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ABSTRACT 
 

 

Throughout the history of physics different conceptions of the Universe of which we are part 

have existed and coexisted. The development the extension of the human senses provided by 

the modern instrumentation has allowed us to capture an increasingly realistic and humble 

vision of the cosmos. The so-called “concordance model” corresponds to the ΛCDM 

cosmological model supported by General Relativity in the macroscopic world and the 

standard model of particle physics in the microscopic world. The problem of unification 

between these two great theories is not the subject of this final degree project. 

 

This cosmological model, as indicated by its acronym, denotes a Universe composed of two 

additional components to the baryonic matter: dark matter and dark energy. However, its 

nature is unknown and its existence cannot be firmly established. In this context, numerous 

reinterpretations of the observations that were used to postulate the dark matter and energy 

hypothesis arise, with the desire to be validated experimentally in the future. In this work, 

some of the most important models that have arisen as alternatives are considered: the 

negative mass model, the MOND theories, the 𝑓(𝑅) theories, the Chaplygin gas model or the 

entropic gravity model. Post-Newtonian parametrization or angular redshift fluctuations are 

also mentioned as observational constraints of new models that could help discarding some 

theories and supporting others. 

 

 

 

 

 

 

 



 
 

RESUMEN 

 

A lo largo de la historia de la física han existido y coexistido diferentes concepciones del 

Universo del que formamos parte. La extensión de los sentidos humanos que 

proporciona la instrumentación moderna ha permitido plasmar en nosotros una visión 

cada vez más realista y humilde del cosmos. El “modelo concordante” actual 

corresponde al modelo cosmológico ΛCDM sustentado por la Relatividad General en el 

mundo macroscópico y al modelo estándar de la física de partículas en el mundo 

microscópico. El problema de unificación existente entre estos dos grandes teorías no es 

objeto de este trabajo de fin de grado. 

El modelo cosmológico, tal y como indican sus siglas, denota un Universo compuesto por 

dos componentes adicionales a la materia bariónica: la materia oscura y la energía 

oscura. Sin embargo se desconoce su naturaleza y no se puede asegurar con firmeza su 

existencia. En este contexto surgen numerosas reinterpretaciones de las observaciones 

que postulaban la materia y energía oscuras, con el afán de poder ser validadas 

experimentalmente en un futuro. En este trabajo se consideran algunas de los modelos 

más importantes que han surgido como alternativas: el modelo de masa negativa, las 

teorías MOND, las teorías 𝑓(𝑅), el modelo de gas de Chaplygin o el modelo de gravedad 

entrópica. También se mencionan la parametrización postnewtoniana o las 

fluctuaciones angulares de redshift como restricciones observacionales a los nuevos 

modelos que podrían ayudar a descartar algunas teorías y respaldar otras. 
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1. Introduction 
 

 

1.1. Dark Matter hypothesis and drawbacks 

 

For a long time, invisible masses have already been detected due to their gravitational effects 

on objects that are visible. An example can be the detection of Neptune due to its gravitational 

effects on the orbit of Uranus. However, when observing irregularities in the orbit of Mercury, 

these were not due to any object that disturbed them. In this case it was Newton's theory that 

did not explain planetary orbits well enough. We see that with the development of General 

Relativity the peculiarities of the orbit of Mercury have been explained. Now for galaxy 

clusters their mass-luminosity ratios have been measured, which in some cases have given 

values around of 60. These values summed to other observations such as the rotation curves 

of galaxies may imply that there is a mass that is not visible but if we want to be rigorous we 

cannot discard that it can be again a problem in the theoretical formulation of the physics. 

 

The rotation curves of the galaxies have contributed to the definition of the concept of dark 

matter (Figure 1). Since the rotation curves are asymptotically flat beyond the optical radius 

and do not decay with the keplerian factor 1
√𝑟

⁄   , it becomes necessary to define much more 

mass than what is observed, the non-luminous mass. A halo of dark matter whose density 

decays roughly as 𝑟−2 for each galaxy is currently predicted (López-Corredoira, 2018).  
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Figure 1: Rotation curve from the galaxy NGC 3196. The “disk” contribution will be the 

observable matter: stars and gas. The “halo” is the contribution of dark matter. If we put 

this together we obtain a curve that fits the observations 
 
(van Albada et al. , 1985). 

 

As a clarification of figure 1, the curve corresponding to the halo corresponds to the following 

equation (van Albada et al., 1985): 

𝜌ℎ𝑎𝑙𝑜(𝑟) ∝  [(
𝑎

𝑅0
)

𝛾

+ (
𝑟

𝑅0
)

𝛾

]
−1

 

Where 𝑅0 is a fiducial radius, 𝑎 the radius of the core of the Galaxy and 𝛾 a free parameter. 

The following values are chosen: 𝑅0 = 8 𝑘𝑝𝑐, 𝑎 = 8.5 𝑘𝑝𝑐, 𝛾 = 2.1 . In this equation a 

spherical halo is assumed. 

 

Indeed, the beginnings of a serious discrepancy in this context date back to the 1930s, when 

Zwicky measured the mass of galaxy clusters such as Coma or Virgo in two independent 

ways. On the one hand he used an estimation for the sum of the luminosities of each galaxy 

and a mean mass to luminosity ratio as a proxy for the total mass, and on the other hand he 

considered the speeds of several galaxies for estimating the Virial mass of the cluster. The 

second mass estimator was around 400 times higher than the first (Zwicky, 1933). Despite 

this, no more research was done on the problem of the so-called “missing mass” until the 70s. 
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In reference to the nature of dark matter in the 70s, the possibility of non-baryonic dark matter 

was considered. In the realization of simulations of structures on a large scale, the model 

fitted well enough with the observations. In the 1980s, cold dark matter
1
 prevailed over hot 

dark matter because it reproduced better the large scale structure of galaxies. 

 

Some astrophysical objects were considered as possible dark (or low luminous) matter, such 

as brown dwarfs, small stars or black holes but none of them are good candidates to cover the 

missing material (López-Corredoira, 2018). Another form of dark matter would be constituted 

by non-baryonic particles that are not grouped into larger structures. Some examples are 

electrically neutral supersymmetric particles that do not interact in the strong force (neutrinos, 

photons, gravitons etc.), axions of very low mass and WIMPs (Weakly Interacting Massive 

Particles) such as the neutralino.  

 

However, there is a discussion about whether this material really exists because the 

observations show some aspects that are far from those predicted by the standard 

cosmological model. For example, a central halo density lower than predicted is observed. 

The predicted angular momentum is also much smaller than what is observed. In barred 

galaxies, the bars go much faster than expected. You would expect them to rotate slower due 

to angular momentum transfer between the bar and the dark matter halo. The mass-luminosity 

ratios increase as the luminosity of the galaxy decreases, which is not predicted either (López-

Corredoira, 2018). Apart from the above, it should be noted that dark matter has not yet been 

detected, although on the other hand this does not mean that it does not exist. 

 

Some alternatives to dark matter are magnetic fields, theories of modified gravity, baryonic 

matter in the outskirts of the disk or non-circular orbits. The most popular alternative theory is 

the Modified Newtonian Dynamics (MOND), which modifies gravity for low accelerations 

but initially is not compatible with more general gravitation theories. To do so, the Tensor-

Vector-Scalar (TeVeS) or the AQUAdratic Lagrangian theory (AQUAL) arise, which satisfy 

the principle of equivalence as well as the conservation of energy and momentum. Their 

successes are on a galactic scale but not in large structures.  

 

                                                           
1
 Cold dark matter is a type of dark matter that moves much slowly than the velocity of light. On the other 

hand, hot dark matter travels at ultrarelativistic velocities. 



4 
 

1.2. Dark energy hypothesis and drawbacks 

 

Till the nineties of the last century it was already known that the Universe was expanding. 

Due to the attractive force of gravity, an expanding universe was expected to slow down. At 

this time, the groups Supernova Cosmology Project and The high-z SN Search wanted to 

quantify exactly this deceleration caused by gravity. The results that both research groups 

obtained were not as expected. Until that moment the cosmological model predicted an open 

universe with 𝛺𝑚 = 0.2 . According to their conclusions, now there is a point of inflection 

about seven billion years ago in which the Universe converts its decelerated expansion into an 

accelerated expansion. This new result was admitted because the luminosity of the supernovae 

was lower than expected (Perlmutter, 2011). 

 

 

 

Figure 2: We have some curves in the graphic indicating the type of Universe according to 

its evolution in time. The black points are the supernova data that matches with an 

accelerated expansion of the Universe (Perlmutter, 2011). 

 

These observations therefore needed a new explanation, since matter and radiation were both 

attractive types of energy. Therefore it was necessary at least a third constituent to contrast the 

effects of matter and radiation and cause an accelerated expansion by exerting a negative 

pressure. This ad hoc constituent was called dark energy and should represent approximately 

70% of the matter observed in the Universe to fit the observations. From then on, a nature had 



5 
 

to be established for this new component of the Universe. It was decided to recover the 

cosmological constant Λ that Einstein had already introduced to obtain a static universe. This, 

including the concept of dark matter, is how the current cosmological model ΛCDM was 

born.  

From this moment, numerous theories have been proposed for replacing dark energy such as 

𝑓(𝑅) theories, taking a variation in the Einstein-Hilbert action, fact that we will comment in 

chapter six. Some cons that may have dark matter can be the following: if we take into 

account the extinction of the light of a supernova in its route to the observer or the possible 

metallicity dependence in the supernovae Ia, the necessity of a cosmological constant can be 

questioned. Other models, without even taking into account the above, attribute the cosmic 

acceleration to a cosmic variation of the speed of light or the gravitational constant, or that the 

universe experiences phases of acceleration-deceleration, among others.  

 

It should be mentioned at this point that one of the biggest problems we have today in physics 

is the problem of the cosmological constant. The cosmological constant can be interpreted as 

energy of vacuum. It can be interpreted as the energy of virtual particles that can exist due to 

the limitations of the uncertainty principle. Thus, the virtual particles, depending also on its 

mass, have a short enough lifetimes that the uncertainty principle enables. Also the particles 

can be created in pairs to not violate the charge principle conservation. This vacuum energy 

has been experimentally checked with some effects such as the Casimir effect or the Hawking 

radiation of black holes. Quantifying these fluctuations and interpreting them as the 

cosmological constant, its value would be 123 orders of magnitude higher than is observed 

(Cepa, 2007). This last value anyway cannot contribute to the expansion of the Universe 

because it would be a huge accelerated expansion that is not observed. Therefore, this is 

considered the worst theoretical prediction in the history of physics. 
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2. Objectives 

 

 

Dark matter and dark energy are the most abundant constituents of the Universe today but 

their nature is unknown. That two elements added to ordinary matter constitutes the ΛCDM, 

the actual model in cosmology. Obviously, these new characteristics are postulated by 

observational facts. However, a lot of alternative theories arose with the aim of substituting 

these two ad hoc elements, in part due to the fact that they have not been detected in many 

years and in the other hand because one problem usually has more than one possible solution.  

 

The present project aims to compile and analyse different theories proposed to explain the 

observations in a different perspective, contributing in ideas that may not initially be 

considered enough. For this, an attempt has been made to search for the most up-to-date 

bibliography as well as on some occasions also the original bibliography of the subject in 

question. Books, papers and internet are used. 

 

After an introduction to General Relativity, we present first the recent model of negative 

masses that substitute dark matter fitting rotation curves and dark energy (substituting the 

cosmological constant).  MOND theories are also presented in order to replace dark matter 

and also 𝑓(𝑅) theories explaining among other things the accelerating expansion of the 

Universe or its structure. We introduce the Chaplygin gas model as an explanation of both 

dark matter and energy.  We consider the post-Newtonian formalism as a way to check new 

theories, the angular redshift fluctuations as an observational tool that provides information 

about dark energy and also for testing new theories. All of the subjects are presented, 

developed and also discussed briefly. 
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3. Introduction to General Relativity 
 

 

The General Relativity was developed by Albert Einstein in the twentieth century. It 

constitutes the theoretical framework more accepted for the description of the gravitational 

field in the Universe. 

Before explaining the subject we will define two very important concepts in this context: a 

SRI and a SnRI. An inertial reference system (SRI) is a system in which you can choose 

Cartesian coordinates corresponding to a Euclidean space whose axioms express that space is 

homogeneous and isotropic. It is also assumed that time is homogeneous and that the law of 

inertia is fulfilled. In these systems the theory of special relativity can be applied. 

