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Prólogo

La alta competitividad en el ámbito empresarial y los ajustados márgenes de bene-
ficios en muchos sectores económicos hacen que una buena gerencia de los recursos
disponibles sea esencial para aumentar los beneficios de las empresas. Así, el Control
de Inventario se ha convertido en un factor crítico para el éxito de las compañías.
Por otro lado, los inventarios también juegan un papel muy importante en la eco-
nomía de un país. En general, los inventarios representan una cantidad importante
en los balances de las empresas y, por lo tanto, los cambios que se producen en los
inventarios están directamente relacionados con la economía de dicho país.

Sin embargo, el almacenamiento de mercancías ha sido siempre importante. Por
ejemplo, en épocas de abundancia se guardaban alimentos y otros bienes de primera
necesidad para así poder hacer frente a las épocas de escasez. Pero los conceptos de
producción e inventario, tal y como se entienden hoy en día, no aparecen hasta la
Revolución Industrial en el siglo dieciocho. Con la Revolución Industrial surgieron
las primeras grandes máquinas y la división de los trabajos, lo que hizo que las com-
pañías pudieran crecer considerablemente. Este crecimiento vino acompañado de
grandes inversiones, lo que contribuyó a que se empezaran a desarrollar los primeros
métodos para la planificación, organización, control de tareas, etc. Así surge lo que
se conoce con el nombre de “gestión y administración científica”. Los primeros pro-
gresos importantes se hicieron durante los primeros años del siglo veinte. En 1911,
Frederick Taylor, que se considera el padre de la gestión científica, publicó uno de
los primeros libros titulado “The principles of Scientific Management”. Esta pu-
blicación ayudó a que las empresas aceptaran los principios de la gerencia científica
y, en particular, se empezaron a utilizar sobre todo en la industria del automóvil.
Además, es en este tipo de industrias donde también se introdujeron por primera
vez las plantas de fabricación y ensamblaje, gracias a las cuales se consiguió dis-
minuir considerablemente el tiempo de montaje y los costes. Así, las organizaciones
comenzaron a darse cuenta de la relación entre la eficacia y la planificación de la
producción y el almacenamiento de mercancías. Finalmente, surgen las primeras
herramientas matemáticas y técnicas cuantitativas que permiten mejorar la toma de
decisiones. Uno de los primeros modelos matemáticos en este campo fue publicado
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vi Prólogo

por F.W. Harris en 1913. Harris desarrolló una fórmula matemática para decidir
qué cantidad se debe pedir en función de los costes de reposición y de manteni-
miento. Este primer modelo y otras extensiones se recogen en el libro “Quantity
and Economy in Manufacture” publicado por Raymond en 1931. En un principio,
estos modelos no se utilizaron extensamente en la industria. Sin embargo, durante
la Segunda Guerra Mundial resurgió el interés por estos modelos matemáticos y,
se continuó desarrollando y refinando las herramientas cuantitativas para la toma
de decisión. Excelentes revisiones de los modelos que se estudiaron hasta 1951 se
encuentran en los trabajos de Whitin “The Theory of Inventory Management” y
“Inventory control research: A survey” publicados en 1953 y en 1954, respectiva-
mente. Durante la década de los sesenta y setenta, continúa el apogeo de estas
técnicas aunque decae un poco en la década de los ochenta. Sin embargo, el uso de
los ordenadores contribuyó a que resurgiera otra vez el interés por estos modelos.
Así, en las últimas décadas son muchos los avances que se han conseguido en el
control de inventario. Probablemente, uno de los progresos más importantes en la
economía mundial que han tenido lugar recientemente ha sido el éxito de las firmas
japonesas en los mercados occidentales. Este éxito se debe sobre todo a la capa-
cidad que tienen estas empresas para trabajar con inventarios muy bajos. En efecto,
teniendo en cuenta la alta competitividad en los actuales mercados, las compañías
no pueden permitirse mantener altos niveles de inventarios. Sin embargo, también
es importante que las empresas tengan los productos disponibles en el momento que
los clientes lo solicitan. Tradicionalmente, para asegurar un alto nivel se servicio,
las compañías solían mantener mucho inventario. Actualmente, las empresas se han
dado cuenta que los costes se pueden reducir considerablemente con un buen control
de los inventarios a lo largo de todas las instalaciones o organizaciones que forman
parte de la cadena de suministro. Es importante observar que las acciones de un
miembro de la cadena pueden afectar a todos los demás socios. Por lo tanto, es
esencial que las diferentes instalaciones cooperen para conseguir controlar toda la
cadena de suministro en todos los sentidos. En particular, uno de los problemas
más importantes es el control del inventario en toda la cadena. Surge así lo que se
conoce en la literatura como el control de inventario en los sistemas con múltiples
instalaciones. Teniendo en cuenta que los costes de inventario representan normal-
mente una inversión importante, la reducción de dichos costes es fundamental para
mejorar los beneficios de todas las empresas que forman parte de la cadena. Así, no
es de extrañar que el control de inventario en los sistemas con múltiples instalaciones
se haya convertido en un tema de investigación muy importante durante los últimos
años. El objetivo de esta tesis es seguir avanzando en esta línea de investigación.
Los sistemas de inventario con múltiples instalaciones son muy comunes tanto en los
contextos de la distribución como en el de la producción de artículos. En concreto,
nosotros nos centramos en el estudio de los sistemas de distribución con dos niveles
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donde un almacén suministra los artículos a un conjunto de minoristas.

Antes de analizar este tipo de modelos, en el Capítulo 1 introducimos los con-
ceptos básicos del control de inventario. En este capítulo también resumimos los
modelos más simples donde sólo interviene una instalación. El estudio de estos pro-
blemas es fundamental pues a partir de ellos se desarrollan los modelos con múltiples
localizaciones.

En el Capítulo 2 presentamos los sistemas de inventario con múltiples instala-
ciones. En primer lugar, explicamos como surgen dichos sistemas en cualquier ca-
dena de suministro y definimos las estructuras más comunes en la práctica. Fi-
nalmente, concluimos este capítulo con un resumen de nuestras contribuciones que
están relacionadas con el problema conocido como el sistema con 1-almacén y -
minoristas.

En general, la forma de las políticas óptimas de reposición para los sistemas con
1-almacén y -minoristas son muy complejas. Sin embargo, en muchos casos es
posible utilizar estrategias más simples que, aunque no son óptimas, son bastantes
efectivas. En particular, en el Capítulo 3 analizamos las políticas cíclicas que son una
de las más simples que se pueden aplicar a este problema. En estas políticas se asume
que el sistema de decisión es centralizado, es decir, el objetivo es calcular una política
de reposición de manera que los costes totales medios del sistema se minimicen. En
este capítulo, también estudiamos el problema asumiendo que cada localización del
sistema toma decisiones por separado, es decir, cada instalación intenta minimizar
sus costes de manera independiente sin tener en cuenta al resto de localizaciones
del sistema. Finalmente, concluimos el capítulo con una comparación entre ambos
tipos de políticas.

Las políticas cíclicas que se analizan en el Capítulo 3 pueden ser muy eficientes
en muchas situaciones y, por supuesto, son muy fáciles de aplicar en la práctica
lo que las hace muy atractivas. Sin embargo, cuando los costes de reposición son
muy altos en comparación con las demandas, la efectividad de las políticas cíclicas
disminuye considerablemente. Así, en el Capítulo 4 analizamos una clase de políticas
centralizadas más generales y eficientes denominadas políticas de ratio-entero, las
cuales también son comparadas con las estrategias descentralizadas introducidas en
el Capítulo 3.

En los capítulos anteriores hemos asumido que el almacén suministra los artículos
a los minoristas de forma instantánea. Sin embargo, el almacén también puede
representar a una localización donde se fabrican los artículos a razón finita, es decir,
la reposición no es instantánea. A pesar de que esta situación es muy común en
la práctica, en la literatura no hay muchas referencias que aborden este problema.
Además, la mayoría de ellas se centran en el caso en el que el almacén suministra
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solamente a un minorista. En el Capítulo 5 extendemos el estudio al caso en el que
el almacén provee a múltiple minoristas. En particular, primero abordamos el pro-
blema asumiendo que el sistema de decisión es centralizado, y después, considerando
que las diferentes localizaciones toman decisiones de manera independiente.



Resumen en español

Capítulo 1. Fundamentos del control de inventario

El objetivo de este capítulo es el estudio de los modelos de inventario donde las
existencias se localizan en un único almacén. Aunque en la práctica son más comunes
los sistemas de inventario con varias localizaciones o instalaciones, el estudio de
los sistemas más simples referidos a un almacén ayuda a entender la esencia de
los problemas de inventario y permite analizar con mayor facilidad los sistemas de
inventario más complejos.

En este capítulo describimos las principales características o componentes que
determinan la estructura de un sistema de inventario y estudiamos los principales
modelos con demanda determinística constante. El modelo más básico y conocido es
el modelo EOQ (Economic Order Quantity), desarrollado por Ford Harris en 1913.

Variables en un sistema de inventario

Demanda

Las suposiciones que se hacen respecto a la demanda son las más impor-
tantes, ya que suelen ser las que determinan la complejidad del modelo.

- Demanda determinística y estacionaria: La suposición más simple es asumir
que la demanda es constante y conocida. Es decir, la demanda no cambia y puede
ser fijada o estimada a priori. El modelo EOQ se basa en esta suposición.

- Demanda determinística variable en el tiempo: En este modelo, la cantidad
demandada no es constante, sino que varía con el tiempo. El ejemplo real más
conocido es el problema dinámico del tamaño del lote.

- Demanda incierta: Se dice que la demanda es incierta cuando no se pueden
conocer a priori los valores exactos de la demanda, pero si se conoce la distribución
de la demanda. Normalmente se dispone de una serie de valores de la demanda
en el pasado y, a partir de ellos, se intenta estimar la distribución de la demanda
y los valores de los parámetros que caracterizan dicha distribución. En algunas
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x Capítulo 1. Fundamentos del control de inventario

situaciones, debe considerarse demanda incierta, por ejemplo, en la salida al mercado
de un nuevo producto.

- Demanda desconocida: Cuando tampoco es posible conocer la distribución de
la demanda, se dice que la demanda es desconocida. En este caso se suele asumir
una distribución a priori de la demanda, y después, cada vez que se dispone de
una nueva observación de la demanda, se actualiza el parámetro estimado usando
la regla de Bayes.

Costes

Dado que el objetivo normalmente consiste en minimizar los costes totales
de inventario, las hipótesis que se hacen sobre la estructura de los costes también
influyen en la complejidad del modelo. En general se suelen considerar los siguientes
tipos de costes:

- Coste de mantenimiento: Representa el coste de almacenamiento de los pro-
ductos. Hace referencia a los gastos generales del almacén, seguro, robos, objetos
rotos, etc. También incluye el coste de oportunidad del dinero comprometido en
inventario que se podría haber usado o invertido de otra manera.

- Coste de compra: En muchos modelos se supone que el precio por unidad de
artículo es independiente del tamaño del pedido. Por este motivo este coste no
se suele incluir en dichos modelos. Sin embargo, cuando el precio por unidad de
producto depende de la cantidad pedida, el coste de compra se vuelve un factor
importante. Por ejemplo, en los modelos con descuentos en el precio por volumen
de compras se debe incluir este coste.

- Coste de reposición: Es el coste asociado a un pedido. La hipótesis más simple
es suponer que este coste es lineal, es decir, si se desea reponer unidades, entonces
el coste es , para alguna constante . Esta estructura se conoce como coste de
reposición proporcional, y se suele asumir cuando la demanda es incierta. Sin em-
bargo, es más real asumir que dicho coste está formado por dos componentes, uno
fijo y otro variable. Es decir, en este caso el coste de reposición sería de la forma
+ ( ), donde ( ) es una función Delta de Kronecker. Así, cada vez que se

desea reponer se debe pagar una cantidad fija de unidades monetarias más una
cantidad proporcional a la cantidad solicitada. En muchos de los modelos de in-
ventario determinísticos se asume que el coste de reposición es de la forma anterior.
Sin embargo, en los modelos estocásticos, considerar este tipo de costes entraña una
mayor dificultad.

- Coste de penalización o rotura: Algunos modelos determinísticos y muchos
estocásticos, incluyen un coste de penalización o rotura, que se suele denotar por
, para los casos en los que no es posible satisfacer toda la demanda. En muchas
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ocasiones es muy difícil de estimar, por lo que el coste de rotura se suele sustituir
por un nivel de servicio. El nivel de servicio es una proporción aceptable del número
de ciclos en los que se satisface toda la demanda.

La mayoría de los modelos de inventario asumen que los costes no varían
con el tiempo. No obstante, en muchos casos se pueden considerar costes variables
en el tiempo, sin que aumente por ello la complejidad del análisis.

Aspectos influyentes en el sistema

Dependiendo de ciertos condicionantes del sistema, se obtienen modelos más
o menos complejos. Entre estos aspectos influyentes que condicionan el sistema
destacan los siguientes:

- Periodo de retardo: El periodo de retardo se define como el tiempo que trans-
curre desde que se realiza el pedido hasta que se recibe. El valor del periodo de
retardo es muy importante, ya que es una medida del tiempo de respuesta del
sistema. La suposición más simple es que el periodo de retardo es cero, aunque
esto no suele suceder en la práctica. Esta hipótesis sólo tiene sentido cuando el
tiempo requerido para suministrar las reposiciones es pequeño en comparación con
el tiempo entre reposiciones. Lo más común es suponer que el periodo de retardo es
una constante fija. El análisis es mucho más complejo si se supone que el periodo
de retardo es una variable aleatoria. Así, cuando el periodo de retardo es variable,
pueden surgir complicaciones como que los pedidos no lleguen en el mismo orden en
el que fueron solicitados.

- Roturas: También se deben realizar suposiciones acerca de cómo reacciona el
sistema cuando la demanda excede la cantidad existente. Se puede asumir que todo
el exceso es rotura, lo que implica un nivel de inventario negativo. También se
puede suponer que todo el exceso es pérdida. Esta última situación se conoce como
el caso de venta perdida, ya que el cliente no espera a que llegue el producto. Por el
contrario, en el caso de rotura no se pierde la venta, ya que el cliente espera hasta
que llegue el pedido.

- Proceso de revisión: La manera en la que se realiza la revisión del inventario
es otro aspecto influyente a tener en cuenta. La revisión puede ser continua o pe-
riódica. Si la revisión es continua, en todo momento se conoce exactamente el nivel
de inventario. Este es el caso de los supermercados que cuentan con un sistema de
escáner en las cajas, a su vez conectado al ordenador que se utiliza para realizar las
reposiciones de stock. Si la revisión es periódica, el nivel de inventario sólo se conoce
en determinados puntos, cuando se realiza la revisión. Lo más común es suponer
que la revisión es periódica, aunque a veces también se realizan aproximaciones a
la revisión continua. Lógicamente, en los sistemas en los que se asume revisión
continua, las reposiciones pueden realizarse en cualquier instante, mientras que en
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los sistemas donde se asume revisión periódica, las reposiciones sólo pueden tener
lugar al principio de los periodos de reposición.

Modelo EOQ

Las hipótesis del modelo EOQ son las siguientes:

- La demanda es conocida y constante, a una razón de unidades por unidad de
tiempo.

- La cantidad a pedir puede ser un número no entero, y no hay restricciones sobre
su tamaño.

- Los costes no dependen de la cantidad de reposición, es decir, no hay descuentos
dependiendo del tamaño del lote.

- Los costes no varían con el tiempo. Existe un coste de reposición, , por pedido,
y un coste de mantenimiento, , por unidad mantenida a lo largo de cierta unidad
de tiempo.

- Las reposiciones son instantáneas, es decir, el periodo de reposición es cero.

- No se permiten roturas.

- Todo el pedido se entrega al mismo tiempo.

- El horizonte de planificación es muy largo, es decir, se asume que los parámetros
toman el mismo valor durante un largo periodo de tiempo.

Como el periodo de retardo es cero y la demanda es conocida, es evidente que
sólo se debe realizar un pedido cuando el nivel de inventario llega a cero. Un gráfico
del nivel de inventario puede verse en la Figura 1.

Para este modelo la cantidad de reposición óptima, conocida como EOQ, (Eco-
nomic Order Quantity), es

=

r
2

Esta fórmula es uno de los primeros resultados y el más conocido de la Teoría de
Inventarios. Se conoce como la fórmula de Harris (1913) o de Wilson (1934), ya que
estos autores fueron los primeros que recogieron en sus respectivos trabajos dicha
fórmula.
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t=Q/d
Time

Inventory

Level

Slope = - d

Q

0

Figura 1: Nivel de inventario en el modelo EOQ

Modelo EPQ

Una extensión natural del modelo EOQ es el modelo EPQ (Economic Production
Quantity). En el modelo EOQ, toda la cantidad pedida llega al mismo tiempo. Sin
embargo, en el modelo EPQ el stock se produce a una razón finita de unidades
por unidad de tiempo, donde . Entonces, el diagrama de la Figura 1 cambia
a uno como el de la Figura 2.

Time

Inventory

Level Slope = P-d Slope = -d

0

Q(1-d/P)

t=Q/d

Figura 2: Nivel de inventario en el modelo EPQ
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Modelos con demanda determinística variable en el tiempo

En los modelos anteriores la demanda es conocida y constante. Ahora asumimos
que la demanda es conocida, pero permitimos que ésta varíe en el tiempo.

En general, cuando la demanda varía en el tiempo, la cantidad de reposición
no tiene porque ser siempre la misma, lo que hace que el análisis sea un poco más
complejo. Ahora, el diagrama del nivel de inventario no se ajusta a un patrón que se
repite en el tiempo, como el de la Figura 1. Por lo tanto, no se pueden calcular los
costes medios sobre un determinado periodo como se hace en el modelo EOQ. En
este caso, para determinar la cantidad de reposición apropiada, se usa la información
de la demanda sobre un periodo finito, conocido como periodo de planificación.

La demanda puede ser continua o discreta, pero esto no suele afectar a
los métodos solución, ya que normalmente lo único que se necesita es conocer la
demanda total en cada periodo de planificación. Un caso muy común es aquel en el
que la demanda permanece constante en cada intervalo, y sólo cambia al pasar de
un intervalo a otro. Una ilustración de esta situación puede verse en la Figura 3.

Time period

Demand

rate

1 2 3 4 5

Figura 3: Patrón de demanda cuando la razón permanece constante en cada periodo

Un elemento que se debe tener en cuenta a la hora de calcular las can-
tidades de reposición, es si las reposiciones pueden planificarse en cualquier instante
de tiempo, o si deben programarse en unos instantes determinados como, por ejem-
plo, considerar que sólo se pueden realizar los pedidos en instantes múltiplos de un
periodo base. Cuando sólo hay un artículo, y la demanda es continua, es mejor
permitir que las reposiciones puedan realizarse en cualquier instante de tiempo. Sin
embargo, si son varios los artículos, tiene más sentido limitar el número de instantes
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donde se pueden realizar las reposiciones.

El método exacto más conocido para resolver este problema es el algoritmo de
Wagner y Whitin.

Algoritmo de Wagner y Whitin

El algoritmo que proponen Wagner y Whitin (1958) para resolver el problema
anterior es una aplicación de la programación dinámica. Sin embargo, en este caso,
el esfuerzo computacional característico de la programación dinámica puede redu-
cirse significativamente usando las siguientes dos propiedades que debe verificar la
solución óptima:

- Una reposición sólo tiene lugar cuando el inventario es cero.

- Existe un límite superior para el número de unidades demandadas que pueden
ser incluidas en una sola reposición. A medida que se incluyen más unidades en
una sola reposición, los costes de mantenimiento aumentan, por lo que llegará un
momento donde será mejor realizar otra reposición que seguir incluyendo unidades
en la reposición anterior.

En concreto, el problema puede formularse como un problema de programación
entera como sigue

min
X
=1

( ) +

s.a.

= 1 + = 1

0 = 1

0 = 1 1

0 = = 0

donde ( ) =

½
1 si 0
0 si = 0

Usando la programación dinámica, el problema puede reformularse de la siguiente
manera

( ) = min

(
min
1

"
+

1X
=

X
= +1

+ ( 1)

#
+ ( 1)

)
donde (1) = y (0) = 0
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Es fácil comprobar que
1P

=

P
= +1

representa la suma de los costes medios de

mantenimiento para los periodos + 1 . Mientras que + ( 1) representa
la situación en la que se realiza una reposición en el periodo . Por lo tanto, a la
mejor solución encontrada hasta el periodo 1 sólo hay que sumarle el coste de
reposición . Hay que elegir entre incluir la demanda del periodo en las reposiciones
anteriores, o realizar una nueva reposición en el periodo .

Estos modelos son fundamentales para el desarrollo de los sistemas con múltiples
instalaciones que estudiamos en los siguientes capítulos.
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Capítulo 2. Sistemas de inventario con múltiples
instalaciones

En el Capítulo 1 estudiamos los sistemas de inventario con una sola localización o
instalación. Sin embargo, en la práctica son más comunes los sistemas de inventario
con varias localizaciones. Por ejemplo, cuando una compañía distribuye productos
sobre un área geográfica grande, normalmente, hace uso de un sistema de inventario
formado por un almacén central, cercano a la fábrica que produce los artículos,
y por un número determinado de minoristas cercanos a los clientes. También, es
muy frecuente que en la producción de un artículo, éste no se fabrique en una sola
localización, sino que distintos componentes del artículo se produzcan en diferentes
localizaciones.

Para realizar un control efectivo de estos sistemas de inventario es necesario usar
métodos especiales que tengan en cuenta las relaciones que existen entre las distintas
localizaciones del sistema. El principal objetivo es coordinar las actividades entre
dichas instalaciones para así conseguir que todo el sistema funcione de la manera
más efectiva posible.

El sistema de inventario multinivel más simple es el que sólo tiene dos localiza-
ciones. Un ejemplo puede verse en la Figura 4. La demanda de los clientes tiene
lugar en la localización 1, la cual recibe los artículos de la localización 2. Un sumi-
nistrador exterior satisface la demanda de la instalación 2. A este tipo de sistemas
se les denomina sistemas en serie.

2 1

Figura 4: Sistema en serie con dos localizaciones

Los sistemas en serie pueden encontrarse tanto en la producción como en la
distribución de artículos. Desde el punto de vista de un sistema de distribución,
la localización 1 puede verse como un minorista que satisface la demanda de los
clientes de una determinada área, y la instalación 2 como el almacén central cercano
a la fábrica. El periodo de retardo de la localización 1 es, esencialmente, el tiempo
de transporte desde la instalación 2 hasta la 1. En un sistema de producción, 1
representa la localización donde se obtiene el producto final, mientras que 2 es la
localización donde se fabrica una parte del producto final. En este caso, el periodo
de retardo en la instalación 2 coincide con el tiempo de producción en la localización
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1.
Sistemas de Inventario/Producción

En general, en los sistemas de producción se fabrica un producto final a partir de
una serie de componentes, cada uno de los cuales se produce en una localización. Por
este motivo, los sistemas de producción suelen ser convergentes, es decir, al principio
del sistema hay muchas instalaciones, y a medida que se avanza a lo largo del
sistema el número de localizaciones disminuye. Teniendo en cuenta que normalmente
los primeros componentes tienen menos valor que los últimos que están más cerca
del producto final, es lógico que el coste de mantenimiento suela ser menor en los
primeros niveles de la cadena de producción. Por lo tanto, suele ser más conveniente
almacenar más stock en las primeras localizaciones del sistema que en las últimas. En
la Figura 5 se representa un sistema de producción en el que cada localización tiene
un sólo sucesor. A este tipo de sistemas se les denomina sistemas de ensamblaje.

Figura 5: Sistema de ensamblaje

Sistemas de Inventario/Distribución

En los sistemas de distribución cada localización tiene un único predecesor que
le suministra los artículos. A su vez, cada instalación satisface la demanda de las
localizaciones inmediatamente sucesoras. Las localizaciones que no tienen sucesores
son las encargadas de satisfacer la demanda exterior de los clientes y las que no
tienen predecesores obtienen los artículos de un suministrador exterior. Un ejemplo
de estos sistemas se muestra en la Figura 6.
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Figura 6: Sistema de distribución

Como se ve en la Figura 6, la estructura de los sistemas de distribución es
divergente.

El sistema de distribución más simple es el que sólo tiene dos niveles, conocido
como el sistema con 1-almacén y -minoristas. Véase la Figura 7. En estos sistemas,
los minoristas tienen que satisfacer la demanda de los clientes, y el almacén central,
la demanda de todos los minoristas. Nótese que cuando = 1 el sistema se reduce
a un sistema en serie.

Figura 7: Sistema con 1-almacén y -minoristas
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Inventario nivelado (Echelon inventory)

El concepto de coste y stock nivelado fue introducido por primera vez por Clark
y Scarf (1960). Para una localización , el stock nivelado se define como el número
de unidades del sistema que están o que han pasado por la localización , pero
que todavía no han sido demandadas por los clientes exteriores. Así, por ejemplo,
para los sistemas en serie, el coste nivelado de la localización , denotado por 0 , se
define como 0 = +1, donde es el coste convencional de mantenimiento de
la localización .

La idea del stock nivelado es tener en cuenta el stock de todas las localizaciones
sucesivas. Para un sistema en serie con dos instalaciones los niveles de inventarios
convencionales y nivelados se muestran en la Figura 8 y Figura 9, respectivamente.

Es evidente, que el cálculo de los costes de mantenimiento es mucho más sencillo
si se utilizan los inventarios y los costes nivelados. Así, en este capítulo se formulan
los sistemas de inventario en serie, de ensamblaje y de distribución haciendo uso
de los costes nivelados. En todos estos sistemas asumimos que la demanda, , es
constante y que no se permiten roturas. Además, en cada instalación hay un coste
de mantenimiento y un coste fijo de reposición denotados por y El objetivo
es determinar las cantidades de reposición óptimas, ,

Inventory level at stage 2

Time

Time

Inventory level at stage 1

T2

Q2

Q1

T1

Figura 8: Inventarios convencionales para un sistema en serie con dos instalaciones
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Time

Time

On-hand inventory

Echelon inventory

T2

T1

Q2

Q1

Figura 9: Inventarios nivelados para un sistema en serie con dos instalaciones

Sistemas en serie

Cuando se intenta extender el modelo básico EOQ para los sistemas en serie,
surgen las políticas anidadas y estacionarias, que aunque no son siempre las óptimas,
son muy importantes desde el punto de vista práctico. Una política se dice que es
estacionaria si la cantidad de reposición es fija y el tiempo entre dos reposiciones
consecutivas también es constante. Por otro lado, una política es anidada si cada
vez que una localización realiza un pedido, todas las localizaciones sucesivas también
realizan una reposición.

También hay autores que suelen asumir, sobre todo por motivos prácticos, que
los periodos de reposición de cada localización son un múltiplo entero potencia de
dos de un periodo base. Este tipo de políticas, conocidas como políticas potencias
de dos fueron introducidas por Roundy (1985) el cual demostró que si se restringe el
estudio a este tipo de políticas, el coste de la política que se obtiene es como mucho
un 2% mayor que el coste de la solución óptima. Como veremos, este resultado se
puede extender a los sistemas de ensamblaje.
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Política óptima y costes nivelados

Las políticas estacionarias y anidadas son muy interesantes desde el punto de
vista práctico, sobre todo porque permiten simplificar la planificación de la pro-
ducción en cada localización. Por este motivo se aplican a todo tipo de sistemas
multiniveles, aunque es importante recordar que estas políticas no son siempre las
óptimas. Sólo se puede afirmar que la política óptima es estacionaria para los sis-
temas en serie con dos localizaciones. Sin embargo, para los sistemas en serie con
más localizaciones, la política óptima puede que no sea estacionaria.

Lo que si se verifica siempre para cualquier sistema en serie, es que la política
óptima tiene que ser anidada. Para comprobarlo supongamos un sistema en serie con
dos localizaciones. Si la política no fuese anidada, la reposición en la localización 2
tendría lugar en un instante en el cual la localización 1 no repone. Supongamos que
0 es la primera vez que la localización 1 realiza una reposición. Por lo tanto, el
inventario de la localización 2 en el instante se mantiene al menos hasta el instante
0, momento en el que la localización 1 realiza un pedido. Consideremos ahora otra
política alternativa en la que la instalación 2 no repone en , sino que retrasa el
pedido hasta el instante 0 . En esta nueva política, el número de reposiciones en las
dos localizaciones es el mismo, y el coste de mantenimiento es menor en la segunda
planificación que en la primera, ya que la instalación 2 no realiza el pedido hasta
0 evitando así mantener inventario innecesariamente. Por lo tanto, es evidente que
es mejor que la localización 2 sólo reponga cuando la instalación 1 también repone,
es decir, la política óptima debe ser anidada. Este mismo razonamiento se puede
extender al caso general con localizaciones, por lo que se puede establecer el
siguiente Teorema.

Teorema 2.1

En un sistema en serie con instalaciones las políticas anidadas dominan a las
no anidadas.

En particular, el problema de determinar una política potencias de dos anidada
y estacionaria para un sistema en serie se puede formular haciendo uso de los costes
nivelados como sigue

min
X
=1

( +
0

2
)

s.a.

1 0

= 2 {0 1 }
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Se trata de un problema de programación no lineal entera donde las variables de
decisión enteras son , = 1 2 . Este problema está muy relacionado con su
problema relajado

min
X
=1

( +
0

2
)

s.a.

1 0

Roundy (1985) primero caracteriza la solución del problema relajado, y después,
analiza su relación con el problema original. Es fácil comprobar que resolver el
problema relajado es equivalente a dividir el sistema en serie en grupos, de manera
que todas las localizaciones que pertenecen al mismo grupo tienen el mismo periodo
de reposición. Después, a partir de estos periodos de reposición, se calcula la solución
potencia de dos, = 2 donde es el menor entero que verifica

2 1

2
2

Además, Roundy (1985) demostró que este procedimiento calcula en O( log )
una política óptima potencias de dos cuyo coste es como mucho un 6% mayor que el
coste de la política óptima. Y aún más, si se considera como otra variable, este
margen del 6% se reduce a un 2%. Es decir, siempre es posible encontrar una política
potencias de dos cuyo coste es como mucho un 2% mayor que el coste óptimo. Sin
embargo, en muchos sistemas no puede tratarse como una variable, ya que éste
viene determinado por los instantes en los que se obtiene la información del sistema.

Sistemas de ensamblaje

En los sistemas de ensamblaje se fabrica un producto final a partir de un conjunto
de componentes, cada uno de los cuales se produce en una localización.

Como vimos anteriormente, las políticas óptimas para los sistemas en serie son
anidadas. Cada localización en un sistema de ensamblaje, o bien tiene un único
sucesor y no tiene demanda externa, o bien, tiene demanda externa y no tiene
sucesor. Por lo tanto, se puede aplicar el mismo razonamiento que en los sistemas
en serie, para demostrar que las políticas óptimas para los sistemas de ensamblaje
también tienen que ser anidadas. Así, se puede establecer el siguiente Teorema.

Teorema 2.2.

En un sistema de ensamblaje las políticas anidadas dominan a las no anidadas.
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Crowston, Wagner y Williams (1973) fueron los pioneros en estudiar los sistemas
de ensamblaje, suponiendo que la demanda es constante y conocida, las reposiciones
instantáneas y que las roturas no están permitidas. Ellos afirmaron que el tamaño
del lote para cada localización, debe ser igual a un múltiplo entero del tamaño
del lote de la instalación que le sucede. Utilizando esta propiedad, conocida como
“ratio entera”, Crowston, Wagner y Williams (1973) desarrollaron un algoritmo
de programación dinámica mediante el cual se puede calcular los tamaños del lote
óptimos.

En 1975, Schwarz y Schrage, haciendo uso de la propiedad “ratio entera”, resolvie-
ron el problema aplicando un algoritmo de ramificación y poda. Sin embargo, Wi-
lliams (1982) advirtió que la propiedad que Crowston, Wagner y Williams (1973)
habían demostrado sólo era cierta para los sistemas de ensamblaje puros, es decir,
para los sistemas de ensamblaje con dos niveles. Para comprobarlo, Williams (1982)
propone un contraejemplo para un sistema en serie con tres localizaciones, y de-
termina una política que no verifica la propiedad “ratio entera”, la cual es mejor
que cualquier política que si verifica dicha propiedad.

A pesar de esto, el método que proponen Schwarz y Schrage (1975) es muy
interesante, ya que calcula la mejor política que verifica la propiedad “ratio entera”,
que aunque no sea la óptima en general, en muchos casos es cercana a la óptima y
puede resultar muy práctica. Sin embargo, las políticas que más se suelen aplicar en
este tipo de sistemas son las ya mencionadas políticas potencias de dos. El problema
de determinar una política potencias de dos anidada y estacionaria para este tipo
de sistemas se puede formular de forma muy similar a los sistemas en serie

min
X
=1

( +
0

2
)

s.a.

0

= 2 {0 1 }

donde es el sucesor directo de la instalación y es el periodo base. Para
este tipo de sistemas también existe un procedimiento O( log ) que determina
políticas que son un 96% o un 98% efectivas, dependiendo de si se asume fijo o
variable.



Resumen en español xxv

Sistemas de distribución

La estructura de los sistemas de distribución es justamente la contraria a la
de los sistemas de ensamblaje. En la práctica, las localizaciones de un sistema de
distribución representan tanto a la fábrica central de un producto, como a almacenes
regionales y locales y/o a minoristas. En particular, nosotros nos centramos en los
sistemas de distribución con dos niveles, es decir, en los sistemas con 1-almacén y
-minoristas. Para los sistemas en serie y de ensamblaje con dos niveles hemos

visto que las políticas óptimas son anidadas y estacionarias. Sin embargo, para
los sistemas de distribución con dos niveles la política óptima no tiene porque ser
anidada ni estacionaria. En particular, la política óptima para este tipo de sistemas
puede ser muy complicada, tanto que ni siquiera sería posible aplicarla en la práctica.
Por este motivo, normalmente, se analizan otras políticas más simples cercanas a
las óptimas, como las políticas anidadas y estacionarias.

En los siguientes capítulos de esta memoria introducimos diferentes tipos de
políticas que se pueden aplicar a los sistemas con 1-almacén y -minoristas, y
desarrollamos nuevos procedimientos para calcular políticas eficientes que son com-
parados con los más referenciados en la literatura.
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Capítulo 3. Sistemas con 1-almacén y -minoristas:
políticas cíclicas frente políticas descentralizadas

Muchas compañías o industrias planifican sus actividades en función de la reposición
de sus productos, de forma que los pedidos mantienen su frecuencia cada cierto
periodo de tiempo. Esto se traduce en que las reposiciones de los artículos tienen
lugar de forma estacionaria. Esta estacionariedad se refleja, por ejemplo, cuando
un minorista dedicado a la venta de un determinado artículo, realiza semanalmente
un mismo pedido al almacén central. Debido a que esta situación se presenta con
frecuencia en muchas empresas, algunos autores han propuesto distintos métodos
para calcular políticas estacionarias lo más efectivas posibles.

Schwarz (1973) fue uno de los primeros en proponer un procedimiento para
calcular una política estacionaria y anidada para el problema de 1-almacén y -
minoristas. Su aportación más importante es que comprobó el conjunto de propieda-
des que debe verificar una política óptima. Él demostró que al menos una política
óptima para el problema con 1-almacén y -minoristas puede encontrarse dentro
del conjunto de políticas denominadas políticas básicas. Una política básica es una
política factible que cumple las siguientes propiedades: a) el almacén sólo repone
cuando tiene inventario cero, y al menos uno de los minoristas también tiene inven-
tario cero; b) el minorista realiza un pedido sólo cuando tiene inventario cero; c)
todas las reposiciones que se hacen a unminorista entre dos reposiciones consecutivas
al almacén, son de igual tamaño. También demostró que para el caso en el que todos
los minoristas son iguales, la política óptima es una política estacionaria y anidada.
Sin embargo, cuando los minoristas son diferentes, aunque estas políticas pueden
ser bastante efectivas no tienen porque ser las óptimas. El método propuesto por
Schwarz (1973) para calcular políticas estacionarias y anidadas, también conocidas
como políticas cíclicas, proporciona buenas soluciones cuando el número de minoris-
tas es pequeño, pero no para el caso general. De ahí que posteriormente, Graves y
Schwarz (1977) intenten mejorar el método propuesto por Schwarz (1973). Dichos
autores desarrollaron un algoritmo de ramificación y poda para obtener políticas
cíclicas óptimas. El inconveniente de este método es que el esfuerzo computacional
aumenta exponencialmente con el número de minoristas y, por lo tanto, sólo es efec-
tivo para problemas pequeños. Muckstadt y Roundy (1993) proponen otro método
para calcular políticas estacionarias y anidadas. En particular, se centran en las
políticas cíclicas potencias de dos, es decir, se restringen a aquellas políticas donde
tanto los minoristas como el almacén central realizan un pedido cada cierto periodo
de tiempo , que es un múltiplo potencia de dos de un periodo base . Es decir,
= 2 · , = 0 1 . Este método propuesto por Muckstadt y Roundy (1993)

calcula en O( log ) una política óptima estacionaria y anidada potencias de dos
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cuyo coste es como mucho un 2% mayor que el coste de la política estacionaria y
anidada óptima.

Cada uno de los procedimientos propuestos por Schwarz (1973), Graves y Schwarz
(1977) y Muckstadt y Roundy (1993) para calcular políticas cíclicas tienen sus venta-
jas e inconvenientes. El método de Schwarz (1973) no proporciona buenas soluciones
cuando el número de minoristas es elevado, pero la ventaja consiste en que el esfuerzo
computacional es mínimo. Por el contrario, el método de Graves y Schwarz (1977)
computa la solución óptima, pero el esfuerzo computacional es tan grande que es
intratable cuando el número de minoristas aumenta. El procedimiento de Muck-
stadt y Roundy (1993) es muy efectivo computacionalmente pero no siempre da la
solución óptima, pues al tener que redondear a potencias de dos, la solución puede
alejarse de la óptima. Así, estas soluciones propuestas por el método de Muckstadt
y Roundy se pueden mejorar eliminando la restricción potencias de dos. Evidente-
mente, estas mejoras nunca serán mayores del 2%. Sin embargo, teniendo en cuenta
que los costes de inventario representan normalmente una cantidad considerable,
tales mejoras pueden significar en muchos casos un ahorro importante.

En concreto, la formulación del problema es la siguiente

min =
X
=0

( +
0

2
)

s.a.

1 1 = 2 2 = · · · = = 0

1 entero

donde 0 =
P

=1 .

En este capítulo proponemos una nueva heurística también de O( log ) para
calcular políticas estacionarias y anidadas cercanas a las óptimas. Además, esta
heurística se compara con cada uno de los métodos propuestos por Schwarz (1973),
Graves y Schwarz (1973) y Muckstadt y Roundy (1993). De la experiencia com-
putacional se obtienen los siguientes resultados. En el 35% de los ejemplos que se
resolvieron, la solución obtenida coincide con la política cíclica óptima. En el 74%
de los casos, los costes de las soluciones calculadas con la heurística son menores
que los costes de las soluciones obtenidas mediante el procedimiento de Muckstadt
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y Roundy, y en el 9% de los ejemplos generados, ambos métodos proporcionan las
mismas soluciones.

