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I saw the angel in the marble, and carved until I set him free.

Michelangelo.
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Introduction

The celebrated Poincaré-Birkhoff-Witt Theorem states that if {zy, ..., =, }
iz a k-basis of the Lie algebra g, then the set of standard monomials

{x?i e 'r:.“}cu....:cmel’ﬂ

is a k-basis of the universal enveloping algebra U'(g). This property, which
universal enveloping algebras share with many other associative algebras,
15 one of the reasons why most of the basic algorithms used to study the
commutative ring of polynomials also work in a non necessarily commutative
context. Indeed, in spite of the theory of Grobner bases has been extended to
algebras with no bases of standard monomials (see the works of Mora in free
algebras [70, 71, 73]), it appears that the highest yields from a computational
viewpoint are obtained in algebras where such a basis, also called a PEW
basis, exists (see [3, 8, 9, 10, 11, 12, 13, 23, 30, 31, 44, 54, 59, 60, 61, 62, 64,
65, 72, et al]).

This work 1s devoted to the study, from a computational viewpoint, of the
class of algebras where a PBEW basis exists. More precisely, we will focus
on algebras which are, in addition, presented by a hnite set of generators
X ={z,...,z,} and a finite number of relations arising from a set @} C
(X)) =« k(X)) (the so-called reduction system). As we show in 1.2.4, when @) =
{{Ws, f2)}o 15 a complete reduction system (in the sense of [57]), compatible
with some monomial order on (X}, and all W,'s are disordered, then the set
of standard monomials on the generators {x,, ..., z,} 1s a PBW basis of the
quotient k{X) ,“"IQ (where I denotes the two-sided ideal generated by ¢J) if,
and only if, every monomial x;x; with 2 < 7 1s the leading term of a relation
in ). Note that the latter may be checked effectively.

Onr main case studies are the class of G-Algebras, which i1s certainly the most
profusely studied class of algebras in the literature on effective methods in
non-commutative algebras, and the class of Yang-Baxter Alpgebras, far less
known at least in computational contexts.

'I,.:"



Vi Introduction

Amongst not necessarily commmutative algebras, the former have a nice

computational treatment, not only because they have PEW bases, but also
becanse the multiplication i1s compatible with the exponents. Essentially,
these are the reasons why the theory of Grébner bases on the commutative
polynomial ring (see [1, 18, 46, et al.]) can be extended to the context of
(-Algebras just by mimicking the notions and the results. This class of
algebras includes many universal enveloping algebras, Weyl algebras, (Juan-
tum spaces, ete. It was introduced in the seminal paper of Kandri-Rody and
Weispfenning [54] under the name of Selvable polynomial algebras, after the
initial work of Galligo in the Weyl algebra (see [23]) and the one of Apel
and Lassner in universal enveloping algebras of finite-dimensional Lie alge-
bras ([3]). In [59] Kredel also contributed in the main points of this theory,
which has recently been surveved by Bueso, Castro, Gomez Torrecillas, Lo-
billo and Verschoren ([9, 10, 11, 12, 13, 44, 65]) (who use the name FPEW
algebra instead of G-Algebra), Li ([64] ), Levandovskyy ([60, 61, 62]), and the
author ([24, 26, 27, 28, 29, 30, 31]) (also under the name of PBW algebra).
In [9, 10, 11, 13, 65, et al.] the theory of Grobner bases is extended to the
more general class of left (or right) PEW rings.
Many algebraic and homological objects have been studied in the context
of G-Algebras with a computational purpose: left syzyvey modules and free
resolutions ([61, 13]), graded and filtered left modules, homogeneous Grobner
bases, functors Hom and Ext, the Gelfand-Kirillov dimension, primality of
two-sided ideals (see [8, 10, 12, 13, 44, 65]), projective dimension of modules
([22]), ete.

Concerning the class of Yanp-Baxter Algebras, thev have recently been
proved to have an associated semigroup of skew-polynomial type (see [40]]
and hence, to fit in our computational setting. This class of algebras arises
from square-free nondegenerate involutive set-theoretic solutions of the Yang
Baxter Equation, from here on called square-free solutions of the YBE, which

e he o f dve ch fopic fo scientists and mathematicians
simee flie middle of nineteen sixties. Fist, mansy selutwens of this equa=
tion were found by studying certain related algebraic structures: the Hopf
algebras (see e.g. [55]). In 1990 Drinfeld ([19]) suggested looking for the so-
called set-theoretic solutions, which are the simplest class of solutions. In this
sense, Weinstein and Xu [81] found in 1992 a way to construct set-theoretic
solutions by studying the Poisson group. Afterwards, Etingof, Schedler and
Soloviev [21] studied set-theoretic solutions satisfying invertibility, unitarity
and nondegeneracy. They introduced several constructions of such solutions.
They also gave their classification in terms of Group Theory and showed
their geometric and algebraic interpretations. Meanwhile, Lu, Yan and Zhu
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([66]) proposed a method to construct set-theoretic solutions which generali-
zes the earlier ones of Weinstein-Zu and Etingof-Schedler-Soloviev. Whereas
these results are based on algebro-geometric and topological methods, T.
Gateva-Ivanova ([38, 39, 40]) introduced a combinatorial approach to this
topic focusing on the behaviour of the set of relations R(X, ), uniquely de-
termined by each solution (X,r). If (X.r) is a square-free solution of the
YBE, then the set R( X, r) satisfies the so-called Cyclic Condition, which is
essential in combinatorial techniques in this context. This approach has been
used, for example, in order to obtain algebraic and homological properties
(see [42]) of the Yang-Baxter Algebra associated to each square-free solution

of the YBE.

The contents of this work are organized as follows.

The background on reduction systems and ambiguities of reduction, in-
cluding Bergman's Diamond Lemma and an algorithm of reduction adapted
to perform a two-sided division in the free algebra (Algorithm 1), are col-
lected in Chapter 1. In this chapter we also recall the equivalence between the
notions of two-sided Grobner basis in the free algebra and complete reduc-
tion system, which allows us to prove that Levandovskyy's Non-Degeneracy
Conditions (see [61]) stated on any G-Algebra k{X'} /I are equivalent to the
overlap ambiguities of Bergman to be resolvable (see [7]), or equivalently, the
(noetherian) rewriting system ) (see [57]) arising from ) to be complete
(see Th. 1.1.25 and Remark 2.1.3).

In the last section of Chapter 1 we prove our characterization of algebras with
PBW bases (Th. 1.2.4) and we give, using a technique developed in detail in
Chapter 2, the reason why the Reduction Algorithm also yields a two-sided
division in algebras with a PBW basis (Th. 1.2.11), or more precisely, in
standard finitely presented algebras R = k(X /I5, with X = {z,...,z,}
and where [ denotes the two-sided ideal generated by a complete reduction
system Q = {(zyzi, fy:) /1 < i < j < n}.

In Chapter 2 we analyze our first example of algebras with PBW bases:
the class of G-Algebras. These algebras are defined, in addition to have a

PBW basis on a finite set of generators {x,,...,x,}, by the property that
the exponent of the skew-commutator py; = x;z — ciyrix; 15 bounded by
the erponent of the product x;x;, which is (0,..., 1 ,..., 1 ,...,0), for

all 1 =1 < j =< n. The class of G-Algebras includes universal enveloping
alpebras of finite dimensional Lie algebras, iterated Ore extensions, many
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quantum groups (M,(2), Quantum spaces, ete.) and it is closed under taking
the opposite algebra and tensor products, as we show in the second section
of this chapter.

In the first four sections of Chapter 2, we recall the basic background of the
theory of Grobner basis in the context of G-Algebras. We follow the notation
and terminology of [13]. In the fourth section, devoted to some of the classical
applications of Grobner bases, we contribute with an algorithm to compute
the codimension of a left submodule (right submodule or subbimodule) M C
R® when R is a G-Algebra and M is cofinite (see Algorithms 8 and 9).

In the fifth section we propose a new method, that we reported first in [28],
to effectively handle bimodules by using directly their two-sided generator
systems as mput data. We apply this method in order to compute two-sided
Grobner bases for bimodules over a G-Algebra (see Algorithm 10) in an alter-
native way to the Right Closure Method of Kandr-Rody and Weisptenming
(see [34]). This new algorithm calls once the left Buchberger Algorithm, in-
stead of the a priori unknown number of calls typical of the Right Closure
Method. A comparison between both algorithms 1s carried out by discussing
some explicit examples.

In the sixth section the above-mentioned technique to handle bimodules is
also applied in order to compute syzygy bimodules. These himodules were first
introduced by Mora for homogeneons two-sided ideals in the context of non-
commutative graded structures ([71]), and then, independently, by the au-
thor ([27, 30]) for not necessarily homogeneous bimodules over a G-Algebra.
We show that the syzygy bimodules, which can be viewed as the two-sided
counterpart of the left syzygy module, reveal to be useful at solving some
computational problems when two-sided input data are given. We devise
algorithms to compute finite intersections of subbimodules of free modules,
presentations and free resolutions of subbimodules of free modules, two-sided
division ideals of H, etc. In case the bimodules are generated by elements of
the centralizer, some of these results are enhanced and many computations
can be simplified.

In the last section we present an algorithm to compute a presenfation of
Tor, (M, N} in the context of G-Algebras.

In Chapter 3 we focus on our second example of algebras with a PBW basis:
the Yang-Baxter Algebras, defined from square-free solutions of the Yang-
Baxter equation. If X = {x, ..., Ty}, then the bijection v : X x X — X=X

15 a set-theoretic solution of the Yang-Baxter Equation if

(r x I)(Id % r)(r x Id) = (Id x r)(r x Id)(Id x r).
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In case r is a square-free solution of the YBE, the set of standard monomi-
als in X is a k-basis of the algebra generated by X with relations {x;r; —
rlxjri ) h<icj<n (see Prop. 3.3.13).

As we show throughout the whole chapter, a combinatorial approach may be
used in order to develop algorithmic methods in the context of set-theoretic
solutions of the YBE. After showing some ways of representing and classi-
tving square-free solutions of the YBE, we focus on the isomorphisms and
automorphisms of the solutions by following this combinatorial-computatio-
nal approach. The results presented in this part are generalizations of those
that we first proved in [25, 33]. In particular, we describe a method based on
the recent notion of star of an element to compute the set of 1somorphisms of
two non-degenerate, involutive set-theoretic solutions. The usefulness of com-
puting the group of automorphisms of a solution 1s justified at the end of the
first section, where we devise some algorithms which require antomorphisms
in order to compute new solutions by gluing any other two solutions. We
also find a bijective correspondence between the set of left extensions of two
disjoint non-degenerate involutive set-theoretic solutions (X, rx), (¥, ry) and
the morphisms from the group G(Y, ry ) associated to (Y, ry) and the group
of antomorphisms Aut( X, rx) of (X, rx).

In the last section we discuss the equivalence, proved by T. Gateva-Ivanova
and M. Van den Bergh [40, 42], between square-free solutions of the YBE,
semigroups of skew-polynomial type and semigroups of I-type. The theory
of reduction systems and Grobner basis surveved in the first chapter 15 used
in this context to prove (in an alternative way to that of [40]) that the Yang-
Baxter Algebra A(k, X,r) associated to a square-free solution (XX, r) of the
YBE is an algebra with a PBW basis. Finally, we show how the behaviour
of semigroups of skew-polynomial type is completely determined by a family
of Linear Programming problems.

Throughout both Chapters 2 and 3 we illustrate theoretic notions with
excplicit examples. In order to perform the computation of the examples, we
have encoded one each libraries of procedures (included in the companion
CD; see also [32]) using the package of symbolic computation Maple. This
software must be viewed as part of the PhD thesis.

The library corresponding to G-Algebras includes from basic arithmetics in-
volving elements in a G-Algebra to all the algorithms listed 1n Chapter 2.
The library of methods concerning set-theoretic solutions includes algorithms
which allow us to recognize whether a set of relations determines a square-free
solution of the YBE, to compute all possible orders = on X = {zy, ..., 2, }
such that the Yang-Baxter semigroup &(X, r) is of skew-polynomial type. to
verify when a bijection is an automorphism of a (square-free) nondegenerate
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involutive set-theoretic solution, to compute the group of automorphisms of
any nondegenerate involutive set-theoretic solution, to glue two square-free
solutions of the YBE in order to obtain a new one, etc.

For convenience of the reader, an appendix collecting defimtions and ex-
amples of the (monomial, admissible, etc.) orders used through the three
chapters 15 included at the end of the work.

There are some open problems stated on the class of standard finitely presen-
ted algebras R = k(X }/Ig, where X = {z,... 2.} and Q@ = {({z;2:, fii) }ic;

15 a complete reduction system, as considered in Chapter 1.

e To find out which R are Noetherian;

s To develop methods to compute finite Grobner bases for left and two-
sided 1deals of R when they exast. Although we do not have compat-
ibility of the exponent of a product of elements of R, an inequality
involving the exponent of the product of elements of R is satisfied (see

3 in 1.2.10);

e To extend the technique to handle bimodules shown in Chapter 2 to
the context of these algebras. We know that algebras with PBW bases
satisfies the key result of this technique (see Corollary 2.5.3);

¢ To devise algorithms to check the compatibility of reduction systems
(e.g., using Linear Programming);

s To find more examples, other than G-Algebras and Yang-Baxter Alge-
bras, of this type of standard finitely presented algebras R;

Some other tasks to do are:

e To code our libraries of procedures built in Maple (see the compan-
ion CD, or [32]) to other Computer Algebra systems as CoCoA ([17]),
Singular ([47]), ete.;

s To extend our library of procedures in order to perform computations
in algebras as H.




Notation

A monoid will be a set endowed with an associative binary operation together
with a neutral element. Although it i1s not correct English, we will use the
widely spread term well-order, to refer to any total order on a set satisfyving
that every non-empty subset has a minimal element.

If k is a field and X = {x1,...,z,} 15 a non-empty set (or alphabet), we
denote by (X}, resp. k(X}, the free monoid, resp. the free associative k-
algebra, generated by X. The elements of (X} are called words or monomials,
whereas those of k(X are called polynomials. A standard monomial (on
X) will be an element x® = z{" .- 20" € (X) C k(X) or in any of their
epimorphic images, where o« = (avy, ..., ) € P = M U7 %M. A standard
polynomial will be a k-linear combination of standard monomials.

We denote by 1 the neutral element of (X) C k{X'}.

The symbol ™) denotes the set F™ x 11,..., s}, for every n,s = 1. The

n-tuple (0,..., _i_, ..., 0) will be denoted by &, and 2@ will denote the
element (0, ..., ;‘:—',. ..,0) € B for all (o, i) € T™L=),

A ring will be an associative ring with a unity. For every ring R, R°F will
denote its opposite ring. In case R is a k-algebra, R°F will denote the opposite
algebra of R, and R*™ will denote its enveloping algebra R & RP.
Furthermore, for any subset F' of the free left A-module R®, we will denote
by g(F}, (F)gr, and g{F)g (or simply, {F}), the left R-module, the right
F-module, and the R-bimodule, respectively, generated by F.

——

We denote by {e;}?_, the R-module basis of R consisting of e; = (0,..., 1

xl



Chapter 1

Algebras with PBW bases

Following the terminology and results stated in [7, 13, 57, 73, et al], in

this chapter we collect the background on reduction —*srnend pmhiaeitiar .
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Chapter 1. Algebras with PBW hases

1.1 The Diamond Lemma and Grobner bases
on the free algebra

For every monomial M € (X}, we shall use the following notation:

e The multidegree of M, denoted by mdeg(M), is defined as the image
of M under the monoid epimorphism mdeg : (X} — ™ given by
mdeg(z;) = ¢ for 1 < i < n;

e The total degree deg( M) of M is the length as a word, i.e., deg(M) =
|| = @1 + -+ - + @, whenever mdeg(M) = o = (a;,..., an). In this

case, the é-th component o; of mdeg( M) is denoted by degII{M’ I

e The misordering index of M = x;, - -- x;, 15 the number v( M) of pairs
(¢;,2%) with ¢; > dp and 1 < k < j < r. Thus, M is standard (or
ordered) if v(M) =0, and M is disordered if »( M) = 0.

As a convention, we will assume that mdeg(1) = (0,...,0) € I", deg(1) =0
and (1) = 0.

1.1.1 Reductions

1.1.1 Definition. A reduction system for k{X} is a subset @ C (X)) = k{X}.
The components of an element o of () will be denoted (W,, f.), where the
first component 1s a word W, € (X} and the second one is a polynomial
f= € k{X}. Each reduction system () for k{X} defines a factor algebra
k(X}/Ig, where I denotes the two-sided ideal of k(X generated by all the
polynomials W, — f,, & € ).

1.1. 2 Definition. A reduction (associated to A, B € (X} and ¢ = (W, f,)
£ () for a reduction system () is defined as a k-linear endomorphism 74,5 :
k(X} — k({X) which maps AW,B to Af,B and fixes all elements of (X}
other than AW, B. A reduction r,,p acts trivially on an element f £ k{X)

if raop(f) = f.

Note that the (composition of ) reductions can be viewed as rewriting rules
in k{X})/Iq, since f + Iy = r(f) + Iy, for any reduction r and f € k{X}.

1.1.3 Definition. Let @ be a reduction system for k{X} and f,g € k{X).

1. The polynomial f is said to be irreducible under Q@ 1f all the reductions
act trivially on f. We shall denote by (X'}, the subset of (X} consisting
of all irreducible monomials, 1.e.,

Xin={Mc (X)/M=*=AW,B,vVA, Bc (X}, 0= (W, fz) € Q}.
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Thus, 1 € (X}, if, and only if, W, # 1, for all ¢ = (W, f,) € Q. The
sub-vectorspace of k{X'} generated by (X),. or equivalently, the set of
all irreducible elements of k(X under ¢, will be denoted by k{X )i,.

2. The polynomial f reduces to g, denoted by f —g g, if there exasts a
finite sequence ry, ..., 7, of reductions such that g = (r,o---or)(f). A

finite sequence of reductions rq, ...,y is final on fif (rpo---or)(f) €
k'::X::'irr-
3. f is said to be reduction-firite if for every infinite sequence vy, vs, ... of

reductions there exists m > 0 such that r; acts trivially on (r;_120---0
r1)(f), for alli > m. We denote by k{X}; the k-vectorspace consisting
of all reduction-finite elements of k{X'}. Note that if f € k(X , any
maximal sequence of reductions ry, v ... such that each r; acts non-
trivially on (r;_q ©--- ory) (f) will be finite, and therefore, it will be a
final sequence. Hence, for all f £ k{X}, , there exists g € k(X )iy such
that f —g g.

4. f is said to be reduction-unigue if f € k{X);, and the image of f
under any final sequence of reductions i1s unique; this common value
will be denoted by rg( f). The sub-vectorspace of k(X ), consisting of

all reduction-unique elements of k{X) is denoted by k{X} .

Thus, we have the following diagram of k-vectorspaces:
k()i k(X g, k(X
and the k-linear map rg : k{X}) = — k{X}i,, which maps every polynomial
[ to its unique value rg(f).
1.1.4 Definition. Let @ be a reduction system for k{X}.

L. @ is said to be confluent if for all f, g, h € k{X} such that h — f and
h —g g, there exists k' € k(X satisfying f —g h' and g —g A’

This property, called confluence or diamond condition by Bergman ([7]),
can be represented by the following diagram:

D

s

h.f
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2. (@ is said to be noetherian (or terminating) if there is no infinite se-
quence in k{X}

s § o n
fl__'.fz__'....__'.fﬂ__'...."
where each r; 1s a reduction, or equivalently, if k(X), = k{X}.

3. A noetherian and confluent system ) 1s called a complete reduction
system.

1.1.2 Ambiguities and Diamond Lemma

1.1.5 Definition. Let @ be a reduction system for k(X} and (o, 7, A, B, C')
a 5-tuple, where o, 7 € @@ and 4, B, C € k{X}.

1. (o7, A, B,C) 1s an overlap ambiguity for Q) if A, B,C are monomials
different from 1, W, = AB and W. = BC. An overlap ambipguity
(o,7, A4, B,C) is said to be resolvable if there exist compositions of re-
ductions r and r' satisfying r( foC') = r'( Af;) (the confluence condition
on the results of the two ways of reducing ABC'). The S-polynomial
associated to the overlap ambiguity (o, 7, A, B, (') 1s defined as

S(o, 7, A, B,C) = AW, — f.) — (W, — f2)C = f,C — Af.

2. (o,7, A, B,C) 15 an inclusion ambiguity if & = 7, W, = B and W, =
ABC. In this case, the ambiguity is resolvable if r(Af-B) = v'(f5), for
some compaositions of reductions r,'. The S-polynomial associated to
the inclusion ambiguity (o, 7, 4, B, C) 15

S(e, 7, A, B,C) = AWy — f-)B — (Wa — f,) = fs — Af.B.

Recall that a partial order = on a monoid A is said to be a monoid orderif
My = M; = AM|B = AM;B, where A, B, M, Mz € M. (1.1)

If M is cancelative (1.e. AM = BM or MA = MB mmplies 4 = B), then

condition (1.1) can be replaced by
M, < M; = AMB < AM,B, A B, M, M, € M. (1.2)

1.1. 6 Definition. A partial monoid order = on (X} is said to be compatible
with a reduction system @ for kiX} (@ 1s said to be compatible with = as
well) if for all o = (W, f,) € @, the polynomial f, is a linear combination
of monomials M such that M <= W,
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In the literature, a reduction system () together with a compatible total order
15 also known as a rewriting system (see e.g. [57]), and irreducible polynomials
under such a @ would be called rormal elements modulo {Ws — folecg In
[35, 36, et al].

BRecall that a partial order = on a set & is said to satisfy the descending chain
condition (or d.c.c., for short) if for every chain sy = 5, = --- =5, = --- of
elements of &, there exists m = 1 such that s, = s, for all n = m. Some
authors (see e.g. [57]) call the partial orders satisfying the d.c.c. well-founded
orders.

1.1.7 Remark. [13] If = is a monoid partial order on (X'}, compatible with
a reduction system () and satisfying the d.c.c., then k(X)) = k({X}, that is,
() is noetherian. Therefore, for all f € k{X}, there exists g € k(X ), such
that f —qg g.

Let () be a reduction system for k{X} and = a monoid partial order on {X).
For each monomial M £ (X}, let us denote by Y}, the sub-vectorspace of
k{ X'} spanned by all polynomials 4(W, — f,) B satisfying AW, B < M, where
gc @, A Bec (X}

1.1.8 Definition. Let ¢ be a reduction system for k{X} and = a monoid
partial order on (X} compatible with ). An overlap, resp. inclusion, ambi-
guity (o, 7, 4, B, C') is said to be resolvable relative to = if f,C' — Af: € Yape,
resp. it Af.C — f, € YVigo.

1.1.9 Remark. [7] Any resolvable ambiguity is resolvable relative to =.
This may be proved directly by using the Reduction Theorem 1.1.16.

There is a result due to Newman [74, Sect. 3] (cf. [7]) written in a graph-
theoretic formulation which states that, assuming the d.c.c. and the conflu-
ence condition on a orlented graph, the reduction procedure on the graph
vields unique canonical forms for elements of the original algebraic object.
This result was often called Diamond Lemma.

Bergman translated it to the context of associative rings, avoiding the graph
formulation. The advantage presented by his result, Bermang’s Diamond

Lemma, is that the d.c.c. and the confluence condition need only be verified
for monomials.

1.1.10 Theorem. (Bergman’s Diamond Lemma) [7] Let @ be a reduc-
tion system for k{X}, and = a monoid partial order on (X)) compatible with
), satistyving the d.d.c.. The following conditions are equivalent:

1. All ambiguities for ¢} are resolvable;
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2. All ambiguities for ¢ are resolvable relative to =;
3. All elements of k{ X} are reduction-unique under ();
4. The set {M+Ig/ M € (X}, } is a k-basis of the algebra k(X) /1.

When these conditions hold, k{X} /I can be identified with the k-vectorspace
k{X }irr, whose multiplication is given by f-g = rg( fg), for all f, g € k{X i

The original proof can be found in [7]. In [13] there is a detailed one.

1.1.3 Reduction algorithm

Until the end of this chapter we shall deal with more specific orders on (X):
the so-called monomial orders. The following definition is equivalent to some
appearing n different contexts, e.g., in [61], in [70] under the name of positive
term ordering, or in [73], as semigroup ordering.

1.1.11 Definition. A partial order = defined on a cancelative monoid AA
15 =aid to be monomial if = 1= a monold total well-order on AA.

In particular, when the monoid M is M", a monomial order on M™ is also
called an admissible order.

1.1.12 Example. Let X be a finite set. The order =g.g.. on (X is a
monomial order, whereas =, 1s not (see the definitions in Appendix A).
However, the lexicographical order has an analogous definition on F" (see
Appendix A) so that it 1s an admissible order on ", There is also a degree
lexicographical order defined on F", which is an admissible order.

1.1.13 Remark. The proofs of the following statements can be locked up
in [1, 13, 18, et al.].

e If = 15 a total order on a set &, then = 15 a well-order if, and only if, 1t
satisfies the d.cc..

e If = is a monoid total order on (X'}, resp. on N" (or in general, on
any cancelative monoid), then the d.c.c. implies 1 < M for all M <
(X% {1}, resp. 0 < & for all o € W™\ {0}.

# In the case of the monod ", the d.c.c. 15 also a necessary condition
for 0 = o, Vo € F" (by using Dickson’s Lemma in M™). Thus. if = 1s
a monold total order on ™, then = is an admissible order if, and only
if, one of the following equivalent conditions holds:
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—_

= 15 a well-order on H™;

= smatisfies the d.c.c. on M7,

3. 0= a, for all o € W™,

b2

1.1.14 If = is a monomial order on (X}, then each polynomial f € k{X}
has a unique representation

f = i: }*:ﬂhﬂn
i=1

with A; € k(X} " {0}, and My = Mz = --- = M, € (X). In this case,
My = maxo{M;}7_, is called the leading monomial of f and it is denoted by
Im (f). The element A, denoted by le ( f), is said to be the leading coefficient
of f. The leading term 1t (f) of f 1s defined as

It (f)=lc(f)lm(f) =M.

It 15 easy to check that

L lm(f+g) = max{lm (f).lm (g)};
2. Im(f +g) < max{lm (f),lm (g)} = Wt{f)=—lt(g),

and that the leading coefficient, monomial and term are compatible with the
product of polynomials, in the following sense:

le(fg) =le(f)lelg);
lm (fg)=1m (f)lm (g}; (1.3)
It (fg) =1t(f)1t(g),

for all f,g € k{X) "\ {0}

1.1.15 Note. Every admissible order on M™ induces a monomial order on
(X} (see the definition in Appendix A). We denote both orders by the same
symbol =,

Moreover, it is possible to extend any monomial order = on (X)) to a partial
order on k{X}, also denoted by = (see Appendix A). Note that the order =
on k{X'} inherits the d.c.c. from = on (X}, i.e., there is no infinite sequence

fi=for=-- mk{X).

Next we present a slight variation of the procedures which appeared in [5,
61, 73, et al] for reducing any polynomial to an irreducible one, provided a
reduction system. It can also be viewed as a procedure to perform a fewo-sided
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division of a non-zero polynomial f € k{X) by a set of divisors G = {g;}; C
k(X }, from which the reduction system @ = {{lm (g;),1m (g;) —le (g;)tg;) }
15 constructed. One obtains a remainder in k{X}, and the quotients in the
enveloping algebra k(X ) @y (k(X))°. Recall that k{X) 1s a left k{X} @y
(k({X})*P-module with the action (f @ g)h = fhg, for f,g,h € k(X}.

1.1.16 Theorem. (Reduction Theorem) Let = be a monomial order on
(X)), compatible with a reduction system @ for k{X). Every polynomial
fekiX)" {0} can be written as

1. f =g+ r, where

2 g= EGEQ qo(Wa — fa), with

go = Aoi(Asi @ Boy), and 4, W, By = Im (f);

i; finita
3. ifr#0, then r € k(X )i and Im (r) = 1m (f).

Proof. The proof is based on the construction, in each step j of the proce-
dure, of polynomials pld!, g4}, U} 2 k{X) satisfying the following conditions:

1. f=p 4+ g 4 U where
2. ¢0) =¥ _oah(W, — f,), with

g=Y M (A ®B), and A W,B, <1m (f);

i; finite

3. if v £ 0, then ) € k(X )iy, and Im (v¥)) = 1m (f);

4. if p9) £ 0, then lm (p+Y) < Im (pY)) = 1m (f).

The method starts with p® = f, ¢!® = 0 and ™ = 0. Let us see how to
construct the step 7 4+ 1 from the step ;.

If Im (p) € {X )iy, then put

PO+ i ) _ 1t (p),
gt =gl
Pl = ) g {p':j:'].
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In the other case, if Im (p%¥)) & (X, then pick A, B € (X} and o =

(W,. fs) € @ such that lm (p¥) = AW, B, and put

j._-I,U"H" = p':j:' — 1|: I:jJI:fI }.‘1{“0 - .f-:r:lB:-
g+ =gl 11 (p¥))(A @ B) (W, — £.)

= g +1c (p¥) AW, — £,)B,
P )

Thus, we obtain a strictly descending sequence
Im ( f) = 1m (pi) = 1m (p!) = -+« = Im (p™) = - ..

which must stop for some m = 1, i.e., there exists m = 1 such that pi™ = 0,
since = satisfies the d.c.c. on (X}. O

1.1.17 Corollary. If ) is a reduction system for k(X), compatible with a
monomial order = on (X}, then the set

(M4+1Ig/ M e (X))

is a generator system of k(X)) /I as a k-vectorspace, Le., k{X) = k{X ), +1g.

Algorithm 1 Reduction in k{X}

Require: f < k{X), and ) a reduction system, compatible with a monomial
order = on (X};
Ensure: g,r € k(XX such that f = g+, satisfying conditions 1, 2 and 3 in
1.1.16;
Initialization: p:= f.g:=0, r:=0;
while p = 0 do
if lIm (p) ¢ (X)ir then
Take 4, B € (X} and o = (W5, f,) € € such that lm (p) = AW, B;
pi=p—le(p)(AW, — f;)B);
q:=q+lc(p)(AW, — fo)B});

else
pi=p—1t{p)
ro=r41ti(p)
end if

end while
Eeturn g, r.
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1.1. 18 Remark. Theorem 1.1.16 provides a method {Algorithm 1) to com-
pute for any non-zero polynomial f € (X} a representation as in 1.1.16.
Note that effectiveness of this algorithm requires to solve the problem of de-
ciding if a monomial M is irreducible or not, that is, if M belongs to the set
{AW,B /A Be (X),0€Q}.

Thus, if the reduction system ) is finite, the ground field k is computable
and the monomial order = on (X is decidable (1.e. it is possible to effectively
order a finite set of monomials, e.g., =g, (cf. [73])), then Algorithm 1 is
effective. In [73] a discussion on the effectiveness of such algorithm as well
as of the computation of Grobner bases can be found.

1.1.19 Definition. Under the assumptions of 1.1. 16, a noermal form or re-
mainder of f by ¢ 1s any polynomial r € k{X} satisfying conditions 1, 2 and
3 1in 1.1.16. Every normal form of f by ¢ 15 denoted by Q?

1.1. 20 Lemma. Let ) be a reduction system for k{X) compatible with a

monomial order = on {X). For any f € k{X)\ {0}, and any reduction r
acting non-trivially on f. namely r = v4,p with o = (W, f,) € @,

1) v(f) = f. where = Is the order on k(X defined from = on (X (see
Appendix A):
) f—r(f)=2AW, — f,)B, for some A € k' {0}, A, B (X},
FProof. Since r = r,.p acts non-trivially on f, we can write
F=2AWB+ > AM;, (1.4)
i; finite

where A, A € k' {0}, M; € (X)) and M; # AW, B, for all ..

We use mmduction on the number n of monomals of f. If n = 1, then
f = MAW,EB, and the result trivially follows. Let us check the case n = 2.
Assume that

f= AW, B + uM,
where M # AW, B and A, ¢ € k' {0}. It follows that

F—r(f)=(AAW,B + uM) — (AAf.B + uM)
= MA(W, — f.)B.

If M = AW, B, thenlm (r({f})) = max{Alm (f,) B, M} < 1lm(f). Otherwise,
if AW,B < M, then lm (f) =M =1m (r(f)), but also

r(f) — 1t (f) = AAf.B < AW,B = f — 1t (f).
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In both cases, r(f) < f. Assume now that the result i1s satisfied by any
polynomial on which r acts non-trivially, with a number of monomials less
than n. Let us prove it for the case when f has n monomials. If we write f
as in (1.4), then

r(f)=MAfB+Y NM,

and obviously, f—r(f) = AA(Wo—f-)B. Iflm (f) = AW, B, thenlm (r(f)) <
Im (f), and therefore, r{f) < f. Otherwise, there exists a monomial M; in
the set of monomials {M;}; of f such that lm (f) = M;, = lm (r(f)). Note
that
F—1(f) = NAW,B 4 A M,
i#in

15 a polynomial with » — 1 monomials and that r acts non-trivially on it.
Thus, applying the induction, we conclude that r(f — 1t (f)) = f — 1t (f),
and hence, (f) < f. O

1.1.21 Corollary. Let @@ be a reduction system for k{X}, compatible with
a monomial order = on (X).

Then, for all f € k{X) and all final sequences of reductions vy, ...,r, on f,
(rpo---ory)(f) is a normal form of f (by 1.1.7 and the d.c.c. on the order
= on k{X), we already know that for each polynomial f there exists such a
sequence).

In particular, if f € k{X} . then rg(f) is a normal form of f by Q).

FProof. The statement 1.1.21 can be proved by applying induction on the
length n of a final sequence of reductions r1,....rm, on a polynomial f €
k(X i (if f € k{X )i, 1t trivially holds that (rpo---or)(f) = f 15 a normal
form of f). For each 1 € {1,...,n} assume w.lo.g. that r; = r4 . p, for some

A, B; € (X) and o; € @ such that »; acts non-trivially on (ri_y o or)(f).

From Lemma 1.1.20, one can check that

with A;W, B; = lm (f), and lm ({(r;o---or)(f)) = Im(f). O

1.1.22 Note. The converse of Corollary 1.1.21 1s not always true, 1.e., there
exist normal forms Q’? of f such that Q? # (r, o---or)(f) for all final
sequences of reductions ry,...,r, on f.

Indeed, for the alphabet X = {x, 2, 21}, consider the reduction system
Q = {(z3x2, x2), (razry, x3), (x221, 1)} for k(X}, compatible with the order
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= degle= 00 (X }. The polynomial f = T4 — xax, + xo1, can be written as
_ 1
f=zs(xamy — 1) — (waxy — x3)7) + 75,

with wazaa %dggger x4 = Im (f). Hence, ! € k(X )iy is a normal form of f.
But f g 3.

1.1.4 Two-sided (Grobner bases

1.1.23 Definition. Let = be a monomial order on (X)) and G a subset of
k{X}. We shall denote by M (&) the set of monomaals {lm (g) /g € G'\{0}} C
(X) of G. The leading ideal of G, denoted by L (@), is the two-sided ideal
generated by M (G, Le.,

L(G) = k) (1m (g) / g € G\ {0} Jkpx-

Note that if G is a two-sided generator system of a two-sided 1deal I C k{X},
it can easily be checked that

M(G) CL(G)N(X)CL(I)n{X)=M(), (1.5)

(X)\M(I) C (X} (X)) \ M (G), (1.6)

with respect to the reduction system ¢ = {{lm (g).lm (g) — lc {Q}_lgj}geﬂ'
for k{X}.

1.1. 24 Definition. Let = be a monomial order on (X}, and [ a two-sided
ideal of k{X). A two-sided generator system G of I is said to be a two-sided
Grobner basts for I with respect to = if L (G) =L (I).

A set G C kiX} is a two-sided Grobner basis if G is a two-sided Grobner
basis for the two-sided 1deal ey kx) generated by G

Trivially, a two-sided ideal I € k{X} is always a two-sided Grobner basis
for itself. The condition of being a two-sided Grobner basis in the free al-
gebra k{X) can be characterized in different ways. Essentially, two-sided
Grobner bases may be viewed as sets G C k({XX) for which the reduction
system @ = {(lm (g),lm (g) —lc (g)7'g) }secz satisfies (one of) the conditions
of the Diamond Lemma. In the following result we collect some alterna-
tive definitions of the notion of two-sided Grobner basis. Most of them are
very well-known. In the literature, they usnally appear independently in the
context of reductions systems (see e.g. [57]), and in the context of leading
ideals and normal forms (see e.g. [73]). Here we recall the most important
ones from both points of view, unifying the notation, and we add two more
characterizations (2 and 3). naturally arising from Definition 1.1.24.
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1.1.25 Theorem. Let = be a monomial order on (X}, Let G be a two-sided
generator system of a two-sided ideal I of k{X} and consider the reduction

system € = {(lm (g),Im (g) — lc (g) ') }gec for k{X).

The following conditions are equivalent:

1. G 1s a two-sided Grobner basis for I';
2 L(G)MX) =M(I):
3 (X = (X} \M(]);
4. All ambiguities of () are resalvable;
5. All ambiguities of () are resolvahle relative fo =
6. All elements of k{ X} are reduction-unique under @);
7. The set {M +1 /M € (X)iu} 1s a k-basis of the algebra k{X) /I
S kX)) =kiX)in@I. or equivalently, k(X )y [T = {0};
9. k{X)/T=k{X),:

10, ¢} 15 complete, or equivalently, noetherian;

11. All f € I has a unique normal form Q’? which 1s (;

12. For all f € k{X )"\ {0}, f € I if, and only if, f can be written as

f=Y a9 withgy =) Aig(Aig @ Biy),

gels finite

and Im (f) = max_ {4, JJm (g)B; 4} 5
13. Forall f €I, f —g 0, or equivalently, for all f € k{X},

fel — f—ql

14. Every f € k{X} has a unique normal form Q?

15. S{o, 7. A B,C) —g 0, for every S-polynomial S{o, 7,4, B, C):
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Proof. Equations (1.5), (1.6) lead us to the equivalence between the first 3
statements. The equivalences between 4, 5, 6 and 7 are given by the Diamond
Lemma in 1.1. 10. The ones between 7. 8 and 9 are results of Linear algebra.
(6) = (10). Assume that all polynomials are reduction-unique under Q.
From 1.1.7 it follows that ) is noetherian. Let us see that it is confluent.
Suppose that f —g g and f —g g2, with f g1, 92 € k(X). Also by 1.1.7,
g1 —g hy and gy —g hy, for some by, by £ k(X )y, Therefme f—oh a.nd
f —¢ hz. Since f € k(X)},,, one has hy = hz. Conversely, if ¢} is complete
and if for an arbitrary polynomial f € k{X}, f —g g1 and f —¢g g= with
a1, g2 € k{X i, then there exists B € k{X) such that gy —¢ h"and gz —g b
Since g; and g, are irreducible, ' = g, = g». Hence, f is reduction-unique
under ).

(1) = (8) = (11) = (1). Suppose L(G) = Li{I). If f € k{X},. N,
then f has to be zero, because otherwise, Im (f) € L (G) implies lm ( f) =
Alm (g) B, for some g € &G and A, B £ {X, which 1s a contradiction since
Im (f) € (X}, Assuming 8, for all f € I'\ {0}, every normal form E’? of f
has to be zero since there exists g € I such that Q? =f—qge k{X}inNI.
Now, suppose 11 and let us see that L (G) =L ([I). If f € I {0}, then, since

“F=o,
f= Z A g A g(lm (g) — (Im {g) — le (g)™ 'a)) By, a0

kge@
with )-.1.:9 = k, ‘4‘1‘:9:-'3.‘:.; = '::X::': and

Apglm (g)Big = lm (f). (1.7)
Thus, there exist k, g such that either lm (f) = Ay lm (g) Bg 4. or

Im (f)=1lm (A, (Im (g) — e (g) ") By)
= Agglm (Im (g) — e (g)"'g)Ba,
_q'_:l;\..glm [Q}Bﬁc:g:

but this is a contradiction with Equation (1.7). Hence, Im (f) € L (G).

(11) = (12) = (1). If 11 holds, then the statement 12 is a consequence of
Theorem 1.1. lﬁ Condition 12 implies that G 15 a two-sided Grobner basis
for I since lm {f} eL(G) forall fel.

(11) = (13) = (15) = (4). The first implication is a consequence of 1.1.
21, and the second one is perfectly straightforward. Assume now that all the
S-polynomials can be reduced to zero, and let us see that all ambiguities are
resolvable. Let (o, 7, 4, B, C') be an overlap ambiguity, and S{o, 7, A, B, C')
its associated S-polynomial. Since S{o, 7,4, B,C) —g 0, there exists a
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composition of reductions such that r(f,C — Af.) = 0. Hence »(f,C) =
r(Af.), so (o,7, 4 B, (') is resolvable. Analogously, inclusion ambiguities
are resolvable.

(1) = (14) = (4). Under the assumption of 1, if » and »' are two normal
torms of f, then

T — ?"'r = {f — q:l — I[f— qr} = q'r — = I i |"-:-‘}(-'.I\:ll'l"«

for some q. ¢’ € I. Therefore r = v/, since in other case, Im (r—r") £ L (G), s0
Im (r—r') = Alm (g) B for some 4, B € (X} and g € G, which is impossible
because lm (r — ') € (X )i. Assuming 14, the statement 4 is a consequence

of 1.1.21. O

1.1.26 Remark. Under the assumptions of Theorem 1.1.25, if G 1s a two-
sided Grobner basis for I, then the converse of 1.1.21 is true, i.e., for all

f e kiX),
Q? is a normal form of f — f—g QF and Q? € k{X}in-

Indeed, from 1.1.7 it follows that for all f € k{X}, there exists ¢ € k(X ),
such that f —5 g. From 1.1.21 we have that g 15 a normal form of f. Thus,

any normal form Q? of f has to be g since f has a unique normal form (by
14 in 1.1.25).

1.2 Obtaining algebras with PBW bases from
reduction systems

In this section we find necessary and sufficient conditions for obtaining al-
gebras with PBW bases in terms of reduction systems, assuming certain
hypotheses.

1.2.1 Definition. Let R be a k-algebra. R is an algebra with a PBW basis if
there exist x1,..., z, € R such that the set of standard monomials {z /o &
[} is a basis of R as a k-vectorspace.

The k-algebras with PBW bases are also recognized in the literature as poly-
nomial algebras over k (see, e.g., [13]). The basis {z® / o € N"} of such
algebras is usually called a PEW basis.

1.2.2 Lemma. Let X = {x;,...,2,} and @ C (X} = k{X} a reduction
system for k{X). Then
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LX) © {a" /o € N} if, and only if, {oye; /1 <4 < j = n} C©
{AW,B /A Bc (X), (W, f,) €Q}:

2 {z* ja € W*} € {(X}iy if, and only if, {W, [/ (W,, fs) € @} C
{AzjzB[1<i<j<n, ABe (X))

Proof. Suppose that (X} C {x%}aeun. Then, for j > i, ;7 @ (X )i
So, z;x; = AW,E for some A, B € (X} and (W, fz) € @. Conversely, if
{xj'rf}}fl-e:jj - {‘4“03 .-"r ‘4‘:-‘B € ":X:y [HJ'-fa'jl € Q}’- then all M & :X::rr 15
a standard monomial, since in other case M = Ax;x; B for some 7 > ¢ and

A, B € (X}, and therefore,
M = Az;z;B = A(CW,D)B = (AC)W,(DB)

for some C, D € (X}, and (W, f,) € @, which is a contradiction as M is
irreducible.

To prove the statement 2, first assume that {2 },epe © {X )iy, No W, such
that (W,, f-) € @ is a standard monomial, since W, & (X }i,. Hence, W, =
Azjz; B, for some j > i and A, B € (X}. Conversely, if {Ws}mw, e C
{Az;z;B /1 < i < j = n, A, B € (X}}, then every standard monomial
is irreducible. Indeed, if there exists & € M™ such that =® & (X}, then
= AWLB and W, = Cx;z; D for some A, B, C, D € (X}, (W,, fo) € @,
7 > 1. This leads to the following impossible equality on (X}

r* = CAz;z; BD.

O
1.2.3 Corollary. Let X = {z1,..., 25} and @ C (X} = k{X} a reduction

system for k{X}. Then (X)y, = {z% /o € W"} if, and only if, the set
1W, [/ (W, fa) € @} can be written as

{ejai /1= i<j<n}U{Aw;z;Biliea

for some set A, with 1 <4 < 1< n, 4, By € (X} and (A, By) #(1,1).

It, in addition. ¢} has no imclusion ambiguities, then
(Njim={2"/ac W'} = (W, /(Wa fo)eQ}={zjz; /1 =i <j<n}

Proof. Assume that (X )iy = {2 }aenn. First, by 1.2.2, for all (W5, ) €
), we may find j, > i, and A4,, B, € (X} such that

W, = Agz;. 7, Bo. (1.8)
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Furthermore, for all j = ¢, there are C, D = (X}, (W, f,) € ) satisfying
zr; = CW,D =CA wy wy, B,D in (X).
Hence, ' = A, =B, =D =1 and (j,i) = (J-. 1- ), which implies that
{2} C (W | (Wa, £2) € Q). (L9)
From (1.8) and (1.9) we have
Wo/ (Wo fo) € QY =Haym /1 =i < j = n} U{ Az, 05, By loc a

for some set A, with (4., B;) # (1,1) and j, > é,. The “if" part follows in
a straightforward way from 1.2.2.

Now assume that there are no inclusion ambiguities in ¢, and (X}, =
{z® [ o € M"}. Then, for all (W, f;) € @, we already know that

I'{’;.:r = a‘l.J"':_-l.I,_.'B = d:iC‘"H,‘:yDB — u‘ict’i;aﬂﬂ

for some j > ¢, A, B,C, D (X}, and (W, f») € @. So, W, = W, and
A=F8=0C=D =1, which implies W, = x;r;. Therefore,

(Wo/ (Wo, fo) € Qb = {wjmi 1 <i < j < n}.
O

In 1.1.25 we saw that complete reduction systems for k{X} are closely re-
lated with two-sided Grobner bases in k{X}. In the following result we give,
assuming certain hypotheses, necessary and sufficient conditions for obtain-
ing algebras with PBW bases in terms of reduction systems and two-sided
Grobner bases.

