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Abstract

The global optimization is a field of growing interest and developing due to the
wide variety of applications that presents. One of them is treated in this project:
the search of global energy minimum structures for clusters interacting with a
Lennard-Jones or Improved Lennard-Jones potential. Three known methods for
treating this problem are explained: genetic algorithm, simulated annealing and
basin-hopping. The last one has been implemented for clusters containing up to 50
atoms. By means of the results, the main features of the structures and energies of
this type of clusters are analysed.

La optimización global es un campo de creciente interés y desarrollo debido
a la amplia variedad de aplicaciones que presenta. Una de ellas es tratada en
este proyecto: la búsqueda de estructuras de mínima energía para agregados de
átomos interaccionando mediante el potencial de Lennard-Jones o el potencial
de Lennard-Jones mejorado. Tres conocidos métodos para tratar este problema
son explicados: el algoritmo genético, el algoritmo de enfriamiento simulado y
el algoritmo de salto de pozos o cuencas. Este último ha sido programado para
agregados que contienen hasta 50 átomos. A partir de los resultados obtenidos, las
principales características de las energías y las estructuras de este tipo de agregados
son analizadas.
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Chapter 1

Introduction

Finding the global optimum solution for a problem is of great interest in many
fields as economics and science. Particular cases are the design of microprocessor
circuitry and the travelling salesman problem [1]. However, we are going to focus
on the relevance that the global optimization methods have in cluster science.

The potential energy surface (PES) is a function of all the interactions between
atoms or molecules, and although the system was very simple, the PES might have
a large number of local minima.

Following D. J. Wales, "The structure and dynamics of atomic and molecular
clusters, the folding of proteins, and the complicated phenomenology of glasses are
all manifestations of the underlying potential energy surface (PES)"[2]. Moreover,
in many situations the structure that adopts the system is related to the global
minimum of the PES or the free energy surface [3].

The dynamic properties of a system depends upon how the local minima are
connected, while the thermodynamic behaviour depends on the relative potential
energy of the local minima and the volumes of the conformation space associated
with them [2].

The rare gas clusters were the first to be studied experimentally. They are quite
well modelled by the Lennard-Jones (LJ) potential (from Ne to Xe) which is easy
to implement [2]. However, it is a hard problem to optimize because the number
of local minima increases exponentially with the number of atoms according to
empirical evidence [3]. These clusters, up to 100 atoms, are based on the icosahedral
packing. There are a few exceptions as LJ38 and LJ75−77. These cases are convenient
for testing the heuristic global optimization algorithms because the minimum,
corresponding to the icosahedral configuration, acts like a trap and it is far from
the global minimum [1]. For this reason, they are excellent to distinguish between
an useful or useless method. Recently the Improved Lennard-Jones potential (ILJ)
was proposed by F. Pirani et al. [4]. It is more accurate than the LJ, specially for
long and short ranges. Moreover, it is able to describe systems which contain ions.
Therefore, it may allow the comprehension of many other unknown systems [4].

There have been several global optimization methods that have attempted to find
the global minimum of the LJ clusters. Among them, it is the simulated annealing
[3]. This method may be the first generally applicable global optimization algorithm,
and many variations of itself have been explored [2]. However, this method show
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many inconveniences when the number of atoms increases and when the PES is more
complicated. The chapter 3 provides an insight into this method.

On the other hand, the genetic algorithm is a powerful optimization technique. It
have been proved to be very efficient for the structural minimisation of clusters, but
also for the prediction of protein secondary and tertiary structure and the simulation
of protein folding [5]. This method is also explained in the chapter 3.

The last method that is mentioned in the project is the basin-hopping [6].
The approach have achieved promising results as finding in an unbiased search the
global energy minimum for LJ75. The algorithm is discussed in the chapter 3 and
programmed in the chapter 4 for LJ and ILJ potentials.

Eventually, I would like to emphasise that the interest of the global optimization
methods in the study of clusters is not just about finding the global minimum or
local minima close to the global minimum, although, that is obviously what a good
optimization method is supposed to do. Further on, they enable us to realise if a
potential is physically reasonable or not for a certain type of cluster [5].

1.1 Objectives

The motivation of this project is to present an overview of the global optimization
methods currently applied to find the native geometry corresponding to LJ and ILJ
clusters and to program one of them: the basin-hopping method.

First of all, the chapter 2 provides a background information about the potential
energy surface, a brief overview of the inter-atomic potential, and an explanation of
the both mentioned above.

In chapter 3, we discuss about three common global optimization methods
applied to this type of cluster: genetic algorithm, simulated annealing and
basin-hopping.

In the chapter 4 the basin-hopping method is explained clearly through the
explanation of the way we implemented the simulation. In this same chapter, the
results of the global energies minima are presented.

Chapter 5 covers the stability of cluster through the interpretation of the
second-order energy difference obtained. In addition, some of the most special
geometries found are represented and explained, together with information about
our difficulty or facility of finding the global minimum.

The last chapter 6 contains an assessment of the project, which includes possible
improvements of the work we have done and different ways of continuing the project.

1.2 Summary in Spanish

Encontrar la solución óptima para un problema complejo es de gran importancia
para diferentes campos de la ciencia y la economía. Nosotros nos centraremos en la
relevancia que tienen los métodos de optimización global en la ciencia de agregados.
Más concretamente, en los agregados de átomos que interaccionan según el potencial
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de Lennard-Jones y el Lennard-Jones mejorado.