Además, en la segunda parte del Capítulo 3 resolvemos el problema de 1-almacén
y -minoristas asumiendo que el sistema de decisión es descentralizado. Es decir,
cada minorista toma decisiones por separado, sin tener en cuenta al resto de instala-
ciones. En este caso, proponemos un método solución que comprende dos fases.
Primero, se calcula la política óptima para cada minorista de manera individual
aplicando el conocido modelo EOQ. Después, una vez que se determinan las can-
tidades y los periodos de reposición óptimos para los minoristas, se calcula el vector
de demandas para el almacén. Para encontrar la mejor política de reposición para el
almacén, se puede usar el algoritmo de Wagner y Whitin (1958) o el de Wagelmans
(1992). Estas políticas son comparadas con las políticas estacionarias y anidadas
que se obtienen mediante la nueva heurística. La conclusión más importante es que
a medida que el número de minoristas aumenta, resulta más conveniente aplicar las
políticas descentralizadas. Sin embargo, la utilización de una política u otra también
depende de los valores de los parámetros.
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Capítulo 4. Sistemas con 1-almacén y -minoristas:
políticas de ratio-entero

Las políticas estacionarias y anidadas analizadas en el capítulo anterior son, en
muchos casos, muy efectivas y muy fáciles de llevar a la práctica lo que las hace muy
atractivas. Sin embargo, Roundy (1983) demostró que en algunas ocasiones estas
políticas pueden ser muy costosas. Por ejemplo, cuando los costes de reposición
son muy altos en comparación con las demandas, la efectividad de las políticas
cíclicas disminuye considerablemente. Por este motivo, Roundy (1985) introduce un
conjunto de políticas más generales llamadas políticas de ratio-entero las cuales no
son ni estacionarias ni anidadas. Las políticas de ratio-entero se caracterizan porque
el intervalo de reposición de cada minorista es un múltiplo entero del intervalo de
reposición del almacén, o viceversa. Note que en las políticas potencias de dos
estudiadas en el Capítulo 3 se exige que = 2 · , = 0 1 , y también que

0 Sin embargo, ahora se permite tanto 0 como 0 . Por lo tanto,
las políticas de ratio-entero son mucho más generales que las cíclicas.

En este caso, el problema se formula como sigue

min = {
1

0
( 0 +

X
) +

0

2
( 0
0

X
+
X

0 ) +

+
X
( +

0

2
) +

X
( +

2
)}

s.a.

0
o 0 es un entero positivo = 1

donde = { | 0}, = { | = 0} y = { | 0}.

En particular, Roundy (1985) se restringe al caso donde 0 o 0 es un entero
potencia de dos y propone un procedimiento que determina una política óptima de
ratio-entero potencia-de-dos en O( log ) Además, Roundy (1985) demuestra
que estas políticas son un 98% efectivas, es decir, el coste de una política óptima
de ratio-entero potencia-de-dos es como mucho un 2% mayor que el coste de una
política global óptima. Cuando analizamos las políticas estacionarias y anidadas en
el Capítulo 3, vimos que el coste de la política que se obtiene es como mucho un
2% mayor que el coste de una política estacionaria y anidada óptima. En este caso
se puede afirmar que los costes de las políticas que se obtienen son cercanos a los
costes de las políticas óptimas. Sin embargo, al igual que en el capítulo anterior,
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este margen del 2% se puede reducir aún más eliminando la restricción de potencia
de dos. Así, en este capítulo proponemos otra heurística para calcular políticas de
ratio-entero. Además, realizamos un estudio computacional donde se comparan las
políticas obtenidas con la nueva heurística con las políticas de ratio-entero potencias
de dos. Las conclusiones que se obtienen son las siguientes. En el 85% de los ejemplos
que se generaron, los costes de las políticas que se calculan con la heurística son
menores que los costes de las políticas obtenidas con el procedimiento de Roundy, y
en el 12%, los dos procedimientos calculan la misma solución.

Por último, en este capítulo también comparamos las políticas de ratio-entero
con las políticas descentralizadas introducidas en el Capítulo 3. En este caso, para
la gran mayoría de los ejemplos generados, resulta mucho más conveniente aplicar la
política de ratio-entero que la descentralizada. Recuerde que las políticas de ratio-
entero son más generales que las cíclicas al permitir que el periodo de reposición
de los minoristas sea mayor que el del almacén. Por lo tanto, tiene sentido que
ahora el número de ejemplos donde las políticas de ratio-entero son mejores que las
descentralizadas sea mayor que el que se obtiene para el caso de las políticas cíclicas.
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Capítulo 5. Sistemas con un vendedor y múltiples
compradores con razón de producción finita

En los capítulos anteriores hemos analizado los sistemas de inventario con 1-almacén
y -minoristas asumiendo que la razón de producción es infinita, es decir, que el
almacén suministra los artículos de forma instantánea. Sin embargo, en muchas
ocasiones, el almacén puede representar a una instalación donde se fabrican los
artículos a razón finita, . Este problema, donde el almacén produce los artículos
y después los envía a los minoristas, se conoce como el problema de 1-proveedor y
-compradores. Existen muchas referencias en la literatura que analizan este pro-

blema, pero la mayoría de ellas se centran en el caso 1-proveedor y 1-comprador. No
obstante, en la práctica es más común que un proveedor suministra a un conjunto
de compradores. El objetivo de este capítulo es analizar este caso general con múl-
tiples compradores. Primero resolvemos el problema asumiendo que el sistema de
decisión es centralizado y usando las políticas de ratio-entero. Después, planteamos
el problema considerando que cada minorista toma decisiones de manera individual.

Veamos la formulación del problema usando las políticas de ratio-entero. Sin pér-
dida de generalidad, asumimos que 1 2 y además que los pedidos van
a ser anidados. Diremos que los pedidos son anidados si cada vez que un comprador
con intervalo de reposición realiza un pedido, entonces, el resto de compradores
con intervalo de reposición también necesitan reponer. Siguiendo la idea
propuesta por Roundy (1985), para formular el problema lo primero que hacemos es
clasificar los compradores en tres conjuntos, que denotaremos por , y . Para
Roundy (1985), aquellos compradores con forman el conjunto , donde es
el tiempo de reposición del almacén. En el conjunto están aquellos compradores
con = , y por último, los compradores con pertenecen al conjunto . En
el trabajo de Roundy (1985), al ser la razón de producción del proveedor infinita,
se puede trabajar con un intervalo de reposición constante para el proveedor. Por
el contrario, en el caso que nos ocupa, en el que la razón de producción es finita, el
intervalo de reposición del proveedor puede no ser constante. Por lo tanto, no po-
demos usar exactamente la misma definición que Roundy (1985) para los conjuntos
, y . Sin pérdida de generalidad, podemos asumir que cuando el proveedor

tiene que satisfacer la demanda de los compradores del conjunto y de algunos
compradores del conjunto , éste produce primero las unidades que serán enviadas a
los compradores del conjunto , y después fabrica el pedido de los compradores del
conjunto . Entonces, bajo esta suposición, si sólo consideramos los compradores
que pertenecen al conjunto el tiempo que transcurre entre dos activaciones
consecutivas de la producción en el proveedor si es constante. Por este motivo, a
partir de ahora vamos a trabajar con este intervalo de tiempo y lo vamos a denotar
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por 0. Además, a partir de 0 se puede determinar el tiempo entre dos activaciones
consecutivas de la producción, considerando a todos los compradores, incluso a los
del conjunto Teniendo esto en cuenta, ahora si podemos definir los conjuntos ,
y de manera similar a Roundy (1985), pero considerando como referencia 0 en

vez de Es decir, = { | 0}, = { | = 0} y = { | 0}.

El motivo por el cual en el caso en el que la razón de producción es finita el
intervalo de reposición del proveedor no tiene porqué mantenerse constante es el
siguiente. Cuando se considera una política de ratio-entero para un sistema con
razón de producción infinita, el proveedor realiza un pedido a la vez que todos los
compradores que pertenecen al conjunto Como consecuencia, el proveedor no
tiene que mantener inventario para ninguno de los compradores del conjunto
Sin embargo, en los sistemas con razón de producción finita, el proveedor fabrica
primero los productos y después los envía. Por lo tanto, el proveedor en este caso si
mantiene inventario para todos los compradores, incluso para aquellos que pertene-
cen al conjunto Además, en algunos casos el proveedor tiene que suministrar a
todos los compradores, y en otros sólo a algunos de ellos. Entonces, es evidente, que
en aquellas ocasiones en las que el proveedor sólo suministra a algunos compradores,
la producción debe empezar más tarde que en los casos en el que el proveedor tiene
que satisfacer a todos los compradores. De aquí que el tiempo entre dos activaciones
consecutivas de la producción no tenga que ser siempre constante.

En las figuras 10-11 mostramos los patrones de inventario asumiendo que el
tiempo entre dos activaciones consecutivas de la producción es constante y que
puede variar, respectivamente.
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Figura 10: Fluctuaciones de los inventarios en el proveedor y en los compradores
considerando que es constante. Los compradores 1 y 2 pertenecen al conjunto

, y los compradores 3 y 4 están en el conjunto . La línea discontinua representa
la razón de producción
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Figura 11: Fluctuaciones de los inventarios en el proveedor y en los compradores
considerando que no es constante. Los compradores 1 y 2 pertenecen al conjunto

, y los compradores 3 y 4 están en el conjunto . La línea discontinua representa
la razón de producción. En los instantes , , y el proveedor empieza a producir
las unidades que serán enviadas a los compradores 1 y 2

Es evidente, que los costes de inventario en el almacén son menores cuando se
permite que el tiempo entre dos activaciones consecutivas de la producción varíe.
También, se puede observar en la Figura 11 que los inventarios medios en los com-
pradores son muy fáciles de calcular ya que siguen un patrón EOQ. Por el contrario,
determinar el inventario medio en el proveedor es un poco más complicado. Este
problema también surge en los sistemas con un único comprador. Sin embargo,
cuando = 1 Hill (1999) demostró que el inventario medio total que hay en el sis-
tema se puede obtener sin mucha dificultad. Así, el inventario medio en el proveedor
se puede calcular como la diferencia entre el inventario medio total y el inventario
medio en el comprador. Desafortunadamente, para el caso general con compra-
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dores, el inventario medio total tampoco es muy sencillo de calcular directamente
como puede verse en la Figura 12.
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Figura 12: La línea discontinua representa las fluctuaciones de los inventarios totales
del sistema

En este capítulo proponemos un método para determinar los costes de manteni-
miento en el proveedor. Una vez calculados, vemos que el modelo se puede formular
como el siguiente problema de programación no lineal mixta
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Conclusiones y aportaciones

Los sistemas de inventario con varias localizaciones son muy comunes en la práctica y
aparecen tanto en la producción como en la distribución de artículos. En los sistemas
de producción se fabrica un producto final a partir de una serie de componentes, cada
una de las cuales se produce en una localización. En los sistemas de distribución cada
instalación tiene un único predecesor que le suministra los artículos. A su vez, cada
localización satisface la demanda de las instalaciones inmediatamente sucesoras.

El control de este tipo de sistemas se puede llevar a cabo de una manera descen-
tralizada, es decir, las decisiones en cada instalación se pueden basar exclusivamente
en la información que se posee de esa localización. Sin embargo, actualmente, las
empresas son cada vez más conscientes de que pueden reducir considerablemente
sus costes de inventario con un buen control de los mismos a lo largo de todas las
instalaciones que forman parte del sistema. Así, para realizar un control efectivo
de estos sistemas de inventario, es necesario usar métodos que tengan en cuenta las
relaciones que existen entre las localizaciones del sistema. El estudio de estos sis-
temas de inventario con múltiples instalaciones se ha convertido en los últimos años
en un tema de investigación muy importante dentro de la Investigación Operativa.

En esta tesis nos hemos centrado en el análisis de un sistema de inventario con
múltiples instalaciones muy frecuente en la práctica conocido como el problema de
1-almacén y -minoristas. En estos sistemas existe un único almacén que distribuye
un artículo a un conjunto de minoristas, por ejemplo, un almacén central que satis-
face la demanda de una cadena de tiendas.

En el Capítulo 2 presentamos las diferentes estructuras que aparecen en los sis-
temas multiniveles de inventario. En particular, analizamos los sistemas en serie, los
sistemas de ensamblaje y los sistemas de distribución. Para cada uno de ellos hemos
revisado los tipos de políticas de reposición que más se aplican en la práctica, y los
diferentes algoritmos propuestos en la literatura para determinar políticas de reposi-
ción óptimas o casi-optimas. De la revisión bibliográfica realizada en este capítulo
se concluye que para los sistemas en serie y los sistemas de ensamblaje la política
óptima tiene que ser anidada y estacionaria. Esta propiedad facilita la búsqueda

xxxvii
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de soluciones óptimas. Así, ya existen en la literatura procedimientos de orden
polinomial que determinan políticas óptimas para estos sistemas. Sin embargo, el
problema de 1-almacén y -minoristas es un problema NP-duro, es decir, no existe
un algoritmo de orden polinomial que lo resuelva. De ahí que muchos autores se
hayan centrado en clases de políticas más simples, y hayan desarrollado métodos
para determinar la política óptima dentro de ese conjunto de políticas. En esta tesis
presentamos procedimientos alternativos para calcular políticas de reposición para
el problema de 1-almacén y -minoristas. Además, para comprobar su efectividad
los comparamos con los métodos más eficientes existentes en la literatura.

En particular, comenzamos analizando las políticas anidadas y estacionarias en
el Capítulo 3. La principal aportación de este capítulo es el desarrollo de una nueva
heurística de O( log ) que para la mayoría de los casos proporciona políticas
cíclicas más eficientes que las calculadas con los métodos heurísticos que existían
hasta el momento en la literatura. Además, en este capítulo también se plantea
y se resuelve el problema asumiendo que cada localización del sistema toma de-
cisiones por separado, es decir, cada instalación intenta minimizar sus costes de
manera independiente sin tener en cuenta al resto de localizaciones del sistema. Por
último, se realiza un experimento computacional donde se comparan ambos tipos
de estrategias. La conclusión más importante es que a medida que el número de
minoristas aumenta, resulta más conveniente aplicar las políticas descentralizadas.
Sin embargo, la utilización de una política u otra también depende de los valores
de los parámetros. En concreto, los resultados que se presentan en este capítulo se
recogen en Abdul-Jalbar et al. (2003, 2006).

En el Capítulo 4 se eliminan las restricciones de estacionariedad y anidamiento y
se analiza un conjunto de políticas más generales llamadas políticas de ratio-entero.
Para este caso también hemos propuesto un nuevo método heurístico de O( log )
el cual es comparado con el método de Roundy (1985) que es el más referenciado en
la literatura. Algunos de los aportaciones que se presentan en este capítulo ya han
sido publicadas en Abdul-Jalbar et al. (2005).

Por último, en el Capítulo 5 se analiza el mismo problema pero considerando
que la razón de producción en el almacén es finita. La mayoría de los autores que
estudian este problema se centran en el caso en el que el almacén o proveedor suminis-
tra solamente a un comprador. Así, una contribución importante de este capítulo es
la formulación del problema para la situación general con múltiples compradores asu-
miendo que el sistema de decisión es centralizado. En particular, primero estudiamos
el problema asumiendo que el proveedor suministra a dos compradores, y después,
extendemos el análisis al caso con más de dos compradores. Finalmente, también
abordamos el problema suponiendo que el sistema de decisión es descentralizado y
comparamos ambas estrategias, las centralizadas y las descentralizadas. De los re-
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sultados computacionales se puede concluir que ninguna de las dos clases de políticas
domina a la otra. Las contribuciones que se incluyen en este capítulo se recogen en
Abdul-Jalbar et al. (2004a, 2004b).

El problema que hemos analizado en esta tesis se puede extender a situaciones
en las que, por ejemplo, se admiten roturas, demandas de los clientes variables en el
tiempo o estocásticas, razones de producción finita en los minoristas, traspasos entre
los minoristas, etc. Otra posible línea de investigación consiste en analizar sistemas
de inventario más generales donde el grafo asociado sea cualquier grafo acíclico.
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Preface

There is no doubt of the importance of the inventory control in today’s business
environment. In practice, in many economic sectors the profit margins are tight,
and hence, a good management of the available resources is essential for increasing
benefits. Thus, inventory management has become a critical factor in the success
and profitability of a firm. Even more, inventories play an extremely important role
in a nation’s economy. In fact, the total value of inventories represents, in general,
an important quantity in the balance of firms. Consequently, changes in inventories
are watched closely by economists since they are directly associated with the overall
direction and health of the economy of the country.

However, the importance of storing goods has been recognized since ancient
times. For example, in times of plenty, people stored food and other goods of
first necessity to provide for times of scarcity. Nevertheless, the production and
stocking systems from which the present ones are derived appear with the Industrial
Revolution in the eighteenth century. In fact, the Industrial Revolution can be
thought of as the most important pre-twentieth century influence on management.
The use of machine powers, combined with the division labor made large factories
possible. In addition, the huge investments of the new factories contributed to the
development of procedures for planning, organizing, leading and controlling. In
other words, scientific management began to be required.

The scientific management period brought widespread changes to the manage-
ment of factories. Important developments in this field were made during the early
part of the twentieth century. In 1911, the classic book "The principles of Scienti-
fic Management" was published by Frederick Taylor who is often referred to as
the father of scientific management. This publication actually helped the scientific
management principles to achieve wide acceptance in di erent industries. In par-
ticular, it is necessary to emphasize the use of the scientific management to the
automobile industry. In addition, it was in the automobile industry where the mo-
ving assembly lines were first introduced. The use of these assembly lines allowed
to decrease the assembly time and cost considerably. In addition, the advances
achieved in the factory movement motivated that organizations realized of the rela-
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tionship between e ciency, holding goods and production planning. Thus, it became
necessary the use of mathematical tools and quantitative techniques to improve de-
cision making of industries that were facing a combination of production scheduling
problems and inventory problems.

One of the earliest applications of mathematical models for business decision
making was published by F.W. Harris in 1913 who developed the Economic Order
Quantity (EOQ) formula. He derived a mathematical formula in which the most
economic choice for the order quantity depends on the cost factors. Although this
formula was first developed by Harris, Andler (1929) and Wilson (1934) are also
recognized in connection with the EOQ model. This model and many extensions
were presented by Raymond in his book "Quantity and Economy in Manufacture"
published in 1931. This is considered the first published book on inventory mana-
gement. At first, these quantitative models were not widely used in industry and
few papers were published in the next years. However, interest in mathematical
inventory models resurfaced during the Second World War. In the war, specialists
from many disciplines combined e orts to achieve advancements in the military and
in manufacturing. After the war, many authors continued developing and refining
quantitative tools for decision making. These e orts resulted in decision models for
forecasting, inventory management and other areas of operations management. An
excellent overview of the systems that were studied until 1951 is given by Whitin
in "The Theory of Inventory Management" and in "Inventory control research: A
survey" published in 1953 and in 1954, respectively.

During the 1960s and 1970s, management science techniques were highly re-
garded but in the 1980s, they lost some favor. However, the widespread use of com-
puters and software contributed to a resurgence in the popularity of these techniques.
Thus, many advances have been achieved in the last decades. Probably, one of the
most important developments in the world economy in recent years has been the
extraordinary success of japanese firms in western markets. Among the key factors
underlying this phenomenon seems to be the ability of japanese firms to opera-
te with substantially lower inventories than their western counterparts. Moreover,
many of the success stories in retailing, automobiles, computers, and other industries
are founded on operational capabilities that, among other things, keep inventories
lean. Indeed, in today’s increasingly competitive markets firms cannot a ord to
carry excessive levels of inventory. At the same time, it is also important to have
the product available at the right place and at the right time. In order to balance
these two issues it is critical for an organization to decide where inventory should
be kept and in what quantities. Traditionally, when it was critical to have inven-
tory available for customers, large amount of inventory was placed at all locations.
This ensured a high service level, but could be enormously costly. Nowadays, firms
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have realized that costs can be reduced considerably with the management of the
inventory throughout the di erent facilities in the supply chain. It is worth noting
that actions of one member of the chain can a ect the profitability of all partners of
the supply chain. Consequently, firms are increasingly collaborating and integrating
their processes with their partners to compete as part of a supply chain against
other supply chains, rather than as a single entity. Supply chain management is
the term used to describe the management of materials and information across the
entire supply chain, from suppliers to customers. This topic covers multiple areas
each one representing an issue within the supply chain. In particular, one of the
most important problems in the management of supply chains is the control of in-
ventory costs at the di erent locations throughout the system while satisfying the
customer requirements. The area into supply chain management devoted to the
e ective management of inventory in a supply chain is what is known in the lite-
rature as multi-echelon inventory theory. Since inventory costs usually represent an
important investment, the reduction of such costs is critical for the supply chain.
Thus, it is not surprising that in recent years considerable e orts have been made
to achieve advancements in this field.

In line with this interest, this dissertation represents an attempt to continue
advancing in the deterministic multi-echelon inventory theory. The multi-echelon
inventory systems are common in both distribution and production contexts. Spe-
cifically, we deal with a two-level distribution system where a warehouse supplies an
item to multiple retailers. However, before introducing the multi-echelon invento-
ry systems we present in Chapter 1 the fundamentals of inventory management. In
addition, we also review the simplest inventory problems for a single location. These
basics models are fundamental to all what follows since they form the building blocks
from which more elaborated inventory models are constructed. Furthermore, such
models are widely applied themselves.

In Chapter 2 we introduce the multi-echelon inventory systems where several
installations are coupled to each other. We first illustrate how multi-echelon invento-
ry systems arise in practical supply chain. Then, we describe the kind of structures
that are most common in multi-echelon inventory systems. Finally, we conclude
this chapter with a summary of our contributions which are related to the problem
referred to as the one-warehouse multi-retailer system.

In general, the form of the optimal inventory policy for the one-warehouse multi-
retailer system is very complex. However, it is often possible to use a simpler class of
strategies. Accordingly, in Chapter 3 we restrict our attention to one of the simplest
policies which can be applied to the one-warehouse multi-retailer problem. In such
policies, known as single-cycle policies, it is assumed that the decision system is
centralized. Thus, the goal consists of minimizing the average total cost, that is, the
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sum of the average cost at the warehouse and at the retailers. In this chapter we also
study the problem assuming that at each location there is a decision maker. That
is, each facility minimizes its total cost without taking the rest of the system into
consideration. Finally, we compare the single-cycle policies with the decentralized
strategies.

The single-cycle policies considered in Chapter 3 are very e cient in many situa-
tions and have clear managerial advantages. However, when relatively high order
costs are combined with relatively low demand rates, the performance of these
policies get worse. In order to achieve more e ective strategies, we analyze in
Chapter 4 a more general class of centralized policies known as integer-ratio policies.
In this chapter, we also compare the integer-ratio solutions with the decentralized
policies.

To this point it is assumed that the warehouse supplies the items to the retailers
instantaneously. However, often the warehouse is also a manufacturing location and
it produces at a finite rate. In spite of this, we find few references in the literature
dealing with this problem. Besides, most of them focus on the case where the
warehouse only supplies one retailer. Thus, in Chapter 5 we extend the analysis to
the multiple retailer situation. That is, we study the one-warehouse multi-retailer
system assuming finite production rate at the warehouse. In particular, we first
formulate the problem in terms of integer-ratio policies. Finally, we also address the
problem assuming that the decision system is decentralized.



Chapter 1

Fundamentals of Inventory Control

In this chapter we introduce the basic concepts in Inventory Control which will be
used throughout this thesis. In addition, we also review the classical models for con-
trolling inventory at a single installation. The study of these models are fundamental
for a good understanding of the more complex inventory models where several loca-
tions are involved. In particular, we focus on the Economic Order Quantity (EOQ)
model, on the Economic Production Quantity (EPQ) model and on the Wagner and
Whitin problem.

1.1 Introduction

Inventories consist of physical goods and materials kept in stock to be used in a
production process or to be sold to final customers. Usually, we think of inventory
as a final product waiting to be sold to a customer. This is certainly one of its
most important uses. However, especially in a manufacturing firm, inventory can
take on forms besides finished goods as, for example, raw material and work-in-
progress. Raw materials are used to make the components of the finishes products.
Work-in-process inventories are partially completed final products that are still in
the production process.

Another classification of inventories is based on their utility. Thus, working
stocks, also known as cycle or lot size stocks, are those products arriving in large
regular orders to meet smaller but more frequent customer demands. As we have
commented, firms have to be protected from uncertainties of supply and demand.
The inventories which are held to be used in these cases are refereed to as safety
or fluctuation stocks. In addition, seasonal or anticipation stocks are inventories
which are build up to maintain stable operations through seasonal variations in
demand. The pipeline or transportation stocks are products which are currently
being moved from one location to another. For example, inventories in a truck

1
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or inventories waiting to be processed are pipeline stocks. Finally, speculative or
hedge stocks arise when firms purchase extra quantities at lower prices to achieve
important savings.

Nowadays the time and the money needed to manage inventories represent a
significant investment for the firms. Thus, firms cannot a ord to have any money
tied up in excess inventories and hence the objectives of good customer service and
e cient production must be met at minimum inventory levels. Accordingly, an
e ective management of inventories keeps the business profitable. Therefore, the
inventory control plays a critical role in successful management. Inventory control
consists of all activities and procedures used to ensure that the right amount of each
item is held in stock.

Since inventories normally represent a sizable investment, reasonable questions
arise with respect to the convenience of inventories as well as the functions that they
perform. Thus, inventories exist because supply and demand cannot be matched due
to physical and economics causes. There are many reasons for which supply and
demand frequently di er in the rates at which they respectively provide and require
stock. According to Tersine (1994), these reasons can be explained by four factors:
time, discontinuity, uncertainty and economy. The time factor refers to the time
which takes the process of production and distribution before goods reach the final
consumer. In general, customers want the product on time and they often disagree
to wait. The discontinuity factor allows the common treatment of various dependent
operations in an independent manner. Thus, the discontinuity factor permits firms
to schedule processes such as purchasing, production, warehousing, distribution, and
retailing with more freedom. Another reason for holding inventory is to protect firms
from unexpected and unplanned events that modify their schedules. These events
that are included in the uncertainty factor are errors in demand estimates, strikes,
disasters, delays, etc. Finally, the economy factor relates primarily to cost reducing
alternatives such as quantity discounts.

Depending on the type of organizations the inventory requirements are di erent.
An organization can be a retailer, a warehouse, a factory, etc. The retailers are
organizations that obtain products from warehouses or directly from factories and
supply them to final customers. In contrast, the warehouses purchase large quan-
tities of manufactured goods to be distributed to the retailers. In addition, these
organizations do not usually provide goods to final consumers but supply the re-
tailers. With respect to the factories, they are organizations which produce finished
products from raw materials. Accordingly, inventories can be stocked at a single or
at many locations or installations. Usually, smaller firms have single stocking points,
whereas larger firms use to hold inventories at multiple locations. For example, when
firms distribute products over large geographical areas, they often use an inventory
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system with a central warehouse close to the production facility and a number of re-
tailers close to the customers in di erent areas. In the production context, it is also
very common that raw materials, components, and finished products are stocked at
di erent locations. In these inventory systems each stocking point is referred to as
stage or location. Moreover, in such systems we can distinguish di erent hierarchy
levels or echelons. Precisely, an echelon is a set of locations of the same level that
are replenished by a common set of suppliers. In general, outside customer demands
occur at the stages in the first level, that is, at the retailers. In turn, these locations
replenish from the warehouses at the second level, which receive replenishments from
the third level, etc.

It is worth noting that most inventory systems encountered in the real world
are multi-echelon in nature. Hence, it is not surprising that in the last decades
considerable e orts have been made to achieve advancements in this field. In line
with this interest, this dissertation deals with deterministic multi-echelon inventory
systems. Specifically, we focus on two-level distribution system where a warehouse
supplies an item to multiple retailers. However, before addressing this main subject,
we introduce some basic concepts in inventory management. In addition, we also
review some of the more classical models and techniques for making cost-e ective
inventory decisions. These basic models are fundamental for the development of the
multi-echelon inventory systems. In particular, we focus on the classical Economic
Order Quantity (EOQ) model and on extensions of such a model that will be used
throughout this thesis.

1.2 Elements of Inventory Management

Inventory problems come in all shapes, sizes and varieties but they usually are
concerned with the making of decisions that minimize the total cost of an inventory
system. Therefore, decisions that are made a ect the costs, but such decisions
can rarely be made directly in terms of costs. In fact, decisions are usually made
in terms of time and quantity. Consequently, the time and quantity elements are
usually the variables that are subject to control in an inventory system. According-
ly, the decisions to be made are basically when should a replenishment order be
placed, and how much should the order quantity be. Such decisions will depend on
di erent factors that can be recognized for every inventory systems. In particular,
the main components which characterize an inventory system are the demand, the
replenishment, the costs and the constraints. In general, the complexity of the mo-
dels depends on the assumptions that one makes about these components. We will
discuss each of these elements in turn.
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1.2.1 Demand

The starting point for the management of inventory is to meet customer demands,
hence a firm maintains inventory to cover such demands. In addition, the assump-
tions made about demand are usually the most important in determining the com-
plexity of the model. In general, the following types of demand are considered:

1. Deterministic and Stationary: The simplest assumption is that the demand
is constant and known. These are really two di erent cases: the demand is not
anticipated to change, and the other case is that the demand can be predicted in
advance. The simple EOQ model is based on constant and known demand.

2. Deterministic and time varying: Changes in demand may be systematic or
unsystematic. Systematic changes are those that can be forecasted in advance. Lot
sizing under time varying demand pattern is a problem that arises in the context of
manufacturing final products from components and raw materials.

3. Stochastic and uncertain: The term uncertainty means that the distribution
of demand is known, but the exact values of the demand cannot be predicted in ad-
vance. In most contexts, this means that there is a history of past observations from
which we can estimate the form of the demand distribution and the values of the
parameters. In some situations, such as when new products are produced, the un-
certain demand could be assumed but some estimate of the probability distribution
would be required.

4. Stochastic and unknown: In this case, the distribution of the demand is
unknown. Here the approach consists of assuming some form of a distribution for
the demand and updating the parameter estimates using Bayes rule each time a new
observation becomes available.

1.2.2 Replenishment

The replenishments of inventory systems are usually controlled by decision-makers,
and in general, they refer to the following elements.

1. The scheduling period: The scheduling period is the length of time between
consecutive replenishments, and it is not always controllable. When the scheduling
periods are not fixed, they are variables subject to control. In other case, they are
given parameters and the only variables that can be controlled are the replenishment
sizes.

2. The replenishment size: It represents the quantity scheduled for replenish-
ment, and it is usually under control of the decision-maker. When the replenishment
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size is the same for every scheduling period it is referred to as lot size. In addition, it
is often assumed that when a replenishment is ordered the exact amount is delivered
and added to stock.

3. The replenishment period: The replenishment period is the length of time
during which the replenishment size is being added to inventory.

4. The replenishment rate: The average replenishment rate is the ratio between
the replenishment size and the replenishment period. When the replenishment
period is negligible we say that the corresponding rate is infinite and the reple-
nishment is instantaneous.

5. The lead time: The lead time, often denoted by , is defined as the amount
of time that elapses from the point that a replenishment order is placed until it
arrives. It is a very important quantity in inventory analysis since it is a measure
of the system response time. Usually, it is assumed that the lead time is zero. This
makes sense if the time required for replenishment is short compared with the time
between replenishment decisions. Other common assumption is that the lead time is
a fixed constant. In this case, the lead time can be incorporated in the model easily.
However, the analysis becomes much more complicated if the lead time is assumed
to be a random variable. Under this situation, issues such as order crossing, that is,
orders not arriving in the same sequence that they were placed, must be considered.

6. Inventory position and inventory level: The purpose of an inventory control
system is to determine when and how much to order. These decisions should be
based on the stock situation, the anticipated demand, and di erent cost factors.
When talking about the stock situation, it is natural to think of the physical stock
on-hand. But an ordering decision cannot be based only on the stock on-hand. We
must also include the outstanding orders that have not yet arrived, and backorders,
i.e., units that have been demanded but not yet delivered. In inventory control the
stock situation is characterized by the inventory position:

inventory position = stock on-hand + outstanding orders — backorders

Although the ordering decisions are based on the inventory position, holding and
shortage costs will depend on the inventory level :

inventory level = stock on-hand — backorders

7. Review process: An inventory control system can be designed so that the
inventory position is monitored continuously. As soon as the inventory position
is su ciently low, an order is triggered. We refer to this situation as continuous
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review. Another situation consists of checking the inventory position only at certain
given points in time. In general, the intervals between these reviews are constant
and the review process is referred to as periodic review. Most systems are periodic
review, although continuous review approximations are common. Both alternatives
have advantages as well as disadvantages. In continuous review systems, generally
the replenishment decisions can be made at any time. However, in periodic review
they can be made only at predetermined time instants corresponding to the start of
the periods. In contrast, periodic review has advantages especially when we want
to coordinate orders for di erent items.

1.2.3 Costs

In most inventory problems the objective consists of minimizing the costs involved
in the operations. Therefore, the assumptions about the cost structure are decisive.
The basic costs associated with inventory are the following:

1. Unit value cost : The unit value of an inventory item is usually expressed in
monetary unit per unit of item. For a vendor, the value cost is simply the price paid
to the supplier plus any cost incurred to make it ready for sale. Depending on the
size of the replenishment, this cost can vary as a result of quantity discounts. For a
producer, the value cost is the unit production cost. The unit value is important for
two reasons. First, the total acquisition costs per year clearly depend on its value.
Second, the total cost of holding an item can also depend on this cost.

2. Ordering or replenishment costs: The ordering costs are related to the reple-
nishments of inventory. The assumptions about the order cost function can repre-
sent a substantial di erence in the complexity of the resulting model. The simplest
assumption is that the replenishment cost is a linear function of the ordered quantity.
This case is referred to as proportional replenishment cost and it is often assumed
when demand is uncertain. However, it is more realistic to assume that the reple-
nishment cost has both fixed and variable components.

Obviously, replenishment costs vary with the number of orders placed, as the
number of orders increases so does the ordering cost. Replenishment costs can
include charges as requisition and purchase orders, transportation and shipping,
receiving, inspection, handling and storage, and accounting and auditing. Reple-
nishment costs generally behave inversely to holding costs. As the size of orders
increases, fewer orders are required, reducing ordering costs. However, ordering
larger amounts results in higher inventory levels and hence higher holding costs.

3. Holding costs: The capital cost is usually the dominating part of the holding
costs and it represents the return that could be obtained by investing elsewhere
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the capital tied up in inventory. Other parts can be material handling costs, costs
of storage, damage and obsolescence costs, insurance costs, and taxes. All those
charges that vary with the inventory level should be included in the holding cost.

Holding costs are normally specified in one of the following ways. One way is to
add all the individual charges mentioned above over a time period, such as a month
or a year. Alternatively, holding costs are sometimes expressed as a percentage of
the value of the item or as a percentage of average inventory value.

4. Shortage costs: A shortage occurs when the demand for a item cannot be
satisfied on time. When this situation occurs the response of the customer can be
di erent. There are situations where a customer agrees to wait while his order is
backlogged, but in other cases the customer chooses some other supplier. If the
customer order is backlogged there are often extra costs for administration, price
discounts for late deliveries, material handling, and transportation. If the sale is
lost, the contribution of the sale is also lost. In any case, shortages usually yield
a loss of goodwill. Most of these costs are di cult to estimate, and the di culty
increases in production processes. Thus, if, for example, a component is missing,
this can entail a chain of negative consequences such as delays, rescheduling, etc.
There are also situations where shortage costs are easy to evaluate. Assume, for
example, that a missing component can be bought at a higher price in a store next
door. We can then use the additional cost as our shortage cost. Since shortage costs
are so di cult to estimate, it is very common to replace them by a suitable service
constraint. Obviously, it is also di cult to determine an adequate service level, but
yet somewhat simpler in most practical situations.

1.2.4 Constraints

Constraints in inventory systems deal with various properties that in some way
impose limitations on the components discussed in the previous sections. In general,
we can consider the following constraints.

1. Unit constraints: The kind of mathematical analysis used in solving an in-
ventory system depends on whether the units involved are continuous or discrete.

2. Demand constraints: Some constraints associated with demand are the nega-
tive demand and the dependent demand structures. For example, when returns by
customers are allowed we have negative demand. A dependent demand structure
occurs when the demand during any period may depend on the demand at the
previous periods and on the inventory quantity in such periods.

3. Replenishment constraints: The replenishment constraints can be related to
space constraints. In some systems the amount of space for storing inventories is
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limited so that the inventory quantity at any time may not exceed some specified
amount. We also have already mentioned that scheduling periods can be prescribed
in some systems. Such prescriptions should be considered as other replenishment
constraint.

4. Cost constraints: In some systems no shortages are allowed and hence the
shortages costs are zero. In other models no inventory is carried, that is, the are not
holding costs. In some situations, the replenishment costs are constant and then,
they are not subject to control.

1.2.5 Inventory problems classification

Inventory problems can be classified in many ways. An admissible classification
could distinguishes, at the first level, between single-echelon models and multi-
echelon models. In the single-echelon systems the items are stocked at a single
location. In contrast, in the multi-echelon systems there are several stocking points.
In turn, both the single-echelon and the multi-echelon inventory problems can be
subdivided into categories based on other characteristics. One of these characteris-
tics is the number of di erent items which are considered in the system. According-
ly, we can discriminate between single-item and multi-item models. An additional
subdivision includes finite and infinite replenishment rate. Recall that an infini-
te replenishment rate means that the replenishments are instantaneous. Inventory
problems can also be subclassified according to the presence or absence of capacity
constraints. Finally, we can identify di erent inventory problems depending on the
characteristics of demand. Thus, we can di erentiate between deterministic and
stochastic demand, and between static and dynamic demand. Consequently, any
inventory problem can be placed in one of the categories given in Figure 1.1.

As we have commented, the goal of this monograph is the study of the multi-
echelon inventory problems. Most of these problems represent extensions of the basic
single-echelon models. Therefore, the knowledge of such basic models is essential
for a good understanding of the more complicated systems to be developed in the
following chapters. Hence, we devote the remainder of this chapter to review the
single location models that will be used throughout this work. We first focus on
the Economic Order Quantity (EOQ) and on the Economic Production Quantity
(EPQ) models where demand is deterministic and static. Finally, we analyze the
problem assuming time-varying demand.
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Inventory problems

Single item Multi item

Infinite replenishment rate Finite replenishment rate

Uncapacitated problems Capacitated problems

Deterministic demand Stochastic demand

Static demand Dynamic demand

Single-echelon Multi-echelon

Figure 1.1: Inventory problems classification

1.3 Models with constant demand rates

The basic inventory models are based on the assumption that demand is determi-
nistic and stationary. These assumptions may seem very unrealistic assumption,
however, in general, are reasonable. First of all, there exist situations where a firm
is really facing deterministic demand. An example is a firm which delivers items
according to a long-range contract.