1.2.4 Theorem. Let X = {x, ..., xp, } and @ a reduction system for k{X},

compatible with a monomial order = on {X}, satisfving that all W, are
disordered, 1.e.,

Vo= (W, f,)eQ, W,=A4z2,B, forsome 4, B < (X}, j =i (1.10)
Consider the following statements:

1. k{X}/Ig is a k-algebra with a PBW basis. More precisely, { X®},cnn
is a k-basis of R, where X® denotes X7 --- X and X; = z; 4+ Ig;

2 {zm /1 <4 < j < n} C{W, /o e Q}, or equivalently, (X}, =
{x® [ a € H"};




15 Chapter 1. Algebras with PBW bases

3. The set G = {W, — fo}seq Is a two-sided Grobner basis for Iy, or
equivalently, ¢} 1s complete.

Then,
A) If 2 holds, then 1 is equivalent to 3.

B) Assuming 3, the statements 1 and 2 are equivalent.

In addition, if ¢} has no mclusion ambiguities, then condition 2 can be re-
placed by
2. W loeQt={zm/l<t1<j<n}

Proof.

A) Assume that 2 holds. Note that, from 1.2.2, it follows that condi-
tion (1.10) is equivalent to {z°},cyn C (X }i,. Thus, by Corollary 1.2.3,
Iririh<icjen © {Wslseq if, and only, if (X)ix = {2%}aenn. Therefore,
{X % baenn = { M + Igtareixy,. At this point, the result directly follows by
applying Theorem 1.1.25.

B) Suppose that the set G = {W, — falezo 15 a two-sided Gribner basis
for I, which by Theorem 1.1.25, 1s equivalent to () being complete, or to
IM+1Ig/ Mec (X)in} being a k-basis of k(X)) /Ig, or k(X} = k{X)in P Ig.
The “if" part of the equivalence between 1 and 2 is clear. Now, assume
that {X®},enn 1s a basis of k{X} /I as a k-vectorspace. Recall that con-
dition (1.10) is equivalent to {z%},cyn © (X )iy 50 let us prove that every
irreducible monomial is standard. Let M £ {X}iy. The projection of M
on k(X) /I can be written as M + Ig = 3, Aax™ + Ig. Since every z% is
irreducible, there exists aq such that A, = 1 and A, = 0, for all o = .

Hence, M — o™ & k{X}y,[]{g, and therefore, M = x°, O

1.2.5 Note. The equivalence between 1 and 3 with several restrictions ap-
peared in [54, 73, 45, et al.] (cf. [61]), and in the more restricted context of
G-Algebras, in [13, 61].

The algebras studied in the subsequent chapters (G-Algebras and Yang-
Baxter Algebras) fit the hypothesis and satisty the conditions 1, 2 and 3
of Theorem 1.2.4. In particular, this result can be viewed as a generalization
of the results [61, Th. 2.3] and [13, Ch. 3, Th. 4.7] stated in the context of
G-Algebras (see Remark 2.1.3).

1.2.6 Example. Let R = k{zy,...,z; @, =} be a G-Algebra {also called
PBW algebra in [10, 44, 11, 12, 13, 65, et al], or Selvable polynomial algebra
in [59, 54, et al]), where = is an admissible order on M",

Q = {zjm — gumiz; —psi [ 1 =i <7 < n},
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with g;; € k' {0}, and the p;;'s are standard polynomials such that exp (p;;) <
& + ¢€; (Chapter 2 is devoted to the study of this class of algebras). The
reduction system for k{X}

QI = {'[xj-r";s giirir; +p) /1 Se<g = n}

is compatible with the monomial order on {xy, ..., z,), induced from = on
" (see Appendix A). Indeed,

lm (gjrse; +py) = mzy; < oy, V1 <i<j <n.

By 1.2.4, () is a two-sided Grobner basis for I, since {2% + I }oenn is a
k-basis of B = k(X)/Iq.

1.2.7 Example. Let X = {z,,..., x,t, and let (X,r) be a square-free

solution of the Yang-Barter eguﬁa‘éaﬁ. Consider the Yang-Barter Algebra
Alk, X, r) associated to (X,r), 1.e, Ak, X,r) = k{X)/Ig, where @ is the

reduction system
{I[:I:j.l'“ 3.,"..;'-'.1'_-.;.') l,-'ll .'J'.,"_.?.J’.‘.'._.' = .T._;'.'.rj.' e %{X.. ?1}, 1 E 1< _} i ﬂ.}

for k{X) (the definitions of these notions can be found in Chapter 3). It is
known ([40]) that there exists an order = on X = {x; < - -+ < x, } satisfying
the inequalities ¢ < j°, 7 > ¢ and ¢ < j', for all relations z;z; = zpxy €
R(X,r)with j = 2. Thus, ) is compatible with the monomial order = 4., on
(X}, and by Theorem 1.2.4, {z® + I} ,cyn 1s a k-basis of A(k, X, r) (already
known from [40]], since @ is a complete reduction system (see a proof in 3.3.

13).

Whilst the monomial orders on {x,,...,z,) are used to define the leading
term, the leading monomial and the leading coefficient of every polynomial
of the free algebra k{zi,...,z,), it 1s usual for the k-algebras with a PBW
basis {z%/a € M"} to take admissible orders on " (see e.g. [10, 11, 12, 13, 65]
for the case of G-Algebras).

1.2.8 Let = an admissible order on M®., If R is a k-algebra with a PBEW
basis {z / o € "}, then every element f £ R {0} has a unique standard

representation
f= z f}*&:'f"n:-
=[N
with A, € k, and A, = 0, except for a finite number of terms. The Newton
diagram of f is

N{fi={acHN" /X, #0}
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(sometimes we will use ANg(f), for emphasizing the underlying algebra R).
Note that N(f +g) SN {(f)UN(g), for all f,g € R, and N (f) # # if, and
only if, f # 0. The erponent of f # 0, denoted by exp g(f) (or simply by
exp ( f) when the underlying algebra R is clear from the context), is defined
as

exp () = max N (f).

The leading monomial of f # 0, denoted by lm g(f), is r=P R whilst
le p(f) = Aap pp) 18 called the leading coefficient of f. The leading term
It g(f) of f1s the product of both lc g( f) and lm g(f), 1.e.,

It R(f) = Aaxp (2™ F B

For the sake of briefness, we will agree that exp 5(0) = —~c, and the monoid
structure and the admissible order = on M™ will be extended to M™ U {—co}
by

1] —oo < o,

) —c+a=a+(—00)=—no+(—x)=—o0, (1.11)
for all @ € M". With these notations, it 15 easy to check that

L exp p(f +g) = max{exp z(f),exp zlg)};

2. exp p(f +g) < max{exp p(f),exp r(g)} <= It r(f) = -1t rg).

1.2.9 Remark. If R is a k-algebra with a PBW basis {2® /o € N"} and =
1s an admissible order on M"™, then the values lm g(f), le g(f), resp. It g(f)
of an element f € R {0} ave lm (f), le (f), resp. 1t (f) (defined in 1.1.14],
when f is regarded as a polynomial in k{zy,...,z,} and the monomial order
on (r1,...,T,, assoclated to the admissible order = on M™ is considered (see
the definition in Appendix A).

In formulas (1.3) we pointed out that there is compatibility of these values
when they are applied to the product of polynomials in k{zq,.. s-:n: In
general, such compatibility does not hold for Im g(f), le g(f), It g(f) in k-
algebras with PBEW bases. However, an inequality involving the exponent of
the product of elements of R is satisfied (see 3 in 1.2.10 below). In Chapter
2 we will recall that the later condition becomes an equality when K is a G-
Algebra. and even more, this equality 1s a necessary and sufficient condition
for a pair (R, =) (consisting of a k-algebra R with a PBW basis and an
admissible order =) to be a G-Algebra (see Theorem 2.1.4).
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From here until the end of this chapter we will deal with finitely presented
k-algebras
R =k{X}/Ig, (1.12)

with X = {mx,.. ., Ty} and where

Q =1z, f5:) /1 =i <j=n}

is a complete reduction system with respect to the monomial order = on (X}
induced by an admissible order = on M® (see Appendix A). Note, by 1.2.4,
that the set {x® 4+ I /o € "} is a PBW basis of R. These algebras are
particular cases of the so-called standard finitely presented algebras (see e.g.

34, 36]).

1.2.10 Lemma. Let = an admissible order on N®, and let R = k{X) /Ig,
where @ = { (x4, f7:) / 1 = ¢ < j < n} Is a complete reduction system with
respect to the monomial order = on (X} induced by = on F".

For all elements F,G € R\ {0}, namely. F = f +Ip. G =g+ Ig with f.q
polynomials of ki X},

1. exp gl F) = mdeg(lm (f));
2. exp g F) = o, whenever Im (f) = z;
3. exp g(FG) = exp g(F) + exp (G).

Proof. Let us prove 1. By Theorem 1.1.16, f = h 4+ Q?, with h € Iy
and CT € k{X )iy such that Im {Q?] = lm (f) whenever Q’? = 0. If QF e Ig,
the proof trivially finishes. Otherwise, since Q? 15 a standard polynomial 1t
tollows that

exp p(F) = exp R{Q?—l— Ig) = mdeg(lm (Q?]I] = mdeg(lm (f)).

To prove 2, take f = Az™ 4+ 3 3 o AuM € kiX). By statement 1 and
v(z™) = 0, for every monomial M of this sum we have

exp R(QH—I— Ig) =exp gp(M + 1) = mdeg(M) < o,
where Qﬁ is the normal form of M. Hence,

F=XMa"+I)+ Y My + I,
ap R{QH+JTQ:I-<Q

and therefore, exp g(F) = a.
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Finally, let us check the statement 3. Let Q?, 97 the normal forms of f, g €
k{X}, respectively. Then
exp g FG) =exp pl(“F + Ig)(“g + 1)
0—
=exp gl 7+ Io)
Q—
=exp (V799 + Ig)
[y —
=mdeg(lm ( {QTQE}}} [ by statement 2 |
[y S
=< mdeg(m (“797))  [Im ((“F%)) = Im (“7%g) ]
= mdeg(lm I[Q_]Ilnl (“g7)) [by expressions (1.3) ]
=mdeg(lm ( f]l]l + mdeg(lm (“7))
= exp R{Q?—l— Ig) + exp p(%G + Ig) [ by statement 2|
=exp p(F) + exp z(G).
O

From the following result we devise an algorithm (Algorithm 2) to perform
two-sided divisions in algebras R = k({X} /I as in (1.12). More precisely, we
can divide a non-zero element F' € R h}r a set of divisors {G,,... . G,} T R,

obtaining a remainder in R, and some guotients in the enweloping algebra
Ry R, Recall that R is a left Ry R°P-module with the action (P2 P2)H =
Palz, for Pl, Pz, H = .

1.2.11 Theorem. Let = an admissible order on ", and let R = k(X /g,
where () = {(zjzy, fii) /1 < i < j < n} is a complete reduction system with
respect to the monomial order = on (X} induced by = on N".

Let {Gq, ..., G.} C R\ {0}. Every element F € R\ {0} can be written as

1. F=%.  PG;+ F with F' € R, P, £ R @y R satisfving
2 exp p(PiG;) Zexp g(F). forall 1 <1 < s:

3. 1f F' # 0, then exp z(F') = exp z(F) and there exists a standard
polynomial f' € k{X} such that F' = f' 4+ Iy and

=& Li{q,..., gs}), ¥ x® monomial of f’,
where G; = g; + I, for some g; € k(X).

Froof. Let F = f+ 15 € R\ {0} and G; = g; + I, with f,g; € k{X),
¥i. We can assume w.l.o.g. that f i1s a standard polyvnomial (if not, we
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Algorithm 2 Two-sided division

Require: Let F = f+ 15, Gi =g+ 1g, ..., G =g, +1Ip € R {0},
where R = k{X}/I; 15 a standard finitely presented algebra as in (1.12)
and f,g; € k{X);

Ensure: Py,..., P, € Ry R and F' € R such that F =%, | PG, + F'
satisfying conditions 2 and 3 of 1.2.11;

Initialization: @' := {(lm (g;),lm (g;) —lc (g;) " a:) }ys

it f 1s not a standard polynomial then
Using Algorithm 1, compute the normal form QF of f;

0—
f="F
end if
Reduce _f under the reduction system @ U Q" (using Algorithm 1) in order
to get “7YF € k(X), and pigy € k(X) @ ((X))P, for 1 < i < s,

1= 3 < k< n, satisfving

f= z Pigi + z grilTer; — frg) + o Q?:
i1

l<j<ksn

and conditions 2 and 3 of 1.1.16;

Put F' = 2" F 4 I, and P i=pi 4 Ig, forall 1 < i < s
Return F', P, forall 1 <: < s

take Q? € k(X }irr). Consider the reduction system @ U Q)" for k{X}, where
" = {(lm (g:),lm (g;) — le (g:) 'g:)}_,. Note that @@ U @' is compatible
with the monomial order on (X}. From Theorem 1.1.16, there are some

P @kj € k(X)) @y (k({X)) and QI'IQ? € k{X} such that

f= ZPQ-I- Y @l — frg) + 9T,

1< jok<n

where lm (p;g;) = 1m (f), and if “ JQf = (), then llnl[ ?} = f and QL'Q?

15 wreducible under ¢ U &', Projecting the polynomial f on R we get

a

F=f+Ig=Y m+I1)Gi+ (""" F+ 1.

i=1
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Taking F; = p; + I3, since f and QUQ? are standard polynomials, from 1.2.
10 it follows that

exp g(FiG)=exp gl(p; + Ig)lg: + 1g))

=mdeg(lm (p;g:))

= mdeg(lm (f))

=exp p(F),
and exp R[QI'IQ? + Ig) = mdeg(lm ( Qu Q?}} = mdeg(lm ( f)) = exp g(F).
Moreover, since 9 f is irreducible under @', we have z® & L{{g1,....g:}),
for all =™ monomial of ”Q?. O
1.2.12 Note. If the underlying field k is computable and the monomial

order on {X) is decidable, then Algorithm 2 is effective (see Remark 1.1.18).

1.2.13 Definition. Let R be a k-algebra with basis {z® /o € MN"} and =
an admissible order on M". For every subset B, the set of erponents of B,
denoted by Exp z(B), is defined as

Exp g(B) = {exp g(F) / F € B {0}},

and
La(B) = {z™ | 3 € Exp (B),y € N"}.

1.2.14 Lemma. Let R be a k-algebra with basis {z® / a € N"} and = an
admussible order on M". Let I a two-sided ideal of R, and B a two-sided
generator system of I. The following conditions are equivalent:

1. LRI[H]I = LRI[III.'

2. Forall f € I {0}, there exists g € B such that lm g(g)|lm g(f), 1.e.,
iflm p(g) =z and lm g(f) = 2°, then o, < 3, for all 1 <i < n;

3. Bxp p(I) = U 5 exp p(f) + N

Proof. (1)< (2). If Ly(B) = Lg(I), then for all f € I {0}, lm z(f) =
x® € Lp(B). Thus, =* = 2"+, with @ = exp g(g), for some g € B, {0} and
v € H". Hence, o = 34+ 7, and therefore, a; = &, for all i. Conversely,
assuming 2, for all z® € Lg(I) there exist v € M", 3 = exp p(f) with f € T
such &« = F 4 . But there also exist g € B such that lm g(g)|[lm g(f).
Writing exp glg) = & we have that 3 = F; + d for some & € M". Hence,
2% = ot o [p(B).

The equivalence between the two last statements 1s straightforward. O
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Next we propose a definition of two-sided Grobner basis for ideals of k-
algebras with PBW bases. In particular, when R is a G-Algebra this defini-
tion is equivalent to the one appearing in [60, 62] and in [10, 11, 12, 13, 63].

1.2.15 Definition. Let R be a k-algebra with basis {z® /o € "} and < an
admissible order on FI™. Let [ a two-sided ideal of H. A two-sided generator
system B of [ is said to be a two-sided Grobner basis for I if one of the
conditions of 1.2.14 holds.

A nonempty set B © KR 15 said to be a two-sided Grobrer basis if B 1s a
two-sided Grobner basis for p{B)p.

1.2.16 Note. There are k-algebras with PBW bases in which every two-
sided ideal has a finite two-sided Grobner basis (e.g. the G-Algebras, studied
in Chapter 2}, but obviously the exstence of a finite two-sided Grobner is
not always guaranteed in the context of algebras with PBW bases.

1.2.17 Proposition. Let = an admissible order on M™, and let R = ki X} /I
where () = {{:l:j:c,;,fjﬂ;) /1 <1< 3 < n}isa complete reduction system
with respect to the monomial order = on (X} induced by = on N*. Let
B ={G,...,G.} T R, where G; = g; + I. The polynomials g; can be
supposed to be standard, ie., g; € k{X), (otherwise, we take ¥g;).
IfB={q,...,0s U {zjmi — fis /1 <@ < j < n} is a two-sided Grébner
basis in k{X'), then B is a two-sided Grobner basis in R.

Proof. Let F € g(B}g. It can be written as
F=f+I=) RG=) pg+lo,

with f € kX)) F, € R, B% p;, € kiX}) @ (kiX})°?. Thus, f €
kixy (Blwxy, and Im (f) € L(B). Therefore, there exist A, B € (X} such
that either lm (f) = Almig) B for some [ € {1,...,s}, or Im(f) =
Alm (zjz; — f;) B for some 7 = i. But the latter is not possible since

Im (x;x; — f3) = x;x; and lm ( f) is standard. Hence,

exp p(F)=exp p(f + 1]
=mdeg(lm ( f))
=mdeg(A4) + mdeg(lm (g)) + mdeg(B)
=exp p(Gi) + mdeg(AB).




Chapter 2

Effective computations in

(-Algebras

First developed in the ring of polynomials, methods based on Grobner bases
also work In some non-commutative rings. Mora ([73]) was the first to
introduce a unified theory of Grobner bases, for commutative and non-
commutative algebras. Amongst not necessarily commutative algebras, the
so-called G-Algebras have a nice computational treatment not only becanse
they have PBW hases, but also because the multiplication is compatible with
the exponents. Essentially, these are the reasons why the theory of Grobner
bases on the commutative polynomial ring (found in [1, 18, 46, et al.]) can
be extended to the context of G-Algebras, by mimicking the notions and the
results.

After the first results of Galligo in the Weyl algebra (see [23]) and those of
Apel and Lassner in tensor algebras of finite-dimensional Lie algebras ([3]),
Kandri-Rody and Weispfenning ([54]) were the first who studied Grobner
bases in G-Algebras (which they called Solvable polynomial algebras). This
class of algebras includes many quantum groups (Weyl algebras, Quantum
spaces, etc). Kredel in [59] also contributed in the main points of this the-
ory, which has recently been surveved by Bueso, Castro, Gémez Torrecillas,
Lobillo and Verschoren ([9, 10, 11, 12, 13, 44, 65]) (who use the name PBW
algebra instead of G-Algebra), Li ([64]) and Levandovskyy ([60, 61, 62]). In
[9, 10, 11, 13, 65, et al.] the theory of Grobner bases is extended to some
classes of algebras more general than G-Algebras: the so-called left (and
right) PBW rings, and PBW rings. The latter, which contain the class of
G-Algebras, are particular cases of left (and right) PBW rings.

Besides Grobner bases, many related homological and algebraic objects have
been studied in the context of G-Algebras from a computational point of

27
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view. For example, the author of [61] studies the left syzygy module in the
context of G-Algebras and use these modules to compute free resolutions
of left modules. This is done in [13] in the more general context of left
PBW rings, where the authors also develop the study of graded and filtered
left modules, homogeneous Grobner bases, homogemzation, computation of
functors Hom and Ext, ete. Likewise, algorithms to compute the Gelfand-
Kirillov dimension, to check whether a two-sided ideal 1s prime or not and
to compute the projective dimension of a module can be found in [8, 10,
22, 65]. In these generalizations, authors were mainly interested in one-
sided ideals and modules, whereas methods for the two-sided counterparts
are adaptations in order to deal with the two-sided input data. However, we
will show along this chapter that those “mends” are not necessary.

In the first four sections of the current chapter, we recall the basic back-
ground of the theory of Grobner bases in the context of G-Algebras. We
closely follow the notation, terminology and results of [13]. In the fourth
section, where we recall some of the classical applications of Grobner bases,
we contribute with an algorithm to compute the codimension of a left sub-
module (right submodule or subbimodule) M © R® when R i1s a G-Algebra
in case M is cofinite (see Algorithms 8 and 9). In the fifth section we propose
a new method, that we made known first in [28], to effectively handle bimod-
ules by using directly their two-sided generator systems as input data. We
apply it, for example, for computing two-sided Grobner bases for bimodules
over a G-Algebra (see Algorithm 10) by an alternative way to the already
known Right Closure Method (Algorithm 2.3.21). This new algorithm call
once the left Buchberger algorithm, instead of the a priori unknown mumber
of calls typical of the Right Closure Method. A comparison between both
algorithms is discussed on some explicit examples. In the sixth section the
aforementioned technique to handle bimodules 15 also applied in order to
compute syzygy bimodules, first introduced by Mora ([71]) for homogeneons
two-sided ideals in the context of non-commutative graded structures, and
then, independently, by the authors ([27, 30]) for not necessarily homoge-
neous R-bimodules over a G-Algebra K. We show that syzygy bimodules,
which can be viewed as the two-sided counterpart of the left svzyvgy module,
reveal to be useful at solving some computational problems when, as natu-
ral, two-sided input data are given, e.g., computation of finite intersections
of subbimodules of R®, presentations and free resolutions of subbimodules of
R®, two-sided division ideals of R, ete. In case the bimodules are generated
by elements of the centralizer, some of these results are enhanced and many
computations can be simplified. In the last section we present an algorithm
to compute a presentation of the Tor functor in the context of G-Algebras.
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In this chapter we work on the free module RB® over a G-Algebra K, but
obviously, all the results are also valid for s = 1, 1.e., when the underlying
structure 1s R and ideals are considered. In fact, in the literature ([1, 13, 18])
the theory of Grobner bases and Syzyvegy modules was first developed in R,
and then 1t was extended to R* by mumicking the notions and the results.
Onr first results, for the case s = 1, may be found in [24].

Most of explicit examples shown in this chapter have been obtained from
a library of procedures built by the authors. This library, coded using the
package of symbolic computation Maple, 1s included in the CD at the back
page of this work (see also [32]).

2.1 Preliminaries

Throughout this section, = will be an admissible order on ", that is (as we
recalled in 1.1.13), a total order on M™ satisfying

1) 0~ a,forall a el {0};

i) o~ §F= a+y—=< G+~ forall o, 3,~vc N
Examples of admissible orders may be found in the Appendix A.

2.1.1 Definition. A set of guanfum relations 1s a set
Q= {zjm; — qumz; —pyy 1= i< j=nf Ckizy, ... z,), (2.1)

where g;; € k' {0} and each p;; is a standard polynomial of k{z,, ... ).

A set () of quantum relations is said to be bounded by an admissible order =
on ™ if

exp(pji) < e +e, Y1=i<j<n.

The following notion can be found in the hterature under the names of Solv-
able polynomial algebra in [54], of PBW algebras in [10, 11, 12, 13, 65, et al],
or of G-Algebras in [60, 61, 62, et al.].

sided ideal of k{z,,..., z,} generated by a set @ of quantum relations. R is
called a G-Algebra if

2.1.2 Definition. Let B = k{zy, ..., xn)/Ig. where Ig denotes the two-

1. the set of standard monomials {z / o € "} is a k-basis of R (where
x® also denotes its epimorphic image =® + Ig), and

2. there exists an admissible order “=" for which ¢} is bounded.
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The G-Algebra R defined above is usually denoted by k{zy, ..., z,; Q. =}

This notation appears, e.g., in the book of Kredel {[59]), or in the works of
Bueso, Castro, Gémez Torrecillas, Lobillo and Verschoren ([9, 10, 11, 12, 13,
44, 65]), where G-Algebras are studied in the more general context of left

(and right) PBW rings and PBW rings.

2.1.3 Remark. As proved in [61, Th. 2.3], given a set of bounded quantum
relations @@ = {x;r; — guxr; — pii; 1 <1< 7 < n}, condition 1 of 2.1.2 is
equivalent to

1'. Non-degeneracy conditions: for all 1 < ¢ < 7 < k& < n, the elements
f"'l-"JDﬂijfc = QeidkiP3iTh — ThPii + QhiTiPhi — QiPkiTi + PhiTi — QiidkiTilkj

- : r o
1e.|:1u<:es to [I. under the reduction system @' = {(x;z;, g2 + pj; } -, for
iz, .., z,),

or to
1". ¢ is a two-sided Grobner basis for 1.

An alternative way of proving these equivalences is by using the theory of
reduction system surveyed in Chapter 1. The equivalence between 1 and 17
is given by Theorem 1.2.4, since {W, }szg = {22 hcicjon.

(1) = (1"). Note that for @' there are no inclusion ambiguities, and the
overlap ones are exactly (o, o5, Tp, x5, @) for 1 < ¢ < j < n, where oy; =
(T, qriziTe + pry) and o = (2, gjimir; + pyi). Therefore, the S-polyno-
mials are

S(ong, Ojiy Thy T3, i) = (@30 + Prj )T — Trelguzir; +ps), 1 =i <j < n,
which can be reduced to ,-"u'JD{l;j,-_. as follows:

SOy Tjiy They Tjy Ti) = Qi TiThTi + PhyTi — §iThTiTj — TkPii
— ! Qi Qi TiTi Tl + Qi TjPhi + PhjTi —
Qi Tl T Tl 5 — G4y — Tl
— 0 Qi Qi i TiTiTh + Qei Gl P il + Qi T Phi + PhiTi —
i Gl i Tl § 08 — il LiPles — ikl ; — ThPji
= NDCy.

Hence, non-degeneracy conditions imply S(oy;, 73, Tp. x5, 7;) —g 0, for all
¢ < 7 < k. Conversely, if all S-polynomials reduce to 0 under ¢, then by
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1.1.25, ¢ is complete. From the confluence condition (see 1.1.4), it follows
that N'DC; gk —eqp 0, forall i < 5 < k.

Thus, non-degeneracy conditions, which may be checked by computer, corre-
spond to the overlap ambignities of Bergman to be resolvable or the (noethe-
rian) rewriting system &' to be complete. Moreover, they can be viewed
as generalized Jacobi identities (see 2.2). Indeed, they are the same in the
universal enveloping algebra of a finite-dimensional Lie algebra, when ¢;; =1
and pj; are linear polynomials, for all 1 <1 < 3 < n (cf. [60, 61])).

It is easy to check that the equivalent conditions given in [13, Ch. 3, Th. 4.7
are also obtained from the theory of reduction systems studied in the first
chapter.

What makes G-Algebras to be close to commutative (in their computational
behaviour) is essentially that there is compatibility of the exponent of prod-
ucts (see condition 3 below). The proof that this property becomes a char-
acterization of G-Algebras may be found in [13, 65, et al.].

2.1.4 Theorem. [13, 65] Let = be an admissible order on H™ and let R be a
k-algebra such that {x® /a € N"} is a PBW basis. The following statements
are equivalent:

1. the order = 1s compatible with the variables z1, ..., zy,, in the sense that
for all 1 < i < j < n, there exists q; € k' {0} such that

exp (T;m; — q;;7:7;) < € + €53

2. for all «, 3 € N", there exists go € k' {0} such that

i} B
T ZQQS'I'-“-i- + Do,

for some p,5 € R satisfying exp (pas) < o + 3:
3. exp (fg) = exp (f) + exp (g), forall f,g < R.

It is shown in [13] that the existence of an admissible order by which a given
set of quantum relations is bounded can be effectively decided by linear
programming methods, and that, in case the existence test 1s positive, such
an order can be computed (by using the Simpler algorithm).

Some of the following properties are direct consequences of Theorem 2.1.4.

2.1.5 Corvollary. Let R = k{z,...,z,; @, =} be a G-Algebra. Then,

1. R 15 a domain;
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2. R 1s left and right Noetherian;
3. le g(fg) =1e g(f)1e gl )dexp (f)exp (5)
4. Im p(fg) =1m p(lm g(f) Im z(g)):
5.1t p(fa) = le g(f) 1o m{9)Gup (frep (o)l p(Im g (f) Im g(g) ],
for all f,9 € R\ {0},
Proof. 1f f,g € R" {0}, then from condition 3 of 2.1.4 it follows that

exp (fg) = exp (f) +exp (g) € W™

Henee, exp (fg) # —oco, and so, fg # 0. Therefore, R is a domain. The
statement 2 will be justified later (in 2.3.12).
Now let f,g € R {0}, written in their standard representation as

f=Xaz®+f, g=psr’ +4,

T

where lc g(f) = Aa. leg(g) = ps, Img(f) = 2°, lmg(g) = 2°, f =
D e M@ and g =375 sz’ . Thus,

Ffg = Aapar®z® + Aoz + usf'z® + g
From the statement 2 of 2.1.4,
£9 = Xap13gapz™ ™ + Naptapas + Naz®d + paf's’ + fig'.

with gz € k', {0} and exp (pas) < o + 3. At this point the proof of the
statements 3, 4 and 5 easily finishes since

exp (z%g") =exp (z) + exp (¢') = a + 3,
exp (f'z”) =exp (f) +exp (27) < a + 4,
exp (f'g’) =exp (f') +exp(g) < a+ 3.

2.2 Examples of G-Algebras

Amongst the examples of G-Algebras, one can find the commutative poly-
nomial ring k[z,...,x,], some iterated Ore extensions as the Weyl algebra
A (k), the enveloping algebra of any finite-dimensional Lie algebra, a pretty
large class of quantum groups just as the multiparameter n-dimensional
Quantum space O (A"}, the bialgebra of Quantum matrices M,(2), ete. Next

we list some of them.
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The commutative polynomial ring.

The commutative polgnomial ring k[x,, ..., x,] is obviously a G-Algebra. In-
deed,
Jii:['J-L"lzn Loy oony :rﬂ-] = k{xlr'TE:n coey T {xjx'.‘, - x'.‘,'r'}lj.‘,-c:jj'_:iﬂ:u _—<}~

7

where = can be any admissible order on T™.

The multiparameter Quantum space.

For any matrix q = (g;) € Muun(k) assumed to be multiplicatively anti-
symmetric (1.e., with non-zero entries, ¢z = 1 and g5 = q;jl, for every 1 <
i,7 = n), the multiparameter n-dimensional Quantum space associated to «,

denoted by O, (k") or by ky[z,...,z,], is defined as the gquotient

kn’ &
{x1,...,%n)

Ig

H

where Ig denotes the two-sided ideal generated by x;z; — gyriz;, for all
1 <i < j = n. Therefore,

the G-Algebra with quantum relations
Q ={x;z; —qurz;; 1 < i <j < n}

and any admissible order = on F™.

The (affine) Quantum space.

As a particular case of 2.2, when

]_q_l... q_l

q’ 1 LRI q_l
qa=1. . . .

q’ q’ LRI 1

for some g € k' {0}, we obtain the n-dimensional affine Quantum space,
denoted by kg[zy, ..., xz,] or by Og(k™).
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Iterated Ore Extensions.

The previous examples are particular cases of #terated Ore exrtensions of the
field k, 1.e., algebras of the type

K[z or, d1][w2; 02, 83] - - - [w0; o0, 62

Let Ry = k and for each 1 < j < n, let R; = R;_ [z;;0;,0;], the Ore
extension associated to a quasi-derivation (o, 4;) on R;_;. Recall that given
a ring endomorphism o; of R;_; and a endomorphism &; of the additive group
R;_ satistying d;(rs) = a;(r)d;(s)+0,(r)s for r,s € R;_q, the Ore ertension
associated to (o;,0;) is the unigue ring R; (up to isomorphisms) such that

1. H;_; is a subring of R;;

2. there exists x; € H; such that A; 1s freely generated as a left R;_;-

r 2 ) .
module by {1,z;,x;%,.... 27, ... };

3.z =oi(r)x; + 0,(r), for all r € R; 4.

When ¢; = Idg,_,, 1.e. the identity map on H;_;, the Ore extension associated

to (o, d;), usnally denoted as Ry = R;_[x;:4,], is called a ring of differential
operators over F;_;.

The authors of [13] introduce methods to obtain left PBW rings as iterations
of Ore extensions (see [13, Sect. 3, Ch. 2]). One of these methods, specified

in the particular case of G-Alpebras, is the following.

2.2.1 Proposition. [13] Let S = Kz 01, 0] [22:02,82] - - - [zn; 00, 5] be an
iterated Ore extension of the field k, and consider the lexicographical order
=er on ™ with 6] <, - <o 6. I

o(A) = Aand §;(A) =0, YA€ k, (2.2)

and for all j = i there exist q;; € k' {0} and f;; € Koy o, 0] [205 741,
&d;—1] such that

oi(z:) = gjizi + fii, (2.3)
then

5= k{xl,...,xﬂ: Q, jle:{'}:«

the G-Algebra with quantum relations

The previous result has a kind of converse (see [13, Ch. 3, Th. 6.1]), which
vields a test for checking whether some G-Algebras are iterated Ore exten-
sions of the ground held.
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The bialgebra of Quantum matrices M, (2).

The bialgebra of Quantum matrices, denoted by M, (2) or by O, (My(k)), is
defined as the quotient of the free algebra k{a, b, c,d} by a two-sided ideal as
follows

kia,b,c,d)

M,(2) =
«(2) <n5a — gab, eca —qac, ad —da — (g7 — q]bc‘>

be —ch,  db— ghd, de — ged
In [55, Th. IV.4.1 | 1s shown that M (2) is the iterated Ore extension
kla; 1k, 0][b; o2, 0][e; o3, 0][d; o4, 4],

where oy = Idy, a2, 73 and 74 are the ring k-homomorphisms given by

s Sy ppm—. P gty — A, s P Py )
a1 — g a —qa, a — a,

b —b b —— gb,

o ge.

with 4, = kfa; 0], 4, = 4,[b; 05, 0], A3 = As[e;04,0] and 4, 15 the additive

endomorphism on 4,, determined by

54 S . [
VAL y— )
Aabicd — Mg — q’_l}%ia‘i—lbj+16};+1?

forallA ek, 1= 0, 7,k = 0.
Since conditions (2.2) and (2.3) in 2.2 are satisfied, it follows that

ﬂ*fqlig} = k{aa 'E':u"::- d; Q:- j.!er}:u
the G-Algebra with set of quantum relations

_ | ba —qab, ca— gac, ad—da — (g7 — q)be
Q= be —ch, db—qbd, dec— ged

Note that this result is also true for the order =, (defined from the lexico-
graphical order =, with e <., €2 <jp - <per £, (5ee Appendix A)), for
any w = (wy,wy,wq,wy) € MY such that

w4 ws E L 4wy

In particular, M(2) is a G-Algebra for the order =g ger.
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The universal enveloping algebras U(g) of a finite-dimen-
sional Lie algebra g.
A Lie algebra over a field k is a k-vectorspace g together with a k-bilinear
map (called Lie product) [—, —] : @ % g — @ satisfyving, for all z,y,z € g :
1 [x,z] =0
2. [z, [y, 2]] + [v. [z, z]] + [z, [z, v]] = 0 (Jacobt identity).

Note that from 1, it follows that the Lie product [—, —] is anti-symmetric as
well.
If {x; }icr 1s a k-basis of g, then the universal enveloping algebra of g, denoted
by (@), is (isomorphic to) the quotient
klmi)acr
Iy

H

where [ is the two-sided ideal

= —wr. — (. w2 fi. 0 I
Ig=\{xjx; —xyx; — x4, 2] [i,5 € I)

of k{z;)icr. The celebrated Poincaré-Birkhoff-Witt's Theorem asserts that
given a total order in the set of indexes I, the set of standard monomials
{zg m fnEN, {ig,. i} ©T 4 =00 i}

is a k-basis of I7(g) (see [49, 52] for a proof).

As a straightforward consequence of this result, the umiversal enveloping
algebra of a finite-dimensional Lie algebra is a G-Algebra, as it is proved in
[13] and we recall next, with a slightly different reformulation which allows
us to add more possibilities for the admissible order.

2.2. 2 Proposition. Let (g,[—, —|) be a Lie algebra over a field k, with k-
basis {xq,..., Tn}. Then, the universal enveloping algebra is

the G-Algebra where
Q= {x;x; —mx; — [z5,3] /1 < i< j<n}

= 15 the w-welghted lexicographical order on M"® (obtained from both vari-
ants €1 =fex +** <lex €n AN €1 jey v lep €y O = (see Appendic A)),
and w = (wy,...,w,) € M" is such that

W = oers =Wy and Wp <wjitwj, 7"1Zsi<j=n-—1

In particular, U(g) is a G-Algebra for the order =4 ... which is obtained
from =, when w =6 + - + €.
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Proof. Since {z% /o € M"} is a k-algebra of I7(g), it enly remains to check
that the set of quantum relations ¢} is bounded by =, when w € F7? 15 taken
as above. For this purpose, let us first prove that

€n=<w€i+€, l1Zi<jsn (2.4)
e Ifl1<i<j=<n-—1. then
lenlw = wn < wi+wj = [gi + €5
Therefore, €, <, €; + ¢;.
o If1<1i<j=mn,and w; #0, then
lnlw = wn < w; +wy = |6+ &4
Otherwise, if w; = 0 then
lenlw =twn =04 w, = |ei+ 6l and e, <ier & + €n.
In both cases, e, =, €; + &,.

Besides, for all 1 < i < 7 < n we can write [z;, z;] = E:Ll}-.,!.f,!, for some
A; € k. Hence, since ¢ <, 1 forall 1 <1 <n —1,

exp ([z5,2:]) = exp (D Nawy) = max{exp ()}, = max{e}i, = en.
- (2.5)
From (2.4) and (2.5), we get
exp ([, 2]) <, €+ €.
O

The universal enveloping algebra U(sl(2)) of traceless
2 x 2-matrices.

Let k be a field of positive characteristic, and let M,(k) be the k-algebra of
2% 2-matrices over k. Consider the Lie algebra gl(2) = (Mz(k), [—, —]) with
Lie product [4, B] = AB — BA. The k-vectorspace gl(2) has as a k-basis the

set consisting of

01 00 10 10
Al ) Rl G L ERE S T
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whose products are
YV.X]=-H, [H,X]=2X, [HY]=-2Y, [ILX]|=[LY]|=[l.H =0

The Lie algebra s1(2) is defined as the subalgebra of gl{2) consisting of all
matrices of trace zero. The set { XY, H} constitutes a k-basis of s1(2). Thus,
its universal enveloping algebra I7(s[(2)) can be constructed as

k(X Y, H)
(YX -XY+H HX-XH-2X, HY - YH 4+ 2Y)

From Proposition 2.2.2 it follows that for all w € FM? such that
W = we = ws < e +ws,

we obtain that

Usl2) =KX, Y H;, Q, =.},

the G-Algebra with quantum relations

Q={YX_-XY+H HX - XH —2X, HY ~YH+2Y}.

Weyl algebras.

Let gn be the Lie algebra with k-basis {z1,..., 20,31, ..., ¥n } and whose Lie
product i1s the k-bilinear map given by

i 7] = —[zj ] =0y, [ zy] = [wawy] =0,

for all 1,57 € {1,...,n}. The n-th Weyl algebra A, (k) is the universal en-
veloping algebra U{g,), i.e.,

A, (k) = k{zy, ... Ta 1, Un)

where [ is the two-sided ideal generated by

TjT; — LTy, l<=i<j<n
Q=9 ur—ay —0;, L=ij=n
Hills — Wiy, l1<i<j<n

From Proposition 2.2.2, the n-th Weyl algebra A,(k) is the G-Algebra

k{zi,.. . Zay1. .o Un @ =L
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Note that = can be any admissible order on F*".

In [69, 1.3.2] it is shown that the n-th Weyl algebra is an iterated Ore exten-
sion. More precisely,

An(k) Z klzy; on, 6] - [0 o0, dal[m o, m] - [Und 0, 1]

with

for all 1 <@ < n.

The Diamond Algebra.

Let C be the field of complex nambers. Consider the Lie algebra with C-basis
lxy, x5, xa, 74} and with Lie product given by

[I1,:Ifg] = D: [xla xE] = D, [.1'1,.1‘4] =1
[:l:z,:l:s] = .1‘1, [.Iz, :r_.i] = -1'2:. ['TE:\-E:I.] = —13.

The Diamond algebra D 1s defined as the universal enveloping algebra of this
Lie algebra, i.e.,

i 41
Clxy, 22,23, 24)

Izl — Iz, Izl — I3, Tyl — Iy,
Tyly — Fplg + ¥y, Tylp — Ty + T2, Tyly — Falky — T3

In view of Proposition 2.2.2, for all w £ M* such that
D =C{zy, wq, 23, 745 &, =, } 15 a G-Algebra, where

Q ) dedy — X1z, Tzl — 103, Tyl — Iy,
Tals — Fa¥a + 1, TyTz — Tp¥y + Tz, T3 — Taly — T3

{Actually, it is obvious from the quantum relations that w can be any element
of N* satisfying wy < wa + wa).

The Diamond algebra @ can also be written as an iteration of differential
operators rings. Indeed,

D = Clay][we; d2)[a; da] [xa: da].
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where d, = 0, and 85, §, are the C-linear maps

ds 1 Clay, x2) — Clxy, 2]
10,
.rlxgl—tl:l, _ ifi=1
xy— (—1)z), if j= 1,

54 B {C[Il, :Ifg][:lfg; 53] — (C[.r]_, .1'2] [.Ig, 63]
10—,
ryajal — 0, ifi =1

wah — (~1Paxlah, if (k) # (0,0).

Other examples of G-Algebras are: the quantum symplectic space Og(sp(k*™))
(cf. [13, Ex. 3.8]), positive (negative) parts of quantized enveloping algebras
([56]) (cf. [BO, 62]), some nonstandard quantum deformations ([48, 56]) (cf.
[60, 61, 62]), many quantizations of Weyl algebras (e.g., the multiparameter
Weyl algebra AY7(k) (cf. [13, Ex. 3.5])), conformal sly-algebras ([6]) (cf.
[60, 61, 62]), some diffusion algebras ([50]) (cf. [60, 61, 62]), etc.

2.2.1 The tensor product of G-Algebras.

The tensor product of G-Algebras is an G-Algebra as well. This result may
be proved using some results of basic Algebra.

2.2.3 Lemma. Let {R;i}i—m be a family of k-algebras written as R; =
(Ri, - m:), where - denotes the multiplication and n; the unity.

The tensor product Ry @ - @y Ry 1s a k-algebra with the multiplication
(M@ )51 Q- Qsm) =Ms1 @ -+~ D Tmém, Ti,8 € Ry,
and the unity

n:k — @, R
A— Am(l) & - @ nm(l).

Furthermore, if {€} } e, is a k-basis of R; for 1 < i < m, then

is a k-hasis of @), R;.
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Proof. The second part is a particular case of a more general (well-known)
fact: let V3,...,V,, be a familiy of k-vectorspaces of not necessarily finite
dimension. If {e}} ey, is a k-basis of V] for 1 < ¢ < m, then

={e; ®--- @€} biea
is a k-basis of @" | V; (see, e.g.,[58]). O
2.2.4 Theprow. If B = kv,  w0n <o) and S= bkl oy (e

=g} are G-Algebras with quamtum relations
Qr = {z;7i — gumix; —pji; 1 <1< 7 <m},

Qs = {wu — Gy — Py 1 =i <j = n},
then R 2y S 1s the G-Algebra denoted by

k{.?:]_ " 1:“ <oy Ty " 1: 1 " Yis-ees 1:'\‘" yﬂ;Qa j}'«

with gquantum relations

(z; @ 1)z 2 1) —gu(z @ 1)(z; 2 1) —puy @1, 1<i<j<m
Q= .[1.~~. yil(zs @ 1) — (o @ (1@ y); 1<i<m, 153 =n
lowlloy) —gleyloy) —1ap,; l1=i<j<=n

and “=" is one of the elimination orders (see the definition in A 4.7) arising
from “=pg" and “=g".

Furthermore, for all f € R\ {0} and g€ S {0},
€XP po,s(f @ g) = (exp p(f), exp s(g))- (2.6)

Proof. Since {z® /o € W™} and {v% /3 € N"} are k-basis of R and S
respectively, by Lemma 2.2.3, R @y S is a k-algebra with k-basis
[z° @ v® [ (a, §) € HPHT)
— {;,;‘—"1 ez @y [ (a, §) € NPT
={(z7' @ 1 (o D1@et) (1™ [ (a,8) e NP
={(zy @ 1) [z @ 1)7™(1 @) (1@ gy, /(. 3) € ™™

Let us now prove the identity (2.6). Let f € R {0} and g € S {0}, with
standard representations

f=cax™ + z cor’  and g = dgyS + z dsr’

V=R S50
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in A and 5, respectively. Then
f2g = cadsr® @Y+ ) | cadst®@u’+ ) | e dp?@y’+ Y e di? @y
S=a = R =gy, d=g
is the standard representation of f ¢ g € R &y 5, with exp g, o(f @ g) =
(exp p(f).exp glg)), since
il =5 f-"
N <R o
4 <paandd <g 3

(a':-éj - (u'r.'ﬁjﬁ
Ay, F) = (e, F),
(v,0) < (e, F),

I_l H J_l

for any of the elimination orders =* or =, on M". Finally, let us check that
both elimination orders are compatible with the variables (x; 1), ..., (T
1), (1@ w),.... (1@ y,) in the sense of the statement 1 of Theorem 2.1.4.
e Foralll <2< j<m,

=(gurr; +pu) @1

=qurir; 014+ puiol

=gqilz; 0 1)(z; @ 1) +pj @ 1.

