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Abstract · Resumen

Abstract

Throughout this project, the case of a composite system formed by a harmonic os-
cillator and a two-state atom will be studied; considering both affect each other as
a consequence of a Jaynes-Cummings interaction, and being both coupled to dif-
ferent reservoirs that are assumed to be independent from each other. The effects
of the decoherence in the evolution of the populations and coherences will be ana-
lyzed; specifically the energy dissipation and the coherence loss, as well as the sta-
tionary states and the relevance of the Jaynes-Cummings interaction. Finally, the
solution of stochastic equations will be analyzed, particularly the evolution of the
expectation value of the position operator for the harmonic oscilator; for the case of
simultaneous measurements in both subsystems, as well as for a measurement in
the harmonic oscillator when the two-state atom undergoes a decoherence process.

Keywords: Decoherence – entanglement – master equation – stochastic master
equation – continuous quantum measurement.

Resumen

En este trabajo se estudiará un sistema compuesto por un oscilador armónico y un
átomo de dos niveles que presentan una interacción del tipo Jaynes-Cummings,
estando cada uno acoplado a un reservorio y asumiendo que éstos son indepen-
dientes entre sí. Se analizarán los efectos de la decoherencia en la evolución de
poblaciones y coherencias; específicamente la disipación de energía y la pérdida de
coherencia, así como los estados estacionarios y la relevancia de la interacción de
Jaynes Cummings. Finalmente, se examinará la solución de ecuaciones estocásti-
cas, concretamente la evolución del valor esperado de la posición para el oscilador
armónico, cuando se realiza una medida simultánea en el sistema de dos niveles;
y cuando únicamente semide éste y el átomo de dos niveles experimenta decoheren-
cia.

Palabras clave: Decoherencia – entrelazamiento – ecuación maestra – ecuación
maestra estocástica – medida cuántica continua.
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1. INTRODUCTION

1 Introduction

La mecánica cuántica es una de las teorías más exitosas de la física, generalmente utilizada en el
ámbito microscópico. Una de sus líneas de investigación estudia la transición desde la mecánica
cuántica a la clásica, pudiendo considerarse esta última como un caso particular de la primera. De
este modo, la decoherencia emerge como un proceso que explica esta transición, concretamente a
través de la interacción de un sistema S con su entornoR, siendo por tanto S un sistema abierto.
Específicamente, el mecanismo provocaría una pérdida de coherencia en el sistema, ligada a la
aparición de una base privilegiada para la matriz densidad, que puede explicar la aparición de
únicamente resultados clásicos cuando se lleva a cabo una medida.

Quantum mechanics is one of the most successfull theories in Physics, since no exper-
iment has ever contradicted its predictions. It is generally accepted its proficiency at
the microscopic level, while classical physics is often associated with the macroscopic
regime. However, this is not a valid criteria, since in some cases such as the cryogenic
version of the Weber bar –a gravity-wave detector–, the device must be treated as a
quantum harmonic oscillator despite weighting about a ton. Therefore, the previous
explanation is proven to be not accurate enough. A crucial difference between the two
arises from the quantum superposition principle, which allows a system to be in a co-
herent superposition of states that account for different potential outcomes, rather than
in a classical, defined state.

In quantummechanics, the time evolution of a system S is given by Schrödinger’s equa-
tion, which is only applicable to closed systems andproduces anunitary evolution, caus-
ing S to remain as a pure state. Nevertheless, macroscopic systems are always interact-
ing with their environment R and, consequently, S will experience a loss of coherence
(decoherence) that leaks into R. Hence, the system will no longer stay in a superposi-
tion of states and only the classical outcome would be perceived. This process, which
accounts for the non-unitary evolution caused by the leak of information, is the so called
decoherence, one of the most renowned approaches to describe the transition from quan-
tum to classical mechanics.

In order to explain this process, let us consider a two-state system S and a two-state
detector D, with orthonormal basis {|↑〉, |↓〉} and {|d↑〉, |d↓〉}, respectively, as described
in [1]. The detector remains in the |d↓〉 state until S has spin state |↑〉:

|↓〉|d↓〉 → |↓〉|d↓〉, |↑〉|d↓〉 → |↑〉|d↑〉. (1.1)

Before the interaction, we can consider S to be in a general pure state |ψS〉 such that the
initial state of the total system |Φi〉 is given by

|Φi〉 = |ψS〉|d↓〉 = (α|↑〉+ β|↓〉)|d↓〉. (1.2)

Due to the interaction (1.1), the initial state evolves into a correlated state |Φc〉:
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|Φi〉 = α|↑〉|d↓〉+ β|↓〉|d↓〉 → |Φc〉 = α|↑〉|d↑〉+ β|↓〉|d↓〉 ≡ α|↑, d↑〉+ β|↓, d↓〉. (1.3)

Therefore, it seems that if the detector is seen to be in the state |d↑〉 or |d↓〉, we can con-
clude that S will be in |↑〉 or |↓〉, respectively. However, since the state of both systems
can not be described as the product of a state |φS1〉 ∈ HS1

and |φS2〉 ∈ HS2
; even if the to-

tal system is in a pure state, the subsystems will be in mixed states and hence we should
examine the density matrix of the system:

ρc= |Φc〉〈Φc|= |α|2|↑, d↑〉〈↑, d↑|+ αβ∗|↑, d↑〉〈↓, d↓|+ α∗β|↓, d↓〉〈↑, d↑|+ |β|2|↓, d↓〉〈↓, d↓|.
(1.4)

The presence of non-diagonal terms, the exclusively quantum correlations (entangle-
ment), indicates that the outcomes are not independent of each other. If we neglect
them, we would obtain the reduced density matrix,

ρr = |α|2|↑, d↑〉〈↑, d↑|+ |β|2|↓, d↓〉〈↓, d↓|, (1.5)

where now the coefficients can be interpreted as classical probabilities and we can, even
when not knowing the result of a measurement, safely predict which are the possible
outcomes. We may show that this is not the case for ρc by taking α = −β = 1/

√
2:

|Φc〉 =
1√
2

(
|↑, d↑〉 − |↓, d↓〉

)
. (1.6)

Since this state is invariant under basis rotations, we can rewrite it in terms of the eigen-
states of σ̂x:

|�〉 =
1√
2

(
|↑〉+ |↓〉

)
, |⊗〉 =

1√
2

(
|↑〉 − |↓〉

)
. (1.7)

Performing similar transformations for the states of the detector, we get

|Φc〉 = − 1√
2

(
|�, d�〉 − |⊗, d⊗〉

)
. (1.8)

We find that the states appearing on the diagonal of ρc according to the previous equa-
tion and the one we would obtain by choosing α = −β = 1/

√
2 in (1.4) do not coincide:

ρcdiag =
1

2

(
|↑, d↑〉〈↑, d↑|+ |↓, d↓〉〈↓, d↓|

)
=

1

2

(
|�, d�〉〈�, d�|+ |⊗, d⊗〉〈⊗, d⊗|

)
. (1.9)

As we said before, the state (1.6) is invariant under basis rotations, and therefore we
could get infinitely many different expressions for ρcdiag, which indicates that the set of
alternative outcomes is not determined by ρc. However, if we consider the composite
system SD to be embedded in an environment E that correlates with the state of the
detector analogously to the S − D interaction (1.1):

|Ψi〉 = |Φc〉|E0〉 =
(
α|↑, d↑〉+ β|↓, d↓〉

)
|E0〉 → |Ψc〉 = α|↑, d↑, E↑〉+ β|↓, d↓, E↓〉, (1.10)
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then, assuming the environment states associated to the detector states {|d↑〉, |d↓〉} to be
orthonormal: 〈Ei||Ej〉 = δij , we can obtain the density matrix for SD by tracing over the
environment degrees of freedom:

ρDS = TrE |Ψc〉〈Ψc| =
∑
i

〈Ei||Ψc〉〈Ψc||Ei〉 = |α|2|↑, d↑〉〈↑, d↑|+ |β|2|↓, d↓〉〈↓, d↓| = ρr.

(1.11)
We have obtained the reduced density matrix without performing any non-unitary pro-
cesses, and moreover, a preferred basis of the detector has appeared, often called the
pointer basis. In other words, the decoherence mechanism by which the system SD ex-
periences a loss of coherence through the interaction with an environment E , provides
an explanation for the appearance of only the classical outcomes when performing a
measurement.

2 Objectives

El trabajo constará de dos partes. En primera instancia se estudiará un sistema compuesto por
un oscilador armónico y un átomo de dos niveles que interaccionan entre sí. Además, estarán
acoplados a sendos sistemas de un número elevado de grados de libertad, denominados reservorios,
que consideraremos independientes; y que darán lugar a un proceso de decoherencia descrito
por ecuaciones maestras. Posteriormente se procederá a analizar ecuaciones estocásticas, que
describen la evolución temporal de sistemas causada por la medida de un observable. En concreto,
se analizará el valor esperado del operador de posición del oscilador armónico para dos casos: la
medida simultánea en el átomo de dos niveles, y su medida única cuando el sistema de dos niveles
está sujeto a decoherencia.

The project will be divided in two sections. First, a system formed by a harmonic os-
cillator and a two-state system which interact between them will be analyzed. We will
consider each subsystem to be coupled to a system with a high number of degrees of
freedom (reservoir), and both reservoirs will be assumed to be independent. This cou-
pling will lead to a decoherence process, described by master equations. Afterwards,
we will proceed to evaluate stochastic equations, which describe the time evolution of
systems caused by the measurement of an observable. Specifically, the evolution of the
expectation value of the position operator for the harmonic oscillator will be examined
for two cases: a simultaneous measurement in the two-state system, and solely its mea-
surement when the two-state atom is under a decoherence process.
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3 Master equation

Una ecuación maestra es un conjunto de ecuaciones diferenciales de primer orden, que describe la
evolución de los elementos de la matriz densidad para un sistema abierto acoplado a un reservorio.
En primer lugar llevaremos a cabo su derivación general, para luego aplicarla a un caso particular.

Amaster equation is a set of first-order differential equations, which describes the time
evolution of the elements of the density matrix for an open quantum system coupled to
a reservoir. We will follow [2] for its derivation and will later proceed to study its form
and solution for a specific case.

3.1 Derivation

The ensemble composed by a system S and a reservoir R is generally described by a
Hamiltonian1 of the form

H = HS +HR +HSR, (3.1)
whereHS andHR are the Hamiltonians for S andR, respectively; andHSR is the inter-
action Hamiltonian. The time evolution of the density operator for the global system,
χ(t), is given by

i~
d

dt
χ(t) = [H,χ] . (3.2)

Performing a transformation into the interaction picture:

χ̃(t) = e
i
~ (HS+HR)tχ(t)e−

i
~ (HS+HR)t, (3.3)

equation (3.2) results in

˙̃χ(t) =
1

i~
[
H̃SR(t), χ̃(t)

]
, (3.4)

which can be integrated to give

χ̃(t) = χ(0) +
1

i~

∫ t

0
dt′
[
H̃SR(t′), χ̃(t′)

]
. (3.5)

Substituting the previous equation in (3.4) we get

˙̃χ =
1

i~
[
H̃SR(t), χ(0)

]
− 1

~2

∫ t

0
dt′
[
H̃SR(t),

[
H̃SR(t′), χ̃(t′)

]]
. (3.6)

Since we are interested in the features of the system S, we will study the evolution of
the reduced density operator ρ(t), obtained by taking the partial trace over the reservoir
states:

1To simplify the notation we will use O ≡ Ô, where Ô is a general operator.

4
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˙̃ρ = TrR( ˙̃χ) = TrR

( 1

i~
[
H̃SR(t), χ(0)

])
− TrR

( 1

~2

∫ t

0
dt′
[
H̃SR(t),

[
H̃SR(t′), χ̃(t′)

]])
.

