

# TRABAJO DE FIN DE GRADO Título:

Diseño e implementación de un módulo didáctico para prácticas docentes de electrónica.

Autor: Ángel Hernández González

Tutores: D. Silvestre Rodríguez Pérez

Dña. Beatriz Rodríguez Mendoza

Titulación: Grado en Ingeniería Electrónica Industrial y

Automática

Junio de 2020.

# ÍNDICE.

|   |   |    |    |    |                                         |   |   | -  | , |   |
|---|---|----|----|----|-----------------------------------------|---|---|----|---|---|
| • |   | ın | ٠. | -  | $\sim$                                  |   | ~ | ci | À | n |
|   | _ |    |    | ι. | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | u |   |    | w |   |

II.

| 1. Resumen                                              | 5    |
|---------------------------------------------------------|------|
| 2. Abstract                                             | 5    |
|                                                         |      |
| noria.                                                  |      |
| Capítulo 1. Introducción General. Objetivos             | 7    |
| 1.1 Introducción general                                |      |
| 1.2 Conversor analógico-digital: método contador-rampa  |      |
| 1.3 Objetivos                                           |      |
| 1.4 Estructura general del trabajo                      |      |
| 1.4 Estructura general del trabajo                      | 10   |
| Capítulo 2. Diseño del sistema                          | 12   |
| 2.1 Introducción                                        | 12   |
| 2.2 Diseño electrónico: Parte Binaria                   | 13   |
| 2.2.1 Contador Binario 8 bits                           | 14   |
| 2.2.2 Multiplexores 2 a 1                               | 16   |
| 2.2.3 Conversor de señal digital a analógico            | 17   |
| 2.3 Diseño electrónico: Parte BCD                       | 19   |
| 2.3.1 Contador BCD                                      | 20   |
| 2.3.2 Registros de 8 bits                               | 21   |
| 2.3.3 Decodificadores BCD a 7 segmentos y visualizadore | s de |
| 7 segmentos                                             | 22   |
| 2.4 Diseño electrónico general                          | 23   |
| 2.4.1. Lógica de reinicio de contadores                 |      |
| 2.5 Software utilizado. KiCad                           | 27   |
| Capítulo 3. Diseño PCB                                  | 31   |
| 3.1 NewPCB. Software de creación de PCB                 |      |
| 3.2 Reglas de diseño                                    |      |
| 3.3 Colocación de componentes                           |      |
| 3.4 Pistas y texto                                      |      |
| Capítulo 4. Presupuesto                                 | 20   |
| 4.1 Coste material                                      |      |
| 4.2 Coste de mano de obra                               |      |
| 4.3 Coste total                                         |      |
| 4.5 CUSIE IUIAI                                         | ა9   |
| Capítulo 5. Resultados y conclusiones                   | 42   |
| Conclusions                                             | 46   |
| Glosario                                                | 47   |
| Lista de figuras y tablas                               | 48   |
| Bibliografía                                            | 50   |

## III. Anexos.

| 1. | Archivos de salida del software EESCHEMA | .52 |
|----|------------------------------------------|-----|
| 2. | Esquemas electrónicos                    | .55 |
| 3. | Lista de huellas de componentes          | 58  |
| 4. | Fotolitos                                | 59  |
| 5. | Hojas de datos de los fabricantes        | 60  |

## INTRODUCCIÓN.

#### 1.1 RESUMEN.

En este proyecto se propone el diseño e implementación en placa de circuito impreso o PCB (*Printed Circuit Board*) de un sistema electrónico que se empleará como módulo didáctico para la realización de experiencias prácticas orientadas a que el estudiante se familiarice con la utilización de los analizadores lógicos para el análisis y comprobación del funcionamiento de los elementos o bloques digitales de un circuito electrónico digital.

El módulo o sistema electrónico en el que se basa el módulo consiste en un conversor analógico-digital (A/D) basado en el método de conversión denominado contador-rampa. El conversor diseñado e implementado se puede utilizar como un CAD de 8 o de 4 bits de resolución, dependiendo del estado de la señal de control incluida para ese fin y que es accesible por el usuario. El conversor, además del contador binario, del CDA y del comparador en el que se basa cualquier CAD basado en el método contador-rampa, incorpora un contador BCD (*Binary Coded Decimal*) de dos dígitos, dos decodificadores BCD a 7 segmentos y dos visualizadores de 7 segmentos, cuya finalidad es la de mostrar el valor decimal de la palabra digital de salida resultante de la conversión.

Para su implementación, basada principalmente en la utilización de tecnología SMD, se ha usado la herramienta de software libre de modelado de circuitos impresos denominada KiCAD. La placa de circuito impreso diseñada, fácil de manejar, incorpora diversos puntos de prueba que sirven para analizar las diferentes señales analógicas y digitales presentes en el circuito.

#### 1.2 ABSTRACT.

This project proposes the design and implementation on a printed circuit board or PCB (Printed Circuit Board) of an electronic system that will be used as a didactic module to carry out practical experiences oriented to familiarizing the student with the use of logic analyzers for the analysis and verification of the operation of the elements or digital blocks of a digital electronic circuit.

The module or electronic system which the module is based consists of an analog-digital (A / D) converter based on the conversion method called counter-ramp. The designed and implemented converter can be used as an 8 or 4-bit resolution ADC depending on the state of the control signal included for that purpose and which is accessible by the user. The converter, in addition to the binary counter, the DAC and the comparator on which any ADC based on the counter-ramp method is based, incorporates a two-digit BCD (Binary Coded Decimal) counter, two 7-segment BCD decoders and two displays of 7 segments, whose purpose is to show the decimal value of the digital output word resulting from the conversion.

For its implementation, based mainly on the use of SMD technology, was used the free software tool for printed circuit modeling called KiCAD. The designed printed circuit board, easy to handle, incorporates various test points that are used to analyze the different analog and digital signals present in the circuit.

## **MEMORIA**

## Capítulo 1: Introducción general. Objetivos.

#### 1.1 Introducción general.

Los circuitos electrónicos se pueden dividir en dos grandes grupos: los analógicos y los digitales, teniendo ambos tipos de circuitos una gran importancia en el mundo tecnológico actual. Para entender su funcionamiento, es necesario comprender las diferencias que existen entre las señales analógicas y digitales que producen, así como conocer cuáles son las ventajas de un tipo de circuitos frente a los otros.

Las señales analógicas son aquellas que encontramos con mayor facilidad en la naturaleza y se caracterizan porque su magnitud es capaz de tomar cualquier valor, es decir, no es una señal cuantificada. En cambio, una señal digital es todo lo contrario, es una señal cuyos valores de amplitud sí están cuantificados, es decir, limitados a pertenecer a un conjunto de valores fijos o discretos. Las señales digitales son más inmunes al ruido que las analógicas, pero a costa de requerir un mayor ancho de banda para portar o transmitir la misma información. Además, las señales digitales son más fáciles de procesar, es decir, manipularlas matemáticamente para modificarlas, mejorarlas, almacenarlas e incluso representarlas.

Con el paso del tiempo, el avance de la tecnología ha hecho que hoy en día casi todos los equipos electrónicos incorporen elementos de procesamiento y de representación que requieren entradas digitales. De ahí nace la necesidad de disponer de circuitos electrónicos capaces de realizar la conversión de una señal de tipo analógica a digital, lo cual engloba un proceso de digitalización. El proceso de digitalizar una señal analógica puede implicar las operaciones de muestreo, cuantificación y codificación. En el proceso de muestreo se obtiene a partir de una señal analógica continua en el tiempo y en amplitud, una señal discretizada en el tiempo, pero continua en el dominio de amplitudes. El proceso de cuantificación consiste en representar la amplitud continua de la señal mediante un número finito o discreto de valores en los instantes determinados por el proceso de muestreo, y el de codificación, en asignar una palabra de un código digital a cada uno de los niveles de amplitud discretos obtenidos tras el proceso de cuantificación. Los circuitos electrónicos capaces de convertir señales de tipo analógico a digital y de digital a analógico, se denominan Convertidores o conversores de señal Analógica a Digital (CAD) y de señal Digital a Analógica (CDA), respectivamente.

#### 1.2 Conversor analógico-digital: método contador-rampa.

Un conversor analógico-digital (CAD) es un dispositivo que ofrece una salida digital a partir de una señal analógica de entrada. El funcionamiento de un conversor se basa en comparar la tensión analógica de entrada al conversor ( $V_X$ ), con una tensión de referencia ( $V_R$ ) que varía a lo largo del tiempo. Es decir, consiste en variar una tensión de referencia hasta que la diferencia  $|V_X-V_R|$  queda dentro del error de cuantificación que define las prestaciones del conversor. Las distintas formas de variar  $V_R$  con el tiempo definen los

diferentes métodos de conversión: el método contador-rampa, el de aproximaciones sucesivas, el de rampa doble, etc.

En la Figura 1.1 se muestra el diagrama de bloques de un CAD de 4 bits codificados en BCD (Binary Coded Decimal) basado en el método contador-rampa, que emplea un visualizador de 7 segmentos para representar el valor decimal de la palabra digital resultante de la conversión [1]. Como se puede observar, el CAD consta de un contador y un conversor digital-analógico (CDA) de 4 bits, un comparador y los circuitos electrónicos encargados de capturar, almacenar y representar el valor de la palabra digital resultante de la conversión. En el método contador-rampa se compara la entrada (V<sub>X</sub>) con una tensión analógica de referencia (VR) generada a través de un CDA y un contador, siendo la palabra digital resultante de la conversión, la salida del contador [2]. Al iniciar la conversión, el contador se pone a cero, y su salida se va incrementando hasta que la tensión de salida (VR) del CDA rebasa el valor de la entrada, situación que es detectada por el comparador. Una vez V<sub>R</sub> ha "alcanzado" a la entrada, finaliza la conversión analógica-digital, siendo la palabra digital resultante de la conversión, la salida del contador. En el conversor representado en la Figura 1.1, además del contador, del CDA y del comparador, se emplea un registro, un decodificador BCD a 7 segmentos y un visualizador de 7 segmentos para mostrar el valor decimal de la palabra digital de salida resultante de cada conversión.

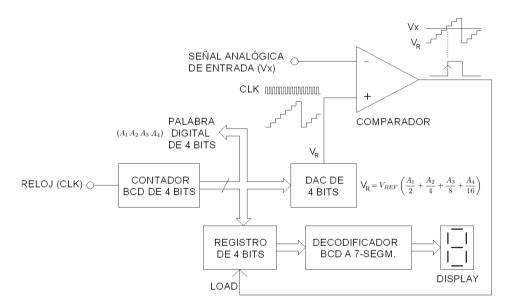



Figura 1.1. Diagrama de bloques de un CAD de 4 bits basado en el método contador-rampa.

#### 1.3 Objetivos.

El objetivo de este Trabajo de Fin de Grado se ha centrado en el diseño y posterior implementación en placa de circuito impreso o PCB (*Printed Circuit Board*) de un conversor analógico-digital basado en el método contador-rampa a emplear como módulo didáctico en la realización de experiencias prácticas orientadas a que el estudiante se familiarice con la utilización de los analizadores lógicos para el análisis y comprobación del funcionamiento de los elementos o bloques digitales de un circuito electrónico digital. El diseño se basa en el CAD de cuatro bits propuesto en el guion de la práctica 2, denominada *El Analizador Lógico*, que se lleva a cabo en el módulo de Instrumentación Electrónica de la asignatura Técnicas Experimentales III, que se imparte en el tercer curso del Grado en Física de la Universidad de La Laguna [1].

En la Figura 1.2 se muestra el esquema general del conversor analógico-digital basado en el método contador-rampa que se ha diseñado e implementado en este trabajo. El conversor diseñado se puede utilizar como un CAD de 8 o de 4 bits, dependiendo del estado de la señal de control incluida para ese fin y que es accesible por el usuario, y que actúa sobre el bloque de multiplexores 2 a 1 que se encuentra a la entrada del conversor digital-analógico o CDA. Como se puede observar, la señal de entrada (Vx) se compara con una tensión analógica de referencia (VR) que se genera a través de un contador binario y un CDA de 8 bits, siendo la palabra digital resultante de la conversión la salida del contador. El circuito también incorpora un contador BCD de dos dígitos de 4 bits cuya función es realizar una cuenta sincronizada con el contador binario de 8 bits, de tal forma que la palabra digital de salida del conversor analógico-digital también se encuentre disponible en formato BCD a la salida de dicho contador.

Al iniciar la conversión, los dos contadores se ponen a cero y sus salidas se van incrementando hasta que la tensión de salida ( $V_R$ ) del CDA rebasa el valor de la tensión de entrada ( $V_X$ ), situación que es detectada por el comparador. Una vez  $V_R$  ha rebasado a  $V_X$ , finaliza el proceso de conversión, siendo la palabra digital resultante de la conversión la salida de ambos contadores. El CAD emplea un registro de 8 bits, dos decodificadores BCD a 7 segmentos y dos visualizadores de 7 segmentos para capturar, almacenar y mostrar el valor decimal de la palabra digital de salida resultante de la conversión y que está disponible en código BCD a la salida del contador BCD de dos dígitos.

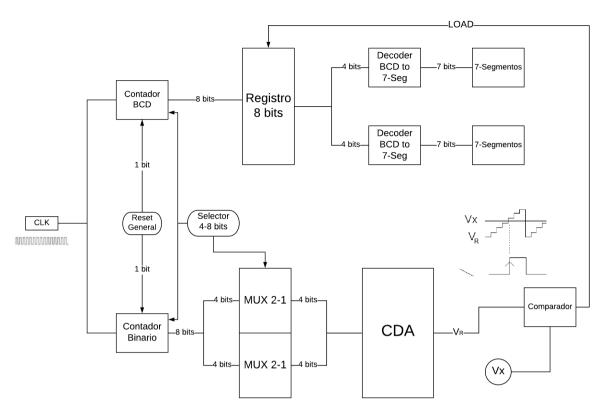



Figura 1.2. Esquema general del conversor analógico-digital de 8/4 bits basado en el método contador-rampa.

#### 1.4 Estructura general del trabajo.

La memoria está dividida en 5 capítulos. El primero de ellos ofrece una breve introducción a este trabajo, los objetivos del mismo y la forma en que se estructura.

En el capítulo 2 se presenta el esquema electrónico y el diseño del sistema. Abordamos los dos modos de funcionamiento, para 4 y 8 bits, así como los componentes que van a formar parte de la placa. Este capítulo es el más extenso debido a que en él se explican cómo funcionan los diferentes componentes.

El capítulo 3 está dedicado a la elaboración de la placa de circuito impreso o PCB, la elección de las huellas para los componentes y su colocación siguiendo las reglas de diseño, así como del software empleado, el NewPCB.

Se concluirá el trabajo con el presupuesto, capítulo 4, y con la presentación en el capítulo 5 de los resultados y conclusiones, así como algunas propuestas de mejoras.

## Capítulo 2: Diseño del sistema.

#### 2.1 Introducción.

Como se comentó en el capítulo anterior, en este trabajo se ha llevado a cabo el diseño e implementación en PCB (*Printed Circuit Board*) de un conversor analógico-digital basado en el método contador-rampa a emplear como módulo didáctico en la realización de experiencias prácticas docentes.

En la Figura 2.1 se vuelve a mostrar el esquema general del conversor analógico-digital diseñado, el cual se puede utilizar como un CAD de 8 o de 4 bits de resolución, dependiendo del estado de la señal de control incluida para ese fin. Como se puede observar, la señal de entrada (V<sub>X</sub>) se compara con una tensión analógica de referencia (V<sub>R</sub>) generada mediante la utilización de un contador binario y un conversor digital-analógico o CDA de 8 bits, siendo la palabra digital resultante de la conversión la salida de dicho contador. El circuito incorpora un contador BCD de dos dígitos de 4 bits cuya función es realizar una cuenta sincronizada con el contador binario de 8 bits, de tal forma que la palabra digital de salida del CAD también se encuentra disponible en formato BCD.

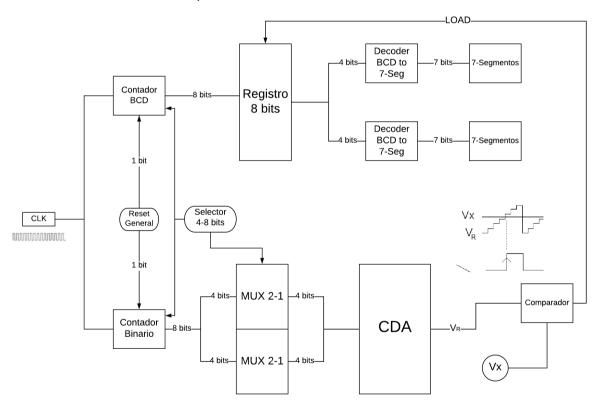



Figura 2.1. Esquema general del conversor analógico-digital de 8/4 bits diseñado.

Al iniciar la conversión, los dos contadores se ponen a cero y sus salidas se van incrementando hasta que la tensión de salida  $(V_R)$  del CDA supera el valor de la tensión de entrada a digitalizar  $(V_X)$ , situación que es detectada por el comparador, el cual se encarga de indicar el final del proceso de conversión, siendo la palabra digital resultante la salida de ambos contadores. El CAD emplea un registro de 8 bits, dos decodificadores BCD a 7 segmentos y dos visualizadores de 7 segmentos para capturar, almacenar y mostrar el valor

decimal de la palabra digital de salida que en código BCD se encuentra disponible a la salida del contador BCD de dos dígitos.

En general, en el diagrama o esquema del conversor se pueden distinguir dos partes o ramas: la que emplea el contador binario de 8 bits para llevar a cabo la conversión analógica-digital propiamente dicha, y la que emplea el contador BCD de dos dígitos de 4 bits, cuya finalidad es la de permitir representar el valor resultante de la conversión en decimal. Tanto en el funcionamiento del CAD con 8 o 4 bits de resolución, ambas partes o ramas del conversor se sincronizan gracias a la señal de reloj general del sistema, la cual se muestra en la Figura 2.2.

