TRABAJO FIN DE GRADO
Curso 2014-2015

Astilleros de reparación

Tutor: Enrique Melón Rodríguez
Alumna: Miriam Salazar García
Grado en Náutica y Transporte Marítimo
Trabajo de fin de grado en náutica y transporte marítimo

Miriam Salazar García
Índice

Introducción .. 5

1. El Astillero .. 7
 1.1 Tipos de Astillero .. 7
 1.2 Características diferenciales de un astillero de reparación .. 9
 1.3 Disposición de un astillero de reparación ... 10
 1.4 Evolución .. 12
 1.5 Medios de varada .. 14
 1.6 Medios de varada por transferencia .. 23
 1.7 Muelles. Medios de elevación ... 26

2. Presentación del astillero .. 29
 2.1 Estructura del Astillero. El Organigrama ... 34
 2.2 Flujo de trabajo en el desarrollo de los diferentes proyectos de reparación del astillero modelo .. 41
 2.2.1 Recepción de la petición de reserva de dique y de la especificación de obra 41
 2.2.2 Negociación del contrato de reparación ... 42
 2.2.3 Traspaso del expediente al Departamento de Producción y fase de preparación ... 43
 2.2.4 Fase de ejecución ... 46
 2.2.5 Finalización de los trabajos de un proyecto .. 47

3. La nave de gran velocidad ... 49
 3.1 Características de la nave ... 50
Trabajo de fin de grado en náutica y transporte marítimo

3.2 Manual de mantenimiento y programa de revisión ... 55
3.3 Normativa de las naves de gran velocidad ... 56
3.4 Tipos de nave de gran velocidad ... 57

4. Proyecto de reparación de un fast ferry de pasaje ... 59
 4.1 La lista de trabajos .. 60
 4.2 Trabajos de varada .. 63

5. Conclusiones ... 73

6. Bibliografía .. 74
Introducción

El presente proyecto tiene como objeto acercar al lector al mundo de la reparación de buques y en concreto presentar la reparación de un buque específico dentro de un astillero. El mismo está estructurado en cuatro partes diferenciadas por capítulos.

En el primer capítulo se lleva a cabo una pequeña introducción de los astilleros en la que se hace referencia a los diferentes tipos de astilleros de reparación y se introducen los parámetros que lo diferencian.

En el segundo capítulo se presenta el astillero escogido para la varada, Astican. En esta parte se verá el proceso desde que el cliente realiza la petición de varada hasta la partida del buque.

En el tercer capítulo, se habla de la nave de gran velocidad, sus características básicas.

Y, finalmente el capítulo cuatro abarca la varada de la nave de gran velocidad, trabajos que se realizaron y demás.

Todo astillero de reparación trabaja de forma distinta, por lo que a lo largo del proyecto no se pretende mostrar “la forma cómo trabajan todos los astilleros de reparación del mundo” sino, partiendo de un modelo de astillero en concreto con una estructura determinada, cómo se procede a la ejecución de un proyecto de reparación concreto.

This project aims to bring the reader to the world of ship repair and in particular repair a specific ship in a shipyard. The project is structured in four chapters.

In the first chapter it takes place a short introduction of the shipyards in which reference is made to the different types of ship repair yards and the parameters that differ are introduced.

In the first chapter a small introduction of the shipyards in which are explained the types of shipyards and the differences.

In the second chapter presents the shipyard, Astican. In this part will see the process since the client realizes the request of groundings to departure of the ship.
In the third chapter, it speaks of the high speed craft, its basic characteristics.

And finally the fourth chapter covers the grounding of high speed craft, works that were realized and others.

All repair shipyard works differently, so throughout the project is not meant to show the way work every repair yards in the world but, from a model shipyard specifically with a particular structure, how we proceed to the execution of a concrete repair project.
1. El Astillero

Se define al astillero como el establecimiento en el cual se lleva a cabo la construcción o reparación de embarcaciones y/o artefactos flotantes. Aunque algunos astilleros puedan dedicar su actividad y parte de sus instalaciones a la construcción y la otra parte a la reparación, por lo general, cada uno de ellos está especializado en una u otra línea de negocio, por lo que, como clasificación general, podemos clasificar los astilleros en dos tipos diferentes:

- Astilleros de construcción
- Astilleros de reparación

1.1 Tipos de Astillero

Astilleros de construcción: El astillero de construcción es aquel establecimiento el cual centra su actividad empresarial en la construcción de embarcaciones. La construcción de un buque es un proceso complicado y sumamente técnico, que exige la coordinación de numerosos trabajadores fijos y eventuales bajo el control del contratista principal. La construcción naval puede tener carácter civil o militar.

Astilleros de reparación: El astillero de reparación basa su línea de negocio en la reparación de embarcaciones y/o artefactos flotantes. Todos los buques no son iguales por lo que, consecuentemente, los astilleros donde se realizan las reparaciones tampoco lo son, por lo que suelen estar especializados en un grupo o tipo determinado de embarcaciones. Por poner un ejemplo, un megayate de lujo difícilmente realizará sus labores de mantenimiento en un astillero donde habitualmente no trabajen con este tipo de embarcaciones. Este caso se puede dar, básicamente, por dos motivos.

El primero sería la desconfianza que le pueda generar a un cliente reparar su embarcación en un lugar donde no están habituados a trabajar con ese tipo concreto de embarcaciones. Y el segundo sería que el astillero no quiera aceptar ese tipo de embarcación en sus instalaciones por prever que el proyecto no le resulte rentable, ya que no está acostumbrado a llevar a cabo reparaciones en ese tipo de embarcaciones.
Por este motivo, y habiendo definido el concepto de astillero de reparación los clasificaremos en tres tipos basado en la naturaleza de buques que en ellos se reparan:

- Astillero de reparación especializado en la reparación de buques comerciales.
- Astillero de reparación especializado en la reparación de buques militares.
- Astillero de reparación especializado en la reparación de buques o embarcaciones de recreo.

No obstante, esta clasificación no es pura por lo que existen astilleros que abarcan la reparación de más de un tipo de buque, siendo también verdad que lo hacen, generalmente, de forma totalmente separada.

Los astilleros de reparación de buques comerciales son aquellos en los que la actividad principal es la reparación de buques mercantes o también llamados comerciales.

Son considerados como buques comerciales todos aquellos buques cuyo objeto de diseño es el transporte de mercancías y pasajeros (excluyendo los yates y embarcaciones de recreo aunque sean con ánimo de lucro), buques pesqueros, buques auxiliares y buques especiales.

Este es el tipo de astillero de reparación más extendido, sin contar los varaderos de embarcaciones de recreo, los cuales hay uno en casi cada puerto, y con más variedad en cuanto a instalaciones, estructura, tecnificación de equipos y de personal y capacidad de puesta en seco.

Los astilleros de reparación de buques comerciales a veces enfocan su línea de acción en uno o varios tipos de embarcaciones y de esta forma poder ofrecer una mayor eficacia de servicios especializados acorde con esos tipos de embarcación.

En cuanto a los astilleros de reparación dedicados únicamente a los buques militares suelen ser propiedad de los gobiernos y su operación suele estar comandada por el ejército naval correspondiente a cada país.
Los accesos a este tipo de astilleros suele estar muy controlado y muchas de las áreas son de acceso restringido para la mayor parte de los trabajadores y tripulantes.

Al ser su financiación estatal, los fondos dedicados dependerán de los presupuestos que tenga la Marina del estado en cuestión y, consecuentemente, el nivel tecnológico de sus instalaciones vendrá determinado por el grado de desarrollo del país.

Y finalmente para las pequeñas embarcaciones el astillero de reparación deja de llamarse astillero para pasar a ser un varadero. La mayoría de las marinas suelen tener un varadero donde poder llevar a cabo las pequeñas reparaciones que se puedan derivar de este tipo de embarcaciones.

1.2 Características diferenciales de un astillero de reparación

Las características diferenciales de un astillero son aquellas características que diferencian un astillero comercial de otro y en las que se fija el cliente a la hora de elegir un astillero de reparación para llevar a cabo su proyecto de reparación. Como principales características diferenciales de un astillero nombraremos las siguientes:

- Localización.
- Capacidad de puesta en seco.
- Tamaño de las instalaciones y número de personal que lo trabaja.
- Nivel técnico y tecnológico de su personal y de los equipos que tiene.

Se puede establecer una clasificación atendiendo al tamaño de los barcos, diferenciando astilleros para barcos de tamaño pequeño menos de 20.000 TPM, de tamaño medio hasta 100.000 TPM y de tamaño grande para más de 100.000 TPM.
Trabajo de fin de grado en náutica y transporte marítimo

Clasificación de los centros de reparación según su tamaño

<table>
<thead>
<tr>
<th>Tamaño</th>
<th>Medios de varada</th>
</tr>
</thead>
<tbody>
<tr>
<td>Astilleros pequeños</td>
<td>Varaderos</td>
</tr>
<tr>
<td>Barcos menores de 20.000 TPM</td>
<td>Diques secos</td>
</tr>
<tr>
<td></td>
<td>Diques flotantes</td>
</tr>
<tr>
<td></td>
<td>Syncrolift</td>
</tr>
<tr>
<td>Astilleros medianos</td>
<td>Diques secos</td>
</tr>
<tr>
<td>Barcos entre 20.000-100.000</td>
<td>Diques flotantes</td>
</tr>
<tr>
<td>TPM</td>
<td>Syncrolift</td>
</tr>
<tr>
<td>Astilleros grandes</td>
<td>Diques secos</td>
</tr>
<tr>
<td>Barcos mayores de 100.000 TPM</td>
<td></td>
</tr>
</tbody>
</table>

Tabla 1: Clasificación de los centros de reparación según tamaño

Fuente: MIGUEL ÁNGEL DE LA HUERGA MENDOZA, “Reparaciones y transformaciones navales”.

1.3 Disposición de un astillero de reparación

La situación geográfica de un astillero de reparación viene siempre condicionada por una serie de factores que lo hacen atractivo para los armadores y permite un buen desarrollo de sus funciones. Así, un astillero suele estar situado:

- En las grandes rutas de navegación o proximidades, al objeto de procurar que los buques que navegan por ellas pierdan el menor tiempo posible para alcanzar el astillero, al desviarse poco de su ruta de viaje de vuelta cuando el barco va en lastre. La probabilidad de conseguir más cuota de mercado será en función de la proximidad del astillero a las zonas de mayor tráfico de buques.

- En el entorno de una actividad marítima específica e intensa. En los puertos pesqueros, en las zonas de gran actividad de pesca; en ríos y canales allí donde sea necesario el continuo dragado y por tanto existen dragas y elementos flotantes necesarios para las operaciones; dentro de lados con
importante navegación interior, donde los barcos no pueden acceder a aguas libres, en los terminales de carga y descarga de crudo, etc.

- Al abrigo de inclemencias del tiempo, donde se puedan realizar trabajos incluso con temporales, sin riesgo para los barcos y las propias instalaciones. Las maniobras de entrada en dique y varada son bastantes delicadas.

