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Resumen

A mediados de los anos 50, Serre traslada la nocion de haz sobre un
sspacio topologico al contexto de variedades algebraicas, reemplazando la
topologia usual por la de Zariski. Posteriormente, A. Grothendieck generali-
za esta 1dea e introduce los esquemas afines que sustituyven a las variedades
algebraicas. Esto supone una revolucion en los métodos v conceptos clasicos
de la geometria algebraica, v es a partir de entonces cuando se desarrolla una
reometria algebraica moderna mediante el lenguaje de haces v esquemas.

El hecho de poder asociar a todo anillo conmutative un esquema afin
que recupera informacién del amllo, ha permitido elaborar un diccionario
reométrico-algebraico completo con el que podemos traducir los conceptos
del dlgebra conmutativa al lengnaje de la geometria algebraica v viceversa.
La potencia de esta herramienta hace que posteriormente, muchos autores
intenten obtener un dicclonario analogo para el caso de anillos no conmuta-
tivos. Esto da lugar a diferentes propuestas de esquemas afines no conmuta-
tivos que plantean como espectro no conmutativo generalizaciones directas
de la topologia de Zariski. En dichos espectros, silo se obtiene un haz de
sstructura bajo clertas condiciones del anillo. Sin embargo, para amllos arbi-
trarios estas construcciones no devuelven en general un haz sino un prehaz, v
tampoco la hacificacion resuelve el problema pues al haz obtenido por haci-
ficacién generalmente le corresponde un anillo mayvor que el de partida.

Mas recientemente varios autores se proponen resolver este problema
desde un punto de wvista diferente, planteando un nuevo concepto donde el
sspacio esta dotado de una estructura no conmmtativa, mediante un opera-
dor que juega el rol de la interseccidon de ablertos. Este es el caso de autores
tales como Garcia Roman, Van Oystaeven o BorcewsVan den Boscche (cf.

[0, 11, 12, 15, 16, 28, 36]).

Bajo este nuevo enfoque, y para cada una de estas topologias no con-
mutativas, se puede introducir una nocién de prehaz o incluso de prehaz de
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v Resumen

estructura. Sin embargo, la nocién de haz no es tan evidente, y aun menos
la cuestion de la hacificacidn, que en estos espacios se plantea como un pro-
blema a resolver.

Dentro de este marco, planteamos esta tesis con el objetivo primordial de
estudiar el problema de la hacificacion en tales topologias no conmutativas.
En este sentido, mediante localizacion abstracta en la categoria de prehaces
sobre un conjunto parcialmente ordenado, encontramos haces definidos en
topologias no conmutativas, v un funtor hacificacion asociado 5. Por otro
lado, definimos un muevo tipo de espacio no conmutative (inspirado en los
modelos anteriores), donde ademas de garantizar la existencia de 5, construi-
mos también otro funtor hacificacidén de manera més topoldgica v directa, v
probamos que éste coincide con 5.

Capitulo 1. Categorias de Grothendieck

En un primer capitulo introductorio, con la intencion de dotar a esta
memoria de cierto gradoe de anto-contenido, presentamos una recapitulacion
de los conceptos basicos v principales resultados conocidos sobre teoria ge-
neral de localizacion en categorias de Grothendieck. Esta teoria sera una
herramienta fundamental para el desarrollo de esta memoria, v en particular
prestaremos especial atencion al caso de las categorias de R-mddulos v pre-
haces, dando en ellas la mayoria de los ejemplos del capitulo.

En la primera seccidon, comenzamos pues con unas definiciones prelimi-
nares v algunocs ejemplos que nos permiten asentar los conceptos de local, en-
valvente inyectiva v categoria de Grothendieck. También enunciamos ciertos
resultados relacionados con estos conceptos que utilizaremos con posteriori-

dad.

En la signiente seccidn nos planteamos enunciar el feorema de Gabriel-
Fopescu v establecer sus principales consecuencias. Es este un teorema
de maxima relevancia dentro del marco de las categorias de Grothendieck,
puesto que grosso modo, establece que toda categoria de Grothendieck es
una categoria cociente de mod-R. Comprender el mencionado enunciado
nos obliga a manejar primero los conceptos de teoria de torsion v radical, asi
como la relacidn existente entre ambos.
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Las categorias de Grothendieck también se pueden caracterizar como
subcategorias de Giraud estrictas de una de mod- R, como establece la version
equivalente del teorema de Gabriel-Popescu (cf. 1.3). Es por ello que dedica-
mos una seccion al concepto de subcategoria de Girand, intimamente ligado
al concepto de reflector.

Un ejemplo de reflector fundamental para nuestros objetivos es el funtor
hacificacion, que nos permite pasar de la categoria de prehaces a la categoria
de haces. Enla seccidn 1.4, repasamos su constriiccidn geométrica en un espa-
cio topolégico arbitrario X, segin la cual, dicho funtor viene definido como la
composicion de dos funtores a través de la categoria de haces concretosen X

Las tltimas secciones del capitulo las dedicamos al estudio del funior
localizacion, que permite establecer una biyeccion entre las subcategorias de
Giraud y las teorfas de torsién. Dicho funtor permite asi mismo probar que
toda categoria cociente de una categoria de Grothendieck C es una subcate-
goria de Girand de C, v en consecuencia, es también de Grothendieck.

Finalizamos el capitulo describiendo las propiedades del funtor locali-
zaclon en la categoria F-mod que seran necesarias para clertos resultados
posteriores. Senalamos que en esta categoria los filtros de Gabriel del anillo
juegan un rol destacado, pues también estan en correspondencia bivectiva
con las subcategorias de Girand de F-mod, lo que permite reformular el
teorema de Gabriel-Popescu en términos de filtros de Gabriel.

Capitulo 2. Prehaces

El objetivo principal de este capitulo es introducir v estudiar la categoria
de prehaces, considerada como una categoria funtorial donde la categoria ini-
r1al no es la que tiene por espacio de base el conjunto de abiertos de un espacio
topoldgico ordinario X, sino un conjunto parcialmente ordenado arbitrario
E, denominado poset (del inglés parcial ordered set). Este enfoque generali-
za el caso clasico v también nos permite considerar espacios topolégicos no
necesariamente connmitativos. Asi, dada una categoria arbitraria C, defini-
mos la categoria de prehaces en E con valores en C como la categoria funtorial
Fun(£°P? (), v la denotamos por P(E). Por ser funtorial hereda muchas
de las propiedades de C. De este modo, en 2.1.7 probamos que la categoria
de prehaces es de Grothendieck s1 C es de Grothendieck, v que s1 U es un
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generador para C, entonces el prehaz G definido en cada b € E por
G(b) = UEs)
es un generador para P(E), donde B, ={a € E [ b < al.

Por otro lado. estudiamos la cateporia de prehaces de R-modulos a
izguierda en E. denotada por R-pre-Mod, donde R es un prehaz de ani-
llos (no necesariamente conmutativos) definido sobre el poset E. Aunque se
trata ahora de una categoria que no es funtorial, con un tratamiento diferente
probamos en 2.2.5 que también tiene estructura de categoria de Grothendieck.

Una vez que hemos garantizado dicha estructura, estudiames el funtor
localizacion en R-pre-Mod haciendo uso de los resultados contenidos en el
capitulo anterior. Asi, en la seccion 2.3 demostramos que si M es un prehaz
de R-modulos a 1zquierda v o un radical en R-pre-Mod, entonces, bajo
ciertas condiciones de R v o, la localizacidn de M en 7 es un prehaz de
(o R-maodulos a 1zquierda dado para todo a € E por

Q-:.r-'q'ir{ﬂ’} = Qa(ﬂ]ﬁ"f{ﬂ];

es decir, demostramos que el funtor localizacion en R-pre-Mod actia local-
mente como el funtor localizacién en R-mod.

Un estudic sobre localizacién en la categoria de prehaces de F-mddulos a
izquierda sobre un espacio topoldgico ordinario puede encontrarse en [37].
Los resultados que presentamos en este capitulo no silo generalizan el estu-
dio anterior sino que desde nuestro punto de vista lo mejoran colocandolo
en el marco correcto, pues en algunos resultados de [37] faltan o redundan
hipdatesis.

Capitulo 3. Topologias no conmutativas

Como hemos senalado, un prehaz es un funtor, v por tanto puede tratarse
como un objeto estrictamente algebraico, olvidando asi las propiedades to-
polégicas del espacio sobre el que esta definido. Sin embargo, no es este el
caso de un haz, para cuyo manejo la topologia se vuelve indispensable desde
la propia definicién del objeto. De hecho, esencialmente un haz no es mas
que un prehaz separado que ademas pega bien en las intersecciones de los
recubrimientos.
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Dado que uno de los principales objetivos de esta memoria es definir la ca-
tegoria de haces en espacios topoldgicos no necesariamente conmutativos, el
primer paso es pues estudiar como son dichos espacios. Por este motivo, nos
planteamos en este capitulo hacer una recapitulacién de algunos de los dife-
rentes tipos de espacios topoldgicos no conmutativos que pueden encontrarse
en la literatura, asi como también proponer un nuevo modelo de sitio no
conmitativo, que sea més adecuado para construir el funtor hacificacidn en
un contexto no necesariamente conmutativo.

Como se observara, estos modelos de topologias no conmutativas poseen al
menos una caracteristica basica comiin: sobre el conjunto de abiertos de la
topologia esta defimida una operacion interseccion que no es necesariamente
conmutativa.

Comenzamos por recordar el concepto de sitio segiin la filosofia de las
topologias de Grothendieck, como una buena aproximacion categorica al con-
cepto de espacio topoldgico, v adems&s porque desde este punto de vista pode-
mos acercarnos a los diferentes ejemplos que tratamos.

El primer ejemplo que abordamos es el sitio no conmutative a la Garcia
Romén, que basa su construccidn en el empleo de los filtros de Gabriel de un
anillo asociativo v unitario, v donde la composicion de filtros juega el papel
de la interseccidn de abiertos. Sobre este ejemplo cabe destacar que genera-
liza la topologia de Zariski sobre el espectro primo de un anillo conmmtativo.

A continuacion, en la seccién 3.3 presentamos la topologia no conmuta-
tiva propuesta por F. Van Oystaeyen en [36] v [28], que consiste en un sistema
axiomatico definido sobre un poset A con dos operaciones 'V, A. Ademas de
la presupuesta no conmutatividad de la operacidm A, esta topologia se dis-
tingue del resto porgue no todos los elementos A € A satisfacen la propiedad
de idempotencia A A A = A Posterlormente, vemos como el autor define en
A una nocidn de fopologia de Grothendieck no conmutativa de un sitio no
conmutativo, de manera similar a como ocurre en el caso clasico.

La tercera propuesta la constituyen los espacios cudnticos de Borceux-
Van den Bossche (cf. 3.4), inspirada en la filosofia de cuantales. En este caso,
el papel de la mtersecc1on clasica lo juega una operacion no necesariamente
conmutativa denominada multiplicacion v denotada por &. De hecho, en los
casos en los que & es conmutativa el espacio cudntico se convierte en un espa-
c1o topologico ordinario. A grandes rasgos, los espacios cuanticos satistacen
todas las propiedades de un espacio topolégico clasico salvo la referida a la
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interseccion finita de abiertos. En concreto, la interseccidn de dos abiertos
no es necesariamente un ablerto de la topologia sine que esta contenida en
el abierto formado por la multiplicacion de ambos.

En la seccion 3.5 presentamos finalmente nuestra propuesta, que deno-
minamos (J)-sitio, cuya construceién también basamos en la estructura de los
cuantales.

Asl como la nocién de local se acepta como aproximacion algebraica a es-
pacios topoldgicos, aceptamos su andlogo no conmutativo, esto es, el cuantal
(traduccién del término quantale), como aproximacién al de espacio topoldgice
no conmutative. Un cuantal es un reticulo con una operaciom mmltipli-
cacldn no necesariamente conmutativa, que denotamos por &, satisfaciendo
clertos axiomas. Dado un cuantal @, definimos para cada U7 € @ los -
recubrimientos de U como las familias {U; };c; en Q@ que verifican

Cl) U=V Us
C2) paracadai c I, U, =U & Uj;

v denotamos el conjunte de Q-recubrimientos por Cov(l7). De este modo,
un (J-sitio es un par de la forma (Q, {Cov(l] bireg)-

A continnacion describimos algunas de las propiedades de los Q-recubrimien-
tos (cf. 3.5.9), definimos en cada Cov(L') un orden, que denotamos por =,
v probamos en 3.5.11 que Cov(L') es un conjunto dirigido considerando en
€l el orden inverso de =. Finalmente, en 3.5.13 probamos que un (-sitio es
en efecto un sitio en el sentido estricto, pues verifica los tres axiomas de la
topologia de Grothendieck.

Todos estos resultados nos seran de gran utilidad en el capitulo 5, que
dedicamos a la construccion de haces v hacificacion en un O-sitio.

Capitulo 4. Haces y hacificacion

Uno de los objetivos de este capitulo es dar una defimicion de haces
lo méas general posible, de manera que sea valida tanto en el caso clasico
como también para los diferentes sitios no conmutativos, es decir, para una
topologia no necesariamente conmutativa. Asi mismo, nos planteamos el ob-
jetivo de encontrar un funtor hacificacidn de la categoria de prehaces en esta
nmueva categoria de haces. Haciendo uso de la teoria general de localizacion
en categorias de Grothendieck, alcanzamos ambos objetivos al mismo tiempo
v ademas evitamos el uso de fibras, que sin embargo era indispensable en la



Resumen 1%

construccion de hacificacidn clasica descrita en 1.4,

Betomando el enfoque del capitulo 2. el primer paso es decidir cudles
son los requerimientos minimos para que se pueda definir una categoria de
prehaces separados sobre un poset, teniendo en cuenta que nos interesa la
minima estructura topologica que permita una definicion ambivalente. En
este sentido, nos basta con considerar un poset T tal que cada a £ T tenga
asignado un conjunto de cuasi-recubrimientos, que denotamos por C'la), esto
es, un conjunto de subconjuntos {a; }i=zr de T' satisfaciendo para todo ¢ € [
la condicion a; < a.

Este es obviamente el caso del poset de un espacio topoldgico ordinario, asi
como también el de una topologia no conmutativa a la Van Oystaeyen, o el
de un -s1tio.

Para un poset T' que cumpla dicha condicidn, definimos pues la categoria
de prehaces separados en T con valores en C, denotada por F(T'), como la
subcategoria plena de .P(T') cuyos objetos son los prehaces P que verifican,
para cada a € T v cada cuasi-recubrimiento {a; }izr de a, que la aplicacién

£:Pla) — [ Pla); s+ (s]a)ier,
il
es inyectiva. Asi, esta definicién de prehaces separados es valida para cual-
quiera de los ejemplos recién mencionados, en un contexto no necesariamente
conmutativo.
En esta situacidn general, encontramos en 4.1.10 un generador para -5 (1), v
probamos en 4.1.7 que la categoria es completa =1 lo es C; mas ain, probamos

que la clase de objetos de JF(T) forman una clase libre de torsién para al-
guna teoria de torsién de P(T) (cf. 4.1.9).

El objetivo principal del capitulo lo alcanzamos en la seccidn 4.2, donde

finalmente obtenemos la categoria de haces en una topologia no necesaria-
mente conmutativa, junto con un funtor hacificacion asociado.
La clave consiste en demostrar que la clase de objetos de la categoria JF(T)
es cerrada para extensiones esenciales (cf. 4.2.4), y asi, en particular, cerrada
para envolventes inyectivas. Para ello necesitamos imponer una condicion
extra sobre los cuasi-recubrimientos del poset:

(C) paratodob < aen T, s {a; };-; es un cuasi-recubrimiento de a entonces
existe un cuasi-recubrimiento {b;}i=; de b tal que para todo @ € T
tenemos b < ;.

El hecho de que la clase de objetos de (T} sea cerrada para envolventes

inyectivas, unido a que en la seccidn anterior hemos probado que dicha clase es
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una clase libre de torsién de una teoria de torsidn, nos garantiza que estamos
ante una teoria de torsion hereditaria, v que por tanto, tiene asociado un
nnico radical, que denotamos por 7. Segin la teoria general de localizacidn,
podemos definir los haces en T' como los objetos de la categoria cociente de
¢ PI(T) con respecto a 7s, v la denotamos por &(7). Ademas esta categoria
es de Grothendieck, por ser subcategoria de Giraud de una de Grothendieck.
A su wvez, el reflector asociado a 73,

S: P(T) — S(T),

es el funtor hacificacion buscado.

Como casos particulares, concluimos ignalmente que existe hacificacion no
conmutativa en cada topologia no conmutativa A a la Van Oystaeyen, y -
hacificacion en cada ()-sitio.

Por altimo, dedicamos una seccidn a estudiar la hacificacién en la catepgo-
ria R-pre-Mod, para R un haz de anillos (no necesariamente conmutativos)
definido sobre un poset. Concluimos que bajo las hipotesis de que el poset
tenga cuasi-recubrimientos satisfaciendo la condicidn (C) v de que R sea
sobreyectivo (flabby), entonces podemos obtener la categoria de haces de
H-mdédulos a izguierda, que denctamos por A-MMod, junto con un funtor
hacificacion

Sp o R-pre-Mod — R-Maod,

de manera similar a como lo obtenemos para la categoria -P(T) en las sec-
clones anteriores (cf. 4.3.5).

Capitulo 5. Haces y hacificacion en QQ-sitios

En el dltimo capitulo de esta memoria nos centramos en los ()-sitios. En
el capitulo 4 defimimos la categoria de (J-haces via localizacion en la categoria
de Q-prehaces. un procedimiento que generaliza naturalmente el punto de
vista de las subcategorias de Giraud del caso conmutativo ordinario. Lo que
hacemos ahora en el contexto de ()-sitios, desde un planteamiento comple-
tamente diferente, es introducir directamente una definicidn de Q-haz més
natural e intuitiva, v construir después un funtor (J-hacificacién asociado.
Sorprendentemente, lo que resulta es que en este caso particular ambas cons-
trucciones coinciden.

En primer lugar, definimos la categoria de haces sobre un ()-sitio ar-
bitrario (@, {Cov(LU ) hreg), que denominamos categoria de (Q-haces, v que
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denotamos por .Sk(Q), como la subcategoria plena de P(Q) cuyos abje-
tos son los Q-prehaces separados P que satisfacen ademds la condicion de
pegado:

Sh2) sill € @, s1 {U;}ier € Cov(U7), v sl para cada ¢ € [ existe un s; € P(L];)
tal que para todo ¢,j € I se verifica que 5";|L-'.-£=:L-'j = 5j|U.S;L"_1.~ entonces
existe un s € P(U) satisfaciendo para todo ¢ € I que s|;, = s;.

A continuacién para cada Q-prehaz F construimos en 5.2.4 un nuevo
()-prehaz que denotamos por LP, sobre el que basaremos la nueva nocidn de
(J-hacificacion. En este caso no son las fibras la herramienta utilizada sino
los limites v sus bien conocidas propiedades nmversales (limites directos so-
bre los conjuntos de indices de los Q-recubrimientos, v limites inversos sobre
los conjuntos dirigidos de ()-recubrimientos). Generalizando propiedades del
caso clasico, probamos dos resultados fundamentales para la construccidn de
la Q-hacificacidn: para todo ()-prehaz P. el Q-prehaz LFP es separado (cf.
5.2.5); st ademds P es separado entonces LP es un (J-haz (cf. 5.2.6).

En la seccion 5.3 describimos el fantor ¢-hacificacion en la nueva cate-
goria de ()-haces:
a: P(Q)— ShiQ).
Definimos dicho funtor sobre cada P € P(Q) como el Q-haz a P que viene
dado para todo I7 € Q@ por

aP(U) = lim(LP)" = limye e (lim (LP));

sobre un morfismo arbitrario f : P — P’ de Q-prehaces, el morfismo de
(-haces a(f) : aP — aP' consiste en la coleccién de morfismos de C dada
para cada I € Q@ por

a(f)(U) 1 aP(U) — aP'(U); s (0 G((L{FNT ) (x) ier)-

El hecho de que a sea un reflector es lo que nos permiute denominarlo
funtor ()-hacificacicn. Esto es lo que probamos en el teorema 5.5.1. Previa-
mente, dedicamos la seccion 5.4 a desarrollar los resultados téecnicos nece-
sarios para simplificar la demostracion de dicho teorema. Asi mismo, en la
seccion 5.5 establecemos alpunas de sus consecuencias, como por ejemplo,
que la categoria de Q-haces es de Grothendieck (siempre que tome valores
en una categoria de Grothendieck).

Finalmente en la seccidn 5.6 resolvemos la cuestion que surge de manera
natural tras haber obtenido dos categorias de (J)-haces y dos funtores ()-
hacificacion a prion distintos. Como es de esperar, en 5.6.6 probamos que en
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efecto -Sh(Q) coincide con .S(Q) v que a es naturalmente equivalente a Sg.

El estudio de la funtorialidad de nuestra construceion de Q-hacificacion
lo realizamos en la seccion 5.7, donde probamos cémo funciona dicho funtor
a través de dos ()-sitios enfre cuyos respectivos cuantales hay definido un
morfismo estricto.  En primer lugar, para cada morfismo f @ @, — &,
definimos un funtor imagen directa

fa: .'_p{{-'gz} — C‘P(QI)?

que relaciona QQ-prehaces entre los correspondientes (-sitios. Tras compro-
bar que f, restringe bien a las subcategorias plenas de O)-prehaces separados
v de (}-haces respectivamente, concluimos en 5.7.5 que ademas conmuta con

el funtor Q-hacificacidn cunando f es bivectiva.

En la seccidn 5.8 vy cerrando la memoria, comprobamos que los obje-
tivos alcanzados para la categorfa ,P(Q) en las secciones anteriores, pueden
obtenerse de manera similar para la categoria de Grothendieck R-pre-ghlod.
Es decir, en primer lugar definimos explicitamente la categoria de haces de
F-modulos sobre un ()-sitio, para F un ()-haz de amillos no necesariamente
conmutativos, que denotamos por R-gMod. A continuacién construimos un
funtor C)-hacificacion

ag: B-pre-gMod — R-gMod;

v finalmente, probamos que si A es un prehaz sobreyectivo entonces ap es
naturalmente equivalente al funtor hacificacién obtenido en la seccién 4.3.



Introduction

Modern algebraic geometry essentially originated, both in concepts and
methods, with the introduction of sheaves by I. Leray in 1945 and their appli-
cation to abstract varieties by Serre in 1954, Later on, in 1957, Grothendieck
generalized algebraic geometry even more, by extending the notion of affine
varieties to that of affine schemes.

Associating to any commutative ring R its affine scheme Spec R defines
a dictionary between commutative algebra and algebraic geometry, which
has proven to be of extremely high benefit to both branches of mathematics.
Indeed, on the one hand, translating algebraic problems to their geometric
counterpart allows for geometric intution and geometric tools to help and
solve the original problem, whereas, conversely, many a geometric problem
may be solved by applying purely algebraic tools.

[t thus hardly came as a surprise that algebraists and geometers intended
to define an analogous dictionary in the noncommutative case, i.e., for arbi-
trary, not necessarilly commutative rings. Several constructions of an affine
scheme associated to a noncommutative ring R may thus be found in the
literature, based on different variants of the notion of prime ideal, ranging
from two-sided, left or strong prime ideals to primitive ideals, indecompos-
able injectives or prime torsion theories, —we refer to the references and the
literature for details. In general, these constructions only appear to work
optimally for particular, relative broad ranges of rings (e.g., constructions
with two-sided prime ideals work, of course, best when the ring has many of
these, such as 1s the case for fully bounded noetherian rings or, in particular,
rings with polynomial identities).

In most of these constructions a reasonable analog of the usual Zariski
topology may be defined, allowing for the introduction of a structure sheaf
over this spectrum associated to the base ring R or modules over it. Let
us already point out here that, in almost all known constructions, general

il
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localization theory in the sense of Gabriel and others plays a fundamental
role. Unfortunately, in the noncommutative case, this structure sheaf is 1su-
ally not a sheaf, except if the base ring has some extra, limiting properties,
such as being prime, for example. Applying sheafification to the structure
presheaf is, in general, not a solution, even if the presheaf is separated. In-
deed, whereas for most constructions the base ring R may be recovered from
the structure presheaf by taking global sections, the ring of global sections of
the associated sheaf will usually be larger than the original ring, 1.e., we only
obtain a one way dictionary, translating from algebra to geometry, without
being able to go back without losing information.

Rather recently, several authors [9, 11, 12, 15, 16, 28, 36] took a rather
different point of view: instead of studying generalizations of the prime spec-
trum of a commutative ring with a straightforward generalization of the
Zarisla topology, they considered spaces endowed with a noncommutative,
topology-like structure, where the noncommutativity essentially amounts to
working with an intersection operator & for which we do not necessarily have
that V&V = V&L or even U&L = Ul The open sets U one considers in this
set-up may vary from ordinary open sets to elements of particular lattices or
even equivalence classes of words based on Gabriel filters - details and exam-
ples will be given in the text. For each of these noncommutative topologies a
reasonable notion of presheat or even structure presheaf may be introduced,
the 1dea of an associated sheaf (or even a switable notion of a sheat!) still
lacking.

The main purpose of this thesis is to study the notion of a sheaf on
such noncommutative topologies and to obtain a sheafification functor in
this noncommutative context. We do find a sheafification functor 5 through
abstract localization in a category of presheaves on a poset (partially ordered
set] 1. In particular, in 4.2.9 we prove that for every Grothendieck category
C there erists a functor S : JP(T) — .S(T). left adjoint of the inclusion

functor i, and such that

S(T)={Pe ,P(T) | P=i. SP=Q,.P}

In this way we reach our aim, since this result may be particularized for some
of the examples of noncommutative topologies. Moreover, working over what
we called (J-sites (we refer to the text for a precise definition of this particular
kind of noncommutative spaces), we are able to introduce another sheafifica-
tion functor @, this time in a more constructive, topological way. We prove
in 5.5.1 that a is indeed a reflector, and show in 5.6.5 that 5 and a actually
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colncide.

All of these results are also considered into the context of presheaves of left
H-modules, where R is a presheaf of rings on T'. Along the way, we will show
how some results in the literature dealing with the abstract localization the-
ory of presheaves may be strengthened (or even corrected).

Before presenting some details about the contents of this text, let us
stress that several of our results could have been developed in the wider con-
text of topos theory (as kindly pointed out by F. Borceux). The main reason
why we preferred to stick to a more limited, down to earth approach 1s that
on the one hand some noncommutative topologies @ la Van Oystaeyen do
not use classical pullbacks and thus seem to fall outside of the scope of clas-
sical (Grothendieck) topos theory while on the other hand we hope that our
“elementary” approach would make our results more accessible and transpar-
ent to the non-specialized reader. Taking a more detailed look at the “topos
theory approach”™ remains part of our to-do list

Let us now take a somewhat more detalled look at the contents of this
thesis.

In a first, introductory chapter (which we made relatively self-contained
for the reader’s convenience) we present the background on Grothendieck
categories which will be needed throughout this text, emphasizing classical
results as the Gabriel-Popesen theorem and the use of Girand subcategories
in the context of localization and (classical!) sheafification. There 1s es-
sentially nothing new in this chapter, we just wanted to explicitly link the
notions of torsion, localization and reflectors.

In the second chapter. we present a detailed study of presheaves over a
poset B and with wvalues in an arbitrary category C. We choose the poset
point of view, since 1t generalizes the classical case and also includes the case
of the noncommtutative topologies over which we want to consider sheafi-
fication. We prove the Grothendieck category structure of the category of
presheaves on E with values in a Grothendieck category. Moreover, we also
prove that the category of presheaves of left R-modules on E. where R is
a presheaf of rings on E| has a Grothendieck category structure, as it will
appear later that sheafification may be introduced from within this context
too. Special emphasis is put on the localization theory within the latter
category. In particular, we generalize and extend several results previously
proved over ordinary topological spaces and show how several of these may
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be strengthened or reformulated with their proper hypotheses.

Onr third chapter deals with different types of noncommutative topolo-
ries recently introduced in the literature. These are the ones considered by
Garcia Roman [15, 17], Van Oystaeyen [36, 28] and Borceux-Van den Boss-
che [12]. Essentially all of them may be approached from the Grothendieck
topology point of view. This implies that other morphisms than just inclu-
sion may oceur (as in [15]), and that intersections will necessarily be replaced
by pull-back operators. In the noncommutative case, 1t will also be clear that
a noncommutative analog of pull-backs will be needed. In a final section, we
will present our own alternative which we will use throughout the rest of the
thesis. These are the so-called ()-sites, which basically consist of a quan-
tale @ endowed with a particular family of ¢J)-coverings which constitutes a
Grothendieck topology on ©. In particular, we remark that the set of (-
coverings is directed, a basic property for the construction of a.

In the fourth chapter, we finally come to the main topic of this text:
sheaves and sheafification. We define the category of separated presheaves
on a poset T with guasi-cowerings. Through this definition, which generalizes
the classical one, we obtain separated presheaves in the examples of noncom-
mutative topologies we want to consider. The principal result of this chapter
15 that, under certain condition imposed on the quasi-coverings, the class of
separated presheaves on T 1s a torsion-free class for some hereditary torsion
theory in the category of presheaves. Thus, making use of the general theory
of localization in Grothendieck categories, we obtain a sheafification functor
over noncommutative topologies, where our sheaves are exactly the closed
objects for this functor. Applying a similar procedure, in a final section we
obtain a sheahfication functor in the Grothendieck category of presheaves of
left R-modules and a category of sheaves of left R-modules, where R is a
flabby sheaf of rings on T

In the last chapter, we focus our attention on a special type of non-
commutative topological space, the so-called ()-sites we introduced before.
Mimicking the classical definition in this context, we present a more concrete
definition of sheaf than that of just being an “object of a particular quotient
category”. It appears that a more wmtuitive construction of sheafification
functor may be given in this case. Somewhat surprisingly (at least in the
noncommutative context), both approaches turn out to be the same, i.e., we
prove that the two sheafification functors infroduced in this thesis are natu-
rally equivalent over ()-sites, and that their respectively associated categories
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of sheaves coincide. We conclude this final chapter with a look at functoria
ity aspects of this construction with respect to base change, and a final loo
at the behaviour of the intuitive sheatification functor over presheaves of le
H-modules, where R is a sheaf of rings on a ()-site.