 

Therefore, a non-inertial reference system (SRnI) will not fulfill some of the above properties. 

Generally, a non-inertial system will have acceleration with respect to an inertial system and 

therefore the law of inertia cannot be fulfilled. 

 

By means of the well-known experiment of the elevator, Einstein concludes that the 

gravitational mass and the inertial mass of a body are equal, which constitutes the principle of 

weak equivalence. 

 

Within a gravitational field all massive objects will experience an acceleration and therefore a 

priori we can’t say that we are in an inertial reference system. However, a reference system in 

free fall in this gravitational field will possess the same acceleration as the acceleration of 

gravity, and therefore its effect on the objects that are in such system will be suppressed and it 

can be considered as a local inertial system (SLI). This constitutes the principle of strong 

equivalence. In a general gravitational field, changing in space and time, our SLI will be valid 

in a moment of time and in region of space small enough to consider that the gravitational 

field is homogeneous and static. 

 

The formula of General Relativity, using a Newtonian description, relates the sources of the 

field with the components of the stress-energy tensor in the famous Einstein equation: 
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                               𝑅𝛼𝛽 −
1

2
𝑔𝛼𝛽𝑅 + 𝛬𝑔𝛼𝛽 =

8𝜋𝐺

𝑐4
 𝑇𝛼𝛽 ≡ 𝐺𝛼𝛽                                       (1) 

Where 𝐺𝛼𝛽 is defined as the Einstein tensor, 𝑔𝛼𝛽 are the components of the metric tensor, 

which are obtained from gravitational field sources (mass densities). 𝑅𝛼𝛽 are the components 

of the Ricci tensor that are obtained by a contraction in the first and third indices of the 

Riemann Curvature Tensor, which gives an idea of the curvature of space time. R is the Ricci 

scalar and is obtained by a contraction of the Ricci tensor. 𝑅𝛼𝛽 and R can be obtained from 

the metric since the Riemann curvature tensor depends on the Christoffel symbols which in 

turn depend on the first derivatives of the metric. 

 

𝛬 > 0 is the cosmological constant that would represent a base level of positive energy and is 

often interpreted as a vacuum energy. This term would generate repulsion in great scales, and 

was introduced by Einstein to compensate the gravitational attraction between the objects in 

order to obtain a static universe. Finally, 𝑇𝛼𝛽 are the components of the stress-energy tensor. 

 

A solution of Einstein's equations would describe the evolution of the Universe on large 

scales, but for this purpose the components of the metric and the components of the stress-

energy tensor must be known. There are many ways to represent each of the tensors and each 

one arises from some initial assumptions. 

 

The most general metric in spherical coordinates that takes into account that space is 

homogeneous and isotropic and has an arbitrary curvature which it’s constant, can be shown 

to be the Robertson-Walker metric: 

 

𝑑𝑠2 = −𝑐2𝑑𝑡2 + 𝑎2(𝑡) · [
𝑑𝑟2

1−𝑘𝑟2
+ 𝑟2𝑑Ѳ2 + 𝑟2 sin2 Ѳ 𝑑𝜑2]                       (2) 

Where 𝑎(𝑡) would be the scale factor of the Universe with units of length and 𝑘 would 

represent the curvature. The coordinate r is dimensionless because it is scaled with the radius 

of curvature. According to the value of k we can speak of a plane (𝑘 = 0), closed (𝑘 = +1), 

or open (𝑘 = −1) universe.  
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Figure 3: Three types of Universes. Above it’s represented a closed Universe, in the 

middle an open Universe and below a flat Universe. 

 

On the other hand it can also be shown that for an ideal fluid the strerss-energy tensor will 

adopt the following form: 

 

𝑇𝛼𝛽 = (𝜌 +
𝑃

𝑐2) 𝑢𝛼𝑢𝛽 + 𝑃𝑔𝛼𝛽                                             (3) 

Where 𝜌(𝑡) would be the energy density of the fluid, 𝑃(𝑡) its pressure, 𝑢𝛼 the components of 

the quadrivelocity: assuming the static fluid would only have temporal component not null 

and equal to 1, and finally 𝑔𝛼𝛽 would be the components of the metric. 

Assuming the metric and the previous energy-impulse tensor, the components of the Ricci 

tensor and the Ricci scalar are calculated and, by applying the Einstein equation, we obtain 

the Friedmann equations, which describe the evolution of the scale factor. 

 

(
�̇�

𝑎
)

2

=
8𝜋𝐺

3
𝜌 +

𝛬𝑐2

3
−

𝑘𝑐2

𝑎2                                                     (4) 

�̈�

𝑎
= −

4𝜋𝐺

3
(𝜌 +

3𝑃

𝑐2 ) +
𝛬𝑐2

3
                                                   (5) 

To provide a solution for the scale factor, the energy density and the pressure that are shown 

in the previous equations we need another equation, the state equation. The state equation 

relates the pressure with the energy density: 
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𝑃 =  𝜔𝜌                                                               (6) 

There are some types of fluids that satisfy that equation. As an example, for 𝜔 = 0 we obtain 

an equation for non-relativistic matter. On the other hand 𝜔 = −1 represents the cosmology 

constant. The density and pressure shown in the Friedmann equations are the sum of densities 

and pressures of the different state equations present in the universe, if considered 

independent (e.g.: a relativistic particle remain always relativistic). 

 

Cassini-Huygens Mission 

The Cassini-Huygens mission was launched with the collaboration of NASA, ESA and ASI to 

study the planet Saturn, with its rings and satellites. It has been active since 1997 until 2017, 

of which the first years it has traveled the planets Venus, the Earth, an asteroid and Jupiter by 

means of the flyby effect and it has been the last 13 years orbiting Saturn. 

 

One of the experiments carried out was a test of General Relativity. Specifically, the objective 

was to measure the Shapiro time delay, an effect predicted by General Relativity in which 

light travels a greater distance when passing through a massive object such as the Sun because 

the space it crosses is curved. Therefore the light would take to travel the distance Saturn-

Sun-Saturn a little more than usual. To check it, radio waves have been used. What has really 

been measured is the change in frequency between the one emitted and the one received once 

they have passed very close to the Sun. 

 

Once the experiment was done, the validity of General Relativity has been shown measuring 

the γ parameter which in General Relativity is 1. The result was 𝛾 = 1 + (2.1 ± 2.3) · 10−5 

(Bertotti, Iess & Tortora, 2003). This leads us to think that that the effect of the new 

parameters that the alternatives theories introduce is reduced. 
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4. Model of negative masses 
 

 

4.1. Motivation  
 

In this model (Farnes, 2018), negative masses are proposed as an alternative to both dark 

matter and dark energy. It is therefore suggested a negative mass fluid that Einstein had 

already raised years ago, thus modifying the standard model of current cosmology. This mass 

would replace the cosmological constant and therefore the dark energy, and would explain the 

flat rotation curves at large radii. Therefore it would intend to not depend on dark matter 

either. It will be seen that this theory will give rise to a cyclic universe. 

 

The negative masses are a candidate to replace the cold dark matter because as we will see 

below, they repel each other and therefore cannot coalesce into larger structures as well as the 

positive masses do, and consequently they cannot emit light as the stars do. On the other hand, 

since negative masses repel each other, they lead to the expansion of the universe. Since the 

negative masses are attracted by the positive masses they would apply pressure to the positive 

masses making the rotation curves asymptotically flat with a specific distribution of the 

negative matter.  

The model explains the distribution of dark mass and dark energy from first principles, it 

makes predictions and has the potential to be consistent with observational evidences such as 

distant supernovae or microwave background radiation. Physical laws such as conservation of 

energy or momentum are not violated and are consistent with General Relativity. 

 

 

4.2. Theoretical framework 
 

Positive and negative masses are considered, as well as by analogy there are also positive and 

negative electric charges or magnetic poles north and south. It is considered that the negative 

masses also fulfil the principle of equivalence and therefore their inertial mass is equal to their 

gravitational mass. So, if we equate the gravitational force with the inertial force, we have: 
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𝐹𝑔 = −
𝐺𝑀1𝑀2

𝑟
= 𝑀1𝑎                                                     (7) 

 

From this expression we can obtain that two positive masses are attracted, two negative 

masses are repelled and finally, as the most curious case, for a positive and a negative mass 

the positive mass is repelled by the negative but the negative is attracted to the positive. When 

𝑀1 = −𝑀2 the mass of the pair of particles is 0 and can accelerate to 𝑣 = 𝑐 taking place the 

so-called runaway motion. 

 

At this point we start with Einstein's equations in a Universe governed by the Robertson-

Walker metric (Equation 2) with the Universe considered as a perfect fluid. From there, the 

same Friedmann's equations can be obtained (Equations 4 and 5). Finally we consider an 

equation of state (Equation 6). 

 

With all this we now consider the content of the Universe as the due to various contributions, 

including that of the negative mass. 

𝛺𝑀+ + 𝛺𝑀− + 𝛺𝑟 + 𝛺𝛬 = 𝛺                                               (8) 

 

Where each 𝛺 represent each density scaled to the critical density (Eq. 11) that is obtained for 

a null curvature in the Friedmann equation (Eq. 4).  

For the standard cosmological model it is considered: 

  𝛺𝑀− = 0 ;  𝛺𝑀+ = 𝛺𝑏 + 𝛺𝐶𝐷𝑀 ; 𝛺𝛬 > 0                                      (9) 

 

For our concrete case in which a negative mass is included, we assume a Universe dominated 

by matter, therefore: 

 𝛺𝑟 = 𝛺𝛬 = 0 ; 𝛺 = 𝛺𝑀+ + 𝛺𝑀−                                         (10) 

 

Now we can consider the following three situations: 
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1) The positive mass in the Universe is dominant 

 

First of all we consider the critical density of the Universe, that is, the density in which we 

consider that the geometry of the Universe is flat and the first derivative of the scale factor 

with time tends asymptotically to 0, with the difference that now it will be due to two 

contributions: 

 

 

𝜌𝑐 =
3𝐻2

8𝜋𝐺
                                                             (11) 

  

Taking into account both contributions of mass, the density parameter is: 

 

𝛺 =
𝜌++𝜌−

𝜌𝑐
  ; 𝜌+ > 𝜌−                                                  (12) 

 

Taking into account a Universe with null curvature and dominated by matter and part of it is 

negative, the first Friedmann equation result in: 

(
�̇�

𝑎
)

2

=
8𝜋𝐺

3
(𝜌+ + 𝜌−)                                                   (13)                                            

2) Massless Universe 

 

The Universe on a large scale has zero mass. Therefore, on a large scale the impulse-energy 

tensor is null and the total density considered in the Friedmann equations due to both 

contributions is null 

𝑇𝜇𝜈 = 0 ;  𝜌+ + 𝜌− = 𝜌 = 0 ; 𝛺 = 0                                        (14) 

 

The Big Bang is considered as an energy conservation event and can be created from nothing 

considering that it would be a highly unlikely event. This case corresponds to a Dirac-Milne 

Universe: governed by FRLW metric, in which is considered the spatial curvature parameter 

𝑘 = −1  and the scale factor evolving linearly with time (Benoit-Lévy & Chardin, 2009). 

 

𝑎(𝑡) = 𝑐𝑡                                                              (15) 
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3) Negative mass Universe 

 

In this case, taking into account that we have a universe dominated by matter and we have 

subtracted the cosmological constant of Friedmann's equations, we can only have physical 

solutions if 𝑘 = −1, which denotes an expansion. 

 

(
�̇�

𝑎
)

2

=
8𝜋𝐺

3
(𝜌+ + 𝜌−) +

𝑐2

𝑎2
 ; | 𝜌+| < |𝜌−|                                   (16) 

 

Another possibility is the consideration of a positive cosmological constant and therefore 

obtain several possible values for k. In any case: 

𝛺𝑀+ + (𝛺𝑀− + 𝛺𝛬) = 𝛺𝑀+ + 𝛺𝑑𝑒𝑔𝑒𝑛 = 𝛺                                  (17) 

Where 𝛺𝑑𝑒𝑔𝑒𝑛 is a degenerate parameter in which we can vary the values of 𝛺𝛬 and 𝛺𝑀− to 

obtain a given value. We can break the degeneracy if we take into account the parameter ω of 

the state equation. In that case, observations show that for 𝛺𝑑𝑒𝑔𝑒𝑛 the parameter is close to 

−1, and this is interpreted as the existence of the cosmological constant and thus, dark energy. 