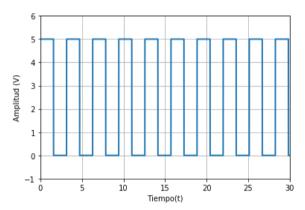



Figura 2.2. Señal de reloj del sistema (niveles TTL).

Cuando el conversor analógico-digital se utiliza con 8 bits de resolución, tanto el contador BCD de dos dígitos, como el contador binario de 8 bits, cuentan de manera sincronizada desde 0 hasta 99 de manera cíclica. Por el contrario, cuando se selecciona el funcionamiento con 4 bits, ambos contadores solo cuentan desde 0 hasta 9. Para permitir que el conversor pueda operar con 8 o 4 bits se ha incluido una señal de selección de 4-8 bits que actúa sobre ambos contadores y sobre la variable de selección de 8 multiplexores 2 a 1 (circuito integrado 74LS157), intercalados entre el contador binario y el conversor digital-analógico de 8 bits.

Dependiendo de la resolución seleccionada, 4 u 8 bits, ambos contadores deben contar desde 0 hasta 9 o 99, respectivamente. Para limitar la cuenta del contador binario hasta 9 o 99, ha sido necesario diseñar la lógica de puesta cero (*reset*) de dicho contador para limitar su cuenta hasta 9 o 99, en función de la resolución elegida.

A continuación, se describen las diferentes partes que componen el diagrama general del CAD diseñado.

#### 2.2 Diseño electrónico: parte binaria.

La parte Binaria es la parte del circuito cuyos objetivos son los siguientes:

 Realizar una cuenta binaria desde 0 a 99, o desde 0 a 9, dependiendo de la resolución seleccionada, 8 o 4 bits, respectivamente. Se ha elegido que el máximo sea 99, ya que usaremos solamente dos visualizadores o displays de 7 segmentos.

- Convertir la señal digital procedente del contador binario en una señal analógica a través de un conversor digital-analógico o CDA.
- Por último, comparar la señal analógica de entrada (V<sub>x</sub>) con la generada por el CDA (V<sub>R</sub>), con la finalidad de indicar la finalización de la conversión, mediante la activación de una señal de LOAD a la rama o parte BCD.

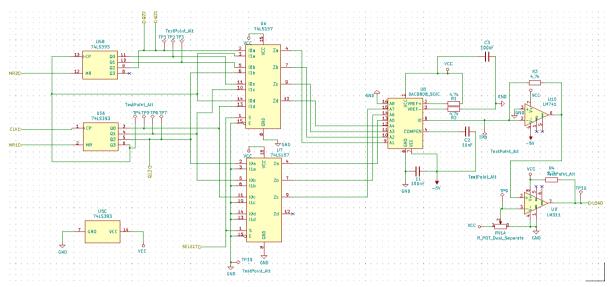



Figura 2.3. Visión general del esquema electrónico de la parte binaria.

En la Figura 2.3, se muestra una visión general del esquema electrónico de la parte binaria, en el cual se entrará en detalle en los próximos apartados. A continuación, se detalla el funcionamiento y conexionado de sus diferentes elementos

#### 2.2.1 Contador Binario de 8 bits.

Para implementar el contador binario de 8 bits, que cuente desde 0 hasta 99, se ha utilizado el circuito integrado 74HCT393, que incluye dos contadores binarios de 4 bits cada uno. Los dos contadores se han conectado de tal manera que cada vez que el encargado de proporcionar los 4 bits menos significativos llegue a su cuenta máxima de 15 en decimal, el otro, encargado de proveer los 4 bits más significativos, sume uno al valor de su cuenta, tal y como se puede observar en la Figura 2.4.

$$0000\ 1111_{(15)} \longrightarrow 0001\ 0000_{(16)}$$
 $0001\ 1111_{(31)} \longrightarrow 0010\ 0000_{(32)}$ 

Figura 2.4. Método de cuenta usado para contar desde 0 hasta 99.

En la Figura 2.5 se muestra el conexionado de los contadores, el U5A y U5B, que incorpora el circuito integrado 74HCT393. El U5A es el encargado de las "unidades", es decir, de realizar la cuenta desde 0 hasta 15. Este contador posee cuatro salidas, que corresponden a los 4 bits menos significativos del número generado, y las siguientes dos entradas:

- La entrada CP es la entrada del reloj del contador. En este caso, se ha aplicado una señal de reloj de niveles TTL de frecuencia de 1 kHz. Esta señal es común al contador BCD.
- La entrada MR1, es un Master Reset, cuya función es la de poner a cero la salida del contador.

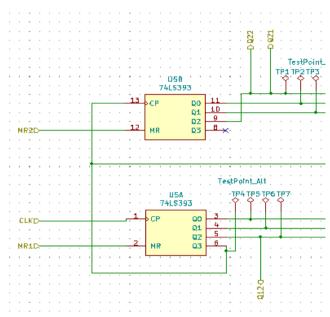
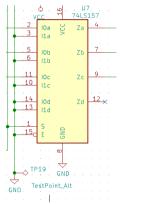



Figura 2.5. Montaje del circuito integrado 74CHT393.


En cuanto al segundo contador, el U5B, su funcionamiento es el de realizar las cuentas de las "decenas", y presenta las mismas salidas y entradas que el U5A. En este caso, a su señal de reloj se conecta la salida Q3 del U5A, es decir, el bit más significativo de las "unidades", de tal manera que cuando pase de 1 a 0, el contador U5B suma uno a su cuenta, tal y como se explicó en la Figura 2.4.

Las salidas Q2.2, Q2.1 y Q1.2 que se observan en el esquema, son herramientas del software, ya que se ha llevado a cabo un diseño jerárquico, sin embargo, tienen una utilidad que tiene que ver con la puesta a cero o reinicio de los contadores, que encontraremos más adelante, en el apartado 2.4.1. Estos tres bits serán utilizados para, con la lógica adecuada, detectar la combinación binaria 100 (01100100), para reiniciar en este momento ambos contadores binarios.

Como la cuenta máxima a realizar es desde 0 hasta el 99, el bit más significativo del contador U5B no se utiliza. Por último, indicar que se las salidas de ambos contadores son accesibles como puntos de test, de cara a la implementación en PCB.

#### 2.2.2 Multiplexores 2 a 1

Para permitir que el conversor analógico-digital pueda operar con 8 o 4 bits, se han intercalado ocho multiplexores 2 a 1 entre el contador binario y el CDA. Como un circuito integrado 74LS157 incluye solo cuatro multiplexores, se han empleado dos. En las Figuras 2.6 y 2.7 se muestran los dos integrados, el U7 y U6, respectivamente. Los dos circuitos integrados se han conectado de tal manera que todos los multiplexores comparten la misma señal de selección S, que es la que permite elegir que el CAD opere con 8 o 4 bits de resolución.





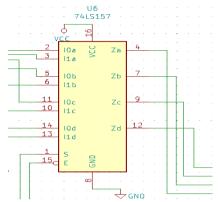



Figura 2.7. U6, selector MSB (74LS157)

Ambos circuitos integrados, el U7 y el U6, se encargan de suministrarle al CDA los cuatro bits menos significativos y más significativos, respectivamente. En cada multiplexor,  $Z_a$  representa el valor más significativo y  $Z_d$  el menos significativo. Como se indicó con anterioridad, S es la variable de selección, la cual permite elegir que a cada una de las salidas del multiplexor se encamine la entrada IO (si S=0), o II (si S=1). Dependiendo de si el valor de S es un II0 o un II1 lógico, el conversor analógico-digital operará con una resolución de II1 o II2 bits, respectivamente.

En el esquema electrónico representado en la Figura 2.3 se puede apreciar el conexionado de los multiplexores. Si se selecciona S=0 (funcionamiento con 8 bits), los multiplexores conectan las salidas de los dos contadores binarios U5A y U5B, directamente con las entradas del CDA. En cambio, si se selecciona S=1 (4 bits), los multiplexores se encargan de conectar las cuatro salidas menos significativas del contador binario (salidas del U5A) con las cuatro entradas más significativas del CDA, poniendo el resto de las entradas del CDA a cero.

En la Tabla 2.1 se muestra cómo se conectan los terminales de salida del contador binario (integrado 74LS393) con las entradas de los multiplexores. También se indican cuáles de dichas entradas se ponen a cero, para permitir el funcionamiento del CAD con 4 bits de resolución. Las salidas de los multiplexores se conectan al CDA teniendo en cuenta que los terminales de entrada A1 y A8, corresponden al bit más y menos significativo respectivamente.

|     |              | Pines del Contador Binario |            |  |  |
|-----|--------------|----------------------------|------------|--|--|
|     |              | 4bit (l1n)                 | 8bit (I0n) |  |  |
|     | а            | 6                          | 9          |  |  |
| ШС  | b            | 5                          | 10         |  |  |
| U6  | С            | 4                          | 11         |  |  |
|     | d            | 3                          | 6          |  |  |
|     | а            | GND                        | 5          |  |  |
| 117 | b            | GND                        | 4          |  |  |
| U7  | С            | GND                        | 3          |  |  |
|     | d            | GND                        | GND        |  |  |
|     | Selector 1 0 |                            |            |  |  |

Tabla 2.1. Distribución de los pines del contador 74LS393 en los selectores

#### 2.2.3 Conversor de señal digital a analógica.

Para implementar el conversor digital-analógico (CDA) se ha empleado el circuito integrado DAC0808. Su función es la de generar la tensión analógica de referencia ( $V_{DAC} = V_R$ ), que se compara con la señal analógica de entrada a digitalizar ( $V_X$ ).

En este trabajo se ha optado por utilizar la configuración proporcionada por el fabricante que se muestra en la Figura 2.8. Como se puede observar, además del circuito integrado DAC0808, se ha utilizado el amplificador operacional μA741 para realizar la conversión corriente a tensión que permite obtener la señal analógica de referencia en forma de tensión. En esta misma figura se muestra el integrado LM311, cuya función es la de comparar la señal a digitalizar (V<sub>x</sub>) con la de referencia (V<sub>DAC</sub> o V<sub>R</sub>). La salida del comparador se utiliza para indicar el instante en el que se debe capturar la palabra digital de salida del contador BCD, que corresponde al resultado de la digitalización. Para poder seleccionar diferentes valores de tensión de entrada se ha añadido un potenciómetro que permite fijar un valor de entrada desde 0V hasta 5V, aunque el rango de entrada del CAD diseñado abarca desde 0V hasta 3,86V o desde 0V hasta 2,81V, cuando se usa como un conversor de 8 o 4 bits, respectivamente, tal y como se verá a continuación.

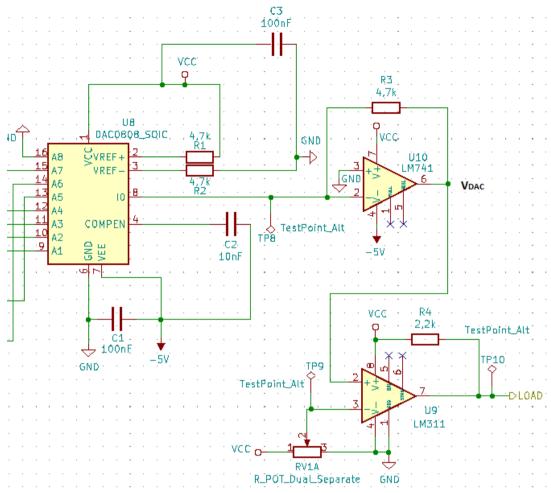



Figura 2.8. Configuración del DAC0808 y operacionales LM741 y LM311.

Según las hojas de características aportadas por el fabricante del DAC0808, la tensión de salida  $V_{DAC}$  del conjunto DAC0808 actuando conjuntamente con el amplificador operacional  $\mu$ A741 viene dada por:

$$V_{dac} = V_{ref} \sum_{i=1}^{8} * \frac{Ai}{2^{i}} = V_{ref} \left( \frac{A_{1}}{2} + \frac{A_{2}}{4} + \frac{A_{3}}{8} + \frac{A_{4}}{16} + \frac{A_{5}}{32} + \frac{A_{6}}{64} + \frac{A_{7}}{128} + \frac{A_{8}}{256} \right) (2.1)$$

Donde  $V_{ref} = 5V$ , y  $A_i$  representa el valor lógico de cada una de las entradas del conversor, siendo  $A_1$  y  $A_8$  la entrada más y menos significativa, respectivamente.

Cuando el conversor se utiliza como un CAD de 8 bits, los contadores realizan una cuenta desde 0 hasta 99 (01100011). Como el bit más significativo del contador binario nunca es un 1 lógico, el terminal de entrada  $A_8$  del DAC0808 se ha puesto a cero, puesto que se ha buscado que el CAD diseñado tenga el mayor margen de entrada posible. Para esta situación, el margen de variación de  $V_{DAC}$  comprende desde 0V hasta 3,86V (ecuación 2.2), que en un CAD basado en el método contador-rampa es lo que fija el margen de entrada del conversor. En este caso, la resolución en voltaje del CAD, que corresponde al salto de tensión debido al bit menos significativo ( $A_7$ ), es de 5V/128 = 39mV.

$$V_{DAC} = V_{ref} \sum_{i=1}^{8} * \frac{Ai}{2^i} = 5V \left( \frac{1}{2} + \frac{1}{4} + \frac{0}{8} + \frac{0}{16} + \frac{0}{32} + \frac{1}{64} + \frac{1}{128} \right) = 3,86V (2.2)$$

Cuando el conversor se utiliza como un CAD de 4 bits, los contadores realizan una cuenta desde 0 hasta 9 (1001). En este caso, y también con la intención de conseguir el mayor margen de variación posible para  $V_{DAC}$  o  $V_R$ , los multiplexores 2 a 1 se encargan de encaminar los 4 bits menos significativos del contador BCD (los 4 bits correspondientes al contador de las "unidades"), hacia los 4 terminales de entrada del DAC0808 más significativos, aplicándole a las restantes entradas del conversor un 0 lógico. Para esta situación, el margen de variación de  $V_{DAC}$  va desde 0V hasta 2,81V (ecuación 2.3), siendo la resolución en voltaje de 5V/16 = 0,31V.

$$V_{DAC} = V_{ref} \sum_{i=1}^{8} * \frac{Ai}{2^i} = 5V \left(\frac{1}{2} + \frac{0}{4} + \frac{0}{8} + \frac{1}{16}\right) = 2,81V$$
 (2.3)

#### 2.3 Diseño electrónico: parte BCD

La parte o rama BCD es la parte del circuito cuyos objetivos son los siguientes:

- Realizar una cuenta en código BCD desde 0 hasta 99, o desde 0 hasta 9, dependiendo de la resolución seleccionada, 8 o 4 bits, respectivamente.
- Tras recibir la señal del comparador, capturar, almacenar y mostrar el valor decimal de la palabra digital de salida resultante de la conversión en dos visualizadores de 7 segmentos.

En la Figura 2.9 se muestra el esquema electrónico de la rama o parte que trabaja con datos binarios codificados en BCD. A continuación, se describen cada uno de los elementos que se muestran en el mismo.

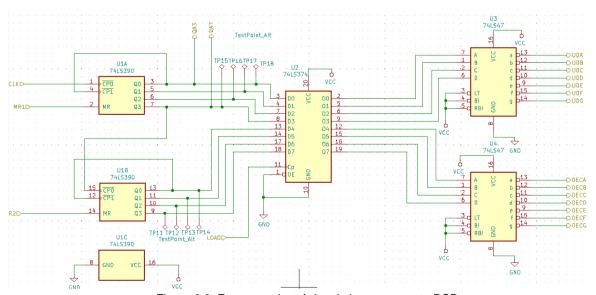



Figura 2.9. Esquema electrónico de la rama o parte BCD.

#### 2.3.1 Contador BCD

Para implementar un contador BCD de dos dígitos se ha hecho uso del circuito integrado 74HCT390, que incluye dos contadores de 4 bits cada uno, que se pueden configurar para que cuenten en formato BCD. En la Figura 2.10 se muestra la forma de conectar ambos contadores, el UA1, que se encarga de la cuenta de las unidades y el U1B, que se encarga de las decenas. Para conseguir que ambos contadores cuenten de manera conjunta desde 0 hasta 99, basta con aprovechar el flanco de bajada que se produce en el bit más significativo de salida (Q<sub>3</sub>) de U1A, cuando la cuenta pasa de 9 a 0 en decimal, como señal de reloj del contador U1B. Por otro lado, según las especificaciones del fabricante, para que cada contador cuente en formato BCD, hay que conectar su salida Q<sub>0</sub> con la entrada CP1 e introducir la señal de reloj del sistema a través de la entrada CP0 (tabla 2.2).

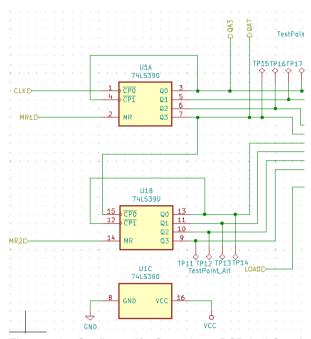



Figura 2.10. Configuración Contadores BCD (74LS390)

Los contadores BCD disponen de una señal de *Master-Reset*, que funcionan de la misma manera que las del contador binario, es decir, al introducir un 1 lógico, dichos contadores mantendrán su salida a cero, lo cual se ha utilizado para manejar los reinicios o puesta a cero del circuito, de los cual se hablará más adelante. Por último, indicar que las salidas de ambos contadores son accesibles como puntos de test, de cara a su implementación en PCB.