By virtue of (2.6),

exp g(pj), exp sil}}

eXP g, 5(Pji @ 1) =
= (exp R{p;-
(e
£

—= (e; I]:I
— m-l-nr1_|_t_m+n
—k—
where € = (0,..., 1 ,...,00 € N" for 1 < k < m, and """ =

—k—
(0,..., 1 ,....00eN""for1<k<m+n.

e For l<i<mand 1< j<n,
(loy e @) =@ = e @ (1 @y +0,
and trivially, exp (0) = —oc = 71" 4 Exi?
e For 1 <i«< j<mn,
(Il @ w) =10y

=1@ (qjm; +pj)
= Q;':l Duy;) +1@ f—“;
=g;;(1@u)(l®y;) +10pj;.
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Again, applying (2.6),

eXP pe,sl L@ P) = (exp p(1), exp s(p);))
= (0, exp 5(p);))
~= (0, € —|—E”‘]

= Em—l-" + IE'i*i’-!'+_?

Since R = kiz, ..., 2m) /Ig, and S = k{y1,. .., )/ Ig,, the tensor product
Ry Sis [isn:unmrphll: to) the factor algebra of

kiz, @1,...,2, @1, 13w, ..., 1@ w)

by the two-sided ideal Iy generated by the set (@ described in 2.2.4 (see [65] ).
O

2.2.5 Example. The (n 4+ m)-th Weyl algebra A4, (k) is the G-Algebra
A, (k) @y A, (k) constructed in Theorem 2.2.4.

Indeed, since

*qm.'[k] = |'{‘[:rlz-' cey iy Uy s Yims Qm jéer}a

with quantum relations

XX — T, l<i<j=m
Qm = § WiTi — xiy; — 0y, 1=<di,j<mp,
Vil — Yillj, l=i<j=m
it follows that
A k)@ k) =k{{zy @ 1), o (zn @ 1) (@ 1), (4 @1,
(13' Ilja“*:a[]- " I:-;.:h':l 'C yl {1' Iy;q.} Q:- j!er}y

the G-Algebra whose set of quantum relations ¢J is given by

( (xj-:g:ul}xuljzxuzi:ulj{xju:i:ul}, l<i<j<m )
(o @ 1)z @ 1) = (z @ L)y @ 1) + by, l<i<ji<m
(w; @ 1) (w2 1) = (y; @ 1)(w; @ 1), l<i<ji<m
(13-;?55}(:{.','_'1} (:r:nnl}{lllmj], l<i<m, 1<75<n
Q=1 (1'i53'31';]'|:$n;'if:'1]'=|:$"1]"[1"9'3 l1<i=m, 1<j<n
(led)mol)=wel)(led)), 1<i<m, 1<j<n
{1"'yj.llliya;"1} (1 <i1ll{1'<iyj. l=i=m, 1=j<=n
[lx:c_’?][lejl— lﬁlx]{lllx] 1<i<j<n.
(ley)ler)=(12z)(1le yj,+5j., l1<:i<j<n
[ (Qeyiiley) =0yl ey, l<i<j=n ]
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But this is exactly the Weyl algebra

*q'm-l-nl:k} = k{zlj‘“:zi‘?'-!--l-ﬂ}tlh***}tm-l-ﬂ-; Qm+n:« j.!e:r}:-

just by putting

= n®l 1<i<m;
Iy =1@x, 1<i<ny
tic= w®l, 1<1i<m;
Impi =10y, 1=1<n

By iteration, the result 2.2.4 can easily be generalized for the tensor product
of a finite number of G-Algebras. For this purpose, we propose a more general
definition of elimination orders on F™ « - .. < H"™ which covers all possible
ways of ordering the m components of FI™ < -« H™™ (see A 4.8 in the

Appendix A).

2.2, 6 Theorem. Let {Ry i be a family of G-Algebras, where each Ry, is
the G-Algebra k{zi, ..., Tkn,; Qk, =k} With quantum relations

Qr = {TkjThi — CaTmian; — Py 1 <0 < j < ma},

and =3 15 an admissible order on H™,

Then, the tensor product ®E‘=1 Ry, is the G-Algebra

k{Xllr'“Xlnj,:**‘:Xmla'“anm;Q:-j:}a

. _ o o—k— i ) )
where X denotes the variable 1 ® - ® T ®---® 1, for 1 < k& = m,
1 =1 = nyg, with quantum relations

Q_{ XXy =XuXyy, 1<k#£1<m, 1<j<m, 15:-&5:?1!}

j'. j'. r s a .
XX = 55 X0 Xy + Py l1<i<j<nm
—k—
where Py is the element 1@ --- @ pf, @@ 1 € @), Ry, and “=27 is
one amongst the m! generalized elimination orders on N™++"m garising from
=T L "=n T (see definition in A4.8).

Moreover, if fi € R\ {0} for 1 < k < m. then

exp gm g, (fr @ @ f) = (exp g, (f1),....exp g, (fm)).
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2.2.2 The opposite algebra of a GG-Algebra.

For each k-algebra R, let R™F be the algebra with the same underlying ad-
ditive group than A and with product v - 5 = sr, for s € H, where sr
15 computed in K. It turns out that H°F inherits from R the structure of
(7-Algebra, as it 15 shown in this subsection.

For any e« = (g, ..., @y ) € ", denote by aF the n-tuple (a,, ..., 0.

Consider the write oppositely morphism, defined as the k-automorphism

A k{ry, ) — ki, T

:"'F'ii...x'in — :"'r-'-;'n...‘r"-'.'i

The following result may be found in [24], where it is proved in the more
general situation when R 1s a left PBW ring.

2.2.7 Proposition. Let R = k{zy,...,z,; Q,=} be a G-Algebra with
quantum relations

Q= {z;2; — qurx; — pjs L =i < 7 < nj,
Then, its opposite algebra R®P is the G-Algebra
k. .. e Q7F, =
where the elements of Q% are those of () written oppositely, Le.,
Q@ = i — gyiwswi — Py 1 = i< j =n},

Moreover,
exp peel f) = (exp p(f))™",
for all f € R {0}.

Proof. It is straightforward to see that the set {z0™ - - - 21" }4znn 15 a k-basis
of R°F, and that exp {p?p] <" e i1+ eEn_jprforl <2< j<n O

2.2.3 The enveloping algebra of a (-Algebra.

The enveloping algebra of a k-algebra R, denoted by R™, is defined as the
tensor product R P, The enveloping algebra of a G-Algebra is an example
of the construction of Theorem 2.2.4. We find that Theorem 2.2.4 holds not
only for the elimination orders on I?®, but also for any of the composition

orders defined in A 4.10 (see Appendix A).
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2.2.8 Theorem. If R = k{zy,..., ®n; &, =} Is a G-Algebra with quantum

relations
Q= {zjz;i — qwiwj —pj; 1 =1 < j=n},

then R*™ is the G-Algebra

k@1, a2 L 1@ e, . 1 @e; QY <)

where

(z; @ (2 @ 1) — gz, @ 1) (z; 1) —py; @1 1<i<j<n
Q" = (1@ x;)(z; @ 1) — (z; @ 1)(1 @ x;); l<uj<=n
low)lor) —gu(lor)loe) —10ps; 1<i<j <n.

and “<” is, either any of the elimination orders “<*” or “=,” on N*" co-
rresponding to “=" and “="" (see definitions in A.4.7), or any of the com-
position orders “=°" or “=.” on N corresponding to “=" (defined in A.4.
10).

If f e R\ {0} and g € R*F"\ {0}, then

exp e (f @ g) = (exp p(f), exp peplg)) = (exp p(f),exp plg)™),
for any of the four orders listed above.

Proof. It only remains to check statement 1 of Theorem 2.1.4 and that
exXp pane | f @ g) = (exp p(f), exp pl(g)™). Both are straightforward. O

2.3 Grobner bases in the free module F* over
a G-Algebra

This section 1s devoted to recall the theory of Grobner bases in the context of
a free module R® over a G-Algebra R. We closely follow the terminology and
results stated in [13], where the authors introduced the theory of Grobner
bases for (left, right) PBW rings and, in particular, for G-Algebras. Obvi-
ously, all the results in the current section hold for s = 1. i.e., for ideals of
the G-Algebra K. In fact, in the hiterature, the theory of Grobner bases and
Syvzyvey modules was first developed for ideals of a ring R, and afterwards it
was extended to submaodules of the free module A* by mimicking the notions
and the results (as in [1, 18, et al] when R is the commutative polynomial
ring, in [13] when R is a (left, right) PBW ring, or in [13, 60, et al.] when R
15 a -Algebra).
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Throughout this section we will work on the free module R®, where K is a
G-Algebra and s is a positive integer. In the spirit of [13], we will write the
elements of B* in bold script in order to distinguish them from those of K. We

will use the R-module basis {e;};_, consisting ofe; = (0,..., 1 ,...,0) € R*
for 1 <4 < s,

In order to handle computationally the elements of F®, it is necessary to
consider a notion of exponent of an element f € R*, and therefore, a notion
of admissible order on ™5 = N" x 11,..., s} 1s required for this general
case. An element (o, 1) £ ™) is said to have lewel 2. The monoid H® acts
on W™ as a4+ (3,4) = (a + 3,i) (or equiv., (3,1) +a = (a+ 3,1)), for
a € W™ and (4,4) € e,

Dickson's Lemma 15 the key to prove that many algorithms actually stop
in a finite number of steps. For example, it is required in the proof of the
Hilbert’s Basis Theorem (see 2.3.12), on which the Buchberger algorithm 2.3.
17 is based (see e.g. [1] for the commutative version or [13] for left PBW
rings).

The following result is a generalization of Dickson's Lemma in F™(s), A
detailed proof can be found in [13].

2.3.1 Theorem. (Dickson’s Lemma) Let E be a stable subset of Fm(2)
te., "4+ E = E. There is a unique minimal set {(ay,41), ..., (@m,tm)} C E
such that

£ = J((an i) + 7).

k=1
2.3.2 Definition. A total order “=" on N™¥ is said to be admissible if
L (F,i) = a4+ (3,2), and
2. (8,i) < (1,4) = a+(8i) < a+ (1.1
for all ce € M™ and (3,2), (v, j) € F™),
2.3.3 Note. From condition (1), for all {a, i) € F™),
(0,i) < a +(0,1) = (a, ),

Hence, any admissible order = on ™) is a refinement of the order <m(2
(see the definition in Appendix A). Indeed,

(a,i) <™ (5, j)=i=jand §—acN"
(0,8) = (7 — o)
a4+ (0i) a4+ (5F—a,1)
e, i) = (8,1).

(A
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2.3.4 Remark. In view of 2.3.1, every admissible order on H™*) is a well-
order.

Given an admissible order in M™, it 1= possible to obtain some admissible
orders in M™® such as the Term Ower Position order (or TOP, for short)
which gives more importance to the position (or level) 7 of each element
(cv,2) € ™%} than to the admissible order on N", or the Position Over Term
order (POT, for short) (see A.5.2 in Appendix A for the definitions).

2.3.5 Let R be a k-algebra with a PBW basis, say {x® / « € N"}, and let
= be an admissible order on F". From here on, we will use the same symbaol
“=" for both, the admissible order on M™ and the one on E{™(5) This abuse of
notation will be harmless because the meanming will be clear from the context.
Moreover, from now until the end of this chapter we will assume that both
admissible orders satisfy the following condition of compatibility

a— 3 = (a,2) = (5,i), Ya, 0N, 1<i<s (2.

[t
=1
LR

(e.g., the orders TOP and POT satisfy this condititon).
Let us recall how one may assign an exponent to every f € R®. For any

(o,i) € B2 Jet 2l = 2%¢; = (0, .. ,?;';, ...,0) € R® Since
[ / (a,i) e W)
is a k-basis of R®, every f € R*" {0} has a unique standard representation
f= Z Ao nz@P,
(.4) gMm.()
with Ay, € k, and all but a finite mumber of Ala,i) § are zero.

¢ The Newton diagram of f i1s the set
f'lll-'f':f} = {{'}:« i) .-"r ’}‘{a:} + U}

(sometimes we will use A'gs(f), for emphasizing the underlying free

module R*);

e The erponent of f, denoted by exp (f) (or exp p.(f). in case we want
to stress that f belongs to R*) is defined as

exp (f) = max A (f);

o If exp (f) = (v, i) € ™) then
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¢ will be called the level of f (and also, the level of (v, 1));

we will denote by exp (f) the element o € M™;

the leading coefficient of f 1s lo g (f) = Ao i3

the leading monomial of f is lm g (f) = zlad,

the leading term of f is It p(f) = le po(f)lm ps(f) = Mg 2@,
2.3.6 Lemma. Let R = k{zy,... 2, @, =} be a G-Algebra and = an
admissible order on W™, For any § € N, (a,i) € N™E) if the write
rix® = qax®t? + pg, and pg, = Y yeatrp T (as in Theorem 2.1.4), then
the equality

D S
(i) = ok Bid)
holds in R®, and therefore,
£X]p R;(xﬁm[“'q] ={a+43.1).

3

Proof. Since z%z® = g0t 4+ pa, and pg, = Ev—<a+3 Ax¥in R,

:rSI[a,i] — .173.1?&&;
= (gaa 2™ 4 pa. e

zqﬂnmtﬂ‘lﬁﬁ'}_'_ z %Ih’ﬂ:}‘
y=o3

Finally, by (2.7), v < a + & in N" implies (v,i) < (a4 &,d) in N™), 0O
The following result, proved in [13], gives some properties of the exponent in
Re
2.3.7 Proposition. Let R = k{x,,...,x,; @, =} be a G-Algebra and let =
be an admissible order on W™, For all f,g € R® and h € R,

1. N(f+g) SN(fIUN(g):

2. exp (f +g) = max{exp (f},exp (g)}:

3. exp pa(hf) = exp g(h) +exp pa(f):

4. Ifexp pa(f) = (@, 1) and exp z(h) = 3, then

le ps(hf) =lc g(h) e ge( f g5,

lm ps(hf)=alet), (2.8)
It pe(hf) =lc (k) lc pe(f)gaaaletBd)

i} ot

where °1% = gaar + psa ( with notation as in Theorem 2.1.4).
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In [13] one can find the Left Division Algorithm in R?, formulated in order to
divide on the left side an element f € R* by a subset F = {f;.... . f,} € R*
when R is a left PBW ring, and in particular, when H is a G-Algebra. This
method 1s recalled in Theorem 2.3.8 and Algorithm 3 (in the latter, the
notation m 15 used for naming the element ov € W™, for any (o, 1) Tyl
and the definition of the order <™(#) can be found in Appendix A).

2.3.8 Theorem. (Left Division Algorithin) Let R be the G-Algebra
k{zy,..., 2, @, =}, = an admissible order on N™®) and F = {fy...., f} C

R\ {0}. For all f € R*, there exist hy,..., h, € R and r € R® such that
1. f=%7  hifi +r. where
2 ifr 20, then N(r) N (L, exp (fi) + M™) = 0 and exp (r) = exp (f):

3 for 1< ¢ <r, either hy =0 or exp g(h;) +exp p(fi) = exp g (f).

Algorithm 3 Left Division Algornithm in R°
Require: f. fy,.... fr € 7 {0},
Ensure: fy,..., hp,r such that f =37 hfy +r, with

i) r=0o N(r)n|J_,(exp (fi) + ") =), and

ii) max {exp (r), {exp (h:) +exp (fi) iy } = exp (f);
Initialization: hy :=0,... h.:=0,r:=0g = f;
while g £ 0 do

if there exists 1 such that exp (f;) <™ exp (g) then
Choose i minimal such that exp (f;) <™ exp (g);

a; =lcp(g)(lc (GG . )
hi = h; + a;z=P @—=xp (K],
9:=g - au™T O FIIL,
else
ro=r+1t gs(g);
g:=g—ltr(g)
end if

end while
Beturn Ay, ..., A, 7.

2.3.9 Definition. Under the assumptions of 2.3.8, a}_mmaz’nder of the di-
vision of f by the set F = {fi,..., fr}, denoted by f. is any element of
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R*® which plays the role of v in 2.3.8, satisfying conditions 1, 2 and 3. Each
remalinder computed with the previous algorithm obviously depends on the
order of the elements f; in the set F.

At this point, we have reviewed the basic background required for studying
Grobner bases in free module R,

Let R=k{x,...,z,; ¢, =} be a G-Algebra and let = be an admissible order
on M™), For any subset F C R®, its set of erponents, denoted by Exp (F)
(or by Exp ge(F), for emphasizing the underlying free module R*), is

Exp (F) = {exp p.(f); f € F} C N~

From property (3) of 2.3.7, it is clear that the set of of exponents Exp (M)
of any left R-module M is a stable subset of (2,

2.3.10 Definition. Let R =k{z,,...,z,; @, =} be a G-Algebra, and = an

admissible order on ™)

L. Let M be a left R-submodule of R*. A set G = {gy,...,g.} T M" {0}

is said to be a left Grobner basis for M, if |

r

Exp (M) = | J(exp (g:) +N").

i=1

2. Aset G=1{qn,....g-} C R {0} 1s a left Grobner basis if it is a left
Grobner basis for the left R-submodule g(G).

In a similar way as in the commutative case, the following well-known result
follows from Dickson's Lemma.

2.3.11 Proposition. Let R = k{z,... zy; @, =} be a G-Algebra, and =

an admissible order on M™%}, Every non-zero left R-submodule M of R® has
a fnite left Grobner basis.

Proof. For any left R-module M, since Exp (M) 15 a stable set, Theorem
2.3.1 assures the existence of a set {{ay,9,),.... (¢, )} © Exp (M) such

that Exp (M) = |J_, ({0, i) + M"). Hence, there exists g, € M with
exp (@) = (o, ix) for 1 < k < m satisfyving

=

Exp (M) = |_J(exp (ge) + N").

k=1
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2.3.12 Note. Proposition 2.3.11 mmplies any free module R® over a G-
Algebra R to be left Noetherian, that is. every left R-submodule of R® is
finitely generated. In particular, when s = 1, the G-Algebra R is a left
Noetherian ring (it is also right Noetherian, see [13]), which is an analog of
the well-known Hilbert s Basis Theorem in the commutative polynomial ring.

The notion of S-polynomial is generalized in [13] from the commutative case
(see [1, 18, et al.]) to left PBW rings (and, in particular, to G-Algebras) in
the following way.

2.3.13 Definition. Let R =k{z, ..., z,; Q, =} be a G-Algebra, and = an
admissible order on M™(). Consider f,g £ R* " {0} with exponents {a, )
and (7. j), respectively. Let

v = (max{ay, H}, ..., maxfa,, 5,}) e
a=(le gs (27~ ‘:‘_f ek

b= ].C R:I[.I‘ :|:|_ = k

then the left S-polynomial of f and g is

ifi#j

0,
SP{f&H] - {ﬂxfy—af_bxﬁr—.ﬁg? if @ =_j.

The following result, proved in [13|, shows some characterizations of the
notion of left Grobner basis. It can be viewed as the analog to the well-
known result in the commutative case (see [1, 18, et al.]).

2.3.14 Theorem. Let R = k{z,..., x,; @, =} be a G-Algebra, and =
an admissible order on ™). Let M C R® be a left R-module and G =
{or, .. .,gx} © M"Y {0}, The following statements are equivalent:

1. ¢ 1s a left Grobner basis for M
o
2. Forall f € R, f e M if, and only if, f=10;

3. For all f € M, there exists hy,..., h, € R such that f =%, | huge
and exp (f) = maxfexp (hy) + exp (gi) / 1 < k < r};

. G= .. .
4. For all f € M, the remainder f is independent of the order of the
elements in G;

5 M =g (G) and “SP(g; g;) = 0. Vi # j.

From the statement 3 directly follows the following result.
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2.3.15 Covollary. Every left Grobner basis G for a left R-submodule M of
R*® is a generator system of M as a left R-module.

2.3.16 Remark. [13] Under the assumptions of 2.3.14, the statement 5
implies that every generator system G' = {g...., gr} of the left R-module

M satisfying level (g) # level (gy) for all i # j is a left Grobner basis for M.

The last statement of 2.3.14 yields the theoretical background for the left
Buchberger algorithm, which computes a left Grobner basis given a finite
generator system of a left R-submodule of R*. It can be viewed as a gen-
eralization of the Buchberger algorithm in the commutative case [1, 18]. In

[13] we can find this algorithm in the more general context when R is a left
PBW ring.

2.3.17 Theorem. (Left Buchberger Algorithm) Let R = Kz, ..., zy;
2, =} be a G-Algebra, and = an admissible order on ) Let F o=
1fie-. o fe} © R*\ {0} be a generator system of a left R-module M € R®.

Then a left Grobner hasis for M can be constructed in a finite number of
steps by putting:

Gy =F

~ 0 vy

Gip1:=G;\J{ SP(f.g)/f.g <€ Gi SP(f.g) #0}.

If G; = Gyyq. then G 15 a left Grobner basis for M.

2.3.18 Definition. Let R =k{z,..., 2, @, =} be a G-Algebra, and = an
admissible arder on F™ (=,

L. Let M be an R-subbimodule of R*. A set G ={qn,...,g-} C M " {0}
15 sald to be a two-sided Grobrer basis for M, if

r

Exp (M) = | J(exp (g) + ).

i=1

2. Aset G={qn,....9-} C R {0} 1s a two-sided Gréobner basis if it 1s
a two-sided Grobner basis for 5{G)p.
In a way analogous to 2.3.11 and 2.3.15, we have the following result.

2.3.19 Corollary. Let R = k{z,... z,; @, =} be a G-Algebra, and = an
admissible order on ™),

1. Every non-zero R-subbimodule M of R* has a finite two-sided Grobner
basis.
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Algorithim 4 Left Grobner Basis Algorithm for Modules
Require: F={fi,....f} C R {0}

Ensure: G = {gy.....5}, aleft Grobner basis for p(F) (satisfying F C G);
Initialization: G:=F, B:={{f.g}/ f#g< G}
while B £ do

Choose any {f.g} € B;

B:=B\{{f.g}}

k"= SF(f.g);

h="SP(f.9);

if h =0 then
B:=BU{{ph}/pcG};
G =G U {h};

end if

end while
Return .

2. Every two-sided (or left) Grobner basis G for an H-subbimodule M of
R® is a generator system of M as an R-bimodule, 1.e., M = p(G)g.

Proof. The first statement 1s a direct consequence of Dickson’s Lemma
(see 2.3.1). For the second one, note that if G is a two-sided Grébner basis
for M, then & is obviously a left Grobner basis for M. Therefore, by 2.3
15, M = p{G) C g{G)r. Butalso p{G)r € M, since G € M and M is an

A-bimodule. O

2.3.20 Theorem. [13] Let R = k{z1,..., 2, @, =} be a G-Algebra, and
~ an admissible order on F™®) . Let M C R® be an R-bimodule and G =
{g1,....8-} € R*\ {0}. The following statements are equivalent:

1. & 15 a two-sided Grabner basis for M
2. G is a left Grobner basis (for g(G)) and M = g(G)r = r(G):
3. G is a left Grobner basis (for g(G)), M = p(G)r and gex; € (G},

for all ke {1,..., r} and i€ {l,...,n}.

The last statement of 2.3.20 1s the theoretical background of the so-called
Right Closure Method (see [54, 13, et al.]). It is a version of the Buchberger
algorithm which computes a two-sided Grobner basis for any finite generator
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svstem of an R-subbimodule of R*. We can find it in [54] for two-sided ideals
of a G-Algebra, or an improved version, in [62]. In [13, Ch. 3, Th. 9.10]
the authors formulate this algorithm in the more general context that R 1s a
PBW ring satisfying a specific condition involving the division ring on which
R is defined.

2.3.21 Theorem. (Right Closure Method) Let B be the G-Algebra
k{zy,...,x,; (0, =} and = an admissible order on ™), Let M bhe an R-
subbimodule of R®, and F = {fi,..., fr} € R*" {0} such that M = g{(F)g.
A two-sided Grabner basis for M can be constructed in a fimte number of
steps by putting By := F, and for j = (O:

G; = aleft Grobner basis for g{B;);
B_—H_]_ = f_-;_? I {G-rﬁ l,."'g' = Gj:. 1<4i< ?1}.

If Gy = By, then G, is a two-sided Grobner basis for M.

2.3.22 Definition. Let R = k{xz,,... ,z,; @, =} be a G-Algebra, and =
an admissible order on ™), A left (resp. two-sided) Grobner basis G =
lh,...,8-} C R® for a left submodule (resp. subbimodule) M of R® is said
to be

L. menemal, if lc ps(gs) = 1 and for all 1 <@ < r,

exp (gi) ¢ | J(exp (g5) +B7);

2. reduced, if lc go(gy) = 1, and for all 1 < ¢ < »r,

N (ge) 1 (| Jesp (g) + 1)) = 0

i#F

2.3.23 Remark. Let R = k{mz, ... 2, @, =} be a G-Algebra, and = an
admissible order on N™*). If G = {g1,....g} T R® is a left (resp. two-
sided) Grobner basis for a left R-module (resp. R-bimodule) M € R* such
that exp (g;) € [J,.,(exp (g5) + N") for some 1 = ¢ = n, then G\ {g} is
also a left (resp. tﬁfn—sided} Grobner basis for M. Hence, 1t 15 possible to
construct a minimal Grobner basis from any Grobner basis for a module
M € R*® just by eliminating unnecessary generators (i.e., those gz € & such
that exp (gy) € |J it (exp (gy)+ ")) and dividing each remaining element by
its leading ccefﬁciént, as it is shown in Algorithm 6.
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Algorithm 5 Right Closure Algorithm

Require: F={fi.....f} C R*"\ {0}
Ensure: G = {g,....@}, a two-sided Grobner basis for g(F) g (satisfying
FCZ4Gy,

Initialization: B := F, G =l
while B £ & do
Compute a left Grébner basis G for p{B);
B =G,
i:=10;
while 1 < n do
=141
o) =G,
while ¢} = {§ do
choose p € (J;
Q:=@Q\ {p};
q = “p;
if g =0 then
B:=BlU{g};
end if
end while
end while

end while
Return .

Just as in the context of the commutative polynomial ring ([1]) the following
result provides a method to compute reduced Grébner bases (Algorithm 7).

2.3.24 Lemuma. [13] Let R = k{xy,...,x,; Q@,=} be a G-Algebra, and =
an admissible order on H™®, If G = i, ...} © R’ is a minimal left
(resp. two-sided) Grobner basis for a left submodule (resp. subbimodule) M
of B* and

By = G\ gy,
for some 1 =< @ = r, then exp (hy) = exp (gy) and H = (G {g}) U {hy} 15 a

minimal left (resp. two-sided) Grabner basis for M.

2.3.25 Theorem. [13] Let R = k{x,,..., z,; @, =} be a G-Algebra, and

= an admissible order on ™), Every non-zero left R-submodule (resp.




o
=1

2.4. Some applications of Grobner bases

Algorithm 6 Minimal Grobner Basis

Require: G = {g,...,8} C R® a left (resp. two-sided) Grobner basis for
a left R-module (resp. R-bimodule) M C R
Ensure: ', a minimal left (resp. two-sided) Grobner basis for M
Initialization: G’ =&
fori=1tor do
if exp (g;) € Uhe‘f_-,-_._{m}{cxp (h)+ ") then
& =G\ {a):
else
G =G\ {gi} U {le pelgi) ks
end if

end for

Return G

Algorithm 7 Reduced Grobner Basis

Require: G = {g.....g.} C R®, a minimal left (resp. two-sided) Grdobner
basis for a lett R-module (resp. H-bimodule) M C R#;

Ensure: H. a reduced left (resp. two-sided) Grobner basis for M;
Initialization: H := &,
fori=1tor do
H:=H"\{a}:
h-=fg H .= {h} U H;
end for
Return H.

R-subbimodule) of R® has a unigue reduced left (resp. two-sided) Grobner
hasis with respect to —=.

2.4 Some applications of Grobner bases

Classical problems as the Module Membership problem, the Modules Com-
parison problem, ete. can effectively be solved by using Grobner bases. In
what follows, we recall briefly some of them. We closely follow the lines of
[13], where an algorithm for each of such problems is given in the context
of left PEW rings, including the class of G-algebras. We contribute with an
algorithm to compute the dimension of R*/M as k-vectorspace, where R is
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a G-Algebra and M 1s either a left submodule or a subbimodule of R*.
Throughout this section, R = k{z,,...,z,; @, =} will be a G-Algebra, and
= an admissible order on M™(), In the formulation of the problems and

the solutions, “module” may be, immaterially, either a left H-submodule
M= gifi,... . fr) of R®, or an R-subbimodule M = g{fi,..., frir of R

When a left R-module M is considered., a Grobner basis for M will be referred
to a left Grobner basis for M, whilst if M 1s an H-bimodule, a Grobner basis
for M can be either a left or a two-sided Grobner basis for M.

s Nodule Membership problem.

The problem consists in, given f £ R®, deciding whether f belongs to a
module M C R*. If 7 is a Grobner basis for M, then

feM — “F=o

[f the answer 15 “ves”, then it is possible to compute hy. ... .k, € R such that
f=31_, hifi (see the Ertended Grobner Basis Algorithm in [13, Ch. 4, Alg.
9]).

¢ Nodule Comparison problem.
If we want to determine if two modules M and M’ are equal, one of the
options below may be used:

1. M = M'if, and only if, they have the same reduced Grobner basis;

2. M =M if, and only if, M € M and M' € M. These two inclusions
can be checked by using the solution given for the Module Membership
problem for elements of generator systems of M and M’ respectively.

e Coset representatives for the elements of R*/M.
For any Grobner basis G for a module M C R,

a2
f+M=g+M = 7f=%% fgeck.

Hence, {E? / f € R°} is a set of coset representatives of R® /M.
e Basis of R*/M as a k-vectorspace.
For any module M © R*, the set
{29 [ (a,i) € N\ Exp (M)}
is a k-basis of R*/M. Consequently,
dimy (R /M) = f (N™)\ Exp (M)). (2.9)
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2.4.1 Remark. Since ™)\ (Exp (G')4+N") can be expressed as the disjoint

union
2

YJary | (emle)+0) « k),

k=1 geis; level I:j:l:.i.'
if & R®is a Grobner basis for a module M Z R®, then

dimy (R /M) =4 (N*)\ (Exp (G) + N"))

4

=>tmn (| e+
k=1 g level (g)=k

From a geometric point of view, if we consider the geometric system (" x
{1}y - U (M™ x {s}) and for each element g £ G we represent exp (g)
as a point in the cartesian (non negative integer) coordinate system N™ x
{k} where k = level (g), then the value dimy(R*/M) will automatically be
obtained by counting the points inside the sets

NAC | e @+,

=G level (gi=k
for all k = {1,...,s}.
2.4.2 Example. The set G = {gy,g4, 93}, with

a=zy, @=v'4+z, @=1,

is a (minimal) left Grobner basis for the left ideal I = g{xy®, y* + ) of the
Quantum plane Qafx, y] = Clx, y; {yr — 22y}, =iz} Therefore,

{z°%%; (a,8) € N*\ (Exp (G) + M%)}

is a Q-basis of @[z, y]/I (note that in this case s = 1). Since Exp (G) =
{(1.2),(0,3),(2,0)} it follows that

N\ (Exp (G) + N%) = {(0,0),(1,0),(0,1),(1,1),(0.2)}
(as it is shown in fipure 2.1), and

(1, z,u, zy,v°}

is a [J- basis of Q[x, u]/T.
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Figure 2.1: Representation of the set * \ (Exp (G) 4+ %) in example 2.4.2

¢ Computation of the codimension of a submodule M.

The codimension of a module M C R*, codimy(M), is defined as the k-
dimension of R*/M. In case codimy( M) is finite, M is said to be cofinite.
Next, we present an effective method for deciding when a module M C R*
is cofinite and, in that case, we show how codimy (M) can effectively be
computed using the formula stated in 2.4.1 (see Algorithms 8 and 9).

The following result provides an effective test for checking whether a module
M C R?1s colinite or not, just by browsing the set of exponents of a Grobner
basis for M. It is an extended version (for modules) of a known result for
ideals (in the context of commutative polynomial rings see, e.g., [1], or for
left PBW rings and, consequently, G-Algebras see [13]).

2.4.3 Proposition. If G = {g.....g-} Is a Grobner basis for a module

M C R, then M is cofinite if, and only if, forall 1 < &k <5, 1 <i < n,
there exist j € {1,...,r} and v € M such that exp (g4) = (ve;, k), where €

=(0,...,1,...,0) € W™

Proof. Assume that dimg(R°/M) < co. If we suppose for a while that
there exist k€ {1,...,s} and ¢ € {1,...,n} satisfying

exp {gj] '}_t (VE‘-‘»:: 'I‘:I:u "":'r.:-? = {1:“':?"}:- = N?
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then it is easy to check that
[(ves k) /v e N*} € W™\ (Exp (@) + ™) = N~ Exp (M),

but this 15 a contradiction since the left hand side 15 an infinite set and the
right hand side is a finite set (see Eq. (2.9)).

Conversely, as for all 1 < & < s and 1 < ¢ < n, there exists ji; € {1,...,r}
and 1y, € M such that exp (gy,, ) = (ve, k), then

M)\ Exp (M) C U {({a, k) € ™) oy < 1y, W1 <4 < m},
1<k<s
where o = (o, ..., a, ). Indeed, let (o, k) € M=)\ Exp (M) and suppose
that there exists 2 € {1,...,n} such that a; > vy;. Then

(o, B) =10, gy 00K g, oy — Vg, 0
=exp (gu) + 0,

where 3 = (on,..., o —_m_..;, c.oan) € M® Thus, (a,k) € Exp(M) - a
contradiction. Therefore, M™() \ Exp (M) is finite since |hcpeatla k) €
) oy < 1.7 1 <@ < n} is a finite set. O

2.4.4 Theorem. The codimension of a cofinite module M C R* can be
computed by the following method:

1. Compute a Grobner basis G = {gy,...,gs} for M (using Algorithm 4
it M is a left R-module, or using Algorithm 5 if M is an R-bimodule);

2. Check whether in each level k of the geometric system (M™ x {1})
- U (" 2 {s}) (see 2.4.1), every axe of N x {k} 2 N® is “touched”
by, at least, one point exp (g) for some g € G such that level (g) = k;

3. If the answer 1n step 2 1s “no”, then codimy (M) 1s infinite. Otherwise,
compute the value codimension as follows:
(a) Compute a minimal Grébner basis G' = {g.... . gt} from G (using
Algorithm 6), and put codimension := 0;
(b) Forevery k € {1,...,s} and i € {1,...,n}. denote by (a'* k) the
(only) element of Exp (G') such that o = (0, ... Uik, .., 0) for
some vy, € M. For everv k € {1,..., s}, consider the n-cube

Ce=N"\ (| o® 417

inside W™ = [k} = N";
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(c) Forall ke {1,... s} and all (5y,...,3,) € Cy.
if for all g € G" with level (g) = k. there exists an index Iy €
{1,...,n} such that the ly-th component of exp (g) is stric-
tly greater than &, . then let codimension = codimension 4+ 1.

Proof. Note that step 2 i1s just to check finiteness of dimy(M/R®) by
means of the equivalent condition of 2.4.3, that is, for all & € {1,..., s} and
ic{l,...,n}, there exists

(o™ k) € Exp (@) such that o'* = (0,.. ., I_/_J__ oo 0)

L

for some vy, € M. If the algonthm does not stop before step 3, and &
is a minimal Grébner basis for M, then, the pair (o, k) € Exp (G') is
unique for each fixed k,i. Indeed, if (o™ k) # (% k) € Exp (G') with
a® = (0,..., v, ...,0) and §% = (0,..., fis....,0), then either vy < gy
or v > pig. Therefore, either (3%, k) = (o™, k)45 or (@™, k) = (3%, k)4,
for some v € W™\ {0}, but this is not possible because G is minimal.

From Eq. (2.9}, codimy( M) = # (W™=, Exp (M)). On the other hand, it is
easy to check that

Fyie) \ Exp {Mr:l C U (A {k‘},
1<k<a

where Cj is the n-cube in M™ x {k}, determined by

N U o’ L.

1 "

Hence, in order to compute codimy (M) it is enough to count, for all k& €
{1,..., s}, the points (3, k) € Ci » {k} such that (3, k) belongs to F™)
Exp (M), or equivalently, the points (3, k) € Ci x {k} satisfying

geN\( |) ew@+N)
g=Gilevel (g)=k

This is what is described in step 3c). O

2.4.5 Note. The method of Theorem 2.4.4 also works with G' = &' a not
necessarily minimal Griobner basis, that is, step 3a) may be awvoided. In
that case, in step 3b), since the elements (o, k) £ Exp (G) such that o =

——

(0,..., ¥g,....0) are not necessarily unique, we may put forall k £ {1..., s}

and 1€ {1...,n},

vig = min{ g [ 3 {.ﬂﬂ',k} € Exp (G), g% = (0,..., If; L0 e M,
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Algorithm 8 Cofinite Module
Require: F = {fi,. ... fe} € R*, a generator system of a module M C R®

(M= p(F)or M= p(F)g)

Ensure: cofinite= FALSE, if M is a cofinite module, and cofinite= TRUE,
otherwise. If the latter holds, it returns the value of codimy(M) in the
varlable codimension;

Initialization: cofinite:=TRUE, i :== 1, k= 1;
Compute a Grobner basis G = {gy...., gy} for M;
while cafinite= TRUE and & < s and 7 < n do
if Aexp (g) € G such that exp (g) = (ve;, k) for some v € N then
cofinite :=FALSE;
else

if 1 =n then
E=k4+1;i:=1;
else
tr=1+4+1;
end if
end if
end while
if cofinite = TRUE then
Compute a minimal Grobner basis G from 7
codimension:= (;
for £ =1to s do _
For 1 <i<n, let (o™ k) € Exp (G') s.t. o' = (0,..., v, ....0) for
some M = I,
(Frooeoy Fa) = (0,0, 0);
Codimension(n,k}; {call to Algorithm 9}
end for
end if
Return cofinite and, it cofinite = TRUE, return also codimension.
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Algorithm 9 Codimension

Require: e a positive integer, and k € {1,..., s},
it . =1 then
& =10
while ¥g € G with level (g) = Fk, there exsts [; € {1,...,n} such
that the lg-th component of exp (g) 1s strictly greater than the lg-th

component of (G, ..., 3,) (current point) do
codimension:= codimension + 1;
B=5+1
end while
else

for all 5 =0+%o0 (14 40— 1) do
Codimension(n .4 — 1,k); {call to Algorithm 9}
-I?"nmd = l'li""cm:!rd + 13'

end for
end if
and o' = (0,..., ¥k, ...,0). The n-cubes will be determined by these new

elements (o™, k).

2.4. 6 Remark. From Theorem 2.4.4 we devise Algorithms 8 and 9. The
first checks if a module M C R® is cofinite, and in that case, it calls the
latter to compute codimy(M ). This one 1s a recursive algorithm. With re-
cursiveness, we reduce a n-dimensional problem to another one of dimension
1. Actually, there are s problems in dimension n, one for each level & of the
geometric system M) = (™ = {1})U--- U (M" x {s}), and each problem
is reduced to dimension 1, where they are solved by a simple search through
the set {g € G' /level (g) = k}. Note that for each k € {1,..., s}, Algorithm
9 actually stops. In fact, it calls itself ]__L”:2 v times. Moreover, with the
computation of a minimal Grobner basis " in Algorithm &, the search in
Algorithm 9 is improved, since there are no redundant elements.

2.4.7 Example. Let us take up again the example 2.4. 2, where the minimal
left. Grobner basis G = {g1 = xv°, g2 = ¥* + =, gz = 2°} for the left ideal
I = glzy?, v* 4+ ) of the Quantum plane Qz[r, y] = Clx, y; {yr — 279}, =ier }
was considered.

Let us compute the codimension of I by Algorithm 5.

Initialization: cofinite=TRUE, i := 1, k:=1, G = {xy*, v* + =z, 2%}
First step by the while loop (i=1):
exp (gs) = ((2,0),1) has the second component different from 0; ¢ = 2.
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Second step by the while loop (1=2):
exp (g2) = ((0,3]),1) has the first component different from 0; ¢ = 3.

As cofinite = TRUE, we continue with the ¢fclanse:

G = {xy?, v* +x, 2%} 15 a minimal left Grobner basis for 1.
o' =(2,0), m=2 o&°=(0,3), =3, (FF) =I(0,0).

Call to Codimension(2, 1):

e First step by the for loop (j=0):
Codimension(1, 1):
while loop:

As (1,2), (0,3) and (2,0) have some component greater than the cor-
respondent component of (0,0}, then codimension := L.

As (1,2), (0,3) and (2,0) have some component greater than the cor-
respondent component of (1,0), then codimension := 2.

None component of (2, 0) 1s greater than the correspondent of (2,0).

¢ Second step by the for loop (j=1):
Codimension(1. 1):
while loop:

As (1,2), (0,3) and (2,0) have some component greater than the cor-
respondent component of (0, 1), then codimension := 3.

As (1,2), (0,3) and (2,0) have some component greater than the cor-
respondent component of (1,1), then codimension := 4.

None component of (2,0} 1s greater than the correspondent of (2, 1).

e Third step by the for loop (j=2):
Codimension(1.1):
while loop:

As (1,2), (0,3) and (2,0) have some component greater than the cor-
respondent component of (0, 2), then codimension := 5.

None component of (1, 2] 1s greater than the correspondent of (1, 2).

Return cofinite=TRUE and codimension=>5.
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More applications of left and two-sided Grobner bases in the free module R?
over a G-Algebra R will be shown in Section 2.6, where Grobner bases will be
required in the computation of left syzygy modules and syzyqy bimodules, as
well as some derived problems on left modules and bimodules: computation
of presentations and free resolutions, finite intersections, division ideals, ete.

2.5 New methods for handling bimodules

As we have seen along this chapter, methods based on Grobner bases have
been developed not only for left (and right) modules, but also for R-bimodules
over a G-Algebra R. Nevertheless, in these generalizations, the authors ([13,
60, et al]) are mainly interested in one-sided ideals and modules, whereas
methods for the two-sided counterparts are adaptations to deal with the
two-sided mput. For example, to compute the intersection of two bimodules
M N C R® provided a set of generators as an H-bimodule for each of them,
say M = glfi,....fe)r and N = plq....,q)r, the method used so far
consists in computing first two-sided Grobner bases G and H for M and NV
resp., and afterwards, since ¢ and H are in particular generator systems for
M and N as left R-modules, apply already known algorithms to compute
the intersection M M N of two left R-submodules of R° (this can be done by
using, for example, the procedure based on elimination or that based on lett
svzvey modules, see [13] for both).

In this section we propose a new method, that we made known first in [28], to
perform effective computations on bimodules by handling directly their {two-
sided) generator systems as input data, and therefore, avoiding unnecessary
initial two-sided Grobner basis computations.

Though we apply this technique on F-subbimodules of B® when K is a G-
Algebra, there is no reason why i1t could not be applied when R and its
enveloping algebra R = R @y RF are “effective algebras”™, in the sense
that the theory of Grobner bases (divisions, computation of Grobner bases,
etc.) can be extended in order to be used with left R-submodules of Rs.
As we will see later, by using this technique many algorithms for bimodules
may easily be devised. We first used it in [24, 26] in order to construct
an algorithm for computing two-sided Grobner bases for two-sided ideals of
-Algebras.

Our method, outlined in the diagram (2.10), i1s based on the very well-known
fact that if R is a k-algebra, then the R-bimodules are exactly the left mod-
ules over the enveloping algebra ™. More precisely, through the mor-
phism m*® : ( R*")* — R* described in (2.11), we can translate any problem
stated on a bimodule M C F* into a problem stated on the left R*-module
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(m*)"Y (M) C (R*™)*. When R, and therefore B*™, is a G-Algebra already
known algorithms for left H-modules can be applied in order to solve the
problem for (m#)~'(M). Once we have a solution of this left module, we
push it through m* into a solution of the imitial problem on M.

This method can be applied, for example, for computing two-sided Grobner
bases for bimodules as we will see in Section 2.5.1, or the Syzygy Bimodule,
studied in Section 2.6.

TECHNIQUE TO HANDLE BIMODULES:

Problem stated on M, Problem stated on (m®)~' (M),

an R-subbimodule of R® (m*)=1 a left R*-submodule of ( 5™)*

. . With already known algo-
Construct a solution for .
the initial bl v rithms for left modules, solve
- al pr . M m

e Al probiem ot the problem on (m*)=1(AM)

(2.10)

Let us start with the first step of the method above, 1.e. how to move the
data of a bimodule M to (m*)~'(M) through (m*)~!. We fix previously some
notation and we point out some considerations which will be used from here
on in this chapter.

2.5.1 Let R be a nng. It 15 well-known that R-bimodules are exactly left

R @z RP-modules. Thus, when we know a finite set of generators of a
bimodule M, say M = g{f1,.... fe) g, then for all f € M,

.fzzpz‘fi

i; finite

for some p; € K &g R™P. Note also that if M 15 an R-bimodule and M =
A, fpor M= (fy,..., fi)g then M = plfi,.... fein

Consider the free modules R and (R &g RP)® of rank s = 1. When f =
(fiv....fa)yg@=(g.....q9:) € R*, we shall denote by f @ g the element
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The left R g RF*P-module structure of R* 1s given by

(rov )y f=rfor', . rfa’),

and the R-bimodule structure of (R g R"P)® by
rifogr =rhoar, . . . rfe@gr’),

where r,v' € Rand f=(f1,...,f:), 9 =(q1,....49:) € R".

We will denote by m* the epimorphism of left R g F*FP-modules
m'=mx .. oxm: (R &g R")* — R*, (2.11)

where m(r @ ") = ', for r.v’

The following 1s a result of basic Algebra.

