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ABSTRACT

In the past years the accurate measurements of the amplitudes, widths, and fre-

quencies of the solar oscillations have been re
ected in good estimations of the frequency

splittings, results that have been inverted to infer the rotation rate as a function of depth.

In this work we are going to present a method to infer the distribution of horizontal

velocity 
ows underneath the solar surface as a function of depth and position in the

solar disk.

The new techniques are based in a tridimensional power spectrum of the solar

oscillations for high spatial resolution images. Information about the two components

of the k number of the modes can be obtained in this way, and the tridimensional aspect

of the ridges of the p-modes can tell us about horizontal velocity �elds.

The data we have used for this purpose are full-disk dopplergrams, obtained with

the Magneto-Optical Filter at the Mt. Wilson 60-Foot Tower, with a resolution of about

2.2 arcsec at center of the image, and covering a time period of three days, 3{5 July,

1988.

A classic model of a Lorentzian pro�le in frequency has been adapted and �tted to

this tridimensional view of the oscillations, where the dependence with the two compo-

nents of the k number are bound to the components of the horizontal velocity �eld. A

distribution of the velocity as a function of frequency for p-modes n = 0 to 7, has been

inferred, and an inversion process has been developed in order to obtain an estimate of

the distribution with depth of these velocities.

Finally, we applied all this analysis to 9 di�erent sectors of the solar disk around

the center, being able then to show, as a last result, a tridimensional distribution of the

horizontal velocity 
ows in the upper convection zone.

The results show that the horizontal velocity �eld appears to execute a spiral as a
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funtion of depth. The magnitude of the 
ows are on the order of 100-200 ms

�1

in the

outer 20 Mm, rising to several hundred ms

�1

at 50 Mm. The 
ows present a spatial

coherence at almost every position and depth from the surface until about 20 Mm.

Below that the spatial coherence dissapears. Three east-west shear layers can be found

at almost all longitudes and latitudes, associated in depth with the ionization zones of

hidrogen and helium in the outer 20 Mm. Finally, there is an indication of the presence

of a toriodal convective roll at about 10

�

North latitude.
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RESUMEN

Los �ultimos progresos en las medidas de amplitudes, anchuras y frecuencias de

las oscilaciones solares se han visto re
ejados en unas buenas estimaciones de los des-

doblamientos de las frecuencias, datos que han sido invertidos para inferir el ritmo de

rotaci�on solar bajo la super�cie. En este trabajo vamos a presentar un m�etodo para

estimar la distribuci�on de 
ujos de velocidades horizontales en funci�on de la profundidad

y la posici�on en el disco solar.

Estas t�ecnicas se basan en espectros tridimensionales de las oscilaciones para im�age-

nes de alta resoluci�on espacial. Es posible obtener informaci�on acerca de las compo-

nentes del n�umero de onda, k, y el aspecto tridimensional que los cl�asicos ridges adoptan

nos pueden dar idea acerca de los 
ujos de velocidades horizontales.

Los datos utilizados consisten en im�agenes del corrimiento Doppler del disco solar,

y se obtuvieron con el �ltro magneto-�optico en la torre solar de 60 pies en Mt. Wilson.

La resolucio�on de las im�agenes es de unos 2.2 segundos de arco en el centro de la imagen,

y los datos corresponden al periodo del 3 al 5 de Julio de 1988.

Hemos adaptado un modelo de per�l lorentziano para la dependencia con la fre-

cuencia a este espectro tridimensional, donde la dependencia con las componentes del

n�umero de onda est�a ligada a las del campo de velocidades. Como resultado, hemos

obtenido la distribuci�on de la velocidad en funci�on de la frecuencia para los modos p de

orden n = 0; 7 y mediante un proceso de inversi�on esta distribuci�on se ha transformado

en una dependencia con la profundidad.

Finalmente, se ha aplicado todo esto a 9 secciones distintas del disco solar cerca

del centro, obteni�endose as�� un mapa tridimensional del 
ujo de velocidades horizontal

en las capas superiores de la zona de convecci�on.
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Los resultados muestran que el campo de velocidades horizontal cambia su orien-

taci�on en funci�on de la profundidad de forma espiral alrededor de m�as de 360

�

. La

magnitud de las velocidades es del orden de 100-200 ms

�1

hasta unos 20 Mm de profun-

didad, subiendo a valores de varios cientos a 50 Mm. Los 
ujos presentan una coherencia

espacial en casi todas las posiciones y profundidades desde la super�cie hasta una pro-

fundidad de unos 20 Mm, a partir de la cual la coherencia desaparece. En esta regi�on

aparecen tres zonas de valores m�aximos en las velocidades, aproximadamente a la misma

profundidad en la direcci�on este-oeste para todas las longitudes y latitudes. Estas zonas

en profundidad se encuentran muy cerca de las zonas de ionizaci�on de hidr�ogeno y he-

lio. Finalmente se han encontrado indicaciones de la presencia de una celda convectiva

toroidal entre el ecuador solar y unos 10

�

de latitud Norte.



Chapter 1

Introduction

As the closest laboratory that astrophysicists have for their `experiments', the

Sun has proven to be the most e�cient tool for studying the physics of the stars. By

studying the solar structure and dynamics, more precise and reliable stellar models can

be built and many of the questions that remain after the study of the distant stars may

be answered.

Basically, the �rst step after some phenomenon has been observed in the Sun is

to describe the most relevant characteristics of the observations. On the background

of a relatively quiet solar disk, a variety of very interesting features are present. Start-

ing with the homogeneous granulation and going through the supergranulation, more

inhomogeneous and transitory features are found, such as plages, 
ares, sunspots and

active regions. Of special interest is the time evolution of these phenomena, of which

the most remarkable feature is probably the solar cycle. The solar magnetic activity is

also a very important factor, probably related to most of the features enunciated above.

In order to �nd answers to the questions about the observed features of the Sun, a

good understanding of the regions located immediately below the solar surface, where

5



6 Chapter 1. Introduction

solar activity is observed, is necessary. We know that the region under the photosphere

is dominated by convection. Therefore, it is essential to study the 
ows of material and

how they evolve in the outer layers of the photosphere.

1.1 Hydrodynamics and magnetism overview

1.1.1 Convection

Besides radiation, convection is the other important way energy is transported in

stars. Many stars evolve through some convective stages during their lives. Theories

of stellar evolution prove that the Sun, with its mass and luminosity characteristics,

should have a convective envelope surrounding a radiative core. What we actually `see'

and measure on the Sun is the surface of this convective envelope. It is reasonable

to think that many of the features observed at the solar surface must be directly and

indirectly related to convection processes. This emphasizes the importance and necessity

of a good understanding of the convection. Reviews about convection can be found in

Gilman (1986) and Stix (1991).

Most of the stellar convection theory is based in the mixing-length theory: a buoy-

ant 
uid element rising in a superadiabatic layer will move some distance l, called the

mixing length, before exchanging its heat and momentum with its surroundings and

falling back. This theory is related to the Boussinesq approximation (Spiegel & Veronis

1960) of a nearly incompressible 
uid, simplifying considerably the calculations. Nev-

ertheless some nonlinear compressible convection models have been developed (Ogura

& Phillips 1962, Gough 1969). For the latest work in convection models see Rast &

Toomre (1993), and references thereafter.

The mixing length is related to the local scale height H , thus a �xed ratio l=H ,

around unity, is chosen. The depth of the convection zone can be estimated from solar
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models for temperature and superadiabatic gradient (Gough & Weiss 1976). Standard

solar convection models give a depth between 20% and 30% of R

�

. Helioseismology

has improved our measurements of the convection zone depth, the lastest results being

the determination of the bottom of the convection zone at a depth of 0.287 of R

�

by

Christensen-Dalsgaard et al. (1991) from measurements of the sound speed in the solar

interior.

Observational evidence of convection

Visual analysis of both Doppler velocity shifts and intensity variations on the

Sun suggests a discrete distribution of spatial frequencies, interpreted as a discrete

distribution of convective 
ows or cell sizes. Evidence for this discrete distribution of

sizes is provided by the existence of granulation, mesogranulation and supergranulation.

Evidence of giant cells will be discussed below. The spatial size of the convective cells

is thought to be of the same order as their depths. Thus, by measuring the dimension

of a convective cell, an estimate of the bottom of di�erent convective structures can be

obtained.

Granulation is the most obvious of the convective cells. Alternating dark and light

patterns in intensity measurements are correlated with upward and downward moving

material, with velocities on the order of 700 ms

�1

and 1100 ms

�1

respectively (most

of the numeric values in this section have been extracted from Gilman 1986, and Stix

1991). The average size is 1.4 Mm, and thus so is the estimate of the bottom of the

cells in depth. Horizontal 
ows at the bottom of the granulation of 900 ms

�1

have been

proposed. The observed lifetime of granulation is from 5 to 12 minutes.

Mesogranulation and supergranulation do not show as clear a photometric signature

as does the granulation. Sizes of mesogranulation are of the order of 5-10 Mm, showing

velocities of 60 ms

�1

, and lifetimes of 2 hours. An average size for supergranulation is
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30 Mm. Upward 
ows are of 200 ms

�1

, and of 50 ms

�1

down into the Sun. Nevertheless,

the horizontal 
ows are estimated to be as high as 300{500 ms

�1

. Supergranulation can

last as long as days, but an average lifetime is of the order of 20 hours.

It is widely suggested (Simon & Leighton 1964, November et al. 1981) that the

bottom of the convective cells: granulation, mesogranulation and supergranulation, co-

incides with the ionization zones of H

+

, He

+

and He

++

, located at depths of about 2

Mm, 6 Mm and 20 Mm, respectively. The clearest evidence for this is provided by the

granulation: most of the obtained velocity 
ow pro�les in depth for the rotation rate

show a maximum around the H

+

ionization zone. The cause of convective driving in

these ionization zones is not very clear since it depends on many factors. A possible

theoretical explanation is that in each region of partial ionization, the opacity rises, and

latent heat of ionization can be released or absorbed in a rising or sinking 
uid element;

the e�ects both enhance convective instability. But the contribution to opacity from

He ionization is quite small compared to that of H, and no opacity `bump' generally

appears in solar models at the levels of He ionization.

Global circulation

Meridional circulation, di�erential rotation and giant cells are referred to as global

circulation velocity 
ows. It is important to relate these 
ows to convective structures,

to understand not only the spatial distribution of the 
ows, but also the changes with

depth.

Studies of the variation of the angular rotation rate with depth have been done.

Foukal (1972) proposed that, as sunspots are presumably `anchored' at some depth

below the solar photosphere, their faster rotation rate can be interpreted as evidence

of an increasing angular velocity with depth, at least for the outermost 10{20 Mm or

so. Several results from helioseismology analysis show a peak in the rotation rate very
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close to the solar surface (F. Hill et al. 1988, Korzennik 1990). A faster rotation rate

for the solar interior has been proposed as a mechanism to explain the solar oblateness,

as detected by Dicke & Goldenberg (1967), H. Hill et al. (1974), and H. Hill & Stebbins

(1975), however, this is controversial.

The convection zone may in
uence the form of the di�erential rotation seen in

the photosphere. Di�erential rotation could result from the interaction of rotation and

convection, through the action of Coriolis forces. Actually, the detection of north-south

meridional 
ows would be very helpful for theories of solar di�erential rotation, and

some evidence for meridional circulation has been obtained (Howard & Gilman 1986).

Finally, there is a controversy about the existence of giant cells, convective struc-

tures of sizes of the order of 100 Mm or more. The evidence for such structures is weak

(Howard 1979, LaBonte et al. 1981, Schr�oter et al. 1978) due to the low amplitudes of

the surface velocity 
ows (about 10 ms

�1

) compared to other 
ows, their large scale,

and the necessity of long time observations. But several theories predict their existence.

As suggested by Simon & Weiss (1968), even when the 
uid is compressible and the

strati�cation encloses several density scale heights, convection which extends from the

bottom to the top is favored in both linear and non-linear models. As the bottom of the

convection zone is at 30% of the solar radius and the horizontal and vertical dimension

of the convective cells are thought to be equivalent, patterns of about 200 Mm should

be observed in the solar surface. They are weak, but the lifetime is long, which can

help their detection. There are models predicting nonaxisymmetric shapes of possible

giant cell structures (Durney 1970, Hart et al. 1986), or other orientations that may

be related to the solar cycle, such as torsional oscillations (Howard & LaBonte 1980,

Snodgrass & Howard 1984).

Theoreticians have sought to explain the lack of success in detecting large con-

vective cells. The most plausible is the de
ection of the velocity 
ow from primarily

vertical to mostly horizontal (van Ballegooijen 1986), and the observed maximum in the
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rotation rate in the layer close to the H

+

zone may be evidence of such a process. Fluc-

tuations in pressure can modify the density 
uctuations, and therefore changes in the

buoyancy forces can be produced. These 
uctuations in pressure and buoyancy forces

can decelerate the vertical motions, leading to strong horizontal shearing motions. It

is possible that these 
uctuations happen in the unstable H and He ionization zones

(Latour et al. 1983).

1.1.2 The solar cycle and dynamo problem

The idea of a dynamo process in the Sun is motivated by the necessity of the

maintenance of the solar magnetic �eld: the movement of conducting 
uid across the

magnetic �eld lines could prevent the magnetic �eld dissipation. Therefore, global-scale

motions in the Sun are likely to be related to the dynamo process, such as giant-cell

convection.

Solar activity is the most distinctive feature of the solar magnetic �eld and the solar

activity cycle (bands of magnetic features moving from the Pole to the equator in both

hemispheres in periods of 22 years) is one of the observed features of the solar dynamo.

