or a WDM system passes

through the node without adding or dropping traffic and without requiring additional

equipment. Each OC-48 unit uses two bare fibers or a channel of a WDM system.
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For convenience, we will refer to the capacity required for an OC-48 unit as a channel,

regardless of whether a pair of fibers or a channel of a WDM system is actually used.

All links within a segment must carry the same amount of traffic running from its origin

to its destination. In an optimal network design, each segment should follow a least-cost

path (with respect to fiber cost) from its origin to its destination. Since the shortest path

from any node to any other is treated as a potential segment, the network of segments

results in a complete graph, which is intractable in most cases. Therefore, it is useful to

generate a subset of promising segments as one of the search strategies.

Once an OXC is reached, wavelengths and fibers can be rearranged. Therefore, the

capacity constraints on each segment are simply that enough fiber and WDM equipment

must be available on the segment to handle the number of OC-48 units assigned to it.

Each individual link must have enough channel capacity to cover all demands routed over

segments that uses it.

We will use the network in Figure 3.1 to illustrate the segment-based formulations

in the next section. The following three demands are to be routed through the network

using some combination of fiber, WDM systems and OXC equipment:

• Route 1 OC-48 from node A to node C.

• Route 1 OC-48 from node A to node D.

• Route 1 OC-48 from node A to node E.

The first step is to determine the set of promising segments that are to be used during

the optimization. The set of segments consists of (A,B), (B,C), (B,D), (B,E), which

correspond to the individual links in the network, and (A,C), (A,D), (A,E), (C,D), (C,E),

(D,E), which correspond to the segments generated by the connection of two individual

links. Let us consider as promising segments: (A,B), (B,C), (B,D), (B,E), (A,C), (A,D),

and (A,E) (see Figure 3.2). The three segments generated by the connection of two

individual use B as a glass-through node. Suppose that WDM equipment with only 3
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Figure 3.2: Segments Network

channels is available. Depending on the cost of WDM systems, the cost of fiber on (A,B),

and the cost of an OXC, the optimal solution would either be:

Option 1

• Route demand A-C on segments (A,B) and (B,C).

• Route demand A-D on segments (A,B) and (B,D).

• Route demand A-E on segments (A,B) and (B,E).

• Put a WDM system on (A,B), (B,C), (B,D), and (B,E).

• Place an OXC with six OXC ports at node B.
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• There will be a total of six ports used at nodes A, C, D, and E to add and drop

the traffic.

Cost = [fiber costs for links (A,B), (B,C), (B,D) and (B,E)] + [WDM cost for links

(A,B), (B,C), (B,D) y (B,E)] + [cost of twelve OXC ports]

Option 2

• Route demand A-C on segment (A,C).

• Route demand A-D on segment (A,D).

• Route demand A-E on segment (A,E).

• Put a WDM system on (A,C) glassed-through at B. The fiber and WDM is groomed

to carry only this traffic.

• Put a WDM system on (A,D) glassed-through at B. The fiber and WDM is groomed

to carry only this traffic.

• Put a WDM system on (A,E) glassed-through at B. The fiber and WDM is groomed

to carry only this traffic.

• There will be a total of six ports used at nodes A, C, D, and E to add and drop

the traffic.

Cost = [cost of three fibers on (A,B), one fiber on (B, C), one fiber on (B,D) and one

fiber on (B,E)] + [cost of three WDM systems, one for the (A,C) fiber, one for the (A,D)

fiber and the other for the (A,E) fiber] + [cost of six OXC ports to add and drop traffic

at demand origins and destinations].

Option 1 requires four WDM systems to be installed (one from A to B and one each

from B to C, from B to D, and from B to E). It also requires an OXC to split off the

wavelengths coming off the AB WDM system and put them on the three other (BC, BD
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Figure 3.3: Test Glassthrough

and BE) WDM systems. Option 2 saves the cost of an OXC at B and one WDM system,

but involves longer fiber routes.

The rationale behind generating a set of potential segments given a network topology

is that it provides a cost reduction. Let us consider the network topology in Figure 3.3

and let us suppose that 1 OC-48 unit has to be routed from node N3 to node N2. If the

segment joining the nodes N3 and N2 is not added to the physical network, then a WDM

must be put on segment (N3, N1), another must be put on segment (N1, N2), and an

OXC system has to be placed at node N1. There will be two ports used at node N1, one

port at node N3 for adding traffic, and one port at node N2 for dropping traffic. The

total cost of this design is 405,600 dollars. If segment (N3, N2) is added to the physical

topology, then only one WDM system glassed-through at N1 has to be installed on it

and there will be a total of two ports for adding and dropping traffic at nodes N2 and

N3. The total cost of this design is 262,800 dollars.
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3.4 Node-Segment Model

We present a mixed integer linear programming (MILP) cost model for the provisioning

and routing problem. We provide a node-segment formulation for the problem with mul-

ticommodity flow requirements without uncertainty in key data and without protection.

Cox, et al. in [27] propose a node-segment formulation for the planning problem

that tackles simultaneously the multiplexing, routing and survivability problems. Our

node-segment formulation is based on Cox, et al.’s formulation with the difference that

we do not tackle simultaneously the provisioning, routing and survivability problems

but instead deal with survivability after provisioning and routing of the service network.

We will show that our formulation of the problem using a path-assignment approach to

represent solutions results in improved outcomes when compared to tackling the whole

problem with the permutation based approach proposed by Cox, et al.

The network topology is represented as an undirected graph G = (N, E), where N

denotes the set of nodes and E ⊆ N ×N denotes the set of segments. In our formulation

links and segments are equivalent in that they represent a directed connection between

two points. The cost of using an individual link or segment is correctly computed in the

objective function. A non-simultaneous multicommodity flow requirement, consists of

a set of demands D = (o1, d1, R1), (o2, d2, R2), · · ·, (oq, dq, Rq) to be routed through the

graph. Each single demand consists of an origin node, oi, a destination node, di, and a

size, Ri.

Most of the cost sources are mapped to the segment and node costs. The segment

cost is subdivided into two components: the cost related to the fiber and the cost related

to the channels if WDM systems have to be installed on the fiber. Furthermore, the fiber

cost is also subdivided in three different quantities: the fiber terminating equipment

(WDM systems) cost, which is a fixed amount; the fiber cost, which depends on the fiber

length; and the amplifiers cost, which depends on the number of amplifiers installed on

the fiber. These three different costs have to be added to the total cost for each fiber
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used on each segment. For each WDM channel used in a fiber, the cost for the channel

cards and for the wavelength converter has to be added to the total cost. In addition,

the node costs include the cost of installing the all-optical cross-connects and the ports

required as origin and destination of each channel, which can be either a WDM channel

or a pair of bare fibers.

The formulation presented in this section use the following definitions.

3.4.1 Data

Cost Input Data

• CF
e = cost of a fiber on segment e (sum of costs per link along that segment).

• C
Wj
e = cost of a type j ∈ J WDM unit on segment e.

• COl = cost of a type l ∈ L OXC unit.

• Ccj = channel cost of a type j WDM unit.

• Cpl = port cost of a type l OXC unit.

Capacity Data

• Mwj = capacity of a type j WDM unit.

• M ol = capacity of a type l OXC unit.

Existing Infrastructure
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• gj
e = spare WDM channels on WDM systems of type j on segment e.

• hl
n = spare OXC ports on OXC systems of type l at node n.

3.4.2 Decision Variables

• xie = amount of demand i routed on segment e.

• xF
ie = amount of demand i routed on segment e in the forward direction.

• xR
ie = amount of demand i routed on segment e in the reverse direction.

• fe = number of stand-alone (no WDM) fiber pairs on segment e.

• wj
e = number of type j WDM units on segment e.

• vj
e = number of channels on type j WDM units on segment e.

• yl
n = number of type l OXC units installed at node n.

• ul
n = number of ports on type l OXC units installed at node n.

3.4.3 Objective Function

The objective function to be minimized is the sum of fiber costs (first term), WDM costs

(second term) and the OXC costs (third term).

min
∑

e∈E

2CF
e fe +

∑

e∈E

∑

j∈J

((
CF

e + CWj
e

)
wj

e + Ccjvj
e

)
+

∑

n∈N

∑

l∈L

(
COlyl

n + Cplul
n

)
(3.1)
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3.4.4 Constraints

The following constraints require that all demand must be carried, that no link should be

assigned more demand than its capacity allows it to carry and that no switching element

should be assigned more traffic than its capacity allows.

Conservation of Service Flow

∑

e ∈ E

oi = start(e)

xF
ie +

∑

e ∈ E

oi = end(e)

xR
ie −

∑

e ∈ E

oi = end(e)

xF
ie −

∑

e ∈ E

oi = start(e)

xR
ie = Ri,

∀(oi, di, Ri) ∈ D (3.2)

∑

e ∈ E

di = end(e)

xF
ie +

∑

e ∈ E

di = start(e)

xR
ie −

∑

e ∈ E

di = start(e)

xF
ie −

∑

e ∈ E

oi = end(e)

xR
ie = Ri,

∀(oi, di, Ri) ∈ D (3.3)

∑

e ∈ E

j = end(e)

xF
ie +

∑

e ∈ E

j = start(e)

xR
ie −

∑

e ∈ E

j = start(e)

xF
ie −

∑

e ∈ E

j = end(e)

xR
ie = Ri,

∀(oi, di, Ri) ∈ D, ∀j ∈ N, j 6= oi, di (3.4)

xF
ie + xR

ie = xie,∀(oi, di, Ri) ∈ D, ∀e ∈ E (3.5)

Segment Capacity

∑

(oi,di,Ri)∈D

xie ≤ fe +
∑

j∈J

vj
e,∀e ∈ E (3.6)

vj
e ≤ wj

eM
wj + gj

e,∀e ∈ E, ∀j ∈ J (3.7)

Switch Requirements
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∑

n=end(e)


fe +

∑

j∈J

vj
e


 ≤ ∑

l∈L

ul
n,∀n ∈ N (3.8)

ul
n ≤ yl

nMOl + hl
n, ∀n ∈ N, ∀l ∈ L (3.9)

Integrality Constraints. All variables are nonnegative integer.

This formulation assumes an undirected graph. For directed graphs, the variables xF
ie

and xR
ie can be eliminated. That is, the R-variables are entirely eliminated and x is used

in place of the F-variables. With this definition, each segment needs to be listed only

once, but can be used in either direction. A WDM system on that segment can also be

used in either direction.

The studied formulation thus requires the following number of variables:

|E|+ 2|E||J |+ 2|N ||L|+ 3|D||E|,

and the following number of constraints:

2|D|+ |D|(|N | − 2) + |D||E|+ |E|+ |E||J |+ |N |+ |N ||L|.

The number of variables and constraints scale with the number of links and nodes in

the network. They also scale with the number of demands. The integer constraints are

necessary, otherwise it would be most likely to find solutions that are not feasible because

of noninteger values for capacities.

The preceding objective function, decision variables, and constraints specify a formal

version of the provisioning and routing problem. In practice, however, demands and costs

are typically uncertain, while available technology options, such as OXC and WDM

system capacities, change frequently as new products are introduced. Therefore, this

formal version of the problem only approximates a more complicated provisioning and
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routing problem with uncertainty in key data and changing constraints. This problem

will be discussed in chapter 6.

Rather than pursuing a true multi-period optimization approach with formulations

that explicitly model uncertainty, many designers prefer to work with a simpler formu-

lation and re-run the associated optimization procedure frequently as conditions change.

Previous values of decision variables may then become initial conditions for a new op-

timization run, which would possibly involve changes in costs and an expanded set of

technically feasible options. Repeatedly running a static optimization procedure with

changing inputs is, in principle, a sub-optimal approach to adaptive planning. However,

in practice, such “rolling optimization” is often preferred to theoretically more realis-

tic dynamic formulations for which required input data cannot be estimated with an

appropriate accuracy level.

Additional, and perhaps more realistic, formulations are obtained by constraining the

optimization as follows:

Maximum length allowed for WDM systems The signal reach stimulated by WDM

equipment spans a maximum of about 400 miles without electronic regenerators.

If the length of the segment, with an installed WDM system, exceeds that dis-

tance, additional WDM systems must be placed back to back along the segment.

Our proposed metaheuristic procedure handles this constraint, and the additional

WDM systems and channel cards are subsumed in the formulation by adding the

appropriate cost.

Allowed technologies The environment in which the network design problem arises

may limit the fiber, WDM systems, and OXC equipment that can be assumed that

are available for use.
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3.5 Metaheuristic Solution Approach

This section summarizes the development of a metaheuristic procedure that searches for

optimal solutions to the provisioning and routing problems. As indicated above, the

protection problem is tackled as a provisioning problem, which is solved after the service

problem, so that a similar procedure can be used to design the working and protection

networks. The MIP model presented in the previous section has a very large number of

variables and constraints, making it impractical for the exact solution of real instances of

moderate or large size. For small planning problems, the MIP formulation can be solved

in reasonable amount of computer time, as shown in our computational experiments.

However, the exact solution of the model is only a lower bound on the optimal solution

to the real problem.

Our solution procedure employs the notion of a base network, which initially consists

of the current network design. A base is an incomplete network design that does not

satisfy the set of demand requirements that a complete design should be capable of

handling. As the process iterates, the base network evolves and the estimated cost of

routing a demand becomes more accurate. An evolved base network includes additional

equipment, which has been tentatively added to the original base. When a demand is

considered for routing on an evolved base network, this demand can share the additional

capacity with other demand requirements, making the cost estimates more accurate, due

to a decreasing fraction of the capacity that is not shared for costing purposes. The

evolution of the base network is linked to an adaptive memory mechanism that keeps

track of where new equipment is added in the best solutions recorded during the search.

The solution approach that we propose builds a list of paths for each demand by making

use of an efficient implementation of the k-shortest path algorithm. This procedure

identifies a controlled set of feasible paths for each demand [46] and is a variant of the

k-shortest path algorithm reported in [89]. The paths for a given demand are found

calculating the incremental cost of routing the entire demand in the base network. For
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example, one of the possible paths would be to add the necessary fiber and WDM systems

to create a segment from the origin to the destination of a given demand. Other paths

are created using alternative ways of carrying the demand from origin to destination,

which would most likely imply adding WDMs and OXCs.