In addition, models requiring deterministic and stationary demand are also im-
portant for the following arguments. First, many results are quite robust with
respect to the model parameters, such as the demand rate and costs. Second, the
results obtained from these simple models are often good starting solutions for more
complex models.

Finally, in case of stochastic demand it is often feasible to use deterministic lot
sizing. A standard procedure is to first replace the stochastic demand by its mean
and then, use a deterministic model to determine the order quantity .



10 1.3. Models with constant demand rates

1.3.1 The classical Economic Order Quantity (EOQ) model

The most well-known result in the whole inventory control area is the classical eco-
nomic order quantity formula. This simple result has had and still has an enormous
number of practical applications. It was first derived by Harris (1913), but also
Wilson (1934) is recognized in connection with this model.

This model assumes that the demand is continuous at a constant rate of item
units per unit time and shortages are not allowed. In addition, the replenishments
are instantaneous, that is, the entire order quantity is received at one time as soon as
the order is released. The total cost consists of a holding cost per unit held per unit
time, and a fixed ordering cost which is incurred with each replenishment. Usually,
the holding cost is denoted by and the replenishment cost by

Since the parameters involved are assumed to be constant with time, it is reaso-
nable to think in terms of using the same order quantity, , each time that a
replenishment is made. In fact, this yields a mathematical optimal solution. Fur-
thermore, taking into account that demand is deterministic, the replenishment lead
time is zero, and shortages are not allowed, it is obvious that each replenishment will
be made when the inventory level is exactly at zero. The behavior of the inventory
level is illustrated in Figure 1.2.

t=Q/d
Time

Inventory

Level

Slope = - d

Q

0

Figure 1.2: Behaviour of inventory level with time

The goal is to determine the optimal order size that minimizes the average total
inventory cost. That is the sum of the average holding and replenishment costs.
These two costs react inversely to each other. As the order size increases, fewer
orders are required, causing the replenishment cost to decrease, whereas the average
amount of inventory on-hand will increase, resulting in an increase in holding costs.
Thus, in e ect, the optimal order quantity represents a compromise between these
two inversely related costs.
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In Figure 1.3 we show the inverse relationship between replenishment and holding
cost, resulting in a convex total cost curve. The optimal order quantity occurs at
the point where the total cost curve is at a minimum, which coincides exactly with
the point where the holding cost curve intersects the replenishment cost curve.

Q

Holding costs

Total costs

Ordering costs

Cost

EOQ Q

Holding costs

Total costs

Ordering costs

Cost

EOQ

Figure 1.3: Costs related to the EOQ model

Note that the time between replenishments is given by = , that is, the
time necessary to deplete units at a rate of units per unit time. Therefore,
the number of replenishments per unit time is Since there is a setup cost
associated with each replenishment, the replenishment costs per unit time are

given by Regarding the holding costs, they are obtained as the average stock
multiplied by the holding cost. From Figure 1.2, the average inventory levels can be
easily obtained as 2, and then, the holding costs are given by 2 Hence, the
total cost per unit time is

( ) = +
2

(1.1)

The cost function is obviously convex in , and we can therefore obtain the
optimal by solving = 0

Accordingly, the optimal solution is

=

r
2

(1.2)
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This is the economic order quantity, EOQ, and it is one of the earliest and most
well-known results in Inventory Theory.

Note that if we replace in (1.1) by we have

( ) =

r
2
+

r
2
= 2 (1.3)

That is, for the optimal order quantity the holding costs happen to be exactly
equal to the replenishment costs.

Sensitivity analysis

The assumptions of the EOQmodel are very restrictive and in the real world they are
rarely fulfilled. However, despite several more sophisticated models are available, the
EOQ formula is still widely used as an approximated solution in inventory control.
The reasons of the success of the EOQ formula are the following. Firstly, it is
very easy to implement and to apply in practice. Secondly, the model is robust
with respect to its parameters. Referring back to Figure 1.3, note that the total
cost curve is quite shallow in the neighborhood of the EOQ. This indicates that
reasonable sized deviations from the EOQ will have little impact on the total cost.

Mathematically, suppose we use the order quantity instead of Then, from
(1.1)-(1.3) we obtain

( )

( )
=

1

2

µ
+

2

¶
=

1

2

r
2

+
2

=
1

2

µ
+

¶
(1.4)

Then, it is evident that the relative cost increase, ( ) ( ) when using the
batch quantity instead of is a simple function of . It turns out that
even quite large deviations from the optimal order quantity will give very limited
cost increases. For example, if = 2, then ( ) ( ) = 1 25 This means
that an error of 100% in results in an increase in the average cost of only 25%.
Hence, if there are errors in the estimation of the cost and demand parameters, the
corresponding error in does not yield a substantial cost penalty. Moreover, it is
worth noting that the costs are even less sensitive to errors in the cost parameters.
For example, if we use a value of the replenishment cost which is 50% above the
correct replenishment cost, we can see from (1.2) that the resulting relative error in
the batch quantity is =

p
3 2 = 1 225 and the relative cost increase is only

about 2%. Consequently, we can conclude that the choice of cost parameters when
using the classical economic order quantity is not critical.



1. Fundamentals of Inventory Control 13

Powers-of-two restriction for the economic replenishment interval pro-
blem

Since the demand is known exactly, once the optimal order quantity is determined it
is easy to compute the corresponding replenishment interval. Obviously, the optimal
replenishment interval can be any positive real number, and hence, the solution is
often impractical to implement. Typically, there are pragmatic reasons that yield
orders can be placed only in certain time intervals which are multiples of a day, a
week, etc. As a result, it is common to fix a minimum replenishment interval such
as a day, a week, or other appropriate time period. This minimum replenishment in-
terval is usually referred to as base planning period, and the replenishment intervals
must be integer multiples of this period. In addition, if we force these integer multi-
ples to be powers of two, then, the solutions so obtained are called powers-of-two
policies.

In order to analyze the extension of the EOQ model to the case with powers-
of-two restriction, we express the EOQ formula in terms of replenishment intervals
instead of order quantities. Obviously, there is a relationship between the reple-
nishment intervals and the order quantities. If is the replenishment interval, then
clearly = . Hence, the average total cost (1.1) can be formulated in terms of
as follows

( ) = +
2

(1.5)

This problem is referred to as the economic replenishment interval problem and
it is easy to prove that

=

r
2

Thus the optimal solution is to place an order every time units. Since the lead
time is zero, the optimal policy is obviously to place and receive an order only when
the on-hand inventory level is zero.

As we have shown in the previous section, the average total cost is relatively
robust to the choice of or equivalently, to the choice of . For example, if = 2 ,
then, the corresponding average total cost exceeds the optimal cost by only 25%.
The robustness of the cost to the value of is an important factor a ecting the
usefulness of the powers-of-two policies.

Let us assume that the replenishment interval must be a power of two multiple
of the base planning period, . That is,
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= 2 {0 1 }

As we show below, the average cost for this type of policies exceed the optimal cost
at most 6%.

The powers-of-two replenishment interval problem can be formulated as follows

min ( ) = min +
2

(1.6)

s.t.

= 2 {0 1 } (1.7)

In order to solve problem (1.6)-(1.7) we define the following function

( ) = +
2

Since ( ) is a convex function, we solve problem (1.6)-(1.7) by finding the sma-
llest nonnegative integer value for which

(2 1 ) (2 ) (1.8)

and

(2 +1 ) (2 ) (1.9)

This condition reduces to finding the smallest nonnegative integer for which

1

2
2 2 (1.10)

where =
p
2

In fact, substituting (2 1 ) and (2 ) into (1.8) it follows

2 1
+

2 1

2 2
+

2

2

2 1

2 2
22 2 22

2 2



1. Fundamentals of Inventory Control 15

Similarly, from (1.9) we have

2 +1
+

2 +1

2 2
+

2

2

2

2 2 +1
22 2 2

1

2

Therefore, from (1.10) the optimal powers-of-two solution must be close to In
particular, it must be at least 0.707 times and at most 1.41 times .

In addition, note that if =
p
2 and = , then

( ) = +
2
= +

2
=

=
1
r

2
+

r
2
=

1

2
( +

1
) 2 =

1

2
( +

1
) ( )

Hence, since ( ) is convex and 2 2 we obtain

(2 ) ( 2 ) =
1

2
( 2 +

1

2
) ( ) ' 1 06 ( )

Thus, the powers-of-two solution has an objective function value that must be
very close to the optimal cost. In fact, the cost of the optimal powers-of-two policy
is at most 6% above the cost of the optimal policy.

As we will see, these results hold in most of the models that will be analyzed in
the following chapters. Therefore, the powers-of-two policies are widely implemented
in practice.

1.3.2 The Economic Production Quantity (EPQ) model

The EOQ formulation assumes that the whole replenishment quantity arrives at the
same time, that is, instantaneously. However, this assumption is often not realistic.
Frequently, items are produced and added to inventory gradually rather than all at
one. The Economic Production Quantity (EPQ) model revises the EOQ model to
introduce this change. Now, if the replenishment quantity becomes available at a
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rate of items per unit time, then the sawtoothed diagram of Figure 1.2 is modified
to that of Figure 1.4. Remark that the inventory level never is as large as the lot
size, since production and consumption occur simultaneously during the period of
production.

Time

Inventory

Level Slope = P-d Slope = -d

0

Q(1-d/P)

t=Q/d

Figure 1.4: Behaviour of inventory level for the case with finite production rate

Now, while production of a batch is underway, stock is accumulating at a rate
per unit time. The total time of production in a cycle is , so that, the

peak level of inventory in a cycle is (1 ) Therefore, the average inventory
level is (1 ) 2. Then, the total relevant costs are given by

( ) = +
(1 )

2

Proceeding as with the EOQ model, we obtain that the optimal lot size
which represents the Economic Production Quantity (EPQ), is given by

=

s
2

(1 )

Note that ( ) and have the same form as in the EOQ model. The unique
di erence, is that the constant is replaced by (1 ) That is, the EPQ is just
the EOQ multiplied by a correction factor.

Remark that the relative cost increase given in (1.4) remains valid for this case.
Also observe that if then the EPQmodel becomes the classical EOQmodel.
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1.4 Models with time-varying demand

In the previous models the demand occurs at a constant rate. These models are
robust to variations from their underlying assumptions, including demand variations.
However, there are situations where time variations in demand are so pronounced
that the constant demand rate assumption is seriously violated. For example, when
a firm delivers items which have a seasonal demand pattern.

When the demand rate varies with time we can no longer assume that the best
strategy is always to use the same replenishment quantity. In fact, this will seldom
be the case. Now, an exact analysis becomes complicated because the diagram of
inventory level versus time, even for a constant replenishment quantity, is no longer
the simple repeating sawtooth pattern as in Figure 1.2. This prevents us from
using simple average costs over a typical unit period, as was possible in the EOQ
derivation. Instead, under this situation we have to use the demand information over
a finite period when determining the appropriate value of the current replenishment
quantity. Such a period is known as the planning horizon and its length can have
important e ect on the total relevant costs of the selected strategy. The planning
horizon must be divided into periods and the demand at each period should be
determined and fulfilled at the beginning of that period without shortages. This
demand can be either continuous with time or can occur only at discrete equispaced
points in time. However, in most approaches all that is needed is the total demand
at each basic period. A common case is one in which the demand stays constant
throughout a period, only changing from one period to another. An illustration is
given in Figure 1.5. Besides, there is no initial stock and the whole batch is delivered
at the same time. The holding and replenishment costs are constant over time. In
addition, shortages are not allowed.

The goal consists of determining batch quantities so that the sum of the re-
plenishment and holding costs is minimized. This problem is usually denoted as
the classical dynamic lot size problem. However, since the original formulation of
the problem is due to Wagner and Whitin (1958), it is also called the Wagner and
Whitin problem. In particular, they develop an algorithm which is a dynamic pro-
gramming approach. Next, we present the formulation of the problem and review
some properties that the optimal solution must satisfy.

1.4.1 The Wagner and Whitin algorithm

Wagner and Whitin (1958) addressed the dynamic lot size problem assuming that
replenishments are constrained to arrive at the beginnings of periods, lead time is
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Time period

Demand

rate

1 2 3 4 5

Figure 1.5: Demand pattern when the rate stays constant through each period

zero and shortages are not allowed. Taking this into account, an appropriate method
of selecting replenishment quantities should lead to the arrival of replenishments only
at the beginning of periods when the inventory level is exactly zero. This condition
is usually referred to as ZIO (Zero Inventory Ordering) property and the solutions
which hold this property are called ZIO policies. Based on this property, Wagner and
Whitin (1958) developed an O( 2) algorithm to determine an optimal solution. This
algorithm is an application of dynamic programming. However, the computational
e ort often prohibitive in dynamic programming formulation, is significantly reduced
because of the use of the ZIO property. Another key property which is used in the
algorithm is that the holding costs for a period demand should never exceed the
setup cost. Eventually, the holding costs become so high that it is less expensive to
made another replenishment at a given period than to include its requirements in a
replenishment from many periods earlier.

In order to formulate the problem we introduce the following notation.

The demand at period = 1 2 , is given by , and the holding cost per unit
and time unit is denoted by and the fixed setup cost by The ending inventory
and the replenishment quantity in period are represented by and respectively.
Finally, we denote by ( ) the total cost of the best replenishment strategy that
satisfies the demand at periods 1 .

Now, the problem can be formulated as an integer program in the following way
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min
X
=1

( ) +

s.t.

= 1 + = 1

0 = 1

0 = 1 1

0 = = 0

where ( ) =

½
1 if 0
0 if = 0

And the equivalent dynamic programming formulation is

( ) = min

(
min
1

"
+

1X
=

X
= +1

+ ( 1)

#
+ ( 1)

)
where (1) = and (0) = 0

It is worth noting that
1P

=

P
= +1

represents the inventory holding costs of

periods +1 through . In contrast, + ( 1) corresponds to the case in which a
setup is performed in period increased by the best solution through period 1.

The Wagner and Whitin algorithm was generalized to the backlogging case by
Zangwill (1966). Most recently, very e cient methods for solving the dynamic
lot size problem have been provided by Federgruen and Tzur (1991, 1994a, 1995),
Aggarwal and Park (1993) and Wagelmans et al. (1992).

The extension to the case with finite production rate has been addressed by
Hill (1997a). In this work, Hill show how the finite production rate problem can
be transformed into a discrete time lot-sizing problem that can be solved by the
Wagner and Whitin algorithm or any of the other techniques currently available.

So far, we have analyzed inventory models for single locations. An exhaustive
compilation of these inventory systems and their solution methods can be found,
among others, in Naddor (1966), Tersine (1994), Plossl (1985), Narasimhan et al.
(1995), Chikán (1990), Silver et al. (1998) and Axsäter (2000). In the next chapter
we deal with inventory systems where several installations are coupled to each other.



Chapter 2

Multi-Echelon Inventory Systems

The control of inventories has been an important research topic in the field of Opera-
tions Research during the last century. Since Harris (1913) developed the classical
EOQ model, several authors have addressed di erent extensions of this model. As
we showed in Chapter 1, a large number of these extensions focus on determining
the optimal order quantity at a single location under di erent initial assumptions.
However, inventory systems in the real world usually involve multiple locations. In
this chapter, we illustrate how such systems arise in practice and we review the
most important references in the literature concerning these models. We finish this
chapter with a summary of the contributions of this thesis.

2.1 Introduction

In practice, it is frequent to deal with inventory systems where a number of installa-
tions are coupled to each other. For example, a common situation is a chain of
stores which are supplied by a single regional warehouse. This class of inventory
systems usually arise in both distribution and production contexts. In distribution
we meet such systems when products are distributed over large geographical areas.
In this case, it is convenient to establish local stocking points close to the customers
in di erent areas in order to provide good service. These local sites replenish from
a central warehouse close to the production facility. In the production framework,
stocks of raw materials, components and finished products are coupled to each other
in a similar way.

It is worth noting that in these situations, decisions made by one member of the
chain can a ect to all other locations. Hence, it is necessary that all members of
the supply chain collaborate and integrate their decision processes to achieve a more
e cient control. Typically, a supply chain consists of suppliers, manufacturing cen-
ters, warehouses and retailers, with raw material at the beginning, work-in-progress

21
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Figure 2.1: A scheme of a supply chain

at di erent stages of production and finished goods at the end. Figure 2.1 shows
the components of a supply chain.

Silver et al. (1998) define supply chain management as the management of ma-
terials and information across the entire supply chain, from suppliers to customers.
This topic covers multiple areas each one representing an issue within the supply
chain. Since inventory costs usually represent an important investment, the reduc-
tion of such costs is one of the most critical issues. The area into supply chain
management devoted to the e ective management of inventory in a supply chain is
what is known in the literature as multi-echelon inventory theory.

The first multi-echelon models were developed in the 1960s. The important
works of Clark and Scarf (1960, 1962) got considerable interest from both academics
and practitioners. The works of Hadley and Whitin (1963) and Veinott (1966)
provide excellent summaries of many of these early modeling e orts. This interest
on supply chain management and, in particular, on multi-echelon inventory systems
has increased considerably in the last decades. Thus, we can find many works in the
literature dealing with the problem of determining lot sizes in deterministic multi-
echelon inventory systems. In this chapter we review the most important aspects
of such works. However, we before illustrate how multi-echelon inventory systems
occur in practical supply chains and, what kind of system structures are common in
distribution and production contexts. Excellent reviews of multi-echelon inventory
systems are given in Muckstadt and Roundy (1993), Silver et at. (1998), Axsäter
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(2000) and Zipkin (2000), among others.

2.2 Production and Distribution Systems

Multi-echelon inventory systems appear in the production of the items and also when
they are distributed. In both cases, the items and the relationships between them
can be represented by a network, specifically by a directed graph. In particular, it
can be distinguished the serial, the assembly and the arborescent structures.

The simplest structure is a serial system where the items represent the outputs of
successive production stages or stocking points along a supply chain. Each product
is used as input to make the next one, or each location supplies the next one. Only
the first item receives supplies from outside the system, and only the last one meets
customer demands. An illustration of such systems is depicted in Figure 2.2.

N . . . . . . . 3 2 1

Figure 2.2: A serial system

The nodes represent the di erent stages and the arcs indicate the direction in
which material flows through the system. The simplest serial systems are those
with only two installations. In this case, customer demands take place at location
1 which is supplied by installation 2. Stage 2, in turn, replenishes from an outside
supplier. In particular, from a distribution point of view, stage 1 can represent a
retailer which satisfies customer demands in one area, while location 2 might be a
central warehouse close to the factory. In contrast, in a production context, stock
at stage 1 corresponds to the stock of a final product, and at stage 2 is the stock of
a subassembly, which is used when producing the final product. It is worth noting
that in both situations stage 1 can be seen as a customer of stage 2.

Next, we focus on the assembly and arborescent systems.

2.2.1 Production inventory systems

In a production environment, inventory systems usually consist of many stocking
locations at the beginning of the material flow and successively fewer stocks at the
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end of the flow, that is, a convergent flow. In particular, if each installation has at
most one immediate successor, as in Figure 2.3, we have an assembly system. In
these systems there is only one finished product which is assembled from a set of
components. Likewise, each component could be manufactured in several stages and
could also be assembled from several other parts.

It should be remarked that raw materials and components at the beginning of
the flow usually have much lower values than subassemblies and final products at
the end of the flow. Therefore, the holding costs are lower at the first locations
and hence, in general, for assembly systems it is better to keep stock early in the
material flow.

Figure 2.3: An assembly system

2.2.2 Distribution inventory systems

We now consider another special type of network structure corresponding to a dis-
tribution system. Figure 2.4 contains an illustration of this type of network. Notice
that a distribution system looks like a backwards assembly system. Material access
to the system at the first node and moves down through the di erent levels of the
system until it is consumed by external demand. Thus, in general, distribution sys-
tems are divergent. In a pure distribution system each stage is supplied by a unique
predecessor stage. These distribution systems are usually referred to as arborescent
systems.

Although this structure is more typical in distribution systems, it can also appear
in the production context. For example, this type of network is useful when there
is one raw material and several final products. The raw material is successively
specialized or refined as it moves down the production stages.
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Figure 2.4: A distribution system

In practice, it is very common to deal with two-level distribution systems where
a central warehouse supplies a number of retailers. Figure 2.5 is an example of this
type of system. In this case, the retailers satisfy customer demands and similarly,
the warehouse fulfills the demand at all retailers.

Figure 2.5: A two-level distribution inventory system

Obviously, a serial system is a special case of both an assembly and a distribution
system.

So far, we have discussed why and howmulti-echelon inventory systems appear in
practice. In the next section, we address the problem of determining order quantities
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for the serial, assembly and distribution systems with constant demand rate. In
particular, for each network structure, we will review some models and algorithms
for finding e ective inventory policies.

2.3 Serial systems

The serial systems represent the simplest extension to the single location models.
In these systems, instead of considering a single installation, there are stages and
each produced unit must go through all stages, beginning at stage and ending at
stage 1.

In this section we analyze a serial system considering that the assumptions related
to the parameters at each installation are identical to those in the EOQ model.
Hence, the demand is constant and continuous and the lead-times are zero. The
whole order quantity is delivered at the same time and shortages are not allowed. For
each stage = 1 , represents the total demand rate for the units produced
at stage . Note that several units at stage could be required to produce one
unit at stage 1. Hence, need not be the same for all stages. However, we
can select the units of measure for inventory at the di erent stages so that =
= 1 Besides, at each stage = 1 there is a holding cost per unit stored
per unit time, , and a fixed replenishment cost, Finally, the order quantity and
the replenishment interval at stage are denoted by and , respectively, for
= 1 .

Before introducing the formulation of the problem, we first discuss the form of
the optimal policy for these systems.

2.3.1 Nested policies

When trying to extend the EOQ model to the serial systems it arises the stationary
and nested policies. A stationary policy is one in which each facility orders the same
quantity at equally-spaced points in time. A policy is said to be nested if each time
a facility orders all its successors also order. It is worth noting that these policies
can be easily applied and hence, many authors have analyzed their performance
for several network structures. Although, in general, nested policies have not to
be optimal when they are implemented in multi-echelon inventory systems, they
are optimal for the serial systems. In order to prove this assertion we focus on a
two-stage system as in Figure 2.6.
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2 1

Figure 2.6: A two-stage serial system

Suppose that production occurs at time at stage 2 while no production occurs
at stage 1. Besides, let 0 be the earliest time after where production occurs
at stage 1. Then, the inventory produced at time at stage 2 must be held until at
least time 0 before it is used at stage 1. Now, consider an alternative production
plan in which the production at stage 2 starts at 0 instead at . In addition, all
other production times remain unchanged. Then, it is obvious that the number of
setups in the two plans is the same and, the holding costs are lower in the second
one. Accordingly, it is preferable to produce at stage 2 only when production occurs
at stage 1.

This proof can be easily extended for an -stage system by following an argument
similar to the previous one. Therefore, it can be stated the following theorem.

Theorem 2.1. For an stage serial system every non-nested policy is domina-
ted by a nested policy.

For a proof of this result see Love (1972) or Schwarz (1973).

However, notice that it is possible to have production at stage 1 without
having production at stage . Thus, it holds that 1, = 2 .

In order to formulate the problem it is also important to introduce the echelon
inventory which is a fundamental concept in multi-echelon systems.

2.3.2 Echelon inventory

For exposition purposes, we again restrict ourselves to the two-stage serial system.
Then, the two decision variables are the order quantities 1 and 2 Note that stage
2 only satisfies the demand at stage 1 which always orders the same quantity 1

Hence, it is clear that 2 should always be an integer multiple of 1. Therefore, we
can think of two alternative decision variables: 1 and where 2 = 1 with
a positive integer.

Figure 2.7 shows the behavior of the inventory levels for both stages assuming
that 2 = 3 1. Observe that the inventory fluctuations at stage 1 follow the usual
sawtooth pattern that arises in the single stage systems. Hence, the average on-
hand inventory is 1 2. However, the inventory fluctuations at stage 2 do not fit
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this form, and hence, the average on-hand inventory is not 2 2. Instead, in this
case, the average on-hand inventory at stage 2 can be computed as follows

1 1

P 1
=1

1
=

1 1 ( 1)

2 1
=
( 1) 1

2
(2.1)

Taking this into account, the average holding costs can be determined using the
on-hand inventories and the conventional holding costs.

Inventory level at stage 2

Time

Time

Inventory level at stage 1

T2

Q2

Q1

T1

Figure 2.7: On-hand inventory levels in a two-stage serial system

However, it is easier to use a di erent inventory concept introduced by Clark
and Scarf (1960), which is referred to as echelon inventory. They define the echelon
inventory of echelon as the number of units in the system that are at, or have
passed through, echelon but have as yet not been specifically committed to outside
customers. For example, in Figure 2.8 we represent by rectangles the echelons of
a four-stage system. As you can see, stage 1 is its own echelon. The external
supplier and all prior stages can be viewed as stage 1’s supply process. Similarly,
echelon 2 consists of the last two stages. This is another subsystem, whose supply
process includes the earlier stages 2. Thus, the entire system can be viewed as
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a hierarchy of nested subsystems, the echelons, each with a clearly defined supply
process.

Now, consider a multistage production process where at each stage the material
is transformed until the final item is produced. Notice that a unit of item
comprises of one of item and the echelon inventory allows to include downstream
inventory of an item. This definition yields each echelon inventory to have sawtooth
pattern with time and hence, the average value of an echelon inventory is easily
obtained. However, the average total holding costs cannot be determined by simply
multiplying each average echelon inventory by the standard holding costs and then,
summing all of them to obtain the average total holding costs. The reason is that
the same physical units of stock can appear in more than one echelon inventory.
For example, in a two-stage system the echelon inventory at stage 2 includes the
stock at stage 1. Therefore, the holding cost at stage 1 should only represent the
value added when moving the product from stage 2 to stage 1. This incremental
cost is exactly the echelon holding cost. Thus, in a two-stage system the echelon
inventory at stage 2 is 0

2 = 2, while the echelon inventory at stage 1 is 0
1 = 1 2.

More generally, in any multi-echelon inventory system, the echelon holding cost 0

at a particular stage is given by 0 =
P

, where the summation is over all
immediate predecessors, .

4 3 2 1

Figure 2.8: Echelons of a four-stage serial system

We provide now in Figure 2.9 the echelon inventory fluctuations in a two-stage
system. Notice that the echelon stock at stage 1 coincides with its on-hand inventory.
However, the echelon inventory at stage 2 is quite di erent. The echelon inventory
at stage 2 consists of the stock on-hand at stage 2, the shaded area in Figure 2.9,
plus the amount on-hand at stage 1, represented by the triangles. Therefore, the
echelon inventory fluctuations at both stages follow the usual sawtooth pattern as
in the EOQ model. Hence, the average echelon inventory at stage 1 and 2 is 1 2
and 2 2 respectively.
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Figure 2.9: Echelon inventory levels in a two-stage serial system

Now, we show that indistinctly using the echelon or on-hand inventories the
expression of the total holding costs is the same. Accordingly, we know that the
conventional average holding costs at stages 1 and 2 are, respectively, 1 1 2 and
2( 1) 1 2 Replacing now 1 and 2 by their expressions in terms of 0

1 and
0
2

we obtain

1 1 2 + 2( 1) 1 2 = (
0
1 +

0
2) 1 2 +

0
2 1 2

0
2 1 2 =

0
1 1 2 +

0
2 2 2

This fact indicates that determining the average holding cost using the conventional
way yields the same result as they were calculated applying the echelon inventories
and the echelon holding costs.

Once we have defined the echelon inventory, we can focus on how to compute
optimal policies for the serial systems. We first analyze the two-stage serial problem
and then, we deal with the general case.

2.3.3 Two-stage serial system

Let us consider a simple serial system where the final product at stage 1 is produced
from one unit of the component at stage 2, which, in turn, is obtained from an
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external supplier. Recall that we assume that the demand, , for the item at stage
1 is constant and continuous. Besides, at each stage there is a holding cost per unit
stored per unit time, and a fixed replenishment cost, = 1 2 In addition,
when delivering a batch, the whole order quantity is supplied at the same time and
shortages are not allowed. The goal is to determine the optimal order quantities,
1 and 2.

Since stage 1 faces constant continuous demand, the total average cost at this
stage is easily obtained as

1 = 1
1
+ 1

1

2
(2.2)

An approach for solving the problem consists of applying the classical EOQ
model to stage 1. Accordingly,

1 =

r
2 1

1

and the corresponding cost is 1 = 2 1 1

Then, we proceed to compute the value of 2 which minimizes the total average
cost at stage 2. Taking into account that the average conventional holding cost at
stage 2 is 2( 1) 1 2 the total average cost at this stage is given by

2 =
2

2
+

2( 1) 1

2

In addition, since it holds that 2 = 1 with a positive integer, 2 can be
formulated in terms of and 1 as follows

2 = 2
1
+ 2

( 1) 1

2
(2.3)

It is easy to see that (2.3) is convex in and, if we disregard that has to be
an integer, we obtain

=
1

1

r
2 2

2

Then, if 1 it is optimal to choose = 1. When 1, if 2(b c)

2(d e) we choose = b c and we set = d e otherwise. It is easy to see
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that 2(b c) 2(d e) if and only if ( )2 b c d e. Therefore, if ( )2

b c d e it is optimal to choose = b c

However, as we will show below this has not to be the optimal solution. Since
the order quantity at stage 1 will a ect the demand at stage 2, it is not feasible
to optimize stage 1 separately without considering the consequences for stage 2.
Therefore, for computing the optimal solution we have to minimize the total cost
for the system.

Using the echelon holding costs, the average total cost is given by

= 1
1
+ 0

1
1

2
+ 2

2
+ 0

2
2

2
(2.4)

Since 2 = 1 (2.4) can be reformulated in terms of 1 and as follows

=
1
( 1 +

2
) +

1

2
( 0
1 +

0
2) (2.5)

Now, for a given the optimal 1 is obtained from (2.5) by taking the derivative
equal to zero

1 =

s
2 ( 1 + 2 )

( 0
1 +

0
2)

(2.6)

Substituting (2.6) into (2.5) we obtain the optimal costs for a given as

( ) =

r
2 ( 1 +

2
)( 0

1 +
0
2) (2.7)

Note that minimizing ( ) is equivalent to minimizing ( ) = ( 1+ 2 )( 0
1+

0
2)

which is convex in Hence, the optimal integer satisfies ( ) ( + 1) and
( ) ( 1) In other words, ( + 1) 2

0
1 1

0
2 and ( 1) 2

0
1 1

0
2.

Therefore, the optimal value is the smallest integer satisfying

( 1)
2
0
1

1
0
2

( + 1)

Once the optimal value is computed, the order quantity 1 is obtained from (2.6),
and 2 from the relation 2 = 1. In fact, it is worth noting that for this case the
optimal policy is stationary and nested.
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2.3.4 -stage serial system

As we have showed previously, optimal policies for the two-stage serial systems
are very easy to compute. However, optimal solutions for serial systems with
installations can be surprisingly complex. Crowston et al. (1973) were pioneer
in the study of the serial system and they proved that in an optimal solution the
order quantity at each stage must be an integer multiple of the order quantity
at its successor stage. However, a few years later, Williams (1982) proved that
this property does not hold in general. In particular, Williams (1982) showed that
the proof of the property provided by Crowston et al. (1973) is defective at the
point where they extended their results for two-level serial systems to more general
serial systems. Therefore, the property is only valid for the two-level serial systems.
Moreover, the optimal policies for an -stage serial system can be very di cult to
compute since the order quantity at one or more of the stages can vary with time.
Accordingly, many authors have considered the possibility of restricting attention to
a simpler class of strategies with a high guaranteed cost performance. In particular,
Roundy (1985) introduced the powers-of-two policies which are 98% e ective. That
is, he proved that the cost of an optimal powers-of-two policy is at most 2% above
the optimal cost.

Next, we formulate the problem in terms of powers-of-two policies and we des-
cribe the procedure given by Roundy (1985) for solving it.

Powers-of-two policies

In a powers-of-two policy the orders are placed at equal intervals of time which are
powers of two multiples of a base planning period . Therefore, in order to analyze
these policies, it is better to formulate the model in terms of replenishment intervals
instead of order quantities. In addition, if we use the echelon holding costs we can
state the problem as follows

min
X
=1

( +
0

2
) (2.8)

s.t.

1 0 (2.9)

= 2 {0 1 } (2.10)
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Recall that by Theorem 2.1 optimal policies have to be nested. Note that cons-
traints (2.9) and (2.10) force policies to be nested. As you can see, it results in
a nonlinear integer programming problem where the integer decision variables are
, = 1 2 . However, due to its special structure, it can be easily solved.
Problem (2.8)-(2.10) turns out to have a very close relationship to its relaxation
without considering constraints given by (2.10).

Roundy (1985) first characterized the solution to problem (2.8)-(2.9) and then,
he showed its relationship to problem (2.8)-(2.10).

All variables in the relaxed problem (2.8)-(2.9) are continuous, and the cons-
traints are linear inequalities. Moreover, the objective function is strictly convex,
so the optimal solution is unique. Thus, one way to solve problem (2.8)-(2.9) is
to use a standard nonlinear-programming algorithm. However, we can exploit the
special structure of the problem to develop a simple and fast method. The key idea
consists of dropping constraints (2.9). Then, the optimal replenishment interval at
stage is = 2 = 1 Consequently, if increases with , we have
found the optimal solution since the resulting replenishment intervals will satisfy
constraints (2.9). Suppose that for some , 1 1 or equivalently, that

1 Also assume that in the optimal solution of problem (2.8)-(2.9) 1

This implies that since we would otherwise reduce , and that 1 1

since we would otherwise increase 1 But then, this means that 1 which is
a contradiction. Therefore, we can ensure that = 1 in the optimal solution of
problem (2.8)-(2.9). Accordingly, we can aggregate location 1 and location into
a single stage with replenishment cost 1+ and echelon holding cost 0

1+
0 .

Next, we consider the resulting reduced problem with 1 stages and repeat the
above procedure.

Therefore, we can conclude that solving problem (2.8)-(2.9) is equivalent to classi-
fying the stages into groups or clusters. Besides, all stages in a cluster will use the
same replenishment interval. In addition, local optimality implies that the reple-
nishment interval for the stages in cluster is ( ) =

q
2
P P

.

The O( log ) algorithm for computing an optimal ordered partition for a serial
system is given in Algorithm 2.1. This algorithm first computes the replenishment
interval at each stage. Then, if for some the constraint 1 0 does not
hold, both installations are collapsed into the same cluster and both use the same
replenishment interval. This procedure is repeated until all stages are assigned
to a cluster. The replenishments intervals for these cluster satisfy ( 1) ( 2)

( ), where is the number of clusters.

Once we have obtained the optimal partition of the serial system, the optimal
solution for problem (2.8)-(2.9) is given by = ( ) Now, these
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Algorithm 2.1 Procedure for computing an optimal partition for a serial system
Step 1
Set { } and ( ) 1, = 1 . Compute ( ), = 1 . Set

{1 2 } and 2 Note that ( ) is the node that precedes in the
sequence .
Step 2
If ( ) ( ( )), go to Step 4. Otherwise, collapse ( ) into that is,

( ) . Set ( ) ( ( )) and compute ( ) Go to Step 3.
Step 3
If ( ) 0, go to Step 2. Otherwise, go to Step 4.
Step 4
Set +1 If , go to Step 2. Otherwise, let be the number of clusters
and go to Step 5.
Step 5
Reindex the clusters so that if and , then Stop.

replenishment intervals are rounded o to powers of two multiples of a base planning
period, In particular, for each we choose = 2 where is the
smallest nonnegative integer value satisfying

2 1

2
2 (2.11)

It should be notice that if then, where is computed using
(2.11). Therefore, the above powers-of-two solution also satisfies constraints (2.9)
and, then, it is an optimal solution for problem (2.8)-(2.10).

An analysis of the worst-case behavior of the above procedure is given in Muck-
stadt and Roundy (1993), where they compute an upper bound on the optimal
objective function value to problem (2.8)-(2.10) which is compared with a lower
bound. It is important to remark that the solution to problem (2.8)-(2.9) represents
a lower bound on the average cost of any feasible policy for the original system,
including policies that are neither powers-of-two nor stationary. Taking this into
account, it can be proved that the cost of an optimal powers-of-two policy is within
6% of the solution of problem (2.8)-(2.10). Moreover, since nested policies are op-
timal for the serial systems, the above procedure is guaranteed to compute a policy
whose cost is at most 6% above the cost of an optimal policy.

An alternative procedure for rounding o the replenishment intervals to powers
of two multiples of a base planning period can be found in Roundy (1986). This
procedure requires that be treated as a variable and has the advantage of com-
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puting policies that are within 2% of optimal. However, since for many systems the
base planning period is determined by the times at which information is reported,
in general, cannot be treated as a variable.

2.4 Assembly Systems

In this section we extend the analysis to assembly systems. Recall that in such
systems a single finished product is assembled from a set of components. Each
component could be manufactured in several stages and could also be assembled
from several other parts. In addition, each installation has at most one downstream
successor. For simplicity, we assume that item or component is produced at stage
, which is consumed by its unique immediate successor stage. We also consider
that the finished product is assembled at stage 1 which has no successor stage.
In fact, stage 1 must satisfy the external demand, which remains to be constant,
continuous, and met without backlogging. All other assumptions that have been
considered for the serial systems hold here as well. That is, the lead-times are zero
and the replenishments are instantaneous. For each stage = 1 , and
represent the fixed replenishment cost and the unit holding cost. The order quantity
and the replenishment interval for stage are denoted by and , respectively,
= 1 . The goal consists of determining the order quantities or, equivalently,

the replenishment intervals, which minimize the average total cost.

2.4.1 Nested policies

We have shown that nested policies are optimal for serial systems. Each stage of
an assembly system has either no external demand and a unique successor, or no
successor and external demand. Therefore, the same argument could be used to show
that nested policies are optimal for assembly systems as Theorem 2.2 enunciates.

Theorem 2.2. For an assembly system every non-nested policy is dominated
by a nested policy.

Crowston et al. (1973) also state that in an optimal policy for an assembly
system the lot size at each stage must be an integer multiple of the lot size at its
successor stage. However, recall that Williams (1982) proved that this property does
not hold for the serial systems with more than two stages. Since a serial system is
a special case of an assembly systems, it is obvious that this property is not verified
for assembly systems with more than two levels.

In spite of this, many authors have let upstream order quantities be integer
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multiples of downstream order quantities. For example, Schwarz and Schrage (1975)
developed a branch and bound procedure for computing an optimal policy verifying
the above property. In this work, Schwarz and Schrage (1975) also studied the
performance of other class of policies known as myopic policies. In a myopic policy
the objective function is optimized with respect to any two stages and multistage
interaction e ects are ignored. These policies require less information and they are
very easy to understand and to compute. However, the policies which are most
applied in practice are the powers-of-two policies introduced by Roundy (1985).
Next, we focus on how to compute an optimal powers-of-two policy for an assembly
system.

Powers-of-two policies

Using the echelon holding costs, the problem of finding an optimal powers-of-two
policy for an assembly system can be written as follows

min
X
=1

( +
0

2
) (2.12)

s.t.