The relation between the solar dynamo and the convection is probably re
ected in the

activity patterns and the solar cycle. Basically, two mechanisms have been found to

be the immediate cause of activity: advection of magnetic 
ux tubes upward by the

convection; or magnetic buoyancy: an isolated 
ux tube in lateral total pressure and

thermal equilibrium with its surroundings will be less dense and, therefore, buoyant (E.

Parker 1955a).

A very interesting dynamical problem is introduced by the competition between

buoyancy e�ects and the Lorentz force in interaction with magnetic �elds. This prob-

lem is based on the di�erent rate of di�usion of dynamical components like buoyancy
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forces, magnetic pressure, magnetic tension, etc., producing the so-called magnetocon-

vection problem (Cattaneo 1993, private communications). Magnetoconvection provides

a theoretical foundation for most of the photospheric and subphotospheric magnetic

phenomena from a dynamical point of view.

Activity shows patterns of sizes that match the giant cells; but we still have no

evidence of the existence of giant cells. One of the strongest links between global

circulation and activity is the correlation between the torsional oscillations detected

by Howard & LaBonte (1980) and the solar cycle. Torsional oscillations consist of

alternating east-west oriented bands of moving material, parallel and quasi-symmetric

with respect to the equator. These bands originate at high latitudes and move towards

the equator over a period of about 22 years. The average velocities are 3 ms

�1

. Solar

activity is very much correlated with the shape of these bands, and is mostly located in

the poleward boundary of the fast zones (bands moving faster than rotation).

1.1.3 Questions and answers

Of all the questions about convection and dynamo processes in the Sun, the dis-

tribution of velocity 
ows in the convection zone is very important. It could be useful

to clarify many unclear aspects of convection and dynamo theories such as:

1. Where is the bottom of the convective cells?

2. Do giant cells exist?

3. What is the shape and structure of the global circulation?

4. What is the rotation rate in the solar envelope?

5. How do the convective 
ows evolve over the solar cycle?
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Reliable determinations of the depth dependence of the rotation rate could address

questions 1 and 4. Bumps seen in the radial pro�le of the rotation rate may be due to

instabilities that drive the convective cells, such as the one found close to the H

+

zone.

Local studies of large scale velocity 
ows near the solar surface, along with their

depth dependence, are necessary to clarify questions 2 and 3. Measurements of the

surface distribution of velocity 
ows have been made (Howard & LaBonte 1980, Howard

& Gilman 1986), as well as the depth dependence of the rotation rate (Deubner et al.

1979). But in previous studies, the horizontal dependence of the 
ows is lost as we go

deeper under the photosphere.

Finally, temporal variations of these 
ows may be correlated to the solar cycle

(question 5). This correlation may be used eventually to predict the solar activity.

As presented in the next section, helioseismology gives us the tools for the deter-

mination of the distribution of the velocity 
ows, not only with depth, but also with

spatial horizontal resolution. Thus a tridimensional map of the horizontal velocity 
ows

can be obtained.

1.2 Helioseismology overview

Helioseismology has proven to be a very useful tool to provide information about

the solar interior. While the neutrino problem is not yet solved and is the source

of some controversy between the nuclear and particles physics and the solar models

(Gough & Toomre 1991), new techniques in seismic investigation of the sun and stars

have been developed. They continue to evolve, obtaining more accurate measurements

of frequencies, amplitudes, widths and rotational splittings of the acoustic modes of the

oscillations.
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Since the �rst detection of the 5-minute oscillations of the Sun by Leighton et al.

in 1960 (Leighton et al. 1962), the physics of the helioseismology has been incorporated

into stellar physics, and oscillations have become one of the many phenomena that

describe the stars. Ten years after Leighton's work, Ulrich (1970) and Leibacher & Stein

(1971) suggested the existence of resonant acoustic cavities under the solar surface; this

was observationally-demonstrated later by Deubner (1975), Rhodes et al. (1977), and

others. The observations of Claverie et al. (1979) provided the �rst con�rmation of

the global character of the modes. Undoubtedly, by studying the seismology of the

Sun we can obtain a lot of information and answer many questions about the physics

of the stars that would be di�cult to otherwise get. Of special importance is the

development of models of stellar interiors (Christensen-Dalsgaard 1988), for which more

direct information is necessary.

The sun oscillates, in 10

7

modes. Modes of oscillation with di�erent spatial patterns

and temporal frequencies are visible at the solar surface. A Dopplergram of the solar

disk, from which other line-of-sight relative velocities (i.e., solar rotation, earth rotation

and translation, etc.) have been removed, shows the oscillations: an apparently random

pattern of material moving in the radial direction. A spatial and temporal Fourier anal-

ysis of this pattern shows thousands of peaks in the frequency domain, corresponding

to the modes of oscillation.

Small instabilities in pressure and density are the cause of the oscillations. When

instabilities occur, distinct forces try to restore the equilibrium state. Under speci�c

conditions, the restoring force drives a periodic movement of material resulting in an

oscillation. When the restoring forces are dominated by pressure, the mode is an acoustic

mode, or p-mode; when the restoring forces are dominated by gravity (i.e. buoyancy),

the mode is a gravity mode, or g mode. Several attempts have been made to detect the

g modes, but with little success so far, due to their small amplitude and low frequency.

The 160-minute oscillation may be a g mode, but this is unlikely since it is an isolated

peak (Severny et al. 1976, Brookes et al. 1976, Brown et al. 1978). From now on, all
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references to modes of oscillation in this dissertation refer to acoustic modes only.

A single mode is characterized by its spatial distribution, given by a global pattern

of the moving material in a volume of the Sun. A frozen picture of a mode appears

as nodal lines of resting material with sectors of material moving back and forth in

the radial direction. Nodal lines are distributed in the three spatial directions: two

horizontal directions in the surface, and the depth in the solar globe. Di�erent modes

have di�erent number of nodal lines. Each mode is de�ned by three `quantum' num-

bers: the radial order n, that is the number of nodal lines in the radial direction; the

degree l, that is the total number of horizontal nodal lines on the solar surface; and the

azimuthal order m, the number of nodal lines in a chosen azimuthal direction typically

perpendicular to the rotation axis. Oscillations are present in the Sun in all directions,

thus horizontal nodal lines appear at each orientation on the solar disk. If the Sun were

to be spherically symmetric, there would be a degeneracy in the azimuthal number m:

the frequency value corresponding to the solution of the eigenvalue problem (enunciated

below) is not a function of m. However, the sun is not spherically symmetric, the most

important asymmetry being the rotation. Rotation breaks the azimuthal degeneracy,

thus we choose the rotation axis as the azimuthal direction. This non-degeneracy al-

lows us to infer the rotation rate as a function of depth 
(r). The rotation rate has

a direct in
uence in the splitting of the frequencies due to the dependence on m: hor-

izontal 
ows, like rotation, produce advection of the wave pattern, with a subsequent

Doppler shift of the frequencies for every m. By measuring these splittings, we can infer


(r), or other horizontal 
ows in any orientation, by means of inversion techniques (see

Chapter 4).

In physical and mathematical formulations of the oscillations (see Unno et al. 1989

and Brown et al. 1986 for instance), the numbers n , l and m are discrete (and inte-

ger) values of an eigenvalue problem. An eigenfunction of the problem is characterized

by a set of n , l and m numbers that, at the same time, correspond to a discrete fre-

quency value � . Valid solutions to this problem result in constraints on these numbers:
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�1 < n < +1 , l � 0 , jmj � l . Modes of positive n are de�ned to be p modes, and

modes of negative order n are de�ned as g modes; the n = 0 mode is called the f mode,

or fundamental mode. The boundary conditions limit the radial extension of the modes

to the so called resonant cavity, delimited by two turning points. Outside this cavity,

modes decay. The outer turning point is virtually the same for all modes and is located

at the solar surface. The decay of the modes into the solar atmosphere makes them de-

tectable. The inner turning point is di�erent for every l; n pair. This is very fortunate

for us: by studying modes of di�erent degree and order we are studying properties of

the sun at di�erent depths. Modes of lower degree and higher order travel deeper into

the Sun.

A wave, generated at some moment somewhere in the sun, begins the travel in any

direction but, due to the strati�cation of density and the temperature gradient, the wave

front will be refracted as it travels. There will be two re
ections (the two turning points

referred above): one at the surface, due to the rapid variation of the scale height near

the solar surface, and another at a certain depth depending on the mode

1

, where the

refraction makes the wave travel horizontally and re
ect backup towards the surface

(Figure 1.1 is an schematic plot of this picture). Only modes that resonate between

these two turning points survive a destructive interference, and this only happens when

there is an integral number of vertical wavelenghts �tting in the cavity de�ned by these

two points:

Z

r

1

r

0

K

v

(r)dr = n� + ";

where r

0

and r

1

are the turning points, K

v

(r) the vertical wave number and " is a

correction factor. This expression de�nes a relationship between degree (throughK

v

(r))

and frequency called the dispersion relation. The order n of the mode de�nes this

integral relation and determines the discrete frequency values for every given horizontal

1

Except for the mode l = 0 that has no lower turning point: the wave front is parallel to the

strati�cation of density and no refraction of the wave front is produced. The result is that the wave

travels through the center of the sun and reaches the surface at the other side.
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Figure 1.1: Schematic picture of the rays of the oscillations. The re
ecting inner point

of the higher degree mode (dashed line) is deeper than that of the lower degree (solid

line).

wave number, or degree l . Based on this relation, a diagram of frequencies as a function

of degree can be plotted, and ridges appear for every order n. Figure 1.2 shows the

experimental proof of this relation for a 8-day set of data obtained with the GONG

2

instrument (Harvey 1988) in November 1-8, 1992. The ridges correspond to orders n = 3

(at the lower-right corner) and consecutive increasing n.

It is customary to discuss the power spectrum of the oscillations, a distribution of

power in frequency and wavenumber with amplitudes changing from mode to mode due

to several causes: �nite lifetimes of the modes, instrumental and solar background level,

aliasing and leakage of the modes (F. Hill et al. 1991a, Patr�on 1992). It can be seen

in Figure 1.2 that the power of the oscillations is concentrated in the ridges following

the dispersion relation. Most of the power is found around 3000 �Hz, or a period of 5

minutes.

By �tting the peaks as a function of frequency in the power spectrum, an estimate of

the frequency of a given mode can be obtained. Theory tells us that this distribution of

frequencies is a valuable tool that can be used to infer, by means of inversion techniques

(Chapter 4), the radial distribution of physical quantities such as sound speed, opacity

2

Global Oscillation Network Group
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and dynamical information in general (Harvey 1985).

Observationally, modes of low degree (l = 0; : : : ; 3), are detected as variations in

the line-of-sight velocities or in intensity of integrated light of the solar disk. But, in

order to measure modes of intermediate and high-degree, we must work with images

of relatively high spatial resolution: we need to di�erentiate the pattern of one mode

from another. Both techniques provide precise measurements of the frequencies of the

Figure 1.2: Power spectrum of the p-mode oscillations showing the dispersion relation

between the frequencies and the degree of the modes for several radial orders n. n = 3

for the ridge at the lower-right corner, and increases up and to the left. (Adapted from

GONG project data; spectrum obtained for November 1-8, 1992).
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modes and, even though the high-resolution techniques give information about a wider

range of modes, the accuracy is currently better for results obtained with non-imaging

techniques. This is due to the longer time spans of data available in the latter, and,

it is also easier to design instruments with high stability and precision for non-imaging

observations (a good review about the comparison between these di�erent observational

techniques can be found in F. Hill et al. 1991a).

1.3 About this work

In this dissertation we introduce one of the newest high-resolution techniques for

analysis of solar oscillations. It is based in the construction of a tridimensional power

spectrum of the oscillations and its interpretation, �rst suggested by Frank Hill (1988).

The standard way of analyzing high-resolution images for helioseismic purposes

has been the spatial decomposition of the image into spherical harmonic coe�cients.

The functional solutions of the oscillation problem are proportional to the spherical

harmonics, and the �nal measured amplitudes (i.e. velocity or intensity at the surface)

are proportional to a linear combination of these functions, with the corresponding

coe�cients. Spherical harmonic functions are characterized by a set of l and m values,

equivalent to saying that a spherical harmonic function corresponds to a mode of the

same l and m values. In order to distinguish one mode from another, a spherical

harmonic decomposition is performed. First, a Fourier transform is applied in the

direction parallel to the solar equator, followed by a Legendre transform in sine of the

latitude. The result is the value of the coe�cients of the spherical harmonics, i.e. the

coe�cients of the modes. Doing this for all the images in the temporal series produces

a temporal series of coe�cients, and a subsequent Fourier transform in time leads to

the power spectrum of the oscillations.

A tridimensional spectrum can be obtained in a similar way. The major di�erence



1.3. About this work 19

is that three Fourier transforms are performed, two in the spatial directions correspond-

ing to the solar longitude and latitude, and one in time. The result of the �rst two

transforms is an image in the spatial transform domain, with axes that are the two

orthogonal components of the wave number, k (denoted by k

x

and k

y

), in the directions

of solar latitude and longitude. The third Fourier transform in time gives the �nal

power spectrum: the amplitude of the oscillations in frequency for every pair of values

(k

x

; k

y

). The aspect of this tridimensional power spectrum is similar to the result of

turning the k {! diagram (as in Figure 1.2 ) around the k = 0 line as a revolution

body. In fact, the 3{D spectrum is a more complete representation of the spectrum,

and the two-dimensional diagram is more properly the result of an azimuthal average,

at constant k number, of the tridimensional one. Ridges of constant radial order become

surfaces with a shape reminiscent of trumpets.