Four basic elements are common to heuristic searches, regardless of the specific

methodology or strategic design choices: (1) a solution representation, (2) an objec-

tive, (3) an evaluation function, and (4) a move mechanism. The specifications for our

proposed search procedure are:

Solution representation. The construction of a solution starts with the selection of a

path for each demand requirement. Once each demand is assigned to a path, the

cost of the resulting design is calculated. The cost is associated with the equipment

that is required to satisfy the demands using the chosen paths. A solution is fully

determined by a data structure that stores the path assignments and the equipment

required in each element of the original network.

Objective. The goal of the DWDM planning problem is to minimize the sum of addi-

tional fiber cost, WDM equipment cost and its terminal equipment (OXC units)

cost, subject to the appropriate technology constraints.

Evaluation. Once each demand has been assigned to a path in its list of potential paths,

the evaluation of the solution consists of calculating the increase of capacity required

in the elements of the network that route the demands through the assigned paths.

The increased capacity is then translated into cost of installing additional fiber and

adding WDMs and OXCs.

Move mechanism. Every solution has a neighborhood, which consists of all the feasible

solutions that are reached by changing a demand from one path to another.

Our overall solution strategy consists of an adaptive metaheuristic method that com-

bines ideas from scatter search [82], multistart [59], and tabu search [50]. The hybrid
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metaheuristic takes advantage of strategies that can explore a large solution space effec-

tively. Specifically, tabu search contributes with a short term memory component that

is designed to avoid cycling. Scatter search adds a mechanism to generate new solutions

from the combination of solutions in an updated reference set of solutions. Finally, the

multistart component uses a long term memory that forces construction of new solutions

in a wider range of the solution space.

Figure 3.4 shows the main steps of our proposed procedure. The procedure starts

with the generation of a set of promising segments using the shortest path algorithm

(with distances as weights). Segments corresponding to any existing WDM systems are

also included in the promising set. The procedure uses these segments to execute the k-

shortest path algorithm for each demand (with incremental costs from a base network B

as weights). After the execution of this step (line 5) each demand has a set of paths that

are used as the basis for building solutions. Given the network of segments, the spare

capacity on the segments and nodes is determined. Obtaining spare capacities allows the

procedure to assess incremental costs of routing demands in each segment.

The initial reference set is constructed in lines 6 and 7. The set is populated using

a constructive procedure (line 7) that attempts to assign demands to paths in order to

efficiently utilize the spare capacity in the original base network. The rationale behind

this initialization is that spare capacity for channels in the final network design should

be zero except for channels on WDM systems covering a segment without slack. The

strategy acknowledges that spare capacity in the original network simply accounts for

existing network infrastructure. The solutions in the reference set are ordered according

to their total cost, where the first solution, labelled RefSet1, is the one with lowest cost.

The reference set is updated as the process iterates (lines 16 and 20). The notion of a

reference set is the same as the one used in the scatter search methodology.

We use the current solution S, which at the beginning is the first solution in the

reference set (line 8), to obtain an ordering of the demands according to their unit cost
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(where a unit is an OC- 48). In this ordering, the demand that contributes most (per

OC-48) to the total cost of the design is first and the one that contributes least (per

OC-48) is last. The demand ordering is important, because the local search, which is

based on changing one demand from its current path to another, starts with the demand

that has the largest unit cost. To calculate the unit cost, the demands are examined

one by one. The examination consists of deleting the demand from the current solution

and calculating the cost reduction. The cost reduction is then divided by the bandwidth

requirement of the demand under consideration. Once all demands have been examined,

the unit cost associated with each demand is known.

The neighborhood search (line 12) within the local search in lines 11 to 18 examines

moves employing the ordering of the demands determined in line 10. That is, the first

candidate move is to reassign the demand that is at the top of the unit cost list. If

reassigning this demand leads to an improving move, the move is executed to change

the current solution (lines 13 and 14). If the new solution is better than the worst in

the current reference set, then the reference set is updated (line 16). If an improving

move that involves reassigning the first demand in the list cannot be found, then the

second demand is considered. The process continues until a demand is found for which

a reassignment of paths leads to an improving move. If all the demands are examined

and no improving move is found, the local search is abandoned. Once the local search is

abandoned, the procedure compares the current reference set with the reference set before

the last time the local search was executed (line 19). If the reference set did not change

after the last execution of the local search, the set is rebuilt (line 20). The process of

evolving the base network from a reference set is mainly deterministic and therefore if the

reference set does not change, then the base does not evolve properly. Rebuilding of the

reference set entails keeping the top |RefSet|/2 solutions and generating new solutions

to substitute the worst |RefSet|/2 in the set, as typically done in implementations of

scatter search.
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Numerous studies show that effective metaheuristic procedures keep a balance be-

tween search intensification and diversification, that is, between reinforcing attributes

associated with good solutions and driving the search into regions not yet visited. To

achieve this balance, the original base is evolved (line 21) employing the information

embedded in the reference set. One of the main criteria used to evolve the base network

relates to the number of times a segment appears in the paths assigned to the demands in

the RefSet solutions. The procedure also uses global (referred to the whole search pro-

cess) and local (referred to the current reference set) information in the form of counters

that keep track of the number of channels used in each segment in order to decide where

to add equipment to the current base. The difference between the maximum global and

the maximum local number of channels used in each segment shows its importance. The

smaller the difference the more important the segment is in the final network design.

For each demand, the k-shortest paths are again calculated (line 22) by using the

incremental costs of routing the demand through the new base network. This step updates

the list of best candidate paths according to the current base network. The new paths

take advantage of the additional channels included in the evolved base network that can

be used without increasing the total cost of the design. The local search now starts from

an initial solution constructed to best utilize the spare resources in the new base (line

23). The procedure includes intensification and diversification strategies in the evolution

of the base network and in the utilization of the spare capacity during the construction

of a starting solution for the local search. The procedure terminates after a pre-specified

number of iterations.

3.6 Computational Results

In this section, we present and discuss our computational experiments. We first describe

the problem instances that were used to carry out the experimentation. Then we report
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the results of three experiments. All programs were implemented in C and compiled with

Microsoft Visual C++ 6.0. All experiments were performed on a PC with one Pentium

4 processor at 2.53 GHz.

The problem instances used for testing are both real (shared by Dr. Leonard Lu of

AT&T Labs) and randomly generated. The random instances are based on the networks

corresponding to the real instances, with the demands and existing equipment randomly

generated. The motivation for generating random instances is to study the performance

of our methods on instances with various characteristics. We consider four different

network sizes (with number of nodes varying from 11 to 113) and we generate links to

create several densities. Finally, several sets of uniform and clustered sets of demands

are randomly created. Uniform demands are generated by randomly selecting an origin

and a destination, where each pair has the same probability of being selected. Clustered

demands are generated selecting a subset of nodes as high traffic locations and then

generating a demand pattern that has a higher density around those nodes. The problem

instances used for testing are summarized in Table 3.1. For each set, Table 3.1 shows the

name, the number of nodes N , links L , and the different numbers of demands D . The

last set in the table has one problem only, corresponding to a real set of demands. No

artificial demands were generated for this network.

Table 3.2 summarizes the data regarding the equipment cost used in the solution of

the problem instances listed in Table 3.1.

Table 3.3 shows the characteristics for the instance MetroD of the mathematical model

described above.

3.6.1 Metaheuristic - Permutation Based Procedure

For comparison purposes, we have implemented a permutation-based algorithm that fol-

lows the same structure as the one proposed in [27]. In this approach, a permutation

represents the ordering in which the demands are considered for routing. A permuta-
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Set Name |N | |E| |D|
MetroD 11 16 10, 20, 30, 54

27 10, 20, 30, 54

42 10, 20, 30, 48, 54

Extant0D 12 17 15, 19, 21, 44, 66

33 15, 21, 44, 66

46 15, 19, 21, 44, 66

Example2D 17 26 27, 36, 79, 81, 135

68 27, 36, 81, 135

NationalD 50 63 45, 65, 91, 112

108 annealed-3D 113 137 130

Table 3.1: Test problem characteristics

Constant Cost Description

CF
e $1, 400 ∗ length(e) Cost of a fiber on a segment e

CW
e $95,000 cost of a WDM unit

CO $120,000 cost of an OXC unit

Cc $18,000 channel cost of a WDM unit

Cp $10,000 port cost of an OXC unit

Table 3.2: Description of costs

tion is mapped into a solution by a procedure that uses the given order to route the

demands in the most cost-effective way. When the first demand is considered for routing

the current design consists of the original network. The demands are considered one

by one as specified by the order in the current permutation. Additional equipment is

added as required and the design is updated. The permutation is fully mapped when all

the demands have been considered. The approach has the goal of locally minimize the

addition of equipment as each demand is routed through the network. More details of

the approach can be found in [27] where the permutation search is conducted using a

genetic algorithm. Since the genetic algorithm used in [27] is a proprietary code of Cox
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Set Total Integer

Name |N | |E| |D| Constraints Variables

MetroD 11 16 10 324 550

20 594 1030

30 864 1510

54 1512 2662

27 10 456 913

20 836 1723

30 1216 2533

54 2128 4477

42 10 636 1408

20 1166 2668

30 1696 3928

48 2650 6196

54 2968 6952

Table 3.3: MIP characteristics for the instance MetroD

and Associates, Inc., we employ OptQuest [110], a commercial scatter search solver that

is capable of searching a permutation space.

Our first experiment consists of comparing the solutions obtained by the permutation-

based metaheuristic and our hybrid metaheuristic approach applying the Wilcoxon Signed

Ranks Test [29]. The objective is to determine if we may conclude from sample evidence

that there is a significant difference between these two procedures. We apply both proce-

dures to the problems in Table 3.1 and record the objective function values obtained by

each procedure. Then, compute the absolute objective function value differences (with-

out regard of the sign) for each problem and all differences of zero are omitted. Let the

number of pairs remaining by denoted by n. Ranks from 1 to n are assigned to these n

pairs according to the relative size of the absolute difference, as follows. Rank 1 is given

to the pair with the smallest absolute difference; rank 2 is given to the pair with the
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second smallest difference; and so on, until rank n is assigned to the pair with the largest

absolute difference. If several pairs have absolute differences that are equal to each other,

we assign to each of these several pairs the average of the ranks that they would have

been assigned if ties were broken arbitrarily.

Wilcoxon suggested a T statistic, which has the approximate quantiles given by the

normal distribution, under the null hypothesis that there are no significant differences

between the two compared procedures. The critical region of approximate size α = 0.001

corresponds to all values of T less than −3.0902. Since in our case T = −3.217, the null

hypothesis is rejected and we may conclude that there are significant differences between

the two metaheuristic procedures.

We have now established that our procedure performs significantly better than the

permutation-based approach, as indicated by our statistical test. In our second exper-

iment, we assess the quality of the solutions obtained by the application of our hybrid

metaheuristic. For this experiment, we give the MIP formulation presented in section 4

to the Cplex 8.0 MIP solver. The solution of this model provides a lower bound because

the number of intermediate nodes for paths between origin and destination pairs is not

bounded. The costs shown in Tables 3.4 and 3.5 do not include the cost of additional

equipment needed for the restoration of traffic after a single link failure. The first column

in Tables 3.4 and 3.5 identifies the problem set. Columns 2, 3, and 4, contain the number

of nodes, number of segments, and number of demands. Under the headings “PERM”

and “METAH” we report the total costs in million dollars and CPU times corresponding

to the permutation based procedure and the proposed metaheuristic, respectively. Un-

der the heading Cplex we report the total cost obtained by solving our MIP formulation.

Also under the Cplex heading we report either the total solution time or the optimality

gap, if Cplex is unable to find an optimal solution after 2 hours of execution. For the

instance 108-Annealed, Cplex was able to find an integer solution only after 8 hours of

CPU time. The solution to this problem reported in Table 3 was found after 10 hours of
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execution. The last two columns in this table show the deviation between the PERM so-

lution and the METAH solution, and between the METAH solution and Cplex solution,

respectively.

Several observations can be made regarding the results shown in Tables 3.4 and 3.5.

First, the instance-by-instance comparison between PERM and METAH shows that only

in 2 instances (Extant0D-12-17-66 and Extant0D-12-33-44) out of 40 the PERM solutions

are better than the METAH solutions. The largest difference in favor of the METAH ap-

proach occurs in the largest problem (10.04% for the Annealed instance). The deviations

of the METAH solutions from the lower bounds found with Cplex are small, ranging from

0 to 5.7%. For the problem for which Cplex could not terminate within 2 CPU hours,

our hybrid metaheuristic was able to always improve upon the best upper bound. The

results shown in the previous tables corroborate the merit of the solutions found by the

proposed hybrid metaheuristic.

One of the main components of our hybrid metaheuristic is the local search. In

our last experiment, we use the permutation-based procedure to independently test the

effectiveness of the local search. That is, we use the procedure to isolate the local search

from other components of our hybrid metaheuristic in order to assess its effectiveness.

As described in the previous section, the local optimizer performs a first-improving local

search in the neighborhood of the current solution. When a network design is obtained

using a permutation of the demands, it is possible to execute our local search to try

to improve upon the given solution. Our experiments show that the designs obtained

after executing the local search are typically better than the initial designs obtained

using the permutation procedure alone. We applied the permutation based approach

augmented with the local search to all the instances in Table 1 and use the results to test

for significant differences between this approach (PERM+LS) and the one that does not

use the local search (PERM).

We once again use Wilcoxons test with a = 0.001. Since for the procedures PERM
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and PERM+LS, T = −3.516 < −3.0902, we conclude that the differences between the

permutation based procedure and the permutation based procedure with the local search

are statistically significant. Therefore, we may say that the application of the local search

to the designs obtained by the permutation based procedure generally improves upon the

final network designs by reducing their total costs.