Arrived at this point, we are now ready to consider generalizations «
large parts of algebraic geometry, such as studying cohomology or invariani
like the Picard group. It is our aim to come back to this in future worl, jus
as the problem of trying to adapt our methods to context of noncommutatiy
topologies in the sense of Van Ovystaeyven, where the lack of the idempotenc
property clearly will complicate matters.



Chapter 1

Grothendieck categories

I'he general theory of localization in Grothendieck categories represents a
tundamental tool for the development of this work. Thus, in this chapter
we summarize its well-known concepts and main results. In particular, we
focus our interest on the categories of presheaves and F-modules, to which
are related the main examples of this chapter.

1.1 Preliminary definitions

In order to add some self-content to this work, we start by giving the basic
definitions which are going to be used throughout the following chapters. We
begin with the concept of lattice and continue with the elementary definitions
and the most common examples related to the concepts of Grothendieck
category and injective hull.

1.1.1 Definition. A set F with a partial ordering < is =said to be a poset.
An element a £ E which satisfies for all x € E that a < =, 15 called a zero
element; an element b £ E which satisfies for all x € E that = < b, 15 called
a unit element. A zero (resp. unit) element of E is necessarily unique if it
=xists; we will then denote it by 0 (resp. 1).

A poset E is said to be directed if for every pair of elements x, 9 © FE there
sxists an element z € E such that z < z and z < y.

1.1.2 Definition. A lattice is a poset (L, =) in which every couple of ele-
ments z, ¥ has a least upper bound called the join of x and v (written = Vu),
and a greatest lower bound called the meet of z and o (written = /A y). It
then follows by induction that every nonempty fimite set of elements has a
join and a meet.
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It L and L' are lattices, then a morphism o : L — L' 15 a map from L to L’
satisfying for all =,y € L

alzVu) =alz)Valy) and alz Ay) =alz) Aaly).

In this way one obtains the category Lat of lattices.

1.1.3 Definition. A lattice (L, <) is called distributive if it satisfies the
following equivalent conditions

) (xhy)Ve=(zVz)AlyVz)
) (zvylhz=(zhz)V(yhz)
i) (zVz) A< (z Ay Ve
for all z,y,z € L.

1.1.4 Definition. A lattice (L, <) is called complete if every subset S of L
has a least upper bound, written sup .S or \/, cg 5, called the join of S, or
equivalently, a greatest lower bound, written inf 5 or l'lhllla -5 and called the
meet of S (cf. [33, II1,prop.1.2]).

From the very definition it follows that in a complete lattice there exists a
greatest element 1 = sup L and a smallest element 0 = inf L.

1.1.5 Definition. A locale is a complete lattice (L, <) in which arbitrary
joins distribute over finite meets, 1.e. the distributivity law

an (\/b)=\/(anb)
=l

il
holds, where [ 1s an arbitrary indexing set and a, b; are elements of L.

1.1.6 Example. Let X be an arbitrary set. A basic example of locale is
the lattice 2% of subsets of X ordered by the inclusion, with the meet and
the join given by the intersection and the union of subsets respectively, since
obviously arbitrary unions of subsets distribute over intersections. In this
case X and () are the greatest and the smallest element respectively.

1.1.7 Example. Another classical example of locale is the lattice open sub-
sets of a topological space X ordered by the inclusion. with the meet and
the join given by the intersection and the union of open subsets respectively,
and where the greatest and the smallest element are respectively X and §.
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1.1.8 Definition. A category i1s said to be small if 1ts class of objects 1s
a set. For example, a poset (E,<) may be viewed as a small category &£
whose objects are the elements of E and the set Hom g{a. b) of morphisms is
a singleton when a < b and 15 empty otherwise.

1.1.9 Definition. A category C is said to be preadditive if each set of mor-
phisms Hom ¢(Cy, C3) is an abelian group and if the composition maps

Hom ¢(Cy, Cz) x Hom ¢(Cs, C3) — Hom ¢(Ch, C5); (f,g)—gof

are bladditive, for any ¢, Cy, Oy € C.

1.1.10 Definition. A preadditive category C is said to be additive if 1t has
a zero object (0 and a biproduct for each pair of its objects.

1.1.11 Definition. A category C i1s sald to be abeliarn if
A1) C is preadditive;
A2) every finite family of objects in C has a product {and a coproduct);

A3) every morphism f : €' — " has a kernel ker f : Ker f — C and a
cokernel coker f: " — Coker f;

A4) for every morphism f : ' — € in C, the canonical morphism
f: Coker (ker f) — Ker (coker f)
15 an 1somorphism.

For historical reasons, the last condition A4) is known as the 452 condition,
according to Grothendieck’s original work (cf. [20]).
1.1.12 Examples.

1. The category ab (resp. gr) of abelian groups (resp. graded abelian
groups) is an abelian category.

b

Let R be an (associative) ring with unity. The category RF-mod (resp.
mod-R) of left (resp. right] F-modules is an abelian category.

3. If R is a graded ring, Le. R = @,z fin where the R, are additive
subgroups of R with the property that R, R, C Ry, forallm,n € Z,
then a graded abehan group M = EBneE. M, 15 said to be a graded
left (resp. graded right) R-module if M € R-mod (resp. mod-R) and
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R, M, C M, (resp. M,R,, € M, ), for all m,n € Z.
An R-linear map

fM=Pm, —-N=FPN,
nes nel

is sald to be graded or homogeneous (of degree 1), if for every n € Z
the map f restricts to flu, : Mn — Na.

The category of graded left (resp. right) R-modules and graded R-linear
maps, denoted by R-gr (resp. gr-R), is an abelian category.

4. Let X be a topological space. A presheaf of abelian groups P on X

conslsts of the data;

1) for all I/ open subset of X, an abelian group P(U);
1) for every inclusion V' C U of open subsets in X, a homomorphism
of abelian groups
P{.'-l-'- : P{Lr]l —* Pl[v-jh 5 Cc P(Er} — PL:L.-ES) = S|1_.-
called the restriction morphism,

subject to the conditions:

1) for every open subset U7 of X, Fyr = id P(U);
2) if W C V C U are open subsets of X, then Fry = Py o Foy.

A morphism f: P — P' of presheaves of abelian groups consists of a
family { f(U7) : P(UU) — P'(U)} of homomorphisms of abelian groups
such that, for every inclusion V' C U7 of open subsets in X, the following
diagram 1s commutative

PU) L& P(U)

w|

P(V) ﬁ# PV

where Fyrye and Fyy- are the restriction morphisms of P and P’ resp.
The category _,P(X) of presheaves of abelian groups on X is an
abelian category.

This category may also be defined over a basis By for the topology on
X, taking the open subsets only from By instead of from the whole
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space. In this case we obtain another category of presheaves of abelian
groups on By, and will be denoted by _ P(Bx).

More generally, let R be an (associative) ring with unity. If in the
previous definition we take the category F-mod of left A-modules in-
stead of the category of abelian groups, then we obtain the categories
Pmad PIA ) and P (By) of presheaves of left R-modules, which
are also abelian categories.

In a similar way we obtain the categories g P(X) and g, P(Bx) of
presheaves of sets by just taking sets instead of abelian groups. How-
ever, Sets does not have enough structure to endow these categories
with an abelian structure.

1.1.13 Definition. A (covariant) functor T': ¢ — D between abelian cate-
gories 1s sald to be additive if for all f, ¢ € Hom ¢(C, C"),

T(f+g)=T(f) +Tig).

This is equivalent to asserting that T commutes with finite products [(or
coproducts).

1.1.14 Definition. An additive functor T': € — D is said to be left eract if

each short exact sequence
0= = C—=0C" =0
in C induces an exact sequence
0—TC) —T(C)— T(C")

in 1. Right exact functors are defined similarly. If T is assumed to be both
lett and right exact then it 15 said to be exact. In this case, T' maps arbitrary
exact sequences in C to exact sequences in D).

1.1.15 Proposition. Let T : € — D be an additive functor between abelian
categories. Then the following are equivalent:

1) T is left exact:
1) T preserves kernels:

1) T preserves finite limits (1.e. projective limits over small categories with
finitely many objects and morphisms);

iv) T preserves pullbacks.
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Proof. [33, IV prop.8.6] and [29, 2.1]. O

1.1.16 Definition. Let C and T be preadditive categories and F': C — D,
& : D — C additive functors. Then & is said to be a right adjoint of F,
F a left adjoint of G and (F,G) an adjoint pair, if there exists a natural
equivalence

n: Hom c(-,G()) = Hom p(F(-), -)

of functors CPP » D — ab, 1e for any ¢ € C and D £ D there 1s an
isomorphism

Ne.p - Hom o(C,G(D)) = Hom o F(C), D)

which i1s natural in €' and D). We denote this by F - G\
When they exist, a right adjoint preserves limits (projective limits) whereas
a left adjoint preserves colimits (inductive limits), (cf. [33, IV, prop.9.4]|).

1.1.17 Proposition. Let C and D be abelian categories and F 1 C — D,
& D — C covariant functors. It F'4 G 1s an adjoint pair then

1) F is right exact;
1) G s left exact.

Proof. This follows directly from the fact that a right adjoint preserves
limits, whereas a left adjoint preserves colimits, since the right adjoint obwvi-
ously preserves finite limits too, and in abelian categories this is equivalent
to being a left exact functor (cf. 1.1.15). Dually a left adjoint is right exact
for being finite colimit preserving. O

1.1.18 Proposition. Consider two functors F' - € — D and & : D — (.
Then F' is a left adjoint of G if and only if there exist natural transformations
@ e — GF and ¢ : FG — 1dp such that the following diagrams are
commutative

F\_\::_F'GF {?<Fﬂ¥
F G
Proof. Cf [6, thm.3.1.5] O

1.1.19 Proposition. If F} and F are both left adjoints of a functor G, then
By and F; are naturally equivalent.

Proof. Cf [34, prop.1.7.5] O
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1.1.20 Definition. A functor T': C — T between abelian categories 1s said
to be faithful if T'( f) = 0 for every nonzero morphism f in C or, equivalently,
if for all objects ¢, in C, the map

Hom ¢(C, C") — Hom p(T'(C), T(C)); f = T(f),

15 injective. If all these maps are surjective, the functor T is said to be full,
and if they are all byjections then T 1s said to be fully faithful
Note that if T is faithful then, in particular, T(C') = 0 for every 0 = ¢ < C.

1.1.21 Proposition. Let C and D be preadditive categories and F : C — D
a left adjoint of G : D — C. Then

1) G is tully faithful <= ¥ : F'G — idp is a natural equivalence;
1) F is fully faithful <= ® :ide — GF' is a natural equivalence.
Proof. Cf [34, thm.1.7.8,1.7.89 O

1.1.22 Definition. Let € be an abelian category. An object IV of C 15 said
to be a generator for C if Hom ¢(U, - ) is faithful or, equivalently, if for every
nonzero morphism a : €' — ' there exists a morphism 3 : I — ' such that

o 3 =0

J@
U—cC
t‘lt'St,——k' I&
v

More generally, a family of objects {U;};-; in C 1s a family of generators for
C, if for any nonzero morphism « @ © — C" in C, there exists, for some i € T,
a morphism 3; : U; — ' such that « o 5; &= 0; 1.e. if the functor

H Hom (U7, <) : C — ab
o

15 faithful. If C has coproducts this is equivalent to asserting €5, o Ui to be
a generator in C.
Dually, an object U7 of C 1s said to be a cogenerator if Hom ¢( -, U7} 1s faithful.

1.1.23 Examples.

1. In F-mod it is easy to see that K itself is a generator. In particular,
the additive group Z is a generator for ab.

2. {Z(n) | n € Z} is a family of generators in gr, where Z(n) 1s the graded
abelian group with Z(n), = 01f p # n, and Z(n), = Z.
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3. In R-gr it is easy to verify that { R(n) | n € Z} is a family of generators,
where R(n) is the left graded left R-module that coincides with R as
an ungraded left F-module and which is graded by Rin),, = R, for
all m € Z.

4. In g 0qP(X) the class {Gr breopxy s a family of generators, where
O(X) denotes the set of open subsets of X and Gy is the presheaf

defined by
Gr(V) = {R, it VU

0, otherwise.

1.1.24 Definition. A concrete categoryis a pair (C, F') where C 1s a category
and F' : U — Setsis a faithful functor. It thus may be described as a category
C 1n which each object C' comes equipped with an underlying set F'({C'), each
arrow f : € — D is an actual function F(C') — F(D), and where the
composition of arrows is the composition of the corresponding functions. In
practice, the faithful functor 1s usually clear, and we simply do not mention
it.

1.1.25 Definition. An abelian category C 1s said to be complete if the limit
lim F' exists for every functor F' : I — C when [ is a small category or,
equivalently, if it has arbitrary products.

1.1.26 Definition. An abelian category C is said to be cocomplete if the
colimit lim F' exists for every functor F': I — C when [ 1s a small category
or, equivalently, if it has arbitrary direct sums (coproducts). This condi-
tion, according to Grothendieck's terminology in [20], is known as the 453
condition.

1.1.27 Definition. A Grothendieck category 1s a cocomplete abelian cate-
gory which has a generator and is such that the colimits over directed families
of indices are exact; 1.e. if I 15 a directed set and

D—*.f-i,_;—*Bf—*C,_;—*ﬂ
15 an exact sequence for any i € I, then
0 — lim A, — lim B, — lim C; — 0

15 an exact sequence. This condition is equivalent to the so-called A5 condi-
tion, according to Grothendieck’s terminology in [20], which states that for
any directed family {4, };o; of subobjects of 4 and for any subobject B of
A, the following relation holds:

(> _A)NB=> (A4nNB)
=l icl
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1.1.28 Examples. All the examples mentioned n 1.1.12 are well-known
examples of Grothendieck categories.

In the following definitions C is assumed to be an abelian category.

1.1.29 Definition. An object E of C is said to be injective if the functor
Hom (-, E) : C"P — ab is exact, i.e. if for every monomorphism o : €' — C'
and for every morphism 3 : € — E, there exists a morphism ~ : € — E
such that v = o a.

0—C—= ("

|4

E

C 15 said to have enough tnjectives if every object in C is a subobject of an
injective object.

Dually, E 1s said to be projective if the functor Hom (E, - ) : C — ab is exact,
and C is said to have enough projectives if every object in C is a quotient object
of a projective object.

The following result, which may be found in [27, I1,15.3], 1s very useful to test
whether a projective object is a generator (and dually, whether an injective
object 1s a cogenerator).

1.1.30 Proposition. LetC be an abelian category and U a projective object
of C. If for every non-zero object C' of C the set of morphisms Hom (U, C')
is non-zero, then U 1s a generator for C.

1.1.31 Definition. If C'is a subobject of E in C represented by a monomor-
phism ¢ : € ~— E then we say that E or 1 is an ertension of €. The extension
is called essential if for any nonzero subobject E' of E the intersection E'MC
18 NONZETO.

Note that if & : € — " and 7 : " — " are monomorphisms, then it is
straightforward to prove that & o a i1s essential if and only if both & and 7
are essential.

1.1.32 Definition. An injective hull of an object C' is an essential extension
' — E with E an injective object. An injective hull is unique up to (non-
canonical) 1somorphism and will be denoted by E(C') (cf. [33, V,prop.2.3]).

1.1.33 Note. As a consequence of the Gabriel-Popescu theorem (stated in
the next section), it may be proved that every Grothendieck category has
enough injectives (ef. 1.6.3). Therefore, all the objects in a Grothendieck
category have an injective hull.
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1.2 The Gabriel-Popescu theorem

The aim of this section is to establish the Gabriel-Popescu theorem and its
consequences. Roughly speaking it asserts that every Grothendieck category
is a guotient category of a module category. To understand its formal state-
ment 1t 15 necessary to manage the concepts of radical and torsion theory,
which are linked in what follows.

From hereon until the end of this thesis, C will always denote a small concrete
category. In particular, until the end of this chapter C will also denote a
Grothendieck category.

1.2.1 Definition. A torsion theoryfor C is a pair (T, F) of classes of ohjects
in  such that

1) Hom (T, F)=0forall T €T, F € F;
i) if Hom (C,F) =0 for all F € F then C € T;
1) if Hom (T, C) =0 for all T € T then C' £ F.

In particular, it follows that T MJF = {0}, and that T and F determine each
other mutually.

T is called a torsion class and its objects are torsion objects, while F 1s a
torsion-free class consisting of torsion-free objects.

(T, F)issaid to be hereditaryif T is closed under subobjects or, equivalently,
if F is closed under injective hulls.

An hereditary torsion theory (T,.F) is said to be stable if T 1s closed under
injective hulls.

1.2.2 Note. Any given class of objects T in C generates the torsion theory

F ={F|Hom (D, F)=0,vDc D},
T={T|Hom (T ,F)=0, ¥YF € F},

where 7 15 the smallest torsion class containing D, Dually D cogenerates a
torsion theory such that F is the smallest torsion-free class containing D (cf.
[33, VL52]).
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1.2.3 Definition. A class of objects D in C 15 said to be closed under ex-

tensions if for every exact sequence
0—=C"=C—=0C"=10
with O, C" objects of D, 1t follows that O also belongs to D.

1.2.4 Proposition. Let C be an abelian category (which we assume to be
complete and cocomplete), and D a class of objects of C.

1) D is a torsion class for some torsion theory it and only if it 1s closed
under quotients, direct sums and extensions.

1) D is a torsion-free class for some torsion theory if and only if it 1s closed
under subohjects, products and extensions.

Proof. Cf. [23, (2.4)] or [33, VI,2.1 and 2.2]. O

1.2.5 Definition. A preradical in C 15 a subfunctor of the identity functor,
i.e. a functor o : C — C such that o is a subobject of O, for every object
in C and if f: ¢ — €' i1s a morphism n C then of = f|,-: 0C — oC'. A
preradical o 1s tdempotent if oo = o, and 15 called a radical if for all C'in C

a(C/eC) =10

Note that i the literature we may also find the term kernel functor to refer
to a radical and idempotent kernel furctor to refer to a left exact radical (as
in [37], for instance).

1.2.6 Proposition. A preradical a in C is left exact if and only if it satisfies
the equality o) = aC M D, for every subohject D) of an ohject C in C.

Proof. Cf. [33, VLprop.1.7]. O
We denote by K(C) the class of all left exact radicals in C.

1.2.7 Lattice structure in K(C).
We may put on K(C) the structure of complete distributive lattice with the
partial ordering

7 = 0y = forall O, o;C C o, (1.1)
Any family {7;};-; of preradicals has its meet and its join given on all C' £ C

by
{/\;Efm"}g = ﬂﬂfGE '[Vﬂ;ef'f’f]'c = Zcr,;C-‘,
il

il

(cf. [33, VLEL], e.g.)
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1.2.8 Bijection between radicals and torsion theories.
To every left exact radical ¢ we may associate the pair of classes of objects
in

T, = {C|oC=C}

‘:ra:{'g'gc:n}s

called respectively the g-torsion class consisting of o-torsion objects, and
the o-torsion-free class consisting of a-forsion-free objects. This pair is a
hereditary torsion theory.

Note that as an immediate consequence, (1.1) is equivalent to

JIE:‘:TZ'::\‘JI;']_ I;JI;'Q ':5-:':0'1 ;I-Fﬂ'gt

Conversely, to any hereditary torsion theory (T,F) of C we may associate
a left exact radical & assigning to any object ¢ in C the largest subobject
belonging to 7, that is, the sum of all subobjects of 7 belonging to 7.

In this way, one establishes a bijective correspondence between K (C) and the
hereditary torsion theories of C (cf. [23, (2.11)]).

In view of this bijection, the meet and the join of any family of radicals may
be determined by

Theyoro =[Toe Fyeroe = JFor
icl il

From hereon, all radicals considered are left exact and all torsion theories are
hereditary, so in the sequel we omit these prefixes and shortly refer to them
as radicals and torsion theories respectively.

Another basic concept related to the Gabriel-Popescu theorem is the concept
of quotient category, which 1s explamed in what follows.

Let o € K(C).

1.2.9 Definition. An object E in C is said to be g-ijective if for any sub-
object O C C'm € with C JC" € T,, every morphism f : ' — E extends to
a morphism f: C' — E, ie. such that the following diagram commutes:

0—— "0 T C/C——0

|
\ I f
Ty
E
E is said to be g-closed if f is unique or, equivalently, if F is o-injective and
a-torsion-free (cf. [23, (3.1)]).

Note that if F is an injective object then it is obviously a-injective as well.
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1.2.10 Definition. A morphism f : ¢ — 5 in C 15 said to be a o-
isomorphism if both Ker f and Coker f are o-torsion.

1.2.11 Proposition. An object E in C 1s a-closed if and only if for every
a-isomorphism f @ € — C5, and for every morphism g @ €7 — E. there
exists a unique morphism g : Cz — FE such that the following diagram 1s

commutative

Gliﬁl(:g

|4

E
Proof. Cf. [23, (3.2)]. O

1.2.12 Definition. The class of all g-closed objects in C forms a full sub-
category of C, denoted by C{o) and called the quotient category of C with
respect to o. The canonical inclusion C(o) — C is denoted by i,.

If C is the category of right R-modules, we usually write mod-( R, #) for the
quotient category (mod-R)(7). Note that Hom ¢((C,C") = Hom ¢(C, C"),
for all a-closed objects C' and C”.

At this point all the concepts related to the famous Gabriel-Popescu theorem
have been introduced. Let us now formulate it and refer to [33, X thm.4.1]
or [18, thm.4.1] for a complete proof.

1.2.13 Theorem. (Popescu and Gabriel) Let C be a Grothendieck cat-
egory with generator U. Put R = Hom ¢(U,U) and let T denote the functor

Hom (U, - ) : C — mod-R. Then,
1) T is full and faithful.

1) T induces an equivalence between C and the category mod-(R, 7).,
where o 1s the largest radical for which all T(C') are g-closed.

1.2.14 Note. This associated ring R 15 not uniquely determined by C, since
it also depends on the generator 7 which is not unique, and thus C may
be isomorphic to different quotient categories mod-(R, o), mod-(S,7),...,
with different rings R, 5, ...

1.2.15 Remark. The relevance of this theorem 1s that it reduces (at least
in principle) the study of Grothendieck categories to a study of quotient
categories of some module category mod-R. For instance, to prove that
a Grothendieck category is complete or that it has enough injectives, 1t is
sufficient to check that the category mod-{R, 7) satisfies these properties
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(and this, indeed. happens to be the case, as we will see in 1.6.2 and 1.6.3
respectively).

1.3 Giraud subcategories

Another equivalent version of the Gabriel-Popescu theorem states that eve-
ry Grothendieck category is a strict Girand subcategory of some mod-FR.
Indeed, every mod-(R,o) is a Giraud subeategory of mod-R as we point
out m 1.5.8. Let us first define what Giraud subcategories are.

1.3.1 Definition. A class of objects C in a category T 1s called strict if it
is closed under 1somorphisms, 1.e. every object in T isomorphic to an object
in C also belongs to C. A subcategory is called strict if it class of objects is
strict.

Let T be a (complete) Grothendieck category and C a strict full subcategory
of D. (We write complete between brackets because here it is redundant,
since every Grothendieck category i1s complete as we already mentioned in
1.2.15, as a consequence of the Gabriel-Popescu theorem. )

1.3.2 Definition. C is said to be a {full] reflective subcategory if the inclu-
sion functor 2 : C — T has a left adjoint 2 : T — C, which we then refer to
as the reflector. This means that, for every €' € C and D € D, there is an
isomorphism

Home(C,#( D)) = Hom pla(C), D)

which 1s natural in C and 2. Moreover, by 1.1.21 there exists a natural
equivalence ¥ : ai — ide, so for every €' € C we have a(C) = C.

The reflective subcategory C i1s called a Giraud subcategory if the reflector
preserves kernels or, equivalently, if it 1s exact (since a left adjoint is always
right exact, by 1.1.17).

1.32.3 Proposition. Let C be a Grothendieck category. If D is a Giraud
subeategory of C then D 1s also a Grothendieck categoryv.

Proof. Cf [33. X.51]. O

1.3.4 Proposition. Let C be a Grothendieck category and T a Giraud sub-
category of C. Then D € D 1s an injective object in D if and only it i( D) is
injective 1 C.

Proof. Cf [33, X,prop.1.4]. O
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1.3.5 Example. Let R be a commutative ring and 5 a multiplicatively
closed subset of K. The classical functor S—! : R-mod — S~ R-mod
which assigns to every R-module M the module of fractions S—'M, and
to every homomorphism of H-modules f : M — N the homomorphism of

Sl R-modules
STUFSTIM — STIN; m/fs — f(m)/s,

15 one of the simplest examples of reflector functor. In this case 1t 15 well
known that S~ is not only right exact (by 1.1.17) but even exact.

1.4 The reflector “sheafification”

The main example of reflector functor we want to distinguish in this work
15 the so-called sheafification furctor which allows to go form the category
of presheaves to the category of sheaves. In this section we give its classical
construction on an ordinary topological space, defined as the composition
of two functors through the category of concrete sheaves. First of all let us
recall the definition of the involved categories.

Let X be a topological space and By a basis for the topology on X

1.4.1 Definition. A presheaf of sets P on By (recall the definition from
1.1.12) 15 a sheaf of sets if 1t also satishes:

Shl) if I € By and {U;}izr 15 an open covering of IV in By, then for every
s € P(U) we have s = 0 whenever s|;;, =0 for all ¢ € [;

Sh2) if U € By, if {U;};-; 1s an open covering of I7 in By, and if for all ¢ € T
there is given some element s; € P(U;) satisfying for all i, 7 € I that
siluno, = 85lu,n0, . then there exists some s € P(U) such that sfy;, = s;,
for all i € 1.

If P satisfies Shl), we say that P 1s separated. Condition Sh2) is sometimes
referred to as the gluing condition.

Note that Shl) gnarantees the uniqueness of the element s claimed to exast
in Sh2).

If P and P are sheaves of sets on Bx. a morphism f: P — P’ of sheaves is
just a morphism of presheaves between them.

We denote this full subcategory of P(Bx) by g...S(Bx).

Sets
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Let R be an (associative) ring with unity. In a similar way, just by sub-
stituting sets by left R-modules, one obtains the definition of the category
momed (Bx) of sheawves of left H-modules on By .

We remark that the categories g, P(Bx) and g 45(Bx) are respectively
equivalent to g, P(X) and g 4S(X) from the very definition of sheaf.

1.4.2 Definition. Let P € P(Bx) and = € X. The stalk of P in x is

detined as the inductive hmit P, = ]E}UEVB P(U), where

x ()
{FPov 1 P(U) — P(V)}ver in vay @)
is the directed system with direct set
Vi, (z) ={U € Bx | U open neighborhood of =}

ordered by U7 << V if V C U, The elements of F, are called germs of sections
of P at x. This hmit comes equipped with maps

it P(U) — Pay s — sg,
for every U7 € Vg, (z), such that

1) for each germ e € Py, there exists s € P(U) for some U € Vg, (z) with
€ = 8y,

i) two germs sz, tx € FPp with s € P(U) and ¢ € P(V), for U,V € Vg, (z),
are equal if and only if there exists W € Vg, (z) with W C U MV and
slw = tw.

(Cf. [35, 1,prop.4.2]).

1.4.3 Note. If f : P — P'is a morphism of presheaves on By then we
obtain an induced morphism on the stalks

fe: Py — Pl se— (f(U)(s))e, with s € P(U),
for every x £ X.

The following proposition, —which may be found in [21, II,prop.1.1]-, is really
fundamental for lots of proofs, in particular it will be used in this section to
obtain the sheafification functor on an ordinary topology.

1.4.4 Proposition. Let f : P — P' be a morphism of sheaves on By . Then
fis an 1somorphism if and only if f, : P, — F) is an 1somorphism, for all

re X,
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1.4.5 Definition. A concrete sheaf or sheaf space (or espace €talé in the
French literature), 15 a triple E="FE. 7, X " where E and X are topological
spaces, called respectively the total space and the base space, and 7: EF — X
15 a local homeomorphism called the projection, that 1s, for all e € E there
exists an open neighbourhood O, of e and an open neighbourhood U, of
r = w(e) such that w|p, : O — U, is a homeomorphism. Since locally its
inverse 1s continuous, 7 1s also an open mapping.

For any r € X, the set E, = fr_l[scj is called the stalk of E at x.

A section over an open subset 7 of X 1s a continuous map s : I/ — E such
that mos = it‘ﬂth.

The collection of all sections over U is denoted by I'(U, E'). In particular, the
elements of I'( X, E') are called global sections.

1.4.6 Definition. Let E; = TE, 7w, X7 and E; = "E;, 7, X7 be two con-
crete sheaves om X. A wmorphism [ @ Ey — Ez of concrefe sheaves 1= a
contimious map f : B} — E; such that mpo f = mp.

By CSh(X) we denote the category of concrete sheaves on X with these
morphisms.

From the characteristics of the projections follows immediately that the mor-
phisms on C'Sh(X) are also open and locally injective maps.

1.4.7 Properties of concrete sheaves.
Given a concrete sheaf E =T E, 7, X7, it is very easy to check that it satisfies
the following properties:

ljl E = U‘IEX ET;

i) if s : I — FE is a section and V" is an open subset of I/ then the
restriction sy 1s a section;

iii) sections that coincide in some point coincide on an open set containing
that point;

iv) for any section s : I — E the set s(I7) is open in E and homeomorphic
to U7

v) the collection {s(I7) | IV is open in X and s is a section on I/} is a basis
for the open sets of E.