Lemma. Let S be arng. If v : 4 — B 1s a morphism of left S-modules,
then there exasts a bijection

[NCA/Ker()) C N €S—Mod} — {M C Im () / M € 5—Mod)}

N — jlrf_,‘,‘," = i,;:-'{ﬁ'r'—:',
Nyg =2 (M) — M.

In particular, since m®: (R 2z R")® — R is a morphism of left R @z R™P-
modules, we have the bijection
N C (R g R°F)® such that _ :
{Ker (m) C N, N € R&; RDP—Mod} —{MC R /M & R—Bimod}
N — My =m*(N),
Ny = (m) M) —« M
(2.12)

Note that if R is a k-algebra, then the maps (2.11) and (2.12) are also valid
for the enveloping algebra ™ = R @y RF.

Proposition 2.5.2 is a generalization of a result formulated for s = 1, which
we proved in [24].

2.5.2 Proposition. Let R be a k-algebra.

1. If M is an R-subbimodule of R®, and M = gifi,..., filg. or M =
R'::.fl:- SRR fi: or M = '::fla s fl:ﬂ then

Ny = g (i1, .., fe 1) + Ker (m®);
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2. Ker(m*)= g if @ 1—-12f; fc R%);

3. If R has a generator system (as a k-vectorspace) consisting of standard
monomials, say {z® [ o € N"}, then

Ker (m*) = pow ({2®9® 01 -1 0208} 00 100).

The statements 1 and 2 are also valid for any ring R, considering R %z R™F
mmstead of A7,

Proof. Letus prove the statement 1. If M = g{fy,.... fi) g, then for every

g € Ny = (m#*)71(M), its image can be written as

t
m*(g) = pifi,
i=1
for some elements p; € A, Therefore, putting
t
F=) nlfiol) € pm{fi®L. .., 01,
i=1
it follows that

t
mi(f —g)= mS{ZPv:L{fi @1))—m(g)

i=l1
¢ ¢
= Z pmi(f 1) — z;i%fi
i=1 i=1
=0.
Hence, g € pe{fi @ 1,..., fi @1) 4+ Ker (m*). Conversely, Ker (m*) C Ny

and f; &1 € Ny for 1 <2 <t
With regard to the statement 2, clearly f = 1 —1 @ f € Ker (m*) for all
f € R®. On the other hand, every g £ Ker (m®) can be written as

2
g=> age
i=1

where g; = Zkem ri Ty, € B and e; = (0, ..., 1_&}_1’ o Djfor 1 =4 < s,
Since m*(g) = 0, clearly

0=mg:) =)  rarh

ke,
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for all 1 < @ =< 5. Hence,

g= Z Ji8y
i=1
= (> —rarh ®1) + g

i=1  keA,

=Z{Zi—m @UrL @l —1@r,))e
i=1 ke

=N Y (ra @) (e ®1 -1 ).
i=1 ke,

Therefore, g € g (f @ 1 -1 f; f 2 R*).
Finally, let us prove the statement 3. As

Ker (m®) = Ker (m)x . 2. «Ker (m),
it 15 enough to prove this for the case s = 1, 1.e., to prove that
Ker (m) = gom (z; @1 102 /1< 5 <n). (2.13)

Once this is proved, every g € Ker (m*) can be written as ¢ = Y 5, gk€k
where {eg};_, is the canonical basis of ( R*™)® as a R™-module, and

ge=Y pui(e; 01— 16 )

=1
with pi; € B™. Since g € Ker (m),

a

9= zzpl‘w} '-'T_'."Cl_].:?"ﬂ_."j ij;j {E”*}ﬁ'l—ll(ﬁx(ﬁ'k}j

=1 j=1 k=1 j=1

This fact, together with the assertion 2 in the Proposition implies the state-
ment 3.

So, let us prove Eq. (2.13) which, by the statement 2, is equivalent to prove
that

f@l-18f€ pwir;@1-1®x;/1<j<n), VfER
If f = E.:.EN" Aax]t- -zl € R, then in B*™ we have

fol-1ef= 'i'iZ“ 2T @ 1) (Ea ® 1 - 1@ z,)
+{{2Ax 2T @ ) — (1@ () Aartt - 2im)).
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Since

ZAI @)z, @1 — 1@ x,)
15 an element of g -H_xj @l-1@x;/1=7=< n}, to prove that
fal-1®f€ puw(z;@l-1®z;/1<j<n)
15 equivalent to prove that

fRlI-12f—ATE€ pmifx; ®1 —-1®x; /1 <7< n).

But
FOI-10f — A =(Q datl' - 2) Oa)(za @1 - 10 7)

Z Aozt -2 ) @ a?) — (1@ (Z Aot .o,
=0, ta,king

Z}h&xl . ““_E)Q-Cxﬂ](xﬂncl 1oz,) € g (z;01—10x; /1 < 5 < n),

to prove that
fel-1®f€ pmiz; 1 -1@z; /1 <j<mn)
15 equivalent to prove that
fol-18f-AT-A€ po{z; @1 - 1@ x; /1 <j < my.

Repeating this process, at some point we only have to prove that

oy —1

fol—1af— zzrﬂ. —za.le pow ({2, 21 — 1@ 2 1 2jen

i=2 j=1
where
={|;z Az§l e ) @ T2t 22 (2 @1 — 1@ 1),

for 1 <i<mn,1=<j< oo, and indeed,

ay—1

fol-1ef— ZZ::. _Z Al =

=2 _'||_

_ Z Aall® x?i—l ) {_1-1 @l—-1@m)

(O Aall@aftaqm)) = (1@ () Aaaft - ai™))

= (Z }QI[]_ & :1:"-1"1—1 e xin ”{-rl R1-1® 131}.
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Therefore,

f @ml—1 f = panv ':.E_-‘. @1l-1@ I l."f 1< J= ﬂ:}‘

As a direct consequence of 2.5.2, we have:

2.5.3 Corollary. If R = k{x,,...,z,; @ =} and M is an R-subbimodule
of R*with M = glfr,....foor(oc M= glfr,....fi),oo M= {fi,....fe)r)
then

Ny = pe{ {1}, U {9P 01 10299} 0 1apea )

e

2.5.1 Computing two-sided Grobner bases

Let R = k{mr.....on; @, =<} and < an admissible order on F™). As an alter-
native to the Right Closure Method (Algorithm 5) for computing two-sided
Grobner bases for R-subbimodules of R®, we propose a new algorithm which
improves the former, since it calls only once the left Buchberger algorithm
(Algorithm 4), although it uses more variables and input elements.

Our method, first devised in the context of two-sided ideals ([24]) and after-
wards generalized to bimodules ([30]), arises from the technique described in
Section 2.5 for handling bimodules. More precisely, following the diagram
(2.10), it consists of four steps:

1. Let M = gift,..., fe)r be an R-subbimodule of R*;
2. Consider the left R*™-submodule
Ny = g { {fi @1} U {I[E”k} @l-1® I(E’J‘]}lgjgn: 1<k<s
of (R,

3. Using the left Buchberger algorithm (Algorithm 4) in the free module
( R*™)* compute a left Grobner basis G' for Ny,

4. Using the epimorphism of left R*™¥-modules m?®, obtain a two-sided
Grobner basis & C R* for M.

Note that with the results given so far, the first three steps can be carried
out algorithmically. Let us show the results which allow to perform the last
step.
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2.5.4 Lemma. Let R =k{z,,... z,; @; =} be a G-Algebra. Consider the

order TOP (or POT ) on both W™(®) (for the exponents of R*) and N*(*) (for
the exponents of (R*™)*) (see A.5.2 for a definition).

e Taking =* or =° on N*" (for the exponents of R™), if h € (R™)*
satisfies that exp (genys(h) = (@,0,i) € W) then b & Ker (m*) and
exp g (m*(h)) = (0, 2);

e Taking =, or =, on M*" (for the exponents of R*V) if h € (R*™)*
satisties that exp pewys(h) = (0,00,2) € 12(2) then b & Ker (m®) and
exp ps (M*(h)) = (o™, i),

Proof. Let us prove the first statement. Suppose that h € (R™)® has
((cv,0),2) as exponent for some o« € " and ¢ € {1,..., s}, or equivalently,
that h admits a representation

h=xalD 01+ D Ay e 0™, (2.14)

(Bov.d)=e0,)

There are four cases depending on the order taken for R*™ and for (R®")*:

1. If we consider =* on M*" (for the exponents of B*™), then

(a) If we take TOP for the exponents of (R*™™)®, then (3.~.7) <10P
(cv, 0, 1) implies either v = 0and 3 < v, or v =0, § = and j > ¢
Both cases lead us to (3, 7) <rop (e, 1) when TOP in considered
for A*. Hence,

m*(h) = Azl®) 4 Z A(aoj) £(Pd)
(3.3)=rop(ai)
Therefore, exp p.(m*(h)) = (a,7) and m*(h) # 0.

(b) If we consider POT for the exponents of ( B*™)®, then (3,~, 7) <por
(cv,0,¢) implies either j > 2 or y = ¢ and & = 0 and 5 < &. De-
pending on these possibilities, by Eq. (2.14) and property 2.3.6,
we can write

m*(h)=A 2l | Z A(Byd) g0 Z Ajgoi) z#9

(Bovdlhidei (3.0.); f-a

=\ gled) | z A8y (Q&opm%ﬂ'ﬂ + Pgyorej)

(847 )< por (ai)

+ z Ajgod) 2

(8d)=poria.i)
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where exp p.(payerey) <por (5 + 1, 7). Hence, exp p.(m*(h)) =
(ev,1) and m*(h) = 0.

2. If, instead, we consider <° on FM*" (for the exponents of R*™), then

(a) For the order TOP for the exponents of (R™)®, the inequality
(3,7, 7) <7rop (a,0,i) implies either 34+ ~+F < aor F=a, v=10
and j = 1. Therefore, by virtue of Equation (2.14) and property
2.3.6,

me(h) = Az 4 z Mgy 272D 4 z Aaoj) &
(87.3): BHy°P<a (er.0.4); 34

=Azled 4 Z My {QﬁGPEWHW”} + Payores)
iﬁﬂap:jj%TDP(a:ij

+ D Aoy =

(o fl=Top(a.d)

and exp pe(psyere;) <7rop (5 4+7"".7). Then, exp p.(m*(h)) =
(v, 1) and m*(h) £ 0.

(b) If we take POT for the exponents of (R™ )%, then (5,v.j) <ror
(ev,0,¢) mmplies either 7 > ¢ or j = ¢ and 7+ +"F = 0. This 1s
equivalent to (3 + P, j) <por (@, i). Therefore,

m*(h)=A Z(of) Z Aiayi) {q&?opmwﬂwﬂ + payerey)

(B4~ 1< poTiad)

with exp p.(paverej) <por (G +"F, 7). So, exp g (m*(h)) = (a,7)
and m*(h) # 0.

The second statement of 2.5.4 can be proved analogously, starting from a
representation of the type

(3,41 <00,ed)
in (R™™)". .

The connection between left Grobner bases of { B*™ )? and two-sided Grobner
bases of F*® is given by the following result.

2.5.5 Theorem. Let R = k{xy,...,2,;Q, =} be a G-Algebra. Let M C R*
be an R-bimodule and consider in R®™ the G-Algebra structure given in
Proposition 2.2.8 (where the order Is one amongst =%, =, =, and =.).
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If G is a left Grébner basis for Ny = (m®)7 (M) with TOP (resp. POT) on
[2%(2) | then the set m*(G)\ {0} is a two-sided Grobner basis for M with TOP
(resp. POT) on W™=,

Proof. Let G = {g,....q¢} T (E™™)° be a left Grobner basis for Ny,;.
Suppose that G M Ker (m*) = {gpg1,-- -, gt }. that is,

Let us see that

T

Exp (M) = U exp pe(m*(gy)) + N".

i=1

The inclusion Exp (M) 2 |J_, exp p.(m*(gy)) + N" is obvious. Let f &
M {0}, with standard representation

f = M{ﬂ-ﬁ + z }‘{S.jj‘:m'ﬂ*
(Bd)=(ed)
We distinguish two cases:
1. The order in the G-Algebra F™ is either =* or =°. In this case we
have
fol= a1+ z »}t.;s:j;.-'u"{ﬂﬂ @ 1.
(8] =)

Since (5"«3:' =TOP ["J'r"';}:n resp. '[-'ﬁa .}-} = POT {ﬂ'a é}:« il‘ﬂp].iES '[-3a D,j]l =TOP
(ev,0.2), resp. (3,0,7) =por (o, 0,7), it follows that

exp (pewys(f @ 1) = (2, 0,3) € N*), (2.15)

Besides, as f @ 1 € Ny and & 1s a Grobner basis for Ny, from the
statement 4 of 2.3.14,

t
f@@l = zp‘-‘»ﬂir
i=1

with p; € B*™, and exp (genvs (f 1) = exp pear (P) +€XP  ponv s (g ) For
some 1 < k < t. Therefore, if we denote by (3, 3') € N*" the exponent
of pi and by (~,~', ) € N?) the exponent of g, from Equation (2.15)
we obtain

|:"-'T:~ G:- 2':' = {,}’ f]‘r'-..-l':l + (3: ﬂ!} = (.ﬁ + ﬁ"'- .'-':"'1 + x]'rh.:"} (216}
So,j=1t F=+"=0and a =3+. Hence,

exp (pemys (G ) = (7, 0,4),
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and by virtue of 2.5.4, m*(gy) #0 (so, k€ {1,...,r}), and
exp ps(mign)) = (v.1).
Taking up the proof in Equation (2.16) again, we conclude that

exp pa(f) = (1) = (7,1) + 7 = exp g (m*(ge)) + 5,

that is, exp p.(f) € U;l exp pe(m*(gq)) + N

2. The order in F*™ is either =, or =.. Then the exponent of the element

1o f=Moz@+ 3" Agylazh
(3.3)={d)

is (0, i) [4%%(2) Indeed, for any of the orders TOP and POT on
M=) (8, ) < (o, 1) implies (0, 3°P, ) < (0,4, i). On the other hand,
as 1@ f € Ny,

t
1o f=> pg
i=1

with p; € B, and exp pevys (f @1) = exp gon (Pr) 4 €XP (e s (i) for
some 1 < k< t. Therefore,

(0,a i) =(F4+~ 8+, 7).
where (5, 3') = exp pen (pi) and (7,7, 7) = exp (gowys(g ). Hence,
exp (gonr)s (O] = (0,7',2),
and from 2.5.4 it follows that m*(gg) # 0 (so, k€ {1,...,r}), and
exp g (m*(ge)) = (77, 1).
Therefore,
exp pu(f) = (@) = (v".1) + 5 = exp pa(m*(gw)) + 5",

and exp p.(f) € |, exp pe(m®(gq)) + N
|

Theorem 2.5.5 together with the previcus results in this section provides an
algorithm for computing two-sided Grobner bases for bimodules (see Algo-

rithm 10).
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Algorithm 10 Two-sided Grébner bases (alternative)

Require: F={f,....fi} TR\ {0}

Ensure: G = {g1.....9-}, a two-sided Grobner basis for p{F)g such that
FZG
Initialization: B:= {ffo 1}l U{z@d o1 —1ozM} e
Using the left Buchberger algorithm 4, compute a left Grobner basis G" in
the free module (R*™)® for the input data B;

EG ={q, ., gp} with g = (Eje‘:[l Pf;j @ qf;j ERRE Eje:l, f-?f.‘,aj ® qffj]': take
9i ‘= ':Ejeﬂ.i'l;qua;ljr s rzjefr. p‘qu'fjj:
G =1
for alli =1 tot' do

it g; = 0 then

Gi=GU{g}

end if

end for

Return .

The advantage of this algorithm over the Right Closure Method is that only
one call to the left Buchberger algorithm is done, whereas the Right Closure
Method {Algorithm 5) makes an, a priorl, unknown number of calls.

Next, a comparison between both algorithms is discussed on some explicit
examples. The computations of these examples, as well as all examples in
this chapter, were obtained by using a library of procedures we have imple-
mented in the language of the package of symbolic computation Maple 6 (see
[32]). The Right Closure algorithm, which we collect in Algorithm 5 (just
as it appears in [54] for two-sided ideals or in [13] for bimodules over PBW
algebras), was also coded in this library in order to compare the outputs and
the computation times with those of Algorithm 10.

In the examples, computation times correspond to a Pentium 111 700 MHz
personal computer with 176 Mb RAM.

2.5.6 Example. Let R be the Quantum plane, ie., R = Clz, u; {yr —
gry}, == ), where = 5 is the {1, 3)-weighted lexicographical order de-
fined from =, with €, <., €, and put g = 1. Let F = {(2z, 2%y, zy® +
y*), (zy, 0, —x?y?), (2%, 2,0)} € R* and consider the order TOP for the expo-
nents of R

The Right Closure algorithm calls the left Buchberger algorithm twice and
takes 56.6 seconds to compute a (non-reduced) two-sided Grobner basis Gy
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Module size of | RIGHT CLOSURE METHOD ALCORITHM 10
reduced | Size | Time Red. time | Size Time Red. tim
Cylz, u]* il 17 56.6 22.7 12 43.0 13.0
M,(2)% 8 28 167.6 101.5 17 37.9 0.8
D 6 38 | 1907.5 709.6 14 937 53.1
U(sl(2)) 10 29 735.2 487.1 11 1138 58.7
Ulnsz) 14 88 | 24176.9 12583.0 46 | 135221 3728.7

Table 2.1: Comparison between Algorithm 5 and Algorithm 10

consisting of 17 elements.
Algorithm 10 takes 43.0 seconds to compute a (non-reduced | two-sided Grobner
basis G2 with 12 elements.

After reducing &, or 2, we obtain the reduced two-sided Grobner basis
{(x%,0,0), (22,0,4%), (xy,0,0), (0,1,0)}

of g{F}g. The reduction of G, takes 22.7 seconds whereas the reduction of

75 takes 13.0 seconds.

2.5.7 Example. Now consider the algebra M (2) = C{z, v, 2,4, Q, Zdegler }
of Quantum matrices (see 2.2) where = ., 15 the degree lexicographical
order with €, <gegier - - - <degler €4, and Q@ = {yx —gqry, ty —qut, 2o — qrz, tz—
qut,zy —yz,tx — ot — (g7' — q)yz}. Put again ¢ = ¢, and consider the order
“POT” for the exponents of R®. Let F = {(—xzt+y, 2xy°z), (%2, %)} C R
The Right Closure algorithm computes a two-sided Grobner basis & con-
sisting of 28 elements in 167.6 seconds, calling the left Buchberger algorithm
twice.

Algorithm 10 takes 37.9 seconds to compute a two-sided Grobner basis &y
with 17 elements. The reduction of & takes 101.5 seconds whilst the reduc-
tion of Gz takes 9.8 seconds. The reduced two-sided Grobner basis for g(F) g
is

[(zzt —a,0), (xy,57), (0.4%), (0,4%2), (yz*,0), (0,2°), (v% 0), (0,297}

Table 2.1 shows a comparison between both algorithms for the previous and
some other explicit examples. The first column represents the free module
where the computations are performed and the second represents the size of
the reduced two-sided Griobner basis for the corresponding example. For both
algorithms, the column “Time” ! represents the elapsed time to compute a

'The computation times shown in Table 2.1 correspond to a Pentium m 700 MHz
personal computer with 176 Mb ran.
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(not necessarily reduced) two-sided Grobner basis, and its nmumber of elements
is shown in the column “Size”. We also give the time taken in addition to
reduce the basis.

¢ The first two rows gather the times and =sizes of the examples described
above.

¢ The third row represents the computation of two-sided Grobner bases in
the Diamond algebra (see 2.2) © = Clz,y, z,t; ), =iz} where =, is the
lexacographical order with e, <., ... < € and Q = {yr — zy, 220 — x2, tx —
xt,zy — yz + xr,ty — yt + w,tz — zt — z}. The input data is F = {42t +
Sx?y, 8z% 4 Oyz}. In this case, the Right Closure algorithm makes 3 calls
to the left Buchberger algorithm in order to compute a two-sided Grobner
basis.

¢ The fourth row is concerned with the example AnnFD-s12-2 (see [62]),
conslsting in computing a two-sided Grobner basis in the universal enveloping
algebra of traceless 2 x 2-matrices U(sl(2)) = kie, f, h; @, Zgegler }. where
Q= {fe—ef +hhe—eh—2e hy —wh+2f}. The input data is F =
{e*, f* (h— 2)h(h + 2)}.

* The last row of the table represents the results for the example TwoGB-g2-2
described in [62]. It consists in computing a two-sided Grébner basis for the
1deal generated by the square of the element x; of the algebra U(gz), which
is generated by 14 elements®. Here we use the degree lexicographical order
jdeg.!er on MM

2.6 Syzygy bimodule and some applications

The notion of syzygy bimodule, first introduced by Mora for homogeneous
two-sided ideals in the context of non-commutative graded structures ([71]),
and then, independently, by the authors ([27, 30]) for not necessarily homo-
geneons bimodules over a -Algebra, can be viewed as the two-sided coun-
terpart of the left syzygy module (or the syzygy module in commutative
polynomial rings), since it presents some similar properties and applications.

In this section we will see that syzygy bimodules can be computed in the
context of G-Algebras. ©More precisely, following the method for handling
bimodules described in 2.5, we construct an algorithm for computing the

syzyvey bimodule of any fimite subset F of a free module R® over a G-Algebra
R.

*See  http://www.singular.uni-kl.de/plural /DEMOS/Leipzig/Applications, G2
Jindex html for a definition of I7{gs) and a complete description of this example.
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Likewise, we shall show that syzvey bimodules reveal to be nseful in solv-
ing some computational problems when, as natural, two-sided input data are
given. Amongst these problems there are: computation of finite intersections
of subbimodules of R®, presentations and free resolutions of subbimodules of
R®, two-sided division ideals of R, etc. (we presented some of these applica-
tions in [30, 27]).

Moreover, in case the bimodules are generated by elements of the centralizer,
some of these results are enhanced and many computations can be simplified
(e.g., the computation of two-sided division ideals). These particular cases
are gathered at the end of the section.

We start recalling from [13] the notion of left syzyzy module and an algorithm
to compute it.

2.6.1 Definition. Let R be aring, S a left R-module, and {f,,..., f;} © 5.
The left syzygy module of the matrix

fi
F= Eaﬂftxl{sja
fi

denoted by Syzjl[Fj, or equivalently by Syz'(fi,... . ft), 18 the kernel of the
homomorphism of left R-modules B — 55 (ry,...,1) — ELI rifi.

Note that the previous morphism surjects onto the left R-module g(f,. .., fi},
and therefore,

H*,I.Sryz'!(F] = gifi,.. ., fi) asleft R—modules.

When R is the commutative polynomial ring it is possible to compute Sy:z' (F)
for any finite set F' C R*® (see, e.g., [46, Alg. 2.5.4]. In [13] one can find an-
other algorithm which computes a set of generators of Syz'(F) when R is a
G-Algebra (even, when R is a left PBW ring), provided that a finite set of
input data F' < R* is given (note that in this algorithm (see [13, Ch. 5, Th.
2.3]), the rows r;'s of the matrix I, — P} are not necessary when a Grobner
basis G for g(F) contains the set F, as is highlighted in [13, Exercise 5.1]).
This algorithm 1s shown below as Algorithm 11, and will be used within
Algorithm 12,

Regarding once again R* as a left R*™-module, we propose the following
definition of syzygy bimodule.
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Algorithm 11 Left Syzvey Module

Require: F={f...., fi} C R*\ {0};
Ensure: H, a finite generator system of Syz' (F') as a left R-module;

Initialization: Run the left Buchberger algorithm for the input data F

in order to compute:

- a left Grobner basis G = {g1,..., gr} for g{F) such that F C G,

- the elements h“j € R such that SP(g,g;) =31, hi‘}g;. for all
1<i<j<r, and

- the matrix @@ € My.:(R) such that (gn,..., g) = (f1..... fe) @

foralll <1< j<rdo
if level (g;) = level (g;) then
Compute ry;, 7;; such that SPigg, g;) = ri;8 — 75:8y;

Let pgg o= (0, ..., 70, 0) — (0, 0., 0) — (Rl k)
end if
end for

Let H = {py@Q? /1 <i < j<r level (exp (g)) = level {exp (g;)) }:
Return H.

2.6.2 Definition. Let R be a k-algebra, S an B-bimodule and { f,,..., f;} €
5. The syzygy bimodule of the matrix
h
F=|:|¢&M.l(S),
fi

denoted by Syz(F) or Syz(fy, ..., f:), 1s the kernel of the homomorphism of
left R*™-modules

|: Rem’}t - S
t
(hi,... aht}'—-‘zhiﬁ;-
i=1
In the previous definition, since the R-bimodules are exactly the left Rem™-
modules,

(R /Syz(F) 2 gp{fi.....fi)r as R—bimodules.

Likewise, note that
Su (F) C m*(Syz(F)). (2.17)
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Indeed, for all g = (gy,...,9:) € Syzj{fl,--- i)

t t
Z(Q @l fi= Zmﬁ; = 0.
i=1 i=1
Hence, g = m*(g @ 1), withg @1 € Syz(fi,....fi). In 2.6.24 we will study

the syzygy bimodule in some situations where inclusion (2.17) becomes an
equality.

2.6.3 MNote. After having defined syzyvey bimodules, a natural question
arises: since H-bimodules are also right ( B*™ )*F-modules, where (™™ )F =
R R, why did we not define the syzyvegy bimodule of aset F = {f1,..., fi}
C S as the kernel of the homomorphism of right { R*™ )*F-modules {( R= )P )t
— 8, (hy,.oo k) = ELI fi* ki *7. The answer is that in hoth cases we
obtain the same bimodule for Syz(F) because f+h = hf for all h € R*™
and f< 5.

If R = k{r,. ..., 2, @, =} 1s a G-Algebra, we can compute the syzyey bi-
module of a matrix F € M,.1(R®) by using again the technique of Section
2.5, that 15, we can move the problem to the context of the enveloping algebra
in order to use methods on the left side. Following the diagram (2.10]), the

method consists of the following steps:

1. The syzygy bimodule Syz(F) of aset F = {f1,..., fe} C R*isrequired;

2. State the problem of computing the left syzygy module Syz! (G) of the
=et

G={fiol}_ u{g®® o1 - 1029} 00 100, ©(R™)

3. Using the Left Syzygy Module Algorithm (Algorithm 11) in the free
module (R*™)*, compute a set of generators H of Syzf{fv'] as a left
R -module;

4. Using the morphism m*, obtain a set of generators of Syz(F) as an
R-bimodule.

The following result shows that the last step can be carried out computa-
tionally. As a consequence, we devise Algorithm 12.

*The symbol + denotes the right multiplication of § & Mod-{ B= )°F, given by [ - (r &
r'y=rfr.
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2.6.4 Proposition. Let R = Kz, ..., T, 6, =} beaG-Algebraand { fy, . ...

fil SR If{hy,... hp} C (R™™)H=" 45 a generator system of

as a left R*™-module, then

Syz(fr,... . fe)= ri'.... '},
where hy = (hi' hs") € (R*™)! = (R*™)* for all 1 < i < r.
Proof. Note that for any g = (1,...,9) € Swz(fr, ..., fe),

t

z gilfi @ 1) € Ker (m®).

i=1

Therefore, by 2.5.2, there exists ' = (g, .- Gas- - Gogs - s T ) € [F™™)"
such that

t

Yoalhol= Y gue@Pe1-1099)

i=1 l<jan; l<k<s

Hence, h = (g, —¢) isin Syz'({fio1}t u{z@M o1 1oelo® ), o 1oel).
At this point, the proof may easily be fimshed. O

Algorithm 12 Syzygy Bimodule
Require: F={f,..., i} T R*" {0}

Ensure: H, a finite generator system of Syz(F) as an RH-bimodule;
Initialization: B:= {fi o1} U {z&® o1 —1az@®) o0 o
Using the Left Syzygy Module Algorithm (Algorithm 11), compute in

(R*™)* a generator system H = {hy. ... hy} of Syz'(B);
If by = (b ") € (R™ ) x (R™)™ for 1< i <r, put
H:=1{h',....h'}.

Return H;

2.6.5 Example. Let R be the quantum plane C{z,y; {yxr — gry}, =z},
with g = ¢, and consider the order POT for the exponents of F%. Let F =
{(z+1y).(zy,0)} C R~
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Bunning Algorithm 12, which was implemented in the library of procedures
[32], it takes 13.4 seconds to compute the R-bimodule generator system H
of Syz(F') consisting of 8 elements:

H={(loy—gol(-14+1a1), (- % Ejy-:é:nx+(—%+%}xy-:‘é¢-l,
l@z+1ml), (0,1@y+iy@l), ((—%—I—%}y 'ik:-x+{—% +%]x3f @ 1,
wEl+lel), (-5 — %Jy @ x4+ {—% — %]sf:y @mlii@mz+i®ml),
(—v@y+vrelicy—iyol), ({é + %}1 @z —ir @+
(54322 @ 10), G+ N @my+ (3 + Dy o=

Hog— e o+ G+DmeL0)

Although elimination techniques are useful at solving several problems in
Module Theory (computation of intersections, quotient ideals, etc.), they
appear to be computationally inefficient, mainly because elimination orders
are unavoldably used.

It has been noted, first in the commutative case (cf. [1, page 171]) and then
using left syzyey R-modules when R is a left PBW ring, and in particular a G-
Algebra (cf. [13, page 203]), that syzygies provide a more efficient treatment,
for example, in the computation of intersections of left R-submodules of R,
ideal quotients, kernels of homomorphisms of left R-submodules, ete. In [14]
a set of algorithms based on tag-variables and elimination is proposed for
commutative polynomial rings, e.g., to compute division ideals (also called
colons) and intersections. These algorithms, written in an elegant way, are
broadly equivalent to algorithms based on syzygles.

In what follows, we will see that some of these applications of left syzygies
can be generalized using the new definition of syzyvegy bimodules, so that, for
example, we devise an algorithm to compute a finite intersection [_, M; of
R-subbimodules of R® when (as natural) a set of generators for each M; as
an H-bimodule is given. Though this problem in particular can be solved
by the analogous method for computing the intersection of left H-modules
[13] {computing a priori a two-sided Grobner basis for each M; in order to
have left generators systems of each M;), the advantage offered when syzygy
bimodules are used i1s that we avoid the imitial computations of two-sided
Grobner bases.

The following result states a general property for obtaiming finite generator
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systems for a left R-module N and its epimorphic image {under m*) M when
these modules are defined as truncated syzygy bimodules.

2.6.6 Lemuma. Let R be a k-algebra, S an R-bimodule, p = 1, and

H
H= [Fl] € My pya(S)
2

ie. H is a matrix of size (s + p) x 1 with entries in .S, where
Hy € M,.1(S), Hze My,(5).
Consider the left R*™-module
N={h'c(R"™y /IR c(R™)", (W,h")c Syz(H)} C (R*™)°,
and the R-bimodule M = m*(N) (see definition of m® in (2.11)), that is,
M={fe R /3K R")c Syz(H) C (R™)* = (R"™ )P, f=m*(h")} C R~

If {hy,... ,ky} C (R™)*P is a generator system of Syz(H) as a left R*™-
module, where hy = (hy' . h") € (R*™)* » (R*™)F_ then

N = Rsov :hlja s :ah‘tr:}:-
and
M= g(m*(hy), ..., m*(hy'))

Proof. Note that N actually is a lett R*™-submodule of (H™ ), since
Syz(H) € R*™-Mod. If {hy,... h} 1s a left generator system of Syz(H)
where by = (k") € (R™)® % (R™)?, then obviously, ki’ € N for all
¢ € {1,...,t}. Conversely, for every h £ N, there exists h" € (R*™™ )P such

that (h,h") € Syz(H). Hence,
:
(hR") = pilh( "),
i=1

for some p; € R, Therefore, h = 3¢ pihy’.

Finally, the image of the set of generators {hy',... &'} of N under the ho-
momorphism m® of left B -modules becomes a set of generator of M as a
left B*™-module, or equivalently, as an R-bimodule. O

When R i1s a G-Algebra, Lemma 2.6.6 applied in different situations pro-
vides algorithms to solve some problems (like computing intersection of R-
bimodules, presentations, etc.) which we describe below. We can find in
[13] analogous methods in the context of left PBW rings for solving each of
these problems for left modules, using lett syzvgy modules instead of syzygy
bimodules.
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2.6.1 Finite intersection of subbimodules of R*

2.6.7 Proposition. Let R be a k-algebra, and let {M;}7_| be a family of
R-subbimodules of R*. If M; = R{ﬂ,. f:‘:} g. then
ﬂ M. ={f € R /IR B") € Suz(H) C (R*™)® s (™51 f = m*(R")},

i=1

where
f 0
H, :1 . : —~ a
H = [Fz] = .fh n = Jql'f(,g-l-z:_it.}xl(ﬁr ]I:*
0 i
i 0 I ft';

and I, € M,..(R) denotes the identity matrix of size s % s with entries in R.

Proof. If f € [i_; M, then for all i € {1,...,r} f can be written as
f= Zf_f:l hi.fi, with hj, € B*™ and one can easily check that

(f @1, —hy, ..., —hi,...,—h},. .., —hi) € Syz(H).

Conversely, if (A’ h") € Syz(H) and f = m*(h’), then

0 =hIH1 —|—h”H2
= |:f :):I 1}H1 +h.l'.rH2

=(f+ > _hifd). ... ,f+ihzﬁ}
k=1 k=r

where A" = (hy,... . R{,... ¢hY,... k] ). Hence, f € [, M. O

The following result is a direct consequence of 2.6.6 and 2.6.7.

2.6.8 Corollary. Let R be a k-algebra and { M;}!_, a family of R-subbimo-
dules of R® with M; = p{ f‘l, R fi"‘:} n. Consider the matrix H as in 2.6.7.
If Syz(H) = rlgr,... .ge)n with ge = (@', g") € (R™)* x (R*™)E-1% for
all 1 < k < t, then




o
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Algorithm 13 Intersection of RH-subbimodules of R*
Require: {M;}_,, a family of R-subbimodules of R® with M; =

R': JERE f:‘_}ﬂ:
Ensure: M, a finite generator system of []._, M; as an R-bimodule;

Initialization:
(L, I,
11 0
flo.o
H = :1 . = ‘H(HE;_i t_f:l.xrs{R}:
0. fI
i 0. f:r_.

Using the Syzygy Bimodule Algorithm (Algorithm 12), compute a gener-
ator system G = {qy,...,g} of Syz(H) as an R-bimodule;

If g = (g’ gk ) where gi’ € (B™™)* and g € (R™)Z0-1% for 1 < k < 4,
take M = {m®(q@),...,.m (@) };

Return M.

2.6.9 Note. We will see later (in 2.6.25) how the previous result can be
improved without assuming any extra condition. For example, it is possible
to give a generator system for the left B®™-module ﬂ;lim"j_l{ﬂﬂj, a two-
sided Grobner basis for (1_, M;, a left Grobner basis for Syz(H), etc.

The previous results may be used in order to effectively compute finite in-
tersections of A-subbimodules of R*. We write this method in algorithmic
notation under the name of Algorithm 13.

2.6.10 Example. Let R be the quantum plane (as in example 2.6.5) and
consider the order POT for the exponents of B®. Let M; and M be the
R-subbimodules of B* generated by {(22* 4 2z, —y), (0, —8), (—3zy,0)} and
{{z 4 2,0),(1, —y)}, respectively.

Using the library [32], Algorithm 13 takes 109.1 seconds to compute the
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H-bimodule generator system M of M, M M,, consisting of 12 elements:

1 T %, %, 4 2%, 4 i 2

i 2 2
i"bf={{€:|:2y+§sf:y, 3V Js [_EI +(—§—§)5ﬁ' —EI,EIH+§HL

5, 8 4, 5, 19 5i, 16

_z ey — =) (-1 - = = D g
(—g=7y + gy, —gv), (( 3)T +(-g -3l -3

di 8 10 131 8 2 2 4
ﬁxy+§y), [E:ﬁzy—l—(—l —?]-Tya gyz}: §I2+§x:—§y]:

4 7 2 2 4 1 2

(37" — gov’, —gv'), (—3° — 2% — oo qay + Q)

4 dr i I 2 2 —24

{{§+§)$2y+{§ - E}EH:{E“‘E:‘QEL ( 3 xiy — 2ty

4 i 2 2 0 2

+3Ty —§$y2 — 3y ) ({—54—333‘34— (—§+E}m2 0)

(—2a?y + (—2 + )2y, 0) )

—gut gm0l

2.6.2 Presentation of M /N

Let N © M be subbimodules of R*. Taking into account again that the left
R*™-modules are the R-bimodules, the question of finding a presentation of
M/N as a quotient (R*™)°/K of a free module over the enveloping algebra
H*™ by a subbimodule K arises naturally.

2.6.11 Proposition. Let B be a k-algebra, .5 an R-bimodule, and let N C
M be R-subbimodules of S. It M = glfi,...,fo)rpand N = glg1, ..., 0 )R,
then

M/N = (R*™)°/K,
as R-bimodules, where

K={hc(R™)7F /3R c(R"™)", (W h")c Syz(fi.... fosqn, i)}

FProof. Let K be the kernel of the epimorphism of R-bimodules

g ¢ (R™)* — M/N
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So, M/N = (R™)*/K, and for h = (hy,...,h,) € (R™)%,

hekK — Zhifée N

= Jh" = (h],... k) € (B"™)" such that z hif; = z h}’gj
i=1 i=1

|

- 3R € (™) such that (hh") € Syz(fi... .. fa, 01, -, 00 ).

O
Proposition 2.6.11, together with 2.6.6, implies the following result.

2.6.12 Corollary. Let R be a k-algebra, S an R-bimodule, and let N C M
be subbimodules of § such that M = g{f1,..., fs)rand N = plq,...,6-) r.
IfSyz(fi.....foom, ... gr) = miba, ... hyjp withhg = (', ") € (R™ )7

(R™)" for all 1 < k < I, then
M/N = (R™)*/K, where K = ge{ht/, ... ki),

We extract Algorithm 14 from 2.6.12, where R = k{zy, ..., 2,:Q, =} 15 as
sumed to be a G-Algebra, and S = R%.

Algorithm 14 Presentation of M/N

Require: M = p{fi.....fan. N = rlar, ... .8, with N C M C RY;
Ensure: K = gew (hy', ... R’} C (R™)" such that M/N = (R*™)% /K,
Using the Syzygy Bimodule Algorithm (Algorithm 12), compute a set of
generators H = {hy, ...y} C (B*™)*" of Syz(f1,..., feq1....,0,) as
an R-bimodule;
If he = (he' he") € (R™™)° < (R*™) for 1 = k <[, put
K = gewihd/,. .. W');
Return K.

2.6.3 Two-sided free resolutions of bimodules

We can compute a free resolution of any subbimodule M C R' when R
15 a (G-Algebra, just combining the method described n 2.6.2 for computing
presentations of F-bimodules and the already known method to compute free
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resolution for left modules over G-Algebras (see [13, 60]). More precisely, we
show how to compute an exact complex

o (R 2L (R O geyen B pems FLr L,
(2.18)
of R-bimodules and homomorphisms of F-bimodules. We shall call this type
of resolutions a two-sided free resolution of M.

Our starting point is the R-bimodule M = g{fi,....fe)r © . Using
Algorithm 14 we can compute a set of generators {ff,.. ., 311} of a bimodule

K, C (R*™)% where M = (R*"W)*2 /K. In other words, we obtain a short
exact sequence of R-bimodules

( RV )= E e M ——=10 (2.19)

where ig denotes the inclusion map and £ : (R™)*0 — M is the epimorphism
of R-bimodules determined by s(hy. ... k) = Eil h;fi- At this point, since
R*™ 15 a G-Algebra, algorithms to compute a presentation of left modules
can be applied, see e.g. [13, Ch. 6, Th. 3.1] (note that in that result the
requirement of a Grobner basis for M 1s not necessary). Let us recall how

this works.
2.6.13 Theorem. [13] Let R be a left PBW ring (e.g. a G-Algebra), and
let N © M be left R-modules of R* such that M = g(fi,..., fa) and N =

IfSyz'(H) = ripr,....m) withpe = (m'. ") € B* x R forall 1 < k <1,
then
M/N 2 R*/K, where K = gip'.....p0').

Taking up our problem, if we apply 2.6.13 to the left R*"-module K; =

re (ff . fa ) © (R™)™ (with N = 0), then K, 2 (R™)* /K, for some
K1 = pe{ff,..., f:n: =0 far, we hawve constructed the complex of R-

bimodules and homomorphisms of B-bimodules

{Rem':lai ......... Lt - (Rem'}an £ e M —0

iq A \ 1',0/1?‘

f,_// r\_,#'f
K, Ky

where 1; denotes the inclusion map and =1 : (B*™)* — K 1s the epimorphism

of R-bimodules determined by £,(hy,..., hy ) =3, B f}. The iteration of

this process yields the required exact complex of R-bimodules.
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2.6.14 Proposition. If B = k{x,..., z,;@Q, =} i1s a G-Algebra, then any
R-bimodule M C Rt has a two-sided free resolution

0_—. (Rem-}am 'dm_—,} I:Rem'}a"‘"_i . i._ {Remrjlal ik {Rem-jau . M_—10
of length m < 2n 4+ 1.

Proof. This fact is a direct consequence of the celebrated Hilbert's Syzygies
Theorem which states that every left H-module N over a G-Algebra R =
k{zi,..., 2. @, =} has a (left) free resclution

0— Rom 2= gom—t .. %1, get % pe 2L N L

of length m at most n (we can find the proof in [60] and, using different
methods, in [13], where it is proved in the more general context of left PBW
rings).

More precisely, for any R-bimodule M = g{fi,..., fa)r C R' we start with
a short exact sequence as (2.19) where M = (R*™)*/K,. But we know that
tor the left R*™-module Ky there exists a free resolution of length at most
m = 2n (since the enveloping algebra A®*™ of K has 2n variables). But these
two complexes can be glued through the morphism @ = i c £, which satisfies
that

Im () = Ker (g,) = Ker (0) and Im (d) =Im (7) = Ker (2).

S0, we have built a two-sided free resolution of M

D e (Hem'}m E - _UE'. [REI‘N}SD ........... '.d .=~tDE1 ........ e {REI.‘NIIS E_:. ] I’ —_— |:|
Ko
of length m 4+ 1 < 2n 4+ 1. (Il

2.6.4 Two-sided division ideals

Recall that if M C 5 is a left H-module and &' € 5 {where H is a ring and
S 1s a left R-module), the left division wdeal (over R) of M by G 1s defined
as the left 1deal

lM:G)={feR/fGCM} <R
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The right division ideal (over R) of aright R-module M C S by aset G C S,
denoted as (M : (), 15 defined symmetrically.

In [13, page 214] we can find an algorithm to compute left division ideals
(called also left quotient ideals) provided that R is a left PBW ring, the set
(& 15 finite, and a fimte set of generators of M 1s given.

Next we propose a notion of two-sided division ideal, which can be viewed
as the two-sided counterpart of left (and right) division ideals over a ring R.

2.6.15 Definition. Let R be a k-algebra, and 5 an R-bimodule. Let M he
an R-subbimodule of S, and G € 5. We define the two-sided division ideal
(ower R) of M by G as the image of the left ideal penv(M : G) of B*™ under
the epimorphism m, i.e.,

r(M:G)g={m(h) /hec " hG C M}
Note that g(M : G)g 15 a two-sided ideal of R.

The following properties are clear from the defimitions.

2.6.16 Proposition. Let R be a k-algebra, and S an R-bimodule. Let M
be an A-subbimodule of 5 and G C 5.

1. g(M:G)C g(M :G)g and (M : G)g C g(M : G)g:
2GCM &= pm(M:G)=R™ <= p(M:G)rn=R;
3 IfG={g,....a0}. then ga (M : G) =[_; gom (M : {g;}):

4. Foreveryg € S, we have gen (M : {g}) ={h € B®™ /hg € M gla)r},
and consequently,

rIM:{glig={mik) /he BF, hge MM glg)r}.

2.6.17 Proposition. Let R be a k-algebra and 5 an R-bimodule. If M =
rlfi....,fibrn C S and G={g1,...,9-} 5, then

pee (M 2 G) = {1 € B*™ / 30" € (B™)", (W, h") € Syz(H)},

and hence,

R(M :G)r={f € R/ 3N .h") € Syz(H) C R™ x (R"™)", f = m(K)},
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where
- gl E.r- T
h 0
H : '
H= [Fl] = Tt 0 € Mjry=al(S").
2 . :
0 h
I 0 - ft ]

Proof. Let h € B®™.

t
- Y1<i<r, —hg= z h;_fj, for some hj c R*™

=1

= Hﬂ-wliﬂrf : G]I

|

|

- 3R = (hy,... .k KL kD) € (R™™)™ such that
(h,h") € Suz(H),

where H 15 as in 2.6.17. O

As a consequence of 2.6. 17 and 2.6.6, the computation of a two-sided division
ideal can be reduced to the computation of a syzyegy bimodule.

2.6.18 Covollary. Let R be a k-algebra, § an R-bimodule, M = g{f1,..., fi)r
CSandG={q.....0.} € S.
If Syz(H) = gihy.....ly) g (where H is a matrix as in 2.6.17) with hy, =

(B he") € R™ « (R™)™ for all 1 < k <, then
Rm{ﬂrﬁf . G]I = Renv :h;, faay h::ﬁ',

and

r(M :Gig = gim(h}), ..., m(h)}r.

When R = k{z,...,2,;Q, =} 1s a G-Algebra and S is the free module R,
from Corollary 2.6.18, this result may be used to devise an effective method
to compute g(M : G (Algorithm 15).

