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Resumen

La medida pasiva de distancia a los objetos en una imagen da lugar a intere-
santes aplicaciones con capacidad para revolucionar la fotografía. En esta
tesis se creó y estudió un prototipo de cámara plenóptica para dispositivos
móviles. Esta técnica presenta dos inconvenientes: la necesidad de modificar
el módulo de cámara y la pérdida de resolución. Por ello, el prototipo fue
descartado para utilizar otra técnica: la profundidad a partir del desenfoque.

En esta técnica el método de captura consiste en tomar varias imagenes
variando la distancia de enfoque. El conjunto de imágenes se denomina
focal-stack. Se estudian distintos operadores de desenfoque, que dan una
medida de desenfoque por pixel y por plano del focal-stack. Siendo elegido
como óptimo el operador de desenfoque curvelet, que es computacionalmente
más intensivo que otros operadores pero es capaz de descomponer imagenes
naturales utilizando muy pocos coeficientes.

Para hacer posible su uso en dispositivos móviles se construye una nueva
transformada curvelet basada en la transformada discreta de Radon. La
transformada discreta de Radon tiene complejidad linearítmica, no utiliza la
transformada de Fourier y usa sólo sumas de enteros.

Por último, se analizan distintas versiones de la transformada de Radon
con el objetivo de conseguir una transformada aún más rápida y se imple-
mentan para ser ejecutadas en dispositivos móviles.

Además se presenta una aplicación de la transformada de Radon consis-
tente en la detección de códigos de barras con cualquier orientación en una
imagen.
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Abstract

Passive distance measurement of the objects in an image gives place to inter-
esting applications that have the potential to revolutionize the field of pho-
tography. In this thesis a prototype of plenoptic camera for mobile devices
was created and studied. This technique has two main disadvantages: the
need for modifying the camera module and the loss of resolution. Because
of this, the prototype was discarded in order to utilize another technique:
depth from focus.

In this technique the capture method consists in taking several images
while varying the focus distance. The set of images is called focal-stack.
Different focus operators are studied, which give a measure of defocus per
pixel and plane of the focal-stack.

The curvelet based focus operator is chosen as the most adequate. It
is computationally more intensive than other operators but it is capable of
decomposing natural images using few coefficients.

In order to make viable its usage in mobile devices a new curvelet trans-
form based on the discrete Radon transform is built. The discrete Radon
transform has logarithmic complexity, does not use the Fourier transform
and uses only integer sums.

Lastly, different versions of the Radon transform are analyzed with the
goal of achieving an even faster transform. These transforms are implemented
to be executed on mobile devices.

Additionally, an application of the Radon transform is presented. It con-
sists in the detection of bar-codes that have any orientation in an image.



Chapter 1

Introduction

1.1 Goals

The photographic camera has been around for almost two centuries already,
with the first permanent photography dating back from 1826 and taken by
Joseph Nicéphore Niépce. The inner workings of this marvelous contraption
were kept untouched, having a physical element that reacted to the light
passing through an aperture or a lens and producing as a result a rendition
of the scene, where rays of light were interacting with the objects present
and finally entering the camera. But then, computers came along and made
things pragmatically different for everyone. Photography was then disturbed
by the unstoppable digital revolution.

The digital camera was born and film was replaced by digital memory
and digital sensors. Still, the principles of photography as an art remained
similar, in the sense that, in order to take a picture, we have to take into
consideration aperture, exposition time, sensitivity of the sensor or the film,
field of view, etc. But what if the next incarnation of photography changed
that?

Computational photography enables an array of applications and new
possibilities by adding a processing step in between of exposure and ‘devel-
oping’. We have already seen the first examples on the new smart-phones,
those carrying both a camera and a ‘computer’ closely attached. Things
like portrait or bokeh mode are examples of synthetic aperture. High Dy-
namic Range, HDR, algorithms vary the exposition time and/or the sensi-
tivity (ISO) in order to compose an image that has far more dynamic range
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than what would have been possible with a single exposure. It is also pos-
sible to improve the color sensitivity and signal to noise ratio in low-light
environments by taking a burst of images and combining them to increase
the signal to noise ratio. This kind of software ‘tricks’ have been seen on the
Google Pixel smart-phones [2].

But then, what if photography can be ‘salted’ with a conventionally ab-
sent information about objects in a scene? Their distance to the camera,
also called depth. Depth sensing is an active field of development and re-
search. It is widely used in art, self-driving cars, consumer electronics and
industrial applications. There are two kinds of depth sensors depending the
on principle they operate: the active depth sensors and the passive depth
sensors.

The goal of this thesis is to analyze the viability of measuring distance on
mobile devices passively. Measuring depth means that with a shot a depth
map is obtained in addition to the image. This is also called 2.5 D. It enables
an array of applications:

• Refocus at will. Images can be refocused after being taken.

• Synthetic aperture. Different aperture combinations can be generated
after taking the image. An example of this is the bokeh effect where
the background is blurred in order to isolate the subject from the rest
of the scene. An effect that in conventional photography requires a
very bright, and expensive, objective lens.

• Chroma key. By knowing the depth of the pixels of the scene, the back-
ground can be removed or substituted, similar to what a chroma key
achieves in cinema special effects, but without the need for recording
against a green background.

• Point of view generation. Versions of the image as if taken from points
of view slightly different to the actually used to capture it, can be
generated synthetically.

At the end of this chapter, after introducing background information
about depth extraction from images, a plenoptic camera prototype for mobile
phones is introduced. This approach was later discarded since the method
incurred in some drawbacks, the loss of resolution being the most compelling.
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The second chapter takes a different approach, shape from focus. Those tech-
niques use a single lens and infer depth by varying the lens focus distance. In
that chapter, the general algorithm is described and a set of focus operators
are analyzed. One particular focus operator is chosen: the curvelet trans-
form. The rest of the thesis is devoted to develop a curvelet transform fast
enough to run on a mobile device. The Discrete Radon transform is chosen
to be the basis on which the curvelet transform is built, but even then, it
must be extensively modified and optimized. That task will be the subject
of the third chapter, in which different versions of the Radon transform are
described. In the fourth chapter the chosen Radon transform is implemented
and accelerated. As well a collateral application, to locate bar-codes in im-
ages, is shown.

1.2 Background

1.2.1 Active sensing

The active sensors emit a signal to the media in order to measure how is the
reflection once it has interacted with the scene and is brought back to the
sensor. Using these kind of sensors has several advantages compared to using
passive sensors. The most important one is quality: it is easier to measure the
differences on the signal if you know it a-priori. Albeit being more reliable
they also come usually with the drawback of being notably more expensive.

The LiDAR is an example of active sensor. It illuminates the scene by
pulsating laser light and then measures the pulses with a sensor. It allows for
high-resolution maps. The Velodyne LiDAR [3] costs about 4k U.S. dollars.
It seems overkill to include a technology like this on a smart-phone, so many
efforts have been put into using different kinds of sensors.

Microsoft Kinect is a module intended for the Xbox, a gaming console.
It packs an active depth sensor consisting of a monochrome CMOS sensor
and an infra-red light projector that emits pseudo-random IR patterns. It
was very popular not only among the gamers but also among the makers and
researchers, as it was reverse-engineered and used for more general purposes.

After Microsoft’s footsteps, Apple introduced in some of its iPhones a dot-
projector and a infra-red camera [4]. Qualcomm has announced the Second
Generation Spectra Module Program [5], an image signal processor, ISP, that
will allow smart-phones carrying a Qualcomm’s System on Chip, SoC, to
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pack active IR depth sensors. It still contemplates that most smart-phones
will not rely on expensive sensors but those on the cheaper side: of the time-
of-flight kind. Algorithms to process depth passively from stereo will still be
present giving rise to hybrid passive-active sensing.

1.2.2 Measuring depth passively

There are many techniques to achieve depth maps from passive systems of
capture and most of them need some sort of modification of the camera. The
most natural approach is to imitate the human vision. Nature gave us what
we call binocular vision. This type of vision uses a pair of eyes and a brain
to process the difference, the binocular disparity.

By using two cameras we can artificially recreate the binocular capture
system and by using a processing unit running an algorithm on these pairs
of images we can imitate the brain understanding the depth of the environ-
ments. Before having enough computational power to do this, the binocular
camera already existed if only for the sake of capture, storage and transmis-
sion, with no depth inference until now.

1.2.3 Depth from stereo

Algorithms for calculating depth from stereo use two images taken at the
same time from slightly different points of view. Objects closest to the cap-
ture system will have more disparity than those further away. Disparity is
the difference of the position of corresponding 3D point projected on pixels
to both images. From the disparity, a depth map can be calculated by taking
into consideration the characteristics of the capture system.

The main difficulty that depth from stereo algorithms attempt to solve
is the unequivocal identification of the pixels on both images where a scene
point P projects. Success in this task is what basically determines the quality
of the results for different algorithms. In order to find the depth of the points
shown in one of the two images, the template image, we take each projected
point P projected onto the left image at Xl = (xl, yl)) and we search for the
corresponding projected point on the candidate (right) image (Xr = (xr, yr)).
Also, there could be occlusions so the success of the search is not guaranteed.
In order to accelerate the process we can use the epipolar geometry constraint.
In that case the space of search on candidate image reduces to a line.
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Figure 1.1: Simple stereo optical arrangement. Depth can only be measured
at the binocular stereo area.

The simplest optical arrangement capture model is to use two cameras
for which the optical axes are parallel (see figure 1.1). Then, depth can be
estimated by using a triangulation (see figure 1.2). The Xl and Xr points are
located by looking for the point along an epipolar plane i.e. the plane that
contains the points Xl, Xr and P . This yields a scan line that is parallel for
both images (left and right).

A generalized optical arrangement is also valid. This model is useful
because it maximizes the binocular stereo area. In this case the scan lines of
both images are not parallel.

So, once known the parameters of the camera, all boils down to the corre-
spondence problem. For each pixel, we need to find where is its new position
along the epipolar line. One way to do this is to use a general correspon-
dence algorithm and restrict its search space to the epipolar line. The other
way consists on rectifying (or warping) the images so their epipolar lines
are corresponding horizontal lines. This approach can lead to more efficient
algorithms.

The first stereo matching algorithms used to look for suitable features
that were easily identifiable on the search space. Modern algorithms produce
dense depth maps. Texture-less areas have a high degree of uncertainty as
they do not have unequivocally identifiable features, so these algorithms have



6 Introduction

Figure 1.2: Triangulation. Baseline and focal distance must be known be-
forehand.

to make assumptions on how should they fill the unknown areas.
Local matching strategies try to match a template area of pixels with a

candidate area. Using only one pixel is not robust against noise so a support
region must be used. The support region can be defined using different
techniques having different computational impacts. The simplest methods
are using a box shaped window around the pixel or a gaussian window.
Segmentations, graph-cuts and geodesic support weights are more advanced
techniques and have also been used widely. The size of the window affects
the precision of the results. A bigger size will improve robustness to the noise
but will decrease the precision of the smaller details.

After the sparse map of disparities is computed, a global optimization
is performed in order to fill the gaps. Simulated annealing, graph-cuts, dy-
namic programming and segmentation are only some examples of techniques
that have been used to solve this problem. A complete comparison of these
methods is described in [6].

Lastly, in the last 5 years, many algorithms based on neural networks
have been developed and, in many cases, achieving better results than those
of more classical approaches, for example [7].
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Figure 1.3: Search lines. On the left, the simple version, epipolar lines are
parallel; right, epipolar lines are not parallel but the model is still valid.
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(a) Left input image. (b) Right input image. (c) Ground truth.

(d) The result from a
method that uses a con-
volutional neural net-
work [8], taking 925 ms.

(e) The result from
a “classical” method,
based on super-pixel
segmentation [9], taking
635 ms.

Figure 1.4: Example taken from the bench-marking website [1].
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Figure 1.5: Camera lens with occluder, adding a coded aperture. Taken from
[10].

1.2.4 Depth from coded aperture

Another possibility is to add a coding to the aperture. This entails a simple
modification to the lens that consists on adding an occluder with a particular
shape. The result of this modification is that objects that are out of focus
appear blurred with a scaled version of the aperture shape. This scale is
directly proportional to the depth of the object. While a pentagonal disk
shape, typical of inexpensive camera diaphragms, provides some depth cues,
they are difficult to exploit, so a specific aperture is designed in order to be
easily measured in size i.e. with less uncertainty.

The work presented in [10] is able to get an all-in-focus image along with
a coarse depth map from a single image.

1.2.5 Plenoptic lenses on smart-phone cameras

The plenoptic function

Physical space is filled with light rays that travel in every direction. These
rays depend on how the light is emitted, reflected and refracted by the sur-
faces of the 3D objects located on the space, and on the physical medium
of propagation. The plenoptic function, also called light-field, represents the
amount of light traveling in each direction in each point of the space [11].
This function has 7 dimensions. Three of them define the point in 3D space,
other two define the 2D angular direction of observation and the remaining
two define the time and wave-length. Therefore, the function is defined as
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Figure 1.6: Example with a photographic camera. The dimensions px, py
and pz are fixed on a point. The angular dimensions θ and φ are restricted
to a range

follows:

P (px, py, pz, θ, φ, λ, t). (1.1)

In a standard camera, each element of the captured image is the result of
integration of rays that hit a particular sensor location (at px, py, for a fixed
pz), coming from the range of angles covered by the lens (θ and φ dimensions).
As a result, we lose this information and a 2D image is projected.

If we want to capture angular information about the incoming rays, along
with spatial information, we must use a different optical arrangement. Stereo
photography allows to get ‘full’ angular information, but restricted to two
spatial locations, so that is not the way to go. Instead a plenoptic camera
must be used to capture a range within the angular dimensions. A plenoptic
camera can be implemented by adding a micro-lens array in front of the
sensor 1.7.

Existing technologies

The Lytro company, founded by Dr. Ren Ng, has commercialized two plenop-
tic photographic cameras. The first one was the first widely available to the
general public. It was capable of a-posteriori refocusing and point of view
generation and had a final resolution of 1080 × 1080, taking 8 seconds in
doing so. It used to cost around 400 $. The second one was called Lytro
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(a) Conventional arrangement.
(b) Standard Plenoptic Arrange-
ment.

Figure 1.7: By adding a micro-lenses array rays with different angles are
redirected to different pixels, allowing angular information to be registered.

Figure 1.8: Detail of a plenoptic image. s and t are the dimensions corre-
sponding with the pixels below each micro-lens and u and v correspond with
the macro-pixel, i.e. the micro-lens within the image.
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Figure 1.9: The Lytro Illum.

(a) The PiCam made by Pelican.
(b) The LinX camera modules.

Figure 1.10: Two camera array modules.

Illum (see 1.9), and costed 1500 $. It was powered by a snapdragon 801,
which is the SoC that high-end smartphones were packing at the moment
of release. This product failed, as not much people bought it. The image
quality was probably not on par with DSLR cameras and the resolution still
low (2450× 1634). A 700 Megapixel plenoptic camera for cinema was being
developed when the company was declared defunct on March, 2018.

The company Pelican Imaging Corporation designed a camera array for
smartphones called PiCam. Similarly to the Lytro cameras, light-field can
be captured and then perform many applications such as refocus, super-
resolution and depth map generation. The capture system has not been
adopted by the industry. A similar technology has been developed by the
company LinX.
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Figure 1.11: Working prototype. The modified Sony QX-100 is attached to
a Samsung Galaxy S5 running Android 5.0.

1.2.6 Integral imaging mobile prototype modifying an

attachable lens-style camera

In 2014 we implemented our own version of a plenoptic camera using smart-
phones. It uses a modified Sony QX-100 camera that can be attached to any
smartphone running our software on Android.

Previous to this work, a prototype was built. CAFADIS, the plenoptic
camera patented by the University of La Laguna [12]. It consisted in building
a camera to measure wave-front phases and distances and was applicable to
multiple scenarios (small and large scales) and involved the use of GPUs and
FPGAs in order to work in real-time. This prototype was successful and led
to this present work.

A new prototype was then developed (see fig. 1.11) to provide a good user
experience and is, at the same time, inexpensive. Our goal was to build a
handheld device that showcases an array of applications for integral imaging
that may be present in a future generation of smartphones. Some of these
applications are: to refocus after capture, synthetic aperture, depth map
generation, and 3D displaying (both stereoscopic and integral).

The chosen camera for the prototype was the Sony QX-100. It makes
possible to have a lens style module with good specifications while being
totally independent to the unit that processes the images. The camera is
controlled by an Android smartphone or Tablet via Wi-Fi. Once the image is
ready, it will be transferred using the Wi-Fi connection to the Android device.
The camera was modified to fit a micro-lens array close to the sensor. The
application that deals with the user interaction runs on the Android device.
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Figure 1.12: Basic diagram showing the hardware units of the prototype.

(1)

(2)

(3)

(4)

(5)

90µm

Figure 1.13: Representation of the module that hosts the sensor. Elements
1, 4 and 5 were present in the original module while 2 and 3 were added. (1)
Sensor; (2) Liquid with micro-spheres; (3) MLA; (4) Clear pane; (5) UV/IR
cutoff filter.

The flow of the process starts after the captured image is loaded. The first
step is the image correction. After the image is corrected, the refocusings
are calculated and shown. Lastly, a depth map is calculated and a 3d effect
is shown. A stereo pair and an all-in-focus image are also generated.

The standard plenoptic camera model [13] was used in order to build this
prototype. It has micro-lenses placed one focal length away from the image
plane of the sensor. If we compare this arrangement with a normal camera,
one can note that the only new item it has is the array of micro-lenses (see
fig 1.7). This arrangement trades spatial resolution off in order to achieve
angular resolution. The camera has enough room to trade some of the spatial
resolution off and still get acceptable images and hence it is adequate to be
used for the prototype.

The applied modification consists of adding a micro lens array just in front
of the sensor and before the main lens (see fig 1.13). The sensor is covered
with two protective layers that have to be removed before proceeding to place
the micro-lens array (MLA).
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The addition of the MLA and the sole nature of the computational pho-
tography makes necessary some process in order to determine which zone of
the sensor is creating image by each micro-lens, how many pixels it extends
to and what coordinates it maps to. This is, in other words, to measure the
individual PSFs (Point Spread Functions) of each micro-lens.

A previous offline process of calibration has been made in order to measure
these data. This process must be executed for each zoom distance f. Also,
each time an image is taken in the prototype, a correction is needed in order
to have a correct distribution of micro-lenses along the vertical and horizontal
axis of the image. In our case, this is crucial because the Sony QX-100 adds
an automatic step of pincushion distortion correction which plays against
the placement of the micro-lenses. Also, inside each micro-lens, we need
to correct the distortion that the optical arrangement creates. This inner
distortion (inside each micro-lens) depends also on the position of the micro-
lens relative to the sensor in the x and y axis.

Refocus One interesting application of the plenoptic camera is to be able to
synthesize a new image that is focused to a certain plane. In the article, [14],
a method for refocusing plenoptic images was described in detail, the 4D:3D
Radon Transform. The method is able to refocus images in a linear time
and does not require complex number transforms, trigonometric calculus,
multiplications or float numbers. It was also accelerated to be able to run
16 megapixels images within seconds, taking advantage of multi-threading in
native code and NEON SIMD instructions.

Since the usable set of pixels of each micro-lens for the prototype is 8×8,
the number of planes that the image can be refocused to is 15.

Distance map In order to obtain a depth estimations the light-field data is
used directly without any intermediate computation step, except calibration
as shown in figure 1.12. The method is presented in [15] was used in this
prototype. This method was then discarded when it was decided to use
focal-stacks instead of plenoptic images and it is explained in chapter 2.

Once disparities are obtained, it is straightforward to render all-in-focus
images or stereo pairs using the disparity map and the color data recorded
by the plenoptic camera.

One of the consequences of using MLAs is that the spatial resolution of
the sensor is traded off in order to get angular information. This means
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Figure 1.14: Real scene taken and processed in our prototype. On the left,
depth-map; right, all-in-focus image.

that the refocusings, all-in-focus or 3D representations will have a resolution
that is lowered by a factor compared to the whole sensor resolution. This is
why we decided to taken another approach, since this disadvantage makes it
impossible to make it to market.

In the case of our prototype, from the 20 Mpx SONY QX-100 sensor
(5472 × 3648 pixels), we only use 2070 × 1355 pixels, then we start from a
2.8 Mpx sensor and the computed images that it produces are only 414×271
pixels. By using a super-resolution algorithm [16], the final resolution can be
increased.

Finally, our algorithms can be highly parallelized by using vectorization,
thread-level parallelization or GPUs. The only optimized algorithm in the
current implementation of the prototype was the refocus algorithm. For
example, the Samsung Galaxy Note 10.1 was able to compute the refocusings
of focal stack in 0.2 seconds. The same tablet produced a depth map in 23.73
seconds for a input resolution of 2.6 Mpixel.



Chapter 2

Shape From Focus

Using a micro-lens array, MLA, has two main drawbacks. In order to use
them you need to modify your capture system. In this case, the camera must
include a MLA that needs to be inserted in front of the sensor. This is not
likely to happen in a small camera module from the kind used for smart-
phones. The other inconvenient is that we are sacrificing spatial resolution
in order to gain angular resolution, effectively dividing the sensor resolution
and resulting on images that are usually about only the 30% of the whole
resolution.

If we are aiming at a smartphone implementation, we want to think of
a solution that does not impose these kind of restrictions. So, our solution
should only use the widely available hardware, already present on smart-
phones. From the standpoint of the scope of this work, it makes sense to
invest time on researching a closely related group of algorithms called shape
from focus.

Shape-from-focus, SFF, pertains to the category of passive methods, and
consists on measuring the 3D geometry of the scene by photographing it
through a wide open aperture lens from the same point of view, while varying
the focal distance so that a set of images whose depth of field sweep the
distances in the scene is acquired and used as input to a focus estimator.
The arguments of maxima on each pixel along the focal stack constitutes a
map of depths, describing the shape of the scene. A seminal work where
the term shape-from-focus was coined is due to Nayar and Nakagawa[17].
Recently some authors even propose SFF methods that infer all the range of
depths using only one image[18].