0 (2.13)

= 2 {0 1 } (2.14)

where is the immediate successor of stage and is a base planning period.

The key ideas for solving problem (2.12)-(2.14) are similar to those introduced
for the serial systems. First, we solve the problem dropping constraints (2.14).
Then, the replenishment intervals thus obtained are rounded o to get a feasible
nested powers-of-two policy. Analogously to the serial systems, it can be shown that
the solution to problem (2.12)-(2.13) divides the assembly system into connected
subgraphs or clusters. The nodes in these connected subgraphs are sets of stages
whose costs induce them to place orders simultaneously. Thus, finding the clusters is
equivalent to solving problem (2.12)-(2.13). It also can be proved that the solution
of the relaxed problem is a lower bound on the average cost of any feasible solution
to problem (2.12)-(2.14). Moreover, when the replenishment intervals are rounded
o to powers of two multiples of a base planning period , the cost of the resulting
policy is proved to be within 6% of optimal, if is fixed, or 2% if is variable.
In addition, the computational complexity of this approach is also O( log )
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To this point, we have studied the serial and the assembly systems. In the next
section, we focus on the distribution systems.

2.5 Distribution Systems

As we have commented, a distribution system looks like a backwards assembly sys-
tem. Usually, the first node represents a central warehouse and the ending nodes
correspond to retailers. The nodes in the middle are intermediate stocking points,
such as regional warehouses. In what follows, we restrict our attention to the two-
level distribution systems which are usually referred to as the one-warehouse -

retailer problem. We assume that customer demands occur at each retailer at a
constant rate and shortages are not allowed. The costs defined for the serial and
assembly systems also apply to this case. That is, there is a holding cost per unit
stored per unit time and a fixed charge for each order placed at the warehouse and
at each retailer. Accordingly, and represent the fixed replenishment cost and
the holding cost per unit time at retailer = 1 , respectively. Similarly, the
fixed replenishment cost and the holding cost per unit time at the warehouse are
denoted by 0 and 0, respectively.

Recall that for the two-level serial and assembly systems optimal policies have
to be stationary and nested. However, these properties do not hold to two-level
distribution systems. Thus, for these systems the computation of optimal policies
becomes a more di cult task. Hence, it is not surprising that many authors have
combined e orts to achieve advances in the control of inventories for these systems.
This is also the main objective of this dissertation.

Many researchers have considered the possibility of focusing their attention on a
simpler class of strategies. The simplest policies are those which are stationary. In
addition, although they are not necessarily optimal, stationary policies are of signi-
ficant practical importance. For example, companies often use this kind of policies
to schedule their operations in regular intervals so that the same set of activities
is repeated at constant time cycles. Thus, their replenishments are conducted in a
stationary fashion.

We next review the most important contributions concerning stationary and
nested policies for the two-level distribution systems. Such policies are also referred
to as single-cycle policies.
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2.5.1 Single-cycle policies

Schwarz (1973) was one of the first on studying the one-warehouse -retailer pro-
blem. He developed a procedure to calculate stationary and nested policies for these
systems. This author showed that such policies are optimal for the one-warehouse
and identical retailers system, and he provided a solution method to solve the
problem. For the general case he developed a heuristic procedure. This heuristic
yields good results when the number of retailers is smaller than 10. However, when
the number of retailers increases the solutions obtained by the Schwarz heuristic are
not very e ective.

A few years later, Graves and Schwarz (1977) developed an exact procedure
based on a branch and bound scheme to compute optimal single-cycle policies. Un-
fortunately, this approach can theoretically generate an infinite number of branches
at each level of the enumeration tree. Hence, the computational e ort increases
exponentially with the number of retailers and the procedure is not suitable when
the number of retailers is significantly large.

However, in Muckstadt and Roundy (1993) we can find an e ective heuristic
for computing stationary and nested policies. Again, the key idea is to focus on
single-cycle policies which are also powers-of-two.

Single-cycle powers-of-two policies

The problem of finding an optimal stationary nested powers-of-two policy for the
one-warehouse -retailer problem can be formulated using the echelon holding costs
as follows

min
X
=0

( +
0

2
) (2.15)

s.t.

0 0 (2.16)

= 2 {0 1 } (2.17)

where 0 denotes the replenishment interval at the warehouse.

Similar to the serial and assembly systems, we first relax the constraints in (2.17)
and solve the resulting problem. Then, we round o the replenishment intervals
thus computed to powers of two multiples of . It is worth noting that the only
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di erence between problem (2.12)-(2.13) and problem (2.15)-(2.16) is the form of
the constraint (2.16). Note that here the arcs are oriented away from the root, that
is, from the warehouse, whereas in the assembly systems they are oriented towards
the root. Hence, we can transform problem (2.15)-(2.16) into an instance of problem
(2.12)-(2.13) by setting = 1 which yields the following formulation

min
X
=0

( +
0

2
) (2.18)

s.t.

0 0 (2.19)

Now, problem (2.18)-(2.19) is of the form of problem (2.12)-(2.13). Therefore, the
O( log ) approach introduced for the assembly systems can be also applied in
this case. Consequently, we can compute an optimal powers-of-two policy which is
within 6% of the cost of an optimal nested policy, or within 2% if the base period is
treated as a variable. Observe that for the distribution systems we can only ensure
that single-cycle powers-of-two policies are 98% e ective whitin the class of nested
policies. However, these policies are not always so e cient with respect to the global
optimal policy.

In Chapter 3 we propose a new heuristic for computing near-optimal single-
cycle policies for the one-warehouse -retailer problem. This method is compared
with the heuristics proposed by Schwarz (1973) and Muckstadt and Roundy (1993).
We show that the new heuristic provides, on average, better single-cycle policies
than the other approaches. In addition, we also illustrate how the problem should
be addressed in case of each retailer orders independently, as does the warehouse.
Under this situation, we propose a two-level optimization approach which consists
of computing first the order quantities at the retailers, and then, determining the
inventory policy for the warehouse.

The single-cycle policies can be very e cient and have clear managerial advanta-
ges. However, as Roundy (1983) showed, in some situations the optimal nested
policies can have very low e ectiveness. For that reason, Roundy (1985) dropped
the assumption of nestedness and he analyzed a more general class of policies referred
to as integer-ratio policies. We introduce such policies in the next subsection.
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2.5.2 Integer-ratio policies

In these policies the warehouse orders at equally-spaced points in time and each
retailer follows an EOQ pattern. Besides, the replenishment interval at the ware-
house, 0 and the replenishment interval at retailer , must satisfy that either

0 or 0 is a positive integer. Notice that following this policy, the warehouse
has not necessarily to order the same quantity each time an order is placed. There-
fore, integer-ratio policies are always stationary at the retailers but may not be at
the warehouse. In particular, Roundy (1985) focused on the integer-ratio policies
which are also powers-of-two, that is, 0 or 0 is a power of two, proving that
these policies are very e ective. Specifically, Roundy (1985) showed that the cost
of an optimal integer-ratio powers-of-two policy is at most 2% above the cost of an
optimal policy.

Integer-ratio powers-of-two policies

Let now review Roundy’s approach for computing an optimal powers-of-two policy.
In order to determine the average holding costs, Roundy (1985) distinguishes between
the retailers with replenishment interval greater and smaller than the replenishment
interval at the warehouse.

Notice that if 0, then = 0 with integer, and therefore, each time
retailer places an order, so does the warehouse. Hence, the warehouse has not to
hold inventory for the retailers with replenishment interval greater than 0. Taking
this into account, at these retailers we should consider the conventional holding
costs instead of the echelon holding costs. Thus, the average cost of holding all
inventory in the system that is destined to retailer , with 0 is given by

2 = 0 2 + 0 2

However, when 0 0 can be expressed as an integer multiple of , that
is, 0 = . Under this situation it is convenient to use the echelon inventory to
compute the holding costs. Hence, the average cost of holding all inventory in the
system associated with retailer , with 0 is 0 2 + 0 0 2

Therefore, the average total cost is given by

=
X
=0

+
X
=1

(
0

2
+

0 max{ 0}

2
)

Since we are restricting to powers-of-two policies, we must consider the following
constraints related to the replenishment intervals
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= 2 {0 1 } = 0

Consequently, the problem of finding an optimal integer-ratio powers-of-two
policy can be stated as follows

min
X
=0

+
X
=1

(
0

2
+

0 max{ 0}

2
) (2.20)

s.t.

= 2 {0 1 } = 0 (2.21)

Roundy (1985) solves this problem dropping constraints (2.21) and then, mini-
mizing (2.20) for 0 = 0 After that, he rounds o the replenishment
intervals thus computed to powers of two multiples of . Again, the cost of the
computed policy is within 6% of the optimal cost, if the base period is fixed, and
within 2%, if is variable.

Moreover, it is possible to show that the solution which minimizes (2.20) is a
lower bound on the average cost of any feasible policy. When we analyzed the
single-cycle policies we showed that it was always possible to compute a single-cycle
policy whose cost is close to the cost of an optimal nested policy. However, optimal
nested policies can be far from the global optimal policies. In contrast, the optimal
integer-ratio powers-of-two policies are close to the global optimal policies.

We outline now how (2.20) can be e ciently minimized. The key idea consists of
clustering the retailers into three sets: , and . Those retailers that place orders
less frequently than the warehouse are in set In set are the retailers placing
orders more frequently than the warehouse. Finally, those retailers that place orders
simultaneously with the warehouse belong to set .

The procedure for computing sets , , and is given in Algorithm 2.2.

Once the replenishment intervals ’ which minimize (2.20) are computed, they
have to be rounded o to powers of two multiples of a base planning period If
is fixed, the rounded o replenishment interval for a given facility is = 2

where is the smallest nonnegative integer value satisfying 2 1 2 2
If is variable, the algorithm for computing optimal powers-of-two policies can be
found in Roundy (1985). Moreover, it can be proved that an optimal integer-ratio
powers-of-two policy can be computed in O( log ).

In Chapter 4 we present an alternative approach for computing integer-ratio
policies. This new approach is compared with the one proposed by Roundy (1985).
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Algorithm 2.2 Procedure for computing sets , , and
Step 1

Calculate the replenishment interval
0

=
³

2

( + 0)

´1 2
and =

³
2
´1 2

and
sort them to form a nondecreasing sequence of 2 numbers. This sequence is
denoted by Label each replenishment interval with the value of and with
a flag indicating whether it is the conventional replenishment interval

0

or the
echelon replenishment interval
Step 2

Set = = = {1 } = 0 and = 0

P
=1

2

Step 3
Let be the largest element in If

2
and = is an echelon replenishment

interval, remove from and update , , , and as follows: { }
\{ } + and + 2. Then go to Step 3.

If
2

and =
0

is a conventional replenishment interval, remove from
and update , , , and as follows: \{ } { }

( + 0) 2, and and go to Step 3. Otherwise, the
current sets , , and are optimal. Go to step 4.
Step 4

Set 0 =
q

and = 0 for all retailers For retailers , consider

=
q

2

( + 0)
, and for retailers set =

q
2 . Stop.

The computational results will show that the new heuristic provides, on average,
better policies than those given by the Roundy procedure.

2.6 Multi-echelon inventory systems with finite
production rates

All previous models assume that the production or the replenishment occurs instanta-
neously, that is, the production rate is infinite. However, often a stage corresponds to
a manufacturing operation where production occurs at a finite rate. Hence, several
researches have extended the previous problems to include finite production rates.
Accordingly, Schwarz and Schrage (1975) considered an assembly system under the
assumption that material is transferred from one stage to another only after a batch
is completed.
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Szendrovits (1975) studied serial systems in which a single replenishment interval
is used at all stages. In addition, material is transferred between stages in batches
of size , with 1 , where is the demand rate.

Atkins, Queyranne and Sun (1992) obtained e ective policies for assembly sys-
tems with finite production rates. Specifically, they assumed that the processing rate
at the successor of node is not less than node ’s processing rate, for all . They
also proved that the class of powers-of-two policies introduced by Roundy (1985)
extends to finite production rate assembly systems. In particular, they showed that
an optimal powers-of-two policy can be derived in O( log ) time and its cost is
within 2% of the optimum in the worst case.

We can also find in the literature many works dealing with systems where a
single vendor produces an item which is supplied to a buyer. For such systems,
the total costs incurred by the vendor and the buyer can be reduced significantly
by integrating the vendor’s as well as the buyer’s production/inventory problem.
For that reason, most researches have conducted their e orts in studying integrated
vendor-buyer inventory models. A large number of contributions on this model are
confined to considering a single buyer. Although, in practice, the vendor usually
supplies multiple buyers, we find few references in the literature addressing the
multiple buyers case. Chapter 5 of this dissertation is devoted to the single-vendor
multi-buyer problem.

2.7 Conclusions

Multi-echelon inventory systems are very common in practice. For example, con-
sumers often do not purchase products directly from the producer. Instead, products
are usually distributed through regional warehouses and local retailers to the con-
sumer, that is, through a multi-echelon distribution system. In production, stocks
of raw materials, components, and finished products are similarly coupled to each
other. In this chapter we have introduced the typical structures that can appear
in multi-echelon inventory systems: serial, assembly and distribution systems. Fur-
thermore, we have reviewed the most important models and algorithms for solving
lot sizing problems for these systems with constant demand rates.

For the two-level serial and assembly systems, optimal policies are stationary
and nested which can be computed easily. When there are more than two levels
the optimal policy remains to be nested although not necessarily stationary. In
spite of this, if we restrict ourselves to nested, stationary and powers-of-two policies
we can obtain a policy whose cost is at most 2% above the cost of an optimal
policy. However, as we have pointed out, for distribution systems the form of the
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optimal policies can be very complex even when we restrict ourselves to the two-level
distribution systems.

This dissertation is mainly concerned with such systems. In particular, Chapters
3 and 4 are devoted to the two-level distribution systems assuming that production
is instantaneous. Finally, in Chapter 5 we address the problem considering finite
production rate.

To conclude this section, we present in Tables 2.1 and 2.2 the current literature
that have been summarized in this chapter. We also include the contributions of
this dissertation which are to be developed in the next chapters.
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Chapter 3

The one-warehouse -retailer problem:
Single-cycle versus decentralized policies

This thesis is concerned to the study of the two-level distribution systems often
referred to as the one-warehouse -retailer systems. As we show in Chapter 2,
we can easily obtain optimal policies for the two-level serial and assembly systems.
However, the computation of optimal policies for the two-level distribution systems
is much more complex. In particular, Arkin et al. (1989) proved that the one-
warehouse -retailer problem is an NP-hard problem, that is, it cannot be solved
by polynomial time algorithms. Hence, in the last decades, extensive research e orts
have been addressed to attempt e cient heuristics for solving the one-warehouse -
retailer problem. In this chapter we analyze the single-cycle policies which are one
of the simplest policies that can be applied to these systems.

3.1 Introduction

The one-warehouse -retailer problem represents a special category of inventory
systems encountered frequently in practice. Due to their applicability in real world
situations, these multi-echelon systems have caught many researchers’ attention.
Excellent reviews of such systems can be found in Muckstadt and Roundy (1993),
Silver et at. (1998), Axsäter (2000) and Zipkin (2000), among others.

In this problem, the warehouse is the sole supplier of retailers and customer
demands occur at each retailer at a constant rate. This demand must be met as
it occurs over an infinite horizon without shortages. Orders placed by retailers
generate demands at the warehouse which in turn orders from an outside supplier.
In addition, delivery of orders is assumed to be instantaneous, that is, lead times
are assumed to be zero. The considered costs are a holding cost and a fixed charge
for each replenishment placed at the warehouse and at each retailer.

49



50 3.1. Introduction

The one-warehouse -retailer system was examined by Schwarz (1973) who de-
termined the necessary conditions of an optimal policy. He proved that an optimal
policy can be found in the set of basic policies. A basic policy is any feasible policy
where deliveries are made to the warehouse only when the warehouse has zero in-
ventory and, at least one retailer has zero inventory. Moreover, deliveries are made
to any given retailer only when that retailer has zero inventory. In addition, all
deliveries made to any given retailer between successive deliveries to the warehouse
are of equal size. However, Schwarz (1973) also showed that the form of the optimal
policy can be very complex. In particular, it can require that the order quantity at
one or more of the locations varies with time even though all relevant demand and
cost factors are time invariant. Thus, many authors have considered the possibility
of restricting attention to a simpler class of strategies, as the single-cycle policies.

In this chapter we review the di erent procedures proposed in the literature for
computing single-cycle policies. In particular, we focus on the works of Schwarz
(1973), Graves and Schwarz (1977) and Muckstadt and Roundy (1993). In addition,
we propose an alternative heuristic for obtaining very e ective single-cycle policies
which is compared with the previous approaches.

It is worth noting that all these procedures assume that the decision system
is centralized. However, we also show how the problem should be addressed if the
decision system is decentralized, that is, if each retailer orders independently, as does
the warehouse. Under this situation, we propose a two-level optimization approach
which consists of computing first the order quantities at the retailers, and then,
determining the inventory policy for the warehouse.

The remainder of the chapter is organized as follows. In Section 3.2 we introduce
the notation required to state the problem. In Section 3.3 we analyze the one-
warehouse -retailer problem assuming that the decision system is centralized. In
particular, we focus on the simplest policies that can be applied under this situation.
Such policies consists of forcing the retailers to place their orders at common time
instants. In Section 3.4 we drop this assumption and we allow the retailers to
place their orders at di erent time instants. Concretely, we analyze the single-
cycle policies and we summarize the di erent procedures introduced by Schwarz
(1973), Graves and Schwarz (1977) and Muckstadt and Roundy (1993). We also
introduce a new heuristic for computing single-cycle policies. Section 3.5 deals
with the decentralized situation, that is, when the retailers order independently.
In Section 3.6 we solve a numerical example with the di erent procedures that have
been introduced. Computational results are reported in Section 3.7. Finally, we
draw some conclusions in Section 3.8.
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3.2 Notation and Problem statement

Most of the notation required to formulate the one-warehouse -retailer problem
has been already introduced in Chapter 2. Recall that the input data associated
with the retailers are , and which represent the constant and continuous
demand rate, the fixed replenishment cost and the holding cost per unit time at
retailer = 1 , respectively. The fixed replenishment cost and the holding
cost per unit time at the warehouse are denoted by 0 and 0, respectively. We
also introduced in Chapter 2 the echelon inventory concept which facilitates the
computation of the average inventory at the warehouse. In particular, for the one-
warehouse -retailer problem, the echelon holding cost at retailer = 1 is
0 = 0 and the echelon holding cost at the warehouse is 0

0 = 0.

When we analyze the problem assuming that the decision system is centralized,
0 represents the demand per unit time at the warehouse and the decision variables
are the replenishment intervals at the retailers, = 1 , and at the warehouse,
0. Obviously, since the demand is constant, once the replenishment intervals are
established, it is easy to compute the corresponding order quantities at the retailers,
denoted by = 1 , and at the warehouse, 0

In case of independence among the warehouse and the retailers, we first compute
the replenishment intervals at the retailers = 1 , or equivalently, the order
quantities = 1 , and then, we determine the shipment schedule at the
warehouse. Accordingly, the warehouse behaves as an inventory system with time-
varying demand. Under this situation, a time horizon at the warehouse, 0 is
determined. Then, we compute the demand vector at the warehouse denoted by 0.
Similarly, 0 represents a vector that contains the time instants where the retailers
place their orders to the warehouse. Finally, we denote by 0 the order quantities
vector at the warehouse.

The total costs per unit time incurred by retailer = 1 , the warehouse
and the total system are 0 and , respectively. In addition, since the retailers
follow an EOQ pattern the average total cost can be stated as follows

= 0 +
X
=1

= 0 +
X
=1

( +
2

) (3.1)

Depending on whether there exists dependence or not among the warehouse and
the retailers, the average cost at the warehouse should be formulated in a di erent
way.

First, let us analyze the problem assuming that the decision system is centralized.
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3.3 Centralized policies with common replenish-
ment intervals

In this section we assume that the decision system is centralized. This situation is
very common in practice, for example, when the warehouse and the retailers belong
to the same firm. In this case, the firm should pay all the costs and hence, the goal
is to minimize the average total cost, that is, the average cost at the warehouse plus
the average costs at the retailers. Since the firm is the unique decision-maker, it can
force the retailers to place their orders at some time instants.

The simplest policy consists of forcing the retailers to place their orders at com-
mon time instants, say every time units. Then, the average cost at each retailer
= 1 is = 2 +

Let be the sum of the demands at the retailers, i.e., =
P

=1 . Since all
retailers place an order at the same time, the one-warehouse -retailer problem
can be viewed as a one-warehouse one-retailer problem where the demand per unit
time at the warehouse is 0 = Besides, the new big retailer orders the sum of the
quantities ordered by the original retailers, that is, it orders =

P
=1 units of

item every time units.

Recall that Crowston et al. (1973) andWilliams (1982) proved that in an optimal
solution the order quantity at the warehouse must be an integer multiple of the order
quantity at the retailer. Therefore, in the previous situation it holds that 0 =
with a positive integer. Then, using (2.1) the average cost at the warehouse is
given by 0 = 0( 1) 2 + 0

Now, the average total cost can be written as follows

=
2

X
=1

( + 0( 1) ) +
1X

=1

( +
0
)

Note that the overall cost depends only on and . In order to calculate the
optimal solution ( ) we need Lemma 3.1.

Lemma 3.1 If 0 = 1 , and is a continuous variable, then is

convex over the region: { : 0 0 ( )}, and has its global minimum

at ( ) where ( ) = 1 2 0

0 0
2(1 + =1

0
)1 2 1

1 2

and
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=

2(
P
=1

+ 0 )

P
=1

+ 0( 1) 0

1 2

(3.2)

=

0(
P
=1

0 0)

0 0

P
=1

1 2

(3.3)

Proof.

Assuming that is a continuous variable and setting the first partial derivatives
of equal to zero, we obtain by (3.2) and by (3.3).

It is easy to see that the Hessian is positive definite at = and =
therefore, has a local minimum at ( )

The Hessian matrix is non-negative definite for any and in the region { :
0 0 ( )}, and ( ) . Thus, is convex on with the
global minimum at ( )

From value , we can obtain the optimal order quantities at each retailer, that
is,

= = 1 (3.4)

and

0 =
X
=1

(3.5)

where is the nearest integer to .

Summarizing, if the firm forces the retailers to place their orders at the same
time instants, the optimal solution is given by the formulae in Table 3.1.

However, due to some reasons such as logistics problems, it could be preferable
to satisfy the demand at the retailers at di erent time instants. We address this
case in the following section.
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Table 3.1: Optimal solution assuming common replenishment intervals

Time Quantity

Retailer 1 1 = =
2

=1
+ 0

=1
+ 0( 1)

1 2

1 = 1

Retailer 2 2 = 2 = 2

... ... ...
Retailer = =

Warehouse 0 = with the nearest integer to 0 =
P
=1

3.4 Single-cycle policies

We continue assuming that the decision system is centralized. However, we now
allow the retailers to place their orders at di erent time instants , = 1
In particular, we deal with the class of single-cycle policies. Therefore, the unique
condition that must be verified is that there must exist 1 2 N, such that,
1 1 = 2 2 = · · · = = 0 It is worth noting, that we can use either 0 and
’s or 0 and ’s as variables, where represents the number of replenishment at
retailer during 0, = 1

The objective consists of minimizing the average total cost, that is, the sum of
the average holding and replenishment costs at the retailers and at the warehouse.
As we showed in Chapter 2, the problem of computing an optimal single-cycle policy
using the echelon holding costs can be formulated as follows

min =
X
=0

( +
0

2
) (3.6)

s.t. 1 1 = 2 2 = · · · = = 0 (3.7)

1 integer (3.8)
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where 0 =
P

=1 .

As we have previously commented, many authors have addressed this problem.
Next, we summarize the most important contributions in the literature.

3.4.1 The Schwarz heuristic

Schwarz (1973) proved that single-cycle policies are optimal for the one-warehouse
one-retailer problem, and for the one-warehouse -identical retailers system. For the
general case with di erent retailers, he developed a heuristic procedure. Moreover,
he proved that single-cycle policies obtained with this approach are e ective when
the number of retailers is smaller than 10. Otherwise, the policies provided by the
Schwarz procedure are not very e ective.

The Schwarz approach is based on the calculation of the replenishment interval
at the warehouse, i.e., 0. Once 0 is known, the number of deliveries made to retailer
during 0, i.e., = 1 , is computed. This method is sketched in Algorithm
3.1.

3.4.2 The Graves and Schwarz procedure

Unfortunately, in general, the solutions provided by the Schwarz approach are not
very e ective. For that reason, Graves and Schwarz (1977) developed another pro-
cedure to calculate optimal single-cycle policies for the one-warehouse -retailer
problem. This procedure consists of searching, via a branch and bound scheme,
the number of replenishments at each retailer during 0 i.e., = 1 . The
search begins by generating a feasible initial solution ( 1 2 ). Notice that
this initial solution can be considered as a heuristic solution. Then, a branch and
bound scheme is used to improve the initial solution. There are levels in the
enumeration tree and each level corresponds to a di erent . At level , is set
to an integer value, namely, = . For a given branch at level a lower bound,
, is determined by ignoring the integrality constraint. At level , is set to an

integer value, namely , with ( ) and the corresponding lower bound
is computed. If such lower bound exceeds the cost of any known feasible solution,
the investigation of all ( ) may be ignored. This is due to the fact
that the function is convex, and therefore, the corresponding lower bounds for all

( ) will also exceed the value of the feasible solution. This method is
given in detail in Algorithm 3.2.
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Algorithm 3.1 The Schwarz heuristic
Step 1
For each retailer = 1 , calculate the optimal replenishment interval, that
is,

=
2

0

¸1 2
(3.9)

In addition, the optimal replenishment interval at the warehouse is computed as

0 =
2 0

0
0
0

¸1 2
(3.10)

Step 2
If 0 max{ } set 0 = 0 Otherwise, define

= { | 0 } (3.11)

and 0 is given by

0 =

"
2( 0 +

P
)

0
0 0 +

P
0

#1 2
(3.12)

Step 3
Set equal to the integer value that minimizes the cost at retailer = 1
That is, choose , = 1 , such that

=
0
+

0
0

2
(3.13)

is minimum.

Notice that is the nearest integer to = 0

h
0

2

i1 2
, = 1
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Algorithm 3.2 The Graves and Schwarz procedure
Step 1
Sort the retailers so that retailer retailer if, and only if, 0 0 .
Step 2
Initialize = .
Calculate the smallest integer , = 1 satisfying

( + 1)
b
0
0b0
0 0

(3.14)

where b
0 = 0 +

1X
=1

and

b
0 =

0
0 +

1X
=1

0

0

Initialize = , = 1 , and calculate the overall cost.
Step 3
If 1, branch at level setting and until all the possible values
for have been examined. If the lower bound associated with one node
at level is smaller than the cost of the current feasible solution, then continue
exploring the tree for levels = +1 . If a better feasible solution is obtained,
e.g. ( 0

1
0
2

0 ), the cost associated to this policy must be calculated and the
values ’ should be updated applying = 0 , = 1 .
Set = 1
If = 0, stop, the current ’s are the optimal integer values. Otherwise, go to
Step 2.
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3.4.3 The Muckstadt and Roundy approach

Muckstadt and Roundy (1993) analyzed the single-cycle powers-of-two policies. Re-
call that in these policies the replenishment intervals are powers of two multiples of
the base planning period that is, = 2 = 0 and = 1 2 They
proved that an optimal single-cycle powers-of-two policy can be computed in O(
log ) with at least 94% e ectiveness. That is, when we restrict ourselves to such
policies, we can guarantee that the cost of the optimal single-cycle powers-of-two
policy is at most 6% above the cost of an optimal single-cycle policy. Even more,
Muckstadt and Roundy (1993) showed that if is considered as a variable the
margin of 6% obtained when is fixed is reduced to 2%.

Muckstadt and Roundy (1993) first solve the problem ignoring the powers of
two constraints. They proved that solving this relaxed problem is equivalent to
classifying the retailers and the warehouse in clusters, so that all locations in a
cluster use the same replenishment interval. We summarize in Algorithm 3.3 the
procedure for classifying the retailers and the warehouse in clusters.

Algorithm 3.3 Procedure for classifying the retailers and the warehouse in clusters
Step 1
Initialize = { } = 0 and = {1 2 }
Step 2
If = stop. The clusters ’s are optimal. Otherwise, choose the retailer

for which is minimal, where = 0 2
Step 3
Update = { }
If 0 0 where 0 =

P
0

and 0 =
P

0
, then add retailer to

cluster 0, that is, 0 = 0 { } and = Go to Step 2.
Otherwise, go to Step 4.
Step 4

6= calculate = ( )1 2 and 0 set = 0

Once the replenishment intervals for the relaxed problem are computed, they
have to be rounded o to get a feasible single-cycle powers-of-two policy. If the base
planning period is assumed fixed, for each we should choose = 2 ,
where is the smallest nonnegative integer value satisfying 2 1 2 2
In contrast, if is variable we should use Algorithm 3.4 to compute the optimal
single-cycle powers-of-two policy.
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Algorithm 3.4 The Muckstadt and Roundy approach with variable

Step 1
Let be equal to 0, where 0 and , = 1 , are the optimal replenish-
ment intervals for the relaxed problem.
Let be the smallest integer value satisfying 2 2 , and set = 20 5

for all 0

Step 2
Let [ ] be the th smallest value of the , 0, and set [0] = 0 51 2 and
[ +1] = 2

1 2, where is equal to the number of retailers that are not in 0

Step 3
For each , 0 , set = 21 if [ ], or = 2 if [ ]

Compute
= 0 +

X
[ ]

21 +
X

[ ]

2

and
= 0 +

X
[ ]

2 1 +
X

[ ]

2

Note that each s, 0 is related to a powers-of-two policy.
Step 4
For each , 0 calculate the average cost incurred by the corresponding
powers-of-two policy, that is,

=
0
+ 0 (3.15)

Step 5
For fixed , compute the value 0 that minimizes , i.e.,

0 =

µ ¶1 2
and the corresponding minimum cost = 2( )1 2.
Step 6
The optimal powers-of-two policy corresponds to the value which minimizes
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3.4.4 New heuristic ( )

Previously, we have introduced di erent procedures for finding single-cycle policies.
Although the Graves and Schwarz approach provides the optimal solution, the num-
ber of branches to be examined can be exponential. Thus, if the number of retailers
is small this method is very e cient, but when is significantly large this procedure
should not be applied. In contrast, the Schwarz approach does not always provide
very good solutions although the computational e ort is minimum. The Muck-
stadt and Roundy procedure is computationally e ective but in several problems
the solution computed can be improved by dropping the powers-of-two constraint.
It is obvious, that these improvements never can be greater than 2%. However, since
inventory costs are usually a significant quantity, such improvements can represent,
in many instances, an important saving.

We present a new heuristic for finding very e ective single-cycle policies with
minimum computational e ort. In this new approach we force the quotients between
the replenishment interval at the warehouse and the replenishment intervals at the
retailers to be integers, but not necessarily powers of two. From a practical point of
view, this assumption is very important since it provides a more unconstrained way
to determine the replenishment intervals at the warehouse and at the retailers.

Consider problem (3.6)-(3.8) but dropping the integrality constraints, i.e., allo-
wing the ’s to be real values. Then, the optimal replenishment intervals that
minimize (3.6) are

=
2
0

¸1 2
= 0 (3.16)

Taking into account the constraints given in (3.7), it is easy to compute the
optimal real values ’s as

=
0 , = 1 (3.17)

Now, we propose a procedure to determine near optimal integers ’s from the
optimal real values ’s. The first step consists of sorting the retailers so that
if, and only if, . It is worth noting that this sorting process coincides with
the relabeling method suggested by Graves and Schwarz (1977). Without loss of
generality, we can assume that 1 2 . Then, we can determine the
number of deliveries made to retailer during 0, i.e., ’s, = 1

Suppose that 1, 2, , 1 have already been fixed to integer values satisfying
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= 0 = 1 1 and that the new value has to be calculated. To that
end, we proceed in the following way.

Let ;1 1 be the total cost for ’s fixed, = 1 1 Then, taking into
account that = 0, for = 1 1 ;1 1 can be expressed as follows

;1 1 =
1

0

1X
=0

+
0

2

1X
=0

0

+
X
=

( +
0

2
) (3.18)

where 0 = 1

Let 0;1 1 represent the optimal replenishment interval at the warehouse assu-
ming that 1, 2, , 1 are known integer values. Minimizing (3.18) with respect
to 0 we obtain

0;1 1 =

"
2
P 1

=0P 1
=0

0

#1 2
(3.19)

Let 0 denote the optimal real value that minimizes the total cost assuming
that 1, 2, , 1 have already been fixed to integer values. Then, from (3.7), we
can calculate the new optimal real value 0 as

0 =
0;1 1 (3.20)

If 0 1, we choose the value to be either = b 0 c or = d 0 e, = 1 .
If 0 1 we set = 1

It is worth noting that the replenishment interval at the warehouse has changed
and now, it depends on the integer values 1, 2, , 1. Therefore, the reple-
nishment intervals ’s = 1 1 have also changed. These new replenishment
intervals can be computed from (3.7). On the other hand, taking into account that
for retailers = , the values ’s have not been fixed to integer numbers, the
replenishment intervals for these retailers are still given by (3.16). Thus, the cost
function in (3.18) can be rearranged using (3.16) and (3.19) to give

;1 1 =

"
2

1X
=0

1X
=0

0
#1 2

+
X
=

[2 0 ]
1 2 (3.21)

Once we know how to calculate the new value 0 we can introduce the heuris-
tic to compute the near optimal integer values ’s = 1 The key idea
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consists of determining, at each step of the algorithm, values ’s, that is,
( +1 + 1) A scheme of the new heuristic denoted by ( ) is given
in Algorithm 3.5.

Algorithm 3.5 The heuristic ( )

Step 1
Set = 1.
If 0

1 1, set 1 = 1, update = 2 and go to Step 2.
Otherwise, go to Step 2.
Step 2
Compute 0 using (3.20).
Since can be equal either to b 0 c or d 0 e first set = b 0 c and if 6= 0
calculate 0

+1 from (3.20). Subsequently, set = d 0 e and compute the new
0
+1

This procedure is repeated for each = + 1 + 1 Hence, we obtain
2 -tuples. Among these 2 -tuples, we choose the one with minimum cost,
namely, ( +1 + 1).
Update = + If + 1 then, go to Step 2. Otherwise, go to Step
3.
Step 3
If + compute the 2 +1 ( + 1)-tuples, and choose the one
with minimum cost, e.g., ( +1 ).

When the procedure concludes, the number of deliveries that should be made
to retailer = 1 during 0 has been computed. Using these ’s, the op-
timal replenishment interval at the warehouse can be calculated using the following
expression

0;1 =

"
2
P

=0P
=0

0

#1 2
(3.22)

Thus, the single-cycle policy is completely determined. Once 1, 2, ..., and
0;1 are known, the replenishment interval at each retailer is computed using
(3.7). Finally, the order quantity at each retailer can be calculated applying the
relation = , = 1 It is also easy to see that the order quantity at the
warehouse is given by 0 =

P
=1

An interesting case of the heuristic is obtained for = 2 In this situation, at
each step of the algorithm a couple of values ( +1) is computed and hence, the
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heuristic can be rewritten as in Algorithm 3.6.

Algorithm 3.6 The heuristic (2)
Step 1
Set = 1.
If 0

1 1, set 1 = 1, update = 2 and go to Step 2.
Otherwise, go to Step 2.
Step 2
If , compute 0 using (3.20).
Set = b 0 c. If 6= 0, calculate 0

+1 from (3.20). Then, taking into account
(3.21) determine

;1 = ;1 +1, assuming that = b 0 c and +1 = b
0
+1c

and

;2 = ;1 +1, assuming that = b 0 c and +1 = d
0
+1e

Now, set = d 0 e and compute the new 0
+1 Then, calculate

;3 = ;1 +1, assuming that = d 0 e and +1 = b
0
+1c

and

;4 = ;1 +1, assuming that = d 0 e and +1 = d
0
+1e

Choose and +1 to be the values associated to the minimum of the four costs.
Notice that if b 0 c = 0 only ;3 and ;4 are computed.
Update = + 2 If , then go to Step 2. Otherwise, go to Step 3.
Step 3
If = calculate 0 using (3.20). Compute ;1 = ;1 with = b 0 c
and ;2 = ;1 with = d 0 e
If ;1 ;2, set = b 0 c Otherwise, = d 0 e. Stop.

As we will show in the computational results, the heuristic (2) computes very
e ective single-cycle policies. In addition, this procedure runs in O( log ) time.
Note that we first calculate the real values , = 1 , using (3.17). This can
be done in O( ) time. Once the real values ’s have been obtained, they should
be sorted. This operation is implemented in O( log ) time. Also note that
summations

P 1
=0

P 1
=0

0 and
P

= (2
0 )

1
2 in (3.21), can be stored in

memory. Taking this into account, ;1 can be calculated in O(1). Hence, all
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operations that are carried out in the algorithm can be implemented in O( ) time.
Therefore, the computational complexity of the heuristic (2) is O( log ).

In the computational experience we will show that if we use greater values of
the solutions obtained can be better. However, as the value of increases so does
the running times of the heuristic.

3.4.5 Numerical example

In order to illustrate the di erent solution methods for computing single-cycle policies
we are solving a one-warehouse five-retailer system with the data given in Table 3.2.

Table 3.2: Input data for an instance of the one-warehouse five-retailer problem

0

Retailer 1 993 202 183 172
Retailer 2 304 283 54 43
Retailer 3 542 144 389 378
Retailer 4 859 408 509 498
Retailer 5 478 84 452 441
Warehouse 3176 40 11 11

The Schwarz heuristic

The first step in the Schwarz heuristic consists of computing 0. Following the
scheme introduced in Algorithm 3.1 and using (3.9) and (3.10) we have 1 = 0 0486

2 = 0 2080 3 = 0 0375 4 = 0 0437 5 = 0 0282 and 0 = 0 0478. By virtue of
(3.11) we obtain = {1 2} and, from (3.12) it follows 0 = 0 0692.

Once 0 is obtained, we proceed to calculate the number of replenishments at
each retailer during 0, i.e., , = 1 5. Minimizing (3.13) for each retailer, the
following ’s are obtained

( 1 = 2 2 = 1 3 = 2 4 = 2 5 = 3)

Taking into account that = 0, the replenishment intervals at the retailers
are easy to compute
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( 1 = 0 0346 2 = 0 0692 3 = 0 0346 4 = 0 0346 5 = 0 0230)

The average cost for this policy is 48080 3660 $

The Graves and Schwarz procedure

This procedure computes optimal single-cycle policies using a branch and bound
search of the ’s First of all, the retailers must be sorted so that retailer
retailer if, and only if, 0 0 . Thus, in this example, retailer 2
retailer 1 retailer 4 retailer 3 retailer 5

The initial feasible solution is calculated from (3.14), and the following values
are obtained

( 1 = 2 2 = 1 3 = 3 4 = 2 5 = 3)

The average cost for this policy is 46518 7937 $ It is worth noting
that this initial solution can also be considered as a heuristic solution.

