
Directive-based Approach to 
Heterogeneous Computing

Director
FRANCISCO DE SANDE GONZÁLEZ

Curso 2012/13
CIENCIAS Y TECNOLOGÍAS/11

I.S.B.N.: 978-84-15910-69-5

SOPORTES AUDIOVISUALES E INFORMÁTICOS
Serie Tesis Doctorales

RUYMÁN REYES CASTRO

ciencias 11 (Ruymán Reyes Castro).indd   1 14/02/2014   9:52:55



Write a paper promising salvation, make it a ’struc-
tured’ something or a ’virtual’ something, or ’ab-
stract’, ’distributed’ or ’higher-order’ or ’applicative’
and you can almost be certain of having started a
new cult.

Edsger W. Dijkstra



To all those who told me, ”You won’t be able to”.
Including myself.



Acknowledgements

Several people deserve to be mentioned, however I believe it only correct to begin by thanking
my family. My parents have always encouraged me to follow my heart, never allowing me to give
up when the going got tough. My mother would always tell me, ”Do not close the door without
walking through it first.”; and so here I find myself, metaphorically walking through another door
once again. I would also like to thank Yurena. Her patience was stretched to its limits during
those sunny weekends that had to be spent working from home. Thankfully, sunny weekends will
be spent outside from now on.

Next, I would like to thank my advisor, F. de Sande. This work would not have been possible
without his support. He is very encouraging and convinced me to do an end-of-course project in
2006, before convincing me to undertake this Ph.D. research in 2008. Fortunately, there are no
more projects to undertake, or grades to achieve. I would also like to thank F. Almeida and V.
Blanco for their support and encouragement over the years. Finally, I must mention E. Quintana
who placed his trust in me and allowed me to participate on his projects, despite the fact that
Linear Algebra is not one of my strong points.

I would now like to give thanks to several friends who have acoompanied me on this journey
and throughout my life. These are people who have shared my pain and happiness, and who
reminded me to relax and also take things easy when necessary. So thank you U. Oramas, A.
Rubio, M. Rodriguez, M Magdalena, M. Santana and C. Gonzalez, amongst others. Your advice
shall continue to be used over the months and years to come.

I wish to thanks to all the folks from SAII, both past and present, but in particular I. Lopez,
J. Fumero, and J.L. Grillo, all of whom encouraged me to continue my work. Their motivation
and hard work never failed to astonish me and I hope that one day I will be able to help them as
much as they were able to help me.

In recent years many people have made my stay abroad a very enjoyable experience: A. M.
Huertas from The Center for Numerical Methods in Engineering (CIMNE) - who taught me to
work with facts; A. Remon, F. Igual and T. Peña from Universitat Jaume I of Castellon; Davor
Davidovic from the Rudjer Boskovic Institute; Ovidiu Tomescu from the Polytechnique University
of Bucarest; J. Rius from Universitat de Lleida; R. Filgueira from University of Edinburgh; and
C. Inglish and M. Bull from Edinburgh Parallel Computing Centre (EPCC).

Finally, I would like to thank the musicians who livened up all the hours that were spent
producing this thesis, specifically Joe Satriani, Daft Punk and P. Tchaikovsky.

vii



Although this thesis has not been directly funded through any scholarship program, the research
was made possible thanks to my participation in the following projects: Spanish MEC (Plan
Nacional de I+D+i, contract TIN2008-06570-C04-03), Canary Islands Government (ACIISI,
contract SolSubC200801000285), TEXT Project (FP7-261580), HPC-EUROPA2 (project number:
228398).



Contents

1 Introduction 1
1.1 Main Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2 Thesis Organisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Background and Related Work 9
2.1 Classification of Programming Models . . . . . . . . . . . . . . . . . . . . . . 10

2.1.1 Traditional Shared Memory Multicore . . . . . . . . . . . . . . . . . . 11
2.1.2 Distributed-memory Based Systems . . . . . . . . . . . . . . . . . . . 14
2.1.3 GPU Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.1.4 Directive-based Languages for Accelerators . . . . . . . . . . . . . . . 34
2.1.5 Multi-target Programming Languages . . . . . . . . . . . . . . . . . . 39
2.1.6 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.2 Compiler Support for PM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.2.1 GCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.2.2 Open64 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.2.3 LLVM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.2.4 ROSE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.2.5 Cetus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
2.2.6 Mercurium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
2.2.7 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

2.3 Runtime Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
2.3.1 StarPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
2.3.2 GOMP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
2.3.3 GMAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
2.3.4 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3 Yet Another Compiler Framework 63
3.1 Design Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.1.1 Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.1.2 Mutator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.2 Internal Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.2.1 Manipulating the IR . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.3 Symbol Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

ix



CONTENTS CONTENTS

3.3.1 Scope Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.3.2 Computing the Size of Elements . . . . . . . . . . . . . . . . . . . . . 75

3.4 The Frontend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
3.4.1 Defining a New Language . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.5 The MiddleEnd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
3.5.1 Data Dependency Analysis . . . . . . . . . . . . . . . . . . . . . . . . 79
3.5.2 Loop Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
3.5.3 Loop Optimizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
3.5.4 The Outliner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

3.6 The Backend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
3.6.1 The Template Subsystem . . . . . . . . . . . . . . . . . . . . . . . . . 89
3.6.2 The DOT Back end . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
3.6.3 The Writer Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
3.6.4 The CUDA Back end . . . . . . . . . . . . . . . . . . . . . . . . . . 92
3.6.5 The OpenCL Back end . . . . . . . . . . . . . . . . . . . . . . . . . 93

3.7 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4 The Frangollo Runtime 95
4.1 The Frangollo Platform Model . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.1.1 Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4.1.2 Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4.1.3 Parallelism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4.1.4 Memory Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4.1.5 Memory coherence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
4.1.6 Composing operations . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
4.1.7 Applying the Frangollo Platform Model . . . . . . . . . . . . . . . . 102

4.2 Software Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
4.2.1 Abstract Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
4.2.2 Device Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
4.2.3 Interface Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
4.2.4 Overall Usage Workflow . . . . . . . . . . . . . . . . . . . . . . . . . . 112

4.3 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5 Directive-based Code Generation 115
5.1 Extending La Laguna C (llc) to Support Hybrid MPI+OpenMP Programming 115
5.2 Generating CUDA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
5.3 Intermezzo: La Laguna Computing Language (llcl) . . . . . . . . . . . . 119

5.3.1 Implementing llcl . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
5.4 Accelerator ULL (accULL) . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.4.1 OpenACC Programming Interface . . . . . . . . . . . . . . . . . . . . 123
5.4.2 c2frangollo Compiler Driver . . . . . . . . . . . . . . . . . . . . . . 126
5.4.3 Interfacing OpenACC in Frangollo . . . . . . . . . . . . . . . . . . . 127
5.4.4 Putting It All Together . . . . . . . . . . . . . . . . . . . . . . . . . . 127

x



CONTENTS CONTENTS

6 Performance results 129
6.1 Experimental Platforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
6.2 Other Compilers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
6.3 OpenMP Source Code Repository . . . . . . . . . . . . . . . . . . . . . . . . . 131

6.3.1 Mandelbrot Set Computation . . . . . . . . . . . . . . . . . . . . . . . 132
6.3.2 Molecular Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
6.3.3 Jacobi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
6.3.4 LU Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
6.3.5 Matrix Multiplication . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
6.3.6 Development Effort Analysis (LLC-CUDA) . . . . . . . . . . . . . . . . 155

6.4 Rodinia Benchmark Suite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
6.4.1 SRAD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
6.4.2 LU Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
6.4.3 HotSpot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
6.4.4 PathFinder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
6.4.5 Needleman-Wunsch (NW) . . . . . . . . . . . . . . . . . . . . . . . . 164

7 Conclusions and Future Work 171
7.1 Directive-based Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
7.2 Programming Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
7.3 Development Productivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
7.4 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

Contributions 175

Bibliography 177

List of Figures 189

List of Tables 192

List of Listings 194
*

xi



CHAPTER 1

Introduction

Computational science has become the third pillar of the scientific enterprise, a peer
alongside theory and physical experiment.

U.S.A President Information Technology Committee report, June 2005 [140]

Computational Science, and particularly High Performance Computing (HPC), are the pillars
on which recent advances in the fields of science and engineering can, and in fact, have been
built. A wide range of fields have made use of these technologies to model and investigate natural
processes that range from the movement of large astral bodies right down to the behaviour
of atoms and molecules. Weather forecasting provides a clear example of their application: it
uses the output from HPC models and broadcasts it daily to millions of viewers as part of the
daily weather report. This modelling and investigation process has been made possible thanks to
improved performance in scientific applications. One of the most significant benefits of HPC
simulation is that it greatly reduces engineering costs: designers and manufacturers no longer
need to build a 3-dimensional models of the devices, they can now use HPC to create models
that simulate motor performance, aerodynamics, or even the behaviour of cars involved in a
crash. The overall result is that the time-to-market ratio for products is greatly reduced and
productivity is increased, both of which directly affect profits.

Even the social sciences have found a uses for HPC, despite it being a field which has rarely
been associated with these technologies. Social scientists have used HPC to produce simulations
of population growth and emergency evacuation procedures and look set to continue finding
more uses for it in the future.

Both governments and their industrial partners have become aware of the opportunities
presented by Computational Science and HPC [41], and have funded several research programs
over the years. Major industrial partners (Boeing, Airbus, Rolls Royce, BMW, . . . ) are long-term
users of HPC services. Recently, new funding schemes have emerged for small and medium-
sized enterprises so that they can also take advantage of the technological advances offered by
HPC. Good examples include the NDEMC [99] in the U.S (proposed by the White House), or
Supercomputing Scotland [58].
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Introduction

High Performance Computing centres, which were previously associated with universities,
have paved their way to becoming semi-autonomous entities supporting the computing part of
science and engineering applications. In Germany, for example, several centres such as HLRS
[70] offer computing services to both industry and academia alike.

The performance of the systems in these centres has evolved over the years. Normally,
performance evolution - measured using the LinPACK [46] benchmark - can be found by referring
to the TOP500 list [47], as shown in Figure 1.1.

Figure 1.2 and 1.3 show the number of cores per socket and the number of accelerators per
system. At the beginning of the XXI century most of the systems were only made built using
(large) set of processors connected through high-speed networks, but this situation has been
changing since 2007.

The long announced end of Moore’s Law [97, 78], which prevented increases in the perfor-
mance of CPUs, meant vendors were now forced to change the architectures of CPUs in order to
continually increase their performance. Multi-core and Many-core processors have been broadly
adopted in the systems appearing in the TOP500 list and several different forms of accelerators
are starting to appear in the most advanced systems. To maintain this performance, future
systems shall have to be built using many-core processors and accelerators [24, 15, 137].

Figure 1.1: Evolution of the overall performance of HPC systems since 1993

2
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Figure 1.2: Evolution of the number of cores per socket per system since 2000

3



Introduction

Figure 1.3: Evolution of the number of systems with accelerators since 2007
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To get a clear idea of how scientists and engineers are solving current challenges in these
systems, and to understand what the existing applications of this technology are, we should
take a closer look at the reports being produced by the aforementioned HPC centres. The 2011
report by the UK National Supercomputing Service (HECToR) [139] highlights an important
fact - more than 62% of their time was allocated to Environmental Science and Chemistry (see
Figure 1.4). This figure reveals that the most common applications in this facility are as follows:

VASP [79], 17% of the total number of jobs; CP2K [25] - just under 7% of jobs; Unified
Model (UM) [138] - just over 7%; and GROMACS [23] - just over 4.%. VASP, CP2K and UM
have been written in Fortran and MPI, whereas GROMACS has been ported to C++ and MPI.

Figure 1.4: Usage of HECToR facilities by area of expertise

In the 2011, the Swiss National Computing Centre surveyed its users [134] and found that that
65% of them develop applications but nearly of 70% of these applications are being developed
in Fortran, and more than 80% use MPI; only 40% of the codes used OpenMP.

This data reveals an important fact: the vast majority of the software running in HPC systems
have been implemented using Fortran and MPI.

5
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Fortran has existed since the dawn of computer science, and the MPI standard [95] has been
available from the early 90s, far before multi- and many-core processors. Despite the appearance
of new languages [89] and libraries (see Background and Related Work in Section 2), none of
them are used on these top applications. Notably exceptions are low-level accelerator languages
and libraries, such as CUDA, but mainly due to the fact that no Fortran alternative is available
for writing the kernel code for accelerator devices (yet).

Traditionally, any performance improvements have been due to an increase in hardware
performance. Nevertheless, increasingly complex hardware is forcing software engineering to
participate in the effort of performance improvement. In order to achieve performance portability,
the computer science community will have to provide additional assistance to both scientists
and engineering experts who traditionally work with these applications.

Usually a scientist or engineer would only need to recompile their Fortran code with the
compiler for his/her new architecture to take advantage of its performance. Compiler tools
have become critical in this process [56, 94] as they enable the transparent handling of the
increasingly complex processor instruction set. Auto-vectorization [101] provides a good example
of how the effort in the compiler-side have enabled programmers to transparently take advantage
of advanced units inside the processors [115]. Unfortunately compiler technology alone is not
enough to take advantage of new architectures, especially following the irruption of multi-core
and accelerators.

A scientist or engineer who is interested in taking advantage of the new multi-core architectures
could try using OpenMP [43, 108] to parallelize the most demanding parts of the application.
This API is widely available and there is a lot of supporting documentation available. However,
due to the fact that most of the large shared memory machines have non-uniform access to
memory banks, the process of scaling OpenMP applications to use a high number of threads
is more than a matter of simply adding directives; it is important to also be familiar with the
underlying SMP architecture.

In addition, scaling the hardware beyond dozens of SMP processors is still a challenge.
Although we can foresee the imminent arrival of processors with eighty or one hundred cores
inside, the programmer still needs to use different technologies to obtain the number of processors
required to achieve Peta- or Exa-scale computing.

This is where MPI makes its appearance. With a notable amount of effort, this scientist or
engineer will be able to write an MPI implementation of their code. Writing applications using an
MPI API is not straightforward. Developers have to use low-level calls that hinder legibility [65].

One of the main drawbacks of MPI is that the development of parallel applications is highly
time consuming as major code modifications are generally required. In other words, parallelizing
a sequential application in MPI requires a considerable amount of effort and expertise. In a sense,
we could say that MPI represents the assembler language of parallel computing: you can obtain
the best performance but the cost is a significant amount of development.

Some (lucky) scientists or engineers may have access to the expertise of a HPC centre. For
these scientists, this problem is easily overcome as the highly skilled developers working in the
HPC centre can assist them by producing efficient implementations of their algorithms. However,
the (silent) majority of scientists and engineers do not have access to such expertise.

6



Introduction 1.1 Main Contributions

In our opinion, the lack of general purpose high-level parallel languages presents a major
drawback that limits the spread of High Performance and Parallel computing. There is a division
between the users who have the needs of HPC techniques (scientist and engineers) and the
experts who are capable of implementing efficient parallel codes for HPC systems (for example,
those in HPC centres).

In general, most users do not have the skills to exploit the tools involved in the development
of parallel applications. For this reason, any effort aimed at simplifying higher-level programming
languages, and thus bridging the gap between the users and the tools, is welcomed.

A non-HPC expert developer may, given enough time, find that s/he is capable of producing
an efficient implementation for their algorithm for a particular architecture. Nevertheless, their
time would be better spent focusing on designing new techniques or algorithms.

Several studies have investigated whether there is any value in the time and effort spent
writing low-level code [62, 14]. These studies have raised the concept of programming productivity,
making this already familiar concept in the field of Software Engineering a focal point of HPC
[60].

We claim that using directive-based programming allows application developers to take advan-
tage of heterogeneous architectures with a low-entry development effort and without increasing
the maintenance cost of existing applications. The performance of existing applications can be
sustained by taking advantage of novel and emerging architectures, whilst new programming
paradigms cope with the requirements in availability and stability required in these environments.

Our main objective is not to obtain maximum performance for a particular set of algorithms
- that will be achieved eventually by a new generation of specific algorithms and/or libraries.
Instead, our aim is to help users to benefit from new architectures using the existing codebase,
while new libraries and tools are being developed.

To accomplish this task, compiler technologies must be taken to the next level; using a small
amount of additional information in the form of directives, we have to extract the information
that is required to transform the code into an efficient implementation for a heterogeneous sytem.
However, most of the information is not available at compile time, therefore runtime support
libraries are also needed.

1.1 Main Contributions

The main contributions of this thesis can be outlined as follows:

• An in-depth review of state-of-the-art compiler and runtime technologies.

• A compiler platform suitable for fast-prototyping, research and educational purposes.

• A runtime capable of running transparently on several execution platforms.

• Analysis and comparisons of different directive-based programming models for GPUs.

7



1.2 Thesis Organisation Introduction

1.2 Thesis Organisation

In the HPC Group at La Laguna University [72] we have been working for more than ten
years in the field of Directive-based programming for High Performance Computing [51, 52, 126,
49, 54, 50]. Since the very beginning, the goal of our research has always been to bridge the gap
between HPC users and the tools they use; in other words, our aim is to provide the scientific
community with the high-level programming tools they require to facilitate the coding effort [87].

In 2008, the Ph.D. dissertation of Mr. A.J. Dorta [48] marked a milestone in our research.
As a result of his work, we were able to: define the La Laguna C language (llc); present
its compiler (llCoMP); provide a representative collection of benchmarks that are suitable for
implementing with our language; and demonstrate sufficient computational experience to support
our conclusions.

To implement llc we designed and implemented a source-to-source compiler: llCoMP. The
original llCoMP was implemented using traditional compiler creation toolkits, such as bison or
flex [85]. The original llCoMP is still available on request but it is no longer being maintained.

Based on our experience with llCoMP we decided that if we were going to support new
architectures, as we intended, then more flexible programming tools would be required. This
dissertation opens with a comprehensive overview and bibliography of existing programming
models and tools in Chapter 2. This is then followed by a detailed description of the specific
tools that we have designed. In Chapter 3 we describe YaCF, a compiler framework aimed
at facilitating the writing of source-to-source (StS) translations. In Chapter 4 we describe
Frangollo, a runtime to leverage the complexity of heterogeneous platforms. Although their
descriptions might be overwhelming at first glance, they provide detailed insights into the tools
that allow a developer to implement transformations, or to extend the platform so it includes
support for new architectures. Our description of the Frangollo Platform Model (Section 4.1),
which should be of particular interest to many readers, attempts to formalize the underlying
concepts on which our offloading paradigm is based. In Chapter 5 we describe the results of our
research on directive-based programming. They are described in chronological order in an attempt
to illustrate how we have arrived at our conclusions (Chapter 7). To support our conclusions,
we have ported several codes using our directive approaches. We have provided performance
results together with comments and consideration in Chapter 6. Several publications have been
produced as a result of the work that has been carried out for this thesis; these publications are
listed after Chapter 7.

8



CHAPTER 2

Background and Related Work

In this Chapter we present several different works that have both inspired and guided our work
during the initial planning stages. These works have also made significant contributions to the
field of HPC in general.

We start the Chapter with a general review of the programming models that have been
used for reference purposes. In Section 2.1, we provide details of the classification system being
used in our work, and in the corresponding paragraphs, we present a description of different
programming models.

It is worth noting that several tools are required in order to implement a programming model.
A software library may be required in order to implement low-level details of the programming
model, such as communications, memory transfer, data distribution, etc. The library requires a
well defined Application Programming Interface (API), capable of expressing all of the library
features across a simple and orthogonal interface. Sometimes, even a well-defined API does not
suffice and it fails to provide the end user with the simplicity that s/he requires.

In this case, a higher-level layer including compiler support is also required in order to leverage
the coding effort. This is the case of OpenMP; although a low-level interface exists, it is not
designed to the typical user, instead s/he is expected to use OpenMP through the high-level
compiler directives. Sometimes, even compiler support is not enough, and other tools are required
to write efficient code for a particular architecture. It is worth noting the importance of profiler,
tracing and debugging tools that are available for some programming models. The maturity of
a programming model can be measured according to the available tools. The more help the
developer can access to implement their algorithm, the more mature a programming model is
considered to be. For these reasons, we have decided to include in our bibliography review works
that are related to programming tools.

In Section 2.2 our attention is focused on the complier tools that enable most of the
programming models previously described. We examine their key characteristics before presenting
an overview and final remarks. In Section 2.3 our focus is on exploring the different available
runtimes for both multi-core and heterogeneous machines. We conclude the section with our
remarks together with a brief discussion on the reasons for implementing our own runtime.
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2.1 Classification of Programming Models

There are several different classifications for Programming Models (PM) in the bibliography.
One example, that of Skillicorn et al [133], describes the characteristics of a good programming
model: it has to be easy to program; it has to provide a software development methodology;
it has to be architecture independent; it has to be easy to understand; and it has to provide
some guarantees regarding performance. Based on these characteristics, programming models
are classified into different categories depending on which part of the model is explicit or implicit.
For example, some very high-level models are capable of completely abstracting the parallelism
and the developer only has to specify what has to be done but not the way it has to be
done. Other models may require the developer to indicate where the parallelism is, but the
way it is decomposed is implicit. However, other models are completely explicit, and everything
(parallelism, data mapping, communication and synchronization) has to be instructed by the
user.

The classification described in [34] differentiates between fragmented and non-fragmented
programming models.

In the fragmented programming models, algorithms are expressed task by task, decomposing
data structures and control flow into several sets. The best candidate in this category is
MPI. MPI requires the user to be aware of the number of processors that will be running the
algorithm in order to properly distribute data across all of them and properly implement explicit
communications.

On the other hand, on non-fragmented models, algorithms are implemented in a global
scheme, assuming that a sole processor will execute all the code except for those sections of code
where the parallel execution is explicitly indicated. OpenMP is the most frequently used language
of this category. It introduces parallelism using explicit directives such as for or sections.

From our point of view these classifications do not suffice when we are describing languages
for heterogeneous platforms. Whether a PM is fragmented or not is not sufficient enough to
determine if it is suitable for a heterogeneous system. Although intuitively the fragmented models
will be more suitable for architectures with separate memory spaces, some non-fragmented PM
are implemented in these architectures as well.

The rest of this section is divided according to the target architecture(s) of the
programming model. The target architecture(s) is defined as the main platform on which
the programming model has been focused. Post-design transformations or implementations of the
model are not taken into account. For example, OpenMP was initially designed to support shared-
memory systems, but there are some OpenMP implementations that use the same approach for
other platforms. Where applicable we provide the classification of the model in [34] form.
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2.1.1 Traditional Shared Memory Multicore

Traditional processors have evolved into complex multi-core architectures, forcing programmers
to consider multithreading and parallel programming in these environments to improve the usage
of the memory hierarchy. Nowadays processors usually feature eight or sixteen cores, and might
come in two-way socket boards, presenting a total of 32 cores to the defenceless programmers.
In addition, traditional distributed-memory machines require hybrid paradigms to obtain scalable
performance [91].

The most successful programming model for traditional multicore architectures is OpenMP.
However, other alternatives also exists, such as low-level pthread [32] or programming libraries
such as Thread Building Blocks (TBB) [143].

2.1.1.1 OpenMP

OpenMP [108] is a programming language based on compiler directives, library functions and
environment variables used to declare parallelism in C, C++ and Fortran. It is the result of the
joint effort of several vendors, such as Intel, HP, IBM, Cray or Sun Microsystems, alongside
important feedback from academia. OpenMP has been widely adopted in several projects and
production codes [37], and plenty of work has been devoted to port this PM into different
architectures, from the SMP NUMA system [105, 27] to distributed memory clusters [49], and
even accelerators [26, 33].

OpenMP is a non-fragmented PM. The common usage pattern of OpenMP consist off
annotating parallel regions inside a sequential code using directives representing common parallel
patterns, such as loop, sections or tasks. This enables users to maintain only one sequential code
whilst still being able to run it in parallel if appropriate compiler support is enabled. This is one
of the key factors of OpenMP as it greatly increases programmer productivity.

OpenMP compilers and runtimes implement parallelism using sets of running threads.
Programs developed under this model (called fork-join) start with a sole execution thread
(master thread) and when a parallel directive is encountered, execution is split so the
parallel region will be run by a team of threads. As long as the semantical end of the region is
reached, threads join the master thread again, and this continues the execution sequentially (see
Figure 2.1).

OpenMP can also be used in a fragmented way as it features a high level API with functions
devoted to thread management (thread identification, current number of threads . . . ). This
enables advanced developers to manually distribute data across threads. Although this method
of programming is not common, it provides programmers with the additional flexibility required
to enable them to implement more complex patterns than that supported by the worksharing
constructs.

The major drawback of OpenMP is its dependence on shared-memory machines as this severely
limits its scalability. A way to deal with this limitation is to use OpenMP in combination with
MPI. This enables programmers to take advantage of shared-memory parallelism for intra-node
computations as MPI can be used to distribute data across computation nodes.
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Figure 2.1: Fork join model

1 pi_omp = 0.0f;

2 #pragma omp parallel for private(i,local) reduction (+: pi_omp)

3 for (i = 0; i < N; i++) {

4 local = (i + 0.5)*w;

5 pi_omp = pi_omp + 4.0/(1.0 + local*local);

6 }

7 pi_omp *= w;

Listing 2.1: Implementation of the π computation using OpenMP
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Listing 2.1 shows the main loop of the pi computation algorithm using OpenMP. Code
is annotated using the #pragma omp parallel for (line 2). This portion of the code will
be parallelized by the compiler using the memory options from the private and reduction

clauses.
Initialization of pi omp is performed sequentially while the loop is executed by all threads.

Notice how the pi omp is marked as a reduction var (reduction clause in line 5). The compiler
will create a private copy of the variable in the local storage, and, after the loop has finished, it
will add up all of these local copies into a single value in shared-memory that will be available to
all threads.

2.1.1.2 SMPSs

SMPSs [112] is an instance of the StarSs [19] framework tailored for shared-memory multi-
processors. It combines a language with a much reduced number of OpenMP-like pragmas, a
source-to-source compiler, and a runtime system to leverage task-level parallelism in sequential
codes.

In SMPSs, the programmer employs pragmas to annotate certain routines (functions)
appearing in the code as tasks, indicating the directionality of their operands (input, output or
input/output) by means of clauses. The runtime exploits task-level parallelism by decomposing
the code (transformed by the source-to-source compiler) into a number of tasks during the
execution, dynamically identifying dependencies among these, and issuing ready tasks (those
with all dependencies satisfied) for their execution in the cores of the system.

In order to parallelize this code with SMPSs, the programmer employs the #pragma css task

directive to mark which functions will become tasks during the execution of the code. The asso-
ciated clauses input, (output,) and inout specify the directionality of the function arguments,
which help the runtime to capture all data dependencies among tasks.

SMPSs is part of StarSs. StarSs is an active project that targets multiple hardware platforms
(Grids; multi-core architectures and shared-memory multiprocessors; platforms with multiple
hardware accelerators: GPUs, Cell B.E., Clearspeed boards; heterogeneous systems, etc.) with dis-
tinct implementations of the framework. One particularly appealing version of this programming
model is MPI/SMPSs, which provides specific support for MPI applications. In this particular
version it is possible to embed calls to MPI primitives as SMPSs tasks, so that communications
can be overlapped with computation transparently to the programmer. To indicate that a
particular task comprises of a communication (e.g. a task that invokes a BLACS/MPI primitive),
in MPI/SMPSs the developer employs the device clause, with the comm thread option, (i.e.
#pragma css task target device (comm_thread)). A separate thread devoted to communica-
tion is created dynamically by the runtime and those dependencies required to enforce the correct
communication order are automatically added. Depending on the target platform, the SMPSs
runtime may also configure the priority of the communication thread dynamically in order to
improve performance.
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1 pi_mpi = 0.0;

2 for (i = MPI_NAME; i < N; i += MPI_NUMPROCESSORS) {

3 local = (i + 0.5) * w;

4 pi_mpi += 4.0/(1.0 + local*local);

5 }

6 MPI_Allreduce(&pi_mpi, &gpi_mpi, 1, MPI_DOUBLE, MPI_SUM, MPI_COMM_WORLD);

Listing 2.2: Implementation of the π computation using MPI

2.1.2 Distributed-memory Based Systems

In distributed-memory based systems there are a set of processors with their own independent
local memories. Processors communicate using an interconnection network. A correct map
between the partitions of the data into the different processors, favouring locality and reducing
communications is critical to achieve performance. The quality of the interconnection network
and its topology is also important for improving the scalability of the codes. The most common
programming model for these target architectures is message passing, whose major exponent
is MPI, which is described in Section 2.1.2.1. Unfortunately, MPI is a completely explicit
programming model which requires a significant amount of effort on the part of the programmer.

2.1.2.1 MPI

MPI (Message Passing Interface [95]) is most likely the most common programming interface
in the world of HPC. It is based on the fragmented model. Several different instances of
the program are executed simultaneously, which then communicate to each other via the
MPI interface. Different programming paradigms are supported (one-to-one, one-to-many and
all-to-all)

Within the scientific community MPI has become a very successful standard this is due
to several factors: it is well defined, there are several different open-source implementations
available, and there are also highly optimized versions available from mainstream vendors.

The MPI interface supports both C and Fortran, and there are interfaces for many other
languages.

The main problem of the standard is the relatively high complexity of the model. Programmers
are required to invest a lot of energy to port an existing code to MPI. The low-level approach to
communication might be misleading and generate bad programming [65].

Listing 2.2 shows the MPI version of the implementation of the π algorithm shown in Listing
2.1.

A number of ranks (processors) will be launched when executing the program with the appro-
priate MPI wrapper (traditionally mpirun but this may vary across different implementations).

In order to fully benefit from the PM, the data to compute must be distributed to each
rank. In this case, each processor will compute a subset of the total number of iterations and
compute a partial value of pi. Next, using the MPI call MPI Allreduce, all the processors will
communicate their local value of pi and store the global sum.
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Notice that it is no longer possible to execute this code without using MPI. Although it
is still possible to understand the sequential algorithm for the MPI code in this motivational
example, this may not be the case for more complex examples.

2.1.2.2 llc

As an alternative to MPI and OpenMP, our research group has designed llc [52] to exploit the
best features of both approaches. llc shares the simplicity of OpenMP: users can start from a
sequential code and parallelize it incrementally using OpenMP and/or llc directives and clauses.
The code annotated with parallel directives is compiled by llCoMP, the llc compiler-translator,
which produces an efficient and portable MPI parallel source code that is valid for both shared
and distributed memory architectures. An additional advantage of llc is that all the OpenMP
directives and clauses are recognized by llCoMP; what this means is that we have three versions
in the same code - sequential, OpenMP and llc/MPI - and we only need to choose the proper
compiler to obtain the appropriate binary.

In the past different directives have been designed in llc to support parallel constructs, such
as forall, sections and pipelines [54, 49]. In previous studies [54] we have investigated the
implementation of Task Queues in llc using well known problems from different fields. Many of
these codes can be found in the OpenMP Source Code Repository [53].

The OTOSP (One Thread is One Set of Processors) model is the distributed memory
computational model underlying the llc language. It is essential to know OTOSP in order to
understand the llc implementation.

OTOSP is a distributed memory computational model in which the memory locations are
private to each processor. One of its key concepts is that of the processor set. At the beginning
of the program (and also in its sequential parts), every available processor in the system belongs
to the same unique set. The processor sets follow a fork-join model of computation: the sets
divide (fork) into subsets as a consequence of the execution of a parallel construct, and they
join back together at the end of the execution of the construct. At any point in the code, all the
processors belonging to the same set replicate the same computation, that is, they behave as a
single execution thread.

When different processor (sub-) sets join into a single set at the end of a parallel construct,
partner processors exchange the contents of the memory areas they have modified inside the
parallel construct. The replication of computations performed by processors in the same set,
together with the communication of modified memory areas at the end of the parallel construct,
are the mechanisms used in OTOSP to guarantee a coherent image of the memory.

The simplicity of the OTOSP model greatly facilitates its implementation in distributed
memory systems. Among other features, the model allows for an elegant implementation of nested
parallelism. For example of this, see the recursive Quicksort implementation in the examples
section at [73]. The key reference on the model is [52].
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Having studied a wide set of parallel applications, we can conclude that the majority of
them can be classified according to the parallelization paradigm used [40]. Moreover, the parallel
code itself (data distribution, communications, etc.) is quite similar in applications following the
same paradigm. llCoMP takes advantage of this feature to generate code. We have named these
portions of reusable code patterns, and llCoMP uses two kinds of patterns in order to process
the llc parallel constructs.

Static patterns are the pure parallel code and they do not depend directly on the application,
but rather on the parallelization paradigm specified using the llc and/or OpenMP constructs.
These codes are implemented in llCoMP using the target language (i.e. MPI) and they encode
operations such as initialization of the parallel environment, resources distribution, data commu-
nications, load balancing, etc. The compiler adapts the static patterns to a specific translation
using special tags in the pattern that the compiler fills with information coming from the source
code directives.

To facilitate the maintenance of the compiler code, static patterns have been split into
several files, each file implementing a specific stage of the entire pattern: initialization, execution,
communication and/or finalization. In addition to the general case, llCoMP implements specialized
code for some common situations; when it detects any of these situations, it uses the optimized
code. For this reason, each of the stages can be supported through different files. The good
performance delivered for the general case can be improved if an optimization is detected. As a
result, each paradigm and its static pattern is implemented by several text files.

The static patterns need some extra code to work. This additional code handles the operations
on data structures needed to build the translation, i.e. management of buffers used during
communications. This code is sequential and specific to each application and therefore cannot be
embedded in the static patterns. llCoMP uses dynamic patterns to produce this complementary
code. The dynamic pattern code is generated by the compiler during the compilation process and
stored in temporary files. The static patterns use special marks to indicate to the compiler the
right position for inserting each temporary file to produce the target code. The dynamic patterns
are carefully tuned to optimize parallel performance. For instance, data packing/unpacking
greatly reduces communications.

It is through a combination of both static and dynamic patterns that llCoMP produces the
target code. The compilation process is carried out by llCoMP without user intervention. All the
required information is gathered from the parallel constructs in the source code. The compiler
then selects the best combination of static and dynamics patterns for this code, including any
available optimization, to build the target code.

The code in Listing 2.3 shows the calculation of π in llc.
When compiled by llCoMP, the loop (line 5) iterations are distributed among the processors.

The clause private in line 3 is kept only for compatibility with OpenMP, since all the storages
are private in the OTOSP computing model. The OpenMP clause reduction indicates that all
the local values of variable pi have to be added at the end of the loop. This operation implies a
collective communication among all processors in the OTOSP group and the updating of the
variable with the result of the reduction operation. Since type analysis has not been included in
llCoMP, the type of reduction variable has to be specified in line 4.
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Notice that an OpenMP code can be adapted to llc with very few changes. In fact, all
the OpenMP 2.5 directives and clauses are recognized by llCoMP and as such, we have three
versions in the same code: sequential, OpenMP and llc/MPI. We need only choose the proper
compiler to obtain the corresponding binary.

1 h = 1.0 / N;

2 pi = 0.0;

3 #pragma omp parallel for private(t) reduction (+: pi)

4 #pragma llc reduction_type (double)

5 for (i = 0; i < N; i++) {

6 x = (i + 0.5) * h;

7 pi = pi + 4.0 / (1.0 + t * t);

8 }

9 pi *= w;

Listing 2.3: Implementation of the π computation using llc

1 #pragma omp parallel for private(ptr, temp, k, j)

2 for (i=0; i<Blks->size1; i++) {

3 ptr = Blks->ptr[i];

4 temp = 0.0;

5 k = index1_coordinate(ptr); // First element in i-th row

6 for (j=0; j<elements_in_vector_coordinate(Blks, i); j++) {

7 temp += value_coordinate(ptr) * x[index2_coordinate(ptr)*incx];

8 inc_coordinate(ptr);

9 }

10 #pragma llc nc_result(&y[k*incy], 1, y)

11 y[k*incy] += alpha * temp;

12 }

Listing 2.4: A parallelization of the usmv operation

A more thorough example is shown in Listing 2.4. The code shows the parallelization using
llc of the main loop of the sparse matrix-vector product operation y = y + αAx, where x and y
are both vectors and A is a sparse matrix (this is known as operation usmv in the Level-2 sparse
BLAS). Matrix elements are stored using a rowwise coordinate format, but we also store pointers
to the first element on each row in vector ptr. In the code, each iteration of the external loop
in line 2 performs a dot product between a row of the sparse matrix and vector x, producing one
element of the solution vector y. The code uses three C macros (index1 coordinate(ptr),
index2 coordinate(ptr) and value coordinate(ptr)) in order to access the row index,
column index and value of an element of the sparse matrix pointed by ptr. A fourth macro,
namely inc coordinate, moves the pointer to the next element in the same row. Values incx
and incy allow the code to access vectors x and y with strides different from 1.
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A direct parallelization of the code can be obtained by taking into account that different
dot products are fully independent. Therefore, a parallel for directive is used in line 1 to
indicate that the set of processors executing the loop in line 2 has to fork to execute the loop.
The llc specific directive nc result in line 11 indicates to the compiler that the value of the
y[k*incy] element has to be “annotated”.