The most interesting feature of this kind of diagram

3

is that we retain spatial

information in the horizontal plane k

x

{ k

y

. As we will see later in Chapter 3, the

asymmetries of these tridimensional surfaces from the axis k

x

= k

y

= 0 can be inter-

preted as the advection e�ect of the wave front of the oscillations by horizontal velocity


ows under the solar surface (Gough & Toomre 1983). An estimation of the values of

these velocities may be obtained by measuring these asymmetries (F. Hill 1988), and

the use of inversion techniques can let us infer the distribution in depth of these 
ows.

Another di�erence between this tridimensional analysis and the two-dimensional one is

that in the former, we can perform a local analysis of the data, taking relatively small

sections of the total image; in the standard power spectra all the available data are

used in the same transformation process to get a single power spectrum that averages

all the local e�ects in a global analysis. It is important to keep in mind the local or

global character of the modes. But we will come back to this point in the last section

of Chapter 4, where we discuss the solar model used in the inversions.

3

In chapters 2 and 3 we will describe the data, the reduction procedure and the way to get such

tridimensional spectra.
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The �nal goal is to apply this technique to di�erent positions on the solar surface

and make a map of the horizontal velocity 
ows as a function of position and depth, thus,

we get local information rather than global. Variations of the horizontal velocities both

with position and depth provide valuable information about the dynamics of the regions

under the solar surface, the convection, and the dynamo and solar cycle problems. The

study of correlations between the distribution of the magnetic structures on the surface

of the Sun and the distribution of the velocity �elds below this surface, should shed light

on the causes of active regions and sunspots. Of special interest would be the detection

of horizontal velocity 
ows as a con�rmation of the existence of the giant cells.

The data used for this purpose are a time series of 1024�1024-pixel dopplergrams,

processed after the two �ltergrams in the wings of the Na D lines, covering a time

period of three days (3-5 July, 1988). The images were obtained with the Magneto-

Optical Filter at the 60-Foot Tower at Mt. Wilson Observatory, with a cadence of 60s

and a resolution at disk center of 2.2 arcsec.
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Data acquisition and reduction

It seems ironic, but the term `reduction' is not the most appropriate for a de�nition

of the process of getting the �nal physical results from the initial raw data. As a matter

of fact, we don't `reduce' anything, but `increase' at least the amount of information

several times. But this is not a semantic dissertation and this question will remain

for the linguists. And, in fact, a comparison of the last data results and the raw data

shows that the amount of information was reduced in the sense of `size', if we forget the

intermediate results, that can �ll the biggest disk of any computer.

The size of the data images is large enough to prevent the automatic execution of

the processing steps, and force the storage of intermediate results periodically before

ending one single step. This reduction process has been tedious, as everyone could have

expected of such a task.

The reduction process described in this chapter will not go all the way through to

the last physical results of this dissertation, but will end with the construction of the

tridimensional power spectrum. Thus, almost no physics is used in these steps of the

reduction, which are mostly geometrical considerations, except for some applications of

21
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a theoretical formulation for the solar rotation rate.

The �rst section of this chapter is an abstract of the data acquisition process and

calibration, leading to the raw velocity images of the solar disk. Since this work has not

Figure 2.1: Calibrated image of the solar disk showing the solar equator and the limits

of the sections under study in this work. It corresponds to 1628 UT of 7=4=88.

been performed by us, we limit the comments to a very summarized description (a whole

description of the process can be found in chapter 2 of Korzennik's PhD. dissertation).
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These images were taken and calibrated by Edward J. Rhodes, Sylvain G. Korzennik

and Alessandro Cacciani, and the �nal velocity images were kindly provided to us for

our analysis.
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Figure 2.2: The reduction process. The steps appear in ovals and the results inside the

rectangles showing the dimension of the images. Timext is the temporal span of the

data in minutes. A section of a tridimensional power spectrum is showed at the end.

A calibrated Doppler velocity image is shown in Figure 2.1 as an example. It was
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taken at 1628 UT of 7=4=88. An overlay shows the solar equator and the limits of the

sections considered in this work.

The following sections describe the remainder of the reduction, and a diagram of

the process, step by step, appears in Figure 2.2 . The inputs to steps number 1 and 2

are a set of two-dimensional images of the solar disk, up to a number equal to Timext

(3456 minutes in our data set if we add the observation time span plus the night time

gaps). The remaining results are tridimensional images or sections of the solar disk, up

to 9 sections in this study. The following summarizes the di�erent steps in the process

with the initial input objects being the calibrated images described in the next section:

1. Remapping of the solar disk images onto a latitude-longitude grid.

2. Tracking of the images to remove the solar rotation.

3. Temporal �ltering to remove low frequency 
uctuations.

4. Spatial Fourier Transform.

5. Temporal Fourier Transform.

2.1 Data acquisition and calibration

The Mount Wilson 60-Foot Solar Telescope consists in a coelostat system at the

top of the tower that directs the beam of light through a focusing doublet objective lens

and the �eld lens. Once in the observing room, a magneto-optical �lter (MOF) is used

as an imaging Doppler analyzer, consisting in a pre-�lter unit, a �lter unit, and a wing

selector. The pre-�lter unit isolates a narrow band around the absorption line (sodium

D lines). As the �lter unit creates two narrow band transmission peaks in each wing

of this line, the wing selector unit absorbs one or the other. First, the two wings of

the incoming light are, respectively, right and left circularly polarized, and then, using
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a quarter-wave plate, a 90

�

rotation of the plate selects the red and blue components.

Finally, a 1024�1024 pixel CCD camera takes, alternately (5 seconds apart), a red and

a blue image of the solar disk, at a sampling rate of one pair of images per minute.

As a �rst step in the calibration, a `dark frame' is subtracted from each frame,

and a `despiking' procedure is performed to remove bad pixels. In order to make a

geometrically correct calibration, the geometry of the solar disk in the images has to

be de�ned. The center of the disk is calculated by �tting a whole parameterized ellipse

(center, dimensions and orientation) to the solar limb, de�ned to be the maximum of

the �rst derivative of the radial cross-section in intensity at every orientation. The

ellipse was �tted to this distribution of points by a non-linear least-squares procedure.

Then, the disk is translated to center it on the frame, and rotated in order to bring the

principal axis of the �tted ellipse in alignment with the x and y axis of the frame, using

a bi-cubic interpolation technique.

A 
at �eld correction was not implemented. If the detector response is linear, the

normalization of the Doppler ratio makes the response of the detector insensitive to its

gain. Even if the response is not linear the errors introduced by neglecting the non-

linear terms are of the order of the ones introduced by the intrinsic non-linearity of the

MOF. But, since there is also an interpolation process to center the solar disk in the

frame, the averaging e�ect of the 16-pixel interpolation kernel can be used to estimate

the spatial non-uniformity of the detector's response. The levels calculated (Korzennik

1990), are close enough to the seeing noise so that the gain can be neglected.

Next, the Doppler signal of the images is evaluated. A Dopplergram image is

calculated as:

I

d

(i; j) =

I

red

(i; j)� I

blue

(i; j)

I

red

(i; j) + I

blue

(i; j)

; (2.1)

where I

red

, I

blue

, and I

d

are the intensities in the red and blue wings, and the �nal
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Doppler ratio, respectively, evaluated for every pixel denoted by the pair (i; j).

In order to obtain the velocity values of the images, a known velocity signal is

compared to the Dopplergram images. Three methods have been tested. The �rst one

considers the line-of-sight velocity due to the solar rotation as a reference. A simple

linear law can approximate the known values of this velocity at the solar equator as

V = S

0

+ K

s

I

d

, and a �tting to the measured values I

d

along the solar equator gives

the coe�cients S

0

and K

s

.

Another approach is to use the contribution of the earth rotation and translation

velocities to the line-of-sight velocity. As the previous case, a linear law can be applied,

V = K

0

+ K

t

I

d

, where V is, this time, the ephemeris sun-to-earth velocity and the

�tting is made in time (actually I

d

will be an average over the solar disk).

Finally, non-linear approximations have been tested as well, with expressions like:

V = K

0

(1 +K

r

(r=R)

2

)(1 +K

d

(I

d

)

2

)I

d

; (2.2)

where r is the radius at the current pixel, R the size of the image, and K

0

, K

r

and K

d

the calibration coe�cients.

As the non-linearities of the MOF are not very great, the second method was

chosen for this data set. The �tting was performed for the three days of the span, and

the results are showed in Table 2.1. In Korzennik's work a running mean is applied

date K

0

(m=s) K

t

(m=s)

7/ 3/88 -765.910 -.295265

7/ 4/88 -747.561 -.302720

7/ 5/88 -732.575 -.302491

Table 2.1: O�set and scale factors of the calibrations.

before the calibration, thus the o�set term is removed when the running mean value is
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subtracted from the data. In our case, the running mean is applied after the remapping

and tracking (explained in the next two sections), and the data we obtained from Rhodes

et al. were calibrated with this o�set term.

2.2 Remapping

The initial raw images are a projection of the solar disk onto a plane. This means

that the spatial dimensions on the solar surface depend on the position in the solar

image. We cannot use these spatially-dependent pixel resolution images directly, but

we must 'remap' them onto another grid. Usually, to obtain the two-dimensional k {!

diagram, a decomposition into spherical harmonics is performed. But the spatial distri-

bution of these patterns is de�ned on a solar longitude{sine-of-latitude grid. This grid

provides an equally-spaced distribution of data for the Fourier transform in longitude

and for the Legendre transform in sine-of-latitude performed in a spherical harmonic

decomposition.

Here we do not perform a spherical harmonic decomposition. Asymptotic expan-

sions of these functions show that harmonics of relatively high degree (l > 10), can

be described as plane waves propagating along great circles. Plane waves are just sine

and cosine functions, and a simple Fourier transform is the appropriate tool we need

to decompose the data. The following expression represents the distribution of a plane

wave on the solar surface for a given mode (if we plot it for k

x

= k

y

we get something

very close to a chess board pattern):

f(S

x

; S

y

) = Acos(2�k

x

S

x

) cos(2�k

y

S

y

); (2.3)

where f describes the amplitude of the signal at a position (S

x

; S

y

), A is the amplitude

of the oscillations at a given time, and k

x

and k

y

are the two horizontal components

of the spatial wave number k of the mode (here we consider only the real part of the
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oscillatory function, a complex exponential). Approximate relationships between k

x

,

k

y

, l and m are k

x

� m=R

�

and k

y

� (l

2

�m

2

)

1=2

=R

�

, where R

�

is the solar radius

(F. Hill et al. 1991a).

Equation (2.3) suggests we de�ne the horizontal coordinates S

x

and S

y

to be the

latitude and longitude in a heliographic coordinate system. Remapping our 
at disk

image onto this coordinate system will give us an equally-spaced distribution of data.

We use the parameters de�ning the solar limb and center of the disk (described

in the previous section) to perform the geometrical transformations. Besides this ge-

ometrical information concerning our images, we need to know the orientation of the

rotation axis of the Sun, P , the heliographic latitude of the center of the solar disk,

B

0

, and the apparent radius of the Sun in arcseconds as a consequence of the sun-earth

distance projection e�ect. These parameters were obtained from the Nautical Almanac

tables and formulas for the beginning of the time span of every day, and kept unchanged

during each span. To keep these values unchanged during a single day time span in-

troduces an arti�cial drift of the images that has been calculated and represents an

extra velocity 
ow of about 3 ms

�1

, that is between the error limits of the measured

velocities. Table 2.2 shows the values for the three days of data, plus the semiminor

P

eff

B

0

Radius Xax Yax

date (degrees) (degrees) (arcsec) (camera pixels)

7/ 3/88 24.22 3.21 943.87 443.91 442.08

7/ 4/88 25.03 3.32 943.87 443.93 442.20

7/ 5/88 25.17 3.44 943.87 443.83 442.03

Table 2.2: Geometric parameters of the Sun and the solar disk image.

and semimajor axis (Xax and Yax respectively in the table) of the ellipse �tted to the

solar disk. The image had already been translated and rotated to align the minor axis

of the ellipse with the vertical direction of the frame, and to set the center of the disk

to the center of the frame (pixel values 512 and 512). We thus did not vary the ellipse
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center and orientation. In Table 2.2 we display not the P angle, but the �nal addition

of this angle and the rotation applied to the image, and call it P

eff

.

The actual remapping of the data onto an equally-spaced grid in latitude and

longitude was achieved by a cubic convolution interpolation algorithm, using a 4 by 4

pixel interpolation kernel. The equations for the geometrical transformations are based

on those found in Smart (1971), with some modi�cations eliminating any approximation.

The �nal lat-long images are 1000� 1000 pixels, covering a total interval of 110

�

, from

�55

�

to 55

�

in both latitude and longitude and resulting in an angular resolution of

0:11

�

. Note that, since the values of B

0

and P

eff

are not zero, the center of the

remapped images at latitude B = 0

�

and longitude L = 0

�

does not correspond to the

center of the disk. The resolution in the lat-long grid results from matching one pixel

at disk center to one pixel in the lat-long grid. As we move towards the solar limb, a

pixel in the solar disk image samples larger areas with a subsequent loss of resolution

in the angular coordinates L and B. The result is a foreshortening of the data, and the

interpolation process fails as we approach the solar limb.

2.3 Tracking

Our goal is to obtain local information at several positions on the solar surface.