Now, Graves and Schwarz improve this solution using the branch and bound
scheme. Accordingly, the first improved solution is

( 2 = 1 1 = 2 4 = 3 3 = 3 5 = 4)

with average cost 46463 3164 $ .

And the second proposed solution is

( 2 = 1 1 = 3 4 = 3 3 = 4 5 = 5)

with average cost 46336 4603 $ Since there is no other solution better
than this, the optimal single-cycle solution is

( 1 = 3 2 = 1 3 = 4 4 = 3 5 = 5)

Substituting these ’s into (3.22), it follows that the replenishment interval at
the warehouse is 0 = 0 1359 . Besides, the replenishment intervals at the
retailers computed using (3.7) are

( 1 = 0 0453 2 = 0 1359 3 = 0 0339 4 = 0 0453 5 = 0 0271)
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The Muckstadt and Roundy approach

TheMuckstadt and Roundymethod is confined to single-cycle powers-of-two policies.
Their procedure consists of first solving the problem ignoring the powers of two
constraints, and then, rounding o the replenishment intervals to get a feasible,
single-cycle powers-of-two policy. Recall that solving the relaxed problem is equi-
valent to classifying the retailers and the warehouse in clusters. Using Algorithm
3.3 the following clusters are obtained

¡
0 = {0 2} 1 = {1} 3 = {3} 4 = {4} 5 = {5}

¢
and the replenishment intervals associated with each cluster are

( 0 = 0 1160 1 = 0 0486 3 = 0 0375 4 = 0 0437 5 = 0 0282)

Now, these times must be rounded o to powers of two multiples of the base
planning period We assume that is variable because the solutions obtained
for this case are better than those computed when is considered fixed. Then,
following Algorithm 3.4 we can compute the optimal . For this example, =
0 0929, which yields the following replenishment intervals

( 0 = 0 0929 1 = 0 0464 2 = 0 0929 3 = 0 0464 4 = 0 0464 5 = 0 0232)

Thus, the values ’s have changed to be

( 1 = 2 2 = 1 3 = 2 4 = 2 5 = 4)

and now the average total cost is 46664 2381 $

The new heuristic (2)

We are solving the problem using the new heuristic (2) This approach starts
computing the optimal real values ’s using (3.17). For this example the ’s are

( 1 = 0 9839 2 = 0 2300 3 = 1 2763 4 = 1 0957 5 = 1 6950)

Next, the retailers must be sorted so that if, and only if, .
Accordingly, retailer 2 retailer 1 retailer 4 retailer 3 retailer 5 Thus,
we relabel the retailers as follows: retailer 1 = retailer 2, retailer 2 = retailer 1,
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retailer 3 = retailer 4, retailer 4 = retailer 3 and retailer 5 = retailer 5. Therefore,
we obtain 1 = 0 2300 2 = 0 9839 3 = 1 0957 4 = 1 2763 and 5 = 1 6950

Since 0
1 = 1 1, set 1 = 1, = 2 and go to Step 2 of Algorithm 3.6.

Using (3.20) we compute 0
2 = 2 3853 Then, 2 should be equal to 2 or 3. If we

set 2 = 2, the value 0
3 calculated using (3.20) is 2 3906; otherwise,

0
3 is equal to

3 0469 Now, the cost for the four couples of values are computed using (3.21).

;1 = ;1 3 (with 2 = 2 3 = 2) = 46370 1199

;2 = ;1 3 (with 2 = 2 3 = 3) = 46449 3432

;3 = ;1 3 (with 2 = 3 3 = 3) = 46280 2355

;4 = ;1 3 (with 2 = 3 3 = 4) = 46575 9470

Taking these results into account, we set 2 = 3 and 3 = 3.

Repeating the above process for 4 and 5 we determine all values ’s. The
new value 0

4 computed using (3.20) is 3 5180. Then, 4 is equal to 3 or 4. If we set
4 = 3, the new value 0

5 is 4 5322; otherwise,
0
5 is equal to 4 7879 Depending on

these values we obtain the following costs

;1 = ;1 5 (with 4 = 3 5 = 4) = 46399 6333

;2 = ;1 5 (with 4 = 3 5 = 5) = 46384 1940

;3 = ;1 5 (with 4 = 4 5 = 4) = 46415 5558

;4 = ;1 5 (with 4 = 4 5 = 5) = 46336 4603

Since 4 is the smallest cost, we set 4 = 4 and 5 = 5. Hence, using the initial
labels of the retailers, the single-cycle solution is

( 1 = 3 2 = 1 3 = 4 4 = 3 5 = 5)

Substituting these ’s into (3.22), it follows that 0 = 0 1359 .

Finally, the replenishment intervals at the retailers computed using (3.7) are

( 1 = 0 0453 2 = 0 1359 3 = 0 0339 4 = 0 0453 5 = 0 0271)

The average cost incurred by this policy is 46336 4603 $ Notice that
for this example the new heuristic (2) provides a solution better than those given
by the Schwarz heuristic and the Muckstadt and Roundy approach. In addition, this
policy is also better than the initial solution of the Graves and Schwarz procedure.



68 3.4. Single-cycle policies

3.4.6 Computational results: ( ) versus previous methods

In order to analyze the e ectiveness of the di erent procedures for computing single-
cycle policies, we have tested each approach considering that the number of retailers,
is multiple of 5 ranging in [5 100]. The parameters 0 and 0 have been chosen

from a uniform distribution varying on [1 100]. Moreover, given 0, the value is
selected from a uniform distribution on [ 0 500] Finally, we select and from
uniform distributions on [1 500] and [1 1000], respectively.

For each we carry out 100 instances and we report the results in Tables
3.3-3.11. Regarding the Muckstadt and Roundy method, we compute the solutions
assuming that is variable since these solutions are more e cient than those
generated when is fixed.

For notation convenience, let , , ( ), ( ) and denote the cost of
the Schwarz approach, the cost of the Muckstadt and Roundy method considering
that is variable, the cost of the new heuristic ( ), the cost of the initial solution
of the Graves and Schwarz algorithm and the optimal cost computed by the Graves
and Schwarz method, respectively.

The first computational results in Tables 3.3-3.9 are related to the heuristic (2).
In Table 3.3, we compare the di erent approaches with the optimal Graves and
Schwarz procedure. The first column represents the number of retailers. The next
three columns contain the number of instances where the three approaches reach the
optimal solution. The last column shows the number of instances where the initial
solution provided by the Graves and Schwarz method coincides with the optimal.
From the results in Table 3.3, we can conclude that, on average, the heuristic (2)
provides the optimal solution in 34.35% of the instances. The initial solution of the
Graves and Schwarz procedure coincides with the optimal in 31.90%. In contrast,
the Schwarz procedure reaches the optimal policy only in 0.60% and the Muckstadt
and Roundy approach in 10.90%.

In Table 3.4 the heuristic (2) is compared with the Schwarz method. The first
column represents the number of retailers. The other columns contain the number
of instances which satisfy the condition expressed in the top of each column. For
example, the second column in Table 3.4 shows the number of problems where both,
the new heuristic (2) and the Schwarz method, provide the same solution. All
other columns must be interpreted in the same way.

Notice that the single-cycle policies provided by (2) are better than those given
by the Schwarz heuristic in 99.30%. In addition, both methods compute the same
solution in 0.7%.
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Table 3.3: Comparison between the di erent heuristics and the optimal Graves and
Schwarz procedure. In 34,35% of the examples the new heuristic (2) reaches the
optimal solution

= = (2) = ( ) =
5 9 55 94 91
10 3 37 79 76
15 0 29 72 66
20 0 20 63 57
25 0 16 51 47
30 0 12 45 38
35 0 9 37 34
40 0 3 37 32
45 0 4 29 25
50 0 4 27 24
55 0 3 21 18
60 0 4 21 17
65 0 6 20 19
70 0 5 19 17
75 0 2 18 16
80 0 4 13 12
85 0 4 8 8
90 0 1 12 12
95 0 0 10 9
100 0 0 11 8

0.60 10.90 34.35 31.90

Table 3.4: Comparison between the new heuristic (2) and the Schwarz method. In
99.3% of the instances the heuristic (2) provides better solutions than the Schwarz
approach

(2) = (2) (2)

5 10 90 0
10 4 96 0
15 0 100 0

0.70 99.30 0

Additionally, in Table 3.5 we compare the new heuristic (2) with the Muck-
stadt and Roundy approach. From the results, we can conclude that when is
small, in most cases both methods provide the same solution. Hence, we could use
either the heuristic (2) or the Muckstadt and Roundy method to compute single-
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Table 3.5: Comparison of the new heuristic (2) with the Muckstadt and Roundy
approach. In 74,05% of the examples the heuristic (2) gives better solutions than
the Muckstadt and Roundy approach

(2) = (2) (2)

5 53 42 5
10 32 58 10
15 26 63 11
20 16 71 13
25 13 70 17
30 9 80 11
35 5 73 22
40 1 76 23
45 1 79 20
50 3 74 23
55 1 80 19
60 2 77 21
65 3 72 25
70 2 78 20
75 0 82 18
80 1 77 22
85 0 87 13
90 1 79 20
95 0 81 19
100 0 82 18

8.45 74.05 17.50

cycle policies. However, as the number of retailers increases so does the number
of instances where the heuristic provides better solutions than the Muckstadt and
Roundy approach. Therefore, in this case, it seems more convenient to use the new
heuristic (2) to solve the problem. In addition, the solutions provided by the
Muckstadt and Roundy procedure are worse than those computed by the heuristic
(2) in 74.05%, whereas in 8.45% both solutions are equal. Hence, the policies com-

puted by (2) are worse than those given by the Muckstadt and Roundy approach
only in 17.50%.

Finally, in Table 3.6 we compare the heuristic (2) with the initial solution of
the Graves and Schwarz algorithm. Notice that in this case, the new heuristic (2)
always provides solutions that are equal to or better than the initial solutions.

We also measure the di erence between the costs of the policies provided by the
Muckstadt and Roundy approach, and those provided by the new heuristic,
(2). Accordingly, in case of (2) we compute
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Table 3.6: Comparison of the new heuristic (2) with the initial solution of the
Graves and Schwarz procedure. The heuristic (2) always provides policies that are
equal to or better than the initial solutions of the Graves and Schwarz procedure

(2) = ( ) (2) ( )

5 96 4
10 90 10
15 87 13
20 93 7
25 87 13
30 79 21
35 85 15
40 75 25
45 84 16
50 87 13
55 87 13
60 81 19
65 83 17
70 89 11
75 82 18
80 82 18
85 78 22
90 77 23
95 74 26
100 83 17

83.95 16.05

( (2) ) =
(2)

× 100

Otherwise, if (2) we calculate

( (2) ) =
(2)

(2)
× 100

The results are shown in Table 3.7. The second and third columns contain
for a given number of retailers, , the average percentages ( (2) ) and

( (2) ) of 100 instances, respectively. This di erence is also computed between
the cost of the initial solution of the Graves and Schwarz procedure, ( ) , and
the cost of the new heuristic (2) (2) . The last column shows the average per-
centage ( ( ) (2) ). Notice that for all instances (2) ( ) and then, we
always compute ( ( ) (2) ) = ( ( ) (2))100 (2)
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Table 3.7: Percentage di erence between the costs of the policies provided by the
Muckstadt and Roundy approach and by the new heuristic (2), and between the
costs of the initial solutions of the Graves and Schwarz procedure and the costs given
by the heuristic (2). On average, the percentage improvement of the heuristic (2)
versus the Muckstadt and Roundy approach is 0.275

( (2) ) ( (2) ) ( ( ) (2) )

5 0 330 0 403 0 324
10 0 191 0 380 0 308
15 0 180 0 304 0 136
20 0 203 0 309 0 106
25 0 142 0 328 0 220
30 0 170 0 274 0 064
35 0 135 0 263 0 191
40 0 178 0 253 0 197
45 0 139 0 270 0 122
50 0 157 0 290 0 041
55 0 167 0 238 0 063
60 0 172 0 278 0 050
65 0 150 0 246 0 031
70 0 155 0 242 0 053
75 0 129 0 210 0 075
80 0 167 0 253 0 049
85 0 122 0 254 0 035
90 0 147 0 225 0 058
95 0 105 0 234 0 048
100 0 083 0 254 0 053

0 161 0 275 0 111

Notice that when the Muckstadt and Roundy approach gives better policies than
the heuristic (2), the average of ( (2) ) is equal to 0.161. However, when

(2) the average of ( (2) ) increases to 0.275 Therefore, when the
new heuristic (2) gives better policies than those provided by the Muckstadt and
Roundy approach, the di erence between the costs is greater than in the opposite
case.

In order to compare the e ectiveness of the di erent methods, we calculate for
each instance the percentage di erence between the cost provided by each heuristic
and the optimal cost

=
(Cost of the heuristic policy - )

× 100
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Table 3.8: Average percentage cost di erences and maximum percentage di erences

(2) ( )

max max max max

5 1.785 10.638 0.267 1.332 0.016 0.772 0.026 0.772
10 2.136 13.106 0.247 1.302 0.029 0.684 0.061 0.784
15 2.323 7.025 0.255 1.517 0.046 0.846 0.057 1.046
20 2.342 10.710 0.259 1.420 0.049 0.603 0.053 0.603
25 2.480 9.813 0.260 1.069 0.112 1.752 0.121 1.752
30 2.401 6.294 0.264 1.534 0.062 1.047 0.095 1.618
35 2.266 10.173 0.265 1.551 0.143 1.003 0.160 1.003
40 2.643 12.569 0.283 1.295 0.114 1.637 0.134 1.637
45 2.744 8.496 0.300 1.375 0.126 0.791 0.141 0.949
50 2.488 9.097 0.272 1.492 0.126 1.310 0.145 1.410
55 2.375 8.780 0.236 1.068 0.114 1.585 0.119 1.585
60 2.234 8.531 0.263 1.509 0.119 1.336 0.137 1.336
65 2.543 8.170 0.278 1.215 0.123 0.862 0.131 0.862
70 2.233 8.862 0.235 1.442 0.124 0.795 0.132 0.795
75 2.382 8.526 0.295 1.507 0.110 0.803 0.124 0.805
80 2.366 8.569 0.280 1.318 0.150 1.217 0.156 1.217
85 2.722 9.708 0.315 1.495 0.131 0.658 0.139 0.658
90 2.238 9.077 0.239 1.371 0.138 0.927 0.144 0.927
95 2.817 6.233 0.327 1.012 0.116 0.540 0.135 0.540
100 2.552 7.359 0.253 1.231 0.108 0.625 0.139 0.625

We report in Table 3.8 the average percentage di erences, , and the maximum
percentage di erence, max These results show that the heuristic (2) provides,
on average, closer solutions to the optimal than the initial solution provided by the
Graves and Schwarz procedure and than the solution given by the Muckstadt and
Roundy approach. Hence, using the new heuristic (2) seems to be an appropriate
way to compute single-cycle policies.

To check the di erence between the costs of each procedure, we show in Table 3.9
the values (2) and ( ), given by ( )100 ( (2) )100
and ( ( ) )100 for a collection of instances. It is important to emphasize
that the computational running times for all instances are zero. However, for the
Graves and Schwarz exact procedure these times are significantly large. In some
cases the Graves and Schwarz procedure can take several minutes to solve the pro-
blem.
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Table 3.9: Comparison among costs obtained using the di erent approaches

(2) ( ) (2) ( )

10 0.05 0.00 0.03 60 0.08 0.06 0.11
10 0.23 0.00 0.00 60 0.16 0.24 0.32
10 1.30 0.00 0.00 60 0.19 0.00 0.00
20 0.67 0.15 0.15 70 0.13 0.05 0.05
20 0.61 0.00 0.04 70 0.15 0.00 0.00
20 0.88 0.00 0.04 70 0.34 0.41 0.41
30 1.53 0.00 0.00 80 0.95 0.05 0.05
30 0.32 1.04 1.04 80 1.31 0.06 0.06
30 0.23 0.00 1.61 80 0.19 0.40 0.40
40 0.19 0.00 0.05 90 0.20 0.17 0.17
40 0.15 0.23 0.23 90 1.37 0.13 0.14
40 0.00 0.00 0.04 90 0.23 0.00 0.00
50 0.59 0.07 0.07 100 0.10 0.07 0.07
50 0.28 0.59 0.71 100 0.14 0.19 0.21
50 0.02 0.00 0.04 100 0.36 0.16 0.16

Results obtained for di erent values of

In Tables 3.3-3.9 we only have considered the heuristic (2) In order to compare the
policies provided by the heuristic for other values of , we carry out 100 instances
for each number of retailers = 10 15 20 25 30 and 35 and we solve each problem
for all possible values of that is, = 2 A summary of the results are shown
in Tables 3.10 and 3.11.

The first column in Table 3.10 contains the value of . For some values of ,
we show in the next columns two values. Value ” ” denotes the number of instances
where the heuristic ( ) gives better policies than the initial policy given by the
Graves and Schwarz method. On the other hand, value ” ” represents the number
of instances where the heuristic ( ) provides worse policies than the Muckstadt
and Roundy procedure. As it is expected, the best results are obtained when
is near to . However, taking into account that the computational e ort increases
exponentially with the value of , when the number of retailers is considerable large
it is not suitable to set = Therefore, it is interesting to analyze if there is
another value of which provides so good results as those obtained when = .
From Table 3.10, it seems that apart from the values near to , the best value of
belongs to the set {b 2c 1 b 2c b 2c+ 1} Remark that when the value of
increases, the solutions obtained are not always better. For example, for = 30,

on average, it is preferable to set = 15 than = 20
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Table 3.10: Results obtained with the heuristic for di erent values of Value ” ”
denotes the number of instances where the new heuristic gives better policies than
the initial policy given by the Graves and Schwarz method. Letter ” ” represents the
number of instances where the heuristic provides worse policies than the Muckstadt
and Roundy procedure

= 10 = 15 = 20 = 25 = 30 = 35

2 10 6 10 13 9 11 10 23 18 21 9 15
3 14 3 21 10 15 12 25 15 26 20 24 15
4 17 5 22 10 21 7 28 16 36 17 27 13
5 18 4 23 7 21 8 26 17 41 15 25 14
6 18 3 28 6 26 7 33 10 47 15 34 12
7 21 2 28 6 35 4 35 11 46 8 37 9
8 19 3 26 7 29 3 37 7 54 5 39 8
9 21 0 26 6 33 8 36 9 48 12 44 7
10 21 0 27 4 31 5 34 11 46 11 40 10
11 28 3 32 2 40 2 51 6 44 6
12 31 1 31 4 44 1 57 4 43 5
13 35 1 34 4 44 3 55 3 44 2
14 38 0 36 4 42 8 54 2 45 4
15 38 0 34 3 38 6 56 3 44 6
16 33 2 39 7 56 3 49 4
17 36 2 39 11 56 5 52 2
18 38 2 37 9 51 11 52 3
19 39 0 39 9 49 10 52 3
20 39 0 37 10 50 10 46 5
21 42 4 51 6 45 5
22 45 2 55 6 45 3
23 48 2 54 6 44 2
24 49 0 59 3 44 5
25 49 0 59 3 44 4
26 61 2 46 2
27 61 1 47 4
28 61 1 48 3
29 62 1 46 4
30 62 1 47 5
31 48 4
32 52 2
33 52 3
34 54 0
35 54 0

However, when is a large value, it is not computationally e cient to set
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' 2 Indeed, from the computational experience, we can conclude that when
50 should be a value below 25. Furthermore, if is set to be greater than

25, reducing costs is not significant, whereas the running times increase drastically.

Finally, in order to test di erences between the costs obtained using the heuristic
( ) for di erent values of , we present in Table 3.11 a collection of several

instances generated for = 2 8 14 20 We also include the initial solution of the
Graves and Schwarz procedure. In the last column we show the reduction percentage
obtained using ( ) instead of (2) , that is, % = ( ( ) (2) )100 (2),
with the maximum value studied. Notice that the maximum di erence between
the cost of the policy provided by the heuristic (2) and the cost of the policy
given by the heuristic ( ) with equals to the maximum value, is only 0 51%.
In addition, as the value of increases so does the running times of the heuristic
( ). In particular, for the instances in Table 3.11 the computational running

times vary from 0 to 73.46 seconds.

Table 3.11: Costs obtained using the initial solution of the Graves and Schwarz
procedure and the heuristic for di erent values of The reduction percentage
obtained using the maximum value of studied instead of = 2 is denoted by %

N ( ) (2) (8) (14) (20) %
10 121019.96 120937.18 120846.68 0.07
10 109992.96 109841.40 109841.40 0.00
20 187543.14 187439.78 187234.00 187234.00 187234.00 0.10
20 153747.17 153747.17 153747.17 153747.17 153747.17 0.00
30 330635.93 330318.87 328921.59 328921.59 329702.87 0.18
30 261138.40 261134.87 260647.68 260647.68 260647.68 0.18
40 280155.78 280155.78 280155.78 280155.78 280141.96 0.004
40 332610.25 332584.59 332610.25 332584.59 332584.59 0.00
50 456090.62 456090.62 456090.62 456090.62 455923.12 0.03
50 482807.781 482743.43 482743.43 482743.43 482743.43 0.00
60 393708.03 393679.31 393570.93 393290.71 393283.37 0.10
60 724859.37 724859.37 723057.37 723057.37 722897.75 0.27
70 595168.62 594742.68 594196.81 594742.68 594196.81 0.09
70 619112.81 619112.81 619112.81 617641.00 615957.62 0.51
80 624209.60 624209.60 624036.25 623308.37 623352.93 0.13
80 661880.56 661822.31 659931.12 660286.56 659931.12 0.28
90 945160.18 944772.75 944441.31 944441.31 944303.87 0.04
90 708407.43 706931.93 706220.93 705641.12 705623.93 0.18
100 691559.75 691559.75 690786.50 690584.43 689041.68 0.36
100 910268.31 910085.25 909703.75 909719.06 905639.06 0.49

To this point we have addressed the one-warehouse -retailer problem assu-
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ming that the decision system is centralized. In particular, we have focused on the
centralized policies with common replenishment intervals at the retailers and on the
single-cycle policies. However, the problem can be also solved assuming that the
decision system is decentralized. The following section is devoted to this case, that
is, we assume that each retailer orders independently, as does the warehouse.

3.5 Decentralized policies

Let now suppose that there is independence among the warehouse and the retailers,
that is, at each location there is a decision-maker. For example, if each retailer
belongs to a di erent firm, each one is interested in minimizing its own cost inde-
pendently. In this case, we first determine the order quantities at the retailers, and
then, we compute the shipment schedule at the warehouse. Accordingly, since the
retailers follow an EOQ pattern, the total cost at retailer can be easily obtained
as = + 2 Moreover, the optimal order quantities, replenishment
intervals, and costs are given by the following expressions

=
q

2 , = 1

= , = 1

=
p
2 , = 1

Since each retailer places orders according to an EOQ pattern, the replenishment
intervals are not related. Therefore, the warehouse behaves as an inventory system
with time-varying demand. When the demand rate varies with time, we can no
longer assume that the best strategy is to always order the same order quantity.
In fact, this will seldom be the case. Hence, the warehouse does not follow the
classical sawtooth pattern of the EOQ model. Indeed, we now have to use the
demand information at the retailers, over a finite planning horizon, to determine
the appropriate order quantities at the warehouse.

Following Schwarz (1973), deliveries should be made to the warehouse only when
the warehouse and at least one retailer have zero inventory. Note that the optimal
replenishment intervals at each retailer are real values. Therefore, we cannot assure
that a point in time exists where all retailers order simultaneously. In this case, the
number of periods of the demand vector at the warehouse is not finite and then, the
problem cannot be solved by the Wagner and Whitin (1958) or the Wagelmans et al.
algorithm (1992). Under this assumption, we propose an approach to overcome this
problem. The idea consists of either truncating or rounding up to rational times the
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real replenishment intervals. It is clear that the solution provided by this method
is not the real optimal plan but it is quite a good approximation. Furthermore, in
practice, it does not make sense to work with irrational times.

Let be the set of rational times where any retailer orders to the warehouse,
that is, = { Q | = for some N and (1 2 )} where
each = = 1 is obtained by rounding or truncating the optimal
replenishment interval at each retailer. Moreover, following the characterization of
the basic policies stated by Schwarz (1973), each value in represents a candidate
instant where the warehouse can place an order.

Since the optimal replenishment intervals have been transformed into rational
values, a set = { 1 2 } of integer values can always be found such that
1 1 = 2 2 = · · · = = 0, or, in other words

1
1

1
= 2

2

2
= · · · = = 0 (3.23)

Recall that 0 or an integer multiple of 0 represents the time horizon for the
warehouse.

Note that (3.23) represents a linear equations system with variables and 1
equations. In order to ensure the integrality of the ’s, set

= 1 2 · · · 2 1 (3.24)

Therefore, the remaining integer values in (3.23) are obtained by

= = 1 1 (3.25)

Finally, each ’s is divided by the ( 1 2 ). Then, the values thus
obtained are considered as the new values ’s and 0 can be calculated by (3.23).
Also, these values can be used to determine the number of di erent instants
in time over 0 where the warehouse receives an order from some retailer. First
of all, the values ’s must be clustered in the following way. Those ’s that are
powers of some value are included in a cluster. That is, those ’s which verify
= , for some integer belong to the same cluster. If there are not values ’s

that are powers of some , then this cluster contains only the value . Let be
the number of clusters. For each cluster , we choose the highest power value 0 as
the representative element. That is, 0 = being the highest power. Then, set

= 0 1 for = 1 The integer represents the number of equidistant
points over 0 needed to get 0 intervals. Theorem 3.1 states when orders are placed
to the warehouse. The proof of Theorem 3.1 requires the following lemma.
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Lemma 3.2 Let 1 and 2 be two rational numbers and let 1 and 2 be integer

numbers such that 1 1 = 2 2 = 0 Then, the number of points in (0 0) where

1 = 2 for = 1 1 and = 1 2 is given by the ( 1 2) 1

The proof of this lemma is straightforward.

Theorem 3.1 The number of di erent instants in time where the warehouse

receives an order from some retailer is

=
X
=1

1X
=1

X
= +1

( ( 0 0 ) 1) (3.26)

Proof

By Lemma 3.2, the double summation in (3.26) represents the points in (0 0)
which have been considered more than once in the first summation. Therefore,
stands for the number of di erent instants in (0 0) where the warehouse receives
an order from some retailer.

Once the number of points is obtained, we can generate the demand vector at
the warehouse of dimension +1 or a multiple of +1. Since the replenishment
intervals have been rounded, the order quantity at each retailer, , has changed to
be = . Let be the set of retailers ordering from the warehouse in period .
This set can be used to determine the quantity to be satisfied by the warehouse in
period = 0 1 , in the following way 0[ ] =

P
. This demand vector

represents the quantities that the warehouse has to supply. To solve this problem,
the Wagner and Whitin algorithm or any of the other techniques currently available
can be applied.

In the next section we present a numerical example to illustrate the di erent
approaches introduced in this chapter.

3.6 Numerical example

Let now consider a one-warehouse three-retailer system with the input data given
in Table 3.12.

We proceed to calculate the costs provided by the three class of policies in-
troduced in the previous sections: centralized policy with common replenishment
intervals at the retailers, single-cycle policy and decentralized policy.
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Table 3.12: Input data for an instance of the one-warehouse three-retailer system

0

Retailer 1 75 42 48 40
Retailer 2 79 100 21 13
Retailer 3 97 28 52 44
Warehouse 37 8 8

3.6.1 Centralized policy with common replenishment inter-
vals

In this case, the retailers place their orders at the same time. Using (3.2) and (3.3),
we have = 0 2004 time units and = 0 9482 and, therefore, = 1. Thus, the
retailers and the warehouse place their orders once every = 0 2004 time units. The
order quantities at the retailers are calculated using (3.4). Accordingly, 1 = 15 03
units of item, 2 = 15 83 units of item and 3 = 19 44 units of item. Then, the
order quantity at the warehouse can be computed from (3.5) to give 0 = 50 30
units of item. Following this policy the overall cost is 2065 2947 $ time unit

3.6.2 Single-cycle policy

Now, the retailers can place their orders at di erent time instants = 1 2 3
subject to the constraint 1 1 = 2 2 = 3 3 = 0, where 1 2 3 N Both, the
new heuristic and the Muckstadt and Roundy procedure can be applied. We show
in Table 3.13 the optimal single-cycle powers-of-two policy given by the Muckstadt
and Roundy procedure, and the policy provided by the heuristic (3). It is worth
noting that ( ) provides the best policy when = Recall that as the value of
increases so does the running times of the heuristic. However, since now = 3

there is no problem in using (3).

When the Muckstadt and Roundy procedure is used, the overall cost is 1922 1409
$ time unit. In contrast, when the new heuristic (3) is applied, the overall cost
is 1906 3500 $ time unit. Therefore, the single-cycle policy obtained using the
heuristic (3) is better than Muckstadt and Roundy’s solution. Obviously, the
single-cycle solution is also better than the centralized policy assuming common
replenishment intervals.
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Table 3.13: Single-cycle policies for the numerical example

(3)

Retailer 1 2 0.1441 10.8075 2 0.1608 12.0600
Retailer 2 1 0.2882 22.7678 1 0.3216 25.4064
Retailer 3 2 0.1441 13.9777 3 0.1072 10.3984
Warehouse 1 0.2882 72.3382 1 0.3216 80.7216

3.6.3 Decentralized policy

Using the classical EOQ expressions, we calculate the optimal order quantities and
the replenishment intervals at the retailers. Such values are given in Table 3.14.

Table 3.14: Optimal order quantities and replenishment intervals

Retailer 1
q

2·75·42
48

' 11 4564
2·75·42
48

75
' 0 1527

Retailer 2
q

2·79·100
21

' 27 4295
2·79·100

21

79
' 0 3472

Retailer 3
q

2·97·28
52

' 10 2206
2·97·28
52

97
' 0 1053

Remark that the replenishment intervals are not rational numbers. For that
reason, we round the ’s to obtain the following values: 1 = 0 2 = 2 10 2 = 0 3 =
3 10 and 3 = 0 1 = 1 10

Now, the values ’s can be calculated using (3.24) and (3.25) to give 1 = 60 ·1 10 ·
10 2 = 30 2 = 60 · 1 10 · 10 3 = 20 and 3 = 10 · 3 · 2 = 60

Then, we divide the values ’s by the ( 1 2 3) = 10 obtaining the
following results: 1 = 3, 2 = 2 and 3 = 6 After that, the di erent clusters are
calculated. In this case there are three clusters, one for each . Hence, 0 = ,
= 1 2 3

Using the new replenishment intervals, the order quantities and the costs at each
retailer are given in Table 3.15.
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Table 3.15: Order quantities and costs at each retailer for the rounded replenishment
intervals

Retailer 1 15 0 570 0000
Retailer 2 23 7 582 1833
Retailer 3 9 7 532 2000

The time horizon at the warehouse is 0 = = 0 6 Besides, the number
of instants where the warehouse receives an order is

=
3X
=1

3 1X
=1

3X
= +1

( (
0 0

) 1) = 5

and the time vector 0 is

0 0 0 1 0 2 0 3 0 4 0 5

The demand vector at the warehouse 0 is given by

48 4 9 7 24 7 33 4 24 7 9 7

Once the demand vector is obtained, the Wagner and Whitin algorithm (1958)
or the Wagelmans et al. procedure (1992) provide the optimal order planning for
the warehouse. That is,

0 = 58 1 0 0 58 1 0 0 34 4 0 0

Now, the cost at the warehouse is 255 4 $ . The overall cost including
the costs at the retailers and at the warehouse is 1939 7833 $ .

Notice that for this example the single-cycle solution is better than the decentrali-
zed policy. However, this is not always the case. In fact, there are instances where
the best solution is obtained when the retailers make decisions independently. In
particular, the computational experience developed in the next subsection shows
that as the number of retailers increases so does the number of instances where the
decentralized policies are better than the single-cycle policies.
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3.7 Computational results: Single-cycle versus de-
centralized policies

Before starting with the comparison analysis between the single-cycle policies and
the decentralized ones, we should choose the approach to be implemented for com-
puting single-cycle policies. In Section 3.4 we showed that (2) provides, on average,
better policies than the Muckstadt and Roundy approach. Furthermore, the solu-
tions obtained by the heuristic ( ) can be improved by using greater values of
Concretely, the heuristic ( ) provides the best policies when = The incon-
venient of setting equals to is that the running times of the heuristic increase.
However, now the main goal is to compare the costs of the policies provided by the
decentralized method with the costs of the single-cycle policies. For that reason, for
this computational experience we have used the heuristic ( ).

Next, we proceed to compare the heuristic ( ) with the decentralized approach
proposed in Section 3.5. In this analysis, the number of retailers takes the follo-
wing values: 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 and 30. The parameters 0

0 and have been chosen from two di erent uniform distributions varying on
[1 100] and on [1 10], respectively. Moreover, given 0, the value is selected from
a uniform distribution on [ 0 + 1 101] and on [ 0 + 1 11], respectively. For each
problem, one hundred instances were carried out and the results are shown in Table
3.16. The first column represents the number of retailers. The results in the second
and third columns are obtained when 0 0 and are selected from a uniform
distribution on [1 100] and from a uniform distribution on [ 0+1 101] In contrast,
the results in the fourth and fifth columns are obtained when 0 0 and are
selected from a uniform distribution on [1 10] and from a uniform distribution
on [ 0 + 1 11] We denote by the cost provided by the decentralized approach.
In particular, the second column collects the number of instances where the decen-
tralized approach provides better solutions than the heuristic ( ). Similarly, the
third column shows the number of instances where the single-cycle policies are better
than the decentralized strategies. When parameters range in [1 100], the average
number of instances where it is preferable to apply the single-cycle policies is around
45%. On the other hand, when parameters vary on [1 10], the average number of
instances where it is better to follow a single-cycle policy is around 52%. However,
these percentages change depending on the number of retailers. For example, for
= 2 and considering the first interval, the single-cycle policies are better in 87%

of instances. Nevertheless, for = 20 and considering the same interval, the best
solution is always given by the decentralized approach.

From Table 3.16, it is easy to see that as the number of retailers increases so
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does the number of instances where the decentralized policy is better. However,
the gap between this number and the one corresponding to the single-cycle policies
decreases when the parameters vary in the interval [1 10] In our opinion, this fact
can be explained since the variability of the parameters is reduced from [1,100]
to [1,10]. Thus, the reduction of the interval leads the demands and costs at the
retailers to be quite similar. For that reason, in some instances the single-cycle
policies are better than the decentralized solutions even when = 20

Table 3.16: Comparison between decentralized and single-cycle policies

0 0 [1 100] 0 0 [1 10]
[ 0 + 1 101] [ 0 + 1 11]

( ) ( ) ( ) ( )

2 13 87 10 90
3 20 80 17 83
4 43 57 30 70
5 37 63 43 57
6 33 67 37 63
7 50 50 47 53
8 50 50 50 50
9 63 37 37 63
10 43 57 53 47
15 67 33 47 53
20 100 0 70 30
25 100 0 80 20
30 100 0 100 0

Average 55.30 44.70 47.77 52.23

In order to analyze the e ect of the parameters on the cost of the policies, a
more detailed analysis is required. Accordingly, the number of retailers is fixed
to 10 and the parameters are chosen from di erent uniform distributions, as it is
shown in Table 3.17. For each combination, ten problems are tested. The fourth,
sixth and eighth columns in Table 3.17, contain the number of instances where the
decentralized approach provides better strategies than the single-cycle policies. In
contrast, the fifth, seventh and ninth columns show the number of instances where
the single-cycle policies are better than the decentralized strategies.

Table 3.17 shows that as the interval of the replenishment cost at the warehouse
increases so does the number of instances where the single-cycle policies are better
than the decentralized strategies. On the other hand, when the costs at the retailers
are significantly greater than the costs at the warehouse, it is preferable that the
retailers make decisions independently.
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Table 3.17: Comparison between decentralized and single-cycle policies when 0

0 are selected from the uniform distributions: 1 [1 10], 2 [10 100],
and 3 [100 1000]. In addition, the values ’s are selected from the uniform
distributions: 4 [ 0 + 1 101], 5 [ 0 + 1 1001], and 6 [ 0 + 1 10001]

0 0 1 2 3

( ) ( ) ( ) ( ) ( ) ( )

1 1 4 5 4 4 6 10 0
1 2 5 5 10 10 0 7 3
1 3 6 7 6 6 4 10 0
2 1 4 0 6 6 4 8 2
2 2 5 0 5 5 5 7 3
2 3 6 0 1 1 9 5 5
3 1 4 0 0 0 10 3 7
3 2 5 0 0 0 10 1 9
3 3 6 0 0 0 10 2 8

In Tables 3.16 and 3.17, we have only shown the ratio where either the decentrali-
zed or the single-cycle policies are better, but nothing is said about the di erence
between the costs of both strategies. In Table 3.18, we report a collection of 25
instances, where parameters 0 0 and vary in [1 100] and in [ 0 + 1 101].
The first column represents the number of retailers with = 3 5 10 15 and 20.
For the decentralized case, the cost of each instance is shown in the second column.
The next column contains the costs for the single-cycle policies. For each instance,
indicates the smallest cost. In the last column, the gap (%) represents the quotient
between the di erence of both costs and the minimum of them.
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Table 3.18: Comparison among costs using the di erent policies for several instances.
indicates the smallest cost. The gap (%) represents the quotient between the

di erence of the costs in the second and fourth column and the minimum of them

( ) Gap (%)
3 4381.57 4252.46 3
3 3719.15 3547.20 4
3 1523.50 1600.41 5
3 3763.06 3663.96 2
3 1573.08 1540.28 2
5 6739.30 6512.45 3
5 4185.26 4009.00 4
5 5277.57 5678.70 7
5 3695.20 3881.59 2
5 5732.79 5918.62 3
10 8064.20 7470.76 7
10 8669.57 8867.98 2
10 6419.84 6176.58 3
10 7564.83 7322.83 3
10 7083.12 7225.19 2
15 13955.70 15015.90 7
15 9433.32 9904.33 5
15 13483.20 14064.90 8
15 16597.80 16415.10 1
15 8337.82 8172.11 2
20 14427.30 15623.77 8
20 11082.80 11932.30 7
20 13419.60 14335.00 6
20 9719.26 10484.90 7
20 14801.40 16893.00 14

3.8 Conclusions

In this chapter we have studied the one-warehouse -retailer problem where stock-
ing decisions have to be adopted to achieve e ective strategies. We have focused
our attention on two di erent policies. Firstly, it has been assumed that the de-
cision system is centralized, that is, there is only a decision-maker and the goal is
to minimize the average total costs. Secondly, we have addressed the problem con-
sidering that at each location there is a decision-maker, that is, the decision system
is decentralized.

In turn, for the centralized situation we first have analyzed a simple class of
policies where all retailers order at the same time instants. Then, we have studied the
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single-cycle policies which represent a more general class of policies. In particular, we
have introduced a new heuristic to determine single-cycle policies, which has been
compared with the procedures proposed by Schwarz (1973), Graves and Schwarz
(1977) and Muckstadt and Roundy (1993). Both the advantages and di culties of
each approach have been discussed.