2.1.2.3 Partition Global Address Space (PGAS)

These languages use a memory model where there is a shared-memory among all the processors,
but a portion is partitioned across the different processor. Each processor will have a portion of
this global memory. The model is traditionally used in distributed memory systems.

PGAS languages are an improvement over the message passing libraries, providing abstractions
to create shared data structures and communicate information across different program instances
[148].

2.1.2.4 UPC

Unified Paralel C (UPC) [57] is a PGAS language. UPC is an extension of the C language that
presents the developer with a common shared-memory space, partitioned across the different
processors. Variables can be read and written by several threads, but each variable has only one
physical associated processor.

The language defines the physical association between shared data items and UPC threads.
This association, called affinity in UPC terms, indicates that a particular thread ”owns” a
particular data item. From the implementation point of view, affinity translates into storing data
into the physical memory of the CPU where the UPC thread is running.

Scalar data has affinity with thread 0 by default, whereas for shared arrays the language
allows three different affinity policies:

• cyclic (per element) - successive elements of the array have affinity with successive
threads.

• blocked-cyclic (user-defined) - the array is divided into user-defined size blocks
and the blocks are cyclically distributed among threads.

• blocked (run-time) - each thread has affinity to one contiguous part of the array. The
size of the contiguous part is determined in such a way so that the array is ”evenly”
distributed among threads.

A new loop instruction is added to the traditional C iteration statements, the upc forall.
Iterations from the loop are assigned to different execution threads, following an affinity expression.
UPC uses the SPMD (Single Program Multiple Data), where the parallelism is set when the
program is executed, and typically each logical thread runs over one physical processor.

One of the main features of this language is the possibility of using pointers to the shared-
memory space. Pointers can be declared as private (i.e. local to an execution thread) or shared.
Pointers can be associated with global or private variables.
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1 void main(void) {

2 float local_pi = 0.0 ;

3 int i ;

4 l = upc_all_lock_alloc();

5 upc_forall (i=0;i<N ; i++; i)

6 local_pi += (float) f ((. 5 + i) / (N)) ;

7 local_pi *= (float) (4.0 / N) ;

8 upc_lock(l) ;

9 pi += local_pi ;

10 upc_unlock(l) ;

11 upc_barrier;

12 if (MYTHREAD==0) printf ("PI= %f\n" , pi) ;

13 if (MYTHREAD==0) upc_lock_free (l) ;

14 }

Listing 2.5: Implementation of the π computation using UPC

The motivational π implementation in UPC is shown in Listing 2.5. Threads call collectively
to the function upc all lock alloc() to create lock l.

Each thread performs a partial add in its private variable, local pi, and then a reduction is
performed. A lock is set again in variable l to avoid race conditions on the pi variable. Finally,
a global barrier is used to synchronize the overall execution.

The variable MYTHREAD is defined internally by the language and its value is set to the thread
ID. The THREADS variable is set at compile time, in situations where the number of threads is
known, or it can be set at runtime.

Porting existing codes to UPC might require a significant ammount of development effort.
Data structures have to be redesigned to map to the UPC view of memory. The developer needs
to be aware of situations with race conditions.

2.1.2.5 X10

X10 [136] is a modern object-oriented programming language in the PGAS family.
Its fundamental goal is to enable scalable, high-performance programming for high-

performance environments. X10 is heavily based on object-oriented programming ideas, primarily
to take advantage of their flexibility and ease-of-use.

X10 takes advantage of several years of research on how to adapt OO languages to the
context of HPC. It supports user-defined struct types, multi-dimensional arrays and IEEE standard
floating point arithmetic.

Its syntax resembles Java, but it introduces ways to deal with concurrency, distribution and
locality within an integrated type system. It is not strictly a PGAS language, as it extends
the traditional PGAS definition with the concept of asynchronism (thus defining the APGAS
programming model).
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The main concept behind X10 is the place. A place is an abstraction for a computational
context with a locally synchronous view of the shared-memory. Computations in X10 run over a
large collection of places. Each place hosts some data and runs one or more activities (extremely
lightweight threads of execution).

It is implemented using a source-to-source compiler which can generate C++ or Java sources.
The generated source code perform calls to the X10 runtime.

Listing 2.6 shows the implementation of the Monte Carlo method to compute π. X10
programs follow the structure of Java programs. In this example, after handling the input
parameters a parallel loop is spawned (finish for). Inside this loop the assignment expression
to inCircle is marked as async. The countAt spawn some threads, each of which generates
random points and returns the total number that fell inside the circle. Notice that the reduction
operation is marked as atomic inside the countAt to ensure that the proper result is computed
when combining the output of several threads.

2.1.2.6 Chapel

Chapel [34] is an emerging parallel programming language whose design and development is
being led by Cray Inc. Chapel is being developed as an open-source effort with contributions
from academia, industry, and scientific computing centres. Chapel emerged from the entry of
Cray in the DARPA-led High Productivity Computing Systems program (HPCS).

Chapel is designed to improve the productivity of users of high-end users while also serving
as a portable parallel programming model that can be used on commodity clusters or multi-core
desktop systems. The purpose of Chapel is to improve the programmability of large-scale parallel
programs without loosing performance.

Chapel supports a multi-thread execution model using high-level abstractions for data
parallelism, task parallelism, concurrency and nested parallelism.

The locale type enables users to instruct the programming model about the placement of
data and tasks on a target architecture, potentially improving its locality. Chapel supports reusing
code through object-oriented design, type inference and some features for generic programming

To exploit parallelism, the user is presented with high-level abstractions. The compiler and
runtime will be in charge of translating those high-level abstractions into real, low-level tasks.

Chapel supports data parallelism using a language construct known as a domain - a named,
first-class set of indices that is used to define the size and shape of arrays and to support parallel
iteration. forall statements can be used to iterate over aforementioned domains, allowing
parallel operations over data transparently.

Chapel is based mainly on High-Performance Fortran (HPF) [74], ZPL [35] and several
Cray extensions for Fortran and C. Listing 2.7 shows part of a Jacobi implementation in Chapel.

2.1.3 GPU Devices

GPU devices, initially tailored to increase the performance of 3D graphics on classical hardware
devices, have evolved into highly parallel platforms with an impressive (theoretical) computational
power. Figure 2.2 shows the evolution of CPU hardware devices in comparison to GPU processors.
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1 public class MontePiCluster {

2 public static def countAtP(pId: Int, threads: Int, n: Long) {

3 var count: Long = 0;

4 finish for (var j: Int = 1; j<= threads; j++) {

5 val jj = j;

6 async {

7 val r = new Random(jj*Place.MAX_PLACES + pId);

8 val rand = () => r.nextDouble();

9 val jCount = countPoints(n, rand);

10 atomic count += jCount;

11 }

12 }

13 return count;

14 }

15 public static def countPoints(n:Long, rand:()=>Double) {

16 var inCircle: Long = 0;

17 for (var j: Long=1; j<=n; j++) {

18 val x = rand();

19 val y = rand();

20 if (x*x +y*y <= 1.0) inCircle++;

21 }

22 return inCircle;

23 }

24 public static def main(args: Array[String](1)) {

25 val N = args.size() > 0 ? Long.parse(args(0)) : 1000000L;

26 val places = args.size() > 1 ? Int.parse(args(1)) : Place.MAX_PLACES;

27 val tPerP = args.size() > 2 ? Int.parse(args(2)) : 4;

28 val nPerT = N/(places * tPerP);

29 val inCircle = new Array[Long](1..places);

30 finish for(var k: Int = 1; k<=places; k++) {

31 val kk = k;

32 val pk = Place.place(k-1);

33 async inCircle(kk) = at(pk) countAtP(kk, tPerP, nPerT);

34 }

35 var totalInCircle: Long = 0;

36 for(var k: Int =1; k<=places; k++)

37 totalInCircle += inCircle(k);

38 val pi = (4.0*totalInCircle)/N;

39 Console.OUT.println("The value of pi is " + pi);

40 }

41 }

Listing 2.6: Example of X10 source code
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(a) Memory Bandwith

(b) Floating Point performance

Figure 2.2: Comparison of CPU and GPU devices
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1 def main() {

2 const ProblemSpace = [ 1..n,1..n] ,BigDomain = [ 0..n+1,0..n+1];

3 var X ,XNew : [BigDomain] real = 0.0;

4 X[n+1, 1..n] = 1.0 ;

5 var iteration = 0 , delta : real;

6 const north = (-1,0), south = (1,0),

7 east = (0,1), west = (0,-1);

8 do {

9 forall ij in ProblemSpace do

10 XNew (ij) = (X(ij+north) + X(ij+south) +

11 X(ij+east) + X(ij+west)) / 4.0;

12 delta = max reduce abs(XNew[Problem5pace] -X[Problem5pace]);

13 X[ProblemSpace] = XNew[ProblemSpace];

14 iteration += 1 ;

15 } while (delta > epsilon);

16 }

Listing 2.7: Jacobi algorithm implementation in Chapel

Table 2.1: CUDA Architecture comparison

GPU G80 G92a GT200 GF100 GF104 GK104 GK110

Compute Capability 1.0 1.1 1.3 2.0 2.1 3.0 3.5

Reference board 8800GTX 9800GT C1060 C2050 GTX560 GTX670 N/A

Year Feb 2007 Feb 2008 Aug 2008 Jun 2010 Feb 2012 Feb 2012 -

Transistors (billion) < 1.0 < 1.0 1.4 3.0 3.0 3.6 -

CUDA Cores 128 112 240 512 - 192*8 192*15

DP FP cap. (FMA ops/clock) None None 30 256 - - -

SP FP cap. (MAD ops/clock) 128 112 240 512 - - -

SFUs/SM 2 2 2 4 4 32 32

Warp Schedulers 1 1 1 2 - 4 4

Shared Memory per SM 16 16 16 48/16 48/16 48/32/16 48/32/16

L1 Cache per SM 16 16 16 48 or 16 - - -

L2 Cache No No No 768 Kb 768 Kb 1536Kb 1536Kb

Load/Store address width 32 bit 32 bit 32 bit 64 bit - - -

Clock rate 513Mhz 600Mhz 1600Mhz 3000Mhz - - -

Memory Bandwith 60GB/s 57.6GB/s 102.4GB/s 144GB/s - 192.2GB/s -

The source of this huge performance gap between CPU and GPU is that GPU are devices
designed for graphics, which are compute-intensive, highly parallel computations. This involves
several compute-intensive and highly parallel computations. To improve the performance of
these operations, more and more of the chip’s surface was devoted to data processing without
bothering with data caching , multitasking or flow control.

The arrival of the first CUDA-enabled device started a race to increase the performance and
programmability of these devices. Table 2.1, shows a comparison of different CUDA-capable
devices.

The second generation of CUDA began with the GT200 processors, and the widely-known
Tesla C1060 boards. This generation defined the compute capability 1.3, with double precision
floating point operations and an increased number of streaming processor cores (128 to 240).
The number of registers and the efficiency of the memory access were improved.
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In devices with compute capability below 1.3, memory coalescence had to be resolved
manually by the programmer [129]. This required a huge amount of coding and design in order
to take advantage of the processing power of the device. However, all the effort was in vain
since it was useless on 1.3 or later devices. Coalescence problems on these devices were solved
by hardware.

Fermi architecture appeared in 2010 (CUDA compute capability 2.0). NVIDIA applied a new
approach during the design and implementation phases. Architectural differences are evident, with
improved double precision performance, ECC support for professional environments, increased
frequency and more cores, amongst other changes.

The main advantage of Fermi architecture is the use of a true cache hierarchy. Some
applications adapt seamlessly to the previous memory hierarchy, however, there are memory-
bound applications that are not able to take advantage of local storage, leading to poor
performance in CUDA.

To avoid this, Fermi presents a configurable L2 cache, which is transparent to the developer.
The only parameter that needs to be manually specified is the cache size, which can be either
16Kb or 48Kb. If the programmer wants to use shared-memory instead of cache, s/he can specify
a shared-memory of 48Kb, forcing the cache to be 16Kb. However, if the programmer wants to
use the transparent cache, s/he will specify 16Kb of shared-memory.

During the first quarter of 2012, NVIDIA announced a new architecture for its GPU cards,
codenamed Kepler[103]. Theoretical performance of this architecture is up to 1 TFLOPs, while
maintaining low consumption it has three times the performance per watt of the Fermi cards.

The GK110 architecture is set to replace the Tesla cards, and contains 15 multiprocessors
(SMX) and six 64-bit memory controllers.

The new Kepler boards support the CUDA 3.5 compute capability, which increases the
number of warps per multiprocessor from 48 to 64, and the number of threads to 2048. The new
SMX multiprocessors feature more registers, thus some limits have been increased, for example,
the maximum kernel grid size in the X-dimension will be 232 − 1 instead of 216 − 1.

One of most interesting features of this new board is the possibility of dynamically launching
new kernels inside the GPU. The new architecture allows any kernel to launch another kernel
from within, creating the necessary streams, events and manage dependencies needed to process
additional work without the need for host CPU interaction.

This architectural innovation makes it easier for developers to create and optimize recursive
and data-dependent execution patterns, and allows more of a program to be run directly on
the GPU. The system CPU can then be freed up for additional tasks, or the system could be
configured with a less powerful CPU to carry out the same workload.

This new feature is possible because of the new way in which the GPU interacts with the
host CPU - via the Grid Management Unit (GMU). Figure 2.3 compares the Fermi interactions
with the host with the new GMU-based workflow. This new workflow also allows several different
independent grids to be launched and executed on the board, and to execute them simultaneously
providing they have the required resources.
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Figure 2.3: Comparison of the old Work Distributor used in Fermi with the new Grid Management
Unit used in the new Kepler architectures
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2.1.3.1 GPGPU : General Purpose GPU programming

The first attempt to use GPU processors for non-graphical applications was carried out in 2003
[59], although it was not until February 2007, with the appearance in the market of the first
CUDA devices, that GPGPU became widespread. Before CUDA, the programmability of GPUs
was a major drawback, and the lack of a general-purpose language posed major problems for
developers who wanted to implement non-graphical algorithms [88].

As the architecture of GPU devices greatly differ from traditional CPUs, traditional approaches
did not worked well when it came to tackling the massive parallelism inherent to the architecture.

2.1.3.2 CUDA Programming Model

NVIDIA attempted to improve the programmability by creating a high-level programming model
for its devices - the CUDA Programming Model. This model was designed to overcome the
challenge of developing applications that are able to transparently scale its parallelism to leverage
the increasing number of processor cores. This is particularly critical in the GPU devices, as their
evolution is quite impressive (see Table 2.1). Developers required a programming scheme capable
of adapting to new architectures transparently.

The CUDA programming model works around three key abstractions: a hierarchy of thread
groups, shared memories and barrier synchronization. They are exposed to the programmer as
language extensions (shown in Section 2.1.3.2).

These abstractions provide fine-grained data parallelism and thread parallelism, nested within
coarse-grained data parallelism and task parallelism. They guide the programmer to partition
the problem into coarse sub-problems that can be solved independently in parallel by blocks of
threads, and to then divide each sub-problem into finer pieces that can be solved cooperatively
in parallel by all threads within the block.

Figure 2.4 shows how a CUDA program is executed on the CUDA architecture. The CUDA
architecture is built around an array of Streaming Multiprocessors (SMs). Whenever a CUDA
program launches a kernel, the blocks of the grid are distributed to multiprocessors with available
execution capacity. The threads of a thread block execute concurrently on one multiprocessor.
Providing the required resources are available multiple thread blocks can execute concurrently
on one multiprocessor. Whenever a thread block terminates, remaining blocks are executed.

Multiprocesors are designed to execute several threads concurrently following the SIMT
(Single-Instruction, Multiple-Thread) model. In this model, each multiprocessor executes threads
normally in groups of 32 (might vary across architectures) called warp. The blocks assigned to
the multiprocessor are partitioned into warps, with each warp containing threads of consecutive,
increasing thread IDs. Although each thread of the warp can branch and execute a different
instruction, maximum performance is achieved when the whole warp executes the same instruction.
Otherwise the warp executes each divergent path sequentially disabling threads not required for
the branch.

CUDA Runtime API
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Figure 2.4: CUDA programs, partitioned into blocks of threads, can run on different GPU
architectures without being modified. Depending on the available number of resources, more or
less blocks may run in parallel
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The most common way to develop software for CUDA devices is to use the CUDA Runtime
API. It is a relatively high-level API that exposes the basic operations as C functions, and extends
the C sintax with a specific statement to execute kernels defining the parameters of the grid (i.e.
blocks and threads). An example of a vector addition of size N is shown in Listing 2.8.

1 // Kernel definition

2 __global__ void kernel_1(float * A, float * B, float * C) {

3 int i = threadIdx.x;

4 C[i] = A[i] + B[i]

5 }

6

7 int main() {

8 ...

9 // Kernel invocation with N threads

10 kernel_1<<<1, N>>>(a, b, c)

11 ...

12 }

Listing 2.8: Example of CUDA Runtime code

Kernels are defined using the __global__ declaration specifier, and the number of CUDA
threads that execute the kernel for a given call is specified using the execution configuration
(<<<...>>>) syntax. Each thread executing the kernel is given a unique thread ID accesible
through the threadIdx variable. threadIdx is a 3-component vector so that threads can be
identified using up to three thread indexes, forming up to a three-dimensional thread block;
the aim of this is to facilitate working with data structures like vectors, matrices or cubes. The
maximum number of threads per block will vary depending on the hardware on which the device
is executed. Blocks are also organized in one-, two- or three-dimensional grids of thread blocks.
The number of thread blocks is determined by the size of the data being processed. There is
also a hardware limit which will depend on the version of hardware being used. Figure 2.5 shows
an example of two-dimensional partitioning of threads and blocks.

Thread blocks are required to execute independently, and to be run in parallel or sequentially
(allowing them to be independently scheduled across multiprocessors). Threads within a block can
cooperate by sharing data and by synchronizing their execution using intrinsic barrier functions.

Figure 2.6 shows the memory layout of a CUDA device. Each thread can access its own private
registers and local memory, but threads within the same block can also use the shared-memory
which is also inside the SM so it is faster to read. In addition, all threads can access the Global
Memory (GM), but as it is outside the SM, access is several orders of magnitude slower than
for the in-chip memories. If the developer requires fast read-only memory, s/he can use the
Constant- or Texture- memory as well. Global, Constant and Texture memory can be accessed
directly from the Host using the API. These memories have to be allocated from the Host so
they can be accessed from the device.
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Figure 2.5: Example of a two-dimensional kernel grid
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Figure 2.6: Memory hierarchy of the CUDA architecture
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Interaction between the Host (CPU) and the GPU is performed using memory transfers
(to Global-, Constant- or Texture-memories) and by invoking kernels. Figure 2.7 shows how a
traditional C+CUDA code is run. The sequential parts of the code are executed on the CPU, and
when a kernel is invoked, the parallel program is run on the GPU. Note that kernel executions
are asynchronous to the Host, thus, sequential code can be run in the CPU simultaneously with
the kernel execution. An API call to a barrier allows the synchronization of the Host and the
device. Depending on the API call used, memory transfers are either asynchronous with respect
to the Host CPU or not. One of the critical bottlenecks of CUDA programs is transferring the
memory inside or outside of the device as since GPUs are traditionally connected to the host
through a slow bus; this reduces the available bandwidth between Host and GPU devices and
must be taken into account when working with these devices.

2.1.3.3 OpenCL

OpenCL [76] is an open standard for general purpose parallel programming across many-core
architectures. OpenCL supports a wide range of applications, and serves as an efficient, close-
to-the-metal programming interface. It aims to be the foundation layer of a parallel computing
ecosystem of platform-independent tools, middleware and applications.

OpenCL consists of an API for coordinating parallel computation across heterogeneous proces-
sors and a cross-platform programming language with a well-specified computation environment.

The target audience for OpenCL are expert programmers with an interest in writing portable
but efficient code. Four models (Platform, Memory, Execution and Programming) define the
OpenCL standard.

Platform Model
The Platform model (Figure 2.8) consists of a host connected to one or more OpenCL

devices. An OpenCL device is divided into one or more compute units (CU). CU are further
divided into one or more processing elements (PEs). Computations on a device occur within the
processing elements.

OpenCL applications runs on the host platform, and are able to submit commands from
the host to execute on the PEs. The PEs execute a stream of instructions in SIMD or SPMD
fashions, depending on the configuration.

OpenCL supports a wide variety of devices with different capabilities under a single platform.
To be able to identify the resources available at the time of execution, the user can send a query
to the platform to extract information regarding the device capabilities.

Execution Model
Execution of an OpenCL program is split into two parts: kernels executing on devices and

a program executing in the Host. The host program defines the context for the kernels and
manages their execution.
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Figure 2.7: Execution of a GPU program from the Host
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Figure 2.8: OpenCL Platform model

The critical idea behind the OpenCL execution model is the way the kernels are executed.
Whenever a kernel is submitted for execution by the Host, an index space is defined. An instance
of the kernel executes for each point in this index space, which provides a global ID for the
work-item. Each work-item executes the same code, but the specific execution pathway through
the code and the data operated upon can vary per work-item.

Work-items are organized into work-groups. Work-groups provide a more coarse-grained
decomposition of the index space, and are assigned a unique work-group ID with the same
dimensionality as the index space used for the work-items. A single work-item can be uniquely
identified by its global ID or by a combination of its local ID and work-group ID. The work-items
in a given work-group execute concurrently on the PE of a single CU.

OpenCL supports an N-dimensional index space (NDRange) where N is one, two or three.
Each dimension can start at an offset. Each work-item’s global and local ID are N-dimensional
tuples. Figure 2.9 shows how the work-item, work groups and NDRanges are related to each
other.

OpenCL supports the usage of native kernels alongside with OpenCL kernels (compiled with
the platform compiler), allowing the use of pointers to native functions when submitting kernels
to execute.

OpenCL kernels have access to four distinct memory regions:

• Global Memory: Accessible to all work-items in all work-groups, potentially cache.
Initialized and accesible by the Host.
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Figure 2.9: OpenCL Execution model

• Constant Memory: Region of global memory that remains constant during kernel execution.
Initialized and accesible by the Host.

• Local Memory: Memory region local to a work-group. Can be used to implement memory
shared by all work-items in that work-group.
Is allocated from the Host, but it is not accesible.

• Private Memory: A region of memory private to a work-item, not accesible or allocatable
from the Host.

The application uses the OpenCL API to allocate global memory and to enqueue memory
operations over those memory objects. Apart from traditional copy data operations, it is possibe
to map or unmap regions of a memory object to the host address space.

2.1.4 Directive-based Languages for Accelerators

CUDA and OpenCL provide reasonable abstractions to the underlying complexity of the hardware.
In addition, OpenCL facilitates portability across multiple architectures. However, both of them
face the same problem, which is that both the programmability and performance portability are
limited.

It is necessary to have at least two separate versions of the code (one for the Host and
another for the device), which decreases the maintainability of the code. Tunning also presents
developers with difficulties, as different GPUs have different characteristics which need different
tunning parameters, for example, optimal kernel grid sizes are different accross architectures
[128].
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Several attempts to leverage this situation have been made, and in this section we focus on
those we consider to be of interest to our work.

2.1.4.1 OpenMPC - OpenMP Extended for CUDA

OpenMPC[82] is an extension of the OpenMP programming model designed and implemented by
Seyong Lee and Rudolf Eigenmann from Purdue University. It includes several optimizations that
deal with the architectural differences between traditional shared-memory systems and stream
architectures.

As a front-end programming model, OpenMPC provides programmers with abstractions of
the complex CUDA programming model and high-level controls over various optimizations and
CUDA-related parameters. The authors have developed a fully automatic compilation and user-
assisted tuning system supporting OpenMPC. In addition to a range of compiler transformations
and optimizations, the system includes tuning capabilities for generating, pruning, and navigating
the search space of compilation variants. OpenMPC is based on the Cetus compiler infrastructure
[84].

Figure 2.10: OpenMPC workflow

The baseline translation consist of two steps: interpreting OpenMP semantics under the
CUDA programming model and identifying kernel regions (code sections to be executed
on a GPU); and transforming eligible kernel regions into CUDA kernel functions, inserting the
necessary memory transfer code.

Eligible kernel regions are found inside the OpenMP parallel regions, whereas omp for and
omp sections constructs are used to partition the work among threads on the GPU. Once
determined, kernel regions are extracted from the original source and replaced with calls to the
new CUDA kernel functions. To partition the work, each iteration of the omp for loops and
each section of omp sections are assigned to a thread, and the remaining code sections in a
kernel region are executed redundantly by all participating threads. To decide how threads are
associated with iterations, the source-to-source translator calculates the maximum partition size
among parallel work contained in the kernel region. By default, the maximum partition size
becomes the total number of thread blocks and the thread block size determine the mapping of
threads onto SMs. Command line options or user directives can be used to tune these values,
and the source-to-source translator will perform the appropriate tiling transformations to fit the
work partition in the mapping of threads.
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Mapping data from CPU to GPU is performed using OpenMP data sharing rules, but because
the CUDA memory model allows several specialized memory spaces (such as constant or texture
memory), some compiler transformations are implemented in order to fully exploit these on-chip
memories. Interprocedural data flow analysis is used to identify redundant memory transfers
from the GPU to the CPU.

The extensions to the OpenMP come in the form of directives and API calls. The OpenMPC
optimization system uses these directives to pass information generated by various analysis
passes to the actual OpenMP-to-CUDA translator. Several directives can be used to tune the
performance of the codes.

Figure 2.10 shows the overall flow of the compilation. The Cetus Parser reads the input
OpenMPC program and generates an internal representation. The OpenMP Analyzer recognizes
standard OpenMP directives and analyzes the program to find all OpenMP data sharing
clauses. The Kernel Splitter divides parallel regions at each synchronization point to enforce
synchronization semantics under the CUDA programming model. The OpenMPC-directive
Handler annotates each kernel region with a directive to assign a unique ID that can be used
to reference it later from a configuration file. The OpenMP Stream Optimizer is used to
transform traditional CPU-oriented OpenMP programs into GPU-optimized ones. Finally the
CUDA Optimizer performs CUDA-specific optimizations.

The final O2G Translator performs the actual code transformations according to the directives
provided either by a user or through the optimization passes.

2.1.4.2 hiCUDA

hiCUDA[68] (for high-level CUDA) provides the developer with a set of pragmas that map
standard CUDA operations. Kernels are automatically extracted from the original source file,
and iterations are distributed across threads and blocks according to loop partitioning clauses. It
is possible to use shared-memory within kernels using a specific directive. One single source file
can be used for sequential and GPU versions of the code. Calls to memory management routines
are replaced by pragmas and the user does not need to keep track of device pointers.

The project provides a prototype compiler on top on the Open64 compiler infrastructure that
is capable of translating hiCUDA programs to equivalent CUDA programs and the authors claim
that the execution time of their generated code is within 2% of that of the hand-written CUDA
version [67].

The hiCUDA driver parses the original source using the GNU-3 frontend (to which hiCUDA
directives has been added) and then operates on Open64 IR (WHIRL) to replace the pragmas,
extract the loops and inject the appropriate CUDA runtime calls. Finally, it uses the C code
generator, with the extended CUDA syntax, to generate the target code.

A sketch of a Matrix Product code in hiCUDA is shown in Listing 2.9. Global arrays have to
be allocated on GPU using the appropriate clause. In this case, the compiler was not able to
properly detect the dimensions of the matrix, thus requiring the shape directive to indicate how
the data is distributed in memory. The usage of shared-memory is exposed through the shared

directive.
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1 #pragma hicuda shape a [N] [N]

2 #pragma hicuda shape b [N] [N]

3 #pragma hicuda shape c [N] [N]

4 #pragma hicuda global alloc a [*] [*]

5 #pragma hicuda global alloc b [*] [*] copyin

6 #pragma hicuda global alloc c [*] [*] copyin

7

8 #pragma hicuda kernel mxm tblock(N/16,N/16) thread(16,16)

9 #pragma hicuda loop_partition over_tblock over_thread

10 for (i = 0; i < N; i++) {

11 #pragma hicuda loop_partition over_tblock over_thread

12 for (j = 0; j < N; j++) {

13 double sum = 0.0;

14 for (k = 0; k < N; k++) {

15 sum += b[i+k*N] * c[k+j*N];

16 }

17 a[i+j*N] = sum;

18 }

19 }

20 #pragma hicuda kernel_end

21 #pragma hicuda global copyout a [*] [*]

22 #pragma hicuda global free a b c

Listing 2.9: Sketch of MxM in hiCUDA

Grid dimensions, specified by tblock and thread clauses, were selected so that each thread
only performs one iteration. Varying tblock and thread allows the users to fine-tune the kernel
configuration. To obtain maximum performance in different GPU architectures, these values
have to be determined by hand. hiCUDA does a great job of leveraging loop partitioning from
the user and it offers several scheduling possibilities for loop iterations.

As a result of the directives being an almost direct translation of the CUDA programming
model, the user is forced to know more details about the underlying platform than in other
approaches. This also makes it difficult to port hiCUDA to different accelerators, although this
was probably never one of the intended functions. The result of compiling with the hiCUDA
driver is not a binary file but a directory with a single CUDA source together with some required
headers. This source has to be compiled with NVIDIA tools to generate the final binary file.

2.1.4.3 PGI Accelerator Model

The PGI Accelerator model [146] proposes a set of directives, resembling those used in OpenMP,
that help compilers to generate GPU kernels. Most of the directives in the model are optional
and they are used to improve performance. The only directive that is mandatory is the acc

region which indicates a region containing loops with kernels. Data-flow, alias and array region
analysis are used to determine which data need to be allocated on the accelerator and copied
to and from the Host. Optional directives allow developers to provide additional information
concerning variable directionality.
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1 #pragma acc data copyin(b[0:N*N],c[0:N*N]) copy(a[0:N*N])

2 {

3 #pragma acc region

4 {

5 #pragma acc for independent parallel

6 for (j = 0; j < N; j++) {

7 #pragma acc for independent parallel

8 for (i = 0; i < N; i++) {

9 double sum = 0.0;

10 for (k = 0; k < N; k++) {

11 sum += b[i+k*N] * c[k+j*N];

12 }

13 a[i+j*N] = sum;

14 }

15 }

16 }

17 }

Listing 2.10: Sketch of MxM in PGI Accelerator Model

The PGI compiler maps loop parallelism to the hardware architecture using a Planner module
[146] that uses information from other analysis passes present in the compiler. Strip-mining is
heavily used to accomplish loop mapping and the user can use optional directives to force these
loop transformations.

A naive Matrix Multiplication (MxM) implementation is shown in Listing 2.10. Data transfers
are declared using copy directives. Array regions to be transferred are declared using a syntax
that closely resembles the Fortran 90 array indexes.

The philosophy behind PGI seems to be better safe than sorry. Whenever the compiler cannot
determine whether a loop can be run in parallel or not, it warns the programmer and generates a
sequential version of the code. Programmers can force the compiler to generate parallel versions
of the code using the optional independent clause.

At the time of compilation, PGI generates a single binary file that contains the CUDA kernel.
Kernel parameters, like block grid and threads, are computed at compile time. If requested,
the PGI compiler is able to show occupancy, block grid and thread configuration at compile
time, amongst other information. It is also possible to show detailed profiling information after
execution, this enables the user to have a general idea about the quality of the implementation.

It is worth noting that the PGI Accelerator model is available in both Fortran and C PGI
compilers. In both cases, the compiler generates a single binary containing GPU and CPU versions
of the code, thus, this binary can run on platforms without GPU. Although it is possible to keep
the intermediate kernel files, they are not meant to be read by humans.
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2.1.4.4 OpenACC

The OpenACC Application Program Interface [106] describes a collection of compiler directives
to specify loops and regions of code in standard C, C++ and Fortran to be offloaded from a
host CPU to an attached accelerator, which provides portability across operating systems, host
CPUs and accelerators.

The directives and programming model defined in this standard allow programmers to create
high-level host and accelerator programs without the need to explicitly initialize the accelerator,
manage data or program transfers between the Host and accelerator, or initiate accelerator
startup and shutdown.

All of these details are implicit in the programming model and are managed by the OpenACC
API-enabled compilers and runtimes. The programming model allows the programmer to augment
information available to the compilers, including specification of data local to an accelerator,
guidance on mapping of loops onto an accelerator, and similar performance-related details. A
more detailed explanation of the OpenACC API is available in Section 5.4.1.

2.1.5 Multi-target Programming Languages

Some languages have been designed from scratch to support heterogeneous architectures, thus
effectively supporting multiple target platforms at the same time. We describe here the OmpSs
[31] programming model, which represents a major step on extending the OpenMP programming
model to heterogeneous architectures [18]. It has been successully used to port several different
scientific applications.

2.1.5.1 OmpSs

The OmpSs [31] is a programming model aimed at extending OpenMP with support for
asynchronous parallelism and heterogeneous platforms. It has been designed from scratch in
order to integrate features of the different languages of the StarSs family into a single PM.

The OmpSs environment is built on top of the Mercurium compiler and Nanos++ runtime
system.

Main data dependency synchronization
To enable asynchronous parallelism, the OpenMP task construct is extended with the input,

output and inout clauses. This allows developers to specify the directionality of argument for
each task, thus, enhancing the knowledge of which data the task is waiting for.

Directionality clauses may contain any lvalue. Tasks with an input clause with a given
lvalue will not be able to run as long as a previously created task with and output clause
containing the same lvalue has finished its execution. An inout clause is considered as having
the same lvalue in both input and output clauses.

When a task is created, its dependencies are matched against the existing tasks, creating a
task dependency graph at runtime.

Tasks are scheduled for execution as soon as all their predecessor in the graph have finished
or at creation if they have no predecessors.
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1 void foo (int *a, int *b) {

2 for (i = 1; i < N; i++) {

3 #pragma omp task input(a[i-1]) inout(a[i]) output(b[i])

4 propagate(&a[i-1],&a[i],&b[i]);

5 #pragma omp task input(b[i-1]) inout(b[i])

6 correct(&b[i-1],&b[i]);

7 }

8 }

Listing 2.11: Example of OmpSs directives

Language extensions
Listing 2.11 shows an example using the input and inout directionality clauses.
This code generates a task graph as the loop unfolds. As the program runs through the loop

it produces the graph which is shown in Figure 2.11.

Figure 2.11: Task dependency graph generated by the OmpSs runtime

The use of the data dependency clauses allows the execution of tasks from the multiple
iterations at the same time. It is possible to extend the lvalue given in the clause by using
array sections or shaping expressions. Array sections allow the developer to refer to multiple
elements of an array (or pointer data) in single expression. There are two forms of array sections:

• [lower : upper] In this case all elements in the range of lower to upper (both included)
are referenced. If no lower is specified it is assumed to be 0. If the section is applied to an
array and upper is omitted it is assumed to be the last element of the array.

• [lower; size] In this case all elements in the range of lower to lower+size (both included)
are referenced.

The OpenMP taskwait construct is also extended with the on clause, enabling it to wait
only for the tasks that produce some data in the same way as an input clause.

The task construct also supports the concurrent clause. The concurrent clause is a special
version of the inout clause where the dependencies are computed with respect to input, output
and inout, but not with respect to other concurrent clauses. As it relaxes the synchronization
between tasks the programmer must ensure that either the task can executed concurrently or
that additional synchronization is used.
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Support for heterogeneous platforms
The syntax of the construct is #pragma omp target [clauses] , immediately followed by

the task construct.
The valid clauses for the target construct are the following:

• device: Allows programmers to instruct the runtime where the task should run

• copy {in,out,inout,deps}: Which data should be copied inside the device

• copy out - It specifies that a set of shared data may be needed to be transferred from the
device after the associated code is executed.

• implements: Indicates that the code of the task is an alternative implementation for the
target device.

Several different target devices are available, for example, SMP for shared-memory machines,
CUDA for CUDA GPU devices or OpenCL devices.

2.1.6 Final Remarks

We have presented a wide variety of languages, and classified them according to the main
platform they are meant to be run on. Most of the programming models are based on a complete
set with language, libraries and execution environment, such as Chapel or UPC. This represents
a notable improvement for programmers and consequently for their productivity levels as they
expose very high-level constructions and operations which greatly facilitates the creation of
efficient parallel programs. However, porting existing codes requires a major rewrite of existing
codes for these new environments.

Others are implemented just as an API, such as MPI, CUDA or OpenCL. Although this
facilitates the programming effort of porting existing applications, exposing an API to programmers
exposes them to the challenge of facing a complex, low-level set of code that does not provide
the necessary abstractions to leverage the knowledge of the underlying platform.

Other languages, like OpenMP, OpenMPC, OmpSs, llc or OpenACC are based on directives.
Directive-based programming languages allows developers to incrementally parallelize sequential
codes while maintaining a low development effort. Directives can be added or removed by the user
without significant alteration of the source code. The compiler can extract additional semantics
from these directives and properly migrate the sequential code to a different set of platforms or
technologies. This is critical to fill the gap between new programming paradigms and the huge
scientific codebases that already exist.

One significant drawback of these programming models is that it may be possible that the
existing sequential code does not implement an algorithm suitable for being parallelized. In this
case, other algorithms have to be explored and a directive-based approach might not provide the
best tool for the problem.
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2.2 Compiler Support for Programming Models

Compiler support is required to implement most of the higher-level programming models that we
have mentioned. The design and implementation of a compiler is not a trivial task, it requires
tremendous amounts of work and significant amounts of patience to deal with developing quirks
and hints in production codes. Some of the aforementioned programming models rely on the
support of a commercial or an experimental compiler which is described in this section.