The cue in this type of passive method comes from the fact that the
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photographic images of objects outside of the depth of field region will not
exhibit high frequencies. As images are taken to adequately cover a range of
distances of interest in the scene with non overlapped depth of fields, there
will be some plane where the rays pertaining to that object are sharper than
in any other plane. Obviously if the objects are texture-less to start with,
this cue is insufficient. Depth maps reconstructed with this method usually
do not supply a solution per pixel –rays impinging centered at the same point
on the surface of an object, to be precise– because simply there are features
that will never get sharp, and measuring this way will never tell when they
get into focus. If a dense map is required, the solution is somehow extended
to “guess” those uncertain pixels and then is regularized attending to other
cues. Another problem arising with this method is that isolated pixels are
insufficient to measure focus. Instead, a region of support around the rays
will be needed, but then the frontiers between objects at different depths will
become problematic.

Apart of the problems concerning existence and uniqueness of the inver-
sion, another set of problems affect to the acquisition process solely. In order
to obtain a complete in range, but non overlapped, sweep of depth of field
imply changing the focusing distance of the lens whilst the rest of photo-
graphic parameters remain fixed. But these changes of focus distance will
normally imply, as collateral effect, different magnification and radial distor-
tions. Thus, an aligned version of this focal stack, where a feature in the
scene can be located precisely at the same pair of pixel coordinates through
all planes is necessary to determine depths accurately, but it is far from being
trivial to obtain.

Also these focal stacks are normally obtained through time multiplexing,
and therefore are only applicable to static scenes.

2.1 Focal Stack

These kind of algorithms are based on estimating locally the depth of a point,
and then combining the measured information in order to create a depth map.
The algorithm used to measure the focus level for every image pixel can be
referred as focus measure operator. These operators can be used for both
auto-focus and SFF applications.

For our algorithm the input will be a focal stack of N images. The
characteristics of the camera will determine the accuracy and the range of
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Figure 2.1: Representation of a focal stack of N × W × H pixels. The
dimensions that represent the 2D spatial coordinate are named x, y and the
position that corresponds with its focal distance is named z.

depth that it can measure. Given that the algorithm measures blur, its size
must be measurable, so at least the radius of the blur has to be greater than
one pixel. Moreover, the smallest measurable defocus is limited by the Airy
disk of the capturing device.

The focal stack consists of N images and therefore will have 3 spatial
coordinates (see 2.1). We define the 3D focal stack image W ×H ×N where
W is number of pixels in width, H is number of pixels in height, and N
number of pixels in depth, i.e. the number of images taken in the focal stack
as the set:

F = {F (x, y, z) : 0 ≤ x < W, 0 ≤ y < H, 0 ≤ z < N} (2.1)

2.2 General Algorithm

In order to get a depth map from a focal stack there are three main steps.
First the amount of focus of each pixel of each image of the focal stack is
calculated. This step has as input each image of the focal stack and gives as
output a processed focal stack where each image is a map of intensities where
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each pixel contains a measure of how focused a pixel is.
The second step is to build a sparse depth map. In order to do so, the

Z-axis of the processed focal stack is analyzed. The algorithm will measure
the amount of focus for each point along the focal stack in order to find or
interpolate the maximum value. This focal plane corresponds to the best
focused version of the point and therefore the focal distance is a measure of
the distance of the point on the 3D space. If the noise is so big that the
measured maximum is not the right one, a false positive will appear on the
results. The effect of the noise on the measured amount of focus depend on
the focus operator.

Depending on the amount of measurements several strategies can be cho-
sen in order to find the maximum measured focus: find the maximum directly
from measured points, fit a curve from measured points and calculate its max-
imum, or low pass filter the measurements and then find the maximum. If
the algorithm does not have enough certainty of the measured distance, the
value remains null.

This step takes as an input the processed focal stack and outputs a sparse
depth-map, that is, a map containing depths values only for those on which
the algorithm has had enough certainty. Usually the lack of certainty is
caused by a lack of textures or edges; or caused by a low signal to noise ratio.

The final step is to estimate a value for those null values remaining after
step 2. This can be done following many different approaches where an
algorithm has to “guess” the distances and usually will use as input the sparse
depth map and the color information in the focal stack, because it will infer
that similar colors mean pertaining to the same object and so being at the
same distance.

The whole process is represented in figure 2.2.

2.3 Pre-processing

In order to execute the algorithm described in 2.2, the pixels in different
z values for corresponding (x, y) coordinates should belong to the same 3D
point.

A telecentric lens that has its entrance pupil at infinity produces ortho-
graphic projections of the scene. In this case, image magnification is indepen-
dent of the object’s distance or position in the field of view. Usually, when
changing the focal distance of the camera, the magnification will change, as
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Focal-stack (N ×W ×H)

Apply a focus operator

Processed focal-stack (N ×W ×H)

Analyze maximum values for each (x, y) coordinate along the z coordinate

Sparse Depth Map (W ×H)

Fill unknonwn values with “guessed” values.

Dense Depth Map (W ×H)

Figure 2.2: Shape from focus generic algorithm. Processes are shown in blue
and data is shown in red.
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what happens in reality is that the distance between the sensor and the lens
varies. So in this case, this magnification can be easily corrected since a
magnification amount exists for each focal distance and can be calculated or
measured.

In the more general case of a non-telecentric lens,when changing focal
distance, in addition to the magnification, another effect will take place, the
change in perspective, produced by the variation of focal length. This effect
is small or non-existent in expensive complex lenses. For our purposes, we
are considering this perspective shift non-existent, or negligible and treated
as noise.

The other effect happening when focal distance is changed is a variation
in lens distortion, in the form of a barrel or pincushion distortion. This
effect is very noticeable and can ruin the results if not corrected, especially
on smart-phones.

2.3.1 Optical distortion correction

By knowing the transfer function of the capture system for each focal setting,
it is possible to remap each image in order to achieve a focal stack where each
(x, y) location back-projects to the same 3D ray in the scene. In fact it is
enough finding the transfer function that translates one central image of the
focal stack to the rest of them.

Camera calibration is usually carried out by using an object that con-
tains a special pattern that allows for an algorithm to calculate the camera
parameters. This procedure is called photogrammetric calibration, and usu-
ally a 2D printed checkerboard pattern 2.3 is used [19]. If we do not use a
calibration object and rely on the rigidity of the scene in order to calculate
the parameters the procedure is called self-calibration.

Calibration with defocused images

Since by definition of our solution we will always have blur in our images,
most method based on photogrammetry will fail, as they look for patterns
that disappear or become unreliable when they are blurred. A camera self-
calibration algorithm is used instead. Our calibration algorithm will use as an
input a pair of images with different focal distance and will find the difference
in camera parameters. Because of this our algorithm will be simpler than
those found in the literature, for example [19, 20].
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Figure 2.3: Image that contains a printed pattern and can be used to calibrate
the camera.

Our experiments showed that a search through the spaces of magnification
and radial distortions is enough to find a transformation that warps one
image in order to be similar to the other. In order to evaluate the search,
the absolute sum of the difference of the images is valid. In order to decrease
the number of evaluations, a heuristic can be used. This procedure has to be
repeated for each pair conformed by the central image and another image of
the focal stack.

Once found a set of parameters for the whole focal stack they can be used
to remap or warp the images and always get a corrected focal-stack. So for
our case, each camera needs to be calibrated at least once. This calibration
can be automatic using our algorithm and could be executed directly in the
smartphone for mobile applications.

2.3.2 Image registration

There are, though, two other problems that are harder to solve. The first one
is that the camera can be moving. This is the case for hand-held cameras,
that are not mounted on a tripod and rely on the steadiness of the hands of
the user in order to capture the focal stack. Notice that this problem is also
present in standard cameras. In a general case, if the shutter speed is slower
than about 1/100th of a second, motion blur will be noticeable in hand-held
taken photographies.

For the case of focal stack, we need to take a number of images. If we are
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(a) Template image, focused at a
close object.

(b) Candidate image, focused at
a far object.

(c) Best automatic distortion
correction found by the algo-
rithm. In red the corrected dis-
tortion over the black, straight
lines.

(d) Correction applied to the
candidate image.

Figure 2.4: The objects represented in the template image have different
corresponding (x, y) in the candidate image. They have equal corresponding
coordinates in the corrected candidate image.
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able to take images at 1/500th of a second, the images will not present motion
blur but the position of the camera can be too different between shots, since
the total amount of time that the capture took was greater. For example,
for N = 5 planes, the total capture time will be 1/500 ∗ 5 = 1/100 seconds.
This time is enough to have noticeable camera motion that is unsolvable as
noise by the algorithm. In a standard camera module as the sony imx377
[21], used for example in the Google’s Nexus 6p smart-phone takes about
0.25 seconds on average in moving the lens reliably to a new position and
capturing a new image. Considering this fact, the capture of a focal-stack
will always be too long, and unless using a tripod, we need a solution.

Moving camera

If the difference of time between the capture of the first image of the focal
stack and the last one is for example 1 second, the position of the camera can
be very different. If the photographer tried to be still, it might be a solvable
problem, by applying a registration algorithm on the images of the focal
stack. This algorithm can be guided by the sensors of the smart-phone such
as giroscopes and accelerometers. This approach has been used by Google
in order to stabilize the recording of videos with great results and it is used
widely for VR applications.

There are two kinds of registration methods: global methods and local
methods. A global method is only able to correct linear transformations.
This only works when the scene is located at a infinity distance. Real lo-
cation changes of the camera produce local transformations, so a non-rigid
transformation model must be used. Sticking to just correcting the global
transformation of the images of the focal-stack could still make sense from a
performance standpoint as correcting that will fix part of the problem.

The correction of local transformations is to take place after the correction
of the optical distortion. [22] reviews the state of the art algorithms for image
registration, at that time (1992). It also analyzes the principal components
that define a registration algorithm. The most important concept is the
feature. A feature defines information present in the images that can be
used for matching. Features can be selected by their degree of suitability for
being correctly identified on the candidate image. Matching is carried out by
searching the feature, found in the template image, through the search space,
in the candidate image. The search space can be simple, for example, a 2D
translation, or more complex, as a perspective transformation. Lastly these
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algorithms have a metric of similarity that allows for comparing how good a
transformation is. An example of that is the sum of the absolute difference
of the pixels of the transformed template feature and candidate feature.

Having understood how to make a good registration method that can cope
with the normal shaking of a hand-held camera, there’s another particularity
of our problem: images will present different amounts of defocus on different
2D points, depending on their position within the focal-stack. Therefore
an evaluation on how the template matching process is affected by blur is
necessary. There’s a modern registration algorithm described in [2] that is
probably suitable to our endeavors. This algorithm was used to align a raw
burst of fast, underexposed photos in order to reduce noise and produce a
tone-mapped HDR image. The technique was used initially exclusively on
Google Pixel smart-phones, but since then the Google’s camera application
has been ported by users to other smartphones. Adapting the algorithm to
be able to align our focal stacks will remain as an open line of this thesis.

Moving objects

Another, even harder problem to solve is the presence of moving objects in
the scene. In some video stabilization algorithms, the movement that moving
objects produce is distinguished from the movement produced by the hand-
held camera. Once this problem is solved, we need to decide what to do
with these objects. They could be entirely suppressed or kept in a single
location (the one of most focus), for the depth-map and all-in-focus images.
If we do that, we also need to keep track of the occlusions that the movement
produced. In the work [23], they refer at these kinds of focal-stacks as space-
time focal volume and they take into consideration that objects are focused
at a distance and can be moving.

2.4 Focus operators

The first part of the general SFF (shape-from-focus) algorithm consists on
the obtainment of a measure of the amount of focus for each pixel ((x, y, z)
in figure 2.1). These algorithms usually use a support local window in (x, y).
Some methods as the one in [23] also take into consideration the z coordinate
in order to track moving objects.

In [24] a broad selection of focus operators is evaluated. All focus opera-
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Figure 2.5: Figure taken from [23]. In (a), a representation of a focal stack
with moving balls. In (b) the 2D slice show focusing cones with movement
(cones are slanted). In (c), the maximum peaks indicate where the points of
maximum focus are.
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tors need at least to set a windows size parameter. Selecting the correct size
is a problem. By using a smaller window, a finer precision is possible but
at the same time the sensitivity to the noise increases and the problem of
occlusion appears [25].

2.4.1 Laplacian operators

For this work we have selected a custom Laplacian kernel H (equation 2.2). It
works well with images coming from a modern smartphone camera working
with a capture resolution of FullHD (1920 × 1080). The proposed kernel
remains small and can be expressed as a combination of two kernels that
in turn are separable (H0 and H1, see 2.3, 2.4, 2.5). The absolute value of
the result of the convoluted gray-scale image is then used for the subsequent
steps.

H =
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H = H0 ⊛H1 (2.5)

2.4.2 Wavelets

Wavelets have been used as a tool for multi-resolution analysis for maybe
100 years, with its today widespread discrete biorthogonal version initiating
around 1990. Since then they have shown their advantages in denoising, com-
pression, signal analysis, deconvolution or contrast enhancement, to name a
few. They have been also applied as a focus estimator recently [26, 27].
Indeed, several focus measurement operators based on Wavelets have been
described and they outperform or match the performance of operators based
on other local operators like gradient or Laplacian based [24].
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(a) Original input image
(b) Absolute of the convolution on
the gray-scale image (black is more
intensity)

Figure 2.6: On the left: original image, where the subject is in focus, the beer
bottle on the left is closer to the camera and defocused and the background
is also defocused. Note that strong textures such as the ones present in the
dress and hair make the filter respond with more intensity as well as sharp
edges. In the background, bokeh also produces sharp edges.

Taking for example the method in [26], similarly to the Laplacian method
exposed in 2.4.1, the image is high-pass filtered in order to find high frequen-
cies, but this time, the summation of four bands is calculated in order to
compose a more robust focus operator (see equation 2.6).

φ =
∑

(i,j)∈ωD

|WLH1(i, j)|+ |WHL1(i, j)|+ |WHH1(i, j)| (2.6)

While Wavelets applied to focus measurement provide good results, they
are far from optimal since they decompose the image following just three
isotropic directions: horizontal, vertical and diagonal.

The discrete Wavelet transform can be applied to digital images in order
to decompose them in a multi-scale manner. Our primary effort is to explore
the use of this and alternative transforms to decompose and represent an
image in such a way that it can be separated in additive terms of a coarse
model of the signal and another layer of texture and, probably, noise. See
figure 2.8, where an example of how Wavelets can separate a synthetic 1D
signal is depicted for two cases. In the top row there are not discontinuities,
whereas in the bottom there is a discontinuity.

On each case the coarse structure is represented in red, while noise and



30 Shape From Focus

(a) Wavelet decomposition for two
levels dauchebies-6.

(b) Absolute value of the recur-
sive summation of the coefficients
as stated in the equation 2.6 (black
means more intensity).

Figure 2.7: Example of execution of the focus operator described in [26] that
uses wavelets.

detail in are represented in orange. The left column contains the synthetic
input, meanwhile the orange and red signals will be unknowns in the right
column and are isolated analyzing the signal with filtering in Wavelet do-
main. In both depicted cases the separation of layers at both ends of the
domain is slightly erroneous, but in presence of a discontinuity Wavelets fail
to adequately detect the gap as part of the coarse signal, transferring energy
to both sides of the edge.

2.4.3 Ridgelets and Curvelets

Wavelets allow to analyze an image in terms of sparse coefficients at multiple
resolutions. This transform performs admirably well, –obtains the highest
sparsity–, when applied to 2D images that can be described as a polynomial
surface, indeed, the behavior will be optimal when the vanishing moments of
the Wavelet surpasses the degree of the polynomial.

But the underlying model of natural images at lower frequencies is a
rather unnatural one, as can be seen in the top row of figure 2.9. Wavelets
adapt poorly to images containing shapes with sharp boundaries as they take
a large number of coefficients to be described, which is not desired for the
task at hand.

Ridgelets are the first step to overcome this undesired effect. They will
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Figure 2.8: (a) A 1D signal expressed as the sum of a coarse continuous
signal and a noise + texture layer; (b) the coarse and detail + noise layers
isolated with filtering in Wavelet domain; (c) and (d) same process than (a)
and (b) but with a piece-wise continuous signal as coarse layer.

perform better than Wavelets when describing images that contain linear
radial structures, but then, Ridgelets will show their limitation when dealing
with edges that are not only straight, but curved as well, or short lines that
do not extend to the whole domain. This is why we will only use Ridgelet
as a necessary step for arriving to Curvelets.

Curvelets will better explain images that have linear and curved radial
components, because they will need less coefficients to describe natural im-
ages and hence they will be able to differentiate better the coarse geometry
of the image from the texture and the noise, which is needed in order to
measure defocus.

The idea after first generation Curvelets is to describe curved lines as su-
perposition of several short straight lines on several scales. Therefore Ridgelet
are not directly applied to the whole image, instead, the image is first de-
composed in several subbands of frequency, then all subbands except the one
with the lowest frequencies are decomposed in multiple overlapping blocks,
and then each block is independently Ridgelet transformed.

The lower subband is not described in terms of lines. The medium and
high frequency subbands, liberated from describing the coarse surface covered
by the lowest band, has now a content more adequate to be described as sums
of lines.
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Figure 2.9: Effect of reducing, by hard thresholding, the energy carried by
weaker coefficients in different domains, from top row to bottom: Wavelets,
Ridgelets and Curvelets. From left column to right: threshold fixed to let
pass the 99, 90, 70, 50 and 25 % of accumulated energy.

Figure 2.10 shows the medium and high frequency subbands of the ex-
ample image. The filtering has been made with 2D Wavelets, but this is not
mandatory. Additionally, the image of medium subband shown to the left,
contains 8×8 blocks of size 64×64, and, to the right, the high frequency sub-
band contains 16× 16 blocks of 32× 32 size. Each block overlaps completely
with their 4-connected neighbors.

These blocks are the objects that will be independently passed through
Ridgelet transform. In reconstruction, a windowed fusion will remove those
overlapped areas whilst artifacts among blocks pass unnoticed, at the cost of
increasing computations and the number of Curvelet coefficients.

The bottom row of figure 2.9 shows the partial reconstructions from
Curvelet coefficients, and demonstrates that aDRT can be used as the foun-
dation block of Curvelets. In spite of removing, by hard thresholding, some
of the coefficients, the inverse still gives a reasonable result. As a proof
of concept, an ill conditioned inverse would have succumbed to the lost of
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Figure 2.10: Subbands of middle and high frequency of the example image
described by overlapping blocks where Ridgelet transform will be applied

symmetry due to the non-linear coefficient removal.

Figure 2.11: From left to right: detail of the eye in the image of example;
original detail with simulated defocusing; inverse of Curvelets coefficients
carrying 75% of the energy; inverse of Wavelets coefficients carrying 75% of
the energy.

Moreover, partial Curvelets inversion adjust better to defocused version
of the images. See figure 2.11 where a zone containing an eye of the image
of example has been enlarged. From left to right it is shown the original eye,
a simulated defocused version, and then the reconstruction from Curvelets
and then Wavelets hard thresholded at 75% of the energy. Notice, for exam-
ple, how much better the Curvelet version is, compared to Wavelets, when
describing the crease around the lower eyelid. This partial reconstruction
subtracted from different focused and defocused pictures of that eye, will
allow to detect and measure focus locally with more precision than previous
methods based on Wavelets.
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2.5 Sparse DMAP calculation: Maximum

search

Having calculated all the focus estimations for all pixels of all images of the
focal-stack φ(x, y, z), the next step is to decide for every 2D coordinate what
is the focal distance for which the corresponding 3D point belongs to.

sparse(x, y) = F (x, y, z), ∀z ∈ (0, N ]

In order to decide what is the corresponding distance we take a slice of the
processed focal stack that contains the result of the focus operator, being the
slice of size 1× 1×N) (see figure 2.12).

Figure 2.12: A slice is taken in order to determine its z distance.

If we analyze a slice, like the one en 2.12, we see that it resembles correctly
the amount of focus, and it will suffice with finding the argument of the
maximum in order to find its distance. This is specially true on hard edges,
but it is not accurate where noise presence is strong or there is no texture.
Therefore, many points will yield an erroneous depth estimation, as can be
seen in figures 2.13, 2.14 and 2.15.
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Figure 2.15: Computing the maximum without a support window. Only the
points near the edges are correct.

This problem can be solved by using a support window. In order to do
this a vicinity of pixels of the processed focal stack is averaged. If we apply
a threshold to remove these values that did not achieve a minimum level of
energy throughout the processed focal stack, it can be assumed that there
will be no way of knowing if the energy belongs to a truthful measurement
due to the presence of noise. Observe, in figures 2.16 and 2.17, that for big
kernel sizes we have more “valid” information, and in the smaller kernel sizes
we have less, but we do not lose precision.

From the observation of the results of varying the size of the support
window, makes sense finding a way of maintaining the fine detail present at
lower sizes while discarding errors as they appear at bigger kernel sizes. One
way to do this is to discard those values that are different in, at least, depth-
maps calculated from two different window sizes, see equation 2.7, where
S(x, y) is the refined sparse depth map at a given coordinate and Dk(x, y) is
the calculation of the non-refined depth-map using a support window of size
k.

S(x, y) =

{

−1;
⋃K−2

k=0 Di 6= Dk+1

D0(x, y)
(2.7)

Moreover, given that for both qualities –detail, and robustness against
noise– the most restrictive D instances are always respectively D0 and DK−1,
the calculation of Dk, ∀k 6= 0∩k 6= K−1 can be omitted, therefore resulting
on the updated equation 2.8, and a much lighter computational effort.
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s(x, y) =

{

−1; d0 6= dk−1

d0(x, y)
(2.8)

Figure 2.18: Result of the application of the formula in 2.7. Note that no
false positives remain on the result and points match the exact location that
produced the measurement.

In the examples shown in figures 2.16, 2.17 and 2.18, a box filter – an
average – of the k × k : k ∈ 2 × Z + 1 surrounding pixels was used. Other
implementations are also possible, for example, a Gaussian filter can be used
instead, of more complex approaches such as a guided filter [28], using as the
guide, a color cue taken directly from the focal stack. Another possibility is
also, using the color cue, apply a technique of vicinity based on geodesic sup-
port weights as this article [29] is applying to a depth-from-stereo algorithm.
Segmentations such as super-pixel based are also possible.

In order to speed up computations, we can replace the Gaussian filter
with a pyramid down-sampling such as the gaussian pyramid in [30]. A box
filter can be applied instead of a gaussian filter and there is no need for going
back to the full scale image.