It is worth noting that each step of the heuristic deals with only of the
retailers. An interesting case corresponds to = 2 since, in this situation, the
computational complexity is O( log ) Notice that both, the heuristic (2) and
the Muckstadt and Roundy procedure, compute single-cycle policies in O( log )
time. However, the computational experience shows that the policies given by the
new heuristic (2) are equal to or better than those provided by the Muckstadt
and Roundy approach in 82%. With respect to the initial solution provided by the
Graves and Schwarz procedure, the heuristic (2) always provides policies that are
equal to or better than such initial solution.

When the decision system is decentralized, we propose a two-level optimization
approach which consists of computing first the order quantities at the retailers, and
then, determining the inventory policy for the warehouse. It is important to re-
mark that for the warehouse the problem becomes a time-varying demand inventory
system.

Finally, we have compared the single-cycle policies with the decentralized strate-
gies. From the computational results it can be concluded that as the number of
retailers increases so does the number of instances where the decentralized policies
are better. In addition, given a number of retailers, we have carried out an analysis of
sensitivity of the parameters. This analysis suggests that, under specific conditions
of the unit replenishment and holding costs at the warehouse, the decentralized
policies can provide better solutions.

In spite of this, nowadays it is very common that di erent firms work together in
order to improve the coordination of the total material flow. For that reason, most
e orts are devoted to develop more e cient centralized policies.

In this chapter we have focused on centralized policies which are both stationary
and nested. Next, we drop these assumptions and analyze a more general class of
centralized strategies known as integer-ratio policies.



Chapter 4

The one-warehouse -retailer problem:
Integer-ratio policies

The single-cycle policies considered in Chapter 3 are very e cient in many situations
and they have clear managerial advantages. However, in some cases, as for example
when relatively high replenishment costs are combined with relatively low demand
rates, the performance of these policies get worse. In order to achieve more e ecti-
ve strategies we analyze in this chapter a more general class of centralized policies
known as integer-ratio policies. We propose a heuristic procedure for computing
near-optimal integer-ratio policies which is compared with the most e cient tech-
nique reported in the literature. In addition, the integer-ratio solutions provided by
the new heuristic are also compared with the decentralized policies introduced in
Chapter 3. The computational results show that usually the integer-ratio policies
are more e ective than the decentralized strategies. However, the values of the
parameters also influence in which policy is better.

4.1 Introduction

Optimal policies for the one-warehouse -retailer problem can be very complex,
and this complexity would make them unattractive even if they could be computed
e ciently. Hence, many authors have restricted the class of admissible policies
with the goal of finding good approximations to optimal policies without excessive
computation. One of the simplest class of policies are the stationary and nested
policies considered in Chapter 3. However, as Roundy (1983) showed, the optimal
nested policies can have very low e ectiveness. For example, consider a systemwhere
a warehouse supplies two retailers. Also assume that the first retailer has very low
demand and a very high replenishment cost. Then, one would expect this retailer
to order less often than the warehouse. However, if a nested policy is followed, each
retailer must order every time that the warehouse does. Thus, a nested policy would

89



90 4.1. Introduction

incur either high holding costs at the warehouse due to a long replenishment interval,
or high replenishment costs at the first retailer due to a low replenishment interval,
or both. Therefore, nested policies become seriously suboptimal when relatively
high replenishment costs are combined with relatively low demand rates. For that
reason, Roundy (1985) introduced the more general class of integer-ratio policies
dropping the assumptions of stationarity and nestedness.

An integer-ratio policy is one where the warehouse orders at equally spaced
points in time and each retailer follows an EOQ pattern. Besides, the replenishment
interval at the warehouse 0 and the replenishment interval at retailer , must
satisfy that either 0 or 0 is a positive integer. Recall that in the single-cycle
policies the replenishment interval at the retailers cannot be longer than the reple-
nishment interval at the warehouse. Moreover, the warehouse always orders from the
supplier the same replenishment quantity. In contrast, when an integer-ratio policy
is applied, a retailer can order less frequently than the warehouse. In addition,
the warehouse has not necessarily to order always the same quantity. Therefore,
integer-ratio policies are stationary at the retailers but may not be at the warehouse.
Hence, it is obvious that the class of single-cycle policies are contained into the class
of integer-ratio policies.

In particular, Roundy (1985) focused on the integer-ratio policies which are also
powers-of-two. In such policies orders are placed at equal intervals of time which
are powers of two multiples of some base planning period Roundy showed that
if is fixed the cost of an optimal powers-of-two policy is at most 6% above the
optimal cost. Besides, if is variable this procedure provides policies that are
within 2% of optimality. Moreover, he showed that an optimal powers-of-two policy
can be computed in O( log ) However, from a practical point of view, integer-
ratio policies are very important since they provide a more unconstrained way to
determine the replenishment intervals at the warehouse and at the retailers. Notice
that integer-ratio policies do not restrict the replenishments intervals to be powers
of two multiples of the base planning period.

In this chapter we develop an O( log ) heuristic for computing near-optimal
integer-ratio policies and we compare it with the procedure proposed by Roundy
(1985). The computational results show that the integer-ratio policies generated
by the new heuristic are, on average, more e ective than those computed by the
Roundy procedure. It is worth noting that the decision system in the integer-ratio
policies is centralized. Therefore, it also makes sense to compare the integer-ratio
policies with the decentralized strategies introduced in Chapter 3.

We complete this section with an outline of the chapter. Section 4.2 introduces
and states the problem. In Section 4.3 we outline the algorithm given by Roundy
(1985) to determine integer-ratio powers-of-two policies. Section 4.4 presents the



4. Integer-ratio policies 91

new heuristic developed to compute integer-ratio policies. We introduce in Section
4.5 a numerical example which is solved using both the Roundy procedure and
the new heuristic. Computational results are reported in Section 4.6. Finally, our
conclusions are drawn in Section 4.7.

4.2 Problem statement

In this section we formulate the one-warehouse -retailer problem in terms of
integer-ratio policies. To that end, we use the same notation introduced in Chapter
3. That is, the input data associated with the retailers are , and which
represent the constant and continuous demand rate, the fixed replenishment cost
and the holding cost per unit time at retailer = 1 , respectively. The values
0 and 0 represent the fixed production replenishment cost and the holding cost
per unit time at the vendor, respectively. In addition, the decision variables are the
replenishment intervals at the retailers = 1 , and at the warehouse 0.
Finally, recall that 0 and denote the total costs per unit time incurred by
retailer = 1 , the warehouse and the total system, respectively.

Before proceeding with the formulation of the problem it is useful to remark the
following fact. Since we focus on integer-ratio policies, for each retailer either

0 or 0 must be a positive integer. Notice that if 0 0 can be expressed
as an integer multiple of , that is, 0 = . Hence, as we showed in Chapter 2,
under this situation it is better to use the echelon holding costs. Recall that if
is the holding cost at retailer and 0 is the holding cost at the warehouse,
then, 0 = 0 and 0

0 = 0 are the echelon holding costs at retailer and at the
warehouse, respectively. However, if 0, then = 0 with integer, and
therefore, each time retailer places an order so does the warehouse. Consequently,
the warehouse has not to hold inventory for the retailers with replenishment interval
greater than 0. Therefore, in this case, we only have to consider the holding costs
incurred at the retailers. Accordingly, we should use the holding cost rates at these
retailers instead of the echelon holding cost rates.

Taking the above argument into account, it is obvious that holding costs at
retailer must be computed in a di erent way depending on if 0 or 0

Hence, in order to formulate the problem we have to classify the retailers in sets
according to their replenishment intervals. Concretely, we use the sets , and
defined by Roundy (1985) and introduced in Chapter 2. Recall that in set are
the retailers with 0 denote the set of retailers with 0 and is the
set of retailers with = 0

Now, using these sets it is easy to see that the cost at the warehouse and at the
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retailers are given by the following expressions
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Notice that as we pointed out, the costs at retailers in set are formulated
in terms of the echelon holding costs. In contrast, the costs at retailers in set
depend on the conventional holding costs.

Therefore, the total cost for the system is given by
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Then, we can formulate the problem of computing an integer-ratio policy for the
one-warehouse -retailer system as follows
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s.t.

0
or 0 is a positive integer = 1 (4.6)

This problem has been already solved by Roundy (1985) but he restricts himself
to the integer-ratio policies which are also powers-of-two. That is, he forces the
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quotients 0 or 0 to be powers-of-two. The approach provided by Roundy
(1985) is the technique more referenced in the literature as a very e cient method
for computing integer-ratio policies. Thus, in order to check the performance of the
new heuristic we will compare it with the Roundy approach.

4.3 The Roundy procedure

Roundy (1985) solved problem (4.5)-(4.6) considering powers-of-two policies. That
is, for each facility he assumes that the replenishment intervals are of the form

= 2 = 0 where is integer, 0 is a base planning period (4.7)

As we commented in Chapter 2, to solve this problem Roundy (1985) first relaxes
(4.7) and minimizes (4.5) for 0 = 0 Once the values ’ are computed
they are rounded-o to powers of two multiples of the base planning period If
is fixed, the rounded-o replenishment interval for a given facility is = 2

where 2 1 2 2 Otherwise, if is variable, the way to compute
optimal powers-of-two policies is not as direct as before and it can be found in
Roundy (1985). It is important to remark that Roundy (1985) proved that the cost
of an optimal powers-of-two policy is at most 6% or 2% above the cost of an optimal
policy when is fixed or variable, respectively. Moreover, Roundy (1985) showed
that such a policy can be computed in O( log ) time. Therefore, powers-of-two
policies are easy to compute and they are very e ective. However, in the following
section we develop a new approach to compute integer-ratio policies which are, on
average, more e ective than those given by the Roundy procedure. Moreover, this
approach is very easy to implement and its computational complexity is also O(
log ).

4.4 New heuristic

Unlike the Roundy procedure, we admit that for each retailer either 0 or 0

is a positive integer, but not necessarily a power of two integer. The way to compute
these integer ratios is as follows. We first apply Algorithm 2.2 given in Chapter 2 to
obtain sets and Then, following the idea introduced in Graves and Schwarz
(1977), we sort the retailers belonging to sets or so that retailer retailer if
and only if 0 0 In case of tie, we sort the retailers according to their
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indexes, namely, if , then retailer retailer . Without loss of generality, we
can assume that retailer 1 retailer 2 retailer . Next, we compute the
optimal replenishment intervals at the warehouse and at the retailers.

Adding (4.1) and (4.2) for each retailer and taking the derivative with
respect to 0 equal to zero we have that the optimal replenishment interval is

0 =

vuuut 2( 0 +
P

)

( 0 0 +
P

0 )
(4.8)

where 0 =
P

From (4.3) the optimal replenishment interval at any retailer is given by

=

s
2
0

(4.9)

Similarly, from (4.4) we obtain that the optimal replenishment interval at any
retailer is

=

s
2

(4.10)

Taking into account that for all retailers 0 = , and for all retailers
, = 0 the optimal real values ’ and ’ can be computed as follows

=
0 , (4.11)

=
0
, (4.12)

Now, we should adjust these real values to integer values according to the follo-
wing procedure.

This procedure consists of | | steps and in each iteration either a or a
integer value is computed as d e or b c or d e or b c, respectively. Suppose
that we are evaluating step , then, for each retailer either its , if retailer

or its , if retailer has been already calculated. Besides, for any
retailer we consider that the values ’ and ’ might be real values.
Therefore, each retailer can order at its optimal replenishment interval,
since it is always possible to find a real value that satisfies 0 = if retailer
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or = 0 if retailer Thus, we obtain that =
p
2 if

retailer or =
p
2 0 if retailer , and the cost incurred by these

retailers is

X
=

=
X

{ { }}

p
2 +

X
{ { }}

p
2 0

Let ; 1 1 be the total cost when ’ and ’ have been already determined,
with Then, the total cost (4.5) can be reformulated to give

; 1 1 =
X

{ { }}

p
2 +

X
{ { }}

p
2 0 +

+
1 1

0
+

0

2
1 1 (4.13)

where

1 1 = 0 +
X

+
X

{ {1 1}}

+
X

{ {1 1}}

and

1 1 = 0 0 +
X

0 +
X

{ {1 1}}

0

+
X

{ {1 1}}

Let 0; 1 1 be the optimal replenishment interval at the warehouse for known
’ and ’ with Then, taking the derivative of (4.13) with respect to 0

equal to zero we have

0; 1 1 =

s
2 1 1

1 1
(4.14)

Thus, the cost function in (4.13) can be rearranged using (4.14) to give

; 1 1 =
X

{ { }}

p
2 +

X
{ { }}

p
2 0 (4.15)

+
p
2 1 1 1 1
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At this point, we can compute the new optimal real value or as follows

0 =
0; 1 1 if (4.16)

0 =
0; 1 1

if (4.17)

In case that retailer , we set = b 0 c if ; 1 1 ( = b 0 c)

; 1 1
( = d 0 e); otherwise, = d 0 e On the contrary, if retailer ,

we set = b 0 c if ; 1 1 ( = b 0 c)
; 1 1

( = d 0 e); otherwise
= d 0 e.

Once either or has been obtained, we proceed in the same way to compute
+1 or +1 Finally, in step | | all ’ and ’ have been calculated. Observe

that each iteration of the algorithm only checks two values d 0 e and b 0 c if retailer
, or d 0 e and b 0 c, if retailer . For that reason, we cannot guarantee

that this approach always computes the optimal integer-ratio policy. However, from
the computational results it can be concluded that in most cases the heuristic
is more e ective than the Roundy procedure.

The computational complexity of the algorithm is determined as follows. It is
easy to prove that sets and are computed in O( log ) (Roundy (1985)).
Moreover, the sort of the retailers can also be implemented in O( log ) time.
Remark that the first two summations in (4.15) are calculated in O( ) time. This
operation is carried out when = 1. In the remaining iterations a constant number
of additions and subtractions are made. Therefore, the computational complexity
of the new heuristic is O( log ).

4.5 Numerical example

In this section we solve a one-warehouse and five-retailer problem with the data
given in Table 4.1 using both the Roundy procedure and the heuristic .

4.5.1 Roundy’s powers-of-two policy

Applying Algorithm 2.2, we obtain = {5}, = {2 3}, = {1 4} and the
following replenishment intervals 0 = 0 0991 1 = 0 1634 2 = 0 0405 3 = 0 0356
and 4 = 0 2277 Once we have determined the ’ they are rounded-o to optimal
powers of two multiples of the base planning period . For this example, we
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Table 4.1: Input data for an instance of the one-warehouse five-retailer problem

0

Retailer 1 36 102 212 181
Retailer 2 336 118 458 427
Retailer 3 430 116 456 425
Retailer 4 101 453 173 142
Retailer 5 100 74 165 134
Warehouse 124 31 31

obtain that the optimal base planning period is = 0 0862, and the replenishment
intervals are 0 = 5 = 0 0862 = 20 1 = 0 1724 = 21 2 = 0 0431 = 2 1

3 = 0 0431 = 2
1 and 4 = 0 1724 = 2

1 The cost for this policy is 21874 2
$ .

4.5.2 Integer-ratio policy provided by the heuristic

We first sort the retailers belonging to or so that retailer retailer if and
only if 0 0 For this example we obtain that retailer 4 retailer 1
retailer 2 retailer 3 So, we relabel the retailers in the following way: retailer 1 =
retailer 4, retailer 2 = retailer 1, retailer 3 = retailer 2 and retailer 4 = retailer 3

Next, we compute the optimal replenishment interval for each retailer taking
into account whether the retailer belongs to set = {1 2} or to set = {3 4}
From (4.10) it follows that 1 = 0 2277 and 2 = 0 1634 From (4.9) we have that
3 = 0 0405 and 4 = 0 0356

We now apply the procedure introduced in Section 4.4 to compute the near-
optimal integers 1, 2 3 and 4

First, the optimal replenishment interval at the warehouse is computed. Using
(4.14), for = 1, it follows that 0 = 0 0991. Since retailer 1 , we use (4.17) to
calculate 0

1 = 2 2976 Therefore, we should choose between 1 = 2 or 1 = 3. If
; 1 1( 1 = 2) ; 1 1( 1 = 3) we set 1 = 2 otherwise, 1 = 3

Taking into account that

; 1 1 =
p
2 2 2 2 +

p
2 3 3

0
3 +

p
2 4 4

0
4 +

p
2 1 1 1 1

it follows that ; 1 1( 1 = 2) = 21567 9311 and ; 1 1( 1 = 3) = 21620 4243
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Thus, we set 1 = 2

Notice that if 1 changes so does the replenishment interval at the warehouse.
The new replenishment interval at the warehouse computed using (4.14) is equal to
0; 1 1 = 0 1062

We now should determine value 2 Since retailer 2 2 = 2 0; 1 1 and the
new 0

2 is equal to 2 0; 1 1 = 1 5386, hence either 2 = 1 or 2 = 2. If we compute
the total cost for both values, we obtain that the lower cost is achieved when 2 = 2
Repeating this process in each step the following integer values ’ and ’ are
obtained: 1 = 2 2 = 2, 3 = 3 and 4 = 3 From the previous values and
using (4.14) we obtain that 0; 1 4 = 5 = 0 1087 From (4.16) and (4.17) we can
compute the replenishment interval at each retailer to give 1 = 0 2174 2 = 0 2174

3 = 0 0362 and 4 = 0 0362 The cost for this policy is 21658 9046 $ .

Remark that for this example the integer-ratio policy provided by the new heu-
ristic is better than the optimal powers-of-two policy. The computational results
show that, in general, the policies generated by the heuristic are more e ective
than those given the Roundy procedure.

4.6 Computational results

This section provides a set of randomly generated numerical examples to illustrate
the average e ectiveness of the integer-ratio policies provided by the new heuristic

. First, we compare the Roundy procedure with the heuristic . Then, we
contrast the costs of the integer-ratio policies against the costs obtained by the
decentralized approach.

4.6.1 The new heuristic versus the Roundy procedure

We generate 100 instances for each multiple of 5 varying from 5 to 100. The
values of 0, 0 and are taken from a uniform distribution [1 500] The values
and are taken from uniform distributions [ 0 500] and [1 1000], respectively.
For each instance we compute both the optimal powers-of-two policy given by the
Roundy procedure and the integer-ratio policy provided by the new heuristic .
For notation convenience, let and denote the cost of the policy computed
by the Roundy procedure and by the heuristic , respectively. The results are
summarized in Table 4.2.

In Table 4.2 the first column represents the number of retailers. In the second
column we show the number of problems where both the new heuristic and
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Table 4.2: Comparison between the optimal powers-of-two policy given by the
Roundy procedure and the integer-ratio policy provided by the heuristic

=
5 49 41 10
10 20 62 18
15 3 79 18
20 3 70 27
25 0 73 27
30 0 76 24
35 0 86 14
40 0 82 18
45 0 90 10
50 0 89 11
55 0 92 8
60 0 91 9
65 0 95 5
70 0 93 7
75 0 94 6
80 0 92 8
85 0 96 4
90 0 93 7
95 0 98 2
100 0 97 3

3.75 84.45 11.8

the Roundy procedure provide the same solution. The third and the last columns
contain the number of instances where the new heuristic computes better and worse
policies than the Roundy procedure, respectively.

Notice that in 84.45% of the instances the new heuristic provides better
solutions than those given by the Roundy procedure, and in 3.75% both methods
compute the same solution. Therefore, only in 11.8% our method provides worse
solutions. Hence, we can conclude that usually the heuristic is more e ective
than the Roundy procedure.

Roundy (1985) proved that the minimum cost of problem (4.5) is a lower bound
of the cost of any feasible policy. We use this lower bound, , to compare the
e ectiveness of the policies provided by the Roundy procedure and by the new
heuristic. In particular, for each instance we compute the ratio between the cost of
the corresponding policy and the lower bound. In Table 4.3, we report for each
the average percentages of these ratios. It is worth noting that the new heuristic

provides closer solutions to the lower bound than the Roundy procedure.
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Table 4.3: Comparison between both heuristics for computing integer-ratio policies
and the lower bound given by Roundy

(%) (%)
vs. vs.

5 0.72 0.78
10 0.96 1.04
15 1.11 1.29
20 1.15 1.30
25 1.29 1.44
30 1 35 1.48
35 1.25 1.52
40 1.20 1.56
45 1.26 1.57
50 1.17 1.58
55 1.21 1.65
60 1.16 1.59
65 1.14 1.62
70 1.13 1.64
75 1.18 1.66
80 1.15 1.65
85 1.07 1.66
90 1.18 1.58
95 0.97 1.66
100 1.02 1.69

In Table 4.4 we report a collection of the instances generated. The first column
represents the number of retailers. Columns two and three contain the costs of the
policies computed by the Roundy procedure and by the heuristic , respectively.
In column four, the value (%) is given by | | min{ }
and, represents that for such instance the new heuristic is better than the Roundy
procedure.

4.6.2 Integer-ratio versus decentralized policies

The decision system in the integer-ratio policies is centralized. That is, there is a
unique decision maker and the goal is to minimize the average total cost. However,
as we shown in Chapter 3, the problem can be also addressed assuming that the
decision system is decentralized. That is, each retailer orders independently, as does
the warehouse. Recall that under this situation, we have proposed a two-level op-
timization approach which consists of computing first the order quantities at the
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Table 4.4: Comparison between costs obtained using the Roundy procedure and the
heuristic

(%)
5 83845.71 83845.71 0.00
5 84061.64 83510.25 0.66
5 106199.10 106199.10 0.00
10 173067.18 173250.10 0.10
10 135338.48 134312.87 0.76
10 88282.90 88282.90 0.00
20 234442.84 233807.93 0.27
20 258449.20 258669.18 0.08
20 265508.62 262211.03 1.25
30 368350.06 367242.46 0.30
30 260362.26 260491.04 0.04
30 490240.03 483312.93 1.43
40 600655.56 595761.25 0.82
40 572237.62 570751.75 0.26
40 416977.04 410407.05 1.60
50 577839.75 570333.00 1.31
50 655718.00 650201.75 0.84
50 496238.93 494919.00 0.26
60 599231.25 599763.12 0.08
60 509232.46 501726.50 1.49
60 496108.62 489862.84 1.27
70 701994.06 691055.31 1.58
70 660135.87 657934.93 0.33
70 1055170.37 1048056.50 0.67
80 693146.62 693316.00 0.02
80 1042022.37 1027320.50 1.43
80 1025367.31 1023174.62 0.21
90 1422478.75 1399963.37 1.60
90 1415412.00 1411788.87 0.25
90 1275187.12 1262969.37 0.96
100 1588765.50 1562112.12 1.70
100 986661.31 983054.56 0.36
100 1595893.25 1580128.12 0.99

retailers and then, determining the inventory policy for the warehouse. In the pre-
vious chapter we compare the single-cycle policies with the decentralized strategies.
Here, we proceed in a similar way for the integer-ratio policies. Accordingly, for
the set of instances generated in Chapter 3 we have computed the integer-ratio
policies and we have compared them with the decentralized strategies. The results
are summarized in tables 4.5-4.9. Note that in these tables we have also included
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the results obtained for the single-cycle policies. Thus, we can easily realize of the
changes in the results due to use the integer-ratio policies instead of the single-cycle
solutions.

Table 4.5: Comparison between decentralized and single-cycle policies, and between
decentralized and integer-ratio policies when 0 0 [1 100] and
[ 0 + 1 101]

( ) ( )

2 13 87 1 99
3 20 80 2 98
4 43 57 1 99
5 37 63 3 97
6 33 67 5 95
7 50 50 3 97
8 50 50 0 100
9 63 37 0 100
10 43 57 0 100
15 67 33 0 100
20 100 0 0 100
25 100 0 0 100
30 100 0 0 100

55.3 44.7 1.15 98.85

From Table 4.5, it is worth noting that when parameters range in [1 100], the
number of instances where the single-cycle centralized policies are better than the
decentralized strategies is around 45%. In contrast, the number of instances where
it is preferable to apply the integer-ratio policy instead of the decentralized solution
is almost 99%.

On the other hand, when parameters vary on [1 10], we can conclude from Table
4.6 that in 52% of the instances the single-cycle policies are more e cient than the
decentralized ones. With respect to the integer-ratio policies, note that only in 1.2%
it is better to use the decentralized strategies instead of the integer-ratio solutions.
This is due to the fact that the class of integer-ratio policies is much more general
than the class of single-cycle policies. Recall that in an integer-ratio policy the
replenishment intervals at the retailers can be longer than the replenishment interval
at the warehouse. However, in a single-cycle policy the replenishment intervals at
the retailers are always equal to or smaller than the replenishment interval at the
warehouse. Therefore, it is not surprising that the integer-ratio policies outperform
the decentralized strategies in much more cases than the single-cycle policies.

As in Chapter 3, here we also analyze the e ect of the parameters on the cost of
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Table 4.6: Comparison between decentralized and single-cycle policies, and between
decentralized and integer-ratio policies when 0 0 [1 10] and [ 0+
1 11]

( ) ( )

2 10 90 0 100
3 17 83 0 100
4 30 70 0 100
5 43 57 3 97
6 37 63 2 98
7 47 53 3 97
8 50 50 4 96
9 37 63 2 98
10 53 47 2 98
15 47 53 0 100
20 70 30 0 100
25 80 20 0 100
30 100 0 0 100

47.77 52.23 1.23 98.77

the policies. To that end, we have fixed the number of retailers to 10 and we have
chosen the parameters from di erent uniform distributions. For each combination,
ten problems are tested and the results are summarized in tables 4.7-4.9. As in tables
4.5 and 4.6 we show both results, those obtained using the single-cycle policies and
those achieved with the integer-ratio solutions.

From tables 4.7-4.9 we can conclude that the e ect of the parameters on the costs
of the policies is similar to that obtained when the single-cycle policies were com-
pared with the decentralized strategies. That is, as the interval of the replenishment
cost at the warehouse increases so does the number of instances where the integer-
ratio policies are better than the decentralized strategies. On the other hand, when
the costs at the retailers are significantly greater than the costs at the warehouse,
it could be preferable that the retailers make decisions independently. However,
as we expected, the number of instances where the decentralized policies are more
e cient than the integer-ratio solutions decreases considerably with respect to the
case where the single-cycle policies were considered.
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Table 4.7: Comparison between decentralized and single-cycle policies, and between
decentralized and integer-ratio policies when 1 [1 10] 0 0 1

[1 10], 2 [10 100] and 3 [100 1000] and 4 [ 0+1 101], 5

[ 0 + 1 1001], and 6 [ 0 + 1 10001]

0 0 ( ) ( )

1 1 4 5 5 1 9
1 2 5 5 5 0 10
1 3 6 7 3 4 6
2 1 4 0 10 0 10
2 2 5 0 10 0 10
2 3 6 0 10 0 10
3 1 4 0 10 0 10
3 2 5 0 10 0 10
3 3 6 0 10 0 10

Table 4.8: Comparison between decentralized and single-cycle policies, and between
decentralized and integer-ratio policies when 2 [10 100] 0 0 1

[1 10], 2 [10 100] and 3 [100 1000] and 4 [ 0+1 101], 5

[ 0 + 1 1001], and 6 [ 0 + 1 10001]

0 0 ( ) ( )

1 1 4 4 6 5 5
1 2 5 10 0 6 4
1 3 6 6 4 1 9
2 1 4 6 4 1 9
2 2 5 5 5 2 8
2 3 6 1 9 0 10
3 1 4 0 10 0 10
3 2 5 0 10 0 10
3 3 6 0 10 0 10
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Table 4.9: Comparison between decentralized and single-cycle policies, and between
decentralized and integer-ratio policies when 3 [100 1000] 0 0 1

[1 10], 2 [10 100] and 3 [100 1000] and 4 [ 0+1 101], 5

[ 0 + 1 1001], and 6 [ 0 + 1 10001]

0 0 ( ) ( )

1 1 4 10 0 9 1
1 2 5 7 3 4 6
1 3 6 10 0 7 3
2 1 4 8 2 4 6
2 2 5 7 3 3 7
2 3 6 5 5 7 3
3 1 4 3 7 1 9
3 2 5 1 9 1 9
3 3 6 2 8 2 8

4.7 Conclusions

For the one-warehouse -retailer systems the powers-of-two policies are very e ecti-
ve. Besides they are easy to implement and it is always possible to compute a
powers-of-two policy in O( log ) whose cost is at most 2% above the cost of an
optimal policy. However, integer-ratio policies have the advantage of giving more
freedom in determining the times at which the orders will be placed, since they do
not restrict the replenishments intervals to be powers of two multiples of some base
planning period.

In this chapter we develop an O( log ) heuristic for computing near-optimal
integer-ratio policies. The computational results show that the integer-ratio policies
generated by the new heuristic are, on average, more e ective than those com-
puted by the Roundy procedure.

We also have compared the integer-ratio policies with the decentralized strategies
introduced in Chapter 3. Recall that the class of integer-ratio policies are more
general than the class of single-cycle policies. Hence, it is not surprising that the
number of instances where it is preferable to use an integer-ratio policy instead of
a decentralized strategy has increased considerably with respect to the single-cycle
policies.

To this point, we have focused on the one-warehouse -retailer problem assu-
ming infinite production rate. However, often the warehouse represents to a manu-
facturing location where production occurs at a finite rate. This problem, where the
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warehouse produces an item which is supplied to the retailers, is usually referred to
as the single-vendor multi-buyer system. It is worth noting that most contributions
on this model are confined to considering a single buyer. However, in practice, the
vendor usually supplies multiple buyers. In spite of this, we find few references in the
literature dealing with the multiple buyers case. The analysis of the single-vendor
multi-buyer systems is the goal of the next chapter.



Chapter 5

Single-vendor multi-buyer systems
with finite production rate

In practice is very common to deal with inventory systems where a single vendor
produces an item at a finite rate which is supplied to multiple buyers. In this chapter
we analyze this problem and we formulate it in terms of integer-ratio policies. We
first focus on the single-vendor two-buyer problem which is the simplest case within
the single-vendor multi-buyer systems. Then, we extend the analysis to the multi-
buyer problem. Finally, we also show how the problem should be addressed in case
of independence among the vendor and the buyers. In addition, we compare the
integer-ratio policies with the decentralized policies, and a sensitivity analysis of
parameters is also reported.

5.1 Introduction

An interesting decision problem arises whenever a product needs to be supplied by
a vendor to multiple buyers. This inventory/distribution system has been analyzed
extensively in the literature. However, most work to date is confined to the case
where the production is instantaneous, namely, infinite production rate. Besides,
most contributions concerning finite production rate are related to the single-vendor
single-buyer system.

Banerjee (1986) was one of the first in analyzing the integrated single-vendor
single-buyer model where the vendor produces the items at a finite rate. He exa-
mined a lot-for-lot model in which the vendor manufactures each buyer shipment as
a separate batch.

Goyal (1988) further generalized Banerjee’s model by relaxing the assumption
of lot-for-lot policy for the vendor. He showed that manufacturing a batch which
is made up of an integral number of equal shipments, generally produces a lower

107
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cost solution. Goyal’s model is based on the assumption that the vendor can supply
the buyer only after completing the entire lot size. This assumption was relaxed by
Lu (1995) who gave an optimal solution to the single-vendor single-buyer problem
assuming equal shipments. This strategy is an improvement over the policies earlier
proposed by Banerjee (1986) and Goyal (1988). A review of contributions related
to vendor-buyer coordination models is given in Goyal and Gupta (1989).

Goyal (1995) also allowed the first shipment to be made before the whole lot
is produced and he incorporated an alternative policy in which the quantity which
is delivered to the buyer is not identical at every replenishment. Instead, at each
delivery all available inventory is supplied to the buyer. This policy was based on
a preceding argument proposed by Goyal (1976) for solving a single-vendor single-
buyer system with infinite production rate at the vendor. This new policy involves
successive shipment sizes within a batch which are increased by a factor equal to
the ratio between the vendor’s production rate and the demand rate at the buyer.
Goyal (1995) used the numerical example given in Lu (1995) to show that this policy
can be more e ective than the equal shipment size policy.

Viswanathan (1998) identified problem parameters under which the equal ship-
ment size policy of Lu (1995) and the increasing shipment policy of Goyal (1995) are
optimal. He found that Goyal’s policy has lower cost only if the holding cost at the
buyer is not much larger than the holding cost at the vendor. This is because as the
holding cost at the buyer increases, it is better to hold inventory at the vendor than
at the buyer. In addition, Viswanathan (1998) also showed that the production rate
at the vendor has a significant influence on which policy is better. In particular, if
the production rate decreases relative to the demand rate, the policy provided by
Goyal (1995) becomes more attractive. This is due to the fact that as the production
rate decreases, the vendor would find more di cult to cope up with the demand,
and, therefore, it makes more sense to deliver whatever inventory is available at each
replenishment.

Hill (1997b) showed that neither the equal shipment size policy of Lu (1995) nor
the increasing shipment size policy of Goyal are always optimal. He took Goyal’s
idea a stage further by considering successive shipment sizes which are increased by
a general fixed factor. This factor ranges from 1 to an upper bound, which coincides
with the quotient between the production rate and the demand rate. Therefore,
both the equal shipment size policy and Goyal’s policy represent special cases of
this more general class of policies. The equal shipment size policy is obtained when
the factor is equal to 1. Additionally, when the factor coincides with the quotient
between the production rate and the demand rate, the policy given by Goyal (1995)
is achieved. Hence, it is not surprising that the policies provided by Hill (1997b)
outperform those obtained by Lu (1995) and Goyal (1995).
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Most papers on this topic have focused on finding the optimal solution for a
given class of policies. More recently, Hill (1999) determined the form of the globally
optimal batching and shipping policy by combining the policy provided by Goyal
(1995) and an equal shipment policy. However, although the problem has already
been optimality solved, we can find recent papers dealing with the single-vendor
single-buyer problem. For example, Goyal (2000) suggested an improvement over
the policy of Hill (1997b) consisting of modifying the size of the shipments obtained
by the procedure of Hill (1997b). Moreover, Goyal and Nebebe (2000) introduced a
policy in which the batch quantity is received by the buyer in di erent shipments.
The first delivery is of small size, and the next ones are equal to the size of the first
shipment multiplied by the ratio between the production rate and the demand rate.

It is worth noting that most contributions on this model are confined to con-
sidering a single buyer. However, in practice, the vendor usually supplies multiple
buyers. In spite of this, we find few references in the literature dealing with the mul-
tiple buyers case. Lu (1995) was a pioneer in studying the single-vendor multi-buyer
inventory model, where it is assumed that the vendor manufactures at a finite rate.
In Lu’s model it is assumed that each buyer orders a di erent item to the vendor
and the objective consists of minimizing the total cost at the vendor subject to the
maximum cost that the buyers may be prepared to incur.

Yao and Chiou (2003) also proposed a heuristic for the single-vendor multi-buyer
problem considering the same assumptions that those in Lu’s model. In addition,
they developed a numerical study in order to compare the new approach with the
heuristic provided by Lu (1995). From the results, they concluded that the new
approach outperforms Lu’s heuristic.

Other related papers have been developed by Khouja (2003) and Wee and Yang
(2004). In particular, Khouja (2003) study a three-stage system with multiple firms
at each stage which can supply two or more customers. Furthermore, he assumes
that the whole lot has to be produced before delivering the batch. Wee and Yang
(2004) also analyze a three-stage systemwith a single producer and multiple distribu-
tors and retailers. They assume that the replenishment interval at each retailer is
smaller than the replenishment interval at its distributor, which in turns, is smaller
than the replenishment interval at the producer.

This chapter focuses on the single-vendor multi-buyer problem assuming that all
buyers order the same item to the vendor which manufactures the item at a finite
rate. Moreover, we assume that the shipments can be made before the whole lot is
produced and we allow the replenishment interval at any buyer to be greater than
the replenishment interval at the vendor.

The rest of this chapter is organized as follows. Section 5.2 introduces the nota-
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tion and assumptions required to state the problem. In Section 5.3 we deal with the
single-vendor two-buyer system and, in Section 5.4, we extend the analysis to the
multi-buyer case. We discuss in Section 5.5 how to solve the problem if the vendor
and the buyers are treated separately. In Section 5.6 the computational results and
sensitivity analysis of the parameters are reported. Finally, we conclude with some
final remarks in Section 5.7.

5.2 Notation and assumptions

We consider the single-vendor multi-buyer problem assuming that the production
rate at the vendor is finite. It is assumed that customer demands occur at each
buyer at a constant rate. There is a holding cost per unit stored per unit time at
the vendor and at each buyer. The vendor incurs a fixed setup cost associated with
each shipment. Additionally, when a buyer places an order it incurs a fixed ordering
cost.

Similar to the previous chapters, the input data associated with the buyers are
, and which represent the constant and continuous demand rate, the fixed

replenishment cost and the inventory holding cost per unit time at buyer = 1 ,
respectively. The fixed production setup cost and the inventory holding cost per unit
time at the vendor are denoted by 0 and 0, respectively. Additionally, represents
the continuous production rate for the vendor.

The decision variables are the replenishment intervals at the buyers, =
1 , and the time interval between two consecutive setups at the vendor, .
The total costs per unit time incurred by buyer = 1 , the vendor and the
system are 0 and , respectively.

In the formulation of the problem we also use the following notation. Let 0 be
the inventory at the vendor at instant and 0 the average inventory during a cycle
at the vendor. Similarly, we denote by and the inventory at buyer at instant
and the average inventory during a cycle at buyer , respectively. Finally,

represents the total inventory in the system at instant and the average total
inventory during a cycle in the system.

The stock value normally increases as a product moves down the distribution
chain, and therefore, the associated holding costs also increase. Taking this into
account, it is reasonable to assume that 0 = 1 The consequence
of this is that stock should be retained by the vendor until a buyer needs another
shipment.
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5.3 The single-vendor two-buyer problem

Many authors have addressed the single-vendor multi-buyer systems. However, they
main focused on the case with infinite production rate. See for example Schwarz
(1973), Graves and Schwarz (1977), Williams (1981, 1983) and Roundy (1985). The
work of Roundy (1985) is specially relevant since he showed that optimal policies
for this problem can be very complex. Moreover, he pointed out that even if we
are able to compute an optimal policy it may be very di cult to apply in practice.
Hence, he looked for a simple class of policies which facilitates both computation
and implementation. As we showed in Chapter 3, Roundy (1985) introduced the
integer-ratio policies, where the replenishment interval at the vendor, and the
replenishment interval at buyer , , = 1 2 satisfy that either or is a
positive integer. In particular, he focused on a subclass into the integer-ratio policies
called powers-of-two policies, where the replenishment intervals are powers of two
multiples of a base planning period. Recall that Roundy (1985) proved that the
cost of an optimal powers-of-two policy is at most 2% above the cost of an optimal
policy. Taking into account the good performance of such policies for Roundy’s
model, some authors have studied their behavior in other multi-echelon problems.

Accordingly, in this section we use the integer-ratio policies to formulate the
single-vendor two-buyer system with finite production rate at the vendor. In par-
ticular, we confine ourselves to those integer-ratio policies where the quotient
corresponds to a positive integer, {1 2} 6= . That is, if buyer places
an order, then, buyer also orders. This class of policies can be profitable in prac-
tice since the transportation cost per cycle of the vendor is reduced by forcing the
buyers to order simultaneously in some instants. Thus, there will be points in time
where the vendor should supply both buyers simultaneously, and others where it
only supplies buyer . Therefore, in the latter case, the vendor should start the
production later than when the vendor supplies both buyers. Hence, we let the time
interval between two consecutive setups to be non-constant. Remark that this class
of policies is a generalized case of the powers-of-two policies proposed by Roundy
(1985).