 

Solutions to the Friedmann equation:  

We take the first Friedmann equation and consider negligible the positive mass matter, and in 

consequence as we said before for that case: = −1 . Then: 

 

(
�̇�

𝑎
)

2

=
8𝜋𝐺

3
𝜌− +

𝑐2

𝑎2
=

𝛬𝑐2

3
+

𝑐2

𝑎2
 ;  𝛬 =

8𝜋𝐺𝜌−

𝑐2
< 0                          (18) 

We also assumed that 𝛬 is a natural explanation of the cosmologic constant taking negative 

masses. Taking these considerations the solution will be: 

𝑎(𝑡) =  √
−3

𝛬𝑐2
sin √

−𝛬𝑐2

3
𝑡                                                (19) 

The Hubble parameter is defined as 𝐻(𝑡) =  
�̇�

𝑎
, then: 

𝐻(𝑡) = √
−𝛬𝑐2

3
cot √

−𝛬𝑐2

3
𝑡                                               (20) 
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As we said before there is a cycle of expansion and contraction.  

Considering √
−𝛬𝑐2

3
𝑡 = 0 and √

−𝛬𝑐2

3
𝑡 = 𝜋 we find the timescale 𝑡 = √

−3𝜋2

𝛬𝑐2  .  

For cosmological observations an approximation for the cosmological constant is obtained 

and from there it is obtained that the universe will recollapse in about 105 Gyr from its 

beginnings. Even adding positive mass the universe with negative cosmological constant 

would recollapse due to the extra attractive force. Taking into account the Hubble parameter 

observed at present and clearing the time of the previous equation it can be calculated also the 

lifetime of the current Universe in this cosmology, which is about 13.8 Gyr, consistent with 

the age of the concordance cosmological model ΛCDM. 

 

As previously mentioned, this model is able to explain the rotation curves observed in 

galaxies. First, we consider a star within a galaxy at distance r from the center and having a 

stable circular orbit. In this case the gravitational force is equal to the centripetal: 

𝐺𝑀+𝑀𝑔𝑎𝑙𝑎𝑥𝑖𝑎

𝑟2 =
𝑀+𝑣2

𝑟
                                                        (21) 

From there we obtain the standard Kepler rotation: 𝑣 ∝  
1

√𝑟
 that we know is not observed. 

In the proposed model, the positive mass (the luminous mass) is surrounded by a fluid with a 

negative mass of density 𝜌− and a total mass 𝑀−. In this context we define the cosmological 

constant as we had previously done: 

 

𝛬 =
8𝜋𝐺𝜌−

𝑐2                                                               (22) 

 

In the weak field approximation and for small velocities a model is developed that reproduces 

Newton mechanics (Farnes, 2018). In the sources of the gravitational field, apart from the 

positive masses we also consider: 

𝜌𝑣𝑎𝑐 =
𝛬𝑐2

4𝜋𝐺
                                                             (23) 

Using the Poisson equation we obtain an expression for the potential and later an expression 

for the force that we will equal to the centripetal force. Finally we get the speed. For very 

small and negative values of the cosmological constant, an explanation of the observed 

rotation curves is obtained, including a growth of the velocity at already very large radii. 
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𝑣 = √
𝐺𝑀+

𝑟
−

8𝜋𝐺𝜌−

3
𝑟2                                                      (24) 

 

The results do not agree at all with all the observations but it must be remembered that we 

start from some approximate assumptions: the mass of a galaxy is not only the mass of the 

central bulb, the galaxy has an halo etc. Solutions as a negative cosmological constant had 

already been proposed but were dismissed as incompatible with supernova observations, yet 

this argument can be reinterpreted (Farnes, 2018). However, N-body simulations (see next 

subsection) are consistent with observations.  

 

4.3. N-body simulations 
 

One of the most used methods to test models like the one developed in this chapter is via N-

body simulations. In short, in a simulation of this type, a three-dimensional representation of 

N bodies is performed in which positions and velocities of the particles are evaluated. For this 

particular case, 5.000 particles of positive mass and 45.000 of negative mass are considered 

and mass creation is not taken into account. 

 

Considering the above requirements, the result is the formation of a halo of negative matter 

with a radius several times larger than that of the positive mass. The halo is not cuspy which 

could give a solution to the cuspy problem
2
 that the N-body simulations of CDM normally 

have. An asymptotically flat rotation curve is observed because the negative mass "pushes" 

the positive mass. Starting from a uniform distribution of positive and negative mass, the 

positive component in turn is surrounded by the negative. Voids and filaments similar to those 

observed are found in the formation of structures. 

 

 

                                                           
2
 The cuspy problem is caused by a discrepancy between the N-body simulations of dark matter and the density 

profiles of the low-mass galaxies. Thus, N-body simulations predict a higher density of dark matter for low radii 

than is observed from the rotation curves of disk galaxies. 
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5. MOND theories 
 

 

5.1. Motivation of MOND 

 

MOND (Modified Newtonian Dynamics), postulated by Mordehai Milgrom, was born in 

1983 with the aim of explaining the incompatibilities observed in the rotation curves of 

galaxies. 

If we take into account the approximation that the speed of the stars around the nucleus of the 

galaxy is circular and constant, this will mean that the forces on them will be nullified. Each 

star suffers mainly two forces: the centripetal force and the gravitational force: 

𝐺
𝑀𝑚

𝑟2 = 𝐹𝑔 = 𝐹𝐶 = 𝑚𝑎𝑐 = 𝑚
𝑣2

𝑟
                                           (25) 

𝑣 = √
𝐺𝑀

𝑟
                                                             (26)  

Where G is the universal gravitational constant, M is the mass of the galaxy contained within 

the orbit of the star, which can be approximated by the total mass of the galaxy, m is the mass 

of a star, r is the distance from the star to the nucleus of the galaxy and v is the speed of 

rotation of the star around the nucleus of the galaxy. 

 

This expression of the velocity foresees a decay if we increase the distance of the star to the 

nucleus. Innumerable observations have shown that this is not the case, and that in fact the 

tendency for large radii is a stabilization of the rotation speed of the star. Tully and Fisher 

established the following expression that did contrast the observations (Bugg, 2015): 

𝑣∞ = √𝐺𝑀𝑎0
4

                                                       (27) 

Where 𝑎0 is an empirical constant. 

In the previous case, the Keplerian velocity was based on Newton's gravitation scheme. 

However, what physical foundation would explain this last relation? 
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5.2. Theoretical Framework 
 

 

The MOND theory is a modification of Newton's theory of gravitation for low accelerations, 

which correspond to the accelerations of stars that are far from the nucleus of the galaxy, all 

in the framework of weak field. 

𝑎 =
𝑔𝑁

𝜇(𝑥)
                                                                (28) 

 𝑔𝑁 is the Newtonian gravity, 𝑎 is the real centripetal acceleration of the star.  𝑥 =
𝑎

𝑎0
  is a 

parameter with 𝑎0 as a postulated universal constant.  

If   𝑎 ≫  𝑎0 : (𝑥) = 1 . In any other case:  𝜇(𝑥) ≈ 𝑥  

 

For accelerations much greater than 𝑎0 we would recover Newton's laws. 𝑎0 would act as a 

parameter analogous to others already known as the Planck constant ℎ or the speed of light 𝑐, 

which in certain limits separate classical physics from the current physics. 

If the accelerations are not much greater than 𝑎0 : 

𝑎 =
𝑔𝑁

𝜇(𝑥)
≈

𝑔𝑁

𝑥
=

𝑔𝑁𝑎0

𝑎
                                                  (29) 

𝑎 = √𝑔𝑁𝑎0                                                         (30) 

 

If we take into account this information we can put equation 28 as follows: 

𝑣2

𝑟
= √

𝐺𝑀𝑎0

𝑟2                                                           (31) 

𝑣 = √𝐺𝑀𝑎0
4

                                                         (32) 

We see that Tully-Fisher relation is obtained. Expressing this equation with respect to 

mass/luminosity ratio, a constant 𝑎0
3 is obtained from numerous observations of luminosity 

and speed at different radii of galaxies (Aversa). 

 

                                                           
3
 An estimate value for this constant is  1.2 · 1010 𝑚 𝑠−2 
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log 𝐿 = 4 · log 𝑉 − log (𝐺𝑎0
𝑀

𝐿
)                                           (33) 

 

However, we see that it is necessary in each case to adjust the  
𝑀

𝐿
  parameter of the galaxy. 

We show now a typical rotation curve of a barred spiral galaxy. 

 

Figure 4: Galaxy rotation curve obtained from the galaxy NGC 2903. The Newtonian 

rotation curves due to the visible components of the galaxy are the dotted lines, and the dot-

dashed lines are the Newtonian rotation curves due to the neutral hydrogen gaseous 

component, as measured in the radio at 21 cm. 

The observations don’t agree with the Newtonian components. It’s proposed a new line, the 

solid line, from MOND theory that will fit much better the observations. 

 

 

To formalize the theoretical model of the theory, Beckenstein and Milgrom (1984) proposed a 

non-relativistic Lagrangian. Despite the fact that we are in a region of speeds much lower than 

velocity of light (100 − 250
km

s
), we anticipate that the proposed Lagrangian will also have a 

limited validity since it does not consider relativistic effects. Next we present the Newtonian 

Lagrangian and the modified Lagrangian proposed. 

𝐿𝑁 = − ∫ 𝑑3𝑟{𝜌𝜑𝑁 + (8𝜋𝐺)−1(𝛻𝜑𝑁)2}                                     (34) 
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𝐿 = − ∫ 𝑑3𝑟 {𝜌𝜑𝑁 + (8𝜋𝐺)−1𝑎0
2𝐹 [

(𝛻𝜑𝑁)2

𝑎0
2 ]}                                   (35) 

 𝜌 is the mass density and  𝜑𝑁 the Newtonian potential.  

 

After a series of operations, for the Newtonian case we obtain the Poisson equation from 

which the Newtonian potential can be obtained, which relates the sources of the field (the 

mass densities) with the gravitational potential. In the non-Newtonian case we obtain an 

analogous equation that also gives an expression for the potential. The expressions are the 

following: 

𝜑𝑁~ −
𝐺𝑀

𝑟
                                                            (36) 

𝜑 →  −√𝐺𝑀𝑎0 ln (
𝑟

𝑟0
)                                                (37) 

Where 𝑟0 is the radius in the galaxy corresponding to the acceleration 𝑎0. Taking into account 

equation 37 and  𝑎 = −𝛻𝜑, the relation of Tully-Fisher is reached: 

 

𝑣2

𝑟
= 𝑎 = −𝛻𝜑(𝑟) = − 

𝑑𝜑(𝑟)

𝑑𝑟
=

√𝐺𝑀𝑎0

𝑟
                                    (38) 

𝑣4 = 𝐺𝑀𝑎0                                                         (39) 

 

 

5.3. Cosmological implications 
 

In MOND theory, it is proposed that the constant 𝑎0 is also likely to have cosmological 

implications. Taking the current value of the Hubble constant the following ad hoc expression 

is postulated (Milgrom, 2015):  

 

2𝜋𝑎0 ≈ 𝑐𝐻0                                                          (40) 

 

This already indicates that 𝑎0 varies in time as the Hubble constant does. 
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The following two parameters are also defined: 

 

𝑙𝑀 =
𝑐2

𝑎0
≈ 7.5 · 1028𝑐𝑚                                                (41) 

𝑀𝑀 =
𝑐4

𝐺𝑎0
 ≈ 1057 𝑔                                                  (42) 

Both parameters would be of the order of the maximum observable distance as well as the 

maximum observable mass of the visible Universe, which if true would be quite surprising 

starting from a theory that only intended to explain some velocity discrepancies at the galactic 

level. 

 

MOND also establishes that there are not objects within the observable Universe that are in 

the MOND regime and at the same time are relativistic. 

 An object that is in the MOND region will imply the following expression: 

𝑀𝐺

𝑟2 < 𝑎0                                                              (43) 

A relativistic object satisfies: 

𝑀𝐺

𝑟
~ 𝑐2                                                              (44) 

If we divide: 

𝑟 =
𝑀𝐺

𝑟
𝑀𝐺

𝑟2

>
 𝑐2

𝑎0
= 𝑙𝑀                                                       (45) 

Therefore, an object with these characteristics would be outside the observable Universe. 