Then, a local analysis of the data should be performed at di�erent positions for sub-

sections of the total image, which we call subrasters. The next step is to choose these

positions and to work independently with every one, i.e. to build a temporal series of

data for every subraster. The sections are chosen to subtend 14

�

:85�14

�

:85 , or 135�135

pixels in the remapped images. Since the sun is rotating, we need to track every sub-

raster at an appropriate rate. The initial goal was a mosaic of 5 � 5 subrasters. Due

to the foreshortening, we decided to work with 9 subrasters in a mosaic of 3� 3 . The

position of these subrasters was chosen so that the center of the whole mosaic matched
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the center of the total image at a time Timext=2 = 1728 minutes, half of the total

temporal span. In this way, the subrasters are symmetric around the central meridian

of the image, reducing the foreshortening e�ect.
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Figure 2.3: Positions of the 9 subrasters selected on the solar surface at the beginning,

(solid lines, 1506 UT, 7/3/88), and the end (dashed lines, 0041 UT, 7/6/88) of the time

span of the observations. The sides of the squares are 14

�

:85 in heliographic coordinates.

In Figure 2.3 the positions of the selected subrasters are shown for the initial and

�nal times of the total span. The latitudinal position is centered around the solar equa-

tor, and the range in latitude is from �22

�

:275 to 22

�

:275 . The longitudinal positions

were calculated from the beginning and ending time ephemeris values of the helio-

graphic Carrington longitude of disk center: 345

�

:43 at 1506 UT, 7=3=88 , and 313

�

:68

at 0041 UT, 7=6=88 , a total angular translation of 31

�

:75 . Given the size of the mosaic,

14

�

:85 � 3 = 44

�

:55 , and the constraint of centering the mosaic in the center of the

total image at half of the time span, we �nd that the Carrington longitude range of the

mosaic is 307

�

:28 to 351

�

:83 . In the lat-long grid the range will be �38

�

:15 to 6

�

:4 at
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the beginning, and �6

�

:4 to 38

�

:15 at the end.

The actual tracking procedure uses a rotation rate expansion in powers of the cosine

of the colatitude, � = cos(90

�

� B) , from Snodgrass (1984). It gives the total angular

rotation as a function of latitude and time span since the beginning of the data run.

This amount is added to the initial Carrington longitude for every image taken every

minute. The expansion is as follows:

dlng(�; dt) = C(w

1

� w

2

� �

2

� w

4

� �

4

� sw)dt; (2.4)

where dlng is the rotation rate in degrees, C = 360�10

�9

is a constant of proportionality,

dt is the elapsed time since the beginning, w

1

= 452nHz, w

2

= 49nHz, w

4

= 84nHz

are the coe�cients, and sw = 31:7nHz is the sidereal to synodic correction. Instead of

calculating this value for every latitude, we use a unique value evaluated at the center

of every subraster for the total range of latitudes in each subraster.

Once the position in latitude and longitude corresponding to the time the image

was taken is found for every subraster, we assemble the temporal series of subrasters,

again using a cubic convolution interpolation process. The result is a set of images

of dimensions 135� 135� Timext. Two practical issues need to be solved with these

tridimensional images. First, bad data images due to errors, bad seeing conditions,

clouds, night time, etc., were rejected and the corresponding band in the tridimensional

image was �lled with zeroes. Second, the size of the images was quite large. The number

of bands in our data, Timext, is 3456

1

, and the data are 8-bit real pixel values, or 4 bytes

per pixel. Thus, the total size of one temporal series is 135�135�3456�4 � 252Mbytes.

In order to work with the 9 subrasters at the same time, we split the �nal results into 3

sections, containing only the day time portions of the three days of data. This reduced

1

This number doesn't correspond to the total number of images plus night time, which is 3408, but is

the result of an aspect of the Fast Fourier Transform routine that we will explain later on the temporal

FFT section.
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the size of the individual images to about 50Mbytes. We then saved the results of every

day before removing them from the disk and starting with the next one.

2.4 Temporal �ltering

Before starting the tridimensional Fourier Transform process, only one step re-

mained: the correction for low-frequency 
uctuations. Oscillations are not the only

velocity features present in the Sun. Besides the line-of-sight velocities introduced by

Figure 2.4: Remapped and tracked section before the temporal �ltering. It corresponds

to the 1628 UT of 7=4=88.
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the solar rotation and the earth rotation and translation, local features due to activity

and convection structures add their e�ect to the total Doppler velocity measurements.

Figure 2.5: The same section as the previous �gure after the temporal �ltering.

In general, these phenomena are of low frequency in comparison with the oscilla-

tions. So, a simple running-mean of the data in time removed from every band of the

image will remove the e�ect of these slowly-evolving features. In our case we used a

21-point running-mean, taking 11 points before and after the pixel in consideration,

calculating the mean value of the total 21 points and subtracting this value from the

central one, pixel by pixel in the whole tridimensional image. Zero bands were not taken
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into consideration. In Figures 2.4 and 2.5 we show a section of the lat-long grid, corre-

sponding to the 25 selected subrasters, before and after the temporal �ltering. Bright

patterns are material moving outward in the radial direction while dark patterns show

material going inward. The residuals that appear in Figure 2.5 are the signature of the

oscillations on the solar surface. The contrast of Figure 2.5 has been enhanced to show

a clearer view of the material going in and out.

As we can see, the solar rotation is mostly removed, along with most of the activity

patterns. Still, some of the very strong activity features remain as dark spots at the

right side of the picture. This image was generated after tracking 25 di�erent subrasters

in a 5�5 mosaic separately, and then putting everything together and building the total

image again. As a consequence of both the approximate tracking formula used and the

interpolation process, the di�erent subrasters don't match very well in the horizontal

edges for higher latitudes (it is di�cult to see here, but it is easily seen in the computer

screen). Finally, notice how the image is degraded as we go closer to the corners due to

the foreshortening.

2.5 Spatial Fourier Transform

In this section we consider only the two spatial dimensions. In the remapping

section we introduced the motivation for performing a plane wave decomposition instead

of a spherical harmonic decomposition of the data. Here, we present the equations of

the decomposition in a more formal and detailed way.

In a plane wave description, the oscillations can be considered as local waves, and

ignoring the spherical solar shape these waves can be approximated by plane waves. In

this representation, the radial displacement, or the eigenfunction correspondent to the
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radial component of the contribution of all the modes is (F. Hill et al. 1991a)

�r = <

8

<

:

X

n;l;m

K

ln

(r) e

i(!t�k

h

�x)

9

=

;

; (2.5)

where < is taking the real part, K

ln

(r) is the radial dependence of the eigenfunction

associated to the mode, which is vibrating at a frequency �

n;l;m

= !=2�, k

h

is the hor-

izontal wavenumber vector, and x is the displacement vector in a horizontal coordinate

system on the solar surface. The magnitude of k

h

is related to the degree of the modes

by

k

h

=

q

l(l+ 1)=R

�

; (2.6)

with R

�

being the solar radius. The radial velocity �eld V

r

associated with the oscil-

lations, measured at the solar surface, can be written as a superposition of the normal

modes:

V

r

(t; S

x

; S

y

) = <

8

<

:

X

n;l;m

A

n;l;m

e

i(! t+'

n;l;m

� k

h

�x)

9

=

;

: (2.7)

Here, S

x

and S

y

are the two components of the x, A

n;l;m

is the mode amplitude, and

'

n;l;m

the phase. To isolate the spatial dependence at a given time t

0

, we can group

the amplitude and the temporal dependence as follows:

V

r

(t

0

; S

x

; S

y

) = <

8

<

:

X

l;m

"

X

n

A

n;l;m

e

i(! t

0

+ '

n;l;m

)

#

e

�ik

h

�x

9

=

;

; (2.8)
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r

(t

0

; S

x

; S

y

) = <

8

<

:

X

l;m

C

l;m

(t

0

) e

�i(k

x

S

x

+k

y

S

y

)

9

=

;

; (2.9)

where k

x

and k

y

are the two components of k

h

, and C

l;m

(t

0

) will be the spatial co-

e�cients at a time t

0

. Now it is clear how to use the Fourier Transform (FFT, since
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the actual process will be a Fast Fourier Transform algorithm): a FFT in the S

x

di-

rection, followed by a FFT in the S

y

direction, will give directly (save some known

normalization factor) the values of the coe�cients C

l;m

for every pair (k

x

; k

y

). In our

case we chose (S

x

; S

y

) to be the lat-long grid; then we applied the FFT row by row

in the longitude direction, obtained a new image of the same dimensions, applied the

FFT column by column in the latitude direction, and obtained the matrix of coe�cients

of the modes. The resulting image is a map of the oscillations in the two-dimensional

Fourier Transform space, as a function of the components of the wavenumber vector.

These images have the same dimension as the input images, 135 � 135, and the

reference axis k

x

= k

y

= 0 is placed at the center of the image. The resolution of the

pixels in these images, as given by the FFT procedure, is �k = 2�=(N�x) , where N

is the number of data in every run of the FFT and �x is the data resolution. In our

case, N = 135 and �x = 0

�

:11 ; but these values will give an angular value for �k . In

stead, we consider �x in spatial units, �x = 0:11 (2�=360)R

�

= 1:33673Mm , so the

resolution in k number has the appropriate units: �k = 3:4818 �10

�2

Mm

�1

. Therefore

the images in the k

x

� k

y

space sample the range �2:3328Mm

�1

to 2:3328Mm

�1

in

both axes (this value corresponds to (N=2)�k ). We can estimate the corresponding

l value for this range using Equation (2.6) , and �nd L

N

y

, the Nyquist value of L �

p

l(l+ 1) , which is about 1624 for our images. However, if we look at the �nal power

spectrum (Figure 2.8 ), we do not see any power for these l values; due to seeing, leakage,

foreshortening and other errors in the observations, we see the power of the oscillations

only up to k

h

� 33�k = 1:149Mm

�1

, or l � 800 .

Note that we introduce some errors by using a lat-long grid: the value �x =

1:33673Mm is constant along meridians, but it is only correct at the equator along

lines of constant latitude. As we go to higher latitudes B, this value is multiplied by

a factor cosB . In our resulting images in the k

x

� k

y

plane, the resolution in k

y

is

given by the value above, but the resolution in the k

x

is multiplied by 1=cosB, varying

from 3:4818 � 10

�2

Mm

�1

at B = 0 to 3:7626 � 10

�2

Mm

�1

at B = 22

�

:275 . This is
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acceptable, since it represents a maximum error of 8%, far from our pixel resolution

limitation.

As a practical consideration, our data are split into three sections corresponding

to the three days of the observations, with two images per section, due to the Real and

Imaginary parts of the FFT. Prior to the temporal FFT, the total time span series of

data is constructed from the three sections plus empty sections corresponding to night

time.

2.6 Temporal Fourier Transform

To complete the tridimensional Fourier Transform of our images, a �nal FFT is

applied in the temporal direction, pixel by pixel in the spatial frame, over the entire

temporal span of the data. Considering the starting and ending date and time of the

data available (from 1506 UT, 7=3=88 to 0041 UT, 7=6=88 ), the total time span is 3408

minutes, with night gaps �lled with zeroes. The FFT routine is much faster if the number

of data points has a maximum prime factor as small as possible, preferably 2 or 3. It is

thus worthwhile to adjust the time span of data to ful�ll this condition. In our case, the

number 3456 = 2

7

�3

3

is the closest favorable number to the actual time span of 3408. We

pad the data with 48 extra zero points to get this number, used for the temporal FFT.

With this value the resolution in frequency will be: �� = 1=(3456�t) = 4:8225�Hz,

with �t = 60s.

The input to the temporal FFT is two images of 135 � 135 � 3456 pixels, corre-

sponding to the Real and Imaginary parts (R and I), and the output is one image of

135 � 135 � 3456 pixels with alternating R and I parts in every band for the posi-

tive frequency values. One image of 135 � 135 � 1728 pixels contains the �nal power

spectrum calculated as

p

R

2

+ I

2

. Some examples of the resulting power spectra are

showed in Figures 2.6 and 2.7. Figure 2.6 is a cut for k

y

= 0 , showing the ridges of the
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Figure 2.6: A cut of a section of the power spectrum for the central subraster at k

y

= 0 .
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modes. Figure 2.7 are the resulting ring diagrams from constant frequency cuts; they

Figure 2.7: Ring diagrams for the 9 central subrasters of the solar disk. They correspond

to a cut of the tridimensional power spectrum at � ' 3000�Hz. The labels at the right

and upper sides show the position in the solar disk, with B the heliographic latitude

and L the Carrington longitude.

were selected at � ' 3000�Hz for the 9 subrasters. The position in the solar disk is

identi�ed by the Carrington longitude L and the heliographic latitude B at the upper
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and right sides of the picture. Rings for n = 1,2,3,4, and perhaps 5, can be identi�ed

in the diagrams.

Figure 2.8: Final l � � diagram obtained after performing an azimuthal average to the

tridimensional power spectrum. The power was enhanced multiplying by k

2

, as the

previous plots.

Finally, Figure 2.8 shows a l � � diagram obtained after an azimuthal average of

the tridimensional power spectrum at constant k. Ridges of modes with orders n = 0

to n = 8 can be seen at higher frequencies. All of �gures were obtained for the central

subraster (number 13 in Figure 2.1 ).
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The spectrum of the oscillations shows a high background at low l , with an am-

plitude greater than the peak of the frequencies. In these plots we have removed the

background to enhance the contrast at low degree. This is done by multiplying the

power spectrum by k

2

. At the same time the power of the high l modes have been

enhanced in the same way.