Our previous experiment and associated statistical test have determined that the

performance of the permutation-based procedure is enhanced with the application of our

local search. In our final comparison, we test if there is a significance difference between

PERM+LS and our hybrid metaheuristic (METAH). The application of Wilcoxons test

results in T = −0.355. The critical region of size a = 0.05 corresponds to values of

T less than −1.6449. Since T > −1.6449, the test leads to the conclusion that the

performance of PERM+LS is not significantly different than the performance of METAH.

This conclusion indicates that the local search that we have designed is quite effective

and can be used to improve upon solutions yielded by construction procedures.

3.6.2 MSTS - Multistart

This section shows the effectiveness of developing a hybrid metaheuristic for solving the

provisioning and routing problem in WDM mesh networks. The hybrid metaheuristic

MSTS developed above takes advantage of the strategies scatter search and tabu search.

Figure 3.5 summarizes the main steps of a multistart procedure, which has been

obtained by omitting the components of the scatter search and tabu search of Figure

3.4. The multistart procedure starts generating the set of promising segments and paths

for the given initial base in lines 3 and 5, respectively. The constructive method that

attempts to efficiently utilize the spare capacity in the original base constructs the initial

current solution in line 6.

The current solution S is then used for obtaining an ordering of the demands according

to their unit cost in line 9. The local search in lines 10 to 17 examines moves employing
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the ordering of the demands. If reassigning demands to different paths leads to a solution

better than S, then the move is executed to change the current solution S. If the new

solution is better than the best solution, BestSol, then the best solution is changed.

Once the local search is completed, the constructive method constructs a new starting

solution for the local search in line 18. Finally, the procedure terminates after a pre-

specified number of iterations.

Tables 3.6, 3.7, 3.8, and 3.9 report the design costs in million dollars and CPU times

in seconds for both the MSTS and the MS metaheuristics. Both metaheuristics have

been executed using as stopping condition the same pre-specified number of iterations,

where an iteration is a local search.

For small instances both metaheuristics reach the same solutions. However, our ex-

periments corroborate the effectiveness of the MSTS metaheuristic as the size of the

problems increases.

3.7 Conclusions

We have addressed an important and current problem in the telecommunications in-

dustry. We have provided the motivation for studying this optimization problem and

have discussed the technology behind it. Our segment-based formulation is used as the

framework for developing heuristic procedures and as a means for finding lower bounds.

Our experiments with real and randomly generated data show the merit of our pro-

posed solution procedure when compared to a permutation-based approach and to the

lower bounds generated by solving an MIP formulation with Cplex. We used a nonpara-

metric statistical test to compare our procedure and two variants of a permutation-based

approach. The test revealed the effectiveness of our local search, which is capable of

improving solutions constructed with the permutation-based approach to a point that

the resulting method is statistically comparable to the proposed hybrid metaheuristic.
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Although our general approach contemplates solving the protection problem as part of

the design process, in the scope of this chapter we have not included the implementation

and experimentation associated with network survivability. An extension of our work

will include solving the protection problem using the last reference set obtained when

the termination criterion (line 24 in Figure 3.4) is satisfied. Specifically, given a network

design (i.e., a solution in the reference set), the protection problem would consist of

finding the most cost-efficient way of routing demands after a link failure. We believe that

the lessons learned while tuning the procedure for finding good solutions to the working

or service problem will be valuable in the development of a comprehensive procedure that

includes protection. This is addressed in chapter 5.
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1 Procedure Multistart Scatter Tabu Search

2 {
3 generate (segments);

4 B = initial base;

5 Paths = find k-shortest paths ( B );

6 for (i = 1, · · ·, |RefSet|)
7 RefSeti = constructive ( B, Paths );

8 S = RefSet1;

9 do {
10 find demand order (S, B);

11 while (improving move) {
12 move = find next improving move (S,Paths);

13 if (move) {
14 S = execute (move);

15 if (S better than RefSetlast)

16 RefSet = update (S);

17 }
18 }
19 if (equal(RefSet))

20 rebuild (RefSet);

21 B = evolve (RefSet);

22 Paths = find k-shortest paths (B);

22 S = constructive (B,Paths);

23 } until (stoppingcondition)

25 }

Figure 3.4: MSTS
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Perm MSTS Cplex

Set Name |N | |E| |D| Cost Time Cost Time Cost Time Gap(%) Dev(P,M) Dev(M,C)

MetroD 11 16 10 4.09 5.12 4.09 0.13 4.09 0.20 − 0 0

20 4.38 9.77 4.38 4.90 4.38 0.75 − 0 0

30 8.42 15.02 8.42 7.37 8.42 0.39 − 0 0

54 14.13 27.02 14.12 16.60 14.03 6.53 − 0.07 0.64

27 10 2.75 5.21 2.75 1.96 2.75 0.29 − 0 0

20 4.31 10.28 4.26 4.30 4.03 1.09 − 1.17 5.70

30 6.46 15.35 6.46 6.35 6.40 1.76 − 0 0.93

54 11.39 27.52 11.24 14.69 10.84 17.34 − 1.33 3.69

42 10 1.96 5.49 1.96 2.03 1.94 0.38 − 0 1.03

20 3.08 11.16 3.08 3.48 3.06 1.21 − 0 0.65

30 5.40 16.24 5.38 4.86 5.38 7.21 − 0.37 0

48 7.31 26.72 7.11 12.24 6.99 10.89 − 2.81 1.71

54 8.80 29.86 8.50 13.18 8.35 39.44 − 3.52 1.79

Extant0D 12 17 15 3.69 8.16 3.69 3.25 3.69 0.75 − 0 0

19 6.26 10.41 6.26 9.99 6.26 8.04 − 0 0

21 6.21 11.43 6.21 9.46 6.21 3.45 − 0 0

44 14.48 23.55 14.36 27.19 14.36 96.11 − 0.83 0

66 11.99 35.71 12.14 41.00 11.83 81.81 − -1.23 2.62

33 15 3.69 7.82 3.69 3.57 3.69 20.09 − 0 0

21 7.32 11.60 7.32 7.21 6.03 269.68 − 0 2.13

44 13.94 23.69 14.23 19.99 14.23 − 7.46 -2.03 −
66 11.83 35.81 11.83 29.93 13.62 − 19.83 0 −

46 15 3.69 7.94 3.69 2.30 3.69 38.61 − 0 0

21 7.32 11.61 7.32 3.83 6.03 770.15 − 0 2.13

44 13.97 24.43 13.95 18.54 23.43 − 51.16 0.14 −
66 11.83 36.19 11.77 28.82 25.83 − 63.12 0.50 −

Table 3.4: Comparative Results 11 and 12 nodes



Chapter 3. Provisioning and Routing Problem 110

Perm MSTS Cplex

Set Name |N | |E| |D| Cost Time Cost Time Cost Time Gap(%) Dev(P,M) Dev(M,C)

Ex2D 17 26 27 23.22 26.11 23.22 21.59 22.47 38.42 − 0 3.33

36 81.84 33.34 81.84 20.69 81.84 492.57 − 0 0

79 180.70 78.27 178.05 93.94 182.94 − 5.30 2.11 −
81 98.80 75.44 97.37 89.57 96.65 5438.10 − 1.46 0.74

135 177.42 127.73 173.03 191.46 182.04 − 7.46 2.59 −
68 27 24.43 27.12 24.43 18.11 19.27 4406 − 0 2.67

36 68.15 35.19 68.10 20.20 69.51 − 12.23 0.07 −
81 84.09 80.05 82.65 80.24 102.12 − 31.92 1.74 −

135 149.71 135.11 144.14 169.60 − − − 3.86 −
National 50 63 45 37.63 125.12 37.36 61.77 44.08 − 39.42 0.72 −

65 51.16 192.28 50.87 141.70 56.25 − 35.43 0.57 −
91 59.18 267.46 59.13 162.75 62.77 − 31.59 0.08 −

112 44.44 296.16 42.88 230.70 51.51 − 51.96 3.6 −
Annealed 113 137 130 118.30 1124.07 107.50 682.47 127.16 10H 57.28 10.04 −

Table 3.5: Comparative Results 17, 50, and 113 nodes
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1 Procedure Multistart

2 {
3 generate (segments);

4 B = initial base;

5 Paths = find k-shortest paths ( B );

6 S = constructive ( B, Paths );

7 BestSol = S;

8 do {
9 find demand order (S, B);

10 while (improving move) {
11 move = find next improving move (S,Paths);

12 if (move) {
13 S = execute (move);

14 if (S better than BestSol)

15 BestSol = S;

16 }
17 }
18 S = constructive (B,Paths);

19 } until (stoppingcondition)

20 }

Figure 3.5: Multistart
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MSTS Multistart

Set Name |N | |E| |D| Cost Time Cost Time Dev(MSTS,MS)

MetroD 11 16 10 4.09 0.13 4.09 2.32 0

20 4.38 4.90 4.38 4.86 0

30 8.42 7.37 8.42 6.76 0

54 14.12 16.60 14.12 14.97 0

27 10 2.75 1.96 2.75 2.06 0

20 4.26 4.39 4.26 4.55 0

30 6.46 6.35 6.46 5.59 0

54 11.22 14.69 11.25 13.81 0.26

42 10 1.96 2.03 1.96 2.31 0

20 3.08 3.48 3.08 3.15 0

30 5.38 4.86 5.38 6.20 0

48 7.11 12.24 7.11 12.27 0

54 8.49 13.18 8.50 14.13 0.11

Table 3.6: MSTS - MS with the 11-node networks
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MSTS Multistart

Set Name |N | |E| |D| Cost Time Cost Time Dev(MSTS,MS)

Extant0D 12 17 15 3.69 3.25 3.69 5.81 0

19 6.26 9.99 6.30 5.27 0.63

21 6.21 9.46 7.53 5.74 21.25

44 14.36 27.19 14.68 26.46 2.22

66 12.14 41.00 12.58 21.47 3.62

33 15 3.69 3.57 3.69 6.72 0

21 7.32 7.21 8.30 8.70 13.38

44 14.23 19.99 14.45 12.95 1.54

66 11.83 29.93 14.51 33.17 22.65

46 15 3.69 2.30 3.69 4.16 0

21 7.33 3.83 7.96 8.93 8.59

44 13.95 18.54 14.79 10.69 6.02

66 11.77 28.82 13.03 31.43 10.70

Table 3.7: MSTS - MS with the 12-node networks

MSTS Multistart

Set Name |N | |E| |D| Cost Time Cost Time Dev(MSTS,MS)

Ex2D 17 26 27 23.22 21.59 24.28 24.38 4.56

36 81.84 20.69 83.77 33.20 2.35

79 176.96 93.94 180.44 105.72 1.96

81 97.37 89.57 100.00 105.14 2.70

135 172.94 191.46 175.62 263.36 1.54

68 27 24.43 18.11 25.56 24.33 4.62

36 68.10 20.20 70.18 46.38 3.05

81 82.65 80.24 86.65 130.87 4.83

Table 3.8: MSTS - MS with the 17-node networks
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MSTS Multistart

Set Name |N | |E| |D| Cost Time Cost Time Dev(MSTS,MS)

National 50 63 45 37.36 61.77 40.17 78.17 7.52

65 51.09 141.70 52.30 157.46 2.36

91 59.13 162.75 59.82 199.07 1.16

112 42.88 230.70 45.41 206.69 5.90

Table 3.9: MSTS - MS with the 50-node networks



Chapter 4

Provisioning and Routing Problem:

An Alternative Model

In this chapter, we present the segment-path model that determines the equipment re-

quired to route a set of point-to-point demands through the network. The goal of this

chapter is to compare the solutions obtained by solving the capacity expansion problem

on WDM networks with the metaheuristic approach developed above and the alternative

proposed formulation.

4.1 Introduction

The proposed formulation has significantly less integer variables than the segment-based

formulation presented above. That segment-based formulation is mainly used as a math-

ematical definition of the problem instead of a mechanism for solving it. In the node-

segment formulation there are three traffic variables for each pair demand-segment, which

specify the amount of a demand routed on a segment, the amount routed in the forward

direction and the amount routed in the reverse direction, respectively. However, in the
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segment-path formulation presented in this section there is only a traffic variable for each

pair demand-path, where the maximum number of paths is a limited value significantly

smaller than the number of segments on the network. The formulation presented here is

intended for finding optimal or near-optimal solutions to the capacity expansion problem

on hand. Our formulation uses the following definitions.

4.2 The segment-path model

4.2.1 Data

The network topology is represented as a graph G = (N,E), where N denotes the set

of nodes and E ⊆ N × N denotes the set of segments. In this formulation as well as

in the node-segment formulation, links and segments are equivalent. For each n ∈ N ,

An denotes the set of segments adjacent to node n. The origin/destination node pairs

corresponding to the point-to-point demands are given by D ⊆ N ×N .

• Jod = the set of possible paths from the origin o to the destination d that can be

used to route this demand.

Since the set of paths used for each demand may not consist of all the possible paths

from o to d, the formulation described in this section may be used as a heuristic model

for the provisioning and routing problem.

Cost Input Data

• CF
e = cost of a fiber on segment e (sum of costs per link along that segment).

• CW
e = cost of a WDM unit on segment e.

• CO = cost of an OXC unit.

• Cc = channel cost of a WDM unit.



Chapter 4. Provisioning and Routing Problem: An Alternative Model117

• Cp = port cost of an OXC unit.

Capacity Data

• Mw = capacity of a WDM unit.

• M o = capacity of an OXC unit.

Existing Infrastructure

• ge = spare WDM channels on WDM systems on segment e.

• hn = spare OXC ports on OXC systems at node n.

4.2.2 Decision Variables

• xod
p = 1 if demand (o, d) is routed on path p and 0 otherwise.

• fe = number of stand-alone (no WDM) fiber pairs on segment e.

• we = number of WDM units on segment e.

• ve = number of channels on WDM units on segment e.

• yn = number of OXC units installed at node n.

• un = number of ports on OXC units installed at node n.