2.6.5 Simplified computations using centralizers

Alternative methods can be used for some of the problems described above
in cases where the centralizer of a bimodule plays a role. We shall see. in
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Algorithm 15 Two-sided division ideals

Require: M = glfs,..., fi)n C R and G = {g,... .8} C R,

Ensure: B, a finite generator system of g(M : G as a two-sided ideal;
Initialization: Let H be the matrix defined in 2.6.17;
Using the Syzygy Bimodule Algorithm (Algorithm 12) compute a generator
system {hy,... by} of Syz(H) as an R-bimodule;
If by = (R, ") where by € ™ » (R™)™ put
B:={m(h'),....m(k )}
Return B.

particular, how the computation of syvzyvgy bimodules and division ideals can
easily be simplified.
Let us recall some definitions.

2.6.19 Definition. Let R be a ring, and M an H-bimodule.
1. The centralizer of M 1s the set

Ceng(M)={f € M /rf=fr.¥rc R.

2. The bimodule M 15 said to be centralizing if M 1s generated as a lett
R-module (or equivalently, as a right R-module) by Ceng(M).

2.6.20 Remark. Let R be a ring and M an R-himodule. By 2.5.2,

Cenp(M)={fe M /(r®l—1®r)f =0, ¥rc R}
={fe M /Ker(m)-f=0}
= Ann j(Ker (m))

(where Ann j;(F') denotes the right annihilator of F, defined as the set {m &
M/ Fm =0} when S is aring, F C § and M is a left S-module].
If, in addition, R is a k-algebra with a generator system as a k-vectorspace

consisting of standard monomials, say {z® /a € M"} (or, in particular,
R=k{zy,...,z,; @ =} is a G-Algebra), then

Ceng(M)={feM/z;f=fzr;, V1 <7 <n}

2.6. 21 Proposition. Let R be a ring and M an R-bimodule. If {f1,..., fi}

Z M 15 such that
t

Ker (m) C ﬂgm(ﬂ 4 fib)s

i=1
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then {f1,..., fi} € Ceng(M), and therefore, g{f,..., f;) Is a centralizing
bimodule.

Proof. Note that f € Ceng(M) if, and only if, (ro 1 —1@r)f =0 for all
r € R. Hence, the assertion is clear since Ker (m) = pew (riol1—1@r/r € R)

(see 2.5.2). O

2.6.22 Lemma. Let R be a k-algebra, S an R-bimodule and let

o
H=|:]| & M.l5).
s
The following conditions are equivalent:
1. The rows g1,...,9, of H are elements of Ceng(S):

2. m*th)H =hH,7hc (R™)°;

3. The map R* — S; (ry,...,r.) — ELI rig; 15 a homomorphism of
R-himodules;

4 (fol)H= (1@ f)H. ¥ f € Rs;
5. Ker (m*) C Syz(g, ..., g:).

Furthermore, if any of the previous conditions holds, then Syz'{g,.....q,) =
m*(Suz(m, ..., g:)).

Proof. Implication 1 = 2 1s straightforward. For the converse, note that

for any r € Rand: € {1,...,s}, taking h = (0,.. ., 1®@r,...,0) € (R"™)*
it follows that

rg; = m*(h)H =hH = (1@r)g; = g,

Let us see 1 == 3. The “only if" is clear. On the other hand, assume that
o't R® — 8, given by @'(r....,r) = 3., rigi 15 a homomorphism of
R-bimodules. Then, for all r € Rand i € {1,..., s},

rgi = (1) 0, ., 1.....0)=1are0,.... 1,....0) = gr
The remaining equivalences are sketched in the sequence:
gi € Cenp(S), ¥1<i<s (rol-1l@r)g=0YreR 1<i<s
(foNH=(10 f)HYfc R’
- Ker (m®) C Syz(H),

111
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where the last equivalence is a consequence of the statement 2 of 2.5.2. O

The following result is the key for the rest of this section. Compare with
Lemma 2.6.6.

2.6.23 Theorem. Let R be a k-algebra, S an R-bimodule, and H = [%] (S
Moy (5). Let N C (R™)" be the left R* -module and M = m*(N) C R*
the R-bimodule defined from H as in Lemma 2.6.6. Suppose that the matrix
H, satisfies any of the equivalent conditions of Lemma 2.6.22. Then,

I M={fecR /3N e (R™P (foLK)c Sy:(H)}
= {f € R° /3K c (R™P. (10 f.h") € Sy=(H)};

2 Ker(m®) C N and N = (m®)"Y(M). Therefore, if M = glfi,..., fi)r,
or M= {fy,... . faygp.or M ={fi,..., fi)p. then

N= g { {01} u{z&M o1 10260, o).

3. Suppose that B = k{x,, ..., z,;Q,=} 1s a G-Algebra. For the expo-
nents of the elements of both free modules (R*™ )*YF and R®, consider
the order POT with exp (€1) > exp (ez) = --- . and for those of R*™,

consider any of the orders =*, =%, =, or =..

If {hy, ... k) is a left Grabner basis for Syz(H) C (R*™)*" as a left
R -module with hy = (k' k") € (R™™)* » (R*™ )P, then

{hlr, e _.h,’} Y 10}
15 a left Grobner basis for N, and
{m*(ha'), ..., m*(h") ) {0}

1s a two-sided Grobner basis for M.

Proof. The statement 1 can easily be checked by using conditions 2 and 4
of Lemma 2.6.22.

By the statement 2, it is enough to prove that Ker (m#*) C NV (see the bijection
2.12). But, from condition 5 of 2.6. 22 applied to the matrix Hy, for all f € R®,
(fol—1@f,0)c Syz(H). Hence, f 21 -1 f € N, and therefore,

Ker (m*) = g (f 1 -1 f/fc R) CN.

The second part of the statement 2 1s justified by 2.5. 3.
Let us prove the statement 3. If {hy,... R} 15 a left Grobner basis for
Syz(H ), then, obviously, {h',..., h'} € N. Pick h € N {0}. There exists
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h" c (R*™)P such that (h,h") € Syz(H). Moreover, as h # 0 and the order
on (R=W)*+P is pOT,

exXp (anrjs{h} = eXp (Rmvji-l-p{{h,h”:l:l = {ﬂl,ﬂ'gj +exp ER’W-'W}P'FP(hj}r
for some j € {1,..., t} and oy, cp € W™ The level of that element hy has

to be the level of h, which is in {1,...,5}, so by # 0 and exp (ijﬁp{h,j =
eXp I:Rmp(h;}. Therefore,

t
exp I:Ra-mr:,r(hj = {ﬂ'l, L"t'g} + exp Egomr:,:{hjr} = U exp {qu:,g{hjrj -+ B
i=1

Hence, {hy',... by} {0} 15 aleft Grobner basis for V and, by 2.5.5, {m*(hy'),
oom®(h)} Y {0} 15 a two-sided Grébner basis for M. O

Just applying Theorem 2.6.23 in different situations where the centralizer is
involved, we will show how some of the problems described previously based
on the computation of syzvey bimodules, even the computation of the syzvey
bimodule itself, can be simplified.

¢ Simplified computation of the syzygy bimodule Syz(F) when F C
Cenpg(R').

When F € Ceng(R'), it turns out that the syzvgy bimodule Syz(F) is
the left R*™-module (m*)~'(Syz'(F)), which, in this case, becomes an R-
bimodule. We take profit of this fact to compute Syz(F') by using a more
simple method than that of Algorithm 12.

2.6.24 Proposition. Let R bea k-algebra, and M a centralizing R-bimodu-
le, say M = pl{f1,....fo), with {fi,..., f-} € Cengp(M). Then Suz'(f1,...,

fa) 15 an R-subbimodule of R® with contracted {via m*) left R*™-module
Swz(fi, ..., f.). and therefore,

Furthermore, if R = k{xy, ..., 2, Q, =} is a G-Algebra, then Syz(f1,..., fs)
can be computed by Algorithm 16. Moreover, if G C (R*™)® is a left Grobner
basis for Syz(f, .. .. f.) as aleft R*™-module, then m*(G)\ {0} is a two-sided

Grobner basis for Syz'!{ f1,- .., fs), considering the orders specified in 2.6.23.

Proof. Since condition 1 of Lemma 2.6.22 1= satisfied for
h

H=H =1|":

fs
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Algorithim 16 Syzyvgy bimodule (centralizing case)
Require: M = gifi,..., fo)n. with {f1,.... fa} C Ceng(R');

Ensure: B, a finite generator system of Syz(fy,....f,) as a left R*™™-
module;

Using the Left Syzygy Module Algorithm (Algorithm 11, compute a gen-
erator system {g1....,gr} of Syz'(fi..... fs) as a left R-module;

Return B.

one may apply Theorem 2.6.23. It N = Syz(fy,.... f.), from the statement
1 of 2.6.23, one obtains

m (N)j={gc R /g=1c Syz(fr,...,[fs)}
={(r1,...,r) R/ Y (rn@1)fi =0}
i=1

={(r,....r.) € B*/ Y rif =0}
i=1

O

o Finite intersection of bimodules,

The matrix H in our solution for computing an intersection (_, M; of R-
subbimodules of R? (see 2.6.8) fits the initial hypothesis of Theorem 2.6.23

without any extra condition, since H; is of the type [{,--- L]

In 2.6.7 we proved that the RH-bimodule M defined from the matrix H as in
Lemma 2.6.6 15 exactly this intersection, 1.e.,

L

M= |"‘| M;.

i=1

Therefore, from the statement 2 of 2.6.23, the left B*-module N defined
from H is the intersection of the contracted (via m*) left R*"™-modules asso-
ciated to the M;'s. Indeed,

r w

N = (m*) () M) = [)(m™) (M)

i=1 i=1
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2.6.25 Proposition. Let R be a k-algebra and {M;}]_, a family of R-
subbimodules of R*, each of them given by M; = r{fi...., f:.:’ r. Consider
the matrix H € Myysor_ o (R™) asin 26.7.

IfFM=N_ Mi=grlgr.....@)n.or M =pigr,....08). or M ={gr,....0 )R
then

[(Ym*) 7 (M) = g ({gs @ 1}, U {&®P 01 -1 @299} 5500 10nes ).

i=1

Moreover, if R = k{zy,.. ., x,; @, =} is a G-Algebra, and {hy, ... b} Is a
left Grébner basis for Syz(H) C (R™)*Zi-th a5 a left R -module with
hi — {hix,h-i”]l c {Remr:ls e (Remrjz:'_it,_ then

{ha', ... '} {0}
is a left Grobner basis for (|_, (m*)~' (M) and
{m*(hy),...,m*(h)} "\ {0}

is a two-sided Grébner basis for [)._, M;. considering the orders specified in
2.6.23.

s Computation of presentations for centralizing bimodules.
When R = k{zq,..., Tny ), =} is a G-Algebra and M C R' is a central-

izing bimodule, éa}' é;enerated by {fi,... . fs} © Ceng(M), it is possible to
compute a presentation M = R*/L, where L = p{H) = {H}g. Such presen-
tations are required, e.g. in the computation of Ext (see [12]) or, as we will

show 1n Section 2.7, in the computation of Tor.

An approach to this question is to compute the left syzyzy module Syz! ( f1,
... fa) (by eg. Algorithm 11) and afterwards, since .S'yz'!(fl,...,f,} 15 an
R-bimodule (see 2.6.24), to compute a two-sided Grobner basis H of this
module by any of the Algorithms 5 or 10. Thus, M = R*/Syz'(fi,.... fs)
with .S‘yz'!{fl, ... fs)= r(H)={(H)p.

An alternative method is proposed in the following result, which i1s written
with algorithmic notation in Algorithm 17.

2.6.26 Proposition. Let R = k{x1,...,z,; @, =} be a G-Algebra and
M =g {fi...., fs) a centralizing R-bimodule with {fi,..., fs} € Ceng(R').
For the exponents of the elements of both free modules (R*™)*** and R®,
consider the order POT with exp (ey) > exp (eg) = - -+, and for those of R*™
consider any of the orders =*, =%, =, or =..
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It G C (R™)° is a left Grobner basis for Syz(fy,..., fs). then

M = R*/Syz'(fi.....fs) as R — bimodules,

where Syz'(fi. ..., fa) is generated by the two-sided Grabner basis m*(G) |

[0} |

Algorithin 17 Presentation of centralizing bimodules

Require: M = gifi,..., foir. with {f1,..., fs} € Ceng(R");

Ensure: L, a subbimodule of M such that M = R*/ L, with L = g(H) =
(H)r;
Compute a left generator system B C (R™)® of Syz(fi,...,fs) by using
Algorithm 16 (or by Algorithm 12);

Using the left Buchberger Algorithm (Algorithm 4), compute a left

Grobner basis {gy,...,g.} C (R™™)° for pew{B);
Put H := {ms{glj: s :ms{gi':l}:- and L = R:H:a
Return L.

Proof. The proof arises from 2.6.24 and the fact that the map RB* — R%;
(1,000, 7) — E::l?',;_ﬂ, 15 a homomorphism of R-bimodules (see 2.6.22]

with M as image. O

¢ Simplified computation of two-sided division ideals of R-bimodules
by subsets G C Cengl(R®).

Let us come back to the problem (considered in 2.6.18) of computing the
left division ideal gew (M : &) and the two-sided division ideal g(M : G)g.
The following result shows that in case ¢ C Ceng(R*), then the two-sided
division ideal g(M : G)g 1s exactly the left division ideal z(M : G) = {f €
R/ fgse M, 1<4i<r}over R. Hence, we obtain an alternative, direct
method to compute g(M @ &g and gev (M @ &),

2.6. 27 Proposition. Let R be a k-algebra and S an R-bimodule. Let M =
rlfi,....fiy)p € S and G = {m,...,g-} € Ceng(S). Then, p(M : G) is a
two-sided ideal of R. Actually,

(M :G)= g(M:G)g,
and its contracted left ideal of B™ 1s

(m) N p(M :G)) = pe(M: G).
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Furthermore, if R = ki{zy,... x,;Q, =} 1s a G-Algebra, then the ideals
rIM : G)p and e (M : G) can be computed by Algorithm 18, More-
over, if {hy,... M} is a left Grobner basis for Syz(H) (H as in 2.6.17) with

hi = (A h") € ™ = (R™ )™ then

is a two-sided Grébner basis for p(M @ G)g, considering the orders specified
m 2.6.23.

Proof. Pick r € g(M : G)g. There exists h € R*™ such that hG C M
and m(h) =r. If we write b=}, o a; @by, then for all g € G

rg = m{h}g = zﬂa;ba;g = Z a;gh; = Z(ﬂ-i @ bijg=hge M
Hence, g(M : G) = p(M : G)g. Besides, we know from 2.6.17 that the two-
sided ideal of K defined from the matrix H asin Lemma 2.6.6 15 g( M : &g,

and that the left ideal of B*™ defined from H is gew (M : G'). At this point
the proof directly follows from 2.6.23. O

Algorithm 18 Division ideals (centralizing case)

Require: M = gifi..... foir, with {fi,..., fs} C Ceng(R*);

Ensure: B and B, finite generator systems of g(M : G) and g(M : G)g,
respectively;

Using, e.g., the algorithm which can be found in [13, page 214], compute
a generator system H = {hy, ..., hi} of g(M : G) as a left R-module;

Put B:=H; B :'={h o1} U{z; @1 - 10 x;hejcn;
Return B, B'.

2.7 Effective computation of Tori(M, N)

Unlike Extyp( M, N) (see [11] when R is a G-Algebra), there are not known
effective methods to compute Tory, (M, N) for a pair of R-modules M and N
over a non-commmtative ring K. In this section, we devise an algorithm to
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compute a presentation of Tor, (M, N) when R is a G-Algebra, N 1s a left
H-module, and M is a finitely presented R-bimodule, 1.e., M = R™/L for a
subbimodule L of ™.

Our method follows basically the lines of [46] for the computation of Tor
in the commutative case. The main difference between our approach and
the one in [46] arises from the fact that, in general, Tor, (M, N) is just an
abelian group when M and N are left E-modules. This lack of structure
avolds the computation of Torg( M, N) using Grobner bases techniques, so
we ask for a two-sided structure on M. Indeed, when M is an R-bimodule,
then Tory (M, N) is a left R-module. We show that if, in addition, M is
finitely presented as an R-bimodule and N is a finitely presented left E-
module, then effective techniques involving Grobner bases may be used to
compute Tor, (M, N) for any & = 0.

The ingredients of our method are exactly:

e the standard algorithm to compute left syzygies (Algorithm 11), and an
algorithm to compute a free resolution of the lett F-module N given a
finite system of generators of IV (such algorithm may be found in [13, 60,
et al]);

¢ a finite presentation of the R-bimodule M, as M =2 R™/L, with L a
subbimodule of R™ (see, e.g., Algorithm 17 to compute such a presen-
tation in case M 1s a centralizing R-bimodule);

¢ theorem 2.7.2;

Our algorithm, described in detail in 2.7.3, shares the approach of [12] to
compute Exty( M, NJ.

2.7.1 Isomorphisms related to tensor product

This subsection is devoted to fixing notation and describing some isomor-
phisms which will be used later.

Let R be a ring and M an R-bimodule.

For all s = 1, the map a : M* — M @g R al(fi.....fo) =2, fi De,
where {ej,...,es} is the canonical basis of R®, is an isomorphism of left
R-modules.

Indeed, « is the composition of the isomorphisms

M — (M@gR) —M@gR

oo f) = (Ro L fool) = 3 fioe (220
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On the other hand, if 4 is a subbimodule of B™ and B is a left submodule
of H# then
g:(R™@g RY)/T — (R™/A) 2g (R*/B)

: : 2.21
(Fog)+T = (f+4)0(g+B), (221)
where T'= R™ @ B + A ¢p R?, is an isomorphism of left F-modules.
Furthermore, if {r.ll ,ﬂ,} 15 a generator system of A such that 4 =
Ri@1,....8) = (@1,...,6; p, and {by,... b} 15 a generator system of B

as a left F-module, then
fa; @b/ 1<i<r 1<j<t}

1s a generator system of 4 g B as a left F-module, since for all @ =
Yupm e Aand b= E _Piby € B with py, p; € R, we have that

ac b= Zp.!ﬂa i pj,b

—Zm ap;) © by

=Y m (Z pllay) & by
gl i=1

=Y np'a; o b,
&,

From here on until the end of the section, let 0 — L — R™ 2 Af — 0 be
a finite presentation of the R-bimodule M, and let H = {hy,... hy} C ™
be a two-sided generator system of L in such a way that L = g(H)} = (H g
(e.g. when H is a two-sided Grobner basis for L). Note that we can use
Algorithm 17 to compute such a presentation in case K 1s a G-Algebra and
M is a centralizing R-bimodule.

If NV is a left R-module and 0 — B—R* ™ N —~ 0isa presentation of NV,
then the map
| :Rm"“fcr_l{Tj —MEg N

ey + o (T)—pyy () @ pleg) (2.22)

15 an isomorphism of left R-modules, where T' = R™ @ B + L ¢ R®,

and {ey,....es}, {€).....e,}, and {en,... . €m,....€s,..., €} are the
canomcal bases of R*, R™, and RA™ = [Hm}“‘, respectively, where &5 =

i

(Ogm, ..., € ..., Opm).
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Indeed, = 15 the composition of isomorphisms
R™ /o Y (T) % (R™ g R*)/T 2= (R™/L) ®r (R*/B) 28 M @p N

where &, prr, and py are obtained by factoring o : R™ — (R™ &g R*)/T,
J T r™ —s M, and py : R* — N, respectively, through the quotient,
Moreover, if {gy,...,g¢} 15 a generator system of B as a left R-module, with
gk = (@i -+ Gks), then

1=i=r

{ I[B;g;,-l,... ,e;g;,-ajl }11;;::5":1 L { (Ogm,..., hy.....0pm) }1-:.“- [2.23}

is a generator system of a ' (T) = a ' {R™ @ B) + L*® as a left R-module,
since

{Ej"g*}il\:_rtm I {h"'ﬂ&l}itltr

1s a generator system of T = R™ o B4+ L g R* a,inli'l i
a H(T)=a ' (R™ &g B) + a™ (L g R*)
a ' (R™ @g B) +L*‘

rla (€)@ gr), o (hy ©e) Jisr

= R" IZQ'ME ..... g;se,} I[ﬂﬁll..“., h;,,ﬂgm} ::'-i._-;i:jgl,!.

2.7.2  Algorithm to compute Tor; (M, V)

Until the end of the section, let R = k{xy, ..., x,; @, =} be a G-Algebra and
N a finitely generated left R-module. Let

Lt pe B opey 0 M pse o g (2.24)
be a free resolution of N, where J, is the matrix

o
o

with gf = (g'j‘l .. ,g’f;‘;k_i]l c R*%-1for k> 1and 1 <1 < s (an algorithm to
compute it may be found in [13, Ch. 6], or in [60]).
In this subsection, assuming that M is a finitely presented R-bimodule, we

show a method to compute Torg (M. N), 1.e.. to compute the k-th homology
module of the complex

. _. __
R M g R O T Ar@p R 0. (2.25)
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2.7.1 Remark. The case k = 0 may be treated apart, since Tory( M, N) =
Mg N.

We start with the presentations 0 — L — R™—M — 0 and 0 — Kerd, —
R*— N — 0 of the H-bimodule M and of the lett R-module N, respectively.

Since {gy.... .4}, } is a generator system of Ker &y = Im & as a left R-module
and

v R™ (o™ Y R™ sop Ker dy) + L™) — Torg(M, N,

as in (2.22) i1s an isomorphism of left F-modules, we completely describe a
presentation of Torg(M, N) by giving the generator system

{ {e;.g.!ll:-' e :-3;9'!1.50:' } 11%‘—_:1?11- U { (Ogm,..., e ... ,Opm) }1;;':—""-:"
of a ™ {R™ g Ker dy) 4+ L*°, where {hy,... he} is a two-sided Grobner basis

for L (see (2.23)).

Let us return to the general case. Consider again the presentation 0 — L —

R™ 20— 0 of the R-bimodule M and the free resolution (2.24) of N.
For all £ = 1, let

die = ity 0 (Iday @ 8) © 4,
where ~, : B™% [L®% — M @ R* is the isomorphism defined as in (2.22)
with V = R%.

Clearly, the complex

s R pe B g pme ot pmaagps g (9.26)

is isomorphic to the one in (2.25), so Tor, (M, N) may be computed as the
homology of (2.26).

By definition, for all 1 < i < s, 1 < 7 < m,

dilesg + L) =1 (Idar @ G ) (&5 + L)
=i ((Tdy @ ) (pag(ef) © )
=Yy (pael€) @ (gh, ... gk, )
= {g’i‘le" . ,g,f;k_ie'.j + L1,

FE i

(2.27)

Let &;_ s AT 71 he the bloclk-built matrix

g-iljm o gil‘sk_ljm

.‘11- == e ﬂfmkxmk_it-ﬁjr

" E
g:klfm o -gskak_1fm
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where [, denotes the (m x m}-identity matrix. Since A, is built of blocks
which are elements of R times the identity matrix, we have d,(L%) C L*-1,
and the diagram

R — T gmen | [k
a:\ N

ay_ 1 ] fk—1
Ree—1 _:-Tk—i Hm .fL

15 commutative, where m, denotes the projection on the quotient.

The discussion above proves the following result:

2.7.2 Theorem. With the previous notation, for all & = 1,
1. Kerdy, = Ker :'r,;_._lfﬂ.fL‘*'*:
2 Imd,=Im :’I’;;_lf.'}-j:- C R™-t [ 5e-L j5 menerated by

E ke

{ng;le; youe 5giax-_1e;} + L igé:‘:
as a left R-module (note that I[g;f"le;, - ,g;fsk_iﬁ;j is the (74+m(z—1))-th
row of Ay ):.

3. Torp(M,N) =2 Ker di, /[ Im dy 1 = Ker I'Tj'-_]_n'.'E;; [ rirows of Agyq)+L%).

2.7.3 Remark. To compute Tory (M, N} we start with a finite presentation
0L — R™™ A . 0 of the R-bimodule M (say, for example, we have
computed a two-sided Grobner basis {hy, ... he} © R™ of the R bimodule
L) and a free resolution of the left B-module N as (2.24).

The matrx 4, 1s block-bult as above, using the matrix

D= :
gz,

The set { (Ogm...., Ay.....0pm) }™%7 15 a generator system (in fact, note
that it is a two-sided Grébner basis when {hy,... Ry} s0 is) of L** as an
A-bhimodule.

Then, we compute the kernel of mp_id; : ™% — R™%-1/L%-1 using syzy-
gies. Indeed (see [12]), let Hy be the matrix

A,
= l?] € Mimaytrsy_y) xmsy_y (£
Al
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where A} is the matrix whose rows are the generators of L®-! as a left

F-module. Then, if
Syz'(Hy) = pim,....m), withp; = (p},pf) € R™% x R™*-1,

then Ker rr;_._lt:-f;. = plph.....m).

This may be summarized in algorithmic notation, as it is described in Alpo-
rithm 19.

2.7.4 Remark. If the E-bimodule M is not centralizing, but we know a set
H = {hy,... h} satistying M = R™/p(H) and r(H) = (H)p, (e.g., when
H is a two-sided Grobner basis (for g(H})), then Tor, (M, N) may still be
computed by our algorithm.

2.7.5 Example. Let R = U(sl(2)), the universal enveloping algebra of the
Lie algebra of traceless 2 x 2Z-matrices, where k = C (or & = ). We know
that R is the G-Algebra k{z, v, z; @ =, } with Q@ = {yz —zy+ 2, 20 —x2—
2r, zy —wz+ 2y } and, say, w = (1,2, 2).

Let N = R*/B, where B is the left R-module generated by

a = x) 9= (n.xz), ga = (0, 20"z — 2yz* + 2z — ).

The left syzyey module Syz'(g1, g2, ga) is generated by g = (1,—4% 1) € R?,
and, hence,

0— R R N ., (2.28)
15}
where dy, = | g2 | and d; = [g]. 15 a free resolution of N.
3

Let L be the R-bimodule generated by {(C, 1), (1, C) }, where C 1s the Casimir
element 2%/2 + 2zy — z (a well-known central element of U(sl(2))), and let
M = R*/L.

For all k& = 2 we have Torg (M, N) = 0, as the free resolution (2.28) of N has
length 2.

For k = 0, we have (see 2.7.1) that Torg( M, N) = R® / (o Y (R*2p B)+L%),
and

{(1,0,—#%,0,1,0), (0,1,0, % 0,1) , (C,1,0,0,0,0), (0,0,C,1,0,0) ,
(0,0,0,0,C,1), (1,€,0,0,0,0), (0,0,1,C,0,0), (0,0,0,0,1,C) }

is a generator system of a ' R* Gg B) 4+ L* as a left R-module.
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Algorithm 19 Presentation of Tor, (M, N)

Require: k=0, N = glh..... fo) C R, and M = g{f]..... fi)r with
{fi . i} © Cenp(RY);

Ensure: A presentation Ker d;, /Tm dy, of the left E-module Tor, (M, N);
Using Algorithm 17, compute a set H = {hy,..., b} T R™ such that
M= R"/L with L = gp(H)={H)g;

Compute a free left resolution

L -g':'s?_;aj 1 Fz0

of the left F-module N (this step may be accomplished by using the very
well-known algorithm which may be found in [13, 60]).

Compute the block-built matrices

gfl'{m e Ef‘sa-_tfm gilll-l-lfm e gi:;';!lfm
A = : : Ak = :

2 2 F+I R
.';"3,'\,11-?‘?1- e gskak_j Im g-gk_ilfm gSi-—!'gkIm

Compute the matrices A} and A; |, whose rows are (Ogm..... by ,...,0Opm)
forl<1l<vr,and 1 <i < sp_; resp. 1 < i < sp.

Compute a generator system {py,....p} © R™% x ™1 of the left syzygy
module of the matrix [%}] :

g

The set {p}, ..., B}, where p} consists of the first ms;. coordinates of p; for
all 7, 15 a left generator system of Ker d;;

The set whose elements are the rows of Ap, and the rows of A} | isa left

generator system of Im dpyq;
Return Ker d., Im dp. 1.
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For k = 1, we have Tor, (M, N) =2 Ker I[:’I’.:,t:f:} / (girows of Az} + L), but in
this particular example A, = 0 since d, = 0.

As pointed out in 2.7.3, Ker myd; 15 obtained from the left syzygy module of
the rows of

4 — 10—y 0 10

LTl 0 —f01

and the generators of L*. Indeed, by picking up just the first two components
of each element of the generator system

2%+ doy — 22,2, -2, 297, —2,0,0,0) ,
I[l, zz.-"f2 + z'r?:" - Z,.U, D:a D:a _layzr _l:l 1
(8xy — 4z, —42* — dayz® + 25+ 4, -4, 497, —4, 27,
— 2% 2" 4 16y7z — 3297, 227)}

of Syz' (A;), we obtain the generator system
{(20,2), (1,C), (8xy — 4z, —z* —dayz" +2:° 4+ 4) }
of Ker rr.;,-.gl. Therefore, Tor, (M, N) = Ker rr.;,&”lfL = 0, since (Szy—4z, —z1—

dxyz" 422" +4) € L (one may check this by dividing the element by a two-
sided Grobner basis for L).




Chapter 3

Square-free solutions of YBE
and Yang-Baxter Algebras

As we pointed out in Chapter 1, Yang-Baxter Algebras are a particular class
of algebras with PEW bases. They are defined from solutions of the Yang-
Baxter equation, which has became an attractive research topic to scientists
and mathematicians since the middle of nineteen sixties. First, many solu-
tions of this equation were found by studying certain related algebraic struc-
tures: the Hopf algebras (see e.g. [35]). In 1990 Drinfeld [19] suggested look-
ing tor the so-called set-theoretic solutions, which are the simplest class of so-
lutions. In this sense, Weinstein and Xu [81] found in 1992 a way to construct
set-theoretic solutions by studying the Poisson group. Afterwards, Etingof,
Schedler and Soloviev [21] studied set-theoretic solutions satisfying inverti-
bility, unitarity and nondegeneracy. They introduced several constructions
of such solutions, they gave their classification in terms of group theory and
showed their geometric and algebraic interpretations. Meanwhile, Lu, Yan
and Zhu [66] proposed a method to construct set-theoretic solutions which
generalizes the earlier ones of Weinstein-Zu and Etingof-Schedler-Soloviev.
Whereas these results are based on algebro-geometric and topological me-
thods, T. Gateva-Ivanova introduces a combinatorial approach to this topic
focusing on the behaviour of the set of relations R( X, ), uniquely determined
by each solution (X, r) (see [38, 39, 40]). If a solution (X, r) is square-free,
then the set 'R(X, r) satisfies the so-called Cyclic Condition, which is essential
in combinatorial techniques in this context. This approach has been applied,
for example, in order to obtain algebraic and homological properties (see [42])
of the Yang-Baxter Algebra A(k, X, r), the Yang-Baxter group G(X,r) and
the Yang-Baxter semigroup S(X,r) associated to each square-free solution

(X, 7).

111
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As we show throughout the whole chapter, the combinatorial approach of
T. Gateva-Ivanova can be used in order to develop algorithmic methods in
the context of (square-free) solutions of the YBE. After recalling some ways
of representing and classifying square-free solutions, we study isomorphisms
and automorphisms of solutions by following this combinatorial-computatio-
nal approach. The usefulness of computing the group of automorphisms of a
solution 1s justified at the end of the first section, where we construct some
algorithms which require automorphisms in order to compute ertensions of
solutions (1.e. new solutions obtained by gluing two solutions).

In the last section we discuss the equivalence, proved by T. Gateva-Ivanova
[40, 42] and M. Van den Bergh [42], between square-free solutions of the
YBE, semigroups of skew-polynomial type and semigroups of I-type. The
theory of reduction systems and Grobner basis surveved in the first chapter
can be used in this context to prove (cf. [40]) that the Yang-Baxter Algebra
Alk, X, r) of any square-free solution (XX, r) 1s an algebra with a PBW basis.
Finally, we show how the behaviour of semigroups of skew-polynomial type
can be determined completely by a family of Linear Programming problems.

Throughout the whole chapter we illustrate theoretic notions with explicit
examples. In order to do these computations we have encoded a library of
procedures, included in the CD at the back page of this work (see also [32]),
using the package of symbolic computation Maple. It allows us to recog-
nize when a set of relations determines a square-free solution, to compute all
possible orders = on X = {x; < - -+ < z,} (renaming the variables z;'s if nec-
essary) such that the Yang-Baxter semigroup S(X,r) is of skew-polynomial
type, to verify when a bijection 1s an automorphism of a square-free solution,
to compute the group of antomorphisms of any square-free solution, to glue
two square-free solutions in order to obtain other square-free solution, ete.

3.1 Square-free solutions of the Yang-Baxter
equation

We start this section recalling some basic notions and results in the topic
of set-theoretic solutions of the Yang-Baxter equation, mostly collected from
the works of T. Gateva-Ivanova [35, 36, 42, 40] and P. Etingof, T. Schedler
and A. Soloviev (see e.g. [21]). We focus on square-free solutions of the Yang-
Baxter equation, viewed from a combinatorial approach, where the so-called
Cyelic Condition plays an important role.
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3.1.1 First notions

The Yang-Barter eguation (YBE, for short) first appeared in 1967 in Statis-
tical Mechanics, and it became one of the basic equations of Mathematical
Physics. Since then, many scientists and mathematicians are devoted to find
solutions of this equation. In this historical context, the YBE was formulated
in the following way, as we can find n [55].

3.1.1 Definition. Let V' be a vectorspace over a field k and R a linear
automorphism of V" &, V.

1. Ris a solution of the (classical) YBE if the equality
(R Idy)(Idy @ R)(R @ 1dy) = (Idy @ R)(R @ Idy )(Idv @ R) (3.1)
holds in the group of automorphisms of V' & V@ V.

2. R s called a solution of the QQuantum Yang-Baxter equation (QYBE,
for short) or an R-matriz if
R12R13R23 — REERIERIZ ESE]I
where B9 . V@, Vo,V — V@, V @, V means R acting on the i-th
and j-th components.

A solution R of the QYBE satisfying R R = Idy o is known in the
literature (see e.g. [68]) as a Yang-Bazter operator.

3.1.2 Example. Let V' be an arbitrary vectorspace over a field k. The flip
vy ViRV — Ve Vdefined as vy(z@y)=p@zforall my e Visa
solution of both the YBE and QYBE. It is called the trivial solution.

The problem of finding all the solutions of the YBE 15 an open problem. If
{v;}; 1s a basis of the finite dimensional vectorspace V', each antomorphism
can be represented as B € V & V by

R(v; o) = Z C-if‘;!t-';_. @ .
el

Hence, K i1s a solution of the YBE if, and only if,

Y (CF0) (GpeC ) (Coyden) = Y (8505 (Crde:) (B Cy"),
P.grTY. X AT
tor all 2, 7, k. I, m, n. or equivalently,

Y ocricncin =Y oqciont, Vigklm,n.

Py ya.r
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This formulation of the problem inveolves (dim,(V))® cubic equations on the
(dimy (V') coefficients Ef'fj',-'! of R, which gives a hint of the difficulty. However,
in the last two decades many solutions of the YBE have been found, and the
related algebraic structures (Hopf algebras) have been intensively studied.
Most of the solutions found were “deformations™ of the trivial solution. At
the beginning of the 1990°s, Majid [67] introduced and studied the matched
pairs of groups in order to produce solutions. In 1991 Drinfeld [19] set the
problem of finding the so-called set-theoretic solutions, the simplest class of
solutions, which in general are not obtained as deformations of the trivial
solution.

3.1.3 Definition. Let X be a non-empty set. A bijective map r of X =« X
onto itself 1s a set-theoretic solution of the YEE if the equality

T1Ter = Tal172 (3.3)
holds in X = X = X, where

i X x X x X —XxXxX g t X XX x XN —XxXxX
From now on, we shall refer to the equality (3.3) as YB condition, braid

relation or YB diagram (if we represent it by a diagram). In case r is a
set-theoretic solution, (X, r) 1s called a braided set.

Similarly, r 18 a set-theoretic solution of the QYEE if the Quantum Yang-
Baxter Equation (3.2) holds in X x X x X where R is the bijection defined
as r acting on the i-th and j-th components.

Clearly, each set-theoretic solution (X,r) of the YBE induces a sclution
RV iV — Ve V oof the classical YBE where V' is the k-vectorspace
spanned by X.

3.1.4 Example. Let X = {z, 7., 25} and r the involutive map (i.e., r¥ =
Idy, x ) defined as
re X <X —X=xX
[Il,ﬂ:z] e (x2, 1)
(x1,73) = (
(w2, 73) = (73,71
(i, m) « (x,2), 1=¢<3

Then, (X, r) is a set-theoretic solution of the YBE. In fact, this solution and
the trivial one are the only (up to re-indexing the variables) set-theoretic
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involutive, nondegenerate square-free solutions (see 3.1.6 for definitions) of
the YBE for a set X of 3 elements.

Omne can associate to (X, r) the following products of disjoint cycles in Sym(X)
oy = (z3)(x21,), oy = (z3) (1),
meaning

?'(.Ta_-;,:t!a_-;:l = (i, :I!»_:,jl, l=1=3
(g, x3) = (oy(23), 07 (22)) = (@3.2),
r(za, 22) = (o1(x2), 07 (23)) = (21, 73),
r(zy,22) = (o2(22), 05 (21)) = (w2,2),

and so on. As we will recall later (see condition (6) of 3.1.19), this notation
can be used in order to represent any square-free solution of the YBE.

The following well known fact (see e.g. [21]) gives the relation between the set-
theoretic solutions of the YBE and the set-theoretic solutions of the QY BE.

3.1.5 Proposition. Let r: X « X — X = X be a bijjection, and let f.q:
X %X — X be the maps such that r(z,y) = (f(x,v).g(z,y)). Let R = Tor
where 7: X« X — X = X denotes the flip map given by 7(z,y) = (v, =),
for all z,u e X.

Then, r is a set-theoretic solution of the YBE if, and only if, R 1s a set-
thearetic solution of the QYBE. Furthermore, r? = Idy.y if. and only if, R
satisfies R*' R = ldx . x, where R* (z,y) = (f(y,x).g(y, z)) for z,y € X

In what follows, X will be a finite non-empty set and we will denote by
Syvm(X ) the group of permutations of X, with product fg = f o ¢g. For any
integer m = 2, we will identify the cartesian product X = . %X and the
set X'™ of monomials of length m in the alphabet X. As usually, given a
bijection r : X « X — X = X the map v+ - X™ . X ig defined as
riitl — Idx:_l T Idxm_u_i.

We are interested in set-theoretic solutions of the YBE which satisfy certain
conditions. They are recalled below following the terminology of [21] and

[38].

3.1.6 Definition. Let v : X% — X? be a bijection given by its component
maps L£p, Ryt X — X as r(zy) = Lo(y)Ry(z).

1. The map r, or equiv. the set (X, r), is involutive if r® = Idy=. A
braided and involutive set (X, r) is called a symmetric set;
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2. The map r, or equiv. the set (X, r), is nondegenerate if the component
maps
L X — X, Ry: X — X

are bijective for all =,y = A

3. The map r, or equiv. the set (X, r), is square-free if r(zx) = zx for all
re X,

3.1.7 Remark. From now on, a nondegenerate involutive set-theoretic so-
lution (X, r) (that is, a nondegenerate symmetric set (X, r)) will be simply
called a solution (of the YBE).

Throughout this chapter, the set X of any solution (X, r) is supposed to be
finite.

Becall that the n-th Braid group B, 15 fimtely presented via generators
{by,...,b,_1} and defining relations

{b,;bj = bybi, i[> 1 }

bibip1by = bbby, 1=¢<n-—2
The symmetric group S, 1s the quotient of 15,
o= Bu/ 6 =15

3.1. 8 Proposition. [21] Let n > 2 and X = {x,... ,2a}. Then the follo-

wing two conditions hold for each integer m = 3.

e The assignment b; — v+ for 1 < { < m — 1 extends to an action of

B,, on X™ if, and only if, (X, r) Is a braided set.

e The assignment by — ! for 1 <{ < m — 1 extends to an action of
Soon X™ if, and only if, (X, r) Is a symmetric set.

The (nondegenerate, involutive, set-theoretic) solutions of the YBE have
been studied in many papers like [81, 21, 66, 75]. In [42] it was shown first
the close relation between the square-free solutions, the semigroups of skew-
polynomial type, and semigroups of [-type. This motivated the conjecture
of Gateva-Ivanova (see 3.3.12), recently verified in [40], that the three no-
tions: the square-free solutions, the semigroups of skew-polynomial type, and
semigroups of I-type, are equivalent.

We will focus on square-free solutions (X, r), from which Yang-Baxter Alge-
bras, treated in the next section, are obtained.
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3.1.9 Example. The trivial solution 7 : X* — X? given by 7(zn) = yx
for all z,» € X, 1s an example of square-free solution of the YBE.

3.1.10 Example. If (X, ry) and (Y, ry) are square-free solutions, then the
pair (X %Y, rx.y) where ry .y = (Idyx x 72 Idy)o(rx < ry )o(ldy =771 = Idy )
and 7 : X =Y — Y = X 1s the flip map, 15 a square-free solution of the
YBE as well, called the cartesian product of (X, ry) and (Y, ry ).

3.1.11 Example. (Lyubashenko; see [19])
Let X be a non-empty set and £, R : X — X maps. Let

XY X
xy — Lly)Rix).
i) (A, r)is a nondegenerate set if, and only if, £ and R are hijections;
1z) (X, r)is a braided set if, and only if, Lo R =R o L;
iti) (X, r) is involutive if, and only if, £ =R~L
In this case (X, r) is called a permutational solution.

Note that there exists a unique square-free permutational solution, namely
the identity solution: r, = Idy:. However, as we will see in 3.1.19, each
square-free solution behaves locally as a permutational solution.

3.1.12 Definition. [21] Let (X, rx) and (¥,ry) be solutions. A bijection
w: X — Y is an isomorphism from (X, rx) to (Y, ry) if the diagram
Xw X ZEe X = X (3.4)
ﬂij l¢x¢
V2V ——=Y =Y

15 commmutative. In that case, (X,ry) and (Y,ry) are called isomorphic
solutions. We denote by Is(X,Y") the set of isomorphisms from (X, ry) to
(Y:- ?'3’}‘

3.1.13 Note. Clearly ¢ € Is(X,Y) if, and only if, ! € Is(Y, X'). Hence,

the relation defined for two arbitrary solutions (X, rx ) and (Y, ry) as
{X:-?'X} ~ (Y, ?'1’} = dpe IS{X:*Y]

15 an equivalence relation.

We will recall some concepts which can be found in the literature [7, 21, 40,
fi6, 67] concerning some algebraic structures associated to each solution, or
more generally, to each bijection r : X2 — X2, We follow the notation of

[40].
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3.1.14 Definition. Let X be a non-empty set and r : X — X? a bijec-
tion.

The set of relations ! associated to (X, r) is
R(X,7) = {oy = §& / r(zy) = §& in X7},

¢ The semigroup S(X, r) generated by X with defining relations R(X, r),
iz called the semigroup associated to (X, r).

o The group associated to (X,r) is the group G(X,r) generated by X
with defining relations R(X,r). If (X,r) is a solution, then G(X,r) is
also called the structure group of (X, r).

o For a field k, the k-algebra associated to (X, r), denoted by Alk, X, r), is
defined as the k-algebra generated by X with defining relations R{ X, r),
e, A(k, X, r) is the factor algebra

k(X
xyl oy — g3 [ r{zy) = 9% in X2 gy

3.1.15 Notation. From here on. the symbol * in a relation of R(X,r) will
mean the existence of a variahle which satisfies the relation, for instance, we
will write zy = z+ € R(X,r) if. and only if, there exists t € X such that
xy = zt € R(X,r).

Based on the notion of Yang-Baxter Algebra given by Manin [68] consisting in
any quadratic algebra with defiming relations determuned by a Yang-Baxter
operator, T. Gateva-Ivanova introduced in [40] the following concepts.

3.1.16 Definition. If (X, r) is a square-free solution, then S(X r), G(X,r)
and A(k, X, r) are respectively called the Yang-Bazter semigroup, the Yang-
Bazter group and the Yang-Bazter Algebra associated to (X, r)?%.

), then S(X,r) is the free abelian semigroup [x,,...,x,] generated by X,
G(X,r) is the free abelian group Z* generated by X, and the Yang-Baxter
Algebra A(k, X, ) is the commutative polynomial ring k[zq, ..., z,].

3.1.17 Example. If X = {x,..., ty} and r is the trivial solution (see 3.1.

'Some authors (see e.g. [40]) remove from R(X,r) the relations “ry = §&" when r = §
and y = & Note that in that case the associated structures S{X, r), G(X, ) and A(k. X, »)
are exactly the same as the ones defined above.

*Sometimes square-freeness is not required in the definitions of Yang-Baxter semigroup,
Yang-Baxter group and Yang-Baxter Algebra (e.g., [40]).
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3.1.18 Note. It is proved in [42] that if (X, r) 1s a square-free solution,
then the semigronp (X, r) is (left and right) cancelative, that is, ¥V g, g". h €
S(X,r),

(gh=gh or hg=hg') = g=4g

Furthermore, it can also be extracted from the results of [42], that each
element ¢ € G(X,r) can be presented as g = u v, for some u, v € S(X, r).

The proof of Theorem 3.1.19 can be found in [40].
3.1.19 Theorem. Let X = {x1,...,2,} and r : X% — X? be a bijection

represented by its components as r(zy) = Lo(w)Ry(x) forx,y € X. Consider
the following properties:
1. {(a) (X,r) is left nondegenerate, that is, L, is bijective Yr € X

(b) (X,r) is right nondegenerate, 1.e., Ry is bijective Wy € X;

2. (a) (Right Ore condition)Va,bc X, 3! x,y € X such that ar = by €
RN, r);

(b) (Left Ore condition) ¥V a,b € X, 3! ¢,z € X such that za = tb €
RN, r);

3. (X, r) is square-free;
1 (a) La(w) £, Vy #
(b) Rylz) #u, Vx#u;

S Forall z,gy € X, if vy =y € R(AX, r), then
(a) rhc relations x3 = *¥, Fy = §*, Yr = ¥y, YI = T* are in
ROGr), that in Re) = Rs), £0) = £:09), Rol9) = Ral),
and L, L4(F):

(b) there exists z,t € X such that rry = 2&® in S(X,r) and zyy =
gut in S(X,r);

o

. (CycLIC CONDITION, T. Gateva-Ivanova, [38]

Forallz#ye X rIJr:IC exists a unique pair of disjoint cycles (L, LYy
called pair of relative cycles, LT = (x5 --- 1) with r = x; and Jf::'[." =
(142 - - - Um) with y =y, such that for 1 <i=k 1<j7<m

riwy) = U'[?:I'jj'ﬂr_l'[xa;]'s rlyz;) = U'[Ia;j'g_l'[yj:'s (3.5)
where o = L 07

(Note that Li; = I.:; and £5~u, =LY foralll<i<k 1=<j<m)
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Then,
A)  lais equivalent to 2a. and 1b is equivalent to 2h.