 

In spite of all this, MOND, in the cosmological framework, is not capable of making 

predictions as it does in galactic systems with the different 
𝑀

𝐿
 bands. 
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5.3.1. Formation of structures 

 

Although MOND theory is not a definitive theory because as we said earlier it does not 

include General Relativity, it can be treated in non-relativistic situations. Thus, many of the 

results that are dealt with by Newton's laws (for example cosmological simulations) will be 

treated in the same way in the MOND framework. 

 

The first implication of MOND theory is the change it produces in the epoch of matter-

radiation equality in the Universe, compared with the standard cosmological model. Because 

all the matter in a MOND theory is considered baryonic, it implies that the epoch of equality 

matter-radiation occurs approximately at 𝑧𝑒𝑞 ≈ 400, while for the current cosmological 

model 𝑧𝑒𝑞 ≈ 3300. This gives rise to the fact that in the MOND theory the equality of matter-

radiation occurs later and not before, that the epoch of recombination
4
. In conclusion, 

structures cannot be formed until a period after the recombination (Mcgaugh, 2015).  

 

Another characteristic in the formation of structures is that they coincide quite well with those 

of ΛCDM (performed with numerical simulations of N-bodies), however in a MOND 

Universe they are developed before due to the non-linear force law existing in the low 

acceleration regime. 

 

On the other hand, one of the best observational disagreements of MOND theory is the 

observational evidence provided by the Bullet Cluster, a clear example in favour of dark 

matter.  Analysing X-ray gas and the lensing effects from the Cluster is seen that MOND 

gravity does not explain the observations. 

 

 

5.4. Several MOND theories 
 

There are different theories of modified gravity that meet the essential requirements of a 

MOND theory. There are non-relativist theories and relativistic theories. 

                                                           
4
 In the period of recombination protons and electrons come together to form neutral atoms approximately when 

the Universe has 380000 years old. 
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Among the non-relativistic formulations of MOND we can name the Modified Poisson 

gravity, that makes a change in the Lagrangian in such a way that the respective Poisson 

equation results in: 

𝛻 · [𝜇 (
|𝛻𝜑|

𝑎0
) 𝛻𝜑] = 4𝜋𝐺𝜌                                                (46) 

In the Deep MOND limit we obtain 𝜇 (
|𝛻𝜑|

𝑎0
) ≈

|𝛻𝜑|

𝑎0
, and if we define η(𝐫, t) = G𝑎0𝜌(𝒓, 𝑡) we 

obtain two field equations: 

𝛻 · (|𝛻𝜑|𝛻𝜑) = 4𝜋η                                                    (47) 

�̇� = −𝛻𝜙                                                            (48) 

 

As for relativistic theories, the first that was formalized was the so-called Tensor-Vector-

Scalar (TeVeS), formulated by Beckenstein. The main idea of this theory that gives rise to its 

name is the consideration that gravity can not only be represented as a metric tensor but in 

fact it would also be formed by a vector field 𝑈𝛼 and a scalar field φ: 

�̃�𝛼𝛽 = 𝑒−2φ(𝑔𝛼𝛽 + 𝑈𝛼𝑈𝛽) − 𝑒2φ𝑈𝛼𝑈𝛽                                   (49) 

 

 

 

 

 

 

 

 

 

 

 



24 
 

6. 𝒇(𝑹) Theories 
 

 

6.1. Motivation of 𝒇(𝑹) theories 
 

 

The theory of General Relativity has had the opportunity to be immensely tested and proven, 

and therefore is very well established in the current scientific field. However, apart from the 

problems discussed about the accelerated expansion of the Universe and the rotation curves of 

the galaxies, it must be added that there is still no observational evidence of how the 

gravitational field behaves in extreme high-curvature regimes such as neutron stars or black 

holes. 

 

Due in part to the aspects that have been commented, a set of theories have been born, the 

𝑓(𝑅) theories which generalises Einstein’s General Relativity. Actually is a family of 

theories, each one defined by a different function 𝑓(𝑅). 𝑅 is the Ricci scalar. The simplest 

case that corresponds to the Einstein’s General Relativity is when 𝑓(𝑅) = 𝑅. This theory 

𝑓(𝑅) was first proposed in 1970 by Hans Adolph Buchdahl. Then, it was used ϕ instead of f. 

With this arbitrary function, there may be freedom to explain the accelerated expansion and 

structure formation of the Universe without adding unknown forms of dark matter and dark 

energy. Some of these functional forms are inspired by corrections arising by a quantum 

theory of gravity. 

Is an active field of research since the work of Starobinsky on cosmic inflation. There’s a 

wide range of possibilities from this theory if we adopt different functions. However, we can 

rule out some of the functions because of observational grounds or pathological theoretical 

problems.  

 

 

 

 



25 
 

6.2. Theoretical framework 
 

6.2.1.  Metric  version 

 

In a 𝑓(𝑅) theory when the action of Einstein-Hilbert is generalized making the change 

𝑅 → 𝑓(𝑅) we obtain the following expression: 

 

𝑆[𝑔] = ∫
1

2𝜅
𝑓(𝑅)√−𝑔𝑑4𝑥 + ∫ 𝑑4𝑥𝐿𝑀 (𝑔𝜇𝜈 , 𝜓)                             (50) 

Where ∫ 𝑑4𝑥𝐿𝑀 (𝑔𝜇𝜈 , 𝜓) = 𝑆𝑀 is the action corresponding to the fields of mass. Also 

𝜅 =
8𝜋𝐺

𝑐4   and  𝑔 = det (𝑔𝜇𝜈). 

We now take a variation in the action and focus only on the first term. We also define 

𝐹(𝑅) =  
𝑑𝑓(𝑅)

𝑑𝑅
   and we take into account the result obtained in the first appendix (Davie, 

2017): 

∫
1

2𝜅
(𝛿𝑓(𝑅)√−𝑔 + 𝑓(𝑅)𝛿√−𝑔)𝑑4𝑥 = ∫

1

2𝜅
(𝐹(𝑅)𝛿𝑅√−𝑔 − 𝑓(𝑅)

1

2
√−𝑔𝛿𝑔𝜇𝜈𝑔𝜇𝜈) 𝑑4𝑥 (51) 

 

We make an incision to treat the differential of the Ricci scalar. 𝑅 is defined as follows: 

𝑅 = 𝑔𝜇𝜈𝑅𝜇𝜈                                                           (52) 

Where 𝑅𝜇𝜈 is the Ricci tensor. 

Its variation with respect to the inverse of the metric is as follows: 

𝛿𝑅 = 𝑅𝜇𝜈𝛿𝑔𝜇𝜈 + 𝑔𝜇𝜈𝛿𝑅𝜇𝜈                                               (53) 

From appendices 2 and 3 we obtain that (Trilleras, 2012): 

𝛿𝑅 = 𝑅𝜇𝜈𝛿𝑔𝜇𝜈 + 𝑔𝜇𝜈(𝛿𝛤  𝜈𝜇 ; 𝜌
𝜌

−𝛿𝛤  𝜌𝜇 ; 𝜈
𝜌

) = 𝑅𝜇𝜈𝛿𝑔𝜇𝜈 − ∇𝜇∇𝜈𝛿𝑔𝜇𝜈 + 𝑔𝜇𝜈□𝛿𝑔𝜇𝜈    (54) 

□ is the D’Alembert operator.  

Note that now all the terms contain the factor 𝛿𝑔𝜇𝜈. Then, we continue with the previous 

development: 
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∫
1

2𝜅
(𝐹(𝑅)𝛿𝑅√−𝑔 − 𝑓(𝑅)

1

2
√−𝑔𝛿𝑔𝜇𝜈𝑔𝜇𝜈) 𝑑4𝑥 = 

= ∫
1

2𝜅
√−𝑔 (𝐹(𝑅)(𝑅𝜇𝜈𝛿𝑔𝜇𝜈−∇𝜇∇𝜈𝛿𝑔𝜇𝜈 + 𝑔𝜇𝜈□𝛿𝑔𝜇𝜈) − 𝑓(𝑅)

1

2
𝛿𝑔𝜇𝜈𝑔𝜇𝜈) 𝑑4𝑥 = 

= ∫
1

2𝜅
√−𝑔𝛿𝑔𝜇𝜈 (𝐹(𝑅)(𝑅𝜇𝜈−∇𝜇∇𝜈 + 𝑔𝜇𝜈□) − 𝑓(𝑅)

1

2
𝛿𝑔𝜇𝜈𝑔𝜇𝜈) 𝑑4𝑥            (55) 

Now we have in mind that the action is invariant through variations of the metric 
𝛿𝑆

𝛿𝑔𝜇𝜈 = 0 

Then: 

1

2𝜅
√−𝑔 (𝐹(𝑅)(𝑅𝜇𝜈−∇𝜇∇𝜈 + 𝑔𝜇𝜈□) − 𝑓(𝑅)

1

2
𝑔𝜇𝜈) = −

𝛿𝐿𝑀

𝛿𝑔𝜇𝜈
                   (56) 

𝐹(𝑅)(𝑅𝜇𝜈−∇𝜇∇𝜈 + 𝑔𝜇𝜈□) − 𝑓(𝑅)
1

2
𝑔𝜇𝜈 = −

2𝜅

√−𝑔

𝛿𝐿𝑀

𝛿𝑔𝜇𝜈                       (57) 

We define as the stress-energy tensor of mass sources as the quantity:  𝑇𝜇𝜈
(𝑀) = −

2

√−𝑔

𝛿𝐿𝑀

𝛿𝑔𝜇𝜈 

𝐹(𝑅)(𝑅𝜇𝜈−∇𝜇∇𝜈 + 𝑔𝜇𝜈□) − 𝑓(𝑅)
1

2
𝑔𝜇𝜈 = 𝜅𝑇𝜇𝜈

(𝑀)                          (58) 

𝑇𝜇𝜈
(𝑀) satisfies the continuity equation as a consequence of the principle of action: 

 

∇𝜇𝑇𝜇𝜈
(𝑀) = 0                                                         (59) 

If we now take the trace in the equation 58: 

 

𝑔𝜇𝜈𝐹(𝑅)(𝑅𝜇𝜈−∇𝜇∇𝜈 + 𝑔𝜇𝜈□) − 𝑓(𝑅)
1

2
𝑔𝜇𝜈𝑔𝜇𝜈 = 𝜅𝑔𝜇𝜈𝑇𝜇𝜈

(𝑀)                 (60) 

𝐹(𝑅)(𝑅−𝑔𝜇𝜈∇𝜇∇𝜈 + 𝛿𝜇
𝜇

□) − 𝑓(𝑅)
1

2
𝛿𝜇

𝜇
= 𝜅𝑇                              (61) 

Where  𝛿𝜇
𝜇

= 4,  𝑔𝜇𝜈∇𝜇∇𝜈= □  and  𝑔𝜇𝜈𝑇𝜇𝜈
(𝑀) = 𝑇 

𝐹(𝑅)(𝑅 + 3□) − 2𝑓(𝑅) = 𝜅𝑇                                           (62) 

These equations would generalize the General Relativity equation found by Einstein. In fact, 

taking  𝑓(𝑅) = 𝑅 ; 𝐹(𝑅) =
𝑑𝑓(𝑅)

𝑑𝑅
= 1 we obtain:  
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𝑅 = −𝜅𝑇                                                           (63) 

At this point we show equations equivalent to the Friedmann equations in General Relativity. 

In appendix 4 we demonstrate the first of them. To do this we suppose that the Universe is 

dominated by the Robertson-Walker metric and that the stress-energy tensor of matter 

corresponds to a perfect fluid. 

 

3𝐹𝐻2 =
𝐹𝑅−𝑓

2
− 3𝐻�̇� + 𝜅𝜌                                              (64) 

−2𝐹�̇� = �̈� − 𝐻�̇� + 𝜅(𝜌 + 𝑃)                                            (65) 

Finally, pressure and gravity satisfy the following continuity equation: 

 

𝜌 + 3𝐻𝜌 = 0̇                                                         (66) 

 

6.2.2. Equivalent formalism: Brans-Dicke theory 

 

We start again from the 𝑆[𝑔] action formulated at the beginning. In this case we introduce an 

auxiliary field X, so that our action is transformed as follows:  

 

𝑆[𝑔] = ∫
1

2𝜅
√−𝑔𝑓(𝑅)𝑑4𝑥 + 𝑆𝑀 = ∫

1

2𝜅
√−𝑔[𝑓′(𝑋)(𝑅 − 𝑋) + 𝑓(𝑋)]𝑑4𝑥 + 𝑆𝑀     (67) 

That scalar field follows the equation: 

 𝑓′′(𝑋)(𝑅 − 𝑋) = 0                                                     (68) 

The regions of 𝑋 where 𝑓′′(𝑋) ≠ 0 will be called branches (Hindawi, Ovrut & Waldram, 

1996). In these regions we have from the previous equation that 𝑅 = 𝑋, that replaced in the 

new action we return to obtain the action formulated at the beginning (Eq. 50).  