Now that the method for obtaining a sparse depth-map has been de-
scribed, we can test some focus operators. Let us look to the figure 2.19 for
a visual interpretation. The quality of the method depends not only on the
amount of true and false positives, but on how precise the measured point
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Focus Operator Time (ms)
Laplacian 436.67
Wavelets 360.32
Laplacian + Guided 715.71
Laplacian + Geodesic Distance 1742.36
Wavelets + Geodesic Distance 1671.36

Table 2.1: Measured times on an Intel(R) Core(TM) i5-6600K CPU @
3.50GHz processor for a focal-stack of size N ×W ×H = 9× 1024× 1024.

is as well. For example, wavelets seem to perform very well, but it is actu-
ally very imprecise compared to the Laplacian operator. A combination of
wavelets and geodesic distance yield very good results. Since the wavelets
have a limitation because of its locality we will build a focus operator based
on curvelets. Again, the computational cost of curvelet, is a major handi-
cap to its adoption as focus estimator, and we will center our efforts in its
acceleration.

Computational times are shown in table 2.1. Note that it corresponds to
a naive implementation made on python, but it is enough to give an idea of
how complex each method is.

2.6 Dense depth-map computation

In the previous section, the mission was to accomplish a precise and as com-
plete as possible sparse depth-map (sDMAP). For some locations it will be
always impossible to recover depth information, due to many factors, among
them: noise, under/over exposure, motion-blur, lack of textures, etc. In
the computation of the dense depth-map (DMAP) we will assume that the
sDMAP is precise, meaning that the non-null points in the map are only true
positives.

The DMAP will be built using the sDMAP and the color focal-stack as
inputs. The same problem is also present in shape from plenoptic or stereo
algorithms as they often calculate a sDMAP first.
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2.6.1 Optimization algorithms

Guessing the missing information can be formulated as an optimization prob-
lem. Given the ill-posed nature of the problem, it must be solved using a
regularization technique. In order to solve an optimization problem, the
constraints of the problem must be declared first.

In the problem at hand, the sDMAP must transformed into a DMAP
by adding values of depth to the places where a null value was stored –
those represented as black in the figures 2.17, 2.18 and 2.19–. As additional
information we will use the color information in the focal stack. For the
moment, a 2D version I of the focal stack will suffice:

I(x, y) =
N−1∑

i=0

F (x, y, i)

The premise in our problem is that if we have similar colors in I, they
probably belong to the same plane and so they should have similar depth.
By following this idea, a cost function can be defined as the distance between
each two colors. Therefore, our cost function C can be defined as follows.
Coordinate variables r and s are two-dimensional coordinates:

C =
∑

r



sDMAP(r)−
∑

s∈N(r)

W (r, s)sDMAP(s)





2

N(x, y) denotes a set containing the neighboring pixels of r. W (r, s) is
the distance in color of the two pixels and can be defined as follows:

W (r, s) = (I(r)− I(s))2

Other definitions can be used in order to take into account the local contrast
such as [31]:

W (r, s) = e

−(I(r)− I(s))2

2σ2
r

and:

W (r, s) = 1 +
1

σ2
r

(I(r)− µr)(I(s)− µr)

being σr and µr are the mean and variance of I in a window around r.
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Using this equations we can build a linear equation system in order to
feed a minimization algorithm, such as Gaussian elimination.

This problem has a very close resemblance to the colorization problem. In
the work [31] a minimization on an inversion of an equation system takes place
–using Matlab R© least-squares solver– in order to colorize an image sequence
by providing the algorithm color hints as sketches. Using this approach we
can trick this algorithm in order to get our problem solved. If we think
of the sDMAP as color hints, we can ask the algorithm to “colorize” the
image I and then remove the intensity component to get our result (see fig
2.20). An improvement of the method, also suggested in the same article,
consists of using a multi-grid solver. It took 41.6 seconds on running the
whole algorithm by using the least-squares solver and 20.0 seconds using the
multi-grid solver.

While the results are good, it is not fast enough for our purposes. We
need something that runs in less than two seconds.

2.6.2 Guided Filter

Another approach is to, iteratively, fill the gaps. In order to do that, we can
imagine that each known point of the sDMAP acts like a source, from where
a wave-front will travel in every direction (see 2.21). Also we need a way
of restricting how much the wave-front can advance, again, using a metric
based on color distance and variance on a window.

Figure 2.21: Each known point produces a wave-front that travels in every
direction, being mixed with other points in the process.
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Figure 2.22: The weights are modified by the guide.

The first thing can be achieved by applying several times a low-pass filter
such as a Gaussian filter or a box filter, or even a circular filter, whatever is
cheaper on the architecture we are using. The second thing can be achieved
by modifying the way the filter works, by adding additional weights on top
of the “natural” weights the filter has. This can also be called side-chaining
or joint n-lateral filtering, see figure 2.22 .

It turns out that we have already discussed a filter that does that. The
Guided filter in its fast implementation [32] is ideal for the task. So with that
tool, let us define the algorithm in 1. The sDMAP input image must be built
from the sparse depth-map obtained from the methods described in previous
sections in the following manner. We will use the HSV colorspace in order to
encode separately the information about the depth in H and the amount of
certainty on the V. Implementation of the HSV colorspace conversions can
be found on the book in [33]. The transformation consists on mapping each
distance into the H, leaving the S and V at 255 when the sparse depth-map
has a value and 0 otherwise. Assume H ∈ [0, 360), S ∈ [0, 256), V ∈ [0, 256).

sDMAP (x, y) =







(0, 0, 0) sDMAP (x, y) = Null

((sDMAP (x, y) ∗ 180/N) + 90,

255, 255) sDMAP (x, y) 6= Null

(2.9)

Finally the sDMAP is converted back into the RGB color-space and the
algorithm can start. The transform is similar to the one that has been used
to show sparse depth-maps in the figure 2.19.

The important key that makes this algorithm work is that when a pixel
that is colored “mixes” with an absolutely black pixel the three components
– r, g and b – decrease proportionally, which mean, in HSV color-space, that
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the H is exactly the same as the pixel that had value and is not modified
by the black pixel – a pixel without a value –. So, depending on the type
of pixel it will be mixed with, two behaviors can happen, a change of Hue
and/or a change of intensity – value –. This effect can be better appreciated
with an example, see figure 2.23.
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(a) Original depth map coded as
hue (eq 2.9) (b) Guide image.

(c) Result of the application of
the guided filter.

(d) The result was converted to
HSV color-space, set V and S
to 255 and back to RGB color-
space.

Figure 2.23: A filter of window-size 25×25 is applied to (a) using as guide (b).
Note that in (c), while colors present variations in intensity and saturation,
they have the hue that (a) provided. In (d) the only hues that do not come
from the sparse depth-map are those red artifacts, which come from the
undetermined values of the completely black pixels of (c).

Once the algorithm has been executed, the output must be converted
back to HSV colorspace in order to extract the H component and remap it
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Algorithm 1 Create a dense depth map using a guided filter.
Input: Image sDMAP of size W ×H
Input: Image Set (the focal-stack) F of size W ×H ×N
Output: Image DMAP of size W ×H

1: th← 102 ⊲ Upper threshold
2: th2← 51 ⊲ Lower threshold
3: ws← 3 ⊲ Window Size
4: si← 0.8 ⊲ Sigma value
5: finish← False
6: DMAP ← sDMAP
7: img_guide =

∑N
i=0 Fi

8: while not finish do
9: sDMAP ← GuidedF ilterws,si(sDMAP, img_guide) ⊲ Thresholding

10: cnt← 0
11: for i = 0 to H do
12: for j = 0 to W do
13: if DMAP (i, j) 6= (0, 0, 0) then ⊲ If this value has not been

already set
14: color = sDMAP (i, j)
15: colorh,s,v = rgb2hsv(color) ⊲ Transform to another

colorspace
16: if colorv ≥ th2 then
17: if colorv ≥ th then
18: DMAP (i, j)← hsv2rgb(colorh, 255, 255)
19: else
20: DMAP (i, j)← sDMAP (i, j)
21: end if
22: cnt← cnt+ 1
23: end if
24: end if
25: end for
26: end for
27: if cnt = 0 then
28: finish← True
29: end if
30: ws← ws+ 2
31: return DMAP
32: end while
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to our depth-space, effectively reverting the behavior of the formula 2.9.

Figure 2.24: Result of executing the algorithm in 1

Since this result is very similar to the colorization algorithm of [31] we
can re-purpose this faster algorithm for the same original task of coloring
a black and white image or video. This time, the input of the algorithm
is a gray-scale image with scribbles on it made by an user. These scribbles
contain color and saturation information (h and s in hsv color-space). See
an example in figure 2.25.
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(a) Original gray-scale image.

(b) Annotations of color made by the user.

(c) Output of the algorithm (just the hue and saturation)

(d) Hue and saturation come from the output and the intensity values come from
the gray-scale image.

Figure 2.25: Execution of the colorization using Guided Filter algorithm.

Since the algorithm increments the size with each iteration in order to
fill larger areas and the finer details are set at the first iterations, we can
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simulate the change of size of the filter by scaling down the images with
each iteration. For this purpose we use a pyramid as we did on section 2.5.
This modification results in a constant filter size, and a very low and fixed
number of iterations, making it feasible for real time implementation, since
the computational cost is about 1/5 of that of a guided filter. The guided
filter has been already implemented in real time giving place to algorithms
based on this technique such as [34], so our algorithm can have a real-time
implementation as well.

2.6.3 GDT: Geodesic Distance Transform

In section 2.5, geodesic support weights where used in order to provide a
support window with weights depending its “distance”. This measure de-
pended both on the euclidean distance and color distance. The underlying
mathematical apparatus that was used for the geodesic support weights is the
Geodesic Distance Transform (GDT). In the GDT, the distance is computed
as the length of the shortest path from every pixel in the image to the set of
“source” pixels, also called reference set. Although several implementations
have been proposed in the literature, such as [35], [29] and [36], we will use
the algorithm 2. For the costs image we can use the absolute gaussian gradi-
ent, among others and apart from the BREAK variable we could set a fixed
number of iterations that is enough for our resolution and purpose.

In order to build a depth map, an image in transformed domain will be
calculated for each plane p ∈ [0, N), setting to zero where the distance is
equal to the plane in the sDMAP and the rest to infinity on the initial A:

A0
p(x, y) =

{

0; sDMAP (x, y) = p

∞
(2.10)

Once obtained the N transforms by calling to the algorithm 2, they will
be mixed in order to compose the DMAP . The constant α is used to control
how much the planes can mix.

DMAP (x, y) =
N∑

p=0

p ·
1

Aα
p

(2.11)
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Algorithm 2 Compute the Geodesic Distance Transform.
Input: Image reference set A of size W ×H of 16 bit integers
Input: Costs image C of size W ×H of 16 bit integers

1: BREAK← 9000
2: finish← False
3: while not finish do
4: A← rotate_90_degrees(A)
5: C ← rotate_90_degrees(C)
6: max_diff← 0
7: for i = 1 to H do
8: for j = 1 to W do
9: t1 ← Ai,j−1

10: t2 ← Ai−1,j

11: if |t1− t2| > Ci,j then
12: t0 ← min(t1, t2) + Ci,j

13: else
14: t0 ← (t1 + t2 + (abs(2 ∗ Ci,j)− abs(t1− t2)))/2
15: end if
16: max_diff← max(max_diff, Ai,j − t0)
17: Ai,j ← min(Ai,j, t0)
18: if (max_diff < BREAK) and orientation_is_correct(A) then
19: finish← True
20: end if
21: end for
22: end for
23: end while
24: return A
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(a) Algorithm 2 applied
on a plane of closer fo-
cus.

(b) Algorithm 2 applied
on a plane of farther fo-
cus.

(c) Result of mixing all
the planes using equa-
tion 2.11

Figure 2.26: Example of execution of the depth map computation using GDT.

2.6.4 Algorithms comparison

The three algorithms to compute a dense depth-map have been executed on
an Intel(R) Core(TM) i5-6600K CPU @ 3.50GHz processor using a python
– or Matlab R©, in the case of colorization – implementation that does not
have any hardware optimizations. See table 2.2.

Algorithm Time (s)
Colorization using Matlab’s R© solver 41.6
Colorization using multi-grid solver 20.0
Dense DMAP using Guided Filter 3.8662
Dense DMAP using Guided Filter, pyramid-based implementation 0.698
Dense DMAP computation using Geodesic Distance Transform 1.0356

Table 2.2: Measured times on an Intel(R) Core(TM) i5-6600K CPU @
3.50GHz processor for input sDMAP and guide images of size W × H =
1024× 1024. All times are calculated using an average of 30 executions.

2.6.5 Solving artificial edges

Given the nature of the sDMAP computation algorithm, those shapes that
swipe a long set of continuous depth in the focal stack is going to be seg-
mented into pieces, depending on the amount of texture and the actual focal
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distances of the planes of the focal stack. In figure 2.24, the bass-guitar has
been segmented into sections, where it should be a continuous shape.

A simple algorithm that can correct this effect is 3. See figure 2.27. This
algorithm can be improved by using the guide and use an edge-preserving
filter in order to decide if colors should be blended instead of just the color
distance. And the size of the window needs to be adjusted depending on how
far the planes are, and therefore how big they are.

Algorithm 3 Compute a “corrected” sDMAP.
Input: sDMAP of size W ×H of 16 bit integers
Output: OUT corrected sDMAP
Parameter: wsize ≡ Window size of the filter
Parameter: α ≡ Maximum distance in color

1: for i ∈ [0,W ) do
2: for j ∈ [0,W ) do
3: color = 0
4: if sDMAP(i, j) = −1 then
5: OUT(i, j) = −1
6: continue
7: end if
8: for k ∈ [max(i− wssize, 0),min(i+ wssize), h) do
9: for l ∈ [max(j − wssize, 0),min(j + wssize), w) do

10: if sDMAP(k, l) = −1 then
11: continue
12: end if
13: if |sDMAP(k, l)− sDMAP(i, j)| < α then
14: inc(count)
15: color = color + sDMAP(k, l)
16: end if
17: end for
18: end for
19: OUT(i, j) = color/count
20: end for
21: end for
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Figure 2.27: Execution of the algorithm 3.

2.7 All-In-Focus computation

In order to obtain an all-in-focus image from the focal-stack, we can use the
DMAP using any of the algorithm described on previous sections. Since our
DMAP gives place to non-integer values – DMAP (x, y) ∈ R – an interpo-
lation is necessary and so we will use a linear interpolation. Let us call the
nth image of the focal-stack at the location x, y FSn(x, y).

AIF (x, y) = FS⌈DMAP(x,y)⌉(x, y) · {DMAP (x, y)}+

FS⌊DMAP (x,y)⌋(x, y) · (1− {DMAP (x, y)})
(2.12)

Figure 2.28: Computation of an all-in-focus using equation 2.12.
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Figure 2.13: The measurements on a textureless zone are predominated by
noise.
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Figure 2.14: An edge location will give a good focus measurement. The value
of the maximum is very different from the rest of measurements.
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(a) Scale (b) k = 1 (c) k = 1

(d) k = 13 (e) k = 19 (f) k = 25

(g) k = 31 (h) k = 37 (i) k = 43

(j) k = 49 (k) k = 85 (l) k = 91

Figure 2.16: A depth-map is calculated using different support window sizes.
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(a) Scale (b) k = 1 (c) k = 7

(d) k = 13 (e) k = 19 (f) k = 25

(g) k = 31 (h) k = 37 (i) k = 43

(j) k = 49 (k) k = 85 (l) k = 91

Figure 2.17: A threshold has been applied on the calculation of depth-maps.
Note that bigger kernel sizes allow the noise to be neutralized at the cost of
losing spatial resolution
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(a) Laplacian operator
(b) Wavelets operator (see
equation 2.6)

(c) Guided filter + Laplacian
operator.

(d) Geodesic distance +
Laplacian operator

(e) Geodesic distance +
Wavelets operator

Figure 2.19: Comparison of several focus operators after applying the algo-
rithm in 2.8.



56 Shape From Focus

(a) Image I of intensities.
(b) Intensity image “scribbled” with
the sDMAP.

(c) Colorized image.
(d) Only the color component, the
depth-map.

Figure 2.20: An execution of the colorization algorithm with an adaptation
that fits our endeavors.



Chapter 3

Discrete Radon Transform
extensions for our Curvelet
transform

3.1 Curvelets and DRT

The inadequacy of the Wavelets as a focus estimator was introduced in section
2.4.3. While Wavelets applied to focus measurement provide good results,
they are far from optimal since they decompose the image following just three
isotropic directions: horizontal, vertical and diagonal. Ridgelets [37, 38] are
more suitable to our purposes since they decompose the image with a higher
degree of directionality. Ridgelets detect very well linear radial structures,
but they result insufficient to describe curved ones.

The Curvelet transform is an extension of the Ridgelet transform that
overcomes this restriction[39]. It allows to decompose the image not in linear
radial structures but in curved ones. So that they explain better “natural”
images, in the sense that with fewer coefficients –with more sparsity– they
can cope with the majority of the energy of a piece-wise continuous 2D sig-
nal. Other approaches explain even better natural images: Grouplets[40],
Wedgelets[41], Contourlets[42]... but attending to the compromise between
the expected quality and the computational effort involved, we chose the
Curvelet transform as our tool to determine focused regions in an image.

There is a precedent in using a Curvelet transform as focus operator[43],
in their implementation the authors make use of second generation Curvelets
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and obtain very satisfying results at the cost of a heavy computational load.
First generation Curvelet transforms[44] require to have pairs of Ridgelet,
Wavelet and Radon transform computed at intermediate steps and at mul-
tiple scales. On the other hand second generation Curvelets[45] do not need
to apply Radon transforms explicitly, but instead they rely heavily on FFT
to accelerate computations.

In order to reduce computational requirements we will avoid the use of
FFT as a constructing block, with the long term aim of porting our results
to multi-threaded SIMD integer fixed point arithmetic architectures. This
constraint discards second generation Curvelets completely and most imple-
mentations of the first generation ones. Avoiding the use of FFT is specially
hard to achieve at Radon level, as most of available Radon fast algorithms
rely on the Fourier slice theorem to reduce the otherwise heavy, O(N2), load.

With that in mind the number of choices reduce enormously.

Few fast Radon transforms refuse to be built on anything different than
Fourier slice theorem[46]. One of those rare exceptions is the Finite Radon
Transform[47] on which a Finite Ridgelet Transform [48] can be built upon,
but again it fails when, in order to accelerate interpolation to non integer
pixel positions it appeals to FFT. Similar reasoning exclude the Fast Slant
Stack[49].

After having discarded those, we would have selected the Mojette trans-
form but the only existing algorithm that computes its inverse transform that
is simultaneously fast and well conditioned works in Fourier domain[50].

So we will propose a novel approach to calculate the Curvelet transform,
in both its direct and inverse form: to use as underlying Radon algorithm the
approximate Discrete Radon Transform, aDRT[51, 52]. This is now possible
because it has been demonstrated recently [53] that there exists an algorithm
to compute its inverse which is fast, well conditioned, and, in spite of being
iterative, is also exact and does not rely on Fourier transforms.

This approximate Discrete Curvelet Transform, aDCT, will be con-
structed in the same fashion that first generation Curvelets, that is: with
a Radon and a Wavelet transform we will define a Ridgelet transform, and
that Ridgelet applied at multiple scales will become a Curvelet transform.
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3.2 Conventional 2D discrete Radon transform

Discrete Radon transform, DRT, with a multi-scale approach, dates back to
the late 1990s [51, 52, 54], and was originally designed to compute all of the
integrals –sums, indeed– of pixels located on a discrete line, –actually a 1
pixel wide, N pixels long, stripe with approximately constant slope–, that
touches at least one point on an image of size N × N whilst projecting in
a semi circumference around it. There exists an algorithm that solves with
linearithmic complexity, O(N2 log(N)), this problem for a quadrant covering
from 0 to 45 degrees. And by joining together 4 runs of the algorithm on
4 mirrored versions of the input a sort of Möbius band is obtained that
comprise the whole set of line integrals that arise when projecting on 180
degrees around the image: a discrete version of the sinogram in the continuum
devised by Johann Radon[55, 56].

Suppose an image of size N×N , N results are obtained by adding together
the values in the same rows. And other N results are obtained by summing
values lying in the same columns. These two sets of summations correspond
with projections at 0 and 90 degrees respectively. Each summation adds
N values and each set of summations comprise N sums corresponding to
different intercepts in the projection axis. 2 N2 sums have been computed in
order to obtain 2N line integrals. With a little more computational effort the
multi-scale DRT algorithm provides N sets of line integrals to different angles
between 0 and 45 degrees, and for each angle, its whole set of intercepts.

Taking into account all the discrete lines that touch an image for a given
projection angle is a non-trivial task. In order not to discard any line, even if
it touches the image in just a single pixel, more intercepts must be considered
for angles close to odd multiples of 45◦, and less for those close to 0◦, 90◦

and so forth. This explains why conventional DRT can have between N
and 2N − 1 number of intercepts depending on the angle being calculated.
Conventional DRT computes them all, and as a result, the total output size
for an N × N input occupies 3N × 4N , where only half of the results sum
other than zero.

In this work two alternatives are presented. They generate an output
of size N along the intercept dimension independently of the angle being
considered, that is, the output size for a single quadrant will be the same than
the input. This will alleviate the computations and the memory footprint of
DRT almost by half.

Considering the figure 3.1, the first three sub-figures from left to right
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Figure 3.1: First three sub-figures: from left to right an image sheared to
accommodate in a row the discrete lines of conventional DRT for minimal,
intermediate and maximal slope of the 0 to 45 degrees quadrant. Rightmost,
a depiction of input and output of conventional DRT for a single quadrant.
And shape of output of 4 quadrants, joined together within a 3N × 4N
rectangular memory footprint where half of the space is wasted.

show the same image but sheared so that when summed along rows they
give as result the conventional DRT for slopes 0, 1

2
and 1. There is a column

at the left of each sub-figure that is precisely the DRT at each intercept
for that slope. It can be appreciated that the number of intercepts to be
calculated can be as much as twice the vertical size of the input in order to
accommodate the most extreme intercepts when slope is maximal. This is
what gives rise to the particular shape of the conventional DRT output as
shown to the rightmost in figure 3.1.