The extension of languages through the usage of directives requires a broad knowledge of
compiler technologies and techniques. The previous work used ad-hoc compilers to extend a
language with a set of features. Given the speed at which the HPC field is advancing, and the
amount of new languages that are being developed, a significant amount of development and
effort would be required to design ad-hoc compilers to cover specific languages or to extend
features, and we would be unable to focus our attention on adding new features or investigating
new research guidelines.

For example, with the irruption of GPU in the HPC arena [100], we decided to study
different possible annotation schemes or language extensions to facilitate the automatic or
directed generation of GPU code. Our previous llCoMP compiler was unsuitable for this task as
it was designed ad-hoc to extend the OpenMP language with a particular set of features. With
the experience adquired from working on llCoMP , and having comprehensively reviewed the
bibliography, we detected the four key characteristics that we require in a research compiler in
order for it to meet our needs:

• A flexible parser: We wanted to explore several different annotation schemes, language
extensions and idioms, thus, a flexible front end where this modifications could be done
quickly was our priority. As our work was for experimental purposes, we did not intent to
parse commercial codes; our priority was not stability (i.e. speed and memory usage were
not constraints).

• Portability: It should be possible to use the compiler on several different platforms, from
laptops to clusters. In addition, different users, such as students or collaborators, should
be able to use it without having to invest too much time and energy in learning how to
use it. The compiler should be easily movable from one machine to another and it has to
be written in a common and portable language.

• Debuggability: The user needs to be able to run the StS process step by step or be able
to show what each phase is doing at any given point. One of the potential uses of this
compilation framework is to teach compiler technology, thus it is desirable to be able to
review or stop any process of the translation, so the user can easily see what is going on.
As such, the inclusion of a graphical visualization of the Abstract Syntax Tree (AST) at
any given moment would be a plus.

• Simplicity: Powerful but simple Object Oriented approach.

Before embracing ourselves with the titanic task of building our own compiler and run-
time infrastructure, we evaluated different options and extensively reviewed the works in the
bibliography.
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The most relevant compiler infrastructures are detailed in the following paragraphs, and at
the end of this section we conclude by providing a table comparing each of the aforementioned
key features.

2.2.1 GCC

The GNU compiler collection (GCC) [66] is a compiler developed by the GNU project that supports
various programming languages. It has been ported to a wide variety of processor architectures
and is deployed in several different machines and platforms. It supports C, C++, Objective-C,
Fortran, Java, Ada, Go and many others. Several tools are required for its construction (e.g.
Perl, Flex, Bison, GMP, MPC ...), and some optimization passes are only enabled if external
libraries are available. It can be extended with plugins, which can operate on the intermediate
representation (GIMPLE).

Each of the language compilers is a separate program that inputs source code and outputs
machine code. All have a common internal structure: a per-language front end parsers the source
code in that language and produces an AST.

These are converted to the middle-end representation, which is gradually lowered towards its
final, low-level form. GCC is mainly written in C.

2.2.1.1 General Usage/Workflow

GNU is organised into several passes. Language front end is invoked only once in order to parse
the entire input, and may use different intermediate representations and language-specific tree
codes. After finishing the parsing, the front end must translate the representation used to a
representation understood by the language independent portions of the compiler. The C compiler
calls the Gimplifier, while the Fortran translates its internal representation to GENERIC and
then following this it is then lowered to GIMPLE. The conversion from GENERIC to GIMPLE is
called Gimplification. After the code is in the language-independent IR, it is possible to call to
different passes that are handled by the pass-manager. This package is in charge of running all of
the individual passes in the correct order. Passes create several different parallel structures (like
the control flow graph or the handlers for the OpenMP expansion). After the tree-optimization
phases are completed, the code is transformed to RTL so register optimizations can be applied.

2.2.1.2 Intermediate Representation

GCC uses three different IR: GENERIC, GIMPLE and RTL. Front-end modules generate code into
GENERIC, a High Level internal representation, which is then translated to a more manageable
IR called GIMPLE.

GIMPLE is a family of IR based on the tree data structure. Two levels of this IR are
implemented: High-Level GIMPLE - produced by the middle end when lowering the GENERIC
language that is targeted by all the language front ends; and Low-Level GIMPLE - obtained by
linearizing all the high-level control flow structures of high-level GIMPLE.
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GIMPLE is then lowered to RTL (Register Transfer Language), which is an assembler language
for an abstract machine with infinite registers. It represents low-level features (registers, memory
addressing, bitfield operations, compare-and-branch . . . ), and it is commonly represented in a
LISP-like form.

2.2.1.3 Unparsing

GCC does not offer unparsing features by itself, as it is meant to be a full source-to-binary
compiler. Undoing the parsing could be possible at GENERIC level, but several semantic details
are lost after translating to GIMPLE. It may be possible to obtain a C-like representation
of GIMPLE by using the -fdump-tree-gimple flag, which is useful for debugging purposes.
However, a more complete method is required for implementing a source-to-source translation
system.

2.2.2 Open64

Open64 [36] is an open-source multi-platform compiler, derived from the SGI compilers. It was
released as GPL in 2000, after which the University of Delaware took care of the project.

2.2.2.1 General Usage/Workflow

The compilation flow of Open64 is shown in Figure 2.12. Each step of the compilation flow is
followed by a lowering of the IR (see Section 2.2.2.2). Open64 is a full source-to-binary compiler,
thus, the end-point of the flow is assembler code suitable for generating the final binary.

The C and C++ front ends are based on GNU technology, while the Fortran one is the SGI
Pro64 Fortran front end. Both provide a very high level IR for the input program units, stored as
.B files. The VHO operates on this file (VHL level) to generate the phases that follow.

The LNO (Loop Nest Optimisation) module features several transformations to improve
code performance by taking advantage of the Data Cache, e.g. transforming loop to work on
sub-matrices that fit in the cache (Cache Blocking), loop interchange, etc. LNO also simplifies
the expressions to facilitate the tasks of the following steps, generates SIMD code and vector
intrinsics and also leverages OpenMP directives into intermediate code.

A driver controls the execution of the compiler, deciding which modules to load and executes
the compilation plan. The driver is responsible for invoking all steps, and managing the modules
input flags. Communication between modules is performed using intermediate temporary files.
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Figure 2.12: Compilation Flow of Open64

2.2.2.2 Intermediate Representation

The IR is called WHIRL, and it is composed of 5 levels (from the closest to the original to the
closest to the binary): Very High (VH), High (H), Mid (M), Low (L), and Very Low (VL) level.
The front end translate the original file into WHIRL which is then passed to the back end. Each
optimisation is designed to work on a particular level of WHIRL, and WHIRL lowerers are called
to translate WHIRL from the current level to the next lower level. Finally, the code generator
translates the lowest level of WHIRL to its own internal representation that matches the target
instruction. Because lowering is done only gradually, each lowering step is simpler and easier,
which decreases the overall complexity of the translation. A description of the lowering actions
for each level is shown in Figure 2.13. A WHIRL file generated by the front end consist of WHIRL
instructions and WHIRL symbol tables. The instructions contain references to the symbol table.
WHIRL instructions are linked in tree form.

2.2.2.3 Unparsing

Very High level WHIRL can be translated back to C and Fortran source code using the appropriate
Open64 tools, but almost no optimisation is performed at this level. It is possible to export the
intermediate representation to a file, or to output different stages of the compilation.
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Figure 2.13: Levels of WHIRL and Lowering actions

2.2.2.4 Querying and AST Traversal

The class WN TREE ITER base implements a STL-compatible iterator for WHIRL containers
(WN TREE CONTAINER). It is possible to define different traversal orders (pre-order or post-
order iteration). Comparison between two trees of WHIRL containers is possible through the
overloaded operators. To apply a particular operation to the WHIRL tree, the user can call
the function WN TREE WALK, which receives a WHIRL node, an operation and an instance
of WN TREE ITER to indicate how to traverse the tree. The operation is executed for each
WHIRL node. Listing 2.12 shows an example of calling a Tree Traversal to implement a simple
node counting operation. Querying for a node or a particular set of node can be implemented
using Operations or by implementing a derived class from WN TREE ITER base.
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1 // function object example: count the number of whirl nodes

2 struct WN_count {

3 INT num_nodes;

4 WN_count() : num_nodes(0){}

5 void operator()(WN*) {

6 ++num_nodes;

7 }

8 };

9

10 int main () {

11 ...

12 WN_TREE_walk_pre_order (wn, WN_count());

13 ..

14 }

Listing 2.12: Open64 Tree Traversal example

2.2.3 LLVM

LLVM [81] (Low Level Virtual Machine) is a compiler infrastructure written in C++. It supports
several different kinds of optimizations for programs written in arbitrary programming languages.
Several different front ends have been created which take advantage of the language-agnostic
design, such as Objective-C, Fortran, Ada, etc.

To achieve this language-agnostic design, it is necessary to have a common intermediate
representation in which code optimisations can be applied without the need for specific-language
optimisations. The IR of LLVM is a Static Single Assignment (SSA) form with a simple, language-
independent type system that exposes the primitives commonly used to implement high-level
language features.

LLVM is compatible with standard makefiles and can use GCC as a C and C++ parser.
Object files compiled with LLVM can be linked with object files built with gcc using the LLVM
linker. Notice that LLVM object files contain LLVM IR/bytecode, not machine code.

2.2.3.1 General Usage / Workflow

Figure 2.14 illustrates the compilation worfklow of a typical LLVM driver.

Figure 2.14: LLVM Workflow
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After collecting the command line options, which instruct the compiler driver about the
passes that it should run, the driver reads the configuration files for each pass - this will vary
depending on the kind of input files pointed by the user. These configuration files can be provided
by the user or by the tools. Each phase that is going to be executed can result in the invocation
of one or more actions. An action is either a whole program or a function in a dynamically linked
shared library. In this step, the driver determines the sequence of actions that must be executed.
Actions will always be executed in a deterministic order. The actions required to support the
original request from the user are executed sequentially and deterministically. All actions result in
either the invocation of a whole program to perform the action, or the loading of a dynamically
linkable shared library and invocation of a standard interface function within that library.

The compiler driver (llvmc) splits every compilation task into the following five distinct
phases:

• Preprocessing: This phase can be invoked for those languages supporting preprocessing.

• Translation: Converts the source language input into the IR.

• Optimization: All optimizations are performed on the IR, according to the options provided.

• Linking: The inputs are combined to form a complete program.

2.2.3.2 Intermediate Representation

The LLVM code representation describes a program using an abstract RISC-like instruction
set but with key high-level information that enables effective code analysis. This includes type
information, explicit control flow graphs, and an explicit dataflow representation [42]. The main
features of the LLVM IR are:

• A low-level, language-independent type system that can be used to implement data types
and operations from high-level languages.

• Instructions for performing type conversions and low-level address arithmetic while preserv-
ing type information.

• Two low-level exception-handling instructions for implementing language specific exception
semantics.

The LLVM code representation is designed to also be used as a human readable assembly
language representation, facilitating development and debugging.

LLVM programs are composed of modules, each of which is a translation unit of the input
programs. Each module consists of functions, global variables and symbol table entries. Modules
can be merged together by the LLVM linker. Listing 2.13 shows an example of the Hello World

module.
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1 ; Declare the string constant as a global constant.

2 @.str = private unnamed_addr constant [13 x i8] c"hello world\0A\00"

3

4 ; External declaration of the puts function

5 declare i32 @puts(i8* nocapture) nounwind

6

7 ; Definition of main function

8 define i32 @main() { ; i32()*

9 ; Convert [13 x i8]* to i8 *...

10 %cast210 = getelementptr [13 x i8]* @.str, i64 0, i64 0

11

12 ; Call puts function to write out the string to stdout.

13 call i32 @puts(i8* %cast210)

14 ret i32 0

15 }

16

17 ; Named metadata

18 !1 = metadata !{i32 42}

19 !foo = !{!1, null}

Listing 2.13: LLVM Code Representation

2.2.3.3 Unparsing

LLVM has been designed as a full source-to-binary compiler. Although it is possible to extract
the different levels of Intermediate Representation to Text Files, it is not possible to recover the
original language from these representations as it is completely agnostic to the original source
language.

Theoretically speaking, it would be possible to use the IR to recreate a new source and port
it to another language by creating an IR-to-language converter. However, as far as we are aware
such a tool does not exist.

2.2.3.4 Querying and IR Traversal

It is possible to traverse the internal representation of LLVM using different iterator classes
available in the framework. The following is a list of the available iterators:

• Module::iterator Iterates through the functions in the module (source file)

• Function::iterator Iterates through basic blocks in the module

• BasicBlock::iterator Iterates through instructions in a block

These iterators can be extended to create new ones. The code motion is implemented with
operations on the nodes (EraseFromParent, RemoveFromParent, etc). Data dependency, Call
Graph and Alias information, among others, can be printed to a Dot graph then to an external
file.
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2.2.4 ROSE

ROSE [86] is an open source compiler framework designed to facilitate building programs for
applying source code transformations. It is primarly tailored to design and implement static
analysis tools, source code transformations, loop optimizations, performance analysis and even
static security checks of source codes. It has support for C, C++, Fortran and OpenMP.

As usual, ROSE uses a three layer approach (front end, middle end and back end). The
result of running a ROSE driver is the generation of a new source code.

ROSE uses the front end of the Edison Design Group (EDG) for C and C++, whereas Open
Source Fortran is used to generate the AST from Fortran sources.

Although the license of the front ends is not free, it is possible to redistribute it with the
framework. The resulting IR of this front end is translated into a AST. This AST preservers most
of the original source information (i.e. comments, preprocessor directives, original line numbers
and so on), making it possible to completely unparse the AST into a source file.

2.2.4.1 General Usage / Workflow

Figure 2.15 illustrates the different compiler phases of the ROSE compiler framework. After
parsing the source, ROSE converts the IR from the EDG front end into the AST. This AST is
further processed by several transformation and optimization tools. Developers can add new
tools or implement new transformations extending the class hierarchy.

Figure 2.15: Usual Workflow of a ROSE driver
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1 // Basic ROSE translator

2 #include "rose.h"

3 int main(int argc, char **argv) {

4 // Build the AST used by ROSE

5 SgProject* sp = frontend(argc, argv);

6 // Run internal consistency test on AST

7 AstTests::runAllTests(sp);

8 // Generate source code from AST and call the vendor’s compiler

9 return backend(sp);

10 }

Listing 2.14: ROSE driver example

Listing 2.14 shows an example driver routine. Line 5 invokes the front end, which returns the
AST of the original program. This AST is unparsed to rebuild the original source.

2.2.4.2 Intermediate Representation

The internal representation of ROSE is SAGE III (derived from SAGE++, [28]). SAGE III is
automatically generated with a tool included within ROSE. When a code is parsed by the front
end, a connection code translate EDG IR into SAGE III. This enables to distribute EDG binary
files along ROSE while respecting licensing concerns.

2.2.4.3 Unparsing

As mentioned before, ROSE outputs a source file. It attempts to produce an output file as
close to the original as possible, however, some differences may arise. Most of these differences
come from the fact that there is more than one way to write the same expression in the original
language. For reasons that will be described in the following section of this document, it is
worth highlighting the following differences: (1) Variable declarations are normalized to separated
declarations, (2) Normalization of member access from a pointer, and (3) Array indexing is
represented through pointer arithmetic.

2.2.4.4 Querying

One of the critical features of a StS tool is the ability to search for particular nodes or subtrees.
In ROSE, this is called querying. ROSE offers several querying features for nodes and/or
subtrees. Common queries are already predefined (for example, looking for a particular variable
declaration), and a developer can implement their own queries implementing the NodeQuery
interface.

2.2.4.5 AST Traversal

ROSE aids the library writer by providing a traversal mechanism. This mechanism visits all the
nodes of the AST in a predefined order. It can be used to compute attributes or to perform an
analysis of the code.
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1 class MyVisitor:

2 public AstSimpleProcessing {

3 protected :

4 void virtual visit (SgNode* node) ;

5 }

6

7 MyVisitor::visit (SgNode* node) {

8 cout << node->get_class_name() << endl;

9 }

Listing 2.15: ROSE Traversal example

Based on a fixed traversal order, the framework provides inherited attributes to pass informa-
tion down the AST (top-down processing) and synthesized attributes for passing information
up to the AST (bottom-up processing). Inherited attributes can be used to propagate context
information along the edges of the AST, whereas synthesized attributes can be used to compute
values based on the information in the subtree. One function for computing inherited attributes
and one function for computing synthesized attributes must be implemented when attributes are
used.

Different interfaces are provided which will allow either one, both, or no attributes to be
used; in the latter case it is a simple traversal with a visit method called at each node. AST
Traversal is offered through the AST*Processing classes. An example is shown in Listing 2.15.

2.2.5 Cetus

Cetus [44] is a StS framework designed to implement code transformations. The current version
supports ANSI C via ANTLR 2 [110], and it is implemented in Java. Cetus derives from the
original POLARIS [109] compiler framework, although the Cetus project attempts to be more
general than the previous one.

2.2.5.1 General Usage / Workflow

As usual, Cetus is divided into three different layers; the front end, the middle end (with the IR)
and the back-end. Figure 2.16 illustrate the Cetus architecture.

Compiler writers usually only need to extend the Driver class to implement any kind of
transformations, as shown in Listing 2.16

2.2.5.2 Intermediate Representation

In Cetus, the IR follows a hierarchical statement structure, directly reflecting the block structure
of a program. A class hierarchy is used to implement the IR. Although this block structure and
the subsequent implementation of the Unparsing and Transversal classes make it difficult to
implement languages other than C, some additional abstract classes are provided to ease this
task. A C++ front end is in progress, and there are plans to implement Java and Fortran90
back ends.
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Figure 2.16: Cetus architecture

The IR has been designed to be easily understood by users. The contents of a source file
are stored in traslation units and procedures represent individual functions. Procedures
include a list of simple or compound statements, representing the program control flow in a
hierarchical manner. Each node of the IR can be annotated with comments or directives.

2.2.5.3 Querying and Traversal

Iterators following the Java Programming style are available. Listing 2.17 shows an example of
a DepthFirst iteration. Other iterators, such as Bread-first or Flat are available. The next(c)

method returns the next object of the class c.
Other traversals apart from basic syntactic order are available. For example, it is possible to

instantiate a caller traversal, which iterates across the calltree of a program.
Querying is implemented by means of iterators. The instanceof Java operator can be used

to check if a particular node of the IR is an instance of a class.

2.2.6 Mercurium

Mercurium [61] is a StS compilation infrastructure designed to implement the StarSs programming
model [111], although it has been extended as well.

Mercurium is composed by a set of plugins written in C++ that are automatically loaded by the
compiler following instructions from a compilation configuration file. High-level transformations
at IR level are implemented similarly to those available in Cetus and ROSE.

2.2.6.1 General Usage / Workflow

Figure 2.17 shows the Mercurium workflow. The compiler receives input in the form the source
code written in C, C++ or Fortran and processes it through the front end, to generate a high-level
interface. Later, a set of transformations are applied. Some parts of the original code may be
outlined to an external file, enabling other back ends to process these external parts.
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1 public class MyDriver extends Driver {

2 public void run(String[] args) {

3 parseCommandLine(args);

4 parseFiles();

5 if (getOptionValue("parse-only") != null) {

6 System.err.println("parsing finished and parse-only option set");

7 Tools.exit(0);

8 }

9 runPasses();

10 PrintTools.printlnStatus("Printing...", 1);

11 try {

12 program.print();

13 } catch (IOException e) {

14 System.err.println("could not write output files: " + e);

15 Tools.exit(1);

16 }

17 }

18 public static void main(String[] args) {

19 (new MyDriver()).run(args);

20 }

21 }

Listing 2.16: Java code to create a driver using the Cetus API

1 /* Iterate depth-first over program which is instance of Program */

2 DepthFirstIterator dfs_iter = new DepthFirstIterator(program);

3

4 while (dfs_iter.hasNext()) {

5 Object o = dfs_iter.next();

6 if (o instanceof Loop) {

7 System.out.print("Found instance of Loop");

8 }

9 }

Listing 2.17: Java code to iterate through the Cetus IR and print a message whenever a for

loop is traversed
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Figure 2.17: Mercurium workflow

As in Cetus (see Section 2.2.5) Mercurium also features a component that is responsible for
high-level transformations. These code transformations are aimed to code optimization. Different
loop transformations are available to the programmer through the #pragma hlt directive. Listing
2.18 shows an example of the directive to perform loop-unrolling.

Listing 2.19 shows an example of loop collapse in Mercurium: given a perfect nest of regular
loops, loop collapse creates a single loop that iterates over the n-dimensional iteration space.

Several other loop transformations (blocking, interchange, fusion, distribution, etc.) are also
available in mercurium through the #pragma hlt directive.

2.2.6.2 Intermediate Representation

The IR of Mercurium is based on an augmented abstract syntax tree. A class hierarchy of nodes
is exposed to the developer and different operators allowing them to manipulate the trees are
available.

New code is created using plain source using stream operators.

55



2.2 Compiler Support for PM Background and Related Work

1 #pragma hlt unroll factor(24)

2 for (i = 0; i < 100; i++) {

3 a[i] = i + 1;

4 }

Listing 2.18: Loop unrolling in Mercurium

1 #pragma hlt collapse

2 for (i = 0; i < 100; i++)

3 for (j = 0; j < 200; j++)

4 for (k = 0; k < 300; k++)

5 a[i][j][k] = i * j * k;

Listing 2.19: Loop collapse in Mercurium

2.2.6.3 Querying and AST Traversal

Although possible, it is not necessary to work direclty with TL::AST t, as several wrappers
(named LangConstruct) are available.

AST Traversal can be achieved through the usage of predicate classes, which assert that
some boolean properties on the tree nodes are matched. Pre-created predicates are available to
walk only specific node (for example, FunctionDefinitio::predicate).

2.2.6.4 Unparsing

Mercurium is capable of unparsing AST nodes using an overloaded stream operator. Redirecting
any pointer to an IR subtree recreates its original C (or C++) code.

2.2.7 Final Remarks

Table 2.2 shows an overview of the different characteristics of the compiler frameworks that we
have studied in this Section.

LLVM, Open64 and GCC are powerful compilers. The internet is full of information about
them and new information is being added regularly. When we started our research back in 2008,
we found that finding information on these compilers was far more difficult than it is today.
However, despite all of the available information, writing a compiler pass for any of them still
remains a challenge due to the enormity of their codebases.

In these three cases, transformations have to be implemented in the Internal Representation,
which means writing transformations at low level. This is great for implementing classic compiler
optimisations, but it may give rise to explaining loop level transformations (like loop tiling)
to students. In the case of Open64 or GCC, working with the front end is not an easy task.
Programmers are expected to work after the front end has parsed the code into the IR, so adding
new features to a language requires in-depth knowledge of the particular front end. Depending
on how the new features modify the original language the generation of WHIRL (Open64) or
GIMPLE (GCC) have to be modified as well.
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Table 2.2: Final comparison of compilers

Feature Open64 GCC ROSE Cetus Mercurium LLVM
Flexible Parser No No No Some Some No

Portability Some Some Some Some Some Some

Step-by-step No No Some Some No No

StS Transform. No No Yes Yes Some No

Recover orig. file No No Yes Yes Some No

Documentation Some Some Yes Some No Yes

ROSE is a great tool for developers wanting to write code analysis tools, or even simple
source-to-source translation. The High-Level intermediate representation facilitates code motion
and it is possible to print the status of the tree, verify its correctness and insert or remove
children to any node without too much effort. However, the front end is a black-box which the
user has little or no access to (none if using Fortran).

The Cetus project was in its early stages when we first carried out this survey, and it was not
very stable. However, their ideas about a flexible and easy accessible IR were interesting, and
our design was inspired by this work.

Mercurium was not completely public and accessible four years ago. Even today, not enough
documentation is available, and playing around with the front end is not an easy task.

As none of the available tools completely satisfied our needs, we decided to write our own
compiler translator. We did not aim to produce a high-quality commercial compiler, but an
easy-going research tool capable of performing code transformations with little development and
without excessive bootstrapping time (i.e. time from not knowing anything from the compiler
architecture to being able to do useful work).

The pycparser project [22] featured a nearly complete C parser written in Python. The
availability and maturity of this project greatly influenced our decision to tackle the laborious
task of implementing an entire C front end.

2.3 Runtime Support

Despite different breakthroughs over recent years, there are several issues that still have to be
resolved, many of which are more easily resolved when the code is executed. A classical example
is dynamic memoy management, which is delegated to runtime execution.

Runtime systems provide higher-level software layers with convenient abstractions. This
permits the design of portable algorithms without having to deal with low-level concerns,
providing support for both data management and scheduling together.

2.3.1 StarPU

StarPU [16] is a software tool aiming to allow programmers to exploit the computing power of
the available CPUs and GPUs, while relieving them of the need to specially adapt their programs
to the target machine and processing units.
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The runtime is responsible for scheduling tasks on heterogeneous CPU/GPU machines. A
set of language C extensions is available to leverage the development effort.

StarPU implements a task-based programming model. Applications submit computational
tasks, with CPU and/or GPU implementations, and StarPU schedules these tasks and associated
data transfers on available CPUs and GPUs. The data that a task manipulates is automatically
transferred among accelerators and the main memory, so that programmers are freed from the
scheduling issues and technical details associated with these transfers.

Although most of the effort devoted to designing the runtime has been invested in the
task-scheduling algorithms, it is possible for scheduling experts to implement their own custom
scheduling policies through an extensible API.

2.3.1.1 Codelet and Tasks

One of the StarPU’s primary data structures is the codelet. A codelet describes a computational
kernel that may be implemented on multiple architectures such as a CPU, a CUDA device or a
Cell vectorial unit.

Another important data structure is the task. Executing a StarPU task consists in applying a
codelet on a data set, on one of the architectures on which the codelet is implemented. A task
thus describes the codelet that it uses, but also which data is accessed, and how the data is
accessed during the computation (read and/or write). StarPU tasks are asynchronous: submitting
a task to StarPU is a non-blocking operation. The task structure can also specify a callback
function that is called once StarPU has properly executed the task. It also contains optional
fields that the application may use to give hints to the scheduler (such as priority levels).

By default, task dependencies are inferred from data dependency (sequential coherence) by
StarPU, although the programmer can enforce them by hand.

The effort of handwritting memory transfers between processing units is leveraged from the
programmer to the runtime, this is possible because the runtime handles transfers alongside the
task execution.

2.3.2 GOMP

GOMP is the implementation of OpenMP for the GNU Compiler Collection. The GNU compiler
will translate the OpenMP directives into calls to the GOMP runtime (plus additional code
motion to accomodate the calls). GOMP is then in charge not only of implementing the typical
OpenMP API routines, such as getting the number of threads or the thread ID, but it also
implements low-level operations for the high-level constructs. Figure 2.18 illustrates this process.

As an illustrative example, the single construct from OpenMP as shown in Listing 2.20 is
implemented as shown in Listing 2.21.

The library itself is a wrapper around POSIX threads, with various system-specific performance
tweaks.
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Figure 2.18: The GNU compiler toolkit translates the OpenMP nodes into calls to GOMP

1 #pragma omp single

2 {

3 body;

4 }

Listing 2.20: Example of the usage of the single construct of OpenMP

1 if (GOMP_single_start()) {

2 body;

3 }

4 GOMP_barrier()

Listing 2.21: Code generated by GCC for the single construct, calling the GOMP ABI
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2.3.3 GMAC

GMAC [64] is a runtime that implements the Asymmetric Distributed Shared Memory (ADSM)
model. It supports NVIDIA GPUs and Cell processors on GNU/Linux based systems. This model
maintains a shared logical memory space for CPUs to access objects in the accelerator’s physical
memory, but not the contrary. When a piece of code is set to be run in the accelerator, its
associate data is moved to the device. This model removes the need to explicitly make a request
for memory on the separated set of memory spaces. ADSM enables also make it possible for
variables used by accelerators to be passed as parameters to the corresponding system calls that
read or write data for I/O devices. This enables DMA transfers directly between I/O and the
accelerator, if it is supported by the hardware.

GMAC builds a shared address space between the CPUs and the accelerator. When the user
allocates memory in the accelerator using the appropriate GMAC call, the runtime also allocates
system memory over the same range of virtual memory address (i.e. using mmap system call on
POSIX based systems). This creates two identical memory address ranges, one in the accelerator
memory and the other in the system memory, thus a single pointer can be used to both devices.
This method of overlapping the virtual memory spaces could not work on all platforms if the
range of addresses returned by the accelerator API is not a valid one in the Host, or it is already
used. In this case, the user has to use the GMAC API to associate them by hand, using admSafe

to retrieve the accelerator address from the CPU pointer each time it needs to use it. Three
different coherence protocols are defined from the CPU perspective, which handles the data
transfers: (1) Batch-update, (2) Lazy-update and (3) Rolling-update.

In (1), whenever a kernel is invoked, all shared objects shared between the Host and the
accelerator are invalidated so they have to be transferred from the CPU to the device. When
the kernel finishes, all objects are transferred back from the accelerator to the Host. Method
(2) attempts to detect the CPU modifications to registered address using the CPU hardware
memory protection mechanism (mprotect system call) to trigger a page fault exception. This
exception is then captured by the runtime which makes the required memory transfers to keep
the coherence. Method (3) uses the same memory protection mechanism as (2) but for the
purpose of detecting access into blocks of the shared data object entirely. Only the affected
blocks of the shared data object are transferred.
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2.3.4 Final Remarks

Our research on these different runtimes has shown us that this landscape is even more scarce
than the compilers. Available runtimes tend to be huge, complicated pieces of software, focusing
on thread scheduling rather than heterogeneity or programmability. We decided that it was worth
implementing a runtime from scratch. This new runtime will be based on the notion of code
offloading instead of thread scheduling. Our intention was not to take advantage of the CPU
using threads, but to take advantage of any kind of accelerator that could be connected to a
traditional multi-core machine. However, one of the basic concepts that we kept in mind when
designing our runtime was the ability to easily integrate the runtime with those used in other
programming models, such as SMPSs or MPI. Easy integration would enable us to combine the
accelerators with existing codes, thereby enhancing its performance without the need for major
code modifications.
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CHAPTER 3

Yet Another Compiler Framework

Yet Another Compiler Framework (YaCF) has been designed to ease the burden on compiler
writers. Its components are independent from each other and can be used in full source to source
drivers or in small test transformations. Several subclasses, modules and packages have been
included within YaCF to solve particular problems within StS code translations.

Components have been grouped together into three packages: Frontend, MiddleEnd
and Backend, through which the Internal Representation (IR) of YaCF is used. Details of
each package can be found in Sections 3.4, 3.5 and 3.6. Figure 3.1 illustrates the overall StS
transformation process.

Figure 3.1: Overall translation workflow executed by a typical YaCF driver
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As the aim of YaCF is to develop StS transformations, the IR chosen is an augmented syntax
tree. Details of the IR are provided in Section 3.2. Part of the information used to augment
the AST is the Symbol Table (ST), as described in Section 3.3. Outside these packages, a bin

directory contains Python driver scripts to perform particular tasks, such as implementing code
transformations. The majority of the work in the YaCF Frontend and the IR is derived from the
pycparser project [22].

3.1 Design Considerations and Basic Concepts

The typical use case for a YaCF developer is to implement a StS transformation. A YaCF

developer would normally use YaCF to implement a StS transformation. This is the most common
application of the tool. Code transformations are usually implemented at IR level which means
the source will have had to have been parsed first. The user would then like to recover the
original file after the transformation, so once modified, the file has to be unparsed (or re-written)
once again into the input language.

In YaCF a driver is the script that orchestrates a code transformation. From the driver, the
parser is called, the IR is generated and it is passed to the next modules for processing. Usually
drivers end up calling a Writer to unparse the final AST into the original input language. However,
this is not mandatory such as when drivers are used to gather statistics from the source code.

The code translation can be split into two separate steps: (1) Searching for a particular
pattern or idiom in the code and (2) Applying the desired transformation on the nodes matching
the criteria. Within YaCF these two tasks are implemented in two class hierarchies: The Filter
(1) and the Mutator (2).

A Filter is an implementation of the generic Visitor Pattern [92], which traverses the IR
looking for matching nodes. The Visitor Pattern design provides a way of separating an algorithm
from the object structure on which it operates. A practical result of this separation is the ability to
add new operations to existing object structures without modifying those structures. A Mutator,
or Transformer, is a class that contains a Filter ; it is designed to apply the contents of a specified
function to each node matching the Filter.

The entire YaCF framework is built using these two basic concepts. Complex transformations
are composed by several nested Filters and Mutators. Usually, a Runner class is used to group
together several transformations required to accomplish a major code transformation. Runner
classes contain source storage facilities and code templates, and they are used to prepare the
environment before (and after) calling a set of Mutators.

3.1.1 Filter

All Filters are derived from the GenericFilterVisitor class. This class, derived from the original
Visitor class from the pycparser project [22] implements several top-down traversals of the IR. A
ReverseVisitor that traverses the tree from bottom-up is also available. However, this visitor
requires the parent link to be set, thus, it is not possible to traverse raw AST nodes. IR levels
are discussed later in Section 3.2.
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1 class ExampleFilter(GenericFilterVisitor):

2 """ Returns the first node matching the example node

3 """

4 def __init__(self):

5 def condition(node):

6 if type(node) == c99_ast.Decl:

7 return True

8 return False

9 super(ExampleFilter, self).__init__(condition_func = condition)

Listing 3.1: A simple implementation of a Filter that will iterate throught all the declarations of
a given subtree

To implement a new Filter, it is necessary to extend the GenericFilterVisitor class, as shown
in Listing 3.1. The constructor of this Filter has to call the constructor of the parent (call to
super in the Listing). The condition func determines the matching condition for the Filter. The
parameter of this condition function is always the current node being visited, and it must return
True if the node matches the criteria or False otherwise. Any other returning value is considered
an error and will raise an exception. The condition function in Listing 3.1 checks that the type
of the current node is a declaration. Additional information about nodes and subtree types is
available in Section 3.4.

More complex Filters can be written taking advantage of the Visitor pattern. Overriding
the visit method for a particular kind of node forces all traversals to execute the contents of
the method. Listing 3.2 shows an example of this situation. Suppose we want a Filter to match
all declarations inside a function called foo. We can extend the code from Listing 3.1 with an
additional method visit FuncDef (see Listing 3.2). The method is called each time a node of
that kind is visited. If the node is the one we are looking for, we set the variable to True. When
visiting declaration nodes, if the variable is True we know we are inside the desired function,
thus, we mark that this is the desired node.

Notice that: (1) The visit FuncDef method is called before checking the condition and that
(2) as the new method overrides any of the defaults, to continue traversing down the AST we
have to manually call the generic visit method for each of the attributes of the FuncDef node
that we want to visit.

The GenericFilterVisitor class implements a variety of methods:

• apply : Looks for the first node matching the criteria and returns.

• iterator : Iterates over all of the matching nodes preserving the grammatical ordering.

• fast iterator : Iterates over all matching nodes in a deep first search fashion (it is faster
but does not guarantee grammatical order).
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1 class ExampleFilter(GenericFilterVisitor):

2 """ Returns the first node matching the example node

3 """

4 def __init__(self):

5 self._inside_foo = False

6 def condition(node):

7 if type(node) == c99_ast.Decl \

8 and self._inside_foo = True:

9 return True

10 return False

11 super(ExampleFilter, self).__init__(condition_func = condition)

12

13 def visit_FuncDef(self,node):

14 if node.name == "foo":

15 self._inside_foo = True

16 self.generic_visit(node.body)

17 self._inside_foo = False

Listing 3.2: A more complex example of Filter where only those declarations inside a particular
function will be traversed

3.1.2 Mutator

Mutators are created by extending the AbstractMutator class. The code transformations (aka
mutations) usually contain a Filter that selects which nodes will be transformed. A mutator-
Function method has to be specified, and it must contain the code to perform the desired
transformation.

Mutators modify the IR, but they must ensure its consistence (i.e. update Symbol table,
parent links, and so on). Additional information about the Internal Representation is available in
Section 3.2.

Note: Recursive Mutators
When implementing a Mutator, it is important to take into account the kind of transformation

being applied. If the transformation alters the IR in such a way that might match again the condition,
it will enter into an infinite loop, matching and applying the same Mutator repeatedly.

66



Yet Another Compiler Framework 3.2 Internal Representation

1 class ExampleMutator(AbstractMutator):

2 """ Apply a mutation

3 """

4 def filter(self, ast):

5 def is_decl:

6 if type(node) == c_ast.Decl:

7 return True

8 return False

9 return DeclFilter(ast, condition_func = is_decl)

10 def mutatorFunction(self, ast):

11 # .... do something here with the matching node

12 return ast

Listing 3.3: Example of a Mutator that will apply a transformation to all declarations within a
subtree

3.2 Internal Representation

YaCF has been designed as a StS translation tool, thus, it does not offer functionality to generate
low-level code. The IR is based on an annotated (sometimes called augmented) high-level tree-
layered AST, which maintains a close relation to the original source, while facilitating the work
of the developer of code transformations. Developers only need to work with tree-like structures
resembling the structure of the original code, rather than focusing on low-level intermediate
code. Each node of the IR denotes an element of the original language. For example, in the
C front end, the if statement or a function definition are nodes of the tree structure. Figure
3.2 shows an example of a subtree. Figure 3.3 shows the IR structure corresponding to a more
complex C code that computes an aproximation for the constant π.