In what follows we just give the description of the functors involved in the
sheafification functor for sets and for left R-modules. We refer to [34, 4.4] or
[45, 1] for the proofs.
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1.4.8 From concrete sheaves on X to presheaves on By,
The functor
T:CSh(X)— g, . P(Bx)

15 described on the concrete sheaves and on the morphisms of concrete sheaves
as follows:
Let E =TE 7, X7 be a concrete sheaf on X. The functor T' on E 15 the
presheaf TE = I'( - , E), called the presheaf of sections of E on By, which
assigns to each U € By the set of sections over U, i.e. for all 7 € By
TE(U) =T(U, E),

and to every inclusion V' C I7 in By, the restriction morphism

(TE )i - T(ULE) —= T(V.E); s+ sy
Let f: E, — E,; be a morphism of concrete sheaves. Tf : TE, — TE, is the
natural transformation given for every U in By by

Tl T(U E)— DU Ey); 58— fos.

1.4.9 Remark. Let E = "E, 7, X be a concrete sheaf. The functor T
transforms the stalks of E into the stalks of the presheaf TE, i.e. for every
x € X we obtain (TE), = FE, (cf. [34, 4.3]).

1.4.10 From presheaves on By to concrete sheaves on X,
The functor
S gas PlBx) — CSh(X)
is given for every P £ o, P(Byx) by the concrete sheaf SP = TE, 7, X7,
where the total space is the disjoint union of stalks F = |_|T5X P, with the
topology generated by the basis
B={sU)|UegBx,sc P(U)}.
where
§: U —= B, v 5,4
and the projection is the local homeomorphism
T FE—X;e—zxifec P,
Therefore, for all x £ X,
(5P), = F,. (1.2)

The functor 5 on the morphisms 1s obtained by gluing together the induced
maps on the stalks, 1.e. for every f : P — F', it 1s given by the morphism of
concrete sheaves

Sf:SP — 8P e fole)ifec P,
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1.4.11 Proposition. Let P be a presheaf on By. Then the following asser-
tions are equivalent:

1) P is a sheaf:
1) there exists a concrete sheat E on X with P=TE in g,/ F(Bx).

Proof. Cf. [34, thm.4.5.3]. O

As an immediate consequence, for every concrete sheaf E we may thus con-
struct a sheaf TE. Hence, the functor T factors as :o T, where ¢ denotes the

inclusion functor ¢ S(Bx ) — g, P(Bx) and

T': CSh(X) — gu.S(Bx); E— TE.
1.4.12 Definition. The sheafification funcior, denoted by 57, is defined to
be the composition

. ) ™
Sets - (Bx) = CSh(X) = 4., . S(Bx).

1.4.13 Remark. The previous construction may be extended to the Gro-
thendieck category p..qFP(Bx) if we define a concrete sheaf of left R-
modules to be a concrete sheaft E =T E, w, X7 such that

i) for every x € X, the stalk E; is a left F-module;
ii) the addition defined on the stalks is continuous;
iii) for each r € R the scalar multiplication with r is continuocus,

and a morphism f : E, — E; of concrete sheaves of left R-modules to be a
morphism of concrete sheaves such that its restrictions to the stalks are ho-
momorphisms of left R-modules. This new category is denoted by pCSh{X].
With this definition, the functor T': CSh(X) — g .4F(Bx) may be con-
structed by defining for any IV € By a left R-module structure on each
TE(U) = (U, E), and the functor S : 5 P(Bx) — gCSh(X) taking
nto account the induced left R-module structure on the stalks (cf. [34, 4.8]).

The following result 15 well-known. We include its proot for completeness’
sake since some of the noncommutative results below are inspired by it.

1.4.14 Proposition. The sheafification functor
5" gatsP(Bx) = geaS(Bx)

is a reflector, Le. g, S(Byx) Is a reflective subcategory of ¢, P(Bx).
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Proof. First of all it may be checked (cf [34, 4.4.2]) that the collection
of morphisms {®(FP) : P — TSP} Pegu P(By) give rise to the natural

transformation & : 1d s P(Bx) — TS, since the diagram

—*‘TSP

P
l Jrs
Qzar

7 T5Q

is commutative for any morphism v : P — @ n g, P(Bx).

Secondly, let us prove that there exists an 1somorphism of functors
T: 5T — idgsﬁ{xj.

For every E = TE, 7, X7 € CSh(X), let us define an 1somorphism of con-
crete sheaves U(E) : STE — E. We recall from 1.4.8 and 1.4.10 that
STE = TE 7', X7, where the total space 15 the disjoint union of stalks
F =|l,ex T+, E)z, whose elements are of the form s, = nu(s), for some
se (U E), U € Vp,(z), and = € X; the projection is given by 7'(s,.) = =,
and the topology defined on F' has a basis

{5(U) | U € Bx.s e T(U, B)},

where 5 : U — F;x — s, € I'(,, E);. Thus, the morphism ¥(E) is well-
defined on everv s, € F by

V(E)(s.) = s(x).

Indeed, if s, = s, with s, = nr(s) and s, = gq-(s") then, by 1.4.2 11}, there
exists W € Vg, (z) with W C U NV and I'( -, E)pw(s) = (-, E)rw(s'),
that 1s, with s|w = s'|w, and therefore s(z) = '(z).

Conversely, if s(x) = s'(z), by 1.4.7 111}, there exists an open W € Vg, (z]
such that s|w = s'|w. Then, by 1.4.21i), s, = s.. Thus ¥(E) is injective.
Moreover, W(E) is open since U(E)(s(U)) = s(U') and s 1s open (1.4.7 iv)).
From the previous equality it follows that W(E)~(s(17)) = &(U) since T(E)
is injective, and consequently W(E) is continuons.

It remains to check m o W(E) = ' in order to have V(E) in the category of
concrete sheaves, and this is straightforward since

U(E)(sy) =m(s(z)) =2 =7'(s.)-
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On the other hand, let ¢ € E. By 1.4.7 v), there exists a section s on an
open subset I/ such that e € s(U). Therefore, there exists * £ U with
e=s(z). Let V" = U[ 1 U" € Vg, (x) with fixed arbitrary U’ € Vg, (z). Then
e = sly(z) = V(E)((s|y),) and therefore, T(E) is surjective.

To derive the 1somorphism of functors i1t remains to prove that for every
f € Hom cspxy(Eq, Ez), where Ey = "Ey, m, X7 and Ez = "FEg, me, X7 are
two arbitrary concrete sheaves, the following diagram is commutative

TEL)
STE, = LR,

S'T(f}l lf

STE;, ———E
2 1D|:E2:' 2

Let s, € ST(E,) with s € ['(U, E1). Taking into account the definitions of
the functors 5 and T on the morphisms, 1t follows 1n a straightforward way
that

Ei)(sz)) = f(s(z)) = (f o s)(x)
=(T(F)U)(s))(x) = T(E)((T(f)T)(s5))z)
=T (Ex)((T(f))al52)) = U(Ez) (ST(f)(52))-

Finally, it may be checked that

SB(F) (5P)

(sp 25 srsp T sp) = (sP = sp),

for every P € g, P(Bx), and

(TE "2 7s7E "% TE) = (TE “% TR),

for every E € CSh(X), (cf. [34, Prop.4.4.4]). Hence, by 1.1.18 we have the

adjont situation

JdTr.

P(Bx) - CSh(X) - 4, P(Bx),

Sets

and since T is an isomorphism, by 1.1.21 it follows that the functor T is fully
taithiul.

On the other hand, we have the commutative diagram

P(Byx) —2— CSh(X) —— ¢, P(Bx)

T

-

Sets

' 7
T
Eetsb{ij
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By [34, thm.1.7.11] it follows that 7" is an equivalence of categories, since T
is fully faithful and for every P € ¢, S{By) there exists E € C'Sh{X) such
that P = TE. Therefore

Setspl:BX:I Ev Sats" EBJL:I SetspEBl—}

is an adjoint situation and ¢, S(By ) is a reflective subcategory of o,

Pi(Bx).
O

1.4.15 Proposition. p . S(Bx) is a Giraud subcategory of o P(Bx).

Proof. The previous result for presheaves on the category of Sets may
be extended to presheaves on the category of left H-modules. Thus, it only

remains to prove that the functor S preserves kernels:
Let ker f : Ker f — P be the kernel of a morphism f : P — P in
fomod Pl Bx ). Then the sequence

ker f

0—Ker fiplp

is exact in 5 P(By), which means that for every ' € By

0 — (Ker £)(U) 2217 peory 19 pryy
15 an exact sequence in the Grothendieck category R-mod. Consequently,

0— (Ker ), "2 p, &2 pr

I

is an exact sequence of left F-modules (by 455), which is equivalent to the
exact sequence

0 — (S(Ker f))s — (SP)s — (SP').,

by (1.2). Taking into account 1.4.9, for every x € X we obtain the exact
sequence

(T(5S(Ker f)))x — (TSP)e — (TS5FP),.
Therefore,
TS(Ker f) — TSP = TSF'

15 an exact sequence of sheaves, 1.e. TS(f)eT'S(ker f) =0, and consequently
S'(f) o Sker f) =0, since T'S =1T'5 = i5".
Now let g : P" — S'P be a morphism in p __ S(By ] such that S'f o g =0.



1.5, Localization 23

Then the following diagram is commutative

S'Ker f o
sm

§P——— 5P

o

To obtain that S'(ker f) 1s indeed the kernel of 5 f it remains to find a unique
morphism of presheaves £ : P" — S'Ker f such that S'ker f o £ = g.

From S'f o g = 0 it follows for every = € X that (S'f), o g, = 0. On the
other hand, for all @ €  _ P(Bx),

(5'Q) = (T5Q)x = (5Q): = Q..

Therefore, the following diagram is commutative

Py 0
e
s fﬂr St fﬂr
F. - : P

J=
and consequently, for every x € X, there exists a unique
it -F‘::-II — Ker fo = (Ker f). = {SKET fla

such that ker f; o £ = g, (since the composition Py — P, — F. is equal
to 0). Finally, from the maps {£; }z=x we derive the unique morphism £ of
sheaves such that S'ker f o £ = g. Therefore, S'ker f is the kernel of S'f.

O

1.4.16 Corollary. The category p  S(Bx | of sheaves of left R-modules
15 a Grothendieck category.

FProof. This follows from the previous result and 1.3.3. |

1.5 Localization

In this section we consider localization functors, which allows to prove that
every quotient category of a Grothendieck catepory C 15 a Girand subcate-
pory of C, and consequently, a Grothendieck category itself, and to obtain a
bijective correspondence between Giraud subcategories and torsion theories.
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Let C be a Grothendieck category and o € K(C).

1.5.1 Definition. A o-injective hull of an object C' of C is an essential ex-
tension ' — E such that E is s-injective and E/C € T,.

1.5.2 Any C € F, possesses an essentially unique o-injective hull, denoted
by E,(C) (cf. [23, (3.6)]). It may be constructed as the inverse image of the
o-torsion of E(C')/C' via the projection map 7, as in the diagram

0 s O s B(C) ——— B(C)/C ——— 0

N |

St

E,(C) == a(E(C)/C)

ie. E,(C) =7 Yo(E(C)/C)). Then it obviously contains C' and the exten-
ston C' — E,(C') 1s essential since C' = E((') 1s essential (cf. 1.1.31).

The object E,{C') 15 not only e-mnjective but also o-torsion-free since 1t 1s
contained in the o-torsion-free injective hull of a a-torsion-free object (recall
that the class of o-torsion-free objects 1s closed under injective hulls). Thus,
the g-injective hull of C' may be redefined as the essentially unique o-closed
object E such that E/C € T,.

1.5.3 To every ¢ € K(C) we may assoclate a functor a, : ¢ — C(o) from
the category C to the quotient category C(a), which is defined on every object
C' £ C as the o-injective hull of the quotient C'/oC, 1.e. for all €' € C

a,C = E (C/aC)

(this is well-defined in view of 1.5.2 since the guotient is torsion free), and
on every morphism f € Hom (C, ") as the unique extension of the mor-
phism f : C/oC — C'/aC" induced by f (which is well-defined since o is a
subfunctor of the identity and therefore f(oC') C #C") making the following
diagram commutative

0 Y —
|

| ax i f)
i R
' ——a,C"

#a,C [0 ——0

!

ek

where C' and C” denote the quotient objects C'/aC' and /o C" respectively.
Indeed the quotient a,C/C = E,(C)/C is obviously a-torsion by the defini-
tion of a-injective hulls, and a,C" is o-closed, therefore there exists a unique
extension aq( f) of i o f making the diagram commutative.
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1.5.4 Theovrem. The functor a, is a left adjoint of the canonical inclusion
i Cla) —C.

Proof. Cf. [23, (3.7)]. O

1.5.5 Remark. As an immediate consequence of this theorem the quotient
category C(o) is a reflective subcategory of C.
1.5.6 Definition. The localization functor at o in C, denoted by @, is

defined as the functor composition ¢ = Cla) 2% C. Thus, ) assigns to every
' in C the object
QaC) =i Es(ClaC)) € C,

called the localization of C at o, which may be constructed by the pullback
diagram

Q.(C) ———E,(C)
o(E,(C) [C)— E.(C)/T

where € denotes the quotient object C'/aC (of. [46, (1.11.)]), and for every
morphism f : € — C"in C, the morphism Qo(f) = is(as(f)) is the extension
of the morphism f : C'/aC — C'/aC" induced by f, viewed within C

G F:- ? QEC ul 1 QUC".I,I'.IE D

|
fl 1 Qa(f)
ol

T QuC’

The localization morphism is the canonical morphism j.o @ € — Q4(C)
defined as the composition

C — ClaC — Qu(C)

where the first arrow is the canonical projection and the second 1s an essential
exctension.

1.5.7 Properties of the localization functor.

1. Q-(C) = QE(E}, for all €' in C, since C = C.
2. If € € T, then Q,(C) = 0.

3. Q-(C) 1s g-injective and o-torsion-free, 1.e. it 1s g-closed, for all O € C.
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4. The quotient Q,(C)/C is o-torsion, i.e. the cokernel of the localization
morphism j, o is o-torsion, for all C in C.

[y |

For every object ' in C, the kernel of the localization morphism j. o is
o, Theretore,

1) O € Fs & jac Injective;
i) CeT, & j,o=0.

6. C belongs to the quotient category C{o) if and only if the localization
morphism 15 an 1somorphism. Thus, the class of o-closed objects 1s

Clo) = {C €C| C=Qu(C) = inasC].

=1

The functor ¢J; 15 idempotent (this follows easily from the fact that

E,(E,(C)) = E,(C) and E,(C) = E,(T), for all C in C).

8. The functor )5 15 left exact.

1.5.8 Remark. From the fact that the localization functor is a left exact
endofunctor in C, one obtains that the functor a, is exact. Therefore the
quotient category C( o) is not only a reflective subcategory but even a Giraud
subcategory of C. Consequently, in view of 1.3.3, the quotient category C(a)
of a Grothendieck category C 1s also a Grothendieck category. For instance

mod-( R, 7) 15 a Giraud subcategory of mod-R and hence a Grothendieck
category itself (cf. [33, X thm.1.6]).

1.5.9 Bijection between torsion theories and Giraud subcategories.
As we have already mentioned in 1.2.8, to every torsion theory of C corres-
ponds a unique ¢ € K(C) and from & we obtain the unique strict Giraud
subcategory C(s ) which corresponds to the initial torsion theory.
Conversely, to any strict Giraud subcategory of C with reflector a : & — T
corresponds the torsion theory

T={Cel|aC =0}
F={C | thereexists D € D s.t. C is a subobject of iD}
={C £ | the reflection € — ¢aC 1s a monomorphism }.

In particular, the reflector a corresponds to the radical o € K(C) defined on
any €' € C by
ol = Z ',

'O, aC'=0
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and it may be proved that 7' = C{7). Thus, every strict Giraud subcategory
of C is a quotient category (o), for some o. Indeed, this correspondence
between torsion theories for ¢ and strict Giraud subcategories of C is a hi-
jection, as a consequence of Gabriel's theorem (cf. [33, X,prop.1.5] or [23,

(3.31)]).

1.6 Localization in F-mod

Let R be an (associative) ring with unity and o € K{R), where K(R) denotes
the class of all left exact radicals in R-mod.

All the results from 1.5 are applicable to the category R-mod, as a well-
known example of a Grothendieck category. In this section we recall these
results in particular for left F-modules, but exactly the same may be done
for the category mod-FH.

Let us give a complete description of the functor @, in A-mod.

1.6.1 Recalling the defimitions from 1.2, a left F-module E 15 g-injective
if for any left submodule N of a left R-module M with M/N & T,, every
morphism f : N — E extends to a morphism f : M — E, i.e. such that the
following diagram commutes:

0 — N M — M/N ——0

We say that F is o-closed if f is unique as such. The quotient category of
F-mod with respect to 7 is the Giraud subcategory given by the class of all
g-closed left R-modules, and is denoted by (R, o)-mod.

1.6.2 Proposition. The category (R, o)-maod 1s complete.

Proof. This follows from the fact that reflective subecategories of a complete
Grothendieck category are also complete ([33, X prop.1.2]). O

1.6.3 Proposition. The category (R, o)-mod has enough injectives.

Proof. Let M € (R,o)}mod. The injective hull E(M) is an injective
left F-module and then it is also o-injective. Moreover, it is a-torsion-free,
therefore it is o-closed, i.e. E(M) € (R,o)-mod. By 1.3.4, E(M) is also
injective in ( R, o )-mod. Therefore, M is a subobject of the injective object
E(M) € (R,7)-mod and thus the category has enough injectives. I:l
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1.6.4 Recalling 1.5.1 and 1.5.2, a o-injective hull of a left R-module M is
an essential extension M — F of left F-modules such that E 15 g-injective
and E/M € T,, and if M is o-torsion-free, its o-injective hull is essentially
unique and is denoted by E, (M.

1.6.5 Definition. The localization functor ¢}, of R-mod at o, 1e. the left

exact functor defined as the composition F~-mod 22 (R, o)-mod = R-mod,
assigns to every left F-module M the left R-module

QJ{*&J] = -E-sr{ﬂ'f.-"fgﬂ'f]

which, together with the localization morphism j, 5 : M — Q) M, is called
the module af quotients of M at .

For every homomorphism of left F-modules f : M — N, the localization
Qolf) = iolas(f)) is the extension of the morphism f : M/aM — N/aN
induced by f

00— M—— Qo M) —= Qu(M) /M —0

|
fl | e ()
+

N Qa(N)

where M resp. N denotes the quotient M JoM resp. NjoN.

In particular, (),(R) together with the localization morphism j, g is called
the ring of quotients of R at 7, since it has a ring structure in virtue of the
tollowing result which will play a fundamental role in section 2.3.

1.6.6 Proposition.

1) Q:(R) is a ring containing R/oR as a subring: its ring structure is
uniguely determined by its left R-module structure.

1) It M is a faithtully o-injective left R-module, then Qo (M) has a left
Qs R)-module structure uniquely determined by its left R-module struc
ture.

Proof. CE [37,1]] O

1.6.7 Bijection between torsion theories and Giraud subeategories
in A-mod.
To every torsion theory (T, F) in the category of left R-modules corresponds
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aunique ¢ € K(R), as in 1.5.9, which on every left F-module M takes the

form
cM= Y N= > BRm (1.3)

NCMNeT meM, BmeT

Thus, to (7, F) corresponds a unique strict Giraud subcategory (R, o)-mod.
Conversely, to every strict Giraud subcategory C of F-mod with reflector
a : B-mod — C corresponds a unique torsion theory

T={Mec R-mod | aM =0},
F={M < Rrmod | M — M},

and there exists a unique ¢ € K(R) such that ¢ = (R, 7 )-mod.

1.6.8 To every ring homomorphism f : B — S we associate the functor
f+ 0 S-mod — R-mod

which assigns to any S-module M the same M with the F-module structure
obtained by scalar restriction via f.

There is also a lattice homomorphism f : K(R) — K(5) induced by f on the
classes of radicals which assigns to any radical ¢ € K{R) the radical f(z) on
left S-modules defined by the torsion class

Ty ={M € S-mod | f(M) € T, }.

Note that this is indeed a torsion class since f, is exact and commutes with
direct sums.

1.6.9 Proposition. Let f: B — 5 be a ring homomorphism and o a radical
mn R-mod then

i) for all M € S-mod we have f,(f(a)(M)) C a(f.(M));

i) if f is surjective, then we have equality, L.e. f, o flo) = oo f,.
Proof.
i) Let M be a left S-module. By (1.3),

flydy= 3 ~N= 3> N
NeTp . NCTM A (N1eT- NCM

On the other hand,

a(f(M)) = > N2 ) A

N'eT, N'Cfo (M) f(N)ET, NCM

Therefare, f.(f(a)(M)) C a(f.(M)).
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i1) Since

Lfle)M) = Y fu(N)

fo(N)ETo NCM

and o fo(M)) is obviously in T, if o( f,(M)) is also a left S-submodu

of M then it is contained in f,(f(o)(M]). Indeed, let s £ S ar
x € a(fu(M)). As f is surjective, s = f(r) for some r € R, and

st = f(rjzr =rz,

by the defimtion of the left F-module structure on M, and sxr belon,
to @ f,(M)) becanse it contains ra as a left R-module.

We end this chapter by introducing so-called Gabriel filters and their o
rresponding, version of the Gabriel-Popescu theorem. In the category of le
R-modules, K(R) may be determined not enly by torsion theories but al:
by Gabriel filters, as we explain in what follows.

1.6.10 Definition. A Gabriel filter on R 15 a nonempty family £ of le
H-ideals satisfving the properties:

1) if [ and J are left R-ideals with ] € J and I € £, then J € £;
n) if I,J € £, then INJ € L;
i) if 7 € £ and s £ R, then
(I:s)={recR|rscl}cL;
iv) if I is a left R-ideal and there exists J € £ with the property th:
(I:r)e LforallreJ thenl e L.

1.6.11 Lemma. Let £ be a Gabrial filter. If I, J helong to £, then so do
1J.

Proof. Cf [33, VI lemma 5.3].
1.6.12 Definition. Let ¢ € K(R). The family of left R-ideals
£ =L(a)={Lleft ideal of B | o(R/L) = R/L}

satisfies the previous properties 1)-iv}; it is called the Gabriel filter associat,
to .
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1.6.13 Bijection between Giraud subeategories of left F-modules
and Gabriel filters on R.

By 1.6.7, to every strict Giraud subcategory of F-mod corresponds a unique
torsion theory, and then a unique o £ K(R). Hence, to every strict Giraud
subcategory we may assoclate the corresponding Gabriel filter £(a).

Conversely, to every Gabriel filter £, we may associate the strict Giraud
subcategory (R, o -mod where o is the radical determined by assigning to
any left F-module M the submodule

ocM={meM|3ILcL,Lm=0}={mec M| Anng(m) € L}, (14)

and 1t may be verified that £{o) = £ (cf. [23, (4.4)]).
This actually yields a bijection between strict Giraud subcategories of R-
mod and Gabriel filters on R.

1.6.14 Note. In an arbitrary Grothendieck category ¢ with generator U7,
we may still associate to any o € K(C), some kind of Gabriel filter £(U, o)
consisting of all subobjects D of U such that U/D € T,. However, in general
L(U, o) does not uniquely determine o anymore ([37, I16], [46, 1.9]).

As an immediate consequence of 1.6.13, the category mod-(R, 7) may be
uniquely denoted by mod-({R, £(7)), and conversely we may define the quo-
tient category associated to an arbitrary Gabriel filter £ as the quotient
category mod-( R, 7), where o is the radical corresponding to £, and denote
it by mod-(R, £). Thus, the Gabriel-Popescu theorem stated in 1.2.13 may
be reformulated as follows:

1.6.15 Theorem. Let C be a Grothendieck category with generator U7, Put
R=Home(U,U) and let T : C — mod-R be given by T'(C') = Hom ¢(U, ).
Then,

1) T 1s full and faithiul:

i) T induces an equivalence between C and the category mod-(R, L),
where L Is the largest Gabriel filter on R for which all modules T(C')
are L-closed.

1.6.16 Lattice stucture in K(R).
It 1s obvious that oy < o3 if and only if £(m) © £(o2), which characterizes
the partial ordering in A (R) in terms of Gabriel filters. The meet and the
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join of any family of radicals can also be described using the Gabriel filter.
Indeed, from the fact that Tﬁ..; yov = [ Jiar Loy, 1t follows immediately that

£(\ier ) = Nier £(03).

and it can be proved that the join o =\/,_; o; is the radical which assigns
to any R-module M the submodule

oM ={m & M | there exists L € £ s.t. Lm =0},

where £ is the filter of all ideals of F containing some finite product Hj I;,
with I; € | ..; £(o;).

1.6.17 The Gabriel filter associated to a radical o € K(R) may be used
to determine the module of quotients of any left F-module M at & by the
formulas:

1) Q.(M)=1{ec E(M/aM) | there exists L € £(o) s.t. Le C M/aM};

- 1, 1 s ;
i) Q. (M) = h—n}Leﬂia} Hom g(L, M/aM).

(CE. [44, 1] and [46, (1.14)] resp.)

Finally let us give some examples of Gabriel filters for particular radicals in
H-mod:

1.6.18 Example. Let R be a commutative ring and S a multiplicatively
closed subset of K. The class of all M £ R-mod such that for all m € M
there exasts s € S with sm = 0, 1s a torsion class denoted by Tg. Its associated
radical, denoted by @g, assigns to every H-module M the classical S-torsion
submodule

osM = Z Bm ={m & M | there exists s £ S s.t. sm =0},

meM BRmsTe

and the corresponding Gabriel filter, £(osg), consists of all the ideals with
empty intersection with 5. In this case the localization functor ), is pre-
cisely the functor 57! : B-mod — S~ 'R-mod described in 1.3.5.

In particular, let 5 be the multiplicatively closed subset K —p with p a prime
ideal of R. Then the associated radical, usually denoted by o, describes
the classical torsion at p and its corresponding Gabriel filter is the set of all
ideals not contained in p. The localization functor at the radical oy is just
the usual localization at p, 1e. (o, (M ) coincides with the Ry-module M,
for every F-module M.
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If R 1s a noncommutative ring and S a multiplicatively closed subset of R,
then for any left R-module M the set ogM is no longer a left H-module,
in general. However, we may obtain a left F-module structure on ogM 1if
we choose S to be a left Ore set, 1.e. a multiplicatively closed subset of R
satisfying

i) for all » € R and s € S there exists v’ € R and s € 5 such that
s'r=1's;

ii) for all r € R and s € S such that rs =0, there exists ' € S such that
sr=10.

The localization of a left R-module M at the radical 75 15 the left module of
fractions

STIM=8xM/[ ~,
where (s),m,) ~ (85, m3) if and only if there exists some s € S such that

s(symsy — s,y ) = 0. In this case, the corresponding Gabriel filter associated
to S consists of all left ideals L satisfying (L :r) 1 S # |, for all » € R.

1.6.19 Example. Let M be a left R-module. The radical (M) defined on
every left F-module N by

V(M)N = N Ker f,

feHom (N, E(M))

(where E{M ) denotes the injective hull of M) is the largest radical such that
M 1s torsion-free. Indeed, let & be a radical such that M 1s o-torsion-free
and let us check that o < x(M), ie. that T, C T,y (by 1.2.8).

Let N € T,. Since M is o-torsion-free, E(M) 1s also o-torsion-free and f( V)
15 g-torsion for every f € Hom g(N, E(M)) since it is the image of a a-torsion
R-module. On the other hand, f(N)is contained in the o-torsion-free module
E(M),so f(N)=0 and Hom g(N, E{M)) = {0}. Hence, y(M)N = N.

In a comparable way, to any prime ideal p one may associate the radical
v(R/p), obviously equal to ay.

In a similar way one may prove that the radical defined as

EMy= N\ @

T,=M
15 the smallest with respect to which M is torsion.

1.6.20 Example. Let T be a finitely generated ideal of a commutative ring
R. The radical a7 assigns to every F-module M the set

orM ={m € M | there exists n = 0 s.t. I"m = 0}.
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In particular,
or(R/L)={r+ L | r € R st. there exists n = 0 with I"r € L},

for every ideal L, so R/L is oj-torsion if and only if I C L for some positive
integer n. Therefore, the associated Gabriel filter £y 15 the set of 1deals which
contains some positive power of 1.

Note that if T 15 a principal ideal generated by an element r € R and S 1s
the multiplicative subset generated by r, then o7 = 4.



Chapter 2

Presheaves

n this chapter we study the category of presheaves on an arbitrary poset E,
which, as a functor category, inherits a Grothendieck category structure when
t takes values in a Grothendieck category. On the other hand, when R is a
presheaf of not necessarily commutative rings on E, we study the category
of presheaves of left H-modules. Although this is not a functor category, we
arove that it also has a Grothendieck category structure when it takes values
n a Grothendieck category. Finally, we study how the localization functor
acts on presheaves of left H-modules.

2.1 What is a presheaf?

Let X be a topological space and C an arbitrary category. It is well-know
:hat a presheaf P on X with values in C consists of the data:

i) an object P(U) of C, for every open subset [T of X;
ii) for every inclusion V' C U7 of open subsets of X, a morphism in C
Pyy - P(U) — P(V); s Fyy(s) :=sly
called the restriction morphism,
subject to the conditions:
1) Fyp=1d p(rry for every open subset U7 of X;
2) f W C V CU are open subsets of X, then Friw = Brw o Priv.

35
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Indeed, P is a contravariant functor from (X to C, where (X ) is the
category whose objects are the open subsets of X and the set of morphisms
Hom O(:ij'[l"': [’} 15 a singleton when V' C U7 and is empty otherwise. In
particular, the set of open subsets of X may be regarded as a poset ordered
by the inclusion.