- En lugares de suficiente calado para el tipo de barcos que se desea reparar. De lo contrario habrá que estar dragando periódicamente con el correspondiente costo adicional.

- En un entorno industrial que permita el rápido suministro de materiales y mano de obra. En una zona de desarrollo industrial será más fácil conseguir repuestos, herramental, materiales como laminados, pintura, consumibles, etc. Y habrá mano de obra cualificada que trabajará en otras actividades y que será más inmediata de contratar cuando se necesite.

- Con buena comunicación aérea para el fácil y rápido suministro de piezas de repuesto. Es frecuente que en la reparación de un barco que haya que sustituir un elemento o parte de él cuyo fabricante está a muchos kilómetros, por lo que un buen enlace aéreo permitirá en muchos casos obviar esta dificultad y acortar los tiempos de reparación. También permitirá la rápida presencia de personas tales como inspectores, técnicos, etc.

- En una zona de climatología adecuada. Algunos trabajos frecuentes de reparación como los de soldadura, chorreados o pintura exigen unas condiciones de humedad atmosférica críticas.

No es de extrañar que muchos astilleros se encuentren en el interior de un puerto comercial, de gran actividad, a veces como servicio ofrecido por la propia
administración del puerto, en las desembocaduras de ríos, en radas o zonas de abrigo donde se dan con mayor profusión este tipo de condiciones.

1.4 Evolución

Históricamente los grandes astilleros solían disponer de un área para nuevas construcciones y otra de reparaciones, en algunos casos perfectamente separadas y delimitadas hasta con una muralla. Aunque eran dos tipos de negocios distintos, se pretendía cubrir largos períodos de crisis en una u otra actividad con una dedicación a lo que en cada momento demandaba el mercado. Así el flujo de personal propio de derivaba en una u otra parte según las necesidades de cada momento y las instalaciones de una se usaban ocasionalmente para la otra en una operación de apoyo mutuo. Posteriormente, la alta productividad que el mercado demandaba, aconsejó una especialización de negocios y por lo tanto de astilleros, de tal forma que se trataron de separar completamente, dedicando cada astillero a aquella tarea que le era más rentable.

Sea de reciente creación o nacido como complemento de un astillero de nuevas construcciones, la diferencia inmediata que se observa con estos es que lo fundamental de un astillero de reparaciones son sus medios de varada, siendo su entorno y potencia de los medios de elevación comparativamente muy inferiores. Las pocas zonas de almacenamiento de materiales y talleres de pequeñas dimensiones, con la menor extensión posible para el ahorro de tiempos de transporte.

Tradicionalmente los cascos de los barcos se montaban en las gradas, de menos coste de construcción que los diques y por tanto con una amortización por unidad más baja que compensaba en parte el largo período de estancia en ellas.

Después de la Segunda Guerra Mundial en Japón empezaron a usarse los diques, construidos originariamente con fines militares, para las nuevas construcciones mercantes, y fue a partir de los años sesenta, con la construcción de los barcos de más de 200.000 TPM, cuando se generalizó el uso de diques para nuevas construcciones. Los avances en la productividad y el consiguiente acortamiento de los períodos de construcción del casco mejoraron las amortizaciones de los diques. Las gradas, mucho más económicas en su construcción, satisfacían suficientemente
Trabajo de fin de grado en náutica y transporte marítimo

las necesidades de construcción, pero a las dificultades en el montaje de bloques y reforzado y operaciones de botadura, había que añadir que, a partir de ciertas esloras, la peligrosidad que suponía someter al barco a los esfuerzos extremos en la botadura, muy superiores a cualquiera de los que podría ser sometido en cualquier situación en navegación.

Para facilitar la delicada maniobra de entrada y salida de los buques en diques, se orientan, en la medida de lo posible, en la dirección de los vientos locales reinantes; por eso es característico ver la planta de los astilleros con sus diques todos más o menos paralelos.

Como los astilleros suelen tener una gran cantidad de barcos simultáneamente, los astilleros deben tener gran longitud total de muelles donde se realizan todos los trabajos que no requieran imprescindiblemente una varada, además de ser un lugar de espera para la entrada y de atraque después de la salida. Siendo aproximadamente la longitud total de los muelles, tres veces la suma de las esloras de todos los diques.

Astillero Navantía, Ferrol

Fuente: http://www.grupotheais.com/galiciavivela/Ciudades/Ferrol.htm [página web]

Diques y muelles, están servidos por grúas como medios de elevación, más numerosas y menos poderosas que en los astilleros de nueva construcción, ya que no está previsto el movimiento de grandes bloques de acera o pesada maquinaria, sino pequeñas y numerosas cargas.
Para ciertos tipos de buques, como los petroleros, está reglamentada la inclusión de unas instalaciones de limpieza y desgasificación de tanques, necesarios para realizar trabajos como por ejemplo soldaduras.

1.5 Medios de varada

Los medios de varada son el elemento fundamental en el mantenimiento y reparación de la obra viva de los barcos. Es la instalación más cara de un astillero, en torno al cual se agrupan todas las demás todas las demás. Por tanto, al proyectar un astillero, la determinación del tipo y dimensión de estos medios es la principal variable a considerar.

Los altos costes de inversión en su construcción obligan a fuertes amortizaciones que repercuten en los precios de la reparación de cada barco; por eso, el armador tiende a hacer el menor uso de ellos procurando realizar los trabajos de reparación a flote y si es posible navegando, en ruta.

Para el abaratamiento de las tarifas y poder competir con la competencia, los astilleros de reparación necesitan aumentar su productividad agilizando los trabajos de varada y saturando las programaciones de los diques, para lo que habrá que disponerse de medios que faciliten las maniobras de entrada y salida de los barcos, y que acorten los periodos de inundación y achique de los diques, además de rápidos y eficaces medios de elevación y acceso al buque. En resumen: todos los medios del astillero han de concebirse para acortar tiempos de varada de los buques y así rentabilizar al máximo la herramienta más cara de sus instalaciones.

Todo medio de varada ha de tener las características fundamentales siguientes:

- **Seguridad tanto en el funcionamiento como en las personas y en las cosas.**
- **Agilidad en las operaciones.** Sistemas que permitan rapidez en las actuaciones, porque cuanto menores sean los tiempos de estancia en dique, mayor será el número de barcos reparados por año, y por tanto se mejorará la facturación. En este sentido es de gran eficiencia disponer de bombas de achique potentes que reduzcan los tiempos de varada que son prácticamente no útiles para otras operaciones.
Trabajo de fin de grado en náutica y transporte marítimo

- Fácil posibilidad de alimentación de energía y fluidos. Los servicios son suministrados desde tierra al dique y al buque varado, mediante cables y mangueras. Teniendo en cuenta las distintas posiciones relativas que dique y barco pueden tener en sus operaciones, la disposición de acometidas y servicios deben estar bien estudiadas.
- Facilidad de maniobra del buque. Situar el dique en una posición relativa en el astillero que permita maniobras de entrada y salida, sin entorpecer otras operaciones.
- Accesibilidad al buque desde tierra para facilitar los trabajos. Un dique muy distante de la planta del astillero, e incluso en medio de una dársena, rada, etc., como existen en algunas partes, tiene dificultades para la comunicación física con tierra, tanto de las personas como de materiales y herramientas. En el caso de aislamiento, toda la comunicación ha de hacerse con remolcadores. Si está próximo a tierra se puede realizar mediante escalas o rampas.
- Estabilidad del buque en todo momento, sobre todo en la transición de la estabilidad de formas del barco en flotación a estabilidad de apoyo sobre la cuna.

Para la elección y el diseño de los medios de varada habrá que tener en cuenta todas estas características técnicas que junto a su repercusión económica, van a determinar la opción de un tipo u otro.

Se ha definido diques como el elemento tradicionalmente usado para la varada y puesta a seco del casco de los barcos, pero no es el dique el único medio utilizado.

Se distinguen los siguientes medios de varada:

Varadero

Para pesqueros de madera y de acero no demasiado grandes se han usado desde hace tiempo los varaderos, cuyo medio de varada es el carrovaradero.

La transferencia de flote a se hace mediante unos carros que ruedan sobre vías de raíl, en pendiente, sumergidas para recibir el barco flotando. Después de la varada, el
conjunto carro-barco se desplaza por la tracción de unos cables, actuados por maquinillas o cabestrantes que están situados en la cabecera de la línea de varada y generalmente protegidos de la intemperie por unas casetas que permiten salir los cables por unas pequeñas ventanas.

![Imagen del varadero](image_url)

Ondartxo, varadero en Pasaia, Gipuzkoa

Una vez que el carro portante es arrastrado hacia arriba por el plano inclinado, el barco va tomando el asiento necesario hasta adaptarse totalmente a él. Todo el conjunto es arrastrado hasta la posición definitiva del barco. Una vez allí, se fijan los carros con calzos de forma que los cables de tracción no “trabajen”.

Se realizarán todas las operaciones para las que fue varado el barco: reconocimiento de la obra viva, desmontaje y reparación del sistema de propulsión, limpieza y pintura del casco, etc. Y una vez finalizados los trabajos se procederá a la puesta a flote de manera inversa a como fue varado.

Este método es de los más económicos, por lo que es frecuente verlos repartidos por las costas. Los mayores varaderos construidos en España son para barcos de 3.000 TRB.

Hay que tener en cuenta dos factores para la utilización de un varadero:
Las mareas, el nivel del agua condicionará el punto de encuentro de carro y barco, y por tanto la longitud de los raíles. En algunos casos habrá que esperar al nivel óptimo de la marea.

La estabilidad del barco en todo momento para evitar el vuelco, los carros disponen de fórmulas para la colocación de puntales y cuando ya está el barco en la posición definitiva, antes de operar sobre él, se reforzará la estabilidad con escoras referidas directamente a la rampa, fuera de las vías.

Diques secos

Para buques de porte medio y grande, el sistema tradicional de varar es mediante un dique seco. Consiste en una dársena artificial donde se introduce el barco flotando. Una vez el barco en su interior se suspende la comunicación de agua con el exterior y se vacía hasta dejar completamente la dársena en seco, no sin antes preparar adecuadamente e recibimiento del barco sobre el fondo.

El tipo de construcción, el cierre y achique son las características básicas de un dique seco.

Desde el punto de vista estructural, un dique seco es un cajón sin tapa, formado por un fondo y unas paredes verticales paralelas que se unen por un extremo generalmente semicircular, manteniéndose el otro extremo libre para la entrada y salida de barcos u con la posibilidad de ser cerrado de forma estanca.