Chapter 3

Tridimensional model of the

power spectra

The usual way of analyzing the power spectra of the solar oscillations is to deter-

mine the frequency of the modes for every l, m and n. This is accomplished by �nding

the peaks in frequency of the distribution of power resulting from the �nal temporal

FFT in the reduction process. In our case, we focus not in the determination of the

positions of the peaks, but instead how the positions are altered by the presence of

horizontal velocity 
ows. Flows will deform the tridimensional distribution of power,

and our goal is to measure this deformation.

In this three-dimensional power spectra (k

x

, k

y

, and !) we can detect the presence

of horizontal velocity 
ows beneath the solar surface. If no 
ows are present, the distri-

bution of power around the origin k

x

= k

y

= 0 is axially symmetric, and the maxima of

power appear as perfect circles, or rings, centered at the origin. When a velocity 
ow

�eld U is present underneath the solar surface, the wave front is advected by it (Gough

& Toomre 1983) and there is an apparent Doppler shift in the frequency of the mode

42
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�!, given by

�! = k �U = k

x

U

x

+ k

y

U

y

; (3.1)

where k is the vector horizontal wavenumber, and U

x

and U

y

are the components of

U in an arbitrary coordinate system such as latitude and longitude. Depending on the

direction and amplitude of this horizontal 
ow, the apparent k

x

and k

y

numbers will be

altered, the ring will no longer be centered at k

x

= k

y

= 0 and the shape will not be

circularly symmetric. Thus, if we can measure the position and shape of these rings,

we can estimate U

x

and U

y

. In addition, once we have calculated the horizontal 
ows

as a function of frequency, U

x

(!) and U

y

(!) , we can use an inversion procedure to

determine U

x

(r) and U

y

(r) , where r is a certain depth in the photosphere. Finally, by

performing this analysis at several heliographic positions, we can estimate the variation

of the horizontal velocity �eld not only with depth but also with horizontal position in

the Sun.

In previous approaches to the �tting of the tridimensional distribution of power

(F. Hill 1988, F. Hill 1990, F. Hill et al. 1991b) an ellipse pro�le at constant frequency

for the centroid of power in the rings is assumed, and a least-squares minimization is

applied. But the results of preliminary tests to this approach applied to the present

data, proved to be both unstable and to produce very high values for the velocities

(see Patr�on et al. 1992). This approach also does not adequately incorporate the

statistics of the problem. A least-squares minimization procedure assumes that the

underlying statistics of the data are Gaussian. However, as discussed in Duvall &

Harvey (1986) and Anderson et al. (1990), this is not true in the case of the solar

oscillations, which are more accurately described as randomly forced damped harmonic

oscillations. Consequently, the statistical distribution of power of the solar oscillations

is �

2

with 2 degrees of freedom, and the probability density is given by Equation (3.4) ,

in the next section. Thus a maximum-likelihood procedure is a more appropriate tool

to derive the parameters of the �tting model.
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3.1 Trumpets: the maximum likelihood approach

The model that has been �tted to the tridimensional power spectrum is based on

a one-dimensional line pro�le for the peaks in the spectrum derived by Anderson et al.

(1990). In this work, the pro�le of the peaks of a mode as a function of ! is modeled

as a Lorentzian. In our case the pro�le must be a function not only of !, but also of

k

x

and k

y

. The dependence on k

x

and k

y

is given by the e�ective Doppler shift of

the unperturbed frequency (Equation (3.1) ); the resulting shifted frequency will be the

position of the maximum of the Lorentzian. The model for the �t at a point of the

tridimensional power spectrum given by the coordinates �

1

, k

x

, and k

y

is:

P (�; k

x

; k

y

) =

A

2

h

� �

�

ck

1=2

+

U

x

k

x

+U

y

k

y

2�

�i

2

+ �

2

+ b

1

k

�3

+ b

2

k

�4

: (3.2)

The unperturbed frequency is approximated by the quantity ck

1=2

, describing the dis-

persion relation as a power law (the constant c, another parameter in the �t, will provide

information on the thermodynamics of the material below the photosphere). The term

(U

x

k

x

+U

y

k

y

)=(2�) is the Doppler shift of the frequency in �Hz, with velocities in ms

�1

and k numbers in Mm

�1

. The amplitude and halfwidth at half maximum of the Loren-

ztian are given by A and �, respectively. The background is parameterized as a function

of k only by b

1

and b

2

. There is no dependence on the frequency since we assume a slow

variation of the background with � , and the �tting is made over a small enough interval

in frequency that this approximation is valid. The functional form b

1

k

�3

+ b

2

k

�4

has

been obtained after removing the peaks of the k { � diagram shown in Figure 2.8 , and

�tting several exponential pro�les to the remaining background in the k direction.

This formula represents one single peak in frequency, i.e., one single order n for

1

From now on, frequency will be referred as �, in �Hz, with � = !=2�.



3.1. Trumpets: the maximum likelihood approach 45

a given mode. The actual power spectrum will be the sum over all orders n of the

oscillations, so that we will have a set of parameters, A

j

, c

j

, U

j

x

, U

j

y

, and �

j

for every

order j. The �nal model will be then:

P (�; k

x

; k

y

) =

N

X

j=1

A

2

j

�

� �

�

c

j

k

1=2

+

U

j

x

k

x

+U

j

y

k

y

2�

��

2

+ �

2

j

+ b

1

k

�3

+ b

2

k

�4

; (3.3)

where N is the number of modes taken into account in the �tting interval.

We de�ne M

i

to be the value of the model P in a point given by the coordinates

� , k

x

, and k

y

, and O

i

the observed power in the data for the same point. The idea

is to �t the model P to the observations. The maximum likelihood method seeks the

maximum probability. The probability density for a power spectrum of solar oscillations

for a single point is given by (Duvall & Harvey 1986):

1

M

i

exp

�

�O

i

M

i

�

: (3.4)

The joint probability density, or likelihood function, L , is given by the product of the

individual probabilities over the entire set of data (index i):

L =

Y

i

�

1

M

i

exp

�

�O

i

M

i

��

: (3.5)

Taking the logarithm we obtain:

� ln(L) =

X

i

�

ln[M

i

] +

O

i

M

i

�

� S: (3.6)

Then we must search for the maximum value of L , or the minimum of the function S

for the total set of parameters of the model.
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In order to �nd the minimum of S , we used an algorithm based on the downhill

simplex method (DS) for nonlinear, multidimensional functions (Press et al. 1986).

This method is simple to apply since it only requires function evaluations. However, the

initial estimations of the parameters must be very close to the values for the minimum

of the function, and the method is slow. We have also tested a conjugate gradient

method (CG), a minimization procedure that uses analytic derivative information, but

it proved to be even more sensitive to the initial guess, and the DS method gave better

results than the CG method. The CG method agrees with the minimum found in the

DS method, but it is not able to �nd this minimum if the guess is not extremely close

to it.

A last comment about this model: Equation ( 3.3) is the model of the power

spectrum of a continuous time series. Since we have some gaps in our data, due both

to bad data and night time, this continuity is broken and the e�ect is the product of

the original series of data with some temporal window. The �nal result in the power

distribution will be the convolution of the Fourier transform of the window function and

the original power espectrum. In our work we ignore the e�ect of this convolution and

�t directly the model in Equation (3.3) . This simpli�es the error estimates because the

calculation requires the evaluation of derivatives of the model (see next section), and in

this way it can be done analytically.

3.2 The �tting procedure

The �tting of the data can be approached in several ways. Our goal is to estimate

the horizontal components of the velocity 
ows as a function of � . Thus, the strategy is

to choose � , �t the model, and assign the results to this particular frequency. This last

sentence must be understood very carefully. The �tting procedure will �t the model to

a volume of points of the power spectrum around a given frequency, thus the velocity
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obtained and associated to this frequency will be the result of the averaged e�ect of the

velocity 
ows over the whole region in frequency being considered.

Figure 3.1 shows the advection e�ect of the horizontal 
ows on the distribution of

power of the spectrum, constructed after plotting the position of the peaks in frequency

Figure 3.1: Advection e�ect of the horizontal velocity 
ows in the distribution of power.

Solid lines correspond to the unperturbed state. Dashed lines represent the power

distribution under an eastward 
ow of 2000ms

�1

. The dash-dot-dot-dot line represents

the shifting in frequency of the solid line at 3000 �Hz.

for the model in Equation (3.2) . The solid lines represent the dispersion relation of

the unperturbed state, with no velocity 
ows. The dashed lines represent the advection

e�ect of an eastward velocity 
ow of 2000 ms

�1

for all the frequencies. The dash-dot-

dot-dot line shows the actual Doppler shift in frequency of the peaks. Compare this line
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with the solid line at 3000 �Hz, the unperturbed state. Both lines have been plotted

as the frequencies corresponding to a constant k number of 0.8 Mm

�1

. Notice how the

shift in � is di�erent as a function of the orientation: for a k

y

= 0 the shift is maximum,

and there is no shift for k

x

= 0.

Since we wish to �t the distribution of the power in both k and � , we need to de�ne

a region in the k

x

{ k

y

{ � volume in which to evaluate the function for the �t. Most

generally, we should include all of the available rings ranging from the f mode (n = 0)

to the p

7

mode (n = 7). In a practical point of view, the number of parameters to �t

is an important factor: including all the modes raises the number of parameters to �t

to 8� 5 + 2 = 42 (40 parameters for the Lorentzian pro�les and 2 for the background).

For this many parameters, the DS method is very slow. In order to reduce the number

of parameters, we reduce the number of rings considered. Fortunately, over much of

the spectrum, the contribution of the wings of the Lorentzian pro�le to adjacent modes

is very small and can be ignored. It becomes important, however, at very small k,

where the rings converge, but here we stop the �tting because of the high levels of noise

and background. After testing the �tting procedure taking di�erent numbers of rings

in consideration, we decided that the inclusion of two rings was the best compromise

between speed and accuracy. In this case, the number of �tted parameters is 5�2+2 =

12.

Once we have chosen the two adjacent modes to �t, a given � determines the

limiting region for the �t in k . We must not include other rings in the region since

they are not taken into account in the �t. At the same time we need to include as

much of the Lorentzians (in the frequency direction) of the two chosen rings as we

can. In order to decide where these limits are, we need to estimate the position of the

ridges of the modes. We thus �rst compute a radial average in k of the tridimensional

power spectrum, resulting in a k { � diagram displaying the ridges in Figure 2.8 . The

resulting average approximates the unperturbed state, or the dispersion relation. The

position of the ridges are then measured from the computer screen, and stored as a
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data base for the �rst guess of the position of the peaks of the Lorentzian pro�les.

This method only works when the rings are not too far from a symmetric distribution

around the axis k

x

= k

y

= 0 , and thus is valid only when the velocity 
ows are less

than several hundred ms

�1

. Flows of the order of 1000 ms

�1

make the distribution of

power very asymmetric, and the estimate must be obtained by other methods. A plot

of the estimated position of the ridges is showed in Figure 3.2 . The stair steps in the

Figure 3.2: Estimated positions of the ridges in a k { � diagram obtained by averaging

the 3-dimensional power spectrum around constant k . This �gure shows the full range

available in � and k .

plot are a consequence of the poor resolution in k in comparison with the resolution in

� : in the plot there are only 35 points in k for about 1000 in � . Figure 3.3 shows the

plot with full resolution in both axes for a small region around 3000 �Hz in � and k =

0.5 Mm

�1

.
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Figure 3.3: A full-resolution plot of the region around � = 3000 �Hz and k = 0.5 Mm

�1

,

showing some of the ridges of the previous �gure.

Using these estimates, we choose the limits in k . As an example, assume we want

to �t the p

2

and p

3

rings. The pro�le of the ridges extends in the k direction as much

as one or two pixels from the maximum. Figure 3.3 shows that, on the low-k side of

ridge p

3

, two pixels will include contributions from p

4

. In this case we choose one pixel

to lower k and 2 pixels to higher k , where the ridge of p

2

is further from the peak of

mode p

1

. These numbers di�er depending on the region where we are working, being

small at low k and larger at higher k . They also depend on � .

The problem is then how many pixels around the chosen � to include. To determine

the range in � , we performed the �tting for several frequencies, varying the frequency

range in pixels around the chosen � from 5, 7, 9,..., up to 31. The results are shown in

Figures 3.4 and 3.5. In Figure 3.4 we show the results for the longitudinal component

of the velocity for p

2

as a function of � for 6 ranges of � included in the �tting (7, 11,

15,..., to 27 points in �). In Figure 3.5 we plot the results for both latitudinal and

longitudinal velocities for p

2

and p

3

as a function of the frequency range and for the

result of the average of 10 di�erent frequencies; the vertical bars show the r.m.s. of the

averaging process.
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Figure 3.4: Results of the �tting for the longitudinal velocity U

x

for the p

2

ring as a

function of � . Each plot is made for a di�erent width in � in the region considered in

the �tting. For example, for 11 points and a given frequency, the �tting region includes

the central frequency and 5 pixels above and below it for a total of 11 levels.
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Figure 3.4 shows that, when a small number of levels in the frequency range are

included, the results vary rapidly from frequency point to frequency point. As more

levels are included, the inferred velocity is smoothed as a function of � since we are

averaging over more and more levels in frequency, and thus a greater range in depth.

Since we wish to both minimize the noise in the inferred velocities, and maximize the

depth resolution on corresponding � resolution, a range between 11 and 21 frequency

levels was chosen for the �tting.

Figure 3.5: Results of �tting U

x

and U

y

for two rings, p

2

and p

3

, as a function of the

number of levels included in the frequency range. Results are displayed for the average

of 10 independent frequency points to show the general behavior of the �t. U

x

velocities

are: solid, for p

2

, and dashed, for p

3

; U

y

velocities are: dotted, for p

2

, and dash dot, for

p

3

.