4.2.3 Objective Function

The objective function to be minimized is the sum of fiber costs (first term), WDM costs

(second term) and the OXC costs (third term).

min
∑

e∈E

2CF
e fe +

∑

e∈E

((
CF

e + CW
e

)
we + Ccve

)
+

∑

n∈N

(
COyn + Cpun

)
(4.1)
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4.2.4 Constraints

There are five sets of constraints in this model. The first set of constraints, labelled as

(4.2), ensures demand satisfaction and does not allow splitting demands. Constraint set

(4.3) converts path capacity to segment capacity and segment capacity into fibers and

channels. Constraint set (4.4) converts segment capacity to WDM units. The fourth set

of constraints, labelled (4.5), accumulates channels on links to add the required number

of ports to each node. The last set of constraints (4.6) converts node capacity to OXC

units.

∑

p∈Jod

xod
p = 1,∀(o, d) ∈ D (4.2)

∑

(o,d)∈D

Rod

∑

p∈Jod,e∈p

xod
p ≤ ve + fe,∀e ∈ E (4.3)

ve ≤ MW we + ge,∀e ∈ E (4.4)

∑

e∈An

(ve + fe) ≤ un, ∀n ∈ N (4.5)

un ≤ MOyn + hn,∀n ∈ N (4.6)

All decision variables are nonnegative integer.

This formulation thus requires the following number of constraints:

|D|+ 2|E|+ 2|N |,

and the following number of variables

3|E|+ 2|N |+
|D|∑

i=1

ki.

In this formula ki represents the number of possible paths generated to route demand i.

The number of variables and constraints scale with the number of links and nodes in the

network. They also scale with the number of demands and paths used for each demand.
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Set Total Integer Binary

Name |N | |E| |D| Constraints Variables Variables

MetroD 11 16 10 64 70 100

20 74 70 200

30 84 70 300

54 108 70 540

27 10 86 81 100

20 96 81 200

30 106 81 300

54 130 81 540

42 10 116 148 100

20 126 148 200

30 136 148 300

48 154 148 480

54 160 148 540

Table 4.1: MIP characteristics for MetroD

Table 4.1 summarizes the number of constraints and the number of integer and binary

variables required for the instance MetroD if a set of 10 paths is generated for each

demand and the segment-path model is used.

4.3 Computational Results

The goal of our experimental testing is to compare the solutions obtained by solving the

capacity expansion problem on WDM networks with the metaheuristic approach and the

formulation presented above. Even if the previous MIP model is solved to optimality,

the solution is not guaranteed to be optimal for the original problem because the model

includes only a subset of all possible segments and a subset of all possible paths that can

be found with the given segments.

The set of instances is the set used for solving the problem with the node-segment
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formulation. The artificial instances use the same number of nodes as in the networks of

the real instances but the demands and the exiting equipment are randomly generated.

The intent in generating random instances is to analyze the performance of both methods

on instances with various characteristics. We consider four different numbers of nodes

and for each we generate networks with different densities according to the number of

segments. Then, for each network, several sets of uniform and clustered sets of demands

are randomly created. Uniform demands are generated by randomly selecting an origin

and a destination, where each pair has the same probability of being selected. Clustered

demands are generated selecting a subset of nodes as “high traffic” locations and then

generating a demand pattern that clusters around those nodes. For each set of instances,

we show the number of nodes —N—, segments —E—, and demands —D—. For both the

metaheuristic method and the mathematical model we have considered the same number

of paths for each demand pair to make the results comparable. In addition, demands are

not split in both cases.

The MIP formulation was solved with Cplex 7.5. All experiments were performed on

a PC (with one processor at 1.0 GHz and 256 Mbytes of RAM). Table 4.2 summarizes

the computational results for the three networks with 11 nodes. The first network is

30% dense, that is, it consists of 30% of the links in the completely dense network. The

second and third networks are 50% and 76% dense, respectively. For each network we

have created four random sets of demands to simulate possible situations on a telecom-

munications network. The first set of demands, which consists of 54 demands, consists

of uniformly distributed requirements. The other three sets of demands are generated

in clusters, where either only a few nodes generate demand requirements or there are

a few “high traffic” nodes with demands to other nodes in the network. The instance

consisting of 11 nodes, 42 segments and 18 demands corresponds to a real instance.

Table 4.3 shows the results for three networks with 12 nodes. These networks are 30%,

50%, and 70% dense, respectively. For each network we have also created four random
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MetaH Cplex

Set Name |N | |E| |D| Cost Time Cost Time Dev(M,C)

MetroD 11 16 10 4.09 0.13 4.09 0.22 0

20 4.38 0.3 4.38 0.21 0

30 8.42 0.19 8.42 0.18 0

54 14.12 2.01 14.03 1.25 0.64

27 10 2.75 0.13 2.75 0.13 0

20 4.26 0.25 4.26 0.29 0

30 6.46 0.44 6.46 0.27 0

54 11.22 10.76 11.16 2.87 0.53

42 10 1.96 0.04 1.96 0.11 0

20 3.08 16.16 3.08 0.13 0

30 5.38 0.05 5.38 0.19 0

48 7.11 4.65 7.08 0.51 0.42

54 8.49 1.05 8.41 0.41 0.95

Table 4.2: Experiments with the 11-node networks

sets of demands. The set with 66 demands consists of uniformly distributed requirements.

The other three sets have clustered demands. The instance consisting of 12 nodes, 17

segments and 19 demands corresponds to a real instance. Columns 2, 3, and 4, contain

the number of nodes, number of segments, and number of demands in each instance.

Columns 5 and 6 in Tables 4.2and 4.3 show the total costs and the CPU time (in seconds)

corresponding to the metaheuristic procedure and Cplex, respectively. All instances in

these two tables were solved employing a set of 10 paths for each demand. The results

obtained with Cplex have an optimality gap of 0.0001, which is the default value in this

optimizer. Last column in both tables shows the deviation between the Cplex solution

and the metaheuristic solution. In the worst case, the deviation is no greater than 0.95%

in Table 4.2 and 2.62% in Table 4.3. For almost every instance in Tables 4.2 and 4.3,

the proposed metaheuristic procedure is able to reach the same solution obtained with
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MetaH Cplex

Set Name |N | |E| |D| Cost Time Cost Time Dev(M,C)

Extant0D 12 17 15 3.69 0.14 3.69 0.15 0

19 6.26 0.36 6.26 0.71 0

21 6.21 0.39 6.21 0.63 0

44 14.36 7.32 14.36 10.70 0

66 12.14 26.51 11.83 7.38 2.62

33 15 3.69 0.43 3.69 1.41 0

21 7.32 3.45 7.32 10.94 0

44 14.23 38.17 13.94 81.16 2.08

66 11.83 109.82 11.83 225.32 0

46 15 3.69 0.22 3.69 0.83 0

21 7.33 5.79 7.33 25.80 0

44 13.95 58.16 13.95 467.72 0

66 11.77 152.12 11.77 224.90 0

Table 4.3: Experiments with the 12-node networks

Cplex. Computational times generally favor Cplex in these relatively small networks.

Table 4.4 shows the results obtained for two networks with 17 nodes. These networks

are 19% and 50% dense, respectively. As in the case of Tables 4.2 and 4.3, four sets of

demands are randomly generated for each network to provide both uniformly distributed

and clustered sets of demand requirements. These instances were solved using a maximum

of 6 paths for both the metaheuristic procedure and the MIP formulation. The instance

consisting of 17 nodes, 26 links, and 79 demands corresponds to a real instance. Table

4.5 displays the computational results obtained for a network with 50 nodes and 63 links

for which four sets of demands have also been created. The instance consisting of 112

demands corresponds to a real instance.

In Tables 4.4 and 4.5, columns 5 and 6 summarize costs and running times for the

metaheuristic. Under the heading Cplex we have reported the total cost obtained by
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MetaH Cplex

Set Name |N | |E| |D| Cost Time Cost Time Gap(%) Dev(M,C)

Ex2D 17 26 27 23.22 2.14 23.22 5.99 − 0

36 81.84 0.95 81.84 13.42 − 0

79 176.96 185.10 180.08 − 3.14 −
81 97.37 97.63 96.81 296.16 − 0.57

135 172.94 65.18 173.04 − 1.97 −
68 27 24.43 13.47 24.43 12.26 − 0

36 68.10 11.69 67.79 292.93 − 0.45

81 82.65 233.56 82.74 − 1.27 −

Table 4.4: Experiments with the 17-node networks

MetaH Cplex

Set Name |N | |E| |D| Cost Time Cost Time Gap(%) Dev(M,C)

National 50 63 45 37.36 50.80 36.85 257.54 − 1.38

65 51.09 112.76 49.73 1467.1 − 2.73

91 59.13 138.08 59.43 − 1.65 −
112 42.88 230.70 42.88 262.41 − 0

268 110.34 558.17 111.36 − 4.94 −

Table 4.5: Experiments with the 50-node networks

solving our MIP formulation and either the total solution time or the optimality gap, if

Cplex cannot find an optimal solution after 2 h of execution. Last column in both tables

shows the deviation between Cplex solution and the metaheuristic solution. In the worst

case, the deviation is no greater than 0.57% in Table 4.4 and 2.73% in Table 4.5 when

Cplex is able to find and confirm the optimal solution. When Cplex fails to complete the

branch and bound optimization, the upper bound solutions found are in all cases inferior

to the solutions found with the metaheuristic procedure.

Specifically, in Table 4.4, Cplex finds the optimal solution of the heuristic MIP model

in five instances. For the other four instances, the execution of Cplex was stopped after
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2 hours, obtaining inferior solutions than those obtained with the metaheuristic in a

shorter time period. A similar pattern is observed in Table 4.5, where Cplex fails twice

to find the optimal solution within the 2 h limit.

4.4 Conclusions

This chapter presents a heuristic optimization model for the capacity expansion problem

in WDM networks. We have carried out a comparative analysis between the results ob-

tained using a metaheuristic procedure for the problem on hand and the results obtained

solving a mathematical model with Cplex. The mathematical model is solved as a relax-

ation of the original problem because we do not consider all possible segments or paths

between each pair of demand requirements. Our experiments corroborate the effective-

ness of the metaheuristic developed in chapter 3 as the size of the problems increases.

For relatively small problems (i.e., with number of nodes equal to 12 or less), solving

the MIP formulation seems to be a better alternative than running the metaheuristic

procedure.



Chapter 5

Survivability Problem

This chapter focuses on the provisioning and routing problem with single link failure

protection. We develop several models with the aim of solving the problem using both a

shared-link protection scheme and shared-path protection schemes. Section 5.2 provides

the model for the first scheme and section 5.3 provides two variants of the shared-path

protection scheme. The models presented in this chapter start with a solution to the

provisioning and routing problem without protection in order to reach the protection

network. We propose the use of a modified version of the hybrid metaheuristic developed

in chapter 3 for solving the problem. Section 5.4 summarizes the computational results

for these schemes.

5.1 Introduction

We use both a shared-link protection scheme and a shared-path protection scheme. When

link-protection is used, at the time of demand setup, for each link of the primary path,

a backup path is reserved around that link, allowing other backup paths to share the

reserved capacity. When path-protection is used, for each demand being routed through

the failed link, a backup route is reserved between the end nodes of the affected de-

mand. In this way, protection capacity all over the network is used and a lower capacity
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requirement is expected than in link-protection. In this situation, more network nodes

are involved in the protection phase, since every working path needs to be protected

separately. Kennington, et al. [71] use a shared-path protection scheme and to construct

the model they begin with the solution to the model for the provisioning and routing

problem without protection. Caenegem, et al [131] also begin with the solution obtained

by the model without protection as the input for the model with shared protection.

5.2 Shared-Link Protection Scheme

This section presents the model for obtaining the backup paths for each failed segment

beginning with a solution to the model without protection. The model uses the following

definitions:

• NCe = number of channels on segment e required to get the working paths. Then, if

segment e fails, the traffic NCe must be rerouted between the origin and destination

nodes of e.

• Je = set of possible paths between the end nodes of segment e that can be used to

reroute the traffic.

• ze
q = 1 if the traffic on segment e is rerouted on path q ∈ Je, and 0 otherwise.

The model assumes that the traffic on a segment cannot be split when is rerouted.

The model can be stated as follows:

min
∑

e∈E

2CF
e fe +

∑

e∈E

((
CF

e + CW
e

)
we + Ccve

)
+

∑

n∈N

(
COyn + Cpun

)
(5.1)

Subject to:

∑

q∈Je

ze
q = 1,∀e ∈ E (5.2)
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∑

q∈Je′ ,e∈q

NCe′z
e′
q ≤ ve + fe,∀e ∈ E, ∀e′ 6= e ∈ E (5.3)

ve ≤ MW we + ge,∀e ∈ E (5.4)

∑

e∈An

(ve + fe) ≤ un, ∀n ∈ N (5.5)

un ≤ MOyn + hn,∀n ∈ N (5.6)

All variables are integer and nonnegative.

The goal is to minimize the total cost, which is the sum of the fiber cost (first term),

WDM cost (second term), and OXC cost (third term).

When segment e fails, the working flow of this segment must be rerouted through

one of the possible protection routes in Je. Hence constraint set (5.2) must be met. If

segment e fails, the spare capacity on the other segments must be sufficient for the flow

on the protection routes. Therefore, constraint set (5.3) must be met. As shown in

previous chapters, constraint set (5.4) converts segment capacity to WDM units, (5.5)

accumulates channels on links to add the required number of ports to each node, and

(5.6) converts node capacity to OXC units.

5.3 Shared-Path Protection Schemes

In the path-protection scheme, every interrupted path needs to be restored. One of

the alternative protection routes of the path must carry the traffic of the interrupted

working path corresponding to a demand. We use two shared-path protection schemes:

a protection scheme in which every working path has several sets of alternative protection
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paths depending on the failed link, and a protection scheme in which the protection routes

and the working paths are link-disjoint. In this case, only a set of alternative routes is

generated for each working path.

5.3.1 Non Link-Disjoint Alternative Routes

The model presented in this section also solves the protection problem starting with the

best solution reached by the model without protection. For each failed segment e and

each working path that passes through e, a set of protection routes is generated. These

routes must allow to reroute the traffic if segment e fails. Hence, they cannot contain

segment e.

This model uses the following definitions:

• Je,od = set of alternative protection routes between the end nodes of demand (o, d) ∈
D that do not contain segment e. Therefore, it is the set of routes used to reroute

demand (o, d) if segment e fails.