Al estar construida bajo el nivel del mar, la caja estará sometida entre otros esfuerzos a la presión hidrostática con una componente vertical que tenderá a elevar el fondo y con ella el conjunto. Esto se contrarresta de dos formas: compensando la fuerza vertical con el propio peso del dique (dique de gravedad) o procurando mantener continuamente ese esfuerzo por debajo de unos límites asumibles por su propia estructura (dique de fondo flotante o subpresión controlada). Se consigue achicando automáticamente el agua, bajo el fondo, cuando los niveles de la capa freática, causantes de la presión ascendent, superan un límite inaceptable.
La estructura del dique suele ser de hormigón armado, sobre pilotes y provisto de tirantillas que dan su fijación rígida al suelo. Para su construcción, se procede montando un muro provisional, mar adentro, y a partir de ahí con potentes bombas se realiza el achique y posterior mantenimiento en seco de la zona estancada. Sobre ella se pilota y se va montando el fondo de hormigón armado y se levantan las paredes verticales. Finalmente se montan los elementos de fijación de la puerta y se ajusta. Después de comprobar la estanqueidad de toda la vasija se comienza a dragar el canal de entrada.

Las presiones hidrostáticas laterales se compensan entre sí y el reforzado y fijación de las murallas evitan que el dique pueda colapsar por este motivo.

El cierre del dique puede hacerse de dos formas: mediante barco-puerta o mediante compuerta. Ambos tienen como misión cerrar de forma estanca para así desalojar el agua. Esta estanqueidad se consigue en todos los casos mediante una junta de goma o similar en el contorno que permite el perfecto contacto entre la puerta y el dique.

El barco-puerta, usado en diques antiguos todavía en operación, consiste en un flotador paralelepípedo estrecho, de eslora ligeramente superior a la manga del dique y que debe tener estabilidad de pesos para poder comportarse flotando como un barco que por medios externos, se remolca desde la puerta del dique a un muelle auxiliar próximo y viceversa.
Una vez el buque situado flotando dentro del dique mediante remolcadores, se sitúa el barco-puerta en la entrada de tal forma que la frisa toque el dintel del dique y amarrándose lateralmente a tierra mediante sus bitas y cabestrantes. En esta posición comienzan a inundarse por gravedad los tanques de maniobra de la puerta para que por su peso se vaya hundiendo hasta quedar calada en la guía del fondo, cerrando así toda entrada del dique. En ese momento se comienza a achicar el dique.

El barco quedará finalmente en seco sobre la cuna de varada, preparada con anterioridad, formada por el conjunto de picaderos que se adaptan a las formas del fondo del barco y que reparten el peso de tal manera que ni el fondo del dique ni el barco puedan sufrir deformaciones por cargas.

Estos tipos de cierre tienen la ventaja que durante la operación de entrada y salida de barcos, la puerta no está presente, pues se ha trasladado flotando a un muelle auxiliar.

El sistema de cierre por compuerta consiste en cerrar el dique por puertas fijadas a él que giran alrededor de charnelas. Estas puertas pueden ser de eje vertical o eje horizontal.

El giro de la puerta se realiza por el tiro mediante cables accionados por cabestrantes desde tierra o mediante remolcadores.
Los diques de reciente construcción se cierran mediante una compuerta de eje horizontal situado en el fondo que abate hacia fuera. Su gran ventaja es que permite operaciones rápidas.

Después de la inundación del dique, las fuerzas hidrostáticas de ambos lados se equilibran y una vez aflojados los cables de retención, la puerta caerá suavemente, girando alrededor de su charanela.

Se estima que por cualquier tamaño de dique, tanto el tiempo de inundación como el de achique no debe exceder de tres horas, por lo que habrá que dimensionar adecuadamente tanto las válvulas de inundación como las bombas de achique.

Actualmente, Harland and Wolff Heavy Industries en Belfast, Irlanda del Norte, es la sede del mayor dique seco del mundo. Las enormes grúas llevan el nombre de las figuras bíblico Sansón y Goliat. Goliat se encuentra 96 m de altura, mientras que Samson es más alta en 106 m.
Dique seco en Belfast, Irlanda del Norte

Fuente: http://www.notasdesdealgunlugar.com/titanic-belfast/ [página web]

Diques flotantes
Esta clase de diques en forma de “U” son artefactos flotantes sin propulsión propia, construidos con la finalidad de poner otras embarcaciones fuera del agua para realizar en ellas tareas de mantenimiento o reparación. Para ello se sumergen parcialmente llenando con agua sus tanques de lastre, colocándose entonces la embarcación a reparar en su interior, y vaciando posteriormente los tanques para elevar el dique y la embarcación fuera del agua.

Puede ser incluso que la propia embarcación se construya en su interior y luego se ponga a flote sumergiendo el dique.
Trabajo de fin de grado en náutica y transporte marítimo

Dique flotante en Nápoles, Italia

Fuente: http://es.dreamstime.com/foto-de-archivo-diques-flotantes-en-el-puerto-image43360074 [página web]

Son medios de varada de gran rendimiento usados para buques medianos y grandes, en muchos casos se alternan con los diques secos en los astilleros.

Procedimiento dique flotante

Fuente: https://vadebarcos.wordpress.com/2013/10/14/diques-flotantes-el-zhonghai-emeishan/ [página web]

Existen diques flotantes de dos tipos: construidos en un solo cuerpo o diques seccionados o formados por pontonas que luego se unen entre sí.

Los diques flotantes tienen como ventajas frente a los diques secos el menor coste de construcción (pueden construirse en el propio astillero con los recursos y la mano de obra propia), y de explotación (al poder ser desplazados de un lugar a otro de funcionamiento). Por contra, los gastos de mantenimiento son superiores.
El Zhonghai Emeishan, construido en solo 416 días, y puesto en funcionamiento en 2008, es el mayor y más moderno dique flotante del mundo.

Construido por la compañía China Shipping Industry Company bajo un diseño del Shanghai Merchant Ship Design and Research Institute, este gigante de 40.000 toneladas de acero tuvo un presupuesto de 600 millones de Yuanes (unos 70 millones de euros).

Las dimensiones de este dique de un solo cuerpo son de 410 metros de eslora, por 82 de manga, es decir, en el cabrían cuatro campos de fútbol.

Su puntal es de 30 metros de alto, y puede elevar hasta 85.000 toneladas, lo que lo convierte en el de mayor capacidad de elevación del planeta.

Este dique cuenta con equipos e instalaciones muy avanzadas como bombas de succión y descarga de alta capacidad, válvulas controladas remotamente, telemetría del nivel de líquido y equipos de medida automática, todas estas operaciones se llevan a cabo desde una sala de control central.

1.6 Medios de varada por transferencia

En este grupo se incluyen a los que operan sucesivamente varando y trasladando el barco. Habrá que disponer, adicionalmente, de un sistema intermedio que transfiera el barco de una zona a otra.
Syncrolift
Es un sistema de varada que está teniendo una gran acogida en los astilleros de reparación por su rapidez. Consiste en una plataforma capaz de sumergirse y emerger. La nave es maniobrada sobre una cuna sumergida que luego es izada por una serie de cabrestantes o montacargas electromecánicos sincronizados que colocan la plataforma a nivel del suelo. Al ser puesta a seco, la embarcación es ubicada sobre bogies a lo largo de su eslora, que permiten que sea remolcado sobre rieles a las gradas de trabajo mediante un carro de transferencia. La separación entre el lugar de elevación y el de reparación permite desocupar el syncrolift y trabaja con varios buques simultáneamente.

Los syncrolift de mayor tamaño pueden levantar buques de hasta 100.000 TPM. Debido a esta capacidad, los syncrolift han reemplazado casi totalmente a los antiguos sistemas de dique seco, la mayoría de los cuales sólo puede manejar un buque a la vez.

Synchrolift fue una empresa estadounidense fabricante de estos elevadores, fundada por el ingeniero Raymond Pearlson, inventor del dispositivo. Rolls Royce Group Plc que la adquirió en 1989.

Syncrolift de astillero Tandanor, Argentina
Los astilleros que disponen de elevadores (syncrolift) no utilizan diques ya que resultan menos ágiles y productivos.

La ventaja que supone la abundancia de puntos de reparación queda en parte reducida por el inconveniente de necesitar una zona de transferencia grande que debe permanecer siempre expedita. También para facilitar los movimientos horizontales de superficie, las distintas áreas deben estar muy despejadas, desprovistas de elementos fijos, que habrán de situarse estratérgicamente, o lo más frecuente, recurrir a grúas móviles e instalaciones provisionales.

Díques y plataformas de transferencia

Es una variante mixta entre diques flotantes y syncrolift, en ellos el izado del barco se realiza mediante el empuje de la plataforma o dique y una vez que su cubierta de varada quede situada en el mismo nivel de la zona de transferencia, se procede de la misma forma que en un syncrolift.

El barco puede entrar al dique de varada longitudinalmente a él o transversalmente. En éste último caso habrá que desmontar la muralla lateral por donde acceda el barco.
Por economía y simplificación de las maniobras se puede usar una simple plataforma en lugar de un dique. La diferencia consiste en que las murallas del dique aportan estabilidad, usando plataforma la estabilidad es más baja. Para obviar esta situación, bastará con poner unas pequeñas murallas laterales que sobrepasen en altura por encima del fondo del barco.

En otros diseños, la transferencia de hace con otro traslado previo al conjunto barco-dique hasta una piscina donde puede apoyarse el fondo del dique, para así hacer con más facilidad el traslado del barco hasta la zona de reparación.

Dique de transferencia (alternativa longitudinal)

Fuente: MIGUEL ÁNGEL DE LA HUERGA MENDOZA, “Reparaciones y transformaciones navales”.

1.7 Muelles. Medios de elevación

En los muelles se realizan todos los trabajos que se pueden hacer a flote, se prepara el barco para su entrada en dique y finalmente se alista para salir a navegar.

Para aprovechar lo medios de elevación del propio dique es habitual construir muelles a ambos lados de sus murallas en los diques secos y abararlo los barcos a los diques flotantes, aunque esto dificulte la maniobra del propio dique. Aprovechando
la propia dársena de abrigo se suelen construir otros muelles procurando siempre una fácil maniobra de entrada y salida a muelles y diques. Algunos muelles se reservan específicamente para el servicio de cada dique.

Astillero en Uruguay

Todos los muelles están provistos de medios de elevación que permiten la carga y descarga de materiales, maquinaria, herramientas, laboreo de mangueras, suministros. Cada muelle deberá disponer, por lo menos, de tantas grúas como barcos puedan atracar simultáneamente en él.

El medio de elevación más utilizado es a grúa torre tipo cigüeña, siendo las pequeñas de 5 a 10 toneladas y las mayores de 25 a 100 toneladas. Las grúas son las que facilitan y agilizan el trabajo, por lo que es necesario una buena programación de su utilización.

Sobre ambas bandas, los diques secos, suelen disponer de dos grúas, una de mayor poder de elevación y otra de menor pero más rápida. Cuando se han construido muelles a cada lado del dique, se utilizarán sus propias grúas como servicio a esos muelles, las cuales trabajaran según el interés de la producción.
En los diques flotantes, por razones de peso, estabilidad y facilidad en la maniobra, no suele haber más de una grúa a cada lado. Su poder de elevación no puede ser superior a 25 toneladas.

Además de los medios de elevación, los muelles han de disponer de todos los recursos de atraque, amarre y desatraque de los barcos. Estarán provistos de defensas que amortigüen los apoyos del barco sobre el muelle, que pueden ser de madera, goma o similar.