(3.7)
If we consider that the interaction is turned on at t = 0, then no correlations exists
between S andR at the initial time and the density operator can be factorized as

χ(0) = ρ0R0, (3.8)

where ρ0 and R0 are the initial density operators for the system and the reservoir, re-
spectively. We find that the first term in (3.7) can be eliminated under the assumption
of reservoir operators coupling to S (Γi) having zero mean value in the initial reservoir
state, since

TrR
[
H̃SR(t)ρ0R0

]
= TrR

[
~
∑
i

e
i
~HStsie

− i
~HSte

i
~HRtΓie

− i
~HRtρ0R0

]
= ~ρ0

∑
i

si(t) TrR
[
Γi(t)R0

]
= ~ρ0

∑
i

si(t)〈Γi(t)〉R0
. (3.9)

If 〈Γi(t)〉R0
6= 0, the equality can be arranged by redefining the system’s and the inter-

action Hamiltonians as

H ′S = HS + TrR
(
HSRR0

)
, H ′SR = HSR − TrR

(
HSRR0

)
. (3.10)

Thus,

˙̃ρ = − 1

~2

∫ t

0
dt′TrR

[
H̃SR(t),

[
H̃SR(t′), χ̃(t′)

]]
. (3.11)

This equation is still exact and contains the same information about the system evolution
as (3.2), since no approximations have been made so far.

3.2 Born approximation

We have stated the factorization of χ̃ at t=0. However, when time increases correlations
between S and Rmay appear due to the coupling of both systems through HSR. If we
consider the reservoir to be much larger than S , its state should barely be affected by
the coupling and henceR is assumed to be in a stationary state, which verifies

R̃(t) ≈ R̃(0) = R0,
[
R0, HR

]
= 0. (3.12)

Furthermore, in a weak coupling scheme, at all times χ̃(t) may only lead to deviations
of order HSR from an uncorrelated state:

χ̃(t) ' ρ̃(t)R0 +O(HSR). (3.13)

5
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In the Born approximation, higher than second order terms inHSR are neglected when
substituting the previous equation in (3.11), which gives

˙̃ρ ≈ − 1

~2

∫ t

0
dt′TrR

[
H̃SR(t),

[
H̃SR(t′), ρ̃(t′)R0

]]
. (3.14)

3.3 Markoff approximation

A system is defined to be Markoffian when its future behaviour is determined only by
its present state. Hence, equation (3.14) is non-Markoffian because the evolution of ρ̃(t)
depends on its past values due to the integration over ρ̃(t′). The Markoff approximation
consists precisely in the replacement ρ̃(t′)→ ρ̃(t), which leads to the master equation in
the Born-Markoff approximation:

˙̃ρ ≈ − 1

~2

∫ t

0
dt′TrR

[
H̃SR(t),

[
H̃SR(t′), ρ̃(t)R0

]]
. (3.15)

In rigorous terms, S will depend on its past history, since its previous states would affect
the reservoir state due to the couplingHSR; which in turnwill influence the evolution of
S through the interaction with the modified reservoir. Nevertheless, in the case we are
considering, where R is significantly larger than S, the small changes in the reservoir
are not expected to last for long enough to alter the future evolution of S.

We can obtain the master equation in terms of operators by considering a general inter-
action Hamiltonian

HSR = ~
∑
i

siΓi, (3.16)

where si ∈ HS and Γi ∈ HR. Therefore

H̃SR(t) = ~
∑
i

s̃i(t)Γ̃i(t), (3.17)

which substituted in the master equation in the Born approximation (3.14) gives

˙̃ρ = −
∑
i,j

∫ t

0
dt′TrR

{[
s̃i(t)Γ̃i(t),

[
s̃j(t

′)Γ̃j(t
′), ρ̃(t′)R0

]]}
= −

∑
i,j

∫ t

0
dt′
{[
s̃i(t)s̃j(t

′)ρ̃(t′)− s̃j(t′)ρ̃(t′)s̃i(t)
]
〈Γ̃i(t)Γ̃j(t′)〉R

+
[
ρ̃(t′)s̃j(t

′)s̃i(t)− s̃i(t)ρ̃(t′)s̃j(t
′)
]
〈Γ̃j(t′)Γ̃i(t)〉R

}
, (3.18)

being

〈Γ̃i(t)Γ̃j(t′)〉R = TrR
[
R0Γ̃i(t)Γ̃j(t

′)
]
, 〈Γ̃j(t′)Γ̃i(t)〉R = TrR

[
R0Γ̃j(t

′)Γ̃i(t)
]
. (3.19)

6



4. INTERACTING SYSTEMS COUPLED TO RESERVOIRS.

Thereby, the effects of the reservoir appear through (3.19). In relation with the Markoff
approximation, we canuphold the replacement ρ̃(t′)→ ρ̃(t) if these correlations promptly
decay compared to the characteristic time in which ρ̃(t) varies. In the ideal case

〈Γ̃i(t)Γ̃j(t′)〉R ∝ δ(t− t′). (3.20)

Equation (3.18) dictates the general shape of a master equation. In order to obtain its
explicit form, it is necessary to specify the total system under study, S ⊕ R, as well as
the corresponding Hamiltonian.

4 Interacting systems coupled to reservoirs.

Analizaremos en este punto la aplicación de las ecuaciones maestras al caso particular de un
sistema compuesto por un oscilador armónico y un átomo de dos niveles, que presentan una in-
teracción del tipo Jaynes-Cummings. Los subsistemas se encontrarán acoplados cada uno a un
reservorio, siendo estos independientes. Concretamente, se estudiará la evolución de las pobla-
ciones y coherencias para distintos estados iniciales y temperaturas, así como la aparición de
estados estacionarios.

We will study the case of a system S = S1 ⊕ S2, where S1 and S2 correspond to a
harmonic oscillator and a two-state atom, respectively; which affect each other through
a Jaynes-Cumming’s interaction HJC . Furthermore, the subsystem S1 is coupled to a
reservoirR1, which is a collection of harmonic oscillators; and S2 couples to the electro-
magnetic fieldR2. Considering both reservoirs to be independent, the totalHamiltonian
is given by

H = HS +HR +HSR = HS1 +HS2 +HJC +HR1 +HR2 +HS1R1 +HS2R2 , (4.1)

being

HS1 = ~ωca†a, HS2 =
1

2
~ωAσz,

HR1 =
∑
j

~ωjr†jrj , HR2 =
∑
kλ

~ωkr
†
kλrkλ,

HS1R1 =
∑
j

~(κ∗jar
†
j + κja

†rj) ≡ ~(aΓ†1 + aΓ1),

HS2R =
∑
kλ

~(κ
∗(2)
kλ σ−r

†
kλ + κ

(2)
kλσ+rkλ) ≡ ~(σ−Γ†2 + σ+Γ2),

HJC = ~(da†σ− + d∗aσ+), (4.2)

where a and a† are the annihilation and creation operators for the harmonic oscillator
with frequency ωc; rj and r†j are those for the harmonic oscillators of the reservoir R1

7
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with frequenciesωj ; rkλ and r†kλ are the equivalent forR2, a collection of oscillators (elec-
tromagnetic field modes) with frequencies ωk, wave vectors k and polarization states λ;
and σz , σ+ and σ− are pseudo-spin operators for the two-state system with energy dif-
ference ~ωA. Furthermore, the strength of the coupling between S1 and the jth oscillator
of R1 is characterized by the coupling constant κj ; κkλ is the coupling constant for the
coupling between S2 and a photon characterized by k and λ; and d corresponds to the
coupling constant for the interaction between S1 and S2.

We have used the dipole approximation (eik·r ≈ 1) for the interaction between S2 and
R2; aswell as the rotatingwave approximation for every interactionHamiltonian, where
we neglect the counter-rotating terms that do not conserve energy (i.e. a†σ+) and aver-
age out to zero in the time scale inwhich S varies. In the interaction picture for the S1-S2

interaction, this implies neglecting fastly oscillating terms, proportional to e±i(ωA+ωc)t,
and preserve those of the form e±i(ωa−ωc)t; an approximation which is better the more
similar the frequencies from both systems are. For this reason, from now on we will
consider

ωc = ωA ≡ ωS. (4.3)

Since we are considering both reservoirs to be in thermal equilibrium at temperature T ,
their density operators will be given by

R
(1)
0 =

∏
j

e−~ωjr
†
jrj/kBT

(
1−e−~ωj/kBT

)
, R

(2)
0 =

∏
kλ

e−~ωkr
†
kλrkλ/kBT

(
1−e−~ωk/kBT

)
.

(4.4)

4.1 Master equation

We will now explicitly obtain the master equation in the Born-Markoff approximation
(3.18) for this particular case. We can make the identifications

sj ∈ {a, a†, σ−, σ+}, Γj ∈ {Γ1,Γ
†
1,Γ2,Γ

†
2}. (4.5)

In the interaction picture corresponding to theHSR interaction, the operators are given
by

s̃j(t) = e
i
h

(
∑
kHRk+

∑
nHSn )sj e

− i
h

(
∑
kHRk+

∑
nHSn ) = e

i
~HSj sj e

− i
h
HSj ,

Γ̃j(t) = e
i
h

(
∑
kHRk+

∑
nHSn ) Γj e

− i
h

(
∑
kHRk+

∑
nHSn ) = e

i
~HRj Γj e

− i
h
HRj , (4.6)

since operators that act in different Hilbert spaces commute. Hence:

ã(t) = ae−iωSt, ã†(t) = a†eiωSt,

σ̃−(t) = σ−e
−iωSt, σ̃+(t) = σ+e

iωSt,

Γ̃1(t) =
∑
j

κjrje
−iωjt, Γ̃†1(t) =

∑
j

κ∗jr
†
je
iωjt,

Γ̃2(t) =
∑
kλ

κkλrkλe
−iωkt, Γ̃†2(t) =

∑
kλ

κ∗kλr
†
kλe

iωkt, (4.7)

8



4.1 Master equation 4. INTERACTING SYSTEMS COUPLED TO RESERVOIRS.

where we have applied the Baker–Campbell–Hausdorff formula:

eABe−A = B + [A,B] +
1

2!

[
A, [A,B]

]
+ . . . (4.8)

As an example, the calculation for ã(t) will be shown:

ã(t) = eiωSa
†atae−iωSa

†at = a+ iωSt[a
†a, a] +

(iωSt)
2

2!

[
a†a, [a†a, a]

]
+ . . .

= a
(

1− iωSt+
(−iωSt)2

2!
+ . . .