• zod
q,e = 1 if demand (o, d) is rerouted on path q ∈ Je,od if segment e fails, and 0

otherwise.

• WPod = working path of demand (o, d) ∈ D.

The model assumes that the demand on each working path cannot be split when it

is rerouted. In this model the constraints are slightly different to the constraints in the

shared-link protection model. The corresponding set of constraints is indicated in the

same position as in the link-protection model presented above. The model can be stated

as follows:

min
∑

e∈E

2CF
e fe +

∑

e∈E

((
CF

e + CW
e

)
we + Ccve

)
+

∑

n∈N

(
COyn + Cpun

)
(5.7)

Subject to:
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∑

q∈Je,od

zod
q,e = 1,∀(o, d) ∈ D, ∀e ∈ WPod (5.8)

∑

(o,d)∈D,e′∈WPod

∑

q∈Je′,od,e∈q

Rodzod
q,e′ ≤ ve + fe, ∀e, e′ ∈ E, e′ 6= e (5.9)

ve ≤ MW we + ge,∀e ∈ E (5.10)

∑

e∈An

(ve + fe) ≤ un, ∀n ∈ N (5.11)

un ≤ MOyn + hn,∀n ∈ N (5.12)

The spare capacity and the flows on the protection routes or backup paths must be

integer and nonnegative values.

Since the goal of the problem is to increase the capacity at a minimum cost for

protecting the network, the objective is to minimize the total costs as in the previous

model.

When a segment e fails, every interrupted path must be restored. Constraint set

(5.8) ensures that the protection routes for the path carry the demand of the interrupted

working path. If segment e fails, the spare capacity on the other segments must be

sufficient for the flow on the protection routes of every interrupted path. Then constraint

set 5.9 must be met. Constraint sets (5.4), (5.5), and (5.6) are unchanged applicable for

path-protection.

5.3.2 Link-Disjoint Alternative Routes

In this case, we generate alternative protection routes for each demand that are link-

disjoint with the working paths, i.e., routes that have no link in common with the working
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paths. Then, when two or more working paths have any common link, the protection

paths assigned for rerouting each demand between its end nodes cannot share the spare

capacity. On the contrary, if the working paths of any two or more demands do not have

any common link, the protection paths can share the spare capacity. The model uses the

following definitions:

• Jod = set of alternative protection routes between the end nodes of demand (o, d) ∈
D. These routes are link-disjoint with the corresponding working path. It is the

set of routes used to reroute demand (o, d) if segment e fails.

• zod
q = 1 if demand (o, d) is rerouted on path q ∈ Jod if segment e fails, and 0

otherwise.

Then the model, whose objective is to minimize the total cost of adding spare capacity,

can be stated as follows:

min
∑

e∈E

2CF
e fe +

∑

e∈E

((
CF

e + CW
e

)
we + Ccve

)
+

∑

n∈N

(
COyn + Cpun

)
(5.13)

Subject to:

∑

q∈Jod

zod
q = 1, ∀(o, d) ∈ D (5.14)

∑

(o,d)∈D,e′∈WPod

∑

q∈Jod,e∈q

Rodzod
q ≤ ve + fe,∀e, e′ ∈ E, e′ 6= e (5.15)

ve ≤ MW we + ge,∀e ∈ E (5.16)

∑

e∈An

(ve + fe) ≤ un, ∀n ∈ N (5.17)
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un ≤ MOyn + hn,∀n ∈ N (5.18)

The spare capacity and the flows are integer and nonnegative.

When a segment e fails, every demand that had been routed on the segment must

be restored. Constraint set (5.14) ensures that one of the protection routes of the path

carry the demand of the interrupted working path. Constraint set (5.15) ensures that if

segment e fails, the spare capacity on the other segments must be sufficient for the flow

on the protection routes of every interrupted path. Constraint sets (5.4), (5.5), and (5.6)

are unchanged applicable for this path-protection scheme.

5.4 Computational Results

The metaheuristic was implemented in C and compiled with Microsoft Visual Stu-

dio.NET. All test runs in this chapter were performed on a Pentium 4 machine with

one processor at 2.53 Ghz and 512 Mbytes of RAM.

5.4.1 Shared-Link Protection Scheme

The first experiment presented in this section consists of solving the MIP formulation

developed for the link-protection scheme with Cplex starting with the solutions reported

in chapter 4, where the set of instances are both real and randomly generated. Table

5.1 summarizes the computational results obtained by solving the MIP formulation with

Cplex and the provisioning and routing problem with the hybrid metaheuristic approach

described in chapter 3. This metaheuristic solves the routing and provisioning problem

without protection and uncertainty in key data. The problem of provisioning the network

to protect failed segments is also a provisioning and routing problem, where it is allowed

sharing the capacity required to route the traffic from the origin to the destination of
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different failed segments. To solve the protection problem we run a modified version of

this metaheuristic to allow sharing resources on every working network in the reference

set.

Columns 2, 3, and 4, contain the number of nodes, number of segments, and number

of demands in each instance. Next two columns report the total cost and CPU time

(in seconds) for obtaining the working network. Columns 7 and 8 report the total cost

and the CPU time (in seconds) for obtaining the spare capacity required to protect the

working network in the event of any single link failure. Columns 9 and 10 show the total

cost of the survivable network and the total CPU time required to obtain it using the

model described above. Columns 11 and 12 summarizes the total cost of the working

network and of the survivable network obtained using the proposed metaheuristic. Under

the heading Cplex Bound we have reported the lower bound given by Cplex starting with

the working solution provided by the metaheuristic. Last two columns show the total

cost of the survivable network and the total CPU time obtained.

As indicated in chapters 3 and 4, when the size of the problems increases, the solver

Cplex is not able to reach the optimal working network when the search is stopped after

two hours of execution. Therefore, the experiments are performed on a set of problems

solved to optimality.

The computational results reported in Table 5.1 show the effectiveness of using not

only the best working network found, but also a set of good working networks for ob-

taining the backup routes.

Table 5.2 shows the total costs of designing survivable networks using the shared-link

protection scheme for the instances in which Cplex was not able to reach the working

network in less than two hours of execution. Columns 5 and 6 summarize the costs for

obtaining the working network and the backup network, respectively. Under the heading

Cplex Bound we report the total cost obtained by solving the link-protection MIP model

starting with the working solution provided by the metaheuristic. Columns 8 and 9 show
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the total cost and the CPU time in seconds for solving both the working and protection

problems with the metaheuristic procedure.

The solutions reported in Table 5.2 do not necessary correspond to the best working

network reached after executing the metaheuristic developed in chapter 3. In most cases,

the best survivable network was found using not only the best solution in the reference

set, but a solution with a higher working cost.

5.4.2 Link-Disjoint and Non Link-Disjoint Alternative Routes

When a shared-path protection scheme with non link-disjoint routes is used, after ob-

taining the working network, alternative routes have to be generated for each demand

requirement and each segment in its working path. The protection routes for each de-

mand (o, d) ∈ D and segment e in its working path cannot contain this segment. Hence,

if segment e fails, demand (o, d) can be rerouted between its end nodes on any of the

alternative routes. If segment e fails, the demands whose working paths contain segment

e cannot share capacity in the final design.

Since the real and artificial networks that we are using to get the computational results

are not necessary two-connected, there might be demands that cannot be protected using

this scheme. If the path-protection scheme with link-disjoint routes is used, there can

also be demands that cannot be rerouted. Since obtaining link-disjoint routes is a more

restrictive condition than obtaining routes without a failed segment, using the path-

protection scheme with link-disjoint routes implies that a higher number of demands

may not be protected.

A modified version of the hybrid metaheuristic developed in chapter 3 is used for

carrying out the experiments. As explained in chapter 3, once each demand has been

assigned to a path in its list of potential paths, the evaluation of the solution consists of

calculating the increase of capacity required in the elements of the network that route

the demands through the assigned paths. The increased capacity is then translated into
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cost of installing additional fiber and adding WDMs and OXCs. In order to achieve a

method for solving the protection problem using a shared-path protection scheme, the

metaheuristic has to be modified by changing the evaluation of the solution. For the

purpose of modifying the hybrid metaheuristic, we have to take into account that the

demands whose working paths have any common link cannot share the spare capacity if

any of those links fails.

Table 5.3 summarizes the total costs in million dollars of generating survivable net-

works using both a shared-path protection scheme with non link-disjoint routes and a

shared-path protection scheme with link-disjoint routes. Under the heading Non Link-

Disjoint Path-Protection we report the results corresponding to this protection scheme.

Columns 5, 6, 7, and 8 summarize the working cost, protection cost, total cost, and CPU

time in seconds, respectively. Column 9 shows the unprotected demand and the seg-

ment that causes this no-protection. Under the heading Link-Disjoint Path-Protection

we report the results of the link-disjoint path-protection.

Comparing the results in Tables 5.1 and 5.3 we realize that when using path-protection

schemes the spare capacity required to protect the network in the event of any single link

failure is smaller than when using a shared-link protection scheme.

As explained above, the hybrid metaheuristic provides a reference set of working

networks, which are then the initial solutions for solving the protection problem. Our

experiments show that in most cases, the best survivable network is reached using not

the best working network in the reference set, but a working network with higher working

cost.

The results reported in Table 5.3 show that the link-disjoint shared-path protection

scheme reaches network designs better than the other path-protection scheme. Further-

more, since the scheme with non link-disjoint routes has a higher number of demands,

the CPU time required to solve the problem is higher.
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5.5 Conclusions

This chapter focuses on the protection problem in WDM mesh networks. For the purpose

of solving this problem we use three protection schemes: shared-link protection scheme

and two variants of the shared-path protection scheme.

In the literature, the works related to planning WDM Networks deal with the protec-

tion problem after solving the provisioning and routing problem without protection when

considering shared-protection schemes. We propose a hybrid metaheuristic that solves

the protection problem using as starting solutions a reference set of “good” alternative

working networks.

Our experiments corroborate that using the shared-path protection scheme with link-

disjoint protection routes is better alternative than using any of the other two protection

schemes presented in this chapter. However, the choice of one of the protection schemes

presented depends on the decision maker.
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Cplex MetaH

Work Paths Backup Survivable

Paths Network

Set |N | |E| |D| Cost Time Cost Time Cost Time Work Backup Cplex Total Time

Cost Cost Bound Cost

MD 11 16 10 4.09 0.22 5.64 0.35 9.73 0.57 4.14 3.88 3.88 8.02 4.47

20 4.38 0.21 6.23 0.22 10.61 0.43 4.48 4.93 4.93 9.41 6.03

30 8.42 0.18 7.01 0.35 15.43 0.53 8.46 6.91 6.91 15.37 7.84

54 14.03 1.25 14.05 0.35 28.08 1.6 14.25 12.63 12.49 26.88 14.07

27 10 2.75 0.13 3.81 0.18 6.56 0.31 2.76 3.25 3.25 6.01 4.14

20 4.26 0.29 4.32 0.56 8.58 0.85 4.30 4.23 4.23 8.53 8.25

30 6.46 0.27 5.66 1.39 12.12 1.66 6.52 5.47 5.42 11.99 11.54

54 11.16 2.87 10.23 1.29 21.39 4.16 11.26 10.12 10.12 21.38 17.80

42 10 1.96 0.11 2.20 0.18 4.16 0.29 2.01 1.69 1.69 3.70 4.16

20 3.08 0.13 2.65 0.23 5.73 0.36 3.54 2.81 2.52 6.35 12.62

30 5.38 0.19 3.12 1.78 8.50 1.97 5.71 5.06 4.83 10.77 12.74

48 7.08 0.51 4.84 5.21 11.92 5.72 7.91 5.80 5.48 13.71 21.41

54 8.41 0.41 5.87 7.94 14.28 8.35 9.22 6.96 6.60 16.18 24.20

E0D 12 17 15 3.69 0.15 6.79 0.21 10.48 0.36 5.09 4.82 4.82 9.90 4.95

19 6.26 0.71 4.85 0.27 11.11 0.98 7.03 3.71 3.71 10.74 5.00

21 6.21 0.63 7.15 0.20 13.36 0.83 9.35 2.15 2.15 11.50 6.24

44 14.36 10.70 16.55 0.63 30.91 11.33 15.99 11.51 11.51 27.50 15.11

66 11.83 7.38 14.87 0.59 26.70 7.97 14.05 6.12 6.12 20.17 16.19

33 15 3.69 1.41 3.82 0.24 7.51 1.65 4.90 2.06 2.06 6.96 2.61

21 7.32 10.94 5.99 0.25 13.31 11.19 8.77 4.29 4.29 13.06 4.77

44 13.94 81.16 16.48 9.43 30.42 90.59 17.05 9.90 9.41 26.95 12.96

66 11.83 225.32 13.85 6.56 25.68 231.88 14.60 6.58 6.52 21.18 16.67

46 15 3.69 0.83 3.82 0.24 7.51 1.07 4.17 2.92 2.92 7.09 4.01

21 7.33 25.80 6.12 0.50 13.45 26.30 9.07 4.27 4.27 13.34 7.21

44 13.95 467.72 16.56 4.25 30.51 471.97 16.91 7.95 7.95 24.86 14.52

66 11.77 224.90 13.08 2.58 24.85 227.48 14.82 7.07 7.04 21.89 14.07

Ex2D 17 26 27 23.22 5.99 44.49 0.22 67.71 6.21 23.59 30.61 30.61 54.43 41.43

36 81.84 13.42 153.99 1.44 235.83 14.86 81.84 153.35 152.93 235.19 52.80

81 96.81 296.16 169.11 2.06 265.92 298.22 97.66 152.54 152.54 250.20 129.97

68 27 24.43 12.26 33.37 8.10 57.80 20.36 27.65 27.20 26.33 54.67 44.46

36 67.79 292.93 69.18 7.95 136.97 300.88 69.23 68.76 68.76 137.99 51.58

Table 5.1: Cplex-MetaH
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Working Paths Backup Paths Survivable Network