Para el amarre de los barcos, deben disponer de bitas, norays o cualquier otro elemento para encapillar los cabos necesarios para fijar con seguridad el barco al muelle.

Como en los muelles se realizan trabajos de reparación, tendrán que estar provistos de los servicios eléctricos y de fluidos necesarios tanto para actividades como para necesidades propias del barco. Para ello se instalan cofrés a lo largo de la línea de atraque donde se puedan realizar fácilmente conexiones de cables o mangueras.

Torres de alumbrado, escalas de acceso al barco y otras instalaciones provisionales de uso inmediato, han de estar siempre disponibles en los muelles.
2. Presentación del astillero

El astillero de Astican se encuentra en el puerto de la Luz y de Las Palmas de Gran Canaria, está situado geográficamente en la zona de tránsito para muchos buques que cruzan el Océano Atlántico en dirección América, África y Europa. Son muchos buques los que recurren a este astillero para hacer sus reparaciones, pues no tienen que salirse de su ruta para varar.

Dispone de siete líneas de varada; dos de ellas de 220 metros de largo, otras dos de 180 metros y tres de 120 metros, y una capacidad en peso muerto de 36.000 toneladas. Dispone de grúas móviles para los servicios de los buques que pueden levantar hasta 150 toneladas de carga. Para pequeñas embarcaciones como los yates, se usa un travelift de hasta 60 toneladas.

El syncrolift tiene 180 metros de largo y 10.000 toneladas de capacidad, preparado para la puesta en seco de buques con una manga máxima de 30 metros y 36.000 toneladas de peso muerto.

Además, el muelle de armamento de 560 metros de longitud, está adaptado a buques de 8 a 12 metros de calado máximo. Sus dos grúas de 45.000 toneladas y 60 metros de altura, facilitan las labores de servicio del muelle.

Alrededor de 9.467 m2 del astillero están ocupados por la denominada zona de talleres; un taller de mecánica general, un taller de calderería para los trabajos en acero y tuberías, un taller de reparación de hélices, y varios almacenes para repuestos que sirven, a su vez, de talleres de mantenimiento.
En torno a Astican, existe un gran número de mecánicos para cualquier tipo y tamaño de maquinaria, electricistas, fontaneros, soldadores, ingenieros especialistas, pintores, conductores de grúas, proveedores y toda una cadena de conocimientos imprescindibles para poder llevar a cabo todos los trabajos previstos.
La industria de reparación y mantenimiento naval en Canarias tiene unos antecedentes históricos notables. Retomando los hechos desde principio de siglo, los diques instalados eran utilizados en esa época en atender los buques de las propias empresas. No obstante, la situación estratégica de las islas evidenciaba importantes ventajas para competir en segmentos de relevante importancia.

La contribución estatal al desarrollo regional y la política de expansión del Instituto Nacional de la Industria (INI) le llevó en 1972 a la creación de la compañía Astilleros Canarios S.A. conocida como Astican y de la que, en un principio, poseía el 50%. El objetivo inicial era construir un centro de reparaciones y un astillero de construcción, siendo la primera actividad la de reparaciones navales. Hacia 1978, el INI creó la empresa de reparaciones navales Tenerife de Diques del Atlántico, S.A.

Las inversiones realizadas durante el primer año de vida de los astilleros se encuadraron en un entorno macroeconómico poco propicio para su puesta en marcha, lo cual se hizo especialmente intenso para la construcción y la reparación de mantenimiento.

La entrada de nuevos competidores y la dedicación de las empresas de construcción a labores de mantenimiento, incidieron negativamente sobre la demanda de servicios de Astican, lo que motivó la búsqueda de nuevos mercados, los estrechamientos en los márgenes de actividad, mayores inversiones tecnológicas y publicitarias, entre otras.

A pesar de ser el año 1972 el punto de partida de los astilleros, es en 1974 cuando se finalizan las obras de instalación del syncrolift en los terrenos cedidos a Astican por orden ministerial, y tuvieron lugar los primeros servicios a buques por parte de la empresa en un dique flotante y cuatro diques en seco. En este año, Astican se hace cargo de la actividad industrial y comercial de ASVASA, empresa filial de los astilleros de Bazán, y un año más tarde, comienzan las varadas al finalizar la primera fase del centro de reparación.

Los primeros años de la empresa destacan por las adversas circunstancias que afectan al mercado, agravado por la mencionada dedicación de las empresas de astilleros de construcción a actividades de reparación y mantenimiento. La actividad comercial de la empresa se torna en un elemento fundamental para el crecimiento de la cartera de
clientes, alcanzando un elevado peso sobre la facturación total, aquellos servicios a buques no nacionales, principalmente de Japón, Cuba, Corea y la antigua Unión Soviética, quien tuvo una considerable importancia en la facturación total a principios de los años ochenta, y en algunos años posteriores, las empresas extranjeras suponían el 90% de los ingresos totales.

La obtención de beneficios fue puramente anecdótica durante los dos primeros años de funcionamiento, alcanzándose beneficios apreciables para los años 1982 y 1985.

En 1986, año en que España entra a formar parte de la Comunidad Económica Europea, la propia empresa mantenía la postura de que el exceso de capacidad en los astilleros era un obstáculo para la obtención de beneficios, a pesar de la reactivación de la actividad de la flota, originada por el descenso de los precios del petróleo. Los bajos niveles de precios, unidos a los cada vez más frecuente trabajos de reparación realizados por los propios tripulantes de los buques, son dos elementos añadidos a la difícil situación sectorial que planteó las ayudas estructurales europeas a la flota pesquera como próxima fuente de ingresos, aunque la evidencia posterior afectaría negativamente a una empresa sustentada por los servicios de a buques pesqueros sobre los buques mercantes.

La política emprendida por la dirección de la empresa en los años a su privatización, estaban centradas en la diversificación de la cartera de clientes y los continuos ajustes de capacidad, tanto de activos como de mano de obra. En este sentido, el ajuste del empleo a la variabilidad en los períodos de mayor intensidad en el trabajo permitió que desde 1983, año de mayor nivel de empleados en la empresa, la tendencia del empleo haya sido continuamente decreciente durante esta primera etapa.

El traspaso de la propiedad pública a la privada tiene lugar en 1989, hecho inmerso en el proceso nacional de privatización. La producción naval en España había venido acompañada, hasta entonces, por cuatro planes de ajuste; el plan de reconversión, el programa de reestructuración, el plan de actuación de los astillero públicos y el plan estratégico de competitividad. Con estos planes se pretendía reducir capacidad y variar los resultados negativos de la industria, puesto que los niveles de competencia iban en aumento en los últimos años. Tras un periodo de selección, el INI decide
Trabajo de fin de grado en náutica y transporte marítimo

transpasar, mediante venta directa, su participación mayoritaria en Astican a la empresa Italmar.

Puesto que la demanda de los servicios prestados por la empresa dependen de la trayectoria habitual del buque a reparar, muchos son los astilleros que se muestran como competidores directos, tal es el caso de los astilleros de Cádiz, Gibraltar, Portugal e incluso astilleros del Reino Unido.

Como en otros sectores importantes, la construcción y reparación naval en España ha pasado de estar altamente nacionalizada a ser parte implicada en las políticas de privatización impuestas desde mediados de los años ochenta. En el caso de Astican, esta privatización ha supuesto mejoras en los niveles de rentabilidad, capacidad financiera, estructura de costes y productividad, en relación a estos valores durante el periodo como empresa pública.

Las Islas Canarias, dada su situación estratégica y la importante actividad, principalmente el puerto de Las Palmas, tiene actividades de reparación naval destinadas al mantenimiento de flotas propias que operan en el puerto. Y en el caso que nos ocupa, es Astican el astillero elegido para la varada del fast-ferry.

Organización del astillero

Fuente: http://www.astican.es/index.asp [página web]
2.1 Estructura del Astillero. El Organigrama

Para el correcto funcionamiento del astillero se requiere un equipo humano el cual es el encargado de operar y gestionar el astillero. Este grupo de personas está dividido por departamentos y siguiendo la estructura organizativa que se puede ver a continuación.

![Esquema de departamentos](image)

Fuente: Elaboración propia
Trabajo de fin de grado en náutica y transporte marítimo

Dirección General: Es el máximo órgano de gobierno dentro de la estructura de la empresa. Este departamento está representado por el director general y las funciones que ejerce, a título general, son las siguientes:

- Aprobación de las estrategias generales de la compañía.
- Control de la ejecución y consecución de los objetivos estratégicos.
- Establecimiento y control de los presupuestos de la compañía y facturación.
- Toma de decisiones sobre inversiones importantes.
- Operaciones societarias de cualquier tipo.

Departamento Legal: Es el departamento encargado de brindar asesoría en materia legal a la dirección y a cualquier otro departamento del astillero que lo necesite, para mantener las acciones emprendidas en el astillero del marco jurídico correspondiente. El Director jurídico es el encargado del departamento legal y las principales funciones del departamento son las siguientes:

- Asesorar en materia legal a los diferentes departamentos, y en especial a la dirección del astillero, cuando le sea requerido.
- Defender al astillero frente a posibles encausamientos.
- Elaborar y/o revisar los contratos de reparación y/o contratos en los que el astillero forme parte contratante o tenga interés en el negocio, así como elaborar y autorizar otros documentos privados y/o convenios cuando le sea requerido.

Por lo general, los astilleros de este tipo no tienen un departamento legal propio dentro de la empresa sino que trabajan este tipo de acciones mediante la subcontratación de bufetes de abogados especializados para cada ocasión en la que se requiera.

Departamento de Recursos Humanos: Es el encargado de lidiar con todos los asuntos relacionados con el personal. Este departamento está regentado por el Jefe de Personal o Jefe de RRHH, y depende completamente de las estrategias definidas por la dirección general. Como funciones principales, entre otras, del departamento de RRHH dentro del astillero son las siguientes:
- Planificación de la plantilla de trabajo según las necesidades del astillero.
- Descripción de los puestos de trabajo.
- Definición de los perfiles profesionales.
- Selección de personal.
- Contratación de nuevo personal.
- Tramitación de despidos y suspensiones de personal.
- Gestión de nóminas y seguros sociales.
- Gestión de permisos, vacaciones, bajas médicas, horas extraordinarias, etc.
- Descripción y control del régimen disciplinario.
- Control de absentismo.
- Estudio de las formulas salariales del personal del astillero.
- Establecimiento de las categorías profesionales.
- Gestión de servicios sociales (transporte de los trabajadores, cenas en caso de extensión de jornada, etc.)