)
= ae−iωSt, (4.9)

obtained using the commutation relation [a†a, a] = −a. Now, since i, j = 1, 2, 3, 4 back
in (3.18), there will be 256 terms in the summation. Nevertheless, most of them will not
contribute to the integral due to the reservoir correlation functions:

〈Γ̃†1(t)Γ̃†1(t′)〉R =
∑
j

(κ∗j )
2eiωj(t+t

′)〈r†jr
†
j〉R =

∑
j

(κ∗j )
2eiωj(t+t

′)〈r†jr
†
j〉R1

= 0,

〈Γ̃1(t)Γ̃1(t′)〉R =
∑
j

(κj)
2eiωj(t+t

′)〈rjrj〉R1
= 0,

〈Γ̃†1(t)Γ̃1(t′)〉R =
∑

1

|κj |2eiωj(t−t
′)〈r†jrj〉R1

=
∑
j

|κj |2eiωj(t−t
′)n̄1(ωj , T ),

〈Γ̃1(t)Γ̃†1(t′)〉R =
∑
j

|κj |2e−iωj(t−t
′)〈rjr†j〉R1

=
∑
j

|κj |2eiωj(t−t
′)[n̄1(ωj , T ) + 1] (4.10)

and

〈Γ̃†2(t)Γ̃†2(t′)〉R =
∑
kλ

(κ∗kλ)2eiωk(t+t′)〈r†kλr
†
kλ〉R2

= 0,

〈Γ̃2(t)Γ̃2(t′)〉R =
∑
kλ

(κkλ)2e−iωk(t+t′)〈rkλrkλ〉R2
= 0,

〈Γ̃†2(t)Γ̃2(t′)〉R =
∑
kλ

|κkλ|2eiωk(t−t′)〈r†kλrkλ〉R2
=
∑
kλ

|κkλ|2eiωk(t−t′)n̄2(ωk, T ),

〈Γ̃2(t)Γ̃†2(t′)〉R =
∑
kλ

|κkλ|2e−iωk(t−t′)〈rkλr†kλ〉R2
=
∑
kλ

|κkλ|2eiωk(t−t′)[n̄2(ωk, T ) + 1],

(4.11)
where it has been explicitly shown that both reservoirs are independent (the density op-
erator is given by the product: R = R1R2). In addition, we have used the commutators
[rj , r

†
j ] = 1 and [rkλ, r

†
kλ] = 1 in the last equations of (4.10) and (4.11), respectively; and

introduced 〈r†jrj〉R1
= n̄1(ωj , T ) and 〈r†kλrkλ〉R2

= n̄2(ωk, T ), the mean number of oscil-
lators with frequencies ωj inR1 and ωk inR2, in thermal equilibrium at temperature T ,
which are given by

n̄1(ωj , T ) =
e
−

~ωj
kBT

1− e−
~ωj
kBT

, n̄2(ωk, T ) =
e
− ~ωk
kBT

1− e−
~ωk
kBT

. (4.12)
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4.1 Master equation 4. INTERACTING SYSTEMS COUPLED TO RESERVOIRS.

Furthermore, due to the reservoirs independence, the correlations involving operators
from bothR1 andR2 will not contribute. As an example:

〈Γ̃1(t)Γ̃†2(t′)〉R=
∑
kλj

κjκ
∗
kλe
−i(ωjt−ωkt

′)〈rjr†kλ〉R=
∑
kλj

κjκ
∗
kλe
−i(ωjt−ωkt

′)〈rj〉R1
〈r†kλ〉R2

=0.

(4.13)
With this considerations, and making the change of variable τ = t − t′, the master
equation (3.18) for this particular case contains 16 non-zero terms:

˙̃ρ = −
∫ t

0
dτ
{[
aa†ρ̃(t− τ)− a†ρ̃(t− τ)a

]
e−iωSτ 〈Γ̃†1(t)Γ̃1(t− τ)〉R + h.c.[

a†aρ̃(t− τ)− aρ̃(t− τ)a†
]
eiωSτ 〈Γ̃1(t)Γ̃†1(t− τ)〉R + h.c.[

σ−σ+ρ̃(t− τ)− σ+ρ̃(t− τ)σ−
]
e−iωSτ 〈Γ̃†2(t)Γ̃2(t− τ)〉R + h.c.[

σ+σ−ρ̃(t− τ)− σ−ρ̃(t− τ)σ+

]
eiωSτ 〈Γ̃2(t)Γ̃†2(t− τ)〉R + h.c.

}
. (4.14)

From now on, we will assume the difference between proximate, unlike wave vectors k
to be small enough to consider its spectrum as a continuum. Hence, following a similar
reasoning for the frequencies ωj , the non-vanishing reservoir correlation functions can
be restated as

〈Γ̃†1(t)Γ̃1(t− τ)〉R =

∫
dωeiωτg(ω)|κ(ω)|2n̄1(ω, T ),

〈Γ̃1(t)Γ̃†1(t− τ)〉R =

∫
dω e−iωτg(ω)|κ(ω)|2[n̄1(ω, T ) + 1],

〈Γ̃†2(t)Γ̃2(t− τ)〉R =
∑
λ

∫
d3k eikcτg(k)|κ(k, λ)|2n̄2(kc, T ),

〈Γ̃2(t)Γ̃†2(t− τ)〉R =
∑
λ

∫
d3k e−ikcτg(k)|κ(k, λ)|2[n̄2(kc, T ) + 1], (4.15)

where the dispersion relation ω = kc has been used to rewrite the frequency in terms
of the wave vector. In addition, we have introduced the densities of states g(k) and
g(ω), defined such that g(k)d3k and g(ω)dω account for the number of photons with
wave vectors in the interval [k,k + d3k], and the number of oscillators from R1 with
frequencies in [ω, ω+dω], respectively. In theMarkoff approximation, we consider τ � t,
where τ is the reservoir correlation time and t the time scale for changes in ρ. Therefore,
we can do the replacement ρ̃(t− τ) ' ρ̃(t) ≡ ρ̃ and, since the τ integration is dominated
by short times due to the exponential term, we can extend the integrals to infinity:

lim
t→∞

∫ t

0
dτe−i(ω−ωS)τ = πδ(ω − ωS) + i

P

ωS − ω
,

lim
t→∞

∫ t

0
dτe−i(kc−ωS)τ = πδ(kc− ωS) + i

P

ωS − kc
, (4.16)
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4.1 Master equation 4. INTERACTING SYSTEMS COUPLED TO RESERVOIRS.

where P refers to the Cauchy principal value. Therefore, introducing

κ1 = πg(ωS)|κ(wS)|2, κ2 = π
∑
λ

∫
d3kg(k)|κ(k, λ)|2δ(kc− wS),

∆1 = P

∫ ∞
0

dω
g(ω)|κ(ω)|2

ωS − ω
, ∆2 =

∑
λ

P

∫
d3k

g(k)|κ(k, λ)|2

ωS − kc
,

∆
′
1 = P

∫ ∞
0

dω
g(ω)|κ(ω)|2

ωS − ω
n̄1(ω, T ), ∆

′
2 =

∑
λ

P

∫
d3k

g(k)|κ(k, λ)|2

ωS − kc
n̄2(kc, T ),

(4.17)

the terms related to each subsystem Sp can be written as∫
dτe−iωSτ〈Γ̃†p(t)Γ̃p(t− τ)〉R'κpn̄p+i∆′p,

∫
dτe−iωSτ〈Γ̃p(t)Γ̃†p(t− τ)〉R'κp(1+n̄p)+i∆p+i∆′p,

(4.18)
where we have set n̄1 ≡ n̄1(ωS , T ) and n̄2 ≡ n̄2(ωS , T ). Substituting the previous result
in the master equation (4.14) we obtain

˙̃ρ =(κ1 + i∆1)(aρ̃a† − a†aρ̃) + h.c. + (κ2 + i∆2)(σ−ρ̃σ+ − σ+σ−ρ̃) + h.c.
+ (κ1n̄1 + i∆′1)(aρ̃a† − a†aρ̃+ a†ρ̃a− ρ̃aa†) + h.c.
+ (κ2n̄2 + i∆′2)(σ−ρ̃σ+ − σ+σ−ρ̃+ σ+ρ̃σ− − ρ̃σ−σ+) + h.c. (4.19)

We will now calculate a simpler formula. Expanding the terms associated to S1:

i) κ1(aρ̃a† − a†aρ̃+ aρ̃a† − ρ̃a†a) = κ1(2aρ̃a† − a†aρ̃− ρ̃a†a),

ii) i∆1(aρ̃a† − a†aρ̃− aρ̃a† + ρ̃a†a) = −i∆1

[
a†a, ρ̃

]
,

iii) κ1n̄1(aρ̃a† − a†aρ̃+ a†ρ̃a− ρ̃aa† + aρ̃a† − ρ̃a†a+ a†ρ̃a− aa†ρ̃) =

κ1n̄1(2aρ̃a
†+2a†ρ̃a−(2a†a+ 1)ρ̃−ρ̃(2aa†−1))=2κ1n̄1(aρ̃a†+a†ρ̃a− a†aρ̃− ρ̃aa†),

iv) i∆′1(aρ̃a† − a†aρ̃+ a†ρ̃a− ρ̃aa† − aρ̃a† + ρ̃a†a− a†ρ̃a+ aa†ρ̃) =

i∆′1
(
− ρ̃[a, a†] + [a, a†]ρ̃

)
= 0. (4.20)

For S2 we get a similar first term, but replacing a, a† → σ−, σ+. To obtain the others, we
must introduce some properties of the σ operators:

σz = |e〉〈e| − |g〉〈g|, σ− = |g〉〈e|, σ+ = |e〉〈g|,

σ±σ∓ =
1

2
(1S2 ± σz), {σ+, σ−} = 1S2 ,

[
σ+, σ−

]
= σz. (4.21)

Thus,

ii) i∆2(σ−ρ̃σ+ − σ+σ−ρ̃− σ−ρ̃σ+ + ρ̃σ+σ−) = −i∆2

[
σ+σ−, ρ̃

]
= − i

2
∆2

[
σz, ρ̃

]
,

iii) κ2n̄2(2σ−ρ̃σ+ + 2σ+ρ̃σ− − ρ̃{σ−, σ+} − {σ−, σ+}ρ̃ = 2κ2n̄2(σ−ρ̃σ+ + σ+ρ̃σ− − ρ̃),

iv) − i∆′2
([
σ+, σ−

]
ρ̃− ρ̃

[
σ+, σ−

])
= −i∆′2

[
σz, ρ̃

]
. (4.22)
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Substituting these results in (4.19) we obtain

˙̃ρ =− i∆1

[
a†a, ρ̃

]
+ κ1(2aρ̃a† − a†aρ̃− ρ̃a†a) + 2κ1n̄1(aρ̃a† + a†ρ̃a− a†aρ̃− ρ̃aa†)

− i

2
(∆2+2∆′2)

[
σz, ρ̃

]
+κ2(2σ−ρ̃σ+− σ+σ−ρ̃− ρ̃σ+σ−)+2κ2n̄2(σ−ρ̃σ++σ+ρ̃σ− −ρ̃).

(4.23)
We should now transform back to the Schrödinger picture:

ρ̇ =
1

i~
[
HS , ρ

]
+ e−

i
~ (HS1+HS2 )t ˙̃ρ e

i
~ (HS1+HS2 )t, HS = HS1 +HS2 +HJC . (4.24)

Consequently, we obtain the master equation

ρ̇ =− iω′c
[
a†a, ρ

]
+ κ1(2aρa† − a†aρ− ρa†a) + 2κ1n̄1(aρa† + a†ρa− a†aρ− ρaa†)

− i

2
ω′A
[
σz, ρ

]
+ κ2(2σ−ρσ+ − σ+σ−ρ− ρσ+σ−) + 2κ2n̄2(σ−ρσ+ + σ+ρσ− − ρ)

− id
[
a†σ−, ρ

]
− id∗

[
aσ+, ρ

]
,

(4.25)
where

ω′c = ωS + ∆1, ω′A = ωS + ∆2 + 2∆′2. (4.26)

Thereby, (4.25) is themaster equation in the Born-Markoff approximation for a harmonic
oscillator and a two-state atom that influence each other via a Jaynes-Cummings inter-
action, when they are affected by a single, separate reservoir and both reservoirs are a
collection of harmonic oscillators. We can now calculate thematrix elements of ρ̇ by pro-
jecting it onto the eigenstates of S = S1 ⊕ S2. Since HS1

and HS2
are independent, they

will be given by the tensor product of the eigenstates of each subsystem: the |n〉 ⊗ |g〉
and |n〉 ⊗ |e〉 states. Hence,