The algorithm itself does not shear the images. Instead it can be thought
that a plurality of discrete lines will be traversed summing the pixels that
lie on them. For the 0 to 45 degrees quadrant, the relation between the
pixels belonging to the same discrete line is formulated based on the ascents
on the vertical dimension while the horizontal dimension is traversed. A
discrete line will visit exactly one pixel on each column, and no interpolation
will be required. In this basic quadrant the lines to be considered are the
discrete versions of lines of the form y = s · x + d, where s denotes the
s lope or ascent; and d denotes the d isplacement or intercept. The variety of
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names is due to the adoption of algebraic slope-intercept formulation of lines
and simultaneously the adherence to previous authors’ notation. Actually,
in the context of discrete lines, it is more precise to denominate ascent the
parameter normally denoted as s. Anyway, from that s parameter the slope
could be calculated as s

N−1
and the angle of projection relative to the positive

direction of x-axis as tan−1( s
N−1

). From now on the parameters on Radon
domain will be denoted as s and d, and be called slope and displacement.

Figure 3.2: Number of pixels to be summed together at different displace-
ments when calculating DRT for s = 0 (left) and s = N − 1 (middle). The
number of pixels evaluated for the rest of slopes and displacements of two
quadrants of a 8× 8 image are shown on the right.

In the continuum the 2D Radon transform allows to describe a 2D signal,
f(·), in terms of the integrals along lines parameterized by an angle and a
displacement, (θ, ρ), instead of single values accessed by their horizontal and
vertical pair of cartesian coordinates, (x, y). This is,

Rf(θ, ρ) =

∫∫

f(x, y) δ(x cos θ + y sin θ − ρ) dx dy, (3.1)

or, equivalently, using the absolute s lope and d isplacement form, with |s| < 1,

R|θ|≤π
2
f(s, d) =

∫

f(u, u s+ d) du,

R|θ|≥π
2
f(s, d) =

∫

f(u s+ d, u) du.

(3.2)

The calculation of the Radon transform on a computer has to deal with
the discretization of data. Basically, for regularly spaced discrete data, they
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will be available only for a finite number of samples normally accessed with
integer indexes. And the problem arises when the continuous definition of
line integral makes necessary to evaluate the function at positions where there
is no sample available and interpolation is required.

However using the pseudo-polar Fourier transform[57] –a variation of FFT
that operates on a grid of concentric squares–, a discrete Radon transform
can be designed that is algebraically exact, invertible, fast[58], and can be
generalized to 3D[49, 59]. But it is based on Fourier transforms which is
something that we want to avoid. Moreover, if, as it is the case in our appli-
cation domains, the problem to solve is purely discrete the multi-scale Radon
transform performs better than any other discrete Radon transform[46], in-
cluding those based on pseudo-polar FFT.

3.2.1 Forward multi-scale discrete Radon transform

Götz & Druckmüller [51], Brady [52] and Brandt & Dym [54], almost simulta-
neously, proposed a divide and conquer approach reminiscent to FFT, in the
sense that it works solving the problem at smaller scales and then combines
those solutions to solve at greater scales, but with no multiplications nor
complex twiddle factors involved, relying exclusively on integer arithmetics
to achieve its goal. By working at multiple scales, and due to the symmetry
of the problem, intermediate computations can be reused preventing any sum
to be computed twice and so reducing the computational load from O(N3)
to O(N2 logN).

To make this possible, the key is to define a loose discrete line that tra-
verses the domain visiting only integer positions, and therefore not exactly
in a straight way. Ascensions are defined recursively, making lines composed
of two halves, which in turn come each from other two line segments of half
their size and so on until line segments that join only two points are reached,
and the problem can not be further reduced.

DRT authors eluded to establish any sort of trigonometric relation be-
tween x and y variable, instead they decomposed u and s variables of equation
3.2 into binary indexes and mixed them at binary level, one index of u and
one index of s at a time, this way avoiding direct multiplication of u by a
slope which would have produced non-integer indexes.

On a previous work[60], the formulation of DRT was redefined so that the
extension to more dimensions became feasible. This work adheres to that
notation. The details on the formulation of the discrete Radon transform
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can be found there. The resulting discrete Radon transform, DRT, or more
specifically, the definition of discrete lines, eq. (3.3); the definition of partial
transform until stage m, eq. (3.4); and the mapping between two stages, eq.
(3.5), are:

lns (u0, . . . , un−1) = ln−1⌊s/2⌋(u0, . . . , un−2) + un−1

⌊
s+ 1

2

⌋

=

n−1∑

i=0

un−1−k ·

⌊ s
2i
+ 1

2

⌋

(3.3)

∼

f m(

s

︷ ︸︸ ︷

sn−m,

σ

︷ ︸︸ ︷
sn−m+1, . . . , sn−1 |

v
︷ ︸︸ ︷
vm, . . . , vn−1 | d) =

∑

u∈Zm
2

f(λ(u,v)|lmλ(s)(u) + d) (3.4)

∼

f m+1(

s:m+1 bits
︷ ︸︸ ︷

sn−m−1,

σ:m bits
︷ ︸︸ ︷
sn−m, . . . , sn−1 |

v:n−m−1 bits
︷ ︸︸ ︷
vm+1, . . . , vn−1

︸ ︷︷ ︸

n bits

| d) =

∼

f m(σ| 0,v| d) +
∼

f m(σ| 1,v| d+ sn−m−1 + λ(σ)) (3.5)

with λ(u0, . . . , un−1) =
∑n−1

i=0 ui · 2
i, i.e., the function that converts from

binary multidimensional indexes, to decimal unidimensional index. Notice
that single comma (,) is used to separate binary indexes, and vertical bar (|)
is used to separate different parameters.

Notice also that the number of bits in partial stages is varying and de-

pends on m, the current stage. When m = 0, the array
∼

f 0(s|v|d) is really

bidimensional, as variable s is still empty, so
∼

f 0(−|v|d) maps directly to
f(x|y). And when m = n, the last stage, variable v will be emptied, and

so
∼

f n(s| − |d) is the desired result Rf(s|d). That can also be appreciated
by evaluating the definition of partial transform, eq. 3.4, for stage m = n:

Rf(s| − |d) =
∼

f n( s0, . . . , sn−1 | − | d) =
∑N−1

u=0 f( u | lnλ(s)(u) + d). This last
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equation is no other than the discrete version of Radon transform as expressed
in eq. (3.2) with multiplication with the slope substituted by discrete line
interaction between u and s at binary level.

Discrete lines in conventional DRT

Figure 3.3: A depiction of the whole set of discrete lines covering the dis-
placements and slopes as computed by conventional DRT.

As said when analyzing figure 3.1 it is not the image itself that is sheared,
but the interns of the algorithm that traverse it adding pixels lying on a
plurality of lines. The lines that are traversed for a 8×8 image –with another
8× 8 region filled with zeros padded below– are depicted in figure 3.3. Each
rectangle depicts the 2N − 1 lines starting at different displacements for a
certain slope. There are 8 rectangles corresponding to the N slopes, s

7
, with

s varying from 0 to 7.
Notice that each line joins a point with coordinates {x = 0, y = d} with

the point at {N − 1, d + s}. The inner points of those lines having inte-
ger coordinates {u, l3s(u) + d}, that is {λ(u0, u1, u2), l

3
λ(s0,s1,s2)

(u0, u1, u2)} =

{λ(u0, u1, u2), u0 · s2 + u1 · (s2 + s1) + u2 · (2 · s2 + s1 + s0) + d}. The crosses
depict values previously filled with zeroes. The circles are the input data.
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When there is a cross on the left, column 0, it means that the discrete line
with that slope and displacement will never touch the image; a circle on the
left, even if with negative displacement, meaning that it will sum different
than zero (for a non null image).

The algorithm exhibits linearithmic complexity because any two-points
line segment, for example the one that joins the points {2, 0} and {3, 0},
will be computed only once and then reused when needed. In this case
when computing results with parameters {s = 0, d = 0}, {0, 1}, {2,−1} and
{3,−1}. This holds true for every segment computed on any scale.

The zeroes padded to the input at the first stage make the input double
in size, and therefore doubling the number of operations at each stage, just to
accomplish the completeness in slopes and intercepts, even if a lot of partial
sums on this region will never be used: for example the sums of pixel at
{6,−1} with {7,−1} or pixel at {4,−4} with {5,−3}.

Full sinogram construction

Figure 3.4: Schemes of behavior of the 4 quadrants of a full DRT. From left
to right, and top to bottom: 0◦ : 45◦ quadrant; 135◦ : 180◦ ≡ 0◦ : −45◦

quadrant; 90◦ : 45◦ quadrant and −90◦ : −45◦ ≡ 90◦ : 135◦ quadrant.

Equations (3.3), (3.4) and (3.5) constitute the core of the DRT algorithm
for the basic quadrant with angles between 0 and 45 degrees. A discrete
version of the full sinogram can be accomplished, reusing the algorithm that
solves a quadrant, by applying it another thrice to versions of the input
where axis are swapped and/or flipped conveniently and their partial outputs
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merged in a four times bigger global result. A typical output was shown to
the rightmost on fig. 3.1.

Figure 3.4 depicts the behavior of the basic quadrant algorithm in the top
left sub-figure. The other sub-figures explain how the rest of angles could be
computed.

The schemes on the sub-figures follow these conventions:

• the black circle will be considered our {0, 0} reference point.

• the reference point will be joined by discrete lines with the circles on
the opposite extreme, so those circles depict the plurality of slopes to
be considered.

• the reference and the slopes are at the extremes of the axis marked
with a coarse black line. This axis is coincident with the discrete line
with null displacement and slope.

• for the maximal slope, the reference point will be joined with the red
circle. This line of maximal slope is one of the diagonals of the plane
and has as normal the vectors depicted with dashed arrows. Those can
be interpreted as positives or negatives.

• the rest of discrete lines, those corresponding to the ascents from 1 to
N − 2 have as finishing vertex of their normals the black dots that
describe arches close to the axis where crosses are depicted.

• those crosses represent the displacements that must be considered.

3.2.2 Radon ad-joint transform

To achieve an inverse Radon transform it is necessary to define previously
the ad-joint transform.

It can be seen in the next terms: the forward transform computes, from
an input image, the summation of pixel values through a set of lines, which
is complete in slopes and displacements.

The ad-joint transform is such that for every point in the Radon domain,
corresponding to a certain slope and displacement, it redistributes uniformly
that summation value back to the image domain assigning the same quantity
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Algorithm 4 Compute the DRT of a quadrant
Input: Image f(x, y) consisting of N ×N data
Output: Radon transform of f, Rf(s, d) consisting of N × 2N data

1: n← log2(N)
2: fm ← zeros(N, 2N)
3: fm+1 ← zeros(N, 2N)
4: fm(:, N : 2N)← f ⊲ Fill the upper part of the output
5: for m = 0 to n− 1 do

6: for d = 0 to 2 ·N − 1 do

7: for v = 0 to (1 << (n−m− 1))− 1 do

8: for σ = 0 to (1 << m)− 1 do ⊲ Outside mem accesses return zero.
9: f0 ← fm(σ + (v << (m+ 1)), d)

10: fm+1((σ << 1) + (v << (m+ 1)), d) = f0 + . . . ⊲ Case sn−m−1 = 0
11: fm(σ + (1 << m) + (v << (m+ 1)), d+ sigma)
12: fm+1(1 + (σ << 1) + (v << (m+ 1)), d) = f0 + . . . ⊲ Case sn−m−1 = 1
13: fm(σ + (1 << m) + (v << (m+ 1)), d+ 1 + sigma)
14: end for

15: end for

16: end for

17: fm ← fm+1

18: fm+1 ← zeros(N, 2N)
19: end for

20: Rf ← fm

21: return Rf

to every pixel traversed by the line. That obviously is not the inverse trans-
form, but –and that is the key of the contribution from William H. Press[53]–
it is a sufficiently good start point to induce an iterative refinement process.

The ad-joint discrete Radon transform, is defined by the inverse mapping
of equation (3.5):

∼

f m(σ| 0,v| d) + =
∼

f m+1( sn−m−1,σ |v| d)
∼

f m(σ| 1,v| d+ sn−m−1 + λ(σ)) + =
∼

f m+1( sn−m−1,σ |v| d)
(3.6)

Figure 3.5 shows the ad-joint operator working independently on the four
quadrants of a forward DRT, as well as the sum of all of them.

3.2.3 Radon inverse transform

Now the inverse, or backward, Radon transform algorithm can be built upon
this ad-joint transform. The ad-joint transform will be used as an approx-
imate inverse operator of the forward transform in the theory of iterative
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Figure 3.5: The ad-joint discrete Radon transform, as defined by eq. 3.6,
applied on each quadrant of the forward transform of the image used as
example through this paper. The image on the right corresponds to the ad-
joint of the whole DRT, and is equivalent to the sum of the four images in
the left. It is reminiscent to the unfiltered back-projection method used in
medical imaging.

improvement of a solution to linear equations, described in chapter 2.5 of the
numerical recipes book from, again, Press[61].

Figure 3.6: The first 5 iterations of recursive multi-grid inverse Radon trans-
form of a DRT.

This method by itself is extremely slow to converge. In order to accelerate
this inversion so that it becomes fast, exact and practical Press suggests to
use a multi-grid approach, described in the same book[61] chapter 19.6. In
figure 3.6, the images depict the convergence after just 5 iterations. Press
demonstrated that, in spite of being iterative, it can be properly called a fast
inverse, because convergence up to the resolution of the machine never takes
more than a few iterations. Additionally it is well conditioned, so that noise
do not preclude the inversion.
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3.3 DRT variations based on pruning

The slopes to be evaluated are those that generate ascents varying from 0 to
N − 1 pixels on the vertical axis whilst traversing N pixels on the horizontal
axis. For each slope there will be as much as 2N − 1 displacements to be
calculated. In case of the slope being maximum all the 2N −1 displacements
are different than zero, whilst when slope is minimal only N displacements
will really touch the image. This can be better appreciated in figure 3.2.

These new algorithms have as goal to suppress the computations for the
output at marginal displacements and by doing so the shape of the new DRTs
output for the 4 quadrants will become a N × 4N fully populated rectangle.
In other words, the number of displacements considered for a single quadrant
will be always N independently of the slope.

Two alternative algorithms with different uses and properties that over-
come aforementioned problem have been developed, while still remain of
linearithmic complexity.

Figure 3.7: From left to right an image sheared to accommodate in a row the
discrete lines of Central DRT for minimal, intermediate and maximal slope
of the 0 to 45 degrees quadrant.

The equivalent shearing for different slopes shown in figure 3.1 for con-
ventional DRT, is now shown for Central DRT in figure 3.7. The idea behind
Central DRT is to compute exclusively the N displacements around the pro-
jection of the center of the image. Therefore the output of Central DRT
should be coincident with a portion, –the central band on a light gray color
on figure 3.2 surrounded on yellow–, of the output of the conventional DRT –
surrounded on red–. It can be seen that most of the input, when sheared and
truncated to the central N displacements, will still be considered. On fig. 3.2
the values inside the red area but outside the yellow area, those that are go-
ing to be discarded, are less than a 15% of the total. It will be demonstrated
that this can be achieved with a saving of almost half of the computations
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and in certain scenarios, this central band can substitute the whole output
of the conventional DRT. The proposed transform will save computations in
the forward transform, but although the backward transform exists and con-
verges, it will be much slower than the backward transform of conventional
DRT, becoming practically unusable.

Figure 3.8: From left to right an image sheared to accommodate in a row the
discrete lines of Periodic DRT for minimal, intermediate and maximal slope
of the 0 to 45 degrees quadrant.

The second alternative transform that will be proposed will also have a
reduced output size and a lesser number of computations compared to con-
ventional DRT. But now there will also exist a fast backward transform.
However its output will, mostly, not be coincident with any portion of the
conventional DRT. As can be noticed in figure 3.8 the Periodic DRT will
operate as if the input image has been extended by periodicity. It will be
coincident with conventional (and central) DRT for certain slopes and dis-
placements, but in most cases it will add replicas of the input where the other
DRTs would add zeroes.

3.3.1 Central DRT

Discrete lines in Central DRT

Figure 3.9 shows, similarly to fig. 3.3 for conventional DRT, how the discrete
lines of Central DRT operate on a 8×8 image. Input data must still be padded
in the displacement dimension, but an increase of N/2 rows is sufficient. This
scheme shows an increase of N − 1 rows for the sake of comparison with fig.
3.3.

The circles in the first column of each rectangle are the displacements that
the central DRT will compute for that slope. Now they will always be N
independently of the slope. Their position, in order to maintain centered the
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Figure 3.9: A depiction of the whole set of discrete lines covering the dis-
placements and slopes as computed by Central DRT.

line that crosses the image through its center, descends as s increase. Lines
whose displacements verify d > N − 1−⌊(s+1)/2⌋, or d < −⌊(s+1)/2⌋ will
be simply ignored.

Memory footprint at partial transforms

Figure 3.10: Memory patterns of data required for computing Central DRT
on a 16× 16 image.

The proposal of Central DRT arises from the finding that if we prune the
computations of Rf{s, d} values outside this central band, as a collateral
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effect half of the values at partial transforms do not need to be evaluated.
Remember that the discarded output values represent less than 15% of Radon
summations on input data: this is because the zones to be discarded basically
operate on the zones padded with zeroes, and so, for certain applications, can
be safely ignored.

Pruning techniques have a very reduced effect in Fast Fourier
transform[62]: from O(N log2 N) to O(N log2 K) when only K < N coef-
ficients are required. This is, to achieve the same reduction by half of com-
putations on a 256 1D FFT, the output size should be limited to just 16
coefficients. This reduction by half of computations when halving required
coefficients, in an already linearithmic transform, was unexpected.

Figure 3.10 shows the memory patterns of data required for the compu-
tation of a quadrant of Central DRT for an image of size 16 × 16, that is,
N = 16, n = 4. The rectangles represent visually if a value at partial stages
∼

f m( s | v
︸︷︷︸

horizontal

| d
︸︷︷︸

vertical

) as defined by eq. (3.4) is needed in order to compute

the Central DRT, in that case it is shown in gray, otherwise in black.
This depiction reveals that at each partial stage now only N adjacent

values must be computed per column.
The other finding is that the pattern observed here for N = 16, –that

sort of saw-tooth on the first horizontal half of each stage– follows a formula
that will be later described.

Central DRT algorithm

Unraveling this access pattern is in itself the algorithm that is being looked
for, since it will be enough to operate exactly as in conventional DRT but
only on the highlighted zones. The algorithm described however will add
another improvement: the DRT can be formulated with point-wise sums of
N -length vectors lying on different columns. This way paving the road to an
efficient implementation on SIMD arithmetic units.

So, instead of offering a formula for each value d, it is possible to operate
on N consecutive values of two columns on a previous stage to achieve another
N -length vector that comprise the required data at a column on a later stage.
The indications of where each N -length vector of interest starts for a given
stage, size and slope is provided next.

It can be demonstrated that the computation relationship between
columns shown in figure 3.10 is in accordance with the diagram shown in
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Figure 3.11: Data related in the computation of two consecutive columns,
with indexes S and S + 1, at stage m+ 1, from two columns of the previous
stage, with indexes S0 and S1.

figure 3.11.
Let consider the data at a certain stage m + 1 which will be calculated

from data from the previous stage m. The index m, denoting the stage, will
range from 0 to n − 1, with n = log2(N). Let S be an index at an even
column, followed at an odd position by index S + 1, both belonging to stage
m+ 1. In order to calculate the required N values of each of these columns,
it is necessary to add together two vectors of length N coming from columns
with indexes S0 and S1. The starting point, over the d axis, of the vectors
to add will be expressed according to the schema and will depend on values
∆deven , ∆dodd and ∆dS1

.
The index S will be subdivided according to its binary expression as

follows:

S = [0, σ
︸︷︷︸

m bits

, v
︸︷︷︸

n−m−1 bits

] = 0 + σ << 1 + v << (m+ 1).

Then, indexes of stage m will be expressed as

S0 = σ + v << (m+ 1) and S1 = S0 + 1 << m.

To calculate the starting point of the vector on the other axis, d, we have
to define

Φ =

(
2m+1 − (m < (n− 1))

)
·
(
2n−m−2 − v

)

2m+1 − 1
· (v < 2n−m−2).
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With this value we can calculate: ∆deven = ⌊2 · σ · Φ⌋, ∆dodd = ⌈Φ⌉ and
∆dS1

= σ.
In these formulas, ⌈·⌉ y ⌊·⌋ are, respectively, the rounding operators to

the next larger and smaller integer, the << symbol refers to the binary shift
and < is the lower than comparison evaluated to 0 or 1.

Those values are applied following the schema on fig. 3.11:

• N data in column S descending from row index top − ∆deven , are the
result of adding N data in column S0 descending from row index top−
∆deven , and N data in column S1 descending from row index top −
∆deven +∆S1 .

• N data in column S+1 descending from row index top−∆deven−∆dodd ,
are the result of adding N data in column S0 descending from row
index top − ∆deven−∆dodd , and N data in column S1 descending from
row index top−∆deven − ∆dodd +∆S1 + 1.

The resulting algorithm can be found in pseudo-code as Algorithm 5. The
last for loop rectifies the central band so that the output is a N ×N square.

Figure 3.12: N-length vectors lying on different columns to be added at each
stage of the algorithm for a 16× 16 image.

Figure 3.12 shows the vectors to be added at each stage of the algorithm
for a 16 × 16 image. From left to right and from bottom to top: initial
stage, partial stages and final stage of the transform. Each stage, labeled as
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Algorithm 5 Compute the Central DRT of a quadrant
Input: Image f(x, y) consisting of N ×N data
Output: Central Radon transform of f, Rf(s, d) consisting of N ×N data

1: n← log2(N)
2: fm ← zeros(N, 3 ·N/2)
3: fm+1 ← zeros(N, 3 ·N/2)
4: fm(0 : N − 1, N/2 : 3 ·N/2− 1)← f(0 : N − 1, 0 : N − 1)
5: top← 3 ·N/2− 1
6: for m = 0 to n− 1 do

7: for s = 0 to N/2− 1 do

8: σ ← s & ((1 << m)− 1)
9: v ← s >> m

10: S0 ← (v << (m+ 1)) + σ
11: S1 ← S0 + (1 << m)
12: S ← s << 1
13: Φ← ((1 << (m+ 1))− (m < (n− 1))) · ((1 << (n−m− 2))− v)
14: / ((1 << (m+ 1))− 1) · (v < (1 << (n−m− 2)))
15: ∆deven

← floor(2 · σ · Φ)
16: ∆dodd ← ceil(Φ)
17: ∆dS1

← σ

18: fm+1(S, top−∆deven
−N : top−∆deven

)← ⊲ Pointwise sum on Column S
19: sum( fm(S0, top−∆deven

−N + 1 : top−∆deven
),

20: fm(S1, top−∆deven
+∆dS1

−N + 1 : top−∆deven
+∆dS1

) )

21: fm+1(S + 1, top−∆deven
−∆dodd −N + 1 : top−∆deven

−∆dodd )← ⊲ Pointwise sum on
Column S + 1

22: sum( fm(S0, top−∆deven
−∆dodd −N + 1 : top−∆deven

−∆dodd ),
23: fm(S1, top−∆deven

−∆dodd +∆dS1
+ 1−N + 1 :

24: top−∆deven
−∆dodd +∆dS1

+ 1) )

25: end for

26: fm ← fm+1

27: fm+1 ← zeros(N, 3 ·N/2)
28: end for

29: for s = 0 to N − 1 do

30: Rf(s, 0 : N − 1)← fm(s, floor(top− (s+ 1)/2)−N : floor(top− (s+ 1)/2))
31: end forreturn Rf
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fm, with m = 0..4, shows data positions that will be accessed to calculate
the next stage. Accesses for even column computations are shown with flat
corners whilst odd columns accesses are shown with rounded corners.