 

To write the action now in function of a scalar field 𝜙 that fulfills the condition  𝜙 = 𝑓′(𝑋) : 
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𝑆[𝑔] = ∫
1

2𝜅
√−𝑔[𝜙(𝑅 − 𝑋(𝜙)) + 𝑓(𝑋(𝜙))]𝑑4𝑥 + 𝑆𝑀                        (69) 

You can rewrite the action as follows: 

𝑆[𝑔] = ∫ √−𝑔 [
𝜙𝑅

2𝜅
− 𝑈(𝜙)] 𝑑4𝑥 +  𝑆𝑀                                     (70) 

With: 

𝑈(𝜙) =
𝜙𝑅(𝜙)−𝑓(𝑅(𝜙))

2𝜅
                                                  (71) 

This action is a particular case of the action described in the Brans-Dicke theory, which 

contains an additional term proportional to 𝜔𝐵𝐷  (the Brans-Dicke parameter). Therefore our 

case corresponds to 𝜔𝐵𝐷 = 0 (Pérez Bergliaffa, 2011).  The complete action principle of the 

Brans-Dicke theory is the following expression (De Felice & Tsujikawa): 

 

𝑆 = ∫ 𝑑4𝑥√−𝑔 (
1

2
𝜙𝑅 −

𝜔𝐵𝐷

2𝜙
𝑔𝜇𝜈𝜕𝜇𝜙𝜕𝜈𝜙 − 𝑈(𝜙)) + 𝑆𝑀                  (72) 

 

To obtain the field equations from Eq. 72 we use the same procedure as in subsection 6.2.1. 

We take a variation of the terms with respect to the scalar field 𝜙 to obtain a first field 

equation and we take a variation with respect to the metric 𝑔𝜇𝜈 to obtain a second field 

equation. 

 

If we return to our particular case, the calculus of the resulting equation taking a variation of 

the action of Eq. 70 is specified at the appendix 5.  

3𝜙□ + 2𝑉(𝜙) − 𝜙
𝛿𝑉(𝜙)

𝛿𝜙
= 𝜅𝑇                                          (73) 

Where 𝑉(𝜙) = 2𝜅𝑈(𝜙) 

 

6.2.3. Palatini version 

 

There are other methods to obtain the field equations, such as the one introduced by Palatini. 

In this method, the metric and the connection are considered independent. In a similar way to 

the previous method, we start from the following principle of action: 
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𝑆𝑃 = ∫
1

2𝜅
𝑓(𝑅)√−𝑔𝑑4𝑥 + 𝑆𝑀                                             (74) 

Taking a variation of the action: 

𝛿𝑆𝑃 = ∫
1

2𝜅
𝛿 (𝑓(𝑅)√−𝑔)𝑑4𝑥 + 𝛿𝑆𝑀                                        (75) 

A similar development to the previous one (in the metric version) is taken, but in this case the 

terms calculated in Appendix 3 are eliminated due to the condition explained above. Then, we 

obtain the following equations: 

 

𝐹(𝑅)𝑅𝜇𝜈 − 𝑓(𝑅)
1

2
𝑔𝜇𝜈 = 𝜅𝑇𝜇𝜈

(𝑀)                                        (76) 

Taking the trace we obtain: 

𝑔𝜇𝜈𝐹(𝑅)𝑅𝜇𝜈 − 𝑓(𝑅)
1

2
𝑔𝜇𝜈𝑔𝜇𝜈 = 𝜅𝑔𝜇𝜈𝑇𝜇𝜈

(𝑀)                             (77) 

𝐹(𝑅)𝑅 − 2𝑓(𝑅) = 𝜅𝑇                                                (78) 

𝑅 y  𝑇 have an algebraic relationship. 

 

Now we consider a variation with respect to the connection. If we take into account the 

development in Appendix 2: 

𝛿𝑆𝑃 = ∫
1

2𝜅
√−𝑔 𝑔𝜇𝜈𝐹(𝑅) · (𝛿𝛤  𝜈𝜇 ; 𝜌

𝜌
−𝛿𝛤  𝜌𝜇 ; 𝜈

𝜌
)𝑑4𝑥                         (79) 

𝛿𝑆𝑃 = ∫
1

2𝜅
𝐹(𝑅) · (∇𝜌√−𝑔𝑔𝜇𝜈𝛿𝛤  𝜈𝜇

𝜌
−∇𝜈√−𝑔𝑔𝜇𝜈𝛿𝛤  𝜌𝜇 

𝜌
)𝑑4𝑥                   (80) 

𝛿𝑆𝑃 = ∫
1

2𝜅
(∇𝜌(𝐹(𝑅)√−𝑔𝑔𝜇𝜈) − ∇𝜈(𝐹(𝑅)√−𝑔𝑔𝜇𝜈)𝛿𝜌

𝜈)𝛿𝛤  𝜈𝜇
𝜌

𝑑4𝑥              (81) 

 

Imposing that the variation of the action is invariant to the connection and calculating the 

trace, we obtain: 

∇𝜌(𝐹(𝑅)√−𝑔𝑔𝜇𝜈) = 0                                                (82) 
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Now we can obtain that: 

𝛤  𝜇𝜈 
𝜆 =

1

𝐹(𝑅)
𝑔𝛼𝜆 (𝜕𝜇(𝐹(𝑅)𝑔𝛼𝜈) + 𝜕𝜈(𝐹(𝑅)𝑔𝛼𝜇) − 𝜕𝛼(𝐹(𝑅)𝑔𝜇𝜈))              (83) 

Since it has been proved that the relationship between 𝑅 and 𝑇 is algebraic, then the 

connection can be a function of the metric and a function of 𝑇, that is, on the mass fields. 

 

6.3. Particular models 

 

6.3.1. Starobinsky’s model 

 

Starobinsky proposed the first inflation model (for early stages of the Universe) in which the 

function 𝑓(𝑅) takes the following form: 

𝑓(𝑅) = 𝑅 +
𝑅2

6𝑀2                                                      (84) 

Where M has mass dimensions. 

 

For this model, it is considered the absence of mass fluids e.g.: 𝜌 = 0 because in that epoch of 

the Universe the inflationary potential dominated over others. If we take into account the 

generalized Friedmann equations and Ricci's dependence on the parameter 𝐻 and its 

derivative �̇� we obtain the following equations: 

 

�̈� −
�̇�2

2𝐻
+

1

2
𝑀2𝐻 = −3𝐻�̇�                                             (85) 

�̈� + 3𝐻𝑅 + 𝑀2𝑅 = 0̇                                                 (86) 

We can consider the first two terms negligible in the first equation. This will be true while we 

are in the inflation period. This leads to:  �̇� ≅  −
𝑀2

6
 . From there we can obtain a solution for 

the Hubble parameter 𝐻, and therefore also for the scale factor 𝑎: 

 

𝐻 ≅  𝐻𝑖 −
𝑀2

6
(𝑡 − 𝑡𝑖)                                                 (87) 
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𝑎 ≅ 𝑎𝑖𝑒𝑥𝑝 (𝐻𝑖(𝑡 − 𝑡𝑖) −
𝑀2

12
(𝑡 − 𝑡𝑖)

2)                                   (88) 

We assume 𝑡 = 𝑡𝑖  as the beginning of inflation, in which the Hubble parameter and the scale 

factor were  𝐻𝑖  and 𝑎𝑖, respectively (De Felice & Tsujikawa, 2010). 

 

6.3.2. Hu-Sawicki model 

 

In this model, the function 𝑓(𝑅) takes the following form: 

𝑓(𝑅) = 𝑅 −
𝑐1𝑅𝐻𝑆(

𝑅

𝑅𝐻𝑆
)

𝑝

𝑐2(
𝑅

𝑅𝐻𝑆
)

𝑝

+1
                                                 (89) 

𝑐1, 𝑐2, 𝑅𝐻𝑆 are parameters and 𝑝 > 0 is a positive constant. 

Not all the parameters are independent. 

 

6.3.3. Tsujikawa model 

 

In that case, the form of 𝑓(𝑅) is: 

𝑓(𝑅) = 𝑅 − 𝜇𝑅𝑇 tanh (
𝑅

𝑅𝑇
)                                             (90) 

Where 𝜇 and 𝑅𝑇 are two positive constants. 

 

6.3.4. Exponential gravity model 

 

The 𝑓(𝑅) form is: 

𝑓(𝑅) = 𝑅 − 𝛽𝑅𝐸 (1 − 𝑒
−𝑅

𝑅𝐸
⁄ )                                         (91) 

Where 𝛽 and 𝑅𝐸 are the parameters. 
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6.4. Observational tests 

 

One of the parameters that are determined at large scales is the Hubble parameter 𝐻. Different 

types of techniques are used to obtain these measurements. One of them is the Cosmic 

Chronometers technique. This method, based on the evolution of the passively evolving early-

type galaxies, determines the Hubble parameter. 

For a Universe that follows the Robertson-Walker metric, we show in the appendix 6 that the 

Hubble function can be expressed as follows depending on the redshift (Nunes, 2016): 

 

𝐻 = −
1

1+𝑧

𝑑𝑧

𝑑𝑡
                                                          (92) 

 

So, measuring 
𝑑𝑧

𝑑𝑡
 we obtain directly the value of 𝐻. 

 

We can constrain 𝑓(𝑅) using also data of supernovae Ia.  One of the latest attempts start from 

a certain form of the function:  𝑓(𝑅) = 𝑅 − 𝛽𝑅−𝑛 The parameters are adjusted with the 

experimental measurements and some of the restrains are the following: 𝛽 ∈ [2.3, 7.1], 𝑛 ∈

[−0.25, 0.35] (Santos, 2018). 

Baryonic acoustic oscillations
5
 are also used to constrain the expansion history of the 

Universe and some measurements are made in that direction (Nunes, 2016). 

Those observational data aim to constrain the free values of the 𝑓(𝑅) parameters for models 

as the mentioned above in section 6.3. 

 

 

 

 

 

 

 

 

                                                           
5
 The visible baryonic matter suffers fluctuations in the density due to acoustic density waves in the early plasma 

of the Universe. 
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7. Chaplygin gas 
 

As we already know, observations of Supernovae type Ia indicates that the Universe expands 

in an accelerated way. ΛCDM explains this inconsistency with dark energy of which its 

nature is not known. Chaplygin gas is one of the models of dark energy and also can explain 

dark matter at small scales. It consists as an exotic substance that unifies both dark 

phenomena that satisfies the equation of a perfect fluid (Eq. 3) and the following equation of 

state: 

 

𝑃 = −
𝐴

𝜌
                                                             (93) 

Where 𝑃 is the pressure, ρ the density and 𝐴 is a positive constant. 

Also we can work with a generalization of the previous model (The modified Chapygin gas): 

𝑃 = 𝐵𝜌 −
𝐴

𝜌𝛼                                                            (94) 

Where  0 < 𝛼 ≤ 1 and B is constant. 

We consider now the speed of sound in the context of this model. 

 

𝑣𝑠
2 =

𝜕𝑃

𝜕𝜌
= 𝐵 + 𝛼

𝐴

𝜌𝛼+1                                                          (95) 

The speed of sound squared is positive and bounded if ≥ 0 , 𝐵 ≥ 0 and 0 ≤ 𝛼 ≤ 1. In this 

limit Modified Chapygin gas behaves as dark matter (Avelino & Ferreira, 2015).  

For the generalized model, the dependence of the energy density 𝜌 on the cosmological radius 

𝑎 assuming a Universe governed by the Robertson-Walker metric is as follows: 

 

𝜌 = (𝐴 +
𝐵

𝑎3(1+𝛼))

1

1+𝛼
                                                   (96) 

A y B are constants of integration. √𝐴 corresponds to the cosmologic constant. 

The application of this Chaplygin gas method is not only limited to cosmological studies but 

is also related to string theory. The equation of state of this gas can be obtained from the 
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action of Nambu-Goto within the framework of string theory. A theoretical basis can also be 

developed in the cosmological framework. In both cases we can get the same state equation. 