Figure 3.2: IR for the statement if(a>1) printf("%d",a)
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Figure 3.3: IR generated for the main loop of the π computation example shown in Figure 2.1

The IR syntax is abstract, which means that it does not represent every detail appearing
in the real syntax. For instance, grouping parenthesis are implicit in the tree structure, and a
syntactic construct such as an if-condition-then expression is denoted by a single node
with two branches. Each node of the IR is a Python class. Nodes of the IR contain three different
kind of attributes: simple attributes (any Python class), a child node (a reference to a son) or a
list of children nodes (when an attribute of the node may contain several values). Filters (see
Section 3.1.1) use children and list of children nodes to traverse the tree. Other elements of
the Framework rely on simple attributes to work (for example, a Mutator can alter the name

attribute of a node). Information might be added to each node after a translation or an analysis
is run, a process referred to as annotation. Traditionally, transformations used the setattr and
getattr functions to set and get information from the IR. Recent versions of YaCF feature a new
annotate dictionary to store the new attributes using a more homogeneous interface.

All nodes of the IR inherit from the IRNode class, and contain the following base attributes
and methods:

• parent: Provides a reference to the direct parent node, if any.

• coord: Coordinates of the equivalent lexeme for the node in the file (i.e. line number).

• show(): Prints the node in a human-readable form (but not in the original language).

• children(): Returns all descendant nodes from the current ones.

• getRootNode(): Traverses the parent links up to the top node.

• getContainerAttribute(): Returns the attribute of the parent node (if any) linking with the
current node.
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Depending on the information available on the IR, we distinguish the following incremental
levels (i.e. states):

• IR-1 or AST: This is the result of parsing a source code with any of the implemented
front ends. It contains only basic parsing information. The parent attribute is not set.
Neither the ST nor the Writer are available at this level. A description of the Frontend
package which provides details on the creation of the AST for a particular language, is
available in Section 3.4. Here we only describe the overall IR structure.

• IR-2: This is the result of processing a IR-1 subtree with the AstToIR class. After the
annotation process, a ST is available for the entire subtree, it is possible to re-print any
node of the IR in the original language, and the parent link is properly set. At this level,
two additional attributes (sequence and depth) are available.

• IR-3: The back ends might need to add further information to the nodes in the AST. To
represent this fact, we will refer to the IR-3 level whenever we are describing a process in
which a YaCF component adds information to the IR-2. If a transformation requires the
information added by another one, we specify that using the notation IR-3.name where
name is the name of the component which augments the IR. For example, a transformation
requiring the information from the CUDA back end will require the IR-3.CUDA.

3.2.0.1 The AstToIR class

In order to transform the IR-1 into a functional IR-2, it is necessary to use the AstToIR transformer
class. The AstToIR class has been implemented following the Flyweight pattern [63]. This forces
subsequents calls to the apply method of this class with the same node to reuse precomputed
information (particularly the Symbol Table (ST)). The root node of the tree (FileAST) is used
to maintain a cache of the currently available IR. The AstToIR class is not generic to all front
ends and some of them might have their own implementation, that will always be derived from
the original. The AstToIR class performs the following tasks:

• Replaces the str method with a call to the appropriate writer/unparser

• Connects the parent link. Using a deep first search strategy, the parent link in each node
of the IR is connected. The parent link of the root node (usually a FileAST node) is set
to None.

• Creates the Symbol Table: an object of the ST class is created (see Section 3.3) and the
class SymbolTableBuilder is used to initialize the ST and update the information of the IR.

To apply the aforementioned transformations, the user has to call the annotate method.
Using the getSymbolTable method of the same class it is possible to retrieve the ST that has
been created during the annotation process.
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1 it = InsertTool(subtree = new_subtree)

2 it.apply(node1, ’attribute’, position = "begin")

3 it.apply(node2, ’attribute’, position = "after")

Listing 3.4: Inserting a subtree inside the main IR

1 ReplaceTool(new_node=new_subtree, old_node = old).apply(old.parent, ’attr’)

Listing 3.5: Replace a subtree inside the main IR

3.2.1 Manipulating the IR

It is possible to manipulate the IR using standard Python tools, like setattr or getattr.
However, for convenience, a set of tools is available in the Tools.Tree package. These tools
work on the IR-2 level, but they do not require information from the ST as they only work
within the tree.

Three operations to manipulate the IR are implemented: Insert, Replace and Remove. Figure
3.4 shows the insertion of a new subtree into the IR. Tools to manipulate the IR work on two
stages: Firstly they build an instance of the tool and then they apply it to a subtree. This enables
YaCF to reuse part of the process when the same operation is applied several times to the same
subtree.

InsertTool performs insertions on the subtree. Its constructor receives a subtree to be inserted.
The apply method receives the node that will be the parent of the subtree and the attribute
where it is going to be inserted. If the attribute where the node will be inserted is a list of
nodes, it is possible to specify a position inside the list, choosing one of the following values:
begin, end, after and before. The values after and before allow users to insert the node
immediately after or before an existing node on the list, which is specified by the parameter
prev. A code example for this operation is shown in Listing 3.4.

In a similar fashion to the InsertTool, a ReplaceTool and a RemoveTool are also available.
Figures 3.4, 3.5 and 3.6 show the effect of these operations on the IR. Listing 3.5 shows an
example code to perform a replacement of a subtree within the main IR.

3.3 Symbol Table

The YaCF ST is designed to be independent of the parsing process. It can be created or updated
at any stage of the StS translation. The ST is implemented as an extension of a Python dictionary.
Usual ST operations, such as lookUp and addSymbol, are implemented in this class.

The creation of the ST for an IR is performed through the builder class SymbolTableBuilder,
which is a Visitor that creates the IR by traversing the tree in grammatical order.

The easiest way to create a ST is to instantiate an object of the SymbolTable class and then
invoke the SymbolTableBuilder to initialize it, as shown in Listing 3.6.

Each element of the ST is stored as a Symbol object, and holds the following information:

• name: Name of the Symbol.
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Figure 3.4: Insertion of a new parameter in a function call

1 from Frontend.SymbolTable import SymbolTable, SymbolTableBuilder

2 st = SymbolTable()

3 tsv = SymbolTableBuilder(symbol_table = st)

4 tsv.visit(some_ast)

Listing 3.6: Initialization of a SymbolTable

• node: Reference to the original node in the AST.

• type: Type of the node, reference in the IR.

• scope: Scope information (see Section 3.3.1).

• btype: Basic type of the ID (for example, in C, if the identifier is an integer).

• sizeExpression: Expression to determine the size of the variable.

• extra: A dictionary holding optional information for different compiler stages.

Symbol objects can be printed to a string for debugging purposes. They can also be compared
using two simple rules: (1) Two Symbol instances are equivalent iff they have the same name
and the same scope, and (2) Symbol instance A is greater than Symbol instance B if and only
if scope(A) is greater than scope(B).
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Figure 3.5: Replace operation of a parameter in a function call

3.3.1 Scope Information

As the ST can be created at any stage of the translation process, and it might even be created
for a subtree disconnected from the main IR of the code; the coordinate of the lexeme relative
to the IRNode is not enough to locate an identifier in the ST. To replace the line number
information, each node of the AST is decorated with two additional attributes: the sequence
number and the depth. The sequence number is assigned sequentially to each node of the IR in
grammatical order, starting from zero. The depth value indicates the number of grammatical
nested scopes preceding the declaration. For this reason, each symbol has a Scope attribute,
which describes the proper scope of the declaration. Algorithm 3.1 is used to insert an element
in the SymbolTable, whereas the Algorithm 3.2 is used as the lookup for symbols.

Listing 3.8 shows a C code with several name conflicts. Identifier i is declared several times
(lines 3, 6 and 12). Printing the ST corresponding to the code in Listing 3.8 produces the output
shown in Listing 3.7.

Notice how each declaration of i has a separate entry in the ST (lines 20, 22 and 27 in
Listing 3.8). Level 0 of the ST contains general language declarations and implicit types, like
GNU built-in types, or basic language types.
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Algorithm 3.1 Insertion of a symbol in the Symbol Table

function addSymbol(decl, depth)
sizeExpression← buildSizeExpression(decl)
nsymbol ← Symbol(decl, depth, sizeExpression)
for all symbol in st[depth] do

if nsymbol = symbol then return
end if

end for
st[depth].insort(nsymbol)

end function

Algorithm 3.2 Looks for the declaration of an identifier in the Symbol Table

function lookUp(id)
depthact ← min(id.depth, len(st))
while depthact ≥ 0 do

for all symbolinst[depthact] do
if id.sequence ∈ symbol.scope then

if symbol.name = id.name then return symbol
end if

end if
end for

end whilereturn Identifier Not Found
end function
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1 Symbol table

2 ==========================

3 Level : 0

4

5 [{float: float, (0, None)}

6 {int: int, (0, None)}

7 {char: char, (0, None)}

8 {double: double, (0, None)}

9 {FILE: FILE, (0, None)}

10 {bool: bool, (0, None)}

11

12 Level : 1

13

14 [{foo: char, (1, 73)}

15 {func: int, (32, 73)}

16 {main: int, (67, 73)}]

17

18 Level : 2

19

20 [{i: int, (7, 33)}

21 {j: int, (11, 33)}

22 {i: int, (39, 68)}]

23

24 Level : 3

25

26 [{foo: char, (16, 32)}

27 {i: int, (21, 32)}]

Listing 3.7: Content of the ST after analyzing the code in Listing 3.8
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Figure 3.6: Remove operation of a parameter in a function call

These declarations are introduced by the builder before visiting the tree. The declarations
of the code start in level 1, with the declaration of foo as a char. The numbers enclosed in
parenthesis represent the start and end of the scope of the corresponding declaration. In the case
of foo, the declaration is valid between sequence numbers 1 (beginning of the file) and 73 (end
of the file). Notice that sequence number are not related in any way with line numbers in the
source code. Function declarations appear on level 1 and their scope covers the declaration itself
and continues right throught to the end of the file. Basic type (btype) of a function declaration
represents its type.

Scope depth information suffices to differentiate the declarations in lines 2 and 5 in Listing
3.8, however, to distinguish the declarations in lines 2 and 12, it is necessary to take into account
their sequence numbers.

3.3.2 Computing the Size of Elements

In some situations it is necessary to have access to the size of a particular element in the ST.
This information is usually machine dependant (integers or doubles do not always have the same
size), thus, it is not possible to have that information to hand when transforming the source.
However, it is possible to extract an expression that computes the size of the element in terms
of the original code, and, when compiled with the machine-dependant compiler, will generate
the real size of the element.
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1 char * foo;

2 int func () {

3 int i,j;

4 {

5 char * foo;

6 int i;

7 printf("%d",i);

8 }

9 }

10

11 int main() {

12 int i;

13 foo = NULL;

14 func()

15 printf("%d",i);

16 if (foo) printf("%s", foo);

17 }

Listing 3.8: C code example with nested declaration scopes

When building the ST using the SymbolTableBuilder, information about the number of
elements and the basic type of the declarations is stored in attributes. This information is used
to create an expression that, when evaluated, will compute the total size of the declaration in
memory. Notice that it is not possible to know information about pointers at translation time,
but it is possible to compute that information at runtime. For example, if an structure contains
a void pointer, the computed expression will not reflect the real size of the structure. However,
the computed expression is sufficient to estimate the size of structures or arrays.

3.4 The Frontend

The Frontend package is based on the pycparser Python module. pycparser [22] is a C
lexical and syntax analyzer completely written in Python. We have derived most of the structure
of the Frontend from pycparser.

The YaCF Frontend package contains several components:

• C99, OpenMP, OpenACC and GNU syntax analyzers.

• Abstract Syntax Tree (AST).

• Symbol Table.

• Internal Representation: an extension of the AST with additional information. This infor-
mation is used in source code transformations.

Figure 3.7 shows the YaCF class hierarchy. Class PLYParser is the base class of the YaCF

Frontend.
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Figure 3.7: Frontend package class hierarchy

PLYParser controls some syntax errors and holds general information about parsers. Each
parser in YaCF must inherit from PLYParser. Lexical analyzers for differente languages inherit
from C99Lexer. The design allows the developer to extend each lexer with specific rules. In a
similar fashion, all parsers inherit from class C99Parser.

Parsers are implemented following a Factory Pattern, enabling the developer to combine
different extensions of the C language into one new parser. The bottom section of Figure 3.7
shows the AstToIR class of the YaCF parser created by the FrontendFactory class combining
C99 and OpenACC parsers.
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1 ArrayDecl: [type*, dim*]

2 ArrayRef: [name*, subscript*]

3 Assignment: [op, lvalue*, rvalue*]

4 BinaryOp: [op, left*, right*]

5 Break: []

6 Case: [expr*, stmt*]

7 Cast: [to_type*, expr*]

8 Compound: [block_items**]

Listing 3.9: Part of the C99 AST configuration file

1 def p_clause_2(self, p):

2 """ clause : REDUCTION LPAREN reduction_operator COLON identifier_list RPAREN """

3 p[0] = [omp_ast.OmpClause(type = p[3] , name = ’REDUCTION’, identifiers = p[5], coord =

self._coord(p.lineno(1)))]

4

5 def p_clause_3(self, p):

6 """ clause : NOWAIT """

7 p[0] = [omp_ast.OmpClause(type = str(p[1]) , name = str(p[1]).upper(), identifiers =

None, coord = self._coord(p.lineno(1)))]

Listing 3.10: Extract from the OpenMP parser of YaCF showing the interpretation of the
reduction and nowait clauses

3.4.1 Defining a New Language

Languages are defined in the Frontend package by creating a Python module containing a
file named languagename ast.cfg which lists the nodes of the language. All the AST nodes
in YaCF are configured in this file enabling the compiler to create the AST with the correct
information. Listing 3.9 shows an example of this file. In line 1, an array declaration node
(ArrayDecl) is specified. The list of attributes is specified as a list in the same line. For example,
an array declaration node has two attributes: the type and the dimension of the array. This
information will be filled by the right parser using syntax-directed translation. The attributes
with an asterisk indicate to the compiler that the node has a child node, while two asterisk
indicate a sequence of child nodes. The Compound node in line 8 represents a list of blocks in
the source code.

From the configuration file, YaCF generates a set of AST Python classes. Each class represents
a node in the AST. With this information the parser can fill in all the information. Listing
3.10 shows part of the OpenMP parser. Each grammar production features a method and each
method creates the appropriate AST node. For example, the OpenMP reduction clause is
parsed in line 2 while an AST node with the reduction type and the identifiers is created in line
3.
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1 S1 a = b + c

2 S2 if (a > 10) goto L1

3 S3 d = b * e

4 S4 e = d + 1

5 S5 L1: d = e / 2

Listing 3.11: Control and data dependency example extracted from [98]

1 a[3] = a[5] * a[i];

2 x = h * ((double) i - 0.5);

3 sum += 4.0 / (1.0 + x * x);

Listing 3.12: Example of a SESE block statement with variable dependencies

3.5 The MiddleEnd

The input of the package MiddleEnd is an IR and the output is another IR with the same, or
higher, level. The packages in MiddleEnd are commonly used as for intermediate processing
to optimise or prepare codes so the Backend packages can proceed. Some packages used for
analysis of codes can also be found in the MiddleEnd.

3.5.1 Data Dependency Analysis

Some situations might require an analysis of the data dependency in the code. For these situations,
YaCF features a (basic) Data Dependency Analysis tool. Dependency analysis produces execution-
order constraints between statements.

Listing 3.11 shows a block statement with a typical expression statement. If statement S1
precedes S2 in their given execution order, we write S1 � S2 (Notation from [98]). A dependence
between two statements in a program is a relation that constrains their execution order. A control
dependence is a constraint that arises from the control flow of the program, such as S2 with
S3 and S4 in Listing 3.11. These dependences are written as S1δcS2. A data dependence is a
constraint that arises from the flow of data between statements, such as S3 and S4 in Listing
3.11. If we reorder these statements, the result could be incorrect.

Data dependencies can be classified into four types:

1. If S1 � S2 and the former sets a value that the latter uses, we call this a flow (or true)
dependence, and it is written as S1δ f S2.

2. If S1 � S2 , S1 uses a particular variable’s value and S2 sets it, then we have an antidepen-
dence (written S1δaS2).

3. If S1 � S2 , and both of them set the same variable variable then we have an output
dependence (written S1δoS2).

4. If S1 � S2 , and both of them read a variable then we have an input dependence (written
S1δiS2).
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It is possible to extend the definition of data dependencies from the statements to the
variables themselves: let V1 and V2 be variables declared in a program; and let there be S an
statment of that program containing an expression involving both V1 and V2. Expressions can
either read variables or write them. If statement S modififes or updates the value of variable V2
by solving an expression in which V1 is involved, we can state that V2 depends on V1 (V1δ f V2).
Variable dependency, like statement dependency, is transitive, i.e. if V2 depends on V1 and V3
depends on V2, then V3 depends also on V1:

V1δ f V2 ∧V2δ f V3 =⇒ V1δ f V3
A Data Dependency Analysis module is available within YaCF (DataAnalysis.LlcScope).

It is capable of generating a dependency graph of the variables used in a SESE block of
statements.

The class DGraph implements the dependency graph using a dictionary containing instances
of Dnode. Dnode associates a node of the ST with a list of predecessors and a list of successors.
A predecessor of a variable is any variable to which the current variable has a dependency, i.e. if
the current variable is V2, it predecessor list will contain all V1 satisfying V1δV2. A successor
of a variable is any variable which the current variable creates a dependency, i.e. if the current
variable is V1, the list of sucessors contains all V2 satisfying V1δV2.

The DGraphBuilder populates a DGraph data structure. Each occurrence of an ID creates
an instance of DNode and adds it to the current DGraph instance if it has not already been
inserted. When the DGraphBuilder visit an assignment expression, the predecessor and successor
lists of the nodes involved in the assignment are updated. There is no interprocedural analysis
support currently available in YaCF . This forces the analysis to assume that all variables passed
through a function call are read and written. It also creates dependencies among them. The
algorithm used to populate each DGraph instance is shown in Algorithm 3.3.

Algorithm 3.3 Analysis of an Assignment node

function visit assignment(node, visitednodes)
rvalue← visit(node.rvalue)
lvalue← visit(node.lvalue)
for all r in rvalue do

for all l in lvalue do
succ(l)← succ(l) + l
pred(r)← pred(r) + s

end for
end for

end function

3.5.1.1 Data Dependency Graph

It is possible to print the dependency graph of the variables inside a block statement whenever it
is required by using the DataDependencyTool.
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Each node of the graph represents a variable used in the block statement. A dependency
between V1 and V2 is represented by an arrow from the node of V1 to the node of V2. If a cycle
appears in the graph (i.e. V1δ f V2 and V2δ f V1) it means that the variable is being reused, for
example, in a reduction.

Figure 3.8 shows the variable dependency graph generated for the code in Listing 3.12.
Variable sum has a cycle over itself in the graph representing the reduction operation. The value
of sum is computed based on the values of the X variable, which in turn is computed based
on values from h and the loop variable i. A blue color on a node indicates that the variable is
read-only, whereas the red color implies that the variable is both read and read-only. A green
color (not shown in Figure 3.8) is used when the variable is only written.

Figure 3.8: Variable dependency graph for the code in Listing 3.12

3.5.1.2 Checking dependencies

Instances of class DGraph contain a method checkDependency. This method accepts two
instances of class Dnode as parameters and checks if the first one has a dependency with the
second one (i.e. checks if the latter is in the predecessor set of the former or in any of the
predecessor sets of any of its predecessors). Transitive dependencies are checked traversing the
successor and predecessor lists.

3.5.2 Loop Analysis

A major part of the optimization effort in any compiler is usually devoted to loops. YaCF provides
developers with a tool to perform loop analysis (ParametrizeLoopTool).

Applying ParametrizeLoopTool to a loop node of the IR (i.e. a For) node will create a
dictionary containing information about the loop. Some restrictions apply. Current implementation
limits the parameters captured from a given loop to canonical loop or canonical loop nests. The
most relevant parameters extracted by ParametrizeLoopTool are:

• loop variable: Variable to iterate.

• iteration expression: Expression to define the next loop step.

• init value: Starting value for the iteration variable.
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1 for (int i = 0; i < N; i++)

2 a[i] = b[i];

Listing 3.13: A canonical C loop

• first iteration: Value for the first iteration (expression).

• last iteration: Value for the last iteration (expression).

• loop stride: Distance between two iterations (expression).

• number of iterations: Total number of iterations (expression).

This information is stored in IR format (i.e. subtree expressions). For example, Table 3.1
details the information extracted by the ParametrizeLoopTool from the loop in Listing 3.13.

Parameter Value
Loop variable i
Stride 1
Condition Node i ≤ N
Last iteration (Itlast) N − 1
Number of iterations (Itlast − It f irst)/1
Iterator i+ = 1

Table 3.1: Information extracted from the loop in Listing 3.13

Notice that some of the parameters extracted are not constant values, but expressions written
in the IR language. These expressions will then be rewritten in the original language by a Writer.
The final value will be computed at execution time.

3.5.3 Loop Optimizations

Due to the nature of StS compilers, loop optimizations play a dominant role in code optimization.
YaCF implements several loop optimizations as interchange, unswitch, unroll, or tiling. These
transformations can be reffered to by different names in the literature, and many of them are
also implemented in other StS compilers such as Cetus (Section 2.2.5) or Mercurium (Section
2.2.6).

The optimizations available in YaCF have been implemented following the Mutator and
Visitor software patterns [63] in the MiddleEnd.Loop.Mutator directory. This directory
contains the key Mutators responsible for carrying out processing on the intermediate code IR-2
(Section 3.2). For example, the module LoopTiling.py contains the LoopTilingMutator which
is responsible for implementing a rectangular loop tiling on the AST type supplied, i.e. a tiling
with constant tile sizes (see Section 3.5.3.4 for details).

These Mutator make extensive use of tools such as ParametrizeLoopTool for handling loops,
or those available in the Tools.Tree package such as ReplaceTool.
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1 double a[N][M], b[N];

2

3 for (int i = 0; i < N; i++)

4 for (int j = 0; i < M; j++)

5 a[i][j] = a[i][j] * b[j];

Listing 3.14: Loop nest before aplying loop interchange

1 double a[N][M], b[N];

2

3 for (int j = 0; i < M; j++)

4 for (int i = 0; i < N; i++)

5 a[i][j] = a[i][j] * b[j];

Listing 3.15: The result of applying loop interchange to the loop nest in Listing 3.14

In YaCF the programmer is responsible for verifying the safety of certain optimizations which
are not always applicable. That is, there is no guarantee that some transformations such as loop
tiling, retain the original semantics of the source code after being applied. Ensuring program
correctness is the responsability of the YaCF user.

3.5.3.1 Loop Common

The package Common.py in the MiddleEnd.Loop directory contains a number of Mutators
and Filters common to many optimizations and drivers, the LoopFilter is one of them. This
Filter searches for a For node in the entire AST.

The default behavior of LoopFilter is to iterate over the AST to return all the encountered
For nodes. The Filter can be parametrized with an identifier parameter to discriminate on the
loop index variable, specifying the loop or loops it will search for.

3.5.3.2 Loop Interchange

This transformation is the process of exchanging the order of two perfectly nested loops. One
major purpose of loop interchange is to improve the cache performance for accessing array
elements. It is not always safe to exchange the iteration variables due to dependencies between
statements for the order in which they must execute. To determine whether a compiler can safely
interchange loops a dependence analysis must first be carried out.

In the basic example shown in Listings 3.14 and 3.15 the effect of the transformation can be
observed.

In YaCF, this effect is the default behaviour of the LoopInterchangeMutator when providing
it a subtree of the AST containing the outermost loop. Nevertheless, LoopInterchangeMutator
enables more useful applications such as swapping two nested loops when there are other loops
between in a perfect nesting. This feature is useful, particularly when the number of loop nests is
greater than two, for implementing some versions or loop tiling as we will see in Section 3.5.3.4.
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1 double a[N];

2

3 for (int i = 0; i < N; i++)

4 a[i] = 0;

Listing 3.16: An example of a simple C canonical loop zeroing an array

1 double a[N];

2

3 for (int _i_ = 0; i < N; i += B)

4 for (int i = _i_; i < min(_i_ + B, N); i++)

5 a[i] = 0;

Listing 3.17: Loop in Listing 3.16 after aplying strip-mining with strip size B

3.5.3.3 Strip-mining

Strip-mining, also known as loop sectioning, is a loop-transformation technique for enabling
SIMD-encodings of loops, as well as providing a means of improving memory performance. By
fragmenting a large loop into smaller segments or strips, this technique transforms the loop
structure in two ways:

• It increases the temporal and spatial locality in the data cache if the data are reusable in
different passes of an algorithm.

• It reduces the number of iterations of the loop by a factor of the length of each “strip”, or
number of operations being performed per SIMD operation.

Strip-mining is equivalent to a rectangular tiling (see Section 3.5.3.4) being applied to simple
loops. The transformation has been successfully applied to code optimization in vectorial
computers [80, 12, 13].

Listing 3.17 shows the effect of applying the LoopStripMiningMutator to the loop shown in
Listing 3.16.

In Listing 3.17 we observe (line 3) that a new loop has been introduced enclosing the original
loop. The new loop runs over the original iteration space in blocks of size B. Its index variable
sets the start and end of the new inner loop (line 4), which now iterates over each block. As a
result of applying strip-mining, the iterations will execute in consecutive blocks of size B indexed
by i . The limit min( i + B, N) ensures that the new code does not run extra iterations.

As all dependencies of a program are lexicographically positive, strip-mining is always safe to
apply [147].
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1 double a[N][N], b[N][N], c[N][N];

2

3 for (int i = 1; i < N; i++)

4 for (int j = 1; j < N; j++)

5 for (int k = 1; k < N; k++)

6 c[i][j] = c[i][j] + a[i][k] * b[k][j];

Listing 3.18: Square matrices product, example of a perfect loop nest

1 double a[N][N], b[N][N], c[N][N];

2

3 for (int _i_ = 1; _i_ < N; _i_+= B)

4 for (int i = _i_; i < min(N, _i_ + B); i++)

5 for (int _j_ = 1; _j_ < N; _j_+= B)

6 for (int j = _j_; j < min(N, _j_ + B); j++)

7 for (int _k_ = 1; _k_ < N; _k_+= B)

8 for (int k = _k_; k < min(N, _k_ + B); k++)

9 c[i][j] = c[i][j] + a[i][k] * b[k][j];

Listing 3.19: Square matrices product with its loops incorrectly ordered after applying strip-mining

3.5.3.4 Loop Tiling

Loop tiling, also known as loop blocking was promoted by Francois Irigoin and Michael Wolfe
at the end of the 80s [144, 145]. It is one of the most important iteration reordering loop
optimizations. From loop tiling it is possible to extract beneficial properties for both parallel
machines and for multiple level cache monoprocessors exposing space locality [147]. Loop tiling
includes those loop otimizations which reorder its iteration space. Some examples of these are
loop interchange, loop skewing, or strip-mining among others. All these transformations change
the order in which iterations are executed, while preserving the order of the statements into each
iteration.

YaCF implements square or rectangular tiling [147]. It is named rectangular from the shape
of the blocks that run the iteration space when loop tiling is applied to a two-dimensional space
(two nested loops). Formally, the name is kept for higher dimensions as the geometric properties
of the rectangles are also preserved.

In the following paragraphs we briefly describe the algorithm that YaCF features for automatic
rectangular tiling (for further reading, see also [131]).

Listing 3.18 shows a series of three perfectly nested loops. It corresponds to a square matrices
multiplication code, and provides a good example of how to obtain the same benefits as those
mentioned with strip-mining in Section 3.5.3.3, but now applied to nested loops.

The first optimization used by loop tiling is strip-mining. By applying strip-mining to each
of the loops in Listing 3.18 (lines 3, 4 and 5) three new loops are created as shown in Listing
3.19 (lines 3, 5 and 7) and the bounds of the original loops (lines 4, 6, and 8) are changed as
described in Section 3.5.3.3 .

85



3.5 The MiddleEnd Yet Another Compiler Framework

1 double a[N][N], b[N][N], c[N][N];

2

3 for (int _i_ = 1; _i_ < N; _i_+= B)

4 for (int _j_ = 1; _j_ < N; _j_+= B)

5 for (int _k_ = 1; _k_ < N; _k_+= B)

6 for (int i = _i_; i < min(N, _i_+B); i++)

7 for (int j = _j_; j < min(N, _j_+B); j++)

8 for (int k = _k_; k < min(N, _k_+B); k++)

9 c[i][j] = c[i][j] + a[i][k] * b[k][j];

Listing 3.20: The effect of applying square loop tiling with tile size B to the code in Listing 3.18

So, strip-mining itself can produce a program for the matrix product using 6 loops. Never-
theless, the order in these loops is not correct for our purposes, as it does not correspond to
a matrix product algorithm with a blocked iteration space. Strip-mining itself does not split a
nested loop iteration space into strips.

The second transformation we are going to apply is loop interchange. To obtain a correct
code, we need to move the new loops generated by strip-mining outwards, and move the
original loops inwards.

This is achieved with loop interchange and the resulting code is shown in Listing 3.20.
Note that it is safe to apply loop interchange for the matrix product code, but it is not for

many other useful programs including some partial differential equation methods.

Algorithm 3.4 Automatic loop tiling in YaCF

function LoopTilingMutator(ast, indexes, sizes)
for i = 0 to length(indexes)− 2 do

loop← LoopFilter(ast, indexes[i])
LoopStripMiningMutator(loop, sizes[i])
LoopInterchangeMutator(loop, indexes[i], indexes[i + 1])

end for
loop← LoopFilter(ast, indexes[−1])
LoopStripMiningMutator(loop, sizes[−1])
for i = length(indexes)− 2 to 0 do

LoopInterchangeMutator(ast, indexes[i + 1], indexes[i])
end for

end function

Algorithm 3.4 describes the implementation of tiling by YaCF. The algorithm receives the
AST subtree corresponding to the outermost loop, an index list of the loops to be processed,
and the block sizes to apply when processing each loop in the former list. It is worth noticing
that it is common for sizes to be different to each loop.
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1 ...

2 for (int i = 0; i < N ; i++)

3 if (b[i] != 0)

4 a[i] = b[i] * c[i]

5 else

6 break;

7 ...

Listing 3.21: An example of a loop body with a break statement

The reader may observe that it is possible to obtain a similar code to that shown in Listing
3.20 by repeatedly applying strip-mining and loop-interchange over each nested loop in the code
shown in Listing 3.18. Repeatedly applying strip-mining and loop-interchange corresponds to
the first for loop and the last LoopStripMiningMutator in Algorithm 3.4.

Now, the only thing that remains to be done is reorder the series of inner loops to restore
their original order. To obtain the final code (Listing 3.20) it is enough to apply several
LoopInterchangeMutator transformations to the loop list inversely. That process is performed by
the second loop in Algorithm 3.4.

3.5.4 The Outliner

To facilitate certain transformations or specific analysis phases, it is easier to extract a piece of
code from a code block to an external function, a process which is called Outlining. Although
this might be seen as a trivial task, it is critical to take into account several side effects that
might occur while applying this code motion technique. For example, in C, any variable used
inside a block whose value is modified has to be passed by reference. This ensures that the value
modified in the function is the original one and not a copy residing in the stack.

It is also important to take into account potential breaks in the code. For example, suppose
that we want to extract the body of the loop in Listing 3.21 to an external function (i.e. each
iteration of the loop will call the outlined function). This will generate the code in 3.22. However,
this code is not correct as the break statement is not inside a for loop. The compiler has to
analyse the loop and provide a proper replacement to keep the original code working. In this
case, we have decided to replace the break statements by return statements with a known
value, and to check inside the loop body for that return value.

More complex situations can arise when labels and jump statements (i.e. GOTO statements)
are involved. For the sake of simplicity, in the current section we will assume that the code
segment that we want to outline is Single entry - Single exit block (SESE).

87



3.6 The Backend Yet Another Compiler Framework

1 void outlined_function(int * a, int * b, int * c, int i)

2 {

3 if (b[i] != 0)

4 a[i] = b[i] * c[i];

5 else

6 break;

7 }

8 ...

9 for (int i = 0; i < N ; i++)

10 outlined_function(a,b,c,i);

Listing 3.22: Incorrect extraction of the loop body. The break statement is no longer syntactically
correct.

The class OutlinerMutator from the package MiddleEnd.Functions implements a func-
tion outliner. This Mutator creates a new function, called the outlined function. The body of
the outlined function will be a copy the block statement that we want to outline. It also replaces
the original (passed by reference) block in the IR by a function call to the previously created
outlined function. The Mutator returns a reference to this new call inside the original tree, and
the method get outlined function can be used to retrieve the outlined function. The Mutator
has been designed so the outlined function can be written onto an external file, and compiled
independently. The outlined function can be injected on the original AST, or not, depending on
the instance parameters.

It is also possible to retrieve only the function definition, or the type declarations required to
define the variables used inside the function body. Constructor-time parameters enable developers
to instruct the Mutator to not replace the original code and just extract the outlined function,
or to change the name of the outlined function.

To avoid replacing all occurrences of the variables in the outlined function by references to the
parameters, the Mutator takes advantage of the scope nesting to create new local replacements
of the parameter variables. However, this changes the default C pass-by-reference parameter
passing scheme to a copy-and-restore, so this transformation can produce side-effects in some
situations, particularly when using threads. Instead of using this transformation, it is possible to
use a traditional replacement of all occurences of R/W parameters by references by changing a
parameter in the constructor. The final decision is left up to the YaCF user.

3.6 The Backend

The Backend package contains transformations whose destination is a programming language.
These transformations usually operate over the IR and then use a Writer to generate a final
code.
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All subpackages under this package follow the same structure. The subpackage is named after
the destination target or platform (for example, a back end named Cuda will generate CUDA
code). If the back end is meant to be run alone (it is not part of another), it has to contain
a Runner class that specifies how to create the destination code. Also, inside this subpackage,
there must be a Filter directory containing the Filters used, a Mutators directory with the
Mutators used, and a Writers directory if any particular Writer is required. A test directory
may appear also, containing testing scripts for each back end implementation. Documentation
of the back end has to be available on the init file of the package. If the back-end uses any
template file, it must be stored under the Template directory.

A set of common classes for Visitors, Filters and Transformers are stored in the Common
sub-package. These common classes have been already described in Section 3.1. Commonly
used Filters are defined in the GenericVistiors module whereas common used Mutators are
defined in the AstSupport module.

3.6.1 The Template Subsystem

When working in StS transformations, there are situations where the back-end writer has to fill
a pattern written in the destination language with parameters of the current code.

Using the IR manipulation tools, the process will require several insertions and replacements
of nodes, together with manually created instances of nodes to recreate the tree. If the parameters
of the library change at any point, or we want to implement additional operations, it would be
necessary to re-write most of the code as the new IR will be different.

To facilitate the manipulation of the IR, it is possible to create a template. A template is
a Python string with placeholders for variables, indicated by ${...}$. The template engine
(Mako [93] in the current version of YaCF) will replace these placeholders with the values of the
variables at runtime, and generate a new string with the information. This string can be parsed
with the parse snippet method of the Mutator class, generating a new IR.

An example of a template is shown in Listing 3.23. Placeholders can also be used to insert raw
Python code, that will be evaluated when parsing the template (see Line 4). Python functions
used inside templates can be declared on external modules (Line 2 for the import, Line 7 for
the usage). Some commonly used functions are available on the Functions module of the
TemplateEngine directory. Template comments (i.e. code that will not be evaluated by
the template engine and that will not appear on the destination code) can be specified using
double hash (##) before the text (Line 6). More complex control structures, like if/else or for
statements (Line 5) are available. These loop control structures enable back-end writers to
express complex code patterns in the source code in a clear and readable way.

To parse a template, the user has to specify all the variables of the template as it is shown
in Listing 3.24.

The name and show parameters are used for debugging purposes. In the event of an error
parsing the template, an exception is raised. If the show parameter is set to True, the template
is also printed to the standard output.

The code generated by the template must be syntactically correct thus, attention is required
in situations where the snippet might not form a valid C code.
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1 <%

2 from Backends.Common.TemplateEngine.Functions import decl_of_id

3 %>

4 int ${functionName} (${’,’.join(loop_parameters[’inside_vars’])}) {

5 ## This function is just a test

6 %for elem in loop_parameters[’inside_vars’]:

7 ${decl_of_id(elem)}

8 %endfor

9

10 }

Listing 3.23: Example of template mixing C and Python code with the template tags

1 self.parse_snippet(template_code, {’reduction_vars’ : reduction_vars,

2 ’shared_vars’ : shared_vars}, name = ’Retrieve’, show = False)

Listing 3.24: Calling the parse snippet from the Mutator to generate the AST of the code after
filling the template

3.6.2 The DOT Back end

To facilitate understanding the IR representation, and to alleviate the development effort when
creating source transformations, it is necessary to provide developers with tools to represent the
IR at any point. A DOT back end has been implemented to facilitate this task.