At each stage of the computation there will be two memory buffers storing
the data at stage m and the data at stage m + 1. But here, for the sake
of depiction, accesses from odd and even columns are shown isolated, or
otherwise they would overlap, but they access to the same columns for a pair
of S and S+1 computation, only that with different starting row index. The
result of computation at a stage, is shown again as input for the next step of
the transformation.

It can be seen in the schema how in each stage only the data required
by a later stage are computed. During the transformation, positions outside
the 0 : 3N/2 zone are sometimes accessed. These accesses are simply ignored
because they would add zeros.

An example of output of Central DRT will be shown later, after exposing
the Periodic DRT algorithm.

Additionally, a coupled pair of variable changes can make the fetching
from fm and storing to fmp1 be constrained to the N size in the y axis
instead of the otherwise needed 3N/2. This is interesting when facing a
glsl implementation, where the output and input sizes are directly affecting
performance. This will be further studied on chapter 4.

3.3.2 Periodic DRT

Equations (3.3), (3.4) and (3.5), remained untouched when defining Cen-
tral DRT, because it computes the same than conventional DRT, only that
for fewer values. The algorithm had to be modified to operate on half of
the values, but the operations carried out on those values did not change.
Now it will be the opposite, the algorithm remains mostly untouched from
conventional DRT, but there will be a slight change in eq. (3.4).

It is desirable, in the case of Periodic DRT, that discrete lines do not
abandon the square N ×N region where the input is defined, instead, if for
a certain slope and displacement a discrete line is going to cross the upper
limit through position {x, N − 1}, it will be forced to reenter at position
{x+ 1, 0}.

This line wraparound effect is normally undesired, because, such definition
of lines turns the transform useless for tomographic inversion. In Fourier
based transforms this effect is counteracted by additional padding.
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But some applications can benefit from a collateral effect of this redefini-
tion of discrete lines: the forward transform that emerges has a fast inversion
algorithm, something that Central DRT has not.

Figure 3.13: A depiction of the whole set of discrete lines covering the dis-
placements and slopes as computed by Periodic DRT.

In figure 3.13 it is depicted the expected behavior for discrete lines in
Periodic DRT. Lines with parameters {s, d} will finish now on positions {N−
1, (d + s) mod N}. To accomplish such behavior, the partial transform
equation must be redefined:

∼

f m(

s

︷ ︸︸ ︷
sn−m, σ | v | d) =

∑

u∈Zm
2

f
(
λ(u,v) |

(
lmλ(s)(u) + d

)
mod N

)
(3.7)

That change translates directly into the mapping equation:

∼

f m+1(

s

︷ ︸︸ ︷
sn−m−1, σ |v| d) =

∼

f m(σ| 0,v| d) +
∼

f m

(

σ| 1,v|
(
d+λ(s)

)
mod N

)

(3.8)
The input image must not be padded now. The algorithm for a quad-

rant is given in Algorithm 6. This algorithm is a more direct translation of
the equations defining the transform than before, on Central DRT, because
operations are performed again at datum level, not on N -length vectors.

The output can be rectified applying a circular shift of magnitude ⌊ s+1
2
⌋

to each column of the 4 quadrants output, Rf(s, ·).
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Algorithm 6 Compute the Periodic DRT of a quadrant
Input: Image f(x, y) consisting of N ×N data
Output: Periodic Radon transform of f, Rf(s, d) consisting of N ×N data

1: n← log2(N)
2: fm ← f
3: fm+1 ← zeros(N, N)
4: for m = 0 to n− 1 do

5: for d = 0 to N − 1 do

6: for v = 0 to (1 << (n−m− 1))− 1 do

7: for σ = 0 to (1 << m)− 1 do

8: f0 ← fm(σ + (v << (m+ 1)), d)
9: fm+1((σ << 1) + (v << (m+ 1)), d) = f0 + . . . ⊲ Case sn−m−1 = 0

10: fm(σ + (1 << m) + (v << (m+ 1)), (d+ sigma) mod N)
11: fm+1(1 + (σ << 1) + (v << (m+ 1)), d) = f0 + . . . ⊲ Case sn−m−1 = 1
12: fm(σ + (1 << m) + (v << (m+ 1)), (d+ 1 + sigma) mod N)
13: end for

14: end for

15: end for

16: fm ← fm+1

17: fm+1 ← zeros(N,N)
18: end for

19: Rf ← fm return Rf

3.3.3 Comparison of Central and Periodic DRT

Figure 3.14 shows the output of conventional, Central and Periodic DRTs
when fed with the image containing two black circles on a white background
shown on a corner of the conventional DRT output. Those two circles have
diameters 240px and 120px in a N = 256 square image. Additionally 4 pixels
in the center of the image are black.

Those images reveal the internal functioning of each DRT. It can be no-
ticed the particular shape of conventional DRT in order to contemplate every
possible displacement and slope; how Central DRT contains the central band
of conventional DRT rectified and with the center of the image projecting
always in the central displacement of the DRT, at index d = N

2
; and the

Periodic DRT can be considered as a mixture of both, in the sense that the
displacement dimension now remains of size N independently of the slope,
but those projections not considered in Central DRT, are now again present
only that added to a position already occupied by another displacement of
the central band. The value occupying position Rf(s, dc) in conventional
DRT separated δd values with respect to the displacement of the center of
the image, do = N/2+⌊ s+1

2
⌋, for a certain slope s, i.e. δd = dc−do, |δd| > N

2

will be added to the value RPf(s, (N/2+δd+N) mod N) in Periodic DRT.
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Figure 3.14: From top to bottom: conventional DRT, Central DRT and
Periodic DRT of a 256× 256 image of two concentric circles, shown bottom
left of first sub-figure.

Ad-joint operators of Central and Periodic DRT

Both proposed transforms have an ad-joint, also called back-projection, op-
erator. In the case of Periodic DRT it will be based on the inverse mapping
of eq. (3.8):

∼

f m(σ| 0,v| d) + =
∼

f m+1(sn−m−1, σ|v| d)

∼

f m

(

σ| 1,v|
(
d+ sn−m−1 + λ(σ)

)
mod N

)

+ =
∼

f m+1(sn−m−1, σ|v| d)

(3.9)
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In the case of Central DRT, the equation (3.6) remains valid. Apart from
that the ad-joint operator has to repeat every step on the forward trans-
form but on the reverse order, with outer loop of algorithm for a quadrant
descending from m = n− 1 to m = 0.

Figure 3.15: Top row, from left to right, the respective ad-joint operators
applied to the conventional, Central and Periodic forward DRTs of an input
constituted by 16 × 16 equispaced black pixels. Bottom row, details of top
left corners of back-projections in the same order.

Figure 3.15 shows the result of applying the respective ad-joint operators
on a previously forward transformed image containing equispaced deltas, for
each type of transform: conventional, Central and Periodic, in that order
from left to right.

There is a sort of vignetting in conventional DRT due to the different
length of discrete lines that are considered in this method: every line traverses
N values, but depending on the slope and displacement, more or less of those
values correspond to real pixels on the input image or correspond to zeroes
in the padded zone.

The back-projected result corresponding to Central DRT is equivalent
to that of conventional DRT but only inside of the rhomboid with vertexes
{0, N/2}, {N/2, N − 1}, {N − 1, N/2} and {N/2, 0}. The vignetting effect is
very notorious outside that zone. Moreover the shapes around each originally
black dot are not symmetric: those shapes are lacking the discrete lines
discarded by this method.

The back-projection corresponding to Periodic DRT is the more symmet-
ric of the three results and it is not affected by the vignetting effect, simply
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all N values considered for each value of the output have traversed effectively
N pixels of the input.

Convergence of inversion algorithm

With the aforementioned ad-joint operators the same technique described
by Press[53] for conventional DRT has been applied to Central and Periodic
DRT.

Convergence of inversion of Periodic DRT is as fast as that of conventional
DRT.

In the case of Central DRT, even if the eigenvalues of the multiplication
of the ad-joint and forward operators expressed as matrices, are lower than
one, the convergence of its backward transform is fast only in the previously
mentioned rhomboid central zone. Outside of that zone, it converges so
slowly that it ruins the speedup gained on the forward step.

The inversion method proposed by Press reduces the error on image do-
main, based on observations of the error on Radon domain, where the trace
of cornered line integrals are basically absent.

Figure 3.16 shows the behavior of combined forward and back-projection
transforms for each DRT type, operating on an input with an horizontal line
inside the rhombus inscribed in a square zone described for Central DRT, and
then additional smaller lines slanted and positioned closer to each corner.

The cornered lines are part of those not considered by Central DRT and so
they leave no trace nor in the forward transform, nor in the back-projection.
On the other hand, the back-projection in the case of Periodic DRT is good
enough for the method to converge.

Figure 3.17 shows the quality of inversion achieved for each type of DRT
after 3 and 5 iterations. Surprisingly Periodic DRT performs even better than
conventional. Central DRT inversion is only valid in the central rhomboid
zone.

3.4 Simultaneous computation of DRT quad-

rants for its efficient implementation

In the work [63] a new algorithm was proposed. One of the most prominent
drawbacks that the previous described algorithms is that the algorithm con-
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(a) Forward Transforms
(b) Input and back-
projections

Figure 3.16: Forward and back-projected transforms of an input consisting
of one horizontal line in the center, and four lines closer to the corners. From
top to bottom, conventional, Central and Periodic DRT.



3.4 Simultaneous computation of DRT quadrants for its efficient
implementation 83

(a) Inversion after 3
iterations

(b) Inversion after 5
iterations

Figure 3.17: From top to bottom, quality of the inversion for conventional,
Periodic and Central DRTs.



84 Discrete Radon Transform extensions for our Curvelet transform

sists of the computation of four independent tasks. Alternatives that avoid
processing the four quadrants independently were explored.

There is a preceding work from Donoho and Huo [64] that gives a deep
insight on multi-scale line analysis of images, but then, it simultaneously ex-
ceeds and ignores the purpose of the present work. As stated by the authors,
on section 8.1, “we are specifically not interested in fast approximate calcula-
tion of the multi-scale Radon transform”. Instead they generate a corpus of
scale/location/orientation invariant analysis based on dyadically-organized
line segments. Our intention is, indeed, the opposite of that expressed in
the quoted paragraph: we want to distillate all that corpus to extract just
a fast and efficient algorithm for computing the approximate Radon trans-
form. We will name it Perimeter Discrete Radon Transform, PDRT. The
data structure and algorithm we will derive is completely original and it is
not –implicitly nor explicitly– given in that work.

Figure 3.18: On top, depiction of lines being considered at several scales of
conventional DRT for the first quadrant (y = x ·slope+d). On bottom, same
scheme for lines within dyadic squares at several scales.

3.4.1 Founding idea on Perimeter DRT

The formulae of multi-scale DRT are cause and consequence of this particu-
lar strategy for transforming data through increasingly wider columns. The
partial transform definition is the key to understand this fact. But the de-
piction on top of figure 3.18 is enough to understand what is preventing a
single formula from solving as elegantly as before the DRT of all quadrants
simultaneously: it is possible to grow transforming columns and taking into
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account every possible vertical displacement and still work in-place reusing
the same memory footprint that stores the input image, as long as the lines to
be solved are of the form y = x ·slope+d; but it is not possible to grow trans-
forming simultaneously on vertical and horizontal, and it is neither possible
to consider simultaneously ascents and descents.

Therefore, an alternative strategy must be considered. It is depicted on
bottom of figure 3.18. Instead of partially transforming columns or rows
independently, both must be tackled simultaneously and so the sub-regions
to be partially transformed must be sub-squares of the total squared domain.
And this is basically the only link to the work on beamlets [64]: our partial
stages of transformation remind what Donoho and Huo denominate complete
Recursive Dyadic Partition. The solution will cover the whole N×N domain,
and will be constructed from the combination of DRTs from its four dyadic
sub-squares of size N

2
× N

2
; and those from the 16 previous stage DRTs of size

N
4
× N

4
... and so forth.

Or, if we reverse the order of explanation, and build from bottom to top:
at the lowest scale for a given N × N size, we will have N

2
× N

2
sub-squares

of size 2× 2, which will evolve to N
4
× N

4
sub-squares of size 4× 4, ...

We will name the resulting algorithm as ‘Perimeter DRT’, PDRT, because
we must work on an alternative data structure that is capable of storing all
computations that will be needed at each stage. And this new structure
instead of mimicking the cartesian grid of input images, where x and y are
gradually replaced by v, σ and d parameters, will now parameterize DRTs
with the pair of end-points at the perimeter of each sub-square.

3.4.2 Data structure

We are interested on computing the sum of pixels that traverse the input
image starting from and arriving at any pixel of the perimeter of any dyadic
sub-square at any scale. This set of line segments is complete in terms of
slopes and displacements in the sense that it was defined in conventional
DRT and includes all the data, partial and final, that were computed by
conventional DRT and were part of its discrete output sinogram.

We will next describe a data structure to hold all these data, which are
the result of partially transforming input data up to a certain stage. The
size of this data structure will vary with stage, thus preventing in-place com-
putation.

As well as before, the input image can be considered as a special case of
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the data structure for stage 0 (N/1×N/1 sub-squares of size 1× 1) and the
output result can be considered an instantiation of the data structure for the
stage n.

At each stage m of partial transform of an input image of size N × N ,
with N = 2n and M = 2m, there will be N/M × N/M sub-squares, each
one of size M ×M . There will be 4M − 4 pixels surrounding the perimeter
of each sub-square. In order to store the PDRT starting from each of those
perimeter pixels and arriving to any other perimeter pixel (including itself)
there must be (4M − 4+ 1)× (4M − 4)/2, this triangular shape emanates of
the fact that the PDRT from pixel i to j is equal to that from pixel j to i.

Figure 3.19: Enumeration of vertexes at the perimeter of a square; and
triangular shape of the structure containing its Perimeter DRT. Diagrams
are not to same scale, notice that the rows are 4 times wider on the Perimeter
DRT structure.

Figure 3.19 shows the enumeration of vertices at the perimeter of a square
of size N × N . There will be 4N − 4, ranging from 0 (bottom left vertex)
and increasing counterclockwise up to 4N − 5. On the right it is depicted
the contents of the PDRT, right column indicating the index where each line
starts and inside the rectangular arrays the index of pixel of arrival. Note
that first datum at each row holds the value itself of a perimeter pixel.

We can index into this data structure making use of the function listed
on algorithm 7.

It is possible to rearrange this structure to convert it into a DRT sinogram
by translating slope, displacement coordinates into intersections with perime-
ter pixels, as depicted in figure 3.20. Of course, applying similar reasoning
you can rearrange a sinogram as an PDRT.
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Algorithm 7 Returns a linear memory address in a PDRT structure from
a set of parameters describing a line
Input: Parameters indIn, indOut, sx, sy, m, n

Output: Memory address of line segment starting in pixel indIn, arriving at pixel indOut,
within subsquare of coordinates (sx, sy), at partial stage m, in a problem of size n.

1: if indIn > indOut then

2: swap(indIn, indOut)
3: end if

4: N ← 2n

5: M ← 2m

6: nSquares1D ← N/M
7: nV ertex← 4 · (M − 1)
8: if m == 0 then

9: sizeRadonSquare← 1
10: else

11: sizeRadonSquare← (nV ertex+ 1) · nV ertex/2
12: end if

13: n← in
14: a1← nV ertex
15: d← −1
16: an← a1 + (n− 1) · d
17: sizePreviousIn = (a1 + an) · n/2 ⊲ The triangular shape gives rise to an arithmetic serie
18: memIndex← (ySquare · nSquares1D + xSquare) · sizeRadonSquare+ ... ⊲ We skip previous

subsquares...
19: sizePreviousIn+ ... ⊲ then skip the previous rows...
20: indOut− indIn ⊲ and lastly skip the previous columns

21: return memIndex
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Figure 3.20: Intersections for every displacement for minimum, intermediate
and maximum slope (from left to right) for first, second, third and fourth
quadrant (from top to bottom) of a 8× 8 problem.

3.4.3 Algorithm

The algorithm listed on 8 computes the partial transform of each sub-square
at each partial stage. The order of computation of sub-squares and pair of
vertices within a sub-square is irrelevant, but stages should be computed in
order from 1 to n, as each stage is built upon data from previous partial
transform stage. At last stage, when m = n, there will be just one square to
be considered and its PDRT is the solution.

In that algorithm the transform between input data and stage 1 is treated
as a special case. Data within each sub-square of size 2 × 2 are named as
A,B,C and D, and the PDRT consisting of the sum of A with each vertex
(including itself alone); then B alone, and summed with C and D; then C
alone and C with D, and D alone are directly computed and stored.

The rest of stages compute every combination of input and output vertex
at perimeter (indIn and indOut) within each sub-square (of coordinates
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Algorithm 8 Computes the PDRT of an image
Input: image f of size N ×N , with N a power of two
Output: PDRT of input

1: N ← sizeof(f)
2: n← log2(N)
3: maxSize← (4 ·N − 3) · (4 ·N − 4)/2 ⊲ Last stage will hold the maximum size of PDRT
4: fm ← zeros(1,maxSize) ⊲ We allocate two buffers of that maximum size
5: fm+1 ← zeros(1,maxSize) ⊲ One buffer for current stage and one for next stage, m and m+ 1
6: fm(0 : N ·N − 1)← f ⊲ We copy the input to partial transform at current stage
7: ⊲ We compute PDRT of subsquares of size 2x2 as a special case
8: for squareY ← 0 toN/2− 1 do

9: for squareX ← 0 toN/2− 1 do

10: A← fm(squareY · 2 ·N + squareX · 2)
11: B ← fm(squareY · 2 ·N + squareX · 2 + 1)
12: C ← fm((squareY · 2 + 1) ·N + squareX · 2)
13: D ← fm((squareY · 2 + 1) ·N + squareX · 2 + 1)
14: fm+1((SquareY ·N/2 + SquareX) · 10 + [0 : 9]) = ...
15: [A,A+B,A+ C,A+D,B,B + C,B +D,C,C +D,D]
16: end for

17: end for

18: ⊲ The rest of stages starting from stage 2 are computed next
19: for m← 1 to n− 1 do ⊲ Will compute stage m+1 from data at stage m
20: MP1← 2m+1

21: nV ertex← 4 ·MP1− 4
22: nSquares← N/MP1
23: for squareY ← 0 to nSquares− 1 do

24: for squareX ← 0 to nSquares− 1 do

25: for indIn← 0 to nV ertex− 1 do

26: for indOut← indIn to nV ertex− 1 do

27: memIndexWrite← linearIndex(indIn, indOut, squareX, squareY,m+ 1, n) ⊲
Writing address at stage m+1

28: fm+1(memIndexWrite)← 0
29: cuts← cutsAtSubsquare(indIn, indOut,m+ 1) ⊲ Compute line segments cuts at

dyadic boundaries
30: while not isEmpty(cuts) do

31: c← pop(cuts)
32: memIndexRead ← linearIndex(c.indIn, c.indOut, c.squareX, c.squareY,m, n)

⊲ Reading address at stage m
33: fm+1(memIndexWrite)← fm+1(memIndexWrite) + fm(memIndexRead) ⊲

Accumulate
34: end while

35: end for

36: end for

37: end for

38: end for

39: swapBuffers(fm, fm+1)
40: end for

41: return fm+1
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(a) A line in a square of any given
scale can be computed by reusing at
most three line segments of its 4 chil-
dren dyadic sub-squares. The discrete
lines are not strictly collinear.

(b) Number of line segments from 2nd

perimeter vertex to each other are rep-
resented by a color. Red, green and blue
meaning 1, 2 and 3 line segments, re-
spectively.

Figure 3.21: Cuts at dyadic boundaries in a 8× 8 problem.

Figure 3.22: A depiction of the sums carried out to compute the 3 line
segments shown in figure 3.21a

squareX and squareY ) making use of two functions: linearIndex which
was listed in algorithm 7; and cutsAtSubsquare, which will be described
below, making use of figure 3.21.

In the sub-figure 3.21a, it is depicted the desired behavior of
cutsAtSubsquare(2, 15, 0, 0, 3, 3), that is, which are the line segments that
arise when joining vertex 2 and 15 at perimeter of the unique sub-square
at last stage of a N = 23 problem? And the answer should be {{indIn =
2, indOut = 5, squareX = 0, squareY = 0}, {9, 9, 1, 0}, {0, 7, 1, 1}}.

The algorithm making use of that structure should fetches the appropriate
3 data from previous stage (at positions 27, 150, 241) and write their sum in
the appropriate place (at position 68) in the stage being computed, as seen
on figure 3.22.
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In order to find the segments to be added in each case we propose to take
advantage of a fact exemplified on sub-figure 3.21b for a initial vertex ranging
from 0 to M/2−1: there will be an extra line segment to be considered when
arrival index ranges from M/2 to M/2+nV ertex/2−1; and another extra line
segment when arrival index ranges from M+M/2 to M+M/2+nV ertex/2−
1, that is, when arrival is behind of the vertical or horizontal lines that cut
by half the parent square. With an exception on the diagonal, when arrival
vertex is nV ertex/2 indices apart from initial, in that case there will be 2
instead of 3 line segments.