Figure 3.5 shows the smoothing and averaging e�ect of increasing the � -range: the

velocities tend to constant values that are not too high. By including many levels in

frequency we are averaging over the distribution of velocities in depth, which tends to

alternate between negative and positive values as a function of � , and gives lower values

for the averaged velocity (notice how the r.m.s. bars are shorter for larger widths in
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frequency). It is not obvious what to choose as a lower limit to the number of � levels,

but 17 levels appears to be an acceptable upper limit. Thus, we narrowed the range

to between 11 and 17. Since 11 levels reduces the number of points to �t, and fewer

levels increases the resolution in frequency and in depth, we �nally chose 11 levels for

the �tting.

We can then search for the minimum of S, where the sum in Equation (3.6) is over

the selected region for 2 rings and one � . (This region, limited by a range in � and

k , has the shape of a cylindrical annulus centered at k = 0). Depending on the rings

and � , the number of points included in the region varies, ranging about 2000 to 20000

points due to the quasi-parabolic behavior of the dispersion relation. This a�ects the

error estimation, which is lower for a larger number of points in the region.

The computational aspect of the �tting is considerable. Since the starting estimate

of the parameters has to be very close to the values for the minimum, care must be

taken for the guess of the �rst �tting. Subsequently, the resulting output values for

the parameters are used as inputs for the next point in � , and so on. Problems arise

at low k and at both low and high � , where the noise increases. In these regions, the

�tted parameters, U

x

, U

y

and � , can either become enormous or go to zero. When this

happens the process must be restarted, with new initial guesses.

As a recipe, an initial guess is made for every pair of modes (0-1, 1-2, 2-3,...) and

for a frequency located approximately in the center of the interval in � including both

rings. We then vary the �tting region both up and down in � . Ideally, two runs of the

program should be enough. But, due to the problem discussed above, the program must

be run 6 or 8 times, each including a di�erent number of points in k and new initial

guesses. Most of the work was performed on a SUN Sparc-10/41 workstation, where the

total elapsed time was about 2813 hours of clock running time of the programs for the

�tting of the rings of 8 subrasters. In addition, we used the CRAY supercomputer at

Jet Propulsion Laboratory in Pasadena, California for two of the subrasters for a total
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of 105 hours of clock running time. With this computer we increased the speed of the

process by a factor of 10 to 30.

3.2.1 Error estimations

The determination of errors is always a very di�cult task. In every process of sci-

enti�c data analysis there are two aspects to consider: the propagation of measurement

and reduction errors, and the error introduced by the �tting procedure.

In our case, the �rst source of errors originates in the signal-to-noise ratio of the raw

data, introduced during the detection. This error will propagate all the way through

the data reduction: calibration to obtain the velocity values, with errors introduced

by the ephemeris values of the relative velocity between sun and observing-site; two

interpolation processes during the geometrical transformations; the running mean for

the temporal �ltering, and, �nally, the Fourier transforms in three dimensions. All this

leads to a power spectrum of data with a certain error in it, due only to the reduction

process.

Next we �t a model to the data. At this point, the physics of the problem must

be considered. Besides the detection and reduction errors, the determination of the

frequencies and the parameters describing the distribution of power of the oscillations

has two basic sources of errors: the background sources of power and the stochastic

nature of the modes. It is not clear whether the uncertainties are limited by one source

or the other. While it is widely thought that the stochastic nature of the modes is

the limiting process, with current observations this is not completely clear (Duvall &

Harvey 1986). In any case, for our purposes, we limit our considerations to the second

source of errors, because we introduce explicitly the background source of power in our

�t.

An estimate of the uncertainties of the �tted parameters can be easily calculated in
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the case of a normal multiple regression for the �t. If the likelihood function is equivalent

to a probability density function for the parameters, then the same calculation can be

used. This is so if the likelihood function is approximately Gaussian for variations of

the �tting parameters. Duvall & Harvey (1986) have found, in their simulations of the

power spectrum of the oscillations, that if the likelihood function is expressed in terms

of the logarithms of the parameters, then the distribution is approximately Gaussian.

Using the assumption that our model is equivalent to a normal multiple regression, the

estimate of the uncertainties can be obtained from the inverse of the Hessian matrix (�)

of the function S, with elements given by:

�

k;l

�

�

2

S

�a

k

�a

l

; (3.7)

where a

k

and a

l

are the �tting parameters, and (1 � k; l � �), with � the number of

parameters in the �t.

The �nal error estimation should include both detection and reduction errors plus

the �tting procedure errors. But the propagation of the errors from the reduction process

into the �tting procedure is di�cult. On the other hand, the uncertainties given by the

�tting procedure itself are a good estimate of the total errors. For these reasons we

used the �nal errors for the �tted parameters to be the ones introduced by the �tting

procedure, and they have been calculated using Equation (3.7) .

3.3 Results

Figures 3.6 and 3.7 show the results obtained from �tting the n = 2 ring deter-

mined in the central subraster of the solar disk for the two components of the horizontal

velocity 
ows as a function of � . The magnitude of the velocity rises rapidly to higher

absolute values at low � . This is not unexpected, since the low frequency regions are

at low k , where the background signal and noise are high, and the rings converge. At
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Figure 3.6: Fitted longitudinal velocity U

x

as a function of � for the n = 2 ring deter-

mined in the central subraster of the solar disk. Notice how the error bars are larger as

we go closer to the lower and upper limits in � .

higher � , the inferred values of the velocity appear to be both stable and not very high,

around a region of a few tens of ms

�1

, below and above zero.

The results of the �tting of the latitudinal velocity, U

y

, at subraster 13 , are shown

in Figure 3.8 for all the modes in consideration, p

0

to p

7

. Figure 3.9 shows the results

for the longitudinal velocity, U

x

, for mode p

4

at the 9 subrasters. The error bars are

not showed here, but they are of the same magnitude as shown in Figures 3.6 and 3.7.

In order to test the �tting procedure, we have �tted a simulation of the distribution

of power from the model given by Equation (3.3) , using the inferred parameters and
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adding a random error in the arti�cial data as follows (Anderson et al. 1990):

M

sim

i

= �M

i

ln(r

i

); (3.8)

where M

sim

i

is the simulated data, M

i

is the model, and r

i

a random number in the

interval [0,1], for a single point (i) in the power espectra. Comparisons between the

results obtained from the real data and those obtained from the models are shown in

Figures 3.11, 3.12, 3.13 and 3.14. These are the results for subraster 13 at disk center

for modes p

2

and p

3

(in these plots we do not show the entire range in frequency to

avoid the noisy results at low frequencies, as shown in Figures 3.6 and 3.7). The general

Figure 3.7: Fitted latitudinal velocity U

y

as a function of � for the n = 2 ring determined

in the central subraster of the solar disk.

behavior of the �tted parameters is basically similar, but there can be large di�erences
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Figure 3.8: Latitudinal velocity (U

y

) as a function of �, obtained in the �t of subraster 13

for modes p

0

to p

7

. Units in vertical axis are ms

�1

, and �Hz in the horizontal axis.
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Figure 3.9: Longitudinal velocity (U

x

) as a function of �, obtained for mode p

4

in the

�t of the 9 subrasters. Units in vertical axis are ms

�1

, and �Hz in the horizontal axis.
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at individual frequency points. We conclude that the rapid variations of the values of the

inferred parameters with frequency is a result of the �tting procedure. The procedure is

sensitive to the chosen range in k due to the poor resolution available, and as � varies,

the width of the range in k changes due to the dispersion relation.

Figure 3.10: View of the model of the tridimensional power spectrum of the oscillations

after the �tted parameters. To improve the contrast between di�erent orders n the

background has been removed and the amplitude and width of the Lorentzians are the

same for all the modes.

Figure 3.10 shows a tridimensional view of the `trumpets' for the 8 rings n =

0; : : : ; 7. It has been produced by using the model in Equation (3.3) but changing the
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widths and the amplitudes of the Lorentzians to get a good contrast between di�erent

trumpets.

The biggest discrepancies between the real data and the model results are in the

amplitude of both the background and the Lorentzian peaks. The model used for the

background is an empirical power law. As a consequence, both the amplitude and the

width of the �tted peaks are probably not very accurate, and the �tted values of A , � ,

b

1

, and b

2

are closely correlated (Figures 3.13 and 3.14). However, this should not a�ect

our estimate of the position of the peaks, that is the main quantity we are interested

on, since it is this term what includes the e�ect of the horizontal velocity �eld. We �nd

that the estimated parameters c, U

x

, and U

y

, reproduce the position of the peaks and

agree well with the real data.
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Figure 3.11: Fitted parameters, c, U

x

, and U

y

, as a function of � for modes p

2

and p

3

at disk center, subraster 13. Solid lines correspond to the �t of the real data. Dotted

lines correspond to the arti�cial model. The superscript in the velocity labels denote

the order of the modes.
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Figure 3.12: The same plot as previous �gure but showing the error bars.
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Figure 3.13: Fitted parameters, A, �, b

1

and b

2

, as a function of � for modes p

2

and p

3

at disk center, subraster 13. Solid lines correspond to the �t of the real data. Dotted

lines correspond to the arti�cial model.
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Figure 3.14: The same plot as previous �gure but showing the error bars.



Chapter 4

Depth dependence of the

velocity 
ows

The most interesting aspect of helioseismology is the ability to infer conditions in

the solar interior. The basic information we obtain as the �rst result of the reduction of

oscillation data is the frequencies of the modes and the dependence of certain derived

quantities with these frequencies. To then determine the depth dependence of physical

solar quantities is not a trivial task. Inferring a spatial distribution of these quantities

will give an image of the structure of the sun. The theory of solar oscillations tells

us that, in the so-called forward problem, the observable parameters of the modes

are a result of the depth dependence of both the internal solar conditions and the

eigenfunctions of the modes (see one of the several helioseismology reviews, like Unno

et al. 1989, Brown et al. 1986, etc.). In the forward problem the observed oscillation

parameters are calculated once we know the depth dependence of the physical quantities.

The observational results obtained in solar helioseismology depend on frequency,

and the depth dependence of the physical quantities is the unknown of the problem. This

directly confronts us with an inverse problem. Eventually, any analysis of oscillation

66
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data must deal with an inversion problem. This will be the next and �nal step in our

analysis.

In this chapter we give a description of general inversion techniques, their applica-

tion to helioseismology and, in particular, to the data of this work, showing the �nal

results as the distribution with depth of the horizontal velocity �eld.

4.1 Inversions

In the case of solar oscillations the forward problem can be described like this: the

measured frequencies of the modes, and every observable related to them, are dependent

on weighted averages of the properties of the Sun. The weights, or kernels, are functions,

speci�c for every mode, that describe the sensitivity of the mode to these physical

properties. Kernels are speci�c integrals of mode eigenfuntions weighted by solar model

quantities (like density). An illustrative example of the forward (and inversion) problem

is the rotational splitting of the frequencies of the modes. In a spherically symmetric

non-rotating star, the frequencies of the modes are a function of n and l but not of m,

the azimuthal order. The solar rotation breaks the degeneracy of ! and a peak appears

in frequency for every m, instead of a single peak for a given l and n pair (Gough 1981).

If !

l;n;0

is the frequency for l, n and m = 0 (a zonal mode), the split frequencies !

l;n;m

are given by:

!

l;n;m

= !

l;n;0

+m!

s

l;n

; (4.1)

where !

s

l;n

= (!

l;n;m

�!

l;n;0

)=m is a measurement of the splitting, and can be expressed

as:

!

s

l;n

=

Z

R

0

K

l;n

(r)
(r)dr; (4.2)
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where 
(r) and K

l;n

(r) are the solar rotation rate and a weighting function or kernel,

respectively, with R the solar radius.

Equation (4.2) is a representation of the forward problem: an observable quantity,

!

s

l;n

, dependent on frequency (represented by the numbers l and n), is the weighted

average of a property of the sun in depth, the solar rotation 
(r). The theory of solar

oscillations provides us with the functions K

l;n

(r), or kernels, and by knowing the solar

rotation rate we can predict the rotational splittings !

s

l;n

. In practice, we do not know


(r), but we can estimate !

s

l;n

. Then, the problem is to determine 
(r) in the integral,

the so-called inverse problem.

4.1.1 Fundamental ideas and methods

Several inversion techniques have been applied to geophysical (R. Parker 1977) and

helioseismic data (Gough 1985; Christensen-Dalsgaard et al. 1990). Here we discuss

some basic aspects that are common to every method. First, rewrite Equation (4.2) in

a more general form:

V

i

=

Z

R

0

K

i

(r)V(r)dr; i 2 D : (4.3)

This is the form of a Fredholm Equation of the �rst kind, a general de�nition of the

inversion problem. Here, a set of integral equations, with some weighting functions

K

i

(r), relates the unknown function V(r) to a set of observables V

i

, where the index i

runs for all the available data points in D.

We introduce the concept of averaging kernels, or resolution kernels. The averaging

kernels are functions de�ned for a given value r

0

as a linear combination of the kernels
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K

i

(r), with coe�cients c

i

(r

0

):

K(r; r

0

) �

X

i2D

c

i

(r

0

)K

i

(r): (4.4)

This de�nition is such that K(r; r

0

) is small everywhere except around r = r

0

and also

its modulus is unity:

Z

R

0

K(r; r

0

)dr = 1:

In this case, a function

�

V(r) can be de�ned for r

0

such that:

�

V(r

0

) �

X

i2D

c

i

(r

0

)V

i

=

Z

R

0

K(r; r

0

)V(r)dr: (4.5)

This de�nes the averaging kernel:

�

V(r

0

) is a weighted average of the real function

V(r) around the value r

0

, with weights K(r; r

0

). The shape of the averaging kernels

determines how well the functions

�

V(r

0

) are localized around position r

0

. If K(r; r

0

)

closely resembles a Kronecker delta function �(r�r

0

), then

�

V(r

0

) provides an average of

V(r) over a small range in r. Equation (4.5) also shows that

�

V(r) is a linear combination

of the data V

i

.