Departamento de Finanzas: Está regentado por el Director de Finanzas. Este departamento está subdividido en tres departamentos:

- El departamento de Financiación, es el encargado de conseguir la financiación para las necesidades del astillero y planifica la salida de fondos para afrontar los pagos puntualmente.
- El departamento de Contabilidad, es el encargado de controlar que la actividad empresarial sea rentable, mediante el uso de las herramientas contables, según los parámetros establecidos por la dirección del astillero dentro del marco legislativo vigente.
- El departamento de Facturación y Cobros, es el encargado de llevar a cabo la facturación de los servicios prestados por el departamento de producción y persigue los cobros de las facturas emitidas. Este departamento trabaja muy ligado al departamento de producción.
Departamento Comercial: Es el encargado de promocionar y atraer clientes los clientes al astillero y guiarlos durante todo el proceso de negociación hasta la firma del contrato de reparación. Las funciones principales del departamento Comercial del astillero son:

-Elaboración de estrategia de ventas, publicidad y marketing.
-Captación de clientes
-Introducción de los clientes en el sistema de gestión.
-Negociación de condiciones contractuales, con el asesoramiento del departamento legal y con el consenso de la dirección general del astillero
-Estitulación de las tarifas del astillero para los clientes, con el asesoramiento del departamento de Producción.
-Elaboración de presupuestos iniciales de proyectos, con el asesoramiento del departamento de Producción.
-Elaboración del plan de varadas, en consenso con el departamento de Producción.
-Elaboración y revisión de reportes de satisfacción de los clientes una vez terminados los proyectos.

Dentro del mismo departamento Comercial se incluye como un departamento aislado el departamento de Presupuestos. Este departamento es el encargado de la elaboración de los presupuestos iniciales. Más adelante se definirá en detalle el funcionamiento de este departamento cuando se trabaje el flujo de trabajo del astillero. Ambos departamentos tienen un jefe o director de departamento y en este caso el Jefe de Presupuestos es subalterno directo del Director Comercial.

Departamento de Producción: Engloba a su vez los diferentes departamentos que llevan a cabo las labores propias de reparación de los proyectos que llegan al astillero. El departamento de producción se subdivide en dos departamentos de igual nivel jerárquico: El departamento de proyectos y el departamento técnico.
Ambos departamentos son complementarios entre sí y, como se verá posteriormente cuando se explique el flujo de trabajo del astillero, trabajan de forma entrecruzada para asegurar dos objetivos fundamentales:

- Generar y realizar el mayor número de trabajos posible en el menor tiempo.
- Contabilizar y gestionar todos los recursos empleados en esos trabajos para la elaboración de la factura al final del proyecto.

Departamento de Proyectos: Lo integran un equipo de Jefes de Buque o Jefes de Reparación junto con el supervisor del departamento que es el Director de proyectos. Los Jefes de Buque son los encargados de llevar a cabo la gestión administrativa del proyecto, así como de mantener las relaciones comerciales con el cliente durante su estancia en el astillero desde la firma del contrato hasta la finalización del proyecto de reparación. De igual forma los Jefes de Buque son, durante ese periodo de reparación, el enlace entre el astillero y el representante del cliente o el cliente.

Departamento Técnico: Está integrado por los siguientes departamentos:

- Departamento de Acero
- Departamento de Tubería
- Departamento de Maquinaria o Mecánica
- Departamento de Electricidad
- Departamento de Pintura
- Departamento de Calidad de producto

La figura que representa el Departamento Técnico es el Director Técnico y cada uno de los departamentos asignados al mismo tiene asignado un Jefe de Área junto con los diferentes Jefes de Equipo subalternos a éste. En este gran departamento están englobados la mayoría de operarios del astillero. Las funciones del departamento técnico son llevar a cabo la reparación física siguiendo las especificaciones del cliente y las buenas prácticas en materia de reparación naval, realizar el control de horas invertidas, asegurar la calidad final de las reparaciones y generar la documentación técnica necesaria para la ejecución de los trabajos y/o el reporte general al finalizar la reparación. Como nota importante, este astillero como muchos
otros astilleros de reparación, no cuenta con oficina técnica de proyectos como tal. Este tipo de peticiones se derivan a una oficina técnica o son gestionados por el Director Técnico, en dependencia de la complejidad del proyecto demandado, el tiempo necesario para su implementación y el alcance de responsabilidad que conlleve.

Departamento de Planta: Es el departamento encargado del manejo de los equipos logísticos, de la instalación de servicios a las embarcaciones y del mantenimiento de las instalaciones y medios logísticos del astillero. Debido a su naturaleza el departamento de Planta está dividido en dos departamentos:

- Departamento de Operaciones Marinas y logística.
- Departamento de Mantenimiento.
- Departamento de Seguridad Industrial.
- Departamento de Medio Ambiente.

Este departamento está dirigido por el director de Planta, el cual tiene a su cargo al Capitán de Dique para gestionar las operaciones de varada y reflote de embarcaciones, al Jefe de Logística para la gestión de las labores logísticas requeridas, al Jefe de Mantenimiento para la gestión y planificación de las labores de mantenimiento, al Jefe de Seguridad Industrial del astillero para la coordinación y gestión de los planes de seguridad del astillero y al Jefe de Medio Ambiente para la elaboración y control medioambiental de las instalaciones.

Departamento de Operaciones Marinas y Logística: Este departamento es el encargado de llevar a cabo todos los movimientos de equipos logísticos y marinos dentro de las instalaciones del astillero. Esto incluye grúas, diques, carretillas elevadoras, camiones de transporte y camiones de reparto de combustible. Su actuación pese a estar fuera del departamento de Producción está íntimamente ligada al mismo.

Departamento de Mantenimiento: Es el encargado de llevar a cabo el mantenimiento de todos los equipos logísticos, de los diques y de las instalaciones en general del astillero. Este departamento pese a estar dirigido por el Jefe de Mantenimiento y tener un personal mínimo para la realización de los mantenimientos preventivos
habituales sencillos, suele subcontratarse en dependencia de la naturaleza de los equipo o instalaciones que requieran de mantenimiento.

Departamento de Seguridad: Es el responsable de elaborar las estrategias y exigencias en materia de riesgos laborales en el marco de la ley y velar por su cumplimiento.

El Jefe de Seguridad Industrial del astillero y/o el personal subordinado delegado a una embarcación son unas de las pocas personas que tienen la potestad de parar cualquier trabajo que se esté ejecutando, en cualquier momento, si el nivel de riesgo de esa tarea está por encima del estimado y/o incumple la normativa vigente en riesgos laborales.

Departamento de Medio Ambiente: Tiene por objeto preservar el medio donde se opera y que la operación del astillero genere el menor impacto medioambiental posible. Es función de este departamento, de igual forma:

- Gestionar la evacuación de residuos de las embarcaciones.
- Coordinar las labores de recogida en situaciones de derrames de residuos.
- Elaborar protocolos de actuación frente a posibles desastres medioambientales.
- Designar y detallar las zonas de desechos dentro de las instalaciones cumpliendo con la normativa vigente de las autoridades competentes.

Departamento de Contrataciones y Compras: Bajo este departamento se engloban los siguientes tres departamentos:

- Almacén.
- Departamento de Compras.
- Departamento de Contrataciones.
2.2 Flujo de trabajo en el desarrollo de los diferentes proyectos de reparación del astillero modelo

Hasta ahora hemos podido ver los diferentes departamentos que conforman el astillero en el que vamos a llevar a cabo la reparación de nuestro buque. En este apartado veremos cómo interaccionan unos con otros para llevar a cabo la ejecución de los proyectos de reparación. Es decir, vamos a ver el flujo de trabajo que sigue este astillero para desarrollar el proyecto.

2.2.1 Recepción de la petición de reserva de dique y de la especificación de obra

Por lo general, el proyecto de reparación se inicia con una petición de reserva de dique, por parte del cliente al departamento Comercial del astillero. En esta petición de dique se suele adjuntar la especificación técnica de los trabajos a realizar. La especificación técnica del buque debe contener una descripción de las características generales del buque, una descripción detallada de los trabajos que el cliente quiere que le sean presupuestados por el astillero, una copia de los planos de las áreas y/o equipos en los que se va a trabajar o a instalar y fotografías aclaratorias de las áreas donde se va a trabajar. Hacemos énfasis en que la especificación contiene la descripción detallada de los trabajos que el cliente quiere que le coticen, ya que muchas especificaciones que nos encontramos no coinciden con la realidad de los trabajos a realizar. Una vez recibida la especificación de obra y la petición de reserva de dique, el departamento comercial genera la apertura de un expediente para ese proyecto y deriva la especificación al departamento de presupuesto donde será analizada y procesada al formato propio del astillero con el objetivo de ofrecer un precio y un plazo por la realización de los trabajos demandados por el cliente. El documento que recoge la oferta económica y el plazo de entrega para la ejecución de los trabajos descritos en la especificación técnica es el presupuesto. El departamento de presupuestos, para llevar a cabo el presupuesto en trabajos no habituales o que requieren de necesidades especiales, puede ser apoyado por los demás departamentos del astillero. Concretamente, los departamentos que más interactúan con el de presupuestos son los siguientes:
-El departamento de producción: quien asesora en las valoraciones económicas que tienen que ver con el empleo de mano de obra y en la estimación de plazos para la consecución de los trabajos

-El departamento de compras: quien asesora en la valoración económica de las adquisiciones necesarias.

Cabe mencionar que existen ocasiones en las que, para poder realizar un presupuesto preciso, es conveniente llevar a cabo una inspección en sitio de los trabajos que se vayan a presupuestar debido a la complejidad de los trabajos a realizar. Una vez terminado el presupuesto, éste es enviado al cliente para su comprobación y revisión.

Junto con el presupuesto, se adjunta las fechas de varada disponibles según la previsión de varadas del astillero. En este punto, el cliente comprueba, revisa y negocia con el astillero las fechas de varada y los puntos del presupuesto en los que no está conforme. Una vez comprobado, revisado y negociado el presupuesto, el cliente debe dar aceptación para que se puedan iniciar los trámites contractuales del proyecto.

2.2.2 Negociación del contrato de reparación

El contrato de reparación es elaborado por el departamento Legal con la colaboración del departamento Comercial y, en ciertas ocasiones, del departamento de Producción. En el contrato de reparación se especifican entre otras cosas:

- Los datos de la compañía y de su representante
- Los datos de la compañía de la parte contratada
- El nombre del buque
- El periodo de validez del mismo
- La fecha de inicio y entrega del proyecto
- Las características y datos del buque
- El monto a pagar por el proyecto inicial
- Los términos de pago
- Las penalidades aplicables por entrega tardía
Además de lo mencionado, en este contrato se incluyen las condiciones generales del astillero y una serie de anexos como pueden ser la especificación de la obra, las ampliaciones de obra (si se ha procesado alguna previa a la firma), así como, las tarifas generales del astillero.

Una vez elaborado el contrato es enviado al cliente por el departamento legal. El cliente negocia con el departamento legal del astillero aquellos puntos en los que no está de acuerdo hasta llegar a un acuerdo y proceder a la firma del mismo.