B)  Assuming 1, the statements 3 and 4 are equivalent.
) Ifi(X,r) is a braided set satistving 1 and 3, then 5 holds.

D) Ifr is involutive, then the statements 5 and 6 are equivalent.

3.1. 20 Corollary. Every square-free solution of the YBE satisfies the con-
ditions 1 to 6 of Theorem 3.1. 19,

It is well-known that there exist left and right actions of the group G{X, r)
assoclated to any solution (X, r) on the set X, as the following result shows.

3.1.21 Proposition. [21] Let (X,r) be a nondegenerate braided set. As-
sume that v is represented by its components as r(zy) = L(y)R,(x) for
r,y € X. The group homomorphism £ : G(X,r) — Sym(X): x — L,
induces the left action of G(X,r) on the set X given by:

GX,r)x X —X
(@i i y) = Loy o, ()

[’E‘:Tu R £TI5 }[y}

Similarly, the group homomorphism R : G(X,r) — Sym(X); =z — R,
mmduces a right action of G(X,r) on X

FProof. Consider the YB diagram

T 1[' z = x Ly(z) Ralu)
Loly) Rylz) = LoL,(%) Rﬁ,:.[:j'[x:' R.(v)

ra \' irn
) i

"{:m{y} -‘{:Ry{m:l{z} R:Ry(:'::l Lﬁﬂ:{y}‘cﬂﬂrj(z} fRﬂ-Ryig:.{:}‘{:I(y:I R:Ry(-r}
From the last rz-arrow we obtain that £,L, = £¢,1) LRy (). The proof easily
follows. O

These and other actions of the group G(X,r) are studied in detail in [40] in
the case when (X, r) is a square-free solution.

3.1. 22 Notation. Let (X,r) be a solution and y € X. We denote by O,
the orbit of y under the left action of G(X,r) on X, 1e.,

'my = {J'::g-':y] .f’l ge Q(X:?"]'}
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3.1.23 Remark. Proposition 3.1. 21 is a consequence of the following more
general result of [21]. Let (X,r) be a nondegenerate set. Then (X, r) is
braided if, and only if, the following conditions are simultaneously satisfied:

1) The assignment x — R, provides a right action of G(X,r) on X;
ii) The assignment = — £, provides a left action of G(X,r) on X;
iii) the linking relation

Rin, @ (Lx(¥)) = LRy @) (Re(u))
holds for all =y, z € X.

3.1.24 Proposition. [40] Let (X,r) be a square-free solution of the YBE.

1. With the notation of the statement 6 in 3.1. 19, for a fixed x € X, let
£¥o L8 be all the cycles in Sym( X)) associated to the pair (x, y;)
tor all ; € X, y; & x. Then,

2 Forallz € X,

3. Forall z,9 € X,
r(z,y) = (£2(y), £, ().

Consequently, every square-free solution (X, r) is uniquely determined by the
left action £ of G(X,r) on X, or more precisely, by the set

{’{::r ."Ix (S X}

3.1.2 Representations of square-free solutions

In this section we show some ways, proposed by T. Gateva-Ivanova, of rep-
resenting any square-free solution (X,r): by using cycles of Sym(X), via
the left action of G{ X, r) on X, and geometrically by drawing its associated
grapfh. To illustrate these methods, we will see how the following square-free
solution can be represented by using each of them.
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Let X = {x,,...,76}. Consider the square-free solution of the Yang-Baxter
equation defined as the map r : X? — X? satisfying v* = Idya, r(z;z;) =

r{a@y) = Ty, T(T133) = 3470, T(T174) = 337,
r{rrs) = rers, T(T1Te) = Tsry, r(T2xa) = T4m
r(wamy) = xaxy, rlraws) = wers, ri{T2xe) = w53, (3.6)
r(T37,) = 2473, T(T3T5) = TeTy, T(TaTe) = T5Ty
rlzyrs) = wery, T(T4re) = rsxy, v(T5T6) = TeTs

¢ The set of pairs of relative cycles.

Analogously as in Example 3.1.4, the set of relations R(X, r) of any square-
free solution can be represented by using cycles of Sym(X ). More precisely,
according to the Cyelic Condition, to each square-free solution (X,r) one
can assoclate a set of products of cycles of type 0 = £20Y% € Sym(X) for all
x,y € X which determines r uniquely. -

3.1. 25 Definition. Let (X,r) be a square-free solution of the YBE where
X ={z,...,z,}. The set of pairs of relative cycles of (X, r) is defined as

C(X,r)={o; = Lil‘Li; Jl=i<j=n},
where {ﬁ;‘:{, Lﬁ;} 15 the pair of relative cycles associated to x;, x; obtained
from the Cyclic Condition (statement & of 3.1.19).
Note from 3.1.25 that any square-free solution (XX, r) is well determined by
C{X,r) since
rmiy) = oylzg)ay (2, rlzgm) = oyl)oy; (25),
for all ;, x; € X with ¢ < 3.

3.1. 26 Convention. We will often omit in the set C(X,r) the products of
relative cycles of type a;; = (x;)(x;), 1.e., the pairs of relative cycles associated
to x;, x; € X such that v{x;x;) = x;x;.

3.1. 27 Example. For the square-free solution (X,r) of the YBE given in
(3.6), the pairs of relative cycles are

L3 =(m), L33 = (x2),

£33 = (z3), L35 = (z4),

L£55 = (zg), L35 = (za),

ﬁgi —_ E:‘Ii}._ Jn":i‘g —_ £T2 —_ |[ } L‘;g —_ £T¢ _ .L‘:Tg —_ £T¢ _ |[ ]l
Ty T Txy T Mxg T ay T L1z ® T ~xy T ag T Mg T T3y,

. L . R T o “TY __ TR . T TR
'L'T,s = L’--"B = L‘Is = I"’TB = {.I11134j|, LI;[ = I‘-’:l'i = L:q = LTJ. = {1351135},

*TEL __ R Py T3 . S L - S L . T i -
"{"1'5 = Lz‘s = Lz‘s = f"’:rs = I[.Iz:rgjl, Lm = f"’:rz = ’Lz‘a = L:rz = I[:I!s:l!a]l.
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Therefore,

C(X,r) = {{zews)(Taxs), (xers)(Tam1), (x4Ta)(T2m1) }.

e The left action of the Yang-Baxter Group G(X,r) on X.
By 3.1.24, any square-free solution (XX, r) of the YBE is uniquely determined
by the set {L£, /x € X}, Moreover, if for a fixed x € X we write

{3 Ly = L] [ (L5, £]) is a pair of relative cyeles. w € X\ {x}}.

then
Lp=(x) - L¥...C0™

T ji

3.1.28 Example. The square-free solution (X, r) defined in (3.6) is repre-
sented via the left action of G(X,r) on X by

Loy = (@) (w2) (2324 )(x56),
Lo = (m1)(w2)(zazy )(xsms).
J £za = (2122)(23) (24)(25%0),
Ly = {IIEE}[ '[ ]”[ 5T )5
Ly = {leat;'[-rex ){xs}[xﬁ]:
J!::r.g = {lei}[.rg:ﬁ I[:Eg]l(:rﬁj

* Graphs.

The particular behaviour of square-free solutions of the YBE allow us to
represent them by using graphs (cf. [39]), or more precisely, pseudodigraphs
l.e., directed graphs for which parallel edges and loops are allowed. The
pseudodigraph T (X, r) or, as we will refer from here on, the graph associated
to each square-free solution (X, r) reflects the properties of (X, r), and it is
useful for symbolic computation. Graph terminology used here can be found
in [15, 16, et al].

3.1.29 Definition. Let (X,r) be a square-free solution of the YBE. The
graph T(X,r) associated to (X, r) is the pseudodigraph defined as follows:

s Set of vertices: X,

e Set of edges: for a,z,y € X, there is an edge # — y from the vertex
“z" to the vertex “y" if, and only if, L.(x) = y, or equivalently, if
ar =y+ < R{X, 7).

3.1.30 Convention. To draw the graph T(X,r), we shall consider:

1. We will rarely draw loops (closed edges) x Zox;
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2 When L (x) =y and L, (y) = =, we will draw one edge in both direc-
tions x <+ y instead of two edges x — y and = < y:

3. Notation x tat, gk} y will be used whenever L, (x) = y for all 1 €
11,...,k}, and we will draw x tag. g y only if all a; are edges in both

directions, or equivalently, when £ = L3 = (ry), 1 <2<k

Clearly the graph T (X, r) of a square-free solution (X, r) reflects the proper-
ties of the action of the Yang-Baxter group G(X,r) on X. In particular, each
orbit O, (with ¥ € X) corresponds to a connected component of T(X,r),
more precisely, to that which contains the labelled vertex y.

3.1.31 Example. The graph T (X, r) associated to the square-free solution
(X, r) defined in (3.6) is given by fizure 3.1. We can observe that T(X,r)
consists of two connected components, corresponding to the orbits

Cj}zu = {Il,ﬂ':g,l'g,.ri}, E}:r,s = {'-'TS-:a xﬁ}

under the left action £ of G{X,r) on X.

x Exj,xﬁﬂ X,
1*—’"
{x ~121| §x3,x_|_}
P o wn w
e L
L L » - ; ;
i . e X ;
Xg Xg X PR )

Figure 3.1: Graph of the square-free solution described in (3.6).

We propose the following definition for isomorphism between graphs associ-
ated to square-free solutions.

3.1.32 Definition. Let (X, rx), (Y, ry) be square-free solutions of the YBE.
We say that their associated graphs T(X, rx ), resp. T(Y,ry] are isomorphic
if, and only if, there exists a bijective map ¢ : X — Y such that

T, — T, 15 an edge of T(X,ry) = o(x;) %) @(x5) 1s an edge of T(Y,ry ).

Note that this relation 1s an equivalence relation in the set of graphs of square-
free solutions. We will prove later, in 3.2.5, that two square-free solutions
(X,rx) and (Y, ry) are isomorphic if, and only if, their graphs 7 (X, ry ) and
T(Y,ry) are isomorphic.
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of the YBE defined on X is to find all possible square-free solutions (X, r)
up to isomorphisms, or in other words, to give the set of representatives of
all equvalence classes under the isomorphism relation ~ (see 3.1.12). We
will take into account (as it will be pointed out in 3.2.5) that two square-
free solutions (X,r) and (X, r2) are isomorphic if, and only if, they have
isomorphic graphs T(X,r), T(X, r2), or equivalently, if their sets of pairs of
relative cycles C(X,r;) and C(X,r;) are the same after possibly re-indexing

i 1

the variables of X for one of them.

If (X, r) 1s a square-free solution with X = {x;,...,z,}, we denote by m the
mazrimum of lengths of all cycles ocurring in C(X,r). A method to classify
the square-free solutions defined on X, first proposed by T. Gateva-Ivanova,
conslsts in splitting up the study in different cases depending on m. More
precisely, it starts studying all possible square-free solutions with m=n — 1,
i.e., the square-free solutions r : X X2 for which (x, ) (z,_1@p_ s 1) €
C{ X, r). The tollowing step consists in studying the case m = n—2, and so on
until m = 2. Note that m = 1 corresponds with the trivial solution r = Idya.

Next we will show some technical properties, useful in the computations
required by this method of classifving square-free solutions.

3.1.33 Lemma. Let (X, r) be a square-free solution of the YBE, and a # =
arbitrary elements of X, whose associated pair of relative cycles is (L] =
[ . . TE ) erelyeire —
[Ty -3y, ), L)) where & = 1.

1. If zjx; = my € R(X, ) for some 1 < k,1 < m, then

TjtpTitp = ThipTiyp € RN, r), Vp = 0;

20 I £F 15 an anwvartant cycle (Le., for all x;, x; € £F, 1t holds that x;x; =

rprp € WX, r) for some xp, xp € L), and we know the relations

T =Tpetl = WX, )

1T, =, 2y, = R(X, 1),
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then

. Cm o
BT = Thy_ 41Ty i1 € RIX ), P11 <45 =m.

where the indexes “s" of the variables x, are taken modulo m.

Proof. Let us prove the statement 1. If we write L% = (ajaz---a;) with
it = a, then from the dotted rj-arrow of the YB diagram

ra
l'.'-!.Ij r, = T Iy

.| I

Tyl @ Iy Thtl Q¢ T
F‘El ra
LS |
Lit1 Ll B o o L1 Lpp1 Qe

it holds that z;12:41 = zrpzg1 € R(X, r). Hence, the proof easily finishes
using induction.

The statement 2 is a consequence of 1. Indeed,
— — JE— —
TVTi g1 = Thy_, @, € RN, r) = @odi_jio=Te_, 0T, 1

Repeating this process j — 2 times we complete the proof. O

3.1. 34 Lemuna. Let (X, r) be a square-free solution, and let a, b, c,d, z,u, z,
t € X (not necessarily pairwise distinet ).

1. If ab = ed € R(X,r), L4(z) = . and Ly(x) = z, then there exists
£ X\ {a,c} such that L£,(y) =& and L.(z) = &. The square

r——=y
d a
Rt é P, (E

is included in the graph T(X,r).

Moreover, if z # ¢ then £ # ¢, and analogously, if y # a then £ # a;

yub, ab = ba € R(X,r), £2 = £ = (a),

2 Ity & {a,xz,z}, 2 & {bx
= ﬁg = (b), and L£F = £ = (zy), then there

* o4 1-|'_'|
£r =02 = (xz), L]

i
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exists £ € X\ {a,b,x,y, z} such that £} = Lf = (a), £ = L'.i = (y&),
ch = L'.g = (b). and L} = L'.E = (z&). L.e., the subgraph

is included in T(X,r).

3. Ifa ¢ {z,y,z,t} and axr = ya, az = ta, zz = zx € R(X,r), then
yt =ty € R(X,r), Le.,

:Cx—“}yaz
y.tCa mCz—ﬂthy

are arrows of T( X, r).

Proof. Let us prove 1. Let a, 8,&,~,d € X such that bxr = yo, dor = 27,
ay = En, cz =34 € R(X,r). From the YB diagram,

i
abr—cdux

N

aya czp

N

Ena—teyd g

We have v = £ and so, ez = £5. Since (X, r) is square-free, £ # ¢ whenever
z # ¢, and £ # a whenever y # a.

Now let us prove 2. Similarly as in 1, there exists £ € X\ {a,b} such that
ay = &n, bz = £0 and nb = da are in R(X,r). From the last relation,
ab = d+ € R(X,r) and ba = 5+ € R(X,r), but since ab = ba € R( X, r),
then 4 = b and n = a. Hence, ay = £a € R(X,r) and bz = £b € R( X, r).
Moreover £ # y, because otherwise the relations bz = yb and bx = yb would
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imply # = x. Analogously, £ £ z. Now, from the YB diagram

ﬂh%l'i*'ﬂ:nb

bawy zab
F'Ql l‘i"ﬂ
béa_ .......... ;.zbﬂ

we obtain that b = zb. Therefore, £ = ﬁij‘ = (b}, £f = L'.E = (z£). Similarly,

implies £f = JL'.E = (a),

i}
azbh——=xah

(w€). Finally, £ # x because otherwise,

from bx = zb € R(X,r) and bxr = yb € R(X,r), we would obtain that y = =

- a contradiction.

The assertion 3 follows from the YB diagram:

ra
Qr&f—q

O

In the next example we show how the previous properties can be applied in
order to determine the classification of square-free solutions for a given finite

set X

3.1.35 Example. Let us classify all square-free solutions of the YBE de-
fined on a set X = {1, 22, x3z4} of 4 elements by following the method

explained above.

* In the case m = 3 there is a cycle of length 3, namely, (z,)(z3zom,) €
C(X,r). Note that the cyecle (zzrzr) 15 invariant (1.e., for all i, €
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11,2,3}, r{z;x;) = xya; for some k1 € {1,2,3}). We distinguish three

Ccases:

A) If xazy = za# € R(X,r), then by virtue of 5 in 3.1.19, z3x; =

+r1 € R(X,r) - a contradiction.

B) If =

71 = xo+ € R(X . ), then by the statement
ippiinimi

rtn)t““[- enee; FEET=krr e e whieh—tos ;o2
ook ETR AT A AR 7 i T

L7, then z371 = 173 € R(X, r). Indeed, the
_1s not possible, and rar, = 2, € R(X, r)
hat xyx; = xz2x3 € R(X,r) - a contradiction.
r3 € R(X,r), and by virtue of the statement
it holds zy2y = xezy € R(X,r) and zo25 =
15, there exists a square-free solution (X, r)

(X, 1"1]' = {(xﬂ(x;xlej}.
a==1ble cases:

{,r), then there are three possibilities: zyr; =
3 = marp € R(X,r) and zyzs = 2374 €
rst two options are not possible. If we as
ne, we have by the property 5 of 3.1.19 that
r) - a contradiction. Thus, ;o3 = z374 €
‘e, the relation 123 = #+ has to be the com-
: relations determine the square-free solution
n terms of pairs of relative cycles by

EX, ?"gjl = {(x43:3){:t2x1}}.

v}, then applying the property 1 of 3.1.34 to
ey € R(X, r), we get

ra
Iy —== T3

AR ]
B “
F4 o -

ry} satisfies ryzs = £+ € R(X,r) and z,2 =
hat @ary = 2+ € R(X,r) and = & {x2, 23},

LTET —=kgk

pether-with aary = ¢

- a contradiction.

If Tal] = Ip* £ ?R(X
relation r,r, = ;o
implies, by 3.1.33, t
Therefore, rar; = o
1 of 3.1.33, we have
375 € R(X r). Th
such that

C

e If m =2, there are two

A)

If |:$4.1'3]||[1321131:| = f.jI:.f
Iiarz = %{X:-?.j:- Ty
R(X,r). But the fi
sume e.g. the first o
IoaTs = 1% = ERl:X,
R(X,r) and therefor
mutative one. These
(X, r2) represented i

C

If [Id.fgjlli.rzjl = CI[X..

the relation xqrs =

where £ € X'\ |z,
£+ € R(X,r). Note
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B.1) If £ = x4, then = has to be z,, otherwise z,7) = zq% € R(X, 1)
implies that =37, = #x; € R(X,r) - a contradiction. Thus,
the relation zyxs = ra* together with zazy = x4+ € R(X,r)
(which implies 23 = #xy € R(X,r)) provides the relation
xaxy = ryr3 € R(X,r). Looking at the remaining pairs of
variables, we have three possibilities:

a)

b)

c)

If zpmy = xqxa € R(X, r), then z3z; = z1% € R(X, ), but
these relations do not provide any square-free solution,
because if xq2) = zyz, € R(X,r), then from the dotted
edge in the square

we get x1xz = 4% € R(X,r) - a contradiction; and simi-
larly, the assumption of z371 = 174 € R(X, r) lead us to
other contradiction.

The relation zar, = x4 € R(X,7r) 1s not possible by
reasons which are analogous to those in the previous case.
If zy7) = 2975 € R(X,r), then there are two possibilities:

ci) If zqz) = 2125 € R(X,r), then zy2 = 22y € R(X 1),

and we obtain the square-free solution (X, rs):

C(X,ry) = {(z4xa) (22 }.

cii) If 3z = mry € R(X,r), then we can easily deduce

B.2) If ¢

that z4r1 = r1x3 € R(X,r). In this case we have the
square-free solution (X, ry):

C(X,ry) = {{zyms)(z2), (zams) (1)}

= x1, then z2z = z1% € R(X,r). Hence, z £ x4 and

therefore, z = x;. There are three cases:

a)

b)

c)

If wary = xw2 € RIX,r), then xory = 2+ € R(X,r) - a
contradiction.
If wary = x12s € R(X,r), then zyr; = 72+ € R(X,r) - a
contradiction.
If wary = 2y € RIX,r), then zyzy = 2+ € R(X,r) - a
contradiction.

¢ The case m = 1 provides the trivial solution (X, rs5), 1.e.,

?S{CL-".;I_.?]' = xj:"‘r-'ii "":".'E,j.
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3.2  Gluing solutions

In this section we first study the isomorphisms and automorphisms of square-
free solutions. We use them later for devising effective methods to construct
new solutions by glung any two other solutions.

3.2.1 Isomorphisms and antomorphisms of square-free
solutions

Here we present the main results of the joint work [33], most of them obtained
as generalizations of some previous results for automorphisms of square-free
solutions proved in [25, Ch. 3]. As an improved alternative to the natural
method of “checking the definition”, we devise an algorithm to compute
explicitly the automorphisms and the group of antomorphism of square-free
solutions, by introducing the notion of star of a verter.

3.2.1 Lemma. Let (X, rx) and (Y, ry) be solutions. Let p: X — Y be a
bijection. The following conditions are equivalent:

a) @ is an isomorphism from (X, rx) to (Y,ry):
b) for every x € X it hold

woly=~Lyrmow and o Re =Ry 0w,

)

ryry = Todh) € R(X,rx) <= wlo)e(r:) = el@)eld) € RV, ry);
(3.7)

Proof. It is straightforward from Definition 3.1.12, since ¢ € Is(X, V) if,
and only if, for all zyz, = 7,5 € R(X, ry) it holds that

ry (il Jip(zs)) = plaz)e(a ).
O

3.2.2 Proposition. Any isomorphism ¢ € Is(X,Y) of solutions (X ry),
(Y,ry) can be extended to

e a semigroup isomorphism @g @ S(X,ry) — S(Y,ry) of their associ-
ated semigroups;
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e a group isomorphism @g : G(X,rx) — & (Y,ry) of their associated
Zroups;

e an algebra isomorphism o4 @ Alk, X, ry) — A(k Y, ry) of their asso-
clated algebras.

Proof. Let ¢ be an isomorphism from (X,ry) to (Y,ry). Consider the
diagram
®

\ PG .

gl:X,?"le

X

g I[}‘: Y :I
.a-"f

where ¢ denotes the inclusion map. From (3.7) in 3.2.1,
ra=a't' € R(X,rx) = wlzjpla) = pla)p(z’) € R(Y rv),
so there exists a group homomorphism

Wi Q{X'- TX} E— g{};: ry)

Ty Ty =l ) el

Since =1 £ Is(Y, X'), analogously one gets (= t)g : G(Y,ry) — G(X,rx),
(07 (@ - wi) = (wa) - 97y ). Since (¢71)g o g = Idg(x »x) and
wgo (p g = [dgyry) we conclude that g 1s a group 1somorphism.

In a similar way, isomorphisms between the associated semigroups (and as-
soclated algebras) are constructed. O

3.2.3 Remark. By virtue of the statement 2 of 3.1.24 and 3.2.1, 1somor-
phisms of square-free solutions may be characterized in a simpler way.

If (X, rx), (Y, ry) are square-free solutions, then the bijection ¢ : X — ¥V
is an isomorphism if, and only if, for every o € X it holds

wols =Ly o (3.8)

Every isomorphism ¢ of two square-free solutions (X, ry ) and (Y, ry) is com-
patible with the Cyclic Condition (statement 6 of 3.1.19) in the sense that
each pair of relative cycles of (X, ry ) 15 transformed under ¢ into a pair of
relative cycles of (V) ry) of the same lengths, and vice versa.

3.2.4 Lemma. Let (X, ry) and (Y, ry ) be square-free solutions of the YBE,
and let o € Is(X,Y).
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1. There is an edge x, — x, in the graph T(X,ry) if and only if,

ol a) . - .
wlxy) ki w(xg) is an edge of T(Y,ry). Furthermore, the following
diagram

xry

|

) m??'[ﬂ?z}

T (3.9)

@

commutes, Le., @(Ly(x,)) = Lolplz)), for all zy,a € X

2. Letx #a € X. The cydes £F = (ryxy---xy,) and L2 = (ayay- - ay,)
of Sym(X ) are the pair of relative cycles associated to x,a € X 1f, and
only if, the cyeles

£25 = (plaa)p(xz) - plan) and £55) = (p(ar)p(az) - - @(am))

of Sym(Y') are the pair of relative cycles associated to p(x),pla) € Y,
where 1 = x and a1 = a.

Proof. To prove the statement 1, use Eq. (3.8). Let us prove 2. Consider
the relative cycles £3 = (@ -2y and £ = (ajaz---ap) with & = =
and a; = a. As a;x; = 30, € R(X,ry) for all integers 4, 7 (where x; is
TipMod & ANd @; 18 @ Mod ). By virtue of (3.7) we have that

wla;lele;) = plrg Jpla;y) € RY ry ).

Therefore, the cycles L"E:; = (wlx)wlm) - olxn)), L"’t:g = (plar)plaz)---
iwlam)), which have the same lengths of Li a,nd LY respectively since ¢ is
bijective, constitute the pair of relative cycles associated to @(a),@(z). As

L £ Is(Y, X), this also proves that if ﬁ:::zr; and Lttrg are the pair of relative
cycles associated to w(a),w(x), then £, L£% is the pair of relative cycles

assoclated to a,x. O

In Theorem 3.2.5 we prove that isomorphisms of square-free solutions and
isomorphisms of graphs of such solutions are equivalent notions.

3.2.5 Theorem. Let (X,rx) and (Y, ry) be square-free solutions, and let
iw: X — Y be a bijection. The following conditions are equivalent:

1. p e Is(X,Y);
2 poly=Lymoy forallx € X;

3. maxz = azdh € X, rx) = plo)p(ez) = p(az)e() € R(Y,rv):
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4. there is a one-to-one map between the pairs of relative cyeles of (X, ry )
and the pairs of relative cycles of (Y, ry) given by

TRy vl aip(E)
I["L "L = I["L-p{:r‘lf' L ,:.'l:r.-':I]I

5. i Is an i1somorphism between the graphs T(X,rx ) and T(Y,ry).

Proof. The equivalence between 1 and 2 (resp. 1 and 3) is justified in
3.2.3 (resp. 3.2.1). Implication “1 = 4" is directly deduced from the state-
ment 2 of Lemma 3.2.4. For “4 = 37, pick a.r € X and suppose that

L2 = (mze---mxy), £5 = (ajaz---ay) is the pair of relative cycles as-
soclated to x = x; and a = a;. Since L;t:g = (wlr )el(zz) - wlxs))

LjE;}" {p(al}cp(az) --lay,)) 1s the pair of relative cycles (associated to
wlx),wla) € Y) it follows that

wlajp(z) = plrz)p(am) € R(Y,ry).

For the same reason, if p(a)p(z) = plzz)e(an) € R(Y,ry), then az =
T, & R X, ry). The 1n1p11cat1|:|11 “1 = 57 1s just the sta,tement 1 of Lemma
3.2.4. Now suppose that o : X — V' is an isomorphism between the graphs

T(X,rx) and T(Y,ry) and let us check the statement 2. Let a, il E X, and

take xy = Lo(xy). Since ry = o is an edge of T( X, rx), @z o) wlx) s
an edge of T(Y,ry), so

(Lot @ @)lar) = (wo L)1)
O

3.2.6 Example. Let X = {x,...,xzs}. Let (X,r) be the square-free solu-
tion given by the left action £ : X — Sym(X) given by

Lo =Ly = (m1)(xazy)(ma)(2s)(26), Loy = (w12 (x223) (25 )(26),
Lry = Loy = (mr73) (72 ){24)(75)(T6), Ly = (mr72)(T374) (25 ) (236),

and let (X, r;) be the square-free solution given by £': X — Sym(X) as

*'::;1 = ’E;E = (1 )(w2zq)(2a) (25 ) (24), £;5 = (z122)( w3y )(2s) (26 ),
*'::_ag = ‘:;4 = {xle}Exzj[:{"dj{xS}(mﬁ)r f-:;s = (Elxi}{xzxanxsi{xe}-

Their sets of pairs of relative cycles

C{X 1) :{ ]{3:3:1:1}:-(:1:!3”3:4-1‘3}:{xﬁ}(l'E-Tl]:{xS}(xi-lea{xS]{xExE)};
C'[X r2) :{ :"[333331]';(336](3?3332],'[336]'(334351:':{xs}(xzﬂflja{??s]{xﬂz]},
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are in a one-to-one correspondence (£, £5) — {L::E;::ngi%'} where ¢ =
(rprg) € Sym(X). Indeed, looking at figure 3.2 1t 15 easy to recognize that
T(X,r1) and T(X,r2) are isomorphic (note that we can redraw T (X, r2) just
drawing vertex x; in the place occeupied by vertex x; and vice versa in order

to obtain the same drawing as for T(X,r)). Hence (X, r) ~ (X, rz2).

Figure 3.2: Graphs of the (1somorphic) solutions ry, rz described in 3.2.6.

The question of effectively computing the set Is(X,Y) for two square-free
solutions (X, ry), (Y, ry ) explicitly given arises naturally. A first rough idea
would consist in considering first the set of all bijective maps ¢ : X — V
(which has n! elements if n = |X| = |}V7|) and then checking equality (3.8)
for each . However, many of these last checks can be omitted since we can
restrict the study to those i satisfying certain conditions (see 3.2.14), which
involves the notion of star of a vertex = of T(X,rx).

3.2.7 Definition. Let (X, ) be a square-free solution of the YBE, and = &
X. We define the star of x as the set

Star(z) = {£2 /a € X \ {z}} C Sym(X),

where £ denotes the first cycle in the pair (£, £7) of relative cycles associ-
ated to a,r = x; (see Cyclic Condition in 3.1.19).
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3.2.8 Note. There can be elements a # b € X\ {z} giving the same cycle
L£r = Lf € Star(x). For example, for the square-free solution (X, r) with
X={mn,. ... rs} given by

C(X,r) = {(zs)(z2x1), (m4m3) (2271},

the star of 1 consists of 2 elements

Star(zy) = {£Z1, L2

b I
since £3} = () and £3! = £31 = £71 = (2911).
3.2.9 Definition. Let (X, ) be a square-free solution of the YBE, and = £

X. Assume that Star(z) = {£F ..., L% }, where £I = (g3 2y,) with

rg = Let {vy; /1 =i<=m,2<= j. < k;} be new variables. We define the
graph of the star of = as the psendodigraph T (Star(z)) determined by:

Set of vertices of T (Star(z)) :{z} Ufwy; /1 <i<m,2 <7<k}
Set of edges of T(Star(x)): {z = z, if there exists i for which k; = 1}U
{vis S v flsisml<j<ki-1},

where v; denotes the vertex z.

Note that 7 (Stary(z)) is, actually, a digraph with possibly a loop in the
vertex x, corresponding to a cycle of type £ = (x).

3.2.10 Example. Consider X = {x,,...,z3} and the square-free solution
(X, r) defined as

ClX,r) = {(zg)(xsmy), (me)(w3m2), (w5)(x17273), (Ty)(Tam27,)}.

whose graph is depicted in Fig. 3.3.

] L L]
X .

Figure 3.3: Graph of the solution in Example 3.2. 10.

The graphs of the stars of all elements of X are represented in Fig. 3.4.
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O 0 g T

Figure 3.4: Stars of the elements of the solution in Example 3.2.10.

N . . X
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3.2.11 Definition. Let (X, rx), (Y, ry) be square-free solutions, and z £ X,
y € Y. Let Stary(x) be the star of z with respect to (X, ry ), and Stary(y)
the star of y with respect to (Y, ry ). We say that Stary (z] is equivalent to
Stary(w) if, and only if, there exists a bijection ¢ : Stary(z) — Stary(y)
such that the lengths of £ and &(£]) are equal, for all £ € Starx(z).

We write Stary(x) ~ Stary(y) when Stary(z) and Stary(y) are equivalent.

Note that ~ 1s an equivalence relation.

3.2.12 Remark. It is easy to check that Stary(z) ~ Stary(w) if, and only
if, their graphs 7 (Stary (z)) and 7 (Stary (y)) are equivalent as rooted pseu-
dodigraphs (pseudodigraphs with a distinguished vertex, the root), i.e., if
there exists a bijection ¢ from the set of vertices of T (Stary(z)) to the set
of vertices of T (Stary (y)) such that ¢(x) = y and for all vertices u,v of
T(Stary(x)), the number of edges from u to v 1s equal to the number of
edges from ¢(u) to ¢(v).

3.2.13 Example. Taking (X, rx) = (Y, ry), in figure 3.4 we see that Star(z:)
~ Star(xs), but Star(zz) is not equivalent to Star(x;). This fact proves that
the elements of an orbit under the left action £ of G{X,r) on X do not have
generally the same star.

3.2.14 Proposition. Let (X,ry),(Y,ry) be square-free solutions of the
YBE and ¢ : X — Y a bijjective map. Then,

wels(X,Y) = Stary(p(x)) ~ Stary (z), o e X
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Proof. Let x £ X. Suppose that ¢ € Is(X,Y) and consequently that
w ! € Is(Y, X). From the statement 2 of 3.2.4, we can define the maps

@, : Stary(x) — Stary (p(x)) @1 ¢ Stary (ip(x)) — Stary (x)
] 1-l'?|:1':| 1-l'?|:1':| ]
La = Lo Lo = Loy
which are inverse of each other. Hence, ¢, is a bijection. Since ¢ also
preserves the lengths of cycles, Stary(x) ~ Stary (@(x)). O

The converse is not always true, as we show in 3.2, 27.

In order to compute Is(X,Y") for square-free solutions (X,rx) and (Y, ry)
explicitly given, we first consider the set of bijections v : X — Y such that
Stary (@(x)) ~ Starx(x), Yz € X and then, for each of these p, we check
equality (3.8) of 3.2.3. This is the idea used in Algorithm 20.

Algorithm 20 Isomorphisms of square-free solutions

Require: (X,rx) and (Y, ry), square-free solutions of the YBE s.t. [X| =
Y| =mn;
Ensure: Isom, the set of isomorphisms Is( Y, Y);
Initialization: Let Tsom = i
Possiblelsom = {{y1.....y) € Y™ /0 & 3, i #F y;, Stary(w) ~
Stary ;) };
while (Possiblelsom # 1) do
Take (w1, ..., un) € Possiblelsom;
Let Possiblel som := Possiblelsom\ { (w1,...,t) }
Let w: X — Y defined as @(z;) ==y, Vi € {1,...,n};
if £, (u;) =@(Ly(x;)),71# 7 then
Isom := Isom U {ip};
end if

end while
Beturn Isom.

3.2.15 Definition. A permutation 7 € Sym(X') is called an automorphism
of the solution (X, r) (or shortly, an r-automoerphism) if (7 7)or = ro(Tx 7).
The group of r-automorphisms of (X, r) will be denoted by Aut( X, r).

Note that Aut(X, ) 15 a subgroup of Sym(X).
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3.2.16 Remark. Let (X, r) be a solution of the YBE. From the statement
b)of 3.2.1,if 7 € Aut{ X, r), then

’['::r = ’[':y — I‘:‘TI:‘I:I = -":T[y]:
for =y € X.

3.2.17 Remark. As a consequence of 3.2.2, every automorphism 7 of a
solution (X, r) can be extended to

e a semigroup automorphism 75 of the associated semigroup S(X, r);

e a group automorphism 7y of the associated group G(X,r). Thus, we
have an embedding Aut( X, r) — Aut(G(X,r));

e an algebra automorphism 74 of the associated algebra A(k, X r).

3.2.18 Example. Let X = {a,z,,...,z,} and r the square-free solution
given by
Lo=(a)(zy - xy), and L =Idx. 1 <2 <n.

Then, £, 15 an antomorphism of (X, r).

3.2.19 Example. Let X = {z,..., z12} and (X, r) a square-free solution of

which we know that {z,, x3}, {xs, x3, 74} and {xs, 25, 25} are sets of pairwise
commutative variables, and

Loa=L =00 = (x1]), La=LR=L0= (r4z32),

Lo =Lop= Lo =(m), L3 =Ly =L = (21767s),

ﬁi; = f—iﬁ = (ZsT3), ,.ng = ﬁi; = (x5)
are relative cycles appearing in C(X, r).
With these hypotheses we will determine a square-free solution (X, r) of the
YBE, and a particular antomorphism satistying a relation of symmetry in its
associated graph T( X, r).
From the imtial information for (X, r) we have the subgraph of (X, r) given
in figure 3.5 where, as in all figures in this example, the continnons arrows
correspond to r-edges.
Applying the YB diagrams

r r

I In :Ifg—ﬂzn-xl Ia I's I I .‘.?32—23».31 Ig Ir
F‘il \'F‘i ?"1\' L |

Iy Iy Ta Iy I Ty Iy Il Ta g I I

" F

r
T Ty Tp ot Ty Tp T Ty Ty Ty o= Tg Tr T
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x
.
T T ]
Ko o '“'“-»_:3 K5 ._.""-'n
| =, H | I"
b Mg e { f
\
| "‘x 8 .'I | III
1 ¥
\. / \. /
.y L — L
‘N‘.-"" -.,.L. -
X4 X

Figure 3.5: Subgraph of the square-free solution (X, r).

we obtain that £57 = L7 = (x7) and £3} = L£3F = (zaxy).

Analogously, we can obtain that £3 = L3¢ = (zg) and £3} = L8 = (7573
Now, by the statement 2 of 3.1.34, there exists zo € X\ {x3, 24, 7, T7, 75}
such that £37 = L£77 = (z7), £33 = L£37 = (2a73), L35 = L35 = (75) and
L3v =100 = (zqzy). It 1s also clear that zg is different from =z, resp. z,
becanse otherwise, ror; = Tery. resp. ToXg = Tels - a contradiction.
Applyving the statement 2 of 3.1. 34 two more times, there exist variables

5 11
Ty € X\ {xy, T2, 24, 05, T, T7, 25}, 1y € X\ {1y, g, g, 5, T, g, T )

such that £3% = £35 = (x5), £33 = L£31° = (momy), L3 = L37 = (7)), £32 =

g ] Ti0
i — bt L S L . S rrao— Tl — PR — TR —
L‘I‘;— - {xID-TZ}a Li‘g - Li‘ii - |:"'T5:|!l 'I“'Ts - LTS - {xlle}'- Li‘g - "L'Tii - [:L’I‘L'-h:l!l
o R b i I R
and £33 = L3 = (z1172).
Besides, xq.xq5, 1y are palrwise distinct (if, for example, xy, = z,. then
v Tgy T1ny F11 ; v 10 o

Taly = T7Tz - a contradiction since rer; = xrrs). Hence, xq # m;, for all
l=i=<11,i# 2, zp0 F oy, forall 1 < ¢ =< 11, 2 & 3, xy & xy, for all
1<i<11,2# 4.

Figure 3.6 represents a subgraph of the solution (X, r), according with the
information we have determined so far. We distinguish two cases:

A) If xg = z2, from merq = ryre and zexz = x117s then xy; = z4. Hence,
T1p = &3, since Tr)) = Tars and rsry = rigrs. Figure 3.7 represents
this situation.

Now, applyving the statement 3 of 3.1.34 with the relations rqr; = rs7s,
TgTy = Takg and xaxy; = x4rq, we get that zgr. = roms. Similarly, 1t
holds that xgrs = r3xs and Tery = T4Ts.
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Figure 3.6: Subgraph of the square-free solution (X, r)

X
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Figure 3.7: Subgraph of the square-free solution (X, r) in case A).

In this case, ¥ = {x;,..., x5} and ry given by

Ly = (-TE:'{-T?IEIS}(-TJ.-TE-TZ}{II}

Loy = (xaxz){mr)(2e)(x5) (Ta23)

Lo = (xsx3)(@7) (26 (75) (x4m2) (1), (3.10)
Lo, = (Tax4) {xﬂl Haxs)(xazz )z

Lo, =L;, = = L, = Idy,

15 a square-free solution, or equvalently, an r-invariant subset of the
square-free solution (X, r) (see definition in 3.2.28). Its graph can be
drawn as in Fig. 3.8

Note that L. € Aut(Y, ry).
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Figure 3.8: Graph of the square-free solution given in (3.10].

B) If xq # =z, applying similar arguments than in the previous case, it
tollows that x10 # x3 and 1, & 24.

From the YB diagram

"
I Iz I —23-:1:5 I Ly

r1171 = T1xo, and similarly, ryer = riz11 and zery = rxe. So, L] =
L300 = £70 = (z @020 ) and L3 = L£31 = L3 = (1),

Applying the statement 3 of 3.1. 34 several times, we obtain that x5, 24, 75
and x1; are pairwise commutative. Now, applying 2 of 3.1.34,

5 st
Iy=——=>=Tn Lp=——= T Iy =—= T
A L A
TBI T T‘FI Ty T?T Ty
¥ i ¥ ¥
T e - ‘El 10 -q:rﬁzn- ‘EE g -::Tssn- 53
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there exists £,. £, &4, each of them different from all x;'s, such that
L35 =L =(2s), £33 = L3 =(2ala),
L35, = L5 = (), LI0 = L5 = (z1061),
L35, =L =(a), L3 =L3 = (71082),
£, = L5 =(a7), L2 =L3 = (&),
L3 =L =(xs), £32 = L3 =(wes),
L, =Ly = (), L3 =L3 = (rnéa).
Hence, from the uniqueness of the pairs of relative cycles, £ = & = £,

Let x12 = &. The information about (X, r) we have so far is represented

in figure 3.9.

&

X2

. ——
LS Ti]

Figure 3.9: Subgraph of the square-free

solution (X, r) in case B).

From 3 of 3.1.34 and the commutativity of =5 with xg, xy,, £y 1t follows
that . commutes with x., x4, x,.

Now, it can easily be checked that the only relation for =)z and z; is
T2 = T12y2. Hence, using the statement 3 of 3.1.34, we obtain that
Tzl = Lalz, Talin = F1olz and xyry = rmy.
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At this point, £, (x,) can be either x,, or x5 or x,, but one can check that
two first are not possible, and that the last one leads us to zgx, = 7,25,
With this commmtative relation, we can apply 3 of 3.1.34 in order to
obtain that {3, xq}, {11,212} and {x2, x10} are sets of pairwise commu-
tative variables. Similarly, one can check that rgry = 2a0s, TaTs = Taxg,
and applying 3 of 3.1.34, that {zy, xq}, {710, 712}, {72,701} {73,200}
and { o, x12} are sets of palrwise commutative variables.

Therefore, in this case we obtain a complete description of the square-free
solution (X, r) *

e = 1dy, 2£{2,3,4,8,9,10,11,12},
oy = (T12) (21101080 ) (5 ) (726 Ts ) (2423205 (),

= (w120 ) (1173 ) (F1074) (Ta2 ) (27) (26) (x5 ) (21 ), (3.11)
g = (12010 J(T1102 ) (Tara) (xada) (w7 ) (6 ) (25 ) (21 ),

= (xlle1}{Ilnxz}[xgxaj':xaxﬂ(IT](IEJ{l“s}[xlj'a

SRRl

whose graph can be drawn as in fipure 3.10.

11 X
- — — — — — = L ]
- ﬁ.
’ f : Xq
"Xs
1
i
a
!
V
0
X2
Xg _‘—'-'_--__'________\_\-‘_-\—\_\_ 1{_:.
L]

"LT
Figure 3.10: Graph of the square-free solution given in (3.11).
Note that £, < Aut(X, r), which is represented in the figure by contin-

uous arrows, behaves as a symmetry with respect to the axe TzF3 in the
cubic connected component.

*The square-free solution (X, r) is the so-called Crystal solution. The reason for this
name may be its graph (see Fig. 3.10), which looks like the structure of a molecule of a
crystal.
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The next result is a direct consequence of 3.2.5.

3.2.20 Theorem. Let (X,r) be a square-free solution of the YBE with
graph T =T(X,r). Let 7 € Sym(X). The following conditions are equiva-
lent:

1. 7 is an r-automorphism:
2. Foranyae X, 70L, = L o7, or equivalently,
roLaor = Loy (3.12)
. . - - Tia .,
3. There is an edge x — y in T if, and only if, T(x) ) () occurs in T,
or equivalently, T defines an isomorphism from T onto itself.

The next result is a consequence of the second equivalent statement of the
Theorem 3.2.20.

3.2.21 Corollary. Aut(X,r) is a subgroup of the normalizer Noraymx)0c
of the group G, = L{G(X,r)).

In general Norsymx)Gc 1s greater than Aut({X,r). This fact is shown in the
following example.

3.2.22 Example. Consider the solution (X, r), where X = {z,..., x4} and

Lo,=L,,=L,,=L, =Idy,
Loy = (ryma)(razy)(xs)(rs), Loy = (r122)(ramy)(25) (26 ).

The graph T(X,r) is depicted in Fig. 3.11. The group Gr = L(G(X,r)) <

Ma
2
L ]

L L
Xg X

Figure 3.11: Graph of the solution of 3.2.22.

Sym(X) is the group generated by {£,,, £, }. with relations

(22, =2 =1dx, LoxLlog = Luglas ).
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Hence, G 1s 1somorphic to the Klein's group &, = Ea.
The permutation T = (xy23) (2,24} (2576) € Sym(X] is in NorgyyxG, since
it satisfies the equalities:

Toly or t=L,, (3.13)

To Ly oT ' = Ly, (3.14)

The assignement 7(xs) = zs and (3.13) show that v does not satisfy the
necessary condition 7o L;, = £z, o7 for being an antomorphism. Therefore,
A'th[X,?") g Nﬁl'sb_.m[:x:ll:gﬂj.