Set Name |N | |E| |D| Working Cost Backup Cost Cplex Bound Total Cost Time

Ex2D 17 26 79 178.76 272.48 272.48 451.24 148.40

135 176.22 236.17 235.20 412.39 248.95

68 81 83.46 76.52 75.93 159.98 143.40

135 143.07 129.27 126.71 272.345 275.00

National 50 63 45 40.19 28.92 28.02 69.11 148.07

65 52.99 35.18 34.91 88.17 260.70

91 60.05 47.22 46.90 107.27 352.40

112 45.33 24.71 23.73 70.04 353.92

Table 5.2: Survivable Networks obtained with the MetaH for bigger instances
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Non Link-Disjoint Path-Protection Link-Disjoint Path-Protection

Set |N | |E| |D| Work Backup Total Time Unmet Work Backup Total Time Unmet

Cost Cost Cost Demand Cost Cost Cost Demand

:S :S

MetroD 11 16 10 4.14 2.25 6.39 54.75 12:2 4.09 1.99 6.08 10.85 12

20 4.43 2.28 6.71 169.40 0 4.38 2.17 6.55 116.26 0

30 8.49 3.46 11.95 271.44 37:2 8.46 2.06 10.52 65.40 37

54 14.12 3.90 18.02 2313.51 31:2 14.20 3.10 17.31 799.54 31

27 10 2.86 1.86 4.72 57.32 0 2.80 1.85 4.65 29.66 0

20 4.30 2.79 7.09 119.62 0 4.30 2.56 6.86 79.30 0

30 6.57 3.41 9.98 220.93 0 6.52 3.38 9.91 198.89 0

54 11.30 4.95 16.25 1192.56 0 11.26 5.06 16.33 747.00 0

42 10 2.01 1.53 5.54 48.53 0 2.01 1.33 3.34 31.52 0

20 3.62 2.06 5.68 139.52 0 3.62 2.01 5.63 96.92 0

30 5.93 3.01 8.94 219.39 0 5.71 3.20 8.91 219.30 0

48 7.90 5.55 13.45 572.75 0 7.91 5.24 13.16 523.38 0

54 9.18 5.66 14.84 846.78 0 9.17 5.69 14.87 698.82 0

Extant0D 12 17 15 5.95 3.38 9.33 133.33 0 4.17 5.46 9.63 69.14 0

19 7.51 3.01 10.52 117.53 0 6.26 4.17 10.43 75.35 0

21 7.90 3.60 11.50 453.17 0 8.88 1.93 10.81 110.99 0

44 16.06 4.74 20.80 4527.52 0 16.38 3.61 19.99 1057.49 0

66 14.62 0.51 15.13 7409.31 0 14.62 0.54 15.16 2242.58 0

33 15 4.17 5.57 9.74 134.43 0 4.17 4.71 8.88 55.44 0

21 10.58 5.48 16.06 440.91 0 8.80 5.58 14.38 104.09 0

44 16.91 12.28 29.19 2451.10 0 18.22 8.57 26.79 558.64 0

66 17.10 6.35 23.45 4053.49 0 17.81 4.61 22.42 1331.77 0

46 15 5.11 4.34 9.45 105.32 0 4.56 3.94 8.50 48.23 0

21 11.72 5.40 17.12 275.93 0 10.31 4.39 14.79 93.98 0

44 19.64 12.02 31.66 1283.07 0 18.81 9.73 28.54 495.95 0

66 14.29 10.70 24.99 3962.38 0 16.41 10.24 26.65 1058.45 0

Ex2D 17 26 27 23.59 18.43 42.02 2403.31 0 27.05 13.66 40.71 355.14 0

36 8.37 7.36 15.73 4981.29 0 8.37 5.69 14.06 737.25 0

Table 5.3: Non Link-Disjoint - Link-Disjoint Solutions



Chapter 6

Provisioning of WDM Mesh

Networks Under

Demand Uncertainty

An important consideration for additional research in this area deals with tackling un-

certainty. Clearly, the demands cannot be considered known in an environment such as

the telecommunications industry. The availability of a MIP formulation that can be used

to find near-optimal solutions to the capacity expansion problem represents a stepping-

stone toward the solution of a stochastic version of the problem that treats the demands

as uncertain.

The aim of this chapter is to provide mathematical models for solving the provisioning

and routing problem under demand uncertainty. Section 6.1 describes the usual tech-

niques to deal with optimization problems with uncertainty. In sections 6.2 and 6.3 we

develop a stochastic programming model and a scatter search solution approach for the

problem, respectively. Section 6.4 provides a set of instances with the aim of comparing

139



Chapter 6. Provisioning of WDM Mesh Networks UnderDemand Uncertainty140

the scatter search solution and the solution reached by solving the model with Cplex.

Section 6.5 develops an alternative stochastic model. The last section describes a robust

approach for solving the problem.

6.1 Introduction

The problem that we address in this chapter is a real world problem that results from the

need to expand capacity of telecommunication networks built with fiber optics technology

in the presence of uncertain information. When deterministic information is considered,

given a network physical topology and the estimate of the point-to-point demand traffic,

the problem is to determine the routing for each demand and the least-cost WDM and

OXC equipment configuration required to support the routes as shown in chapters 3 and

4. This problem is modelled as a mixed integer problem (MIP).

Algorithms and model formulations have usually assumed that the data for the given

problems are known accurately. However, this is not true in most real applications due

mainly to measurement and errors. This is particularly problematic for data representing

future traffic demands and product costs that cannot be known with certainty. There

are several ways to take into consideration the uncertainty when searching for optimal

decisions. The usual techniques to deal with optimization problems with uncertainty in

the data are sensitivity analysis, fuzzy optimization, stochastic programming and robust

optimization.

One of the oldest techniques to model uncertainty in an optimization problem is

sensitivity analysis, which studies the way the optimal solution changes after a slight

modification in the data. Since the beginning of linear programming, a half century

ago, sensitivity analysis has been a part of the field of post-optimality in the theory,

implementations and applications [10], [30]. As much as possible, these foundations have

been extended to nonlinear, integer, stochastic, multicriteria, and other mathematical
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programming, though it is considered that those advances have so far not provided as

rich a body of knowledge [138].

Fuzzy optimization uses the fuzzy set technology [22], [37], [141] and techniques to

deal with uncertainty. A fuzzy optimization problem is an optimization problem where

some of its components are uncertain and given by a membership function. The usual

methods in fuzzy linear programming consider mainly fuzziness in the cost function, in

the coefficients and in the inequalities of the constraints that can be verified in several

degrees. When uncertain data are given by optimistic, pessimistic and intermediate

values, triangular fuzzy numbers are a logical manner to deal with the problem.

Stochastic Programming is a framework for modelling optimization problems with

uncertainty where probability distributions of data are known or can be estimated. The

goal is usually to find a solution that is feasible for all (or almost all) the possible data

instances and maximize the expectation of some function of the decision and random

variables. A basic idea in most of methods in Stochastic Programming is the concept

of recourse, that is the ability to take corrective actions after a random event has taken

place. The simplest example is the two-stage problem, in which some decision variables

are fixed before some events occur and other decisions are taken after the events. The

decision maker takes some actions in the first stage, after which a random event occurs

affecting the outcome of the first stage decisions. A recourse decision can then be made in

the second stage that compensates for any bad effects that might have been experienced

as a result of the first stage decision. The optimal decision for such a model consists of

a single decision for the first stage and a collection of recourse decisions defining which

second-stage decision should be made in response to each random outcome. These prob-

lems are extended to multi-stage problems [12], which are closely related to multi-stage

decision analysis, Markov decision process, stochastic control theory and dynamic pro-

gramming. Solution approaches to stochastic programming usually consist of obtaining a

deterministic equivalent optimization problem that is solved by known techniques. These
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problems are typically very large scale problems and of a different type. Several survey

articles [13] and [126], and books [68], [14], [113] are dedicated to stochastic programming.

The bibliography by van der Vlerk includes more than 3500 references [132].

When using stochastic programming, it is necessary to ask the decision maker infor-

mation on the probability value with which the instances or future scenarios might be

realized. Assigning probabilities to different scenarios is not a trivial exercise for many

decision makers.

Other techniques to deal with optimization problems that involve uncertainty are

scenario-based, in which the scenarios correspond to the possible realizations of the un-

certainty [121]. In practice, the uncertainty ranges from a few scenarios up to a precise

joint probability distribution of all the random variables or data involved in the problem,

where each possible scenario has its corresponding probability of occurrence. Uncertainty

in key data is usually characterized by a probability distribution. The use of scenarios

as a tool for modelling uncertainty has the advantage of not requiring knowledge of the

underlying probability distributions associated with the random variables.

Robust optimization [107] belongs to the family of scenario-based optimization tech-

niques. The main feature of robust optimization (RO) formulations is the flexibility to

define the tradeoff between solution robustness and model robustness. A feasible solution

to the problem is termed robust solution if it remains “close” to optimal for any realiza-

tion of the scenario. The solution is also robust with respect to feasibility if it remains

“almost” feasible for any realization of the scenario. Model robustness can be measured,

for example, by the expected value of the infeasibility. Measuring the deviation of the

proposed solution to the scenario-optimum gives an idea of its solution robustness.

Kouvelis and Yu [76] suggest a formal approach to decision making, which they refer

to as the robustness approach. This approach produces decisions that will have a rea-

sonable objective value under any likely input data scenario to the decision model. This

approach identifies a set of possible scenarios without attempting to assign probabilities
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to scenarios, and then seeks to find the decision that performs well even in the worst case

for the identified set of scenarios. The robustness concept proposed by these authors is a

solution robustness concept in the Mulvey, et al. terminology. The robust optimization

framework in [76] applies a minmax regret criterion to differentiate the performance of

the various solutions over the given set of possible scenarios and it is mostly developed for

models with discrete decision variables using state of the art combinatorial optimization

techniques.

6.2 Stochastic Programming Model

We use the general modelling framework of stochastic programming for developing a

model that will be used to solve the problem with uncertainty. The set of scenarios for

a problem having s∗ scenarios is denoted S = 1, ..., s∗. The model uses the following

definitions:

• zods = under provisioning for each scenario s ∈ S and origin/destination demand

(o, d) ∈ Ds. The under provisioning value zods is the amount of demand ods that

cannot be routed using the capacity currently installed in the network.

• Ps = probability of scenario s.

• Cu = under provisioning cost.

• xods
p = 1 if demand (o, d) ∈ Ds is routed on path p, and 0 otherwise.

The amount of demand in each scenario that cannot be served with the installed

capacity gives the under provisioning. The penalty cost of the unrouted demand measures

the model robustness of the design.

For each under provisioning cost Cu, the objective to be minimized may be stated as

the sum of the design cost (three first terms) and a penalty cost (fourth term) as follows:
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min
∑

e∈E

2CF
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)
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(
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
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od∈Ds
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
 (6.1)

∑
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od

xods
p Rs

od + zods = Rs
od,∀(o, d) ∈ Ds,∀s ∈ S (6.2)

∑

(o,d)∈Ds

∑

p∈Js
od

,e∈p

xods
p Rs

od ≤ ve + fe,∀e ∈ E, ∀s ∈ S (6.3)

ve ≤ MW we + ge,∀e ∈ E (6.4)

∑

e∈An

(ve + fe) ≤ un, ∀n ∈ N (6.5)

un ≤ MOyn + hn,∀n ∈ N (6.6)

0 ≤ zods ≤ Rs
od,∀(o, d) ∈ Ds,∀s ∈ S (6.7)

Note that since the cost of the design is being minimized in the objective function we

do not use a variable to represent over provisioning.

The demand constraints can be modelled as shown in constraint set (6.2). Constraint

set (6.3) converts path flows to segment flows and segment capacity into fibers and

channels for each scenario. Constraint sets (6.4), (6.5) and (6.6) convert segment capacity

to WDM units, accumulate channels on links to add the required number of ports to each

node and convert node capacity to OXC units, respectively. These constraints are not

affected by the scenarios. The last set of constraints (6.7) bounds the demands.
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The stochastic programming model of minimizing (6.1) subject to (6.2) to (6.7) is only

one of several models that can be used to design a network when the demand forecast

is uncertain. Other possibilities include the robust approach, which will be presented in

section 6.6.

6.3 Scatter Search Solution Approach for Stochastic

Programming

This section summarizes a scatter search (SS) approach for solving the wavelength di-

vision multiplexing and optical cross-connect provisioning and routing problem under

demand uncertainties.

The six procedures involved in the Scatter Search (see chapter 2) are the following:

1. The initial population generation method, that generates the initial population

InitPop.

2. The reference set generation method, which selects the set RefSet that consists of

the “best” solutions in the population InitPop.

3. The subset generation method, which chooses a subset SubSet that consists of r

solutions in the reference set to apply the next combination procedure.

4. The solution combination method, which is a procedure that combine the solutions

in SubSet to get the current solution CurSol.

5. The improvement solution method. It is the procedure to improve the current

solution CurSol to get a better solution ImpSol.

6. The reference set updating method. It is the procedure to decide when and how to

update the reference set taking into account the state of the search.
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The initial population generation method generates solutions using the metaheuristic

procedure developed in chapter 3 for the basic provisioning and routing problem.

For the provisioning and routing problem with uncertain demands every solution in

the population is obtained by selecting a random number of demands for each scenario

and routing them through the existing network design using the metaheuristic procedure

described in chapter 3.

Once the design variables have been fixed, a multicommodity maximum flow problem

must be executed for each scenario in order to achieve the amount of demand that cannot

be carried using the capacity installed in the optical network. The resulting problem,

that provides the under provisioning cost, is then stated as follows:

min
∑

od∈Ds

zods (6.8)

Subject to:

∑

p∈Js
od

Rs
odx

ods
p + zods = Rs

od,∀(o, d) ∈ Ds (6.9)

∑

p∈Js
od

,e∈p

Rs
odx

ods
p ≤ ve + fe,∀e ∈ E (6.10)

The set of constraints labelled as (6.9) are demand constraints for a given scenario.

Constraint set (6.10) converts path flows to segment flows and segment capacity into fibers

and channels for a given scenario. The right hand coefficients in constraint set (6.10) are

the sum of two design variables, which represent the number of WDM channels and fiber

pairs on segment e. Therefore, they are constants since the design variables are fixed.