The cosmological predictions of this gas model can be contrasted with different types of 

investigation lines such as the cosmic microwave background radiation, type Ia supernovae, 

gravitational lenses, inhomogeneities in the large-scale structure of the Universe etc. The last 

mentioned point is crucial to test the proposed model of Chaplygin gas with the large-scale 

structure of the universe (Gorini, 2004). 

 

In short, Chaplygin Gas is able to explain the accelerated expansion of the Universe, give a 

description of both dark matter and dark energy and describes a transition between a 

deceleration of the Universe to acceleration, fact that is observed with supernovae Ia 

(Perlmutter, 2011). However, new observational data is needed to definitely prove its 

existence. 
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8. Constraints 
 

8.1. Post-Newtonian formalism 
 

In the post-Newtonian formalism a series of corrections are introduced to the Newtonian 

theory, which depend on a parameter. This parameter is the velocity of the object that creates 

the gravitational field divided by the speed of light. One of the correction models is the theory 

of General Relativity. 

 

The parametrized post-Newtonian formalism (PPN) is a generalization that details the 

parameters in which Newtonian gravity differs from a particular theory of gravity. This 

formalism does not at first presuppose any theory as correct, which constitutes an advantage 

for testing alternative theories. In fact, it has been a very useful tool for the testing of the 

theory of General Relativity, in which the parameters introduced by this theory have to have 

specific values. Post-Newtonian formalism was already used by Eddington in 1922 and 

different versions have emerged from there. Each version has included its own parameters 

with its own notation. In the case of Wil, Ni, and Misner in the 70s, 10 parameters were 

described, within the notation called beta-delta, which completely characterized the theory in 

a weak gravitational field. These parameters were intended to measure effects such as changes 

in gravity produced by unit pressure, per unit of internal energy, per unit of kinetic energy etc. 

Below we show the coefficients and their description (Will, 1971): 

 

      𝛾 Curvature created in space that is produced by a mass at rest 

      𝛽 Non-linearity that could exist in the superposition of gravity 

      𝛽1 Gravity produced by kinetic energy 

      𝛽2 Gravity produced by gravitational potential energy unit 

      𝛽3 Gravity produced by internal energy 

      𝛽4 Gravity produced by unit pressure 

      𝜁 Difference between transversal and kinetic energy about gravity 

      η Difference between the radial and transversal tension to the gravity 

      ∆1 Drag of inertial reference systems per moment unit 

      ∆2 Difference between the radial and transverse moment in the drag of the inertial reference systems. 

 

Figure 5: Table. 10 parameters defined in the framework of parametrized post-Newtonian formalism. 
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For General Relativity all the coefficients are worth 1 except η = 𝜁 = 0 . 

There is a more recent notation of Will & Nortvedt and Will of the 80s in which 10 

parameters are also introduced which are linear combinations of the parameters of the 

previous formalism, in order to describe with the new parameters preferred frame effects or 

failures in the conservation of energy, momentum or angular momentum. γ and β are the only 

parameters that retain their identity (Will & Nordtvedt, 1972). 

As already mentioned, the PPN formalism is useful for testing different theories of gravity, 

and there is already a process more or less established for it. Thus, a large ammount of 

theories has been compared using such parameters, such as Nordström's flat theory of gravity, 

quasi-linear theories such as Whitehead
6
  generalized relativity, bimetric theories etc. 

(Alemañ, 2016). All of them have not been included in this work because they have been 

experimentally discarded. 

 

8.2. Angular redshift fluctuations 
 

We know that redshift can be expressed as follows: 

 

𝑧 = 
𝜆2−𝜆1

𝜆1
≅

𝐻0

𝑐
𝐷                                                     (97) 

𝜆2 is the observed wavelengh and 𝜆1 is the emitted wavelengh. 𝐻0 is the current value of the 

Hubble constant and  D is the distance to the object with redshift z. The speed at which we 

move away from the object in question due to the expansion of the Universe is: 

𝑣 =  𝐻0𝐷 ≅ 𝑧𝑐                                                         (98) 

 

The galaxies also have peculiar speeds apart from their recession due to the increase of the 

scale factor of the Universe. We will denote with the letter V the radial component (with 

                                                           
6 Whitehead's theory for a long time faced the theory of General Relativity. The discrepancy between Whitehead 

and Einstein was his way of seeing in each case the relationship that matter and space-time possessed. However, 

after an experimental test carried out in 1965, Whitehead's theory had serious problems in moving forward 

because this theory forced an anisotropy in the Earth's gravity field that was disproportionately high in relation to 

the observations and also violated the weak equivalence principle (Alemañ, 2016). 
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respect to the line of sight to the observer) of these peculiar speeds. Then the previous 

expression taking into account this effect will take the following form: 

𝑣 =  𝐻0𝐷 + 𝑉                                                         (99) 

We see then:  

𝑧 ≅
𝐻0𝐷

𝑐
+

𝑉

𝑐
=  𝑧𝐻𝑢𝑏𝑏𝑙𝑒 + 𝑧𝑝𝑒𝑐                                         (100) 

 

We consider now a set of galaxies 𝑗 = 1, … , 𝑁  in which we observe the redshift 𝑧𝑗. We define 

the following window function. 

𝑊𝑗 = 𝑒𝑥𝑝 (−
(𝑧𝑜𝑏𝑠−𝑧𝑗)

2

2𝜎𝑧
2 )                                               (101) 

 

The values 𝑧𝑜𝑏𝑠 and 𝜎𝑧 are respectively the central redshift of the distribution of redshifts 

assumed Gaussian and the width of that Gaussian.  

 

The fluctuation of the redshift is defined as follows: 

𝛿𝑧(𝑛𝑖) =
∑ (𝑧𝑗−�̅�)𝑊𝑗𝑗∊𝑖

∑ 𝑊𝑗𝑗∊𝑖
                                                 (102) 

𝑛𝑖 is the i-th pixel of the image obtained from the sky. In each one of them there would be a 

determined number of galaxies, each one with its redshift.  𝑧̅  is the average of the redshift 

taking into account the window function. 

 

𝑧̅ =
∑ 𝑧𝑗𝑊𝑗𝑗

∑ 𝑊𝑗𝑗
                                                          (103) 

 

The angular fluctuations of the redshift provide additional information on both velocity fields 

and densities obtained with a different systematics. It also provides information about dark 

energy, adding restrictions and testing other models proposed for the same purpose 

(Monteagudo, 2017). As we can see from the previous equations, the fluctuations depend on 

that parameter that we have added regarding the movement between the galaxies that does not 

depend on the expansion of the universe, that is, on the peculiar velocities. 
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9. Conclusions 
 

First, the observation. Then the hypothesis. These are some of the steps of the methodology 

used by the scientific method to obtain new knowledge, to advance our vision and 

understanding of the Universe. A specific fact of the proposed models is that many of them 

make predictions, that is, they need more observations to be able to verify their full scope. 

Therefore, the scientific method becomes cyclical on many occasions.  

The observation. Also generally called problem, when it questions hypotheses and models 

previously elaborated. The observations that are exposed in this work are on the one hand the 

problem of the lost mass as for example in the curves of rotation of the galaxies and on the 

other hand the discovery of the accelerated expansion of the Universe. 

The hypothesis and the model. Dark matter and dark energy. These are the explanation 

accepted today in the scientific community, which have given rise to the current cosmological 

model ΛCDM. However, their nature is currently unknown. Nor they have been detected after 

many years of experimentation designed for this purpose. But the most important fact that 

allows the flowering of alternative theories lies in the premise that the present observations 

that we have allow the existence of several possibilities to explain the reality of our 

environment, each from a different point of view, breaking preconceived schemes and 

providing new and creative ideas. 

In this work we have exposed some of the alternative current models, such as the negative 

mass model, MOND theories, 𝑓(𝑅) theories and the Chaplygin gas, as well as some 

theoretical restrictions such as post-Newtonian parametrization or experimental such as 

angular fluctuations of redshift. Each proposed model defends its ideology with the artillery at 

its disposal against the healthy criticism that is generated from the outside. . In this way the 

models evolve and become stronger or are dismissed. One of the objectives of this work has 

been to present these models as impartially as possible, without giving any of them as valid or 

less probable, and for the reader to judge what he considers appropriate. 

As previously mentioned, many models need new observations for their testing, and this is the 

case of all the models presented in this paper. In this way the cycle dies and the future will 

determine a new birth. 
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Finally we present a summary table of the theories that have been proposed. 

 

 

Is an 

alternative 

of 

Tries to explain Characterized by Pros Cons 

Model of 

negative 

masses 

Dark matter 

and dark 

energy 

The cosmological 

constant and the 

rotation curves of 

galaxies  

Introduces a new 

parameter 𝜌− in the 

Friedmann 

equations that 

represents the 

negative masses  

Considering N-body 

simulations with 

positive and negative 

masses it gets 

asymptotically flat 

rotation curves and 

also gives a solution to 

the cuspy problem. In 

large scale we observe 

voids and filaments. 

There are 

discussions of the 

incompatibility of a 

negative 

cosmologic 

constant with 

observations of 

supernovae.  

MOND 

theories 
Dark matter 

Rotation curves of 

galaxies 

Generalization of 

the second Newton 

law at very small 

accelerations 

introducing a new 

parameter: 𝑎0  

Fits very well the 

rotation curves of a lot 

of galaxies and dwarf 

galaxies.  

  

Is an ad hoc model. 

The Bullet cluster 

is a point against 

due observed 

lensing effects and 

it does not explain 

the loss mass in 

galaxy clusters  

𝑓(𝑅) 

theories 

Dark matter 

and dark 

energy 

Structure 

formation of the 

Universe, regions 

of extreme 

curvature and the 

accelerated 

expansion of the 

Universe 

Generalization of 

the Einstein-Hilbert 

action substituting 

in the integrand the 

Ricci scalar by a 

function of it 

Post-Newtonian 

formalism or  the 

Cassini Huygens in 

their observational 

limits confirm General 

Relativity and 𝑓(𝑅) 

gravity 

Is an ad hoc model. 

More precise 

observations are 

needed to constrain 

some parameters  

Chaplygin 

gas 

Dark matter 

and dark 

energy 

The accelerated 

expansion of the 

Universe and the 

loss mass problem 

introducing a 

square bounded 

sound speed  

Its proposed an 

exotic substance 

with negative 

pressure that causes 

the accelerated 

expansion 

It has been contrasted 

with gravitational 

lenses, supernovae 

type Ia or 

inhomogeneities in the 

large-scale structure of 

the Universe. It needs 

more tests.  

The gas is 

hypothetic and its 

nature is unknown. 

 

Figure 6: Table. Overview of the theories presented in this work. 
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APPENDIXES 
 

Appendix 1 
 

In this appendix we will demonstrate the following expression: 

 

𝛿√−𝑔 = −
1

2
√−𝑔𝛿𝑔𝛼𝛽𝑔𝛼𝛽                                             (1) 

We start representing the following matrix: 

 

𝐴 = (
𝑎0 0
0 𝑎1

)                                                          (2) 

The trace of that matrix is: 

𝑡𝑟(𝐴) = 𝑎0 + 𝑎1                                                        (3) 

Now we define another matrix that has a relationship with the previous one: 

 

𝐵 = 𝑒𝐴 = (
𝑒𝑎0 0
0 𝑒𝑎1

)                                                  (4) 

 

We take the determinant of that matrix: 

 

det(𝐵) = 𝑒𝑎0𝑒𝑎1 = 𝑒𝑎0+𝑎1 = 𝑒𝑡𝑟(𝐴) = 𝑒𝑡𝑟(ln 𝐵)                            (5) 

ln det(𝐵) = ln 𝑒𝑡𝑟(ln 𝐵) = 𝑡𝑟(ln 𝐵)                                      (6) 

If we take the derivative in both sides: 

𝜕 det(𝐵)

det(𝐵)
= 𝑡𝑟 (

𝜕𝐵

𝐵
)                                                      (7) 

Taking 𝐵 =  𝑔𝛼𝛽 y   det(𝐵) = 𝑔 

𝛿𝑔 = 𝑔𝑔𝛼𝛽𝛿𝑔𝛼𝛽                                                       (8) 

Once we obtained this we take a variation of the previous amount: 
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𝛿√−𝑔 = −
1

2√−𝑔
𝛿𝑔 = −

1

2√−𝑔
𝑔𝑔𝛼𝛽𝛿𝑔𝛼𝛽 =

1

2√−𝑔
(−𝑔)𝑔𝛼𝛽𝛿𝑔𝛼𝛽 = 

=
1

2√−𝑔
(√−𝑔)

2
𝑔𝛼𝛽𝛿𝑔𝛼𝛽 =

1

2
√−𝑔𝑔𝛼𝛽𝛿𝑔𝛼𝛽 = −

1

2
√−𝑔𝛿𝑔𝛼𝛽𝑔𝛼𝛽                 (9) 

The last step takes into account that: 

 

 𝛿(𝑔𝛼𝛽𝑔𝛼𝛽) = 𝛿(𝛿𝛼
𝛼) = 0                                               (10) 

Then: 

𝛿𝑔𝛼𝛽𝑔𝛼𝛽 + 𝑔𝛼𝛽𝛿𝑔𝛼𝛽 = 0                                              (11) 

𝛿𝑔𝛼𝛽𝑔𝛼𝛽 = −𝑔𝛼𝛽𝛿𝑔𝛼𝛽                                               (12) 

Therefore the equality is demonstrated (Davie, 2017). 