As a particular case of 3.2, 14, we have:

3.2. 23 Proposition. Let (X,r) be a square-free solution and 7 € Sym(X).
Then
T € Aut( X,r) = Star(r(z)) ~ Star(zx), Yz c X.

To compute the group Aut{X, r} we can proceed in an analogous way as that
for Is{ X, V") (see Algorithm 20), since it is a particular case.

3.2. 24 Example. Consider the square-free solution (X, r) given in Example
3.2.22. Let us compute Aut(X, r) following the spirit of 3.2.23.

Suppose that 7 € Aut(X,r). By 3.2.23, Star(r(xs)) ~ Star(zs). Hence,
looking at Fig. 3.12, there are two possible cases: T(xg) = g or T(xs) = 5.

O NS
Q@ Q@ oV o

X

Figure 3.12: Stars corresponding to the square-free solution given in 3.2.22.

A) If r(xg) = xs, then 7(xs) = x5 (for the same reason). Since
Star(z; ) ~ Star(xz) ~ Star(zs) ~ Star(zy),

there are four possible cases:
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A1) Ifriz,) = xq, then applying diagram (3.9) of 3.2.4 to the relations
Tgly = Tak, Tgla = Ty#, Tl = Tok and xzay = xg+ of R, r), we
obtain the images under 7 of all the elements:

Lo
Iy 4 o i
%, i
. :_'.23 -
Ly ——=I3
Loy L‘msy l":rs Loy
Ty =—HI=I71
Lag
& \

Hence, 7 = Idx.

Considering analogous diagrams we can easily determine 7 in each of the
following situations.

A2) If 7z ) = ®a, then 7 = (@y22)(z374) (25 ) (26).
A3 I 7z ) = mq, then 7 = (zy23) (zamy) (25 ) (2g).
A4 If 7(xy) = my, then 7 = (224 ) (z273) (25 ) (26).
B) If 7(xs) = x5, then 7(xs) = xs. There are the same possibilities for
Star(x;) as in case A.

B.1.) If v{x) = z;, then applying diagram (3.9) of 3.2.4

T
i ke i)
W x
T ﬂ:g el
Ty ——= I3
Lag L:SY lﬂm Ly
Tz =—— 1
'L’=G
e \

L'=-5

we obtain that 7 = (1) (zg)(xoms ) z5xg).
B.2.) If 7{x) = z2, then 7 = (z122x473)( w51,
B.3.) If 7{x) = z3, then 7 = (z1 237472 )( w526 ).

B.4.) Finally, if 7(x;) = x4, then 7 = (zy24)(z2)(x3)(z520).
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Each 7 € Sym(X) previously obtained is an automorphism of (X, ). There-
fore,

= ldx, Ta = (xlj{m2x3}($4]{$5x6],
Tz = [lezj'{i"zxi}(:ﬂsﬂl"ﬂh Te = (-TI-TZIJ.IE}':-TS-TE-)
T3 = (xliﬂsj{ifzxi}(xs](i“ﬁ]: T = (d’flu’fzxﬂz}(d’fsi"ﬁ]
Ty = (@3 (2o05 ) (25 ) (x6),  To = (2124 )(@0) (23] (2576

Aut(X,r) =

H

which is not an abelian group since 7572 = 77 &= T = 7275 1hns, there
are two possibilities for Aut(X,r): to be (isomorphic to) either the Dihedral
group

ES = { £, I, 552:: xgz- Y, TY, xzyr xﬂy }:-

where _ _
ry=yzi "t ¥Y1<1<3,
olx) = ofz*) = 4, (3.15)
o(a®) = o(y) = ozy) = o(a"y) = o(z"y) = 2,

(denoting by o(a) the order of an element a € & in the group &), or to be
the group of Quaternions:

Q: { e, —g, i:- _ér __:I'., _..-ll.: .I.I, _k }:«

with

In our case,
o(r2) = o(ms) = o(ra) = o(rs) = o(m) =2, olr) =o(r7) = 4.

Thus,
Aunt( X, r) 2 D,

In fact, x := 75 and y := 7 satisfy all the relations (3.15). Hence, Aut{X,r)
is the group generated by {75, 75} with relations

{78 =7 =1dy, 7675 = Ts7¢ }-
3.2, 25 Example. Consider the square-free solution (X,r) given by X =

{x,...,za} and relations

C(X,r) = {({zexs) (zyxamem ), (xaxe)(xazy)}.
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Its group of automorphisms is

71 = ldx, s = (m1w3)(xexa) (s ) (),
) me=(m){xe)(xa)(za)(wsms), Te = (r123)(xors)(Tse)
Aut{X,r]l B T3 = ':J’fliczi"zxi]”:xs:'(:cﬁ]: T7 = {x15‘34$35€2]{$5]‘{xﬁ}
T4 = (r122xamy ) (T526), Ts = (@@ax3xs)(T5ms)

which is abelian. Therefore, Aut(X, r) is either isomorphic to Zg, or to
Ly % Lz, or to Ez = Ty % L. Since o(12) = o(15) = o(15) = 2 and o{713) =
o(t4) = o(77) = o(7s) = 4, Aut(X,r) 1s the group generated by {7, 73} with
relations

{ri=m =My, nry =737}

Therefore, Aut{X,r) = Ty x Es.

3.2.26 Example. Consider the square-free solution (X, r) with X = {zy,.. .,
xy} and set of pairs of relative cycles

C{X:-?':I = {{xsxsxﬂfifs]: fl'sxﬁx?]":ﬂfﬂa '[335]'(55'3552331]': '[554]"[5'33I1332]}~

The group of automorphisms Aut( X, r) of (X, r) consists of

n = Idx, Tio = (z172ma) (x4 (x5 ) (26 ) (27 ) (xs)

T2 = {561}{12}[593]{$4}{x5][x.3x7x8},T“ = {:»"15625133][:64)(:65}{%:::?:53

T3 = (21 )@ ) (23) (x4 ){@s) (wewam7 ), Tz = (212273 ) (24 ) (25 )(TeT577)

Ty = (21 )(w023) (2475 ) (76 ) (27) (7)), Tz = (2123%2) (x4 (5 )(w6) (27)(x5)

TR = {xl}{xgx3]($4x5}{xgxrxg T4 = {xlxgxg}l:.fdl:l{l'g}l[:rgxrl'g

Te = (Il}{xgxaj(ﬂfdﬁfs}(xﬁxaxr T = (lezﬂﬂg}( Iy {xs}(xﬁxaﬁfr

Ty = '[55'1552]'(5'53:'(55'4595]”[55 ]' Ly {i"a]':"'lu = '[551333]' 12)(55'4335]”[5'3 ]' Ly '[i"aj'

Tg = {xlxz}(iﬂajmd-’{-‘s}{xﬁxr-’ﬁa 7 = {xle} 2)($4$5}{xﬁxr-’€a
[lez} Iaj(i"ﬂ's}[iﬂﬁxsxr s = {lezj'(ﬂie)[hﬂfs}[xﬁxsx?

Since TyTg = Mg &= T = ToTy. Aut{ X, r) i= a non abelian group of order 18.
Therefore, it can be (isomorphic to) D5, or Dg % L3, or (Z3 x Zg) ¥ Lz where
# denotes the semidirect product (see [20, Ch. 5.3] for a table of classification
of groups of orders up to 20). But

Id{z‘, L |[5.,"1:I!2:I!3]||:5.,"4:||£$5]| Id{i‘, :3 a
Aut(X,r) = § (z1 {zoxa)(mgzws), (z1mame)(za)(zs) p =8 (zezrzs) ¢ = Dax La,
(IIIEH-IS}{I:J.I:EL [lezj'(xajil"axs} (-TEISI?}

which can be presented as the group generated by {72, 74, o} with relations

3 _ .2 _ .3 _ _ 2
Ts =Ty = Tip = Idx, TwTa = Tam,
TaTy = TyTz, T4T10 = T1oTy
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3.2.27 Remark. The converse of 3.2.23 is not always true, as it shows the
following example. Let X = [a,b,c, 2, 25,23} and r be the square-free
solution given by

C(X,r) = { (a)(zrz2xs), (b)(z122%3), (€)(wsz221)}

Let 7 = (a)(be)(x)(x2)(z3) € Sym(X). The stars of all elements of X verify
Star(x) ~ Star(r(x)). However, T & Aut(X,r) since

(Tolp)(z)) =2, #F 23 = '[ﬁr(&j o T){x).

3.2.2 Extensions of solutions

The aim of this section is to find methods (see e.g. Algorithms 21 and 22)
for constructing new solutions by gliing two already known solutions. The
study of ertensions of solutions is necessary not only for constructing new
solutions, but also for understanding their structure. The main results of
this section are also shown in [33].

We first recall some definitions which can be found in [21].

3.2. 28 Definition. [21] Let (Z,r) be a solution

1. A non-empty set ¥ © Z is =said to be an r-inwvariant subset of Z if
rY xY)Z Y =Y.

2. (Z,r) 1s decomposable if there exist two non-empty r-invariant subsets
N oand YV of Z such that £ = X UY 1s a disjoint union. Otherwise,

(X, r) 18 said to be indecomposable.
Clearly, the trivial selution (X, r) is decomposable when |X| = 2

3.2.29 Remark. Note that the nondegeneracy of a solution (resp. square-
free solution) (Z,r), together with the finiteness of the set Z, implies that
each r-invariant subset ¥” is nondegenerate, and hence, the restriction ry .y
of r to ¥ x Y provides a solution (resp. square-free solution) (¥, ry v ).

Moreover, if (Z, r) is a solution and Z decomposes iInto the r-invariant subsets
A Y, then the restriction maps L. x, RT|X ’L”p{: R”p{ are permutations of X
for all ze X, yeY, and analogously, £ uy *Rup y Loy, Ry are elements of
Sym(Y'). Indeed, since (X, r|x.x ) and (Y, 7y .v) are solutions, Loy, Rex €
Sym(X) and ’Eyll”ﬂ'yll’ € Sym(Y). Moreover, the epimorphic image of the
map £ylx : X — Z is exactly X, otherwise, if there exists x € X such
that £,(x) € Y, then, as ﬁylr € Sym(Y), there exists y; € Y for which
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L, (x) = L,(y,), but from injectiveness of £, : Z — Z it follows that x = 1

- a contradiction. Hence, "clip{ € Sym(X). Similar ideas can be used for the

remalmng restriction maps.
From Remark 3.2.29, one can prove the following fact.

3.2.30 Lemma. [21] If a solution (Z,r) can be decomposed mto the (non-

degenerate) r-invariant subsets X, Y, then r induces bijections rjx .y : X x
. LT o R —

Y — Y xX andry,x Y x X — X =Y. Moreover, T ey = TV =X

From the following result we obtain that for any solution (X, r), every orbit
O, (v £ X) under the left action of the associated group G(X,r) on X is an
r-invariant subset of X and hence, (O, 70,0, ) 15 a solution.

3.2.31 Lemma. Let (X,r) be a solution, written as r{yz) = L,(z)R.(v).
For all y, z € X it holds

1. i:y{i’)‘_,} C @, and 'R_,{f)y} C O,
2. r(Oy x O0;) € O: x Oy;
3. Oy is r-invariant,

where Oy denotes the orbit of y € X under the left action of G(X,r) on X.

Proof. Obviously £,(0.) € O.. From involutiveness of r, for all ¢,z € X
we have

(t: Z:I L {£¢(JJ~R:(t}} L {J::E,L:}R:{tj:R'R:Lt}!-:t{z}} — (t: Z:I,

Therefore, t = £,(R.(t)) for some g € G(X,r). Thus, for all t € O,, namely
t = Lp(y) with f2 € G(X,r), it holds that

R:(‘f]‘ = '[U':g:'_l o -‘Eh}{y} = -‘Eg—ih(yj-

Hence, R.(Oy) C Oy. It clearly follows that »{O, x O.) € 0. = O, and in
particular, r(Oy < O,) C Oy = Oy O

3.2.32 Remark. A solution (X, r) is decomposable if, and only if, the as-
sociated group G(X, r) acts non-transitively on X via the left action £ (see
[21]). W. Rump proved that every solution (X, r) is decomposable, provided
that (X, r) is square-free (cf. [40]).

The first part of the following result appears in [40].
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3.2.33 Corollary. Every solution (X r) of the YBE can be decomposed
into a finite disjoint union of r-invariant subsets. More precisely,

X=O, U Oy,

where (0, ..., are the orbits under the left action £ of the associated
group G(X,r) on X. Hence, (X,r) induces solutions {(’J,;,?'wmol}. for all
1<i<k

Furthermore, if (X,r) Is square-free, then k = 2, and therefore, G{X,r]
acts non-transitively on X and the induced solutions (O ,1-'|,:;.=,QL-;.'} are also
square-free.

FProof. Lemma 3.2. 31 proves the first part of the result. Since every square-
free solution i1s decomposable, we can deduce the second part. Indeed, if the
square-free solution (X, r) decomposes into the r-invariant subsets X, X,
then we can write

X=X UX, C( U (ﬁy]U(U A.). (3.16)

yeXy 22Xy

where (0, denotes the orhbit of the element x £ X under the left action £
of G(X.r) on X. Let us check that O, C X, for all ¥y € X;. Note that it
is enough to prove that £.(z) € X for all x € X and z; € X because in
that case, L,(y) € X for all g € G(X,r) and y € X, and hence, O, C X;.
S0, pick arbitrary elements x € X, x; € X,. There are two possible cases:
r & Xj or x € Xz, but by virtue of 3.2.29, in both it holds that £.{x;) € X;.
Similarly, we can prove that (0. € X, for all z € Xz, Thus, we obtain that

=[]0, amd X;=|] o0,
=Xy zeXo

where each union consists of at least one orbit since X, and X; are non-empty
sets. Finally, from (3.16) and finiteness of the set X we conclude that

k I
X = I[U Ly)y:] U [U Cj‘L"1:|
i=1 i=1
where y, € Xy, 5, € Ag, k= 1land ! = 1. O

3.2.34 Example. Consider the square-free solution (X, r) described in Ex-
ample 3.1.31. Since the orbits of (X,r) are X7 = {zs5, 26} and X; =
{my,...,z4}, (X,r) decomposes into the r-invariant subsets X7, Xz. Hence,
(X.r) induces the square-free solutions (X, r) and (X,, r,), where r is the
trivial solution and vz is given by C( Xz, rz) = {(zyza)(z2x1) } (see Fig. 3.13).
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Graph of (X.r)): Graph of (X,,15):
A3 K3
] ]
L [ ]
X Xg i x |sx:} {335-\143
L] »
x4 %

Figure 3.13: Graphs of the solutions constructed from the orbits of the solu-
tion of Fig. 3.1.

3.2.35 Definition. [21] Let (X,rx), (¥, ry) be solutions. A solution (Z, r)
is a union of (X,rx) and (Y,ry ), or an extension of X by Y if X MY =0,
Z =X Y as sets, TxxXx =Tx and My=y =Ty.

The set of all extensions of X by Y i1s denoted by Ext(X,Y). Clearly,
Ext(Y, X) = Ext(X,Y"). We will often denote Ext(X, Y] by Ext( X, rx, Y, ry)
(for emphasizing the extended solutions (X, rx), (Y, rv)).

Note that a solution (Z. r) 1s decomposable into the r-invariant subsets X,V
of Z if, and only if, Z € Ext( X, rp.x. Yiry .y ).

3.2.36 Remark. Let (Z,r), (X,rx), (Y,ry) besolutions. If Z € Ext(X, 1),
then

1) by virtue of 3.2.30, {Z,r) is uniquely determined by the map ryx.y (or
equivalently, by T =X );

2) from 3.1.21 and 3.2.29, writing r as r(z1, 22) = (L2, (22), R (21)), we have
that the assignments = — Ly, ¥ — RFI_J’E} forx € X, w € ¥V give left
actions of G(X,ry) on Y and of G(Y,ry) on X, respectively;

3) (X.,ry) and (Y, ry) are square-free if, and only if, (Z, ) is square-free.

Next we find a suitable bijection rix.y : X =Y — ¥V x X, constructed
by using antomorphisms, which (uniquely) determines an extension (Z,r) of
two disjoint solutions (X, rx ), (Y. ry). The solution {Z,r) obtained by this
method 1s an example of the so-called (generalized) twisted unions studied
e.g. in [21, 40].
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3.2.37 Proposition. [25] Let (X,ry) and (Y,ry) be solutions such that
XY =0, and let 7y € Aut(X,ry) and 7 € Aut(Y,ry). If Z = X UY and

r:ZlUF —ZIZF

(71, 72) = Ty (T, 72), {55'1:332]' X x X,

(2, 22) — vy, vyz), )Y x Y (3.17)
(z.y) — (7' (v), 75" (2), '[ v eX =Y,
(y,z) — (mx(z), 7v (). (y,z) €Y x X,

then (Z,r) 1s a solution, and therefore, Z € Ext{X,Y).

Proof. It can easily be proved that r 1s bijective, involutive and nondegen-
erate. Finally, let us check the YB condition for all (21, 22, :3) € Z x Z = Z.
There are eight possible cases:

1) (z,22,23) € X x X x X, 5) (#.72,23) €YV 2V = V)
2) (zm,22,23) e X x X Y, 6) (#.22,23) €Y 2 Y = X,
3] {Zl,Z::,zg:lEXX};XX, T:I {Zl,,&’z, 3:| Y =X =Y,
4) (z,22,23) €Y x X = X 8) (#.22,73) EX x Y < Y.

The cases 1) and 5) are obvious since (X, rx) and (Y, ry) are solutions. The
proofs for the cases 6), 7) and 8) are similar to the proofs for 2), 3) and 4),
respectively. For the case 2), consider the YB diagram

T Tz Y i xy T (y) T )
:"'1\' ™
Lyy(w2) Ryglw1) 9 vy ) T () Ty ()

ra \' ro
) i

Loy (22) 7' (8) T Raa (1) —= 73 '75 () T Ls (22) Tx Raa(1)
which holds if, and only if,

rrx (e ), mx ) = (73 Loy (22), i "Ry (1)

But this condition is satisfied since T:El € Aut(X,ry). The cases 3) and
4) may similarly be proved. Hence, (Z,r) 1s a solution of the YBE which
extends (X, rx) and (¥, ry). O

3.2.38 Remark. Following the terminology of 3.2.37, if we assume that
(X, rx) and (Y, ry ) are square-free and that the automorphisms 7y and v are
given by their decompositions into a product of disjoint cycles (considering
also the cycles of length 1) as

Tx =C---Cp, where C; = (:a:l j for all 1
v =C1- L, where C) = (y] -y 1) for all 1

a

< T
g,

=1
=17




3.2. Gluing =olutions 155

then the (square-free) solution r given in the formula (3.17) can be described
by the set of pairs of relative cycles as

ClZ,r)=ClX,rx)UC(Y,ry)U{o; =CiCj /1 <i<r 1<j<s}
In this set up, each a;; represents the relations
vz, = oy(ai)oy (wl), ol = oy(el)ay (24),
foralll =l <s;and 1<k <r,.

From 3.2.37 and 3.2. 38 we devise Algorithm 21 which returns an extension
(Z,r) of two square-free solutions (X, ry), (¥, ry).

Algorithm 21 Glung square-free solutions by using automorphisms

Require: (X, ry) and (Y, ry), two square-free solutions of the YBE, 7y €
Aut( X rx) and v € Aut(Y,ry);

Ensure: (Z,r) anew square-free solution with Z = XUY such that rix.x =
ry and ry .y =Ty;
Let 7% = --- C, and i = ¢; - - - ¢, the decompositions of 7y and ©- nto
a product of disjoint cycles of lengths = 1,
If c; = (ur) - - cyl jforl < g < s let =01 Ol with € = (2, - w);
Let £ :=X 1LY,
ClZr)=C(X,rx) UC(Y,ry) U oy =CC /1 <i<r 1<j<sh
Return C(Z, r).

3.2.39 Example. Let (X, rx) be the square-free solution

ClX.rx) = {(za)(zazazy), (xsxy)(Tazaz)}, (3.18)

whose graph is represented by Fig. 3.14, and let (Y, ry) be the square-free
solution given by

C'[Y: ry) = {{@gﬂ?){ﬁsﬁayayzyl]‘a {Haya}{ysylyzﬁsmj}: [3-19}

represented in Fig. 3.15.
Let
Tx = (mmrars)(zaxs)(re) € Aut( X rx),
v =1y " = (w)(ve) () (va) (us) (weus) (rue) € Aut(Y,ry).
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[Xpxaxgl

{x a7 g ¥
- . - = .
X X 5 Xy X4 [xpxgxg) X
Figure 3.14: Graph of the solution given by (3.18).
y3
{v6Ys) Lyevst
YE¥ol 1¥7¥o
¥y 2
{vayal  {¥3¥e
reysi\\ T o [{vers
{.‘r".-:}";-s
¥s {3 -'-a}'ss ¥

Figure 3.15: Graph of the solution given by (3.19).

Following Algorithm 21, the set of relations {C;C] /1 <1 <3, 1 <37 =T}
consists of

B =
(rams)(w), 1=i<5 (T4m5) (Uals ), (x475) (UrYa ).
5

(wa)(y;), 1< (76)(Yeys), (@6)(yrYa)-
Hence,
( (Q'QyT)(yﬁydyﬂ!"Eyl}: (ygyr}(l"ﬁ] )
(%I'gyﬂ[-’fsl'ﬂ, (ygyr]'(-’f3-’€1:€z]
(Efsyﬁ](%fsylyzyzyﬂ: (yayﬁ](l'ﬁ]
CiZ.r) =1 (Eﬁ'ayﬁ)(i'sl'ﬂ: (yayﬁ}('TS-Tl'TZ} ’ (3-2[']'
(mi)(mwg), 1<=1<5 (yi)(zsmy), 1=2<5
('yi:lliiﬂgiﬂlxg:l, 1 E i< 5 |:.'.'-.,"|3:||[5.‘,'3:I!2:I!1]|
(J’fsu’fd}{xzxz-’fﬂ

]

defines a square-free solution on Z = {z;}% | U {u;}7_,, whose graph is rep-
resented in Fig. 3.16.




3.2, Gluing solutions 157

i ¥yl
- =

¥s i3 .:}'3} ¥

Figure 3.16: Graph of the solution given by (3.20).

The following result, due to Majd and Gateva-Ivanova, gives a necessary
and sufficient condition for obtaining an extension of two disjoint solutions
(X, rx) and (Y, ry) in terms of their Yang-Baxter groups. Moreover, since all
square-free solutions are decompaosable, 1t covers all possible constructions of
solutions restricted to the square-free case.

3.2.40 Theorem. (cf. [40]) Let (X,rx), (Y.ry) be disjoint solutions with
associated groups G(X,rx) and G(Y,ry) respectively. Suppose that Z =
N UY and that the bijective map r : £ x Z — Z = Z is an extension of
rx and ry. Then, (Z,r) 1s a solution if, and only if, (G(X,rx),G(Y,ry)) is
a matched pair of groups, in the sense of Majid [67].

Next we consider a special case of one-sided extensions.

3.2.41 Definition. [21] An element Z € Ext(X.Y) is a left (resp. right)
ertension of ¥ by X if r(u,z) = (Lylz),u) (resp. r(y,z) = (z, R:(y))).
The set of the left (resp. right) extensions of ¥ by X will be denoted by
Ext_(Y,X) (resp. Ext (Y, X)).

We will often denote Ext_(Y, X) (resp. Ext (Y, X)) by Ext_(Y,rv X, rx)
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(resp. Ext (Y, ry, X,rx)) (for emphasizing the solutions (X, ry), (¥,ry)).

3.2.42 Proposition. Let Z € Ext(X,Y) (recall from 3.2.30 that the re-
striction maps Jﬂyl ¥ 'Ryl x+ Loy and Ly are bijections).

1) If Z € Ext_(Y, X'). then

Lyx =Ryy and r(z,y)=(y.L,'(z), YzeX yeV; (321)

2) Ext_(Y, X)) =Ext, (X.Y);
3) If Z € Ext (Y, X)), then
Loy = 'er}l and r(r,y)= (R Yu)z) YoecX ye¥;
4) Suppose that Z € Ext_(Y, X)) or £ € Ext (Y. X). If (X,rx) is square-

free, then
Re=L'"Z—Z YrecX

and simmetrically, if (Y, ry) is square-free, then
?{'.y=£,_:1:3—.t2, Tyel.
Proof. The statement 1) follows from invelutiveness of r:

(y.x) — (Ly(x), ) — (L@ W), RyLy(x)) = (y, ).

The statement 2) is a direct consequence of 1). The proof of 3) is analogous to
the one of 1). Finally, since R,y = £,y = Idy when Z € Ext_(Y, X) (and
Loy = 'R,_..l}l when Ext (Y, X)), square-freeness of (X, rx ) implies R, = £}
as permutations of Z, which proves 4). O

From the following result we obtain a group-theoretic description of Ext_ (Y, X').

3.2.43 Theorem. Let (X,rx) and (Y, ry ) be disjoint solutions.
1. It Z € Ext_(Y,X), then for all y € V", I.:ylx c Aut( X ryx);
2. If(Z,r) € Ext_(Y, X), then the assignment
Yy — £ylx, fory el
can be extended uniquelv to a canonical group homomorphism

wr . g(};:- ?'}’} B AUt(X:* ?'X}‘
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3. Conversely, if ¢ : G(Y,ry ) — Aut(X,ry ) is a group homomorphism,
then there is a unique solution (Z,r,) € Ext_(Y,X), canonically de-
termined by . Namely, for the disjoint union Z = Y U X, the map
ro: 24 % £ — Zx Z extends ry and rx, and it 1s defined on Y = X,
and X =Y, respectively, as:

roly.x) = (ely) (=) v), rolzu) = (yely) " (x)), (3.22)

forallz e X, yeY.

Proof. Let us prove 1. Let y € ¥'. We already know that ﬁ-”l x € Sym(X).
Let us check that ’C-”I y 15 an ry-automorphism. From statement 1 of 3.2.42
and the YB diagram

Y I T2
r } T . re
Ly(a1) y s Y Loy (22) Ry (1)
Lylmr) Ly(z2) ¥ L£,L0 (22) ¥ Ragl(m1)
’ r1 PR

i

.
Loyl (x2) LR (1) y

we get r(Ly(x ), Lylxe)) = (LyLy(m2), L, Ry (x1)). Hence, Lyx € Aut(X,
rx ).

The statement 2 1s a consequence of property 2) of 3.2.36 since, by (3.21),
ﬁylx = 'Ryl_x} for all y € Y.

Finally, let us check 3. Defined as in (3.22), r, is bijective and involutive.
Nondegeneracy 1s clear since the maps £, x, L,y = ¢(y) : X — X and
Loy = Idy,ﬁyl}, Y — Y are bijections for all + € X, y € Y. Let us
check the YB condition for all (21,23, 23) € Z % Z x Z. There are eight
possible cases as in the proof of 3.2.37. The YB condition holds in the cases
1) and 5) since (X, rx) and (Y, ry) are solutions. The cases 3) and 4) can be
reduced to the case 2) since (x,y, 25) = ro(xy, @(y)(z2 ), y) and (¥, x, 75) =
reril@(y)(z), w(y)(zz),u) for all z1, 22 € X, w € Y. Symmetrically, the
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cases 7) and 8) can be reduced to the case 6). Let us check the case 2).

T 1:2 y = ry Y e(y)~Hxs)
Loy (22) Rag(z1) y we(y) M) wly) ™ Haz)

rgl o
¥

Loy(za) uwiply) P Rey(2) i"y )y (m2) ply) PRy (1)
The previous diagram is satisfied if, and only if,
rx (i) ) () ™ Hwe)) = (e(p) 7 Loy (22), 0 (¥) T Ry (1)),

which 1s true since @ (y)~! € Aut( X, ry). Finally, we check the YB condition
for the case 6). For yy, 2 € Y, r € X,

" :];z z = n @(y2) () va
Lyyiwm) Ry (uy) = el )ely)(x) m vz

A .|

Loy (52) (R (10) )(2) Ry (1) == ip(un)p () () Ly (y2) Ry (31)

This diagram holds if, and only if,

?ﬂlp{j:gu '[?:I'z]: @{?Ryg (yl}:”:'r” = (‘F’{B’l :'*F'[E-"zj'(x]'a £y1{y2}}3

or equivalently, 1f

(2 Ly (w2) )Ry (mn) ) (), Loy (w2)) = (i oy ) (), Ly (u2).

The previous equality is satisfied since wmy: = ﬂyi{yz}ﬁgmllzyl} n G(Y,ry)
and 15 a group homomorphism. [l

3.2. 44 Definition. We call the extension (Z,r,) € Ext_(Y, X)), given in
Theorem 3.2.43, the left extension of ¥ by X associated to o, and we shall
often denote it by Z,. Symmetrically, ¢z € Hom(G(Y,ry), Aut(X, ry)) is
called the group homomorphism associated to the left extension (Z.rz).

The result 3.2.45, which gives a complete description of Ext_(Y,ry, X, rx),
can be regarded as a refined version of [21, Prop. 2.18], since our characteri-
zatlon is given in terms of group homomorphisms G(Y,ry ] — Aut{X, ry),
instead of G(Y, ry) — Sym(X) (left actions).
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3.2.45 Covollary. Let (X,rx) and (Y,ry) be disjoint solutions. There ex-
ists a one-to-one canonical correspondence

Hom(G(Y, vy ). Aut( X, rx ) «—— Ext_(Y, X),
w — Zy
¥r (z'- ""Z:':.

where Z, and ¢z are as in Theorem 3.2.43.

Note that the solution (Z,r) given by rix.x = rx, ry.y = ry and rx.y
the flip map r(z, y) = (y. ), 15 always an element of Ext_(Y, X). Indeed, it
is the solution Z, associated to the group homomorphism ¢ @ G(Y,ry) —

Aut(X,r); y— Idy, for all y £ V.

3.2.46 Remark. (cf. [21]) If Z € Ext_(Y, X), then its associated group
G(Z,r) 1s 1somorphic to the semidirect product G(Y,ry) w G(X,ry) of the
groups of (X, rx) and (Y, ry), formed using the left action of G(Y,ry) on X
via g — 'Ryl_l}.

In the spirit of 3.2.45 we dewvise Algorithm 22 to compute Ext_(Y, X). For
two solutions (X, rx ). (Y,ry) with ¥ = {w1, ..., yn}, each group homomor-
phism ¢ : G(Y,ry) — Aut(X,ry) is uniquely determined by an n-tuple
(Tyss s Tam ) € (Aut( X, rx )", just setting (y;) = 7y, . Amongst all possible
such n-tuples we will look for those satisfying

Tun @ Ty = Ty () © TRy, () uitty = Ly, (4] Ry, (i) € R(Y.ry).  (3.23)

Algorithm 22 Left extensions
Require: (X, rx) and (Y, ry ), solutions of the YBE, with ¥ = {w, ..., };
Ensure: Ext_Y X, the set of lett extensions of ¥ by X;
Initialization: Let ¢» be an empty list;
Let {1y, .... 7} be the group Aut{ X, ry ) (computed using, e.g., Algorithm
20 if (X, rx) is square-free;
Leftext(y,0); {call to Algorithm 23}
Beturn Ext_Y X

In order to construct a more efficient method for obtaining (some) elements
Z € Ext(X.rx.Y.ry), we may consider only the group homomorphisms
G(Y,ry) — Aut{X,ry) which act as a constant on each G(Y, ry )-orbit of
[Y:- Yy }
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Algorithim 23 Leftext

Require: p, a list of elements of Aut{ X, ry) and cardy, the mumber of
elements of ;

if (cardy = n) then
Let rp,: X UY — X UY, such that Top xx "= TX Toywy = 1Y,
ey @) = (2lil(@)w)s rolz ) = (y5,0l]7 (), for all = € X,
l=j=mn
Let Ext_ Y X :=Ext Y X U {r,};
else
Let o' = ip;
for i from 1 to m do
Let © be the hist " U 7; and cardy, the number of elements of ;
Re := {mu = vy € R(Y.ry ) Yeardyp € 18U Ver e}, 1 = k15t =
cardpg};
Contime:= Yes;
while (Continue = Yes and Re £ () do
Take yyoy = yowy € Re;
Re := Re \ {uran = ysti };
if @[k] o @[l] # ©[s] o ¢[t] then
Continue:= No;
end if
end while
if Continue=Yes then
Leftext{p,cardy); {call to Algorithm 23}
end if

end for
end if
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3.2.47 Covollary. Let (X,rx) and (Y,ry) be disjoint solutions. Let Y =
|, O; be the decomposition of Y into disjoint G{Y,ry)-orbits (Le., under
the left action Ly of G(Y,ry) onY ), and 11, -7, an s-tuple of (not neces-
sarily pairwise distinct) elements of Aut{X,rx ). Then the assignment

wry; — 7, forally, € O, 1 <:<s

can be extended to a group homomorphism ¢ : G(Y,ry) — Aut{ X, ry) of,
and only if,

ThoT;=TjoT, V1<i<)<s (3.24)

In that case, Z, € Ext_(Y, X} (defined as m 3.2. 44).

In the particular case that Aut(X, rx) is abelian, this method provides
|Aut(X, rx)|® elements Z, of Ext_(Y, X).

Froof. The assignments @ @ y; — 7, for all y; € @; and 1 < ¢ =< s can
be extended to a group homomorphism ¢ @ G(Y,ry ) — Aut(X, rx) if, and
only if,

pla) o p(b) = w(c) o p(d), ¥ab=cd € R(Y,ry) (3.25)
If a € O; and b € Oy, then from 3.2.31 we know that ¢ = L£,(b) € O; and
d = Ryla) € Oy, and therefore, p(a) = w(d) = 7, and @(b) = lc) = 7.

Henee, condition (3.2.47) is equivalent to
TiOT; =T;0 T, ¥1=4d7=<s

Finally, due to “symmetry” of the previous equation, note that the integers
i,7 can be assumed to satisfy the less restrictive condition 1 <1 < j < s

O

As previously, we can devise an algorithm to obtain left extensions of ¥ by
X given two solutions (X, rx ),(Y,ry). The drawback with respect to Algo-
rithm 22 1s that, obviously, we do not necessarly obtain the complete set
Ext_(Y,X). However, the size s < n = |Y| of the tuples (m,...,7.) €
(Aut(X,ry))® can have positive repercussions on the computation time.
Note that the condition (3.23) is translated into (3.24), which does not de-
pend on the relations of the solution (Y, ry). Assuming that Aut(X,rx) =
Im,. .., Tm}, In Algorithm 24 and 25 we introduce a global variable, a sym-
metric (m < m)-matrix called MatrizConun, in order to avoid repeating checks
of condition (3.24) (when, for example, m << s) . This matrix, defined for
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all 1 < i, = m by

MatrizCommli, j] = MatrizComm]j, 1
Liftrory=r10m;
—1, if Ti 0T i T eT
0, if there is no information about
commutativity of 73, 7

will be completed (replacing the zeros by either 1, or —1) as the algorithm
runs.

Algorithm 24 Left extensions (acting as constants on the G(Y ry J-orbits)

Require: (X, rx) and (Y, ry), solutions of the YBE, where ¥ = U:=1 0; 1s
the decomposition of ¥ into disjoint G(Y, ry J-orbits;

Ensure: The subset ext_Y X of Ext_(Y, X') consisting of all possible left
extensions (Z,r) of ¥ by X determined by r(w, z) = (n(z), v) (with 7; €
Aut(X,ry)) forall z € X, w2 O; and 1 < i < 5

Initialization: Let ¢ be an empty list, ext Y X = {I;

Let {m,..., 7m} be the group Aut(X,rx) (see Algorithm 20 if (X, rx) is
square-free);

Let MatrizComm be a matrix of size m = m with all entries equal to 0,
except MatrexCommli, 7] =1, for 1 <i < my

Leftextorbits(i,0); {call to Algorithm 25}

Return ext Y X

3.3  Yang-Baxter Algebras and equivalent
structures

In this section we first recall some results of T, Gateva-Ivanova and M. Van
den Bergh [42], who discovered close relations amongst square-free solutions
of the YBE and some mathematical objects which appeared earlier in very
different contexts: the semigroups of I-type, the semigroups of skew-polyno-
mial type and the Bieberbach growps. In particular, a result recently proved
by T. Gateva-Ivanova [40] is emphasized. This result states that square-free
solutions of the YBE, semigroups of skew-polynomial type and semigroups
of I-type are equuvalent notions. We also justify that Yang-Baxter Algebras
have PBEW bases and we show how some Linear Programming problems
describe the behaviour of semigroups of skew-polynomial type.
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Algorithm 25 Leftextorbits

Require: ¢, a list of elements of Aut(X,rx) and cardp, the number of
elements of o;
if (cardy = s) then
Let rp : X UY — X UY, such that Topx X = X Toyay = 1Y,
relu,z) = (pli](x), y). rpl,u) = (el '(2), forallz € X, y € O;
and 1 < i < s;
Let ext Y X :=ext_ Y X U {r,.};
else
Let 0" :=
for ¢ from 1 to m do
Continue:= Yes; 7 := 1;
while (Continue = Yes and j < cardy) do
Let k be the index such that ¢[j] = 7;
if MatrizCommlz, k] = —1 then
Clontinue:= No;
else
if MatrizComml[i,k] =0 then
if mom &+ mpon then
Continue:=No;
MatrizCommli, k] :== —1; MatrizComm/[k, i] == —1;
else
MatrizCommli, k] :== 1; MatrizComm[k, 1] := 1;
end if
end if
end if
J=1+1
end while
it Continue=Yes then

Let o be the list " U r; and cardie, the number of elements of
Leftextorbits(i,cardy); {call to Algorithm 25}
end if
end for
end if
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The notion of semigroup of skew-polynomial type comes from [35, 36], where
the author introduces and studies the so-called skew-polynomial rings with
binomaal relations, or binomial skew-polynomial rings. The binomial skew-
polynomial rings are a restricted class of the skew-polynomial rings con=sid-
ered in an earlier work by Artin and Schelter (cf. [4]). In [35, 36, 40], T.
Gateva-Ivanova proves that skew-polynomial rings with binomial relations
are left and right Noetherian, satisfy the Cyclic Condition (see property 6 in
3.1.19). Besides, the binomial skew-polynomial rings provide a new class of
Artin-Schelter reqular rings of arbitrary global dimension.

Together with these results on skew-polynomial rings with binomial relations
appeared the notion of semigroups of skew-polynomial type (also called bi-
nomeal semigroups in e.g. [53]), whose algebraic structure was studied in

[42, 43, 53, et al.].

3.3.1 Definition. A semigroup & 1s called a semigroup of skew-polynomial
type (or a skew-polynomial semigroup) if it has a finite standard presentation
as a group generated by a totally ordered set of generators X = {z; < --- <
Tn} (n = 2) with () square-free defining relations

R={rjzi=zprp [1<i<j<nl<i<j <n}
such that:

each monomial x;x; with 2 # j occurs in exactly one relation of R, and no
monomial x;xr; occurs in any relation of W

if zj0; = xpxy € R with j > ¢, then ¢ < 3" and 7 > ¢ (this also implies
i < 7', see [36, 40]);

the monomials zpxr; for all 1 <3¢ < 3 < & < n do not give rise to new
relations in &, or equivalently (by 1.1.25), the set G = {z;2; — zpxy [ x50 =

rpry € R} is a two-sided Grobner basis for k(X) {G}k{x} with respect to any

monomial order on (X} such that xpry < xyz, forall 1 <4 < j < n (eg,
the degree lexicographical order =gege. on (X)).

3.3.2 Example. Let (X, r) be the square-free solution of the YBE given by

{T{X,*.--j = {(55'123311]”[33?3335595510:':. (Illelj'{xlx?ra-rdxsmﬁ}r '[33101-'8]”[33933?:'5

Eu’fluﬂigﬂ':ai'?:l{stsﬂiaxai‘zﬁfl}, {xaxixz](u’fsﬂfsxl}}-
(see its graph in figure 3.17). In 3.3.18, we compute the order = on X

] = &z = Fg = Tz = Ty = Tg = Iy = Tg = Tg — T1gp = T11 = F12
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Figure 3.17: Graph of the square-free solution given in 3.3.2.

which satisfies condition 2) of 3.3.1 (renaming previously the variables s
in such a way that they follow this order). Consider the set of relations of
R(X,r), each of them written as in 2). One can check that condition 1) and
3) also hold. Hence, the Yang-Baxter semigroup S(X,r) is a semigroup of
skew-polynomial type.

3.3.3 Remarks. Let & be a semigroup of skew-polynomial tvpe generated
by X and with defining relations . For any field k, let .4 = k[S] be the
associated semigroup algebra, 1.e., A = k{X} /Iy, where Iy denotes the two-
sided ideal of k{X}

In = yxyloy — 03 [ 7y = 4F € R)yx)-

The semigroup algebra A4 is a binomial skew-polynomial ring in the sense
of [35, 36, 37], 1.e., A 1s a graded standard finitely presented algebra 4 =
k{X'}/ I'n such that the set of defining relations 'R has the form

where ¢;; € k' {0} and u,; is a standard monomial of degree 2 satisfying
wij = ;7 for all 1 <4 < j < n, and the set

F={zjz;—cyjuy; /1 <i<j<n}
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is the reduced Grobner basis for the two-sided ideal y; x, (F)yxy (for the degree
lexicographical order = ... on (X)).

It is shown in [35, 36] that assuming 2) and 3), the condition 1) is necessary
and sufficient for .4 to be (left and right) Noetherian.

Condition 3) implies that & can be identified as a set with the set of ordered
monomials:

{xftxt Sy, ey ) € WP

n

which forms a PBW basis of 4 (see 1.2.4).

Definition 3.3.1 is symmetric in the sense that & is a semigroup of skew-
polynomial type if, and only if, its opposite semigroup S 1s of skew-polyno-
mial type.

Every semigroup of skew-polynomial type & defines a square-free solution
via the set of relations.

3.3.4 Theorem. [42] Let & be a semigroup of skew-polynomial type for a
finite set of generators X and the set of relations ‘R, and consider the map

rs: X* — X*?
T — TiT, 1< 1< n,
Ijx._.' — I.irxjf, 1f Ijx._.' = .l",_.;-'Ij.l = ER

Then, (X, rs) is a square-free solution of YBE.

The notions of I- structure, and algebras and modules of I-type. were intro-
duced and studied by J. Tate and M. Van den Bergh in their work about
Sklyanin algebras (cf. [80]). The [-structure on an algebra .4 implies that 4
has the Hilbert series of the commutative polynomial ring in n variables, and
that .4 satisfies nice homological properties, like to be a Koszul algebra, an
Artin-Schelter regular algebra, etc. Besides, the I-type condition is a tech-
nical property, useful for computations. The notion of semigroup of I-type
was formally introduced in [42], and it is analogous to the above-mentioned
algebraic structures of I-type. In fact, the semigroup algebra of a semigroup
of I-type over a field is an algebra of I-type. T. Gateva-Ivanova and M. Van
den Bergh showed the equivalence of the notions of square-free solutions of
the YBE and semigroups of I-type.

3.3.5 Definition. Let § be a semigroup generated by X = {zy, ..., z,},
and 4 = [u1,...,u,) the free abelian semigroup generated by {uq,..., Up }.
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& 1s of left [-type if there exasts a bijection v : I — &, called left I-structure,
such that

1) w(l)=1,

) {e(wmal, ... vluga)} = {mvla),. .. zavla)}, for all a € .

Note that if & 15 a semigroup of left I[-type, then

Yacl, Vie{l,..., nt, 3 wa; € X st v(uwa) = xqv(a), (3.26)

and {z,; /1<i<n}=2X.

The definition and the properties of semigroups of right I-type are analogous.

3.3.6 Example. [42] Let § be the semigroup generated by {z, y} with defin-
ing relations {z? = ¢*}. Consider the doubly infinity graph shown in Fig.
3.18. For each (a, ) € M?, there exists a unique reduced directed path from

+

. . . . [ QU

X
X ¥ A
- - {3.1)
L] L] - L] o — &4
X
}" W
L] - L] ¥ - - T —
{ﬂ..ﬂ} K X

Figure 3.18: Graph representing the semigroup generated by {x,y} with set
of defining relations {x* = y*} described in 3.3.6

(0,0) to (e, ), which joins (0,0) with («, 3). For example, all possible ways
to connect (0,0) with (3, 1) are z°yx, y'z, ya®, yry® (see figure above), but
all of them give the same reduced path since ° = %* in &. Hence, the map

vild = [ug,uz] — S
{u'f',ug} — vlul, 1.:23] := path from (0,0) to (a, 3)

15 well-defined and 1t makes & be of I-type.




170 Chapter 3. Square-free solutions of YBE and Yang-Baxter Algebras

The following result gives the equivalence of the notions of square-free solu-
tions of the YBE and semigroups of left I-type.

3.3.7 Theorem. [42].

1. Let & be a semigroup of left I-type, with left I-structure v [uy,. .., w,] —
S, and let v : X? — X? he the map defined as

Ty g Tl Loy i T j

Then, (X,r) is a square-free solution.

2. Conversely, let (X,r) be a square-free solution and & = §(X,r) the Yang-
Baxter semigroup. Then & is of left I-type. More precisely, there exists a
unique left (and right) I-structure v : i{ — 8 satisfving v(u;) = x;, for all
1<i<n.

3.3.8 Note. The map r in the statement 1 is defined for all pair in X2 since,
from bijectiv ness of v and Eq. (3.26), it follows that X = {x,  }7_, and
X = {zy, i }i, for every u;.

3.3.9 Remark. Since the Yang-Baxter semigroup S(X,r) of a square-free
solution (X, r) is of (left and right) I-type, the Yang-Baxter Algebra A(k, X, r),
which is exactly the semigroup algebra k[S(X,r)] associated to S(X,r), is
an algebra of I-type for any field k (cf. [80]).

From the previous remark. the already known algebraic and homological
properties of algebras of I-type are satisfied, in particular, by every Yang-
Baxter Algebra A(k, X,r). Some of these properties, picked up from [40, 42],
are collected in the following result.