More generally, one may take any arbitrary poset ( E, <) viewed as a category
£ (recall the notation from 1.1.8), and define presheaves on £ with values in
C. In fact, the category of presheaves is the funcior category from E°FF to
C. In this section we explain this concept emphasizing the fact that functor
categories on a Grothendieck category are also Grothendieck categories.

2.1.1 Definition. Let £ be a small category and C an arbitrary category.
We denote by Fun(&, C) the category whose objects are the covariant functors
from £ to € and whose morphisms are the natural transformations between
functors, that is, if F, G are two functors in Fun(£, (), a morphism v : F — @
gives rise to the following commutative diagram of morphisms in C

Fla) —+G(a)

w| e

F(b) e G(b)
for everv a,b in £ and for every morphism f:a — bin £,

Note that the class of all natural transformations from F' to & can be regarded
as a subclass of the cartesian product [] .- Hom o F(a), G(a)), which is a
set since £ is small, hence so 1s Hom pupe o) (F, G'), and therefore Fun(€,C) 1s
indeed a category, which is called a functor category. This category is small
as long as C 1s small.

2.1.2 Remark. If £ is a small category, the category of functors Fun(&,C)
tends to inherit properties of the target category C (cf. [34, 2.9] or [33,
IV,57.]), for instance:

i) if every family of objects in C has a product (coproduct), then every
family of objects in Fun(&,C) has a product {coproduct);

1) if every morphism in C has a kernel (cokernel), then every morphism
in Fun(£, C) has a kernel {cokernel );

ii1) if C is complete (cocomplete), then so is Fun(&, C);

iv) if C is abelian, then so 1s Fun(&,C);



2.1. What is a presheaf? 37

v) if C satisfies 455, then so does Fun(&,C).

Moreover, if C has generators then we may also obtain a generator for the
functor category, according to a result found in [27, VI,thm.4.3]:

2.1.3 Theorem. Let £ be a small category and C a category with coprod-
ucts and a null object. If U, 1s a generator in C for each a € E, then the

covariant functor
G={Px.
ack

is a generator for Fun(&,C): where X, : £ — C Is given on every b € £ by

X, (B) = [, if Homg(a.b) =
SN0, otherwise,

and on every morphism f: b — cin &£ by

_ [idy,, if Hom g(a,b) # 0;
Xalf) = {D, otherwise,

2.1.4 Corollary. If C is a Grothendieck category then so 1s Fun(&,C), for
every small category £.

Proof. This follows immediately from 2.1.2 and the previous theorem.

O
Let E be a poset viewed as a category £ and C an arbitrary category.

2.1.5 Definition. The category of presheaves on E with values in C 1s the
functor category Fun(£% (), and it is denoted by P(E). Thus, a presheaf
P on E with values in C consists of the data:

i) for all @ € E an object P(a) in C;
ii) for every b< a in E, a morphism in C
Fan: Pla) — P(b); s — Fupls) = s|s
(we call P,y the restriction morphism and s, the restriction of s to b),
subject to the conditions:
1) Fop =idpay, Va € E;
2)ife=b=ain E then F,. = Fy. o Fy.
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Moreover, a morphism f : P — F' of presheaves on E with values in C
consists of a family { f(a) : Pla) — P'(a)},eg of morphisms in C such that
whenever b < a in F, the following diagram 1s commutative

Pla) 12 Pr(a)

Paﬁ‘[ JVP‘;'E‘

L)

where Fup and P!, are the restriction morphisms of P and P’ respectively.
The identity presheaf id P(E) o0 E is given by
c

ldfT-"{E}{ﬂ} =a; Ya€E,

and an isomorphism of presheaves 15 a morphism which has a two-sided in-
verse with respect to this identity.

2.1.6 Proposition. If C 1s a complete additive category then so 1s the cat-
egory ~P(E) of presheaves on E with values in C.

Although this result is an immediate corollary of 2.1.2 iv) (since the category
of presheaves is a functor category), we are interested in specifying how limits
are defined in order to simplify other proofs. This is why we give the following
sketch of proof, based on [33, IV 58], which is also a good example of showing
how a functor category inherits the properties of C.

Proof. Let I be an small category and F : I — P(E) a functor. We have
to check the existence of the limit of F in P E].

For every morphism A : ¢ — j in I we obtain a morphism Fy : F(i) — F(j)
in P(E) given by a set {Fy(a) : F(i){a) — F(j)(a)}ser of morphisms in C.
Consequently, for every a € F, we may define a functor F; : I — C given on
every i € I by F(i){a), and on every morphism A: i — j by Fy(a).

Since O 15 a complete category, we may construct the limit of F, in C. Thus,
the presheaf lim F' is defined on every a € E by (lim Fila) = lim F,, which,
according to [33, IV,8.2], coincides with the kernel of the morphism

[TF& — [] FO).
il i j
with canonical morphism for all ¢ € T

m o lim By [ [ F(G) = F(i); s = (siher — si-

jel
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Omn the other hand, whenever b < a in F, the restriction morphism (hﬂ Fla
is obtained by the universal property of the limit, as the unique morphism
making the following diagram commutative:

lim F, ™ (i) (a) 2% p(i) ()

-
-

i1 -

(lim Fhan ™, /E"

im £}

That is, for all ¢ € T and s = (s;);c; € lim F,, the projections of the restriction
of s to b are given by

m((lim Fas)(s)) = F(iab(s:). (2.1)
d

hMoreowver:

2.1.7 Proposition. Let E be a poset. I C 1s a Grothendieck category, then
the category of presheaves P(E) is a Grothendiedk category.

Proof. This is clear by 2.1.4, since £%% is small and ,P(FE) is the functor
category Fun(&%F, C). In particular, as in 2.1.3, if IV is a generator for C,

then th heat G =G 1ven for all b € E by
hen the preshe P(E) given for a = ¥

— @Xﬂ{.ﬁ) = N (2.2)

ack

is a generator for ,P(E), where Ey = {a € E | b < a}, and for every ¢ < b
the restriction 1'11011311181'11 15 given by the canonical injection

Ghe : UES) D s = (5)azp — sle = (55 )azes (2.3)

where
U ifa=h
" 0, otherwise.

2.1.8 Examples.

1. Let E be a poset, C an arbitrary category, and take an arbitrary fixed
object C' in C. The constant presheaf Pg € P(E) with fiber C is
defined bﬁr putting Pg(a) = C, for every a € E, and ( P§ ) = idc, for

every b < a in E.
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2. Let X be a topological space and By a basis for the topology on X.
For every concrete sheaf F on X we may define the presheaf of sections
TT o the poset By as n 1.4.8.

3. Let R be a commmtative ring and take the poset E = {X(s)}.cr_n,
where X(s) = {p € Spec R | s € p}, which constitutes a basis for the
Zarisky topology on Spec R. The structure presheaf Qg € Rings'Pl[E]
of the ring R is defined by putting Qg(Xis)) = K., the ring of fractions
of R at the multiplicative subset of R generated by s, and by defining
the restriction morphism Qg (X(s)) — Qr((X ()], for any X(t) T X(s)
(hence t* = rs for some r € R — {0}) to be the map

(Qrlxsxp @ e — By ufs™ = wr™ "

4. Let X,Y be topological spaces and B a basis for the topology on X.
The presheaf P of Y -valued continuous functions on the poset B 1s
defined by P(U') = {f : U — Y | f contimious}, for every [7 € B, and

for every V' C U7 € B the restriction morphism is given by

PUL" : PI{L":I — PI:I_:I’ f — _fh

2.2 The category R-pre-Mod

In order to study the localization in categories of presheaves of left F-modules
on arbitrary posets, we begin by endowing this category with a Grothendieck
structure, which 1s not straightforward since we are no longer dealing with
functor categories, as we did in the previous section.

From hereon, let E be an arbitrary poset and R a presheaf of not necessarily
commutative rings on E.

2.2.1 Definition. A presheaf of left R-modules on E. or shortly, an R-pre-
Module on E, 1s a presheaf M on E such that M (a) is an R(a)-module, for all
a € FE, and for all b < a in E the restriction morphism Mg : M(a) — M(b)
is Hg-semilinear, i.e. it 1s compatible with the module structure via the
restriction ring homomorphism Hgp, 1.e. for all v € R{a) and x € M(a),

Mos(rz) = Rp(r) Mo ().

A morphism f: M — N of H-pre-Modules is a morphism of presheaves such
that f(a): M{a) — N(a) is a morphism of left R{a)-modules, for all a € E.
We denote this category by R-pre-Maod.
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2.2.2 Proposition. The category R-pre-Mod of presheaves of left B-mo-
dules on E 1s abelian.

Proof. Let M, N be R-pre-Modules on E. The set Hom g pre pvoa (M, V)
15 an abelian group with the O-morphism and the sum defined in the obwi-
ons way, and it is very easy to check that the composition of morphisms is
distributive with respect to the sum, therefore the category R-pre-Mod is
preadditive.

Let {M;}ier be a finite family of R-pre-Modules. Since R(a)-mod is an
abelian category for every a € E, the family of left R(a)-modules {M;(a)};o;
has the product

(JTMi(a) . {mla) : [ M;(a) — Mi(a)}icr).
icl

gel

We define a presheaf of left R-modules by
(JTMex(a) =] Mi(a); ¥a € E,
icl icl

with the restriction morphisms given by

(DT Mo)ae - [T Mila) — TTMa(): (zi)iar = ((Mi)an(:) Jiet,
=l iel icl

for every b < a in E, which is clearly Rg-semilinear since (M;)a 15 Rap-
semilinear for all ¢ £ I. If for every ¢ £ [ we define a morphism of R-pre-
Modules m; : [] jer M; — M; by the family

{mifa) : [] Mi(a) — Mi(a) }ack,

jel

then it is easy to check that the pair (J],o; M, {mi}icr) 15 a product in R-
pre-Nod.
similarly, making use of the coproduct of the family of left R{a}-modules
{Mi(a) bier, for every a € E., we may check that the family {M;}i=r has a
coproduct.

It is also easy to see that every morphism of H-pre-Modules f: M — N has
a kernel and a cokernel in R-pre-Mod. Indeed, for every a £ E there exasts
an R(a)-homomorphism ker f(a) : Ker f{a) — M{a) which is the kernel of
fla). We define the R-pre-Module Ker f by (Ker f)(a) = Ker f(a), for every



42 Chapter 2. Presheaves

a € E, and the restriction morphism (Ker f),, : Ker f(a) — Ker f(b) is de-
fined for every b < a in E, as the restriction M|k, fia)» Which 1s well-defined
since M (IKer f(a)) is clearly contained in Ker f(&).

It 15 now a straightforward exercise to see that the morphism of R-pre-
Modules ker f : Ker f — M defined by the class of left R(a)-homomorphisms
I{ker f){a) = ker f(a)}acr 1s the kernel of f in R-pre-Mod.

Similarly we may check that coker f : N — Coker f 15 given by the class of
cokernels of left R{a)-modules {coker f(a)}acr, where Coker f is the R-pre-
module defined by (Coker f)(a) = Coker f(a), for all a £ E, with restriction
morphism (Coker f)ap = Nap|Coker £(a), fOr every b < a in E.

Finally it remains to check that the 452 condition holds in F-pre-Mod,
but this is straightforward since for every morphism f : M — N of R-pre-
Modules, the canonical morphism of left R(a }-modules

fla) : Coker (ker f(a)) — Ker (coker f(a))

is an isomorphism, for every a € E, and hence f, which is given by the class
1fla) = fla)te=k, 15 an 1somorphism of R-pre-Modules. O

2.2.3 Proposition. The category R-pre-Mod of presheaves of left B-mo-
dules on E 15 cocomplete.

Proof. Let I be a small category and F': I — R-pre-Mod a functor. We
have to construct the colimit of F in R-pre-Mod.
For every a € E we define a functor F, : I — FR{a)-mod which assigns to
every i € I the left R(a)-module Fi(i){a).
It is then easy to see that we may define the H-pre-Module m F' on every
a < £ by

(limm F)(a) = lim F,

which comes equipped with maps #;(a) : F(i)(a) — lim F, for all i € I. The
restriction morphism is given, for every b < a in E, by

(lm F)yy i F, — lm Fy; @) (@) — n(0) (F(i)as(x)-
A straightforward verification then shows that
(lim £, {n, : (i) — lim F}.e1)

is the inductive limit of F', indeed, where 1; 15 the morphism of R-pre-Modules
given by {m;(a) ek O

One now easily verifies:
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2.2.4 Proposition. The category R-pre-Nod of presheaves of lett R-modu-
les on F satisfies the Grothendieck condition AbS.

We now finally have:

2.2.5 Theorem. The category R-pre-NMod of presheaves of left R-modules
on E 1s a Grothendieck category.

Proof. In view of the previous results, 1t only remains to prove that FR-
pre-hMod has a generator. Let B, be the H-pre-Module defined by

Ra.(b) = {R(b}:« if b < a;

0, otherwise,

with restriction morphism Rp. when ¢ < b < a and 0 otherwise, for every
c = bin F. We assert that {F,}.cp 15 a family of generators. Indeed, let
a: M — M be a nonzero morphism in R-pre-Mod, so there exists a € F
such that a(a) # 0. Since R(a) is a generator in F(a)-mod, there exists an
R(a)-homomorphism &, : R(a) — M(a) such that afa) o F; # 0. We define
a morphism 3 : K, — M by the family

B(b) = {.5.5., ifbh < a;

0, otherwise,

where [ 15 the R{b)-homomorphism defined through the following commn-
tative diagram

R(a) =% R(b)

x| &

Mia) T Mib)
It is very easy to check that 5 is a morphism of presheaves and it is obvious
that a0 3 # 0 since a{a) o F; # 0. Therefore, €5 . Ha is a generator in
H-pre-Nod. O

2.3 Localization in R-pre-Mod

The aim of this section is to describe the localization functor in the category
of presheawves of left R-modules on posets. After having proved in 2.2.5 that
this category 15 a Grothendieck category, the main result of this chapter 1s
that, under certain assumptions, the localization functor “locally™ acts as the
localization functor in the category of modules. For this reason, proposition
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1.6.6 which explains the module structure of the localization of a left H-
module, plays a fundamental role. This study was first done in [37] for the
category of presheaves of left R-modules on ordinary topological spaces, here
it is generalized to posets. Moreover, it appears that some results in [37]
have redundant or missing hypotheses; this section thus also aims to place
these in the correct framework.

Let E be a poset viewed as a category £.

2.3.1 Werecall from 2.1.7 that P(E) is a Grothendieck category for every
Grothendieck category C. Consequently, all the results from section 1.5 apply
to 1t. In particular,

1) an extension ¢ of a presheaf P in -P(E) is essential if for any nonzero
subpresheaf )" of () the intersection (pullback) P M €' is nonzero, 1.e.
if there exists some a € E such that Pla) N Q' (a) # 0.

i) If & is a radical in ,P(E), an object @ in P(E) is o-injective if
for any subfunctor P’ of P in P(E) with P/P’ € T;, every morphism

f: P'— @ extends to a morphism f : P — @; Le. if for any subfunctor
P’ of P such that for all a € E,

o(P/P')(a) = P(a)/F'(a),

every morphism f extends to a morphism f such that for all a € E the
following diagram commutes.

0 + P'(a)—— P(a) —+ P(a)/P'(a) —0

1) The localization of P at ¢ € K(,P(E])) is the unique g-injective
presheaf Q,P € P(E) such that P < QP is an essential exten-
s1on and QUP,-"? is o-torsion, where P is the quotient presheaf Pla P,
le Pos (J- P 15 an essential extension and for all a € E we have

o(Q.P/P)(a) = Q;F(a)/Pla).

2.3.2 Definition. Let C be an arbitrary category and P € P(E). We call
P flabby (or flasque) if all the restriction morphisms P @ Pla) — P(b) are
surjective.
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2.3.3 Lemma. Let C be an arbitrary category. If P € P(E) is flabhy and
f: P — P isan epimorphism in SP(E), then P' 1s labby.

c

Proof. For every b < o 1in E we have the commutative diagram

P(a) 2% P'(a)

W |

P(b) E»P’{bj

and therefore, P!, is surjective. a
From hereon, let R be a presheaf of rings on E.

2.3.4 Suppose that for every a € E we are given a radical o(a) in R{a)-
mod and that for all a,b € E such that b < a the corresponding radicals
satisfy

L1) for all M € R(a)-mod and for all N € R(b)-mod, if f: M — N is an
Fap-semilinear map, then

fa(a)M) C a(b)N.

Obwviously, if the pair of radicals o{a) and o(b) satisfy L1), then the following
diagram 1s commutative

J'.Icr (m )M

g(af.-w—:. G[T_ﬁf

M - +r N

I

The following proposition characterizes this condition for the case of A being
Habby.

2.3.5 Proposition. Let R be flabby. Condition L1) is satisfied it and only
if
Fulola)) < o), (2.4)

where R, is the lattice morphism induced by the ring homomorphism R, .

Proof. Let M be an arbitrary left Ri{b)-module. The identity map on M,
id : (Rap)o M) — M, satisfies for all » € R{a) and all m € M that

wd(rm) = ed( Rap(r)m) = Rap(r)m = Ral(r)id(m),
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Le. it 15 R p-semilinear. Thus by L1), a(a)((R.),.(M)) € a(b)M as sets and

consequently
ola){(Rae)s(M)) € (Rap),(a(b) M)
as left H(a)-modules. On the other hand, by 1.6.9 ii),

(Ra:b:la {R_mb{‘f”:ﬂ}}jj} = CT{R}':':R-:&}#EJ'IH‘

Therefore, (Ras)o(Ra((a))M) C (Ra).(o(B)M) as left R(a)-modules and
then Ra(o(a))M C a(b)M as left R(b)-modules.

Conversely, suppose that the pair of radicals o(a) and o(b) satisfy (2.4) and
let f: M — N be an Fg-semilinear map.
By assumption, to prove that f(a(a)M) C o(b)N it is sufficient to check

that f(o{a)M) C Ralo(a))N. Since

Rap(o(a))N = > N,

NICTN at. {-Rﬂb:'t (N":'-E-Ta(-u]

flola)M) is a subset of Rap(o(a))N if it is a left R(b)-submodule of N and
is olaj-torsion as an F{a)-module via Fg.

Let s € R(b). Since R is flabby, there exists r £ R(a) such that s = Ra(r).
Thus, for all r £ o(a)M, we have

sf(x) = Rg(r) flx) = frz).

This product obvicusly belongs to f(o{a)M) since a{a)M is a left R{a)-
module. Therefore, f(o(a)M) is a left R(b)-submodule of N. Finally, let us
see that every element f(z) € f(o(a)M) belongs to o{a)(Ras ). flala)M)).
Indeed, since x € o(a)M, there exists L € L{a(a)) such that Lz =0, hence

Lf(x) = Ra(L)f(z) = f(Lx) = f(0) =0,

by the definition of the R(a}-module structure of { Bg ). f(o(a)M)) and by
the Rgp-semilinearity of f. Therefore, f(z) belongs to o{a)(Ras )« f(a(a)M)).
O

2.3.6 Remark. In [37, prop.II1.2.2] there is a similar result for the case of
a topological space X instead of an arbitrary poset E. However, according
to the previous proof of the converse, the condition of R being flabby should
be added to the hypotheses of [37, prop.111.2.2] since it has been necessary to
check that f(o(a)M) is a left R(b}-submodule of N, for every Rg-semilinear

map f.
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2.3.7 Lemma. If condition L1) 1s satisfied by the pair of radicals o(a) and
a(b), then they also satisfy

L2) forall M, M' € R(a)-mod and for all N, N' € R(b)-mod such that the

tollowing diagram Is commutative

M——N

| |=

M T" N

where f, f' are Rgy-semilinear and gq, gy are resp. R(a),R(b)-lincar, the
induced diagram

flﬂ'l:ﬂ:l.'ff

ala)M a(b)N

7(a)ga l Jﬂ(b}%

ala)M’ oo a(b)N'
aia) ¥

15 also commutative.

2.3.8 Remark. As an immediate consequence of this lemma, let us point
out that in the statements of [37, III] only condition L1) is necessary, instead
of imposing both L1) and L2).

Proof. Since o{a) resp. a(b) are subfunctors of the identity functor in
R(a)-mod resp. R(b}-mod, it follows that

o(a)ga = alorays G(ﬂ].-j‘r'f — crl[a}__-ifl;
7(b)gy = gblay  o(B)N — a(b)N".

On the other hand, by L1)

flagans = ala)M — a(b)N;
fla@oar s o(a)M" — a(B)N".
S0,
a(b)gs © flotairt = gblao)v © flotairs = 98l fotainn © flo@n

= (g6 © fllot@rr = (' © ga)lo@n
= f'laatotaran) © Galo@m = Flo@ur © o{a)ga.
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2.3.9 Proposition. Let {g(a) € K(R{a))}.cp be a family of radicals. If
for all a,b € E such that b < a, the corresponding radicals satisfy L1),
then there exists a unique radical ¢ € K(R-pre-Mod) such that, for all

M € R-pre-Mod and a € E.
(oM )(a) = a(a)Ma). (2.5)

Proof. We have to check that there exists a left exact subfunctor of the
identity functor in R-pre-Mod such that o(M/aM) = 0, for every M € R-
pre-Maod. First of all, let us define #. For every M £ R-pre-Mod, let oM
be piven on every a & £ by

(aM)(a) = ala)M(a) C M{a).
For every b < a in F we get the restriction morphism
(oM ) = [_Mﬂbﬂoﬁ,ﬁa:, (eM)a)=cla)M(a) — (oM )(b) = a(b)M(b)

by applying L1} to the restriction map Mgy which is Rg-semilinear. Then
it 1s clear that oM is a subpresheaf of M which satisfies (2.5), and it is a
presheaf of left R-modules since (M )(a) is a left R{a}-module and (oM ) 15
Rap-semilinear because 1t 15 the restriction of an Fgp-semilinear map. There-
fore, o is well-defined on the objects.

Let f: M — N be a morphism in A-pre-Mod, i.e. a family

{fla): M{a) — Nia) ek

of homomorphisms of left F{aj-modules such that for all b < a in E the
following diagram is commutative

M,

M{a) =22 M(b)

f(ﬂ]'l JJ’E&J

N {ﬂ-) h-—m> N {bj

By L2) we obtain a commutative diagram

':"Lfﬂbjlla'[u:l.'f:l' {a)

a(a) M(a) + o (b)M(b)
ammﬂ lﬁmm
o{a)N(a) + ()N (b)

I:NG b:' |cr (i (a)
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and by the definition of the H-pre-Module oM,
(Mab)|araynr @) = (Mab)|(anryia) = (M Jab.
That is, if for all @ € E we define (of)(a) = o(a)f(a), we obtain the set
{(ef)(a) : (cM)(a) — (eN)(a) tack

of left R(a}-module homomorphisms which yields a morphism of R-pre-
Modules of : oM — oN. Finally of = f|,as if and only if for all a € F

(af)a) = fla)|iearay

and this is obvious since a(a) € K(Ria)). Therefore, 7 is a subfunctor of the
identity functor in R-pre-Mod satisfying (2.5) and its uniqueness follows
from its construction.

Next, to check that M/oM is o-torsion-free we have to prove that the
presheaf o(M /o M) is the zero presheaf. Let us mention first that the quo-
tient presheaf M /oM € R-pre-Mod is defined on every a € E as the quo-
tient module

(M/oM)ia) = M(a)/(eM){a) = M(a)/oc(a)M(a), (2.6)
which 15 a left R(a)-module. For every b < a in E, the restriction morphism
(M/oM)a : M(a)/a(a)M(a) — M(b)/a(b)M(b)

is the R -semilinear map which assigns to every element x + o(a)M(a) in
Ma)/a(a)M(a), the element

My(z)+ a(b)M(b) € M(b)/a(b)M(b).
Now, by the definition of & on the objects, for alla € E
(olM/aM))(a) =cla)((M/oeM])(a)).
By (2.6) this may be written as
o(a)(M(a)/(oM)(a)) = o(a)(M(a) /o(a) M(a)),
which is obviously equal to 0 since a(a) € K(R(a)). Thus, M/aM € F,.

Finally. the left exactness of the functor & : R-pre-Mod — R-pre-NMod 1s
trivially obtained from the left exactness of each o{a) € K(R(a)). O
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2.3.10 Definition. A radical ¢ in H-pre-Mod given, as in prop. 2.3.9, by
a family of radicals I' = {a(a) € K(R(a))}.er such that for every pair of
elements b < a in E the corresponding radicals in I" satisfy L1) is said to be
a local radical.

2.3.11 Definition. Let & be a local radical in B-pre-Mod defined by the
family of radicals {o(a) € K(R(a))}seg. Considering R(a) as a left R(a)-
module itself, we obtain the left R(a)-submodule #{a)R({a), which 1s also a
two-sided ideal of the ring. The quotient R/oR € g;, /P(E) is given on
every a £ E by the quotient ring

(R/oR)(a) = R(a)/(a)R(a).
For every b < a in E. the restriction morphism
(R/oR)y : R(a)/o(a)R(a) — R(b)/o(b)R(b)

is the ring homomorphism which assigns to every z +o(a)R(a) in (R/aR)(a)
the element

Rop(x) + Rap(e(a))R(b) € R(b)/o(b)R(b)
(this is well-defined since Ra(o(a)R(a)) C o(b)R(b) by L1) applied to Ra).

2.3.12 Remark. In view of 233, 1if R = RinE'PI:E] 15 Habby then the quo-
tient R/oR € g, P(E]is also flabby.

2.3.13 Theorem. If R 1s a abby presheaf of rings on E and o 1s a local
radical in R-pre-Nod. then QJ-R is a presheal of rings whose structure is
uniguely determined by R.

Froof. Let () be the presheaf of rings which assigns to any a £ E the ring
of quotients of R{a) at o(a), 1.e. which is defined on the objects a £ E by

Q(a) = Qo(a)R(a).
For everv b < a in E, the restriction morphism Gg - Qla) — Q(b) 1s obtained
(by the a(bj-injectivity of (b)),
0——=(R/oR)(a)" B L Qfa) — Qla)/(R/eR)(a) —0
cR,-'aR:l.,bl | Qut
(R/aR)(5)——Q(b)

as the extension of the ring homomorphism 2 o (R0 R) 4, since the quotient
ring a)/(R/aR)(a) is not only o{a)-torsion but also o(b)-torsion. Indeed,
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since Ry 0 R(a) — R(b) is surjective, by 1.6.9 ii) it follows for all N € R(b)-
maod that L
(Rap)o(Rap((a))N) = a(a)((Rap). N ); (2.7)

and consequently we get

T';li‘ﬂ = {Rﬂ"-"}* EJ‘-EQEJ{&} :I :

On the other hand, from {2.4) we obtain Tm{,(ﬂ} C T Therefore,
To@y © (Rap )l Togyy)
so J(a)/(R/aR)(a) is o(b)-torsion.

The constructed presheaf 15 exactly the ring of quotients of R at o, 1.e. 0 15
the localization functor of A at &, since it verifies the conditions explained
in 2.3.1 which uniquely determine ), F in the category Ringp (E).

Indeed, let P’ be a subpresheaf of P in Ringp':E]' such that P/P'is o-torsion,
1.e. since o is local, such that P(a)/F'(a) is o(a)-torsion, for all a € E, and
let f: P' — ) be a morphism in Ringp{E}‘ By the o(a}-injectivity of Q(a),

there exists f(a) : P(a) — Q(a) such that

0— P'(a)~—— P(a) —Z+ P(a)/P'(a) — 0

|
N

Qa)

for all @ € E. Therefore, in view of definition 2.3.1 11), ¢} 15 a g-injective
presheaf of rings since 1t is locally o(a)-injective, for all a € E.
Moreover, the extension R/oR «— () in Ringp{E} 15 essential since for all
a € E we have the essential extension R(a)/o(a)R(a) — Q(a).

Finally the quotient presheaf @@ /(R/aR) is o-torsion since for all @ € F it is
locally o(a)-torsion. Indeed, for all a € E,

o(Q/(R/oR))(a)=0(a)(Q/(R/oR))(a) = o(a)(Q(a)/(R(a)/o(a)R(a)))
=Qla)/(R(a)/o(a)R(a)) = (Q/(R/aR))(a).

Therefore, ) = O K. O

2.3.14 Definition. Let o € K(R-pre-Mod). We say that o 1s reducing R
or, equivalently, that R is reduced by o, if Ker R, C (oR)(a), for every b < a
in E, that is,

Ker Ray — (oR)(a) — R(a) ™% R(b).
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for every b < a in E. More generally, an R-pre-Module M is said to be
reduced by o 1f

Ker My < (aM)(a) — M(a) X M(b),

for every b < a in E.

2.3.15 Note. Let ¢ € K{FR-pre-Mod) be local. If & reduces R, then for
everyb<=ac E,

Ker R, C a(a)R(a). (2.8)

More generally, if M € R-pre-Module is reduced by o, then for every b < a
in E we have Ker M, € a(a)Ma).

2.3.16 Remark. In theorem 2.3.13, which generalizes [37, thm II1.4.2], we
obtained the localization presheat (), R without having to assume that o
reduces R. Therefore, in [37, thm II1.4.2] it is a redundant hypothesis.

2.3.17 Theovem. Let R be a labby presheaf of rings, o € K(R-pre-Mod)
alocal radical reducing R, and M an R-pre-Module, then ()M is in a natural
way a left (o R-pre-Module given on every a € E by

QaMia) = QugMia),
and whose structure 1s uniquely determined by 1ts R-pre-Module structure.

Proof. Let () be the presheaf of left F-modules which assigns to any a € F
the module of quotients of M(a) at a(a), i.e. defined on the objects by

QI:EL]I = Qgiﬂjﬂff[ﬂ).
For every b < a in E, the restriction morphism Qg @ Q(a) — Q(b) is ob-

tamned 1n three steps.