#### BCD COUNT SEQUENCE FOR 1/2 THE 390

#### B-QUINARY COUNT SEQUENCE FOR 1/2 THE 390

|       | OUTPUTS |    |    |    |  |
|-------|---------|----|----|----|--|
| COUNT | Q0      | Q1 | Q2 | Q3 |  |
| 0     | L       | L  | L  | L  |  |
| 1     | Н       | L  | L  | L  |  |
| 2     | L       | Н  | L  | L  |  |
| 3     | Н       | Н  | L  | L  |  |
| 4     | L       | L  | Н  | L  |  |
| 5     | Н       | L  | Н  | L  |  |
| 6     | L       | Н  | Н  | L  |  |
| 7     | Н       | Н  | Н  | L  |  |
| 8     | L       | L  | L  | Н  |  |
| 9     | Н       | L  | L  | Н  |  |

|       | OUTPUTS |    |    |    |  |
|-------|---------|----|----|----|--|
| COUNT | Q0      | Q1 | Q2 | Q3 |  |
| 0     | L       | L  | L  | L  |  |
| 1     | L       | Н  | L  | L  |  |
| 2     | L       | L  | Н  | L  |  |
| 3     | L       | Н  | Н  | L  |  |
| 4     | L       | L  | L  | Н  |  |
| 5     | Н       | L  | L  | L  |  |
| 6     | Н       | Н  | Н  | L  |  |
| 7     | Н       | L  | Н  | L  |  |
| 8     | Н       | Н  | Н  | L  |  |
| 9     | Н       | L  | L  | Н  |  |

Output nQ0 connected to nCP1 with counter input on nCP0.

Output nQ3 connected to nCP0 with counter input on nCP1.

Tabla 2.2. Configuración del 74LS390 en BCD y B-Quinary.

#### 2.3.2 Registro de 8 bits.

Una vez que la tensión de referencia generada por el CDA rebasa el valor de la tensión de entrada, situación que es detectada e indicada por el comparador (integrado LM311), finaliza el proceso de conversión, siendo la palabra digital resultante de la conversión, la salida de ambos contadores. Es justo en ese momento cuando el registro de 8 bits, tras la indicación del comparador, debe capturar y almacenar la salida del contador BCD, para su posterior representación o visualización.

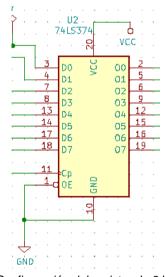



Figura 2.11. Configuración del registro de 8 bits (74LS374).

Para implementar el registro de 8 bits se ha hecho uso del circuito integrado 74LS374 (Figura 2.11). Se trata de un integrado que consta de ocho biestables tipo D, capaces de almacenar y mostrar en sus ocho salidas (O7, O6, ..., O0) los valores lógicos de los 8 bits aplicados a sus entradas (D7, D6, ..., D0), justo en el momento en el que la señal CP se produzca una transición de baja a alta (tabla 2.3). En definitiva, cuando se produzca un flanco de subida en CP, el valor de lo que haya en cada entrada DX es capturado y mostrado en la salida correspondiente, OX. Este registro capturará la salida de los dos contadores BCD,

independientemente de que el conversor se utilice como un CAD de 8 o 4 bits. En el caso de 4 bits, los cuatro bits más significativos correspondientes al dígito de las decenas son cero.

|          |    | Inputs | Outputs | Internal |    |
|----------|----|--------|---------|----------|----|
| Function | ŌĒ | CP     | Dx      | Qx       | Qχ |
| High-Z   | Н  | L      | Х       | Z        | NC |
|          | Н  | Н      | Х       | Z        | NC |
| Load     | L  | 1      | L       | L        | Н  |
| Register | L  | 1      | Н       | Н        | L  |
|          | Н  | 1      | L       | Z        | Н  |
|          | Н  | 1      | Н       | Z        | L  |

Tabla 2.3. Relación entradas/salidas del 74LS374

#### 2.3.3 Decodificadores BCD a 7 segmentos y visualizadores de 7 segmentos.

La función de los dos decodificadores BCD a 7 segmentos y de los dos visualizadores de 7 segmentos es la de mostrar el valor decimal de la palabra digital de salida resultante de la conversión y que está disponible en código BCD a la salida del registro. Un decodificador y visualizador se usan para los 4 bits que representan las decenas, y el otro decodificador y visualizador para los 4 bits de las unidades.

En la Figura 2.12 se muestran los dos decodificadores BCD a 7 segmentos configurados según las especificaciones proporcionadas por el fabricante. En este trabajo se ha optado por utilizar visualizadores o *displays* de 7 segmentos de ánodo común, lo que justifica la utilización de los circuitos integrados 74LS47, diseñados para trabajar con este tipo de visualizadores.

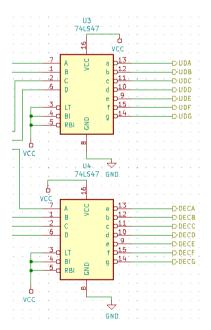



Figura 2.12. Decodificadores BCD a 7 Segmentos (74LS47).

En la Figura 2.13 se observa el esquema electrónico de los dos visualizadores de 7 segmentos junto al módulo BCD. Este tipo de visualizadores se basa en la utilización de siete diodos LED cuyos ánodos están conectados entre sí, constituyendo los cátodos los terminales de entrada del visualizador. Si se conectan los ánodos a una tensión de 5V, cada diodo LED

se iluminará cuando en su cátodo se aplique como entrada un nivel bajo, es decir, un cero lógico.

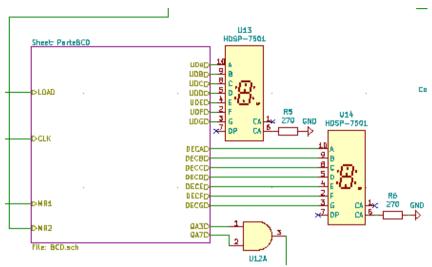



Figura 2.13. Visualizadores o displays junto al módulo BCD.

### 2.4 Diseño electrónico general.

En la Figura 2.14 se muestra el esquema electrónico general del circuito diseñado, donde los dos rectángulos representan, dentro del diseño jerárquico, la parte BCD y binaria. El que se encuentra en la parte inferior izquierda corresponde a la parte BCD, ya que tiene los dos *displays* conectados a él, siendo el de la parte superior derecha el que alberga la parte binaria.

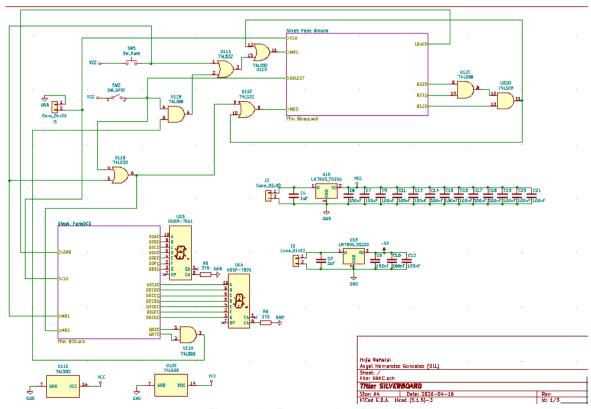



Figura 2.14. Esquema electrónico general.

La señal de reloj del sistema se deberá aplicar de manera externa mediante la utilización de un generador de señales. Para ello, en el diseño se ha incorporado un conector que permite aplicar señal de salida del generador mediante cables tipo banana-cocodrilo, por ejemplo (Figura 2.15).

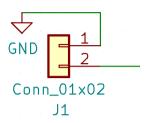



Figura 2.15. Esquema de un conector.

Otra conexión que se necesita desde el exterior de la placa es la alimentación de +5V y -5V, necesaria para alimentar los integrados (Figura 2.16). En este caso, se han usado conectores del mismo tipo que el indicado con anterioridad, que mediante la utilización de reguladores de tensión LM7805 y LM7905, permite alimentar el circuito con +5V y -5V respectivamente.

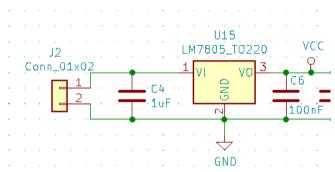



Figura 2.16. Regulador de tensión +5V.

También se ha tenido en cuenta la inclusión de condensadores de desacoplo. Este tipo de condensadores son indispensables en las placas PCB. Los condensadores de desacoplo se encargan de proteger a los circuitos integrados de ruidos eléctricos de alta frecuencia, derivándolos a tierra. Estos condensadores pueden encontrarse por cualquier lugar de la placa, pero preferiblemente se deben situar lo más cerca posible de los circuitos integrados (se verá en el apartado 3.3), así que cada integrado tendrá un condensador de desacoplo asociado. Otra cosa a tener en cuenta, es que también hay que incluir un condensador de desacoplo por cada voltaje, es decir, en nuestro caso, habrá condensadores de desacoplo para la línea de +5V y la de -5V. El CDA y el LM741 son los únicos integrados que tendrán dos condensadores de desacoplo, ya que ambos se alimentan con +5V y -5V. En definitiva, se han utilizado 12 condensadores para la línea de +5V y 2 para la de -5V, todos ellos de 100nF, como se puede observar en la Figura 2.17.

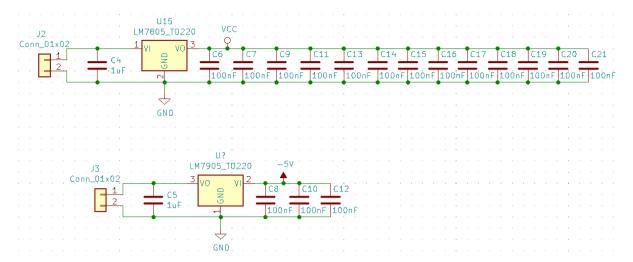



Figura 2.17. Reguladores +5V y -5V con sus correspondientes condensadores de desacoplo.

También se han incluido dos interruptores, un *switch* y un pulsador (Figura 2.18). El pulsador se ha usado como mando de control para activar la puesta a cero o reset general. Al pulsarlo, todos los contadores se inicializarán poniendo sus salidas a cero. El *switch* está asociado con la selección del modo de operación del CAD en cuanto al número de bits a emplear. Cuando el *switch* está abierto, el conversor actuará como un CAD de 8 bits, actuando como un CAD de 4 bits, cuando el *switch* está cerrado.

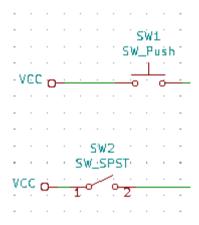



Figura 2.18. Interruptor y pulsador utilizados.

#### 2.4.1 Lógica de reinicio de los contadores.

En este apartado se describe la lógica necesaria para reiniciar o poner a cero los contadores. En primer lugar, vamos a comprobar cuáles son las condiciones de puesta a cero que necesitan los cuatro contadores:

Contador menos significativo o de las unidades de la parte BCD.

Este contador se encarga de contar desde el 0 hasta el 9, y sólo requiere de la puesta a cero cuando se active el pulsador del *reset* general del sistema.

Contador más significativo o de las decenas de la parte BCD:

Este contador se encarga de contar las decenas de la palabra digital en BCD, pero básicamente lo que hace es contar de 0 hasta 9 e incrementar la cuenta cada vez que el contador de las unidades llega hasta 9. Este contador se deberá resetear cuando se active el reset general del sistema o cuando se esté en el modo de operación de 4 bits, es decir, cuando el interruptor o *switch* esté cerrado, dejando pasar un 1 lógico. Por ese motivo, se ha usado una puerta lógica OR de dos entradas (U11B de la Figura 2.14) cuyas entradas son el reset del sistema y el *switch*, para controlar la puesta a cero de este contador.

Contador de los 4 bits menos significativos de la parte binaria:

En este caso la situación es un poco más complicada debido a que los contadores binarios no se detienen de forma natural ni en el 9 ni en el 99. Por tanto, estos contadores presentan más condiciones de puesta a cero o reset. Este contador se deberá resetear cuando se pulse la señal de reset del circuito, y el resto de condiciones dependerán del modo de operación del CAD. Cuando estemos en el modo de 4 bits, necesitaremos que este contador se ponga a cero cuando llegue a 9. Para ello, se han usado dos puertas AND de dos entradas (U12A y U12B de la Figura 2.14) conectadas en cascada, que proporcionarán un 1 lógico cuando se dé el número 10 en el contador binario y además se esté en el modo de 4 bits. Como el 10 en binario es 1010, las entradas de dichas puertas AND serán los bits Q3 y Q1 del contador binario menos significativo y el switch. Cuando estemos en el modo de 8 bits, cuando la salida de los 8 bits del contador binario llegue a 99, también será necesario poner a cero ambos contadores binarios. Por este motivo se han incluido dos puertas OR de dos entradas (U11A y U11D de la Figura 2.14) cuyas entradas son la salida de las dos puertas AND anteriormente mencionadas, la señal de reset general y la de puesta a cero de ambos contadores cuando la cuenta conjunta de ambos contadores haya llegado a 99.

Contador de los 4 bits más significativos de la parte binaria:

Este último contador también se deberá resetear cuando se active el reset general del sistema o cuando se esté en el modo de operación de 4 bits, es decir, cuando el interruptor o *switch* esté cerrado. La detección de una u otra condición ya ha sido implementada a través de la puerta OR de dos entradas U11B, cuya salida se podría utilizar también para resetear este contador. Ahora bien, esta no es su única condición de *reset*, puesto que este contador también se tiene que poner a cero cuando la cuenta conjunta de ambos contadores binarios haya llegado a 99, es decir, cuando aparezca el 100, que en binario es el 1100100. Para ello, se ha utilizado dos puertas AND (U12C y U12D de la Figura 2.14) de dos entradas conectadas en cascada, cuyas entradas son los bits 7, 6 y 3 de la palabra digital de 8 bits. Para terminar de construir el circuito de control de puesta a cero de este contador, se necesita

emplear una puerta OR de dos entradas (U11C de la Figura 2.14) que permita unir las dos condiciones mencionadas (salidas de U11B y U11C).

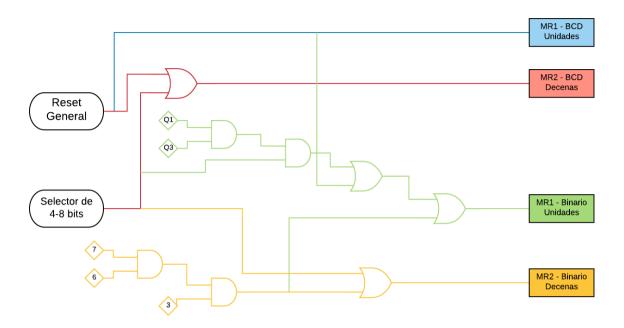



Figura 2.19. Esquema de puesta a cero o de reset de los contadores.

En la Figura 2.19 se muestra el circuito de puesta a cero de todos los contadores. Como se puede observar se han empleado cuatro puertas OR y cuatro puertas AND de dos entradas, que se han implementado con ayuda de los integrados 74LS08 y el 74LS32, que incluyen 4 puertas AND y 4 puertas OR de dos entradas, respectivamente.

#### 2.5 Software KiCad.

Para crear la PCB (*Printed Circuito Board*) del circuito electrónico diseñado se hace uso del software KiCAD, cuyo logotipo se muestra en la Figura 2.20.



Figura 2.20. Logotipo del software KiCad.

KiCad es un entorno EDA (*Electronic Design Automation*) o paquete de software libre, creado en 1992 por Jean-Pierre Charras y enfocado a la automatización de diseño de circuitos electrónicos. KiCad es muy flexible y adaptable, permite la edición de esquemas electrónicos y el diseño de circuitos impresos modernos de forma sencilla e intuitiva. Por otro lado, los circuitos se pueden diseñar con múltiples capas y ser visualizados en 3D [6]. KiCad como software libre, es un software gratuito que crece gracias a las aportaciones de diferentes personas, las cuales tienen el derecho para ejecutar, copiar, distribuir, estudiar, cambiar y mejorar el software.

Este software presenta las siguientes herramientas de trabajo:

- Kicad: administrador de proyectos.
- Eeschema: Permite la captura y edición del esquema del circuito que se va a realizar y en el que se definirán las conexiones entre los diversos componentes.
   Se trata de un entorno gráfico fácil de entender, que ha permitido crear un diseño en bloques con diferentes jerarquías, como los realizados para los módulos Binario y BCD de este proyecto. También, permite crear y editar gran número de símbolos o componentes personalizados, así como, la asignación de sus huellas, etc.
- Cvpcb: Permite la asignación de huellas o footprints de los encapsulados a los componentes o símbolos utilizados en el esquema electrónico.
- Pcbnew: Es el entorno de diseño para la creación de los circuitos impresos o PCBs. Una vez generada, con Eeschema, la lista de conexiones o Netlist, existente entre los diferentes componentes que forman parte del esquema electrónico, se emplea esta herramienta para establecer la posición y orientación de cada componente en la placa, así como su trazado de pistas.
- Gerbview: Visualizador de los ficheros Gerber, útiles para la fabricación automatizada de las placas de circuito impreso.

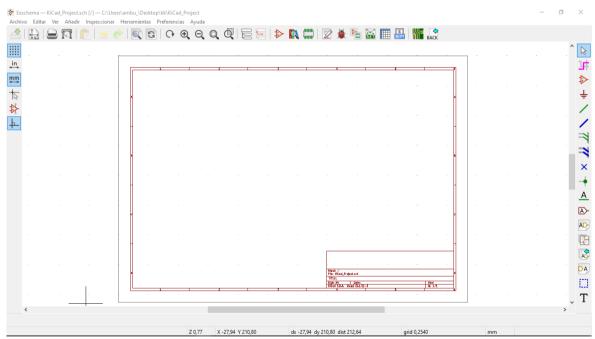



Figura 2.21. Ventana de trabajo principal del EESCHEMA.

Las herramientas más importantes del entorno gráfico son EESCHEMA (Figura 2.21) y PCBnew (Figura 3.5). Por otro lado, en concreto para este proyecto, se ha hecho uso de la amplia librería de componentes incorporada en EESCHEMA, por lo que no ha sido necesario emplear la herramienta de creación de nuevos componentes o *Symbol Library Editor*.