ρ̇mfnh =− [iω′c(m− n) + κ1(m+ n+ 2n̄1(m+ n+ 1))]ρmfnh + 2κ1n̄1

√
mnρm−1,f,n−1,h

+ 2κ1

√
(m+ 1)(n+ 1)(n̄1 + 1)ρm+1,f,n+1,h + 2κ2(n̄2 + 1)ρm,f+1,n,h+1

− [iω′A(δf1δh0 − δf0δh1) + κ2(2n̄2 + δf1 + δh1)]ρmfnh + 2κ2n̄2ρm,f−1,n,h−1

− id
√
mρm−1,f+1,nh + id

√
n+ 1ρmf,n+1,h−1

− id∗
√
m+ 1ρm+1,f−1,nh + id∗

√
nρmf,n−1,h+1, (4.27)

where ρ̇mfnh ≡ 〈m, f |ρ̇|n, h〉. Regarding the harmonic oscillator S1, the requirement
n,m ≥ 0 must be fulfilled; and with respect to the two-state atom S2 we have the con-
dition f, h ∈ {0, 1}, corresponding to the states |g〉 and |e〉, respectively. We see that the
first three terms account for the interaction between S1 and R1, the following three are
the equivalent (with different order) for S2 and R2; and the last four correspond to the
Jaynes-Cumming’s interaction between S1 and S2. Regarding the populations (n = m,
f = h), we can identify the transitions shown in Table 1.
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Transitions Transition rates

|n+ 1, f〉 → |n, f〉 2κ1(n+ 1)(n̄1 + 1)
|n− 1, f〉 → |n, f〉 2κ1n̄1n
|n, f〉 → |n− 1, f〉 2κ1n(n̄1 + 1)
|n, f〉 → |n+ 1, f〉 2κ1n̄1(n+ 1)
|n, e〉 → |n, g〉 2κ2(n̄2 + 1)
|n, g〉 → |n, e〉 2κ2n̄2

Table 1: Possible transitions and transition rates

Without taking into account the interaction betweenS1 andS2, we see thatwhen T = 0K
(n̄i = 0), all transition rates from lower-energy levels vanish, while for the transitions
from higher-energy levels there are non-zero contributions, identified as spontaneous
emission rates. This process, where each subsystem leaks a photon or phonon, depend-
ing on the type of interaction, to their respective reservoir; would ultimately produce
the decay to the ground state for the T = 0K case. On the other hand, when T 6= 0K we
see that transitions to higher levels are allowed, where the system increases its energy
by the absorption of any of thementioned particles of the reservoirs, in a process named
induced absorption.

With respect to the JC interaction, due to its operators aσ+ and a†σ−, it will only connect
the |n + 1, g〉 and |n, e〉 states. The relevant terms of the matrix element evolution for
each of those levels are

ρ̇nene = · · ·+ id
√
n+ 1ρn+1,g,ne − id∗

√
n+ 1ρn+1g,n,e = · · ·+ 2iRe{d}

√
n+ 1ρne,n+1,g,

ρ̇n+1,g,n+1,g = · · · − 2iRe{d}
√
n+ 1ρne,n+1,g,

ρ̇ne,n+1,g = · · · − id∗
√
n+ 1

(
ρn+1,g,n+1,g − ρnene

)
. (4.28)

Therefore, an unevenness in the populations generates coherences that will later con-
tribute to restore the equilibrium, which can be reached or not. It can also be seen that
when the term proportional to d dominates, the sign of d does not affect the evolution of
the populations, due to the generation of opposite sign coherences. Furthermore, since
ρ̇n+1,g,n+1,g depends on ρne,n+1,g and not on its evolution, the transfer of populations
due to the imbalance will have some delay. In the case of S being isolated from the en-
vironment (κ1 = κ2 = 0) and in a state |Ψ〉 = c1(t)|n + 1, g〉 + c2(t)|n, e〉, according to
(4.28) we would have ċ1 = −c2 and vice versa, which corresponds to Rabi oscillations.

4.2 Stationary states

The goal is to calculate the stationary states for the ensemble S = S1 ⊕ S2. The pop-
ulations of such states must verify ρ̇nfnf = 0, an equation that involves the coherence
ρne,n+1,g and the populations of many other states; in fact indirectly infinitely many due
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to the mentioned coherence, as we should show. From (4.27) we find that in the station-
ary limit

ρne,n+1,g = f
(
ρnene, ρn+1,g,n+1,g ,

ρn−1,e,ng

(
ρn−1,e,n−1,e, ρngng, ρne,n+1,g(. . . ), ρn−2,e,n−1,g(. . . )

)
,

ρn+1,e,n+2,g

(
ρn+1,e,n+1,e, ρn+2,g,n+2,g, ρne,n+1,g(. . . ), ρn+2,e,n+3,g(. . . )

))
. (4.29)

Hence, in order to calculate an approximate result, a different approachwill be followed.
During the derivation of the master equation, it was stated that both reservoirs were in-
dependent, which led to equation (4.14). The direct consequence is the separation of
each Si − Ri interaction, which allows us to associate the terms in the first and sec-
ond line of (4.25) to the ones we would have obtained if calculated the master equation
for a harmonic oscillator or a two-state atom, respectively. More explicitly, the matrix
elements would be given by

ρ̇mn =− [iω′c(m− n) + κ1(m+ n+ 2n̄1(m+ n+ 1))]ρmn + 2κ1n̄1

√
mnρm−1,n−1,

+ 2κ1

√
(m+ 1)(n+ 1)(n̄1 + 1)ρm+1,n+1, (4.30)

ρ̇fh =− [iω′A(δf1δh0 − δf0δh1) + κ2(2n̄2 + δf1 + δh1)]ρfh + 2κ2n̄2ρf−1,h−1

+ 2κ2(n̄2 + 1)ρf+1,h+1. (4.31)

We can easily calculate the stationary states for the two-state atom case:

ρ̇gg = 0 = 2κ2[−n̄2ρgg + (n̄2 + 1)ρee] =⇒ −n̄2ρgg + (n̄2 + 1)(1− ρgg) = 0, (4.32)

where we have used Tr ρ = ρgg + ρee = 1. Thus,

ρgg(t→∞) =
n̄2 + 1

2n̄2 + 1
, ρee(t→∞) =

n̄2

2n̄2 + 1
. (4.33)

In the case of the harmonic oscillator, we will use a recurrence procedure, ultimately
writing each population2 in terms of the ground state:

ρ̇00 = 0 = −2κ1[n̄1ρ00 − (n̄1 + 1)ρ11] =⇒ ρ11 =
n̄

n̄+ 1
ρ00,

ρ̇11 = 0 = −2κ1[(1 + 3n̄1)ρ11 − n̄1ρ00 − 2(n̄1 + 1)ρ22] =⇒ ρ22 =
n̄2

1

(n̄1 + 1)2
ρ00.

(4.34)We see the emergence of the pattern

ρnn =
( n̄1

n̄1 + 1

)n
ρ00. (4.35)

Then, using the trace of ρwe can determine ρ00:

Tr ρ = 1 =
∞∑
n=0

( n̄1

n̄1 + 1

)n
ρ00 = ρ00

1

1− n̄1
n̄1+1

= ρ00(n̄1+1) =⇒ ρ00 =
1

n̄1 + 1
, (4.36)

2To lighten the notation, we will not write the t→∞ limit.
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which substituted back in (4.35) gives

ρnn(t→∞) =
n̄n1

(n̄1 + 1)n+1
. (4.37)

From the previous equation and (4.33) it can be seen that in those cases the stationary
limit only depends in the state of the reservoirs (the n̄i); which allows us to conclude
that the coupling constants κi exclusively affect the transition rates and hence the time
needed to reach the final state. Considering now the composite system, if we neglect the
JC interaction (d→ 0), both subsystemswill evolve independently. Thereby, each Si−Ri
interaction will set the final state of the respective subsystem, and we can calculate the
populations as

ρnfnf = P(|n, f〉) = P(|n〉)P(|f〉) =
n̄n1

(n̄1 + 1)n+1

n̄2 + 1− f
2n̄2 + 1

. (4.38)

Therefore, the last result can be considered as a zeroth-order approximation in d for the
populations in the stationary limit, valid in the d � 1 case. When the JC interaction
is strong we can qualitatively explain the behaviour of the system. In the preceding
section, specifically in equation (4.28), it was shown that the S1S2 coupling modifies
the populations to counterbalance the difference between the |ne〉 and |n + 1, g〉 states,
which can be approximated to

ρnene − ρn+1,g,n+1,g =
n̄n1

(n̄1 + 1)n+2(2n̄2 + 1)

(
n̄2 − n̄1

)
+O(d). (4.39)

Thus, if n̄1 < n̄2 we would expect the correction to lower ρnene and rise ρn+1,g,n+1,g;
and vice versa if n̄1 > n̄2. In the n̄2 = n̄1 case we should thereby predict a negligible
correction.

4.3 Numerical solution

We will calculate the evolution of the density matrix elements for two different cases:

I) An initial state |Ψ(0)〉 = |2, e〉, with parameters ω′A = ω′c = 3ω0, κ1 = κ2 = d =
1.4ω0 and n̄1 = n̄2 = 0.

II) An initial state |Ψ(0)〉 = 1/
√

14
(
3|2, e〉+ |2, g〉+2|1, e〉

)
and parameters: ω′A = ω′c =

3ω0, κ1 = κ2 = d = 1.4ω0, n̄1 = 0.5 and n̄2 = 1. We will consider also the cases
n̄1 = n̄2 = 1, and n̄1 = 1 and n̄2 = 0.5.

There are two main differences between both situations:

• Temperature. In (I) we have n̄i = 0, which implies T = 0K for both reservoirs,
while (II) corresponds to the opposite case.

• Initial coherences. Only (II) has non-null initial values for some coherences, as the
initial state is a linear combination of states. Furthermore, due to the fact that it
can not be written as a tensor product of states of each subsystem, |Ψ(0)〉(II) is an
entangled state.
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Sincewe are only interested in the behaviour of the system, no specific units will be used
for the parameters. For this reason, we have introduced ω0, an arbitrary frequency unit
such that ω0t is dimensionless.

4.3.1 Pure state at T=0K

Figure 1: Evolution of populations for case (I): initial state |Ψ(0)〉 = |2, e〉, with ω′A = ω′c = 3ω0,
κ1 = κ2 = d = 1.4ω0 and n̄1 = n̄2 = 0. Those corresponding to S2 being in the ground state are
plotted using solid lines, and for its the excited state dashed lines are used.

Aswe can see in Figure 1, populations progressively decay to lower-energy states, even-
tually reaching P(|0, g〉) = ρ0g0g = 1. Therefore, in this case the decoherence would
imply dissipation. Since we are considering T = 0K, the observed evolution can be ex-
plained by the spontaneous emission terms mentioned before. However, there are also
transitions to higher-energy levels due to the Jaynes-Cumming’s Hamiltonian, which
connects the levels |n, e〉-|n + 1, g〉 and vice versa; and we can see the isolated effect of
this interaction in the initial rise of the |3, g〉 populations. Furthermore, it can be noticed
that the |n, e〉 states rise and decay faster than the |n, g〉 states. As we have chosen the
coupling constants to be equal and transition rates for each subsystem are similar for
small n values, this behaviour can be explained by the possible transitions available.
The fact that |2, e〉 is the initial state, implies that |1, e〉 can directly get populations, while
|1, g〉 needs first |2, g〉 populations to grow. This pattern, displayed in Figure 2, explains
the faster rise of the |n, e〉 states; and their quicker decay is related to the amount of
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4.3 Numerical solution 4. INTERACTING SYSTEMS COUPLED TO RESERVOIRS.

Figure 2: Transition scheme for case (I): initial state |Ψ(0)〉 = |2, e〉, with ω′A = ω′c = 3ω0,
κ1 = κ2 = d = 1.4ω0 and n̄1 = n̄2 = 0. The directionality of the transition is shown by the
arrows, and the interaction that causes it is represented by its coupling constant: HSiRi(κi) and
HJC(d).

levels each state can decay to. In general, |n, e〉 can transfer populations to |n + 1, g〉,
|n, g〉 or |n− 1, e〉, while |n, g〉 only to |n− 1, g〉 and |n− 1, e〉.