We use Cplex 8.0 to solve this problem [28].

The notion of best solutions used in the reference set generation method is not limited

to a measure given exclusively by the evaluation of the objective function. In particular,

a solution may be added to the reference set if the diversity of the set improves even when
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1 Combination Method

2 {
3 maxnumchan(e) = maxs∈SubSet{numchan(e), e ∈ s};
4 minnumchan(e) = mins∈SubSet{numchan(e), e ∈ s};
5 if (InstallationCost(maxnumchan(e)) ¡ PenaltyCost(maxnumchan(e)))

6 install maxnumchan(e) channels on segment e;

7 else if (InstallationCost(minnumchan(e)) ¡ PenaltyCost(minnumchan(e)))

8 install minnumchan(e) channels on segment e;

9 else

10 ve = 0; fe = 0;

11 }

Figure 6.1: Combination method

the objective value of the solution is inferior to other solutions competing for admission

into the reference set. The reference set that we generate consists of 10 solutions.

The combination parameters of the solution combination method are used to modulate

the intensification and/or diversification of the search. For every segment e ∈ E, we

obtain the maximum number of channels installed in the networks in SubSet. Then, if

the installation cost of this number of channels is smaller than the penalty cost of not

installing that capacity, the maximum number of channels is installed in the combined

solution. Otherwise, we obtain the minimum number of channels installed in the networks

in SubSet. Then, if the installation cost is smaller than the penalty cost, we add the

minimum number of channels to the combined solution. If the decision is not to install

any capacity on that segment, then the design variables ve and fe are equal to zero. This

is shown in Figure 6.1.

The improvement solution method applied to the current solution is based on changing
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one demand from its current path to another. We execute a local search procedure based

on these moves to achieve the improved solution. The set of possible paths for each

demand ranges from 0 up to kmax, which indicates the maximum number of paths

calculated for each demand. If the chosen path for a demand is equal to 0, then we do

not install any capacity to route that demand and, therefore, the penalty term increases.

The neighborhood search examines moves employing a given ordering of the demands.

That is, the first candidate move is to reassign the demand that is at the top of the list.

When reassigning this demand the design variables change, but the model that has to be

solved in order to calculate the penalty term for a given scenario does not change except

for the right hand coefficient in constraint set (6.10). Therefore, we solve the modified

model. To do this, we do not have to start a new model from scratch, but instead we can

take the existing model and change it to our needs. This is done by calling the Cplex

modification methods.

If the new solution is better than the worst in the current reference set, then the

reference set is updated. If an improving move that involves reassigning the first demand

in the list cannot be found, then the second demand is considered. The process continues

until a demand is found for which a reassignment of paths leads to an improving move.

If all the demands are examined and no improving move is found, the local search is

abandoned.

6.3.1 Illustrative Example

To illustrate the practical application of the stochastic programming methodology for the

routing and provisioning problem under demand uncertainties, an illustrative example

has been solved, for several values of the penalty parameter, using the scatter search

procedure and Cplex. The metaheuristic was implemented in C and compiled with Mi-

crosoft Visual Studio.NET. All test runs in this chapter were performed on a Pentium

4 machine with one processor at 2.53 Ghz and 512 Mbytes of RAM. Table 6.1 summa-
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Name Extant0D

Total Nodes 12

Total Links 17

Total Demand Pairs 19

Number of Paths/Demand 5

Total Demand Scenarios 3

Table 6.1: Characteristics of Test Problem

rizes the characteristics of the test problem Extant0D and Figure 6.2 shows the network

corresponding to this instance.
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Figure 6.2: Network for Extant0D Problem

Note that if the penalty cost Cu is equal to zero, then the cost of not routing the set

of demands for each scenario is equal to zero. In addition, the decision is not to increase

the capacity of the network and the design cost is also equal to zero. When increasing

the penalty cost Cu the design cost increases while the unmet demand decreases as is

shown in Figure 6.3.

The first picture in Figure 6.3 compares the equipment costs provided by solving

the problem with the scatter search and with Cplex for several values of the under

provisioning cost Cu. For some values of Cu, the equipment costs provided by the

metaheuristic are higher than the costs provided by Cplex. However, in those cases, the

amount of unmet demand is smaller for the metaheuristic. When the under provisioning
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Figure 6.3: Results for the Extant0D Problem.

cost is equal to 450000, both methods reach a network design that is feasible for every

scenario, and therefore the amount of unmet demand is equal to zero. As shown in Figure

6.3, for this value of Cu the equipment cost given by Cplex is slightly smaller than the

one given by the metaheuristic.

The purpose of developing the scatter search metaheuristic is to allow the use of both

linear and non linear penalty functions.
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Figure 6.4: Instance consisting of 11 nodes, 16 segments and 10 demands

6.4 Computational Results

This section presents the computational results obtained solving some both artificial and

real instances with the metaheuristic developed above and solving the stochastic pro-

gramming model with Cplex. Figures 6.4, 6.5, and 6.6 show pictures in which the line

labelled MetaH refers to the network equipment cost obtained for several under provi-

sioning costs, and the line labelled Cplex refers to the equipment cost obtained by solving

the stochastic program with Cplex. Then, the lines labelled MetaH UD and Cplex UD

show the amount of unmet demand for the metaheuristic and Cplex, respectively. Figures

6.4 and 6.5 correspond to instances randomly generated, while Figure 6.6 corresponds to

a real instance, which consists of 11 nodes, 42 segments and 48 demands.

Table 6.2 summarizes the equipment costs, the amount of unmet demand, and the

CPU time in seconds for both the metaheuristic and Cplex, which was stopped after two

hours of execution.

The computational results obtained in this section corroborate the effectiveness of the
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Figure 6.5: Instance consisting of 11 nodes, 16 segments and 20 demands

proposed scatter search metaheuristic to provide high quality solutions in a reasonable

amount of time. Cplex requires a large amount of time to reach solutions comparable to

those obtained by the metaheuristic procedure.

6.5 Alternative Stochastic Programming Model

The stochastic programming model previously developed in this chapter uses the variable

zods to represent the under provisioning for each scenario s ∈ S and origin/destination

demand (o, d, s) ∈ DS. The under provisioning value zods is the amount of demand ods

that cannot be routed using the capacity currently installed in the network. Then, a

penalty function of these variables is minimized. Since the total equipment cost of the

design is being minimized in the objective function, the model does not use a variable to

represent over provisioning. However, in order to penalize even more the over provisioning

in the final network design, we add in the model the following variable:

• z+
es = the over provisioning for each segment e ∈ E under each scenario s ∈ S.
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Figure 6.6: Real instance consisting of 11 nodes, 42 segments and 48 demands

For each under provisioning cost Cu and over provisioning cost Co the objective to

be minimized may be stated as the sum of the design cost and a penalty cost (last two

terms) as follows:

min
∑

e∈E

2CF
e fe +

∑

e∈E

((
CF

e + CW
e

)
we + Ccve

)
+

∑

n∈N

(
COyn + Cpun

)
+

Cu


∑

s∈S

Ps

∑

od∈Ds

zods


 + Co

(∑

s∈S

Ps

∑

e∈E

z+
es

)
(6.11)

Subject to:

∑

p∈Js
od

xods
p Rs

od + zods = Rs
od,∀(o, d) ∈ Ds, s ∈ S (6.12)

∑

p∈Js
od

,e∈p

xods
p Rs

od + z+
es = ve + fe,∀e ∈ E, ∀s ∈ S (6.13)
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MetaH Cplex

Cu Equipment Unmet CPU Equipment Unmet CPU

Cost Demand Time Cost Demand Time

0 0 864 4.56 0 864 0.12

100000 7.19 302 1659.10 6.9 403 7209.47

150000 9.68 168 5564.06 10.34 227 7220.78

200000 12.86 76 4745.03 12.12 77 7234.49

250000 16,15 45 2577.12 14.72 14 7224.81

300000 17.04 13 1558.27 15.01 14 7257.85

350000 16.17 10 1435.64 16.92 0 7227.49

400000 16.99 9 2692.66 16.37 4 7269.93

450000 17.21 0 1642.70 16.25 0 7235.61

500000 17.21 0 4186.52 16.06 0 7248.57

550000 17.21 0 1274.86 16.06 0 7239.22

Table 6.2: Results Stochastic Programming Real Instance

ve ≤ MW we + ge,∀e ∈ E (6.14)

∑

e∈An

(ve + fe) ≤ un, ∀n ∈ N (6.15)

un ≤ MOyn + hn,∀n ∈ N (6.16)

0 ≤ zods ≤ Rs
od,∀(o, d) ∈ Ds, s ∈ S (6.17)

To test the effectiveness of this model we used the instance Extant0D presented in

the previous section. First of all, we set a value for the under provisioning cost Cu and

then Co ranges from Co = 0 up to Co = 600000. The cost Cu also ranges from 0 up to

600000.
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Cu Co

0 100000 150000 200000 250000 450000 600000

0 0 0 0 0 0 0 0

250000 0.22 0.22 0.22 0.22 0.22 0.22 0.22

300000 5.50 5.05 4.96 5.72 0.74 0.74 0.74

350000 7.56 7.10 6.85 5.72 5.72 5.76 5.76

400000 7.76 7.10 7.42 7.78 7.78 7.85 5.76

450000 7.97 8.24 7.42 8.66 8.66 8.73 7.79

500000 8.51 8.69 8.24 10.73 8.66 8.66 8.73

550000 8.51 8.88 10.73 10.73 10.73 10.73 8.73

600000 9.06 8.88 10.73 10.73 10.73 10.73 10.73

Table 6.3: Equipment Costs

The rationale behind adding the over provisioning variable, z+
es, to the model is to

minimize the maximum number of channels that are not used to route traffic when the

possible scenarios are realized. If the value of the under provisioning cost Cu is fixed and

the value of the over provisioning cost Co increases it is thought that the equipment cost

of the final network design should decrease. However, we solved the model with Cplex

using the illustrative example Extant0D and the results were not as expected. Intuitively,

we expected that for a fixed value of Cu (under provisioning cost), the equipment cost

was smaller when increasing the value of Co (over provisioning cost). Therefore, the lines

in Figure 6.7 would not have to be intersected. The results are shown in Table 6.3 and

in Figure 6.7. Therefore, the stochastic model proposed in this section is not a good

alternative for solving the provisioning and routing problem under demand uncertainty.

6.6 Robustness Approach

The robustness approach proposed by Kouvelis and Yu [76] is a scenario-based technique,

where an input data scenario represents a potential realization of the parameters of the
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Figure 6.7: Cu / Equipment Cost

model.

Let S be the set of possible scenarios. Let X be the set of decision variables and

D the set of input data. Ds denotes the instance of input data that corresponds to

scenario s. Let Fs denote the set of all feasible decisions when scenario s is realized,

and the quality of the decision X ∈ Fs is evaluated with the function f(X,DS). Then,

the optimal individual scenario decision X∗
s for the input data Ds is the solution to a

deterministic optimization problem and it satisfies

zs = f(X∗
s , Ds) = min

X∈Fs

f(X, Ds) (6.18)

The robust deviation decision is defined as the one that provides the best worst case

deviation from optimality, among all feasible decisions over all input data scenarios, i.e.,

zD = max
s∈S

(f(XD, Ds)− f(X∗
s , Ds)) = min

X∈
⋂

s∈S
Fs

max
s∈S

(f(X, Ds)− f(X∗
s , Ds)) (6.19)

In this case, the robustness indicator of the decision is the worst observed deviation.

According to the above definition, finding the robust decisions implies to solve the

following mathematical program:
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zD = min{y|f(X, Ds) ≤ y + zs, s ∈ S; X ∈ ⋂

s∈S

Fs} (6.20)

Then, this robust discrete optimization program consists of two sets of constraints:

Scenario Constraints, in which the objective function is restricted for each scenario

to ensure good performance across scenarios.

Feasibility constraints across scenarios, which are the constraints of a single sce-

nario problem.

6.6.1 Robust Deviation Decision

In this section we discuss the use of the above robustness definition to the provisioning

and routing problem in WDM mesh networks.

min y (6.21)

Subject to:

∑

e∈E

2CF
e fe +

∑

e∈E

((
CF

e + CW
e

)
we + Ccve

)
+

∑

n∈N

(
COyn + Cpun

)
≤ y + zs,∀s ∈ S (6.22)

∑

p∈Js
od

xods
p = 1,∀(o, d, s) ∈ Ds, s ∈ S (6.23)

∑

p∈Js
od

,e∈p

xods
p Rs

od ≤ ve + fe,∀e ∈ E, ∀s ∈ S (6.24)
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ve ≤ MW we + ge,∀e ∈ E (6.25)

∑

e∈An

(ve + fe) ≤ un, ∀n ∈ N (6.26)

un ≤ MOyn + hn,∀n ∈ N (6.27)

The demand constraints can be modelled using the decision variables xods
p for the

routing path of the demands in each scenario as shown in constraint set (6.23). Constraint

set (6.24) converts path flows to segment flows and segment capacity into fibers and

channels for each scenario. Constraint sets (6.25), (6.26) and (6.27) convert segment

capacity to WDM units, accumulate channels on links to add the required number of

ports to each node and convert node capacity to OXC units, respectively.

The robust discrete optimization program described in this chapter for the routing

and provisioning problem under demand uncertainty differs from the stochastic program

developed in the previous section in the following way. The main difference between

the models presented in sections 6.2 and 6.6 is in the objective function. The stochastic

programming model described in section 6.2 minimizes a balance, which is determined by

the decision maker, between a design cost and a penalty factor. The objective function

presented in section 6.6 attempts to find a solution that provides the best worst case

deviation from optimality in each scenario. The best model depends on the goal of the

decision maker and on the available information. Furthermore, if the decision maker is

able to assign probabilities to the different input data scenarios, then it is possible to use

the stochastic program to reach solutions that might be feasible only for a subset of all the

possible scenarios. On the other hand, if the decision maker cannot obtain probabilities

for each scenario, then both the stochastic programming model and the robust discrete

optimization program can be developed.
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6.6.2 Computational Results

In this section we provide the computational results obtained solving the robust discrete

optimization program, for which five scenarios of demands are generated. To state the

robust model, the optimal solutions have to be provided for each scenario. Hence, we

report the results for those instances for which the scenario optimal solutions are reached

in less than two hours of execution.