El flujo de trabajo con EESCHEMA ha sido el siguiente, una vez seleccionados cada uno de los componentes que forman parte del circuito, asignado las huellas de los encapsulados de estos componentes, creado los bloques de jerarquía y definido todas las conexiones entre ellos y el resto de los componentes, se procede a ejecutar las herramientas

finales de este proceso, como son: Annotate, que permite asignar referencias a todos los componentes, minimizando el número de encapsulados empleados, ERC, o Chequeo de las Reglas de Diseño (*Electrical Rules Check*) que permite detectar los errores cometidos durante la realización del esquema según una tabla de conexionado previamente configurada, BOM o lista de materiales (*Bill of material*) permite obtener una lista de todos los componentes empleados y finalmente Netlist o lista de todos los componentes con las conexiones que existen entre ellos. Los ficheros resultantes de este post-proceso, son los siguientes:

- ERC (Control de reglas eléctricas): realizar este procedimiento permite ver los errores cometidos durante la realización del esquema.
- BOM (Lista de materiales): genera un archivo con una lista de todos los componentes del circuito. Incluye información sobre su referencia, generada en el annotate, sobre su valor, su huella y una pequeña descripción.
- Netlist (Lista de redes): se encarga de generar un archivo con una lista que comprende todos los componentes y las conexiones de los mismos. Tiene como objetivo transferir esta información al programa de creación de PCB. Si por algún motivo debemos cambiar algo del esquema, se debe crear un nuevo netlist y pasarlo al programa de creación de PCB de nuevo.

Estos archivos generados, así como, el listado de las Huellas de los encapsulados de los componentes empleados, se adjuntan en el Anexo I: archivos EESCHEMA, del presente proyecto.

## Capítulo 3: Diseño de la placa de circuito impreso.

En este capítulo se describirá el diseño de la placa de circuito impreso o PCB del circuito electrónico descrito en el Capítulo 2. Como se comentó en dicho capítulo, una parte del proceso en EESCHEMA consistió en seleccionar las huellas de los componentes. Por definición, una huella o *footprint* es la impresión del encapsulado del componente, y está formada por un dibujo del contorno, texto y un conjunto de *pads* necesarios para conectar todos los terminales del componente con las pistas de cobre del circuito impreso. La Figura 3.1 muestra la ventana de la herramienta, anteriormente descrita Cvpcb, para la asignación de huellas a los componentes.

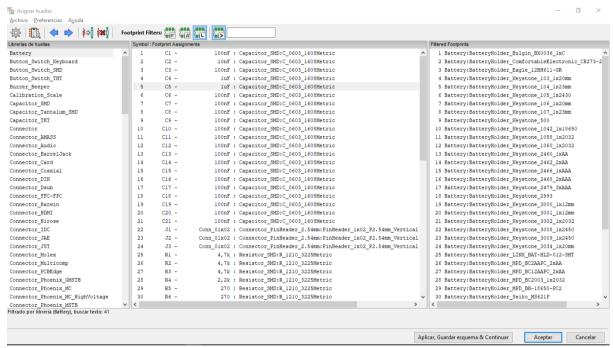



Figura 3.1. Ventana Cvpcb de selección de huellas.

Este procedimiento es importante, ya que dependiendo de las huellas que se elijan, la placa tendrá diferentes características. En nuestro caso, se ha decidido implementar una placa con configuración Tipo1C, esto es, montaje de componentes en una sola cara de la placa y componentes basados en tecnología SMD (*Surface Mounted Device*), cuyos encapsulados de pequeño tamaño son soldados sobre la propia superficie de la PCB en la que son colocados y en THD (*Through-Hole Device*) cuyos pines atraviesan la placa. En concreto, para este proyecto, se ha reservado la tecnología THD únicamente para los conectores de entrada y salida. Esta decisión se ha llevado a cabo debido a que se desea tener una placa accesible y fácil de manejar, que no requiera costes muy elevados de montaje y que permita a los estudiantes realizar la práctica sin demasiada complicación. También se ha tenido en cuenta la disponibilidad de las librerías que presenta el KiCad, teniendo un amplio rango de selección para casi todos los componentes de la placa. La lista de huellas utilizadas para nuestros componentes se encuentra en el Anexo II: Lista de huellas de componentes.

En cuanto a los circuitos integrados, se ha buscado en sus hojas de datos los diferentes encapsulados en los que se suministran. Por ejemplo, los multiplexores 2 a 1, se

pueden adquirir en diferentes encapsulados. Entre ellos están los encapsulados SMD tipo SOIC (*Small Outline Integrated Circuit*) o SOP (*Small Outline Package*), de la Figura 3.2,-muy utilizados para la automatización de procesos de montajes de PCBs, ya que la forma de su patillaje permite a la máquina un montaje más directo. La otra modalidad, sería con encapsulado tipo THD, que como se puede observar en la Figura 3.3, se trata de un encapsulado DIP (*Dual In-line Package*) con dos filas de terminales doblados en ángulo recto respecto a la base. Este tipo de encapsulado es más adecuado en placas cuyo montaje se realiza a mano, se precisan de taladros para dejar pasar los pines y se sueldan al *pad*. Como se ha comentado con anterioridad, en el presente proyecto, se ha decidido utilizar tecnología SMD para casi todos los encapsulados, resistencias y condensadores, debido a su reducido tamaño y a su instalación inmediata, ya sea de forma automatizada o a mano. En el Anexo V: Hojas de datos del fabricante, se recogen las hojas de características los componentes empleados.

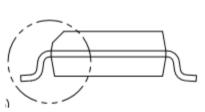



Figura 3.2. Componente SMD.

Figura 3.3. Componente THD.

#### 3.1 Pcbnew: software de creación de PCB.

Una vez terminado el esquema electrónico, realizados todos los procedimientos de control y todas las huellas seleccionadas, procede pasar a la creación de la placa PCB con ayuda la herramienta PCBnew de KiCAD. En este caso, el flujo de trabajo es el siguiente, a partir del archivo *Netlist*, el programa carga sobre la zona de trabajo las huellas de los encapsulados de los componentes y sus respectivas conexiones, que se establecieron en el esquema electrónico.

Este software aporta muchas opciones para trabajar. En la Figura 3.4 se puede observar el entorno de trabajo. Entre las opciones básicas que presentan los editores de este tipo, destacan: Administrador de capas, a la derecha de la figura, donde se puede seleccionar entre todas las capas físicas o de documentación posibles de una placa. También se pueden editar huellas desde aquí, así como actualizar nuestro *Netlist* si añadimos algún elemento nuevo en el esquema electrónico. Tenemos también disponible un chequeo de las reglas eléctricas (DRC), al igual que se tenía en EESCHEMA y las herramientas para editar *pads*, vías y pistas. En cuanto a las pistas, además, incluye un apartado en la que nos permite hacer un *Autorruteo*, es decir, establecer el camino descrito por las pistas de cobre que unen los componentes, optimizando tanto los recorridos como los anchos de las pistas.

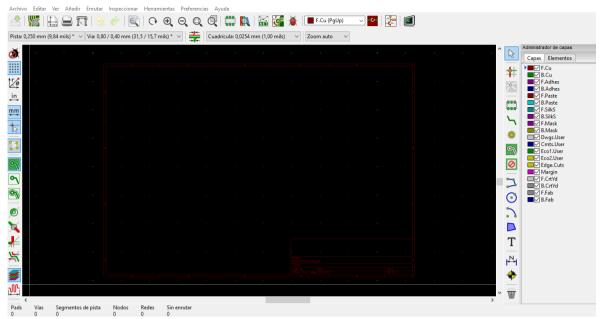



Figura 3.4. Ventana de trabajo principal de Pcbnew.

#### 3.2 Reglas de diseño.

Una vez se tengan los elementos con sus correspondientes conexiones, hay que decidir cuál es la mejor forma posible de colocar los componentes. Esto no se hará a la ligera, ya que requiere del cumplimiento de una serie de reglas de diseño [3] en cuanto a la ubicación, orientación, y separación entre ellos.

Con este fin. se ha llevado a cabo el siguiente fluio de trabaio. Lo primero es establecer las unidades de medida, los milímetros (mm), y fijar la rejilla de trabajo del sistema en una medida adecuada para que los componentes queden perfectamente alineados. Se ha elegido una cuadrícula de 0,0127mm. Ya con estos parámetros fijados, se hace una primera colocación de los componentes de forma rápida para poder establecer los límites del espacio de trabajo, esto es, el tamaño de la placa. El tamaño de la placa es de 77,6 x 82,5mm. El borde de la placa se puede editar en cualquier momento, por si se nos queda algún componente fuera o sin espacio, poder expandir el área destinada a la realización de la placa. Por último, tendremos que elegir dos parámetros más antes de empezar a colocar los componentes: el ancho de las pistas y el tamaño de las vías. El ancho de la pista se escoge teniendo en cuenta el espesor de cobre de la placa (35µm en FR4), las corrientes, el incremento de temperatura y el proceso de fabricación químico. El ancho elegido para las pistas es de 0,4mm. Por último, especificaremos las capas que vamos a usar, en nuestro caso, dos capas conductoras de cobre, la capa TOP y la capa BOT. La capa TOP es la capa en la que se montan los componentes y donde estarán la gran parte de las pistas de cobre. La capa BOT servirá como puente para colocar aquellas conexiones que sea imposible situar en la capa TOP. Los pads de los componentes con encapsulado THD se incluirán en la capa TOP, ya que al atravesar con sus pines la placa, permiten hacer conexiones en la capa BOT. Para hacer que coincidan ambas capas, debemos añadir marcas fiduciales, esto es, un marcador referencial que está en la esquina superior de ambas caras, y que debemos hacer coincidir en el proceso de transferencia del diseño a la placa.

Una vez establecidos los parámetros iniciales, comienza el proceso del diseño de la placa PCB y la colocación de los componentes.

#### 3.3 Colocación de los componentes.

La colocación de los componentes se debe hacer de forma lógica [3]. Como diseñadores debemos tener una idea aproximada de cómo deseamos que sea la placa y a partir de ahí, empezar a aplicar las distintas reglas de diseño. En la Figura 3.5 se muestra cómo se han situado los componentes en la placa.

Los integrados, resistencias y condensadores están centrados en la placa, con una separación mínima entre componentes de 0,5mm. Los elementos que requieran accesibilidad desde el exterior se han colocado cerca de los bordes de la placa, como, por ejemplo, los puntos de test y los conectores, tanto para la señal TTL como para los ±5V de la alimentación. Estos elementos precisan de un cableado externos, ya sea para alimentarlos o para medir y, por lo tanto, es más cómodo situarlos en los bordes. Estos componentes deberán estar separados al menos 2mm del borde de la placa. Los visualizadores o *displays* se han localizado en una de las esquinas de la placa.

En la Figura 3.5 también se puede ver que cada integrado posee un condensador en la parte superior, estos son los condensadores de desacoplo anteriormente mencionados, que se encargan de evitar fenómenos como la diafonía, parásitos inductivos o capacitivos, etc. Cada integrado deberá tener un condensador de desacoplo por cada alimentación que reciba. Todos los integrados del circuito tienen solo uno, el de +5V, excepto el DAC0808 y el LM741 que tienen dos, ya que se alimentan a ±5V.

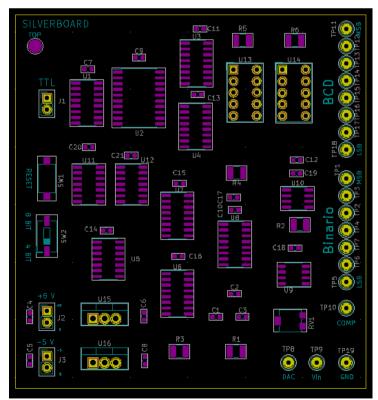



Figura 3.5. Colocación de componentes en la PCB con Pcbnew.

#### 3.4 Pistas y texto.

Tras localizar los componentes, hay que proceder a trazar las pistas. Las conexiones ya están establecidas gracias a que exportamos el Netlist desde el software EESCHEMA y el ancho de las pistas está fijado desde el inicio de este proceso, así que solo se tienen que ir trazando estas pistas manualmente, respetando el espaciado entre ellas, evitando que se crucen, o que transcurran paralelas durante el menor recorrido posible, evitando así interferencias entre señales que transcurran por pistas próximas. El proceso puede resultar tedioso debido a la gran cantidad de elementos que hay en la placa, por ese motivo, se ha recurrido a la herramienta "Freerouting" que viene incluida dentro del paquete PCBnew de KiCad, y el cual necesita de la utilización del archivo SPECCTRA. El programa comienza con la creación de las pistas en la cara TOP. Cuando no pueda trazar una pista, creará una vía para poder realizar la conexión a través de la capa BOT. Cuando se realicen todas las conexiones, comenzará un proceso de optimización de distancias entre pistas y del número de pistas utilizadas. Cuando la optimización se detenga, tras realizar algunas operaciones de intercambio de ficheros, automáticamente obtendremos en nuestro programa, la misma placa PCB, pero ahora con las pistas trazadas. Además de trazar las pistas, hay que añadir en la cara TOP zonas de relleno de cobre. Estas zonas se utilizan para la supresión de ruido o para el aislamiento de señales. En este caso, esta capa se corresponderá con la señal GND, simplificando muchas de las conexiones de nuestra placa. En las Figuras 3.6 y 3.7 se muestran la capa TOP y BOT, respectivamente, ya terminadas y trazadas, únicamente quedaría aplicar texto a nuestra placa.

Como ayuda o guía para los estudiantes, se ha añadido texto en la cara TOP de la placa. Este texto comprende:

- Indicativos de los 3 conectores, indicando cual es la entrada TTL de reloj y cuáles son las entradas de +5V, -5V y GND.
- Los puntos de test del CDA, V<sub>IN</sub> y GND, tienen cada uno una etiqueta para identificarlos inmediatamente.
- Las dos filas de terminales o puntos de prueba o test de los dos contadores incorporan un texto que los identifica. Además, se indica cuáles son sus bits más y menos significativos.

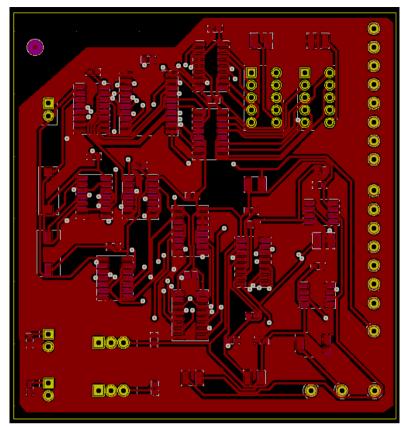



Figura 3.6. Capa TOP con pistas y vías.

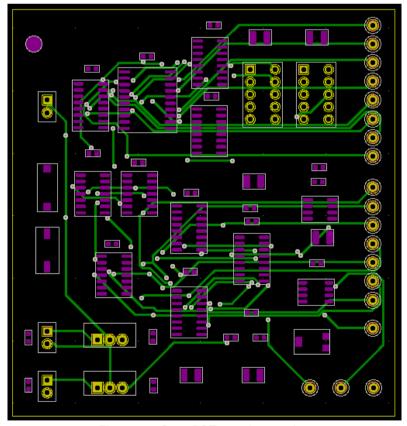



Figura 3.7. Capa BOT con pistas y vías.

# Capítulo 4: Presupuesto.

# 4.1 Coste material.

| COMPONENTE                | CANTIDAD | COSTE UNITARIO | COSTE TOTAL |
|---------------------------|----------|----------------|-------------|
| Condensador SMD 100nF     | 18       | 0,35 €         | 6,30€       |
| Condensador SMD 1uF       | 2        | 0,35 €         | 0,70€       |
| Condensador SMD 10nF      | 1        | 0,35 €         | 0,35€       |
| Conectores                | 3        | 0,05 €         | 0,16€       |
| Resistencia SMD 4,7K      | 3        | 0,01€          | 0,03€       |
| Resistencia SMD 2,2k      | 1        | 0,00€          | 0,00€       |
| Resistencia SMD 270       | 2        | 0,01€          | 0,01€       |
| Potenciómetro SMD         | 1        | 1,05 €         | 1,05€       |
| Pulsador                  | 1        | 0,42 €         | 0,42€       |
| Interruptor               | 1        | 2,56 €         | 2,56€       |
| Puntos de test            | 19       | 0,12€          | 2,28€       |
| C.I. 74LS390              | 1        | 1,26 €         | 1,26€       |
| C.I. 74LS374              | 1        | 0,91€          | 0,91€       |
| C.I. 74LS47               | 2        | 1,65 €         | 3,30€       |
| C.I. 74LS393              | 1        | 2,33 €         | 2,33€       |
| C.I. 74LS157              | 2        | 0,91€          | 1,82€       |
| DAC0808                   | 1        | 2,04 €         | 2,04€       |
| LM311                     | 1        | 2,32€          | 2,32€       |
| LM741                     | 1        | 0,78€          | 0,78€       |
| C.I. 74LS32               | 1        | 0,66€          | 0,66€       |
| C.I. 74LS08               | 1        | 0,66€          | 0,66€       |
| Display 7 segmentos       | 2        | 2,74 €         | 5,48€       |
| LM7805                    | 2        | 1,37 €         | 2,74€       |
| Placa de cobre doble cara | 1        | 3,90 €         | 3,90€       |

Datos extraídos de RS España [4]. Este proyecto no se ha implementado, pero se ha calculado el presupuesto como si se quisiera realizar esta placa.

#### 4.2 Coste de mano de obra.

| CONCEPTO          | CANTIDAD (h) | COSTE UNITARIO (€/h) | COSTE TOTAL |
|-------------------|--------------|----------------------|-------------|
| Análisis y diseño | 30           | 28,00€               | 840,00€     |
| Implementación*   | 9            | 20,00 €              | 180,00€     |
| Documentación     | 20           | 18,00€               | 360,00€     |

| TOTAL | 1.380,00 € |
|-------|------------|
| IOIAL | 1.300,00 € |

El coste de la mano de obra se ha calculado en base al tiempo utilizado en el desarrollo de los apartados de análisis y diseño y de la documentación recogida en este documento. En cuanto a la implementación, aunque no se ha realizado, se ha estimado el tiempo de montaje en comparación con el tiempo empleado en la realización de una placa de características similares.