First of all, considering M(b) as a left R(a)-module by scalar restriction via
Rap, 1t is obvious that Mg, 15 a homomorphism of R{a}-modules. Therefore,
there exists

Q-:r[u]l(-‘hrﬂb:l : Q{ﬂ'} = Q.:r[uj-'hr{ﬂ-} — Qg(ﬂj:JLir{lrjl:I

as the image of M, by the functor ¢, n R(a)-mod (recall this definition
from 1.6.5).

On the other hand, let o'(a) denote the radical Rus(a(a)) € K(R(b)). Since
o 15 local, by (2.4) we have o'(a)M(b) € o(b)M(b), so we may define the
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surjection of left R(b)-modules @ : M(b)/a'(a)M(b) — MI(b)/a(b)M(b).
We obtain the homomorphism of left R({b)-modules

U QuuayM(b) — Q(b) = Qo M(b)

by the o(b)-injectivity of @(b), as the extension of 7 o 3.

M(B)/o (@) M (B)—— Qura) M (b)
|
¥ 1

M(b) /o (b) M (b)——s fo.bj

Indeed, all the objects in the diagram above are left R(b)-modules and the
quotient

QorayM () /(M(b) /o' (a) M (b))

15 not only o'(a)-torsion but also o(b)-torsion since o'(a) < a(b).

We finally prove the equality
Q-:r[ﬂ}ﬂir{'&'j = QJ"[ﬂ:I }I{b} [29}
which allows us to obtain ¢}, as the composition

Q':ﬂ'j M} Qo{a}ljﬁrib) = Qo"'{ﬂ}ﬂf{&) L leb}’

which 15 R j-semilinear in view of the compatibility of the module structures
via Fa.
To prove (2.9) it is sufficient to check that Qo M(b) is a o'(a)-injective
object in R(b)-mod and its quotient by M(b)/a'(a)M (&) is ¢'{a)-torsion:
First of all, since R is flabby, for all s € R(b) there exists some r £ F(a) such
that s = Ry(r). Thus, we may define on the left R{a}-module Q). M(b) the
left R(b)-module structure via Ra, given for all x € Qo) M(b) and s € R(b)
by

sr =rx, with s = Ra(r) for some r € R(a).

This structure 15 well-defined, 1.e. for all » £ Ker Rg we have rz = 0,
since R is reduced by o. Indeed, in view of by (2.8), if r € Ker Rg then
r € a(a)R(a), so there exists L € £{o(a)) such that Lr = 0 by (1.4). Conse-
quently, Lrz = 0, so rz 1s in the ofa)-torsion of the o(a)-torsion-free object
Qafa)yM(b). Therefore, rz = 0.
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On the other hand, Q. M(b) is o'(a }-injective since for all N' C N in R(b)-
mod with N/N' € Ty, we have N/N' € T4y in view of (2.9). Moreover,
every homomorphism of left R{b)-modules f: N' — (0, M (b) is also a left
R{a)-homomorphism. Indeed, for all » £ R(a) and n € N, we have

flrn) = f(Ra(rn) = Rair)fin) =rfin),

considering the left R(a}-module structure of N' by scalar restriction via R
and the left R{a)-module structure defined on Qae M (b). Therefore, by the
a(a}-injectivity of QayM(b) as an R(a)-module, there exists a left R(a)-
homomorphism f: N — @loqy M (b) which is the extension of f. This is also
a left R(b)-homomorphism, since for all s € R(b) with s = Rg(r), and for all

n = N, we have
fsn) = f(rn) = rf(n) = Ra(r)f(n) = sf(n),

again considering the left R(a)-module structure of N by scalar restriction
via Fgp and the left R{a}-module structure defined on Quqy M (B).

Finally, by (2.7) it follows that o'(a )M (b) as a left B{a}-module is equivalent
to ala)(Ra e M(b). Therefore, considering M(b) as a left R(a}-module via
R, the quotient

QatayM(b)/(M(b)/a'(a)M(b))

viewed within R(a)-mod is equivalent to
QuiayM(B) /(M (b) fo(a) (b)),

which is obvicusly o(a)-torsion, and again taking into account (2.7) it is
o'(a)-torsion too. Therefore, (2.9) holds.

The presheaf ¢} we just constructed is exactly the localization functor of
M at o, since 1t verifies the conditions which uniquely determine QM in
R-pre-Mod. Indeed, let M’ be a subpresheaf of M in R-pre-Mod such
that M /M’ is o-torsion, i.e. (since o is local) such that M(a)/M'(a) is o(a}-
torsion, for all @ € E, and let f : M’ — @ be a morphism in RE-pre-Mod.
By the o{a)-injectivity of ¢)(a), there exists a morphism of left R(a}-modules
fla): M(a) — @Q(a) such that

0 —— M'(a)——= M{a) —Z= M(a)/M'(a) ——0

I
. | fia)
h‘ e

Q(a)
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for all @ € E, which determines the extension of f in m,(H). Therefore, ¢}
15 a o-injective presheaf of R-modules since for all @ € E it is locally a(a)-
injective.

On the other hand, the essential extension M /oM — @ in Ring - () 15 given
by the family of essential extensions

{M(a)/a(a)M(a) — Q(a) }ack.

Finally the quotient presheaf ¢} /(M /o M) is o-torsion since it is locally a(a)-
torsion, for all @ € E. Therefore, () = (J-M. [l



Chapter 3

Noncommutative Topologies

In the previous chapter we could have been talking about presheaves strictly
as algebraic objects, forgetting everything related to topologies. However, to
be able to deal with sheaves one chapter ahead, the topology turns out to be
indispensable. In fact, very roughly speaking, a sheaf 1s a presheat that glues
well, and the gluing condition invelves topological concepts such as covering
or intersection of open subsets. Of course, our noncommutative sheaves earn
this extra qualification from the noncommutativity of the topology on which
they are defined. which is basically found in the fact that intersections are
no longer commutative. Hence, 1t 15 time to present some of the examples of
noncommutative topologies that may be found in the hterature.

We begin by recalling; the concept of site, as the best categorical approach
to topological spaces, since the examples of noncommutative topologies may
also be studied from this point of view. After having summarized the main
characteristics and examples of some different noncommutative sites, we will
finally present our own type of (noncommutative) site, which we call (J-site,
whose construction is based on quantales.

3.1 Grothendieck topologies

For a better approach to this matter, a good starting point is to look for a
more categorical definition of the notion of topology, that is, the Grothendieck
topology of a site, since many noncommutative topologies follow tlus site
philosophy too.

Let X be an arbitrary topological space. Then, it 15 well known that every
open subset is covered by itself, a covering of coverings 1s again a covering,

57



58 Chapter 3. Noncommutative Topologies

and coverings may be induced on subsets.

Consider the small category O X) whose underlying set of objects 1s the set of
open subsets O X), and where for every U,V € O( X)) the set Homepxy (U, V')
is the singleton {7 = V'} if and only if I € V', and the empty set otherwise.
It we define for every UV € O(X) a set Cov(l7) given by

{Ui = Uier € Cov(U) == | JU =T,
il
then the three basic properties above translate to:
G1) for all U € O(X), {U — U} € Cov(lU7);
G2) if {U; — Ulier € Cov(U) and {U;; — Ustieg, € Cov(L]), for all ¢ € 1,
then {U; — U} s € Cov(U});
G3) f {U; — Ulier € Cov(U) and U C U then {U'NU; — Ulier €
Cov(LI").

Taking into account that the intersection is (categorically) just a pullback,
we Just established the motivation for the following concept:

3.1.1 Definition. A Grothendieck topology on a small category £ consists
of a family {Cov(A)} 4c¢ where for every object A € £ the elements Cov(A)
are families of morphisms in £ with common target A, satisfyving

Gl) {4 — A} € Cov(A), for every 4 € &,

G2) If {4, — A}icr € Cov(A) and {4;; — A }ioy, € Cov(4,), foralli € 1,
then {Ay; — A; — A}jes, a1 € Cov(A);

G3) If A" — A is a morphism in £ and {4; — A}ier € Cov(A4), then for
every ¢ € I the pullback A" x4 4; exists and {A" x4 A, — A'}ier €
Cov(A").

The pair ( £, {Cov(A)}ace ) is called a site, and the elements of Cov(A4) are
called the coverings of A.

In view of all the former arguments and the previous definition, we obviously
obtain the following:

3.1.2 Example. For every topological space X, the pair
(OX), {Cov(U) }veox))

15 a site.
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3.2 A la Garcia Roman

This noncommutative topology, which may be found in [15] and [17], is based
on Gabriel filters and their (noncommmtative) composition, which plays the
role of the intersection of open subsets in the commutative case. It has to be
stressed that it generalizes the Zarski topology on the prime spectrum of a
commutative ring.

Let R be an (associative) ring with unity.
Before giving the construction of the noncommautative site a la Garcia Roman,
we first study the lattice of uniform filters a little more in depth. Let us recall

the definition of Gabriel filter given in 1.6.10, but this time specifying the
tollowing concepts:

3.2.1 Definition. A nonempty family £ of left F-ideals that satisfies
1. if L and H are left R-ideals with L € H and L = £, then H = £;
2L Hel then LNH e L
or, equivalently,
i) if L, L' € £ then H € L for all left R-ideal H such that LN L' C H,
15 called a filter. If £ also satishies
i) f L€ £Land s€ R, then (L:s)={rcR|rscl}ecl,

15 called a wniform filter. We say that £ 1s a Gabriel filter if it 15 a uniform
filter that also verifies

ni) if L is a left R-ideal and there exists H € £ with the property that
(L:rye Lforallr € H, then L £ L.

3.2.2 Definition. Let £ and H be two filters. The composition Lo H of £
and H 1s the set of left R-ideals L with the property that there exasts H ¢ 'H
such that (L :v) € £, for all r € H. It may easily be checked that £ o H is
a filter as well (cf. [15, 3.1]).

3.2.3 Note. Using this notation, properties i1} and 111} of the former defini-
tion for uniform filters and Gabriel filters are reduced to £ C £ o {R} and
L = Lo L respectively.
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Note that in general, from its very defimition it follows that the composition
of filters is not necessarily commutative. Besides, amongst all the nice prop-
erties of this binary operation, let us point out the following ones which wall
be useful for our aims (see [15, 3] and [16, 1] for more details):

3.2.4 Properties of the composition of filters.

1) If £ C £ and 'H are filters then Lo H C Lo H and Ho £ C H o L

H C L oH, for all filters £, H;

11

1)

i)

i) {R} o £ =L, for all filters £;

1v) the composition of filters is associative;
)
i)

v) f L e and HeH then LH € Lo H;

let £ be afilter, then L C Lo (R} = L=Lc R} < £LC LoH, for
all filters H;

V1

vii) the composition of uniform filters is again a uniform filter;

viii) the intersection of uniform (resp. Gabriel) filters is again a uniform

(resp. Gabriel) filter;

ix) let 'H be a uniform filter and {£,}.- 4 a family of uniform filters, then

(V(HoLa)=Ho([)La)

acA asA

((YLa)oH S [((LaoH

acsA asA

and

3.2.5 The lattice of uniform filters.
The set of uniform filters ordered by mclusion 1s a complete lattice where
any family {£;}az4 of uniform filters has meet

acA asA

and where the join \/ ., £, consists of the left R-ideals I with the proper-
ty that there exist ay,...,a, € A with corresponding I; € £, such that
M, I © I (cf. [16, 1]).



3.2. A la Garcia Romédn 61

As we already mentioned, Gabriel filters play a fundamental role in this
noncommutative site, let us see how.

Let R be a left noetherian ring and G a set of Gabriel filters of R that contains
{R}. Let us first fix some notation:

3.2.6 Notation. By < § = we denote the free moneid generated by G with
the Gabriel filter £ = {R} as the unit element. For any arbitrary element
L=2Cy--- L, of < G =, the uniform filter £, o--- o £, is denoted by (L),
and the composition of the localization functors Qan o---0()q, 18 denoted by
G)r, where o; is the unique radical that corresponds to the Gabriel filter £;
(recall the bijection described in 1.6.13).

3.2.7 Definition. T(§) is the small category with underlying set of objects
< G = [/ ~, where two elements L, L' of < G > are defined to be equivalent
(we write L ~ L") if and only if for every left F-module M there exists an
1somorphism of modules myy © Qe M — QM such that the following diagram
1s commutative:

QL" ﬁ"-r QL M
\ ) A
Jue e LM

M

For every L €< G >, we denote by [L] its corresponding class in T(G). For
two arbitrary [L], [H] in T(G), a morphism in Hom mg)([L], [H]) 15 a natural
transformation n @ G — Cu over the identity, Le. such that for every left
H-module M the following diagram is commutative:

QuM ——— QLM

_?I-k //;/L/ M

If L and H are just Gabriel filters £ and ‘H in &, then the set of morphisms
Hom 76y ([L],[H]) is a singleton when H C £, and the empty set otherwise
(cf. [15, prop.4.2.4] or [17, (3.7)]).

3.2.8 Remark. The idea i1s to consider the objects of T(G) as the open
sets of a noncommutative topology. This is inspired by the fact that when
R 15 a commutative noetherian ring, if we take the set of Gabriel flters
Gzar = {£Lr}r<r, where £y is the Gabriel filter defined in 1.6.20, then the

objects of Tz = T(Gzer) are in bijection with the open sets of the Zariski
topology of Spec R (cf. [15, 4.2.6] or [17, (3.4)]).
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3.2.9 Detfinition. The noncommutative site associated to the family of Gabrne!
filters G 15 defined to be the pair

( T(G), {Cov([H]) }perg) )

where a covering of [H] is defined as a finite family of classes {[La.]}a_;
satisfying

i) £=[1._,5(Ls) is a Gabriel filter;
ii) [£][H] = [H].
3.2.10 Remarks.

1) This noncommutative site verifies the axiom G1) of a Grothendieck
topology since L£g is a covering of [H] for every [H] € T(G), and also
verifies G2) since if {[L,]}2_, is a covering of [H], and {[Lg]}3= is a
covering of [L.] for every o € {1,...,n}, then

15 a covering of [H], in view of [15, (4.2.16)].

i1) According to the previous definition, a global covering in T(G) is a
covering of [£g], 1.e. a family of classes {[L.]}”_, satisfying

1) £=(._,&(L,) is a Gabriel filter;
i) [£][Cr] = [£r].

The radical associated to Lp 15 zero on every M € R-mod, and hence
the localization functor ()¢, is the identity functor. Therefore, the word
LLp €< G = 1s equivalent to Lg since (Jg, o Q¢ 1s naturally equivalent
to (Jr. Hence, [£][Cg] = [£Lp] = [£] and condition ii) reduces to
[£] = [Lg], which is equivalent to assert that £ = L. Indeed, let
L £ £. By definition 1.6.12, the quotient R/L is an £-torsion ideal
and by hypothesis Lp-torsion too since () = ()¢, This means that
Rm € L for every 7 € R/L, in particular for 1. Therefore L = R and
consequently £ = Lp.

Thus, a global covering is a family of classes {[La]}._, such that

M._,=(La) = £5.

1) A global covering {[L,]}7_, in T(G) is a covering of [H], for every
[H] € T(G), since [H] = [£g]|[H] and in general, according to [15,
4.2.17], a covering of an arbitrary [L] € T(G) is a covering of each [H]
which admits a factorization of the form [L][K], for some [K] £ T(G).
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3.2.11 Example. The previous concept of covering, for the case of Gz
defined in 3.2.8 when K is a commutative noetherian ring, coincides with
the classical notion in the Zariski topology, since in this case {[£; [}7_ is
a covering of [£;] if and only if the family of open subsets {D{[,)}%_; in
Spec R 1s a covering of D(I) (cf [15, 4.2.13]). It fact, to the intersection
D(Iyn D(J) = D(IJ) corresponds the Gabriel filter £5; which is equal to

£f,:,£J={L£R|Eln,m,éfﬂjjﬂ.fm';_ﬂ}.

This is the reason why we announced at the beginning of this section that
the composition of uniform filters plays the role of the intersection of open
subsets in the commutative case.

3.3 A la Van Oystaeyen

In [36] the author presents a notion of noncommutative topology based on
an axiomatic system. The axioms are established on a poset A with two
operations v, A having as the basic noncommutative aspect that not all the
elements A € A satisfy A A A = A (apart from the necessary noncommu-
tativity of /). On this noncommutative topology one defines a concept of
noncommutative Grothendieck topology of a norcommautative site in a similar
way as in 3.1.1 for a commutative space (X, T).

3.3.1 Definition. A norcommutative topology consists of a poset A with el-
ements ( and 1, together with two operations % and A satisfving the following
aN1oms:

Al) z Ay <y, Vo,ue A;

A zAal=1Arc=z,zA0=0Az=0,zA---Axz=0=x=0 Yrc A
Ay zrgnz=(zhylhz=axhyhz), Vo,u, 2 €A
Adyifa<bthenzAa<zAbandarxz <bizx Yoe l;

Al y=<zxzWVy Yr,ue A;

AB) zv1l=1Vr=12zv0=0Ve=x, V- ---Vz=1&xz=1 Yz c A
ATy zvyvz=(zVy)Vz=xV(yVz), Vz,u,z €A

Af)ifa<bthenzvVa<zvVbandave<bVvzxz Yrcl;



Gd Chapter 3. Noncommutative Topologies

A9) let 2, (A) be the subset {x € A | Az = =}, called the set of idempotent
elements of A; for every idempotent = and every y € A, if # = y then

1) zVi{zhy) = (zvVax) Ay,
) zV iy Az =< (zVy)h

A10) if V- Vo, =1then (z Ax) V- Vizhe,) =z, Vo e A

3.3.2 Note. In this context the elements of the poset are considered to be
the open subsets and their intersection 18 given by the operation A, which 1s
not necessary commutative (whence the terminology noncommutative topol-
ogy). Even more, we point out that in a noncommutative topology a la Van
Owystaeven the set i, (A) may be a strict subset of A, i.e. not all the elements
are necessarily idempotent. A noncommutative topology in which there ex-
15ts no element A4 such that AM A £ A would have to be called commutative
according to this philosophy.

3.3.3 Properties.
1) From Al), ..., Ad) it follows that = A w,p Az < z e, Yo,y € AL
2y freisA)andr <ythenzhy=yrz=uz Yyel

) zhy=wyrzexhyand gyt are in i, (N), for every z w € 1,(A).

4) If A satisfies Al), ..., A9) then 2, (A) € i, (A), where 2,(A) is defined
to be the subset {x € A | 2V 2 =z}

5 zviyiz) = ((zvy)Az)?and (zV (yhz))" < (zVy) Az, for every
oy, z € Awith x € i,(A) and = < 2, where A2 and V2 are exponent
notation with respect to A and Y respectively.

6) xA(yvz) = ((zay)viznz)?and ((zay)v(zsz)"? =xv(yiz),
for every =, y,z € A with = € 1,(A).

3.3.4 Definition. A global coveringin A is a family of elements { Ay, ..., A, }
in A such that A v --- v A, = 1. A covering of an element x € A 15 a
family {z A A, ...,z AN} where {Ay, ..., A} is a global covering, and hence

x=(xMhA)V---V(z AN according to AL0).

3.3.5 Definition. A relation # < y in A is sald to be generic if it 15 a
consequence of the axioms of the noncommutative topology. For instance,
r < xVy isalways generic. On the contrary, if x, ¥ are idempotent elements,
the relation = =< y 1s not viewed as generic; however it 1s if = 15 for example
equal to a Ay, or if y =a v x, for some a € A
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3.3.6 Example. In anoncommutative topology one may consider the subset
T{A) Z A consisting of all finite length bracketed expressions involving A, W
and elements of 1,(A). Then T(A) also satisfies the axioms Al), ..., A10),

and it 1s called the noncommutative topology generated by 2. (\).

3.3.7 Example. Let A be a poset. We denote by D(A) the set of all di-
rected subsets of A, and we say that two directed subsets X, Y € D(A) are
equivalent, written X ~ ¥, af

1) for every x £ X there exists ' € X such that " < z and there exist
y.y €Y such that y < 2’ = o';

1) for every y € ¥V there exists y' £ V" such that ¢’ < y and there exst
x,x' € X such that z < ¢ < 2.

We denote by [X] the ~-equivalence class of X € D(A), and by C(A) the
quotient set D{A)/ ~.

A subset X € D(A) is said to be a filter if z < y with © € X entails y € X.
One may assoclate to any subset X £ D(A] the filter

X ={AcA|Jrc Xwithz < A}
For every X, Y € D(A), we say that X = Y if

1) for every x € X there exists ' € X such that ' < r and there exists
y € Y such that 2" < y;

11) for every y € Y there exasts x € X such that =z < y.

It may be proved that X < Y ifand only if X C Y, and X ~ Y if and only if
X <Y andV < X. Inview of these properties the induced ordering on C'{A)
15 well-defined, therefore C'(A) is a poset. Moreover, if A is a noncommutative
topology, so is C'(A) with respect to the operations given by

[X]A[Y]=[XAY]  [X]v []=[XVYT],
for all [X],[Y] € C(A), where

XAY ={zry|zeX,ycY};
XvY ={zvy|zecX,yeY}.

3.3.8 Proposition. Let R be a domain. The poset of unitorm filters ordered
by the inverse inclusion, with the zero element Lp = {R}, the unit element
Lo ={L <) R}, the join given by the intersection, and the meet given by the
compasition of filters, 1s a noncommutative topology where the idempotent
elements are the Gabriel filters.
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Proof. Taking into account that {R} € £ and £ C {L < R}, for every
filter £, thus L5 and £y are indeed the zero element and the unit element
respectively in the poset of umiform filters with the inverse inclusion. We
have to check the axioms Al), ..., A10). In view of 3.2.4, we see that from
properties 1) and vi) follows directly Al), 1.e. LoH 2 £, 'H. The fact that
Lp 15 the unit for the composition of uniform filters follows from properties
11} and vi). To obtain A2} it remains to prove that

L=Lys Lo L =L

If £ = L4 then it obviously follows that Lo --- o £ = £5. For the converse,
it is sufficient to check that if £ o H = £, then £ = £, or ' H = £ or,
equivalently, if 0 € £oH then 0 € £ or 00 € 'H. Indeed, if 0 £ £ o 'H then
there exists H € H such that (0:r) € £, for all v € H. If we suppose 0 & 'H
then H £ 0, thus there exists a nonzero element r € H such that (0:r) € £,
therefore 0 € £ since (0 : r) = 0 in the domain R.
Axioms A3) and Ad4) are exactly properties iv) and i) respectively. The
axioms AS5),...,A8) follow immediately since the operation meet is in this
example the intersection of sets.
In view of 3.2.3, the set { £ uniform filter | Lo L = £} of idempotent elements
(having the composition of filters as the meet) is the set of Gabriel filters. In
order to check A9), let £ be an arbitrary Gabriel filter and H a uniform filter
contained in £. Then, by applving property 1) we get LoH C Lo L = L,
therefore

LoHCLN{LoH).
On the other hand, (LM H)e L C HoLand (LNH)o L C Lol =L, both
again by 3.2.4 1). Therefore (CMH)o £ C LM (H o £), hence we obtain AY).

Finally suppose £1 17 ---M L, = £g and let £ be a uniform filter. Then by
3.2.4 1x),
i
(CoLy)n-n(LoLly)=CLo([)L)=LoLp=L,
i=1
therefore axiom A10) is proved too. O

Similar to the commutative case, this noncommutative topology may be cat-
egorically generalized by a noncommutative site a la Van Oystaeyen, which
15 a site where mnstead of G3 we have a skew azxiom NCG3 subject to the
concept of noncommutative pullback.

3.3.9 Noncommutative Grothendieck topologies.
Let A be a noncommutative topological space. One may associate to A a
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small category ((A), whose objects are the elements in A and where for
every =,y € \, the set Hom 4 (z, v) is defined to be the singleton {x — y} if
and only if the relation = < y 1s generic in A and the empty set otherwise.

3.3.10 Definition. A noncommutative Grothendieck topology on O(A) con-
sists of a family {Cov(z)}.en, where Cov(z) is a set of subsets of morphisms
in @(A) with common target x satisfying G1), G2} (as in 3.1.1) and the
following noncommutative axiom:

NCG3) if ¥’ — x 1s a morphism in @A) and {z; — x};z; € Cov(z), then

1) for every ¢ € I there exists =’ x, x; € A satisfying the following
noncommutative pullback property:
for all morphisms s — z;, s — 2’ and ¢+ — x;, + — 2’ in O(A),
there exist morphisms s At — 3" %, x; and t /s — &' =%, x; fitting
in the commutative diagram

tAhs sAt

(Note that when s = # 1s an idempotent element then the diagram
reduces to the pullback as in G3.)

u) {z' =, x; — 2oy € Coviz').
The pair [ Q(A), {Cov(z)}zea ) is called a noncommutative site.

3.3.11 Theorem. Let A be a noncommutative topology. It for everv e € A
we define the coverings of x by

e — x}l, € Cov(x) < {A,..., A} is a global covering,

i=1
then ( O(A), {Cov(z)}rea ) Is a noncommutative site.

Proof. Cf [36, Thm.7.2.2]. O
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3.4 A la Borceux-Van den Bossche

Inspired by the philosophy of guantales (explained in the following section),
the authors of [12] propose quantum spaces for being considered as noncom-
mutative topological spaces. Roughly speaking, these spaces are defined to
satisfy all the properties of a classical topological space except for the finite
intersection of open subsets, which is no longer necessarily open but con-
tained in a specific open subset given by a multiplication (actually playing
the role of the intersection). Thus, the interest is fixed on the cases when
this multiplication 15 noncommutative, otherwise we would be dealing with
classical commutative topologies.

3.4.1 Definition. A gquantum space consists of a set X provided with a
family O X) of subsets and a binary operation

b O(X) = O(X) — O(X),
called multiplication, satistying the following axioms:

S1) (0 and X are m O(X);
52) for any family {U; }icr in O(X) we have | J,_, Ui € O(X);

o

3) for every U,V € O(X) we have UMV C U &V,

on

)
4) for every U, VW € O(X) we have U & (VLEW) = (U &V)EW,
S5) for all 7 € O(X) we have U & X = U

S6) for any family {I7;};zr in Q(X), and for all 7 € O(X) we have

v (Ju) = emy;

icl isl
S7) for any family {U/; }ier in O(X), and for all U £ O(X) we have

(Jo v = Ju&r).

il icd

The elements in QX)) are called the open subsets.

3.4.2 Remark. This definition generalizes the concept of commutative topol-
ogy in the sense that every commutative topology satisfies the axioms S1),

.., 87) just by defining V&V =U MV,
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3.4.3 Properties.
For every open subsets T, U, V, W £ O(X ) the following relations hold:

DT CUand VC W then T&V C ITW;

) U&l=0=0&U;

3) UNV CU&V CUN(X&V); in particular, U &V C U,
4) UL U =U (wdempotent property);

) f U CV then D&V =17,

6) ULVEW=ULEWLV.

3.4.4 Example. Let X be a topological space and let us denote by ™ the
closure operation on the set P(X) of subsets of X. We may endow X with a
quantum space structure by taking P(X) as the set of open subsets and the
multiplication given by

L:PX)x P(X)— P(X), (Y.Z)—Y&Z=YnNZ,
where ~ is an operation in P(X) defined for every Z € P(X ) by
Z={reX|3zeZ =3}
This quantum structure is denoted by (X, @) (cf. [12, 1,ex.1]).

3.4.5 Example. Another example 15 to consider {¥Y © X | = O(X)}
as the set of open subsets, with the same multiplication as in the previous
exxample. In this case we obtain another quantum structure on X denoted

by (X, (22), (of. [12, 1,ex.2]).

For the following fundamental example of what the anthors call a quantum
space, we need to recall some basic machinery from functional analysis, which
we summarize in the following definitions.

Let K be the field B or C, of real or complex numbers respectively.

3.4.6 Deftinitions. A Banach space V 15 a complete normed K-vector space,
that is, a K-vector space with a norm || - || such that every Cauchy sequence
in V" has a limit in V' (with respect to the metric d(z, v) = ||z — y||).

A Banach algebra A is an associative K-alpebra which at the same time is a
Banach space such that for all z, ¥ € A the algebra multiplication and the
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Banach space norm satisfy ||zwy| < ||z|/||¥||, which ensures that the multipli-
cation 1s continuous.

Let A be a Banach algebra. A map + : A — A 15 called an involution if 1t
satisfies the following properties:

1) forall z,y € A, (z 4+ y)* = z* + y*;

i) for every A € C and every x € 4, (Az)* = A*z* (where \* stands for
the complex conjugation of A);

*

1) for all =,y € A, (zy)* = y*z*;
iv) for all z € 4, (z%)* = .

A Banach algebra 4 over C is said to be a C*-algebra if it has an involution
* which satisfies for all x € A4 that ||z*z| = ||=|*.

Let A be a C*-algebra with unit e, where we choose to work with right i1deals.
A CHorm f: 4 — Con A is said to be positive if for all x £ A we have
flzz*) = 0. If f also satisfies f(e) = 1, then it is said to be a state. An
extreme point of the convex set of states of A 15 called a pure state, that 1s,
a state f such that for any two states g, and g» and every real number f,

0 < ¢ < 1, the condition f =tg; + (1 — t)gz implies g1 = g2 = f.

3.4.7 Example. Let A be a C*-algebra. The set of all C-forms which are a
pure state of A, denoted by Spec A, 1s called the spectrum of A.

On Spec A, we define a commutative topology whose open subsets are of the
form

Or={f cSpecA| Iz el flzz*) £ 0},

for every closed two-sided ideal I of 4. In [12, 6,thm.2] the authors prove that
on Spec 4 one may also define a quantum space structure which generalizes
this classical topology. It consists of considering not only two-sided but all
right ideals, i.e. of taking {Or | I closed right ideal of A} as the set of open
subsets. This set i1s provided with a noncommutative intersection, that is,
the multiplication given by O & Or = Oy (where 1.J stands for the closure
of IJ in A). Thus, Spec A has a quantum space structure.