In Figure 1 it is shown the transition from a pure state |2, e〉 to a mixed one, to eventually
become a pure state again (|0, g〉). We can justify this evolution by studying the Von
Neumann entropy and the trace of ρ2, which verify

SVN = −Tr ρ ln ρ ≥ 0, Tr ρ2 ≤ 1, (4.40)

(a) (b)

Figure 3: Evolution of SVN (a) and Tr ρ2 (b) for case (I): initial state |Ψ(0)〉 = |2, e〉, with ω′A =
ω′c = 3ω0, κ1 = κ2 = d = 1.4ω0 and n̄1 = n̄2 = 0.

where the equalities are fulfilled only for pure states. According to Figure 3, both have
an extremum at ω0t = 0.26, which is the time where the populations are more evenly
distributed (highest average and lowest standard deviation). As the second law of Ther-
modynamics states that ∆S ≥ 0 in a closed system, the entropy of the total system
should increase or stay the same. Thereby, the decrease seen in the entropy of S must
entail an increase in the entropy of the reservoir setR.
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4.3 Numerical solution 4. INTERACTING SYSTEMS COUPLED TO RESERVOIRS.

Regarding coherences, the only non-null values correspond to the |n, g〉−|n−1, e〉matrix
elements, the ones affected by the JC interaction.As dwas chosen to be real, only imagi-
nary coherences were obtained; allowing us to obtain information from their inflection
points more accurately.

Figure 4: Evolution of coherences (imaginary part) for case (I): initial state |Ψ(0)〉 = |2, e〉, with
ω′A = ω′c = 3ω0, κ1 = κ2 = d = 1.4ω0 and n̄1 = n̄2 = 0.

Taking into account both (4.28) and Figure 1, the inflection points can be approximately
associated to those where there is a flip in the relation between populations:

ρngng > ρn−1,e,n−1,e ←→ ρngng < ρn−1,e,n−1,e. (4.41)

However, writing down the full expression for the matrix element evolution of the rel-
evant coherence that influences this transition, for the case where d ∈ < and ω′A = ω′c:

ρ̇ne,n+1,g =−
[
κ1

(
2n+ 1 + 4n̄1(n+ 1)

)
+ κ2(2n̄2 + 1)

]
ρne,n+1,g

+ 2κ1n̄1

√
n(n+ 1)ρn−1,e,ng + 2κ1(n̄1 + 1)

√
(n+ 2)(n+ 1)ρn+1,e,n+2,g

− id
√
n+ 1(ρn+1,g,n+1,g − ρnene), (4.42)

we see that ρne,n+1,g is affected by the presence of coherences of the {|n + 1, g〉, |ne〉}
subset of states, also involved in the JC interaction; and for n̄1 6= 0 would also be affected
by those from the {|ng〉, |n− 1, e〉} pair. Interestingly, we see that theR2 − S2 coupling
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4.3 Numerical solution 4. INTERACTING SYSTEMS COUPLED TO RESERVOIRS.

only accelerates the rate of coherence loss, due to the restriction of S2 only having two
energy levels (f, h ∈ {0, 1}). Regarding Figure 4, the last two graphs can be explained by
the flipping argument alone. As an example, until ω0t ≈ 0.2, P(|1, e〉) > P(|2, g〉); and
the opposite relation is verified afterwards. However, the first graph shows two extrema
despite the fact that P(|0, e〉) < P(|1, g〉) until ω0t = 0.9, where the second one takes
place. Therefore, the initial rise is related to the presence of positive ρ1e,2g coherences,
which endswhen the flipping term becomes dominant. As a conclusion, Figure 4 shows
that when T = 0K, the interaction with the reservoirs produce a complete loss of the
coherences. This is caused by the fact that the only interaction that generates them is
HJC , whose related coherences disappear when the populations of states other than
|0, g〉 vanish, as seen in (4.42).

4.3.2 Entangled state at T6=0K

Figure 5: Evolution of populations for case (II): initial state |Ψ(0)〉 = 1/
√

14
(
3|2, e〉 + |2, g〉 +

2|1, e〉
)
with ω′A = ω′c = 3ω0, κ1 = κ2 = d = 1.4ω0, n̄1 = 0.5 and n̄2 = 1.Those corresponding

to S2 being in the ground state are plotted using solid lines, and for its the excited state dashed
lines are used.

In this case, the populations (Figure 5) eventually reach a stationary state always differ-
ent than zero; having lower values for higher n states and, within the same n, greater
probabilities for the |n, g〉 over the |n, e〉 states,due to the values of n̄i chosen. It is impor-
tant to remark that even though only the populations of a few states have been plotted,
when n̄1 6= 0(T1 6= 0) all the states become populated according to equation (4.38), plus
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4.3 Numerical solution 4. INTERACTING SYSTEMS COUPLED TO RESERVOIRS.

the respective correction due to the JC interaction. We will now compare the popu-
lations with the ones we would obtain from equation (4.38), as well as with the ones
numerically calculated for case(II) when n̄1 = n̄2 = 1 and when we set n̄1 = 1 and
n̄2 = 0.5.

State 0th order P

|0g〉 0.4444 0.4397
|0e〉 0.2222 0.2142
|1g〉 0.1481 0.1540
|1e〉 0.0740 0.0725
|2g〉 0.0493 0.0537
|2e〉 0.0246 0.0245
|3g〉 0.0164 0.0186
|3e〉 0.0082 0.0083
|4g〉 0.0054 0.0064
|4e〉 0.0027 0.0028

(a) n̄1 < n̄2

State 0th order P

|0g〉 0.3750 0.3761
|0e〉 0.1250 0.1342
|1g〉 0.1875 0.1813
|1e〉 0.0625 0.0676
|2g〉 0.0937 0.0876
|2e〉 0.0312 0.0340
|3g〉 0.0468 0.0424
|3e〉 0.0156 0.0170
|4g〉 0.0234 0.0206
|4e〉 0.0078 0.0085

(b) n̄1 > n̄2

State 0th order P

|0g〉 0.3333 0.3327
|0e〉 0.1666 0.1663
|1g〉 0.1666 0.1663
|1e〉 0.0833 0.0831
|2g〉 0.0833 0.0831
|2e〉 0.0416 0.0415
|3g〉 0.0416 0.0415
|3e〉 0.0208 0.0207
|4g〉 0.0208 0.0207
|4e〉 0.0104 0.0103

(c) n̄2 = n̄1

Table 2: Corrections to the populations for different values of (n̄1, n̄2) for case (II): (0.5, 1) in (a),
(1, 0.5) in (b) and (1, 1) in (c).

As we see in Table 2, the JC interaction behaves differently for distinct combinations of
the n̄i, according to equation (4.39). When n̄1 = n̄2, populations of the {|ne〉, |n+ 1, g〉}
states are equal in the zeroth-order approximation and, since the perturbation tends to
equalize them, no significant changes are produced. Nevertheless, in the n̄1 > n̄2 case
the |n + 1, g〉 have greater populations compared to the |n, e〉 states, causing a transfer
from the first to the latter; while when n̄1 < n̄2 we have approximately the opposite
situation. It is also remarkable that even though the ground state is not directly involved
in the JC interaction, its population becomes altereddue to the changes in ρ0e0e and ρ1g1g.

As it was exposed before, it is possible to see the transition from a pure to a mixed
state by analyzing the entropy and the trace of ρ2, shown in Figure 6. On this occasion,
the system stays in a mixed state according to (4.40); and since the total entropy has a
maximum in the equilibrium and it does not correspond to the state where SS peaks,
the reservoir set must rise its entropy, similarly to case (I).
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4.3 Numerical solution 4. INTERACTING SYSTEMS COUPLED TO RESERVOIRS.

(a) (b)

Figure 6: Evolution of SVN (a) and Tr ρ2 (b) for case (II): initial state |Ψ(0)〉 = 1/
√

14
(
3|2, e〉 +

|2, g〉+ 2|1, e〉
)
with ω′A = ω′c = 3ω0, κ1 = κ2 = d = 1.4ω0, n̄1 = 0.5 and n̄2 = 1.

Figure 7 illustrates the decoherence process, where due to the interaction with the reser-
voirs, all coherence is leaked and the resulting state is no longer entangled, but amixture
of states. Nevertheless, as in this case n̄i 6= 0 and the stationary values of the populations
are non-null, the JC interaction can still generate coherences between the |n+1, g〉−|n, e〉
states. Thus, among the initial coherences, the ρ2g1e will be the only non-vanishing one.

Figure 7: Evolution of initial coherences (modulus) for case (II): initial state |Ψ(0)〉 =

1/
√

14
(
3|2, e〉 + |2, g〉 + 2|1, e〉

)
with ω′A = ω′c = 3ω0, κ1 = κ2 = d = 1.4ω0, n̄1 = 0.5 and

n̄2 = 1. Coherences ρ2e2g and ρ2e1e are plotted as solid lines, while ρ2g1e is represented using
dots and stripes.
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5. STOCHASTIC EQUATION

Figure 8: Evolution of the ρne,n+1,g coherences (imaginary part) for case (II): initial state
|Ψ(0)〉 = 1/

√
14
(
3|2, e〉+ |2, g〉+ 2|1, e〉

)
with ω′A = ω′c = 3ω0, κ1 = κ2 = d = 1.4ω0, n̄1 = 0.5 and

n̄2 = 1.

Regarding the ρne,n+1,g coherences, the matrix elements experience oscillations similar
to case (I) due to the same causes; and will be purely imaginary as d ∈ <, although now
they also reach a non-null stationary state as shown in Figure 8. We can see from (4.42)
that this will happenwhen there is an equilibrium between the coherence received from
the immediately higher-energy and lower-energy JC pairs of states {|n+1, e〉, |n+2, g〉}
and {|n− 1, e〉, |ng〉}, respectively; the coherence transferred to those states (or lost due
to the coupling with the reservoir, specially in the case of the one corresponding to
the lowest energy pair {|0.e〉, |1, g〉}); and the one obtained from the imbalance on the
{|ne〉, |n + 1, g〉} populations, which correspond to the second, third, first and fourth
term of the mentioned equation, respectively.

5 Stochastic equation

Las ecuaciones estocásticas emergen como un posible medio para analizar el efecto que tiene la
realización de una medida sobre un sistema en su estado; donde se considerará que la información
se extrae de manera continua del sistema (una medida cuántica continua). Tras su derivación,
aplicaremos estas ecuaciones para describir la evolución temporal del valor esperado del operador
de posición, para el sistema S de la sección anterior y considerando dos situaciones diferentes:
la medida simultánea sobre el átomo de dos niveles, estando ambas ligadas a la interacción con
reservorios; y únicamente sumedida teniendo en cuenta que el sistema de dos niveles experimenta
decoherencia.
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5.1 Derivation 5. STOCHASTIC EQUATION

During a measurement, the used device subtracts information of the state of a specific
system. Since the speed of light sets a limit to the velocity of any given particle, and
therefore to the information transfer, it is clear that the process can not happen instan-
taneously. Moreover, while the measurement takes place, it is important to take into
account that the system’s state may be modified due to the interaction with the device.
In order to describe such mechanisms, one has to consider a continuous quantum mea-
surement, where the information is continually extracted from the system at a finite rate.
This implies that the information collected goes to zero if the measurement time does.
As a consequence of the randomness, which is intrinsic to the nature of the measure-
ments, the system will be described by a stochastic equation. We will follow [3] for the
derivation adding some clarifications, and will later describe the system shown in sec-
tion 4 when the interaction between each reservoir and subsystem leads to a measure-
ment of a Hermitian operator: the position for the harmonic oscillator and the operator
ζ = σ− + σ+ for the two-state atom. Furthermore, we will also consider the case of the
measurement of the position when S2 undergoes a decoherence process.