DOT [132] is a plain text graph description language. The language allow to describe graphs
that both humans and computer programs can use.

The DOT back end contains a Visitor which creates a representation of the graph in the
DOT language. Nodes in the DOT graph are nodes of the DOT language. Arcs in the DOT
graph represent the relation between IR nodes (which node contains which one).

This back-end is used by the DOTDebugTool to create snapshots of the translation process
and debug the internal IR. However, it can be used standalone to print the results of a StS
translation to a file, or as part of any other tool. Listing 3.25 shows part of the output of the
DOT commands used to generate the Figure 3.3.

3.6.3 The Writer Classes

A Writer is a class implementing a Visitor pattern which traverses the IR generating a source
code. This source code could be the original, like in a C-to-C translator, or a different one.
Writers can be applied to any AST subtree, although some implementations of the Writer might
require features only available on augmented IR.

As is typical in other classes following the Visitor pattern, each method visits an element of
the AST/IR, and performs an action.
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1 digraph G {

2 FileAST__DOT__0[label = "FileAST"];

3 FileAST__DOT__0 [shape=box, color=red, style=filled];

4 FuncDef__DOT__1[label = "FuncDef"];

5 FileAST__DOT__0-> FuncDef__DOT__1[label = "ext"];

6 Compound__DOT__2[label = "Compound"];

7 FuncDef__DOT__1-> Compound__DOT__2[label = "body"];

8 i_3[label = "i"];

9 Compound__DOT__2-> i_3[label = "block_items"];

10 TypeDecl__DOT__4[label = "TypeDecl"];

11 i_3-> TypeDecl__DOT__4[label = "type"];

12 int_5[label = "int"];

13 TypeDecl__DOT__4-> int_5[label = "type"];

14 int_5-> int[label = "names"];

15 n_7[label = "n"];

16 Compound__DOT__2-> n_7[label = "block_items"];

17 Constant__DOT__8[label = "Constant"];

18 n_7-> Constant__DOT__8[label = "init"];

19 TypeDecl__DOT__9[label = "TypeDecl"];

20 n_7-> TypeDecl__DOT__9[label = "type"];

21 TypeDecl__DOT__9-> int[label = "type"];

22 pi_11[label = "pi"];

23 Compound__DOT__2-> pi_11[label = "block_items"];

24 TypeDecl__DOT__12[label = "TypeDecl"];

25 pi_11-> TypeDecl__DOT__12[label = "type"];

26 double_13[label = "double"];

27 TypeDecl__DOT__12-> double_13[label = "type"];

28 double_13-> double[label = "names"];

29 sum_15[label = "sum"];

30 Compound__DOT__2-> sum_15[label = "block_items"];

31 TypeDecl__DOT__16[label = "TypeDecl"];

32 sum_15-> TypeDecl__DOT__16[label = "type"];

33 TypeDecl__DOT__16-> double[label = "type"];

34 ...

Listing 3.25: Example of the DOT Back end output
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3.6.3.1 OffsetWriter

When unparsing codes (i.e. recovering the original source from the IR), it is interesting to recover
not only the source code but some part of the original indenting, or at least make a best-effort
attempt to generate readable code. To accomplish this task, a basic class from where writers can
be inherited is available. OffsetWriter offers basic features to write strings to a file descriptor
(standard output by default) providing an offset value. When writing the output, offset number
of spaces will be prepended to the string.

3.6.3.2 C99Writer

C99Writer unparses a C99 [96] IR back to C99 code. Some considerations have to be taken into
account:

• Comments are not restored as they are not in the IR.

• Original parenthesis are lost during parsing, Writer has its own rules to apply parenthesis
to expressions.

• It does not handle pragma statements.

3.6.3.3 OmpWriter

OmpWriter unparses a C99 IR with OpenMP [108] annotations back to the original. The
considerations are the same as those mentioned above, except that any OpenMP pragma is
printed conforming 3.0 revision of the standard ([107]).

3.6.4 The CUDA Back end

The CUDA module features a set of Mutators capable of generating CUDA code from OpenMP
sources. See Section 5.2 for details. In the following paragraphs we focus on the components
that are currently supported: The Kernelize and the Platform classes. In order to extract and
write a CUDA kernel from a Loop first the Loop parameters need to be extracted using the
ParametrizeLoopTool as described in Section 3.5.2.

3.6.4.1 Platform

The variables used in the loop have to be classified to decide its location in the device memory.
Table 3.2 shows how input variables are transformed.

The class Platform also performs several analysis over the kernel code to facilitate optimization
on further phases. Three parameters are extracted from the analysis: Number of Flops, Number
of Memory Accesses and Divergence factor.
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Kernel Parameter Value
Kernel Parameters All variables used in the kernel except from register variables

Reduction Variables Variables in the reduction list of the loop parameters

Registers All variables declared inside the kernel

Code Loop body

Table 3.2: Placement of variables according to loop information

3.6.4.2 Kernelize

The Kernelize receives the parameters of the kernel (as returned by Platform) and writes the
final device kernel. Writing the kernel makes use of the Template Subsystem. Templates are
filled with the parameters. Some convenience functions are implemented on the template layer
to convert Symbols into different forms, such as declarations, parameters or pointers. These
handler functions, stored in Backends.Common.TemplateEngine.Functions work on
Symbol nodes and are able to make basic representation transformations on the template itself.
In addition to writing the kernel, Kernelize also calls the inlineCalledFunctions to ensure that
the functions called from the kernel are inlined and ensures that the only functions called but
not defined are native functions of the device (such as sqrt or exp). A configuration parameter
enables this method to replace the precise version of these functions by a less precise, but faster,
implementation on the device hardware. Kernelize uses separate kernels for different situations,
depending on the kind of kernel (1D, 2D or 3D kernels) or if there are reductions involved.

3.6.5 The OpenCL Back end

In a similar fashion to the CUDA Backend, the OpenCL back end implements the generation of
OpenCL code. The structure of the back end is the same. The Platform is just a placeholder
to call the CUDA version as the parameters required are the same. The Kernelize implements
OpenCL specific semantics using a different set of Templates for each different class of kernel.

3.7 Final Remarks

In this Chapter we have provided a detailed description of our StS tool: YaCF. The YaCF

tool has enabled us to fast-prototype languages, techniques and optimizations with very little
development effort on our part, and it has provided us with a steady learning curve. YaCF is not
a production-ready compiler. Transformations are not entirely safe and might generate incorrect
code. However, the tool suffices for a controlled research environment in which the developer is
focused on the features offered, rather than on its completeness.
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CHAPTER 4

The Frangollo Runtime

A significant amount of programming is required to handle the complexity of heterogeneous
platforms. Most of this effort is devoted to re-implementing several patterns such as initializing
devices, managing memory transfers, or loading the kernel code. Storing the instantiation of
those patterns into a library which can then be accessed by developers can greatly facilitate the
development effort.

Our implementation of such a pattern-storage library is called Frangollo. Frangollo acts
as an interface between the user (or an intelligent enough compiler) and an abstract accelerator
model. The library has a programmer-friendly interface for the most common usage patterns of
accelerators, and enables platform-independent code to be written. The platform on which the
model will be instantiated can be decided on at runtime, once a check has been carried out to
identify available devices.

Our aim has not been to completely reproduce a virtual machine for the accelerator. Our
intention is simply to provide an abstract layer across different accelerator platforms. It is the
responsibility of the programmer (or, once again, an intelligent enough compiler) to provide the
source of the kernel. Frangollo supports different implementations for the same kernel, and
will choose the appropriate kernel source file for the destination platform.

4.1 The Frangollo Platform Model

The Frangollo Platform Model is inspired by the OpenCL Programming Model. Instead of
focusing on the devices and their low-level details, the Frangollo Platform Model offers a
generic approach to the concept of an accelerator, and includes some additional rules for handling
memory coherence between the Host and the device(s). Our intention with this platform model
is to facilitate the understanding of the runtime and to provide a set of rules to coherently
handle host+accelerator programs, rather to present a new programming paradigm for these
architectures. From this point on, we shall refer to any program which conforms to this model
as a Frangollo program.
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4.1.1 Components

We can define an accelerator as a special-purpose co-processor attached to a Host CPU onto
which the Host can offload data and compute kernels for the purpose of performing compute-
intensive calculations. Offloading a code implies running a function of the main program into an
accelerator then returning its results to the Host.

A Platform is a set of one or more accelerator devices connected to a Host.
Programming languages reference data in the source code using variables. From now on, we

will refer indistinctly to data and variables.

4.1.2 Execution

Programs running on the Platform may contain portions of code set to be offloaded to the
accelerator.

Usually, accelerators do not share the same instruction set as the Host CPU. The code to be
offloaded needs to be written in the native language of the accelerator. Separate source codes
are required for the Host CPU and the offloaded code.

In addition, data is not shared across devices on the platform. The offloaded code and the
data required to execute it define a Context. Once a host program instantiates a Context it is
possible to register data on it. While the Context is active, data is available for the offloaded
code (kernel). Contexts may be nested. When a Context is created inside another Context
they share information about the current Platform. The inner Context has access to its kernels
and registered data. It can also access the kernels and registered data of any ancestors. The
ancestors of the new Context have no access to the inner kernel or registered data. Only one
active Context is allowed at any given instant. Different host threads may or may not share the
active Context, however, this will be dependent on the implementation.

4.1.3 Parallelism

We can define a thread of an accelerator as the the smallest sequence of programmed instructions
that can be managed independently by an accelerator. Accelerators support fine-grain parallelism
using several threads concurrently.

An accelerator has many processing units. Each processing unit is capable of executing a
number of threads in parallel. Processing units run in parallel, so different groups of threads can
be executed simultaneously in different processing units.

It is possible to synchronize threads inside a group, but not all accelerators support synchro-
nization across different processing units.

Hosts may have several accelerator devices attached. Synchronization across separate devices
inside a Platform is not supported by hardware. The Host is responsible of managing device
coordination and orchestrating the kernel execution.

4.1.4 Memory Model

In a similar fashion to the OpenCL memory model (see Chapter 2) we identify four types of
memories:
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• Global memory.

• Local memory.

• Private memory.

• Constant memory.

Global memory is available to all threads in the device but at low speed. Local memory is
available to all threads in a group, but cannot be allocated nor accessed from the Host, only
from the device. Each thread has its own private memory.

4.1.5 Memory coherence

Host and devices inside a platform do not share address spaces. In order to copy data from the
Host to a device or from a device to another device, a memory transfer through a slow bus is
required.

To execute the offloaded code both the Host and the device(s) need to share the data. It
is not possible to copy the entire memory of the Host to the device due to time and space
constrains. Any data that could be referenced from an offloaded region needs to be registered.
Registered data is available in the device when the offloaded code is executed on it (Condition
1). The Host can transfer the data at any moment using any method it has available as long as
it satisfies this condition.

Data registered in a Context may have consistency constrains. Data whose initial value is
required inside the kernel has an INPUT constrain. If the data is required in the Host after the
Context is finished it has an OUTPUT constrain. If data has both requirements it has an INOUT
constraint. This also applies to variables registered inside nested Contexts.

Data registered on a Context needs to be allocated on all devices of the Platform (Condition
2). It also has to be freed from all devices of the platform after the Context ceases its existence.

We can map the correlation between host and device variables in a graph where the nodes
represent the data and the edges represents consistency relation (i.e. if one is updated the
other has to be updated as well). A non-directed correlation graph (NCG) represents the overall
relation among all the variables in the platform. If a variable in a device is modified, all related
variables need to be updated as well.

According to the Context constraints and Condition 1 we can define at least two situations
in which operations have to be executed in order to keep the coherence of the data across all
the variables: Kernel execution and Context creation/destruction.

The operations required to keep the coherence in both situations can be mapped in a
Directed Correlation Graph (DCG). The nodes of the DCG represents data (variables) that
have been allocated to a particular level of the device from the Platform. Nodes are named
according to where the data allocated using the following convention:

• H nodes represent memory allocated on the Host.

• D nodes represent memory allocated on a device.

• Dg represents memory allocated on the global memory of the device.
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• Dl represents memory allocated on the local memory of the device.

• Dp represents memory allocated on the private memory of the device.

By default, unless stated otherwise, when we use D we are referring to Dg. To distinguish two
different set of data, a letter may also be used to name the node. For example, AH is the Host
data named A, or just variable A in the Host. AD1 will refer to variable A in device 1. Again, for
simplicity, AH can be written just as A.

We distinguish two different types of DCG. A pre-DCG is formed by the operations required
to keep the coherence before a kernel execution or a Context creation/destruction. The arcs of
the pre-DCG represent the operations required to keep the coherence of the data across two
nodes. 1

Given two nodes, H and D, an arc from H to D (H → D) represents an operation which
takes the current value from H and writes its value on D. This is called a copy in operation to
accommodate the nomenclature to the common concepts used in accelerators. It is possible to
copy in to another device D1→ D2 or from global memory to private memory Dg → Dp. An
arc such as H → Dp is not valid as the Host cannot access private memory directly. However, it
is possible to chain arcs H → Dg, Dg → Dp .

A post-DCG is formed by the operations required to keep coherence after kernel execution
or Context creation/destruction. In this case arcs from D to H (D → H) are called copy out
operations.

If we do not take into account the constraints restrictions of the Context, the post-DCG
would be the transpose of the pre-DCG. For each copy in (H → D) in the pre-DCG, the
post-DCG would feature an opposite copy out (D → H) operation. However, the existence of
constraints on the Context breaks the symmetry of the pre- and post-DCGs because some arcs
may be unnecessary.

Figure 4.1 shows a simple action in which a registered host variable is also allocated in the
device.

Figure 4.1: Basic pre-DCG representing a variable in the device that needs to be updated with
data from the Host

1Using three different graphs to represent what basically is a set of memory copying operations might be seen
as useless. However these abstractions are needed when we extend the concept of operations in the following
paragraphs.
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A more complex example involving two nested Contexts is detailed in Figure 4.2. This time,
the Host instantiates a Context and registers the variable A with INOUT directionality. This
updates the correlation graph with two additional nodes, A which represents the data in the
Host and AD which represents the data in the device (to satisfy Condition 2, variables have to
exist on all devices of the platform). Then the Host instantiates a new nested Context and a new
variable is registered with OUTPUT constraints. This updates the correlation graph by adding
two additional nodes, B and BD. Before executing the kernel, the pre-DCG is formed with the
required operations to satisfy Condition 1 (data has to be available for kernel execution). In
this state only variables related to A need to be updated (B has OUTPUT constraints only),
thus the graph contains AD → A. After kernel execution the post-DCG graph is empty. At this
point, no operations are required to satisfy conditions or constraints. When the Host destroys
the Context, its memory needs to be updated with the information on the device to satisfy the
OUTPUT constraint. Then the post-DCG contains BD → B. Since the Context is destroyed,
the correlation graph no longer shows B or BD.

Next, a kernel using the variable A is executed. This time data is already available on the
device, so both pre- and post-DCG are empty. Finally, the Host destroys the remaining Context,
so A needs to be de-allocated. To satisfy constraints, the post-DCG shows an operation from
the device to the Host (AD → AD).

It is possible for the Host CPU to modify the data after it has been registered. This situation
forces the update of the pre-DCG , but does not imply an immediate transfer as long as the
system guarantees Condition 1.

4.1.6 Composing operations

It is possible to elaborate more complex operations for transferring data across variables in the
model. In the Message Passing Model (MPI, Chapter 2) several collective operations are defined,
such as scatter, gather, reduction or broadcast.

We can define similar operations in our memory model. Given nodes H , D1 and D2 , a
scatter operation from H to D1 and D2 will partition the variable in H into two subsets, H1
and H2. Each subset will be transferred to each device (adding the arcs H1 → D1 H2 → D2)
The opposite of this scatter operation is a gather operation: from the data in nodes D1 and D2
of the graph we compose the value of the data H.

A reduction operation is similar to the gather, but instead of composing H with consecutive
portions of D1 and D2, the value of H will be the result of repeatedly applying an operation
f (H, x) = H ? x with x = D1, D2.

Finally, for convenience, we define a trivial broadcast operation, where H → D1 and
H → D2.

To summarize all operations, Figure 4.3 shows how a variable is reduced on the Host after
expanding its value on the accelerator’s private memory.

To expand the value to the accelerator private memory, the kernel must create a private
variable for each thread and copy the value from the global memory. After finishing the execution,
the kernel will copy the value of the private variable to the global memory.
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Figure 4.2: Evolution of the three graphs (correlation, pre- and post- graphs) across an example
program execution on a platform with a Host and an attached device
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Figure 4.3: Evolution of the three graphs (correlation, pre- and post- graphs) across a Host with
a device attached performing a reduction on its private memory
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4.1.7 Applying the Frangollo Platform Model

The abstract model could be instantiated on a wide variety of devices. FPGAs can be used to
offload parts of the code, but they require the data to be transferred into the board in order to
operate. Other special-purpose devices, such as SSL accelerators, can also fit the pattern.

The most common accelerator nowadays is the GPU. The internal GPU architecture has
been described in Chapter 2. The parallelism model of the GPU fits the platform model nicely.
GPU kernels are sent to the device in assembly. Kernels run on a grid formed by a set of blocks of
threads. GPU threads run in parallel in groups called blocks. Blocks are decomposed into warps
and executed in the processing units. In CUDA, it is possible to perform synchronization inside a
block, but not across blocks. Depending on the hardware this may be possible on OpenCL. This
may be possible on OpenCL, but it will depend on the hardware being used.

The execution model is simple: prior to the offload of a code to the GPU, the Context is
created. Both in CUDA and OpenCL this involves device discovery and initialization. Several
devices might be attached to the same Host, and both PMs support handling separate devices.
Devices can communicate using memory transfer operations.

Basic copy in and copy out operations can be implemented using the low level memory
transfer operations of the device.

It is also possible to instantiate the model on the CPU itself. Using the OpenCL platform it
is possible to transparently use a GPU-like interface to use the CPU’s vector units. In this case
the global memory could be the Host memory, as the accelerator shares memory space with the
Host. Despite the fact that invoking a memory transfer might not be necessary, transfers can be
seen as synchronization points between the Host and the device. Implementing a copy in or
copy out on a Host’s memory may be as easy as performing an empty operation. Composite
operations, such as reductions, can be performed using temporary storage and then copied to
the original positions.

4.2 Software Architecture

Frangollo uses a three layer approach to implement its platform model. The general structure
of Frangollo is shown in Figure 4.4.

The outermost layer is presented to the user (interface-layer), whereas the innermost one
(device-layer) encapsulates device-specific code. The intermediate layer contains high-level and
logical operations with a generic representation of the devices. This layer implements most of
the logic of the Frangollo platform model. For example, it is possible to copy a variable into
another one without bothering with device-implementation details.

4.2.1 Abstract Layer

The Abstract Layer implements the Frangollo Platform model.
When the runtime is loaded, it creates a singleton instance of the System. The constructor

of this class performs the following actions: it discovers the available platforms and devices;
it creates the appropriate data structures to handle them; and it also looks for environment
variables that might affect runtime behaviour.
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Figure 4.4: Overview of Frangollo layers

4.2.1.1 Context

The class Context implements the model Context. An important attribute of this class is the
NCG, the relation between variables in the Host and the device. The NCG is implemented using
an STL associative container, ensuring that search operations complete in O(log(n)). Each
element of the associative container is a pair. The first element (key) is the address of the data
in the Host. The second element is a list of pointers to structures managing the variables in
other devices. These structures are instances of derivates of the abstract Var class. The Context
class features methods to look for variable correspondence or ensure synchronization between
the Host and the devices. Handling of nested Contexts is implemented through scope subsystem
to reduce overhead. Only one instance of the Context is active at any given time. An instance of
class Context contains a property called scope, implemented as an STL map with pairs of level
and variable.

If a new instance is requested while another is running, it returns a pointer to the existing
one and adds a new level to the scope property. All the registered variables are also added to
this level of the scope map.

When the nested Context is finished, either calling the internal method decreaseScope or
the class destructor, all the variables registered on it are removed. When variables are removed,
its constraints are checked and enforced, thus the rules for nested Contexts are preserved.

Some other relevant methods of the class Context:

• setName and getName: Sets or retrieves the name of the Context.
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• addDevice: Adds a device to the Context.

• removeVar(Var *): Completely removes a variable from the Context. This forces checking
its constraints, thus, might trigger copy in or copy out operations.

4.2.1.2 Variables

Var class defines the basic operations shared by all device implementations:

• allocate / deallocate : Allocates or deallocates the variable.

• copy in(Var *) : Copies the value of the variable passed as parameter to the current
variable.

• copy out(Var *) : Copies the value of the current variable to the variable passed as
parameter.

This class also defines the properties shared by all variables, such as their size, which device
they are allocated to, their constraints and their shape. The shape of the variable allows the
runtime to distinguish scalars from arrays. Non-contiguous arrays are also supported, allowing
the runtime to use specific functions to improve performance. An important internal property of
Var is the status. Any instance of Var is in one of the following status:

• NULL : Variable has not been allocated.

• EMPTY : Variable has been allocated but no data has been transferred or written.

• COPY IN : Variable is currently being copied in.

• COPY OUT : Variable is currently being copied out.

• READY : Variable is ready to be used.

• INUSE : Variable is currently beign used by a kernel.

• FREED : Variable has been freed.

Figure 4.5 shows how the status of a variable changes during execution. Variables can progress
directly from EMPTY to READY directly if they have only OUTPUT constraints.

Note that, although it is possible for variables to progress from EMPTY to COPYOUT, this might
indicate an error in the program. Program correctness is the responsibility of the programmer,
and the runtime cannot check if the constraints or the copy operations are correct with respect
to the non-offloaded part of the code.

The abstract layer relies on the device layer for implementation details. The logic of the model
is implemented in a platform-independent fashion. An example of this platform-independent
programming style is shown in Listing 4.1. This code receives a variable from the Host, looks
for a correspondent variable in the device and updates it. If the variable does not exist, it is
created. Notice that we ask for the current device to return a pointer to a new variable, but the
programmer does not need to know which platform s/he is working on.
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Figure 4.5: Transition state diagram of a Var instance

1 void Context::updateHostVar(HostVar * hostVar) {

2 /* 1. Find equivalent device Var */

3 CorrMap::iterator iter;

4 Var * d_a = NULL;

5 if (iter == _currentMap.end()) {

6 /* 2. Create device var if does not exist */

7 d_a = this->getDevice()->createVar();

8 d_a->setSize(hostVar->getSize());

9 d_a->alloc();

10 } else { d_a = iter->second; }

11 /* 3. Copy contents of hostVar to device Var if */

12 d_a->copy_in(hostVar);

13 }

Listing 4.1: Platform-independent update of a host variable
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4.2.1.3 Devices

The Device class represents a hardware device. Generic operations of devices are defined in this
abstract class. The most relevant of these operations are:

• kernel launch(Context, Name, param list, dimensions): A kernel with the given name
defined in the given Context is executed on this device with the given parameter list. The
overall dimensions of the kernel represent the total number of threads required to execute
the kernel. Dimensions are composed of three components (x, y, z), defining whether if
the kernel is one-dimensional, two-dimensional or three-dimensional.

• kernelPreload : Allows the device to prepare a kernel for subsequent execution. This includes:
loading the assembly, compiling the code and preparing the internal control data structures.
This operation allows to reduce the time of kernel execution particularly when the same
kernel is invoked several times.

• createVar : Returns a pointer to a variable in the device.

• barrier : The device will return the control from this method once it has finished all its
operations.

• estimateThreads(kInfo): Estimates a suitable number of threads to use in the kernel using
the given kernel information (kInfo).

Estimating the number of threads for a particular kernel is one of the key capabilities of
the runtime. An incorrect estimation of the number of threads for the device might hinder
performance, particularly when using GPU devices.

When a kernel is added to a Context using kernelPreload, information about it characteristics
is stored into the Device class. This information can be updated at any moment.

The method kernel launch, which previously invokes the low-level kernel launch, attempts to
estimate the number of threads using the method estimateThreads. Derived classes can replace
this method with a more accurate device-specific implementation.

The default device-independent method is based on the notion that the amount of time
required to perform a read or write operation to/from the global memory of a device is C
multiplied by the time required to perform a floating-point operation. Although this might be
imprecise (the time required for a floating-point operation greatly varies from device to device
and different operations might consume more or less time), this notion enable us to understand
if the memory or the floating-point operations are the critical bottleneck of the code.

From this notion we can compute the Intensity of a kernel as shown in Equation 4.1:

Int = C×
(

N f lop/Taccess
)

(4.1)

The constant C is called the Granularity Factor(GF). Each kernel has an associated intensity.
Devices can modify the value of GF according to its characteristics. An environment variable
(FRANGOLLO GRANULARITY FACTOR) is also available to users. The Intensity information it is
used to make a first estimation of the number of threads per block.
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Theoretically, a larger number of threads benefits parallel computation. However, in practise a
larger number of simultaneous threads accessing random positions in memory (non-coalescenced
memory access) decreases performance.

Using the Intensity information is possible to detect if the kernel contains a large number of
floating-point operations with respect to the number of memory access and whether it would
benefit from a larger number of threads. However, if the kernel features a large number of
memory access over the number of floating-point operations, it might equally benefit from a
lower number of threads. Therefore Equation 4.2 shows how the high-level estimator computes
an estimated number of threads based on the Intensity.

Thest = max(Thmax ∗ Int, Thmax) (4.2)

4.2.2 Device Layer

The components of this layer are device-specific and deal with low-level operations on the
hardware.

Figure 4.6 shows the class diagram of the CUDA component. The OpenCL component class
hierarchy features a similar design.

Figure 4.6: UML Diagram of the most relevant classes within the Frangollo runtime

As an example of how this abstract layer has been designed, Listing 4.2 features the imple-
mentation of the copy in method of the class OCLVar. Listing 4.2 features the implementation
of the copy in method of the class OCLVar, providing an example of how this abstract layer
has been designed.
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1 void OCLVar::copy_in (Var * var)

2 {

3 Var::pre_copy_in (var);

4 cl_int status;

5 cl_mem *p = (cl_mem *) this->getPtr ();

6 status = clEnqueueWriteBuffer (*_cmdQueue, *p,

7 BLOCKING_TRANSFERS?CL_TRUE:CL_FALSE, 0, var->getSize (),

8 var->getPtr (), 0, NULL, NULL);

9 if (status != CL_SUCCESS || *p == NULL)

10 {

11 STOP("clEnqueueWriteBuffer failed with a variable of size %d\n", this->getSize())

;

12 }

13 Var::post_copy_in (var);

14 }

Listing 4.2: copy in method from OCLVar

4.2.2.1 CUDA Component

The CUDA component implements the device-specific details of the abstract layer. It is im-
plemented using the CUDA Device API rather than using the most common CUDA Runtime
API in an attempt to exclusively use standard C/C++ code. CudaDevice class, derived from
Device, represents a GPU device with CUDA support. It implements the abstract methods plus
the following device-specific methods:

• loadPtx(name): Loads a PTX assembly file with the given name and creates a kernel
function structure.

• computeOccupancy(numRegs,nThreads,shMem): Computes the occupancy achieved in
the current CUDA architecture for a kernel with the given characteristics. Equations to
compute the occupancy have been extracted [102].

• maximizeOccupancy(numRegs,nThreads,shMem): Using the given parameters to feed
the previously defined function, it attempts to find a suitable number of threads to maximize
the occupancy rate.

The value from the generic thread estimator is used to feed the initial value of the maxi-
mizeOccupancy, whose pseudo code is shown in 4.1.

4.2.2.2 OpenCL component

The OpenCL component is implemented using the C interface of the language, and it features a
similar structure to the CUDA component.
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Algorithm 4.1 Pseudo-code of maximizeOccupancy

function maximizeOccupancy(Thest, Regused, Shmemused)
for i = (Thest/ThWarp)→ (Thmax/ThWarp) do

tmp← computeOccupancy(i, Regused, Shmemused)
optimal ← max(tmp, optimal)
if optimal > MAXOCCUPANCY then

break
end if

end for
return optimal

end function

OpenCL also supports the usage of map and unmap operations instead of traditional memory
transfers. This enables the device to directly access to memory regions of the Host CPU. Two
situations are detected by the component at runtime, which triggers this optimization: (1)
whether the accelerator is a CPU, for example, when using the Intel OpenCL platform or (2)
whether the accelerator is a GPU but it has support for pinned memory. Users can disable this
behaviour using the appropriate flag in the configure script.

4.2.2.3 Reductions in CUDA and OpenCL

Both CUDA and OpenCL components implement support for reduction variables as defined
in the Frangollo Platform Model. When a variable is registered it is possible to mark it as
a reduction variable. When a kernel performing the reduction is invoked, the parameter list
contains a flag indicating the reduction operation. Currently supported operations are: Addition,
Subtraction and Multiplication. Other operations can easily be implemented if required.

Reduction variables assume that the kernel stores per-thread copies of the reduction in a
global memory array. The copy in of a reduction var is just an empty method, but the copy out

method calls an optimised reduction kernel to reduce all the per-thread private variables into the
final scalar result. In OpenCL two separate kernels are available - one for GPU and the other for
CPU - each of which is optimised for one architecture or the other. The rules of the Frangollo

platform model ensure that the value of the reduction var will be available when requested. The
reduction kernel is executed asynchronously from the CPU.

4.2.3 Interface Layer

The interface layer provides functions and subroutines that interacts with the rest of the library
infrastructure. Components of this layer are exposed to the user, or can be used as an interface
to other languages.

4.2.3.1 C interface

All functions from this interface are prepended with FRG__. A basic example creating a Context,
registering a variable and launching a kernel is shown in 4.3
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1 int regionId = FRG__createContext("random", list);

2 FRG__setActiveContext(regionId);

3 FRG__registerVar((&a), regionId, SIZE, OPTIONS);

4 ...

5 FRG__launch_kernel (...)

6 ...

Listing 4.3: Example of calls to the Frangollo interface layer.

The most relevant functions are:

• registerVar: Registers a new host variable in the runtime

• launchKernel: Launches a kernel in the current Context.

• createContext: Creates a new Context.

• destroyContext: Finishes (destroy) a Context.

• setActiveContext: Sets the current active Context.

• getActiveContext: Returns the ID of the current active Context.

• barrier: Synchronizes Host and device(s).

• wait: Waits for an specific registered variable to be committed to the Host.

• printStats: Throws device-oriented stats to a file descriptor (stdout if no other
specified).

4.2.3.2 C++ Layer

Developers can interact with the runtime directly from C++. Including header files for the key
common components gives access to the abstract interface and to native pointers to the device
variables.

It is possible to use compiler-defined macros to write specific code, for example, to differentiate
situations where the underlying platform is only CUDA and as such a specific piece of code is
used instead of the generic layer. This enables developers to override default device operations
and write their own specific operations.

Listing 4.4 shows an example of code interacting directly with Frangollo in C++ (i.e. the
interface layer is not used).

The developer gets the list of available devices from the System singleton and prints the
available devices to the standard output. Using the HAVE_LIBOCL the developer knows if the
OpenCL framework has been enabled when configuring the library, and can use code that is
specific to the OpenCL environment. In this case, the developer is checking if the device is an
OpenCL device, and prints the hardware information to the screen.

Notice that no runtime initialization or destruction is required. The runtime automatically
loads when the program executes and it does the clean-up when finished.
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1 #include "Var.h"

2 #include "System.h"

3 #include "Region.h"

4 #include "Device.h"

5 #if HAVE_LIBOCL

6 #include <CL/cl.h>

7 #include "OCLDevice.h"

8 #endif

9 using namespace std;

10 int main () {

11 int size = 10;

12 /**** Extract system information */

13 std::vector<common::Device *> devList = common::system.getDeviceList();

14 std::vector<common::Device *>::iterator it = devList.begin();

15 std::cout << " Available Frangollo Devices: " << std::endl;

16 for (; it != devList.end(); it++)

17 std::cout << " --> " << (*it)->getDeviceString() << std::endl;

18 #if HAVE_LIBOCL

19 std::cout << " OpenCL Platform enabled " << std::endl;

20 it = devList.begin();

21 for (; it != devList.end(); it++)

22 if ((*it)->getDeviceString() == ocl::OCL_STRING) {

23 std::cout << "OpenCL device use the following HW component " << std::endl;

24 std::cout << "--> " << (*it)->getHWDeviceString() << std::endl;

25 }

26 #elif HAVE_LIBCUDA

27 std::cout << " CUDA specific code " << std::endl;

28 #else

29 std::cout << " Unknown platform " << std::endl;

30 #endif

31 }

Listing 4.4: Calling Frangollo from C++
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4.2.4 Overall Usage Workflow

A typical Frangollo execution workflow is shown in Figure 4.7 to illustrate how the different
components of Frangollo are glued together: green boxes represent actions from the main
program; yellow boxes contain operations performed by the runtime. When the program starts
the global system singleton is created, devices are discovered and environment variables are
loaded. At some point the main program will create a Context and instructs the runtime to
pre-load a series of kernels that will be executed inside. Kernels can be added at any time but the
sooner they are ready the less performance impact their load will have. When the main program
registers a variable it updates its correspondence map (implementing the Frangollo Platform
NCG). It detects that there is no equivalent variable in the device so a CudaVar instance A is
created. Then a new Context is created from the main program. As there is an existing Context,
a new scope level is increased. The new registered variable B will be allocated in the device, and
associated with the new scope. When the main program issues a kernel launch with the variables
A and B as parameters, variable A is copied in. In fact, the variable may have already been
copied in. The current implementation of the OpenCL component asynchronously copies the
variables at the moment they are registered so they are ready when the kernel is called. After the
kernel finishes its execution the program releases the nested Context, thus the runtime internally
decreases the scope level, which triggers an update of the B copy in the Host’s memory. As the
scope is no longer active and the value of the variable is updated in the Host we can deallocate
B. The program now invokes a kernel with the variable A. Variable A is already on the device
(and no update has been performed in the Host), thus no additional transfer is required. Finally
the Context is destroyed, the value of A updated in the Host and the program finishes. When
the program finishes, the global singleton is destroyed.
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Figure 4.7: Execution workflow of the Frangollo runtime through the same example as that
shown in Figure 4.2
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4.3 Final Remarks

This Chapter described both the Frangollo Platform Model and the Frangollo runtime, which
implements the model. The Frangollo Platform Model represents a set of rules to define the
synchronization points between the Host and the device, together with a global explanation
of an accelerator-based platform based in code-offloading. Although the current Frangollo

runtime implementation does not support handling multiple devices simultaneously, the model
allow us to easily support this situation. The Frangollo runtime is capable of handling several
different environments whilst displaying the same programming interface to the developer, no
matter which underlying platform is present. The only platform-specific information required by
Frangollo is the kernel, and that can be extracted from the original code either by the user or
by our YaCF driver.
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CHAPTER 5

Directive-based Code Generation

In this Chapter we focus our attention on the different approaches to directive-based programming
for heterogeneous systems that we have explored during our research. Sections are ordered
chronologically and contain references to associated refereed publications. Section 5.4 of this
Chapter is devoted to our most recent approach, accULL. We describe in detail how OpenACC
directives are translated to runtime calls for this particular case.

5.1 Extending llc to Support Hybrid MPI+OpenMP Program-
ming

In [121] we made an initial attempt to tackle the problem of automatic code generation for
hybrid architectures from high-level standard languages, focusing on multi-core processors.

Starting from an llc [52, 54] source code, we can generate hybrid MPI/OpenMP code that
is ready to be compiled in a hierarchical architecture using standard tools. An important feature
worth highlighting is that the generation process is quite simple and the code generated is as
efficient as ad-hoc implementations. Although there are different kinds of parallel constructs
implemented in llc we focused on the loop-oriented constructs.

The OTOSP computational model (see Chapter 2) guarantees that each processor owns
at least a part of the main dataset. We are therefore able to add a new level of parallelism by
simply re-parallelizing the annotated loop. The tags in the static patterns allow the injection of
this second parallel level to generate hybrid code. In this nested level, we use a shared memory
approach to parallelization, using pure OpenMP code for the llc-annotated loop. By extending
the original llCoMP compiler, we can generate the required OpenMP code to be injected from the
source code. Listing 5.1 shows how the local partition of work for each processor is parallelized
using OpenMP.

For the distribution between MPI and OpenMP threads, we chose to use one MPI process
per computation node, and shared memory threads between the cores of the node. According to
the classification in [114], we use a hybrid masteronly scheme. This allows us to take advantage
of the shared memory in the cores, in particular of their shared caches, thus increasing the
performance of the loops.
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1 ...

2 case LLC_BLOCK:

3 {

4 int llc_nP;

5 register int llc_i;

6 int llc_nT_save;

7 int llc_grp_save;

8 llc_var_reg_data llc_nc_result_list_save;

9

10 llc_nP = LLC_NUMPROCESSORS;

11 llc_grp_save = LLC_NAME;

12 LLC_NUMPROCESSORS = 1;

13 LLC_NAME = 0;

14 /* HYB: #pragma omp parallel for ... */

15 #pragma omp parallel for default(shared) private(i, x, llc_i) reduction(+:sum)

16 for(i = (0) + llc_F[llc_grp_save]; i < (0) + llc_F[llc_grp_save] + LLC_PROCSGRP(

llc_grp_save); i++) {

17 {

18 x = h * ((double) i - 0.5);

19 sum += f (x);

20 };

21 }

22 LLC_NAME = llc_grp_save;

23 LLC_NUMPROCESSORS = llc_nP;

24 }

25 ...