![Esquema, flujo del trabajo](image)

Fuente: SERGI SÁNCHEZ AMORES, “Gestión de la reparación de un buque en el astillero”

2.2.3 Traspaso del expediente al Departamento de Producción y fase de preparación

Una vez firmado el contrato por ambas partes éste se incluye dentro del expediente del proyecto y, en ese momento, se considera que el proyecto está aceptado y puede ser iniciado. A partir de este punto el expediente se traspasa al departamento de...
Trabajo de fin de grado en náutica y transporte marítimo

Producción, y más en concreto al área de proyectos, para que este empiece a analizar el expediente completo junto con las necesidades del proyecto e inicie la planificación, organización y coordinación de los trabajos a realizar. El expediente del proyecto contiene la siguiente información:

- Especificación de obra.
- Contrato firmado.
- Correspondencia mantenida entre el cliente y el astillero, sea cual sea el departamento.
- Notas y datos aclaratorios que puedan resultar útiles a lo largo del desarrollo del proyecto generados por los departamentos previamente implicados.

En el área de proyectos el Director de Proyectos recibe el expediente y asigna los jefes de buque necesarios para cada proyecto. Por lo general, se suele asignar un Jefe de Buque principal y, en casos de proyectos especiales, uno o incluso dos auxiliares los cuales darán apoyo en cuestiones concretas. Una vez el expediente es recibido por el Jefe de Buque este inicia sus funciones poniéndose en contacto con el cliente y se define el alcance real de la obra así como se solventan las dudas y cuestiones que pueda haber acerca del proyecto en general. Solventadas las primeras dudas y estudiados los diferentes aspectos de la especificación el Jefe de Buque se reúne con cada uno de los departamentos incluidos en el departamento técnico, quienes serán los encargados de llevar a cabo las reparaciones especificadas, para desde un punto de vista técnico estudiar en detenimiento los trabajos a realizar y analizar las necesidades que se van a requerir durante el proyecto. Después de esta serie de reuniones, habitualmente surgen otra serie de dudas que a su vez el Jefe de Buque traslada de nuevo al cliente para su aclaración. En este punto se subdivide el proyecto de forma interna entre la parte de gestión y la parte técnica. Por un lado, el jefe de buque introduce el proyecto en el sistema y prepara las cotizaciones que hayan podido quedar pendientes, así como a partir de este momento mantendrá una posición comercial y de gestión en contacto directo con el cliente durante su estancia en las instalaciones. Cualquier necesidad que tenga el cliente se la hará saber al Jefe de Buque quien a su vez coordinará con los diferentes departamentos del astillero.
De igual forma el Jefe de Buque comunicará cualquier necesidad que haya por parte del astillero al cliente directamente. Con todas esas informaciones se irá implementando y modificando el plan de trabajo a llevar a cabo durante la reparación. Por otro lado, el departamento técnico inicia los preparativos para la realización del proyecto. Estos preparativos incluyen los siguientes puntos:

-Realizar una inspección a bordo antes de la llegada del buque, en caso de que el Director Técnico lo vea conveniente.

-Contactar con el departamento de Compras para la petición de los materiales y equipos, en caso de que no los halla en el astillero, que se van a emplear en la obra.

-Contactar con el departamento de Contrataciones para la petición de contratación de empresas externas, en caso de ser necesario

-Organización del personal y de sus turnos de trabajo

-Contactar con RRHH para la gestión del transporte, comidas, etc.

Una vez organizado el proyecto se procede a esperar la llegada del buque al astillero para iniciar la siguiente fase del proyecto, la fase de ejecución.
2.2.4 Fase de ejecución

La llegada del buque es sinónimo de inicio físico de los trabajos por lo que cada departamento del departamento Técnico, el cual sabe lo que tiene que hacer y se ha preparado para ello, inicia los trabajos que el Jefe de Buque ha dado como aprobados por el cliente. Durante la fase de ejecución el departamento Técnico juega un papel principal y la comunicación con el Jefe de Buque es esencial. Durante este período el Jefe de buque recibe por parte del departamento Técnico, en la medida que vayan apareciendo, las siguientes informaciones:

- Ampliaciones de trabajo que deberá cotizar y exponer al cliente.
- Reportes de incidencias.
- Información diaria del avance de los trabajos.
-Reporte de finalización de trabajos.

-Reportes de calidad de los trabajos.

-Y en general toda información relevante para el proyecto.

Con esa información el Jefe de buque mantendrá informado durante todo el proceso al cliente y negociará las órdenes de trabajo que vayan apareciendo y/o que el cliente vaya pidiendo. Ademá, será el encargado de ir revisando que los parámetros de control del proyecto se mantengan dentro de los márgenes admitidos. Paralelamente los departamentos incluidos en el departamento técnico ejecutarán la obra llevando a cabo, durante este proceso, la requisición de todo aquello que les sea necesario para los nuevos trabajos.

2.2.5 Finalización de los trabajos de un proyecto

Se considera la finalización de un trabajo como el trabajo terminado y aprobado por el cliente. Cada trabajo llevado a cabo es reportado por el departamento técnico e informado al cliente por medio del Jefe de buque. El cliente debe en este punto realizar las pruebas de funcionamiento que crea necesarias y aceptar el trabajo como finalizado. Hasta que esta situación no se da, el trabajo se mantiene abierto. A medida que se van finalizando los trabajos se va completando el reporte final de reparación. El reporte final de reparación contiene la descripción de los trabajos realizados, así como el resultado de las pruebas que se hayan ido realizando durante el progreso del proyecto. No obstante, lo mencionado el proyecto no será finalizado hasta que sea emitida, firmada y, dependiendo de las condiciones acordadas en el contrato, se haya pagado. Para ello el Jefe de buque traspasa el expediente completo del proyecto, con las órdenes y cotizaciones emitidas firmadas por el cliente durante el desarrollo del proyecto al departamento de Facturación y Cobros. El departamento de Facturación emite la factura, el cliente la firma y procede al pago en los términos acordados.

En ese momento el proyecto de reparación se da por concluido independentemente que el buque esté o no en las instalaciones. Paralelamente el Jefe de Buque cierra la parte administrativa del proyecto presentando el informe de cierre del proyecto al
Director de Proyectos. El informe de cierre del proyecto tiene como objeto proporcionar información a la dirección de la rentabilidad del proyecto y contiene los parámetros estipulados como esenciales para el análisis de rentabilidad del proyecto por el departamento de Finanzas y de la Dirección del astillero. Los parámetros que debe incluir el informe de cierre en este astillero son:

- Valor del consumo de materiales y equipos
- Comparativa de horas asignadas y horas empleadas por los diferentes departamentos para la ejecución del proyecto.
- Comparativa del precio de los servicios subcontratados y monto obtenido por esa contratación.

Una vez entregado el informe de cierre del proyecto al Director de Proyectos se da por cerrado el proyecto por parte del departamento de producción.
3. La nave de gran velocidad

La Nave de Gran Velocidad está clasificada como High Speed Wave Piercing Catamaran, construida en los astilleros de Incat en Tasmania, Australia, con número de construcción H051. Tiene capacidad para 717 pasajeros, 16 tripulantes y 271 vehículos.

El Bonanza Express, con 95,47 metros de eslora y capacidad para alcanzar una velocidad máxima de 40 nudos, está construido de aluminio en casi toda su totalidad.

Pertenece a la compañía de Fred Olsen S.A. y actualmente realiza la ruta de Las Palmas de Gran Canaria – Morro Jable con una duración de 120 minutos.
3.1 Características de la nave

<table>
<thead>
<tr>
<th>Nombre del buque</th>
<th>Bonanza Express</th>
</tr>
</thead>
<tbody>
<tr>
<td>Número OMI</td>
<td>9200225</td>
</tr>
<tr>
<td>Distintivo de llamada</td>
<td>EHYT</td>
</tr>
<tr>
<td>Astillero de construcción</td>
<td>INCAT, Tasmania, Australia</td>
</tr>
<tr>
<td>Puerto de matrícula</td>
<td>Santa Cruz de Tenerife</td>
</tr>
<tr>
<td>Eslora</td>
<td>95,47 m</td>
</tr>
<tr>
<td>Manga</td>
<td>26,16 m</td>
</tr>
<tr>
<td>Puntal</td>
<td>7,693 m</td>
</tr>
<tr>
<td>Calado de verano</td>
<td>4,027 m</td>
</tr>
<tr>
<td>Arqueo</td>
<td>5528 T</td>
</tr>
<tr>
<td>Potencia motriz</td>
<td>38516 CV</td>
</tr>
</tbody>
</table>

Tabla 2. Características del buque

Fuente: Elaboración propia

El buque es de un diseño bastante similar al de un catamarán convencional, a excepción de que los cascos tienen un mínimo francobordo y reserva de flotabilidad para penetrar en las olas en malas condiciones meteorológicas, en lugar de pasar por encima de ellas. Posee además, una gran estabilidad transversal y una gran capacidad para alcanzar altas velocidades.

El interior de la nave está adatado y equipado según las especificaciones del armador, empleando calidades de materiales que aumente su durabilidad y facilitan su mantenimiento. Todos los materiales son seleccionados para cumplir con los más rigurosos y estrictos requerimientos ignífugos en caso de incendio.

De la propulsión del buque se encargan los motores principales, cuatro motores, de cuatro tiempos cada uno, que a su vez están acoplados, a través de la reductoras, a los waterjets, quienes proporcionan el empuje y el gobierno al buque, disponiendo de 7080 kW de potencia a la máxima velocidad con un desplazamiento aproximado de 18 m³ por segundo.
4 x Motores RUSTON 20RK 270.
20 cilindros en V a 45 °.
Ciclos de 4 tiempos.
Diámetro interior del cilindro 270 mm.
Carrera 305 mm.

4x Reductoras Rentjes VLJ6831.
Caja reductora de una etapa.
Desmultiplicación 1,781/1.

El buque no tiene timón, y son los waterjets los que actúan como tal. Este tipo de propulsión difiere ligeramente de la propulsión con hélice, diferencia que queda patente en las maniobras a poca velocidad. Facilitan la propulsión del buque avante y atrás.

El sistema de gobierno permite la opción de aislar a cada waterjet en caso de daño en un cilindro hidráulico o rotura de una manguera hidráulica. Esta operación requiere la manipulación manual de las tres válvulas del colector de compensación y aislamiento de gobierno, quedando éste limitado a 20 grados a toda máquina, pero permitiendo pleno movimiento durante las maniobras.

4 x Unidades de propulsión Waterjets Lips LJ150D.
Waterjets variables de función de timón.
Empuje reversible.

Y para ayudar al sistema de control de velocidad de la nave, el buque está equipado con un sistema de estabilizadores o Trim Tab a popa, y estabilizadores o T-Foil a proa. Ambos sistemas son controlados por ordenador desde el puente y reducen el balance en casi un 40%. Este sistema, denominado Ride Control, es capaz de anticiparse a los movimientos del buque en condiciones meteorológicas adversas, enviando las señales al sistema hidráulico para mover el control de la superficie y
amortiguar el movimiento; con esto se consigue reducir el paso, balances y cabezadas, así como las aceleraciones verticales y laterales asociadas a ellos.

2 x T-Foil en proa Maritime Dynamics.
Colocados en la sección de la quilla en la proa de cada casco.
Actuado por arietes hidráulicos en los espacios vacíos de cada T-Foil.