#### 4.3 Coste total.

| COSTE TOTAL          |            |  |  |  |  |
|----------------------|------------|--|--|--|--|
| Coste material       | 42,06€     |  |  |  |  |
| Coste Mano de obra   | 1.380,00€  |  |  |  |  |
| Gastos Generales     | 85,32€     |  |  |  |  |
| Beneficio industrial | 213,31€    |  |  |  |  |
|                      |            |  |  |  |  |
| TOTAL PROYECTO       | 1.720,69 € |  |  |  |  |

El coste total se ha calculado aplicando porcentajes obtenidos del Reglamento General LCAP [5] a los valores calculados en los apartados anteriores. Los porcentajes correspondientes son del 6% para los gastos generales y del 15% para el beneficio industrial. Ambos porcentajes se aplican tanto al coste material como a la mano de obra.

Por último, se presenta el cálculo del coste por unidad suponiendo que se fabrican 100 y 1000 placas. En ambos casos, el coste debido al tiempo de análisis y diseño, y el de documentación no varían con respecto al de fabricación de una placa. El tiempo de implementación se ha reducido a tres horas por placa implementada. De esta manera, los resultados obtenidos son los siguientes:

| Concepto          | Coste unitario    | Cantidad | Coste Total |
|-------------------|-------------------|----------|-------------|
| Placa             | 42,07€            | 100,00€  | 4.207,00 €  |
| Análisis y diseño | 28,00€            | 30,00 h  | 840,00 €    |
| Implementación    | 20,00€            | 300,00 h | 6.000,00€   |
| Documentación     | 18,00€            | 20,00 h  | 360,00 €    |
|                   | TOTAL (100 placas | )        | 11.407,00€  |

| Concepto          | Coste unitario    | Cantidad   | Coste Total  |
|-------------------|-------------------|------------|--------------|
| Placa             | 42,07€            | 1.000,00€  | 42.070,00€   |
| Análisis y diseño | 28,00€            | 30,00 h    | 840,00€      |
| Implementación    | 20,00€            | 3.000,00 h | 60.000,00€   |
| Documentación     | 18,00€            | 20,00 h    | 360,00 €     |
|                   | TOTAL (1000 place | as)        | 103.270,00 € |

Como se puede observar, para el caso de 100 placas, el total asciende a 11.407 €, lo que corresponde a un coste unitario por placa de 114,07 €. Para 1000 placas, el total es  $103.270 \, \in$ , lo que supone un coste unitario de 103,27 €.

# Capítulo 5: Resultados y conclusiones.

Este trabajo se ha centrado en el diseño de un conversor analógico-digital basado en el método contador-rampa con la finalidad de utilizarlo como módulo didáctico en la realización de experiencias prácticas orientadas familiarizarse con el uso de los analizadores lógicos para el análisis y comprobación del funcionamiento de los elementos o bloques digitales de un circuito electrónico digital. Gracias a la realización de este trabajo, se ha conseguido mejorar el diseño del esquema electrónico de la práctica original que se lleva a cabo en el módulo de Instrumentación Electrónica de la asignatura Técnicas Experimentales III, que se imparte en el tercer curso del Grado en Física de la ULL [1], en lo que respecta a permitir su funcionamiento con 4 u 8 bits. En la Figura 5.1 se muestra el esquema electrónico del circuito diseñado.

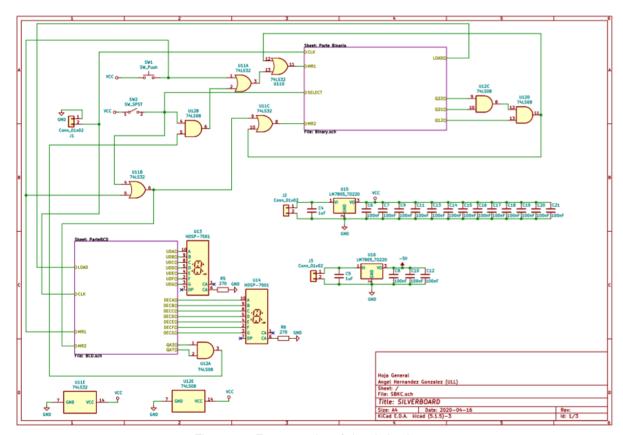



Figura 5.1. Esquema electrónico de la placa.

Otro resultado ha sido el diseño de la placa de circuito impreso o PCB necesaria para implementar el circuito. Su tamaño es de 77,6 x 82,5 mm, lo que se ha conseguido gracias al uso de componentes basados en tecnología SMD. En las Figuras 5.2 y 5.3 se puede observar un modelo 3D de la placa, tanto de su cara TOP como de su cara BOT.

Con la finalidad de que la placa de circuito impreso sea fácil de usar y de conexión inmediata, se han incorporado señalizaciones o etiquetas tanto para las conexiones como para los terminales de pruebas o test (Figuras 5.4 y 5.5).

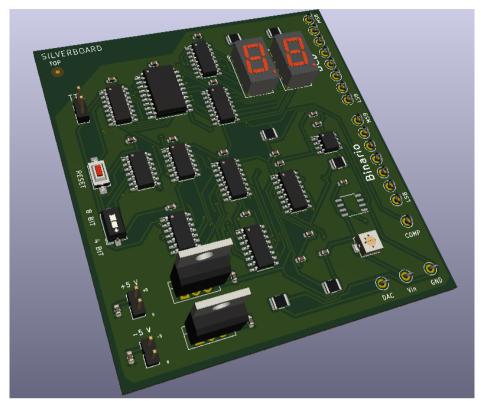



Figura 5.2. Cara TOP de la placa.

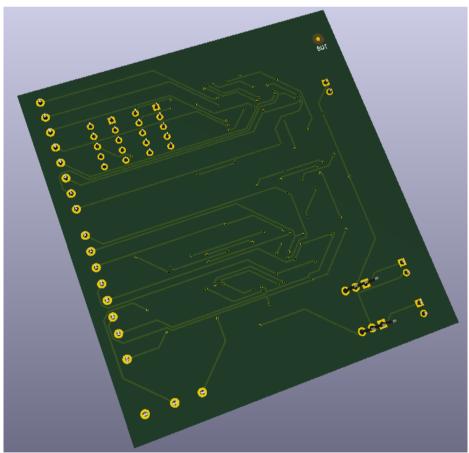



Figura 5.3. Cara BOT de la placa.

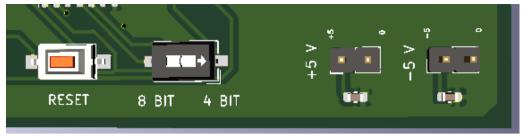



Figura 5.4. Señalización de alimentación e interruptores.



Figura 5.5. Señalización de los puntos de test.

La realización física de la placa de circuito impreso no ha sido posible debido a que la ejecución de este Trabajo de Fin de Grado, en su etapa final, ha coincidido con el período de alarma del "COVID-19". En este mismo sentido, tampoco se ha podido llevar a cabo la implementación en placa de prototipo (*protoboard*) del circuito, ya que no se podía acceder a los laboratorios de la Universidad de La Laguna y, tampoco se disponía de material ni de la instrumentación electrónica necesaria para llevarlo a cabo. Sin embargo, la implementación de la misma se podrá hacer sin problemas usando los datos recogidos en este documento. Aun así, a continuación, se enumeran diversas mejoras que se podrían aplicar a la hora de hacer dicha implementación:

- Incorporar en la placa una fuente de alimentación que evite la necesidad de un conexionado exterior para disponer de las tensiones de +5V y -5V.
- Incluir un circuito oscilador que genere la señal de reloj general.
- Diseñar un soporte físico para la placa de circuito impreso que le proporcione un aspecto más comercial como producto final.

#### Conclusions.

This work has focused on the design of an analog-to-digital converter based on the counter-ramp method in order to use it as a didactic module in the realization of practical experiences oriented to familiarizing with the use of logic analyzers for the analysis and testing the operation of the elements or digital blocks of a digital electronic circuit. Thanks to the completion of this work, it has been possible to improve the design of the electronic schematic of the original practice that is carried out in the Electronic Instrumentation module of the Experimental Techniques III course, which is taught in the third year of the Physic's degree of the ULL [1], in regards to allowing its operation with 4 or 8 bits. Figure 5.1 shows the electronic schematic of the designed circuit.

Another result has been the design of the printed circuit board or PCB necessary to implement the circuit. Its size is 77.6 x 82.5 mm, which has been achieved thanks to the use of components based on SMD technology. In Figures 5.2 and 5.3 you can see a 3D model of the board, both its TOP and BOT faces.

In order to make the printed circuit board easy to use and for immediate connection, signs or labels have been incorporated for both the connections and the test terminals (Figures 5.4 and 5.5).

The physical realization of the printed circuit board has not been possible because the execution of this Final Degree Project, in its final stage, has coincided with the alarm period of "COVID-19". In this same sense, it has not been possible to carry out the implementation of the circuit's prototype board, since it was not possible to access the laboratories of the University of La Laguna and neither was available the material or the electronic instrumentation necessary to carry it out. However, its implementation can be done without problems using the data collected in this document. Even so, below, several improvements that could be applied when making such an implementation are listed:

- Incorporate in the board a power supply that avoids the need for an external connection to have voltages of + 5V and -5V.
- Include an oscillator circuit that generates the general clock signal.
- Design a physical support for the printed circuit board that gives it a more commercial appearance as a final product.

### Glosario.

BCD: Binary Coded Decimal.

BOM: Bill of Materials.

BOT: Capa inferior de la placa. CAD: Conversor analógico digital. CDA: Conversor digital analógico.

CI: Circuito Integrado.

EDA: Electronic Desing Automation.

ERC: Electric Rules Check.

**GND:** Ground.

LCAP: Ley de Contratos de las Administraciones Públicas.

LSB: Less Significative Bit. MR1: Master-Reset 1.

MR2: Master-Reset 2.

MSB: More Significative Bit.

MUX: Multiplexor.

**PCB:** Printed Board Circuit. **SMD:** Surface Mounted Device.

SOIC: Small Outline Integrated Circuit.

SOP: Small Outline Package.
THD: Through-Hole Device.
TOP: Capa superior de la placa.

TTL: Transistor to Transistor Logic.

### Lista de figuras y tablas.

#### FIGURAS:

- Figura 1.1. Diagrama de bloques de un CAD de 4 bits basado en el método contador-rampa.
- Figura 1.2. Esquema general del conversor analógico-digital de 8/4 bits basado en el método contador-rampa.
- Figura 2.1. Esquema general del conversor analógico-digital de 8/4 bits diseñado.
- Figura 2.2. Señal de reloj del sistema (niveles TTL).
- Figura 2.3. Visión general del esquema electrónico de la parte binaria.
- Figura 2.4. Método de cuenta usado para contar desde 0 hasta 99.
- Figura 2.5. Montaje del circuito integrado 74CHT393.
- Figura 2.6. U7, selector LSB (74LS157).
- Figura 2.7. U6, selector MSB (74LS157).
- Figura 2.8. Configuración del DAC0808 y operacionales LM741 y LM311.
- Figura 2.9. Esquema electrónico de la rama o parte BCD.
- Figura 2.10. Configuración Contadores BCD (74LS390).
- Figura 2.11. Configuración del registro de 8 bits (74LS374).
- Figura 2.12. Decodificadores BCD a 7 Segmentos (74LS47).
- Figura 2.13. Visualizadores o displays junto al módulo BCD.
- Figura 2.14. Esquema electrónico general.
- Figura 2.15. Esquema de un conector.
- Figura 2.16. Regulador de tensión +5V.
- Figura 2.17. Reguladores +5V y -5V con sus correspondientes condensadores de desacoplo.
- Figura 2.18. Interruptor y pulsador utilizados.
- Figura 2.19. Esquema de puesta a cero o de reset de los contadores.
- Figura 2.20. Logotipo del software KiCad.
- Figura 2.21. Ventana de trabajo principal del EESCHEMA.
- Figura 3.1. Herramientas de KiCad para la generación de archivos.
- Figura 3.2. Pantalla de selección de huellas.
- Figura 3.3. Componente SMD.
- Figura 3.4. Componente THD.
- Figura 3.5. Ventana de trabajo principal de NewPCB.
- Figura 3.6. Colocación de componentes en la PCB con NewPCB.
- Figura 3.7. Capa TOP con pistas y vías.
- Figura 3.8. Capa BOT con pistas y vías.
- Figura 5.1. Esquema electrónico de la placa.
- Figura 5.2. Cara TOP de la placa.
- Figura 5.3. Cara BOT de la placa.
- Figura 5.4. Señalización de alimentación e interruptores.
- Figura 5.5. Señalización de los puntos de test.

# TABLAS:

- Tabla 2.1. Distribución de los pines del contador 74LS393 en los selectores.
- Tabla 2.2. Configuración del 74LS390 en BCD y B-Quinary.
- Tabla 2.3. Relación entradas/salidas del 74LS374.

# Bibliografía.

- [1] Oswaldo B. González, Guion de la práctica 2: El analizador lógico, Módulo de Instrumentación Electrónica, Técnicas Experimentales III del Grado en Física, ULL.
- [2] Adquisición y Distribución de Señales. Ramón Pallás Areny, Ed. Marcombo, ISBN: 84-267-0918-4.
- [3] Beatriz Rodríguez Mendoza, "Apuntes de la asignatura de Diseño y Tecnología de Circuitos impresos", 2019.
- [4] RS Componentes, [En línea]: <a href="https://es.rs-online.com/">https://es.rs-online.com/</a>, 7 de junio de 2020.
- [5] Real Decreto 1098/2001, de 12 de octubre, artículo 131.
- [6] KiCAD, [En línea]: <a href="https://kicad-pcb.org/">https://kicad-pcb.org/</a>, 7 de junio de 2020.

# ANEXOS.

## Anexo I: Archivos de salida del software EESCHEMA.

### Informe ERC.

Informe ERC (20/05/2020 13:25:30, Codificación UTF8 )

\*\*\*\*\* Hoja /

ErrType(3): Pin connected to other pins, but not driven by any pin

@(167,64 mm, 127,00 mm): El pin 1 (Entrada de alimentación) del componente U16 no está alimentado (red 1).

ErrType(3): Pin connected to other pins, but not driven by any pin

@(154,94 mm, 96,52 mm): El pin I (Entrada de alimentación) del componente UI5 no está alimentado (red 4).

\*\*\*\*\* Hoja /Parte Binaria/

\*\*\*\*\* Hoja /ParteBCD/

ErrType(3): Pin connected to other pins, but not driven by any pin

@(195,83 mm, 139,70 mm): El pin 1 (Entrada de alimentación) del componente #PWRO105 no está alimentado (red 14).

# BOM (Bill of materials).

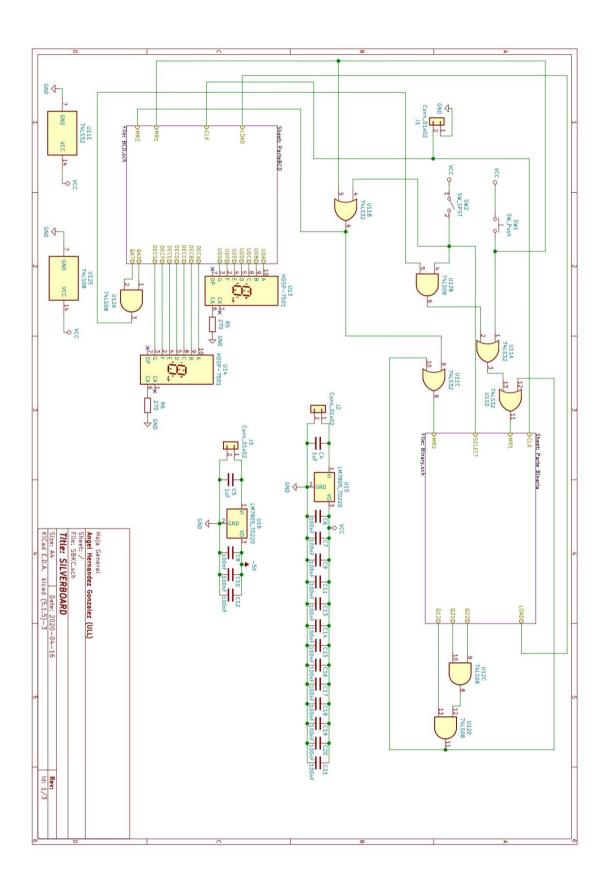
"Source:" "C:\Users\ambu\_\Desktop\SBKC\SBKC\SBKC.sch"

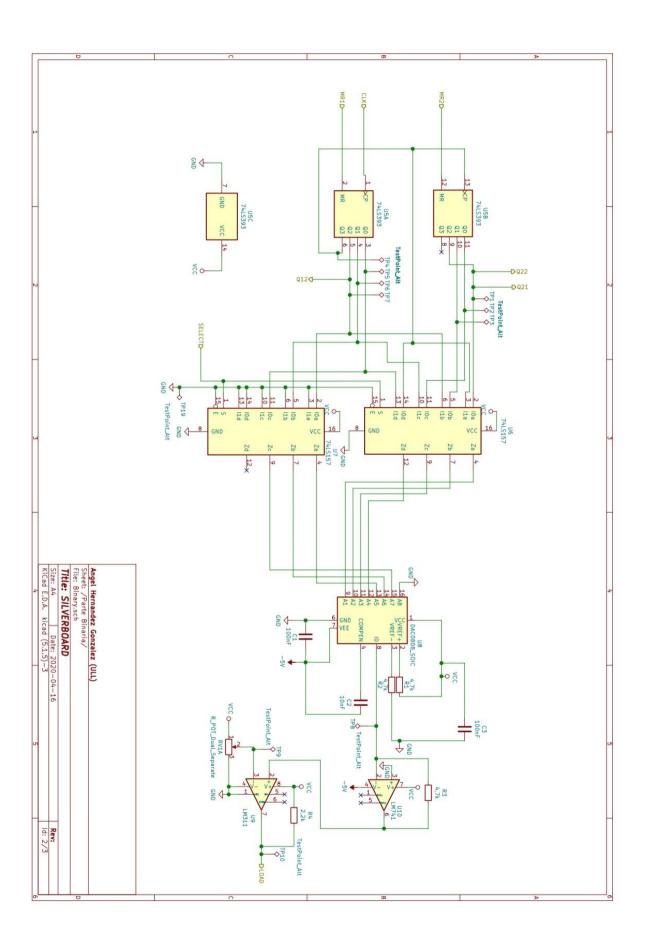
"Date:" "20/04/2020 10:41:36"