Listing 5.1: Snippet from the code generated by llCoMP-HYB

Since our target systems in this work are multi-node clusters, the most efficient approach
is to use one processor to communicate over the internode network, given a single processor’s
capability to use the entire network [113].

llCoMP generated code handles the MPI communications and synchronization of data
between nodes. This code would not be enhanced by using more than one CPU as it mainly
consists of synchronization routines.

Remarks
The possibility of taking advantage of emerging hardware architectures easily and without the

need of modifying the original code was appealing. Extending llc to support hierarchical architectures
such as multi-core clusters was successful and improved the performance of the pre-existing codes.
However while implementing this approach we realised that the original design of llCoMP was
not suitable for more complex hardware architectures, such as GPUs, where more complex StS
transformations were necessary.
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5.2 Generating CUDA Code from llc Sources

Our first approach to the generation of CUDA kernels was based on llc sources [122, 116, 117].
We implemented a YaCF driver capable of reading OpenMP + llc sources and generate CUDA
runtime code. The new driver was called llCoMP as in the original llc compiler. Our aim was
to replace the original llCoMP compiler with a driver written in YaCF .

Although llc supports the most common parallel patterns - forall, sections, pipelines and
task queues - [54, 49], the current version of the CUDA llCoMP driver only supports parallel
loops (forall). The current version of llCoMP support new extensions to the llc language that
are oriented towards loop optimizations.

Since all OpenMP directives and clauses are recognized by llCoMP, we can produce different
binaries (sequential or parallel) from a single source code depending on the compiler selected to
translate the target code produced by llCoMP. Figure 5.1 illustrates this process.

Figure 5.1: llc translation options

The YaCF drivers uses a set of Mutator classes to implement the StS transformation.
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1 #pragma omp target device(cuda) copy_in(w) copy(pi_llc)

2 #pragma omp parallel for private(i, local) reduction (+: pi_llc)

3 for (i = 0; i < N; i++)

4 {

5 local = (i + 0.5) * w;

6 pi_llc = pi_llc + 4.0 / (1.0 + local * local);

7 }

Listing 5.2: OpenMP implementation of π computation using the target extension.

This first approach to code generation did not use the runtime but instead directly generated
CUDA runtime API code. The driver created a new instance of the CUDATransformer class.
When applying the instance to the IR of the input file it ran a set of Mutators to look for
OpenMP directives. The OpenMP for constructs were converted into kernels using a primitive
Kernelize implementation. No compute intensity information was extracted. Memory transfers
relied entirely on the information provided by the user through the extended syntax proposed
in [17].

Listing 5.2 shows an example code showcasing the use of these extensions. Due to the
limitations of the compiler driver, scalars also needed to be annotated in order to properly outline
the function. These limitations have been lifted in new versions (particularly within the accULL

project).
After the transformations are applied, the IR is no longer an OpenMP code but a CUDA

equivalent.
Current implemented patterns are:

• Device initialization: Implements low-level tasks, such as the device identification or the
environment set up.

• Compute kernel invocation: The code to be parallelized is extracted from the llc source,
and the compiler injects it in its corresponding place.

• Reduction operation: Reductions are common parallel operations. A specific template has
been implemented in order to use an optimized reduction operation for each device.

• Environment cleaning.

The code in Listing 5.3, shows an example of a CUDA kernel template. llCoMP injects the
optimized code into the specified placeholders.
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1 (${kernel_parameters}) { ${loop_vars[0].declaration} ${loop_vars[0]} =

2 ${kernel_thread_distribution};

3 %for var in omp_clause.private_vars:

4 ${var.declaration} ${var};

5 %endfor

6 if (${loop.cond}) ${loop.stmt}; }

Listing 5.3: llCoMP template for a CUDA kernel

Remarks
The experience of porting OpenMP/llc sources to CUDA was successful from the point of

view of leveraging the development effort on the user side. Nevertheless, porting a shared-memory
oriented PM such as OpenMP to a programming model oriented towards a different architecture was
not completely satisfying from the point of view of performance. In OpenMP the memory is assumed
to be coherent, i.e. all threads share the same view of the memory. If we limit the transformation
of the source code to the parallel for directive we can translate nearly 1:1 of the semantics of
both PMs. More complex situations are, however, not easy to translate. For example, situations
involving parallel directives spawning a set of threads and then using the omp get thread num

to manually distribute the load across threads. In addition, OpenMP lacked syntax to handle the
separate address spaces. Despite using the syntax of [17] for this purpose we realised that porting the
semantics of OpenMP to generate the code of the accelerator would require violating the definition
of OpenMP which would cause the syntax to be misleading to the users. To avoid this confusion
and have more flexibility to implement an efficient offloading method, we decided to move on to a
completely different syntax.

5.3 Intermezzo: llcl

In order to offer the user a better programming experience when using accelerator platforms, we
decided to extend our original llc language to improve the support for heterogeneous systems.
A preliminary version of this language was shown in [118], but has since evolved to become a
completely new language called llcl. It attempt to mimics OpenCL semantics with OpenMP-like
annotations, avoiding a plethora of low-level API calls.

In [17], Ayguadé et al. proposed a set of extensions to OpenMP in order to handle hetero-
geneous platforms. The original aim of the copy in|out clauses is to identify which variables
are required inside a particular task. These clauses might be used together with the in out

clauses to identify data dependencies. Additionally, the omp target device(...) construct
was used to specify which device should run the tasks which follow. Several tasks with different
target device clauses might exist, these represent different implementations of the same tasks
for particular devices. This enables users to have several different implementations on the same
source code.

In llcl we do not focus on task parallelism, thus, we do not annotate code on a task-level
basis only. The regions of code that are suitable for extraction and for running on a heterogeneous
platform are marked. These regions of code (named Context following the OpenCL semantics)
may contain one or several pieces of parallel code.
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Variables used within a Context have to be registered, either as in or out variables, using
the copy in|out respectively. A name can be assigned to a Context for later reference.

Our aim is to maintain as much of the original source code as is possible and keep modifications
to a minimum, taking into account that annotations have to be added in order to guide compiler
optimization. The only annotations that will be inside the code are those related to data
movement and parallelism definition. Device-specific information and particular optimizations
will be defined in an external XML file.

The XML platform description file contains platform-dependant information. Giving this
situation, it is possible to modify this file without altering the original source code. Several
platforms can be defined and named in the same file. When executing the compiler driver the
user can specify a target platform; if a target is not specified the first platform in the file will be
used. Platform definitions specify context-related optimizations and targets of automated code
generation. An example of a platform description file is shown in 5.4, whereas an example of
llcl source is shown in Listing 5.5.

1 <xml>

2 <platform name="default">

3 <region name="compute">

4 <element name="compute_1" class="loop">

5 <mutator name="Loop.LoopInterchange"/>

6 <target device="cuda"/>

7 <target device="opencl"/>

8 </element>

9 </region>

10 </platform>

11 </xml>

Listing 5.4: A platform description file

1 double * a, * b, * c;

2 ...

3 #pragma llc context name("mxm") copy_in(a[n * l],b[l * m],c[m * n], l, m, n) copy_out(a[n *

l])

4 {

5 int i, j, k;

6 #pragma llc for shared(a, b, c, l, m, n) private(i, j, k)

7 for (i = 0; i < l; i++)

8 for (j = 0; j < n; j++) {

9 a[i+j*l] = 0.0;

10 for (k = 0; k < m; k++)

11 a[i+j*l] = a[i+j*l] + b[i+k*l] * c[k+j*m];

12 }

13 }

14 ..

Listing 5.5: Matrix product in llcl
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5.3.1 Implementing llcl

An instance of the Frangollo Context class is created for each llcl context clause. The
Context name is set according to the name clause. This Context will last until the end of the
enclosed block is reached. The copy in and copy out clauses are valid llcl clauses, similar to
those used in the OpenMP extension. Their semantic is preserved, and they are used to specify
variable constraints to the Frangollo runtime. Variables not passed on any of these clauses are
assumed to be host-only variables. The size of the variable declaration is used by default. Users
can specify a size expression in the Context definition.

The generation of SIMD kernels is performed when the omp for construct is replaced by its
llc counterpart. llcl for takes the same clauses as omp for, and also supports an optional
name clause to specify a particular kernel name.

The information extracted by the YaCF driver is used by the CUDABackend Kernelize

(see 3.6.4). The Kernelize module will use information from the XML platform description
file to apply platform-specific transformations. Figure 5.2 depicts an schema of the translation
process performed by the YaCF driver.

Remarks
llcl was appealing from the point of view of exploring the directive-based approach of code

generation. Referees from different conferences suggested to us that we should not add more
languages to the (already divergent) landscape of directives for code generation. Lacking support
from vendors or relevant research institutions it was hard to prove that our approach was appropriate.
When we were about to release the first llcl implementation, the OpenACC standard was announced
at the 2011 Super-Computing conference. We strongly believe that a standard in this field will
greatly benefit the adoption of the approach, thus, we welcomed the announcement and adapted
our research and work so that it would meet the standard. It is worth noting that the similarities
between llcl programming model and OpenACC are notable, and to some extent, OpenACC can
be seen as a subset of what we had intended for llcl.

5.4 accULL

As mentioned previously, the irruption of the OpenACC API swiftly moved us towards implement-
ing this emerging standard [125, 123, 124]. With our previous work in llcl and the flexibility of
our tools (YaCF and Frangollo) we managed to implement the first version of the standard in
only four weeks.

We designed a YaCF driver (c2frangollo) capable of translating C code annotated with
OpenACC directives and runtime calls to a Frangollo program capable of running on different
platforms. The YaCF driver also automatically extracted OpenCL and CUDA kernels from
the original source. The Frangollo C interface offers the low-level capabilities to implement
OpenACC whereas the OpenACC runtime calls have been implemented directly on C++.
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Figure 5.2: Compilation flow of an llcl source. The YaCF driver parses the file, and with the
assistance of the XML platform description, applies the requested optimizations and extracts
the kernel(s). The output is a project directory, containing the main file with Frangollo calls
and with parallel constructs replaced by the equivalent Frangollo kernel launch statements.
A separate file for each outlined kernel and a Makefile are also generated by the driver. When
compiling against the Frangollo library, a binary file capable of running CUDA kernels is
generated. Further optimizations can be applied to the outlined kernels without modifying the
original file
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The purposed behind the creation of our compiler was not to match the performance nor
the stability of commercial compilers, instead we hoped that it could be used to explore the
capabilities of the directive-based approach to heterogeneous computing. The flexibility of our
tools enable us to explore new functionalities or platforms for OpenACC in a short period of
time, and to provide recommendations to other implementors.

5.4.1 OpenACC Programming Interface

The OpenACC API offers developers a set of directives that provide simple hints to the compiler,
helping it to identify areas of code that are suitable for being run on a hardware accelerator. The
result is that developers are freed from the task of writing specific device code details. With
the information provided by the developer annotations, data movement between accelerator and
host memories and data caching are managed by the compiler or runtime.

Figure 5.3: Execution workflow of a program using the OpenACC API
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The execution model targeted by OpenACC is host-directed execution with an attached
accelerator device, such as a GPU. Computationally intensive regions of the code are offloaded
to the accelerator device. The devices execute parallel regions which usually contain work-sharing
loops, or kernel regions which mostly contain one or more loops that are executed as kernels in
the devices. Figure 5.3 illustrates this execution model.

Up to three different levels of parallelism are available on accelerators. Fine-grain parallelism
is handled by multiple threads within a single execution unit. Coarse-grain parallelism is handled
by running groups of multiple threads in different execution units. SIMD-like operations are also
available on accelerators inside each thread, or by combining a set of threads. These three levels
have to be properly mapped to the hardware in order to extract the maximum performance from
the accelerator; directives have been provided to allow this. The programmer also has to take
into account that synchronization at some levels is not possible.

The memory is modeled on the assumption that there are separate address spaces between
the Host and the accelerator. This means that in order to compute anything inside the device, a
memory transfer has to be performed. The developer has to be aware of this situation when
writing OpenACC, and cannot ignore the fact that memory bandwidth and size limits may
impede the automatic offloading of code segments.

The OpenACC API relies on directives implemented using the pragma mechanism to identify
different region types inside the code. Three main directives can be identified: data to mark
data regions inside the code; kernels to define groups of loop nests to be offloaded to the
accelerator; and parallel which allows for more fine-grain control over the code to be offloaded.

Both parallel and kernels constructs may contain loop constructs. This construct
precedes a loop or a loop nest and gives indications to the compiler on how the loop should be
parallelized. It is possible to specify the number of threads (workers), group of threads (gangs)
and the width of SIMD operations (vector), thus forcing the compiler to adapt the subsequent
structured block and/or loop to the programmer’s specifications (see Figure 5.4).

Data clauses may be used to reduce memory transfers to/from the device. Variables can be
marked as copy in, copy out, copy or create. The implementation will be responsible for
deciding whether these clauses are required or not. Compiler and/or runtime might decide to
add additional variables to ensure correctness.

Asynchronous operations are supported via the async clause. Directives without the async

clause have an implicit barrier at the end of their scope. The async accepts an optional scalar
integer expression. This clause is used in combination with the wait directive to wait for a
particular event to finish.

OpenACC also enables users to use native pointers to handle legacy code or library calls.
The clause deviceptr indicates that the marked variable is a native device pointer (and not a
host variable). The host data construct makes the address of the device available in the host,
as shown in Listing 5.6. The code uses the runtime call acc get device type to check if the
device is NVIDIA CUDA. If it is a CUDA device, it uses the host data construct to indicate
that all the references to the variables h a,h B and h C have to be replaced by its correspondent
pointers in the device.

Any reader interested in detailed information regarding the language should check the detailed
reference available on [106].
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Figure 5.4: Relationship between OpenACC concepts and elements in the GPU architecture

1 ...

2 #pragma acc data copy(h_A[n2], h_B[n2], h_C[n2]) {

3 if (acc_get_device_type() == acc_device_nvidia) {

4 #pragma acc host_data use_device(h_A, h_B, h_C)

5 {

6 /* Performs operation using cublas */

7 status = cublasSgemm(handle, CUBLAS_OP_N, CUBLAS_OP_N, N, N, N, &alpha, h_A, N, h_B, N,

&beta, h_C, N);

8 if (status != CUBLAS_STATUS_SUCCESS) {

9 fprintf (stderr, "!!!! kernel execution error.\n");

10 return EXIT_FAILURE;

11 }

12 }

13 }

14 }

15 ...

Listing 5.6: Code example showcasing the usage of the host data directive
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5.4.2 c2frangollo Compiler Driver

The StS translation injects a set of Frangollo calls within the serial code. The compiler driver
orchestrates the overall StS process. Apart from indicating the input file and setting the output
directory, users can provide the usual set of parameters, such as the path to include files or
additional macro definitions. The driver creates the translation environment and parses the input
file, obtaining the IR-1 and the symbol table of the code. The driver then creates an instance
of the Frangollo.Runner class and applies it to the obtained IR (providing the symbol table).
The apply method then creates a set of Mutators that will look for OpenACC directives and
generating the equivalent Frangollo API calls.

The first Mutator applied is FM AccKernel. This class looks for potential kernel regions
(annotated with loop) and extracts the necessary information to feed the CUDA and OpenCL back
ends that will extract the Kernel from the source to a separate file for each kernel. This class also
applies high-level optimizations, such as loop invariant or loop skewing to the kernel subtree
before passing the information to the Kernelize module. A new class AccParametrizeLoop has
been implemented, extending the original ParametrizeLoop to augment the loop information
with the information extracted from the clauses (such as reduction operations and parameter
directionality). It also extracts the original sequential code to a routine using the Outliner module
so the sequential version is still available in the code. Retaining the original code in an external
routine also allows us to implement the OpenACC if clause to enable conditional usage of the
offloaded region.

The FM AccKernel also creates a call to the FRG launchKernel function. The parameter
list is generated with all the parameters required to launch the kernel, independently from their
type or where they are used. Information is added to each parameter regarding if it is read or not
in the kernel. This information is validated according to the analysis of the compiler. Expressions
extracted from the Kernelize module are passed to the runtime call that will use them to compute
the intensity at runtime. Using expressions rather than compile-time computed-values enables
the runtime to better approximate a value for the kernel grid execution.

The IR of the original subtree is modified as a result of applying this Mutator and calls are
injected to the subtree. Kernel sources are returned by the Mutator and are included in the
project source by the Runner class.

The FM AccData Mutators look for any directive that could define a context, such as kernel,
parallel or data and generating a Frangollo FRG createContext call. The variables marked
in the copy clauses are registered using FRG registerVar. Copy clauses prepended with the
present are also supported through a parameter to the FRG registerVar. Minor modifications
were required to support this feature, this is because internally the runtime uses the pointer
address to detect if the variable was present or not. The end of the context-defining directives
generate a FRG destroyContext call.

Finally, FM AccHostData replaces host directives with calls to FRG getDevicePtr enabling
support to use native pointers, and FM AccUpdate replaces update clauses with calls to
FRG update.
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5.4.3 Interfacing OpenACC in Frangollo

A new interface has been added to the Frangollo runtime. This interface adds support for
OpenACC runtime calls together with some convenience functions required to facilitate the
transformation.

A user wanting to use OpenACC runtime calls only needs to include the openacc.h file from
the Frangollo distribution. The file will include all the required headers and definitions from
the Frangollo runtime.

Constants acc device host and acc device gpu have been defined to differentiate whether
the code runs on the Host or in the GPU using the acc device type. Also acc device nvidia

and acc device opencl are defined so users can identify which platform is in use.
The OpenACC API call acc init() creates a Context with a random name. acc shutdown()

simply destroys the current Context.
According to the OpenACC reference the aforementioned calls may be used to allocate/deal-

locate memory on the accelerator device. Pointers assigned from this function may be used in
deviceptr clauses to tell the compiler that the pointer target is resident on the accelerator. To sat-
isfy the definition while maintaining support for both CUDA and OpenCLplatforms acc malloc()

and acc free() return a pointer to a pointer of the platform type. The deviceptr clauses can
receive this double pointer 1.

5.4.4 Putting It All Together

The YaCF driver supports most of the syntactic constructs in the OpenACC 1.0 specification,
but some of them are silently ignored. In addition, although some operations inside the runtime
are handled asynchronously, support for the async OpenACC clause has not been implemented
in the CUDA component yet, although it is available for OpenCL. Table 5.1 compares the
compliance of our accULL with other OpenACC implementations.

From the description it is relatively straightforward to port a program written in OpenACC
to a Frangollo program. The copy clauses can be used to define the constraints of the variable.
The data, kernels or parallel construct forces the creation of a new Frangollo Context
instance. Subsequent calls to these directives generate nested scopes through the new Context
creation. Variables marked using the declare directive can be registered in the Context.

A distribution of the stable accULL version is available for download in [71].

1Current deviceptr implementation is buggy and thus it has not been marked as implemented in the summary.
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Table 5.1: Compliance with the OpenACC 1.0 standard (directives)

Construct Supported by Notes
kernels PGI, HMPP, accULL (accULL) Kernels for OpenCL and CUDA are

generated for each loop inside the scope
loop PGI, HMPP, accULL -
kernels loop PGI, HMPP, accULL -
parallel PGI, HMPP -
update Implemented (accULL) Mixing host and device clauses in

the same device does not work, they must be
in separate directives

copy, copyin,
copyout, . . .

PGI, HMPP, accULL Runtime handles memory transfers dynami-
cally

pcopy, pcopyin,
pcopyout ,. . .

PGI, HMPP, accULL Runtime handles memory transfers when re-
quired dynamically

async PGI (accULL) Only for OpenCL
deviceptr clause PGI -
host accULL Our framework generates the right code, but

we still have to solve portability issues be-
tween OpenCL and CUDA

name Not in standard
(accULL only)

Optional clause to name a particular acc re-
gion or loop and refer it from an external
optimization file at compile time.

private,
firstprivate

PGI (private only),
HMPP (private
only), accULL

-

collapse accULL Generates a 2D (or 3D) kernel
gang, worker,
vector,
independent

PGI, HMPP, accULL Different levels of support, check Section
6.3.5.1

Table 5.2: Compliance with the OpenACC 1.0 standard (API)

API Call Supported by Notes
acc init PGI, HMPP, accULL Initialises runtime
acc set device PGI, HMPP, accULL(no effect) accULL uses the environment variable
acc get device PGI, HMPP, accULL -
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CHAPTER 6

Performance results

In this Chapter we present experimental results to support our research. Section 6.1 details the
hardware and software characteristics of the platforms which have been used. Other compilers used
with support for directive-based programming are detailed in 6.2. To corroborate the suitability
of our approaches we have explored different source codes from two different benchmark suites.
Given our limited time and resources it was unrealistic to try to validate our thesis using real
commercial and production codes. However, this was not a significant setback as our intention
is not to build fully operative tools but to research them, thus, designing and implementing
prototypes fulfills our goal. Nevertheless, we believe that the codes we have selected do actually
cover most of the characteristics that real applications feature, thus enabling us to make realistic
assumtions about the the performance and productivy of real codes.

In Section 6.3 we present the results from three different approaches, each using codes
from the OpenMP source code repository (OmpSCR). The OmpSCR [53] features a set of codes
implemented in OpenMP that we have ported to our different directive-based approaches. This
set of codes represents situations or algorithms that appear in production codes, but they are
implemented in a relatively straightforward way, thus facilitating the task of implementing
compiler translations.

During the final stages of our research, whilst working with accULL, we realised that
the compiler was mature enough to tackle more complex problems. In addition, splitting the
complexity of the programming model into a compiler and a runtime greatly facilitated the task
of supporting more complex codes. Situations that are traditionally difficult to solve at compile
time, such as interprocedural analysis, are relatively simple to solve at runtime. At the same
time, issues that are hard to solve at runtime, like the extraction of kernels for devices, can be
solved at compile time. These reasons encouraged us to go that step further and to increase
the complexity of the codes we were working on. In Section 6.4 we present the computational
results for a selection of codes from the Rodinia Benchmark Suite [38, 39]. As OpenACC is
a standard the task of porting this selection of codes from the Rodinia Benchmark Suite to
OpenACC enabled us to compare the performance of different commercial implementations. We
also evaluated other directive-based approaches, such as hiCUDA and the PGI Accelerator Model
and compared their programmability and performance with OpenACC.
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6.1 Experimental Platforms

In this section we present a brief description of the different platforms on which research was
carried out. (For details on GPU architecture and capabilities, see Chapter 2.)
Tajinaste is a distributed-memory cluster based on AMD Opteron processors. It has seven IBM
Blades LS21 and an IBM Blade LS20 installed on an IBM Bladecenter H system. The LS20
blade acts as a front-end node, whereas the LS21 are the compute nodes. The LS21 nodes have
a two-way motherboard with AMD Quad Core processors, making a total of eight cores per node.
The LS21 nodes are connected through an Infiniband 4x network. The MPI implementation used
when running the experiments was OpenMPI 1.2, and the compiler used was GCC 4.1

Verode has four LS22 compute nodes featuring two-way motherboards with AMD Quad
Core processors. Blades are connected to each other using a Gigabit Ethernet network with a
dedicated switch for message passing. Two of the four LS22 nodes are connected to Tesla C1060
cards. OpenMPI 1.2 and GCC 4.1 were used in the experiments performed in this machine.

Ilion is a desktop computer with an Intel(R) Core(TM)2 Quad CPU Q6600 at 2.40GHz. It
has 4MB of L3 Cache. The machine features a GeForce 9800 GT with 500MB of RAM. The
OpenMPI implementation used was OpenMPI 1.4 whereas the compiler was GCC 4.2.

Peco is a cluster of four nodes interconnected using an Infiniband QDR network. Each node
contains two Intel Xeon 5520 (Nehalem) QuadCore processors running at 1.27 GHz, with 24 GB
of DDR2 RAM memory. Attached to the PCIExpress 2.0 bus of each node, there is a NVIDIA
C1060 GPU with 4 GB of DDR3 RAM memory. Peco features a typical cluster infrastructure.
Nowadays clusters are composed by multi-core processors and GPU devices, thus it is possible to
take advantage of OpenACC on these platforms. CPU time in Peco has been generously donated
by the Universitat Jaume I of Castellon.

Zape is a single node system using an AMD 9550 (Phenom) QuadCore at 2.2GHz connected
to an NVIDIA GTX480 (Fermi) GPU. CPU time has been generously donated by the Universitat
Jaume I of Castellon.

Garoe Desktop computer with an Intel(R) Core(TM) i7 930 processor (2.80 GHz), with
1MB of L2 cache, 8MB of L3 cache, shared by the four cores. The machine has 4 GB RAM
and two GPU devices are attached, a Tesla C11060 (240 MP, 3 GB) and a Tesla C2050 (448
MP, 4 GB). With Garoe we mimic the typical scenario of an OpenACC developer: a moderately
experienced user interested in improving the performance a scientific code can purchase a new
GPU card and plug in it into his/her desktop computer. It is a relatively cheap platform as
opposed to a multi-node cluster and could achieve a combined peak theoretical performance of
478.36 GFLOPs in double performance (77.76 GFLOPs from Tesla C1060 + 345.6 GFLOPs from
Tesla C2050 + 55 GFLOPs from main processor). This kind of user might have some insight
into programming and even GPU computing, but s/he is not an expert. Starting with his/her
own serial code and using an OpenACC compliant compiler, this user will take advantage of the
GPUs without investing excessive time in low-level programming.

Homero is a laptop computer with one Intel(R) Core(TM) i3 CPU M 350, using Hyper-
threading to enable four virtual processors, 3GB RAM, and an integrated NVIDIA Optimus
graphic card. Homero represents a typical modern medium-end laptop computer. It uses reduced
versions of desktop GPUs that support GPGPU computing.

130



Performance results 6.2 Other Compilers

We have included a laptop in our evaluation because we want to explore other scenarios, not
just HPC, and identify whether they too can benefit from heterogeneous computing tools.

Drago is a shared memory system, with 4 Intel(R) Xeon(R) E7 4850 CPU, with 2.50MB L2
cache and 24MB L3 cache (for all its 10 cores). 6GB of memory are available per core. Drago
showcases an alternative platform that might take advantage of OpenCL. Nowadays shared
memory machines feature several CPUs with many cores on each. These cores also contain
vector processing units that require particular compiler support (or a deep understanding of these
technologies) to unleash their potential. There are implementations of OpenCL, such as the Intel
OpenCL SDK or the AMD APP SDK, targeting these shared memory machines. Implementing
algorithms in OpenCL requires effort, but it allows a better mapping of hardware resources
and improves thread scheduling. Using CPU-targeted OpenCL platforms along with OpenACC
represents an interesting alternative to traditional OpenMP programming that we will explore in
different examples with the ACC approach.

6.2 Other Compilers Implementing Directive-based Approaches

Some codes have been ported to other directive-based programming models: hiCUDA and PGI
Accelerator Model. For details about these alternative PMs see Section 2.1.4. For the experiments
we detail in this Chapter we used hiCUDA version 0.9, and we used version 12.2 of the PGI
Compiler to explore the PGI Accelerator Model.

When other compilers released OpenACC implementations we decided to compare our
accULL OpenACC implementation against theirs. All experiments comparing the performance of
OpenACC of the different implementations use version 12.5 of the PGI compiler and the CAPS
HMPP compiler version 3.2.3.

Important note: The version of the accULL compiler used in the experiments to compare the
performance of older accelerator models was an earlier version, one of the early internal releases.
However, the version of accULL used for the OpenACC comparison is version 0.1: release date -
October 2012.

6.3 OpenMP Source Code Repository

The motivation behind the creation of the OpenMP Source Code Repository (OmpSCR) [53] was
to provide the OpenMP community with an infrastructure which would enable the evaluation of
performance across different platforms and compilers. By sharing the OpenMP implementation
of an heterogeneous set of codes, the intention was to provide other researchers with a tool that
could be used to communicate their results faster and more efficiently. All OmpSCR applications
are implemented conform to standard programming languages (ISO C99 and FORTRAN) and
are relatively simple (around 5000 lines of codes at most).

We have selected the following codes from this repository: Molecular Dynamics (MD),
Mandelbrot Set Computation (Mandelbrot), LU reduction (LUred), the solution of a finite
difference discretization of Helmholtz equation using a Jacobi iterative method (Jacobi) and a
simple Matrix Multiplication (MxM).
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In this section we describe the algorithm for each of the codes, this is accompanied by a
sketch of the OpenMP implementation. Following this, we then study particular details of the
different directive-based approaches being explored. To facilitate the reading of the section have
followed the convention detailed below that is used to identify the approach for each particular
analysis:

• ACC: The study has been carried out using accULL (Section 5.4).

• LLC-CUDA: The study has been carried out using the OpenMP extensions (Section 5.2).

• LLC-HYB: The study has been carried out using llCoMP with MPI/OpenMP support
(Section 5.1).

6.3.1 Mandelbrot Set Computation

The Mandelbrot Set [90] is the convergence domain of the complex series defined by Zn =
Zn−1

2 + C. The area of the set is an open question in Mathematics. We have selected an
algorithm that estimates the set area using a Monte Carlo method, which uses the number of
points of the plane to compute as its input. Listing 6.1 shows the main loop of the OpenMP
implementation. This loop computes the number of points that are outside the set, and then it
computes the number of internal points, the area of the set and the error margin. Each iteration
correspond to a check for a point in the plane.

1 numoutside = 0;

2 #pragma omp parallel for default(none) \

3 reduction(+:numoutside) \

4 private(i,j,ztemp,myid,nlocal, \

5 ilower,z,iupper),shared(nt,c)

6 for(i = 0; i < npoints; i++) {

7 z.creal = c[i].creal;

8 z.cimag = c[i].cimag;

9 for (j = 0; j < MAXITER; j++) {

10 ztemp = (z.creal*z.creal)-(z.cimag*z.cimag)+c[i].creal;

11 z.cimag = z.creal * z.cimag * 2 + c[i].cimag;

12 z.creal = ztemp;

13 if (z.creal*z.creal+z.cimag*z.cimag > THRESOLD) {

14 numoutside++;

15 break;

16 }

17 } /* for j */

18 } /* for i */

19 numinside = npoints - numoutside;

20 /* Calculate area and error */

21 area = 2.0 * 2.5 * 1.125 * numinside / npoints;

22 error = area / sqrt(npoints);

Listing 6.1: OpenMP implementation of the Mandelbrot set computation
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The break statement inside the loop causes that some iterations may affect some iterations
making them require more time than others, thus, creating an potential unbalance on the
OpenMP implementation.

6.3.1.1 Hybrid MPI/OpenMP implementation with llCoMP (LLC-HYB)

Figure 6.1: Speed-up of the Mandelbrot set computation on Tajinaste. HYB represents an ad-hoc
hybrid implementation, LLC-MPI stands for pure MPI code generated by llCoMP, LLC-HYB
correspond to the hybrid code generated by our compiler and finally MPI stands for a handwritten
MPI implementation

Figure 6.1 shows the results for four different implementations of the Mandelbrot implemen-
tation running on Tajinaste. In every case the code iterates over 16368 points in the complex
plane. This algorithm is usually taken as an academic example of a situation with an intense load
imbalance: each complex point analyzed requires a large-varying number of iterations of the main
loop to converge. In this situation, Figure 6.1 reflects the benefit of the LLC-HYB approach
in relation to the LLC-MPI case. The parallel execution time improvement is 17% percent for
14 processors. The llc versions produce results comparable to their ad-hoc counterparts while
retaining a lower amount of coding effort.
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1 #pragma omp target device(cuda) copy_in(c)

2 #pragma omp parallel for reduction(+:numoutside) private(i,j,ztemp,z) shared(nt,c)

3 {

4 numoutside = 0;

5 for(i = 0; i < npoints; i++) {

6 z.creal = c[i].creal;

7 z.cimag = c[i].cimag;

8 for (j = 0; j < MAXITER; j++) {

9 ztemp = (z.creal * z.creal) - (z.cimag * z.cimag) + c[i].creal;

10 z.cimag = z.creal * z.cimag * 2 + c[i].cimag;

11 z.creal = ztemp;

12 if (z.creal * z.creal + z.cimag * z.cimag > THRESOLD) {

13 numoutside++;

14 break;

15 }

16 } /* for j */

17 } /* for i */

18 }

Listing 6.2: Using the OpenMP extensions to port a code to CUDA

6.3.1.2 Extending OpenMP to support heterogeneous architectures (LLC-CUDA)

Listing 6.2 illustrates how the extensions for heterogeneous architectures [17] are used in a
real code. In Line 1 we specify the target device for the parallel loop in Line 5. When llCoMP

translates to CUDA, it looks for parallel regions preceded by an omp target directive (line 1)
whose device is CUDA. Once this situation is detected, the compiler inserts the memory transfer
pattern into the code and encapsulates the body of any parallel loop into a CUDA kernel. Finally,
the patterns for data gathering and resources deallocation are also inserted.

The CUDA back end in llCoMP uses a specialized kernel to perform reduction operations.
The kernel implemented in the compiler [69] uses interleaved addressing and makes the first add
during data fetching from global memory. This improvement is achieved by using the device to
perfor the reduction, thus minimizing the size of the transfer between Host and device.

6.3.1.3 Analysis of the kernel grid configuration (LLC-CUDA)

An important issue that has a large impact on the performance of CUDA programs is the number
of thread per block, particularly in the presence of irregular computations. Figure 6.2 shows the
execution time of the extended OpenMP implementation in three different architectures.

It is important to note that increasing multiprocessor occupancy may be a better way to
get performance from a given board rather than using a higher number of threads. Although it
seems counterintuitive, in some CUDA compute versions, the best performance for a problem
size may be achieved with a lower number of threads per block. With a lower number of threads,
a larger number of blocks can be allocated into the same multiprocessor, thus more blocks can
run concurrently on different multiprocessors.
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Figure 6.2: Time execution comparison of different numbers of threads in three architectures,
using the Mandelbrot set computation implemented in llc in Garoe. An incorrect choice in
the kernel configuration may hinder performance. Each architecture has its own optimal kernel
launch configuration

6.3.1.4 The OpenACC implementation of Mandelbrot (ACC)

To illustrate the differences with previous approaches Listing 6.3 shows the OpenACC implementa-
tion of the Mandelbrot code. When creating the parameters for the kernel launch, YaCF indicates
to the runtime that the numoutside parameter requires a reduction operation and expands
the scalar variable to a vector. This vector stores a private copy of the variable in each thread.
Later, both CUDA and OpenCL components of the runtime, using a separated and optimized
kernel, perform the reduction operation. The reduction operation is not performed during kernel
execution, but later on when the variable is transferred back to the device, or if the variable were
required by another kernel.

Figure 6.3 shows the execution time of the Mandelbrot code and the effect of varying the
number of threads across different implementations.
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1 #pragma acc kernels loop reduction(+:numoutside) private(i,j) copyin(npoints, c[0:npoints])

copy(numoutside)

2 for(i = 0; i < npoints; i++) {

3 z.creal = c[i].creal; z.cimag = c[i].cimag;

4 for (j = 0; j < MAXITER; j++) {

5 ....

6 if (z is outside set) {

7 numoutside++;

8 break;

9 }

10 } /* for j */

11 } /* for i */

Listing 6.3: The Mandelbrot set computation in OpenACC

6.3.2 Molecular Dynamics

The Molecular Dynamics (MD) code is an implementation of the velocity Verlet algorithm [135]
for Molecular Dynamics simulations. It employs an iterative numerical procedure to obtain an
approximate solution whose accuracy is determined by the time step of the simulation.

The pseudo code shown in Listing 6.4 illustrates the global structure of the MD implementa-
tion. After an initial forces computation, the algorithm performs two basic operations on each
simulation step: compute (C ) and update (U). C operation consists of several nested loops
computing the forces for each position. An external loop iterates over all particles computing
their forces in the current simulation step. This requires the distance among all other particles
to be computed and hence access to the position matrix; the total potential and kinetic energy
of the system is computed, requiring access to the velocity matrix. In terms of the data access
pattern, the code is highly un-coalesced, requiring several non-contiguous loads to compute each
particle. In addition, it features several costly double precision operations (sqrt, sin and cos)
which traditionally perform badly on GPU devices. The U operation is simply a for loop that
runs over the particles, updating their positions, velocities and accelerations.

6.3.2.1 Evaluation of performance with Hybrid MPI/OpenMP llCoMP (LLC-HYB)

Number of cores MPI Hybrid MPI+OpenMP
1 0.984 0.950
2 1.967 1.903
3 2.948 2.849
4 3.929 3.776
6 5.813 5.600
8 7.637 7.316
9 7.558 8.533

12 9.715 11.303

Table 6.1: Speedup for the MD algorithm in Tajinaste
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1 int main(...) {

2 ...

3 // Initial energy calculation

4 compute(position, velocity, mass, force, &potential, &kinetic);

5 ...

6 // (S) Simulation

7 for (i = 0; i < NSTEPS; i++) {

8 compute(position, velocity, mass, force, &potential, &kinetic);

9 printf(..., potential, kinetic);

10 update (position, velocity, mass, force, &potential, &kinetic);

11 }

12 ...