3.3.10 Theorem. [40,42] Let (X, r) be a square-free solution and let S( X, r),
G(X,r) and A(k, X, r) be the associated Yang-Baxter semigroup. Yang-Baxter
group and Yang-Baxter Algebra for any field k. respectively. Then the fol-
lowing conditions hold.

1) S(X,r) is (left and right) cancelative and G(X, r) is its group of quotients;

2) 8(X,r) is a Noetherian semigroup and A(k, X,r) is a Noetherlan domain;

3) The Hilbert series of A = Alk, X,r) is Ha(t) = ﬁ:

4) Alk, X, r) is Koszul:

5) Alk, X, r) satisties the Auslander condition:

6) Alk, X, r) is Cohen-Macaulay;
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Alk, X,r) is an Artin-Schelter regular ring of global dimension n;
The Koszul dual A' of A= A(k, X,r) is a Frobenius algebra;

9) S(X,r) satisfies a semigroup identity and A(k, X,r) satisfies a polynomial

10)

identity;
Alk, X, r) is catenary.

3.3.11 Note. (cf. [40]) The proofs of the statements from 1) to 7) can be
found in [42], where Cohen-Macaulay algebras and Auslander condition are
defined in [63], and the notion of Artin-Schelter regular ring can be viewed
in [4]. We can find the statement 8) in [37], whereas 9) is a consequence
of a more general result shown in [43], in which certain semigroup algebras
satisfy a polynomial identity. See [78] for the statement 10).

Theorem 3.3.4 and the Cyclic Condition (satisfied also by skew-polynomial
semigroups) gave rise to a conjecture of T. Gateva-Ivanova, first reported in
a talk at the International Conference in Ring Theory (Miskole, 1996), which
stated that every square-free solution can be obtained from a semigroup of

skew-polynomial type. This conjecture, eminciated next, was recently proved
in [40].

3.3.12 Proposition. [40] Let (X,r) be a square-free solution of the YBE
with | X| = n, then the set X can be ordered so that the associated semigroup
S(X,r) is of skew-polynomial type. More precisely, the set X may be totally
ordered in such a way that

i < j-:
Vau; =zpzry € R(X,r)withj>i = § 7> (3.27)
i< g
(the last Inequality, ¢ < j', can be deduced from the first and second ones, see
3.3.1, cf. [36]), and therefore, the monomials xpx;x; foralll =i < j <k =n
do not give rise to new relations m 8.

As a consequence of 3.3.12 we prove, by an alternative way to that followed
by Gateva-Ivanova in [40], that the set of standard monomials constitute a
k-basis of the Yang-Baxter Algebra A(k, X, r) associated to any square-free
solution (X, r).

3.3.13 Proposition. Let (X, r) be a square-free solution with X = {z,. ..,
x,}. Then, the Yang-Baxter Algebra A(k, X,r) has a PBW basis, 1.e., the
set of standard monomials

{22 (e, am) € N}
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is a k-basis of A(k, X, r).

Proof. By 3.3.12, we can assume the existence of an order = on X =
{m < -+ <z, } satisfying (3.27). Then, the reduction system

Q= {lzjmrprp) [ ey = xpxp € RN, r), 1 =i <7 = n}

15 compatible with the monomial order =4 ., on (X). From Theorem 1.2.4,
it is enough to prove that G = {x;z; — zpxj } = 15 a two-sided Grobner basis
for the two-sided ideal [i; generated by ), or equivalently, by virtue of 1.1.
25, that all ambignities of ) are resolvable. Note that all ambiguities of )
are overlap ambiguities. If we denote a;; = (z2;, zpxy) foralll <i < j<n
where r(x;x;) = zpxy, then the overlaps of () are

(Okj, O T, Ty, 25), T1=i<j<k<n
Let us pick @ < 3 < k. Writing

a-<b k>a j<b
c=d, b>=ec 1<d
e<f,i>e 1<f
g<h k>g, e<h

TRy = Tody, k>
Tpr; =g, b= =i
TiT; =TTy, ] >
Tple = TgTh, k > j =€
Lale = T[T,

(N

(3.28)

TRTf = TpTq,

we get from the YB diagram

i :I:_? Xy
Pi_f,x"-’- -\--H"'"‘-H.\_\_x:'"g
o o H\-\-“--\.\_
s =
Ty = Tp = I; Ty = T = Ty
o J'i"j_
Iy, Ta < :.Ifd Ty = Xp Ty
e L re
ey, -
Iy Tp Ty

that | = g, m = p. d = ¢g. Note that a # ¢. Otherwise, from the second
relation of (3.28), 1t would follow that x,x, = +r; which implies, together
with the first relation, that i = j - a contradiction. Thus, there are two cases:

A)Ifa < ¢, then h = f. Indeed, if we assume that h = f then, from
square-freeness of (X, r) we have that h = f = p=m = g = d, and
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therefore, from the fourth and fifth relation of {3.28) it follows that & =
a - a contradiction with the first relation of (3.28) and the statement 4
of 3.1.19. Similarly, if we assume that h < f,then m=p >g=d = ¢
- a contradiction, because a < ¢ implies ¢ > m. Thus, if o < ¢ then
g > pand h > f. Therefore, p < d. Since r{! = ry, the YB condition
can be rewritten as ror; = rrerry. Hence,

Vg, (TaTbi) = (?.JE‘PTJ' OTzgong © Tﬂ'iui‘::'[xkxexf}
(see the notation in Chapter 1), 1.e. the ambigwity (g, o5, T, 25, x5)

1= resolvable.

ByIf a = ¢, thenl = g < m = p. Let us distinguish different cases
depending on h and f. First note that h & f because otherwise, from
the fourth relation of (3.28) we get z.x ¢ = xp+, which implies, together
with the third relation, that & = j - a contradiction.

Bl) It h < f. then p = g. Therefore,
I[?"z'g-::rp.; L Trqab,){xaxbxi} = ?'crk.‘:[';{xkxexjj-
B2) If h = f, then p < . Thus,

I[Tﬂ'ﬂeﬂ'd o Trﬂab,}{xaxbxi] = (?11';0;,; = ?"-:rh:r_f:l{'rk'rexj:l*

a

From 3.3.4, 3.3.7 and 3.3.12 1t follows that the three notions (square-free
solutions of the YBE, semigroups of skew-polynomial type and semigroups
of I-type) are equivalent.

3.3.14 Theorem. [40] Let X be a set with n = 1 elements and r : X* —
X% a square-free mvolutive bijection. Let S(X,r), resp. A(k, X,r) with an
arbitrary field k, be the semigroup, resp. the algebra, associated to (X, r).
Then the following conditions are equivalent:

1. (X,r) is a nondegenerate set-theoretic solution of the YBE;

. S(X,r) 1s a semigroup of I-type;

3. There exists an order = on X such that S(X,r) is a semigroup of skew-

polvnomial tvpe;

. There exists an order on X such that if X = {z; < --- < x,}, then for
any field k, Ak, X,r) has a PBW basis. More precisely, the set of ordered
monomials

{att-ap™ [ on,. . an) € W7

is a k-basis of A(k, X,r).
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Moreover, anyv of these conditions implies that the solution (X, r) 1s decom-
posable.

3.3.1 Computing orders for skew-polynomial structures

The main result in this subsection establishes a complete computational de-
scription of the condition 2) of 3.3.1 satisfied by the skew-polynomial semi-
groups, by using certain LP ( Linear Programming) problems. We show that
for a finite set X with |X| =n > 2 and a set R of (7)) square-free defining re-
lations the existence of an order on X satistving such condition is equivalent
to the solvability of (at least) one of the LP problems described in 3.3. 16,
or in other words, to the existence of a non-empty feasible region ¢;. Once
we formulate the above-mentioned LP problems, we can solve them by using
any software which includes the Simpler Algorithm.

This result was first proved in [25] and it was useful to check the assertion
3.3.12 (when it still was a conjecture) for explicit examples of square-free
solutions, that 1s, we used 1t to empirically confirm that square-free solutions
of the YBE provide semigroups of skew-polynomial type.

Moreover, with the following method we obtain all possible orders on X for
which the Yang-Baxter semigroup (X, r) of an arbitrary square-free solution
(X.r) 15 of skew-polynomial type.

3.3.15 Notation. Let X be a finite set of ordern = 2 and r: X* — X% a
square-free involutive bijection such that r(zy) # xy for all x # y € X. Note
that the set of relations R(X,r) (in which we will not consider the relations

)

— \ nin—1
Ty = xar; for all 23 € X ) has "T elements.
Each relation of R(X,r) can be written in two ways, either xx; = xpxy
or rpxy = x;x;, when rv(x;r;) = rpxy, ; # x;. Thus, we can distinguish
different sets {R; i of ordered relations, where each set Wy consists of all the

-1 . . . . . -
ﬂﬂz—l relations of (X, r) with a fixed way of writing each relation. Note
nin—11 . .

that there are exactly 2= 7 different sets of ordered relations.
For instance, for the square-free solution of 3 variables given by C(X,r) =
{{z3)(zyxy) }. The sets

Ry = { Tamz = 3173, TyT) = ToTa, TpT = T3z,

R = { x123 = w322, T3 = TaTa, T2 = T2}
are two (of the 8) different sets of ordered relations of (X, 7).

3.3.16 Theorem. Let X be a finite set of ordern > 2 and r: X° — X% a
square-free mvolutive bijection such that r(zy) # xy for all x £ y € X. Let
{®Ri}i be all sets of ordered relations (described i 3.3.15).
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For each Wy, consider the LP problem:

minimize wlw) =wy + -+ + whp,
subject to :
i - . .
wr = 1, 1<k<n;
a) (w,e—e) =21
=4 bl{w.ep—en)=1 y
il :l ;w_ ] .|.-' = B g Lo 'G"Ijxi:_ri,;tj,eﬂi‘!
c) (w,e—ep)p =1 paf (7,5) # (i,])
dj (w.,ep—6) =1
L
(3.29)
where €; 15 the element (0,....1,....0) € H*, the components of w £ H"
are denoted hy (wy,...,w,), and the operation {—,—)} denotes the scalar
product on N™ x N", given by (u,v} = ) " uy, for u = (u,... up)v =

(7. ...,0,) € ™

Then, there exists a set of ordered relations Ry for which the problem (3.29)
has a solution if, and only if, there exists a total order = on X = {x1,...  za}

such that

bI) Iy = Iy
W asr = apry € R(X.r) with a') x; = ;. then ) oz e

d'}) =z <z
Proof. Suppose that there exists a set Wy so that the LP problem (3.29)
has a solution, that is, there exists an element w in the feasible region ¢;.
Let =, be the order on X defined as in Appendix A. Take r;r; = rpxy In
R(X,r) and suppose, without loss of generality, that it appears in ®; written

in this way. From condition a) of (3.29) and bilinearity of (—, —)}, it follows

e I'n. .'r- 3 "'. Sy .l'l- k] .I"- T .'r' .I"- . .
g —lwag) =0 = {w e} > (w,e) = 3 =, ;.

Moreover, if (¢, j) = (¢, 7), or equivalently if x; and z; commute, the condi-
tions b'), ') and d') are clear. If, instead. (i, j) = (¢', 7). then the conditions
L. ¢}, resp. d) imply b'), ¢}, resp. '}, similarly as a) implies a’).
Conversely, suppose that there exists a total order = on X satisfving condi-
tions from a’) to d'). Then, x;qy < o5 - = Ty for some permutation o
on {1,....n}. So,

T; > T; = a= i) = a7 i).

or equivalently. taking w = (a=Y1),....07Yn)) € (H+)",

11-_.;. = I; = I.A..-'j. 2oy, (3.3':')
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Let
.‘}?'! = {ﬂ:j:ﬂ: = :E:-a.l"ja E H(X, ?':lr"f I"_'i' — ﬂ::'}.

For each relation x;xr; = xyx; with x; = x;, from (3.30) it follows that

(w,ej — ) = (w, g5} — (w, &) =wj —wy = 0.
So condition a) is true since {w, €;—¢;) 1s an integer. Similarly, if (7. j) & (7', j')
then the conditions b'). ¢') and d") imply b). ¢) and d). Therefore, w € dy is

a solution of the LP problem (3.29) applied on *;. O

From 3.3.12 and 3.3.16, it follows that for each square-free solution (X, r)
there exists an (optimal) solution w £ " for at least one of the LP prob-
lems (3.29), and so, there exists an order =, on X which provides a skew-
polynomial structure for the Yang-Baxter semigroup S(X.r).

3.3.17 Corollary. If (X, r) is a square-free solution of the YBE. then there
exists a set of ordered relations B, for which the LP problem (3.20) has a
solution w, and therefore, the induced order =, on X (see A.1.1) provides
(renaming the variables if necessary) a skew-polynomial structure for the
Yang-Baxter semuigroup S( X, r).

Furthermore, all possible orders on X = {x1 < -+« = x,} such that S(X.v)
15 of skew-polynomial type are exactly the orders =, on X obtained from
solving the family of LP problems (3.29] stated in 3.3.16.

Proof. Let us check the second part. Let =, be the order induced (as
in A11) by a solution w of the LP problem stated on a set of ordered
relations F;, and suppose. without loss of generality, that X is ordered by
Ta(1) <w Ta(z) * —w Lafm) for some permutation ¢ on {1,....n}. Taking
Yi i= Tqpp for all 1 < ¢ < n, it follows that

X={y1 ":w“'_‘:uyﬂ.}

and &( X, r) is of skew-polynomial type. Moreover, if = is an order on X =
{z1 <« < z,} so that S(X,r) is of skew-polynomial type and we consider

Ry ={zpi=xpzyp e R(X,r) [/ j =i},

then w = (1.2,....n) is a solution (the optimal one) of the LP problem
(3.29) stated for H;, and ===, on X. O

From these results we devise Algorithm 26, which stops when it finds a
solution for one of the LP problems described in (3.29). This algorithm can
be obviously modified in order to compute all possible orders for which the
Yang-Baxter semigronp & (X, r) associated to a square-free solution (X, r) is
of skew-polynomial type (just removing the variable Found).
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Algorithm 26 Orders for skew-polynomial structures

Require: (X, r), a square-free solution of the YBE;

Ensure: A order =, on X such that S{ X, r) 15 of skew-polynomial type;
Initialization: Relsets :== |R,}; (described in 3.3.15) and Found:=No;

while Relsets is non-empty and Found=No do
Take B = Relsets;
Relsets .= Relsets \ Ry;
For 'R,. consider the LP problem

minimize wlw) =wy + - 4 why,
subject to:
( wy =1 1<k <m
al (w.eg—g) =1
pr=9q bj{w, e —er}=1
o) (w, & —ew) =1 p if (i",7) # (ir])
d) (w,ep—g) =1

L3
if there exists a solution w £ (H+)® then

) 4 f L
ety € < Wty E4)

Let x; =, x; = oT
)

Found:=Yes;
end if

end while

Heturmn =,.

l'i".l'_-;:ﬁ = Ty = 3{!:

Wt = fw. e i< i
lw. €)= (w,e;) and 1 < j;
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3.3.18 Example. We continue working with the square-free solution (X, r)
given 1n Example 3.3.2:

E(X:"":'={[f‘flzfﬂll:“[l"ﬂafﬂg-’ﬁlu:" (a2 T2 7374 75T ). (T1075)(ToT7 ).

[xln-l"gfﬂafﬂ?][iﬂﬁﬂf:.ﬂfal'sl'z-’ﬂ1): (Iﬁl"dfﬂe:'(m:.iﬂzﬂ?l:l},

One of the sets of ordered relations gives the LP problem

12
minimize E Wi
k=1

subject to:

)

Il <w, 1l <w, 1 <w,l<w,1<w,1<w,1<w,1<uw,l
we, 1 < wng, 1 < wnp, 1 < wyp, 1 < wyy —wip, 1 < wip — we, 1 < uns

-

wyg, 1 < wp —wr, 1l < wpp —wyg, 1 < wieg —we, 1< wyp —ws, 1< wys

we, 1 < wyp—wy, 1 < wp—uwy, 1l < wp—ws, 1< wpy—ws, 1< w;—we, 1
Wz — Ws, 1 =< wy; —wsz, 1 wy — wy, 1 wyz —ws, 1 < wyp — ws, 1
wyz — we, 1 < wy; — ws, 1 wyz — wy, 1 whg — W, 1 < wyg — wa. 1

AU A A TA
A 1A LA LA LA

wg — wy, 1 = wyy — wq, 1 wy — g, 1 Wy — we, 1 =< wyy — we, 1
Wy — Wy, 1 = wy —we, 1 < wyy —wy, 1 Wy — We, 1 = wy — wy, 1
Wy — we, 1 =< wy; — we, 1 wr — wy, 1 Wy — Wy, 1 =< wy — ws, 1

we —ws, wr —ws = lwg—we <1, wr—wp=<1,1<w —wy, wy — g
l.l1<wr—uy, 1 <=wp—w,1l <ws—wy, 1 <ws—ws, 1 <ws—ws, 1
wo—tn, 1 < wo—twa, 1 < wg—ws, 1 <wsg—wy, 1< wsg—ws, 1 <wsg—wa, 1
wy —ws, 1 <uwy —wa, ) —ws <1l ws—wse <1, 1 < ws —ws, ws — wy

<
<

lw, —wy =1, wsg —uwy <1, w; —wg= 1,1 < wg—ws, 1 < wg—wy, 1
we—t, 1 < wg—wq, 1 < wg—ws, 1 < wy—wq, 1 < wg—wy, 1 < wy—ws, 1
Wy —ay, Wy —wy <1, 1 <wy—uwq, 1 <wy—wn, wy—wy <1, 1 < wg—uy

AL AC LA TA TA TA T A TA 1A IA

Bunning the Simplex Algorithm we obtain w = (1.4,2.5,3.6,7.9, 8,10, 11, 12).
Hence,
T =¥y =T =T =, Ty =, Ts
=l T7 =l Tg =y Ta =y T1o = 11 <w T12
15 an order for which the Yang-Baxter semigroup S X, r) 15 of skew-polynomial
type, just setting X = {y; < -+ < y,}, where y; := 21, yp = 3. U3 = T,
and so on.

3.3.19 Notes,

. The conditions wg = 1. ¥k are included in the LP problem (3.29) just to
assure that the wy's are bounded. If wy “s were bounded by any other integer,
we would obtain the same order on X.
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2. We have encoded a recursive wersion of Algorithm 26 in Maple (see the at-
tached library in [32]) which for every square-free solution (X, r) computes
the (optimal) solutions w's of the LP problems described in 3.3.16, and hence.
it gives all possible ways of ordering the set X such that S{X, r) 15 of skew-
polynomial type.




Appendix A
Orders

In this appendix, we list all the orders used throughout the three chapters.
The set X is supposed to be finite, namely X = {z;,... z,}.

A.1 Orders on X

A.1.1 The order =, defined on X by

fog et RIA)
ety Eqf < ety 4
T —=w I — or
ITATA
ety Eif

= {w, ¢;) and & < 3,

18 a total order.

A.2 Orders on the free monoid (X))
A.2.1 The lericographical order <., defined on (X} 1s given for every u =
Til " Tig, ¥V =Tjy *** T [ .iX::.: b}-

s<tand i =gy k<s
U <fer ¥ == { O
Jdr < min{s,t} at. i, < jr and i = jp, VE <.

A.2.2 The degree lericographical order <geglex on (X) is defined as

deg(u) < deg(v)
U <gegler ¥ <> { O
deg(u) = deg(v) and w =, v,

where deg(u) denotes the length (i.e., the number of letters) of the word w.

151
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The order =, ., 1 a monomial order, whereas =, is not.
A.2.3 Let = be an admissible order in ™. Then the order = defined on
(X} as

mdeg( My ) = mdeg(Mz)
My = My = or |:.L"!'1.1:|
mdeg( M, ) = mdeg(M,) and wi{ M) < v M),

where mdeg( M) and (M) are the multidegree and the misordering index,
respectively, of M 1s a monomial order on (X} (see [13, Prop. 2.2]).

A.3 Orders on the free algebra k(X)

A.3.1 Just as it appears, e.g., in [57], it is possible to extend a monomial
order = on (X} to a partial order on the free algebra k(X} satisfying the
d.c.c.. This new order, denoted also by =, 18 defined by putting (0 < f, for
all f e k{X)}" {0}, and

lm (f) = lm (g
f=g+= {or (A2}
lm(fl=Ilmig)and f —16{f) < g — 1t {g).

for any f.g € k{X)\ {0}, f #g.

A.4 Orders on N" (n > 1)
A.4.1 The reverse lericographical order =, . on H™ with ) <, 0 - -
~penles €n. defined for oo = (o, ... p) and 3= (G, ..., 0,) € " as

& <penier 3 == J3 € 11,... . n}such that a; > 5; and o; = 3, ¥1 < j,

1= a monoid total order, but it is not admissible since condition 0 = a 1s not
satisfied for all & € M"™ [note, for example, that £, < cpier U).

There 15 also a reverse lexicographical order with € = er ~*° =revier En-
obtained by replacing i < 77 by “i = j” in the definition above.

A.4.2 The lericographical order =j.p on M™ with ) —jer -+ <oz €, 15 the

admissible order defined for every oo = (a...., 05 ) and 7 = (..., Gn) £
™ by

a <gee B = J5{1,..., n} such that a; < 55 and a; = 5, ¥1i > j.
The lexicographical order with €; =gz --- =z €, can be defined similarly,

just replacing “i > 37 by "1 < 37,
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A4 3 Letw=(w....,w,) € 8" The wweighted levicographical order =,
on M™ 15 the admis=sible order given, for every o, 7 € 7 by

|t < |
=, J = or
lot|w = |5y and o <. 5,

il

i=1

where ||, denotes the scalar product (w, o} = Oy .

A.4.4 The degree lericographical order = g.gie. on ™ 1s the admissible order
= with w=(1,...,1) € H".

A 45 Let w=(wy....,w,) € H". The w-weighted reverse lericographical
order = reviex o0 ™ 15 the admissible order defined for every o, 7 € H" as

| < [ 5]
e or
||, = |5], and o < 5.

A.4.6 The degree reverse lexicographical order = codegier on H™ 15 the ad-
missible order defined as the order =, 0 Where w = (1....,1) € N?,

A4 7 Let =, resp. =,. be an admissible order on M™ resp. on M7,

The elimination order =% with the second component larger than the first,
defined as
F—=pd
(a, 3) <" (v,d) == { or
F=4dand o =, v,

and the elimination order =, with the first component langer than the second,
defined as
& ~<m Y
(v, 3) =4 (7.8) = { or
v == and 3 <, §

for o, v € B™, 3,8 € N", are admissible orders on F™+7,

Both elimimation orders are crucial in Elsmination Theory, which has been
used in different contexts (in [1, 18] when the underlying ring is the commu-
tative polynomial ring, or in [13] for left PBW rings).

A48 Let =, ... =y beorders on M™ . ™ respectively, and let o be

a permutation of m elements. The generalized elimination order =% (with
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the #(1)-component larger than the #(2)-component, etc.) is defined on
Fritednm g

3je{l,...,m} st a7 ., 370
1 m S 1 my ' 3 _ i)
(e, ..., a’) < (6., 07) = { and at = 30 i < j ’

for Er",.ﬁ*’ cH® 1<k<m.

Lemma. Let =5...., =, be orders on M™, .. ™" respectively, and let =
be a permutation of m elements.

If =4 18 a partial (resp. total) order for 1 < k& < m, then =} is also a partial
(resp. total) order on [rit-+nm.

It =% 15 a monoid order for 1 < & < m, then = 1= also a monoid order;

If =% is an admissible order for 1 < & < m, then = is also an admissible
order.

Note, The lemma may easily be proved by mimicking the well-known proof
for the case m = 2. Note that for m = 2 and 7 = Id, the order =} is exactly
the elimination order =, with the first component larger than the second.
whilst if m = 2 and & 15 the permutation given by o(j) = 3—jfor 1 < 7 < m.
then =7 becomes the elimination order =* with the second component larger

than the first (see A4.7).

A.4.9 Let = be an order on M™. The opposite order of =, denoted by =°F,
15 defined for any o, 7 € H" by

a ="F 3 = a"F = g%,

where aF = (o, . ... ), for all o = (aq, ... o0, & F™
It 15 obvious that if “=" 15 an admussible order, then so 15 “="F",

A.4.10 Let = be an order on M". The up-component composition order in

% dencted by =°, is defined as

1

o e a+ G <y 457, or
(@) < r.0) & {a- + 3% = 4 4 §° and G < 5.

The down-component composition order =, is defined as

a4+ FF <y + 6°F, or

(@,5) <= (1,0) & {o: + G = 44" and a < 7.

It 15 a straightforward calculation to check that if “=" 1s an admissible order
on ", then both composition orders *="" and “=."are admissible orders on
I (the proof may be found in [24]).
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A.5 Orders on the set N* (n, s > 1)

A.5.1 The order =™* defined as

(@) <™ (B,7) = (5,3) € (i) + N,
= t=jand ap < F, V1 <k <n,

for (a.), (3, 3) € ™% is a partial order on F™{=),

A5.2 Let “=" be an admissible order on M™.

¢ The Term Over Position ovder (or TOP onder) (with exp (e1) = exp (2] =
<o = exp (e4)). defined as

o = 3
(ev.i) <rop (3.7) == { or
o=/ andi > j

¢ and the Position Over Term order (or POT order) (with exp (g;) = exp (eg) =
<o- = exXp (eg) ). given by

P>
(o, 1) <por (0,j) = § or
i=7and o < 3,

are admissible order on F™()

Both orders Top and poOT can also be defined with exp (e1) < explez) <
- <l NP (€g). Just replacing “i < 57 by *i = §7 in the definitions above.
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Resumen en espanol

El célebre teorema de Poincaré-Birkhoff-Witt establece que s1 {x, ..., z,}
es una k-base del algebra de Lie g, entonces el conjunto de monomios estandar

{x?i R :E:" }ai ..... cn <[

es una k-base del algebra envolvente universal U7(g). Esta propiedad. que
las algebras envolventes universales comparten con muchas otras algebras
asoclativas, es una de las razones por las que la mayoria de los algoritmos
utilizados en los anillos de polinomios conmutativos también funcionan en un
contexto no necesariamente conmutative. De hecho, a pesar de que la teoria
de bases de Grobner ha sido extendida a Algebras que no poseen bases de
monomios estandar (véanse los trabajos de Mora en el dlgebra libre [70, 71,
73]). parece que los mejores resultados desde un punto de vista computacional
se obtlenen en algebras donde una de estas bases, también llamadas hases
PBW, existe (ver [3, 8, 9, 10, 11, 12, 13, 23, 30, 31, 44, 54, 59, 60, 61, 62, 64,
65, 72, et.al]).

El objetivo de este trabajo es estudiar, desde un punto de vista com-
putacional, la clase de las algebras en las que existe una base PBW. Mas
concretamente, nos centramos en algebras que adema&s son finitamente pre-
sentadas por un conjunto finito de generadores X = {zy,...,z,} v un con-
junto de relaciones @ C (X} % k{X} finito (el lamado sistema de reduccion).
Como demostramos en el primer capitulo, cuande @ = {(W,, f,)}, es un
sistema de reduccién completo (en el sentido de [57]) compatible con algin
orden monomial en (X} ¥ todos los W, estan desordenados, el conjunto de
monomios estandar en los generadores {1, ..., 7,;} es una base PBW del
algebra k{X) /Iy (donde Iy denota al ideal bilatero generado por @) si, ¥
solo s1, todo monomio x;z; con @ < j es el término principal de una relacién
de ). Notese que esto iltimo se puede comprobar de forma efectiva.

1587
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Nuestros principales casos de estudio son la clase de las G—.r—figcb?'as, que es
sepuramente la clase de dlgebras mas profusamente estudiada en la literatura
sobre métodos efectivos en algebras asociativas, v la clase de las A lgebras de
Yang-Barter, mucho menos conocidas al menos en sus aspectos computa-
cionales. La primera es la clase de algebras que introdujeron Kandri-Rody v
Weispfenning en su trabajo [54], v cuya teoria ha sido recientemente desarro-
Nada en [13, 59, 60, 64, 65]. La segunda es la clase de las dlgebras que surgen
de las soluciones de tipo conjuntista de la ecuacion de Yang-Baxter, con-
cretamente de las soluciones involutivas no-degeneradas libres de cuadrados.
Recientemente se ha probado que el semigrupo asociado a estas algebras es
de tipo skew-polinomial {ver [40]) ¥, por tanto, encajan en muestro esquema
computacional.

Este trabajo esta organizado de la signiente manera.

El primer capitulo recoge las nociones v resultados basicos sobre sistemas
de reduccidn v ambigiiedades de reduccidn, incluyendo el lema del diamante
de Bergman v un algoritmo de reduccion adaptado, que efectia una division
hilatera en el Algebra hibre:

Algoritmo 1. Reduccidn en k{X)

Require: f £ k{X}. v un sistema de reduccién ¢}, compatible con un orden
monomial = en (X};
Ensure: g,r € k(X tales que

1. f=g+r, donde

2. q= EJEQQJ(H;J — f.:r:l: Con

o = Z }tg.i[a"\la,i el B-:,r.:':': ¥ Acr.:'u‘;chcr.:' = lm (f:l

i; finite

3. 8 r # 0, entonces v € k{X iy ¥ lm () = 1m ( f);

Initialization: p:= f. g :=0. r :=10;
while p # 0 do
if Im (p) € (X} then
Sean A, B € (X} v o = (W,, f,) € @ tales que lm (p) = AW, B,
p=p—le(p)A=B)(W; - fi);
g=q+le(p)(A= B)(W; - fi);

else
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p=p-—ltip):
re=r+1t(p):
end if

end while
Devuelve g, r.

En este capitulo también se recoge la equivalencia entre los conceptos de hase
de Grobner bilatera en el algebra libre v sistema de reduccion completo, que
nos permitira probar en el capitulo 2 que las condiciones de no-degeneracion
de Levandovskyy (ver [61]) planteadas en cualquier G’—Algehra: PONEZAIOS
k(X) /I, equivalen a que las ambigiedades de solapamiento de Bergman
sean resolubles (ver [7]), o equivalentemente, a que el sistema de reescritura
noetheriano Q" (ver [57]) que se obtiene de ) sea completo:

1.1.25 Teorema.

Sea = un orden monomial en (X}. Sea G un sistema generador hilatero
de un ideal bilatero I de k(X)) v consideremos el sistema de reduceion @ =
{(lm (g),lm (g) —lc(g)7'g) }yee de k(X

Las signientes condiciones son equivalentes:

1. ¢ &5 una base de Grobner bildatera de I

b2

L (G) (X)) = M (I);
3. (Xiw= (X)) \ M (I);
4. Todas las ambiguedades de ( son resolubles;

5. Todas las ambiguedades de €} son resolubles respecto a =;

=

Todos los elementos de k{X) son de reduccion iinica bajo Q:

=1

El conjunto { M + I/ M € (X )i} es una k-base del algebra k{X}/T;
8 kX)) = KX)in @I, o equivalentemente, k{ X} (11 = {0}:
0. k{X) /T2 kX) 5

10. @ es completo, or equivalentemente, noetheriano:

— : C I:I_
11. Todo f € I tiene una tinica forma normal ™ f, que es 0;
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12, Para todo f € k{X}\ {0}, f € I s1, v sdlo s1, f se puede expresar como

f= Z‘?ggr with g, = Z Aig(Aig @ Big),

gely finite
y1m (f) = max_{A; glm (g) Bi g }i g
13. Para todo f € I, f —g 0, o equivalentemente, para todo f € k{X),

fel <= f—p0;

14. Todo f € k{X) tiene una tinica forma normal Q?:

15. S(o, 1, A, B,C) —g 0, para todo S-polinomio S(e, 1, A, B,C;

En la tltima seccidon del capitulo 1 probameos nuestra caracterizacion de las

algebras con base PBW:

1.2.4 Teorema. Sea X = {x1....,2,} v @ un sistema de reduccion de
k(X'}. compatible con un orden monomial = en (X}, de manera que todo W,
sea desordenado, e.d.,

Vo= (W, f,) €Q. W, =Ax;x;B. paraalgin A, B € (X},j >i. (B.l)
Consideremaos las signientes afirmaciones:

1. k(X)/Iy es una k-algebra con una base PBW. Mds concretamente,

1 X% aepmn s una k-base de R, donde X* denota X" --- X v X; =
ri + Ig:

2 zjz 1 <1< j<n} C{W, /o e @}, oequivalentemente, (X }ix =
{z* o e N}

3. El conjunto G = {W5 — fs }seq es una base de Grobner bildtera de I,
o equivalentemente, () es completo.

Entonces,
A) 512 es cierta, entonces 1 es equivalente a 3.
B) Asumiendo 3, las afirmaciones 1 v 2 son equivalentes.

C') 51 ademas ) no tiene ambignedades de inclusion, entonces en A) v B)
la condicion 2 puede ser reemplazada por:

20 W, joee@Q} =4z, /1 <i<j<n}
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Justificamos ademas, nsando una técnica que desarrollamos en detalle en
el capitulo 2, por qué el algoritme de reduccidn también proporciona una
divisidn hildtera en un dlgebra con base PBEW:

1.2.11 Teorema. Sea = un orden admisible en M*, v sea R = k{X) /Iy,
i - L . it E 5 I Y ]
donde @ = {(z;z;, f) /1 <i < j <n} es un sistema de reduccion completo
: ; . : .
con respecto al orden monomial = en {X) inducido por = en I™.
Sea |Gh,...,G:} € R\ {0}, Todo elemento F € R\ {0} se puede expresar

Como
1. F=%7 FG;+ F' con F' € R, F; € Ry RP, de tal manera que
2. exp g FG;) = exp p(F). para todo 1 <1 < s:

3. 51 F' # 0, entonees exp g(F') = exp g( F) v existe un polinomio estandar
flfekiX)talque P =f'+ Iy ¥

& L{{g,...,g:}), ¥ 2" monomio de f,
donde G; = g; + Iy, para ciertos g; € k{X ).

En el capitulo 2 analizamos nuestro primer ejemplo de algebra con base
PEW?: la clase de las G—ﬁlgehras (conocidas también como dlgebrms polinomi-
ales solubles en [54, 59, et.al.] y como dlgebras PBW en [9, 13, 30, 65, et.al.]).
Estas algebras vienen definidas, ademas de por tener una base PBW, por la
propiedad de que el erponente del skew-conmutador p;; = r;r; — o505 esta

acotado por el exponente del producto x;z;, que es (0, .. _i_: e _i_, o)

para todo 1 < ¢ < j < n. La clase de las G—ﬁlgehras incluye las Algebras
envolventes universales de las algebras de Lie finito-dimensionales, exten-
siones de Ore iteradas, una gran variedad de cuanticos (My(2), los espacios
cuanticos, etc.) v es cerrada al tomar algebras opuestas y productos tensori-
ales, como mostramos en la segunda seccion de este capitulo.

En las primeras cuatro secciones del capitulo 2 resumimos las nociones basicas
de la teoria de bases de Grobner en el contexto de las G—ﬁlgehras. Segulmos
la notacidn y terminologia de [13]. En la cuarta seccidn, en la que recogemos
algunas de las aplicaciones clasicas de las bases de Grobner, contribuimos
con un algoritmo para calcular la codimension de un submadulo a 1zquierda,
a derecha o bilatero M C R*® cuando A es una G—ilgebra en caso de ser M
cofinito (algoritmos 8 y 9).

En la quinta seccidn proponemos un mievo método, que mostramos por
primera vez en [28], para manejar de forma efectiva bimddulos usando di-
rectamente sus sistemas generadores hilateros como datos de entrada.
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Algoritmo 8. Madulo cofinito

Require: F={f;,..., fr} € R®, un sistema generador del médulo M C R*
(M = g{F)o M= g{Fjg);

Ensure: cofinite= FALSE, s1 M no es un madulo cofinito, ¥ cofinite= TRUE.
en otro caso. 81 se cumple esto Mltimo entonces devuelve el valor de
codimy (M) en la variable codimension;

Initialization: cofinite:=TRUE, 1 :=1. k :=1;
Calcular una base de Grébner G = {g,....g-} for M;
while cofinite= TRUEv k< syvi<ndo
if Aexp (g) € G tal que exp (g) = (ve;, k) para algtin v € M then
cofinite '=FALSE;
else
it t = n then
E=k+1;1:=1;
else
i=i+1:
end if
end if
end while
it cofinite = TRUE then
Calcular una base de Grobner minimal G a partir de &
codimension:= ;
for k=1to s do
Para 1 < i < n, sea (o'*, k) € Exp (G') tal que
a* = (0,... . vy....,0) para algin vy, € M
(F1....,, Fn) = (0,....0);
Codimensién(n,k); { Llamada al algoritmo 9}
end for

end if
Devuelve cofinite v, |1 cofinite = TRUE, devuelve también codimension.

Algoritmo 9. Codimension

Require: n,,,.q un entero positivo, y k€ {1,....s};
if 1o = 1 then
& =10
while vg € G con level (g) = k, existe I; € {1,...,n} tal que la lg-

ésima componente de exp (g) es estrictamente mayor que que la lp-ésima
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componente de (7, ..../4,) (punto actual) do
codimension:= codimension + 1;
G=04+ 1
end while
else

for all j =0to (o, % — 1) do
Codimension(neard — 1.k); {Llamada al algoritmo 9}
.'j”'can!\:f = .ﬁng_-\:u-d +1;
end for
end if

La ventaja de utilizar la nueva técnica para manejar bimddulos estriba en que
se evitan pasos imiciales innecesarios para transformar los datos bilateros en
entradas a 1zquierda o a derecha. Un esquema de este método es el signiente:

Froblema en el FE-sub- Problema en el B*™-submddu-
. - 2 =1 | r
bimddulo M de R® m* )= lo (m®) 7 (M) de (R™)*

1 B . B . )

Construir solucien del Con ]th cl]h{}l]tll-.l(}h conocidos

bl icial W ~—| para modulos a 1zda.. resolver
wroblema inicial en 1
I el problema en (m®) 71 A)

(B.2)

Aplicamos este método para calcular bases de Grobner bilateras de bimadulos
sobre una G—ilgubra de manera alternativa a la del método de Clansura a
Derecha de Kandri-Rody y Weispfenning (ver [54]). Este nuevo algoritmo
llama una sdla vez al algoritmo de Buchberger a izquierda en lugar del, a
priorl desconocido, mimero de llamadas tipico del método de Clansura a
Dierecha.

Algoritino 10. Bases de Grobner bilateras

Require: F ={fy,....fy;} C R*" {0},
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Ensure: G = {gy,....g,}, una base de Gribner bilitera de p(F)p tal que
F G,
Initialization: B = {f; 21}, u{zled 21 15 :nf‘J-*]}li-jE-ﬂ_ |k s
Usando el algoritme de Buchberger a izquierda. calcular una base de
Grobner a izquierda G en el médulo libre (R*™™)® para B;

SiG ={g..... gutoon g = (3,00 Pl @ a2 en, P5; © ), Poner
4 = [E_»,iej, f:':'le':'lj: R Eje:l, p?j@'?j]:
G =
for all i =1 to ' do

if g; # 0 then

G =G U g}

end if
end for
Devuelve .

Posteriormente llevamos a cabo una comparacion entre este algoritmo v el
método de Clansura a Derecha discutiendo varios ejemplos explicitos.

En la sexta seccion la técnica mostrada en la seccidn anterior para mane-
jar bimédulos se aplica esta vez para caleular el bimddulo de sicigias, in-
troducido por Mora ([T1]) para ideales bilateros homogéneos en el contexto
de estructuras graduadas no conmutativas, v lnego, independientemente, los
autores ([27, 30]) para bimddulos no necesariamente homogéneos sobre una
G—élgebra. Mostramos que los bimodulos de sicigias, que pueden ser vis-
tos como la contrapartida bilatera de los modulos de sicigias a izquierda.
son 1tiles resolviendo algunos problemas computacionales enando se tienen
datos de entrada bilatercs, como el calculo de mtersecciones finitas de sub-
bimddulos de R®, presentaciones v resoluciones libres de sub-bimddulos de
R#, ideales de division hilateros de R, etc. En el caso en que los bimdadulos
estén generados por elementos del centralizador, mostramos como se mejoran
alpunos de estos resultados v se simplifican muchos cileulos.

En ladltima seccidn presentamos un algoritmo para calenlar una presentacion
de Tory(M, N) en el contexto de las G-Algebras.

En el capitulo 3 nos centramos en nuestro sepgundo ejemplo de algebras
con base PBW: las filgebras de Yang-Baxter. Estas algebras se definen a
partir de soluciones de tipo conjuntista involutivas, no-degeneradas v libres de
cunadrados de la ecuacion de Yang-Baxter, a las que denominaremos de aqui
en adelante soluciones libres de cuadrados. S1.X = {x, ..., z,}, entonces la
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biyeccion v : X = X — X x X es una solucion de tipo conjuntista de la
ecuacion de Yang-Baxter =1

(r x Id)(Id x r)(r x Id) = (Id x r){r x Id)(Id x r).

En el caso de ser ademds, involutiva, no-degenerada v libre de cnadrados,
el conjunto de monomios estandar en X es una k-base del dlgebra generada
por X con relaciones {x;z; — r{z;2) h<icjon, como se prueba, de manera
alternativa a como lo hace la autora de [40], en:

3.3.13 Proposicion. Sea (X.r) una solucion libre de cuadrados, donde
X ={z....,z,}. Entonces, el dlgebra de Yang-Baxter A(k, X, r) tiene una
hase PBW. Mais concretamente, el conjunto de monomios estandar

{7t alr [, ay) €N

es una k-hase de Alk, X.r).

Como mostramos a lo largo de todo el capitulo, se puede usar una apro-
ximacion combinatoria con objeto de desarrollar métodos algoritmicos en
el contexto de las soluciones de tipo conjuntista de la ecuacion de Yang-
Baxter. Después de exhibir distintas formas de representar v clasificar las
soluciones libres de cunadrados, entre las que destacamos la representacion
mediante grafos, centramos nuestra atencion en los isomorfismos y automor-
fismos de soluciones signiendo esta aproximacion combinatoria-computacio-
nal. Basiandonos en la nocidn de estrella de un elemento, encontramos un
meétodo para calcular el conjunto de 1somorfismos entre dos soluciones. Este
resultado puede verse como una generalizacién del que probamos en [25, 33]
para el caleulo del grupo de automorfismos. La utilidad de caleular el grupo
de antomorfismos de una solucidn se justifica al final de la segunda seccion,
donde desarrollamos algoritmos que requieren de dichos antomorfismos para
caleular nuevas soluciones pegando dos soluciones exastentes. Uno de ellos es
el que se detalla a continuacidn.

Algoritino 21. Pegado de soluciones libres de cuadrados usando automor-
fismnos

Require: (X, ry ) v (Y, ry ). dos soluciones libres de cuadrados de la ecnacidn
de Yang-Baxter, 74 € Aut(X,rx) v v € Aut{¥, rp );

Ensure: (Z.r) una nueva solucidn libre de cnadrados, donde Z2 = X UY
tal que rx . x =rx ¥ ry.y =178
Sean Ty = O - - Cr v 7y = 0y - - - ©5 las descomposiciones de 7x v 7y como
producto de ciclos disjuntos de longitud = 1;




196 Appendix B

Sic; = I:y-l?yé"'j] para 1 =< j§ < s, sea T},TI = 70, con Cf =
(wd, w1
Sea L =X UY:

ClZr)=ClX ry) UC(Y,ry) U{oy=CC /1 =i=r 1=j<sh
Devuelve C{ 2, 7).

Ademas, encontramos una correspondencia bijectiva entre las extensiones a
iwquierda de dos soluciones (X, ry ), (Y, ry) v los morfismos que van desde
el grupo G(Y.ry) asociado a la solucidn (Y, ry) al grupo de automorfismos
Aut( X ry) de (X, rx).

En la tiltima seccidn discutimos la equivalencia, probada por T. Gateva-
Ivanova v M. van den Bergh ([40, 42]), entre soluciones libres de cuadrados
de la ecuacidn de Yang-Baxter, semigrupos de tipo skew-polinomial v semi-
grupos de tipo 1. Es en este contexto donde usamos la teoria de los sistemas
de reduccion recogida en el primer capitulo para probar de manera alterna-
tiva a como se hace en [40] que el dlgebra de Yang-Baxter A(k, X, r) asociada
a una solucion libre de cuadrados (X, r) es un algebra con una base PEW.
Finalmente, mostramos como el comportamiento de los semigrupos de tipo
skew-polinomial pnede ser determinado completamente por una familia de
problemas de programacion lineal.

A lo largo de los capitulos 2 v 3 1lustramos los conceptos tedricos con ejemplos
explicitos. Para efectuar los caleulos hemos codificado sendas bibliotecas de
programas, que se incluyen en el CD adjunto (ver también [32]), utilizando
el paquete de cidleculo simbdlico Maple. Este software debe considerarse como
parte de esta tesis doctoral.

La hiblicteca que corresponde a las G—ﬁ;lgehras incluye desde la aritmética
bésica entre elementos en una G—ilgebra hasta todos los algoritmos listados
en el capitulo 2. La biblioteca de métodos que atanen a las soluciones de
tipo conjuntista incluyve algoritmos que nos permiten reconocer sl una serle
de relaciones determinan una solucion libre de cnadrados, caleular todos los
ordenes = en X = {x; < -+ < x,} posibles (reindexando las variables si
fuese necesario) tal que el semigrupo de Yang-Baxter S(X.r) es de tipo skew-
polinomial, verificar si una biyeccion es un antomorfismo de una solucidn libre
de cuadrados, calcular el grupo de antomorfismos de cualquier solucién libre
de cuadrados, pegar dos soluciones libres de cuadrados para obtener una
nneva, etc.

Para facilitar la lectura, al final del trabajo se incluye un apéndice con defini-
clones v ejemplos de los drdenes (monomiales, admisibles, etc.) usados a lo
largo de los tres capitulos.
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