 

𝛿√−𝑔 = −
1

2
√−𝑔𝛿𝑔𝛼𝛽𝑔𝛼𝛽                                           (13) 
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Appendix 2 
 

In this appendix we will demonstrate the following expression: 

𝛿𝑅𝜇𝜈 = 𝛻𝜌𝛿𝛤  𝜈𝜇
𝜌

− 𝛻𝜈𝛿𝛤  𝜌𝜇
𝜌

                                              (14) 

 

The curvature tensor can be shown to have the following dependency with respect to Levi-

Civita connections: 

 

 

𝑅  𝜎𝜇𝜈
𝜌

= 𝛤  𝜈𝜎,𝜇
𝜌

− 𝛤  𝜇𝜎,𝜈
𝜌

+ 𝛤  𝜇𝜆
𝜌

𝛤   𝜈𝜎
𝜆 − 𝛤   𝜈𝜆

𝜌
𝛤   𝜇𝜎

𝜆                               (15) 

 

Taking a variation: 

𝛿𝑅  𝜎𝜇𝜈
𝜌

= 𝛿𝛤  𝜈𝜎,𝜇
𝜌

− 𝛿𝛤  𝜇𝜎,𝜈
𝜌

+ 𝛿𝛤  𝜇𝜆
𝜌

𝛤   𝜈𝜎
𝜆 + 𝛤  𝜇𝜆

𝜌
𝛿𝛤   𝜈𝜎

𝜆 − 𝛿𝛤   𝜈𝜆
𝜌

𝛤   𝜇𝜎
𝜆 − 𝛤   𝜈𝜆

𝜌
𝛿𝛤   𝜇𝜎

𝜆       (16) 

 

𝛿𝛤  𝜈𝜎
𝜌

  is the difference between two connections and therefore it is a tensor. Being a tensor we 

can calculate its covariant derivative, which for a tensor once contravariant and twice 

covariant is as follows: 

 

 

𝛿𝛤  𝜈𝜎 ; 𝜇
𝜌

= 𝛿𝛤  𝜈𝜎 ,𝜇
𝜌

+ 𝛤  𝜇𝜆
𝜌

𝛿𝛤  𝜈𝜎
𝜆 − 𝛤  𝜇𝜈

𝜆 𝛿𝛤  𝜆𝜎
𝜌

− 𝛤  𝜇𝜎
𝜆 𝛿𝛤  𝜈𝜆

𝜌
                          (17) 

−𝛿𝛤  𝜇𝜎 ; 𝜈
𝜌

= −𝛿𝛤  𝜇𝜎 ,𝜈
𝜌

− 𝛤  𝜈𝜆
𝜌

𝛿𝛤  𝜇𝜎
𝜆 + 𝛤  𝜈𝜇

𝜆 𝛿𝛤  𝜆𝜎
𝜌

+ 𝛤  𝜈𝜎
𝜆 𝛿𝛤  𝜇𝜆

𝜌
                       (18) 

Then: 

𝛿𝑅  𝜎𝜇𝜈
𝜌

= 𝛿𝛤  𝜈𝜎 ; 𝜇
𝜌

−𝛿𝛤  𝜇𝜎 ; 𝜈
𝜌

+ 𝛤  𝜇𝜈
𝜆 𝛿𝛤  𝜆𝜎

𝜌
+ 𝛤  𝜇𝜎

𝜆 𝛿𝛤  𝜈𝜆
𝜌

− 𝛤  𝜈𝜇
𝜆 𝛿𝛤  𝜆𝜎

𝜌
− 𝛤  𝜈𝜎

𝜆 𝛿𝛤  𝜇𝜆
𝜌

+ 𝛿𝛤  𝜇𝜆
𝜌

𝛤   𝜈𝜎
𝜆 − 𝛿𝛤   𝜈𝜆

𝜌
𝛤   𝜇𝜎

𝜆  

(19) 

Using that the Christoffel symbols are symmetric with respect to the second and third index 

and also that being components of tensors (scalars) the commutative property is fulfilled: 
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𝛿𝑅  𝜎𝜇𝜈
𝜌

= 𝛿𝛤  𝜈𝜎 ; 𝜇
𝜌

−𝛿𝛤  𝜇𝜎 ; 𝜈
𝜌

                                             (20) 

We now find the variation of the Ricci tensor by a contraction in the first and third indices: 

 

𝛿𝑅𝜎𝜈 = 𝛿𝑅  𝜎𝜌𝜈
𝜌

= 𝛿𝛤  𝜈𝜎 ; 𝜌
𝜌

−𝛿𝛤  𝜌𝜎 ; 𝜈
𝜌

= 𝛻𝜌𝛿𝛤  𝜈𝜎
𝜌

− 𝛻𝜈𝛿𝛤  𝜌𝜎
𝜌

                     (21) 

Finally we make the following change  𝜎 → 𝜇 : 

𝛿𝑅𝜇𝜈 = 𝛻𝜌𝛿𝛤  𝜈𝜇
𝜌

− 𝛻𝜈𝛿𝛤  𝜌𝜇
𝜌

                                              (22) 
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Appendix 3 
 

In this appendix we will demonstrate the following expression: 

𝑔𝜇𝜈𝛿𝑅𝜇𝜈 = −∇𝜇∇𝜈𝛿𝑔𝜇𝜈 + 𝑔𝜇𝜈□𝛿𝑔𝜇𝜈                                    (23) 

We will take the result in the appendix 2. 

𝑔𝜇𝜈𝛿𝑅𝜇𝜈 = 𝑔𝜇𝜈(𝛻𝜌𝛿𝛤  𝜈𝜇
𝜌

− 𝛻𝜈𝛿𝛤  𝜌𝜇
𝜌

) = 𝛻𝜌𝑔𝜇𝜈𝛿𝛤  𝜈𝜇
𝜌

− 𝛻𝜈𝑔𝜇𝜈𝛿𝛤  𝜌𝜇
𝜌

             (24) 

For the second term we make the following index change: 𝜈 → 𝜌, 𝜌 → 𝛾 

 

𝛻𝜌𝑔𝜇𝜈𝛿𝛤  𝜈𝜇
𝜌

− 𝛻𝜈𝑔𝜇𝜈𝛿𝛤  𝜌𝜇
𝜌

= 𝛻𝜌(𝑔𝜇𝜈𝛿𝛤  𝜈𝜇
𝜌

− 𝑔𝜇𝜌𝛿𝛤  𝛾𝜇
𝛾

)                        (25) 

The Christoffel symbols are expressed in terms of the metric as follows: 

 

𝛤  𝜇𝜈 
𝜆 =

1

2
𝑔𝛼𝜆(𝑔𝛼𝜈,𝜇 + 𝑔𝛼𝜇,𝜈 − 𝑔𝜇𝜈,𝛼)                                    (26) 

We know from appendix 2 that this amount is a tensor, so it can be shown that: 

 

𝛿𝛤  𝜈𝜇 
𝜌

=
1

2
𝑔𝜌𝛼(𝛿𝑔𝛼𝜇;𝜈 + 𝛿𝑔𝛼𝜈;𝜇 − 𝛿𝑔𝜈𝜇;𝛼)                               (27) 

For the other quantity we have: 

 

𝛿𝛤  𝛾𝜇
𝛾

=
1

2
𝑔𝛼𝛾(𝛿𝑔𝛼𝜇;𝛾 + 𝛿𝑔𝛼𝛾;𝜇 − 𝛿𝑔𝛾𝜇;𝛼) = 

=
1

2
(𝛿𝑔𝛼𝛾𝑔𝛼𝜇;𝛾 + 𝑔𝛼𝛾𝛿𝑔𝛼𝛾;𝜇 − 𝛿𝑔𝛼𝛾𝑔𝛾𝜇;𝛼) = 

1

2
(𝛿𝑔   𝜇:𝛾

𝛾
+ 𝑔𝛼𝛾𝛿𝑔𝛼𝛾;𝜇 − 𝛿𝑔   𝜇:𝛼

𝛼 )                                        (28) 

Making an index change in the third term → 𝛾 :  

 

𝛿𝛤  𝛾𝜇
𝛾

=
1

2
𝑔𝛼𝛾𝛿𝑔𝛼𝛾;𝜇                                                 (29) 

Once the two quantities  𝛿𝛤  𝜈𝜇 
𝜌

and 𝛿𝛤  𝛾𝜇
𝛾

 have been obtained, we are interested in expressing 

each of them as a function of 𝛿𝑔𝜇𝜈. For this we use the following results: 
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𝛿𝑔𝛼𝛽 = −𝑔𝛼𝜈𝑔𝛽𝜇𝛿𝑔𝜇𝜈 ;  𝑔𝛼𝛽𝑔𝛽𝛾 = 𝛿𝛾
𝛽

 ;  𝛿𝛾
𝛽

𝑔𝛼𝜈𝛿𝑔𝜈𝛾 = 𝑔𝛼𝜇𝛿𝑔𝛽𝜇 ;  ∇𝜎= 𝑔𝜎𝛾∇𝛾     (30) 

Obtaining: 

1) 𝛿𝛤  𝜈𝜇 
𝜌

 

𝛿𝛤  𝜈𝜇 
𝜌

=
1

2
𝑔𝜌𝛼(𝛿𝑔𝛼𝜇;𝜈 + 𝛿𝑔𝛼𝜈;𝜇 − 𝛿𝑔𝜈𝜇;𝛼) =

1

2
𝑔𝜌𝛼(∇𝜈𝛿𝑔𝜇𝛼 + ∇𝜇𝛿𝑔𝜈𝛼 − ∇𝛼𝛿𝑔𝜈𝜇) = 

= −
1

2
(𝑔𝜇𝛼∇𝜈𝛿𝑔𝜌𝛼 + 𝑔𝜈𝛼∇𝜇𝛿𝑔𝜌𝛼 − 𝑔𝜈𝜆𝑔𝜇𝜎∇𝜌𝛿𝑔𝜆𝜎)                        (31) 

2) 𝛿𝛤  𝛾𝜇
𝛾

 

𝛿𝛤  𝛾𝜇
𝛾

=
1

2
𝑔𝛼𝛾𝛿𝑔𝛼𝛾;𝜇 = −

1

2
𝑔𝜆𝜎∇𝜇𝛿𝑔𝜆𝜎                                 (32) 

Now we can evaluate the following term: 