13 }

14 void compute(...) {

15 // (C) Compute forces

16 for (...) {

17 }

18 }

19 void update(...) {

20 // (U) Update velocity/position

21 for (...)

22 for (...) {

23 ...

24 }

25 }

Listing 6.4: Sketch of the MD simulation

137



6.3 OpenMP Source Code Repository Performance results

Figure 6.3: Execution time of the implementation greatly varies in terms of the number of
threads, using N = 32768 points. In addition, the optimal number of threads varies from Tesla
C1060 to Tesla C2050. This clearly reflects the significance of a proper estimation of the kernel
launch configuration

Table 6.1 shows the speedup over sequential achieved by the MD implementation with the
hybrid llc compiler. We limited the number of codes to 12 to guarantee exclusivity on the usage
of the nodes. Although the hybrid approach does not produce substancial benefits with a lower
number of nodes, when using a higher number of nodes we observe a performance increase.
This make us believe that the hybrid approach would provide better performance using a larger
number of fat nodes.

6.3.2.2 Mixing OpenMP and CUDA with the OpenMP to CUDA translator (LLC-CUDA)

This implementation of the MD algorithm enables us to study the best combination of GPU/CPU
to target the parallel code. Let us denote the CPU by C and GPU by G. We measured four
different versions of the code:

CC: both routines in the CPU (pure OpenMP code).
GG: both routines in the GPU (pure CUDA code).
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1 void compute(int np, int nd, double *box, vnd_t *pos, ...) {

2 double x, d, pot, kin;

3 int i, j, k;

4 vnd_t rij;

5

6 pot = kin = 0.0;

7 #pragma omp parallel for default(shared)

8 private(i, j, k, rij, d) reduction(+ : pot, kin)

9 for (i = 0; i < np; i++) { /* Pot. energy and forces */

10 for (j = 0; j < nd; j++)

11 f[i][j] = 0.0;

12 for (j = 0; j < np; j++) {

13 if (i != j) {

14 d = dist(nd, box, pos[i], pos[j], rij);

15 pot = pot + 0.5 * v(d);

16 for (k = 0; k < nd; k++) {

17 f[i][k] = f[i][k] - rij[k] * dv(d) /d;

18 }

19 }

20 }

21 kin = kin + dotr8(nd, vel[i], vel[i]); /* kin. energy */

22 }

23 kin = kin * 0.5 * mass;

24 *pot_p = pot;

25 *kin_p = kin;

26 }

Listing 6.5: Main compute loop of the MD code simulation in OpenMP

GC: C in the GPU and U in the CPU.
CG: C in the CPU and U in the GPU.
Figure 6.4 shows the speedup obtained for three different problem sizes (number of particles).

The best performance is obtained when both routines are placed in the GPU. For the hybrid
OpenMP/CUDA codes, the best choice is to allocate the coarser grain routine to the GPU. The
pure OpenMP version of the code does not scale up when the problem size is increased due to
memory constrains.

6.3.2.3 Effects of Loop Optimization Techniques Across Different Architectures
(LLC-CUDA)

A wide variety of loop optimizations can be applied to the MD implementation. Using our
OpenMP extensions we can apply different optimizations.

First, loop unrolling can be applied to the loop in Line 16 of the compute function. Loop
unrolling seems to improve performance on some algorithms [83], increasing register usage and
avoiding branch instructions which tend to degrade performance in CUDA.
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Figure 6.4: Speedup of the MD simulation code for different parallelization strategies, using
Tesla C1060 and eight OpenMP threads in Garoe, one on each processor core

Applying loop collapse to the update function is also a possibility. The llCoMP to CUDA
compiler converts iterations from the two nested loops into threads for a two dimensional grid.
Despite the fact that each thread only computes one iteration, instead of computing all the
iterations of the inner loop when the collapse is not enabled, we manage to reduce the number
of memory accesses per thread. This reduces the possibility of bank conflicts and increases the
number of cache hits.

The results for both optimization techniques are shown in Figure 6.5. The best kernel launch
configurations were chosen for each architecture. In 1.1, the best fit for loop collapsing was 4x4
threads, maximizing multiprocessor occupancy. In 1.3, neither loop unrolling nor loop collapsing
were useful, due to excessive register usage. 2.0 architecture revision benefits from both unrolling
and collapsing, but the gains are negligible.
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Figure 6.5: Performance comparison of baseline, unrolling and collapsing in the evaluated
platforms using Garoe

6.3.2.4 Advantages of the Runtime Approach: Reduction of Memory Transfers (ACC)

A naive porting MD using OpenACC directives would consist of into adding the kernels loop

construct to the top of the outermost loops in both routines (before compute and update in
Listing 6.4), and writing the appropriate copy clauses to indicate variable directionality related
to the loop.

In this case, our compiler would extract the kernel from the loops and inject the appropriate
runtime calls. It is up to the runtime when the memory transfers are performed as long as it
satisfies Condition 1 (see Section 4.1). Transfer time between Host and GPU could represent a
significant percentage of the total time. Developers should take into account that the outstanding
performance achieved by accelerator devices can be easily hidden by an excessive memory transfer
time. We highly recommend using profiling tools to detect bottlenecks.
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Version Time transfer in Time transfer out Kernel Time Total time % Speedup
Naive Approach < 0.02s 0.0127834s 5.69122s 5.791388s -
Using a data clause < 0.02s 0.0121639s 5.63023s 5.729317s 1%
Splitting C loops < 0.02s 0.0120155s 3.87633s 4.046456 30.1%

Table 6.2: Time per phase and speedup for each incremental optimization over the naive
implementation, as measured in Homero using the Intel OpenCL SDK over the CPU. In this
situation, using the data clause does not represent an important performance benefit, due to
the fact that (1) Frangollo OpenCL implementation uses the native pointer whenever possible
and (2) the Intel OpenCL features lower initialization time than GPU approaches

The nested loop within the update function can be further optimized by using the OpenACC
collapse clause. This clause instructs the compiler to generate a N-dimensional kernel, where N
is the parameter of the clause. The developer is responsible for ensuring that both loops can be
executed in parallel. As stated in previous examples, a two-dimensional nested loop may improve
memory coalescence, and benefit memory-bound kernels.

OpenACC features a data directive that enables a data region to be created in which the
information of the indicated variables is transferred into the GPU, and back to the Host at the
end of the data region. accULL creates a context at this point, and the directionality information
provided through the copy clauses is used to register the variables in the runtime. In this case,
we precede the simulation loop with the aforementioned data construct, indicating that the
parameters force, position, velocity and acceleration can be transferred into the device
at this point. From now on, all references to these variables inside a kernel will not require a
memory transfer from the Host, as they are all already stored on the device. When entering
kernels inside compute and update functions, the runtime will not create a new context, instead
it creates a new scope level within the existent context. Using this mechanism we ensure that
variables and directionality of higher scopes are preserved. However, new variables might be added
to these nested constructs. For details on the scoping rules see Section 4.1. In the MD code
example, we require the variables pot and kin to be transferred in/out between iterations in order
to show the appropriate information to the user. However, as both pot and kin are registered
within an inner scope, whenever these inner scopes are exhausted, variables are transferred back
from the device to the Host.

accULL enables users to perform incremental parallelization over GPU devices with minor
effort. Traditional GPU performance tools can be used with the resulting codes. For example,
in the MD code, the NVIDIA profiler [104] shows that more than 80% of the time is devoted
to the compute kernel. As stated before, this kernel is highly compute-intensive as it features
un-coalesced memory accesses and costly non-parallel floating-point operations. One possible
solution is to split this kernel into several smaller ones thereby increasing coalescence. This
could be considered counterintuitive in traditional CPU programming (where processor features
large caches), but in GPUs it is a good idea. In order to rewrite this kernel into smaller ones,
a CUDA developer would have to make a considerable effort as s/he would be forced to write
additional kernel calls, memory transfers, etc. In OpenACC, the programmer only needs to split
the sequential code and put the appropriate directives on the new loops: the compiler will extract
the required kernels.
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6.3.2.5 OpenACC Beyond GPUs (ACC)

Figure 6.6: Performance comparison of the best OpenACC implementation vs. OpenMP in
Homero for three different problem sizes. The laptop GPU memory was not large enough to
handle the size of the biggest problem and the laptop crashed

accULL provides the means to execute our codes on different platforms outside of typical
HPC architectures. Performance figures for the low-end system Homero are shown in Figure 6.6.
In contrast, Figure 6.7 shows the benefit of using an OpenCL implementation using an high-end
shared memory multiprocessor (Drago) with no GPU device attached.

Tables 6.2 and 6.3 show detailed timing information for transfers, kernel and total time
obtained using Frangollo’s internal tracing module. In both Tables, the problem size was 4096
particles and 20 iteration steps were performed. Results were validated against the sequential
implementation. Users can turn this tracing feature when building the runtime and produce these
statistics through an internal Frangollo call.
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Figure 6.7: Time execution comparison for the MD OpenACC implementation against OpenMP
in Drago

6.3.3 Jacobi

Jacobi is a program for solving a finite difference discretization of the Helmholtz equation
(d2/dx2) u + (d2/dy2) u− αu = f using the Jacobi iterative method. This code features a
typical stencil kernel [127]. Stencil kernels are a class of iterative kernels which update array
elements according to a fixed pattern, called a stencil. These kind of codes are commonly found
in all kinds of computer simulations or, as in this case, are used to solve partial differential
equations. The OpenMP implementation consists of two parallel regions with one parallel loop
each. Loops are parallelized using the default static scheduling. The main computational loop
is shown in Listing 6.6.

6.3.3.1 Reducing Memory Transfers from/to the GPU (LLC-CUDA)

The code in Listing 6.7 shows the OpenMP extensions in action. In Line 3, we specify the target
device for the parallel loops in Lines 6 and 10. In order to use the CUDA device, the programmer
need only specify to specify the target directive. The copy in and copy out clauses in the
directive at Line 3 state the memory positions to be transferred to and from the device. Figure 6.8
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1 while (k <= maxit && error > tol) {

2 error = 0.0;

3 /* copy new solution into old */

4 #pragma omp parallel for private(i)

5 for (j=0; j<m; j++)

6 for (i=0; i<n; i++)

7 uold[i + m*j] = u[i + m*j];

8 /* compute stencil, residual and update */

9 #pragma omp parallel for reduction(+:error) private(i,resid)

10 for (j=1; j<m-1; j++)

11 for (i=1; i<n-1; i++){

12 resid =( ax * (uold[i-1 + m*j] + uold[i+1 + m*j])

13 + ay * (uold[i + m*(j-1)] + uold[i + m*(j+1)])

14 + b * uold[i + m*j] - f[i + m*j]

15 ) / b;

16 /* update solution */

17 u[i + m*j] = uold[i + m*j] - omega * resid;

18 /* accumulate residual error */

19 error =error + resid*resid;

20

21 }

22 /* error check */

23 k++;

24 error = sqrt(error) /(n*m);

25 } /* while */

Listing 6.6: Code of the OpenMP implementation of the Jacobi method

1 while ((k < maxit) && (error > tol)) {

2 error = 0.0;

3 #pragma omp target device (cuda) copy_in(uold, f, u) copy_out(u)

4 #pragma omp parallel shared(uold, u, ...) private(i, j, resid)

5 {

6 #pragma omp for

7 for (i = 0; i < m; i++)

8 for (j = 0; j < n; j++)

9 uold[i][j] = u[i][j];

10 #pragma omp for reduction(+:error)

11 for (i = 0; i < (m - 2); i++) {

12 for (j = 0; j < (n - 2); j++) {

13 resid = ...

14 ...

15 error += resid * resid;

16 }

17 }

18 }

19 k++;

20 error = sqrt(error) / (double) (n * m);

21 }

Listing 6.7: Iterative loop in Jacobi showing the usage of the OpenMP extensions
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Version Time transfer in Time transfer out Kernel time Total time % Speedup
Naive Approach 0.02524s 0.016229s 1.03017s 3.747910s -
Using a data clause 0.01133s 0.016193s 1.02849s 1.433504s 61%
Splitting C loops > 0.01s 0.016176s 0.23832s 0.434439s 88.4%

Table 6.3: Time per phase and speedup for each incremental optimization over the naive
implementation, as measured in Peco using the NVIDIA CUDA platform over the GPU. The
cost of the CUDA calls, context initialization and memory transfers were noticeable in this case,
thus using the data clause improved performance

measures the performance gain when using this language feature by comparing a pure OpenMP
implementation (8 threads, one per core) with CUDA code generated by llCoMP specifying
(label CUDA v2) the memory transfers with these clauses and without them (label CUDA v1)
using the Tesla C1060 from Garoe.

In our translation strategy, at the end of each parallel region we synchronize Host and device
memories. Inside a parallel region we assume that memory locations allocated in the Host remain
unchanged. The programmer should use the OpenMP flush construct to synchronize the Host
and device for the case where access to variables computed in the device in a previous parallel
loop is needed inside the parallel region. The insertion of the flush construct is not required
in the case of function calls because they are automatically translated into device code using
inlining.

When the llCoMP CUDA back end finds the collapse clause, it generates a 2D kernel.
The x coordinate represents the first loop and the y coordinate represents iterations of the
second loop. This implementation then produces lighter CUDA threads, reducing memory access
conflicts and increasing granularity. However, a correct kernel launch configuration has to be
chosen in order to increase performance, as we can see in Figure 6.9.

Listing 6.7 highlights the reasons for us dropping this syntax in favour of a different set of
directives for GPU code. The information required to compute the information in the parallel

region is annotated using the copy in and copy out in the target directive at Line 3. The
variables u, f and uold remain unchanged during the execution of the while loop in Line 1.
However, in each iteration of the while loop we transfer in and out the variables as indicated
by the target directive. A possible solution for this could be to move the parallel construct
before the while loop as this would reduce memory transfers and increase the performance.
However, this breaks OpenMP semantics. According to the OpenMP ver. 3.1 reference:

When a thread encounters a parallel construct, a team of threads is created to
execute the parallel region (see Section 2.4.1 on page 36 for more information about
how the number of threads in the team is determined, including the evaluation of
the if and num threads clauses). The thread that encountered the parallel construct
becomes the master thread of the new team, with a thread number of zero for the
duration of the new parallel region. All threads in the new team, including the master
thread, execute the region. Once the team is created, the number of threads in the
team remains constant for the duration of that parallel region.
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Figure 6.8: Speedup of the Jacobi code for different problem sizes, using the Tesla C1060 of
Garoe

In this case, the while loop is not parallelizable (each iteration depends on the next one),
so we cannot execute it in parallel on different threads.

A directive-based approach for code offloading must have the ability to separate data regions
from compute/parallel regions to provide users with the possibility of optimizing the memory
transfers.

6.3.4 LU Reduction

The LU reduction algorithm, involving LU decomposition, is typically used in HPC as a bench-
marking algorithm. LU reduction presents a special parallelized version of a LU decomposition
[141].
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Figure 6.9: Imapct on performance of the collapse clause in the Jacobi code using the Tesla
C1060 of Garoe
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6.3.4.1 Impact of Kernel Optimizations in different CUDA architectures (LLC-CUDA)

With this simple source code, whose llc implementation is shown in Listing 6.8, we aim to
demonstrate the increased productivity of using llc. From this source code, llCoMP is capable of
producing different translations, like MPI, Hybrid MPI-OpenMP or CUDA, without modifications.

In order to use the CUDA device, the programmer needs only to specify the target directive
(Line 1). The compiler can use this information to optimize the code.

1 #pragma omp target device(cuda) copy_in(M2,L) copy_out(M2)

2 #pragma omp parallel shared(M2, L, size) private(i, j, k)

3 for(k=0; k<size-1; k++) {

4 #pragma omp for

5 for (i=k+1; i<size; i++) {

6 L[i][k] = M2[i][k] / M2[k][k];

7 for (j=k+1; j<size; j++) {

8 M2[i][j] = M2[i][j] - L[i][k]*M2[k][j];

9 }

10 }

11 }

Listing 6.8: LU reduction in llc

The llc version significantly reduces the number of lines required for the implementation of
the algorithm with respect to both native CUDA and MPI. The sequential version of this code
contains 56 lines. The OpenMP implementation only adds one Line (the omp parallel for).
The llc version of the code includes some modifications to the OpenMP version, intended to
avoid unnecessary memory transfers, and thus contains 59 lines of code. Note that the llc

code version is compatible with the OpenMP implementation. The CUDA source produced
by the current llCoMP version has 154 lines of code, including error checking, CUDA memory
manipulation, etc.

Our methodology leads to a significant reduction in the coding effort because developers can
focus on algorithms and high-level implementation rather than working on low-level code, with
CUDA pointers, memory transfers or kernel parameterization.

The kernel generated by our compiler from the annotated loop is shown in Listing 6.9.
It is exposed here as an example of the code generated by llCoMP. This kernel is obviously
memory-bound, since the main task of each thread is to read from or write to memory. On
CUDA, using local memory is a common technique for optimizing performance of memory-bound
kernels. With minor modifications to the code produced by llCoMP, we can use local storage to
improve the performance of the kernel. Using local storage for the L matrix (renamed Lcu during
the StS translation) avoids consequent references to global memory thus reducing latency in
memory access. Each thread only accesses one shared memory position, avoiding bank conflicts.

As it is shown in Figure 6.10, using local storage in older architectures yields a significant
performance boost. However, the same technique used in the NVIDIA Fermi architecture only
provides a minimal benefit. The new cache hierarchy used to cache global memory access renders
the manual implementation of this local storage unnecessary.
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1 __global__ void CM_0_loopKernel0(double *M2_cu, double *L_cu, int size, int k)

2 {

3 int i = (blockIdx.x * blockDim.x) + threadIdx.x + (k + 1);

4 int j;

5 if ((i < size)) {

6 L_cu[(k * 4096) + i] = M2_cu[(k * 4096) + i] / M2_cu[(k * 4096) + k];

7 for (j = k + 1; j < size; j++) {

8 M2_cu[(j * 4096) + i] = M2_cu[(j * 4096) + i] -

9 (L_cu[(k * 4096) + i] * M2_cu[(j * 4096) + k]);

10 }

11 }

12 }

Listing 6.9: Kernel generated automatically by llCoMP for the LU reduction

1 __global__ void CM_0_loopKernel0(double *M2_cu, double *L_cu, int size, int k)

2 {

3 int i = (blockIdx.x * blockDim.x) + threadIdx.x + (k + 1);

4 int j;

5 double __shared__ cache[CUDA_NUM_THREADS];

6 if ((i < size)) {

7 cache[threadIdx.x] = M2_cu[(k * 4096) + i] / M2_cu[(k * 4096) + k];

8 for (j = k + 1; j < size; j++) {

9 M2_cu[(j * 4096) + i] = M2_cu[(j * 4096) + i] -

10 (cache[threadIdx.x] * M2_cu[(j * 4096) + k]);

11 }

12 L_cu[(k * 4096) + i] = cache[threadIdx.x];

13 }

14 }

Listing 6.10: Kernel modified to take advantage of the thread block shared memory

6.3.5 Matrix Multiplication

Matrix multiplication (MxM) is a basic kernel frequently used to demonstrate the peak perfor-
mance of GPU computing. In this section, we focus on a blocked matrix multiplication algorithm,
similar to that used in the well known BLAS routines [45]. The recommended way to implement
a matrix product in a source code is to use a BLAS implementation tuned for the machine. The
OpenACC implementation of MxM is shown in Listing 6.11.
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Figure 6.10: Performance impact of local storage usage using three different GPU architectures
in Ilion for the GPU card with arch 1.1, the Tesla C1060 of Garoe for the architecture 1.3 and
the Tesla C2050 for the architecture 2.0

6.3.5.1 Optimizing Loop Nests

Listing 6.11 shows a possible OpenACC implementation of the MxM code, in which we have
chosen to use an external kernels construct. This construct creates a data region and sets
the variables required inside and/or outside the region. Inside the kernels construct, we define
two loops that will be translated into GPU kernels. The first loop (Line 4) deals with matrix
initialization. The collapse clause in Line 3 informs to the compiler driver that the loop is
suitable to be extracted as a 2D kernel. We use the loop nest at Line 14 to generate a kernel
with the inner loop.

The collapse clause is not implemented either in the current versions of the PGI or CAPS
HMPP compilers. We thus had to choose a slightly different implementation for them, where the
loop at Line 16 is also annotated with a loop directive. Both j-based and i-based loops feature a
gang and independent to force the extraction of a 2D kernel for the GPU. Listing 6.11 includes
both spellings in order to illustrate both syntaxes (lines 3 and 13), both of them supported by
accULL. Figure 6.11 shows the floating-point performance of the different implementations.
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1 #pragma acc kernels pcopy(a[0:n*l]) pcopyin(b[0:l*m],c[0:m*n]...

2 {

3 #pragma acc loop private(i, j) collapse(2)

4 for (i = 0; i < l; (i++))

5 for (j = 0; j < n; (j++))

6 a[(i * l) + j] = 0.0;

7 /* Iterate over blocks */

8 for (ii = 0; ii < l; ii += tile_size)

9 for (jj = 0; jj < n; jj += tile_size)

10 for (kk = 0; kk < m; kk += tile_size)

11 {

12 /* Iterate inside a block */

13 #pragma acc loop private(j) gang independent

14 for (j = jj; j < min (n, jj + tile_size); (j++))

15 #pragma acc loop private(i) worker independent

16 for (i = ii; i < min (l, ii + tile_size); (i++))

17 for (k = kk; k < min (m, kk + tile_size); (k++))

18 a[(i * l) + j] += (b[(i * l) + k] * c[(k * m) + j]);

19 }

20 }

Listing 6.11: Sketch of MxM in OpenACC

6.3.5.2 Kernel Grid Configuration in OpenACC

One of the most important aspect of CUDA tunning involves the selection of an appropriate
thread and kernel block.

OpenACC provides the gang and worker clauses to make the manual tuning of kernel
dimensions possible. However, how these clauses map to each level of the GPU architecture is
not constant across different implementations of the standard.

Figure 6.12 shows the effect that varying the number of gang, worker and vector has on
the overall performance, and how this effect varies from one compiler implementation to another.
The implementation of the aforementioned clauses in each compiler is not exactly the same.

In the CAPS HMPP implementation being used, support for the gang/worker clauses
enables a strip-mining transformation of the loop where the number of gangs is used as the
number of blocks, and the number of workers as the number of threads. By default, the CAPS
HMPP compiler swaps loops assuming that they are written in the usual C style (where the
outermost loop iterates over the rows and the innermost iterates the columns). For this particular
case - where the outermost loop iterates over the columns and the innermost over the rows -
swapping the loops is not useful and degrades performance. To avoid this loop interchanging,
we swapped the gangs and workers clauses (i.e. the worker clause will be in Line 13 and the
gang clause will be in Line 15 in Listing 6.11). The default values for gangs and workers are 256
and 32 respectively, as no automatic detection is performed. Each thread inside the block will
access non-contiguous memory positions, with a stride of 32 for the rows and a stride of 256 for
the columns.
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Figure 6.11: Performance comparison of three OpenACC implementations using the Tesla C2050
of Garoe . PGI version 12.6, CAPS HMPP version 2.3.3 and the release 0.1 of accULL have
been used

In accULL, we do not use strip-mining to generate the kernel. The kernel we run assumes
that each thread in each block will execute a single iteration, and the runtime will adjust the
number of threads and blocks dynamically so as to execute the appropriate number of iterations.
This imposes an upper limit on iterations since the maximum number of threads and blocks
depends on the GPU architecture. Figure 6.12 shows the performance achieved when varying
the number of threads. The gang and workers clauses are not implemented in accULL, we
used the environment variable to manually set a number of threads, thus, forcing the runtime
to compute the appropriate number of blocks and mimic the block/thread configuration of the
other compilers.

To maximize performance, the Frangollo runtime library favors cache over shared memory
if the architecture supports it (as NVIDIA Fermi and future Kepler cards do).
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Figure 6.12: Effect of varying the values of the gang, worker and vector clauses using the
Tesla C2050 of Garoe

The PGI compiler optimizes loop nests in-depth by using an advanced planner, which are
described in detail in [146]. These loop optimizations require the loops to be fully parallelizable
(i.e. each iteration is completely independent from the rest); thus, if the compiler is not able
to ensure this condition, it will not generate the GPU kernel. Users can use the independent

clause to force the compiler to generate the kernel. This clause instructs the compiler not to
check dependencies and assume that iterations are independent. Iterations from the loop in Line
13 of Listing 6.11 correspond to the x dimension of the kernel, whereas the iterations in Line 15
are distributed in the y dimension. The innermost k-loop is unrolled.

The PGI compiler supports different combinations of worker, gang and vector in different
nested loops. Each acc loop directive may contain combinations of worker, gang and vector

clauses.
When encountering a loop nest (like that in the MxM code), iterations for each loop are spread

across each dimension in a similar manner to accULL. Depending on the memory access pattern of
the loop nest body, loops might be interchanged. The PGI compiler output informs the user that
a two-dimensional kernel is created with each loop in a different dimension. Information about
how these loops transformations are performed is shown during the compilation. Performance
figures shown in Figure 6.12 were obtained by equally distributing the gangs and vectors across
each dimension (for example, if gangs were 256, then in PGI we used 16 for the gangs in each
dimension).
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It is advisable to use the PGI information command line option to show detailed information
on the CUDA code generation. This information enable users to improve their parallelization by
solving the performance bottlenecks flagged up by the compiler. Sometimes the PGI compiler
does not create the GPU kernel, but the compilation finishes properly. When we displayed the
information at compile time, we realized that the code was not parallelized at all due to false
dependency detection among iterations. We believe that it is important to provide developers
with not only a proper set of directives, but also with profile and debugging tools that make
developing easier.

6.3.5.3 Loop Invariant Optimization

The YaCF loop optimization module uses data dependency analysis to enable different opti-
mizations. In the MxM implementation, the index expression for the array access inside the
loop a[i * L +j] is independent from the innermost loop. As shown in Listing 6.12, the loop
analysis module can detect this situation and replaces the array access with a private variable.
When running on GPU devices, this variable is mapped to a register, thus, greatly leveraging the
number of memory accesses and increasing performance. Figure 6.13 shows the impact in the
kernel performance of this loop invariant optimization.

13 tmp = a[i * L + j];

14 for (k = kk; k < min(m, kk+tile_size); k++)

15 tmp += (b[i * L + k] * c[k * m + j]);

16 a[i * L + j] = tmp;

Listing 6.12: Extracting the array access

In Figure 6.14 we present performance figures using the Intel OpenCL implementation in
Drago, and compare them with its OpenMP counterpart. In certain instances, depending on
the size of the problem, it appears that OpenCL outperforms the OpenMP implementation; this
leads us to believe that it is worth exploring the use of Frangollo with CPU implementations.

6.3.6 Development Effort Analysis (LLC-CUDA)

In order to substantiate our claims that our methodology decreases the amount of effort that
needs to be dedicated to development, in this section we provide an analysis using sloccount
[142]. This includes both the original llc code and the target CUDA code produced by llCoMP

which is applied to all the algorithms presented in the previous sections. A study of this kind
which looks at the OpenACC directive-based approach would produce similar results.

With sloccount we used the basic COCOMO [30] model in organic mode to estimate
the code cost. This model estimates effort and schedule, including design, code, test, and
documentation time for the code which is being analysed. COCOMO involves a couple of
constants that represents the development effort - F which represents the effort factor, and E -
which represents the complexity of the source code as it grows in line number.
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Figure 6.13: Floating point performance for MxM in Peco. We compare OpenMP, Frangollo
with CUDA/OpenCL and an improved version of the kernel using loop invariant optimization for
a[i*L+j]

It is not easy to fix the values for E and F to obtain precise metrics, and it requires a lot of
experimentation which is outside the remit of our work. The effort required to develop a CUDA
code is clearly higher than that corresponding to a llc code. We have estimated a relationship
between these efforts in which E is equal to 1.05 for both cases, and F is equal 2.4 for llc code,
and 4.8 for CUDA code.

The choice of different values for E and F is not a matter of correctness for each environment,
but a matter of making correct estimates of coding efforts. Although the values themselves may
be subject to debate, there is no question that the difference in effort between the environments
is evident

The results shown in Table 6.4 confirm that for different metrics the development costs using
our methodology are clearly lower.
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Figure 6.14: Comparison between OpenMP gcc implementation and Frangollo+OpenCL in
Drago platform using the full system (40 cores) for MxM

6.4 Rodinia Benchmark Suite

The Rodinia Benchmark Suite [38, 39] is composed of a set of workloads designed for heteroge-
neous computing platforms, including both CPUs and devices such as GPUs and FPGAs. Several
different kind of compute-heavy applications from different fields are included, alongside classical
algorithms like LU decomposition and graph traversal. The Rodinia benchmarks are currently
implemented in OpenMP, CUDA and OpenCL.
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LU Mandelbrot Jacobi MD

Code version llc CUDA llc CUDA llc CUDA llc CUDA

# Lines 86 157 145 222 127 260 161 304

Person/Year 0.02 0.06 0.03 0.08 0.02 0.10 0.03 0.11

Person/Month 0.18 0.69 0.32 0.99 0.27 1.17 0.35 1.37

Schedule/Year 0.11 0.18 0.13 0.21 0.13 0.22 0.14 0.24

Schedule/Month 1.31 2.17 1.61 2.49 1.53 2.65 1.68 2.82

Table 6.4: sloccount data for cases of study.

6.4.1 SRAD

Speckle Reducing Anisotropic Diffusion (SRAD) is a diffusion algorithm based on partial differen-
tial equations that is used for removing the speckles in an image without sacrificing important
image features. SRAD is widely used in ultrasonic and radar imaging applications. The program’s
inputs are ultrasound images and the value of each point in the computation domain is dependent
on its four neighbours. Figures 6.15 and 6.16 show the performance of the accULL implemen-
tation against the native implementation in Garoe and Drago respectively. The OpenACC
implementation of the code is shown in Listing 6.13. Following the same pattern we have seen
in both Jacobi and MD implementations (see Section 6.3), the data region is created outside
the iteration loop, whereas kernels are created for the inner loops. This reduces the transfers
between the Host and the device as all the actual computation is performed inside the device,
and only the final result is computed at the end. The independent clause is used in the loops
to force PGI and other compilers to generate CUDA kernels for these loops.

6.4.2 LU Decomposition

The LU decomposition has many row-wise and column-wise interdependencies and requires
significant optimization to yield good parallel performance. A performance comparison of the
OpenACC implementation with the PGI Accelerator Model, the hiCUDA, the original OpenMP
and the native CUDA code is shown in 6.17. For these problem instances, the OpenMP (4 threads)
version provides the best results relative to the native CUDA implementation. Experiments with
a smaller problem size indicate that the speedup achieved by accelerating the computation on
the GPU does not compensate the time required for the memory transfers.

The complex row-wise and column-wise interdependencies of the original algorithm are
difficult for the compiler to identify, and the resulting kernel is not as efficient as it could be.
According to the PGI compile-time information, some references to the matrix are cached, which
improves performance. The accULL kernel does not use shared memory at the moment, however
the Frangollo runtime favours cache over shared memory for the kernel in an attempt to
compensate for this fact. For small problem sizes no benefit is obtained from offloading the code
to GPU, although performance increases as problem sizes increase.
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1 #pragma acc data copy(c[0:size_I], J[0:size_I]) copyin(dN[0:size_I],...)

2 for (iter = 0; iter < niter; iter++) {

3 sum = 0;

4 sum2 = 0;

5 #pragma acc kernels loop private (i) independent

6 for (i = r1; i <= r2; i++) {

7 #pragma acc loop private (j, tmp) reduction(+:sum, sum2) independent

8 for (j = c1; j <= c2; j++) {

9 tmp = J[i * cols + j];

10 sum += tmp; sum2 += tmp * tmp;

11 }

12 }

13 meanROI = sum / size_R;

14 varROI = (sum2 / size_R) - meanROI * meanROI;

15 q0sqr = varROI / (meanROI * meanROI);

16 #pragma acc kernels loop private(i) independent

17 for (int i = 0; i < rows; i++) {

18 #pragma acc loop private(j, k, Jc, G2, L, num, den, qsqr) independent

19 for (int j = 0; j < cols; j++) {

20 k = i * cols + j;

21 Jc = J[k];

22 // directional derivates

23 dN[k] = J[iN[i] * cols + j] - Jc;

24 ...

25 qsqr = num / (den * den);

26 // diffusion coefficent (equ 33)

27 den = (qsqr - q0sqr) / (q0sqr * (1 + q0sqr));

28 c[k] = 1.0 / (1.0 + den);

29 // saturate diffusion coefficent

30 if (c[k] < 0) {

31 c[k] = 0;

32 }

33 else if (c[k] > 1) {

34 c[k] = 1;

35 }

36 }

37 }

38 ...

Listing 6.13: Main loop of the SRAD implementation in OpenACC.

159



6.4 Rodinia Benchmark Suite Performance results

Figure 6.15: Performance comparison of accULL versus native implementation, showing the
speedup against OpenMP using the Telsa C2050 of Garoe

Listing 6.14 shows the OpenACC implementation of the LU decomposition. Notice that
macros are used to differentiate when the code is compiled with the CAPS HMPP implementation
( HMPP) or with any other implementation. One of the main pitfalls of the current standard
is that some features of the language are not implemented homogeneously across all compiler
implementations. In this case, the CAPS HMPP implementation achieves better performance
when using a single kernels region with two loop clauses. On the other hand, the accULL

and the PGI compilers perform better when using a data region and two separate kernels

regions. Performance figures comparing the performance of different OpenACC implementations
are shown in Figure 6.18.
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1 #ifndef __HMPP

2 #pragma acc data copy(a[0:size*size])

3 #else

4 #pragma acc kernels copy(a[0:size*size])

5 #endif

6 for (i=0; i <size; i++){

7 #ifndef __HMPP

8 #pragma acc kernels loop private(j) independent

9 #else

10 #pragma acc loop private(j) independent gang(64) worker(64)

11 #endif

12 for (j=i; j <size; j++){

13 float sum=a[i*size+j] * (-1.0);

14 int k;

15 for (k=0; k<i; k++) sum += a[i*size+k]*a[k*size+j];

16 a[i*size+j]=sum * (-1.0);

17 }

18 #ifndef __HMPP

19 #pragma acc kernels loop private(j) independent

20 #else

21 #pragma acc loop private(j) independent gang(64) worker(64)

22 #endif

23 for (j=i+1;j<size; j++){

24 float sum=a[j*size+i] * (-1.0);

25 int k;

26 for (k=0; k<i; k++) sum += a[j*size+k]*a[k*size+i];

27 a[j*size+i]=sum * (-1.0)/a[i*size+i];

28 }

29 }

30 }

Listing 6.14: Main loop of the LUD implementation in OpenACC
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Figure 6.16: Performance comparison of SRAD using Drago comparing accULL with the native
implementation, showing the speedup against OpenMP GCC implementation

6.4.3 HotSpot

The Rodinia Benchmark Suite includes the 2D transient thermal simulation kernel of Hot Spot
(HS), which iteratively solves a series of differential equations for block temperatures. The
program inputs are power and initial temperatures. Each output cell in the grid represents the
average temperature value of the corresponding area of the chip. The main routine of HS contains
two nested loops that run for a predefined number of iterations. The first loop computes the
actual temperature of each position inside the chip, while the second one just updates the data
with the information computed from the current iteration.

In OpenACC it is possible to use the kernels directive, which defines a data region containing
a set of loops that will be executed on the accelerator device. Loops are annotated using the
loop directive. The compiler can then create a unique data region where the information is
copied to the device before the iteration steps are performed, and then transferred back to the
Host when finished.
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Figure 6.17: Comparison of execution time using hiCUDA, PGI Accelerator Model, OpenMP
and the accULL OpenACC implementation of the LUD using the Tesla C2050 of Garoe

In the accULL implementation it is not necessary to inline the subroutine. Replacing the
kernels directive with a data directive and then using the kernels inside the subroutine is
enough for the runtime to track the usage of the host variables and to handle their device
counterparts properly. A sketch of this approach is shown in Listing 6.15.

Although in this case it is easy to inline the routine, there might be other scenarios where
the usage of data directives that are lexically distant from the point where the kernel is used
can be beneficial from a productivity standpoint. As expected, the native CUDA version delivers
the best results for all problem sizes. Figure 6.19 shows the performance relative to CUDA for
each implementation.

6.4.4 PathFinder

PathFinder (PF) uses dynamic programming to find a path on a 2D grid from the bottom row
to the top row with the smallest accumulated weights, and where each step of the path moves
straight ahead or diagonally ahead. It iterates row by row, with each node picking a neighbouring
node in the previous row that has the smallest accumulated weight and adding its own weight
to the sum.
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Figure 6.18: Percentage of the time of the native CUDA implementation with three different
OpenACC compilers of the LUD using the Tesla C2050 of Garoe

Performance figures for PF are shown in Figure 6.20. The usage of the independent directive
allowed us to force the GPU code generation for both CAPS HMPP and PGI compilers.