Tables 6.4 and 6.5 summarize the robust solutions obtained for real and artificial

networks that consist of 11 and 12 nodes, respectively. The first four columns shows

the set name, number of nodes, segments, and demands. Next five columns report

the optimal solutions obtained for each scenario using the segment-path formulation

proposed in Chapter 4. Column 10 provides the robust deviation value and column 11

the equipment cost of the network design reached by the model. The network designs

obtained using this model are feasible for the five scenarios. Finally, the last two columns

report either the CPU time in seconds or the optimality gap if the optimal solution was

not reached after two hours of execution.

6.7 Conclusions

In this chapter the provisioning and routing problem under demand uncertainties is

considered. We have provided several mathematical models for solving the problem.

We develop a stochastic programming model and a scatter search solution approach for

the problem. This metaheuristic is able to reach high quality solutions in a reasonable

amount of time. Furthermore, we develop a robust deviation program that obtain feasible

solutions even if the worst scenario is realized.

The results obtained in this chapter corroborate the effectiveness of using a scat-

ter search metaheuristic to provide high quality solutions to problems that arise when

planning WDM optical networks.
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Individual Scenarios Robust Solution

Set Name |N | |E| |D| z1 z2 z3 z4 z5 y Equip. Cost Time gap (%)

MetroD 11 16 10 4.09 3.73 5.02 3.52 4.40 1.64 5.16 0.56 -

20 4.38 4.97 5.31 3.91 6.52 2.87 6.78 1.40 -

30 6.46 8.14 4.44 5.85 10.26 7.91 12.35 13.01 -

54 14.03 16.36 9.80 15.55 16.70 9.10 18.90 883.16 -

27 10 2.75 2.56 3.51 2.42 3.05 1.15 3.57 1.67 -

20 4.26 4.74 5.22 3.81 6.10 2.83 6.65 164.57 -

30 6.46 8.14 4.44 5.85 10.26 6.33 10.77 - 0.45

54 11.15 13.37 7.37 12.84 13.32 10.28 17.65 - 27.94

42 10 1.96 1.82 2.53 1.64 2.28 1.63 3.28 0.42 -

20 3.08 3.87 3.93 3.00 4.79 3.85 6.85 221.14 -

54 8.41 10.56 5.84 10.04 10.03 9.42 15.27 - 11.41

Table 6.4: Robust Approach with the 11-node networks

Individual Scenarios Robust Solution

Set Name |N | |E| |D| z1 z2 z3 z4 z5 y Equip. Cost Time gap (%)

MetroD 12 17 15 3.69 4.20 7.03 6.68 6.20 3.62 7.32 1.86 −
19 6.26 7.25 6.55 11.54 7.20 5.34 11.61 2.25 −
21 6.20 7.24 7.11 8.17 11.75 5.54 11.75 3.19 −
44 14.35 20.92 27.49 27.99 23.78 17.79 32.14 − 14.84

66 11.83 15.83 29.32 20.97 30.09 19.70 31.54 709.26 −
33 15 3.69 4.20 7.00 6.87 6.59 3.62 7.32 7.47 −

21 7.32 8.30 8.45 9.82 12.06 4.74 12.06 14.96 −
46 15 3.69 4.20 7.00 6.87 6.59 3.62 7.32 16.08 −

21 7.32 8.30 8.45 9.78 12.16 4.83 12.16 572.45 −

Table 6.5: Robust Approach with the 12-node networks
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Contributions

This dissertation includes the results of several studies that have been either submitted

to International Conferences or to International Journals both in the heuristics field and

in the telecommunications field.

Chapter 2 is a comprehensive review of some basic metaheuristics. Some metaheuris-

tics, such as multistart, take advantage of the global structure of the objective function,

allowing to identify regions of the solution space in which a local from any of its solutions

converges to a local optimum with high probability. These results have been reported in

the article “A Multistart Clustering Technique for Combinatorial Optimization” submit-

ted to the International Conference MS’2000 and then published in the series The best

of MS2000 International Conference on Modelling and Simulation, (2000).

Chapter 2 also describes the possibility of taking advantage of parallelization methods,

which allow either to increase the exploration of the solution space or to reduce the

total computational time. These advantages have been proved when using both the

Variable Neighborhood Search and the Scatter Search. The articles “The parallel variable

Neighborhood search for the p-median problem” (2002), which has been published in

the Journal of Heuristics, and “Parallelization of the Scatter Search for the p-median

problem” (2003), that has been published in the journal Parallel Computing are the

161
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results of this research. Furthermore, a paper on tabu search with Fred Glover will

appear in the International journal Inteligencia Artificial.

Chapter 3 introduces the provisioning and routing problem that arises when planning

WDM optical networks. An hybrid metaheuristic procedure that combines ideas from

scatter search, multistart, and tabu search has been proposed for efficiently solving this

problem. This hybrid procedure has been compared with a permutation-based procedure

based on the one proposed by other authors. The obtained results, that corroborate the

effectiveness of developing a hybrid metaheuristic, are reported in the article “Minimizing

the Cost of Placing and Sizing Wavelength Division Multiplexing and Optical Cross-

Connect Equipment in a Telecommunications Network”, which is on a second referee

process in the journal Networks. A preliminary version of this work was presented at the

9th International Conference on Telecommunication Systems, Modelling and Analysis in

March 2001.

In chapter 4, a mathematical model with less variables and constraints than the

one proposed by other authors is developed. The hybrid metaheuristic was compared

with the solutions obtained solving the model with an existing optimizer and the results

are reported in the article “Capacity Expansion of Fiber Optic Networks with WDM

Systems: Problem Formulation and Comparative Analysis”. A preliminary version of this

article was presented at the International Telecommunications Conference Symposium on

Informatics and Telecommunications September (SIT’02) and an improved version was

presented as an invited conference at the INFORMS Annual Meeting 2002. The article

has been accepted for its publication in the journal Computers and Operations Research.

Finally, the technical report “Provisioning of Survivable WDM Mesh Networks Under

Demand Uncertainty and Single Link Failure Protection”, which collects the results of

chapters 5 and 6, will be presented in the International Network Optimization Conference

(INOC2003), which will take place the coming October.



Chapter 8

Conclusions

Telecommunication Network Planning has become a fertile ground for developing and

applying optimization techniques, while replacing the existing networks based on physical

rings by optical meshes and evolving the optical technology. In this dissertation we

have studied the metaheuristic optimization of a real world problem that arises in the

telecommunications field: the Provisioning and Routing Problem in wavelength division

multiplexing (WDM) mesh networks. This problem deals with the effective utilization

of new technology designed to increase the capacity of an optical telecommunication

network. The problem arises when the demand for bandwidth in a fiber optic network

exceeds the current capacity. The new technology, wavelength division multiplexing, can

expand the capacity of a fiber optic network without requiring additional fiber. The

decision problem is to find the most cost-effective combination of WDM equipment and

fiber that increases the capacity of the network to a point where all the expected demand

can be handled.

When planning optical telecommunications networks, several optimization problems,

which need to be solved in a reasonable amount of time, arise. Mathematical program-

ming and existing solvers are able to provide optimal solutions for problems with small

dimensions, but fail to optimize real instances. The metaheuristics overcome these dif-
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ficulties. A Metaheuristic is a master strategy that guides and modifies other heuristics

with the purpose of generating solutions beyond those that are normally generated in

a quest for local optimality. Metaheuristics provide a means for approximately solving

complex optimization problems, as those that arise in Telecommunication Network Plan-

ning. These methods are designed to search for global optima. However, they cannot

guarantee that the best solution found after termination criteria are satisfied is indeed

a global optimal solution to the problem. Experimental testing of metaheuristic imple-

mentations show that the search strategies embedded in such procedures are capable of

finding solutions of high quality to hard problems in industry, business and science.

The most important conclusions obtained in this dissertation are the following.

1. After a comprehensive study in chapter 1 of several real problems that arise in

telecommunications and, in particular, of those arising when planning wavelength

division multiplexing optical networks, the provisioning and routing problem is

considered.

2. The state of the art of the problem, reported in chapter 3, confirms that there

are not many works attempting to solve the capacity expansion problem in WDM

optical networks. An attempt to solve this problem appears in a previous con-

tribution, in which a linear integer programming model has been proposed and a

permutation-based genetic algorithm has been developed for solving the problem.

Since even an exhaustive search of all permutations may result in a sub-optimal

network design, an alternative solution approach is required.

3. Other previous contributions attempt to solve a similar capacity expansion problem

by simply developing a mathematical model and solving it with existing optimiza-

tion software for small dimension instances. The existing optimizers are not able

to reach optimal solutions in a reasonable computational time for real problems

when using the mathematical models proposed to solve the problem. Therefore,



Chapter 8. Conclusions 165

metaheuristic procedures have to be proposed and developed.

4. In Chapter 2, it is also corroborated that the parallelization of metaheuristics is

a good alternative for improving its performance when attempting to solve real

problems.

5. After studying the features of the provisioning and routing problem, a hybrid meta-

heuristic is developed. This metaheuristic combines ideas from scatter search, mul-

tistart, and tabu search. The hybrid metaheuristic takes advantage of strategies

that can explore a large solution space effectively. Specifically, tabu search con-

tributes with a short term memory component that is designed to avoid cycling.

Scatter search adds a mechanism to generate new solutions from the combination

of solutions in an updated reference set of solutions. Finally, the multistart compo-

nent uses a long term memory that forces construction of new solutions in a wider

range of the solution space.

6. For the purpose of assessing its effectiveness, the metaheuristic is compared with

two variants of a permutation-based procedure and with the optimal solutions pro-

vided by an existing optimizer using a mathematical model proposed by other

authors.

7. The development of the hybrid procedure that allows to consider the features of

the capacity expansion problem is the result of the exhaustive study of the features

of the metaheuristics described in chapter 2

8. Since the mathematical model proposed in a previous work for solving the problem

has a very large number of variables and constraints, it is proposed an alternative

integer linear formulation in chapter 4. The proposed formulation has significantly

less integer variables than previous formulation.
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9. A comparative analysis between the results obtained using the metaheuristic proce-

dure for the problem on hand and the results obtained solving the proposed math-

ematical model to optimality is carried out. The mathematical model is solved

as a relaxation of the original problem because it does not consider all possible

paths between each pair of demand requirements. This model allows to solve real

instances to optimality with bigger dimensions than the model proposed by other

authors.

10. The survivability problem in optical WDM networks is tackled in chapter 5, in

which three mathematical models are proposed for three alternative protection

schemes.

11. After making a deep study of the state of the art of the capacity expansion problem

with protection, reporter in chapter 1, we have realized that the previous attempts

solve the protection problem with shared-schemes beginning with the best network

design obtained for the problem without protection.

12. We propose a modified version of the hybrid metaheuristic developed in chapter

3, which solves the protection problem beginning not only with the best working

network, but also with a reference set of good working networks. We have concluded

that the best network design that satisfies the set of demands and that protects the

traffic in the event of any single link failure, is not obtained in most cases beginning

with the best working network.

13. Finally, an important consideration for additional research in this area deals with

tackling uncertainty. Clearly, the demands cannot be considered known in an en-

vironment such as the telecommunications industry. The availability of a MIP

formulation that can be used to find near-optimal solutions to the capacity expan-

sion problem represents a stepping-stone toward the solution of a stochastic version

of the problem that treats the demands as uncertain.
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14. Several alternative mathematical models are proposed for solving the provisioning

and routing problem under demand uncertainties.

15. It has been proposed a stochastic programming model, a scatter search metaheuris-

tic that can deal with linear and non linear objective functions, and a robust ap-

proach that provides feasible solutions even in the worst case.

Future Research

The topics for future research are the following.

• The application of parallelization to the hybrid metaheuristics developed for solving

the capacity expansion problem in WDM optical networks.

• The design of efficient hybrid metaheuristics for solving other relevant problems

that arise when planning WDM mesh networks, such as the routing and wavelength

assignment problem and the converters placement problem.

• The application of Fuzzy methodology to deal with the provisioning and routing

problem under demand uncertainties.
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Chapter 9

Appendix. Data and Decision

Variables.

Data

N = set of nodes.

E = set of segments, E ⊆ N ×N .

D = set of demands, D = (o1, d1, R1), (o2, d2, R2), · · ·, (oq, dq, Rq).

NCe = number of channels on segment e required to get the working paths.

Je denotes the set of possible paths from the origin of e to the destination of e that

can be used to reroute the traffic.

Je,od be the set of alternative protection routes between the end nodes of demand

(o, d) ∈ D which do not contain segment e.

Cost Input Data

CF
e = cost of a fiber on segment e (sum of costs per link along that segment).

C
Wj
e = cost of a type j ∈ J WDM unit on segment e.
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COl = cost of a type l ∈ L OXC unit.

Ccj = channel cost of a type j WDM unit.

Cpl = port cost of a type l OXC unit.

Capacity Data

Mwj = capacity of a type j WDM unit.

M ol = capacity of a type l OXC unit.

Existing Infrastructure

gj
e = spare WDM channels on WDM systems of type j on segment e.

hl
n = spare OXC ports on OXC systems of type l at node n.

Decision Variables

xie = amount of demand i routed on segment e.

xF
ie = amount of demand i routed on segment e in the forward direction.

xR
ie = amount of demand i routed on segment e in the reverse direction.

fe = number of stand-alone (no WDM) fiber pairs on segment e.

wj
e = number of type j WDM units on segment e.

vj
e = number of channels on type j WDM units on segment e.

yl
n = number of type l OXC units installed at node n.

ul
n = number of ports on type l OXC units installed at node n.

xod
p = 1 if demand (o, d) is routed on path p and 0 otherwise.

ze
q = 1 if the traffic on segment e is rerouted on path q ∈ Je and 0 otherwise.

zod
q,e = 1 if demand (o, d) is rerouted on path q ∈ Je,od if segment e fails and 0 otherwise.
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