En el capítulo 2 se explicará el origen cuántico de la superficie de energía potencial
y los dos tipos esenciales de potenciales interatómicos que hay: potenciales a pares y
de muchos cuerpos. Por otro lado, se hablará del LJ e ILJ, destacando las ventajas
del ILJ con respecto a su antecesor.

Los métodos de optimización global más destacados para tratar este tipo de
agregados son introducidos en el capítulo 3. Se explica el algoritmo genético y el
algoritmo de enfriamiento simulado de forma bibliográfica, tras una introducción del
problema matemático que supone la optimización global. Al final del capítulo, se
habla brevemente del método de salto de pozos (BH).

El método de salto de pozos es tratado con más profundidad en el capítulo 4,
mediante la explicación de la programación realizada. En este capítulo se muestran
los resultados de las mínimas energías conseguidas.

En el capítulo 5, se habla de las simetrías que suelen presentar este tipo de
agregados. Resaltando algunas de ellas como el icosaedro de 13 átomos o el octaedro
truncado de 38 átomos, debido a su especial estabilidad y a la dificultad que supone
encontrar la configuración de mínima energía, respectivamente.

En el último capítulo, el capítulo 6, se realiza una valoración del trabajo. En ella
se incluyen posibles mejoras que se podrían realizar al trabajo y diferentes formas
para continuar el proyecto.
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Chapter 2

Lennard-Jones and Improved
Lennard-Jones potentials

Choosing a suitable potential energy function is essential in order to determine
the ground state of a system as the global minimum configuration of the potential
energy surface. In this chapter, we discuss why we can talk about the potential
energy surface, through the explanation of a fundamental approximation in
molecular physics: the Born-Oppenheimer approximation. After that, an overview
of the inter-atomic potentials is given. Then, the venerable Lennard-Jones potential
and the Improved Lennard-Jones are explained, together with a reflection of the
enhancements the Improved Lennard-Jones brings.

2.1 Born-Oppenheimer approximation

Throughout the introduction we have talked about the potential energy surface
or free energy surface. However, how can we evaluate the energy of an atomic system
by only taking into account the positions of the nuclei? What about the electrons?
The Born-Oppenheimer approximation give us the answer that enable us to consider
the very notion of potential energy surface [2].

Suppose a system with n electrons, with mass me and positions x = {xi} and N
nuclei, with massMt and positions X = {Xt}. The corresponding time-independent
Schrödinger equation is

[
−

N∑
t=1

h̄2

2Mt

∇2
t −

n∑
i=1

h̄2

2me

∇2
i + V (x,X)

]
ψ(x,X) = Etotalψ(x,X) , (2.1)

being the potential energy

V (x,X) =
e2

4πε0

[
−

n,N∑
i,t

Zt

rit
+
∑
i<j

1

rij
+
∑
t<s

ZtZs

rts

]
, (2.2)

Zt is the atomic number of the nucleus labelled t, h̄ is the reduced Planck
constant, e is the charge of the electron and ε0 is the absolute dielectric permittivity

4



of vacuum. The distance between the electron labelled i and the nucleus labelled
t is rit. Similarly, the separation between the electrons labelled i and j is rij and
between the nuclei t and s is rts. The terms of the potential are the electron-nucleus,
the electron-electron and the nucleus-nucleus Coulomb interaction.

The distance term rit (electron-nucleus interaction) prevent our Hamiltonian
from being separable. Nevertheless, due to the huge difference between the mass
of the nuclei and the electron (mp ≈ 1836me, being mp the mass of the proton),
Born and Oppenheimer reasoned that the electron density should adjust almost
instantaneously to changes in the position of the nuclei [2]. The approximation of
the wave-function is

ψ(x,X) = ψe(x; X)ψn(X) , (2.3)

where ψe represent the solution of the electron Hamiltonian. The electronic part
satisfies the equation

[Ĥ − T̂n]ψe(x; X) = Ve(X)ψe(x; X) , (2.4)

being Ĥ the total Hamiltonian operator, which is the term in square brackets
of the equation 2.1, and T̂n the nuclear kinetic energy operator which corresponds
with the first term of the expression 2.1. The electronic wave-function depends upon
the positions of the electrons and upon the nuclei positions parametrically. Nuclear
positions appeared as fixed points because the equation 2.4 is solved for each nuclear
configuration.

The potential energy surface defines the variation of the electronic energy,
Ve(X) with the nuclear geometry. We form the PES with the ground electronic
configuration that it is the most likely configuration at low temperatures. Moreover,
the first excited may not be a bound state.

Eventually, if we want to find the total wave-function, we have to solve the
nuclear part of Schrödinger equation.

[T̂n(X) + Ve(X)]ψn(X) = Etotalψn(X) (2.5)

2.2 Inter-atomic potentials

The energy of a system of N atoms interacting according to a certain potential
can be expanded as the following

U(~r1, ~r2... ~rN) =
N∑
i

U1(~ri) +
N∑
i

N∑
j<i

U2(~ri, ~rj) +
N∑
i

N∑
j<i

∑
k<j

U3(~ri, ~rj, ~rk) + ... (2.6)

The first term, U1, is due to an external field or to boundary conditions. U2

takes into account the interaction between each pair of particles that are part of the
system, the presence of the other atoms does not affect. It is necessary to impose the
condition j < i in order to count the pairs only once. In the term U3, we consider
the influence of a third atom presence.
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Based on this expansion the inter-atomic potentials can be classified in two
groups: pair potentials and many-body potentials. The first group only takes into
account U2 (when we set U1 to zero considering that there isn’t an external field),
whilst the second group of potential considers higher potential orders. The potentials
used in this project are pair potentials.