Closely related to the averaging kernels is the concept of a trade-o� between reso-

lution and error magni�cation. If the averaging kernels were precisely �-functions, and

the data V

i

were error-free, we could exactly identify

�

V(r

0

) with V(r

0

). But in fact,

the magni�cation of errors in the data in this situation dominates the estimate

�

V(r

0

).

There is a trade-o� between the resolution of the averaging kernels and the error mag-

ni�cation in the results that is controlled by an adjustable parameter (or parameters)

in the inversion method. Depending on our goal and our estimate of the errors in the

input data, this parameter is adjusted.
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Inversion methods

A description of di�erent inversion techniques is given in Gough (1985) and

Christensen-Dalsgaard et al. (1990). Here we summarize them and in the next sec-

tion describe in detail the method used in this work.

The goal is to �nd the linear combination in Equation (4.5) that results in the best

estimate

�

V(r

0

) of the real function V(r

0

). All methods comprise both a minimization

procedure and a constraint. The details of these 2 components is what distinguishes

the methods, which take into account the trade-o� between resolution and error mag-

ni�cation. Four methods have been used for helioseismic inversion purposes: optimally

localized averages, least-squares with second derivative smoothing, spectral expansion

and asymptotics.

The method of optimally localized averages was developed by Backus & Gilbert

(1968). In it, a trade-o� parameter determines the importance of two terms in the

minimization: a function that measures the resolution kernel width, and the error mag-

ni�cation.

In the least-squares method, the error magni�cation is expressed as a smoothness

of the estimated function, while the resolution is represented by the best �t to the data.

It will be explained in detail in the next section.

A good description of the spectral expansion method can be found in Gough (1985).

It is related to a least-squares method, but with no smoothness constraint, and it is

based on an expansion of

�

V in terms of the averaging kernels. The constraints lie in the

rejection of certain kernels that can produce singularities in the calculation.

Asymptotic inversions are applicable only to high-order p modes, so it is speci�c for

solar oscillations and has been developed for the rotational splitting of the frequencies.

It exploits asymptotic approximations in the oscillation theory to infer the rotation rate
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(r). The result is the expression of 
(r) as a function of the rotational splittings,

leading to an equation like Equation (4.5) .

4.1.2 Least squares with second-derivative smoothing

A least-squares piecewise constant �t, subject to minimization of the second deriva-

tive of the velocity distribution, has been applied to the �t parameters discussed in the

last chapter. In this method we discretize the estimation function

�

V as a piecewise

constant approximation, or a dissection of the solar radius

0 = r

0

< r

1

< : : : < r

N

= R;

so that the estimation de�ned as

�

V(r) �

N

X

j=1

�

V

j

�

j

(r); (4.6)

is a histogram-like function, with

�

V

j

a set of coe�cients, and the �

j

(r) functions de�ned

by:

�

j

(r) �

8

>

<

>

:

1 r

j�1

< r < r

j

0 elsewhere

(j = 1; : : : ; N) : (4.7)

The method seeks the best �t to the data V

i

. It assumes that the errors in the data

are independent, with standard deviations �

i

. Using Equation (4.3) this is performed

by minimizing the �

2

of the �t in a least-squares sense:

�

2

=

X

i2D

�

�2

i

 

V

i

�

Z

R

0

K

i

(r)

�

V(r)dr

!

2

: (4.8)



72 Chapter 4. Depth dependence of the velocity 
ows

To make the equations more compact, de�ne the matrix B:

B

ij

� �

�1

Z

R

0

K

i

(r)�

j

(r)dr:

Taking the derivative of Equation (4.8) with respect to each

�

V

j

and equating it to zero

and using Equation (4.6) we get:

X

i2D

 

N

X

k=1

B

ik

�

V

k

� V

i

=�

i

!

B

ij

= 0 ; (4.9)

or:

N

X

k=1

(B

T

B)

jk

�

V

k

=

X

i2D

(B

T

)

ji

(V

i

=�

i

) j = 1; : : : ; N ; (4.10)

where T denotes the matrix transpose.

This is a system of linear equations. In order to �nd the solution, the inverse of the

square matrix (B

T

B) must exist; but, in most of the practical cases involving a large

number of equations, this problem is ill-conditioned. Here we introduce a smoothness

constraint. If we constrain the function

�

V(r) to be smooth, then the problem can be

rendered numerically stable, and hence solvable. The smoothing is performed by adding

to the function that must be minimized in Equation (4.8) a term proportional to the

second derivative of

�

V(r) . We use a discrete approximation to this derivative, and the

�nal function is:

F (

�

V) =

1

2

R

3

N�1

X

j=2

(�r

j+1

� �r

j�1

)

 

2

�

V

j�1

(�r

j

� �r

j�1

)(�r

j+1

� �r

j�1

)

�

2

�

V

j

(�r

j

� �r

j�1

)(�r

j+1

� �r

j

)

+

2

�

V

j+1

(�r

j+1

� �r

j

)(�r

j+1

� �r

j�1

)

!

2

; (4.11)
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where �r

j

are the center of mass of each

�

V

j

, de�ned by:

�r

j

= (r

j�1

+ r

j

)=2:

The new function to minimize is now:

X

i2D

 

V

i

=�

i

�

N

X

k=1

B

ik

�

V

k

!

2

+ �

N

X

k=1

0

@

N

X

j=1

G

kj

�

V

j

1

A

2

; (4.12)

where the matrix G is de�ned in such a way that

F (

�

V) =

N

X

k=1

0

@

N

X

j=1

G

kj

�

V

j

1

A

2

:

The parameter � is a free parameter that controls the `amount' of smoothness as opposed

to a direct minimization of Equation (4.8) . Again, di�erentiating with respect to

�

V

j

and equating to zero we get the equivalent of Equation (4.10) :

N

X

k=1

M

jk

�

V

k

=

X

i2D

(B

T

)

ji

(V

i

=�

i

) j = 1; : : : ; N ; (4.13)

where

M = B

T

B+ �G

T

G : (4.14)

The solution to this system of linear equations for

�

V

k

is:

�

V

k

=

N

X

j=1

(M

�1

)

kj

X

i2D

(B

T

)

ji

(V

i

=�

i

) : (4.15)
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The substitution of these results in Equation (4.6) at r

0

gives

�

V(r

0

) =

X

i2D

0

@

�

�1

i

N

X

k;j=1

�

k

(r

0

)(M

�1

)

kj

(B

T

)

ji

1

A

V

i

�

X

i2D

c

i

(r

0

)V

i

; (4.16)

an explicit form of Equation (4.5) . The averaging kernels can then be calculated with

Equation (4.4) .

The parameter � not only controls the smoothness constraint, but also the trade-

o� between resolution and error magni�cation. On one hand, if � = 0, the equation

to minimize is Equation ( 4.8) , and the result will be the best �t of the data. In

this case, the coe�cients c

i

(r

o

) will be chosen such that the averaging kernels are as

close as possible to �-functions. There will be almost no averaging e�ect, but the error

magni�cation will be very high. On the other hand, for higher values of �, the width

of the averaging kernels increases due to the dependence of the coe�cients c

i

(r

o

) on �

from Equation (4.16) , and the averaging and smoothing e�ects produce more stable

results, with lower errors. At the same time we lose resolution by averaging with wider

resolution kernels.

4.2 Tridimensional velocity 
ows

This last inversion technique has been applied to our data. The �rst step before

the calculations is to get the set of kernels K

i

(r) given by the theory of solar oscillations.

Kernels have been calculated in the theory for the radial distribution of the horizontal

velocity 
ows; in this case a set of kernels obtained for a standard solar model by Bahcall

& Ulrich (1988) has been used. This set of kernels has been modi�ed for use in this

study. Since the ring analysis is a local rather than global analysis, it uses waves that

are not spatially coherent over the entire sun. While these waves must still satisfy

the resonance condition for their vertical wavenumber, their horizontal wavenumbers
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can assume any value unlike the global modes which are constrained to wavenumbers

corresponding to integer values of spherical harmonic degree l. In e�ect the local waves

can have fractional l values, e.g. 482.645. The kernels obtained from solar models are

necessarily for global modes with integer l values. We must construct kernels for waves

with fractional l values by linear interpolation between kernels with integer l values. In

addition, since the rings are actually o�set from k

x

= k

y

= 0 and are not precisely circles,

the total horizontal wavenumber varies as a function of azimuthal angle around the ring.

We thus use the azimuthal average total horizontal wavenumber around a ring to specify

the fractional l value for that ring. The interpolation is entirely equivalent to solving

the acoustic-gravity wave equation in the strati�ed medium of the solar convection zone

and, in fact, provides identical eigenfunctions (Gough 1993, private communication).

Figure 4.1 shows a sample of the kernels used in the inversions. Once we have the

kernels, we calculate the estimated values for the velocities

�

V(r) from Equation (4.16) ,

for a given �.

Several tests with di�erent values for the smoothness parameter ranging 0:1 � � �

5:0 have been performed. Average trade-o� curves, computed by averaging the 18 trade-

o� curves for the 9 subrasters and the 2 velocity components, are plotted in Figures 4.2

and 4.3, this last showing a sample with 1�� error bars in it. Every curve in Figure 4.2

corresponds to a given target radius r

0

=R

�

and is plotted for the 10 values chosen for

�. The lowest error magni�cation and greatest half-width in every curve corresponds

to the highest smoothness parameter, � = 5:0. The half-width parameter is de�ned as

the distance between the 25

th

and 75

th

percentile points of the area under the averaging

kernel. Notice how the same range of values of � samples di�erent regions in these

plots for di�erent target depths. This makes the choice of � di�cult: a good trade-o�

between averaging e�ect and error magni�cation that is acceptable for a given target

depth may be not as good at another depth. In general, the value � = 5:0 is a good

choice in our case because, even though the half-width is high for the deepest depths,

we are more interested in the results closer to the solar surface, where the half-width is
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Figure 4.1: Sample of velocity kernels for several modes.
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Figure 4.2: Trade-o� curve for the 51 target radius chosen in the inversions. In a single

line � grows down and to the right. From left to right, depth is increasing from the

solar surface to 0.905 R

�

.

smaller. On the other hand, the information that we obtain at the deeper depths comes

from the modes of low l, where the plane wave approximation that we have assumed

start to break down. Finally, a sample of the results for the averaging kernels obtained

for � = 5:0 and several target radius r

0

=R

�

is showed in Figure 4.4 .

The inversion is performed for every one of the nine subrasters and for both lati-

tudinal and longitudinal velocities. Approximately 1700 modes, with 0 � n � 7 , and
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Figure 4.3: A sample of the error bars for several of the tarde-o� curves.

175 � l � 800 have been used in every inversion. The discretization of the prob-

lem has been performed by taking a total of 51 dissections covering the depth range

0:9 � r=R

�

� 1:0 . The �nal results presented in this work were obtained for � = 5:0 ,

the smoothest solutions with the lowest errors, but the worst depth resolution. The

results of the inversions are shown in Figures 4.5 and 4.6, where U

x

and U

y

appear

as a function of depth for the 9 subrasters. Positive values are eastward for U

x

and

southward for U

y

. For reference, the depths of the three hydrogen and helium ionization

zones are indicated.
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Figure 4.4: Sample of averaging kernels obtained for � = 5:0 at 5 di�erent target radius

r

0

=R

�

: 0.9993 (solid), 0.9987 (dotted), 0.9978 (dashed), 0.9924 (long dashes) and

0.9849 (dash-dot).

The magnitudes of the 
ows are substantial: 100{200 ms

�1

in the outer convec-

tion zone, rising to 500 ms

�1

at the deeper depths (not shown in the �gures). There

are striking similarities between the velocity curves at di�erent positions. Speci�cally,

most of the curves show a sharp maximum immediately below the surface and a broad

maximum between the two helium ionization zones.

In order to visualize the actual velocity 
ow �eld Figure 4.7 shows the vector

velocities at target depths ranging from r=R = 1:0014 to r=R = 0:92537 for the 9



80 Chapter 4. Depth dependence of the velocity 
ows

subrasters, as the results for � = 5:0 . To enhance the orientation of the vectors, the

colors are di�erent for every orientation, going clockwise from 12 o'clock: blue, magenta,

red, yellow, green and cyan. For an overview of the variation on the orientation of the

velocity 
ows with depth, the color curves in Figure 4.9 represent the evolution of the

arrow-head of the velocity vectors with depth (color code); the white dot shows the

starting point at the solar surface. The crossings of the vertical and horizontal lines

mark both the position of the subrasters and the origin of the vectors.