Line segments should be described in the cuts structure by means of its
entry and exit pixel to its child sub-square. This will be computed using a
rule of three restricted to integer indices.

Figure 3.23: From left to right, an input image, its Perimeter DRT, and its
rearrangement as a conventional DRT sinogram. Colors in transformations
are inverted, and hence white represents value zero.

s
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Chapter 4

DRT accelerated on smart-phones

4.1 Introduction

Curvelets are a great tool in general, and, specifically, for the purpose of focus
estimation. The computational power required to run curvelets is the factor
that holds back its widespread usage. Therefore, a very fast and efficient
implementation of curvelets will be proposed in an attempt to facilitate its
usage and apply it to our shape-from-focus problem.

Because the majority of the computational time is spent on the Radon
transform, it makes sense to approach this problem first. As it was introduced
on the last chapter, the DRT will be used to build a Curvelet transform. This
argument was discussed in 3.1. This chapter will focus only on the DRT
implementation on different architectures.

4.2 Parallelism, multithreading, autotuning

The conventional, Central and Periodic transforms described in sections 3.2,
3.3.1 and 3.3.2 have a set of common characteristics that allow us to easily
apply coarse grained parallelism.

4.2.1 Coarse grained parallelism

The algorithms can be rewritten in order to have the variables d, v and σ
be a function of generic x, y variables that travel the fmp1 memory. d can
be put as function of y and v, while sigma can be function of x. This is



94 DRT accelerated on smart-phones

important because it allows us to have two linear variables in which we can
apply parallelism by dividing its computation among threads. These two
variables will have constant size across all steps.

4.2.2 Vectorization and SIMD

In order to achieve a more fine grained parallelism, we need to write custom
code that is architecture dependent. An optimization that includes fine-
grained vectorization has been previously done for the 4D:3D DRT [14] with
the goal of speeding the refocusing of plenoptic images on a smart-phone,
and after applying coarse-grained parallelization.

For example, on Intel R©processors, if we were write something like:

Listing 4.1: Example code, expressed in plain C++.
1 const int n = 512;

2 for (int x = 0; x < w; x++) {

3 for (int y = 0; y < h; y++) {

4 for (int i = 0; i < n; i++) {

5 buffer3[y * w + x + i] += buffer1[y * w + x + i] + buffer2[i];

6 }

7 }

8 }

we could take advantage of one of the supplementary instruction sets that
Intel processors have. For example the SSE2 SIMD instruction set, designed
to accelerate video streaming. The code can be accelerated by using intrinsics
and it translates to:

Listing 4.2: Example code, with vectorization, tailored to a
Intel R©microprocessor.

1 const int n = 512;

2 const int vectorsize = 128;

3 __m128d b1, b2, b3;

4 for (int x = 0; x < w; x++) {

5 for (int y = 0; y < h; y++) {

6 for (int i = 0; i < n / vectorsize; i++) {

7 /* load 128 values in parallel from the array */

8 b1 = _mm_load_pd(buffer1 + y * w + x + i);

9 b2 = _mm_load_pd(buffer2 + i);

10 b3 = _mm_add_pd(b1, b2);

11 /* store 8 values in parallel to the array */

12 __mm_store_pd(buffer3 + y * w + x + i, b3);

13 }

14 }

15 }

Note that the number of iterations has been reduced by the size of the
vector (128). We could theoretically calculate the number of clocks needed
per iteration and compare it to the original code. The number of clocks is
also dependent on the architecture, so, for a Skylake, the number of clocks
per instruction (CPI) of the load, add and store operations are 0.33, 0.5 and
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0.33, respectively. Multiplying this with the number of iterations would give
the theoretical number of clocks needed to compute our code, if there would
not be pipelining.

The declaration and assignments statements in the code using the variable
of type __m128d translate directly into the usage of available registers, so,
unless there is not enough registers, it will not add additional time. If there
are not enough registers, the compiler will decide to use main memory. This
is called “register spilling”.

Also, the compiler can be aware of these optional instruction sets and
vectorize the code for us (gcc with the option ­O3). One can expect to beat
the optimization made by the compiler by carefully designing the usage of the
available instruction sets and writing directly low level code, as exemplified
in the listing 4.2.

If the code must run in ARM processors as well, another codification is yet
needed in order to tailor the desired vectorization to a different processor that
has different architecture. ARM is RISC based architecture, very common
in smart-phones. The NEON SIMD extension is available in ARMv7 based
architectures, which is the vast majority of smart-phones, including Android
and Apple ones.

Listing 4.3: Example code, with vectorization, tailored to a ARMv7 micro-
processor.

1 const int n = 512;

2 const int vectorsize = 8;

3 uint16x8_t b1, b2, b3;

4 for (int x = 0; x < w; x++) {

5 for (int y = 0; y < h; y++) {

6 for (int i = 0; i < n / vectorsize; i++) {

7 /* load 8 values in parallel from the array */

8 b1 = vld1q_s16(buffer1 + y * w + x + i);

9 b2 = vld1q_s16(buffer2 + i);

10 b3 = vaddq_u16(b1, b2);

11 /* store 8 values in parallel to the array */

12 vst1q_u16(buffer3 + y * w + x + i, b3);

13 }

14 }

15 }

The listing 4.3 shows an example of how the example code could be
parallelized. Note that the vector sizes in NEON are much smaller than the
ones present in Intel architectures for PCs. In order to successfully make
these optimizations and achieve a notable speedup, one must carefully study
the targeted architecture, so the acceleration exploits as much as possible
the peculiarities of the design of the processing unit. That means completely
knowing the available instruction set and how many CPIs each one takes,
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the ALUs that execute them, register sizes, how pipelining works in order
to avoid stalling, number of register, size of registers, how fast is the cache,
what is the cost of a cache miss, etc.

Sometimes after analyzing a particular architecture, one can reach to the
conclusion that we must redesign the algorithm at a higher, mathematical
level in order to further exploit the architecture. The process of writing highly
architecture dependent, optimized code requires a great degree of knowledge,
time and ability.

In the further sections we analyze solutions that make implementations
independent from underlying architecture, in order to achieve great results
on a broad range of devices without having to spend limitless amount of
effort.

4.2.3 OpenCL

Modern Android smart-phones have GPUs. The most common GPUs in-
cluded in the SoCs are ARM R©Mali

TM

and Adreno (Qualcomm). Apple iPhone
models come with an SDK (Metal) with the purpose of leveraging computa-
tion chunks to the GPU. This has not been the case with Android. While the
Android SDK provides an API called RenderScript that could be the equiv-
alent to Metal in Android, RenderScript does not allows to specify where
your code execution lives. The fine-grained control needed in some high-
performance use-cases is very limited or non-existing.

Both Metal and RenderScript are specific to the Operating System, iOS
and Android respectively, meaning that it will never be possible to write
RenderScript code that runs natively on an iPhone or write Metal code that
runs on an Android device.

There is a third disadvantage of writing for these two APIs: we are not
able to test an execution on our code on a development machine (for example
a PC with an Intel or AMD microprocessor). This is often very desirable for
speeding up development times, since it becomes impossible to have many
testing devices in some cases, and depends on the specific workflow that a
developer or team has chosen. Also can be the case, that code targeting a
NVIDIA CUDA and Intel HD GPU platforms are required alongside with
Metal and RenderScript code.

To solve the mentioned problems we need a framework that is able to
compile highly optimized code for all the targeted architectures. The first
one that should come to mind is OpenGL with kernels written on GLSL.
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This solution works for all cases, but because it was designed with graphical
pipelines in mind, it is not quite adequate for a general-purpose program-
ming use-case. Also, different versions of GLSL support different number of
features and have a number of restrictions. For example, the GLSL version is
more restrictive on smart-phones than it is on PC. For example smart-phones’
GLSL imposes restrictions on the type of data allowed as an input/output
buffer, which is not the case for PCs’ GLSL. Furthermore, operations such
as reductions become very difficult to express. In a GLSL kernel, reading for
arbitrary memory positions is allowed (gathering) but writing to arbitrary
memory positions (scattering) is not.

A much more flexible framework is OpenCL and it is usually the go-to
for writing GPU powered applications on Android and iOS devices. It allows
the execution of kernels in CPUs, GPUs, FPGAs and DSPs. It allows a very
flexible workflow where you can execute both on the development machine
and the target machine. Scattering is also allowed, since the framework has
been designed as a general-purpose programming tool.

The listing 4.4 shows the kernel that computes the central DRT of one
quadrant. It does not contain the needed host code that compiles the kernel
and runs it. OpenCL kernels are intended to compile at run-time, so porta-
bility is maintained across devices. OpenCL provides wrappers for Python,
Java and defines native APIs for C and C++. If protecting the code from
inspection is important, the intermediate code SPIR is available as a target.

Listing 4.4: Kernel that computes a quadrant of the Central Radon transform
on OpenCL.

1 __kernel void rd_qRadon(__read_only image2d_t fm, __write_only image2d_t fmp1,

2 short N, short m, short n, float powA, float maxDispM,

3 float stepDispM, short deltaS_S1_M, ushort quarter) {

4 // Slopes (angles)

5 const ushort s = get_global_id(0);

6 // Displacements

7 const ushort d = get_global_id(1);

8 short deltaD_S1, startD, dispDST, size, RANGE_A, RANGE_B, DST_A;

9 short start, end, src_S0_V, v, src_S0, src_S1, sigma, s0;

10 half stepDispV, nonIntPwr, maxDispV;

11 unsigned int IntPwr;

12 v = s >> (m + 1);

13 if (v < powA)

14 maxDispV = stepDispM * (powA ­ v);

15 else

16 maxDispV = 0;

17 // is non­integer when m==n

18 IntPwr = 1 << m + 1;

19 stepDispV = maxDispV / (IntPwr ­ 1);

20 src_S0_V = v * IntPwr;

21 sigma = (s >> 1) & (convert_int(native_exp2(convert_float(m))) ­ 1);

22 src_S0 = src_S0_V + sigma;

23 s0 = s & 1;

24 // s = v * IntPwr + sigma * 2 + s0;

25 dispDST = round((sigma * 2 + s0) * stepDispV);
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26 src_S1 = src_S0 + deltaS_S1_M;

27 deltaD_S1 = sigma + s0;

28 startD = 0;

29 RANGE_A = 3 * N / 2 ­ dispDST ­ N;

30 RANGE_B = 3 * N / 2 ­ dispDST;

31 if (m == (n ­ 1)) {

32 DST_A = N / 2;

33 } else {

34 DST_A = RANGE_A;

35 }

36 ushort px0 = read_imageui(fm, radonSampler, (int2)(src_S0, RANGE_A + d)).x;

37 ushort px1 =

38 read_imageui(fm, radonSampler, (int2)(src_S1, RANGE_A + d + deltaD_S1)).x;

39 if (m >= 8) {

40 px0 = px0 / 2;

41 px1 = px1 / 2;

42 }

43 ushort result = px0 + px1;

44 write_imageui(fmp1, (int2)(s, DST_A + d), result);

45 }

4.2.4 Halide

When writing accelerated image processing pipelines, there is a recurrent
problem. If we want the program to run as efficient as possible, we need to
write an expression of our pipeline that is specific to the hardware it will be
run on.

Take, for example, the difference between a typical GPU and a CPU.
Because these two architectures are drastically different, it will not make
sense that they execute the same code but to have two different versions,
each one exploiting different characteristics. The GPU will have a degree
of parallelism that is greater than the CPU, while the CPU will have more
clock speed and more general-purpose instructions.

At the end of the day, the GPU code is quite different from the CPU code.
A smart-phone GPU and a PC GPU are very different as well. Moreover,
using languages such as OpenGL (more available across platforms) compared
to using OpenCL (less restrictive) also imposes changes to the code. As a
result, programmers are often faced with the dilemma of writing modular,
simple and portable code or have high efficiency.

Also, pipelines composed by highly efficient kernels lead to inefficient
code. This is because the full pipeline must be taken into consideration
when optimizing the code. In this case, modularity breaks efficiency because
there is no fusion.

Halide solves all these problems with elegance [65, 66, 67]. The language
lets the programmer define the algorithm in an almost mathematical dialect.
This definition will be valid and unchanged across all platforms and pipelines.
Take the example in 4.5. It constitutes the “definition” of a 3×3 Sobel filter.
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It is not dependent on hardware, and the order of execution, the locality or
storage in memory are simply let undefined.

Listing 4.5: Sobel 3x3 Halide example definition.
1 void sobel3() {

2 Func sobel_x_avg(x, y, c) = in(x ­ 1, y, c) + 2 * in(x, y, c) + in(x + 1, y, c);

3 Func sobel_x(x, y, c) = abs(sobel_x_avg(x, y ­ 1, c), sobel_x_avg(x, y + 1, c));

4 Func sobel_y_avg(x, y, c) = in(x, y ­ 1, c) + 2 * in(x, y, c) + in(x, y + 1, c);

5 Func sobel_y(x, y, c) = abs(sobel_y_avg(x ­ 1, y, c), sobel_y_avg(x + 1, y, c));

6 out_sobel(x, y, c) = sobel_x(x, y, c) + sobel_y(x, y, c);

7 }

Now that we have our definition, we can decide how will execute, de-
pending on the architecture 4.6. A parallelization is applied in the x variable
and the function “out_sobel” is asked to be computed. That means that the
intermediate functions (“sobel_x” and “sobel_y”) are not explicitly set to be
fully computed as a stage and are only calculated by demand, so they may
or may not have a full representation on memory at run time. Halide will
generate code for us. This code will be different for the target architecture.
For example, for ARM microprocessors, it may add NEON SIMD instruc-
tions in order to achieve the 8 element vector size parallelism. In the case of
Intel microprocessors, it may add SSE SIMD instructions. If we need to we
can easily tweak each scheduling for each platform we want our code to run
in.

Listing 4.6: Sobel 3x3 Halide example CPU scheduling.
1 void sched_cpu() {

2 out_sobel.vectorize(x, 8); // Parallelize the x var

3 out_sobel.compute_root(); // Ask Halide to compute the out_sobel function

4 }

If we want our code to run in GPU, Halide is also capable to generate
kernels for CUDA, OpenCL, OpenGL, OpenGL Compute Shaders, Apple
Metal and Microsoft Direct X 12. In the example 4.7, the same code is
scheduled for a GLSL (OpenGL) kernel.

Listing 4.7: Sobel 3x3 Halide example GPU scheduling.
1 void sched_gpu() {

2 out_sobel.bound(x, 0, W);

3 out_sobel.bound(y, 0, H);

4 out_sobel.bound(c, 0, 4);

5 out_sobel.unroll(c);

6 out_sobel.compute_root();

7 out_sobel.glsl(x, y, c);

8 }
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In the case of CPU scheduling, Halide provides a utility called auto-
scheduling [68]. It will output a reasonable scheduling for the targeted CPU
architecture, simplifying, in many cases, the task of the programmer greatly.
GPU auto-scheduling is also developed and probably to be included as a
feature soon [69].

If we wanted a bigger processing pipeline, we could combine several defi-
nition of algorithm into a pipeline by defining a single schedule for the whole
pipeline. In the previous example, the function “out_sobel” could be in-
line (as “sobel_x” and “sobel_y”). The computation of “out_sobel” is then
triggered by the computation of another function that needs values from
“out_sobel”. By defining the pipeline this way, Halide achives modularity
and efficiency at the same time.

The usage of the programming-language Halide has been part of stories of
success within modern, real-life computational photography projects such as
Google’s camera, that includes the HDR+ algorithm [70], used now in many
smart-phones. Halide is currently being developed and in constant change.
Its adoption seems to only increase overtime and will probably become a de
facto standard, at least, within the field of computational photography.

4.2.5 Conventional DRT, Central DRT, Periodic DRT

and Perimeter DRT implementations in Halide

The algorithms are written differently in Halide. Structure of data, order
of execution and barriers are often not explicited by the programmer but
inferred by the generator. In Halide, the flow of compilation works as fol-
lows: the C++ source code is compiled to produce a generator binary. This
generator is executed to produce a pipeline binary. Therefore we can talk
about compilation time, generation time, and execution time.

The programmer has to define what are the results of the operations with-
out needing to explicit the data structure holding the data. The programmer
also writes the scheduling for each desired target. Scheduling effectively sep-
arates algorithm code from the target-dependent code. Once this is done,
the C++ code is compiled in order to produce a generator. This generator
program can generate code for any platform and at this point flow, data
structure and barriers are not defined yet. It is at the generation stage that
these are defined automatically.

Once the programmer executes the generator specifying the target plat-
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form, the executable code for the algorithms (a pipeline) is produced.
The available platforms at the time of writing are: X86, ARM, MIPS,
Hexagon, PowerPC for CPU and CUDA, OpenCL, OpenGL, OpenGL Com-
pute Shaders, Apple Metal and Microsoft Direct X 12 [71].

Given the Android mobile-phone related nature of this thesis, we are
specially interested in ARM, Hexagon, OpenCL and OpenGL. Hexagon is
a DSP that is designed specifically for handling multimedia processing in
smart-phones. In fact it is used as part of the camera pipeline processing in
Qualcomm SoCs and is the “secret hardware sauce” in the Google’s HDR+ al-
gorithm present in the Google Camera that Pixels phones have [70]. Hexagon
would be perfect for our DRT algorithms, but it is not available for user ap-
plications as camera software running on it is considered firmware, and a
Qualcomm development board is needed in order to develop on the DSP.

Therefore our efforts are mostly centered on ARM and OpenGL.

CPU

In order to implement the DRT on CPU we part from the algorithm defined
in 4. In order to write it in Halide language, we just have to define the
variables over which the threads or compute units will iterate. In our case
the variables will be named x and y, as we have only two dimensions. The rest
of variables, the ones originally used to iterate, will be expressed as functions
of these two. Also, since we will use data with 8 bits length, we decided to
arithmetically shift left additions beyond stage iteration 7 to avoid overflow.

The Halide code embedded in C++ is defined in 4.8 and its auto-
scheduling is defined in 4.9:

Listing 4.8: Halide code defines define the DRT of a quadrant.
1 Halide::Func fm[M];

2 Halide::Var x, y;

3 Halide::Expr m, d, sigma, v, s0, dir_fm, dir_fmp1, f0, f1;

4 fm[0](x, y) = Halide::cast<uint16_t>(in(x, y ­ N));

5 for (int m = 0; m < M ­ 1; m++) {

6 d = y;

7 v = x >> (m + 1);

8 sigma = (x & ((1 << (m + 1)) ­ 1)) >> 1;

9 s0 = x & 1;

10 dir_fm = sigma + (v << (m + 1));

11 f0 = fm[m](dir_fm, d);

12 f1 = select(d + sigma + s0 >= N * 2, 0, fm[m](dir_fm + (1 << m), d + sigma + s0));

13 fm[m + 1](x, d) = Halide::select(m > 7, Halide::cast<uint16_t>(f0 / 2 + f1 / 2), Halide::cast<uint16_t>(f0 + f1));

14 }

15 out(x, y) = fm[M ­ 1](x, y);
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Listing 4.9: Schedule Halide code for the DRT of a quadrant.
1 in.dim(0).set_bounds_estimate(0, N);

2 in.dim(1).set_bounds_estimate(0, N);

3 out.estimate(x, 0, N).estimate(y, 0, N);

Note that the for loop only exists at compile time. Once the generator
is produced, there will be an unrolled set of statements instead of the loop.
Also note that there is no explicit definition of buffers or the size of them.
This is decided by the generator automatically and sizes will be inferred from
the input buffer (in) and the expressions used to index the stores.

The code expressed above only computes a quadrant. In order to compute
the four quadrants we need to call the code four times, each with different
orientations of the inputs. The main advantage of using Halide is the fol-
lowing: the generator will generate an optimum implementation for the new
pipeline which, in this case consists on producing four quadrants, not only
one, and therefore, the strategies used to parallelize can be completely dif-
ferent as the quadrants do not have to be computed sequentially, but using
as many computing units as available.

We could write an entirely different scheduling or use the auto-scheduling
feature. All of this while maintaining the original code of 4.8. If we wanted
to add more processing steps such as a gradient magnitude filter to the input,
the whole scheduling can be changed to accommodate it without having to
add more buffers. This is very difficult in, for example, OpenCl, where, in
order to maintain modularity, an intermediate buffer must be used.

See the code that calls the qDRT in 4.10 and its auto-scheduling in 4.11:

Listing 4.10: Schedule Halide code for the DRT of four quadrants.
1 qDRTf q[4]; // qDRTf class contains the code that defines the DRT of a quadrant

2 Func q_out[4];

3 Func clamped_in;

4 Func pre_out;

5 Input<Buffer<uint8_t>> in{"in", 2};

6 Output<Buffer<uint16_t>> out0{"out0", 2};

7 Output<Buffer<uint16_t>> out1{"out1", 2};

8 Output<Buffer<uint16_t>> out2{"out2", 2};

9 Output<Buffer<uint16_t>> out3{"out3", 2};

10 const int Nm1 = N ­ 1;

11 pre_out(x, y) = cast<uint16_t>(0); // Initialize with zeros

12 clamped_in = Halide::BoundaryConditions::constant_exterior(in, 0);

13 Func input[4];

14 input[0](x, y) = clamped_in(y, Nm1 ­ x);

15 q[0].qdrtf(input[0], q_out[0]);

16 input[1](x, y) = clamped_in(x, Nm1 ­ y);

17 q[1].qdrtf(input[1], q_out[1]);

18 input[2](x, y) = clamped_in(x, y);

19 q[2].qdrtf(input[2], q_out[2]);

20 input[3](x, y) = clamped_in(y, x);

21 q[3].qdrtf(input[3], q_out[3]);

22 out0(x, y) = q_out[0](x, 2 * N ­ y);

23 out1(x, y) = q_out[1](Nm1 ­ x, y);

24 out2(x, y) = q_out[2](x, 2 * N ­ y);
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(a) Gathering. (b) Spreading.

Figure 4.1: Two access patterns.