2.3 Description of the Lennard-Jones potential

The Lennard-Jones potential describes the potential energy of interaction of
a two non-bonding atoms or molecules based on the distance between them. It
was suggested by Mie in 1903 and later, it was proposed by Sir John Edward
Lennard-Jones in 1924. Although it is not the most accurate model for the
interaction between rare gas atoms, it is considerably widespread because of
its computational expediency. In addition, it is remarkable that many of the
global minimum structures have been observed experimentally for clusters of atoms
covering a wide range of the periodic table [2]

The Lennard-Jones potential consists in two contributions: a steep repulsive
term, and a smoother attractive term. The repulsive term is the result of the
repulsion between the electrons clouds of the atoms or molecules when they are
close enough. By contrast, the dipole-induced dipole-induced interaction between
particles is the cause of the attractive contribution. The functional form of this
potential is the following:

VLJ(r) = 4ε

[(σ
r

)12

−
(σ
r

)6
]

, (2.7)

where ε is the depth of the potential well, σ is the finite distance at which the
inter-particle potential is zero and r is the distance between particles.

The second term which appeared in the expression (2.7) is the attractive one.
Due to this term the atoms tend to come closer each other until the first term of
the equation, the repulsive one, has a significant contribution.

In order to simplify the units, we are going to set ε = 1 and σ = 1 hereinafter.

In the two particle system it is trivial to find the overall minimum which is
assumed at a distance 21/6 with energy -1. In the figure 2.1, it’s shown the energy
landscape for the two particle system for both LJ and ILJ potentials. We can see
that when the distance between particles tends to zero the energy diverges. On the
other hand, when the distance becomes very large, the energy contribution decreases
until being virtually null.

2.4 Improved Lennard-Jones potential

The Lennard-Jones potential is widely used in Molecular Dynamics and Monte
Carlo methods. It is well known that this model is highly accurate in the equilibrium
range. However, it overestimates the strength of the long range attraction and short
range repulsion. It is remarkable that the Improved Lennard-Jones only involves
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a new parameter with respect to the Lennard-Jones potential. That’s one of the
reasons why it is called "Improved Lennard-Jones" [4].

The ILJ potential has the analytical form

VILJ(r) = ε

(
m

n(r)−m

(rm
r

)n(r)

− n(r)

n(r)−m

(rm
r

)m)
, (2.8)

where ε and rm represent respectively the depth of the potential well and its location.
n(r) is a function that depends on r

n(r) = β + 4

(
r

rm

)2

, (2.9)

β is a parameter related to the hardness of the two interacting particles. In this
project, it is going to be assumed constant, fixed to 9 [4].

A direct advantage of this potential with respect to LJ is its capacity of describing
systems that are composed of ions. The factor m assumes the value m = 6 for
neutral-neutral system,m = 4 for ion-neutral systems andm = 1 for ion-ion systems.

In order to place the overall minimum at the same distance for both potentials
in the two-particle system, we have to impose rm = 21/6. That’s what we have done
hereinafter.

In the figure 2.2, we can observe that the behaviour around the equilibrium
distance is qualitatively the same for both potentials. In the figure 2.2, we can see
that in the nearest region to the equilibrium distance, the Lennard-Jones potential
has lower energy than the ILJ. Nevertheless, in figure 2.3 it is shown that the LJ
behaviour at shorter distances is steeper than the one estimated through the ILJ.
The ILJ behaviour describes better the experimental measures.

Figure 2.1: Representation of the LJ and ILJ potentials in the two-particle system.
Set units (ε = 1, σ = 1, rm = 21/6)
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Figure 2.2: Comparison of the nearest equilibrium range behaviour. Set units (ε = 1,
σ = 1, rm = 21/6)

Figure 2.3: Comparison of the short distance behaviour. Set units (ε = 1, σ = 1,
rm = 21/6)
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2.5 Summary in Spanish

Elegir un potencial de interacción entre átomos es esencial a la hora de encontrar
la estructura molecular de mínima energía global. La definición de superficie de
energía potencial (PES) surge de la aproximación de Born-Oppenheimer. En ella
se supone que al ser los electrones mucho más ligeros que los núcleos, es posible
desacoplar los movimientos electrónico y nuclear.

Los potenciales pueden diferenciarse en dos tipos: a pares y de muchos cuerpos.
Los primeros de ellos, solo tienen en cuenta las interacciones de pares de partículas
y dependen únicamente de la distancia entre ellas. El potencial de Lennard-Jones
es un potencial a pares de uso bastante frecuente, describe considerablemente bien
el comportamiento de los gases nobles (desde el Ne hasta el Xe) y es muy sencillo
de evaluar en sistemas de átomos neutros. Una mejora reciente de este potencial,
el Lennard-Jones mejorado, permite además describir sistemas que contienen iones.
Su comportamiento en la región de equilibrio es prácticamente el mismo que el LJ,
sin embargo, a mayores y menores distancias su comportamiento se asemeja más a
los datos experimentales.
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Chapter 3

Global optimization methods

In this chapter, some of the most widespread heuristic methods for the global
optimization problem will be introduced. A general introduction of the global and
local optimization problem is followed by a description of the genetic algorithm,
simulated annealing technique and a summery of the basin-hopping method. The
basin-hopping method is explained more extensively together with the simulations
made in the next chapter.

3.1 Introduction

Global optimization is a branch of applied mathematics and numerical analysis
whose goal is to find the optimal value of a function from all possible solutions. This
concept differs from the local optimization. A local optimum is an optimal solution
within a neighbouring set of solutions. Let’s illustrate it with the mathematical
definitions.