The most striking feature is the coherent organized rotation of the velocity vectors

for some of the subrasters through about 360

�

. The vector velocity �eld thus appears

to perform a spiral in depth, as can also be seen in the pseudo-perspective view of the

vectors in Figure 4.8 . Here the solid lines are drawn parallel to constant depth planes

and represent the magnitude of the horizontal velocity 
ows (a segment correspondent

to 200 ms

�1

is showed). Every spiral is shown at a point representing the position on

the solar disk by latitude and longitude; the words `East' and `North' and the letters `S'

(South) and `W' (West) show the orientation of the view. The extent in depth shown

here is only about 10 Mm into the sun, in order to have a good view of the upper

convection zone. At deeper depths, the 
ows grow bigger and, at about 30 Mm, the

spatial coherence nature of the 
ow �eld disappears and the 
ows become chaotic as can

be seen in Figure 4.7 . A spiral nature of the 
ow �eld has been seen also in numerical

convection models (Brummell et al. 1992). In Figure 4.9 it can also be noticed also

that from 20 Mm to 60 Mm, there are no big changes in the orientation of the vectors

with depth.
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Figure 4.5: U

x

velocity 
ows as a function of depth for the 9 subrasters. The sign

convention is that U

x

> 0 is eastward (faster than surface rotation).
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Figure 4.6: U

y

velocity 
ows as a function of depth for the 9 subrasters. The sign

convention is that U

y

> 0 is southward.
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Figure 4.7: Vector velocities for the 9 subrasters (the 9 vectors in every dashed region)

at target radius ranging from r=R = 1:0014 to r=R = 0:99868. Results are showed for

� = 5:0 . Orientations are indicated by color also; going clockwise from 12 o'clock: blue,

magenta, red, yellow, green, cyan. The units of depth are Mm.
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Figure 4.7: Continued. Target radius ranging from r=R = 0:99852 to r=R = 0:98787.

Estimated depth of the ionization of H and He are showed by H

+

and He

+

.
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Figure 4.7: Continued. Target radius ranging from r=R = 0:98672 to r=R = 0:97107.

Estimated depth of the second ionization of He is showed by He

++

.
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Figure 4.7: Continued. Target radius ranging from r=R = 0:9688 to r=R = 0:92537.
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Figure 4.8: Tridimensional aspect of the velocity 
ows for the nine subrasters for a

section in depth of about 10 Mm into the solar surface. Parallel lines to the lat-long plane

are proportional to the velocity vectors. The colors help to appreciate the orientation

of the 
ows. Numbers in the lat-long plane are degrees, and the units in depth are in

Mm.
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Figure 4.8: Continued. Another view of the same plot as before.
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Figure 4.9: A view of the evolution of the orientation of the vector velocities with depth

for the 9 subrasters. The curves follow the arrow-head of the vectors and the color code

gives the depth information. The intersection of the white lines mark both the positions

of the 9 subrasters and the origin of the vectors. White dots show the starting position

at the solar surface.
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Conclusions

In this chapter, we put aside the question of the reliability of the results obtained

in this work, and assume that the results re
ect what is really happening in the sun.

We have obtained the horizontal velocity 
ow �eld as sampled at 9 di�erent positions

over the solar disk, and 51 points in depth: layers of 
uid material moving in di�erent

horizontal directions and rates, at di�erent depths, ranging from the solar surface down

to about 60 Mm deep inside. This is just an estimate of the 
uid-dynamics state of the

upper convection zone of the sun.

As was pointed out in the introduction, heliosismology can provide us with infor-

mation about the 
uid dynamics of the solar interior. But, before going further, it is

necessary to give an interpretation of the estimated velocity 
ows and compare these

results with theory.

In the last section of this chapter further work, tests and improvements of the

techniques developed along this work are presented for the future.

90
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5.1 Convective cells, magneto and hydrodynamics

Convective cells are structures of 
uid moving from deeper depths to the upper

layers, and back to the bottom. Thus the vertical 
ow of the material must change

direction towards a horizontal 
ow at two positions: the bottom and top of the con-

vective cell. In a depth distribution of the velocity 
ow, these turning points may be

represented by peaks in the velocity pro�le. In Figure 5.1 the modulus of the velocity

vectors of the 9 subrasters as a function of depth is shown. Notice the non-linear scaling

in depth as a consequence of the disections selected in the inversion process. Several

general features, obtained for most of the subrasters, and similar to the ones found in

Figures 4.5 and 4.6, can be pointed out:

� The velocity is at a maximum at the surface, drops to a minimum and then rises

back to a peak, immediately above the hydrogen ionization zone at a depth of

about 1 Mm. Looking at Figure 4.7 the vectors in most of the subrasters are

pointing west for the solar surface and east for this other depth in two strong

shear layers in opposite directions. Both of these strong shear layers may be the

source of instabilities that could cause the granulation, which has a spatial scale

of 1 to 2 Mm. In addition, this shear layer may be the mechanism that causes

the excitation of the acoustic modes. This source has been estimated to be found

close to the solar surface at a depth of 150Km, by Kumar (1992), or even closer

at 60Km, by Duvall et al. (1993).

The presence of a peak close to the solar surface in the depth pro�le of the hori-

zontal velocity 
ows and rotation rate has been found in other works (Hill et al.

1988, Hill 1990, Korzennik 1990). Note that the amplitudes and positions of these

peaks vary among di�erent works. However, since the analysis has been performed

on data sets taken at di�erent periods of time, it may indicate the time evolution

of this phenomenon.
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Figure 5.1: Modulus of the velocity vectors as a function of depth for the 9 subrasters.

Notice the non-linear depth scale.

� Below the He

++

zone, at 18 Mm, the curves raise smoothly from values of 200

ms

�1

to values of 500 ms

�1

at 60 Mm. Looking at Figure 4.7 , after 30 Mm, we

see that the spatial coherence of the orientation of the 
ow �eld disappears and

the 
ows become chaotic.

� There are several broad maxima between the ionization zones of hydrogen and

helium at depth of 2 to 16 Mm. This zone seems to be a transition between the

rapidly changing zone above 2 Mm (two sharp peaks in 2 Mm), and the smoothly

changing zone under 18 Mm (no clear peaks in about 40 Mm).



5.1. Convective cells, magneto and hydrodynamics 93

Looking again at Figure 4.7 , we see another shear layer oriented westward at about

16 Mm, near the depth of the He

++

zone. There is thus a relativily close association

in depth between the two prevalent east-west shear layers with the H

+

and He

++

ion-

ization zones in the outer 20 Mm. This is in agreement with anelastic compressible

convective models, which predict that giant cell vertical 
ows would be de
ected into

strong horizontal 
ows in the vicinity of the ionization zones (Latour et al. 1983).

Another interesting aspect of the 
ows obtained in this work are the spirals that the

vector velocities perform as a function of depth. It could be a source of the helicity of

the solar magnetic �eld. It is clear that magnetic �eld lines anchored to the plasma that

is moving and performing spirals would show the same structures. In the other hand,

this spiral movement of the 
uid can produce cyclonic 
ows that have been postulated

as the origin of the helicity of the magnetic �elds and the dynamo process in the sun (E.

Parker 1955b; DeLuca 1991). From a 
uid-dynamics point of view, theoretical models

for turbulent convection in a compressible and rotating 
uid (Brummel et al. 1993)

predicts mean horizontal velocity 
ows that performe spirals with depth, suggesting

that this phenomenon is a consequence of the vorticity of the 
ows induced by the

rotation.

The coherent nature of the 
ow �eld at the 9 positions, coupled with the plausible


uid dynamic scenario that it represents, suggests that the qualitative nature of the

results may actually re
ect the 
ows in the outer solar convection zone. Further exami-

nation of the vector velocity plots indicates that there may be a convective roll oriented

east-west at a latitude of about +10

�

. The evidence for this is the convergent 
ows

between subrasters 18 and 19 in the top row and the middle row of vectors at depth of

0.3 to 0.7 Mm, changing to divergent 
ows at depths of 1.4 to 8.4 Mm. This could be

a sign of the presence of a toroidal convective roll.

While the amplitude of the 
ows may seem large, it should be recalled that jet

streams in the Earth's atmosphere can reach amplitudes of 200 ms

�1

. The solar 
ows
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here may be eventually revealed to be solar jet streams.

The results can be compared with an earlier 
ow map inferred by Hill in 1990 from

a di�erent data set with a di�erent ring �tting procedure, and a di�erent set of inversion

kernels. That map also showed rotating 
ows with the spiral structures. However, the


ow was only seen to rotate over 90

�

, the direction of the rotation is the opposite to

the showed here, and the maximum U

x

was at a di�erent depth than in this data set.

This is not surprising since this data set corresponds to 1981, seven years apart from

our data set. We may be just seeing the velocity 
ow evolution with time.

5.2 Further work

� The reliability of these results needs to be tested. For this, besides more mea-

surements and new data analysis, we need to create a good set of simulations and

apply the reduction process to them. Simulations should be based on a superpo-

sition of plane waves for the set of modes we expect to use in the reduction, i.e.

on the order of 1700.

The solar model applied in the inversions must be used to simulate the depth de-

pendence of the wave �eld including the advection e�ect of the horizontal velocity


ows. The �nal result will be the velocity state of the solar surface after the ad-

dition of the wave �elds. A temporal series must be constructed, and the periods

of the waves obtained from an accurate dispersion relation. Another posibility is

the use of actual measurements of the frequency of the modes.

The �nal test will consist of constructing these temporal series for di�erent distri-

butions of 
ow �elds with depth and position, and applying the whole reduction

process to them. Hopefully we would recover the input velocity 
ows.

� Interpolation processes introduce systematic errors. In the reduction process the

two interpolations performed in the remapping and tracking can be reduced to one,
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doing all the geometric transformation of both processes at once in a remaping-

tracking procedure.

� A �ne structure of the spatial distribution of the velocity 
ows in the solar disk

can be obtained by choosing sections of data that overlap in the solar disk.

� It is vital to speed up the �tting procedure. Besides the use of new �tting proce-

dures, a preliminary �t of parameters like amplitude and width of the Lorentzian

pro�les and the background of the power spectrum can be performed in the az-

imuthally averaged l{� diagram. This is a two-dimensional �t with a reduced

number of parameters in the �t. The three-dimensional �t will have only the two

components of the velocity 
ows as parameters to �t, which will speed up the

process.

� It is essential that more data be analyzed and the temporal behavior of the 
ows

understood. This is particularly useful in order to correlate the 
ows with the

surface solar activity. At the same time, some systematic errors could be detected.

� It is also important that the analysis be carried out on di�erent yet similar data

sets obtained simultaneously. This will be possible using the Mt. Wilson and NSO

High-Degree Helioseismometer data sets, and the future data from SOI (Solar

Oscillation Investigation) and TON (Taiwan Oscillations Network).

� Another test of the results could be done by following tracers on the solar surface,

getting local values for surface 
ows and comparing them to the values of our data

close to the solar surface.

� Additional future work includes the application of di�erent inversion methods with

improved mode sets.

� The more di�cult �tting of the partial rings from subrasters closer to the limb

should be studied. Some e�ort has been made to correct the foreshortening in

the partial rings (Hill & Patr�on 1992), however without success. The e�ect of the



96 Chapter 5. Conclusions

foreshortening can be modeled as a special kind of convolution with a spatially

varying point spread function. The initial idea was to remove the e�ect after

the spatial FFT, taking advantage of the properties of the convolution theorem.

However, the relation is not a convolution, and must be removed in some other

way.

� Experiments with the tradeo�s of subraster size and spatial resolution should

be tried. The two-dimensional spatial FFT performed on the subrasters has a

averaging e�ect over the spatial distribution of the �tted parameters. Smaller

sections will give more spatial resolution at the expense of less spatial wavenumber

resolution.

� In section 2.2 of this dissertation, we remaped the solar disk onto a latitude-

longitude grid, with an equally-spaced distribution of the pixel information. How-

ever, the spacing is equal in an angular way. Due to foreshortening, the �nal

remapped image will have pixels that sample di�erent areas of the solar surface as

we move towards higher latitudes: one squared pixel of n by n degrees (n being

the resolution of the image in degrees) at the equator subtends a bigger area than

the same pixel at, say, 40

�

degrees of latitude (see Figure 5.2 ). The area depends

on the spatial dimensions on the solar surface, and these depend on the distance

to the symmetry axis (perpendicular to the equator) at a given latitude, which is

shorter for higher latitudes.

Another possibility is to remap using units of arclength, so the area of a unit pixel

in the remapped image is the same regardless of the values of the coordinates. This

remapping provides a better representation of the waves. Plane waves propagate

in all possible orientations and there is no reason to believe that the pattern will

be di�erent if we look at the equator or if we look at the poles. If we assume

a lat-long distribution, we are expecting to �nd at the poles something close to

a `dart board' picture, and not a `chess pattern' as expected around the solar

equator. But plane waves do not care about poles and equators. The wave just
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Figure 5.2: Lines of constant S

x

and S

y

(arclength coordinates) in a latitude-longitude

grid. Notice how the shaded area at L = B = 0 in the angular grid covers a di�erent

area in the spatial coordinate system for a di�erent position, and vice versa.

travels, and it does not behave di�erently when it goes towards the poles or when

it goes towards the equator.

An equal arclength (or great circle) grid looks like the appropriate coordinate sys-

tem for the remapping. Unfortunately, preliminary tests of this new remapping

grid did not produce good results. But, considering that we are working with sec-

tions close to disk center (we never go further than � 22

�

:3 in latitude), the e�ect

of the unequal sampling of areas is not large (a maximum of 7.4% of di�erence

between the area at the center and the farthest one), and, after our unsuccess-

ful experiment with the arclength grid, we decided to apply a latitude-longitude

remapping for our images.

Later works in tridimensional power spectrum have been realized by Haber, Gough

and F. Hill (personal communications) for great circle grids, and the results are
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very promising. Working with an arclength grid, they have been able to �nd the

patterns of the oscillations (the `trumpets') in the power spectrum of sections

taken as far as 70

�

in latitude. Doing the same analysis for a lat-long grid, the

�nal results show basically no power distribution for such latitudes. This suggests

that plane waves prefer equal arclength distributions instead of the equal angular

distribution of a lat-long grid.
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