Let us consider the example illustrated in Figures 5.1 and 5.2. The inventory
fluctuations at the buyers and at the vendor, when we force the time interval between
two consecutive setups to be constant, are depicted in Figure 5.1. In this case,
the vendor anticipates the production that will be withdrawn later, and hence it
unnecessarily holds inventory. However, as it can be seen in Figure 5.2, if we allow
the time interval between two consecutive setups to be non-constant the holding
cost at the vendor can be reduced. Nevertheless, if we only consider buyer 1, and we
suppose that the vendor produces first the units to be sent to buyer 2, then the time
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interval between two consecutive setups is constant. In what follows we will denote
this time interval by 0. That is, in general, 0 represents the time interval between
two consecutive setups when it is only considered the buyers with replenishment
interval . Moreover, if buyer with is also considered, then the time
interval between two consecutive setups can be easily obtained from 0

Once 0 has been established, we can use a definition similar to that in Roundy
(1985) for the integer-ratio policies. The only di erence is that we use the value 0

instead of value That is, we will say that a policy is integer-ratio with respect to
0 if either 0 or 0 is a positive integer, with = 1 2.

Now, we focus on computing the average inventory at the vendor and at the
buyers. For the single-vendor single-buyer problem, both inventories are easily com-
puted. However, obtaining the average inventory at the vendor involves more com-
plexity for the case with two buyers.

The expression of the average inventory at the vendor is di erent depending on
if 0 or 0 {1 2} 6= . Hence, we should analyze both
possibilities.

1IB

2IB

IV

time

time

time
vt vt

1t

2t

Figure 5.1: Inventory fluctuations at the vendor and at the buyers considering that
the replenishment interval is constant. The dotted line represents the production
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A B

1IB

2IB

IV

time

time

time
vt vt

0t

1t

2t

Figure 5.2: Inventory fluctuations at the vendor and at the buyers considering that
the replenishment interval is non-constant. At instants and the vendor
begins the production of the items which will be shipped to buyer 1. The dotted
line represents the production

Case 1: 0, {1 2} 6=

Figure 5.3 illustrates the inventory pattern within a cycle 0 for the vendor, for
the buyers and for the total system. When the production starts 0 is minimum,
and the inventory at the vendor is equal to zero. Moreover, the inventories at the
buyers are just enough to satisfy their demands until the next deliveries arrive. The
quantity ordered by buyer is = 1 2 and hence, the time required to produce
the quantities ordered by buyers 1 and 2 initially is

P2
=1 Therefore, when the

production starts, inventory levels 0 = 1 2 and 0 should be
P2

=1

and
P2

=1

P2
=1 , respectively. Then, from the latter value 0 keeps on

increasing at a rate of
P2

=1 during the time needed to manufacture 0

P2
=1

units. This value represents the sum of the quantities ordered by both buyers during
a cycle 0 We can also see in Figure 5.3 that reaches its maximum at 0 =

0

P2
=1 which represents the instant when the production finishes. Thus, the

maximum value for is
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0

=

2P
=1

2P
=1 + (1

2P
=1 ) 0

2X
=1

Accordingly, can be written as follows

=
1

0

2P
=1

2P
=1

0 + 0(1

2P
=1 )

0

2P
=1

2
=

2P
=1

2P
=1 +(1

2P
=1 )

0

2P
=1

2

Observe that this expression is very similar to the average cost in the classical
EPQ model. It only di ers from the typical EPQ expression in the first term which
corresponds to the value of 0 when production starts.

Once is obtained, we can compute 0 in the following way

0 =
2X
=1

=

2P
=1

2P
=1 + (1

2P
=1 )

0

2P
=1

2

2X
=1

2
(5.1)

Now, we can compute the average total cost. Since the buyers follow an EOQ
pattern, the average cost for a buyer = 1 2 is easily obtained from the following
expression

= +
2

On the other hand, the average cost for the vendor is the sum of the average
holding cost, that is, 0 0 where 0 is given by (5.1), plus the average setup cost,
that is, 0 0 Accordingly, 0 can be expressed as follows

0 =
0

0
+ 0

2P
=1

2P
=1 + (1

2P
=1 )

0

2P
=1

2

2X
=1

2
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Figure 5.3: Inventory fluctuations at the vendor and at the buyers when
0 {1 2} 6=

Then, the total cost per unit time is

= 0 +
2X
=1

=

=
0

0
+ 0

2P
=1

2P
=1 + (1

2P
=1 )

0

2P
=1

2

2X
=1

2
+

2X
=1

( +
2
)

For notation convenience we define

0 = 0(1

2P
=1 )

2X
=1
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= ( 0) +
2 0

2X
=1

= 1 2

Then, the total cost can be reformulated to give

=
2X
=0

( +
2
) (5.2)

Case 2: 0 , {1 2} 6=

It is important to note that in this case the vendor only holds inventory for
buyer during the production time, but not after the shipment. Accordingly, we
distinguish two types of inventories at the vendor at instant : the inventory 0

which will be used to satisfy the demand at buyer and the inventory 0 which
will be shipped to buyer . That is, 0 = 0 + 0 In addition, we denote by
and the total inventory in the system for buyer at instant and the average
total inventory for buyer during a cycle, respectively. Similarly, 0 represents the
average inventory at the vendor for buyer during a cycle, with = 1 2. In Figure
5.4, we show the inventories , 0 , 0 , and

Notice that the inventory pattern for coincides with the form of in Case
1. Hence, is given by the following expression

=
1

0
0 + 0(1 )

0

2

¸
= + (1 )

0

2

and then, 0 can be computed as follows

0 = = + (1 )
0

2 2

Now we proceed to determine 0 Since buyer always orders units every
units of time the vendor requires units of time to produce them. Moreover,
recall that each time buyer orders, buyer also places an order. Therefore, once
the vendor has produced the units to be sent to buyer , they are holding during the
time that the vendor needs to produce the units ordered by buyer , that is, during

units of time. Taking this into account, the average inventory at the vendor
which will be shipped to buyer is given by the following expression
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Figure 5.4: Inventory at buyer and at buyer , inventory at the vendor which will
be shipped to buyer and to buyer , that is, and and total inventory in
the system for buyer , i.e., when 0 , {1 2} 6=

0 =
1

2
+

¸
=

2
+

Thus, the average total inventory at the vendor is

0 = 0 + 0 = + (1 )
0

2 2
+

2
+ =

=
2X
=1

+
2
+ (1 )

0

2 2

Once we have determined 0, the total cost per unit time is easily derived
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= 0 +
2X
=1

=

=
0

0
+ 0

"
2X
=1

+
2

+ (1 )
0

2 2

#
+

2X
=1

( +
2
)

Moreover, if we define

0 = 0(1 )

= ( 0) +
2 0

2X
=1

= +
0

the average total cost can be expressed as in (5.2).

Therefore, an optimal integer-ratio policy for the single-vendor two-buyer system
with finite production rate can be found by solving the following problem

(P) min =
2X
=0

( +
2
) (5.3)

s.t.

0 = or = 0, a positive integer (5.4)

0 = or = 0, a positive integer (5.5)

= , a positive integer, {1 2} 6= (5.6)
2P
=1 = 1 2 (5.7)

0 = 1 2 (5.8)

where
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0 = 0(1

P
{ | 0}

)
X
{ | 0}

= ( 0) +
2 0

2X
=1

=

( 0) +
2 0

2P
=1

if 0

+ 0 if 0

Constraints (5.4) and (5.5) yield integer-ratio policies. In addition, constraint
(5.6) guarantees that each time buyer places an order buyer also orders,
{1 2} 6= . Finally, the constraint set in (5.7) ensures the feasibility of the solution,
i.e., the vendor delivers the orders on time. Notice that the vendor supplies both
buyers only at the beginning of each cycle. Then, we should guarantee that the time
needed to produce

P2
=1 units of item is smaller than the replenishment interval

at each buyer.

Next, we develop a procedure for solving problem P.

5.3.1 Solution procedure

The single-vendor two-buyer problem with finite production rate given in (5.3)-(5.8)
corresponds to a nonlinear mixed integer programming problem. We propose a
solution method which combines the Karush-Kuhn-Tucker (KKT) conditions with
a branch and bound scheme for determining the optimal integer values and
.

Initially, we formulate the relaxed problem incorporating constraints given in
(5.7) into the objective function (5.3) via the Lagrange multipliers technique and
then, we obtain a feasible real-valued solution. That is, we solve the following relaxed
problem
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(P1) min =
2X
=0

( +
2
) (5.9)

s.t.

2P
=1 = 1 2 (5.10)

0 = 1 2 (5.11)

Once problem P1 is solved, we apply a branch and bound scheme to obtain an
optimal solution for problem P.

First of all, we must verify that function is convex.

Lemma 5.1 is convex over the region = {( 0 1 2) : 0 0 1 0 2 0}

Proof.

Let us denote by ( 0 1 2) the Hessian matrix. Then,

( 0 1 2) =

2

2
0

2

0 1

2

0 2
2

1 0

2

2
1

2

1 2
2

2 0

2

2 1

2

2
2

=

2 0
3
0

0 0

0 2 1
3
1

0

0 0 2 2
3
2

It is easy to see that the Hessian matrix is positive definite in the region .
Thus, is strictly convex on

Since function is convex and the constraints given in (5.10) are linear, the
KKT conditions are both necessary and su cient. That is, any feasible solution for
problem P1 satisfying the KKT conditions is an optimal solution.

Let and be the Lagrange multipliers related to constraints
P2

=1

and
P2

=1 , respectively, with {1 2} 6= . Then, the Lagrangian
function can be stated as follows

( 0 ) =
2X
=0

( +
2
) [( ) ] [( ) ]

where and are nonnegative, {1 2} 6= .
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Consequently, the KKT conditions yield the following equations

0
=

0

2
0

+
0

2
0 (5.12)

0
0
= 0

0

2
0

+
0

2

¸
= 0 (5.13)

=
2
+
2

( ) + 0 (5.14)

=
2
+
2

( ) +

¸
= 0 (5.15)

=
2
+
2

( ) + 0 (5.16)

=
2
+
2

( ) +

¸
= 0 (5.17)

= ( ) + 0 (5.18)

= [ ( ) + ] = 0 (5.19)

= ( ) + 0 (5.20)

= [ ( ) + ] = 0 (5.21)

Since 0 for = 0 1 2 from (5.13), (5.15) and (5.17) we obtain the following
replenishment intervals

0 =

r
2 0

0
(5.22)

=

s
2

2 ( ) + 2
(5.23)

=

s
2

2 ( ) + 2
(5.24)

In order to find those values and that satisfy the KKT conditions,
we must consider the following three cases.
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Case 1: = = 0, {1 2} 6=

From (5.23) and (5.24), we obtain that =
p
2 and =

p
2 . If

these replenishment intervals satisfy the KKT conditions (5.18) and (5.20), then,
they represent an optimal solution for problem P1, and hence, we do not need to
analyze more cases.

Case 2: = 0 and 0 {1 2}

Now, using (5.23) and (5.24), we have that

=

s
2

+ 2
(5.25)

=

s
2

2 ( )
(5.26)

Moreover, since 0 (5.21) yields = ( ) that is, = ( ) .
Now, substituting (5.25) and (5.26) into = ( ) , we can isolate the
Lagrange multiplier to give

=
2 ( )2

2 ( ) [ ( ) + )]
(5.27)

Once is determined, the values and are calculated from (5.25) and (5.26).
If this solution satisfies the KKT condition (5.18) we have an optimal solution for
problem P1.

Case 3: 0 and 0, {1 2} 6=

In this case, (5.19) and (5.21) yield the following equations

( ) + = 0 (5.28)

( ) = 0 (5.29)

Consequently, if 6= ( )( ) the only solution is = = 0 which
is not a feasible solution. In other case, if = ( )( ) then, it follows
that = + Recall that we are assuming that + If = + from
(5.29) we have that = = In addition, the cost function is reduced to
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= 0 +
2X
=1

=
0

0
+

2P
=1 +

2

2X
=1

( 0 + )

and then, the solution is trivial.

Once the relaxed problem P1 is solved, the optimal real-valued and can
be obtained from (5.4)-(5.6). However, in most cases these values are not integer.
Hence, we develop the following algorithm to determine the optimal integer values

and This algorithm is based on a branch and bound scheme where at each
branch we analyze a possible integer value for or

Depending on how the replenishment intervals 0 and are related, the total
cost and the constraints given by (5.4)-(5.6) will be expressed in a di erent way.
Thus, we must consider the following cases.

Case 1: 0 = 0 = and = {1 2} 6=

In this case, it su ces to consider the constraints 0 = and = , since
0 = can be obtained from the other two. Hence we only need to determine
and

First, we compute the optimal real values and as and 0 respecti-
vely, where 0, and are the replenishment intervals which solve problem P1.
The next step consists of using a branch and bound algorithm to search the optimal
integer values and Accordingly, we choose as initial feasible solution, i.e., as
the initial upper bound, the feasible solution with lower cost among the follo-
wing candidates: ( = b c = b c), ( = b c = d e), ( = d e
= b c) and ( = d e = d e) Note that the enumeration tree generated

by the branch and bound only has two levels. In addition, at the first level we
analyze all possible values for For a fixed , we isolate as a function of both
and that is, = and we formulate the cost function as follows

=
0

0
+

0 0

2
+
1
( + ) +

2
( + ) (5.30)

Taking the derivative of (5.30) with respect to and setting it equal to zero, we
obtain the expression of the replenishment interval depending on value

( ) =

s
2( + )

+
(5.31)

Now, it is easy to see that in (5.30) can be rewritten as follows
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( ) =
p
2 0 0 +

r
2( + )( + ) (5.32)

Notice that ( ) in (5.32) corresponds to a lower bound for the branch that
we are inspecting, which is associated with value

It is worth noting that for this case the feasibility constraints in (5.10) can be
expressed as follows

+

+

Obviously, the second feasibility constraint is redundant, and hence it is enough
to check the following inequality

+ (5.33)

Taking this into account, it can be proved that the value satisfying (5.33) for
which the function ( ) in (5.32) is minimum, coincides with the integer nearest
to = which satisfies (5.33). We denote such a value by 0

Thus, if the cost associated with a value = c c 0 or c 0 exceeds
the cost of the current feasible solution, then, the analysis of all other values c
or c can be discarded since their corresponding costs will also exceed the
cost of the current feasible solution. This fact allow us to deal with an enumeration
tree which theoretically has an infinite number of branches at each level.

Similarly, at the second level of the tree we study all possible values for To
that end, we isolate as a function of 0 and that is, = 0 and we rewrite
the cost in (5.30) in the following way

=
1

0
[ 0 + ( + )] +

0

2
[ 0 +

1
( + )] (5.34)

Taking the derivative of (5.34) with respect to 0 and setting it equal to zero, we
obtain
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0( ) =

s
2 [ 0 + ( + )]

0 +
1 ( + )

(5.35)

Substituting (5.35) into (5.34), we have that the total cost in (5.34) can be stated
as follows

( ) =

s
2 [ 0 + ( + )] [ 0 +

1
( + )] (5.36)

Now, it is easy to see that the value which minimizes (5.36) coincides with
the integer nearest to 0 ( ) where ( ) is given by (5.31). In what follows,
we denote this value for 0 Notice that when we are inspecting any branch at the
second level of the tree, the value is fixed. Also note, that in this case the
feasibility constraints hold for all values

As at the first level, if the cost associated with a value = b b 0 orb 0 is greater than the cost of the current feasible solution, then, it is not
necessary to analyze all other values b or b
Finally, each time a new feasible solution for problem P with smaller cost than

the current upper bound, is found, such upper bound should be updated.

Once values and have been computed, the replenishment interval 0 is
obtained from (5.35). Then, using that 0 = and = , the replenishment
intervals and can be computed as = 0 and = respectively.

Case 2: 0 = = 0 and = {1 2} 6=

Under this situation, the last constraint can be obtained from the other two.
Hence we only need to determine and In this case, the optimal real values
and can be computed as 0 and 0 respectively, where 0, and are the
replenishment intervals obtained by solving problem P1.

As in Case 1, in order to determine an initial feasible solution, we analyze the
following solutions: ( = b c = b c), ( = b c = d e), ( = d e
= b c) and ( = d e = d e) The combination which yields the best

feasible solution is chosen as an upper bound for problem P given in (5.3)-(5.8).
Then, at the first level of the tree, we analyze all possible values for . Taking into
account that = 0 we can write the cost function as follows

=
1

0
( 0 + ) +

0

2
( 0 + ) + +

2
(5.37)
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Taking the derivative of (5.37) with respect to 0 and setting it equal to zero, we
have

0( ) =

vuut 2( 0 + )

0 +
(5.38)

Then, the total cost in (5.37) can be reformulated to give

( ) =

s
2( 0 + )( 0 + ) +

p
2 (5.39)

Now, the feasibility constraints in (5.10) can be expressed as follows

+ 0( ) (5.40)

+ 0( ) 0( ) (5.41)

Therefore, the value satisfying (5.40) and (5.41) for which the function ( )
in (5.39) is minimum coincides with the integer nearest to = 0 which satisfies
(5.40) and (5.41). We denote such a value by 0

Again, if the cost associated with a value = b b 0 or b 0 exceeds
the cost of the current feasible solution, then, the analysis of all other values b
or b can be discarded since their corresponding costs will also exceed the cost
of the current feasible solution.

Next, at the second level of the tree we study all possible values for To that
end, we isolate as a function of 0 and that is, = 0 and we formulate the
cost in (5.37) as follows

=
1

0
( 0 + + ) +

0

2
( 0 + + ) (5.42)

Taking the derivative of (5.42) with respect to 0 and setting it equal to zero, we
obtain

0( ) =

vuut2( 0 + + )

0 + +
(5.43)
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Then, using (5.43), the total cost (5.42) can be rewritten as follows

( ) =

s
2( 0 + + )( 0 + + ) (5.44)

At this level, the feasibility constraints in (5.10) are reduced to

+ (5.45)

Now, the value satisfying (5.45) for which the function ( ) in (5.44) is
minimum coincides with the integer nearest to 0( ) which satisfies (5.45), where
0( ) is given by (5.38). Notice that, at this point, is fixed.

Once again, if the cost associated with a value = b b 0 or b 0 is
greater than the cost of the current feasible solution, then, it is not necessary to
analyze all other values b or b
Similar to Case 1, each time we find a feasible solution with an associated cost

smaller than the upper bound, , we should update and proceed with the
branch and bound.

Once values and have been computed, the replenishment interval 0 is
obtained from (5.43). Moreover, and can be easily determined from equations
0 = and = 0.

5.3.2 Numerical example

Now, we present an instance of the single-vendor two-buyer system in order to
illustrate the solution method developed in the previous subsection. The parameter
values are given in Table 5.1.

Table 5.1: Input data for an instance of the single-vendor two-buyer problem

Buyer 1 10 10 12
Buyer 2 12 1000 20
Vendor 50 10 50

In subsection 5.3.1 we consider the following two cases: Case 1: 0 =

0 = and = {1 2} 6= and Case 2: 0 = = 0 and
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= {1 2} 6= It is obvious, that each case involves two situations
depending on if = 1 and = 2 or viceversa. Therefore, we actually distinguish
the following four cases.

Case 1: 0 = 0 = and = , with = 1 and = 2

For this case, we obtain the following values

0 = 0(1
1 + 2

)( 1 + 2) = 123 2

1 = 1( 1 0) +
2 0 1

( 1 + 2) = 108

2 = 2( 2 0) +
2 0 2

( 1 + 2) = 225 6

First, we have to solve the relaxed problem P1. Accordingly, we must analyze
the di erent possibilities for the Lagrange multipliers.

Case 1: 1 = 2 = 0.

If both Lagrange multipliers are equal to zero, we have that 1 =
p
2 1 1 =

0 4303 and 2 =
p
2 2 2 = 2 9774. However, these replenishment intervals do not

satisfy conditions (5.18) and (5.20). Therefore, we have to analyze other values for
1 and 2

Case 2: = 0 and 0

Here, we should in turn distinguish two situations, namely, if = 1 and = 2
and, on the contrary, if = 2 and = 1 In the former case, (5.27) implies 2 0,
which violates the initial assumptions.

In the second situation, from (5.27) we obtain 1 = 1 0032 Now, (5.25) and
(5.26) yield 1 = 0 8490 and 2 = 2 8302 respectively. In addition, we can compute
0 from (5.22) to give 0 = 0 9009. Since these replenishment intervals satisfy the
KKT conditions, Case 3 is omitted.

Once problem P1 is solved, the next step consists of applying the branch and
bound scheme introduced in subsection 5.3.1 to determine the integer values 2

and 1 Note that 1 can be computed from 2 and 1 as 1 = 2 1 Thus, we
compute the optimal real values 1 and 2 as 1 = 2 1 = 2 8302 0 8490 = 3 3335
and 2 = 0 2 = 0 9009 2 8302 = 0 3183 Then, we analyze the following solutions:
( 1 = 3 2 = 1) and ( 1 = 4 2 = 1) For each combination we should check
if the feasibility constraint (5.33) is satisfied. Since the values ( 1 = 4 2 = 1)
not yield a feasible solution, we only compute the cost associated with the values
( 1 = 3 2 = 1). From (5.36) we have that such a cost is 911.6841 $
which represents an initial upper bound for problem P given in (5.3)-(5.8). Next,
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we start with the branch and bound procedure to find the optimal integer values 1

and 2 At the first level we consider all possible values for 1 and at the second,
we analyze the values for 2 We verify that all solutions generated by the branch
and bound are worse than the initial upper bound. Hence, the optimal solution
corresponds to the values ( 1 = 3 2 = 1) From (5.35), we have that 0 = 2 3692
and, 2 = 0 2 = 2 3692 and 1 = 2 1 = 0 7897. Remark that the cost incurred
by this policy is 911.6841 $

Case 2: 0 = 0 = and = , with = 2 and = 1

Under these assumptions problem P1 does not change with respect to the pre-
vious case. Therefore, the replenishment intervals which solve problem P1 continue
to be 0 = 0 9009 1 = 0 8490 and 2 = 2 8302.

Now, we have to determine the integer values 1 and 2 Observe that the
value 2 can be derived from 2 = 1 2 The optimal real values 2 and 1 are
computed as follows: 2 = 1 2 = 0 8490 2 8302 = 0 2999 and 1 = 0 1 =
0 9009 0 8490 = 1 0611 and the two admissible combinations ( 2 = 1 1 = 1) and
( 2 = 1 1 = 2) are feasible. In addition, an initial upper bound for problem P
given in (5.3)-(5.8), is 984.0812 $ which corresponds to the values ( 2 = 1

1 = 1) This upper bound allow us to discard branches in the enumeration tree.
It can be easily verified that all other branches of the tree have an associated cost
greater than the upper bound. Thus, for this case, the optimal solution corresponds
to the values ( 2 = 1 1 = 1) Now, we can determine 0 from (5.35) to give
0 = 2 1542 and hence, 1 = 0 1 = 2 1542 and 2 = 1 2 = 2 1542 The cost
incurred by this policy is 984.0812 $

Case 3: 0 = = 0 and = , with = 1 and = 2

In this case we must recalculate values 0 and 2. In particular,

0 = 0(1
1
) 1 = 80

2 = 2 2 +
0 2 2

= 268 8

The value 1 does not change, that is, 1 = 108.

Initially, we should solve problem P1 using the KKT conditions, and therefore,
we face the following possibilities for the Lagrange multipliers.

Case 1: 1 = 2 = 0.

We have that 1 =
p
2 1 1 = 0 4303 and 2 =

p
2 2 2 = 2 7277. However,

these replenishment intervals violate conditions (5.18) and (5.20). Therefore, we
should analyze Case 2

Case 2: = 0 and 0
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If = 1 and = 2 (5.27) implies 2 0 Hence this case cannot occur.

On the contrary, if = 2 and = 1 applying (5.27), we obtain 1 = 0 9451 and
using (5.25) and (5.26), we have that 1 = 0 7857 and 2 = 2 6194. Moreover, the
replenishment interval 0 can be computed from (5.22) to give 0 = 1 1180 Since
these replenishment intervals satisfy the KKT conditions it is not needed to consider
Case 3.

The next step consists of computing the integer values 1 and 2 Note that
value 1 can be obtained from 1 and 2 as 1 = 1 2

Now, we compute the optimal real values 1 = 0 1 = 1 1180 0 7857 = 1 4229
and 2 = 2 0 = 2 6194 1 1180 = 2 3429 Therefore, in order to find an initial
feasible solution we analyze the following combinations: ( 1 = 1 2 = 2) ( 1 = 1

2 = 3) ( 1 = 2 2 = 2) and ( 1 = 2 2 = 3) Only solutions ( 1 = 1 2 = 2) and
( 1 = 1 2 = 3) are feasible. Moreover, the initial upper bound for problem P given
in (5.3)-(5.8) is 884.4553 $ which corresponds to combination ( 1 = 1

2 = 3) In addition, this solution cannot be improved since all solutions analyzed
by the branch and bound yield worse solutions. Hence, for this case, the optimal
solution corresponds to the values ( 1 = 1 2 = 3) The replenishment interval 0

associated with these values is calculated from (5.43) to give 0 = 0 8894. Hence,
2 = 2 0 = 2 6682 and 1 = 0 1 = 0 8894 The cost incurred by this policy is
884.4553 $

Case 4: 0 = = 0 and = , with = 2 and = 1

In this case, values 0 1 and 2 are given by

0 = 0(1
2
) 2 = 91 2

1 = 1 1 +
0 1 1

= 140

2 = 2( 2 0) +
2 0 2

( 1 + 2) = 225 6

In order to solve problem P1, we must analyze the di erent possibilities for the
Lagrange multipliers.

Case 1: 1 = 2 = 0.

If both Lagrange multipliers are equal to zero, then, 1 =
p
2 1 1 = 0 3779

and 2 =
p
2 2 2 = 2 9774. Since these replenishment intervals do not satisfy

conditions (5.18) and (5.20), we have to verify the other cases for 1 and 2

Case 2: = 0 and 0

If = 1 and = 2 applying (5.27) we obtain that 2 0, which violates the
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initial assumptions.

If = 2 and = 1 from (5.27) we have that 1 = 1 3903 and from (5.25) and
(5.26) we obtain that 1 = 0 8336 and 2 = 2 7790. The value 0 is computed from
(5.22) to give 0 = 1 0471. Since these replenishment intervals satisfy the KKT
conditions we do not need to consider Case 3.

At this point the relaxed problem P1 is already solved, and hence we apply the
branch and bound scheme to determine the optimal integer values 1 and 2 Note
that 2 can be derived from 1 and 2 using the relation 2 = 1 2

First, we compute the optimal real values 1 = 1 0 = 0 8336 1 0471 = 0 7961
and 2 = 0 2 = 1 0471 2 7790 = 0 3767 Therefore, only the combination ( 1 = 1

2 = 1) should be analyzed. Moreover, this solution verifies the feasibility constraint
(5.45), and its cost is 984.0812 $ . Thus, this cost represents an initial
upper bound for problem P given in (5.3)-(5.8). Since the costs of all other solutions
analyzed by the branch and bound are greater than the current upper bound, the
optimal solution corresponds to the values ( 1 = 1 2 = 1) Applying (5.43) we
have that 0 = 2 1542 and hence, 1 = 1 0 = 2 1542 and 2 = 0 2 = 2 1542 The
cost incurred by this policy is 984.0812 $

We summarize in Table 5.2 the solutions obtained for this numerical example.

Table 5.2: Summary of policies obtained for the numerical example

Case Optimal solution Optimal cost
0 = 1 1 0 = 2 2 and 2 = 1 1 ( 0 = 2 3692 1 = 0 7897 2 = 2 3692) 911.6841
0 = 1 1 0 = 2 2 and 1 = 2 2 ( 0 = 2 1542 1 = 2 1542 2 = 2 1542) 984.0812
0 = 1 1 2 = 2 0 and 2 = 1 1 ( 0 = 0 8894 1 = 0 8894 2 = 2 6682) 884.4553
1 = 1 0 0 = 2 2 and 1 = 2 2 ( 0 = 2 1542 1 = 2 1542 2 = 2 1542) 984.0812

Therefore, the optimal solution for problem P is given by 0 = 0 8894 1 = 0 8894
and 2 = 2 6682 and the cost incurred by this policy is 884.4553 $

It is worth noting that in the optimal integer-ratio solution the replenishment
interval at buyer 2 is greater than 0 This is due to the fact that the ordering cost
at buyer 2 is much higher than the ordering cost at buyer 1 and than the setup cost
at the vendor. Under this situation, it is not surprising that it is preferable that
buyer 2 places order less often.

Many previous works force the replenishment intervals at the buyers to be smaller
than the time between setups at the vendor. However, in practice it can be profitable
to allow some buyers to have a replenishment interval greater than the time between
setups at the vendor.
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To this point we have studied the single-vendor two-buyer system. In the next
section, we extend the analysis to the multi-buyer case.

5.4 The single-vendor multi-buyer problem

Now, we are extending the results obtained in the previous section in order to
compute integer-ratio policies for the general case with multiple buyers. Finally, we
also solve the problem considering that the decision system is decentralized, that is,
each buyers make decisions independently.

5.4.1 Integer-ratio policies

First, we focus on the formulation of the single-vendor multi-buyer problem in terms
of integer-ratio policies where the quotients 1 = 2 are positive integers.
These constraints ensure that 1 2 and that each time a buyer with
replenishment interval orders, the remaining buyers with replenishment interval

also order. Thus, similar to the two-buyer case, there will be points in time
where the vendor should supply all buyers simultaneously, and others where it only
supplies some of the buyers. Therefore, in the latter case, the vendor should start
the production later than when the vendor supplies all buyers. Then, in this case the
time interval between two consecutive setups may be also non-constant. However, as
we explained for the two-buyer case, in order to formulate the problem we can also
use 0 which remains constant. Recall that 0 represents the time interval between
two consecutive setups when it is only considered the buyers with replenishment
interval Moreover, if we take into account all buyers, including those with
replenishment interval , the time interval between two consecutive setups can
be easily obtained from 0 See Figure 5.5.

The key idea to formulate the problem consists of classifying the buyers into
three sets, denoted by , and . In Roundy (1985), those buyers with are
allocated to set In set are those buyers with = , and finally, those buyers
with belong to set . As we have commented before, when the production
rate is finite, we should let the time interval between two consecutive setups to be
non-constant. Hence, sets , and cannot be defined as in Roundy (1985).
However, once 0 has been defined, we can use it to define sets , and similar
to those in Roundy (1985). In particular, we set = { | 0}, = { | = 0}
and = { | 0}.

In the next subsection we focus on computing the average inventory at the vendor
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and at the buyers. The idea is similar to that introduced for the single-vendor two-
buyer problem.

1IB
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time

time

timevt

1t

2t

vt vt

A B C D0t
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time

4IB

time
4t

3t
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0t 0t
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Figure 5.5: Inventory fluctuations at the vendor and at the buyers considering that
is non-constant. Buyer 1 and buyer 2 belongs to set , and buyer 3 and buyer

4 are in set . The dotted line represents the production rate. At instants , ,
and the vendor begins the production of the items which will be shipped to

buyer 1 and buyer 2

Stock holding cost

First we state the production-inventory patterns. The cycle length is = max
=1

{ }

and it starts with the first production setup.
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For the previous example, Figure 5.6 illustrates the inventory pattern within a
typical production cycle for the vendor, for the buyers and for the total system.
Remark that buyer 1 and buyer 2 belong to set and buyer 3 and buyer
4 are in set . Since the buyers follow the classical EOQ pattern, the holding
cost per unit time at the buyers are directly obtained. On the other hand, the
average inventory at the vendor cannot be computed so easily. For the single-vendor
single-buyer problem, Hill (1999) showed that the average total inventory is directly
derived. Thus, he computed the average inventory at the vendor as the average total
inventory less the average inventory at the buyer.

However, we can see in Figure 5.6 that the pattern of total inventory, depicted
with a dotted line, di ers from the model with a single buyer, and it is more di cult
to compute. It is important to note that the di erences between both patterns are
caused by the buyers in set .

Recall that the vendor only holds inventory for the buyers in set during the
production time, but not after the shipment. Accordingly, in this case, we can also
distinguish two types of inventory at the vendor: the inventory which will be used
to satisfy the demand at buyers in set , 0 , and the inventory which will
be shipped to buyer , 0 Thus, now 0 = 0 +

P
0 Similar to the

two-buyer case, we denote by and the total inventory in the system
for buyers in set at instant and the average total inventory for buyers in
set during a cycle, respectively. In addition, 0 and 0 , represent
the average inventory at the vendor during a cycle for buyers in set and for
buyer , respectively. Then, the average vendor inventory, 0 can be computed
as 0 = 0 +

P
0 . Moreover, in Figure 5.7, we plot 0 +

P
,

[0 ) which yields a pattern equal to that obtained for the single-buyer case.
Thus, 0 can be determined as

P
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Figure 5.6: Inventory fluctuations at the vendor and at the buyers when is non-
constant. The dotted line represents the inventory fluctuations for the total system,

We can determine using Figure 5.7. When production starts, the vendor
has not inventory and the value of 0 is minimum. Moreover, the invento-
ries at buyers in set are just enough to satisfy their demands until the
next deliveries arrive. Taking into account that buyer always orders it is
easy to see that 0 is

P
Hence, 0 is given byP P

. Then, from the latter value 0 keeps on in-
creasing at a rate of

P
during the time needed to manufacture the

sum of the quantities demanded by buyers in set during a cycle 0 that is,
during 0

P
. Besides, in Figure 5.7 we can see that the instant where

reaches its maximum is 0 = 0

P
which coincides with the moment when
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the production finishes. Thus, the maximum value for isP P
+ (1

P
) 0

X
Accordingly, can be written as follows

=
1

0

P P
0 + 0(1

P
)

0

P
2

=

=

P P
+ (1

P
)

0

P
2

Observe that this expression is an extension of that obtained for the two-buyer
case.
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Figure 5.7: Inventory fluctuations at buyer 1 and buyer 2, and inventory located at
the vendor which will be used to satisfy the demand at buyer 1 and buyer 2, namely,

. The dotted line shows the sum of both inventories, that is,
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Now, 0 can be computed from the following expression

0 =
X

=

=

P P
+ (1

P
)

0

P
2

X
2

Next, we focus on determining 0 , for each buyer
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time3t

time
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time
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time

Figure 5.8: Inventory at buyer 3 and buyer 4, and inventory located at the vendor
which will be shipped to buyer 3, 3 and to buyer 4, 4

As it can be seen in Figure 5.8, for buyers in set the vendor only holds inventory
during the production time, but not after the shipment. In addition, the vendor
requires units of time to produce the quantity ordered by buyer
every Moreover, since we are assuming that 1 is a positive integer for =
2 it holds that 1 2 and, each time a buyer with replenishment
interval orders, the remaining buyers with replenishment interval also
order. Therefore, when a buyer places an order all buyers also order.
As it is shown in Figure 5.8, in this case, once the vendor has produced the units
which will be sent to buyer they are holding during the time that the vendor
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needs to produce the units for all buyers , that is, during
P 1

=1 units
of time. Accordingly, we can compute the average inventory at the vendor which
will be shipped to buyer as follows

0 =
1

2
+

1P
=1 =

2
+

1P
=1

Thus, the average total inventory at the vendor is given by

0 = 0 +
X

0 =

=

P P
+ (1

P
)

0

P
2

P
2

+

+
X
(
2

+

1P
=1 )

=

P P
+
X

2
+
X P

+

+
X P

{ }
+ (1

P
)

0

P
2

P
2

which can be rewritten as follow

0 =
X X

=1

+
X

(
2
+
X
= +1

) + (5.46)

+(1

P
)

0

P
2

P
2

(5.47)

Once we have the average total inventory at the vendor, the average total cost
is simple to obtain. We address this task in the next subsection.
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Average total cost

Since the buyers follow an EOQ pattern, the average total cost for a buyer can be
easily determined from the following expression

= +
2

(5.48)

On the other hand, the average total cost for the vendor is the sum of the average
holding cost, that is, 0 0 where 0 is given by (5.46), plus the average setup cost,
that is 0 0 Accordingly, 0 can be expressed as follows

0 =
0

0
+ 0

" X X
=1

+
X

(
2
+
X
= +1

)

#
+

+ 0 (1

P
)

0

P
2

P
2

) (5.49)

Then, the total cost per unit time is

= 0 +
X
=1

=

=
0

0
+ 0

" X X
=1

+
X

(
2
+
X
= +1

)

#
+

+ 0 (1

P
)

0

P
2

P
2

)

+
X
=1

( +
2

) (5.50)

Since = 0 we can rearrange (5.50) to give

=
0

0
+

0 0

2
+
X

+
2

¸
(5.51)
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where

0 = 0 +
X

0 = 0(1

P
)
X

+ 0

2
P X

=1

+
X

( 0)

=

( 0) +
2 0

P
=1

if

+
2 0 (

2
+
P
= +1

) if

It is worth noting that these expressions extend those obtained for the two-
buyer case. It is also important to remark that the vendor holds inventory not
only during the time until the buyers place an order but also while the whole lot is
produced. Hence the expression consists of two parts. Specifically, the first term
( 0) if , or if represents the echelon holding cost and the

classical holding cost at buyer , respectively. The second term corresponds to the
holding cost incurred by the vendor during the time needed to produce the units
required by the buyers. Moreover, notice that the expressions for 0 and are
consistent with those obtained by Roundy (1985) for the case where the production
is instantaneous, that is,

The constraints

The cost formulation in (5.51) is based on the integer-ratio constraints, i.e., both
0 and 0 should be a positive integer. Furthermore, we also

assume that each time that a buyer places an order, those buyers with smaller
replenishment intervals also order, that is, the quotients 1 = 2 are
positive integers. However, it is easy to see that some of the constraints can be
dropped because they can be obtained from two others. Accordingly, if we assume
that = {1 } = { + 1 } and = { + 1 } then, it su ces to
consider the following constraints

= 1 1, 1 a positive integer, {2 }

0 = , a positive integer

+1 = +1 0, +1 a positive integer

= 1, a positive integer, { + 2 }
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Moreover, to ensure the feasibility of a solution we require that the vendor de-
livers the orders on time. Remark that the vendor supplies all buyers only at the
beginning of each cycle. Then, we should guarantee that the time needed to produceP

=1 units of item is smaller than the replenishment intervals at the buyers.
That is, P

=1
= 1

Therefore, the single-vendor multi-buyer problem can be formulated as follows

min =
0

0
+

0 0

2
+
X

+
2

¸
(5.52)

s.t.