Let f be a function of x defined on the interval x ∈ Ω.

f(x∗) is a local minimum if there exist a δ > 0 such f(x∗) ≤ f(x) for all
x ∈ {x ∈ Ω : |x− x ∗ | ≤ δ}

By contrast, a global minimum is the smallest function value over all feasible
points: f(x∗) ≤ f(x) for all x ∈ Ω.

Same definitions are valid for the global and local maximum by only changing
f(x∗) ≥ f(x)

There are multiple methods for solving local optimization problems: line search
methods, steepest descent, Newton’s method, Quasi-Newton methods, conjugate
gradients methods, etc [7]. All of them depend on the initial guess. In the global
optimization methods, we normally need some local optimization routine.

As it has been said before, finding the optimal solution for a problem is of
great importance in many science and economic fields, from the travelling salesman
problem to the design of microprocessor circuitry [1]. The first simple approach
we can think for searching an optimum value may be choosing a random point
of the function and using a local optimization method. Through the repetition
of this process, it is likely we find the global optimum. The problem arises when
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the function has a lot of minima or maxima since the method would need a huge
amount of computational time to obtain the solution [3]. This is the case of cluster
optimization problems. For instance, it is estimated at least 1010 minima in the
PES of the cluster LJ55 [1]. A curious thought experiment related is the Levinthal’s
paradox. It says, in essence, that finding the native structure for a folded protein
by a random search takes an enormous amount of time, while proteins can fold in
a matter of seconds or less [8]. For this reason, researchers has created heuristic
algorithms that emulate some natural processes.

3.2 Genetic algorithm

The genetic algorithm is an evolutionary algorithm. It was proposed by John
Holland in 1960, although, the use for optimizing cluster geometries was pioneered
in the 1990’s by Hartke [5]. It is based on the theory of natural evolution. As it
happens in nature, the algorithm represents the processes of mating or crossover,
mutation and natural selection by using three operators.

The process begins with a set of individuals which is called initial population.
The initial population is usually chosen randomly. However, in some cases it may
be interesting to have a prior knowledge, avoiding biasing the search too much [5].
The individuals are also known as chromosomes or strings of variables and they are
featured by its genes and alleles. In this context, the genes are the variables to
be optimized, whilst the alleles are the values of the variables. The figure 3.1 may
clarify the previous exposed concepts.

Figure 3.1: Representation of a chromosome or individual with its genes and alleles.
Image extracted from reference [5].

For this algorithm to succeed in finding the global optimum, it is essential to
measure the quality of the trial function which is represented by the chromosome.
The fitness provides that measure. Fitness determines the likelihood of being chosen
for the crossover process and surviving into the next generation.

Generating "offspring" is creating a new individual throughout the combination
of the genetic information of two individuals, commonly named as parents
(crossover). In order to select the two parents, the two more usual methods are
the "roulette wheel" and "tournament". In the first one, you choose an individual
randomly, if its fitness value is greatest than a random number uniformly distributed
between 0 and 1, that individual is selected. If it is lower, you repeat it with another
individual until one satisfies the requirement. In the "tournament" method, a set
of individuals is chosen randomly. The two individuals that had the highest fitness
are selected.
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Once the "parents" have been selected, there exist several forms of combining
the genes in the "offspring". They differ from each other depending on which part
of the sequence they take from the "parents", if the genes maintain the order they
had or if the genes reorder randomly in the "children". The figure 3.2 illustrates
two common forms of crossover that maintain the order.

Figure 3.2: Two different forms of combining the genes. (a) One-point crossover and
(b) two-point crossover. Image extracted from reference [5].

The crossover process mixes the genes from one generation to the next, but
it doesn’t introduce new genes. By contrast, mutation operator helps to increase
population diversity by making a random change to some genes in an individual.
Introducing new genes is important in order to prevent population from converging
into a non-optimal solution [5].

The genetic algorithm creates generation after generation until it converges into a
solution. There are variety of convergence criteria. One of them is to fix a number of
iterations and the algorithm will simply stop running in the last generation. Another
is to stop when the best fitness value of the generation is changing by a small fixed
amount.

3.3 Simulated annealing

The term annealing is widely used in metallurgy. Annealing is a heat
treatment that involves heating a material above its crystallization temperature
and maintaining a suitable temperature in order to ensure the thermal equilibrium
between particles, followed by a controlled cooling. It is useful for increasing the
size of the crystals and for reducing the imperfections. This technique has inspired
the simulated annealing algorithm.

This method needs a random perturbation or move that creates a new solution
from another previous and a criteria for deciding if the new solution is accepted
or not. It was quickly applied to cluster problems by means of the Monte Carlo
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method. In particular, it is used the Metropolis algorithm in which moves are
accepted according to a Boltzmann probability, e−∆E/kBT , where ∆E = Ei+1 − Ei

is the energy difference between two states, kB is the Boltzmann constant and T is
the temperature [3].

The basic iteration consists in comparing the current state with another in its
neighborhood, and deciding between moving to the new solution or staying in the
old one. In the case of clusters, the new set of positions are generated through the
application of the next random perturbation to each coordinate.

xi+1 = xi + 2s(δ − 0.5) , (3.1)

where δ is a random number uniformly distributed between 0 and 1. The
acceptation of the new solution is affected by the parameters s and T . A greater
s, allows the method to pick randomly the new solution from a wider interval. The
temperature affects directly to the Boltzmann probability.

If Ei+1 < Ei, the new solution is accepted immediately. However, if Ei+1 > Ei,
the new solution may be accepted if it satisfies

e−∆E/kBT > γ , (3.2)

being γ a random number uniformly distributed between 0 and 1.