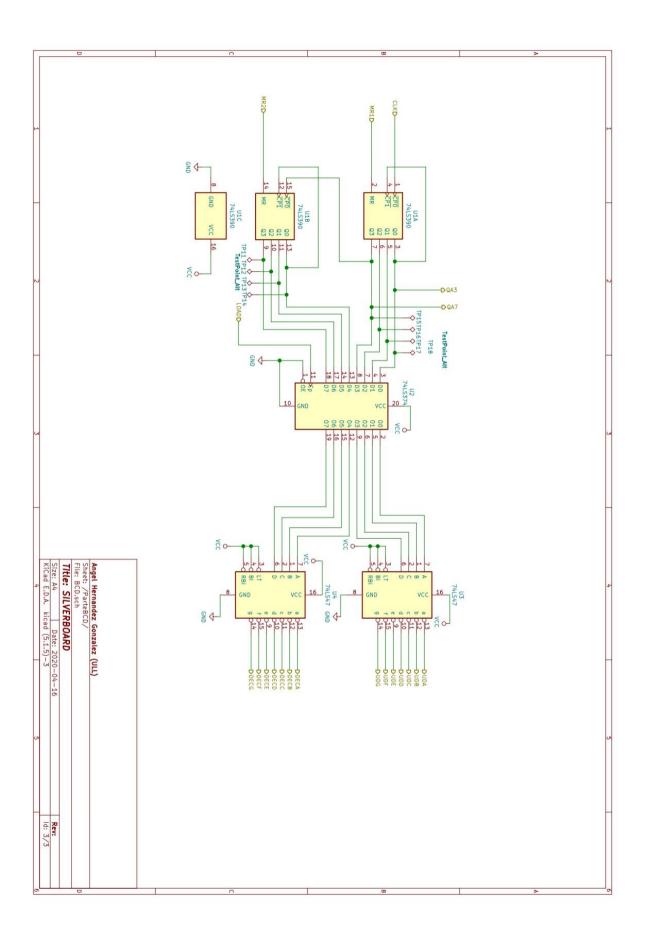
"Tool:" "Eeschema (5.1.5)-3"

"Component Count:" "49"

| "Ref" | "Value" | "Part"     | "Footprint" | "Description"      | "Vendor"  |
|-------|---------|------------|-------------|--------------------|-----------|
| "C1"  | "100nF" | "Device:C" | 1111        | "Unpolarized capa: | citor" "" |
| "C2"  | "10nF"  | "Device:C" | ""          | "Unpolarized capa  | citor" "" |
| "C3"  | "100nF" | "Device:C" | ""          | "Unpolarized capa  | citor" "" |
| "C4"  | "luF"   | "Device:C" | 1 1111      | "Unpolarized capa  | citor" "" |
| "C5"  | "luF"   | "Device:C" |             | "Unpolarized capa: | citor" "" |
| "C6"  | "100nF" | "Device:C" |             | "Unpolarized capa: | citor" "" |
| "C7"  | "100nF" | "Device:C" | ""          | "Unpolarized capa  | citor" "" |
| "C8"  | "100nF" | "Device:C" |             | "Unpolarized capa: | citor" "" |
| "C9"  | "100nF" | "Device:C" | 1 1111      | "Unpolarized capa: | citor" "" |
| "C10" | "100nF" | "Device:C" | 1 1111      | "Unpolarized capa: | citor" "" |
| "C11" | "100nF" | "Device:C" | 1 1111      | "Unpolarized capa: | citor" "" |


<sup>\*\*</sup>Mensajes ERC: 3. ErroresO, Avisos 3


```
1111
"C12"
          "100nF"
                    "Device:C"
                                                  "Unpolarized capacitor"
                                        1111
                                                                                1111
"C13"
          "100nF"
                    "Device:C"
                                                  "Unpolarized capacitor"
                                        1111
                                                                                1111
                    "Device:C"
"C14"
          "100nF"
                                                  "Unpolarized capacitor"
                                        1111
                    "Device:C"
"C15"
          "100nF"
                                                  "Unpolarized capacitor"
                                        1111
"C16"
                                                                                1111
          "100nF"
                    "Device:C"
                                                  "Unpolarized capacitor"
                                        1111
                                                                                1111
"C17"
          "100nF"
                    "Device:C"
                                                  "Unpolarized capacitor"
                                        1111
"C18"
          "100nF"
                    "Device:C"
                                                  "Unpolarized capacitor"
                                        1111
"C19"
                                                                                1111
          "100nF"
                    "Device:C"
                                                  "Unpolarized capacitor"
                                        1111
                                                                                ,,,,,
"C20"
                    "Device:C"
          "100nF"
                                                  "Unpolarized capacitor"
                                        1111
"C21"
          "100nF"
                    "Device:C"
                                                  "Unpolarized capacitor"
"]["
          "Conn O1xO2"
                              "Connector Generic:Conn O1xO2"
                                                                                "Generic connector, single row, O1xO2, script
generated (kicad-library-utils/schlib/autogen/connector/)" ""
                                                                      1111
"J2"
          "Conn O1xO2"
                              "Connector Generic:Conn 01x02"
                                                                                "Generic connector, single row, 01x02, script
generated (kicad-library-utils/schlib/autogen/connector/)" ""
          "Conn O1xO2"
                              "Connector Generic:Conn 01x02"
                                                                                 "Generic connector, single row, OlxO2, script
generated (kicad-library-utils/schlib/autogen/connector/)" ""
"R1"
          "4.7k"
                    "Device:R"
                                                  "Resistor"
                                        1111
                                                                      1111
"R2"
          "4,7k"
                    "Device:R"
                                                  "Resistor"
                                        1111
                                                                      1111
"R3"
                    "Device:R"
                                                  "Resistor"
          "4,7k"
                                        1111
"R4"
                                                  "Resistor"
          "2,2k"
                    "Device:R"
                                        1111
                                                                      1111
"R5"
          "270"
                    "Device:R"
                                                  "Resistor"
                                        1111
                                                                      1111
"R6"
          "270"
                    "Device:R"
                                                  "Resistor"
                                        "Device:R_POT_Dual Separate"""
"RV1"
          "R POT Dual Separate"
                                                                                 "Dual potentiometer, separate units"
"IW2"
          "SW Push"
                              "Switch:SW Push"
                                                            "Push button switch, generic, two pins"
"SW2"
          "SW DPDT x2"
                              "Switch:SW DPDT x2"
                                                                       "Switch, dual pole double throw, separate symbols" ""
"[[["
          "74LS390"
                              "74xx:74LS390"
                                                  "Dual BCD 4-bit counter"
"Ц2"
          "74LS374"
                              "74xx:74LS374"
                                                  "Package S0:S0IC-20W 7.5xI2.8mm P1.27mm"
                                                                                                     "8-bit Register, 3-state
outputs"
"U3"
                                        "Package S0:S0IC-16 3.9x9.9mm_P1.27mm"
          "74LS47" "74xx:74LS47"
                                                                                           "BCD to 7-segment Driver, Open
Collector, 30V outputs"
"[]4"
          "74LS47" "74xx:74LS47"
                                        "Package S0:S0IC-16 3.9x9.9mm P1.27mm"
                                                                                           "BCD to 7-segment Driver, Open
Collector, 30V outputs"
"U5"
          "74LS393"
                              "74xx:74LS393"
                                                  "Package SO:SOIC-14 3.9x8.7mm P1.27mm"
                                                                                                     "Dual BCD 4-bit counter"
"U6"
                                        "Package SO:SOIC-16 3.9x9.9mm P1.27mm"
          "74LS157" "74xx:74LS157"
                                                                                           "Quad 2 to 1 line Multiplexer"
"Ц7"
          "74LS157" "74xx:74LS157"
                                        "Package_S0:S0IC-16_3.9x9.9mm_P1.27mm"
                                                                                           "Quad 2 to 1 line Multiplexer"
"IIR"
                              "Analog DAC:DACO808 SOIC" "Package SD:SOIC-16 3.9x9.9mm P1.27mm"
          "DACO8O8 SOIC"
                                                                                                               "8-bit
multiplying DAC"
"U9"
          "LM311"
                   "Comparator:LM311" ""
                                                  "Voltage Comparator, DIP-8/SOIC-8/SSOP-8"
                                                            "Operational Amplifier, DIP-8/TO-99-8" ""
"U10"
                    "Amplifier Operational:LM741"
          "LM741"
"1111"
                                                  "Quad 2-input OR"
          "74LS32" "74xx:74LS32"
"Ц12"
          "74LS08" "74xx:74LS08"
                                                  "Quad And2"
```


# Ángel Hernández González

| "U13"     | "HDSP-7501"         | "Display_Character:HDSP-7501"            | "Display_7Segment:HDSP-A151""One digit 7 segment high |
|-----------|---------------------|------------------------------------------|-------------------------------------------------------|
| efficienc | y red, common anodi | 3"""                                     |                                                       |
| "∐14"     | "HDSP-7501"         | "Display_Character:HDSP-7501"            | "Display_7Segment:HDSP-A151""One digit 7 segment high |
| efficienc | y red, common anodi | 3"""                                     |                                                       |
| "U15"     | "LM7805_T0220"      | "Regulator_Linear:LM7805_T0220"          | "Package_TO_SOT_THT:TO-220-3_Vertical"                |
|           | "Positive 1A 35V Li | near Regulator, Fixed Output 5V, TO-220" | ш                                                     |
| "U16"     | "LM7805_T0220"      | "Regulator_Linear:LM7805_T0220"          | "Package_TO_SOT_THT:TO-220-3_Vertical"                |
|           | "Positive 1A 35V Li | near Regulator, Fixed Output 5V, TO-220" | пп                                                    |

# Anexo II: Esquemas electrónicos.







### Anexo III: Lista de huellas de componentes.

Condensadores: Capacitor\_SMD:C\_0603Metric

Conectores: Conector PinHeader 1x02 2.45mm Vertical

Resistencias: Resistor\_SMD:R\_1210\_3225Metric

Resistencia Variable: Potentiometer\_SMD\_ACP\_CA9-VSMD\_Vertical

Pulsador reset general: SW\_PUSH\_SPST\_NO\_Alps\_SKRK

Interruptor: SW\_DIP\_SPSTx01\_Slide\_6.7x4.1mm\_W6.73mm\_P2.54mm\_LowProfile\_JPin

TestPoint: TestPoint\_Loop\_D2.50mm\_Drill1.0mm\_LowProfile U1: (74LS390) Package SO:SOIC-16 3.9x9.9mm P1.27mm

U2: (74LS374) Package SO:SOIC-20W 7.5x12.8mm P1.27mm

U3: (74LS47) Package\_SO:SOIC-16\_3.9x9.9mm\_P1.27mm

U4: (74LS47) Package\_SO:SOIC-16\_3.9x9.9mm\_P1.27mm

U5: (74LS393) Package\_SO:SOIC-14\_3.9x8.7mm\_P1.27mm

U6: (74LS157) Package\_SO:SOIC-16\_3.9x9.9mm\_P1.27mm

U7: (74LS157) Package SO:SOIC-16 3.9x9.9mm P1.27mm

U8: (DAC0808) Package SO:SOIC-16 3.9x9.9mm P1.27mm

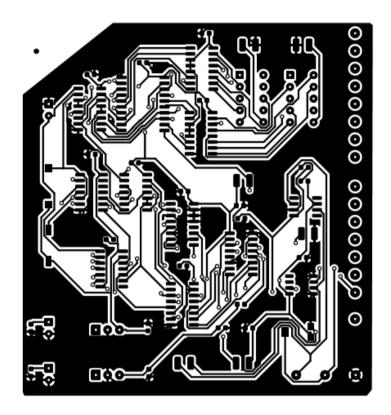
U9: (LM311) Package\_SO:SOP-8\_3.9x4.9mm\_P1.27mm

U10: (LM741) Package\_SO:SOIC-8\_3.9x4.9mm\_P1.27mm

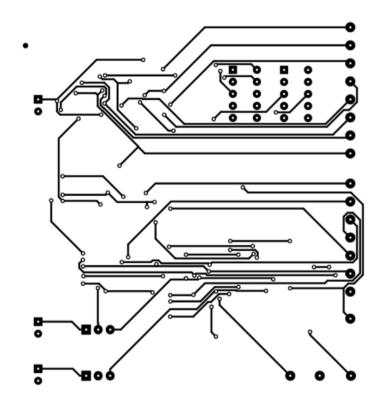
U11: (74LS32) Package\_SO:SOIC-14\_3.9x8.7mm\_P1.27mm

U12: (74LS08) Package\_SO:SOIC-14\_3.9x8.7mm\_P1.27mm

U13: (DISPLAY7SEG) Display\_7Segment:HDSP-A151


U14: (DISPLAY7SEG) Display\_7Segment:HDSP-A151

U15: (7805) Package\_TO\_SOT\_THT:TO-220-3\_Vertical


U16: (7905) Package\_TO\_SOT\_THT:TO-220-3\_Vertical

# Anexo IV: Fotolitos.

# Capa TOP.



Capa BOT.



# Anexo V: Hojas de datos de fabricantes.

#### 1. Condensadores.



#### **VJ Commercial Series**

Vishav Vitramon

**RoHS** 

FREE

GREEN

# **Surface Mount Multilayer Ceramic Chip Capacitors** for Commercial Applications



#### **FEATURES**

- C0G (NP0) and X7R dielectrics offered
- COG (NP0) is an ultra-stable dielectric offering a very low Temperature Coefficient of Capacitance (TCC)
- COG (NP0) offers low dissipation
- Excellent aging characteristics
- Ideal for decoupling and filtering (X7R)
- · Ideal for surge suppression and high voltage applications
- · Wide range of case sizes, voltage ratings and capacitance
- Wet build process
- Reliable Noble Metal Electrode (NME) system
- Material categorization: for definitions of compliance please see <a href="https://www.vishay.com/doc?99912">www.vishay.com/doc?99912</a>

#### **APPLICATIONS**

- · Timing and tuning circuits
- · Sensor and scanner applications
- Decoupling and filtering
- Surge suppression

### **ELECTRICAL SPECIFICATIONS**

# COG (NPO) DIELECTRIC

### **GENERAL SPECIFICATION**

Note Electrical characteristics at +25  $^{\circ}\text{C}$  unless otherwise specified

Operating Temperature: -55 °C to +150 °C (above +125 °C changed characteristics)

Capacitance Range: 1 pF to 56 nF Voltage Range: 25 V<sub>DC</sub> to 1000 V<sub>DC</sub>

Temperature Coefficient of Capacitance (TCC):

0 ppm/°C ± 30 ppm/°C from -55 °C to +125 °C

 $\begin{array}{l} \textbf{Dissipation Factor (DF):} \\ 0.1~\%~~maximum~~at~1.0~V_{RMS}~~and~1~~MHz~~for~values \leq 1000~~pF\\ 0.1~\%~~maximum~~at~1.0~V_{RMS}~~and~1~~kHz~~for~values > 1000~~pF \end{array}$ 

Insulating Resistance:

at +25 °C 100 000 M $\Omega$  min. or 1000  $\Omega$ F whichever is less at +125 °C 10 000 M $\Omega$  min. or 100  $\Omega$ F whichever is less

Aging Rate: 0 % maximum per decade

**Dielectric Strength Test:** 

performed per method 103 of EIA 198-2-E.

Applied test voltages

 $\leq$  200 V<sub>DC</sub>-rated: 500 V<sub>DC</sub>-rated: 250 % of rated voltage 200 % of rated voltage 630 V<sub>DC</sub>,1000 V<sub>DC</sub>-rated: 150 % of rated voltage

#### X7R DIELECTRIC

#### GENERAL SPECIFICATION

Note Electrical characteristics at +25  $^{\circ}\text{C}$  unless otherwise specified

Operating Temperature: -55 °C to +150 °C (above +125 °C changed characteristics) Capacitance Range: 120 pF to 6.8 µF

Voltage Range: 16 V<sub>DC</sub> to 1000 V<sub>DC</sub>

Temperature Coefficient of Capacitance (TCC):

± 15 % from -55 °C to +125 °C, with 0 V<sub>DC</sub> applied

Dissipation Factor (DF):  $16\,\text{V} / 25\,\text{V}$  ratings:  $3.5\,\%$  maximum at 1.0  $\text{V}_{\text{RMS}}$  and 1 kHz  $>25\,\text{V}$  ratings:  $2.5\,\%$  maximum at 1.0  $\text{V}_{\text{RMS}}$  and 1 kHz

at +25 °C 100 000 M $\Omega$  min. or 1000  $\Omega$ F whichever is less at +125 °C 10 000 M $\Omega$  min. or 100  $\Omega$ F whichever is less

Aging Rate: 1 % maximum per decade

Dielectric Strength Test:

performed per method 103 of EIA 198-2-E.