25 out3(x, y) = q_out[3](Nm1 ­ x, y);

Listing 4.11: Schedule Halide code for the DRT of four quadrants.
1 in.dim(0).set_bounds_estimate(0, N);

2 in.dim(1).set_bounds_estimate(0, N);

3 out0.estimate(x, 0, N).estimate(y, 0, N * 2);

4 out1.estimate(x, 0, N).estimate(y, 0, N * 2);

5 out2.estimate(x, 0, N).estimate(y, 0, N * 2);

6 out3.estimate(x, 0, N).estimate(y, 0, N * 2);

4.2.6 GPU

When faced with a Halide based GPU implementation on a Qualcomm SoC
there are two options: OpenCL and OpenGL. The difference lies mainly in
the restrictions. While OpenCL has almost the same restrictions as CPU,
meaning that the previous algorithm defined in 4.8 is directly compatible
with OpenCL, the OpenGL restricts the type of data and size of the inputs
and and outputs. They have to be floats and the size must be N ×M × 4.
Also OpenGL can deal with gathering, i.e. fetching any number of pixels
from the input buffer, but cannot deal with spreading, i.e. storing in several
positions of the output buffer, see figure 4.1.

Since our problem consists on computing four quadrants of the qDRT ,
it translates pretty well with this kind of architecture so we chose OpenGL
in order to have a more optimal implementation. With that in mind, let
us rewrite the above code in order to use four channels and iterate only
on a gathering fashion. The resulting code (4.12 will work well in CPU
as well since the restrictions of CPU are only a subset that the OpenGL
implementation has.
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Listing 4.12: Halide code for the definition DRT of four quadrants on GPU.
1 fm[0](x, y, c) = in(x, y ­ N, c);

2 for (dir_type m = 0; m < M ­ 1; m++) {

3 Halide::Expr sigma{"sigma"};

4 Halide::Expr s0{"s0"};

5 Halide::Expr dir_f0{"dir_f0"};

6 Halide::Expr dir_f1{"dir_f1"};

7 Halide::Expr f0{"f0"};

8 Halide::Expr f1{"f1"};

9 Halide::Expr aux{"aux"};

10 sigma = (Halide::cast<dir_type>(x) & ((1 << (m + 1)) ­ 1)) >> 1;

11 aux = Halide::cast<dir_type>(x) >> (m + 1) << (m + 1);

12 // This clamp will determine the size of fm[i]

13 dir_f0 =

14 Halide::clamp(Halide::cast<uint16_t>(sigma + aux), 0, N ­ 1);

15 f0 = fm[m](dir_f0, y, c);

16 dir_f1 = dir_f0 + (1 << m);

17 dir_f1 = Halide::clamp(dir_f1, 0, N ­ 1);

18 s0 = Halide::cast<dir_type>(x) & 1;

19 f1 = Halide::select(

20 (y + sigma + s0) < (N * 2),

21 fm[m](dir_f1, Halide::clamp(y + sigma + s0, 0, N * 2 ­ 1), c),

22 0);

23 fm[m + 1](x, y, c) = Halide::cast<uint8_t>(f0 * 0.5f + f1 * 0.5f);

24 }

25 out(x, y, c) = Halide::cast<uint8_t>(fm[M ­ 1](x, y, c));

Note that each store (in fm[m]) is now indexed with the tuple (x, y, c),
therefore gathering access is used only and the expressions are now written
following variable changes. See also the code that schedules in 4.13.

Listing 4.13: Scheduling for GPU.
1 for (int i = 0; i < MAX_IT; i++) {

2 fm[i]

3 .bound(x, 0, VAL_N)

4 .bound(y, 0, VAL_N * 2)

5 .bound(c, 0, 4)

6 .unroll(c)

7 .compute_root()

8 .glsl(x, y, c);

9 }

Again in order to prepare the inputs to occupy each of the four channels
that the third dimension have, we do not need to add any buffer. See code
4.14.

Listing 4.14: Input preparation for DRT in 4 channels.
1 cin = Halide::BoundaryConditions::constant_exterior(in, 0);

2 int Nm1 = N ­ 1;

3 clamped_in(x, y, c) = Halide::select(

4 c == 0, cin(y, Nm1 ­ x, c),

5 c == 1, cin(x, Nm1 ­ y, c),

6 c == 2, cin(x, y, c),

7 c == 3, cin(y, x, c), 0

8 );

9 q.drtf(clamped_in, q_out, x, y, c);

10 out(x, y, c) = Halide::select(

11 c == 0, q_out(x, (2 * N ­ 1) ­ y, c),

12 c == 1, q_out(Nm1 ­ x, y, c),

13 c == 2, q_out(x, (2* N ­ 1) ­ y, c),

14 c == 3, q_out(Nm1 ­ x, y, c), 0

15 );
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Since this implementation works well both in GPU and in CPU, we will
stick to it. The implementations for the Periodic DRT and the Central DRT
have been implemented in the same way and are very similar.

There are two additional things to have into consideration when working
with these two platforms. Sometimes the internal data type does not match,
meaning that some operations will yield different results. That is why some
Halide casts have been added so it works the same way in CPU and GPU.
Also, when the variables that access the input buffers are not directly vari-
ables, but expressions, a clamp is needed in order to tell Halide what is the
extent of these buffers.

Perimeter DRT on CPU and GPU

The case of the Perimeter DRT is not that straightforward. If we take a look
at the algorithm 8, in section 3.4.3, there is a stack of cuts. Implementing
this on Halide (or any other parallel language) is difficult, so a refactorization
was carried out, so that stacks were avoided, see algorithm 9 and 10.

Next, the algorithm has to be compatible with the restrictions that we
have in OpenGL (so its implementation’s time measures are comparable with
the others). In this case this means that we have to take the indexing that
is lineal and make it work for a size of N × N × 4. Also, to turn it into
a gathering scheme of accesses, the for loops must iterate over x, y, and c,
variables whose bounds coincide with the size of the buffers in N × N × 4.
Therefore the variables squareY , squareX, indIn and indOut have to be
calculated from the x, y and c and the algorithm will iterate over them
instead. These changes have been performed from the code in 11 and 12.
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Algorithm 9 Computes the PDRT of an image (refactorization part1)
Input: image f of size N ×N , with N a power of two

Output: PDRT of input

1: N ← sizeof(f)
2: n← log2(N)
3: maxSize← (4 ·N − 3) · (4 ·N − 4)/2 ⊲ Last stage will hold the maximum size of PDRT

4: fm ← zeros(1,maxSize) ⊲ We allocate two buffers of that maximum size

5: fm+1 ← zeros(1,maxSize) ⊲ One buffer for current stage and one for next stage, m and m + 1
6: fm(0 : N ·N − 1)← f ⊲ We copy the input to partial transform at current stage

7: ⊲ We compute PDRT of subsquares of size 2x2 as a special case

8: for squareY ← 0 to N/2− 1 do

9: for squareX ← 0 to N/2− 1 do

10: A← fm(squareY · 2 ·N + squareX · 2)
11: B ← fm(squareY · 2 ·N + squareX · 2 + 1)
12: C ← fm((squareY · 2 + 1) ·N + squareX · 2)
13: D ← fm((squareY · 2 + 1) ·N + squareX · 2 + 1)

14: fm+1((SquareY ·N/2 + SquareX) · 10 + [0 : 9]) = ...
15: [A,A + B,A + C,A + D,B,B + C,B + D,C,C + D,D]
16: end for

17: end for

18: ⊲ The rest of stages starting from stage 2 are computed next

19: for m← 1 to n− 1 do ⊲ Will compute stage m+1 from data at stage m

20: MP1← 2m+1

21: nV ertex← 4 ·MP1− 4
22: nSquares← N/MP1
23: for squareY ← 0 to nSquares− 1 do

24: for squareX ← 0 to nSquares− 1 do

25: for indIn← 0 to nV ertex− 1 do

26: for indOut← indIn to nV ertex− 1 do

27: memIndexWrite← linearIndex(indIn, indOut, squareX, squareY,m + 1, n)
28: x0, y0← ind2xy(indIn,Mp1)
29: x1, y1← ind2xy(indOut,Mp1)
30: qx0← x0 >> m
31: qx1← x1 >> m
32: qy0← y0 >> m
33: qy0← y1 >> m
34: slope← 0
35: horizontal← abs(x1− x0) > abs(x1− y0)
36: if x1 > x0 then

37: dirX ← 0.5
38: else

39: dirX ← −0.5
40: end if

41: if y1 > y0 then

42: dirY ← 0.5
43: else

44: dirY ← −0.5
45: end if

46: incX ← x1− x0
47: incY ← y1− y0
48: if x1 6= x0 then

49: slope← incY/incX
50: end if

51: if ((qx0 = qy0) ∧ (abs(indIn− indOut) > 2 ·Mp1− 2)) ∨ ((qx0 = qy0)∧!(abs(indIn− indOut) >
2 ·Mp1− 2)) then

52: hxmid← −1
53: hymid← −1
54: if (qy0 6= qy1) then

55: hymid← Mp1/2− 0.5
56: hxmid← x0
57: if slope 6= 0 then

58: hxmid← ((hymid− y0)/slope) + x0
59: end if

60: p1, p2← getPointsOnIntersection(hxmid, hymid, dirX, dirY, horizontal, incX, incY )
61: val← val + getVal(x0, y0, p1, n,m, xSquareMp1, ySquareMp1)
62: else

63: p2← (x0, y0)
64: end if

65: if qx0 6= qx1 then

66: vxmid← Mp1/2− 0.5
67: vymid← y0 + slope · (vxmid− x0)
68: if vxmid 6= hxmid ∧ vymid 6= hymid then

69: p3, p4← getPointsOnIntersection(vxmid, vymid, dirX, dirY, horizontal, incX, incY )
70: val← val + getVal(p4, x0, y0, n,m, xSquareMp1, ySquareMp1)
71: else

72: p4← p2
73: end if

74: else

75: p4← p2
76: end if
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Algorithm 10 Computes the PDRT of an image (refactorization part2)
77: else

78: vxmid← −1
79: vymid← −1
80: if qx0 6= qx1 then

81: vxmid← Mp1/2− 0.5
82: vymid← y0 + slope · (vxmid− x0)
83: p1, p2← getPointsOnIntersection(vxmid, vymid, dirX, dirY, horizontal, incX, incY )
84: val← val + getVal(x0, y0, p1, n,m, xSquareMp1, ySquareMp1)
85: else

86: p2← (x0, y0)
87: end if

88: if qy0 6= qy1 then

89: hymid← Mp1/2− 0.5
90: hxmid← x0
91: if slope 6= 0 then

92: hxmid← ((hymid− y0)/slope) + x0
93: end if

94: if (vxmid 6= hxmid ∧ vymid 6= hymid then

95: p3, p4← getPointsOnIntersection(hxmid, hymid, dirX, dirY, horizontal, incX, incY )
96: val← val + getVal(p2, p3, n,m, xSquareMp1, ySquareMp1)
97: else

98: p4← p2
99: end if

100: else

101: p4← p2
102: end if

103: val← val + getVal(p2, p3, n,m, xSquareMp1, ySquareMp1)
104: end if

105: fmm+1(indEscritura)← val
106: end for

107: end for

108: end for

109: end for

110: end for

Having completed these steps, the effort yields a pseudo-code (it actually
was written in python) that is prepared for its implementation on Halide.
See it in the code 4.15.
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Listing 4.15: Halide code for the description of the Perimeter DRT.
1 dir_type m = 0;

2 Expr Mp1 = 1 << (m + 1);

3 Expr M = 1 << m;

4 Expr nSquaresMp1 = VAL_N / Mp1;

5 Expr nVertexMp1 = 4 * (Mp1 ­ 1);

6 Expr sizeSquareMp1 = (nVertexMp1 + 1) * nVertexMp1 / 2;

7 Expr idx = nn4_to_linearMemIndex(x, y, c, m + 1);

8 Expr linearsize = get_linear_size(m + 1);

9 Expr offset = idx % sizeSquareMp1;

10 Expr base = idx / sizeSquareMp1;

11 Expr ySquareMp1 = cast<uint16_t>(base / nSquaresMp1);

12 Expr xSquareMp1 = cast<uint16_t>(base % nSquaresMp1);

13 Expr A = cast<uint16_t>(in(clamp(ySquareMp1 * 2, 0, VAL_N ­ 1),

14 clamp(xSquareMp1 * 2, 0, VAL_N ­ 1), 0));

15 Expr B = cast<uint16_t>(in(clamp(ySquareMp1 * 2, 0, VAL_N ­ 1),

16 clamp(xSquareMp1 * 2 + 1, 0, VAL_N ­ 1), 0));

17 Expr C = cast<uint16_t>(in(clamp(ySquareMp1 * 2 + 1, 0, VAL_N ­ 1),

18 clamp(xSquareMp1 * 2 + 1, 0, VAL_N ­ 1), 0));

19 Expr D = cast<uint16_t>(in(clamp(ySquareMp1 * 2 + 1, 0, VAL_N ­ 1),

20 clamp(xSquareMp1 * 2, 0, VAL_N ­ 1), 0));

21 // clang­format off

22 fm[0](x,y,c) = select(idx < 0 || idx >= linearsize, 0,

23 (offset == 0), A,

24 (offset == 1), A + B,

25 (offset == 2), A + C,

26 (offset == 3), A + D,

27 (offset == 4), B,

28 (offset == 5), B + C,

29 (offset == 6), B + D,

30 (offset == 7), C,

31 (offset == 8), C + D,

32 (offset == 9), D,

33 0);

34 // clang­format on

35 for (dir_type m = 1; m < MAX_IT ­ 1; m++) {

36 Expr Mp1 = 1 << (m + 1);

37 Expr M = 1 << (m);

38 Expr nSquaresMp1 = VAL_N / Mp1;

39 Expr nVertexMp1 = 4 * (Mp1 ­ 1);

40 Expr sizeSquareMp1 = (nVertexMp1 + 1) * nVertexMp1 / 2;

41 Expr indEscritura = nn4_to_linearMemIndex(x, y, c, m + 1);

42 Expr linearsize = get_linear_size(m + 1);

43 // Calculate xSquareMp1 and ySquareMp1

44 Expr offset = indEscritura % sizeSquareMp1;

45 Expr xSquareMp1 = (indEscritura / sizeSquareMp1) % nSquaresMp1;

46 Expr ySquareMp1 = (indEscritura / sizeSquareMp1) / nSquaresMp1;

47 // Calculate indIn and indOut

48 Expr a1 = nVertexMp1;

49 Expr d = ­1.f;

50 Expr b = ­(2.f * a1 + 1);

51 Expr _c = 2.f * offset + 2.f;

52 Expr u = sqrt(b * b ­ 4 * _c);

53 Expr _x0 = (­b + u) * 0.5f;

54 Expr _x = select(_x0 < nVertexMp1, _x0, (­b ­ u) * 0.5f);

55 _x = select((_x == floor(_x)), _x ­ 1, _x);

56 Expr _in = cast<dir_type>(floor(_x));

57 Expr Sin = cast<dir_type>(0.5f * (2.0f * a1 + d * (_in ­ 1)) * _in);

58 Expr indIn = _in;

59 Expr indOut = _in + offset ­ Sin;

60 // Find the crossing parts

61 Expr x0, x1, y0, y1;

62 ind2xy(indIn, Mp1, x0, y0);

63 ind2xy(indOut, Mp1, x1, y1);

64 Expr qx0 = x0 >> m;

65 Expr qx1 = x1 >> m;

66 Expr qy0 = y0 >> m;

67 Expr qy1 = y1 >> m;

68 Expr horizontal = abs(x1 ­ x0) > abs(y1 ­ y0);

69 Expr dirX = select(x1 > x0, 0.5f, ­0.5f);

70 Expr dirY = select(y1 > y0, 0.5f, ­0.5f);

71 Expr incX = cast<float>(x1) ­ x0;

72 Expr incY = cast<float>(y1) ­ y0;
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73 Expr slope = select(x1 != x0, incY / incX, 0);

74 // Let us analyze the cases

75 Expr COND0 = ((qx0 == qy0) && (abs(indIn ­ indOut) > 2 * Mp1 ­ 2)) ||

76 ((qx0 != qy0) && !(abs(indIn ­ indOut) > 2 * Mp1 ­ 2));

77 Expr COND1 = qy0 != qy1;

78 Expr COND2 = qx0 != qx1;

79 Expr COND4 = abs(indIn ­ indOut) == (2 * Mp1 ­ 2);

80 Expr COND5 = (qy0 != qy1) and not((qx0 != qx1) and COND4);

81 Expr COND6 = (qx0 != qx1) and not((qy0 != qy1) and COND4);

82 // clang­format off

83 Expr vxmid = select(COND0 && COND2 ||

84 !COND0 && COND6,

85 Mp1 / 2 ­ 0.5f,

86 ­1.f);

87 Expr vymid = select(COND0 && COND2 ||

88 !COND0 && COND6,

89 y0 + slope * (vxmid ­ x0),

90 ­1.f);

91 Expr hymid = select((COND0 && COND5 || !COND0 && COND1),

92 Mp1 / 2 ­ 0.5f,

93 ­1.f);

94 Expr hxmid = select((COND0 && COND5 || !COND0 && COND1) && slope == 0,

95 cast<float>(x0),

96 (COND0 && COND5 || !COND0 && COND1) && slope != 0,

97 ((hymid ­ y0) / slope) + x0, ­1.f);

98 // clang­format on

99 Expr COND3 = (vxmid != hxmid) && (vymid != hymid);

100 // For cond0

101 Expr pxa, pya;

102 Expr pxb, pyb;

103 Expr pxc, pyc;

104 Expr pxd, pyd;

105 getPointsOnIntersection(hxmid, hymid, dirX, dirY, horizontal, incX,

106 incY, pxa, pya, pxb, pyb);

107 getPointsOnIntersection(vxmid, vymid, dirX, dirY, horizontal, incX,

108 incY, pxc, pyc, pxd, pyd);

109 pxa = cast<uint16_t>(pxa);

110 pxb = cast<uint16_t>(pxb);

111 pxc = cast<uint16_t>(pxc);

112 pxd = cast<uint16_t>(pxd);

113 pya = cast<uint16_t>(pya);

114 pyb = cast<uint16_t>(pyb);

115 pyc = cast<uint16_t>(pyc);

116 pyd = cast<uint16_t>(pyd);

117 x0 = cast<uint16_t>(x0);

118 y0 = cast<uint16_t>(y0);

119 // clang­format off

120 Expr p1x = select(COND0,

121 pxa,

122 pxc);

123 Expr p1y = select(COND0,

124 pya,

125 pyc);

126 // All cases are covered, so the ", 0"s are just syntax­needed

127 Expr p2x = select(COND0 && COND5,

128 pxb,

129 COND0 && !COND5,

130 x0,

131 !COND0 && COND6,

132 pxd,

133 !COND0 && !COND6,

134 x0, 0);

135 Expr p2y = select(COND0 && COND5,

136 pyb,

137 COND0 && !COND5,

138 y0,

139 !COND0 && COND6,

140 pyd,

141 !COND0 && !COND6,

142 y0, 0);

143 Expr p3x = select(COND0 && COND2 && COND3,

144 pxc,

145 !COND0 && COND1 && COND3,

146 pxa, 0);

147 Expr p3y = select(COND0 && COND2 && COND3,

148 pyc,

149 !COND0 && COND1 && COND3,
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150 pya, 0);

151 Expr p4x = select(COND0 && COND2 && COND3,

152 pxd,

153 COND0 && COND2 && !COND3,

154 p2x,

155 COND0 && !COND2,

156 p2x,

157 !COND0 && COND1 && COND3,

158 pxb,

159 !COND0 && COND1 && !COND3,

160 p2x,

161 !COND0 && !COND1,

162 p2x, 0);

163 Expr p4y = select(COND0 && COND2 && COND3,

164 pyd,

165 COND0 && COND2 && !COND3,

166 p2y,

167 COND0 && !COND2,

168 p2y,

169 !COND0 && COND1 && COND3,

170 pyb,

171 !COND0 && COND1 && !COND3,

172 p2y,

173 !COND0 && !COND1,

174 p2y, 0);

175 // clang­format on

176 Expr D0 =

177 select(COND0 && COND5 || !COND0 && COND6,

178 getVal(x0, y0, p1x, p1y, m, xSquareMp1, ySquareMp1), 0);

179 Expr D1 =

180 select(COND0 && COND2 && COND3 || !COND0 && COND1 && COND3,

181 getVal(p2x, p2y, p3x, p3y, m, xSquareMp1, ySquareMp1), 0);

182 Expr D2 = getVal(p4x, p4y, x1, y1, m, xSquareMp1, ySquareMp1);

183 Expr COND_WRITE = indEscritura >= 0 && indEscritura < linearsize;

184 fm[m](x, y, c) = select(

185 COND_WRITE && m < 5, cast<uint16_t>(D0 + D1 + D2),

186 COND_WRITE && m >= 5, cast<uint16_t>((D0 + D1 + D2) * .5f), 0);

187 }

188 out(x, y, c) = cast<uint16_t>(fm[MAX_IT ­ 2](x, y, c));

4.3 Time measurements

The transforms described above have been compared to state-of-the art al-
gorithms that compute a Radon transform. In order to make the comparison
fair, our algorithms have been run without any coarse or fine grained par-
allelization. The Mojette transform has been chosen [72], using the code
available in [73]. The Pseudo Polar Radon Transform [57] was chosen as well
and its implementation is available in [74].

Both transform can calculate the same number of angles that our trans-
forms do and all test have been measured using the same number of angles
(N ∗ 4). In figure 4.2 we can see that our algorithms are faster than those
of the peers except for the Perimeter DRT which its advantage can only be
seen when taking advantage of high degree of parallelism.
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Figure 4.2: Mean of the times of 20 executions of several algorithms. All
measurements were made on an Intel i5 6600K and without exploiting any
parallelism.

4.3.1 Exploiting parallelism on the CPU

Our algorithms can really benefit from parallelism. In order to do that we will
use the Halide implementation, that uses coarse and fine-grained parallelism.
In order to measure execution times on CPU platforms we will use the auto-
scheduling feature that Halide provides. While it will not give the best
scheduling possible, it should give a good one.

The measured times are exposed in 4.3, 4.4 and 4.5. The Intel i5 6600K
has four cores @ 3.50 GHz, the Intel i9 9900K has 8 cores running 16 threads
@ 3.60 GHz and the Qualcomm Snapdragon 845 has eight cores @ 2.8 GHz.
The speed of the Conventional DRT is usually improved by the Central and
Periodic versions.