Early in the search, the temperature is higher and simulated annealing explores
freely the configuration space. For each temperature a number of iterations are
performed. The temperature decreases logarithmically as T → χT with χ < 1 [3].
When the search progresses and the temperature is lower, the simulated annealing
become greedy and accept much less sets of solutions.

A disadvantage of the method is that it is easy to get trapped in a local
minimum and don’t explore all the configuration space. Such effect can be reduced
by decreasing slower the temperature.

The flowchart 3.3 may clarify the steps taken in the simulated annealing.

3.4 Basin-hopping

The algorithm in its current form was described by David J. Wales and Jonathan
P. K. Doye in 1997. The method consists in a transformation of the potential energy
surface which does not change the global minimum. With this technique the energy
at each point in the configuration space is assigned to a local minimum. In the figure
3.4 the energy transformation is shown for a one dimensional problem [6].

This technique has been proved to locate successfully the lower energy structures
up to N = 110 for the Lennard-Jones clusters. Moreover, it is remarkable that it
has been the first unbiased search method to find the global minimum for LJ75 and
LJ102 clusters, which are based on the Mark’s decahedron structure [6].
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Figure 3.3: Flowchart of the simulated annealing, extracted from reference [9]. Set
units (kB = 1).

Figure 3.4: Energy transformation for a one dimensional example. Image extracted
from reference [6]

14



3.5 Summary in Spanish

La búsqueda del valor óptimo de una función es de gran importancia en diferentes
campos de la ciencia y de la economía. Se trata de un problema matemático de
gran dificultad cuando la superficie de energía potencial o la función tienen un
gran número de mínimos, y es por ello, por lo que los científicos han diseñado
algoritmos heurísticos que permitan reducir el tiempo computacional. Entre estos
algoritmos se encuentra el algoritmo genético, el cual se basa en la teoría natural
de la evolución, representando con operadores los procesos de selección, mutación
y apareamiento. Por otro lado, se tiene el simulated annealing o algoritmo de
enfriamiento simulado que se basa en perturbar el estado original para obtener otro
nuevo y decidir probabilísticamente si cambiar o no de estado. La temperatura
infuye en la probabilidad de aceptación, cuanto mayor es, más explora el espacio
de configuración y viceversa. La temperatura disminuye a medida que avanza el
proceso. Este algoritmo tiene la desventaja de quedarse atrapado en mínimos
locales y no ser capaz de salir de ellos una vez la temperatura ha disminuido.
Esta desventaja no la tiene el algoritmo de salto de pozos (BH). Consiste en una
transformación de la superficie de energía potencial, que no modifica el mínimo
global y suaviza la PES, y es la primera técnica no dirigida que ha conseguido
encontrar el mínimo global para LJ75 y LJ102
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Chapter 4

Simulations

In the project, the global minimum structures of the clusters up to 50 atoms
have been obtained for both LJ and ILJ potentials by means of the basin-hopping
algorithm. The clusters considered are composed by neutral atoms and we have
used, as we mentioned before, the units where σ = 1, ε = 1 and rm = 21/6 in the
equations 2.7 and 2.8. But also, in order to simplify even more, in the units used
kB = 1. In this chapter, all the significant steps taken for the implementation of the
algorithm and the results obtained for the energies are fully discussed.

4.1 Basin-hopping: the method followed

In first place, an initial state must be supposed. As we want to do an unbiased
search, it is going to be set randomly. An easy form and the one that we have used,
is to place the N atoms inside a sphere of radius 3.

Once we have the distribution, it is applied a local minimisation

V ( ~X) = min{V ( ~X)} (4.1)

It is important to realise that the equation 4.1 is applied to each new
configuration, not to the whole potential energy surface [2].

When the minimization is performed, it is vital that the atoms were still inside
the sphere, otherwise the result could be an atom far from the others and a local
minimum configuration of the remaining atoms. If the isolated atom was far enough,
through the perturbation it wouldn’t reach the others. Consequently, the global
minimum of the whole cluster couldn’t be obtained in that trajectory.

The next step is to perturb the state in order to obtain another new state in the
neighbourhood of the original. The process used is the one also explained for the
simulated annealing in the previous chapter. Through the equation 3.1, a new state
is generated and then, local minimized by means of the application of the expression
4.1.

The states are compared according to a Boltzmann probability as it is applied
in the simulating annealing.
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This process is repeated until a convergence criteria is acquired. We have just
set a number of steps depending on the number of atoms and the difficulty of finding
the global minimum. Thanks to the Cambridge Energy Landscape Database [10],
we have had the ability of compare our results for the Lennard-Jones clusters. For
the Improved Lennard-Jones, we have used a new database [11].

As this method carries a lot of computational time, it is interesting to reduce it
as much as we are capable. Apart from changing and simplifying the code in order
to make it less time-consuming, we can modify three parameters in order to achieve
a better performance. They are the sintetic temperature (T ), the step (s) and the
local minimization search routine. The first two parameters affect the acceptance
rate of solutions, which is the number of solutions accepted divided by the number
of iterations performed.

The temperature is usually fixed by running several trajectories for a cluster at
different temperatures. The temperature selected will be the one that obtains the
global minimum in the lowest number of steps. In the table 4.1 the means of the
lowest step, in which the global minimum was achieved, for different temperatures
are shown in the case of LJ13 cluster. Each mean was calculated with 15 trajectories
and the number of iterations was fixed to 500. According to the results, the best
temperature in this case is 0.8.