3.5 ()-sites

[t 15 well-known that the poset of open subsets of a topological space X 1s
a locale with the partial ordering given by the inclusion, and the meet and
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join given by the union and intersection of open subsets respectively (cf. [6,
ex.1.3.4.a]). In fact, the notion of locale 1s the best algebraic approach to
topological spaces. Locales find their noncommutative analog during the 80's
with the appearing of guantales, a land of lattices with an interesting non-
commutative logic.

In this structure we aim to define the proper coverings to obtain a non-
commutative site, which we will call Q-site. This will be our candidate for
noncommmitative topological space, on which we will develop the results of
the last chapter.

3.5.1 Definition. A guantale is a complete lattice (Q, <) (cf. 1.1.4) pro-
vided with an additional binary operation

&:QxQ—Q
called multiplication, satisfying the following axioms
QL) UL(VEW)=(ULV) LW,
Q2 U&1=1U,
QY U&U=U;
QY) U & (Vigg Vi) = Vies (U & 15
Q5) (ViU &V =V (U & V),

where [ 1s a set, U, V, W, U, V, are elements of @ and 1 = V@ 15 the greatest
element of Q.

An element 7 € Q that verifies the condition Q2) also on the left, i.e. such
that 1& 07 = U, is called a two-sided element.

3.5.2 Properties.
Let (Q. <, &) be a quantale. For all U, V, W £ Q the following relations hold:

1) if V=W then ULV < U&LW,

2y f U<V then ULW < VEW,

3 UT&L0=0=04&T;

4) ULV = U;

5) f U< Wand V < W then ULV < W,
6) f U<V then U =&V,
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TV ULEVEW=UL&EWLV.
(Cf. [11, prop.1]).

3.5.3 Example. A locale (L, <) is a quantale just by taking & = A. Con-
versely, in [11, corollaries 1,2] it is proved that the set of two-sided elements
of an arbitrary quantale constitutes a locale, and moreover, a quantale 1= a
locale as soon as every element is two-sided.

3.5.4 Example. Let R be an arbitrary ring with a unit. A right ideal I of
R satisfying that for all a € I there exists e £ I such that a - e = a, is called
a neat ideal The set of neat 1deals of R with the multiplication given by the
product of ideals constitute a quantale (cf. [11, ex.3]).

3.5.5 Definition. Let (@), < &) and (Q,, <, &) be two arbitrary quantales.
A morphism of gquantales is a map [ : €, — O satisfving the following
aAx1oms

M1) (1) = L;

M2) f(Vp Us) = Voop FIU);
M3) fIU&V) = FU)& F(V),

for all elements U, V| U; in @; and every set I. The morphism is called strict
if axiom M3) is satisfied with equality, 1.e.

M3') if for all U,V € Q,, then f(U & V) = f(U) & f(V).

3.5.6 Example. Quantum spaces (cf. 3.4) are algebraically approached by
quantales in a similar way as locales are an algebraic approach for topological
spaces. Indeed, 1n view of the defimition 3.4.1 and the idempotent property,
a quantum space (X, O{X), &) may be redefined as a set X provided with a
quantale O{ X'} of open subsets such that the inclusion

(O(X), S, &) — (2%, 2,M)
15 a morphism of quantales (cf. [12]).

3.5.7 Example. The complete lattice of uniform filters ordered by the in-
verse inclusion, described in 3.2.5, with the multiplication given by the com-
position of filters, is a guasi-guantale in the sense that instead of satisfyving
the axiom (Q3) it satisfies that every element is left sided (1.e. all the ele-
ments are two sided instead of idempotent), and instead of Q5) it satisfies
the weaker condition Q5)" which states that

V)&V =\t &v),
iel iel
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with equality only when [ 1s finite. This follows from the properties of the
composition listed in 3.2.4. Indeed, property iv) asserts that the composition
of filters is associative, by properties 1) and vij all the uniform filters are
two-sided, and finally the property ix) translates into the axioms Q4) and
(35)" since in this opposite lattice the join is the intersection of filters.

Let (Q. <, &) be a quantale.

Since Q is a poset, it can be considered as a small category (recall 1.1.8).
Thus, with the goal of giving a Grothendieck topology on @ (cf. 3.1.1), the
following step is to assign to every element in @ a set of OJ-coverings.

3.5.8 Definition. Let I' € @. We say that the family {U;}icr of elements
of @ 15 a (-covering of U if

Cl) U=Vt Us
C2) Uy =ULTU;, forall i € I
We denote by Cov(L7) the set of all (J-coverings of [V,

Taking into account the axioms of a quantale (cf. 3.5.1) and the properties
listed in 3.5.2 we obtain the following properties for the coverings we have
just defined, which will be very useful in the sequel.

3.5.9 Lemma. Let U € Q and let {Us}icr, {Uj}zr be two Q-coverings of
7. For allt € I and 7 € J we have:

11' LT._:r E [
2) U, & U = U,:

3) U,;&:U_; = Uj LU, < U, U; in particular, elements of the same (J-
covering are & -commutative;

4) fV = U then V&U; = V, U,
Proof.

1) This fact follows directly from 3.5.2.4 since U; = U & U,. (Note that

for an arbitrary V' < I in @ we do not obtain V" = U & 1V7);
2) this follows just by applying 3.5.2.7 since

U =ULU, =U&U&LU, =U&TU,&U = U, & U;
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3) from Q1) and 3.5.2.7 we obtain
LT{_&L:I; = (UL LU & U; = (U&LU &) &U;,

which is equal to U&U; & U7 by Q3), and again by 3.5.2.7 equal to
(& U7) & Uy = U & U;. The inequality follows by 3.5.2.4 since U; and
U? are & -commutative;

4) V&U; = V by 3524, and by applying 3.5.2.2 we also obtain that
VEU, <ULU; =U,.
O

Let Il € ©. We continue by endowing Cov(L7) with an ordering.

3.5.10 Definition. Let i = {U;}ier and U’ = {Uj};es be two Q-coverings
of /. In Cov(U7) we define an ordering “ = " given by " = I{ if and only if
there exists a map 4 : J — I such that for all 7 € J we have Ul = Usiy- In
this case we say that I’ is a sub-Q)-covering of 4.

With this ordering one may easily check that (Cov(L7), =) is a poset. Hence
Cov(L7) has the structure of a small category. We write Cov(L7) whenever we
are referring to this category structure. Moreover, Cov (") has the following
property which is going to be fundamental for our construction in chapter 5:

3.5.11 Lemuma. Cov(L7) is a directed sef with the inverse ordering of =.

Proof. We will check that for all Q-coverings i = {U; }bizy and 8" = {U;} =7
of U, there exists I{" € Cov(L7) such that I{" = U U

Let K = I x Jand U" = {U; & U} jieres. First of all, " is indeed a
Q-covering of I/ since for all (1, ) € I = J clearly

Uik Ul = (UL U)&U =U & (U; &U7)
and, by Q4),
V ver =V v = \wen),
(id)el=J il jed il

which, by 3.5.9.2, coincides with ‘I"l"lr».-;ef I, =1.

On the other hand, in virtue of 3.5.9.3, to check that &{" = U (resp. 4" = U")
it 15 sufficient to take &; : K — I (resp. & : K — J) as the projection map
onto the first (resp. second) component. O

3.5.12 Definition. The pair (Q, {Cov(U )} oo is called a ()-site.



3.5, (J-sites 7h

A Q-site is indeed a site in the sense of definition 3.1.1, as we prove in the
tollowing:

3.5.13 Proposition. The family {Cov(U)}yeg constitutes a Grothendieck
topology on Q.

Proof. Let U £ Q. We obviously have {U/} € Cov(U7] by 3], 1.e. G1] is
obviously satisfied. Let {U;},-; € Cov(l7) and suppose that for all ¢ € I we
have {U7; };,e1, € Cov(L7;). Then, for all 2 £ I and j; € J;,
U, = kU, = (ULU)EU;, =UL (L EU, ) =0T,
by C2) and Q1); and
V 0=V t)=Vu=v
hedidel icl diedy il

Therefore {U }eq,i2r € Cov(U), whence G2) holds.
Finally, suppose V' =< UU. We claim that {V & U,;},; is a covering of V.
Indeed,

1) for all e € I, by Q1) and Q3), we have V & U; = V & (V &U}); and

2) applying Q4) it follows \/, (V& TU;) = V&, Ui) = VE&TU which
colncides with V7 by 3.5.2.6.

Moreover, we claim that for all ¢ € I, the element V & [; is a pullback in @
(seen as a small category). Indeed, V& U; < V oand V& U; < U; by 3.5.9.4,
and if W £ @ is another element such that W < V and W < U; then. by
3.5.2.1, 3.5.2.2 and Q3), it follows that

W=WE&W < V&U,

Therefore, G3) is also satisfied since we have the following commutative
diagram of morphisms in ¢:

(Note that all the sets of morphisms in & are singletons, thus in particular
the arrow W --+ V' & U; is obviously unique). O
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3.5.14 Note. We must draw the attention to the fact that the noncommu-
tativity of a Q-site is based on the noncommutativity of the multiplication
&z, thus we focus our interest on the cases when & is not commutative.

3.5.15 Example. Let (O(X),C, &) be the quantale of open subsets of a
quantum space X (cf. 3.5.6). For every U £ O(X), the subset {U;},; of
O{X) 18 a guantum covering of [T if

1) U= UEI Us;
1) for all t € I we have U; = U & U,.
Then then pair (O(X), {Cov(U) }rzox)) is a Q-site.
In this case. we should remark that U &L, = DN L, since U; © U7 by

3.5.9.1. For this reason, this example becomes much more commmutative than
expected, as we will see in 4.2.3.4.

3.5.16 Example. Let R be an arbitrary ring with a unit and let us consider
the quantale of neat ideals of R. (cf 3.5.4). For every neat ideal I of R,
according to definition 3.5.8, the family {I;}qsc4 in the quantale of neat ideals
is a covering of I if

1]I I = EGEA Iﬂ;
1) for all a € A we have I, =1 - I,.

Provided with such coverings, the quantale of neat ideals is another example
of C)-site.
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Sheaves and sheafification

In this chapter we will see how one may define the category of sheaves in
a way which applies to both commutative and noncommutative sheaves, 1.e.
for arbitrary topologies, which can be an ordinary topology but also a not
necessarily commutative topology. In order to avoid the classical use of stalks
(as In section 1.4}, we make use of the theory of localization in Grothendieck
categories. In this way we introduce the category of sheaves and at the same
time a sheafification functor for this category, i.e. we obtain the sheafification
functor even in noncommutative situations.

4.1 Separated presheaves

This section is devoted to the study of the category of separated presheaves
on a poset with the minimmm topological structure in order to obtain a gen-
eral definition, valid at the same time for commutative and noncommutative
contexts, in the majority of examples of topologies we know. In this general
situation, we find a generator and prove that this category is complete when
it takes values in a complete category; moreover, we prove that the class of
objects of this category is a torsion-free class for some torsion theory in the
category of preshaves (cf. 4.1.9].

Let E be a poset and C an arbitrary category.

In 2.1.5 we define the category -P(E) of presheaves on E with values in C,
let us now give some particular examples for different posets:
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4.1.1 Definitions.

1) Taking into account that in a noncommutative topology d la Van Oys-
taeyen the space A is a poset, we may define presheaves with values
in C a la Van Oystaeyen qust through this defimtion. In this way we
obtain the category ~FP(A\) of noncommutative presheaves with values
in C. In the same way we obtain the category .P(O(A)), considering
the poset A with the ordering given by the generic relations (cf. 3.3.5).

2) Similarly, we define guantum presheaves d la Borceuz-Van den Bossche
through definition 2.1.5, using the poset O{X ) of a quantum space X.
Thus we obtain the category P{O(X]).

3) More generally, for every quantale @ we may also define the category
o P(&) of presheaves on @ with values in C, since & is also a poset.
When @ is the quantale of a (Q-site, we shortly call .P(Q) the category
of Q-presheaves.

We remark that we do not consider presheaves a la Garcla BEoman maimnly
because T(G) 15 a small category whose underlying set of objects is not a
poset, so a nonempty set of morphisms 15 not necessarily a singleton.

On the other hand. the concept of presheaf on a Grothendieck topology 1s
well known (cf. [3, 6.7] or [8, 3.2.3] for instance). However, to prove that the
noncommutative site 4 la Garcia Homan is a classical site still remains an
open problem, so presheaves here are out of consideration from this point of
view. Moreover, not only this case is excluded but also the presheaves on a
noncommutative topology @ la Van Oystaeyen. Thus, although our point of
view is less general than considering a site instead of a poset, we choose to
study 1t for the case of posets which at least does include the latter example.

Now let C be an abelian category and let us recall what 15 classically under-
stood by a separated presheaf:

4.1.2 If X is a topological space and By a basis for the topology on X,
it is well known that a presheaf F on Bx with values in C is said to be a
separated presheaf if it also satisfies the axiom Shl) established in 1.4.1 or,
equivalently, if for every I7 € By and every covering {U; };.; of I in By, the
map

£:PU) — [ PW: s (sl et

sl

15 1njective.
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This definition involves coverings, thus if we want to define separated pre-
sheaves on a poset, we would need at least to provide the poset with some
kind of coverings. With the aim of imposing minimal conditions, in this
section we will just consider:

4.1.3 Let T be a poset such that to every a € T is assigned a set, denoted
by Cf{a), which consists of families {a;}icr in T such that for all ¢ £ T we
have a; < a. The elements of C'(a) are called the quasi-coverings of a.

4.1.4 Examples. This 15 obviously the case for the poset of open subsets in
an ordinary (commutative) topological space, if for every open subset [V we
take C'(L7) as the set Cov(L) of strict coverings, but also:

1) for the poset A of a noncommutative topology @ la Van Ovystaeven,
since if {x AAp,. .., 2/ A, } is a covering of an element x £ A (cf. 3.3.4)

then for all i € {1,...,n} by 3.3.3.1 we have z A A; < z; and

2) for the poset of a Q-site (Q, {Cov(l7) }breg), since for all IT £ Q. if
1 Vier 18 a Q-covering of [7 (cf. 3.5.8), then for all : € I we have by
3.5.9.1 that U; < U,

(Recall that this case includes quantum spaces, —example 3.5.15—, since
the set of open subsets in a quantum space has a quantale structure).

Under the assumptions of 4.1.3 we are able to give the following definition:

4.1.5 Detinition. The category of separated presheaves on T with values in
C, denoted by .F(T), is the full subcategory of .P(T) whose objects are
the presheaves F which venty, for every @ £ T and for every quasi-covering
la; }izr of a, that the map

£:Pa) — [[ Plad)i s+ (sla)ier,
il
i= injective or, equivalently, which satisfy axiom Shl) whose statement in the
present context is the following:

Shl) if a € T and {a;};cr € C'(a), then for every s € P(a) we have s =0
whenever s|,, = 0 for all ¢ € I.

(Note that it makes sense to consider the restriction s|,, = Fag,(s) since
a; = a.)

This definition (which obviously generalizes the classical case) applied to the
examples of 4.1.4 translates to the following ones:
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4.1.6 Examples.

1) Let A be a noncommutative topology d la Van Oystaeyen. The category
F(A) of noncommutative separated presheaves is the full subcategory
of ~P(A) whose objects are the presheaves P such that if x € A and
{ A1, ..., Ay} 18 a global covering, then for every s € Pz we have s = 0

whenever s|y, =0foralli e {1,... ,n}

2) Let (@,{Cov(U)}reg) be a Q-site. The category F(Q) of separated
(J-presheaves is the full subcategory of . P(Q) whose objects are the Q-
presheaves P such that for every U € @ and every {U; }i=1 € Cov(L7),
if s € P(U;) and if for all ¢ € T we have s|;;, =0, then s = 0.

3) In particular, if we consider the Q-site (O(X), {Cov(l) }reox)) as-
soclated to the quantale of open subsets of a quantum space X (cf.
3.5.15), then we obtain the category F(O(X)) of separated quantum
presheaves.

Additionally, these minmimum specifications of 4.1.3 are sutlicient to obtain the
following results, which hold in the different already mentioned topologies,
in both commutative and noncommutative contexts:

4.1.7 Lemma. If C is complete then so is the category F(T') of separated
presheaves on T with values n C.

Proof. Let {Pi}lr=i be an arbitrary family of separated presheaves and let
us verify that ]_L:EI{ F, 1s separated too. Let a £ T and s £ {]_L‘,E;{ Fi)la).
Every s € ([Tpex Pe)(a) is of the form (sg)repe with sy in Fy(a). If {a;}ier is
an arbitrary quasi-covering of a such that for all ¢ £ I we have s|,, = 0, then
by assumption 0 = s|,, = (8i|a, Jrer. Hence, for every k £ K the separated
presheaf Py verifies for all ¢ £ I that s|,, = 0. Therefore for all & € K,
s = 0, and consequently s = 0, 1.e. [[..j Fi 15 separated.

(Note that we need C complete by assuinptiﬂn Just to obtain a well-defined
[Ticx P, for an arbitrary family. ) O

4.1.8 Remark. Smmilarly, we may prove that if C 15 cocomplete then so 1s

the category JF(T).

4.1.9 Proposition. Let C be a complete category. The class of objects of
the category -JF(T') is a torsion-free class for some torsion theory in . P(T).

FProof. We have just proved that it is closed under products. On the other
hand 1t 15 straightforward to check that if P 1s a separated presheaf, then so
is every subpresheaf P’ of F.
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Finally, let 0 — P' & P % P" . ) be an exact sequence in cP(T) with
P P" ¢ -F(T). We have to check that P also belongs to -F(T). Let a € T,
s € P(a), and let {a;};er be an arbitrary quasi-covering of a in T such that
for all 2 € I, s|,, = 0. Let us verify that s = 0. In view of the exact sequence
we have the following commutative diagram in C

0—— P'(a) 2% P(a) 2% Pr(a) ——
P,:.,,l Paa, P
0—— P'(a;) —— P(a;) 224 priaq, 79, g
Let s” denote g(a)(s) € P*(a). Then for all i € I
s"|a, = (Fog, 0 gla))(s) = gla;)(sls,) = 0.

Hence, s" = g{a)(s) = 0 since P" is separated. Therefore, we may find some
s' € P'(a) such that s = f(a)(s'), since Ker g(a) = Im f(a). Moreover, by
assumption for all i € I we have

0= 5|a, = {Paa. = f':ﬂjj{sj} = fiﬂi}l:sr'&l]‘

Hence, by the injectivity of f(a;) for all ¢ € I it follows that |, = 0.
Therefore s =0 since P’ is separated. and consequently s = (0.

In view of proposition 1.2.4 11), we may then conclude that the class of objects
of the category -F(T) is a torsion-free class for some torsion theory. O

Now let us recall that if C is an abelian category and U is a generator for C,
then the presheaf G = G P(T): given for all b € T by U78), where
C

Ty={acT|b<al,
is a generator for P(T) (ef. 2.1.7). Moreover:

4.1.10 Proposition. The presheaf & is separated and therefore 1s a gener-
ator for the category JF(T') of separated presheaves on T

Proof. Let b € T and {b;}icr € C(b), and let us suppose the existence of
s € G(b) such that s[,, = 0 for all 1 £ . We have to verify that s = 0.

Since G(b) = UCT*":', clearly s is of the form (sg)azs, with s, € U for all @ = b.
Thus, it is sufficient to check that s, = 0 for all @ = b. On the other hand,
we recall from (2.3) that for all ¢ € I we have s|y, = (5] Jazs,. Where

' {sa, if @ = b

5, = :
a 0, otherwise.

Therefore, for all a = b; we have by assumption that s, = 0, whence s, = 0
if a = b O
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4.1.11 Note. The presheaf & satisfies even a stronger condition than Shl),
which is: if ¢ < bin T and s € G(b) such that s|. = 0, then s = 0.

4.2 The sheafification functor S

In this section we present the central goals of this chapter: we obtain a
category of sheaves on a general not necessarily commutative topology and
at the same time an associated sheafification functor. The main tool we use is
the theory of localization, since we define sheaves as the objects of a quotient
category of the category of presheaves.

Apain we consider a poset T as in 4.1.3 but this time we need to impose
a rather natural condition to be satisfied by the quasi-coverings in order to
obtain the sheafification functor. This 1s what we call the

4.2.1 C-condition:

(C) for all b < ain T, if {a; },-5 is a quasi-covering of a then there exists a
quasi-covering {b; };-; of b such that for all : € I we have b; = a,.

4.2.2 Remark. If the family {C'(a)}qer defines a Grothendieck topology
on T, then from axiom G3) we obviously derive that C-condition holds. Ex-
actly the same occurs if that family defines a noncommutative Grothendieck
topology (in the sense of 3.3.10), from axiom NCG3. For this reason we may
understand the C-condition as a weaker axiom we want to impose instead of

G3) or NCG3).

4.2.3 Examples. Although from the previous remark it clearly follows that
all the already menftioned examples satisfy (C), let us specify how the C-
condition is verified in each case. We will see that, as in the classical case,
b; 1s Just the intersection of a; with & (understanding by intersection the not
necessarily commutative hinary operation which plays the role of M in each
context):

1) let X be a topological space and let O X ) denote its set of open subsets.
For all V. C U in O(X), if {U;}icr is a covering of U then the set
{V MU ier 1s obviously a covering of V' satisfying (C);

2) let A be a noncommutative topology a la Van Oystaeyen. For all g < =
A, if AN, ., 24N, | 15 a covering of x then, according to definition

3.3.4, {urA, ...,y A} s a covering of y and, in virtue of axiom Ad),
for all e € {1,...,n} we have y A A; = = A A;. Therefore, the coverings
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in A satisfy (C). In a similar way, one checks that the coverings in O(A)

satisfy (C);

3) let (Q, {Covil)}reg) be a Q-site. It is very easy to check that with
our very definition of CQ-covering we have gnaranteed the C-condition.
Indeed, this is already done in the proof of 3.5.13 where we check that
if U7 € @ and {U; }ier 15 a Q-covering of U7 then for every V' < U, the
set {V & T }ier 1s a Q-covering of V' such that for all ¢ € I we have
V& U; = U;. Therefore, Q-coverings also satisfy (C);

4) in particular, if (O(X), C, &) is the quantale of open subsets of a given
quantum space X, then its quantum coverings (defined as in 3.5.15)
also satisfy (C). However, in this case V& U; = V 11 U, Indeed, we
obtain V & I7; C VMl; from 3.5.9.4, and the inverse inclusion holds by
53). Thus, although this Q-site has a noncommutative structure given
by &, this multiplication appears to be the ordinary intersection of sets,
not only among elements of quantum coverings of the same U £ O(X),
but also between any open subset of U7 and any element of a quantum
covering of I7.

From hereon let T be a poset with quasi-coverings satisfying (C).

A fundamental fact needed in order to obtain the sheafification functor is the
following property of the category .F(71"), on which depend the main results
of this chapter:

4.2.4 Theovem. Let C be an arbitrary abelian category. The catezory
o F (1) 15 closed under essential extensions.

Proof. Let F < P be an essential extension in P(T) with F € F(T).
We have to check that F is a separated presheaf, ie. for every a € T and
every {a;}ier € Cla), we have to check that the map

§:Pla) — []Plai s+ (sla)eer,
il

i= injective. Indeed, if we suppose that Ker£ £ 0 then we may define a
nongero subpresheat P © P given by

| PaplKer &), if b = a;
F'(b) = {D, otherwise,

with restriction morphisms

ife<b< a;

Pic| Py (er )5
FI = I3 — ¢l Fapl et "‘:I' .
be = Pl Pt 0, otherwise,
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for every ¢ < bin 7. It is easy to check that P’ is in fact a subpresheaf of P,
and 1t 1s nonzero since P'(a) = Ker £ £ 0. Then, as the extension F — P
15 essential, it follows that P’ 1 F £ 0. Hence, we may find b £ T such that
P'{b)M Fib) # 0. In view of the definition of P’ this means that there exists
a nonzero element ¢ € F(b) with ¢t = Fy(s) = s|p, for some s € Ker £ (L.e. for
some s € P(a) such that for all ¢ £ I, 5|, =0).

The C-condition on the quasi-covering {a;}izr of a with b < a, yields a
quasi-covering {b; };-; of b such that for all ¢ € I we have b; < a;. This
guarantees that the restriction morphisms {Fy, }icr on ¢ are zero. Indeed,

Fu, (t) = Py, (t) = t|p, since F C P, and for all i € I
flbl = I[‘S|"-"}|"-": = S|b| = {Fﬂlbl = Pﬁﬂl){s} = Fﬂ:b:(‘5|ﬂl} = D‘

Therefore, since F' is separated it follows that ¢ = 0, which is a contradiction
that comes from having supposed that IKer £ = (. O

We henceforth assume that C 15 a Grothendieck category.

Taking into account that injective hulls are in particular essential extensions
(cf. definition 1.1.32) and having proved that the category .JF(T) is a torsion-
free class for some torsion theory in P(T) (cf. 4.1.9), as a consequence of
this theorem now we may also assert that:

4.2.5 Corollary. The class of objects of the category -F (1) is a torsion-free
class for some hereditary torsion theory in JP(T').

4.2.6 To this torsion theory of .P(T") corresponds (in view of the bijection
1.2.8) a unique radical 7g € K( . P(T)) defined for all P € .P(T) by

TeF = Z P,

PICP, PieT:

where Ts is the torsion class {P £ P(T) | ¥F € .F(T),Hom (P, F) =0}
and Fg = F(T).

4.2.7 Definition. The category of sheaves on T with values in C is defined
to be the quotient category

P(T)rs) ={FP < P(T) | Pis rg-closed} C F(T)

of ~P(T) with respect to 75; we will denote it by S(T).
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4.2.8 Examples. We may obtain this quotient category for all the examples
of topologies listed in 4.2.3. In this way we define: the category .S(A)
of noncommutative sheaves a la Van Oystaeyen, the category .S(Q) of Q-
sheaves and the category S{O(X)) of guantum sheaves.

4.2.9 Corollary. For every Grothendieck category C there exists a functor
S JP(T) — S(T). left adjomt of the inclusion functor i, . and such that

(S(T)={P € P(T) | P=i,,SP = Q,,P}. (14.1)

Proof. Taking into account that in 2.1.7 we prove that .P(T) is a Gro-
thendieck category, we obtain this corollary by applyving general localization
theory in Grothendieck categories. In fact, S is the functor associated to the
radical 75 € K(-P(T)) as in 1.5.3 (where it is denoted by a,). The equality
tollows directly from 1.5.7 (property 6 of the localization functor). (Il

4.2.10 Definition. The functor 5 : P(T) — -8(T) 1s called the sheafifi-
cation functor.

4.2.11 Corollary. The category .S(T') of sheaves on T' with values in C is
a Grothendieck category

Proof. Recalling 1.5.8 we obtain that .S(T") = P({T)(7s) is a Girand sub-
category of the Grothendieck category .P(T'), and therefore a Grothendieck
category itself. O

4.2.12 In particular we may conclude that:

1) there exists a noncommutative sheafification functor in every noncom-
mutative topology A d la Van Oystaeyen

S‘ﬂl . CP{AJ e C-SI{:"L:I,
and a ¢-sheafification functor in every (Q-site Q.
Sg: P(Q) — S(Q),

(thus, in particular, in every quantum space with coverings defined as

in 3.5.15);

2) if C is a Grothendieck category then so are the categories of sheaves

eS(A), ¢S(Q) and (S(O(X)).
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4.3 Sheafification in F-pre-Mod

Let T be a poset as in 4.1.3 and R a presheaf of not necessarily commutative
rings on 1.

In the Grothendieck category of R-pre-Modules on T (cf. section 2.2) we may
also obtain a sheafification functor in a similar way as in section 4.2 for the

category -P(T"). This will be the aim of this section.

4.3.1 Definition. The category of separated presheaves of left H-modules
on T, or shortly, of separated R-pre-Modules on T, is the full subcategory of
H-pre-Mod whose objects are the R-pre-Modules M which verify, for every
a € T and for every quasi-covering {a; };=; of a, that the map

£: Ma) — [] Mla): s (sl )ier,

isf
15 injective or, equivalently, which satisfy

Shl) if @ € T and {a;}ier € Cla), then for every s € M(a) we have s =0
whenever s|,, =0 for all 1 € I.

We remark that [[,.; M{a;) has an R(a)-module structure since each M (a;)
15 an H{a)-module by scalar restriction via Hg.,. Moreover, £ is a homomor-
phism of left R{a)-modules, due to the fact that each Mg, 15 Rqq,-semilinear.
By this reason, we may consider Ker £ as an R(a)-submodule of M{a).

We may verify that the category of separated FR-pre-Modules on T is com-
plete, with a similar proof as in 4.1.7, taking into account that in this case
the product of an arbitrary family of R-pre-Modules is well defined since we
are dealing with a Grothendieck category. Moreover, by using a proof similar
to the one in 4.1.9, we also obtain:

4.3.2 Proposition. The class of separated R-pre-Modules on T 1s a torsion-
free class for some torsion theorv in R-pre-Mod.

Now let T' be a poset with quasi-coverings satisfving (C) and R a flabby sheaf

of not necessarily commutative rings on T

Under this assumptions, for every R-pre-Module M we obtain a well defined
subpresheaf M' C M given by

ey | Mgp(Ker &), if b < a; .
M(b) = {E], otherwise. (4.2)
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Indeed, if M'(b) £ 0, for every m’ € M'(b) and v" £ R(b) there exists
m € Ker £ and r € R(a) (in virtue of the flabbiness of R) such that

rem' = Ry(r) - Mygm) = Mg(r-m) € My(Ker &) = M'(b).

Therefore M'(b) 1s a left R(bj-submodule of M(b), for all b £ T. Moreover,
for every ¢ < b in T', the restriction morphisms M}, = ;"r_f,g,c|_;|,lrr,:b:, are clearly
Ry ~semilinear.