2 x Trim Tab en popa.
Soportado a la estructura del casco por bulones sólidos en la zona de popa.
Actuado cada uno por un vástago hidráulico.
Variación de 12º con respecto a la horizontal.
Trabajo de fin de grado en náutica y transporte marítimo

En cuanto al equipamiento de cubierta, dos cabestrantes con posibilidad de inversión de sentido de giro, situados a cada banda en las cubiertas de maniobra de proa y popa, sirven de ayuda en las maniobras de atraque, ya que este buque no dispone de hélice para este fin. Las gateras de las amuras guían los cabos hasta los cabestrantes.

A proa se encuentra el molinete del ancla, el cual permite arriar y virar el ancla en las operaciones de fondeo. El molinete está equipado con un embrague que permite fondear por gravedad, y un freno de mano para controlar la velocidad de arriado.

No olvidamos el equipo de seguridad que es de vital importancia, además del sistema de protección estructural contraincendios de todo el buque.

Los cuatro sistemas de detección de incendios controlados desde el panel central situado en el puente; sistemas de extinción de incendios formados por extintores, hidrantes y rociadores localizados en todo el buque, sistemas de ventilación de la sala de máquinas, garaje y cubierta de pasaje.

Dispone de cuatro MES (sistema de evacuación marina), dos en estribor y dos en babor, además de nueve balsas salvavidas, cada una con capacidad para 100 personas, y dos botes de rescate colocados en la cubierta principal uno a cada banda del buque.
El abastecimiento de agua sanitaria a bordo puede ser de agua dulce o salada:

El sistema de agua dulce depende de la unidad de bombeo compuesta por dos bombas de presión, que aspiran de un tanque con capacidad para 5.000 litros. Las bombas están preparadas para arrancar y parar a la presión asignada.

El suministro de agua salada tiene utilidad en los servicios de la zona de pasaje y camarotes. Son dos bombas, igual que en el sistema de agua dulce, las que aspiran del mar para distribuir el agua hasta los servicios.

Otro tanque de 5.000 litros de capacidad, situado bajo la cubierta del garaje, hace de almacén de aguas sucias. Esta agua puede ser descargada al mar o a tierra a través de una bomba trituradora.

Sin embargo, las aguas oleosas de las dos salas de máquinas, se recogen en recipientes de 1.000 litros que periódicamente se descargan a tierra.
3.2 Manual de mantenimiento y programa de revisión

Para cumplir con la normativa, se recogen todas las tareas de mantenimiento relacionadas con los diferentes equipos del buque Bonanza Express en un programa de mantenimiento instalado en el ordenador de a bordo que engloba la planificación de mantenimiento, así como todos los equipos sometidos a ello. Este programa recibe el nombre de Marine Planned Maintenance (MPM), fue aprobado por la sociedad de clasificación Det Norske Veritas e instalado a bordo en el astillero de construcción del buque. Además, cumple con todas las exigencias necesarias para poder llevar un exhaustivo y completo programa de mantenimiento, y al mismo tiempo, emitir los documentos de control justificativos del mismo.

El MPM se divide en cuatro secciones: máquinas, casco, puente y habilitación y equipos de seguridad. Consiste en una serie de fichas de mantenimiento que contienen instrucciones de trabajo para ciertos equipos del buque. Cada instrucción o rutina de trabajo está temporizada para distintos intervalos de tiempo, y cada una de ellas tiene establecida una fecha de ejecución.

Los plazos de revisión pueden fijarse por periodos de tiempo o por horas de trabajo del equipo. Las fichas que contienen rutinas cuya ejecución se regula por horas de funcionamiento, están relacionadas con un contador controlado mediante un código establecido por el programa.

El MPM genera documentos con los procedimientos de los trabajos de mantenimiento a realizar; cuando es llevado a cabo, existe un módulo del trabajo realizado en el que se introduce la fecha de finalización del mismo, además de comentarios, sugerencias, etc. Con los datos introducidos en este módulo, el programa confecciona un histórico de los equipos y nos permite saber: tipo de trabajo realizado, fecha de realización y próxima fecha de ejecución de mantenimiento.

El programa introduce en sus plazos de revisión las fechas establecidas por la sociedad clasificadora y la Administración, sin necesidad de tener a bordo un programa de revisión en papel. Los históricos de mantenimiento quedan grabados y no pueden ser modificados, lo que aporta fiabilidad al programa.
Aunque el MPM está diseñado para ser seguido y controlado por ordenador, a bordo de la nave existen varios documentos impresos guardados en carpetas y que corresponden a trabajos de mantenimiento de años anteriores.

3.3 Normativa de las naves de gran velocidad

Estos buques de nueva generación no se ajustan totalmente a las disposiciones de los convenios internacionales aplicables a los buques corrientes construidos de acero, y por tanto, no se puede acoger a las normas expuestas para los buques tradicionales pero que han de navegar bajo condiciones de extrema seguridad, además han de ajustarse a programas de mantenimiento y supervisión periódicos aprobados por la Administración.

En el Código Internacional de Seguridad para Naves de Gran Velocidad se tiene en cuenta que el desplazamiento de estas naves es ligero en comparación con un buque tradicional. Este aspecto del desplazamiento constituye un parámetro fundamental para obtener un medio de transporte por mar más rápido y competitivo, y por consiguiente, en este Código se permite la utilización de materiales de construcción no tradicionales.

El concepto de Naves de Gran Velocidad ofrece ciertas ventajas, como es el caso del desplazamiento ligero, disminuyendo los posibles peligros que se abordan en el Convenio Internacional de Líneas de Carga 1966. Las consecuencias de otros posibles peligros de estas naves, tales como un abordaje de gran velocidad, están compensadas por unas prescripciones náuticas y operacionales más estrictas y disposiciones especiales sobre los espacios de alojamientos.

En atención a esta especialidad, la Organización Marítima Internacional (OMI) ha venido elaborando una serie de estudios, recomendaciones y normativas con el fin de proporcionar a las Naves de Gran Velocidad de una seguridad equivalente como la de los buques convencionales. Este proceso culmina con la creación de un capítulo completo en el SOLAS.

El principal objetivo del Capítulo X del SOLAS es determinar la obligatoriedad de que las Naves de Gran Velocidad cumplan con la legislación internacional que les
añade. Para conseguir este objetivo, se enuncia en este capítulo los principios que permiten dilucidar las dos cuestiones principales:

-Definición conceptual de Naves de Gran Velocidad.
-Convenio y Régimen Jurídico que afectan a las Naves de Gran Velocidad en función de su fecha de construcción.

El SOLAS defina a las Naves de Gran Velocidad como aquellas capaces de desarrollar una velocidad máxima, en metros por segundo, igual o superior a:

\[3,7 \times V^{0.1667} \]

Donde \(V \) es el desplazamiento correspondiente a la flotación del proyecto (\(m^3 \))

Se excluye de esta definición las naves cuyo casco esté completamente sustentado por encima de la superficie del agua en la modalidad sin desplazamiento por las fuerzas aerodinámicas generadas por el efecto de la superficie.

Así se establece la distinción entre buque existente y buque nuevo:

- Buque existente: Nave de Gran Velocidad construida en fechas anteriores al 1 de Enero de 1996 y sometida bajo el Código de Embarcaciones de Sustentación Dinámica (DSC).
- Buque nuevo: Nave de Gran Velocidad construida a partir del 1 de Enero de 1996 y que deben cumplir con lo establecido en el Código de Naves de Gran Velocidad (NGV).

3.4 Tipos de nave de gran velocidad

El Código Internacional de Naves de Gran Velocidad (NGV) de 1994 establece distinción entre dos categorías:

- Naves de categoría A: Nave de pasaje que opere en una ruta en que se haya demostrado de forma satisfactoria a juicio del Estado de abanderamiento y del Estado rector del puerto que hay una gran probabilidad de que en caso de evacuación en cualquier punto de dicha ruta, se pueda rescatar de forma
segura a todos los pasajeros y a la tripulación en el menor de los tiempos siguientes:

- Tiempo necesario para evitar que las personas que se encuentren en una embarcación de supervivencia sufran de hipotermia por exposición a la intemperie en las peores condiciones previstas

- Tiempo adecuado en relación con las condiciones ambientales y las características geográficas de la ruta

- 4 h

Y además, que transporte como máximo 450 pasajeros.

- Naves de categoría B: Toda nave de pasaje de gran velocidad que no sea una nave de categoría A, cuya maquinaria y sistemas de seguridad están dispuestos de tal modo que en caso de una avería que deje fuera de servicio cualquier maquinaria esencial y los sistemas de seguridad de un compartimiento, la nave conserva la capacidad de navegar de forma segura.

Se entiende por naves de pasaje las que transportan más de 12 pasajeros según Código NGV.
4. Proyecto de reparación de un fast ferry de pasaje

Esta nave de gran velocidad está sujeta a unas labores de mantenimiento muy especiales. Por sus características, requiere un programa de mantenimiento que se parece más al de los aviones. Así cada cierto tiempo, algunos elementos como el casco, por ejemplo, o cada cierto número de horas para el caso de motores, es imprescindible realizar diversas operaciones de inspección o revisión y sustitución de piezas.

Las labores de inspección las realizan, por una parte, la Inspección Marítima, adscrita a las Capitanías Marítimas, dependiendo del Ministerio de Fomento al ser buques de bandera española; y por otro lado, la sociedad de clasificación Det Norske Veritas (DNV), entidad de reconocido prestigio internacional especializada en este tipo de controles. Los controles de dichas entidades se materializan en una serie de certificados que garantizan que el buque ha pasado por todas las inspecciones con la regularidad necesaria y que cumple, por tanto, con todas las normas de seguridad, inspección y mantenimiento.

De acuerdo con los reglamentos nacionales e internacionales aplicables a este tipo de buques, cada año es obligatorio realizar una inspección exhaustiva de su obra viva y de la pintura. La obra viva tiene que estar limpia de algas e incrustaciones que afecten directamente a la velocidad de la nave. Cuando el estado de la obra viva lo requiere o cuando los inspectores lo consideren oportuno, se planifica la varada.
4.1 La lista de trabajos

A partir de las necesidades del buque, los oficiales elaboran la lista de trabajos que contempla todas las tareas a realizar, así como los medios materiales y humanos necesarios. De aquí obtenemos un organigrama con el tiempo necesario para realizar cada trabajo, programando incluso labores nocturnas para ganar tiempo en la finalización de ciertas tareas de mayor complejidad y decisivos para poner el buque en servicio lo antes posible.

Estas listas de trabajos, que incluyen los trabajos de máquinas, cubierta y fonda a realizar durante la varada, contemplan los siguientes puntos:

- En la parte superior de cada hoja se identifica el buque, fecha de la varada y el departamento y número de trabajo al que corresponde.

- Descripción breve del trabajo a realizar.