4.3.2 Exploiting parallelism on the GPU

Because all algorithms were programmed in a way that was compatible with
the OpenGL GLSL kernels, that is what we are going to use for these tests.
Except for the Perimeter transform which has too many branches and there-
fore is not easily implemented on GPU and because of the branches, the
parallelism is not going to be fully exploited.
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Figure 4.3: Mean of the times of 20 executions of our algorithms on an Intel
i5 6600K using the auto-scheduling feature to exploit parallelism.
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Figure 4.4: Mean of the times of 20 executions of our algorithms on an Intel
i9 9900K using the auto-scheduling feature to exploit parallelism.
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Figure 4.5: Mean of the times of 20 executions of our algorithms on Qual-
comm Snapdragon 845, using the auto-scheduling feature to exploit paral-
lelism.

We have tested our algorithms on two modern GPUs. One PC platform
GPU: the NVIDIA GeForce 1070 and one mobile platform GPU: the Adreno
540 present on the Qualcomm Snapdragon. These machines are very differ-
ent. The GeForce 1070 has 1920 CUDA cores @ 1506 MHz while the Adreno
540 has 256 pipelines @ 710 MHz. The GeForce 1070 has a theoretic max of
6.463 GFlops and the Adreno 540 only 567 GFlops (both for FP32).

By taking a look at figures 4.6 and 4.7, we can see that parallelism is
exploited, obtaining very good execution times. Given that the Adreno has
256 pipelines (28), it behaves very well for sizes of N ≤ 28.

4.4 DRT applications

4.4.1 SFF - Curvelet with Periodic DRT

The shape-from-focus algorithm was introduced in chapter 2.
In this section we will try to demonstrate that Curvelet-based, –more

specifically, an operator based on the approximate Discrete Curvelet Trans-
form, that uses discrete Radon transform underneath–, can successfully re-
place and beat Wavelet-based operators.
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Figure 4.6: Mean of the times of 20 executions of our algorithms on a NVIDIA
GeForce 1070, using GLSL kernels.
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To measure focus within a Wavelet context previous works have managed
to identify in which localities of the original domain the transformed coef-
ficients predict that there is information that could not be there unless the
object is inside the depth of field. In other words, to locate focused features,
the coefficients that affect that locality are brought together, then their en-
ergy is compared at different bands, and attending to some criteria the zone
covered under those relative Wavelet coefficients is determined to be in or
out of focus. But Wavelet-based methods do not explicitly perform a direct
transform, then filter, then do inverse transform and compare in image do-
main, as it is time consuming. In the case of discrete decimated Wavelets
with dyadic partition, this relationship between transformed coefficients and
original values can be trivially established, only that the focus estimation is
normally not given per pixel, but for aggregates of 2× 2 pixels.

On the other hand, if it is possible to detect focus by comparison between
original and filtered versions of the images, then there is a chance that the
same discrimination can be done without explicit direct transform + filter +
inverse transform, but implicitly in the transformed domain.

At this stage in our research we have not yet established this relationship
in part because the discrete Radon transform in use has the intricate shape
shown in figure 4.8.

An example of discrimination directly in transformed domain and an-
other of discrimination through filtering and inversion is shown in middle
and bottom row, respectively, in figure 4.9.

For our Curvelet based operator the aim, therefore, is to design a filter
in transformed domain, that separates coarse from texture layer. Several
strategies were tested and we found that the best performing one is to atten-
uate only the highest frequency Wavelet band inside Ridgelet description of
blocks. By attenuating linearly those coefficients we are able to detect even
zones of barely noticeable defocus.

Several scenes, synthetic and real, have been processed using the described
procedure.

Our first synthetic test consists of creating a synthetic cone, covered with
a radial texture, and simulating defocus to create a focal stack. Then this
focal stack has been processed with the SFF method based on the Wavelet
operator described in Xie et. al.[27] and the Curvelet one proposed by us.
Defocusing has been simulated following [75]. In this case the performance of
Wavelets and Curvelets based operators is on par, and using Curvelets does
not suppose a clear advantage.
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Figure 4.8: A 256× 256 gray image, shown on the lower left corner, and its
approximate Discrete Radon Transform. Note the increase in size: 6 ·N2 non
zero coefficients, in a 3× 4 shape the original size.

In the figure 4.11 the same test is repeated using a similar scene, but with
different shape that includes a curved discontinuity. The robustness of the
Curvelet-based operator outperforms that of Wavelets around the disconti-
nuity.

In the figure 4.12, a real scene has been captured using a conventional
pocket camera and a depth map has been computed using SFF aDCT-based
approach. The maxima are represented only when a threshold is exceeded,
attending to the lack of textures in several zones. The result is almost free
of false positives, and the borders of objects are well defined even when pixel
support is a simple 5× 5 window.

Figure 4.13 shows a test conducted with a focal stack of a scene that has
been captured using a mirror-less camera with a macro lens. The synthetic
extended aperture image shown as result, all-in-focus image, demonstrates
that our SFF operator can be used with almost no artifacts even in the
presence of occlusions and borders. In fact, the only noticeable error is due
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Figure 4.9: A 256x256 image in gray tones on the top left, alongside its
decomposition in 3 sub-bands using Wavelets. Middle row, the inversion of
exclusively middle and higher Wavelet sub-bands coefficients, and its ratio.
Bottom row, the original image and a version of itself where the weakest
coefficients on Wavelet domain has been thresholded. On the right it is
shown the difference.

to the lack of texture in the background.

4.4.2 Bar-code detection with Central DRT

Another usage that collaterally appeared while researching alternatives for
a faster discrete Radon transform belongs to a –apparently unrelated– field,
that of detecting bar-codes in an image. It is of course not that dissimilar
as Radon transform is the tool to use when analyzing an image in search
of linear structures, as those that constitute marks and spaces in linear,
onedimensional, ‘zebra-like’ bar-codes.
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Figure 4.10: On the top, a selection of three images of a focal stack of a
synthetic cone is shown. On the bottom: the recovered depth-map using
a Wavelet-based operator on the left, and using Curvelets at the center.
Ground truth is shown on the right.

Background

Typically, 1D bar-codes, defined in the ISO15417, ISO15420, ISO15424,
ISO15426-1, and ISO16390 standards [76, 77, 78, 79, 80], are read by laser
scanners, which require pointing directly at the bar-code (data carrier, in the
terminology of the standards) with an appropriate orientation and distance
between the scanner and the code.

Some bar-code readers implemented on mobile devices emulate this re-
strictive behavior of laser scanners, and only decode the codes if a raster line
or region of interest on the camera is totally aligned with the bar-code. That
is, they decode but do not locate automatically. Automatically localization
of bar-codes means being able to detect them in an image even when they
may appear rotated, translated and/or scaled.

There are methods for performing this automatic localization on mobile
devices using different computer vision techniques, but many impose tight
requirements regarding the position between the camera and the bar-code,
in order to alleviate the computational cost of localization.

Because that cost will be normally much more higher than decoding itself.
It can be achieved by filtering, detecting and/or clustering image character-
istics that give cues of the presence of bar-codes: such as concentration of
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Figure 4.11: Same order of illustrations than in fig. 4.10, but now the syn-
thesized shape includes a curved discontinuity.

corners, relative magnitude of gradients in two orthogonal directions, preem-
inence of bi-level features, ...

Detecting those characteristics normally impose tight restrictions on what
inclination the bar-code and the camera can have or otherwise a bar-code
can pass inadvertent, because a small number of directional filters is used to
relieve computation.

Some authors have preconized the analysis of Radon transform –or its
equivalent Hough transform– of the pictures, instead of the pictures them-
selves to locate the bar-code, as Radon transform achieves invariance to angle.
But until now it was not possible to apply it in mobile devices because of the
computational complexity of the transform itself [81, 82].

DRT applied to bar-code reading

The two upper sub-figures in figure 4.14 show the aspect of the Radon trans-
form of an image composed of more or less thick dots and line segments. The
highest value of the transform is reached in a dot whose coordinates corre-
spond to the angle and displacement of the longest line. Meanwhile, the dots
in image create a sinusoidal trace in the transform, which is why this output
is also known as the “sinogram”. The angles occupy the horizontal axis and
the displacements occupy the vertical axis.

Although the DRT computation is faster than the computation of Radon
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Figure 4.12: Shape-from-focus using aDCT focus estimator applied to a real
scene. On the left are shown the four images that constitute the focal stack.
On the right, the obtained sparse depth map.

Figure 4.13: Real scene that contains discontinuities. Three images from a
focal stack of ten are shown on the left and an all-in-focus image is shown
on the right. The all-in-focus image was generated using the shape that was
recovered using our aDCT method.

transform using Fourier Slice theorem and FFTs, it still devotes half of the
computations to values that actually contain little “energy”. Since in any
projection the displacements around the center of the image will receive the
most contributions, while those displacements around the corners receive the
least.

Only when projections are in multiples of 90◦ the sums are different than
zero for exactly N displacements, but the odd multiples of 45◦ project on
2N − 1 displacements, the centers receiving contributions from N pixels and
the extremes adding decreasingly less pixels.
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Proposed improvements to DRT as bar-code detector

The improvements we are proposing focus on alleviating those deficits that
we have identified:

• To optimize the number of computed data: calculate only the N central
displacements for each projection, reducing displacement computations
from 2N − 1 to N for each intermediate stage, thus also lowering the
algorithm memory requirements.

• To optimize the computation of those data: by exposing the algorithm
between data stripes, instead of between individual data, to better
exploit the parallelism of the problem.

• To eliminate conditional accesses outside memory limits to make better
use of parallelism.

• To make sure that the central point of the image always projects in the
central displacement for any angle in the transform.

Therefore, and because we do not care for the inversion in this application,
we use the Central DRT defined in 3.3.1.

Bar-code reading application

With a smart mobile device and making use of the modified DRT algorithm
previously defined, it is possible to compute in milliseconds the Radon trans-
form of the gradients of the image being captured.

When locating a bar-code in an image, and therefore be able to decode
it by analyzing the intensity profile of one or several lines that cross through
the center of the code in the location and orientation estimated by the au-
tomatic locator, we propose to analyze the central Radon transform, that
computing just the N central displacements, applied to the image gradient.
As exemplified in the figures 4.15 and 4.16.

The presence of a bar-code in an image generates in the Central DRT
transform of its gradients a rhombus-shaped zone, which stands out as having
a greater value at the same time that a relative variance smaller than the
rest of the zones.

Normally, a simple local detector based on these two characteristics -
mean value and relative variance - is sufficient, especially with isolated bar-
codes such as those shown in the figures 4.15 and 4.16. When areas with
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high frequencies are present next to the bar-code, it is convenient that the
rhombus be located by a neural network trained for this purpose. In any case,
the rhombus boundary vertexes, shown with white stars in the transforms on
the left of the figure, are converted in the case of top and bottom vertexes
(3 pointed stars) into solid lines superimposed on the original images that
reveal the upper and lower limits of the code in image space, and on the
other hand, the left and right vertexes (4 pointed stars) become the diagonal
dashed lines that cross the code cutting approximately through its center.
With this information, the intensity profile would be analyzed in one or more
lines close to this center and parallel to the horizontal limits.

To convert from Radon d and s parameter space to lines in image space,
basically we apply that, for first quadrant, the line corresponding to d and s
is: y = d+ s/(N − 1) · x, and similarly for the other quadrants.

Step by step bar-code localization

Our proposed method for automatically localize bar-codes present within an
image consists of the following steps:

1. Capture an image with the smart mobile device camera, optionally a
square region in the center or an image with any aspect ratio

2. If necessary resize the image so that it becomes a square image with
size 512x512 or 1024x1024 (depending on device computation capacity)

3. Compute the module of the gradients of the luminance channel of the
square image

4. Compute the four central DRT quadrants of the gradient. Attach a
vertically and horizontally mirrored version of the first quadrant to the
right of the 4th quadrant

5. Locate the most prominent rhombus in the 5 quadrants version of the
central DRT, based on its higher mean and smaller relative variance.
To do this we propose two alternatives:

• Analyze locally the mean and variance of non-overlapping patches
of the 5 quadrants version of the central DRT. Order the patches
by that measure and take only the greater ones, try to group them
if adjacent and extract the vertexes of the resulting rhombus
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• Pass the 5 quadrant version of the central DRT to a Neural Net-
work which has been previously trained to recognize rhombuses
vertexes in thousands of exemplary pairs of images containing bar-
codes as input and location of rhombuses in their gradient’s DRTN
as outputs

6. Average the s index of top and bottom vertexes of the rhombus: that
is the slope of the bar-code in the square image space

7. Take the difference in d axis between top and bottom vertexes: that is
an indicator of the height of the bar-code in the square image space

8. Convert the coordinates of left and right vertexes of the rhombus into
line parameters on square image space. Calculate the crossing point
between those two lines: that is the approximate center of the bar-
code in the square image space

9. If the image from the camera has been resized and/or stretched in the
optional steps 1 and 2, then convert all the previous indicators from
steps 7,8 and 9 that are currently referred to square image coordinates
into original image coordinates

10. The height, slope and center coordinates of the bar-code in original
image coordinates can be used by a bar-code decoder that analyzes a
single-line through the center of the bar-code; or a mixture of several
lines that traverse longitudinally the bar-code around its center
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Algorithm 11 Computes the PDRT of an image (refactorization2 part1)
Input: image f of size N ×N , with N a power of two

Output: PDRT of input

1: N ← sizeof(f)
2: n← log2(N)
3: maxSize← (4 ·N − 3) · (4 ·N − 4)/2 ⊲ Last stage will hold the maximum size of PDRT

4: fm ← zeros(1,maxSize) ⊲ We allocate two buffers of that maximum size

5: fm+1 ← zeros(1,maxSize) ⊲ One buffer for current stage and one for next stage, m and m + 1
6: fm(0 : N ·N − 1)← f ⊲ We copy the input to partial transform at current stage

7: ⊲ We compute PDRT of subsquares of size 2x2 as a special case

8: for x← 0 to sizem+1 do

9: for y ← 0 to sizem+1 do

10: for c← 0 to 4 do

11: linearWriteDir ← nn4ToLinearMemIndex(x, y, c,m + 1)
12: offset← linearWriteDir%sizeSquareMp1
13: squareX ← linearWriteDir/sizeSquare1)%nSquaresMp11
14: squareY ← linearWriteDir/sizeSquare1)/nSquaresMp11
15: A← fm0(squareY · 2 ·N + squareX · 2)

16: B ← fm0(squareY · 2 ·N + squareX · 2 + 1)

17: C ← fm0((squareY · 2 + 1) ·N + squareX · 2)

18: D ← fm0((squareY · 2 + 1) ·N + squareX · 2 + 1)
19: if offset = 0 then

20: val← A
21: else if offset = 1 then

22: val← A + B
23: else if offset = 2 then

24: val← A + C
25: else if offset = 3 then

26: val← A + D
27: else if offset = 4 then

28: val← B
29: else if offset = 6 then

30: val← B + C
31: else if offset = 7 then

32: val← C
33: else if offset = 8 then

34: val← C + D
35: else if offset = 9 then

36: val← D
37: end if

38: fm1(x, y, c)← val
39: end for

40: end for

41: end for

42: ⊲ The rest of stages starting from stage 2 are computed next

43: for m← 1 to n− 1 do ⊲ Will compute stage m+1 from data at stage m

44: MP1← 2m+1

45: nV ertex← 4 ·MP1− 4
46: nSquares← N/MP1
47: for x← 0 to sizem+1 do

48: for y ← 0 to sizem+1 do

49: for c← 0 to 4 do

50: val← 0
51: memIndexWrite← nn4ToLinearMemIndex(x, y, c,m + 1)
52: if memIndexWrite ≥ sizeSquareMp1 · nSquaresMp1 · nSquaresMp1 then

53: continue

54: end if

55: offset← indEscritura%sizeSquareMp1
56: xSquareMp1← (indEscritura/sizeSquareMp1)%nSquaresMp1
57: ySquareMp1← (indEscritura/sizeSquareMp1)/nSquaresMp1
58: inIn, indOut← linear2inOut(offset,m + 1)
59: x0, y0← ind2xy(indIn,Mp1)
60: x1, y1← ind2xy(indOut,Mp1)
61: qx0← x0 >> m
62: qx1← x1 >> m
63: qy0← y0 >> m
64: qy0← y1 >> m
65: slope← 0
66: horizontal← abs(x1− x0) > abs(x1− y0)
67: if x1 > x0 then

68: dirX ← 0.5
69: else

70: dirX ← −0.5
71: end if

72: if y1 > y0 then

73: dirY ← 0.5
74: else

75: dirY ← −0.5
76: end if

77: incX ← x1− x0
78: incY ← y1− y0
79: if x1 6= x0 then

80: slope← incY/incX
81: end if
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Algorithm 12 Computes the PDRT of an image (refactorization2 part2)
82: if ((qx0 = qy0) ∧ (abs(indIn − indOut) > 2 ·Mp1 − 2)) ∨ ((qx0 = qy0)∧!(abs(indIn − indOut) >

2 ·Mp1− 2)) then

83: hxmid← −1
84: hymid← −1
85: if (qy0 6= qy1) then

86: hymid← Mp1/2− 0.5
87: hxmid← x0
88: if slope 6= 0 then

89: hxmid← ((hymid− y0)/slope) + x0
90: end if

91: p1, p2← getPointsOnIntersection(hxmid, hymid, dirX, dirY, horizontal, incX, incY )
92: val← val + getVal(x0, y0, p1, n,m, xSquareMp1, ySquareMp1)
93: else

94: p2← (x0, y0)
95: end if

96: if qx0 6= qx1 then

97: vxmid← Mp1/2− 0.5
98: vymid← y0 + slope · (vxmid− x0)
99: if vxmid 6= hxmid ∧ vymid 6= hymid then

100: p3, p4← getPointsOnIntersection(vxmid, vymid, dirX, dirY, horizontal, incX, incY )
101: val← val + getVal(p4, x0, y0, n,m, xSquareMp1, ySquareMp1)
102: else

103: p4← p2
104: end if

105: else

106: p4← p2
107: end if

108: else

109: vxmid← −1
110: vymid← −1
111: if qx0 6= qx1 then

112: vxmid← Mp1/2− 0.5
113: vymid← y0 + slope · (vxmid− x0)
114: p1, p2← getPointsOnIntersection(vxmid, vymid, dirX, dirY, horizontal, incX, incY )
115: val← val + getVal(x0, y0, p1, n,m, xSquareMp1, ySquareMp1)
116: else

117: p2← (x0, y0)
118: end if

119: if qy0 6= qy1 then

120: hymid← Mp1/2− 0.5
121: hxmid← x0
122: if slope 6= 0 then

123: hxmid← ((hymid− y0)/slope) + x0
124: end if

125: if vxmid 6= hxmid ∧ vymid 6= hymid then

126: p3, p4← getPointsOnIntersection(hxmid, hymid, dirX, dirY, horizontal, incX, incY )
127: val← val + getVal(p2, p3, n,m, xSquareMp1, ySquareMp1)
128: else

129: p4← p2
130: end if

131: else

132: p4← p2
133: end if

134: val← val + getVal(p2, p3, n,m, xSquareMp1, ySquareMp1)
135: end if

136: fmm + 1(x, y, c)← val
137: end for

138: end for

139: end for

140: end for
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Figure 4.14: From top to bottom: An image composed of points and line
segments; its continuous transform; classical DRT transform and proposed
DRT transform. Black color indicate high values and white null value.
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Figure 4.15: Examples of automatic bar-code localization by analyzing the
Radon DRTN transform of the gradient. Bar-codes are transformed into
rhombuses with higher energy and less variance than the rest of the trans-
form. The top and bottom vertex points of the rhombus become the lines
that horizontally limit the code while the left and right vertexes become di-
agonal lines whose cut indicates approximately the center of the code. The
rhomboid shape in the transform does not vary with the bar-code rotation,
it only moves on the s axis.
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Figure 4.16: More examples of automatic bar-code localization by analyzing
the Radon DRTN transform of the gradient.
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Figure 4.17: Steps 1-4 of the method described in section 4.4.2
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Figure 4.18: Steps 5-10 of the method described in section 4.4.2



Chapter 5

Conclusions

In this work, we introduced the approximate Discrete Curvelet Transform,
aDCT, which is based on the approximate Discrete Radon Transform, aDRT.
The new transform inherits the advantageous properties of aDRT of being
fast and having a well conditioned inversion. It allows to avoid Fourier trans-
forms, so that it can be implemented using fixed integer arithmetic, without
requiring complex numbers, trigonometric functions, nor even multiplica-
tions.

To our knowledge is the first DCT that can be accomplished exclusively
by integer arithmetics whose inverse is exact and well conditioned, so that
reconstruction after filtering, including thresholding techniques, is possible.

Another goal of this work is to evaluate the applicability of this new
transform as a focus estimator in order to use it for the shape-from-focus
problem. Our preliminary results give support to our assumptions:

• The aDCT can be used as a focus estimator at least as robust as those
Wavelet-based.

• The aDCT will be advantageous in situations where Wavelet based
operators behave worse: in presence of discontinuities in depth.

Curvelets are in disadvantage compared to Wavelets and other focus mea-
surement operators due to its more intensive computationally load. We have
studied how a parallelized implementation using multithreading and SIMD
lowers the gap between execution times in order to make Curvelets a real
alternative to less sophisticated methods even when being executed in hand-
held devices. The selection of aDRT as basis Radon method makes this path
viable.
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But even then, this study constitutes a first approach to shape-from-focus
using the aDCT. While the results of this work are promising, it is just a
starting point and more work will follow along this line. The focus operator
has to be further refined in order to provide the best results and we need to
further analyze its advantages and limitations.

Some of the relevant aspects that should be addressed to enhance this
first approach are:

• To deepen in which is the best strategy to detect focus in Curvelet
transform.

• That study should probably include establishing the relation between
coefficients at different scales, that may overlap completely or partially
in the original domain.

• To relate energy in Curvelet domain with localities in the original do-
main so that focus detection can be done directly in the transformed
domain.

• To study the applicability of shrinkage methods in order to make a
better filtering through different bands and attenuate the effect of noise.

A disadvantage of shape-from-focus method is how it handles objects in
movement. Given that the focal stack is composed of several shots and these
happen at different times, the movement of the subjects and the camera shake
hurts the precision of the algorithm. There are two solutions to this problem.
The first one is using a robust registration algorithm that ensures that the
positions in the x, y coordinates of the focal stack have pixels pertaining to
the same object through the z axis. The second one is to use a camera that
focus really fast. This kind of camera exist and uses a liquid lens in order to
focus. By using a liquid lens that is capable of capturing a whole focal stack
in 0.03 seconds real-time is achieved and therefore video using is shape from
focus is possible.
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