= 1 1, 1 a positive integer, {2 } (5.53)

0 = , a positive integer (5.54)

+1 = +1 0, +1 a positive integer (5.55)

= 1, a positive integer, { + 2 } (5.56)P
=1

{1 } (5.57)

Algorithm for computing sets , and

The procedure that computes sets , and is based on Algorithm 2.2 proposed
by Roundy (1985) and it is given in detail in Algorithm 5.1.

For notation convenience we again relabel the buyers, so that, = {1 }
= { + 1 } and = { + 1 }

Notice that, in general, we cannot guarantee that this approach for sorting the
buyers yields an optimal classification. This is due to the fact that in the expression
of the replenishment interval at a buyer are involved the parameters of other
buyers

Once we have shown how to determine sets , and , we next introduce a
heuristic procedure for computing near-optimal integer-ratio policies.
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Algorithm 5.1 Algorithm for computing sets , and
Step 1
Set = = = {1 } Then can be written as

=
0

0
+

0 0

2
+
X

+
2

¸
where 0 = 0(1

P
)
P

and = ( 0) + 2 0

P
=1

Di erentiating with respect to 0 and ’s we obtain the following replenishment
intervals

0 =
2 0

0

¸1 2
(5.58)

=
2
¸1 2

{1 } (5.59)

Now, we should sort the values ’s to give a nondecreasing sequence. Without
loss of generality we can assume that 1 2 Set =
Step 2
If 0, update and as follows: { } and \{ }
Since sets and have changed, 0 and 0 should be recalculated.
Assuming that , we compute the replenishment interval at the vendor and
at buyer and we denote them by 0

0 and
0 , respectively. Afterward, if 0 0

0

sets and have to be updated as follows: \{ } and { }
Consequently, 0, 0 and have to be updated and 0 is set to 0

0

Set = 1. If 0 go to Step 2. Otherwise, go to Step 3.
Step 3
Using sets , and we can compute the final values of 0, 0 and , =
1 . Then, set

0 =
2 0

0

¸1 2
(5.60)

= 0 (5.61)

=
2
¸1 2

, {1 } (5.62)
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Heuristic approach

In general, obtaining the total average cost for the single-vendor multi-buyer problem
with finite production rate is an arduous task. However, the use of the integer-
ratio policies facilitates the determination of the total average cost. Accordingly,
the problem can be formulated as in (5.52)-(5.57). Nevertheless, this problem is a
nonlinear mixed integer programming problem and computing its optimal solution
could be computationally ine cient for a large number of buyers. In this section,
we develop a heuristic method based on an iterative approach for solving problem
(5.52)-(5.57) with minimum computational e ort.

First, we compute sets = {1 } = { +1 } and = { +1 } and
then, we determine the replenishment intervals ’ by using (5.60)-(5.62). Obvious-
ly, these replenishment intervals only solve the relaxed problem, that is, dropping
the constraints (5.53)-(5.57). If these replenishment intervals do not satisfy the
constraint set in (5.57), then we add such a set into the objective function using
Lagrange multipliers and we solve the dual problem. Thus, we have an initial solu-
tion which minimizes (5.52) subject to (5.57). A scheme of the Lagrangian relaxation
is described at the end of this section.

Next, we compute the optimal values = 1 + 1 substituting the
replenishment intervals corresponding to the initial solution into constraints given in
(5.53)-(5.56). However, in most cases, these values are not integers. Hence, we will
use an iterative approach to determine near-optimal integer values = 1 +
1 This approach can be represented by a decision tree with | | levels, and
at each level we will analyze two possible integer values for = 1 +1 .
Remark that values = + 1 are not considered in the formulation of
problem (5.52)-(5.57) because they correspond to buyers in set .

At each iteration we use one of the constraints in (5.53)-(5.56) to isolate the
corresponding replenishment interval as a function of the value . Thus, we can
express the cost function in terms of the value . In order to decide which branch
of the decision tree should be explored in the next iteration, we compute the total
cost for the two values that we analyze for Accordingly, the node with greatest
cost associated will be discarded.

Since there are four kind of constraints and at each iteration we use one of them
to compute a value , we should distinguish the following cases:

Case 1: If {1 1}

In this iteration, the values 1,..., 1 have been already calculated and we want
to compute the value . Moreover, we know the values ’ and it holds that
= 1 1, {2 } Now, we introduce the constraint +1 = which can
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be applied to obtain the real value 0 as

0 =
+1 (5.63)

Then, depending on the value of the cost function, we will choose between =
d 0e or = b 0c If 0 1 we set = 1

Now, taking into account that = 1 1, {2 + 1} the total cost
given in (5.52) can be reformulated in terms of 0 , with { + 1 }

{ + 1 } and Notice that values ’ , {1 1} have been already
determined and therefore they are fixed values. Thus, the total cost (5.52) can be
stated as follows

=
0

0
+

0 0

2
+

0
+1

+1
+

+1
0
+1

2
+

X
{ +2 }

+
2

¸
(5.64)

where

0
+1 = +1 +

X
=1

(
1Q
=

)

0
+1 = +1 +

X
=1

(
1Q
=

1
)
1

Then, taking the derivative of (5.64) with respect to +1 and setting it equal to
zero, we obtain the expression of the new replenishment interval at buyer + 1 for
known values ’ , {1 1}. That is,

+1 =
2 0

+1
0
+1

¸1 2
(5.65)

It is worth noting that the replenishment intervals 0 and ’ { +2 }
do not change. On the other hand, for each buyer {1 } the replenishment
interval can be recalculated using constraints in (5.53).

Thus, the cost function in (5.64) can be rearranged using (5.65) to give
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( ) =
p
2 0 0 +

q
2 0

+1
0
+1 +

X
{ +2 }

p
2 (5.66)

At this point, taking into account (5.63), we compute ( = b 0c) and ( =
d 0e). We set = b 0c if ( = b 0c) ( = d 0e) Otherwise, we set = d 0e.
If 0 1 we set = 1

Once the integer value is determined, we calculate the new replenishment
interval +1 from (5.65). The replenishment intervals ’ = 1 are also
updated using constraints in (5.53), that is, = +1 = 1

Case 2: If =

In this case, the values 1,..., 1 are already known and we use the constraint
0 = to determine the real value 0 That is,

0 =
0 (5.67)

Moreover, since = 1 1, for those buyers {2 } and 0 = it is
easy to see that the cost function given in (5.52) can be reformulated in terms of 0,
, { + 1 } and to give

=
0
0

0
+

0
0
0

2
+
X
= +1

+
2

¸
(5.68)

where

0
0 = 0 +

X
=1

(
1Q
=

)

0
0 = 0 +

X
=1

(
1Q
=

1
)
1

Taking the derivative of (5.68) with respect to 0 and setting it equal to zero, we
have that the expression for the new replenishment interval 0 is given by

0 =
2 0

0
0
0

¸1 2
(5.69)
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Substituting (5.69) into (5.68), the total cost in (5.68) can be formulated as
follows

( ) =
p
2 0

0
0
0 +

Xp
2 (5.70)

Now, if ( = b 0c) ( = d 0e) we set = b 0c On the contrary, we set
= d 0e. Again, if 0 1 we set = 1

Afterward, the new replenishment interval 0 is computed using (5.69). The
replenishment interval is updated taking into account constraint (5.54), i.e., =

0 and the values ’ = 1 1 are recalculated using constraints in (5.53).

Case 3: If = + 1

Recall that values = +1 are not considered because they correspond
to buyers belonging to set .

Now, we have already computed the values 1,..., and the objective is to
determine the value +1. In this case, the real value 0

+1 is obtained from the
constraint +1 = +1 0 Thus, we have

0
+1 =

+1

0
(5.71)

Similar to the previous cases, we can reformulate the cost function given in (5.52)
to depend only on the values ’ with { + 1 } and +1 That is, can
be written as follows

=
+1

+1

0

+
+1

0
+1

2
+
X
= +2

+
2

¸
(5.72)

where

0
+1 = +1 + +1 0 +

X
=1

(
Q
=

) +1

0
+1 = +1 +

0

+1
+
X
=1

(
Q
=

1
)
1

+1

Hence, from (5.72) we obtain that the new replenishment interval at buyer +1
is given by the following expression
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+1 =
2 0

+1
0
+1

¸1 2
(5.73)

Next, similar to Case 1 and Case 2, (5.72) can be reformulated using (5.73) to
give

( +1) =
q
2 0

+1
0
+1 +

Xp
2 (5.74)

Now, we set +1 = b
0

+1c if ( +1 = b
0
+1c) ( +1 = d

0
+1e) Otherwise,

we set +1 = b
0
+1c If

0
+1 1 we set +1 = 1

Finally, substituting the value +1 into (5.73) we have the new replenishment
interval +1 Moreover, from (5.55) we determine the new replenishment interval 0

as 0 = +1 +1 and the replenishment intervals and ’ = 1 1 are also
updated using the constraints (5.54) and (5.53), respectively.

Case 4: If { + 2 }

We must compute the value taking into account that the values 1,..., and
+1,..., 1 have been already calculated. Furthermore, the constraints (5.53)-(5.55)

hold, and also = 1, { + 2 1} In this iteration we introduce the
constraint = 1, which is used to determine the real value 0 as follows

0 =
1

Thus, the total cost given in (5.52) can be expressed in the following way

=
0

+
0

2
+
X
= +1

+
2

¸
(5.75)

where

0 = + (
1Q

= +1

) 0 +
1X

= +1

(
1Q

= +1

) +
X
=1

(
Q
=

)(
1Q

= +1

)

0 = + (
1Q

= +1

1
)
1

0 +
1X

= +1

(
1Q

= +1

1
)
1

+
X
=1

(
Q
=

1
)(

1Q
= +1

1
)
1

In this case, the above expressions seems to be more complex than those obtained
in the previous iterations. This is due to the fact that in this case the four kind of
constraints are involved in the formulation of the cost.
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Then, taking the derivative of (5.75) with respect to and setting it equal to
zero, we obtain the expression of the new replenishment interval

=
2 0

0

¸1 2
(5.76)

and, then, using (5.76) the total cost (5.75) can be written as follows

( ) =
p
2 0 0 +

X
= +1

p
2 (5.77)

Now we compute ( = b 0c) and ( = d 0e). If ( = b 0c) ( =
d 0e) then, = b 0c; otherwise = d 0e. Again, if 0 1, we set = 1

Once the integer value is determined, we compute the new replenishment
interval from (5.76). Similar to the above cases, the other replenishment intervals
are recalculated using the constraints in (5.53)-(5.56).

After computing the corresponding replenishment intervals we should check if
they satisfy the constraint set in (5.57). If at any level of the decision tree this
set of constraints does not hold, then we add such a set into the objective function
using Lagrange multipliers and we solve the dual problem. A sketch of the heuristic
procedure is given in Algorithm 5.2.
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Algorithm 5.2 Heuristic for computing integer-ratio policies
Step 1
Compute the values ’ using (5.60)-(5.62) and check if the constraints in (5.57)
hold. If these constraints are not satisfied, then add them into the objective
function using the Lagrange multipliers and solve the dual problem.
Set = 1 and go to Step 2.
Step 2
if {1 1} (Case 1), then
recalculate the replenishment intervals using (5.53)

end if
if = (Case 2), then
compute the new replenishment intervals from (5.53) and (5.54)

end if
if { + 1 } then
go to Step 4

end if
if = + 1 (Case 3), then
update the replenishment intervals using (5.53)-(5.55)

end if
if { + 2 } (Case 4), then
detemine the new replenishment intervals from (5.53)-(5.56)

end if
Then prove if the constraints in (5.57) hold. If these constraints are satisfied go
to Step 4. Otherwise, go to Step 3.
Step 3
Add such constraints into the objective function using the Lagrangian relaxation
and solve the dual problem. Go to Step 4.
Step 4
Set = + 1 If go to Step 2. Otherwise all the replenishment intervals
have been already computed. Stop.

Lagrangian relaxation Here we present a sketch of the Lagrangian relaxation
which is used to minimize the total cost (5.52) subject to (5.57). Let 1 2

be the Lagrange multipliers associated with the constraints in (5.57). Then the
Lagrangian function can be written as

( 0 ) = ( 0 ) +

where
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=

1 2

1 2

1 2

, = ( 1 2 ) and = ( 1 2 ).

It is important to note that at each iteration of the heuristic we isolate one value
= 0 1 1 in terms of other value . Taking this into account, the set of

constraints in (5.57) changes at each iteration, and so, has to be updated.

Now, the dual problem can be expressed as follows

max ( )

where ( ) = min ( 0 )

In order to solve it, we will apply a standard subgradient method. Accordingly,
we need to compute an upper bound In this case is obtained by solving
the problem assuming that all buyers use the same replenishment interval, that is,
= {1 }, and also that 0 = , with a positive integer.

Under this situation, the cost function is reduced to

=
0

0
+

0 0

2
(1 ) +

1X
=1

+
2

X
=1

( 0) +
2 0 2

where =
P

=1

In addition, it is easy to see that
P

=1 {1 } is equivalent
to considering Therefore, the optimal 0 is given by

0 =

"
2 0

0 (1 )

#1 2
and the optimal is computed as follows

=

2
P
=1P

=1

( 0) +
2 0 2

1 2

Now, we can determine the optimal real value as = 0 . Then, taking into
account that = 0 the cost function can be reformulated to give
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=

0 +
P
=1

0
+

0

2

"
0 (1 ) +

1
(
X
=1

( 0) +
2 0 2)

#

Taking the derivative of with respect to 0 and setting it equal to zero we
obtain that

0 =

2( 0 +
P
=1

)

0 (1 ) + 1 (
P
=1

( 0) +
2 0 2)

1 2

and then, the cost function can be expressed in the following way

( ) =

vuut2( 0 +
X
=1

)

"
0 (1 ) +

1
(
X
=1

( 0) +
2 0 2)

#

At this point, we compute ( = b c) and ( = d e). If ( = b c)
( = d e) we set = b c and 0 = ( = b c) Otherwise, we set = d e

and 0 = ( = d e) If 1 we set = 1

In addition to the upper bound, we also have to choose an initial multiplier
vector, 0 and determine the step size, . In particular, we set 0 equal to the zero
vector and the step size at iteration is given by the following expression

=
( )°°

+1

°°2
where is a scalar which initially is set to 2. Then, is reduced by a factor of
2 whenever the best Lagrangian objective function value has not increased in three
iterations. A scheme of the subgradient method is given in Algorithm 5.3.
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Algorithm 5.3 Subgradient method
Initialization
Consider an initial upper bound 0

Fixe an initial multiplier vector 0 0
Set an initial factor 0 2
for = 0 1 do

=
( )

k +1 k
2 {step size}

+1 = max{0 + }

if
°°

+1

°° then
Stop

end if
if No improvements in more than three iterations then

+1 = 2

end if
+ 1

end for

5.4.2 Decentralized policies

In this subsection we show how the problem should be addressed in case of indepen-
dence among the vendor and the buyers. Under this situation, we propose a two-
level optimization approach consisting of computing first the order quantities at the
buyers, and then, determining the shipment schedule at the vendor. Accordingly,
since the buyers follow an EOQ pattern, the total cost at buyer can be easily
obtained as = + 2 Moreover, the optimal replenishment intervals at
the buyers are given by the following expression

=

s
2

{1 } (5.78)

Taking into account that there is no relationship among these replenishment
intervals, it seems obvious that the vendor behaves as an inventory system with
time-varying demand. When the demand rate varies with time, the most widely
known procedure for deriving the optimal solution is that credited to Wagner and
Whitin (1958), although other more e cient approaches have been developed by
Wagelmans et al. (1992), Federgruen and Tzur (1991) and Aggarwal and Park
(1993). However, all these approaches consider infinite production rate, hence we
cannot directly apply them in our case. Fortunately, Hill (1997a) showed how a
dynamic lot-sizing problem with finite production rate can be reformulated to take
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the same form as the corresponding infinite production rate problem. Therefore, the
Wagner andWhitin algorithm or any of the other techniques currently available, can
be applied to the new reformulated problem.

The main problem is to determine the demand vector at the vendor. It is worth
noting that the optimal replenishment intervals at the buyers are real values. There-
fore, we cannot assure that a point in time exists where all buyers order simulta-
neously. Hence, the number of periods of the demand vector at the vendor could
not be finite. To overcome this problem we use the approach introduced in Chapter
3 which consists of either truncating or rounding up the real replenishment intervals
to rational times. It is clear that the solution provided by this method is not the
optimal plan but it is quite a good approximation.

Once the demand vector is obtained, we should apply Hill’s approach to obtain
the optimal shipment schedule at the vendor.

5.4.3 Numerical example

In order to illustrate the solution procedures developed in this section, let us consider
a single-vendor three-buyer system with the data given in Table 5.3.

Table 5.3: Input data for an instance of the single-vendor three-buyer problem

Buyer 1 5 36 79
Buyer 2 5 25 84
Buyer 3 34 62 55
Vendor 48 46 2853

Below we solve the problem using both the approach for computing integer-ratio
policies and the decentralized procedure.

Integer-ratio policy

First, we must compute sets , and using Algorithm 5.1. The steps involved
in computing such sets are given below.

Step 1.

Set = = and = {1 } Then, from (5.58) and (5.59) we have
0 = 0 2194 1 = 0 6468 2 = 0 5036 and 3 = 0 5916



154 5.4. The single-vendor multi-buyer problem

Relabel the buyers so that, 1 2 3. Thus, buyer 1 = buyer 2, buyer 2 =
buyer 3 and buyer 3 = buyer 1, and 1 = 0 5036 2 = 0 5916 and 3 = 0 6468

Set = 3. Go to Step 2.

Step 2.

Iteration 1.

Since 3 = 0 6468 0 = 0 2194, update sets and so that, = {3} and
= {1 2}

Moreover, since 0
3 = 0 4267 0

0 = 0 2329, we conclude that buyer 3 .
Hence, set = , = {1 2} = {3} 3 = 0 4267, 0 = 0 2329 and = 2

Iteration 2.

Since 2 = 0 5916 0 = 0 2329, sets and are updated to give = {2} and
= {1} Then, 0 = 2 = 0 3218

Now, 0
2 = 0 2558

0
0 = 0 6466, so we cannot move buyer 2 to set . Set = 1.

Iteration 3.

Since 1 = 0 5036 0 = 0 3218, we update sets and so that, = {1 2}
and = Moreover, as 0

1 = 0 3445
0
0 = 0 3403, we conclude that buyer 1 .

Then, set = {2} = {3 1} 1 = 0 3445, 0 = 0 3403 and = 0 Go to Step 3.

Step 3.

The finals sets are = = {2} and = {1 3}

For notation convenience, we again relabel the buyers, so that buyer 1 = buyer 2
and buyer 2 = buyer 1. Then, = = {1} and = {2 3} and 0 = 1 = 0 3403

2 = 0 3445 and 3 = 0 4267

Now, using sets , and the problem can be stated as follows

min
0

0
+

0 0

2
+

2

2
+

2 2

2
+

3

3
+

3 3

2

s.t.

2 = 2 0

3 = 3 2
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1 0 + 2 2 + 3 3
0 (5.79)

1 0 + 2 2 + 3 3
2 (5.80)

1 0 + 2 2 + 3 3
3 (5.81)

where

0 = 0 + 1 = 110

0 = 0(1
1
) 1 + 0

2 1
3X
=1

+ 1( 1 0) = 1899 6025

2 = 2 2 +
2 0 2

(
2

2
+ 3) = 421 2092

3 = 3 3 +
0 3 3

= 395 4030

The next steps of the heuristic can be summarized as follows.

Step 1.

The initial replenishment intervals satisfied the feasibility constraints (5.79)-
(5.81). Therefore, set = 1 and go to Step 2.

Step 2.

Since = go to Step 4.

Step 4.

Set = 2 and go to Step 2.

Step 2.

From (5.74) it follows

( 2) =

r
2( 2 + 2 0)( 2 +

0

2
) +

p
2 3 3

Since 0
2 = 2 0 = 0 3445 0 3403 = 1 0123, we choose between 2 = 1 or 2 = 2

As ( 2 = 1) = 960 3203 ( 2 = 2) = 988 3586 we set 2 = 1 Now, using
(5.73) we recalculate 2 to give 2 = 0 3410 Hence, 1 = 0 = 2 2 = 0 5978
Moreover, it is easy to see that the feasibility constraints (5.79)-(5.81) hold, and
hence we proceed to go to Step 4.
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Step 4.

Set = 3 and go to Step 2.

Step 2.

Now (5.77) yields

( 3) =

r
2( 3 + 3 2 + 3 2 0)( 3 +

2

3
+

0

3 2
)

Since 0
3 = 3 2 = 0 4267 0 3410 = 1 2513, we should choose between 3 = 1 or

3 = 2 Given that ( 3 = 1) = 963 8181 ( 3 = 2) = 975 7843 we set 3 = 1
Next, from (5.76) we recalculate 3 to give 3 = 0 3548. Hence, 2 = 3 3 = 0 3548
and 1 = 0 = 2 2 = 0 3548 Note that these replenishment intervals are feasible,
and hence the procedure goes to Step 4.

Step 4.

Set = 4 Since , stop.

The integer-ratio policy is given by the following replenishment intervals 0 =

1 = 2 = 3 = 0 3548, and the cost incurred by this policy is 963.8181 $

Decentralized policy

We first should compute the optimal replenishment intervals at the buyers using
(5.78). Thus, we obtain 1 = 0 4269 2 = 0 3450 and 3 = 0 2575

Next, the above values ’s are rounded o to obtain the following replenishment
intervals, 1 = 0 4 2 = 0 3 and 3 = 0 3. Consequently, the time cycle for the
vendor is 1 2.

Moreover, the order quantities at the buyers are 1 = 2 2 = 1 5 and 3 = 10 2

Now, it can be easily determined that the instants of time where the vendor
receives an order are given by the following time vector

0 0 0 3 0 4 0 6 0 8 0 9

In addition, the quantities which are ordered at each instant, that is, the demand
vector at the vendor is

13 7 11 7 2 11 7 2 11 7
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We apply now the procedure devised by Hill (1997a) to obtain the quantities that
the vendor should order at each instant. For this example, the solution provided by
Hill’s approach is the following

13 7 13 7 0 13 7 0 11 7

The cost incurred by the vendor when this policy is applied is 186 9660 $
, and the overall cost including the costs at the buyers and at the vendor is

989 4660 $ .

As you can see, for this example it is better to apply the integer-ratio policy than
the decentralized strategy. However, as it is shown in the computational results this
is not always the case.

5.5 Computational results

In order to illustrate the performance of the procedures introduced in subsection
5.4.1 and 5.4.2 we have performed a detailed numerical study. The results of this
computational experiment are reported in Tables 5.4-5.11.

First, we evaluate the e ectiveness of the integer-ratio policies computed by
the heuristic. Then, we compare these integer-ratio policies with the decentralized
strategies. Finally, we analyze the e ect of the di erent parameters of the problem
on the total cost for both strategies.

5.5.1 Performance of the heuristic

We consider the following parameter values. The number of buyers is set to 5,
10, 15 and 20. The values for 0, 0 and are taken from a uniform distribution
[1 100] The parameter has been chosen from a uniform distribution [ 0 100+

0]. Finally, the production rate at the vendor is randomly generated from three
uniform distributions [100 + 500 + ] 1, [1000 + 5000 + ] 2

and [10000 + 20000 + ] 3 where =
P

=1 Notice that the possible
combinations of and give a total of 12 problem sets and for each one we carried
out 100 instances. Therefore, 1200 instances have been solved and the results are
summarized in Table 5.4.

Let denote the cost of the integer-ratio policy computed by the heuristic
and let be the lower bound for the problem defined by (5.52)-(5.57). This lower
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bound is simply obtained by solving the relaxed problem, that is, by dropping the
constraints (5.53)-(5.56).

In Table 5.4 we compare the cost of the integer-ratio policy provided by the
heuristic with the lower bound. The first column contains the number of buyers. In
columns two, five and eight we show the average percentage deviation of the cost
of the integer-ratio solution from the lower bound for when 1 2 and

3, respectively. Similarly, columns three, six and nine contain the maximum
percentage deviation of the cost of the integer-ratio solution from the lower bound.
Finally, in the rest of columns we show the average number of times that the heuristic
needs to use the Lagrangian relaxation to compute a feasible solution (Av. Lag.).

Table 5.4: Average and maximum deviations of the integer-ratio policies from the
lower bound, and average number of times that the heuristic needs to use the La-
grangian relaxation to compute a feasible solution

1 2 3

Av. Max. Av. Max. Av. Max.
Dev. Dev. Av. Dev. Dev. Av. Dev. Dev. Av.
(%) (%) Lag. (%) (%) Lag. (%) (%) Lag.

5 0.90 2.59 0.14 1.05 4.39 0 1.05 4.40 0
10 0.64 5.21 5.71 0.97 2.63 0.51 1.56 3.49 0
15 0.35 1.67 12.4 0.50 3.69 3.12 0.63 3.68 1.09
20 0.20 0.81 20.1 0.28 1.56 5.32 0.32 2.09 3.16

From Table 5.4, we can see that the average percentage deviation of the integer-
ratio solution from the lower bound for all problem sets is lower than 1.6 %. Moreover,
the maximum percentage deviation obtained is lower than 5.5 %. From these results,
we can conclude that the heuristic provides good integer-ratio policies in comparison
with the lower bound. In addition, the average number of times that the heuristic
needs to use the Lagrangian relaxation to compute a feasible solution is smaller than
6. It is worth noting that only when 1 and 10 the number of times that
the Lagrangian relaxation is required increases.

5.5.2 Integer-ratio policies versus decentralized policies

Below we compare the integer-ratio policies with those obtained by using the de-
centralized approach. The cost of the decentralized policy is denoted by

In Table 5.5, we report for each problem set the percentage of instances where the
integer-ratio heuristic provides both better and worse policies than the decentralized
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procedure, respectively.

Table 5.5: Comparison between integer-ratio and decentralized policies

1 2 3

5 38 62 86 14 90 10
10 36.9 63.1 58 42 79 21
15 0 100 11.4 88.6 45.7 54.3
20 - - 33.3 66.7 44.4 55.6

The results in Table 5.5 show that as the number of buyers increases so does the
percentage of instances where the decentralized policy is better. On the other hand,
another parameter which has a significant e ect on which policy is better is the
production rate at the vendor. In particular, when the production rate is selected
from 1 in most cases, even when the number of buyers is small, it is preferable to
follow the decentralized strategy instead of the integer-ratio policy. However, when
the production rate is taken from either 2 or 3 and the number of buyers is
smaller than 10, the decentralized procedure provides in most cases worse policies
than those given by the integer-ratio heuristic. In our opinion, this is due to the
fact that as the production rate for the vendor increases, the coordination of the
orders for all buyers becomes easier. Therefore, the integer-ratio policies can be
more e ective than the decentralized ones.

It is worth noting that for some problem sets there are instances for which one
of the procedures cannot generate a feasible solution. Moreover, there are problem
sets which yield infeasible solutions for all instances, mainly when 1. This
is because the production rate is not enough to satisfy all buyer demands at the
beginning of the cycle.

We also evaluate the di erence between both costs, and . Accordingly,
in case of we compute ( ) = ( )×100 Otherwise,
if we calculate ( ) = ( )× 100 For each problem
set the average percentages ( ) and ( ) are presented in Table
5.6. From this table the following conclusions can be extracted.

When the production rate is selected from 1 and the average
value of ( ) is equal to 1.214. However, when the average
value of ( ) increases to 2.540 Therefore, under this situation when de-
centralized strategies are better than the corresponding integer-ratio policies, the
di erence between the costs is approximately twice as large as the opposite case.
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Table 5.6: Percentage di erence between the costs of the integer-ratio policies and
the decentralized policies. 1 and 2 are ( ) and ( ), res-
pectively.

1 2 3

1 2 1 2 1 2

5 1.472 2.627 3.180 0.863 4.035 0.666
10 0.956 2.454 1.767 1.374 2.153 0.848
15 - - 2.034 2.450 1.657 1.550
20 - - 0.985 0.986 1.539 0.067
Av. 1.214 2.540 1.991 1.418 2.346 0.782

In contrast, when the production rate is taken from either 2 or 3 the value of

( ) is generally tighter than the value of ( ) This di erence is
even more remarkable when 10. This yields the integer-ratio policies to be a
good compromise solution when 2 or 3

5.5.3 Sensitivity analysis

We have carried out a sensitivity analysis involving parameters 0, 0 , and
to assess their impact on our results. The number of buyers has been fixed to

10 and we have varied the ranges of the uniform distributions from which we select
the above parameters. Specifically, we have analyzed 45 new problem sets. Some
of the new problem sets are obtaining by varying only the uniform distributions for
one of the following parameters: , , and 0 while the rest of parameters are
selected from their initial distributions. In other problem sets we vary the uniform
distributions for both 0 and . For each new problem set we generate 100 instances
and the results are summarized in Tables 5.7-5.11.

Table 5.7: Sensitivity analysis with respect to The value is selected from
the uniform distributions: 1 [100 500] 2 [1000 5000] and 3

[10000 20000]

1 2 3

1 1.472 2.627 3.180 0.863 4.035 0.666
2 0.956 2.454 1.767 1.374 2.153 0.848
3 - - 2.034 2.450 1.657 1.550
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In Table 5.7, if 1 there are always instances where at least one of the
procedures provides infeasible solutions, with independence of the value of the de-
mand. When 2 and 3, we can conclude that as the quotient
decreases, namely, when the production rate is significantly greater than the total
demand, the percentage of instances where the integer-ratio policies are better than
the decentralized strategies increases.

Table 5.8: Sensitivity analysis with respect to The value is selected from
the uniform distributions: 1 [100 500] 2 [1000 5000] and 3

[10000 20000]

1 2 3

1 0 100 0 100 22 78
2 0 100 0 100 0 100
3 - - - - - -

Table 5.9: Sensitivity analysis with respect to The value is selected from
the uniform distributions: 1 [100 500] 2 [1000 5000] and 3

[10000 20000]

1 2 3

1 0 100 44 56 77 23
2 5 95 25 75 28 72
3 79 21 39 61 39 61

Regarding parameters and we can conclude from Tables 5.8 and 5.9 that if
the replenishment or holding costs at the buyers increase, then, in most instances,
it is preferable that the buyers make decisions independently.

It is important to remark that the integrated models reduce the costs for the
vendor, but increase the costs for the buyers. Thus, if the replenishment and holding
costs at the buyers increase considerably, then the total costs at the buyers increase
in an amount that is greater than that in which the cost at the vendor is reduced.
Hence, under this situation it is better to follow a decentralized policy.

In contrast, the results in Table 5.10 show that if the setup cost at the vendor
increases then the integer-ratio policies are better than those provided by the de-
centralized procedure, mainly when 2 or 3.
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Table 5.10: Sensitivity analysis with respect to 0 The value 0 is selected from
the uniform distributions: 1 [100 500] 2 [1000 5000] and 3

[10000 20000]

1 2 3

1 35 65 95 5 99 1
2 64 36 96 4 96 4
3 76 24 97 3 98 2

Table 5.11: Sensitivity analysis with respect to 0 and . The value 0 is selected
from the uniform distributions: 1 [100 500] 2 [1000 5000] and 3

[10000 20000] and the value is selected from the uniform distributions: 4

[100+ 0 500+ 0] 5 [1000+ 0 5000+ 0]and 6 [10000+ 0 20000+ 0]

1 2 3

1 0 100 58 42 85 15
2 14 86 60 40 87 13
3 0 100 62 38 91 9

Finally, as it can be seen in Table 5.11, if we simultaneously vary 0 and the
results are similar to those showed in Table 5.5.

5.6 Conclusions

In this chapter, we consider a single-vendor multi-buyer system in which the vendor
supplies an item to the buyers at a finite production rate. Previous works mostly
focused on the single-vendor single-buyer problem or on the single-vendor multi-
buyer system in which the vendor supplies a di erent item to each buyer. In this
chapter, we assume that the buyers order the same item to the vendor and that the
vendor can supply items to the buyers before the whole lot is produced. Further-
more, we allow the replenishment interval at any buyer to be greater than the time
between setups at the vendor. This assumption gives more freedom in determining
the replenishment intervals at the buyers, which are not forced to be smaller than
the replenishment interval at the vendor. Moreover, there are many situations in
practice where it is profitable to consider this assumption.
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The single-vendor two-buyer problem is the simplest case within the single-
vendor multi-buyer systems. Hence, we first have focused on this problem. Besides,
the study of such model o ers insights into the possible strategies that can be ana-
lyzed for the multi-buyer case. We formulate the problem in terms of integer-ratio
policies and we develop a solution method which computes an optimal policy. De-
pending on how the replenishment intervals at the buyers and at the vendor are
related, the expression of the average inventory at the vendor is di erent. Thus,
we have analyzed two di erent cases in the statement of the problem, and we
have obtained the optimal integer-ratio policy for both cases. We show that the
single-vendor two-buyer system can be formulated as a nonlinear mixed integer pro-
gramming problem. Moreover, we propose a solution method that combines the
Karush-Kuhn-Tucker conditions with a branch and bound scheme.

The rest of the chapter is devoted to the general problem with multiple bu-
yers. For this case, assuming that the decision system is centralized we formulate
the problem in terms of integer-ratio policies and we propose a heuristic procedure.
Additionally, we also show how to handle the problem if the vendor and the buyers
are considered as independent installations. Under this situation, the vendor be-
haves as an inventory system with time-varying demand and we propose a two-level
optimization approach for computing near-optimal solutions.

We have implemented both procedures and the computational results show
that either the integer-ratio policies or the decentralized policies can be e ective
strategies. That is, depending on the parameter values one strategy outperforms
the other.

We have carried out a sensitivity analysis to study the e ect of the di erent
parameters of the problem on the total cost for both strategies. The results suggest
that as either the quotient decreases or the setup cost at the vendor increases
the integer-ratio policies are more e ective than the decentralized policies. In con-
trast, as the replenishment or the holding costs at the buyers increase so does the
percentage of instances where it is preferable to apply a decentralized policy.

In conclusion, depending on the parameter values it could be preferable to apply
either the integer-ratio policies or the decentralized strategies. Nevertheless, in most
cases we can use the integer-ratio policies since the gap between the costs of both
class of policies in the instances where the decentralized strategies dominate the
integer-ratio policies is tighter than the gap in the reverse case.



Conclusions and Future Research

Multi-echelon inventory systems are very common in practice. For example, con-
sumers often do not purchase products directly from the producer. Instead, products
are usually distributed, for example, through regional warehouses and local retailers
to the consumer, that is, through a multi-echelon distribution system. Similarly, in
the production context, stocks of raw materials, components, and finished products
are similarly coupled to each other.

This thesis is concerned to the study of the multi-echelon inventory systems.
However, before analyzing such systems, we have summarized in Chapter 1 the basic
concepts and models in inventory control. It is worth noting that these basic models
are fundamental for a good understanding of the multi-echelon inventory systems.
Then, in Chapter 2 we have introduced the most important structures that we can
find in multi-echelon inventory systems, namely, the serial, assembly and distribution
systems. Besides, we have reviewed the most important models and algorithms for
solving lot sizing problems for these systems with constant demand rates. For the
two-level serial and assembly systems, optimal policies have to be stationary and
nested. However, for distribution systems the form of the optimal policies can be
very complex even when we restrict ourselves to the two-level distribution systems,
that is, to the one-warehouse -retailer problem. Hence, it is not surprising that
for these models many authors have restricted themselves to compute an optimal
policy within a simpler class of policies. In particular, in Chapter 3 we have analyzed
the stationary and nested policies which are very easy to apply in practice. The
main contribution of this chapter is the development of a new O( log ) heuristic
which in most cases computes more e ective single-cycle policies than those provided
by the existing approaches. In addition, in this chapter we also have formulated
the problem assuming that the decision system is decentralized, that is, assuming
that each installation try to minimize its total costs. Finally, we have developed a
computational experience in order to compare both strategies. From this experience,
we can conclude that as the number of retailers increases so does the number of
instances where the decentralized policies are better. In addition, given a number
of retailers, we have carried out an analysis of sensitivity of the parameters. This
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analysis suggests that, under specific conditions of the replenishment and holding
costs at the warehouse, the decentralized policies can provide better solutions. In
particular, the results in this chapter are included in Abdul-Jalbar et al. (2003,
2006).

The single-cycle policies are very e cient in many situations and have clear
managerial advantages. However, in some cases as for example when relatively high
replenishment costs are combined with relatively low demand rates, the performance
of these policies get worse. In order to achieve more e ective strategies, in Chapter
4 we have dropped the assumptions of stationary and nested and we have analyzed a
more general class of centralized strategies known as integer-ratio policies. For this
case, we have developed an O( log ) heuristic which has been compared with the
most referenced method in the literature, namely, the Roundy approach. Some of
the contributions in this chapter have been already published in Abdul-Jalbar et al.
(2005).

Finally, in Chapter 5 we have extended the study to the case where the warehouse
produces the items at a finite rate. Most works in the literature analyzing this
situation focus on the single-vendor single-buyer problem. Hence, an important
contribution of this chapter is the formulation of the problem for the general case
with multiple buyers. In particular, we first have focused on the single-vendor two-
buyer systems and then, we have analyzed the problem with multiple buyers. We
have formulated the problem in terms of integer-ratio policies and also assuming that
the vendor and the buyers make decisions independently. We have implemented and
compared both policies and the computational results show that depending on the
parameter values one strategy outperforms the other. The results introduced in this
chapter are compiled in Abdul-Jalbar et al. (2004a, 2004b).

The problem that we have analyzed in this thesis can be extended to consider
shortages. Some mathematical models have been developed considering this restric-
tion. See, for example, Mitchell (1987), Atkins and Sun (1995, 1997), Chen (1998,
1999, 2000).

Another important extension of the model consists of assuming time varying
demand at the retailers. Examples of such models are given in Zangwill (1969),
Blackburn and Millen (1982, 1985), Joneja (1990), Federgruen and Tzur (1994b,
1999), Simpson and Erenguc (1995), Herer and Tzur (2001), etc. Many authors
have also analyzed multi-echelon inventory system with probabilistic demands. The
primary early work on these systems was done by Clark and Scarf (1960). Relevant
contributions are also given by Sherbrooke (1968), Federgruen and Zipkin (1984),
De Bodt and Graves (1985), Graves (1985, 1988), Rosling (1989), Axsäter (1993),
Axsäter and Rosling (1993), Chen and Zheng (1994a, 1994b), Forsberg (1995), Wang
(1995), Axsäter and Juntti (1996), among others.
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In this dissertation we have analyzed the problem considering that the warehouse
produces the items at a finite production rate. Some researches have extended the
model to also consider finite production rate at the buyers. See, for example, Kim
(1999), Hill (2000) and Bogaschewsky et al. (2001).

Another interesting variation of the problem is to allow lateral transshipments
among the retailers. When a demand at a retailer cannot be satisfied directly from
stock on-hand, it could be taken from an adjacent retailer that has stock on-hand.
Examples of such models are given in Karmarkar and Patel (1977), Cohen et al.
(1986), Jönsson and Silver (1987), Lee (1987), Axsäter (1990, 2003), Pyke (1990),
Robinson (1990), Sherbrooke (1992), Diks and de Kok (1996), Evers (1996), Al-
fredsson and Verrijdt (1999), Banerjee et al. (2003), among others.
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