Applied test voltages

≤ 250 V<sub>DC</sub>-rated: 250 % of rated voltage 500 V<sub>DC</sub>-rated: 250 % of rated voltage 500 V<sub>DC</sub>, 1000 V<sub>DC</sub>-rated: min. 150 % of rated voltage min. 120 % of rated voltage

Revision: 09-Sep-14 Document Number: 45199

For technical questions, contact: mlcc@vishay.com

THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <a href="https://www.vishay.com/doc?91000">www.vishay.com/doc?91000</a>



Vishay Vitramon

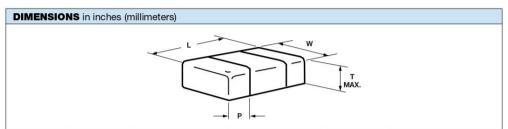
| DIEL FOTDIO | 2125 | MAXIMUM VOLTAGE | CAPACITANCE |         |  |
|-------------|------|-----------------|-------------|---------|--|
| DIELECTRIC  | CASE | (V)             | MINIMUM     | MAXIMUM |  |
|             | 0402 | 100             | 1.0 pF      | 220 pF  |  |
|             | 0603 | 200             | 1.0 pF      | 1.0 nF  |  |
|             | 0805 | 500             | 1.0 pF      | 4.7 nF  |  |
|             | 1206 | 630             | 1.0 pF      | 10 nF   |  |
| 000 4150    | 1210 | 630             | 56 pF       | 12 nF   |  |
| C0G (NP0)   | 1808 | 1000            | 18 pF       | 10 nF   |  |
|             | 1812 | 1000            | 39 pF       | 22 nF   |  |
|             | 1825 | 500             | 100 pF      | 39 nF   |  |
|             | 2220 | 1000            | 270 pF      | 47 nF   |  |
|             | 2225 | 1000            | 270 pF      | 56 nF   |  |
|             | 0402 | 100             | 120 pF      | 47 nF   |  |
|             | 0603 | 200             | 330 pF      | 150 nF  |  |
|             | 0805 | 250             | 330 pF      | 470 nF  |  |
|             | 1206 | 630             | 330 pF      | 1.0 µF  |  |
|             | 1210 | 630             | 390 pF      | 1.0 µF  |  |
| X7R         | 1808 | 1000            | 470 pF      | 270 nF  |  |
|             | 1812 | 1000            | 1.0 nF      | 1.0 µF  |  |
|             | 1825 | 1000            | 10 nF       | 2.7 µF  |  |
|             | 2220 | 500             | 15 nF       | 2.2 µF  |  |
|             | 2225 | 1000            | 33 nF       | 4.7 μF  |  |
|             | 3640 | 500             | 27 nF       | 6.8 µF  |  |

### Note

Detail ratings see "Selection Chart"



Vishay Vitramon


| VJ0805 (1)                                                                           | Y                           | 102                                                                                                                                 | K                                                                                                                                                                                                                                                                                                                     | X                                                                                                                                                      | Α                                                                                                               | Α                                                                                                        | Т                                                                                                                                                       | ### (3)                                                                                                          |
|--------------------------------------------------------------------------------------|-----------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| CASE<br>CODE                                                                         | DIELECTRIC                  | CAPACITANCE<br>NOMINAL CODE                                                                                                         | CAPACITANCE<br>TOLERANCE                                                                                                                                                                                                                                                                                              | TERMINATION                                                                                                                                            | DC<br>VOLTAGE<br>RATING (2)                                                                                     | MARKING                                                                                                  | PACKAGING                                                                                                                                               | PROCESS<br>CODE                                                                                                  |
| 0402<br>0603<br>0805<br>1206<br>1210<br>1808<br>1812<br>1825<br>2220<br>2225<br>3640 | A = C0G<br>(NP0)<br>Y = X7R | Expressed in picofarads (pF). The first two digits are significant, the third is a multiplier. Examples: 1R8 = 1.8 pF 102 = 1000 pF | $\begin{split} B &= \pm 0.10 \text{ pF} \\ C &= \pm 0.25 \text{ pF} \\ D &= \pm 0.5 \text{ pF} \\ F &= \pm 1.\% \\ G &= \pm 2.\% \\ J &= \pm 5.\% \\ K &= \pm 10.\% \\ M &= \pm 20.\% \\ \text{Note} \\ \text{COG (NPO):} \\ B, C, D < 10 \text{ pF} \\ F, G, J, K \geq 10 \text{ pF} \\ X/R: \\ J, K, M \end{split}$ | X = Ni barrier<br>100 % tin plated<br>matte finish<br>F, E = AgPd ( <sup>4</sup> )<br>B = polymer<br>100 % tin plated<br>matte finish ( <sup>5</sup> ) | J = 16 V<br>X = 25 V<br>A = 50 V<br>B = 100 V<br>C = 200 V<br>P = 250 V<br>E = 500 V<br>L = 630 V<br>G = 1000 V | A = unmarked M = marked Note Marking is only available for 0805 and 1206 with termination code "X" / "B" | C = 7" reel / T = 7" reel / P = 11 1/4", paper R = 11 1/4", plastic O = 7" flamed pa I = 11 1/4" flamed pa Not "I" and "C" a "F", "E" ter size (402 / 0 | plastic tape /13" reel / tape /13" reel / tape /13" reel / per tape / 13" reel / per tape / re used for mination |

- (1) Case size designator may be replaced by four digit drawing number used to control non-standard products and / or special requirements
- De voltage rating should not be exceeded in application. Other application factors may affect the MLCC performance. Consult for questions: mlcc@vishay.com
  Process code may be added with up to three digits, used to control non-standard products and / or special requirements.
- (4) Termination code "E" is for conductive epoxy assembly
- (5) Selected values available, contact micc@vishay.com for list of released ratings

| ENVIRONMENTAL STATUS |                                              |                |              |  |  |
|----------------------|----------------------------------------------|----------------|--------------|--|--|
| TERMINATION CODE     | TERMINATION DESCRIPTION                      | RoHS COMPLIANT | VISHAY GREEN |  |  |
| Х                    | Ni barrier 100 % tin plated matte finish     | Yes            | Yes          |  |  |
| Е                    | AgPd                                         | Yes            | Yes          |  |  |
| В                    | Polymer layer, 100 % tin plated matte finish | Yes            | No           |  |  |
| F                    | AgPd                                         | Yes            | No           |  |  |



Vishay Vitramon



| CASE CODE | STYLE  | LENGTH                                            | WIDTH                                             | MAXIMUM<br>THICKNESS |                 | NATION<br>P)    |
|-----------|--------|---------------------------------------------------|---------------------------------------------------|----------------------|-----------------|-----------------|
|           |        | (L)                                               | (W)                                               | (Т)                  | MINIMUM         | MAXIMUM         |
| 0402      | VJ0402 | 0.040 + 0.004 / - 0.002<br>(1.00 + 0.10 / - 0.05) | 0.020 + 0.004 / - 0.002<br>(0.50 + 0.10 / - 0.05) | 0.024<br>(0.60)      | 0.004<br>(0.10) | 0.016<br>(0.41) |
| 0603      | VJ0603 | 0.063 ± 0.006<br>(1.60 ± 0.15)                    | 0.031 ± 0.006<br>(0.80 ± 0.15)                    | 0.038<br>(0.97)      | 0.012<br>(0.30) | 0.018<br>(0.46) |
| 0805      | VJ0805 | 0.079 ± 0.008<br>(2.00 ± 0.20)                    | 0.049 ± 0.008<br>(1.25 ± 0.20)                    | 0.057<br>(1.45)      | 0.010<br>(0.25) | 0.028<br>(0.71) |
| 1206      | VJ1206 | 0.126 ± 0.010<br>(3.20 ± 0.25)                    | 0.063 ± 0.010<br>(1.60 ± 0.25)                    | 0.067<br>(1.70)      | 0.010<br>(0.25) | 0.028<br>(0.71) |
| 1210      | VJ1210 | 0.126 ± 0.010<br>(3.20 ± 0.25)                    | 0.098 ± 0.010<br>(2.50 ± 0.25)                    | 0.067<br>(1.70)      | 0.010<br>(0.25) | 0.028<br>(0.71) |
| 1808      | VJ1808 | 0.180 ± 0.012<br>(4.57 ± 0.30)                    | 0.080 ± 0.010<br>(2.03 ± 0.25)                    | 0.086<br>(2.18)      | 0.010<br>(0.25) | 0.030<br>(0.76) |
| 1812      | VJ1812 | 0.177 ± 0.012<br>(4.50 ± 0.30)                    | 0.126 ± 0.008<br>(3.20 ± 0.20)                    | 0.086<br>(2.18)      | 0.010<br>(0.25) | 0.030<br>(0.76) |
| 1825      | VJ1825 | 0.177 ± 0.012<br>(4.50 ± 0.30)                    | 0.252 ± 0.010<br>(6.40 ± 0.25)                    | 0.086<br>(2.18)      | 0.010<br>(0.25) | 0.030<br>(0.76) |
| 2220      | VJ2220 | 0.220 ± 0.010<br>(5.59 ± 0.25)                    | 0.200 ± 0.010<br>(5.08 ± 0.25)                    | 0.086<br>(2.18)      | 0.010<br>(0.25) | 0.030<br>(0.76) |
| 2225      | VJ2225 | 0.220 ± 0.010<br>(5.59 ± 0.25)                    | 0.250 ± 0.010<br>(6.35 ± 0.25)                    | 0.086<br>(2.18)      | 0.010<br>(0.25) | 0.030<br>(0.76) |
| 3640      | VJ3640 | 0.360 ± 0.015<br>(9.14 ± 0.38)                    | 0.400 ± 0.015<br>(10.20 ± 0.38)                   | 0.086<br>(2.18)      | 0.010<br>(0.25) | 0.030<br>(0.76) |

Revision: 09-Sep-14 Document Number: 45199

Polymer (B-termination) have increased dimensions: length 0.006"(0.15 mm)



Vishay Vitramon

| SELECTIO    |                  | ART      |       |     |          |       |    |     |      |     |     |      | _   |       |     |     |    |                                                  |          |     |     |
|-------------|------------------|----------|-------|-----|----------|-------|----|-----|------|-----|-----|------|-----|-------|-----|-----|----|--------------------------------------------------|----------|-----|-----|
| DIELECTRIC  |                  |          |       |     |          |       |    | _   | 2000 |     | COG | (NPO |     |       | (4) |     |    |                                                  |          | 443 |     |
| STYLE       |                  | ١ ١      | /J040 |     | ١ ١      | /J060 | 3  |     |      | 805 |     |      | V.  | J1206 | (1) |     |    | V                                                | J1210    | (1) |     |
| CASE CODE   |                  |          | 0402  |     |          | 0603  |    |     |      | 05  |     |      |     | 1206  |     |     |    | 100                                              | 1210     |     |     |
| VOLTAGE (VI |                  | 25       | 50    | 100 | 50       | 100   |    | 50  | 100  |     | 500 | 50   | 100 | 200   | 500 | 630 | 50 | 100                                              |          | 500 | 630 |
| VOLTAGE CO  |                  | Х        | Α     | В   | Α        | В     | С  | Α   | В    | С   | Е   | Α    | В   | С     | E   | L   | Α  | В                                                | С        | Е   | L   |
| 1R0         | 1.0 pF           | ••       | ••    | ••  | ••       | ••    | •• | ••  | ••   | ••  | ••  | ••   | ••  | ••    | ••  | ••  |    |                                                  |          |     |     |
| 1R2         | 1.2 pF           | ••       | ••    | ••  | ••       | ••    | •• | ••  | ••   | ••  | ••  | ••   | ••  | ••    | ••  | ••  |    |                                                  | _        |     |     |
| 1R5         | 1.5 pF           | ••       | ••    | ••  | ••       | ••    | •• | ••  | ••   | ••  | ••  | ••   | ••  | ••    | ••  | ••  |    |                                                  |          |     |     |
| 1R8         | 1.8 pF           | ••       | ••    | ••  | ••       | ••    | •• | ••  | ••   | ••  | ••  | ••   | ••  | ••    | ••  | ••  |    |                                                  |          |     |     |
| 2R2         | 2.2 pF           | ••       | ••    | ••  | ••       | ••    | •• | ••  | ••   | ••  | ••  | ••   | ••  | ••    | ••  | ••  |    |                                                  |          |     |     |
| 2R7         | 2.7 pF           | ••       | ••    | ••  | ••       | ••    | •• | ••  | ••   | ••  | ••  | ••   | ••  | ••    | ••  | ••  |    |                                                  |          |     |     |
| 3R3         | 3.3 pF           | ••       | ••    | ••  | ••       | ••    | •• | ••  | ••   | ••  | ••  | ••   | ••  | ••    | ••  | ••  |    |                                                  |          |     |     |
| 3R9         | 3.9 pF           | ••       | ••    | ••  | ••       | ••    | •• | ••  | ••   | ••  | ••  | ••   | ••  | ••    | ••  | ••  |    |                                                  |          |     |     |
| 4R7         | 4.7 pF           | ••       | ••    | ••  | ••       | ••    | •• | ••  | ••   | ••  | ••  | ••   | ••  | ••    | ••  | ••  |    |                                                  |          |     | _   |
| 5R6         | 5.6 pF           | ••       | ••    | ••  | ••       | ••    | •• | ••  | ••   | ••  | ••  | ••   | ••  | ••    | ••  | ••  | _  | -                                                |          | -   | -   |
| 6R8<br>8R2  | 6.8 pF<br>8.2 pF | ••       | ••    | ••  | ••       | ••    | •• | ••• | ••   | ••  | **  | ••   | ••  | •••   | ••• | ••  |    |                                                  | -        | -   |     |
| 100         | 10 pF            | ••       | ••    | ••  | ••       | ••    | •• | ••  | ••   | ••  | ••  | ••   | ••  | ••    | ••  | ••  | _  | <del>                                     </del> | <u> </u> |     | _   |
| 120         | 12 pF            | ••       | ••    | ••  | ••       | ••    | •• | ••  | ••   | ••  | ••  | ••   | ••  | ••    | ••  | ••  |    |                                                  |          |     |     |
| 150         | 15 pF            | ••       | ••    | ••  | ••       | ••    | •• | ••  | ••   | ••  | ••  | ••   | ••  | ••    | ••  | ••  |    |                                                  |          |     |     |
| 180         | 18 pF            | ••       | ••    | ••  | ••       | ••    | •• | ••  | ••   | ••  | ••  | ••   | ••  | ••    | ••  | ••  |    |                                                  |          |     |     |
| 220         | 22 pF            | ••       | ••    | ••  | ••       | ••    | •• | ••  | ••   | ••  | ••  | ••   | ••  | ••    | ••  | ••  |    |                                                  |          |     |     |
| 270         | 27 pF            | ••       | ••    | ••  | ••       | ••    | •• | ••  | ••   | ••  | ••  | ••   | ••  | ••    | ••  | ••  |    |                                                  |          |     |     |
| 330         | 33 pF            | ••       | ••    | ••  | ••       | ••    | •• | ••  | ••   | ••  | ••  | ••   | ••  | ••    | ••  | ••  |    |                                                  |          |     |     |
| 390         | 39 pF            | ••       | ••    | ••  | ••       | ••    | •• | ••  | ••   | ••  | ••  | ••   | ••  | ••    | ••  | ••  |    | -                                                |          |     | _   |
| 470<br>560  | 47 pF            | ••       | ••    | ••  | ••       | ••    | •• | ••  | ••   | ••  | ••  | ••   | ••  | ••    | ••  | ••  |    |                                                  |          |     | •   |
| 680         | 56 pF<br>68 pF   | •••      | ••    | ••  | ••       | •••   | •• | ••• | ••   | ••  | ••  |      | ••  | •••   | ••  | ••  |    |                                                  |          | ÷   | :   |
| 820         | 82 pF            | •••      | ••    | ••  | ••       | •••   | •• | ••• | ••   | ••  | ••  | ••   | ••  | ••    | ••• | ••  |    |                                                  |          | •   | •   |
| 101         | 100 pF           | ••       | ••    | ••  | ••       | ••    | •• | ••  | ••   | ••  | ••  | •    | •   | •     | •   | •   |    |                                                  |          | •   | •   |
| 121         | 120 pF           | ••       | ••    | ••  | ••       | ••    | •• | ••  | ••   | ••  | ••  | •    | •   |       | •   | •   | •  | •                                                | •        | •   | •   |
| 151         | 150 pF           | ••       | ••    |     | ••       | ••    | •• | ••  | ••   | ••  | ••  | •    | •   | •     | •   | •   | •  | •                                                | •        | •   | •   |
| 181         | 180 pF           | ••       | ••    |     | ••       | ••    | •  | ••  | ••   | ••  | ••  | •    | •   | •     | •   | •   | •  | •                                                | •        | •   | •   |
| 221         | 220 pF           | ••       | ••    | Ĭ.  | ••       | ••    | •  | ••  | ••   | ••  | •   | •    | •   | •     | •   | •   | •  | •                                                | •        | ٠   | •   |
| 271         | 270 pF           |          |       |     | ••       | ••    | •  | ••  | ••   | ••  | •   | •    | •   | •     | •   | •   | •  | •                                                | •        | •   | •   |
| 331         | 330 pF           | _        | _     |     | ••       | ••    |    | ••  | ••   | ••  | •   | •    | •   | •     | •   | •   | •  | •                                                | •        | •   | •   |
| 391<br>471  | 390 pF           | _        |       | 2   | ••       | ••    |    | ••  | ••   | ••  | ÷   | •    | •   | :     | •   | :   | :  | :                                                | •        | •   | •   |
| 561         | 470 pF<br>560 pF | _        |       |     | ••       |       |    | ••• | ••   |     | × . | -    |     |       |     |     |    |                                                  |          |     |     |
| 681         | 680 pF           | $\vdash$ |       | -   | ••       | -     |    | ••  | ••   | •   |     |      | •   | •     | •   |     | -  |                                                  |          | •   | •   |
| 821         | 820 pF           |          |       |     | ••       |       |    | ••  | ••   |     |     |      |     |       |     |     |    |                                                  |          | •   | •   |
| 102         | 1.0 nF           |          |       |     | ••       |       |    | ••  | ••   | •   |     | •    | •   | •     | •   | •   | •  | •                                                | •        | •   | •   |
| 122         | 1.2 nF           |          |       |     |          |       |    | ••  | •    |     |     | •    | •   | •     |     |     | •  | •                                                | •        | •   | •   |
| 152         | 1.5 nF           |          |       | 1   |          |       |    | ••  | •    |     |     | •    | •   | •     |     |     | •  | •                                                | •        | •   | •   |
| 182         | 1.8 nF           |          |       |     |          |       |    | •   |      |     |     | •    | •   | •     |     |     | •  | •                                                | •        | •   | •   |
| 222         | 2.2 nF           | _        |       |     | _        | _     |    | •   |      |     |     | •    | •   | •     |     |     | •  | •                                                | •        |     |     |
| 272<br>332  | 2.7 nF           | _        |       |     | _        | -     |    | :   |      |     |     | •    | •   | :     |     |     | •  | :                                                | •        |     |     |
| 392         | 3.3 nF<br>3.9 nF | _        |       |     | $\vdash$ |       |    | ÷   |      |     |     | •    | :   | •     |     |     | •  | ÷                                                | •        |     |     |
| 472         | 4.7 nF           | $\vdash$ |       |     | $\vdash$ | 1     | -  | ÷   |      | -   |     | •    | •   |       |     | _   | •  | ÷                                                | •        | _   |     |
| 562         | 5.6 nF           | $\vdash$ |       |     | $\vdash$ | 1     |    |     |      |     |     |      |     |       |     |     | •  |                                                  |          |     |     |
| 682         | 6.8 nF           | $\vdash$ |       |     |          |       |    |     |      |     |     | •    | •   |       |     |     | •  | •                                                |          | - 3 |     |
| 822         | 8.2 nF           |          |       |     |          |       |    |     |      |     |     | •    | •   |       |     |     | •  | •                                                | •        |     |     |
| 103         | 10 nF            |          |       |     |          |       |    |     |      |     |     | •    | •   |       |     |     | •  | •                                                |          |     |     |
| 123         | 12 nF            |          |       |     |          |       | 4  |     | -    |     |     |      |     |       |     |     | •  | •                                                |          |     | Ť.  |
| 153         | 15 nF            |          |       |     |          |       |    |     |      |     |     |      |     |       |     |     |    |                                                  |          |     |     |
| 183         | 18 nF            |          |       |     |          |       |    |     |      |     |     |      |     |       |     |     |    |                                                  |          |     |     |
| 223         | 22 nF            |          |       |     |          |       |    |     |      |     |     |      |     |       |     |     |    |                                                  |          |     |     |
| 273         | 27 nF            |          |       | 9   | _        | -     |    |     |      | 2   |     |      |     |       |     |     |    | -                                                |          |     | -   |
| 333         | 33 nF            | <u> </u> |       |     | <b>—</b> | -     |    | -   |      |     |     | _    |     | -     |     | _   |    | -                                                |          |     | -   |
| 393<br>473  | 39 nF<br>47 nF   | -        |       |     | $\vdash$ | -     | -  | -   | -    | -   |     | _    |     | -     | -   | _   | -  | -                                                |          | -   | -   |
| 563         | 56 nF            | $\vdash$ |       |     | $\vdash$ |       |    |     |      |     |     |      |     | -     |     |     |    |                                                  |          |     |     |
| 000         | 30 Hi            |          | L     |     |          |       |    |     |      |     |     |      |     |       |     |     |    |                                                  |          |     |     |