5.1 Derivation

We will characterize a continuous measurement by dividing the time spent in inter-
vals ∆t, assuming a weak measurement is performed in each of them; and then take
the limit ∆t → dt. The measured quantity X , which refers to an arbitrary observable
(and hence Hermitian operator), will be considered to have a continuous spectrum {x}
and eigenstates {|x〉}, which are assumed to be orthogonal: 〈x|x′〉 = δ(x − x′). Then,
each measurement will be estimated as a Gaussian-weighted sum of projectors onto the
eigenstates of X , described by the operator

A(α) =
(4k∆t

π

)1/4
∫ ∞
−∞

e−2k∆t(x−α)2 |x〉〈x|dx. (5.1)

Since α is a continuous index, there is a continuum of measurements results labelled by
it. Expanding the initial state in the basis of X : |ψ〉 =

∫
ψ(x)|x〉dx, the probability of

getting α as a result of the measurement is given by

P(α) = Tr[A†(α)A(α)|ψ〉〈ψ|] =

√
4k∆t

π

∫ ∞
−∞

dx|ψ(x)|2e−4k∆t(x−α)2 . (5.2)

We see that if ∆t is small enough, the Gaussian is much broader than ψ(x), and thereby
|ψ(x)|2 can be approximated by a delta function centered at the expectation value of the
operator X :

P(α) ≈
√

4k∆t

π

∫ ∞
−∞

dxδ(x− 〈X〉)e−4k∆t(x−α)2 =

√
4k∆t

π
e−4k∆t(α−〈X〉)2 . (5.3)
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5.1 Derivation 5. STOCHASTIC EQUATION

Nevertheless, the expectation value of the measurement is given by

〈α〉 =

∫ ∞
−∞

dααP(α) =

√
4k∆t

π

∫ ∞
−∞

dx|ψ(x)|2
∫ ∞
−∞

dααe−4k∆t(x−α)2

=

∫ ∞
−∞

dxx|ψ(x)|2 = 〈X〉, (5.4)

and therefore, α can be effectively described by the stochastic variable

αs = 〈X〉+
∆W

(8k)1/2∆t
, (5.5)

where ∆W is a random, Gaussian variable with mean 〈∆W 〉 = 0 and variance ∆t,
described by the probability density

P(∆W,∆t) =
1

(2π∆t)1/2
e−(∆W )2/2∆t. (5.6)

We will now consider the effect of a single measurement in the evolution of the system,
taking into account that for all purposes α ' αs:

|ψ(t+ ∆t)〉 ∝ A(α)|ψ(t)〉 ∝ e−2k∆t(α−X)2 |ψ(t)〉 ∝ e−2k∆tX2+X[4k〈X〉∆t+(2k)1/2∆W ]|ψ(t)〉.
(5.7)

Expanding the exponential to first order in ∆t and second order inW :

|ψ(t+ ∆t)〉 ∝
{

1− 2k∆tX2 +X[4k〈X〉∆t+ (2k)1/2∆W + kX(∆W )2]
}
|ψ(t)〉. (5.8)

Before taking the continuum limit ∆t → dt, we will examine the behaviour of (∆W )2

in such situation. For doing so, let us introduce the central-limit theorem (CLT).

Theorem 1 Let S1, S2, . . . , Sn be a set of random, independent and identically distributed vari-
ables of a distribution with mean µ and variance σ2 6= 0. Then, if n is sufficiently large, the
random variable:

S̄ =
1

n

n∑
i=1

Si

is approximately normally distributed with µS̄ = µ and σS̄ = σ2

n .

We shall now define the Wiener processW (t), a random walk with arbitrarily small, in-
dependent steps taken arbitrarily often. If the random walk is symmetric, W (t) will
always give rise to a Gaussian distribution with 〈W 〉 = 0 in the continuum limit, where
the number of steps goes to infinity as their size goes to zero and the conditions for
the application of the CLT are satisfied. Therefore, if the variance is chosen to be t, the
probability density forW (t) will be analogous to (5.6), from where we can conclude:

VarW = 〈W 2〉 − 〈W 〉2 = t =⇒ 〈W 2〉 = t. (5.9)
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5.1 Derivation 5. STOCHASTIC EQUATION

Then, theWiener increment is defined as

∆W (t) ≡W (t+ ∆t)−W (t), (5.10)

which will be a zero-mean, normally distributed variable with variance ∆t. Therefore,
similarly to equation (5.9), we would have 〈〈(∆W )2〉〉 = ∆t, where the double brackets
refer to an ensemble average over all possible ways the Wiener process can occur. Con-
sidering now the probability density function for (∆W )2, which can be obtained from
(5.6) by replacing t→ ∆t andW → ∆W and performing the transformation∫ ∞
−∞
P(∆W )d(∆W ) = 2

∫ ∞
0
P(∆W )d(∆W ) = 2

∫ ∞
0
P[(∆W )2]

d(∆W )

d[(∆W )2]
d[(∆W )2],

(5.11)
whose Jacobian is similar to dx1/2/dx = 1/2x1/2, allowing us to set

P
[
(∆W )2

]
=

1

[2π∆t(∆W )2]1/2
e−(∆W )2/2∆t, (5.12)

which is a distribution with mean ∆t and variance 2(∆t)2. We will consider now the
sum of N Wiener increments of length ∆tN = t/N between 0 and t. These are given by

∆Wn ≡W [(n+ 1)∆tN ]−W (n∆tN ). (5.13)

Now, the sum of the squared Wiener increments, which is a random walk of N steps of
average t/N and variance 2t2/N ; gives rise to a Gaussian random variable for large N
with mean t and variance 2t2/N , according to the CLT. If we take the limit N →∞, the
variance vanishes and the sum becomes twith certainty:∫ t

0
[dW (t′)]2 ≡ lim

N→∞

N−1∑
n=0

(∆Wn)2 = t =

∫ t

0
dt′, (5.14)

an equation that allows us to make the identification dW 2 = dt, the so called Itô rule.
Therefore, dW is a randomvariable but dW 2 is not, as it has no variancewhen integrated
over an arbitrary, finite interval. With this consideration, we can take the continuum
limit in (5.8) to give

|ψ(t+ dt)〉∝
{

1−[kX2−4kX〈X〉]dt+(2k)1/2XdW+O(dt2)
}
|ψ(t)〉 ≡ [1 + Y (X)]|ψ(t)〉.

(5.15)
However, the previous equation does not preserve the norm of |ψ〉. We can calculate
one that does by normalizing |ψ(t + dt)〉 and expanding the result to first order in dt
and second order in dW 2:

|ψ′(t+ dt)〉 =
|ψ(t+ dt)〉√

〈ψ(t+ dt)|ψ(t+ dt)〉
=

1 + Y√
〈(1 + 2Y + Y 2)〉

|ψ(t)〉. (5.16)

We will first calculate the expectation value in the denominator:

〈1 + 2Y + Y 2〉 = 1 + 2
(
− [k〈X2〉 − 4k〈X〉2dt+ (2k)1/2〈X〉dW

)
+2k〈X2〉dW 2+O(dt2)

= 1 + 8k〈X〉2dt+ 2(2k)1/2〈X〉dW +O(dt2). (5.17)
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Thus, taking into account that (1 + z)−1/2 = 1− 1
2z + 3

8z
2 + . . . , we can substitute3 this

result in the fraction in (5.16) for z = 〈2Y + Y 2〉 to give

(1 + Y )
(

1− z

2
+

3

8
z2
)

= 1− 4k〈X〉2dt− (2k)1/2〈X〉dW + 3k〈X〉2dW 2

− [kX2 − 4kX〈X〉]dt+ (2k)1/2XdW − 2kX〈X〉dW 2. (5.18)

Hence, setting |ψ(t + dt〉 = |ψ(t)〉 + d|ψ〉, the stochastic differential equation can be
written as

d|ψ〉 =
{
− k(X − 〈X〉)2dt+ (2k)1/2(X − 〈X〉)dW

}
|ψ(t)〉, (5.19)

which is known as the stochastic Schrödinger equation (SSE). It describes the evolution of
a system in a time dtwhen the observer gets the measurement result

dy = 〈X〉dt+
dW

(8k)1/2
. (5.20)

Therefore, themeasurement gives the expectation value 〈X〉plus a random contribution
due to the width of P(α). The solution of the SSE for the evolution of the quantum
state will show a progressive collapse of the state, in contrast with the instantaneous
collapse that is assumed when a continuous measurement is not considered; and this
evolution will be equivalent to the integration of dy(t). Since it is possible to write the
SSE in terms of dy(t) by substituting dW (dy,dt), the equation will give an evolution of
the system conditioned by the measurement results. Therefore, the state |ψ〉will evolve
randomly and each stochastic solution |ψi(t)〉 is called quantum trajectory. We can find a
SSE in terms of ρ by calculating dρ up to first order in dt. Abbreviating equation (5.19)
as d|ψ〉 ≡ Q|ψ(t)〉, dρ can be written as

dρ = ρ(t+ dt)− ρ(t) =
(
|ψ(t) + d|ψ〉

)(
〈ψ(t)|+ d〈ψ|

)
− |ψ(t)〉〈ψ(t)|

= d|ψ〉〈ψ(t)|+ |ψ(t)〉d〈ψ|+ d|ψ〉d〈ψ| = Qρ+ ρQ† +QρQ†

= 2k(XρX + ρ〈X〉2 − 〈X〉{X, ρ})dW 2 − k[{X2, ρ}+ 2ρ〈X〉2 − 2〈X〉{X, ρ}]dt
+ (2k)1/2

(
{X, ρ} − 2〈X〉ρ

)
dW

= −k({X2, ρ} − 2XρX)dt+ (2k)1/2({X, ρ} − 2〈X〉ρ)dW, (5.21)

from where we obtain

dρ = −k
[
X, [X, ρ]

]
+ (2k)1/2(Xρ+ ρX − 2〈X〉ρ)dW. (5.22)

Equations (5.19) and (5.22) account only for the effects of a measurement of the observ-
ableX in the system. To obtain the final form, we should add the partial derivative with
respect to time, which for the state evolution gives

d|ψ〉 =
{
− k(X − 〈X〉)2dt+ (2k)1/2(X − 〈X〉)dW +

1

i~
Hdt

}
|ψ(t)〉, (5.23)

3The expansion will be implicitly assumed to be up to first order in dt from now on.
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and in terms of the density operator we get

dρ = −k
[
X, [X, ρ]

]
+ (2k)1/2(Xρ+ ρX − 2〈X〉ρ)dW +

1

i~
[H, ρ]dt. (5.24)

The latter is a second order equation in ρ since 〈X〉 = Tr ρX , which is also known as the
stochastic master equation (SME) and also defines a quantum trajectory ρi(t). In order to
calculate the average evolution ρ̄(t), it is important to remark that the previous equation
is the continuum limit of the discrete relation of the form

ρ(t+ ∆t) = ρ(t) + β∆t+ γ∆W (t). (5.25)

Therefore, ρ(t) depends on ∆W (t−∆t), but not onW (t) and hence they are statistically
independent, which implies 〈〈ρdW 〉〉 = 〈〈ρ〉〉〈〈dW 〉〉 = 0. Then, the state averaged over
all possible measurement results will follow the evolution given by

dρ̄

dt
= −k

[
X, [X, ρ̄]

]
+

1

i~
[H, ρ], (5.26)

which would exactly coincide with the averaged sum of quantum trajectories ρ̄st(t)
when all possible trajectories are considered:

ρ̄(t) = lim
N→∞

ρ̄st(t) = lim
N→∞

1

N

N∑
i=1

ρi(t). (5.27)

Furthermore, equation (5.26) is exactly the master equation we would have obtained
for a system whose interaction with a reservoir exclusively entails a measurement of an
observable. As an example, themaster equation for a harmonic oscillatorwill lead to the
previous result if operators a and a†were substituted by theHermitian position operator
X =

√
~/2mωS(a + a†) in the interacting term HSR. Specifically, setting n̄1 = ∆1 = 0,

it would be the result of applying this modification in the first line of (4.25). It is also
possible to construct a similar density operator by considering the averaged sum of the
projections over N quantum trajectories |ψi(t)〉:

ρ̄|ψ〉st(t) =
1

N

N∑
i=1

|ψi(t)〉〈ψi(t)|, (5.28)

where the subindex |ψ〉st indicates that it has been obtained considering stochastic evo-
lutions of pure states; andwhichwill strictly coincidewith the ones obtained from (5.26)
and (5.27) in the N →∞ limit.