6.4.5 Needleman-Wunsch (NW)

Needleman-Wunsch (NW) is a nonlinear global optimization method for DNA sequence alignments.
The potential pairs of sequences are organized in a 2D matrix. In the first step, the algorithm fills
the matrix from top left to bottom right, step-by-step. The optimum alignment is the pathway
through the array with maximum score, where the score is the value of the maximum weighted
path ending at that cell. Thus, the value of each data element depends on the values of its
northwest-, north- and west-adjacent elements. In the second step, the maximum path is traced
backwards to deduce the optimal alignment. Properly scheduling iterations within each loop is
critical to improved performance.

Performance comparison of accULL against OpenMP in a Tesla C2050 and in the CPU are
shown in Figure 6.21 and 6.22. Performance comparison of PGI, hiCUDA, accULL and OpenMP
implementations with respect to the native CUDA implementation is shown in Figure 6.23.

164



Performance results 6.4 Rodinia Benchmark Suite

Figure 6.19: Time relative to CUDA for the HS implementation using the Tesla C2050 of Garoe

When working with hiCUDA, it is possible to schedule loop iterations with different combina-
tions of blocks and threads. We explored several different thread numbers in order to obtain
the maximum performance. Despite NW loops being triangular, hiCUDA was capable of properly
scheduling the iterations across threads. The accULL loop scheduling for this particular algorithm
is similar to the hiCUDA version, thus performance is comparable.

In this case, the PGI implementation performs the worst. Despite our best efforts to force the
compiler to schedule the loops in the GPU, its dependency analysis created sequential GPU kernels.
It is advisable to use the PGI information command line option to show detailed information
about the CUDA code generation. This information enables users to improve parallelization
by solving the performance bottlenecks pointed out by the compiler. In this case, our initial
implementation with PGI directives took more than eighty seconds to conclude. When we showed
the information at compile time, we realized that the code was not parallelized at all due to
detection of false dependency across iterations. We have used this feature, not available on
hiCUDA nor in accULL, to improve the performance of all implementations. We believe that it
is important to provide developers not only with a proper set of directives, but with profile and
debugging tools to make development easier.
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1 void do_iteration(double * temp,...) {

2 #pragma acc kernels ....

3 { /* Compute current temperatures */

4 #pragma acc loop ...

5 for (r = 0; r < row; r++)

6 for (c = 0; c < col; c++)

7 ...

8 /* Update */

9 #pragma acc loop ...

10 for (r = 0; r < row; r++)

11 for (c = 0; c < col; c++)

12 ....

13 }

14 }

15 void routine(...) {

16 ...

17 #pragma acc data copy(temp,...)

18 for (i = 0; i < n_it ; i++)

19 do_iteration(temp ...)

20 }

Listing 6.15: Sketch of HS using OpenACC
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Figure 6.20: Performance of the PF implementation using the Tesla C2050 of Garoe
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Figure 6.21: Performance comparison of accULL using the Tesla C2050 of Garoe versus native
implementation, showing the speedup against OpenMP
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Figure 6.22: Performance comparison of NW using Drago comparing accULL against the provided
OpenCL implementation running on the CPU, showing the speedup against OpenMP gcc
implementation
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Figure 6.23: Performance comparison of NW using the Tesla C2050 of Garoe
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CHAPTER 7

Conclusions and Future Work

This Chapter presents the main conclusions obtained from this thesis and details the work that
still remains to be done in the future.

7.1 Directive-based Programming

The usage of directive-based programming models enables developers to easily migrate codes
to new platforms. Through the information gathered by the compiler from the analysis of the
annotated code it is possible to generate new code optimized for the architecture. Although
this generated code could, theoretically, be as good as a native approach, sometimes this goal
is unfeasible. For example, there are situations in which an algorithm is unable to extract the
maximum performance because it is different to the one initially implemented in the sequential
code. However, using directive-based approaches we can extract sufficient performance from the
device, particularly if we compare the development effort required.

From the different directive-based programming model highlighted in the bibliographic review
(see Chapter 2) we believe that OpenMP and its extension from the Barcelona Supercomputing
Center, OmpSs [55], are going to become ubiquitous in the HPC environment in the near future,
particularly when currently existing scientific codes start to be ported to Peta- and Exa-scale
environments.

We have experience working with both OmpSs and its predecesor, SMPSs [21]: with the
former, it involved porting linear algebra codes to multi-GPU environments [31]; with the latter,
it involved porting linear algebra codes to hybrid MPI-SMPSs [91, 20]. Using these directive-
based programming models enabled us to provide performance portability while maintaining
development efforts at a minimum.

Although the OpenMP standard may one day include a similar system for tracking depen-
dencies across tasks, it will not do so in the near future, so for this reason both programming
models will coexist.
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Support for accelerators may be added to the OpenMP standard in the future [17, 26, 130, 75].
In the meantime, it is worth exploring the new OpenACC standard for accelerators, whose
similarities with different proposals to extend the OpenMP standard (such as the concept of a
data region) could facilitate porting OpenACC codes to OpenMP in the future.

We have demonstrated the feasibility of porting codes to accelerator using directive-based
schemes. Our preliminary work in [116] proposed an approach using minor extensions to OpenMP.
This work allowed us to explore optimization strategies for accelerators, presented in [119].

With the irruption of the OpenACC programming language, which presents a similar set
of directives to those we were already exploring, more hardware vendors were able to support
the model due to the generalization of the accelerator directives. Our work in [125] reveals the
strong and weak points of the commercial implementations available at that time, whereas our
work in [123] shows how the OpenACC scheme could be used on other platforms.

7.2 Programming Tools

Compiler and runtime tools enable programming models, and particularly those based on
directivess, to extract more performance from what is basically a sequential code. Compiler
frameworks like [81] and [36] allow experienced developers to implement source-to-source
transformations on commercial codes. They also feature a large set of existing optimizations
phases that can be used to improve the performance of the final binary after the transformation
takes place. However, working with these compilers is not a straightforward process, and the
startup time for a developer who is new to them is not negligible. Our tool [120] provides a quick
way to validate directive-based approaches, compiler optimisations and runtime interactions.

Having a two layer combination in the form of a compiler and a runtime enabled us to
separate compile-time decisions from decisions that can be easily solved in runtime (such as the
kind of platform we are dealing with). Other authors, such as [55] and [29] are using a similar
two-layer approach with great success.

7.3 Development Productivity

Although in the world of HPC the scientists are usually focused on performance figures, developer
productivity figures are also of critical importance. Scientists and engineers should focus on
doing their jobs, and not on dealing with low-level codes. However, traditional approaches,
particularly in the world of GPU accelerators, force developers to focus on low-level details and
fancy optimizations settings. Our view is that all of these low-level, platform-dependent, details
have to be removed from the equation. This is where the Programming Model demonstrates
its worth. Programming Models should enable the developer to focus on the logic of the code.
However, if the Programming Model is not compatible with available codes, there is the risk of
loosing too much time in code porting. Directive-based models can fill this gap, and with the
help of the appropriate tools (in the form of compiler and/or runtime) can alleviate the task of
the developers while they are migrating the code.
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7.4 Future Work

The tools designed during this work - YaCF and Frangollo - provide a magnificent opportunity for
other researchers. It is easy to extend both the compiler and the runtime with new functionalities
or port them both together to new platforms.

The Frangollo Platform Model supports multiple devices intuitively. Unfortunately due to
time constraints we were not able to implement that feature on the Frangollo runtime. We
envision two different implementations for multiple multiple-device support in the runtime. The
first approach will make use of the existing Device class to create a virtual device composed
by two physical devices. These two physical devices will use a clone operation, as described in
Section 4.1, to share the address space for the input variables, and a scatter/gather combination
for variables with output constraints. This will require an extention of the OpenACC directives
with support to specify regions of data that are accessed by a kernel. It is also possible to
re-think the kernel execution as executing tasks, in the same way as OpenMP. Two consecutive
and asynchronous kernels can be executed on two separate devices, provided that the output
constraints of the first does not collide with the input constraints of the second kernel. This
alternative implementation does not require modifications to the OpenACC directives as the
runtime could detect the situation where two different kernels with non-colliding parameters can
be executed in parallel. This implementation requires manual data partitioning by the user in
order to take full advantage of the parallelism. However, the detection of constraints would be
easy to implement because the internal status of the variables in the runtime properly track
which variables can be used and which ones are being used in a kernel.

Another interesting possibility, derived from the previous concept, is to envision a cluster as
a platform with several accelerators. A node could be designated as a host and the rest of the
nodes would be accelerators. The hierarchical nature of the Frangollo platform model can be
instanced for this platform easily. A similar approach has been used for SnuCL [77]. SnuCL is an
OpenCL framework that hides the complexity of an heterogeneous cluster using the OpenCL
interface. Since our Frangollo runtime is capable of dealing with OpenCL kernels, it is simply
a matter of fully implementing the support for multiple devices should we want to use SnuCL to
execute OpenACC codes transparently in cluster environments.

If we now take a look at the compiler, it is clear that there are also plenty of opportunities
for further work to be carried out. The YaCF compiler framework is a good tool for research
but it is not suitable for production environments. With enough time and resources, it would
be interesting to work on porting the OpenACC infrastructure that we have implemented in
YaCF to LLVM. In combination with Frangollo, we would be able to create a production-ready
OpenACC implementation, while keeping the flexibility of the Frangollo Platform Model to
exploit different platforms.
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The process of generating kernels in YaCF could be improved using polyhedral frameworks
to better exploit the parallelism of the GPU architectures. The implementation of enhanced
analysis phases, or a complete variable dependency analysis would be beneficial to enable more
aggressive transformations or even the vectorization of some operations (which would benefit
Very Long Instruction Word accelerators, such as the AMD Fusion platform). Nevertheless, if
the objective is to fulfill the requirements of complex scientific codes, it is worth exploring the
LLVM approach as it already integrates some of these optimizations.

Finally, much work could still be done on extending the OpenACC language to support more
parallel skeletons, such as tasks or MapReduce, or investigating how to combine OpenACC with
OpenMP. Exploring these new directives (or any other) is almost a trivial task using YaCF and
Frangollo. Its flexibility and the ease of writing are ideal for these kind of experiments.
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[18] Ayguadé, E., and et al. Extending OpenMP to survive the heterogeneous multi-core
era. International Journal of Parallel Programming 38, 5-6 (2010), 440–459. 39, 43

[19] Badia, R. M. Top down programming methodology and tools with StarSs - enabling
scalable programming paradigms. In Proceedings of the second workshop on Scalable
algorithms for large-scale systems (New York, NY, USA, 2011), ScalA ’11, ACM, pp. 19–20.
13, 15

[20] Badia, R. M., Labarta, J., Marjanović, V., Martin, A. F., Mayo, R.,
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structured parallel programming. In Proc. Fourth European Workshop on OpenMP
(EWOMP 2002) (Rome, Italy, September 2002). 8, 9
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[125] Reyes, R., López-Rodŕıguez, I., Fumero, J. J., and de Sande, F. An early
evaluation of the OpenACC standard. In Proceedings of the 2012 International Conference
on Computational and Mathematical Methods in Science and Engineering (La Manga -
Murcia, Spain, Jul 2012), J. V. A. et al., Ed., vol. 3, pp. 1024–1035. 121, 172, 127, 180

[126] Rodŕıguez-Rosa, J., Dorta, A. J., Rodŕıguez, C., and de Sande, F. Exploiting
task and data parallelism. In Proc. of the Fifth European Workshop on OpenMP (EWOMP
2003) (Aachen, Germany, September 2003), pp. 107–116. 8, 9

[127] Roth, G., Mellor-Crummey, J., Kennedy, K., and Brickner, R. G. Compiling
stencils in High Performance Fortran. In Proceedings of the 1997 ACM/IEEE conference
on Supercomputing (CDROM) (New York, NY, USA, 1997), Supercomputing ’97, ACM,
pp. 1–20. 144, 152

[128] Ryoo, S., and et al. Program optimization space pruning for a multithreaded GPU.
In Proceedings of the 6th annual IEEE/ACM international symposium on Code generation
and optimization (New York, NY, USA, 2008), CGO ’08, ACM, pp. 195–204. 34, 38

[129] Ryoo, S., Rodrigues, C. I., Baghsorkhi, S. S., Stone, S. S., Kirk, D. B.,
and Hwu, W.-m. W. Optimization principles and application performance evaluation
of a multithreaded GPU using CUDA. In PPoPP ’08: Proceedings of the 13th ACM
SIGPLAN Symposium on Principles and practice of parallel programming (New York, NY,
USA, 2008), ACM, pp. 73–82. 24, 26

186



BIBLIOGRAPHY BIBLIOGRAPHY

[130] Sabne, A., Sakdhnagool, P., and Eigenmann, R. Effects of compiler optimizations
in OpenMP to CUDA translation. In Proceedings of the 8th international conference on
OpenMP in a Heterogeneous World (Berlin, Heidelberg, 2012), IWOMP’12, Springer-
Verlag, pp. 169–181. 172, 179

[131] Schreiber, R., and Dongarra, J. Automatic blocking of nested loops. Technical
report CS-90-108, NASA Ames Research Center, may 1990. 85, 92

[132] Simionato, M. An Introduction to GraphViz and dot. O’Reilly Community Press, 2004.
90, 98

[133] Skillicorn, D. B., and Talia, D. Models and languages for parallel computation.
ACM Comput. Surv. 30, 2 (June 1998), 123–169. 10, 12

[134] Swiss National Supercomputing Centre (CSCS). Annual report, 2011.
http://www.cscs.ch/fileadmin/Documents/reports/Annual Report11.pdf [Online; Last accessed
October 2012]. 5, 2

[135] Swope, W. C., Andersen, H. C., Berens, P. H., and Wilson, K. R. A computer
simulation method for the calculation of equilibrium constants for the formation of physical
clusters of molecules: Application to small water clusters. Journal of Chemical Physics 76
(1982), 637–649. 136, 142

[136] Takeuchi, M., and et al. Compiling X10 to Java. In Proceedings of the 2011 ACM
SIGPLAN X10 Workshop (New York, NY, USA, 2011), X10 ’11, ACM, pp. 3:1–3:10. 19,
22

[137] Thakur, R., and et al. MPI at Exascale. In Procceedings of SciDAC 2010 (Jun.
2010). 2

[138] The HadGEM2 Development Team. The HadGEM2 family of Met office unified
model climate configurations. Geoscientific Model Development 4, 3 (2011), 723–757. 5,
2

[139] UK National Supercomputing Service. HECToR annual report, 2011.
http://www.hector.ac.uk/about-us/reports/annual/2011.pdf [Online; Last accessed October
2012]. 5, 2

[140] USA President’s Information Technology Advisory Commit-
tee. Computational Science: Ensuring America’s Competitiviness, 2005.
http://www.nitrd.gov/pitac/reports/20050609 computational/computational.pdf [Online;
Last accessed October 2012]. 1

[141] Watkins, D. S. Fundamentals of matrix computations, second ed. John Wiley and
Sons, New York, 2002. 147, 157

[142] Wheeler, D. SLOCcount, 2009. http://www.dwheeler.com/sloccount/ [Online; Last
accessed October 2012]. 155, 165

187

http://www.cscs.ch/fileadmin/Documents/reports/Annual_Report11.pdf
http://www.hector.ac.uk/about-us/reports/annual/2011.pdf
http://www.nitrd.gov/pitac/reports/20050609_computational/computational.pdf
http://www.dwheeler.com/sloccount/


BIBLIOGRAPHY BIBLIOGRAPHY

[143] Willhalm, T., and Popovici, N. Putting Intel Threading Building Blocks to work.
In Proceedings of the 1st international workshop on Multicore software engineering (New
York, NY, USA, 2008), IWMSE ’08, ACM, pp. 3–4. 11, 13

[144] Wolfe, M. Iteration space tiling for memory hierarchies. In Proceedings of the Third
SIAM Conference on Parallel Processing for Scientific Computing (Philadelphia, PA, USA,
1989), Society for Industrial and Applied Mathematics, pp. 357–361. 85, 92

[145] Wolfe, M. More iteration space tiling. In Proceedings of the 1989 ACM/IEEE conference
on Supercomputing (New York, NY, USA, 1989), Supercomputing ’89, ACM, pp. 655–664.
85, 92

[146] Wolfe, M. Implementing the PGI Accelerator model. In Proceedings of the 3rd Workshop
on General-Purpose Computation on Graphics Processing Units (New York, NY, USA,
2010), GPGPU ’10, ACM, pp. 43–50. 37, 38, 154, 41, 163

[147] Xue, J. Loop Tiling for Parallelism. Kluwer International Series in Engineering and
Computer Science. Kluwer Academic, 2000. 84, 85, 92

[148] Yelick, K., and et al. Productivity and performance using partitioned global address
space languages. In PASCO ’07: Proceedings of the 2007 international workshop on
Parallel symbolic computation (New York, NY, USA, 2007), ACM, pp. 24–32. 18, 20

188



List of Figures

1.1 Evolution of the overall performance of HPC systems since 1993 . . . . . . . . 2
1.2 Evolution of the number of cores per socket per system since 2000 . . . . . . . 3
1.3 Evolution of the number of systems with accelerators since 2007 . . . . . . . . 4
1.4 Usage of HECToR facilities by area of expertise . . . . . . . . . . . . . . . . . 5

2.1 Fork join model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 Comparison of CPU and GPU devices . . . . . . . . . . . . . . . . . . . . . . 22

(a) Memory Bandwith . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
(b) Floating-point performamce . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3 Comparison of the old Work Distributor used in Fermi with the new Grid Man-
agement Unit used in the new Kepler architectures . . . . . . . . . . . . . . . 25

2.4 CUDA programs, partitioned into blocks of threads, can run on different GPU
architectures without being modified. Depending on the available number of
resources, more or less blocks may run in parallel . . . . . . . . . . . . . . . . 27

2.5 Example of a two-dimensional kernel grid . . . . . . . . . . . . . . . . . . . . 29
2.6 Memory hierarchy of the CUDA architecture . . . . . . . . . . . . . . . . . . . 30
2.7 Execution of a GPU program from the Host . . . . . . . . . . . . . . . . . . . 32
2.8 OpenCL Platform model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.9 OpenCL Execution model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.10 OpenMPC workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.11 Task dependency graph generated by the OmpSs runtime . . . . . . . . . . . . 40
2.12 Compilation Flow of Open64 . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.13 Levels of WHIRL and Lowering actions . . . . . . . . . . . . . . . . . . . . . . 46
2.14 LLVM Workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.15 Usual Workflow of a ROSE driver . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.16 Cetus architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
2.17 Mercurium workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
2.18 The GNU compiler toolkit translates the OpenMP nodes into calls to GOMP . 59

3.1 Overall translation workflow executed by a typical YaCF driver . . . . . . . . . 63
3.2 IR for the statement if(a>1) printf("%d",a) . . . . . . . . . . . . . . . . 67
3.3 IR generated for the main loop of the π computation example shown in Figure 2.1 68
3.4 Insertion of a new parameter in a function call . . . . . . . . . . . . . . . . . . 71

189



LIST OF FIGURES LIST OF FIGURES

3.5 Replace operation of a parameter in a function call . . . . . . . . . . . . . . . 72
3.6 Remove operation of a parameter in a function call . . . . . . . . . . . . . . . 75
3.7 Frontend package class hierarchy . . . . . . . . . . . . . . . . . . . . . . . 77
3.8 Variable dependency graph for the code in Listing 3.12 . . . . . . . . . . . . . 81

4.1 Basic pre-DCG representing a variable in the device that needs to be updated
with data from the Host . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.2 Evolution of the three graphs (correlation, pre- and post- graphs) across an
example program execution on a platform with a Host and an attached device . 100

4.3 Evolution of the three graphs (correlation, pre- and post- graphs) across a Host
with a device attached performing a reduction on its private memory . . . . . . 101

4.4 Overview of Frangollo layers . . . . . . . . . . . . . . . . . . . . . . . . . . 103
4.5 Transition state diagram of a Var instance . . . . . . . . . . . . . . . . . . . . 105
4.6 UML Diagram of the most relevant classes within the Frangollo runtime . . . 107
4.7 Execution workflow of the Frangollo runtime through the same example as that

shown in Figure 4.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.1 llc translation options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
5.2 Compilation flow of an llcl source. . . . . . . . . . . . . . . . . . . . . . . . 122
5.3 Execution workflow of a program using the OpenACC API . . . . . . . . . . . 123
5.4 Relationship between OpenACC concepts and elements in the GPU architecture 125

6.1 Speed-up of the Mandelbrot set computation on Tajinaste . . . . . . . . . . . 133
6.3 Execution time of the implementation greatly varies in terms of the number of

threads, using N = 32768 points. In addition, the optimal number of threads
varies from Tesla C1060 to Tesla C2050. This clearly reflects the significance of
a proper estimation of the kernel launch configuration . . . . . . . . . . . . . 138

6.4 Speedup of the MD simulation code for different parallelization strategies, using
Tesla C1060 and eight OpenMP threads in Garoe, one on each processor core . 140

6.5 Performance comparison of baseline, unrolling and collapsing in the evaluated
platforms using Garoe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

6.6 Performance comparison of the best OpenACC implementation vs. OpenMP in
Homero for three different problem sizes. The laptop GPU memory was not large
enough to handle the size of the biggest problem and the laptop crashed . . . . 143

6.7 Time execution comparison for the MD OpenACC implementation against
OpenMP in Drago . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

6.8 Speedup of the Jacobi code for different problem sizes, using the Tesla C1060 of
Garoe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

6.9 Imapct on performance of the collapse clause in the Jacobi code using the
Tesla C1060 of Garoe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

6.10 Performance impact of local storage usage using three different GPU architectures
in Ilion for the GPU card with arch 1.1, the Tesla C1060 of Garoe for the
architecture 1.3 and the Tesla C2050 for the architecture 2.0 . . . . . . . . . . 151

190



LIST OF FIGURES LIST OF FIGURES

6.11 Performance comparison of three OpenACC implementations using the Tesla
C2050 of Garoe . PGI version 12.6, CAPS HMPP version 2.3.3 and the release
0.1 of accULL have been used . . . . . . . . . . . . . . . . . . . . . . . . . . 153

6.12 Effect of varying the values of the gang, worker and vector clauses using the
Tesla C2050 of Garoe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

6.13 Floating point performance for MxM in Peco. We compare OpenMP, Frangollo
with CUDA/OpenCL and an improved version of the kernel using loop invariant
optimization for a[i*L+j] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

6.14 Comparison between OpenMP gcc implementation and Frangollo+OpenCL in
Drago platform using the full system (40 cores) for MxM . . . . . . . . . . . . 157

6.15 Performance comparison of accULL versus native implementation, showing the
speedup against OpenMP using the Telsa C2050 of Garoe . . . . . . . . . . . 160

6.16 Performance comparison of SRAD using Drago comparing accULL with the native
implementation, showing the speedup against OpenMP GCC implementation . 162

6.17 Comparison of execution time using hiCUDA, PGI Accelerator Model,
OpenMP and the accULL OpenACC implementation of the LUD using the Tesla
C2050 of Garoe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

6.18 Percentage of the time of the native CUDA implementation with three different
OpenACC compilers of the LUD using the Tesla C2050 of Garoe . . . . . . . . 164

6.19 Time relative to CUDA for the HS implementation using the Tesla C2050 of Garoe165
6.20 Performance of the PF implementation using the Tesla C2050 of Garoe . . . . 167
6.21 Performance comparison of accULL using the Tesla C2050 of Garoe versus native

implementation, showing the speedup against OpenMP . . . . . . . . . . . . . 168
6.22 Performance comparison of NW using Drago comparing accULL against the

provided OpenCL implementation running on the CPU, showing the speedup
against OpenMP gcc implementation . . . . . . . . . . . . . . . . . . . . . . . 169

6.23 Performance comparison of NW using the Tesla C2050 of Garoe . . . . . . . . 170

191



List of Tables

2.1 CUDA Architecture comparison . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.2 Final comparison of compilers . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.1 Information extracted from the loop in Listing 3.13 . . . . . . . . . . . . . . . 82
3.2 Placement of variables according to loop information . . . . . . . . . . . . . . 93

5.1 Compliance with the OpenACC 1.0 standard (directives) . . . . . . . . . . . . 128
5.2 Compliance with the OpenACC 1.0 standard (API) . . . . . . . . . . . . . . . 128

6.1 Speedup for the MD algorithm in Tajinaste . . . . . . . . . . . . . . . . . . . 136
6.2 Time per phase and speedup for each optimization for MD using OpenACC in

the CPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
6.3 Time per phase and speedup for each optimization for MD using OpenACC in

the GPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
6.4 sloccount data for cases of study. . . . . . . . . . . . . . . . . . . . . . . . . 158

193



List of Listings

2.1 Implementation of the π computation using OpenMP . . . . . . . . . . . . . . 12
2.2 Implementation of the π computation using MPI . . . . . . . . . . . . . . . . 14
2.3 Implementation of the π computation using llc . . . . . . . . . . . . . . . . 17
2.4 A parallelization of the usmv operation . . . . . . . . . . . . . . . . . . . . . 17
2.5 Implementation of the π computation using UPC . . . . . . . . . . . . . . . . 19
2.6 Example of X10 source code . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.7 Jacobi algorithm implementation in Chapel . . . . . . . . . . . . . . . . . . . 23
2.8 Example of CUDA Runtime code . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.9 Sketch of MxM in hiCUDA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.10 Sketch of MxM in PGI Accelerator Model . . . . . . . . . . . . . . . . . . . . . 38
2.11 Example of OmpSs directives . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.12 Open64 Tree Traversal example . . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.13 LLVM Code Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
2.14 ROSE driver example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
2.15 ROSE Traversal example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
2.16 Java code to create a driver using the Cetus API . . . . . . . . . . . . . . . . 54
2.17 Java code to iterate through the Cetus IR and print a message whenever a for

loop is traversed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
2.18 Loop unrolling in Mercurium . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
2.19 Loop collapse in Mercurium . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
2.20 Example of the usage of the single construct of OpenMP . . . . . . . . . . . . 59
2.21 Code generated by GCC for the single construct, calling the GOMP ABI . . . 59
3.1 A simple implementation of a Filter that will iterate throught all the declarations

of a given subtree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.2 A more complex example of Filter where only those declarations inside a particular

function will be traversed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.3 Example of a Mutator that will apply a transformation to all declarations within

a subtree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.4 Inserting a subtree inside the main IR . . . . . . . . . . . . . . . . . . . . . . 70
3.5 Replace a subtree inside the main IR . . . . . . . . . . . . . . . . . . . . . . . 70
3.6 Initialization of a SymbolTable . . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.7 Content of the ST after analyzing the code in Listing 3.8 . . . . . . . . . . . . 74
3.8 C code example with nested declaration scopes . . . . . . . . . . . . . . . . . 76

195



LIST OF LISTINGS LIST OF LISTINGS

3.9 Part of the C99 AST configuration file . . . . . . . . . . . . . . . . . . . . . . 78
3.10 Extract from the OpenMP parser of YaCF showing the interpretation of the

reduction and nowait clauses . . . . . . . . . . . . . . . . . . . . . . . . . . 78
3.11 Control and data dependency example extracted from [98] . . . . . . . . . . . 79
3.12 Example of a SESE block statement with variable dependencies . . . . . . . . 79
3.13 A canonical C loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
3.14 Loop nest before aplying loop interchange . . . . . . . . . . . . . . . . . . . . 83
3.15 The result of applying loop interchange to the loop nest in Listing 3.14 . . . . 83
3.16 An example of a simple C canonical loop zeroing an array . . . . . . . . . . . 84
3.17 Loop in Listing 3.16 after aplying strip-mining with strip size B . . . . . . . . . 84
3.18 Square matrices product, example of a perfect loop nest . . . . . . . . . . . . 85
3.19 Square matrices product with its loops incorrectly ordered after applying strip-mining 85
3.20 The effect of applying square loop tiling with tile size B to the code in Listing 3.18 86
3.21 An example of a loop body with a break statement . . . . . . . . . . . . . . . 87
3.22 Incorrect extraction of the loop body. The break statement is no longer syntac-

tically correct. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
3.23 Example of template mixing C and Python code with the template tags . . . . 90
3.24 Calling the parse snippet from the Mutator to generate the AST of the code

after filling the template . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
3.25 Example of the DOT Back end output . . . . . . . . . . . . . . . . . . . . . . 91
4.1 Platform-independent update of a host variable . . . . . . . . . . . . . . . . . 105
4.2 copy in method from OCLVar . . . . . . . . . . . . . . . . . . . . . . . . . . 108
4.3 Example of calls to the Frangollo interface layer. . . . . . . . . . . . . . . . 110
4.4 Calling Frangollo from C++ . . . . . . . . . . . . . . . . . . . . . . . . . . 111
5.1 Snippet from the code generated by llCoMP-HYB . . . . . . . . . . . . . . . . 116
5.2 OpenMP implementation of π computation using the target extension. . . . . 118
5.3 llCoMP template for a CUDA kernel . . . . . . . . . . . . . . . . . . . . . . . 119
5.4 A platform description file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
5.5 Matrix product in llcl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
5.6 Code example showcasing the usage of the host data directive . . . . . . . . 125
6.1 OpenMP implementation of the Mandelbrot set computation . . . . . . . . . 132
6.2 Using the OpenMP extensions to port a code to CUDA . . . . . . . . . . . . . 134
6.3 The Mandelbrot set computation in OpenACC . . . . . . . . . . . . . . . . . . 136
6.4 Sketch of the MD simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
6.5 Main compute loop of the MD code simulation in OpenMP . . . . . . . . . . . 139
6.6 Code of the OpenMP implementation of the Jacobi method . . . . . . . . . . 145
6.7 Iterative loop in Jacobi showing the usage of the OpenMP extensions . . . . . 145
6.8 LU reduction in llc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
6.9 Kernel generated automatically by llCoMP for the LU reduction . . . . . . . . 150
6.10 Kernel modified to take advantage of the thread block shared memory . . . . . 150
6.11 Sketch of MxM in OpenACC . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
6.13 Main loop of the SRAD implementation in OpenACC. . . . . . . . . . . . . . . 159
6.14 Main loop of the LUD implementation in OpenACC . . . . . . . . . . . . . . . 161

196


	Portada
	Acknowledgements
	Dedicatoria
	Contents
	1. Introduction
	1.1. Main Contributions
	1.2. Thesis Organisation

	2. Background and Related Work
	2.1. Classi�cation of Programming Models
	2.1.1. Traditional Shared Memory Multicore
	2.1.1.1. OpenMP
	2.1.1.2. SMPSs

	2.1.2. Distributed-memory Based Systems
	2.1.2.1. MPI
	2.1.2.2. llc
	2.1.2.3. Partition Global Address Space (PGAS)
	2.1.2.4. UPC
	2.1.2.5. X10
	2.1.2.6 .Chapel

	2.1.3. GPU Devices
	2.1.3.1. GPGPU : General Purpose GPU programming
	2.1.3.2. CUDA Programming Model
	2.1.3.3. OpenCL

	2.1.4 .Directive-based Languages for Accelerators
	2.1.4.1. OpenMPC - OpenMP Extended for CUDA
	2.1.4.2. hiCUDA
	2.1.4.3. PGI Accelerator Model
	2.1.4.4. OpenACC

	2.1.5. Multi-target Programming Languages
	2.1.5.1. OmpSs

	2.1.6. Final Remarks

	2.2. Compiler Support for Programming Models
	2.2.1. GCC
	2.2.1.1. General Usage/Workow
	2.2.1.2. Intermediate Representation
	2.2.1.3. Unparsing

	2.2.2. Open64
	2.2.2.1. General Usage/Workow
	2.2.2.2. Intermediate Representation
	2.2.2.3. Unparsing
	2.2.2.4. Querying and AST Traversal

	2.2.3. LLVM
	2.2.3.1. General Usage / Workow
	2.2.3.2. Intermediate Representation
	2.2.3.3. Unparsing
	2.2.3.4. Querying and IR Traversal

	2.2.4. ROSE
	2.2.4.1. General Usage / Workow
	2.2.4.2. Intermediate Representation
	2.2.4.3. Unparsing
	2.2.4.4. Querying
	2.2.4.5. AST Traversal

	2.2.5. Cetus
	2.2.5.1. General Usage / Workow
	2.2.5.2. Intermediate Representation
	2.2.5.3. Querying and Traversal

	2.2.6 Mercurium
	2.2.6.1. General Usage / Workow
	2.2.6.2. Intermediate Representation
	2.2.6.3. Querying and AST Traversal
	2.2.6.4. Unparsing

	2.2.7. Final Remarks

	2.3. Runtime Support
	2.3.1. StarPU
	2.3.1.1. Codelet and Tasks

	2.3.2. GOMP
	2.3.3. GMAC
	2.3.4. Final Remarks


	3. Yet Another Compiler Framework
	3.1. Design Considerations and Basic Concepts
	3.1.1. Filter
	3.1.2. Mutator

	3.2. Internal Representation
	3.2.1. Manipulating the IR

	3.3. Symbol Table
	3.3.1. Scope Information
	3.3.2. Computing the Size of Elements

	3.4. The Frontend
	3.4.1. De�ning a New Language

	3.5. The MiddleEnd
	3.5.1. Data Dependency Analysis
	3.5.1.1. Data Dependency Graph
	3.5.1.2. Checking dependencies

	3.5.2. Loop Analysis
	3.5.3. Loop Optimizations
	3.5.3.1. Loop Common
	3.5.3.2. Loop Interchange
	3.5.3.3. Strip-mining
	3.5.3.4. Loop Tiling

	3.5.4. The Outliner

	3.6. The Backend
	3.6.1. The Template Subsystem
	3.6.2. The DOT Back end
	3.6.3. The Writer Classes
	3.6.3.1. O setWriter
	3.6.3.2. C99Writer
	3.6.3.3. OmpWriter

	3.6.4. The CUDA Back end
	3.6.4.1. Platform
	3.6.4.2. Kernelize

	3.6.5. The OpenCL Back end

	3.7. Final Remarks

	4. The Frangollo Runtime
	4.1. The Frangollo Platform Model
	4.1.1. Components
	4.1.2. Execution
	4.1.3. Parallelism
	4.1.4. Memory Model
	4.1.5. Memory coherence
	4.1.6. Composing operations
	4.1.7. Applying the Frangollo Platform Model

	4.2. Software Architecture
	4.2.1. Abstract Layer
	4.2.1.1. Context
	4.2.1.2. Variables
	4.2.1.3. Devices

	4.2.2. Device Layer
	4.2.2.1. CUDA Component
	4.2.2.2. OpenCL component
	4.2.2.3. Reductions in CUDA and OpenCL

	4.2.3. Interface Layer
	4.2.3.1. C interface
	4.2.3.2. C++ Layer

	4.2.4. Overall Usage Workow

	4.3. Final Remarks

	5. Directive-based Code Generation
	5.1. Extending llc to Support Hybrid MPI+OpenMP Programming
	5.2. Generating CUDA Code from llc Sources
	5.3. Intermezzo: llcl
	5.3.1. Implementing llcl

	5.4. accULL
	5.4.1, OpenACC Programming Interface
	5.4.2. c2frangollo Compiler Driver
	5.4.3. Interfacing OpenACC in Frangollo
	5.4.4. Putting It All Together


	6. Performance results
	6.1. Experimental Platforms
	6.2. Other Compilers Implementing Directive-based Approaches
	6.3. OpenMP Source Code Repository
	6.3.1. Mandelbrot Set Computation
	6.3.1.1. Hybrid MPI/OpenMP implementation with llCoMP (LLC-HYB)
	6.3.1.2. Extending OpenMP to support heterogeneous architectures (LLC-CUDA)
	6.3.1.3. Analysis of the kernel grid con�guration (LLC-CUDA)
	6.3.1.4. The OpenACC implementation of Mandelbrot (ACC)

	6.3.2. Molecular Dynamics
	6.3.2.1. Evaluation of performance with Hybrid MPI/OpenMP llCoMP (LLC-HYB)
	6.3.2.2. Mixing OpenMP and CUDA with the OpenMP to CUDA translator (LLC-CUDA)
	6.3.2.3. E ects of Loop Optimization Techniques Across Di erent Architectures (LLC-CUDA)
	6.3.2.4. Advantages of the Runtime Approach: Reduction of Memory Transfers (ACC)
	6.3.2.5. OpenACC Beyond GPUs (ACC)

	6.3.3. Jacobi
	6.3.3.1. Reducing Memory Transfers from/to the GPU (LLC-CUDA)

	6.3.4. LU Reduction
	6.3.4.1. Impact of Kernel Optimizations in di erent CUDA architectures (LLC-CUDA)

	6.3.5. Matrix Multiplication
	6.3.5.1. Optimizing Loop Nests
	6.3.5.2. Kernel Grid Con�guration in OpenACC
	6.3.5.3. Loop Invariant Optimization

	6.3.6. Development E ort Analysis (LLC-CUDA)

	6.4. Rodinia Benchmark Suite
	6.4.1. SRAD
	6.4.2. LU Decomposition
	6.4.3. HotSpot
	6.4.4. PathFinder
	6.4.5. Needleman-Wunsch (NW)


	7. Conclusions and Future Work
	7.1. Directive-based Programming
	7.2. Programming Tools
	7.3. Development Productivity
	7.4. Future Work

	Contributions
	Bibliography
	List of Figures
	List of Tables
	List of Listings