T 0.5 0.6 0.7 0.8 0.9 1.0
Step 17.26 21.33 18.33 15.00 22.00 21.53

Table 4.1: Data for determining the best temperature for LJ13

However, I would like to highlight that this procedure to fix the temperature to
its optimal value can only be made by knowing the global minimum beforehand.
And as D. J. Wales said in the reference [2]: "finding optimal parameters for a
problem that is already solved is probably only worthwhile if those parameters are
then close to optimal for other problems of interest". We have fixed the temperature
to 0.8, but it may not be the optimum temperature for all the clusters studied. If we
are studying clusters containing a few atoms, the global minimum will be probably
known and this procedure could be applied. When the size of the clusters increases,
we can change the temperature for different trajectories in order to see what minima
it detects depending on the temperature and select the one which implies better
results.

By the other hand, we have implemented a variable step. Essentially, we have
calculated the acceptance rate each 100 iterations of the loop. If it was lower than
the 50% the step was multiplied by the factor 1.1. If the contrary occurs, the factor
was 0.9. However, we realize that for the clusters up to 50 atoms, the improvement
was not significant, so we finally decided to fix s to 0.3.

The local minimisation search routine used in the simulation is a Quasi-Newton
method called L-BFGS, since according to the reference [2], it is, at present, the
fastest method that can be applied to a large systems. It is a limited-memory
quasi-Newton code for bound-constrained optimization, based on the approximation
of the Broyden–Fletcher–Goldfarb–Shanno algorithm. The routine mentioned works
better if the first derivative of the potential is known analytically. Otherwise, the
routine calculates a numerical derivative which increases the computational time
required. In the appendix A, the derivatives for both LJ and ILJ potentials are
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shown.

4.2 Energies obtained

In chapter 2, the simplest PES was described. Studying the case of the two
interacting particles, we can trivially set a lower bound for the energy of the cluster:
−N(N − 1)/2. However, this lower bound can only be reached in the case of N=2,
3 and 4 corresponding to a dimer, equilateral triangle and a regular tetrahedron
[3]. Consequently, the other energies will be above the parabola that represents the
lower bound.

For the LJ clusters, the curve of the figure 4.1 represents the energy obtained
for each of the 50 atoms. The energies and configurations coincide with the ones
appeared in The Cambridge Energy Landscape Database [10]. For the atoms
N = 1, ..., 20 we set a number of 1000 steps. All the minima were found in the
first run. For the atoms N = 21, ..., 50 we set 5000 steps, with the exception
of 10000 steps for the LJ38 due to its special geometry which is explained in
the next section. In the first run not all the global minima could be found,
N = 27, 34, 37, 38, 40, 42, 43, 44, 47, 48, 49, 50 weren’t achieved at first.
When we run more trajectories, all of them were achieved.

Figure 4.1: Energy per particle for clusters, up to 50 atoms, interacting according
to the Lennard-Jones potential.

As we have seen in chapter 2, the ILJ behaviour in the equilibrium range is
essentially the same as the LJ. That’s why we can see in figure 5.1 that for the first
clusters (N = 2, 3, 4) where the distance between atoms is exactly the equilibrium
distance, there is no difference in the energies. When N becomes larger the difference
of energy per particle between LJ and ILJ increases. This happens due to the fact
that the structure becomes more strained.

Although the energies of the clusters are different depending on the potential we
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use to describe them, the structure they form is essentially the same.

Figure 4.2: Difference of energy per particle between LJ and ILJ potentials, (ILJ −
LJ)/N .

4.3 Summary in Spanish

En nuestra simulación se han usado unidades que consideran que σ = 1, ε = 1 y
rm = 21/6, a parte de kB = 1.

En la primera parte del capítulo, se explican todos los pasos necesarios que se han
implementado en el programa, así como formas de reducir el tiempo computacional.
En la segunda parte, se muestran los resultados obtenidos para las energías y las
desviaciones en energías de un potencial frente al otro. Ha de tenerse en cuenta que
aunque las energías calculadas mediante ambos potenciales difieran, las estructuras
que forman las configuraciones de mínima energía son esencialmente las mismas.
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Chapter 5

Stability and geometries

This chapter aims to describe the geometries that are usually found in LJ and ILJ
clusters. It contains information about the most interesting cases we have treated,
as they are: the complete icosahedron in N=13 and the challenging truncated
octahedron in N=38. It also contains results of the trajectories we have run and
clarifying pictures of the structures obtained.

5.1 Stability

It is well-known that the second-order energy difference is a sensitive physical
parameter which gives information about the stability of the cluster [12]. It is
denoted as ∆2E(N) and it is defined trough the equation

∆2E(N) = E(N + 1) + E(N − 1)− 2E(N) (5.1)

In the figure 5.1 we have represented the second-order energy difference for both
LJ and ILJ. We can realise that some of the peaks of the figure 5.1 correspond to
lower points in the figure 4.1. That’s because they have more stability than the
clusters of the surroundings. It is specially notorious the case of the N = 13 and
N = 19, we talk about these configurations in the next sections.

5.2 Common structures in clusters

The most common packing scheme exhibit by LJ and ILJ clusters are based on
icosahedron. The icosahedron is a polyhedron with 20 faces of equilateral triangles,
30 edges and 12 vertices (faces+vertices-edges=2 for a platonic solid). The figure
5.2 shows the cited configuration [2].