- Puntos a incluir que facilitan la labor, como pueden ser: certificado de desgasificación en caso de que fuese necesario para trabajar en el interior de los tanques; ventilación del lugar; andamios o grúas requeridas; limpieza
previa; transporte de piezas fuera o dentro del astillero; prueba hidráulica si se requiere; protección anticorrosivo y pintado; indicar si el material es suministrado por el astillero o por la propia Naviera.

-Localización del trabajo; ubicación a bordo del buque.

-Detalles del trabajo indicando qué trabajo se va a realizar; características del mismo como dimensiones, material de fabricación, número de equipos a reparar, etc. Adjuntar planos, fotografías, esquemas o muestras que faciliten las tareas.

-Notas o detalles a tener en cuenta, donde se incluyen, por ejemplo, las personas encargadas de realizar el trabajo, tiempo estimado, procedimientos a aplicar, etc.

-Taller especialista asignado a llevar a cabo el trabajo. En ocasiones, muchos trabajos se les atribuyen a la propia tripulación.

-Fecha estimada de la terminación del trabajo, si se supiera.

-En algunos trabajos sometidos a inspecciones periódicas, es importante indicar si la inspección es realizada por la sociedad clasificadora, representante de la Naviera, representante del fabricante del equipo o por algún inspector de la Administración.

Tras elaborar la lista de trabajos, los capitanes y jefes de máquinas asignados a acompañar al buque al astillero, se reúnen con el Inspector del buque y el Jefe del Departamento para puntualizar en aquellos trabajos de mayor importancia, principalmente si de ellos dependen la ampliación de los días de estancia en dique, así como corregir y eliminar de la lista otros trabajos que no son importantes y que se pueden realizar navegando, una vez el buque haya reanudado su línea de servicio tras la varada.

Terminadas las correcciones, la lista de trabajos permite elaborar una planificación de los trabajos más importantes.
Lista de trabajo de soldadura de grieta

Fuente: F/F Bonanza Express

<table>
<thead>
<tr>
<th>PUNTO A INCLUSION / TO BE INCLUDED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Certificado de Descarburación</td>
</tr>
<tr>
<td>Certificado de Calentamiento</td>
</tr>
<tr>
<td>Anodización</td>
</tr>
<tr>
<td>Grafito</td>
</tr>
<tr>
<td>Material de Transporte</td>
</tr>
<tr>
<td>Material de Elevación</td>
</tr>
<tr>
<td>Material de Calefacción</td>
</tr>
<tr>
<td>Material de Plancha</td>
</tr>
<tr>
<td>Material de Instalación</td>
</tr>
<tr>
<td>Material de Sustitución</td>
</tr>
<tr>
<td>Material de Acceso</td>
</tr>
<tr>
<td>Material de Acceso</td>
</tr>
</tbody>
</table>

ESPECIFICACIONES / SPECIFICATIONS:

- Detalles del trabajo: longitud, cantidad, dimensiones, material, etc. / Detailed specification including size, amount, dimensions, material, etc.

INSTALAR INSERTO O SUSTITUIR PLANCHA SI PROCEDE

Firma:

Fecha:

Notas / Special Remarks / Testings:

- Firmado: Dewi Hughes
- Fecha: Diciembre de 2023

Avance del trabajo / Progress of Job:

- Etapas: 1, 2, 3, 4
- Finalizado / Done on Date: 4
4.2 Trabajos de varada

Al tener el buque fuera de servicio cierto tiempo, obliga al Departamento Técnico de la Naviera a programar y organizar la varada, teniendo en cuenta los periodos de mantenimiento de los motores, los generadores, los waterjets y de todos los demás equipos que conforman el buque. Así que una varada se convierte muchas veces en una reunión donde se intenta realizar la mayor parte del mantenimiento.

El Departamento Técnico es el encargado de elaborar unas tablas con todos los trabajos previsibles, a partir de los cuales entra el arte de conjugar todos los trabajos de mantenimiento requeridos para así tener los certificados en el plazo adecuado.

Cuando el barco llega al astillero, comienzan los trabajos. El astillero contrata a talleres y empresas, principalmente porque son tantos trabajos a realizar que el astillero no cuenta con los medios necesarios para acometerlos todos y, en segundo lugar está la exigencia de aquilatar los costes, lo que ha llevado a la industria a una especialización que hace que los astilleros no sean competitivos en actividades que no le son propicias, y es más rentable recurrir a talleres especializados.

Los talleres equipados con todo el material y herramientas necesarias, ejecutan los trabajos, que serán controlados por el jefe de buque, persona设计ada por el astillero, el inspector del buque, persona designada por la Naviera y los oficiales del buque. Diariamente se realizan reuniones entre los oficiales y el inspector para analizar la evolución de los trabajos e informar de los problemas e inconvenientes encontrados que pueden afectar a la estadía en seco de la nave.

La varada tuvo una duración de 10 días en Astican, en los que se realizaron diversos trabajos. En estos barcos, al ser de aluminio en su totalidad, hay que inspeccionar semanalmente la aparición de grietas nuevas que vayan apareciendo en el casco.

Por ello, tuvimos un equipo de soldadores que se encargaba de soldar las grietas que estaban en peor estado, además de reparar el transom en la zona de popa, tanto estribor como babor, ya que se filtraba el agua del garaje.
Soldadores en el “Bonanza Express”

Fuente: Elaboración propia

Este equipo estuvo trabajando durante toda la varada debido a que es un largo trabajo por la cantidad de grietas que había que subsanar.

También había una empresa que se dedicaba a la limpieza del casco, con la técnica base del granallado, con el objeto de obtener el mejor acabado superficial, y evitar los problemas de oxidaciones que conlleva el chorreado con agua a alta presión. Comenzando desde los waterjets hacia proa.

El material de granallado reciclable deberá tener las propiedades mecánicas necesarias para que se pueda obtener una calidad superficial al menos tan buena como la que se obtiene con granallas desechables. Dichas propiedades deben degradarse lo menos posible en relación con el número de ciclos de trabajo y a un coste razonable.
Operaciones de chorreo

Fuente: Elaboración propia

Vista de los waterets tras la operación de chorreo

Fuente: Elaboración propia
Mantenimiento completo de los dos waterjets de babor (PIME Y POME)

- Sacar los dos waterjets.
- Transportarlos hasta un taller donde se procede al desmontaje y montaje de los mismos.
- Inspeccionar y sacar el cojinete de la goma.
- Aplicar comprobante de grietas.
- Colocar el cojinete de goma nuevamente, en caso de que esté en buenas condiciones, o por el contrario sustituirlo por otro nuevo.
- Comprobar la presencia de problemas de cavitación.
- Proceder con la prueba hidráulica.
- Transportarlos de vuelta al buque y colocarlos.
- Revisar las conexiones hidráulicas que permitan su correcto funcionamiento en navegación.
- Tratamiento de pintura superficial para evitar la acumulación de algas y moluscos.
Desmontaje de waterjets de babor

Fuente: Elaboración propia

Waterjets de estribor (SIME y SOME):

-Limpieza in situ para inspección.

-Inspección in situ de los dos waterjets por parte del representante de Wartsila Propulsion –Lips.

-Inspección de los cojinetes de goma (rubber bearing)

-Renovación de casquillos y de bulones con holgura fuera de límites (suministro del armador).

-Soldar grietas encontradas.
Impulsores de los cuatro waterjets del buque (Impulsores de paso fijo de 3 palas)

- Reacondicionado con soldadura de las cavitations encontradas con la aprobación del inspector de Fred Olsen.

Se arría el ancla para engrasarla, y se retira el molinete para su debido mantenimiento.

Arriado del ancla

Fuente: Elaboración propia
Se realizan sellado de cristales de la zona de pasaje para que no se filtre el agua hacia el interior.

Sellado de cristales de la zona de pasaje
Fuente: Elaboración propia

Se realiza inspección y limpieza del tanque de combustible, de los extractores de la sala de máquinas, de las válvulas de fondo, etc.

Tanque de combustible de babor
Fuente: Elaboración propia
Otro de los gremios del astillero de gran importancia es el formado por los especialistas que se encargan de pintar el buque. La pintura de acabado de la obra viva es una pintura antifouling hecha a base de elastómeros de siliconas, que protege el casco de las incrustaciones y las algas.

Esta pintura ecológica de última generación sin tubilestaño, está diseñada para las naves de gran velocidad, permitiendo que los tiempos de varada sean mínimos debido a su alto rendimiento de secado.

El proceso de pintado en Astican fue de cinco días y consistió en el lavado previo de la superficie a tratar con agua dulce y desengrasado a presión a 210 kg/cm², para eliminar completamente la silicona antiguas y alcanzar la capa base anticorrosivo y se aplicaron posteriormente, las cuatro capas de pintura recomendadas, según una secuencia muy precisa de espesores a aplicar por cada capa.

Las dos primeras capas proporcionan resistencia a la abrasión y reduce la corrosión originada por daños mecánicos en la zona tratada, es una pintura de dos componentes, de color bronce y aluminio.

La siguiente capa es la de adhesión entre un modificante de adherencia y la capa de acabado, y que forma la parte integral del sistema de control de incrustaciones.

Y la cuarta capa es la del acabado, de color azul, proporciona una alternativa sin biocidas respecto a los desincrustantes convencionales.
Las capas de imprimación no se daban a toda la obra viva ya que sólo se hacían las peores zonas para así agilizar la varada.

En cuanto a la obra muerta, se procede a su lijado y baldeo para, así después, comenzar con la pintura; igual que con la obra muerta, primero tenemos que dar dos manos de imprimación y seguidamente la pintura.
Resultado tras imprimación y lijado obra muerta

Fuente: Elaboración propia

Resultado final de la pintura del casco

Fuente: Elaboración propia
5. Conclusiones

Como conclusión, puedo decir que la realización de este proyecto, por una parte, me ha llevado a conocer otra parte de la industria naval que no conocía en profundidad y, por otra parte, me ha llevado a ver los proyectos de reparación desde un punto de vista práctico y no tan teórico que es a lo que estaba acostumbrado.

Los condicionantes que a lo largo del proyecto nos encontramos han sido fijados fruto de decisiones tomadas para agilizar el proyecto de reparación y simplificar cálculos teniendo la certeza de no cometer mayores errores.

Además de conocer todo el trabajo que se realiza desde dentro, ya que no es sólo lo que se ve exteriormente, sino que lleva un proceso de propuesta y su estudio de manera minuciosa.

En el transcurso del proyecto, también me he tenido que familiarizar con las normativas de diferentes Sociedades de Clasificación y del Código de Naves de Gran Velocidad, cosa que seguro, en un futuro inmediato, me puede ser de gran utilidad.

Los astilleros, tanto de construcción como de reparación, siempre estarán activos ya que por ahora es la única forma de construir o reparar barcos, y dado que la mayoría del transporte se realiza por vía marítima, hace que los astilleros siempre tengan trabajo que hacer.

Por todo ello considero que las conclusiones obtenidas del hecho de llevar a cabo este proyecto, han sido muy favorables.
6. Bibliografía

Trabajo de fin de grado en náutica y transporte marítimo

Trabajo de fin de grado en náutica y transporte marítimo

Miriam Salazar García