Thus, making use of this subpresheat, we may prove as in proposition 4.2.4
that the class of separated R-pre-Modules on T is closed under essenfial
extensions and consequently:

4.3.3 Theorem. The class of separated R-pre-Modules on T 1s a torsion-
free class for some hereditary torsion theory in R-pre-NMod.

To this torsion theory corresponds (in view of the bijection 1.2.8) a unique

radical T € K R-pre-NMod) defined for all M £ R-pre-NMod by

M= Y M,

MM, M'eTr
where Ty 15 the torsion class
IM £ R-pre-Mod | YN € Fgp,Hom (M, N) =0}
and Fg 15 the class of separated F-pre-Modules. Thus,

4.3.4 Definition. We define the category of sheaves of left K-modules, or
shortly, R-Modules, as the quotient category

R-pre-Mod(rg) = {M € R-pre-Mod | M is tp-closed }
of R-pre-Mod with respect to mg; we will denote it by E-Mod.
4.3.5 Corollary. There exists a functor,
S R-pre-Nod — R-Mod,
lett adjoint of the inclusion functor i, @ R-Mod «— R-pre-Mod, such that
RE-Mod = {M € R-pre-Mod | M =i, SgM = Q- M}
4.3.6 Definition. We call S the sheafification functor in R-pre-Maod.

4.3.7 Corvollary. The category R-Mod of sheaves of left R-modules on T
15 a Grothendieck category.



Chapter 5

Sheaves and sheafification on
Q-sites

In this chapter we will concentrate on one type of noncommutative topology:
(J-sites (cf. 3.5). We will consider noncommutative separated presheaves
and sheaves over them, which we appropriately will refer to as separated Q-
presheaves and ()-sheaves. We will show that there 1s a left adjoint of the
inclusion functor from the category of Q-sheaves into that of ()-presheaves.
At this point the reader might object: “but, didn't we already do that in the
previous chapter?”. Actually, in the previous chapter we defined the category
of ()-sheaves as a localization of the category of QQ-presheaves, a procedure
which naturally generalizes the Giraud and quotient category point of view in
the ordinary commutative case. What we will do here 15 to introduce, 1in the
()-site setting, a more natural, intuitive definition of (Q-sheaf and construct
an assoclated ()-sheafification functor.

Rather surprisingly, however, it appears that in this particular case both con-
structions coincide: the category of ()-sheaves obtained through localization
in the previous chapter and our new more intuitive, alternative category of
()-sheaves are essentially the same, as well as their associated ()-sheafification

functors.
Throughout this chapter, let (Q, <, &) be a quantale and (Q, {Cov(I7) breg)

a ()-site defined on Q.

5.1 Sheaves on QQ-sites
Let C be an arbitrary abelian category.

59
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First of all, by way of introduction, let us recall what 15 classically understood
by a sheaf on a (commutative) topological space, from two different point of
Views.

5.1.1 What is a sheaf? The classical definitions.

Let X be a topological space and Ey a basis for the topology on X

1. Algebraically: We have already defined (in 1.4.1) the categories
of sheaves of sets and left H-modules on Bx. In a similar way, the
category -S{By ) of sheaves on By with values in C is defined to be the
full subcategory of »P(Bx) whose objects are the presheaves P which
satisfies Shl) and Sh2), or equivalently, such that for every open subset
Ul € Bx and every open covering {I; }icr of I/ in Bx, the sequence

0 — P(U) —— 1., P(U;) _e . ]_[[i:j}.c_fxf P(U,N ;)
is exact. Here # is given for all (s;).z; € [[,.; P(U;) by

(8i|vyr, — 8jlvynu, Jigyer=I-

oy

Note that for an arbitrary presheaf what we have is only # o £ = 0.

Indeed, for all s € P(U7),
(0 o&)(s) = 8((s|u,)ict) = ((s|v,) v, — (8], )w,nw, Jpera = 0.

2. Geometrically: Let E =TFE, 7, X7 be a concrete sheaf on X. As a
well known example of sheaf we have the presheaf of sections I'( - | E)
of E on By described in 1.4.8, for which axioms Shl) and Sh2) are
easily checked ([45, (1.20.)]). In fact, in proposition 1.4.11 we stated
that all the sheaves of sets on By are essentially of this type, and the
same happens in the category R-mod ([45, (2.3.)]).

Inspired by this definition, which involves coverings but in which the role of
the intersection of open subsets also 1s fundamental, taking into account that
this role in ©)-sites is played by the multiplication &, we define:

5.1.2 Definition. The category -Sh(Q) of ¢-sheaves with values in C is
the full subcategory of FP(Q) whose objects are the Q-presheaves P which
satisfy Shl) and the following gluing condition:

Sh2) if U € @, if {U;}ier € Cov(U), and if for all ¢ € [ there is given
s; € P(U;) verifying for all ¢, € I that 5";|L-',&:L-'j = 5j|[,",-£5{,"j:. then
there exists some s € P(I7) such that s|;, = s;, for all ¢ € I.



5.2, The Q-presheaf LF a1

(Note that, in virtue of 3.5.9.3, it makes perfect sense to consider the restric-
tions of s; € P(U;) and s; € P(U;) to the open subset U; & U since we have
not only U; & U < U; but also U; & U < Uy)

It may be checked (as in the classical case) that P is a Q-sheaf if and only
if, for every open subset U/ and every (Q-covering {I; }ier of U, the sequence

0— P(U) =TTy PU) — T gperr PU T

is exact, where £(s) = (s|y, Jics, for every s € P(U), and # is given for all
(silier € [Licy P(Us) by (silv, ev, — 85|v, &0, )i gier«1-

Apain, as in the classical case, what we have for an arbitrary Q-presheaf is
only #o& =0,

5.2 The Q-presheaf LF

For a given (-presheaf P, we construct in detail the ()-presheaf L F on which
1s based the whole notion of (-sheafification. Instead of using stalks (as done
in 1.4 for the classical case), we make use of inverse and direct limits (on sets
of indices of ()-coverings and on directed sets of (Q-coverings respectively),
and their well known universal properties. Generalizing similar properties
in the classical case, we finally prove two fundamental results in order to
define the (J-sheafification functor, stating that if P 15 a ()-presheaf resp. a
separated ()-presheaf, then LF is a separated ()-presheaf resp. a (-sheaf.

Let C be an arbitrary Grothendieck category, ' € @ and P £ - P(Q).

5.2.1 For every U = {U;};c; € Cov(U7), we denote by Pl the system on C
which consists of all the diagrams
P(U;)

wh
P(U; & U)),
f_F,Jf

ff’fﬁtjj,u,&ﬁj
)

P(U,

7

tor all ¢, 7 € I. It may be checked that Pi{ 15 an inverse system on the quasi-
ordered set ({U;, U & U4 jer, = ). Therefore, its tnverse limit exists (i.e. the
limit on the small category defined by [); it is of the form

lim PU = {(s;)ier € [Tie; P(U) | Vi,5 € Lisilvev, = Silveu, } s
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and comes equipped with projection maps m; : hﬂ Pld{ — PIiL7), for every
ie 1.

5.2.2 For all Q-coverings Y = {Us}icr and U’ = {Uj};z5 of U such that
" = U, we define a map

P : lim PU — lim PU'; (si)ier — (5|02, (5.1)

where & : J — [ i1s the map satisfying for all 7 £ J that U; = Usijy. Indeed,
for every j € J, there exists
-
. EETE)] - 1'|5|:_'|:|L' .
Thus, the universal property of the inverse limit puarantees the existence of

a unique morphism hﬂ Fid{ — hﬂ PU" malking the following diagram com-
mutative

. P
E P ped? . E‘L P’
PU&:;J”}m »./
P( Ui)

for all j € J; therefore the 7** component of PE%M(ES]'EI]' 15
(Prigiyr © Toiy) (iier = Fogyyui(S5i5)) = ssgilu-

5.2.3 For every morphism of (Q-presheaves f : P — P’ and every ()-covering
U = {U;}ier of U, we denote by fU(U) the unique morphism in C {given by
the universal property of the inverse limit) which makes the following diagram
commutative, for all ¢ € It

lim P T yim P
— —
.r'(ﬂ".}k, /
PT%)

Therefore, for every (s; Jier € lim P,

FRU((si)ier) = (FU:)(s) it (5.2)

5.2.4 The construction of LP.
For every P € P(Q) we define another Q-presheaf, dencted by LP, as
follows: for every U € ), there exists a direct system

({lim PU }yecovwy s 4 Pieer Yoo ttecovu))



5.2. The )-presheat LFP 03

defined on the directed set Cov(U) (cf. 3.5.11), whose direct limit (colimit)
belongs to C. Thus, it makes sense to define LP on the open subsets by

LP(U) = H_nmmﬁc’m'ii’)[@ Pii), (5.3)
which comes equipped with maps
ne : lim PU — LP(U),

for all Iif € Cov(l7). Hence, for every s € LP(U) there exists a Q-covering
U = {U;}ier of U such that s = nylz) for some = = (z;)e1 € @FM (where
xr; € P(U;) and for all ¢, 7 € T we have I¢|L-',35L-'J, = $j|b‘.&:b‘j:‘-

Moreover, if ' = {U}};-; is another (Q-covering and y = (y;),=1 € lim P,
then my(z) = my(w) if and only if there exists a sub-Q-covering 4" = {7} Viox
of {4 and 4" such that

Fige((2idicr) = Bl ((y3)ie0),
1.e. such that, for all & € K,

T8y (k) Uy = Yo |ops (5.4)
where 8, : K — [ and 4, : K — .J are the maps satisfying for all k € K that
Uy = Usy(k), Uyzy- This defines an equivalence relation such that

LP(U)=( || LmPU)/~;
LeCean(LT)
the map n; 15 the composition

lim P2 | | lim P4 — LP(U).
HeCov (17

We note that ny((z;)ier) = 0 _if and only if there exsts a sub-Cl-covering
U' = {U!}jcs of U such that Fj,u((x;)icr) = 0, i.e. if and only if for all j € J
we have :a:m:,h.-: =0, where & : J — [ is the map satisfying for all 7 £ J that
Ul < Uy

i = ")

On the other hand, let V' < U7 in @ and let us define the restriction morphism
(LP)iry : LP(U) — LP(V) in the following steps:

1) From each i = {I; }icr € Cov(U) we obtain a (Q-covering

V= {EF&L‘;}E}' L= C-"G‘VEIF:I
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such that V& U < U7}, in virtue of the C-condition (cf. 4.2.1). From
this fact, for all 2, 7 = I by 3.5.2.1 and 3.5.2.2 we also obtain

(VE&UN&E(VED) < U LU,
Thus, for all 1,7 € I we have the following commutative diagram

P(U;) s P(V & T7)

P(U; & U;) —— P((V & U)&(V & U;))

(where the triangle commutes by the definition of limit and the square
by the definition of ()-presheaf).

Therefore, by the universal property of the inverse limit, there exists
a unique morphism fj : 11& Pl — lii'lpv that fits in the following
commutative diagram (where the triangle  is commutative since it
colncldes with the previous pentagonal diagram)

imPVe - - - - - - - . lim P

P(V &%)

|

P((V & U)&(V &T;))
Hence, fr is given for all (s; )icr € lim P by

fi((sidicr) = (silvaw, Jier- (5.5)

2) For all Q-coverings U = {U;};oy and U’ = {U]};c; of U, if there exists
amap ¢ : J — I such that i’ < 4, then we get the same relation on
the coverings V' < V induced by the same 4. Indeed, for all j £ J by
3.5.2.1 it follows that V & U = V & Uy, Hence, it makes sense to
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conslder the following diagram:

lim P — T, lim PV
&
P B LP(V)
Tt

hm PiA’ — hm PV’

where the triangle is commutative by the definition of direct limit. Let
(8:)icr € !:E'l Fi4 and let us check that the square is also commutative.

{P'll‘-il»‘-' o fi)l(siier)) = P‘Eﬁr“%|k‘&b‘.]‘ﬁef3
=B e v,V SLL-'_;'[{SJ{}}|L" & Usiyy Jied)
= (sa() v & 17 ) e
= fi((ss)|vy)se7)
= (fro Pl ((si)izr).

Therefore, the triangle ¢ in the diagram below is commutative.

3) Hence, by the universal property of the direct limit, there exists a
unique (LP)yv : LP(U) — LP(V) that fits in the following commuta-
tive diagram.

0 e e + LP(V)
nyafr
L
lim P4
i
Mgt : ."':'_f
P b
lim P’
rii—

Consequently, for every s € LP(IU) there exists i = {U; },.r € Cov(U)
such that s = ny(x), for some z € lim P and

(LP)ov(s) = nvlfr{(zdicr ) = mol(@i|v e v, )it ), (5.6)

where V = {V & U }ier € Cov(V) and = = ()1 with z; € P(L;), for
all ¢ € I, such that xﬁ'b’.&b} = xj'b'.&b'_f:- forall i,y € 1.
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5.2.5 Theorem. If P £ /P(Q) then LFP ¢ F(Q).

Proof. Let U £ Q and U = {U;};; € Cov(L7), and let us check that

§:LP(U) — [ LP(W); s (LP)uw,(9))ier

ic]

is injective. If s € Ker £ then there exists a Q-covering {' = {U/; }aeq of U
such that s = g (z), for some z = (24)q24 € liilPH’, and for all 2 £ [,

0= LPL:UII:S] = ??u;{{xah:',&,b'; :IGEA}?

where 4] denotes the Q-covering {U/; & U] },.4 of U;. Therefore, for all i € T
there exists a sub-Q-covering if; of ] such that

By (walr, e vy)asa) = 0

Suppose If; = {7, }pep, and let &; : B; — A be the map such that for all
b; € B; we have Uy, = U; & Uy (b)*

Then, for all b; € B;, we obtain by assumption that (zs, @, [, & Ut ;”Ub. =1,
i.e. that

T5,(by) U, = 0. (5.7)
To be able to assert that s = 0 it is sufficient to find a sub-Q)-covering {{” of

U" such that Pl ((7a)aca) = 0.
We claim that

I_,.I"'” = U.E.-‘I{_.' = {Lrb,}hEEHiEf
il

15 a sub-{)-covering satistying this condition.
Indeed, 4" is a Q-covering of I7 just by axiom G2) of a Grothendieck topology
(cf. 3.5.13). Moreover, I4" = U{" by using 4 : |—|'-'ZEJT B, — Agiven, for allb, € B,
and 1 € I, by

5(b:) = 8i(by).
This is easily checked since we have by assumption that Uy, < U; & U‘;{m, E0
Uy, < Ué[!:-,j by 3.5.9.3. )
Finally,

Py ((Ta)aca) = (Tage)|vs, JbicBuiel

which is equal to 0 just by (5.7). O

K.2.6 Theorem. If P < EF{Q} then LP cSh{Q}.



5.2. The ()-presheat LF a7

Proof. Let Ul € Q and {I'; }ier € Covi(l7). We have to verify the exactness
of the sequence

0 — LP(U) — [Ty LP(U) —2 T jyerur LP(U: & Uy).

Since P is a (Q-presheaf, L P is separated, 1.e. £ is injective (cf. 5.2.5). Besides
f o £ = 0 for every (Q-presheaf (in particular for LP). Thus, it remains to
check that Ker @ C Im £.

Let (s;)ier € Ker 8. Then for all ¢ € [ there exists i; = {Uy, }a,2a, € Cov(TV;)
such that s; = my,(x;), for some z; € lﬁ'l Pl4;, where

ny, : lim PU; — LP(U),
and z; = (Mg, Ja,cq, With m,, € P(U,,) such that for all a;,b; € A4,

Tnﬂ:'ﬁ:. &Uﬁl — ‘i‘??,&l |L'-\'.|I &Ub, . (58}

On the other hand, in view of G2) we obtain that

U= Jth = (U, Ya,ca,ier € Cov(U).
i

MNow let us consider the element

T = (Maq, Ja,cA, icl € H P(U,,)

agS A isd

and let us verify that x € lim Pi{ (whence ny(z) € LP(U)). It is sufficient
to check for all i,5 € [, a; € A; and b; € A, that

Mg, |£r.,, Lelly, = Ty, |U.,I 8o Uy, - (5.9)

Let us fix arbitrary ¢,7 € I. When ¢ = j this equality is given by (5.8).
Otherwise, let V" denote the element U7 & U;. Then, by (5.6), the restriction
of ; € LP(L;) to V' coincides with

(M, v e, Jaea,) € LP(V),

where V) denctes the Q-covering {V & Uy, }a ca, of V. On the other hand,
denoting U; = {Uy, }y,eq, € Cov(U;), the restriction of s; € LP(U;) to V is
equal to

o ((mu, v ety Jo,ea,) € LP(V),
with Ve = {V & b, }-E-J,EAJ. € Cov(V).

Both restrictions coincide by assumption (since (s;);c; € Ker @), therefore



05 Chapter 5. Sheaves and sheafification on ()-sites

there exists a sub-Q-covering Vi = {Vibrer of V1 and Vs such that for all
ke K
Em'ﬁrﬂ'ﬁ"l’&D'd.:m:'h')o = Emﬁ:ﬂﬁh’&L"égm:'h’m
where d; : K — A; and d; : K — A; are the maps respectively satisfying for
all k € K that Vi, < V& Us and Vg, < T«"&U;j (k) (cf. 5.4). Consequently,
for all & € K
mjl.:;cj|Le'k = ??lj:ll:j_-}l'[x'k. (5.10)
On the other hand, by 3] we obtain for all k € K that
U Uy, &V = (U, & Ty, ) & (U, & T, &V,
and from Q4) it follows that
\/ (U, & Uy & Vi) = U, & Uy, & (\[ V) = (U, & T &V,
kel kel
which coincides with U, & U, by 3.5.2.6. Therefore {U,, & Uy, & Vi }bier is a
Q-covering of U7, & Uy, , so the map
£ P(U, &Uy,) — H P(Ug, &Up, &V t = (tlug, etn, &vi ek
kel

1s Injective (since P is separated). Hence, in order to obtain (5.9) it is
sufficient to prove that

M, fv,, eve,) = & (my, v, ev)-
This 1s equuivalent to checking, for all £ € K, that
Mg, |t &1, & vi, = My |0, &1, &7 (5.11)

First of all, for all & € I, taking into account that Vj, < I"P&—’Ua.(kj and the
properties listed in 3.5.2 and 3.5.9, we get that

(U &£ Uy J &V, U & V3 = (U, & UG & U5 & Uy iy
=U,, &U; & U5, (k) = (g, & Us,iy) LU; < U, & U, (k)-
Therefore,
Ma, |0, & Uy, & Vie = (Ma, U, 80 U 30 ) |0, 20, Vs

which, by (5.8), coincides with

(M, 00 |, &0, 4 |0, & Uy, & Vie = T5,(k) |vr,, & Uy, & Vi



5.3. The ()-sheafification functor a 99

Omn the other hand,
Ug U &V, < U LU LV, =V EV, =V,
50
M, |, et v = (Ma,00) Vi) |v, & 03, w13
With a similar procedure, taking into account that

Ug Vi< U &V & U k) = V& Ug} (k)
=U; & U & Uj_f(;_.] =0 & U-jj (k) LT = E,-Tjj (k) LU; < UJJ,:;.:,,

whence

Uy, & Uy, & Vi = (U, & Vi) & Ty, < Uy sy & U,

we may obtain that
mp, |0, & Uy, &Vy = (1726, (k) [ 13 ) | U, U, & Vi-

Therefore, the equality (5.11) holds as a consequence of (5.10). Consequently
s =unylxz) € LP(U), so it makes sense to consider £(s). Finally, let us verify
that (s;);c; € Im £ by checking that it precisely coincides with £(s).

By (5.6), clearly £(s) coincides with (myy((me|v, &0, Jeea,tel))ict, Where
U = {U & U, eeater € Cov(l). On the other hand, (s;);-; 1s equal to
(et ((Ma, Ja,e4, ) Ji=r. Thus, it is sufficient to verify for all ¢ € I that

el (M |0, 04, Jeveacrer) = M (Mg, Jasea, )-

Taking into account that &4 = U] (just by choosing 4, as the inclusion map
A; — |2y As) and that & =, it is then sufficient to check for all a; € A;
that

(Mg |t e Us, oy U, = T
Indeed,
(M54 (a0) |0, & Us oy U, = (M0 0, )| e, = (M, |0, )|U, = Ma,.
Therefore, (s;);cr = £(s). O
As an immediate consequence of theorems 5.2.5 and 5.2.6 it follows:

5.2.7 Corollary. If P £ P(Q) then L*P = L(LP) € -.Sh(Q).
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5.3 The Q-sheafification functor a

The aim of this section is, once we have previously established all the neces-
sary conditions, to describe the announced (J-sheafification functor and give
some of its properties.

Let C be an arbitrary Grothendieck category.

5.3.1 The functor L.
In virtue of 5.2.5 we may define a functor

L: (P(Q) — F(Q)

given on every P £ P(Q) by L(FP) = LF (recall the description of the
(-presheaf LP from 5.2.4).

For every morphism f : P — P’ in P(Q), it remains to define the mor-
phism of separated ()-presheaves L(f) : L(P) — L(F’), which is given by a
collection {L(f)(U7) : LP(U) — LP'(U)}y-g of morphisms in C such that

the diagram

LP(U) —E2%Y ey (5.12)
L.;;;.(U;.J limcvn
LP/(U) ——s LP'(V)

15 commutative for every V< U7 in ©.
For every IV € @ we define L{ f)(I/) as the direct limit of the family

[F97(U) < im PU — lim PU fyecon

of morphisms i C, which takes the form

L(f)(U) : LP(U) — LP(U); s niy(F(U) () )ier), (5.13)
where s = nylz) with = = (z;);e7 € @PM, and 7j; denotes the map

lim PU — LP'(U).

Finally, let us verify the commutativity of diagram (5.12). Let {f be the
Q-covering {U; }icr and s = my((z:)icr ) € LP(U). On one hand, we obtain

LIV I(LP)ov(s)) = LIV ) me(FPo,v e, ((2iier)))
=yl ( (V& U) Py, v eo, (@) )ier),
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where V denotes {V & U }ier € Cov(V). On the other hand, we obtain

(LP Yo (L{F)U)(s)) = (LP Jorv (g ((F (U} () )it ))
=yl (P var, (UG 0] ) )izt )

Both results coincide by definition of morphism, since for all ¢ £ I we have

VE&TD; < U; (by 3.5.9.4), so
fl:I- & LTJ_-,]I [+] _Fb'l:y LU, = PE;I Ve, o fl:{;r»_-,:l
The functor we have just described has the following property:

5.3.2 Proposition. The functor L : P(Q) — -F(Q) is left exact.

Proof. Let 0 — P . P' % P" . 0 be a short exact sequence in P(Q)]

and let us check that 0 — LP 290 ppr 290 1 p is excact in F(Q), Le.
that for all I7 £ @ the following sequence in C is exact:

L(H)(U) L))

0 — LP(U) LP(y " Le.

Let us fix an arbitrary U7 € @. From the fact that direct limits in Grothendieck
categories over directed families of indices are exact, it is sufficient to prove
that for all I € Cov(L7) the following sequence in C is exact:

0— imPU_ I fmpy U m Py,
Indeed, by assumption, for all + £ I the morphism f(U;) is injective. Thus,
in view of (5.2), it directly follows that the morphism fY ({4) 1s injective.
On the other hand, Im fY (24 ) C Ker g [E»E} since for all 1 € I we have
g(U;) o £(U;) = 0, and therefore g" (1) o f (i) = 0. Hence, only the inverse
inclusion remains to be verified.
Let (s;)ier € Ker g"'(U). Then, for all ¢, j € I we have 5; € Ker g(U;) (i.e

s; € Im f{U]} and Fir, v, 1, (s i) = Pu. gbbj{sj.} Therefore, for all 2 = I
there exists s} € P'(I/;) such that si = FIU)(s)) with (s))ier € lim P'¢{, since

FU & UG (P, AL ) =Fuu, v, (F(U; U:)(s:)) = Fu, oy a7, (5i)
=Py, v, ev,(55) = Po, v, &:L- (F(U5)(s5))
= fU & U Fy, p, e, (85))s
and so, Ff; ;- U, (si) = PL- U T, (s}) by injectivity of f(U; & U;). Conse-
quently, (si)ier = £ (Ur)((s er) & Tm FEQU). D
In particular, by (cf. 1.1.15), L preserves kernels, pullbacks and finite limits.
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5.3.3 The ()-sheafification functor a.
At this point, in virtue of 5.2.7 and 5.3.1, 1t becomes evident that we define
what we call the (J-sheafification functor,

a:  P(Q) — (Sh(Q),

as the composition L o L. However, in order to prove that it is a reflector,
let us include the following detailed description:

Let P € P(Q). The Q-sheaf aP is given on every I € Q by
aP(U) = limyc oo n (Lim (LP)U),

which coincides with the quotient set '[UL{EC‘-.:L-(L-'W liﬂl{LF]M )/ ~, where for
every (J-covering 4, the limit %E— (LP)i{ 1s equivalent to

{(si)ier € [Lies (LP)T3) | Vi, g € I, (LP)v, v, v, () = (LP)u,v,ev,(si) } 5
it has the associated map
TR lim (LP )i — aP(U).
To aP corresponds, whenever V' < IV in O, a restriction morphism
(aP)yv : aP(U) — aP(V); s = 1i((LP)u,y e, (2:))iet),

where s = n5(x) with & = (33)ic1 @{LP)M, and where i, V' denote
respectively the Q-coverings {U; }ier and {V & U}z, Note that every z;
belongs to LP(U;), so for all ¢ € [ there exists i; € Cov(L;) such that

x; = 1y, (7)), for some r; € lim P,

On every morphism f : P — P’ of Q-presheaves, the functor a is defined
by al f) = LIL(f)) : aP — aP'. Thus, by (5.13), it consists of a collection
{al f)(I7) hreg of morphisms in C which are given for all 7 € @ by

a(f)(U) : aP(U) — aP'(U); s+ ()G (L) (U (i) hier )

where s = % (z) with © = (z;)iz1 € lim (LP)i{, and where (n')F, denotes the
map li_m{LP"jli«f — aP'(U).

Since a = Lo L, 1t follows from 5.3.2:

5.3.4 Proposition. The functor a : ;P(Q) — Sh(Q) is left exact, hence
it preserves kernels, pullbacks and finite limits.
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5.4 Useful machinery

In order to simplify the proof of the main result of the next section (theorem
5.5.1) we collect here some preliminary results.

5.4.1 Lemma. To every P € P(Q) corresponds a morphism of (-pre-

sheaves P =% LP. Besides, if P is separated then (p Is injective.

Proof. For every U € Q let i, denote the trivial Q-covering {U'}. Then
lim Pl{y coincides with P(I7), so its corresponding map i, 1s the canonical
morphism P{U7) — LP({U7). We define {p to be given by the family

{Cp(U): PIU) — LP(U)}ueg

of morphisms in C, where (p(I7) = my,. Let us verify that this is indeed
a morphism of presheaves, i.e. that whenever V' < U7 in &, the following
diagram is commutative:

P(U)—2Y P(V)

mlul l’?vﬂ

LP(L) WLP{F )
This follows in a straightforward way from (5.6) since for every s € P(L7) we
have (LP )iy (Mo (s)) = ma(slv- o), which is equal to my,(s)y) by 3.5.2.6.

Moreover, if P 1s separated then for every U £ @ we may easily check that
Cp(U7) is injective as follows. If s € Ker (p(U7) then, since my,(s) = 0, there
exists a sub-Q-covering of Uy, 1.e. another Q-covering I = {U; }iep of U, such
that all the restrictions s|i;, are 0. Hence s = 0, indeed, as P is separated.

O
5.4.2 Corollary. There exists a natural transformation
s 1d —+ 2oL
¢idprg) el
where 1 1s the mclusion functor F(Q) — ~P(Q).
Proof. We define ¢ to be given by the family of morphisms of (}-presheaves

Cp: P —iLP, for all P € /P(Q). By (5.13), it is easy to verify that, for
every morphism f : P — P’ of Q-presheaves, we have L(f) o (p = {pi o f,
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1.e. that for every I £ @ we obtain the following commutative square in C,

P(U)— ™, LP(U)
rcml lfe(ﬂ(i")

P(U) ————LFP'(U)

Indeed, for all s € P(U) we have

LU ) (e (5)) = nigy (F(U)(5)).
O

Let P be a (Q-presheaf. Then the image L((p) of the corresponding mor-
phism {p via the functor L is a morphism in Hom (LF, aP). On the other
hand, we have another morphism {pp € Hom (L P, aP) which is the one that
corresponds to the Q-presheaf LP, as in 5.4.1.

Let us prove that they coincide:

5.4.3 Proposition. For every P € P(Q) we have L((p) = (1p.

Proof. Let U € Q. We have to verify that L{{p)(l') = {p(U). Let
s =nu(x) € LP(U), where i = {Ui}ies € Cov(U) and & = (@;)ier € lim PU.
By (5.13), we obtain

L(Cp)(U)(s) = nig( (Cp (U (i) dier ) = mig((naeaya (i) Jiet ),

where 77 : lim (LP )i — aP(U) and nuy,, : P(U;) — LP(07).
Omn the other hand,

Cp(U)(s) = nig,(s),
where *r;rﬁru LP(U) — aP(U).
Taking into account that i = i, 4. in order to assert that both images
coincide it is sufficient, by (5.4), to verify that ngg)o(x:) = LFyy,(s), for all
=N
Indeed, by (5.6) we obtain LFPyy,(s) = (x|, &0, )ier ), where If; denotes
the covering {U; & U },o;. Thus, to prove that the latter element coincides
with gy, () it 1s sufficient, again by (5.4), to check for all [ € T that

Tyl e v, = T|v, ey

(since i; = U, (4;)y). In fact, this equality holds for all ¢,1 £ T just because
(zi)icr € lim PU. O
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5.4.4 Lemma. To every P € -Sh(Q) corresponds an isomorphism of (-
sheaves ¢p : LP — P.