Many different clusters of atoms can be described as layers of close-packed atoms
stacked on top of each other. Hexagonal-close-packed (hcp) and face-centered-cubic
(fcc) patterns are two very common close-packing schemes [2]. The majority of the
LJ clusters are based on icosahedral packing via an underlying Mackay icosahedron
[2]. In a complete Mackay icosahedron the close packing scheme is fcc, while
anti-Mackay icosahedron corresponds to a hcp.
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Figure 5.1: Second-order energy difference for both LJ and ILJ

Figure 5.2: Geometry of an icosahedron
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The number of atoms that forms a complete Mackay icosahedron is obtained
through

1

3
(10n3 + 15n2 + 11n+ 3), n = 1, 2, 3, ... , (5.2)

which leads to the sequence N = 13, 55, 147, 309... The numbers of this sequence
are also known in this context as "magic numbers" because of the notorious stability
of their associated configuration.

As the icosahedron has only 12 vertices, the N = 13 is due to an atom which
is inside the configuration. Due to this atom, the edges are about 5% less than the
equilibrium distance [2].

Icosahedra is more strained than other structures due to the deviation of the
near-neighbour distance from the equilibrium separation. Increasing the size of the
cluster, this effect increases, that’s why there will be a point where other structures
became more stable. But this is still an area of research [2].

When the number of atoms does not form a complete icosahedral, the structure
is usually described as a complete Mackay icosahedron with a layer of some sort.

If the global minimum is not based on an icosahedral structure, as we have said
before, it is interesting testing the global optimization methods in that cluster. This
happens in N = 38, 75 − 77, 98, 102 − 104. The cited cases occurs when there
is an specially stable non-icosahedral structure in addition to having an unstable
incomplete overlayer [2]. In the figure 5.3 we can see the non icosahedral energy
minimum structure mentioned, with the exception of the Leary tetrahedron that
occurs in N = 98.

Figure 5.3: Global energy minimum structures based on non-icosahedral packing.
LJ38, LJ75−77 and LJ102−104 corresponding to a truncated octahedron (the first one)
and Marks decahedra (all the others). Image extracted from the reference [2]

In the sections below we are going to discuss about the interesting structures
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we have obtained (up to 50 atoms): LJ13-ILJ13 icosahedron, LJ38-ILJ38 truncated
octahedra and some more.

5.3 LJ13 and ILJ13 icosahedra

N = 13 cluster has a special stability due to the fact that it forms a complete
Mackay icosahedron. It can be shown in the figure 5.4. It doesn’t present any
difficulty to find the minimum. There is no other structure that compete with the
icosahedron. In fact, the next three lowest energy structures corresponds to an
icosahedron with one atom removed and placed in another layer. Moreover, there
is a relative large energy gap between the Mackay icosahedron and the next lowest
energy, the energy gap is: 2.85ε [2].

Figure 5.4: Structure of the global energy minimum of the cluster N=13. Image
represented by means of the program XCrySDen. [13]

In the figure 4.1, we can see that the energy per particle of N=13 is almost the
same as N=14. That is in concordance with the special stability of this cluster.

5.4 LJ38 and ILJ38 the truncated octahedra

The cluster corresponding toN = 38 presents, by far, the most challenging global
minimum search we have done. In this case, we have two competing alternative
morphologies. On the one hand, they are structures based on icosahedra and on
the other hand we have the face-centered cubic truncated octahedron. This last one
structure corresponds to the global energy minimum configuration. In figure 5.6 it is
shown the structure based on icosahedra, whilst the truncated octahedron is shown
in figure 5.5

For the Lennard-Jones potential, we set 10000 steps and we run 10 trajectories.
The results are shown in the table 5.1. The three energies obtained are the lowest
energies of the corresponding PES [2].
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Figure 5.5: Structure based on a trucated octahedron of the cluster N=38 (lowest
energy structure). Image represented by means of the program XCrySDen. [13]

Figure 5.6: Structure based on icosahedron of the cluster N=38 (second lowest
energy structure). Image represented by means of the program XCrySDen. [13]

Energy (LJ) Step Structure
-173.928426 351, 755, 3058 T.O (fcc)

5415, 5688, 9776
-173.252378 1415, 2660 I.M.I
-173.134317 3580, 3916 I.M.I

Table 5.1: Results obtained for the 10 trajectories performed for LJ38. T.O designs
truncated octahedron and I.M.I incomplete Mackay icosahedron.
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For the Improved Lennard-Jones, we performed, at first, two trajectories with
10000 iterations. Both of them, result in an incomplete Mackay icosahedron: the
second lowest energy of the PES. We decided to set much more iterations, 50000,
although it takes a lot of computational time and we run other 4 trajectories.
However, all of them got trapped in the second lowest energy. We decided to take
a different approach, we set again the number of iterations in 10000 and increase
the temperature to 0.9 and the step to 0.4, in order to explore more the PES. After
changing the temperature, 8 more trajectories were run, obtaining finally the global
minimum in all of them. The results are shown in the table 5.2

Energy (ILJ) Step Structure
-166.167427 828, 9554, 9658, 4609, T.O (fcc)

4626, 5191, 6959, 7720
-165.792799 1627, 7964, 21837, 3536, I.M.I

239029, 48790

Table 5.2: Results obtained for the 14 trajectories performed for the ILJ38 cluster.

5.5 Other interesting cases

The notorious peaks in N=19, 23 and 26 observed in the figure 5.1 correspond to
double, triple and quadruple interpenetrating icosahedra. Configurations for N=19
and N=26 can be observed in figures 5.7 y 5.8. In this case, they are formed by
anti-Mackay overlayer growth [2].