5.2 Measurement on interacting systems via reservoir couplings

We will consider the setup described in section 4, but replacing HS1R1 and HS2R2 for
sets of measurement interactions, specifically measurements of the position X and of
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the Hermitian operator ζ = σ+ + σ−, respectively:

H ′S1R1
=
∑
j

~(b∗jXr
†
j + bjXrj) ≡ ~(XΓ†3 +XΓ3),

H ′S2R2
=
∑
kλ

~(b∗kλζr
†
kλ + bkλζrkλ) ≡ ~(ζΓ†4 + ζΓ4), (5.29)

where now bj and bkλ couple the jth oscillator and S1, and a photon with wave vector k
and polarization λ and S2, in order to measure X and ζ, respectively.

5.2.1 SME derivation

Substituting the new Si −Ri interactions (5.29) in the Hamiltonian is formally equiva-
lent to perform the replacement (a, a†, σ−, σ+)→ (X,X, ζ, ζ) in (4.5). Hence, following
the same steps for the derivation of themaster equation and considering again the reser-
voirs’ frequency spectrum to be a continuum, we can introduce

κ3 = πg(ωS)|b(wS)|2, κ4 = π
∑
λ

∫
d3kg(k)|b(k, λ)|2δ(kc− wS),

∆3 = P

∫ ∞
0

dω
g(ω)|b(ω)|2

ωS − ω
, ∆4 =

∑
λ

P

∫
d3k

g(k)|b(k, λ)|2

ωS − kc
,

∆
′
3 = P

∫ ∞
0

dω
g(ω)|b(ω)|2

ωS − ω
n̄1(ω, T ), ∆

′
4 =

∑
λ

P

∫
d3k

g(k)|b(k, λ)|2

ωS − kc
n̄2(kc, T ), (5.30)

which allows us to write the master equation in the interaction picture (3.18) as

˙̃ρ =(κ3 + i∆3)(Xρ̃X −X2ρ̃) + h.c. + (κ4 + i∆4)(ζρ̃ζ − ζ2ρ̃) + h.c.
+(κ3n̄1+i∆′3)(2Xρ̃X −X2ρ̃− ρ̃X2)+ h.c.+(κ4n̄2+i∆′4)(2ζρ̃ζ − ζ2ρ̃− ρ̃ζ2)+h.c.

(5.31)

Expanding the terms associated to S1:

i) κ3(2Xρ̃X −X2ρ̃− ρ̃X2) = −κ3

[
X, [X, ρ̃]

]
,

ii) i∆3(Xρ̃X −X2ρ̃−Xρ̃X + ρ̃X2 = −i∆3

[
X2, ρ̃

]
,

iii) κ3n̄1(4Xρ̃X − 2X2ρ̃− 2ρ̃X2) = −2κ3n̄1

[
X, [X, ρ̃]

]
,

iv) i∆3‘(Xρ̃X −X2ρ̃+Xρ̃X − ρ̃X2 −Xρ̃X + ρ̃X2 −Xρ̃X +X2ρ̃) = 0. (5.32)

Since no commutation relations have been used, for S2 we obtain the same terms but
replacing (κ3, n̄1, X) → (κ4, n̄2, ζ). However, using the properties of the σ operators
(4.21) we notice that

ζ2 = σ2
− + σ2

+ + {σ−, σ+} = 1, (5.33)
which along with (5.32) allows us to write the master equation in the interaction picture
as

˙̃ρ = −i∆3

[
X2, ρ̃

]
− κ1(1 + 2n̄1)

[
X, [X, ρ̃]

]
+ 2κ4(1 + 2n̄2)(ζρ̃ζ − ρ̃). (5.34)
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Then, transforming the previous equation into the Schrödinger picture as in (4.24), we
obtain the master equation:

ρ̇ =− iωS
[
a†a,ρ

]
−i∆3[X2,ρ]−κ3(1+2n̄1)

[
X,[X, ρ]

]
− i

2
ωS
[
σz, ρ

]
+2κ4(1+2n̄2)(ζρζ − ρ)}+ {−id

[
a†σ−, ρ

]
− id∗

[
aσ+, ρ

]
. (5.35)

We see that in the absence of the stochastic terms (dWi = 0), n̄1 and n̄2 would only
increase the strength of the coupling κ3 and κ4, respectively; and therefore their ef-
fects could be included in new coupling constants by setting γ1 = κ3(1 + 2n̄1) and
γ2 = κ4(1+2n̄2). Wewill now include stochastic terms analogous to those in the general
SME (5.24) and assume it is an adequate proposal for the measurement interaction we
intend to describe. It is based on the fact that, with this procedure, the master equation
we have obtained includes similar terms to those in the general SME averaged over the
measurement record (5.26), plus a contribution dependent on ∆3. Therefore, ∆3 might
be a result of considering the detector to be some sort of reservoir, although a deeper
analysis would be needed to evaluate the validity of these suppositions. Furthermore,
considering the detector to be a reservoir is itself a questionable assertion, since reser-
voirs are assumed to remain unchanged by the interaction with the system; and it is this
modification what allows a detector to measure. Therefore, what we intend to describe
is a measuring device able to experience changes due to the interaction with a system,
but being them small enough that they do not have any influence on the future evolu-
tion of S, this is, that the Markoff approximation applies. The SME for this setup will
be given by

dρ ={−iωS
[
a†a,ρ

]
−i∆3[X2,ρ]−γ1

[
X,[X, ρ]

]
}dt+(2γ1)1/2(Xρ+ρX−2〈X〉ρ)dW1

{− i
2
ωS
[
σz, ρ

]
+2γ2(ζρζ − ρ)}dt+(2γ2)1/2(ζρ+ρζ−2〈ζ〉ρ)dW2

+ {−id
[
a†σ−, ρ

]
− id∗

[
aσ+, ρ

]
}dt. (5.36)

If we write X in terms of a and a† as X =
√
~/2mωS(a+ a†) ≡ l0(a+ a†), where l0 is a

unit of length dependent on themassm and the frequency ωS of the harmonic oscillator,
then the SME could be restated as

dρ ={−iω′c
[
a†a, ρ

]
− l20

{
(γ1+i∆3)

(
a2+ (a†)2

)
ρ+ (γ1−i∆3)ρ

(
a2+ (a†)2

)}
+ . . . }dt+ . . . ,

(5.37)
where now ω′c = ωs + 2l20∆3. Hence, in this case the detuning term for S1 alters the
frequency of this subsystem, but also effectively modifies the nature of the coupling
constant for several terms; and as we see in (5.36) no detuning related to S2 appears.
Projecting equation (5.36) onto the eigenstates of S we find the evolution of an arbitrary
matrix element, given by
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dρmfnh =−
{[
iω′c(m− n) + 2γ1l

2
0(1 + n+m)

]
ρmfnh

+ γ1l
2
0

[(
1− i∆3

γ1

)(√
n(n− 1)ρmf,n−2,h +

√
(n+ 1)(n+ 2)ρmf,n+2,h

)
+
(

1 + i
∆3

γ1

)(√
m(m− 1)ρm−2,f,nh +

√
(m+ 1)(m+ 2)ρm+2,f,nh

)
− 2
(√

n(m+ 1)ρm+1,f,n−1,h +
√
nmρm−1,f,n−1,h+

√
(n+ 1)(m+ 1)ρm+1,f,n+1,h

+
√

(n+ 1)mρm−1,f,n+1,h

)]}
dt

+ (2γ1)1/2
{√

n+ 1ρmf,n+1,h +
√
nρmf,n−1,h +

√
m+ 1ρm+1,f,nh +

√
mρm−1,f,nh

− 2〈X〉ρmfnh
}

dW1+

−
{[
i
ωS
2

(δf1δh0 − δf0δh1) + 2γ2

]
ρmfnh + γ2

[
ρm,f−1,n,h−1 + ρm,f−1,n,h+1

+ ρm,f+1,n,h+1 + ρm,f+1,n,h−1

]}
dt

+ (2γ2)1/2
{
ρm,f−1,nh + ρm,f+1,nh + ρmf,n,h−1 + ρmf,n,h+1 − 2〈ζ〉ρmfnh

}
dW2

− id
√
mρm−1,f+1,nh + id

√
n+ 1ρmf,n+1,h−1

− id∗
√
m+ 1ρm+1,f−1,nh + id∗

√
nρmf,n−1,h+1. (5.38)

From the previous result, we can analyze the effects of the ∆3 term in an arbitrary pop-
ulation:

dρnfnf = · · · − i∆3l
2
0

[√
n(n− 1)ρn−2,f,nf +

√
(n+ 1)(n+ 2)ρn+2,f,nf

]
+ i∆3l

2
0

[√
n(n− 1)ρnf,n−2,f +

√
(n+ 1)(n+ 2)ρnf,n+2,f

]
+ . . .

= · · ·+ 2i∆3l
2
0

√
n(n− 1)ρnf,n−2,f + 2i∆3l

2
0

√
(n+ 1)(n+ 2)ρnf,n+2,f + . . . (5.39)

We see that each of those terms are similar to the onewe obtained in the first equation of
(4.28), although now ∆3 ∈ < by definition (5.30). In that case, the terms proportional to
dwere responsible for the transitions between the |n, e〉 and |n+ 1, g〉 states, which had
the directionality needed to balance the unevenness in their populations. On the other
hand, the ∆3 terms will readjust the differences among the |n, f〉 and both |n − 2, f〉
and |n + 2, f〉 states. As it was explained while discussing (4.28), the mechanism first
generates the coherences ρnf,n±2,f which will later affect the populations, and hence
the population transfer will have some delay. This delay prevented the balance to be
reachedwhenwe considered solely the JC interaction for a state |ψ(t)〉 = c1(t)|n+1, e〉+
c2(t)|n, e〉, which led to Rabi oscillations. The analogous result in this case would be an
oscillation of a flowof populations from lower to highern and vice versa, when∆3 � γ1;
andwill bemore relevant themore unbalanced the populations of the initial state |ψ(0)〉
are. However, the ∆3 term appears as a correction, and therefore is unlikely to be strong
enough to drive the dynamics of a realistic physical system.
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Analyzing the form of the ∆3 term in (5.36), it can be seen that it could also be obtained
if included in the Hamiltonian of the harmonic oscillator:

H ′S1
= ~ωSa†a+ ~∆3X

2, (5.40)

which corresponds to the Hamiltonian of a harmonic oscillator with a modified fre-
quency ω′s. This can be seen by writing the previous Hamiltonian in terms of X and P :

H ′S1
=

P2

2m
+

1

2
kX2 + ~∆3X

2 ≡ P2

2m
+

1

2
k′X2 = ~ω′sa′†a′, (5.41)

where k′ = k + 2~∆3 and therefore the new frequency is given by

ω′s =

√
k′

m
=

√
ω2
s +

2~∆3

m
. (5.42)

Thus, we can write the previous ladder operators in terms of the new ones using the
expressions for X and P , given by

X=

√
~

2mωS
(a+a†)=

√
~

2mω′S
(a′+a′†), P = i

√
~mωS

2
(a−a†)= i

√
~mω′S

2
(a′−a′†),

(5.43)
from where we obtain

a =
1

2

{
a′
[(ωS
ω′S

)1/2
+
(ω′S
ωS

)1/2]
+ a′†

[(ωS
ω′S

)1/2
−
(ω′S
ωS

)1/2]}
,

a† =
1

2

{
a′
[(ωS
ω′S

)1/2
−
(ω′S
ωS

)1/2]
+ a′†

[(ωS
ω′S

)1/2
+
(ω′S
ωS

)1/2]}
. (5.44)

We could combine the∆3 termwithHS1 as in (5.41) and rewrite operators a and a† in the
SME (5.36) in terms of a′ and a′† using (5.44). In that case, wewould project the SMEonto
the |n′, f〉 states, the new eigenstates of the composite system, and continue the analysis
from there. However, since it would lead to the appearance of a large number of terms
depending on the new ladder operators, we will maintain the original formulation of
the SME.