𝑔𝜇𝜈𝛿𝛤  𝜈𝜇
𝜌

− 𝑔𝜇𝜌𝛿𝛤  𝛾𝜇
𝛾

= 

= −
1

2
(𝑔𝜇𝜈𝑔𝜇𝛼∇𝜈𝛿𝑔𝜌𝛼 + 𝑔𝜇𝜈𝑔𝜈𝛼∇𝜇𝛿𝑔𝜌𝛼 − 𝑔𝜇𝜈𝑔𝜈𝜆𝑔𝜇𝜎∇𝜌𝛿𝑔𝜆𝜎 − 𝑔𝜇𝜌𝑔𝜆𝜎∇𝜇𝛿𝑔𝜆𝜎) = 

= −
1

2
(𝛿𝛼

𝜈∇𝜈𝛿𝑔𝜌𝛼 + 𝛿𝛼
𝜇

∇𝜇𝛿𝑔𝜌𝛼 − 𝛿𝜆
𝜇

𝑔𝜇𝜎∇𝜌𝛿𝑔𝜆𝜎 − 𝑔𝜆𝜎∇𝜌𝛿𝑔𝜆𝜎) = 

= −
1

2
(2∇𝛼𝛿𝑔𝜌𝛼 − 2𝑔𝜆𝜎∇𝜌𝛿𝑔𝜆𝜎) = 𝑔𝜆𝜎∇𝜌𝛿𝑔𝜆𝜎 − ∇𝛼𝛿𝑔𝜌𝛼 = 

= 𝑔𝜆𝜎∇𝜌∇𝜌(𝛿𝑔𝜆𝜎) − ∇𝜌∇𝛼(𝛿𝑔𝜌𝛼) = 𝑔𝜆𝜎∇𝜌∇𝜌(𝛿𝑔𝜆𝜎) − ∇𝜆∇𝜎(𝛿𝑔𝜆𝜎) = 

= 𝑔𝜆𝜎∇𝜆∇𝜆(𝛿𝑔𝜆𝜎) − ∇𝜆∇𝜎(𝛿𝑔𝜆𝜎) = 𝑔𝜆𝜎𝑔𝜆𝜎∇𝜆∇𝜎(𝛿𝑔𝜆𝜎) − ∇𝜆∇𝜎(𝛿𝑔𝜆𝜎) = 

= 𝑔𝜆𝜎□𝛿𝑔𝜆𝜎 − ∇𝜆∇𝜎𝛿𝑔𝜆𝜎                                              (33) 

If we make the following changes: → 𝜇 , 𝜎 → 𝜈 we finally obtain (Trilleras, 2012):  

𝑔𝜇𝜈𝛿𝑅𝜇𝜈 = −∇𝜇∇𝜈𝛿𝑔𝜇𝜈 + 𝑔𝜇𝜈□𝛿𝑔𝜇𝜈                                   (34 
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Appendix 4 
 

The Robertson-Walker metric can be expressed as follows in Cartesian coordinates: 

 

𝑑𝑠2 = −𝑑𝑡2 + 𝑎2(𝑡) · [𝑑𝑥2 + 𝑑𝑦2 + 𝑑𝑧2]                                   (35) 

 

From this metric, the metric tensor, the Christoffel symbols and finally the corresponding 

Riemann curvature tensor are obtained. By means of the contraction of this tensor we obtain 

the Ricci tensor and by a second contraction the Ricci scalar. 

Taking into account the following relations: 

𝐻 =
�̇�

𝑎
                                                                (36) 

�̇� =
�̈�𝑎−�̇��̇�

𝑎2 =
�̈�

𝑎
− (

�̇�

𝑎
)

2

                                                (37) 

 

The points denote temporal derivatives. We can express the Ricci scalar in the following way: 

𝑅 = 6 (
�̈�

𝑎
+ (

�̇�

𝑎
)

2

) = 6(2𝐻2 + �̇�)                                     (38) 

 

We also express the non-zero components of the Ricci tensor: 

𝑅00 = −3
�̈�

𝑎
= −3(�̇� + 𝐻2) = −3(�̇� + 2𝐻2 − 𝐻2) = −

𝑅

2
+ 3𝐻2              (39) 

𝑅11 = 𝑅22 = 𝑅33 = 𝑎�̈� + 2�̇�2 = 𝑎2(�̇� + 2𝐻2)                            (40) 

For a perfect fluid it can be shown that its stress-energy tensor is diagonal and takes the 

following form 

: 

𝑇𝜇𝜈
(𝑀) = (𝜌 + 𝑃)𝑢𝜇𝑢𝜈 + 𝑃𝑔𝜇𝜈                                         (41) 

Reminding that the equations derived from the principle of action are the following: 

 

𝐹(𝑅)𝑅𝜇𝜈 + (−∇𝜇∇𝜈 + 𝑔𝜇𝜈□)𝐹(𝑅) − 𝑓(𝑅)
1

2
𝑔𝜇𝜈 = 𝜅𝑇𝜇𝜈

(𝑀)                  (42) 
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We demonstrate the case:  𝜇 = 𝜈 = 0 taking into account the perfect fluid and the Robsertson-

Walker metric. 

𝐹(𝑅)𝑅00 + (−∇0∇0 + 𝑔00□)𝐹(𝑅) − 𝑓(𝑅)
1

2
𝑔00 = 𝜅𝑇00

(𝑀)                   (43) 

(−
𝑅

2
+ 3𝐻2) 𝐹(𝑅) − (∇0∇0 + □)𝐹(𝑅) + 𝑓(𝑅)

1

2
= 𝜅𝜌                        (44) 

We can use the following notation: 

∇0∇0𝐹(𝑅) = 𝜕0
2𝐹(𝑅)                                                    (45) 

It can be shown that: 

□𝐹(𝑅) = −𝜕0
2𝐹(𝑅) − 3

�̇�

𝑎
𝜕0𝐹(𝑅)                                         (46) 

Applying the chain rule: 

(∇0∇0 + □)𝐹(𝑅) = −3
�̇�

𝑎
𝜕0𝐹(𝑅) = −3

�̇�

𝑎
𝜕𝑅𝐹(𝑅)𝜕0𝑅 = −3𝐻𝐹′(𝑅)�̇�             (47) 

Going back to the previous equation and substituting: 

(−
𝑅

2
+ 3𝐻2) 𝐹(𝑅) + 3𝐻𝐹′(𝑅)�̇� + 𝑓(𝑅)

1

2
= 𝜅𝜌                              (48) 

3𝐹𝐻2 =
𝐹𝑅−𝑓

2
− 3𝐻𝐹′(𝑅)�̇� + 𝜅𝜌 =

𝐹𝑅−𝑓

2
− 3𝐻�̇� + 𝜅𝜌                        (49) 
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Appendix 5 

 

In this appendix we will demonstrate the following expression: 

3𝜙□ + 2𝑈(𝜙) − 𝜙
𝛿𝑈(𝜙)

𝛿𝜙
= 𝜅𝑇                                          (50) 

We start representing the Brans-Dicke action: 

𝑆[𝑔] = ∫ √−𝑔 [
𝜙𝑅

2𝜅
− 𝑈(𝜙)] 𝑑4𝑥 +  𝑆𝑀                                  (51) 

We take a variation of that action: 

𝛿𝑆[𝑔] = ∫ {𝛿√−𝑔 [
𝜙𝑅

2𝜅
− 𝑈(𝜙)] + √−𝑔 [

𝛿𝜙𝑅

2𝜅
+

𝜙𝛿𝑅

2𝜅
− 𝛿𝑈(𝜙)]} 𝑑4𝑥 +  𝛿𝑆𝑀         (52) 

We take in mind some expressions: 

𝛿𝑅 = 𝑅𝜇𝜈𝛿𝑔𝜇𝜈 − ∇𝜇∇𝜈𝛿𝑔𝜇𝜈 + 𝑔𝜇𝜈□𝛿𝑔𝜇𝜈                                  (53) 

𝛿√−𝑔 = −
1

2
√−𝑔𝛿𝑔𝜇𝜈𝑔𝜇𝜈                                             (54) 

We also need to consider this calculus: 

𝛿𝑈(𝜙)

𝛿𝜙
=

𝑅(𝜙)+𝑅′(𝜙)𝜙−𝑓′(𝑅(𝜙))𝑅′(𝜙)

2𝜅
=

𝑅(𝜙)+𝑅′(𝜙)𝜙−𝜙𝑅′(𝜙)

2𝜅
=

𝑅(𝜙)

2𝜅
             (55) 

With all this, substituting 𝛿𝑅 ,𝛿√−𝑔, and bearing in mind the latest result, dividing by 𝛿𝜙 and 

identifying common terms: 

𝛿𝑆[𝑔]

𝛿𝜙
= ∫ {√−𝑔 (−

1

2
𝑔𝜇𝜈 [𝜙

𝛿𝑈(𝜙)

𝛿𝜙
− 𝑈(𝜙)] + [

𝜙

2𝜅
(𝑅𝜇𝜈 − ∇𝜇∇𝜈 + 𝑔𝜇𝜈□)])

𝛿𝑔𝜇𝜈

𝛿𝜙
} 𝑑4𝑥 +  

𝛿𝑆𝑀

𝛿𝜙
 (56) 

 

Taking the expression of 𝑆𝑀 and taking 
𝛿𝑆[𝑔]

𝛿𝜙
= 0 

√−𝑔 (−
1

2
𝑔𝜇𝜈 [𝜙

𝛿𝑈(𝜙)

𝛿𝜙
− 𝑈(𝜙)] + [

𝜙

2𝜅
(𝑅𝜇𝜈 − ∇𝜇∇𝜈 + 𝑔𝜇𝜈□)])

𝛿𝑔𝜇𝜈

𝛿𝜙
=

𝛿𝐿𝑀

𝛿𝜙
             (57) 

The stress-energy tensor is identified again 𝑇𝜇𝜈 : 
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−
1

2
𝑔𝜇𝜈 [𝜙

𝛿𝑈(𝜙)

𝛿𝜙
− 𝑈(𝜙)] + [

𝜙

2𝜅
(𝑅𝜇𝜈 − ∇𝜇∇𝜈 + 𝑔𝜇𝜈□)] =

1

2
𝑇𝜇𝜈                     (58) 

Multiplying by 𝑔𝜇𝜈: 

−
1

2
𝑔𝜇𝜈𝑔𝜇𝜈 [𝜙

𝛿𝑈(𝜙)

𝛿𝜙
− 𝑈(𝜙)] + [

𝜙

2𝜅
𝑔𝜇𝜈𝑅𝜇𝜈 −

𝜙

2𝜅
𝑔𝜇𝜈∇𝜇∇𝜈 +

𝜙

2𝜅
𝑔𝜇𝜈𝑔𝜇𝜈□] =

1

2
𝑔𝜇𝜈𝑇𝜇𝜈   (59) 

Taking into account that: 

𝑔𝜇𝜈𝑔𝜇𝜈 = 𝛿𝜇
𝜇

= 4                                                      (60) 

𝑔𝜇𝜈𝑅𝜇𝜈

2𝜅
=

𝑅

2𝜅
=

𝛿𝑈(𝜙)

𝛿𝜙
                                                    (61) 

𝑔𝜇𝜈∇𝜇∇𝜈= □                                                         (62) 

𝑔𝜇𝜈𝑇𝜇𝜈 = 𝑇                                                          (63) 

𝑉(𝜙) = 2𝜅 · 𝑈(𝜙)                                                    (64) 

We put the latest expression like as follows: 

−2 ·
1

2𝜅
[𝜙

𝛿𝑉(𝜙)

𝛿𝜙
− 𝑉(𝜙)] +

1

2𝜅
[𝜙

𝛿𝑉(𝜙)

𝛿𝜙
− 𝜙□ + 4𝜙□] =

1

2
𝑇                     (65) 

3𝜙□ + 2𝑉(𝜙) − 𝜙
𝛿𝑉(𝜙)

𝛿𝜙
= 𝜅𝑇                                         (66) 
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Appendix 6 

 

In that appendix we will demonstrate the following expression: 

𝐻 = −
1

1+𝑧

𝑑𝑧

𝑑𝑡
                                                          (67) 

 

We start from the definition of the redshift: 

 

𝑧 =
𝜆𝑜𝑏𝑠−𝜆𝑒𝑚

𝜆𝑒𝑚
                                                          (68) 

𝜆𝑜𝑏𝑠 is the wavelength of the observed object and  𝜆𝑒𝑚 is the real wavelength emitted by that 

object. Thus: 

1 + 𝑧 =
𝜆𝑜𝑏𝑠

𝜆𝑒𝑚
                                                          (69) 

Now we take into account that we have a Robertson-Walker Universe and the expansion of 

the Universe is related to an expansion of the wavelength. Then: 

1 + 𝑧 =
𝑎0

𝑎
                                                            (70) 

𝑎0  is the scale factor of the actual Universe and  𝑎  is the scale factor when the object emitted 

this wave. If we derive the expression by the time in both sides: 

�̇� =
𝑑𝑧

𝑑𝑡
= −

𝑎0�̇�

𝑎2 = −
𝑎0

𝑎

�̇�

𝑎
= −(1 + 𝑧) · 𝐻                                  (71) 

𝐻 = −
1

(1+𝑧)

𝑑𝑧

𝑑𝑡
                                                        (72) 

 

 