Figure 5.7: Structure of global energy minimum of the cluster N=19. Image
represented by means of the program XCrySDen. [13]

Another interesting structure is the corresponding to N = 45. Although, its
second-order energy difference indicates that it has not remarkable stability, it has
a complete anti-Mackay overlayer. This configuration is shown in the figure 5.9.
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Figure 5.8: Structure of global energy minimum of the cluster N=26. Image
represented by means of the program XCrySDen. [13]

Figure 5.9: Structure of global energy minimum of the cluster N=45. Image
represented by means of the program XCrySDen. [13]
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5.6 Summary in Spanish

En este capítulo se describe la estabilidad de los agregados de átomos mediante
las diferencias de segundo orden de la energía. Los picos de la gráfica se asocian
a los agregados especialmente estables. A continuación, se discute sobre las
estructuras geométricas más comunes para los agreagados de átomos, centrándonos
especialmente en el icosaedro de Mackay, el cual constituye la principal geometría
para los agregados de LJ e ILJ. Finalmente, se incluyen secciones que explican los
casos más relevantes tratados. El icosaedro de Mackay completo en N=13 debido
a su gran estabilidad y el octaedro truncado en N=38 debido a la dificultad para
encontrarlo. También se destacan otros casos debido a su especial forma geométrica.
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Chapter 6

Conclusions

The basin-hopping method is a powerful technique for finding global minimum
structure in clusters. We have been able to implement it and obtain, successfully,
all the energies minima and its corresponding structures up to N = 50 for both LJ
and ILJ potentials.

However, in the case of N = 38 for the ILJ, we have to performed several
trajectories and we couldn’t find the global minimum until we change the
temperature and the step. It’s likely we would have some troubles for next
complicated configurations as N = 75. In order to overcome this problem, we
could implement some improvements to the code. We can implement a variable
temperature similarly the way we implement a variable step in chapter 4, and
compare with the results we have obtained. As an example we have included a
flowchart of a more elaborated version of the basin-hopping that may achieve a better
performance [9]. The method considers as variables: the step, the temperature and
a new input parameter denoted as ν. ν is a parameter which compared the highest
potential, Vh, and the lowest potential, Vl over the particles of the configuration. If
Vh > νVl the perturbation is the same as we have implemented, otherwise the atom
which has Vh is perturbed in other different way.

With the explanation provided in the chapter 3, the simulated annealing could
be easily programmed. However, as we have said previously, the method itself works
correctly for clusters containing a few atoms. On the other hand, programming the
genetic algorithm could be of great interest due to its promising state of art, and
the possibility of comparing it with the basin-hopping, even for larger clusters.

There also exist the possibility of combining methods. That is exactly what was
studied in the paper whose reference is [14]. They combined the simulated annealing
method and the genetic algorithm in order to create an hybrid method, and analyse
its capability of finding the global minimum structure of silicon clusters containing
six and ten atoms. The resulting hybrid approach outperformed the SA and GA.
In addition, it is said, that the method is, in principle, extensible for any other
molecular systems.

To sum up, the global optimization is a relevant and interesting area, which is in
growing development. It has many applications and it enables us to solve problems
with many degrees of freedom. Lennard-Jones and Improved Lennard-Jones clusters,
are an excellent testbed for these methods, due to the simplicity of the analytical
form of the potential and to the complex PES that presents some of the clusters, as
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it is LJ38 and ILJ38.

Figure 6.1: Flowchart of an improved basin-hopping algorithm. It is extracted from
reference [9]

6.1 Summary in Spanish

El método de optimización de salto de pozos (BH) es una herramienta potente a
la hora de encontrar la mínima energía en agregados de átomos. En este proyecto,
hemos conseguido encontrar las estructuras de mínima energía para agregados que
contienen hasta 50 átomos para el potencial LJ y el ILJ.

Sin embargo, como se vio en el caso N=38 para el potencial ILJ, a la temperatura
que se tenía era más dificil encontrar el mínimo global. Es posible que nos
encontremos con problemas similares en otras estructuras no basadas en geometría
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iscosaédrica. Por consiguiente, sería interesante realizar una mejora al algoritmo de
forma que la temperatura varíe según como esté yendo la optimización.

Por otro lado, con la información provista en el trabajo, sería sencillo
implementar el algoritmo de enfriamiento simulado. Sin embargo, puede que no
sea de gran interés, ya que solo nos permitiría estudiar agregados de pocos átomos.
Por el contrario, la implementación del algoritmo genético podría ser de gran interés
y permitirnos comparar los resultados con el basin-hopping incluso para sistemas
que contengan más átomos.

También existe la posibilidad de combinar métodos para formar un nuevo método
híbrido que sea más efectivo que sus predecesores. Este es el caso estudiado en el
artículo de la referencia [14], donde se combinó el algoritmo de enfriamiento simulado
y el algoritmo genético para la optimización de moléculas de silicio que contenían
seis y diez átomos. Este método, en principio es extensible a cualquier otro sistema
molecular.

A modo de resumen, la optimización global es un campo relevante que se
encuentra en creciente desarrollo. Tiene muchas aplicaciones y permite resolver
problemas que tienen muchos grados de libertad. Encontrar el mínimo global de
los agregados de átomos que interaccionan según un potencial de LJ o ILJ, es
un problema fantástico para comprobar la utilidad de estos métodos, debido a la
simplicidad de la forma del potencial y a la complejidad de las PES de los agregados.
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Appendix A

Derivatives of the Lennard-Jones and
Improved Lennard-Jones potentials

The derivative of the Lennard-Jones potential with respect to the distance
between particles is

dVLJ
dr
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Meanwhile the derivative for the improved Lennard-Jones
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In the figure A.1, the derivatives for both LJ and ILJ are shown.
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Figure A.1: Derivatives for both LJ and ILJ potentials
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