Proof. Let U € @. In general, for every s € LP(U') there exists a Q-
covering i = {U}op of U and = = (z;),27 € lim Pi{ such that s = Myl
with ;¢ &7, = ;|v, 40, for all 1,5 € I. In this case, since P is a (Q-sheaf,
we can go further and assert that there exists a unique t* € P(I7) such that
t* |7, = xy, for all 2 € I. Thus, we may define a morphism
wp(U): LP(U) — P(U7); st~

If there exists another " = {Uj},c; € Cov(U) and y = (y;);e; € lim P&’
such that s = mg(y) then let us prove that t¥ = t*. By (5.4), there exists
a sub-Q-covering " = {U}'lkex € Cov(U) of I and U’ such that for all
k € K the restrictions of xs 3y and ysy g to U} coincide (where dy : K — [
and d; : K — J are the maps satisfying U}/ < Usy iy Uézlii'}j‘ Thus, for all
k€ K we obtain the following sequence of equalities from which we derive
that ¢* = #¥, as P is separated:

oy = (¥|ugy o Moy = Zugyaoluy = Yoy lop = (Blug, Moy = oy

Therefore, wp(U) 15 well defined. Besides if s = nyi{z) € Ker pp(l) then
for all ¢ € I we obtain from the very definition that z; = "y, = 0, and
consequently s = (0. Hence, wp(l7) is injective. Finally it is also surjective
since for every ¢t € P(U') we may choose s = 1y, () as the element in LP(U)
such that ¢t = @p(I7)(s), since ¢ = t.

Thus, we assume @p to be given by the family of isomorphisms ¢p(L7) in
C. Let us verify that this 15 indeed an 1somorphism of ()-sheaves, 1.e. that
whenever V' < 7 in @, the following diagram is commutative:

LP(U) L ppy

7
wp EUI{ lwﬂf")

Pl T&-P( 7

Let s = ny(x) € LP(U) as before. Then,
PLL':*FP':L':I{S}} = trly.
On the other hand, wp(V)(ny((=;|v- &1, Jier)) 15 by definition the unique g
such that gy &1, = 2|y & 1r,. Henee, to derive that ¢ = ¢*|y- it is sufficient to
verify that (#"y )|y &0, = zi|v ev,. Indeed,
(v er, =t ver, = (v )|ver, =zl e,
(recall that V & U, < U, by 3.5.9.4). O
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5.4.5 Corollary. There exists a natural equivalence
wrLoj—id o
i J eS(Q)

where j is the inclusion functor Sh(Q) — -F(Q), and L is considered to
act from F(Q) to ~Sh(Q) (in virtue of 5.2.6).
Proof. The family {wp : LjP — P} Pz S(Q) of 1somorphisms of Q-

sheaves defines such a . Indeed, if f: P — P' is a morphism of ()-sheaves
then fowp = wp o L(f), 1.e. for every U € Q the square

LP)—=9, pu)
Lt.r')u:tf:{ lf{i’i'

in C is commutative, as we verify in what follows: let s € LP(I7). Then,
there exists U = {U}iey € Cov(U) and & = (@)igr € lim PU such that
s = nylz). If ¥ denotes the unique element in P(I7) such that for all i €
we have Py, (t7) = x;, then

FU(ep(U)(s)) = FIU)(ET).
On the other hand,

wep(UNL(F)U)(s)) = ep (U)o ((F(T5) (1) ier))
is by definition the unique g such that Fy; (g) = f(Ui)(z;), for all ¢ € I.
Henee, to derive g = f(U7)(#*), it 1s sufficient to verify
Py, (FU)E")) = fIU:) ().

Since Pi-‘L-‘, o fill) = f(U;) o Pyp,, this follows directly from the assumption
-PL"U. [tzjl = L. O
Making use of 5.4.1 and 5.4.4 we obtain:

5.4.6 Lemma. For every P € »Sh(Q) we have the following commutative

diagram

idp




5.5. An adjoint pair 107

Proof. Let U € Q. For all x € P(U7),

(ep(U) o Cp(U))(z) = wp(U)(me(2))

is by definition the unique ¢t € P(U7) such that {|;r = x, thus t = . Therefore,
for all U € Q@ we obtain @p(U) o Cp(U) = idpgry, 1. wp o (p = idp. Since
op 18 an 1somorphism of Q)-sheaves, it follows that Cp is the inverse of wp.
Hence 1t also follows that (p o wp =1drp. O

5.5 An adjoint pair

What really permits to call @ the @-sheafification functor is the fact that it
15 a left adjoint of the inclusion functor Sh(Q) — -P(Q), i.e. that it 1s a
reflector. In this section we prove that this is indeed the case, and we also
state some of its consequences.

5.5.1 Theorem. The functora : ;P(Q) — Sh(Q) is a left adjoint of the

imclusion functor t: Sh(Q) — P(Q].

FProof. In view of proposition 1.1.15 it is sufficient to check the following
points:

1) the existence of a natural transformation @ - 1d P(Q) — ioa
C

-l

11) the existence of a natural equivalence o : @ o1 — 1d Sh(Q)
CL

iii) the commutativity of the following diagram, for all P € .Sh(Q),

ép““wiiﬁiffiﬁ,fifjép; (5.14)
i-d-IP

iv) the commutativity of the following diagram, for all P € .P(Q),

a{dp ) P

ﬂp“‘“mﬁﬁifiﬁ,ﬂj:f”jaﬁ (5.15)

idu F

First of all, in view of 5.4.2, we may define the natural transformation ¢ to
be given by the family of morphisms of ()-presheaves ¢p = (rp o (p, for all
P e P(Q),

P—Furp PP = i(aP).
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Thus, for every morphism f : P — P’ of ()-presheaves, we easily derive
a(flo(lrpolp) = (Crprolp) o f since the following diagram is commutative,
being a composition of two commutative squares.

P—% L rp— % L I(LP)
fl lLUJ lL(LUH
P o LP - + L(LP")

Secondly, by 5.4.5, we may define the natural equivalence ' by the fammly of
isomorphisms of Q-sheaves wp o ppp, for all P € -Sh(Q),

mpzm%ijfjijgﬂ
p
Moreover, for every morphism f : P — P’ of QQ-sheaves the following diagram
1s also commutative (being the composition of two commutative squares):

L{LP} FLP :L‘LP P }‘P

L(L{f})l lfe{f} Jf

L(LF" s LP' s P

i

Therefore, f o (ppowrLp) = (wp owLp) oalf).
Thirdly, let P € -Sh(Q) and let us check the commutativity of diagram
(5.14). Making use of lemma 5.4.6 it easily follows that

ipp o gip=(ppowLp)e (Grolp) =ppe (wLpoLp) o Cp
=ppoldypolp=ippolp=1dp =1d;p.

Finally, it only remains to verify the comnmtativity of diagram (5.15). Let
P € P(Q). Since a is a functor, we obtain

a(¢p) =a(lepo(p)=allLp)callp).
But, in proposition 5.4.3 we proved that L({p) = (zp, s0
a(¢p) = L(L(Cp)) = L(CLp) = Cap.

In a similar way, a((rp) = Ca(rp) = CL{«p) Which is indeed equal to (.p since
wap ¢ L{aP) — aP is an isomorphism (recall 5.4.4). Hence, we conclude
that a(¢p) = ((,p)*. On the other hand,

Yap = @ap @ PLap) = (Yap)’.
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Consequently, ¥,poa(dp) = idgp, since in 5.4.6 we checked for every (}-sheaf
P’ that (pr 1s the inverse of wpr, and this holds in particular for the C)-sheaf
aP. O

From the very definition of an adjoint pair (cf. 1.1.16) it now follows:

5.5.2 Corollary. For all P, € P(Q) and all P, € .Sh(Q) there exists a
canonical bijection

Hom fSh[Q)EG'P“ P;) +— Hom c’P{Q}{Pl’iPZL

which assigns to every f : aPy — P, the morphism t( f) o ¢p,, and whose
inverse assigns {'p, o alg) to every g: Py — iFy.

5.5.3 Remark. The functor a is exact for being a reflector (see 1.3.2).

5.5.4 Corollary. Let C be a Grothendieck category. The category ~Sh(Q)
of ()-sheaves on C 1s a Grothendieck category.

Proof. The functor a 15 lett exact and a left adjoint of the inclusion functor
Sh(Q) — P(Q). Therefore, .Sh(Q) is a Giraud subcategory of the
Grothendieck category -P(Q), whence a Grothendieck category itself. (I

5.5.5 Remark. Let P be a ()-presheaf. In view of the proof of theorem
5.5.1 we may also assert:

i) if P is separated then the morphism of Q-presheaves ¢p : P — aFP
15 a monomorphism (being the composition of the monomorphisms (p

and (pp, of 5.4.1);
ii) if P is a Q-sheaf then ¢/p : aiP — P is an isomorphism;
i) if P is a Q-sheaf then ¢;p and éyp are isomorphisms of (Q-presheaves;

iv] a(¢p) and #,p are isomorphisms of Q-sheaves.

5.6 Relation between Sg and a

Let C be an arbitrary Grothendieck category.

In section 4.2 we defined the category of (Q-sheaves as the quotient category
eS(Q) = P(Q)(755), where Sg denotes the Q)-sheafification functor

Sg: cP(Q) — S(Q).
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On the other hand, in this chapter we have defined the category -Sh(Q) of
()-sheaves and a (Q-sheahification functor denoted by

a: P(Q) — Sh(Q).

Thus, the obvious question we propose to solve in this section 15 whether
Sh(Q) and a respectively coincide with .S(Q) and Sg. It appears, as we
will see (ef. 5.6.6), that the answer is affirmative.

First of all, let us point out that

cSh(Q) = {aP | P € ;P(Q)}.

Indeed, for every P £ .P(Q) we obtain aP £ .Sh(Q) (cf. 5.2.7), and
conversely, for every Q-sheaf P we proved in 5.5.1 that ip : aiP — P.
On the other hand, taking into account (4.1),

:S(Q)={SP | Pe P(Q)}.

Henece, to show that »8(Q) and -Sh(Q) are isomorphic, it is sufficient to
prove for every P £ P(Q) that aP = SgF, up to cancnical isomorphism.

Once again, we make use of the theory of localization in Grothendieck cate-
gorles as the main tool in order to achieve our aim:

5.6.1 The torsion theory associated to a.

We proved in theorem 5.5.1 that the functor a is a (right exact) reflector. It
is also left exact (ef. proposition 5.3.4), hence to a corresponds the hereditary
torsion theory

T,={FP € ;P(Q) | aP = 0};
Fo={F c ,P(Q) | ¢p: P — iaP is a monomorphism},

whose associated radical 7, € K{ ,/P(Q)) is defined on any Q-presheaf P by
TP = z F.
P'CPaP'=0
5.6.2 Proposition. F, = F(Q).

Froof. In view of 5.5.5 1), from the very definition of JF, it follows that it
contains all the separated (Q-presheaves. Conversely, if P € F,, then let us
verify that P is separated, 1.e. that for every ' € @ and every ()-covering
{U;} 27 of U, the map

£ P(U) — [[PW): s (Por,())ses

jed
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15 Injective.
First of all we consider (as in the proof of 4.2.4) the sub-Q-presheaf P' C P
given by

Py (Ker &), if V < U;

F(V)= { 0, otherwise,

with restriction morphisms

it W=V <1l
otherwize.

Fow | P (Ker £
P]i"H,-‘ = PL»'H-‘|Pr|:],«':| = {D |PU“~ erg)s

Thus, to be able to assert that Ker £ = 0, it 1s sufficient to check that P/ =0
(since Ker £ = P'(U7)). Moreover, since F, is closed under taking subobjects,
we may assert that P’ € F,, i.e. that ¢p 1 P’ = saP’ 1s a monomorphism.
Therefore, 1t 1s suthicient to prove that LP" = 0.

So, let V€ Q and ¢t € LP(V), and let us check that ¢ = 0: there exists
V = {Vilier € Cov(V) such that t = qy(z) for some & = (xi)ier € lim PV
Let K be the set of indices [; L (Iz % J), where ; = {i € I | V; £ U} and
I, =1 — L, and let us consider the set

V' = {Viteer = {Vi, bier, U {Vi &Ujligery jer.

We claim that V' = V. Indeed, for all iy, € I (resp. iy € I, € J) we
obviously have V; =V &V}, (resp. Vi, &U; = V& (V,, &U7;)), and by Q4),

(V viove V aer) =\ vigv\ 0 &\ t))

iyely inelq jed iyely inla jed
=(\/ Viv( v &u)),
i1ely insfo

which 15 equal to

(V vioviV v =\Vvi=v,

iyely igeda el

since for all 22 € Iz we have Vi, &U = V}, by 3.5.2.6. Therefore V' 1s a
()-covering of V. Moreover, the map

0K — I, iy, (iz,7) — iz,

satisfies Vi, < Vi) and V,, & U; < V59 Henee, V' < V. Thus, to prove
that + = 0, 1t is sufficient to check for all & € K that Iﬁ(k)h’.: =0 (cf. 5.24).

Indeed, for all & £ I this is clear from the very definition of P’, since
P(V;,) = 0 and 3:,;1|L;,1 = z;, € P(V,). Finally, for all 1; € [, and j € J
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we have z;, € P'(V;,) = Frv, (Ker§ ) (so there exists s, € Ker £ such that

o = Fyv, (i) and B v ep, = Py v, &0, Py, Hence,

Py vy eo, (@) = B v, eu, (P, (sa) = Puyy, ev,(Si),
which coincides with
P, vy e, (Fo, (8i)) = Frrv e, (0) = 0,
since Vi, & U; < U&U; < U (by 3.5.2.2 and 3.5.2.4) and s;, € Ker £. O
5.6.3 Corvollary. Let P € -P(Q), then P € Ts, if and only if aP = 0.

Proof. We already know that .F(&) is also the torsion-free class Fg,
assoclated to the radical 75, (recall 4.2.6 for the particular case T = Q).

Thus, the previous theorem is equivalent to asserting that 7s, = 7;, which
is precisely the set {P € P(Q) | aP =0} (cf 5.6.1). O

5.6.4 Lemma. LF 1s 75 -mmjective, for all F € F (Q).

Proof. Let PPC Pin CT‘(Q] with F;’f" € Ts, and f: P'— LF, and let
us prove that f extends to a morphism f: P — LF.

Since a 1s an exact functor (ef. 5.5.3) and a(P/P') = 0 by 5.6.3, from the
exactness of the sequence

U4P’i.&F—»PﬁP’—:~U

we obtain that a(t) 15 an 1somorphism. On the other hand. the following
diagram i=s obviously commutative:

LF+—— p—-*——p
-ﬂ.rl ¢pfl lf#‘?
ALF) G —aP'—g —aP

Therefore, ¢rp o f = a(f)o(a(t)) ™ o dpoi. Besides LF € .Sh(Q) by 5.2.6,
whence ¢pp is also invertible (recall 5.5.5 111)). Consequently, it 1s sufficient
to take f as the composition (¢rr) ' ca(f)e (a(i)) cdpoi. O

5.6.5 Theorem. For all P € ,P(Q) we have aP = SgF, up to canonical
1somorphism.

Proof.  Since SgF = E;; (P/75,F), it is then sufficient to check the
following points:
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i) P/ts, P — aP is an essential extension of Q-presheaves;
1) aF 1s 75 -injective;
i) aP/(P/rs,P) € T:
ui) aP/(P/7sg € Ja,.

First, let P’ be a nonzero sub-()-presheaf of aP and let us check that the
pullback P" = _p [Flf’rgq P) is nonzero. In view of the exactness of a (recall
5.5.3) we obtain

a(P/ts,FP) = aP/a(ts, F),
which coincides with aF, since a(rs,P) = 0 by 5.6.3 (as 75, F € T-;s.;, ).
Consequently, taking into account that a preserves pullbacks (cf. 5.3.4), if we

suppose that P’ ».p (P/rs,F) = 0 then
ﬂp XGI:GF:I aP =10.

From this we derive that aP’ = 0, since a(aP) = aP (by 5.5.5 1)) and
aP' %, paP = aP'. Moreover, since P' is a sub-(}-presheaf of a (separated)
sheaf, 1t 1s separated itself, so the morphism

dp: P — iaF' =10

is an injection (recall 5.5.51)). This vields that P' = 0, which is a contradic-
tion that comes from having supposed that the above pullback was zero.

Secondly, afP is indeed 75_-injective by 5.6.4 since LP is separated (cf. 5.2.5).
Finally, by 5.6.3, it only remains to verify that a(aP/(P/ Tso F')) = 0. Indeed,

alaP/(P/rs,P)) = alaP)/a(P/rs,P) = aP/aP = 0.
(I

5.6.6 Corollary. The category of (J-sheaves -Sh(Q) Is isomorphic to the
quotient category -S(Q), and the (Q-sheafification functor a is naturally
equivalent to Sg : -P(Q) — 5(Q).

5.7 Functoriality

In this section we study how the ()-sheafification behaves with respect to Q-

sites, having given a strict morphism between their corresponding quantales.
First of all. for each morphism f, we define a functor f, which relates Q-
presheaves among the corresponding ()-sites, called direct image functor. We
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prove that when f is strict then f, restricts well to the full subcategories of
separated (J-presheaves and C)-sheaves. Moreover, we see mn 5.7.5 that the
direct image functor commutes with the Q-sheafification functor when f is
also a bijection.

Let (2, {Cov(l ) }yeg,) and (Qz, {Cov(A)} 4cg,) be two Q-sites and let us

consider an arbitrary morphism of quantales f: Q) — Qs.

5.7.1 Definition. We define a functor, called the direct image functor,
f* : CP{QE} B EJP{QIJ:-

by assigning to every P € P(Q,) the direct image f,P € P(Q;), which is
defined on every IV € @, by

(fP)U) = P(f(U)),
with restriction morphisms when V < U/ in Q; given by
(fe Pluv = Fyan vy
Note that f(V) < f(I/) by M2), since
fU)=fUVV)=FfU)V V) = f(V).

The direct image of a morphism of ()-presheaves o : P — F'in &), is the
Q-morphism f,(a): foP — foP' in &1 given by the family

{fila)(U) = o f(U))}veg -

5.7.2 Remark., When f : @, — &, is a strict, then for all I € @, and
{Ustier € Cov(U) we obtain { f{U;) ier € Cov(f(U])). Indeed,

fon =\ )=\ f(U,)
il il
by M2), and f(U;) = fIU&T;) = f(U) & f(U;) by M3').
5.7.3 Lemma. If f: @, — @, is strict then:
1) for all P £ F(Q,), we have f P € JF(Q,):

2) for all P € »8(Q2), we have f,P € »5(21).
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Proof. Let P& -F(Qz), U € @, and {U;}izp € Cov(U). If s € (£, P))
satisfies for all ¢ € [ that s|;;, = 0, then we directly derive that s = 0 taking
into account that

slu, = Pranswals)

and that { f{l5)ier € Cov(f(U)). Thus, f,F is separated.

Now let us suppose that P also satisfies the gluing condition. If we have a
family {s; € (f,P)(U;) }ieq satisfying for all ¢, 7 € I that s;|y, .1, = 55]0, 80,
then the existence of s € ( f, P)(I7;) such that s|;; = s; follows directly from
the very assumption, since

silv v, = Pranswa ey (1) = Py g e py) (56)
and {f(U;) bier € Cov(f(U)). Therefore, f P £ .S(<4). O

5.7.4 Proposition. Let (@, {Cov(U)}yog,) and (Qz, {Covid)}icg.) be
two (Q-sites and [ : € — @2 a strict morphism of quantales. Then, there
exlIsts a natural transformation

il.i'ILl-Z-f*—?f*OLz,

where Ly (resp. Ly ) denotes the functor described in 5.3.1 considered on the
Q-site Q) (resp. Q). Moreover, when f is bijective then we obtain a natural
equivalence.

Proof. First of all, let us prove for each P € P(Qz) the existence of a
morphism ¢p : Ly(f,P) — f,(L.FP) in Fi(Q;):

let U € @) and U = {U;};o; € Cov(U). The inverse system ( f, P )l consists
of all the diagrams

P(f(U3) _ P
e l S & £
%E[_FIIUJ & F(U)),
____’___-—-"f_;?;:;;,:[ﬁ. VA FILTD
P{f(U;))

for all i, 5 € I, i.e. it coincides with the inverse system P4, where A denotes

the Q-covering { f(U;) }izr € Cov( f(U)). Therefore, for all 4" = I we obtain
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a commutative diagram

lim (£, P4 = lim P.A’

where @p(l7) 15 given by the universal property of the direct limit as the
morphism in C which assigns to any t € Ly (f,P)(U) the element

c,-:‘pl[[f]l{t:l =14 |::If]| = LEP{}F(U”:'

where ¢ = ny(z) for some I = {Ui}ier € Cov(U), and = € lim (f.P)A with
A = {f(Ui)tier € Cov(f(U)).

Thus, the family

{ep(U) : Li(fLP)(U) — flLP)(U)}tveg,

of morphisms in ¢ defines the morphism of separated Q-presheaves op. In-
deed. it is an exercise to verify for all V' < I7 in &, that the following diagram
15 commutative:

R

. () .
Li(f.P)(U) ——— L,P(f(U))
{h(ﬁp}}uvl 1(1123:‘:';[6]:[1:1

Ly(£iP)V) — 5 L P(F (V)

Moreover, the family
{op: Li(fiP) — f*'[LZP}}pEC'P{Q‘Ej

defines a natural transformation . Indeed, if « : P — P’ is a morphism
in oP(Qz) then f,(Lo(a)) o pp = ¢pr o Li(fi(a)), ie. for every U € Q, the
square
Ly(£,P)(U) —222— £,(L,P)(U)
Lilifﬁliﬂilllii")l l(LEE&J}U(UJJ
L{(fuP)U) ——— £ L P)(U)

opr (D)
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in C 1s commutative, as we verify in what follows:
let t+ € Li(f,P)(U). Then, there exists some U = {U;}ier € Covi(l7) and
x=(m)ier € liil{f*P}H such that ¢ = ny(z). Let 4 denote the Q-covering

{f(U) bizg of F(U7), then

(L2(@)(f(U)) o @p(U))(t) = La(a)( f(U))(n4(x))
=4 ((a(F(U:)(x:))ier).

Omn the other hand,

(p (U) © La(fula))(U))(E) = p (U) (el (£ (U3)) () icr))
=??,.+.[(&I1f'[5r~;]']'(:r~;lllla;efll~

Finally, let us suppose that f is bijective. To be able to assert that v 1s a
natural equivalence it is sufficient to check for all U7 € @, that p[u[,} 15 an
isomorphism. Let UV € Oy:

if there exists t = ny(x) and ' = e (y) in Li( £, P)(U), for some Q-coverings
U = {Us}ier and U’ = {Uj} ;25 of U, such that

wr(U)(t) = wp(U)(t),
then there exists some x = (x;)ier € liﬂl{f*F]A and y = (y;)jes € lim (f. P)A
such that
nalz) = naly),
where A and A" respectively denote the (Q-coverings { f(U;) }izy and { f(U)};2 s
of f(U'). Consequently, there exists a sub-Q-covering A" = {4} biex of A
and A" given by maps 8, : I — K and d; : J — K such that for all k € K

we have
Py, g ay (wair)) = Proy_ g )ap (o).

Since f is bijective one may easily check that {f ' Al)}iep is a sub-Q-
covering of {{ and I{’, so the previous equality is equivalent to

(feP s, o 1115 (i) = (F Py 51 (st (Wsagry )

This is sufficient to assert that my(xz) = me(w), 1.e. that ¢ = ¢'. Therefore
wp(U) is injective.

Dn the other hand, if s € L:P({f(U)], then there exists some Q-covering
= {4 }iop of f{U} and * = ()1 € lim P.A such that s = ng(z). In

thls case, s = @p(U)(t) where t = nu(x) 1.‘»11:11 U= {f1A) e € Cov(U).
Therefore, wp(L7) is also surjective. O
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5.7.5 Corollary. Let (Q1,{Cov(U)}reg,) and (Qa, {Cov(Ad)}acg,) be two
(J-sites and f : O — Oz a strict 1somorphism of quantales. Then there
exists a natural equivalence between the functor compositions

POy — 2 PO — 2 LS(Q))

and
fu

cP(Q2) — S ) ————— S(Dy).
In particular, for all P € -P{Q2). we obtain the following isomorphism of
()-sheaves:
ﬂl{f*F} = f*l:ﬂzp}~

Proof. Let P £ Pi(Q3), then

a1(foP) = Li(Li( foP)) = La( fo(L2P)) = fi(L2(L2P)) = fi(azP).

5.8 The category R-poMod
Let H be a ()-sheaf of not necessarily commutative rings.

In section 2.2 we defined the catepory of R-pre-Modules on an arbitrary poset
and proved that it 1s a Grothendieck category. In this section we will consider
the Grothendieck category of R-pre-Modules on @; for this particular poset
we will denote it by H-pre-gMod.

We will see that the same aims already reached in the category -P(Q) may
similarly be obtained in R-pre-gMod, i.e. we may explicitly define a cate-
gory of sheaves of left R-modules, construct a sheafification functor, and also
prove that this is naturally equivalent to the one we categorically obtained
in section 4.3 (when we R 1s flabby).

Although R-pre-gMod is not a functor category like P(Q), the semalin-
earity of the restriction morphisms of A-pre-ghModules allows that different
left R(U }-module structures, for different I7 £ Q, glue well in the cases we
require it. This property together with the fact that catepories of modules
are Grothendieck categories, permit to mimic all the constructions and proofs
of the previous sections. Thus, what we will do in this section is basically
to summarize these constructions and results, reformulated in terms of the
category of presheaves of left F-modules on €.
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5.8.1 Definition. A sheaf of left R-modules on Q, or shortly, an R-gModule,
15 a separated H-pre-Module M on @ which satisfies the gluing condition
=h2), or equivalently, such that for every open subset U and every (J-covering
{U; Vier of U, the sequence

0 —— M(U) — Ty M)~ T ey MU & U

1s exact, where £(s) = (s|p, Jicr, for every s € M(U), and # is given for all
(sidier € [Licy M(Ui) by (silv, &0, — sjilv a0, ) ger<1.
We denote this full subcategory of R-pre-ghod by R-gMod.

For a given R-pre-gModule M we may construct another R-pre-gModule
LM similarly in section 5.2:

5.8.2 The construction of LM,
Let I € Q. For every i = {U; }icr € Cov(U7), the system MI{ which consists
of all the diagrams

MU,
@) '“-x____-"'_fl_’ar,:UI&Lr_,

.

&,

=
M(U; & U,),

T

-

" My, ey

M(U;)

for all ¢, 7 € I, may be considered as an inverse system on R(U }-mod, just
by taking in each M(U;) (resp. M(U; & U,)) the left R(U}-module structure
given by scalar restriction via Ry, (resp. Ry, et )-

Its inverse limit, liﬂﬂﬂz{ , 15 then a left R(I7)-module and comes equipped
with projection maps m; : }:iﬂ‘lﬂrﬂzf — M(L5), for every ¢ € I, which are
homomorphisms of left R(U)-modules.

In this way, we may also obtain a presheaf MY £ R(U)-m od P Cov(U]) fol-
lowing the construction done in 5.2.2, and even a left exact functor

FY. R-pre-gMod — R(U)_modp[CDv{U}]a

as in 5.2.3.
Thus, we may define the R-pre-gModule LM given on every UV € Q by the
left R(U}-module

LM{U) = 11_111_1{4;,5(;«&,,:;5){@ MiA),
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which comes equipped with R{U7)-homomorphisms nyy ¢ liﬂﬂﬂ,{ — LM(U),
for all ¢ € Cov(U7).

For every V' < I in @, in order to obtain the restriction morphisms
(LM)pv « LM(U) — LM(V);  nu((i)ier) = mo(fr{(@idier )

as in 5.2.4, for every if = {U; }i=1 € Cov(U/) we must first consider in lim MV
the left R(I7)-module structure given by scalar restriction via Ry in order
to obtain fr as a homomorphism of left R(L7)-modules given by the universal
property of lE. M. Similarly (LM ) 15 also a homomorphism of left R(T7)-

modules, considering in LM(V') the structure given by scalar restriction via
RU'L":- i.e. [Lﬂf:lgl_; iS REV -semilinear.

We may also obtain similar results to 5.2.5 and 5.2.6 in this case, just taking
into account that the structures glue well thanks to the semilinearity of each
restriction morphism of an H-pre-gMeodule, in this way:

5.8.3 Theorem. If M € R-pre-gMod then L*M = L(LM) € R-gMod.

5.8.4 The sheafification functor ap in R-pre-gMod.
=imilarly as it 1s done in sections 5.3.1 and 5.3.3, we may obtain a reflector

ag : R-pre-gMod — R-gMod,

given on every M € R-pre-gMod by the R-gModule L*M; on every mor-
phism of R-pre-gModules f : M — N, the morphism of R-gModules ag( f)
is given by a family of homomorphism of R(U }-modules,

{ar(£)(U) : agM(U) — agN(U)}veq.

Once we have this well defined functor we may check that it 15 indeed a left
adjoint of the inclusion functor

¢ : H-gMod — R-pre-ghMod,

as it was the case for the Q-sheafification functor in P{Q) (cf. section 5.5).

Therefore, the category Rg-Mod is a Girand subcategory of the Grothendieck
category H-pre-gMod, whence a Grothendieck category itself.

Finally we may also prove that, when R 15 flabby, this functor is naturally
equivalent to the sheafification functor Sp obtained in section 4.3 for an
arbitrary poset with quasi-coverings satisfying (C). In order to do this we
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just need to translate to the present context what is done in section 5.6, We
remark that to be able to check that the torsion-free classes associated to
both reflectors coincide, we will need a flabby ()-presheaf of rings because

in this proof we make use of a subpresheaf defined as in (4.2), which needs
flabbiness to be well defined.
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