Finally, wewould like to determine the SSE (5.23) for this system, in order to compare the
averaged density matrices obtained using quantum trajectories ρi(t) (5.27) and |ψi(t)〉
(5.28). However, for its derivation a different approach was followed, but analyzing the
SME (5.36) and comparing it to the general expression (5.24), we find that the effects of
the reservoir features appear through n̄i and ∆3, and hence we can take the following
SSE as an assumption:

d|ψ〉 =
{
− γ1(X − 〈X〉)2dt+ (2γ1)1/2(X − 〈X〉)dW1 − i∆3X

2dt

− γ2(ζ − 〈ζ〉)2dt+ (2γ2)1/2(ζ − 〈ζ〉)dW2

− i
[
ωS(a†a+

σz
2

) + da†σ− + d∗aσ+

]
dt
}
|ψ(t)〉, (5.45)

obtained by comparing the general SSE (5.23), the general SME (5.24) and the SME for
this specific setup (5.36). If we calculate dρ in the same manner as in (5.21), keeping
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terms up to first order in dt and neglecting terms proportional to the product dW1dW2,
we would obtain exactly the same SME (5.36). Therefore, it may be considered the right
SSE linked to the SME we have derived. Nevertheless, since we know that when all
trajectories are considered, both (5.27) and (5.28) must coincide, this equality will also
serve as a test to determine the validity of the proposed equation.

5.2.2 Numerical solution

Wewill calculate the numerical solution of the SME (5.36) and evaluate the expectation
value ofX , which will serve as an indicator of the changes in the state of the system due
to the measurement of X , but also of ζ since the HJC interaction links S1 and S2. As
in previous sections, we will plot dimensionless quantities in order to focus only on the
qualitative behaviour of the system.

Figure 9: Evolution of 〈X〉/l0 for N = 200 quantum trajectories ρi when ζ is simultaneously
measured, using a step ω0∆t = 0.05. The Gaussian distributions ∆Wi have zero mean and
variance ω0∆t. Each solution using a quantum trajectory ρi is plotted as a dashed line; their
average ρ̄st as dots and stripes; and the solution of the master equation with no stochastic terms
(5.35), ρ̄, as a solid line. The initial state is |ψ(0)〉 = |2, e〉, and the parameters are ωS = ω0,
γ1 = 0.1ω0/l

2
0, γ2 = 0.5ω0, d = 0.1ω0 and ∆3 = 0.1ω0/l

2
0.

In Figure 9 it can be seen that the evolution of 〈X〉 when using ρ̄st, the average of the
quantum trajectories (5.27), approximately coincides with the one we obtain by employ-
ing the solution of the master equation with no stochastic terms ρ̄ (5.35), when a suffi-
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ciently large number of quantum trajectories ρi is considered.

Figure 10: Evolution of 〈X〉/l0 forN = 100 quantum trajectories |ψi〉when ζ is simultaneously
measured, using a step ω0∆t = 0.05. The Gaussian distributions ∆Wi have zero mean and
variance ω0∆t. Each of the N = 300 solutions using a distinct |ψi〉 is plotted as a dashed line,
the average over the projectors onto each trajectory ρ̄|ψ〉st as dots and stripes; and the solution of
the master equation with no stochastic terms (5.35), ρ̄, as a solid line. The initial state is |ψ(0)〉 =
|2, e〉, and the parameters are ωS = ω0, γ1 = 0.1ω0/l

2
0, γ2 = 0.5ω0, d = 0.1ω0 and ∆3 = 0.1ω0/l

2
0.

On the other hand, Figure 10 shows the correspondence between the stochastic density
matrix ρ̄|ψ〉st (5.28), constructed from the projectors onto the quantum trajectories |ψi〉;
and the non-stochastic master equation (5.35), since the evolution of 〈X〉 is relatively the
same for both when enough trajectories are taken into account. Therefore, the equiva-
lence among ρ̄st, ρ̄|ψ〉st and ρ̄when an adequate number of trajectories are considered has
been verified. Hence, if possible, it would be recommendable to use a SSE to describe
quantum trajectories, since the average result is equivalent and it is less demanding
computationally. It can also be noticed that the variance in 〈X〉 is much larger when the
evolution of single states is analyzed than when we use density operators. This might
be explained by the fact that the ρi are already a collection of projectors onto several
states; a weighted average in fact since generally there is a different probability of being
in each state, and thereby some variance may be averaged out.

5.3 Measurement and interaction with a system under decoherence

We will consider the setup from section 4, but replacing the reservoir R1 by a position
detector. Therefore, for S1 we will get the same terms that appear in (5.24), being now
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X the position operator for the harmonic oscillator. We could derive the corresponding
master equation and, since S2 is still interacting with R2 in the form of a decoherence
process, as well as with S1 through the JC interaction, we would obtain the terms from
the master equation (4.25) associated to these interactions, specifically the ones on the
second and third line, respectively. Thereby, the stochastic master equation that de-
scribes this configuration is given by

ρ̇ =− iωS
[
a†a, ρ

]
− k
[
X, [X, ρ]

]
(2k)1/2(Xρ+ ρX − 2〈X〉ρ)dW1

− i

2
ω′A
[
σz, ρ

]
+ κ2(2σ−ρσ+ − σ+σ−ρ− ρσ+σ−) + 2κ2n̄2(σ−ρσ+ + σ+ρσ− − ρ)

− id
[
a†σ−, ρ

]
− id∗

[
aσ+, ρ

]
,

(5.46)
where again ω′A = ωS + ∆2 + 2∆′2. In this case it is not possible to find a SSE, since
the decoherence process leads to a mixture of states, making it indispensable to use ρ to
describe the system.

5.3.1 Numerical solution

Figure 11: Evolution of 〈X〉/l0 for N = 150 quantum trajectories ρi when S2 undergoes a de-
coherence process, using a step ω0∆t = 0.05. The Gaussian distribution ∆W1 has zero mean
and variance ω0∆t. Each solution using a quantum trajectory ρi is plotted as a dashed line; their
average ρ̄st as dots and stripes; and the solution of the master equation with no stochastic terms
(5.35), ρ̄, as a solid line. The initial state is |ψ(0)〉 = |2, e〉, and the parameters are ωS = ω0,
k = 0.1ω0/l

2
0, κ2 = 0.5ω0, d = 0.5ω0 and n̄2 = 1.
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As we see in Figure 11, the variance in the expectation value is lower than in the setup
studied in section 5.2, due to the fact that there were two stochastic terms compared
to the one existing in this case. Despite the fact that the stochastic term dW2 does not
directly influence the position, the JC term allows it to affect S1 through modifying S2,
and therefore alters the future evolution of the harmonic oscillator.

We notice that in both cases the average of 〈X〉 over the measurement record stays null.
In order to justify this behaviour we should examine the equation for 〈X〉, given by

〈X〉=Tr ρX= l0
∑
k

pk〈ψk|(a+a†)|ψk〉=
∑
k

pk

(∑
nf

√
nc∗n−1,fkcnfk+

∑
nf

√
n+ 1c∗n+1,fkcnfk

)
=
∑
nf

√
n+ 1

∑
k

pk
(
c∗nfkcn+1,fk + c∗n+1,fkcnfk

)
=
∑
nf

√
n+ 1

(
ρnf,n+1,f + ρn+1,f,nf

)
,

(5.47)
where cnfk = 〈n, f |ψk〉 and we have used the condition n ≥ 0 in the fourth equality.
Therefore, in order to increase |〈X〉| we would need coherences among the states |nf〉
and |n±1, f〉. If we examine the SME for both cases, (5.36) and (5.46), we notice that the
only terms able to generate the required coherences are Xρ and ρX , which exclusively
appear in the stochastic term proportional to dW1. This explains why 〈X〉 is generally
non-null for each quantum trajectory, but turns out to be zero if we consider their aver-
age, since 〈〈dW1〉〉 = 0, or the respective non-stochastic master equation.

6 Conclusions

En relación a las ecuaciones maestras, a partir de los resultados obtenidos es posible realizar di-
versas conclusiones. En primer lugar, se comprueba en el caso (I), donde se estudió un estado
inicial puro, no entrelazado a temperatura cero; el papel disipativo del proceso de decoherencia,
que originaba un decaimiento al estado fundamental. Además, para el caso (II), donde consid-
eramos un estado inicial puro y entrelazado; se corrobora la pérdida de coherencia debido a la
interacción con el entorno, así como la aparición de estados estacionarios para las poblaciones y
para las coherencias relacionadas con la interacción de Jaynes-Cummings, mostrando estos una
variabilidad en función de las temperaturas de los reservorios. Finalmente, como consecuencia de
la interacción de JC, observamos que el valor estacionario de las poblaciones de los estados |n, e〉
y |n+ 1, g〉 tienden a igualarse cuando la temperatura de los reservorios difiere.

Respecto a las ecuaciones estocásticas, observamos que en el caso de los dos subsistemas en in-
teracción considerados, el efecto de dos medidas simultáneas está asociado a una mayor varianza
en la evolución temporal del valor esperado del operador de posición, respecto a la obtenida en
el caso de una única medida cuando el subsistema no medido experimenta un proceso de deco-
herencia. Por último, para el caso de las dos medidas, se comprueba que la media del registro de
medidas de un observable es independiente de la utilización de una ecuación estocástica maestra
o de Schrödinger, estando por tanto recomendado el uso de esta última cuando sea posible, debido
a ser computacionalmente menos exigente.
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Regarding the master equations, from the results obtained it is possible to draw sev-
eral conclusions. First, the dissipative effects of the decoherence process has been ob-
served in the decay to the ground state for case (I), where we considered an initial pure,
non-entangled state at zero temperature. Furthermore, for case (II), characterized by
an initial pure, entangled state at temperature different than zero; the coherence loss
due to the coupling with the environment has been verified, as well as the appearance
of stationary states for the populations and for the coherences related to the Jaynes-
Cummings interaction, showing both a variability depending on the temperatures of
the reservoirs. Moreover, as a consequence of the JC interaction, it has been perceived a
tendency to even the populations of the |n, e〉 and |n+1, g〉 states when the temperatures
of the reservoirs are distinct.

In relation to the stochastic equations, it has been observed that in the case of the two in-
teracting subsystems considered, the effect of two simultaneous measurements is asso-
ciated to a higher variance in the time evolution of the expectation value of the position
operator, with respect to the one obtained in the case of a single measurement when the
non-measured subsystem experiences a decoherence process. Finally, for the case of the
two measurements, it has been confirmed that the average of the measurement record
of an observable does not depend on the use of a SME or a SSE; being therefore recom-
mended the use of the latter when possible, since it is less demanding computationally.
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