### Notes

Revision: 09-Sep-14

RoHS-compliant

• Paper tape • Plastic tape

(1) See soldering recommendations within this data book, or visit <a href="https://www.vishay.com/doc?45034">www.vishay.com/doc?45034</a>

Document Number: 45199



Vishay Vitramon

| SELECTION C   | CHART            |    |     |        |      |          |          |     |        |     |      |          |     |                                                  |     |
|---------------|------------------|----|-----|--------|------|----------|----------|-----|--------|-----|------|----------|-----|--------------------------------------------------|-----|
| DIELECTRIC    |                  | T  |     |        |      |          |          | COG | (NP0)  |     |      |          |     |                                                  |     |
| STYLE         |                  | 1  |     | VJ1808 | (1)  |          |          |     | VJ1812 | (1) |      |          | VJ1 | 825 (1)                                          |     |
| CASE CODE     |                  | 1  |     | 1808   | 2850 |          |          |     | 1812   | -   |      |          | 1   | 825                                              |     |
| VOLTAGE (VDC) |                  | 50 | 100 | 200    | 500  | 1000     | 50       | 100 | 200    | 500 | 1000 | 50       | 100 | 200                                              | 500 |
| VOLTAGE CODE  |                  | A  | В   | С      | E    | G        | Α        | В   | С      | E   | G    | Α        | В   | С                                                | E   |
| CAP. CODE     | CAP.             | 1. |     |        |      |          |          | _   |        |     |      | <u> </u> |     |                                                  | _   |
| 1R0           | 1.0 pF           |    |     |        |      |          |          |     |        |     |      |          |     |                                                  |     |
| 1R2           | 1.2 pF           |    |     |        |      |          |          |     |        |     |      |          |     |                                                  |     |
| 1R5           | 1.5 pF           |    |     |        |      |          |          |     |        |     |      |          |     |                                                  |     |
| 1R8           | 1.8 pF           |    |     |        |      |          |          |     |        |     |      |          |     |                                                  |     |
| 2R2           | 2.2 pF           |    |     |        |      |          |          |     |        |     |      |          |     |                                                  |     |
| 2R7           | 2.7 pF           |    |     |        |      |          |          |     |        |     |      |          |     |                                                  | 1   |
| 3R3           | 3.3 pF           | _  |     |        |      |          |          |     |        |     |      |          |     |                                                  |     |
| 3R9           | 3.9 pF           |    |     |        |      |          |          |     |        |     |      | _        |     |                                                  |     |
| 4R7           | 4.7 pF           | +  |     |        |      |          |          |     | -      |     |      |          |     | -                                                | -   |
| 5R6<br>6R8    | 5.6 pF           |    |     |        |      |          |          |     | -      |     |      |          |     |                                                  |     |
| 8R2           | 6.8 pF<br>8.2 pF | +  |     |        |      | -        |          |     | _      |     | _    | _        |     | -                                                |     |
| 100           | 10 pF            | +  |     |        |      | <u> </u> | $\vdash$ |     | 1      |     |      | $\vdash$ |     | <del>                                     </del> |     |
| 120           | 12 pF            | +  |     |        |      |          |          |     |        |     |      |          |     |                                                  |     |
| 150           | 15 pF            | 1  |     |        |      |          |          |     |        |     |      |          |     |                                                  |     |
| 180           | 18 pF            | 1  |     |        |      | •        |          |     |        |     |      |          |     |                                                  |     |
| 220           | 22 pF            |    |     | •      |      | •        |          |     |        |     |      |          |     |                                                  |     |
| 270           | 27 pF            |    |     | •      |      | •        |          |     |        |     |      |          |     |                                                  |     |
| 330           | 33 pF            |    |     | •      |      | •        |          |     |        |     |      |          |     |                                                  |     |
| 390           | 39 pF            |    |     | •      |      | •        | •        | •   | •      | •   | •    |          |     |                                                  |     |
| 470           | 47 pF            |    |     | •      |      | •        | •        | •   | •      | •   | •    |          |     |                                                  |     |
| 560           | 56 pF            | 1  |     | •      |      | •        | •        | •   | •      | •   | •    |          |     |                                                  |     |
| 680           | 68 pF            |    |     | •      |      | •        | •        | •   | •      | •   | •    |          |     |                                                  |     |
| 820           | 82 pF            | +  |     | •      |      | •        | •        | •   | •      | •   | •    |          |     |                                                  |     |
| 101<br>121    | 100 pF           | +  |     | •      | •    | •        | •        | •   | •      | •   | •    |          |     |                                                  | •   |
| 151           | 120 pF<br>150 pF | -  |     |        | ·    | •        |          | •   | •      | •   | •    |          |     |                                                  | •   |
| 181           | 180 pF           | +- |     | -      | -    | -        |          | -   | -      | •   | -    | _        |     | _                                                | -   |
| 221           | 220 pF           |    | •   | •      | •    | •        | •        | •   |        | •   | •    |          |     | _                                                |     |
| 271           | 270 pF           |    | •   | •      | •    |          |          | •   |        | •   | •    |          |     |                                                  | •   |
| 331           | 330 pF           | •  | •   | •      | •    | •        | •        | •   | •      | •   | •    |          |     |                                                  | •   |
| 391           | 390 pF           | •  | •   | •      | •    | •        | •        | •   | •      | •   | •    |          |     |                                                  | •   |
| 471           | 470 pF           | •  | •   | •      | •    | •        | •        | •   | •      | •   | •    |          |     |                                                  | •   |
| 561           | 560 pF           | •  | •   | •      | •    | •        | •        | •   | •      | •   | •    |          |     |                                                  | •   |
| 681           | 680 pF           | •  | •   | •      | •    | •        | •        | •   | •      | •   | •    |          |     |                                                  | •   |
| 821           | 820 pF           | •  | •   | •      | •    | •        | •        | •   | •      | •   | •    |          |     |                                                  | •   |
| 102           | 1.0 nF           | •  | •   | •      | •    | •        | •        | •   | •      | •   | •    | •        | •   | •                                                | •   |
| 122           | 1.2 nF           | •  | •   | •      | •    |          | •        | •   | •      | •   | •    | •        | •   | •                                                | •   |
| 152           | 1.5 nF           | •  | •   | •      | •    |          | •        | ٠   | •      | •   | •    | •        | •   | •                                                | •   |
| 182           | 1.8 nF           | •  | •   | •      | •    |          | •        | •   | •      | •   | •    | •        | •   | •                                                | •   |
| 222<br>272    | 2.2 nF<br>2.7 nF | •  | •   | ÷      |      |          | •        | •   | •      | •   | •    | •        | :   | •                                                | :   |
| 332           | 3.3 nF           | •  |     | -      |      |          | •        | •   |        |     |      | ·        | •   |                                                  |     |
| 392           | 3.9 nF           | •  | •   | -      |      | 10       | •        | •   | -      | •   |      | •        |     |                                                  |     |
| 472           | 4.7 nF           | •  | •   | •      |      | 1        | •        | •   |        | •   |      | •        | •   |                                                  |     |
| 562           | 5.6 nF           | •  | •   | •      |      | 1        | •        | •   | •      | •   |      | •        | •   | •                                                | •   |
| 682           | 6.8 nF           | •  | •   | •      |      |          | •        | •   | •      | •   |      | •        | •   | •                                                | •   |
| 822           | 8.2 nF           | •  | •   |        |      |          | •        | •   | •      | •   |      | •        | •   | •                                                | •   |
| 103           | 10 nF            | •  |     |        |      |          | •        | •   | •      | •   |      | •        | •   | •                                                | •   |
| 123           | 12 nF            |    |     |        |      |          | •        | •   | •      |     |      | •        | •   | •                                                |     |
| 153           | 15 nF            |    |     |        |      |          | ٠        | •   |        |     |      | •        | •   | •                                                |     |
| 183           | 18 nF            |    |     |        |      |          | •        |     |        |     |      | •        | •   | •                                                |     |
| 223           | 22 nF            | 1  |     |        |      |          | ٠        |     |        |     |      | •        | •   | •                                                |     |
| 273           | 27 nF            |    |     |        |      |          | <u> </u> |     |        |     |      | •        | •   | •                                                |     |
| 333<br>393    | 33 nF<br>39 nF   | +  |     |        |      | -        |          |     |        |     | _    | •        | •   |                                                  | -   |
| 473           | 39 nF<br>47 nF   | 1  |     |        |      |          |          |     | -      |     |      | •        |     |                                                  |     |
| 563           | 56 nF            | +  |     |        |      | -        |          |     |        |     |      |          |     | -                                                | -   |
| 303           | 1 36 HF          | 1  |     |        |      |          |          |     |        |     |      |          |     |                                                  |     |

Document Number: 45199

Notes
RoHS-compliant
Plastic tape
(1) See soldering recommendations within this data book, or visit <a href="https://www.vishay.com/doc?45034">www.vishay.com/doc?45034</a>
6



Vishay Vitramon

|              | N CHART          | 200 |     |     |         |     |        |          |     |           |     |      |
|--------------|------------------|-----|-----|-----|---------|-----|--------|----------|-----|-----------|-----|------|
| DIELECTRIC   |                  |     |     |     |         |     | COG (N | P0)      |     |           |     |      |
| STYLE        |                  |     |     | VJ2 | 220 (1) |     |        | J-1250   |     | VJ2225 (1 | )   |      |
| CASE CODE    |                  |     |     | 2   | 220     |     |        |          |     | 2225      |     |      |
| VOLTAGE (VDC | 3)               | 50  | 100 | 200 | 500     | 630 | 1000   | 50       | 100 | 200       | 500 | 1000 |
| VOLTAGE COL  | DE .             | Α   | В   | С   | E       | L   | G      | Α        | В   | С         | E   | G    |
| CAP. CODE    | CAP.             |     |     |     |         |     |        | 72.2     |     |           |     |      |
| 1R0          | 1.0 pF           |     | į.  |     |         |     |        |          |     |           |     |      |
| 1R2          | 1.2 pF           |     |     | 8   | 9       | 8 9 |        |          |     | 0         |     |      |
| 1R5          | 1.5 pF           |     |     |     |         |     |        |          |     |           |     |      |
| 1R8          | 1.8 pF           |     |     |     |         |     |        |          |     |           |     |      |
| 2R2<br>2R7   | 2.2 pF           |     | 62  |     |         |     |        |          |     |           |     |      |
| 2R7<br>3R3   | 2.7 pF<br>3.3 pF | -   |     |     | -       |     |        |          | -   |           |     |      |
| 3R9          | 3.9 pF           | _   | 2   | -   |         |     |        | <u> </u> |     |           |     |      |
| 4R7          | 4.7 pF           |     |     |     | 2 5     |     |        | -        |     | -         |     |      |
| 5R6          | 5.6 pF           |     |     |     |         |     |        |          |     |           |     |      |
| 6R8          | 6.8 pF           |     |     |     |         |     |        |          |     |           |     |      |
| BR2          | 8.2 pF           |     |     |     | V       |     |        |          |     |           |     |      |
| 100          | 10 pF            |     |     |     |         |     |        |          |     |           |     |      |
| 120          | 12 pF            |     |     |     |         |     |        |          |     |           |     |      |
| 150          | 15 pF            |     |     |     |         |     |        |          |     |           |     |      |
| 180          | 18 pF            |     |     |     |         |     |        |          |     |           |     |      |
| 220          | 22 pF            |     |     |     |         |     |        |          |     |           |     |      |
| 270          | 27 pF            |     |     |     | N 0     |     |        |          |     | _         |     |      |
| 330          | 33 pF            |     |     |     |         |     |        |          |     |           |     |      |
| 390          | 39 pF            |     |     |     | -       | -   |        |          |     | -         |     |      |
| 470<br>560   | 47 pF<br>56 pF   |     |     |     |         |     |        |          |     |           |     |      |
| 580          | 68 pF            | -   |     |     |         |     |        |          | +   |           |     |      |
| 820          | 82 pF            |     |     |     | -       |     |        |          |     |           |     |      |
| 101          | 100 pF           |     |     |     | 0       |     |        |          |     |           |     |      |
| 121          | 120 pF           |     |     |     |         |     |        |          |     |           |     |      |
| 151          | 150 pF           |     |     |     |         |     |        |          |     |           |     |      |
| 181          | 180 pF           |     |     |     |         |     |        |          |     |           |     |      |
| 221          | 220 pF           |     |     | 5   | 8       |     |        |          |     |           |     |      |
| 271          | 270 pF           | •   | •   | •   | •       | •   | •      |          |     |           |     | •    |
| 331          | 330 pF           | •   | •   | •   | •       | •   | •      |          |     |           |     | •    |
| 391          | 390 pF           | •   | •   | •   | •       | •   | •      |          |     |           |     | •    |
| 471          | 470 pF           | •   | •   | •   |         | •   | •      |          |     |           |     | •    |
| 561<br>681   | 560 pF           | -   | •   | •   |         | -   | •      |          |     |           | •   | •    |
| 821          | 680 pF<br>820 pF | •   |     | -   | -       | -   |        |          |     |           | -   | -:   |
| 102          | 1.0 nF           | •   | •   | •   | •       | •   | •      |          | _   | •         | •   | •    |
| 122          | 1.2 nF           |     | •   |     |         | •   |        | •        | •   |           | •   | •    |
| 152          | 1.5 nF           | •   | •   | •   |         | •   | •      | •        |     | •         | •   | •    |
| 182          | 1.8 nF           | •   | •   | •   | •       | •   | •      | •        | •   | •         | •   | •    |
| 222          | 2.2 nF           | •   | •   | •   | •       | •   | •      | •        | •   | •         | •   | •    |
| 272          | 2.7 nF           | •   | •   | •   | •       | •   | •      | •        | •   | •         | •   | •    |
| 332          | 3.3 nF           | •   | •   | •   | •       | •   | •      | •        | •   | •         | •   | •    |
| 392          | 3.9 nF           | •   | •   | •   | •       | •   | •      | •        | •   | •         | •   | •    |
| 172          | 4.7 nF           | •   | •   | •   | •       | •   | •      | •        | •   | •         | •   |      |
| 562          | 5.6 nF           | •   | •   | •   | •       | •   |        | •        | •   | •         | •   |      |
| 682<br>322   | 6.8 nF<br>8.2 nF | •   | •   | •   | _       | -   |        | •        | •   | •         | •   |      |
| 103          | 10 nF            |     | -   |     |         |     |        | -        | -   | -         | -   |      |
| 123          | 12 nF            |     | •   | •   |         |     |        | -        | -   | -         | •   |      |
| 153          | 15 nF            | •   | •   | •   |         |     |        | •        | •   | •         |     |      |
| 183          | 18 nF            | •   | •   |     |         |     |        | •        | •   |           |     |      |
| 223          | 22 nF            | •   | •   |     |         |     |        | •        | •   | •         |     |      |
| 273          | 27 nF            | •   | •   |     |         |     |        | •        | •   | •         |     |      |
| 333          | 33 nF            | •   | •   |     |         | 2   |        | •        | •   | •         |     |      |
| 393          | 39 nF            | •   |     |     |         |     |        | •        | •   | •         |     |      |
| 473          | 47 nF<br>56 nF   | •   |     |     |         |     |        | •        | •   |           |     |      |

Revision: 09-Sep-14 Document Number: 45199

Notes

RoHS-compliant

Plastic tape

(1) See soldering recommendations within this data book, or visit <a href="https://www.vishay.com/doc?45034">www.vishay.com/doc?45034</a>



Vishay Vitramon

| SELECTION<br>DIELECTRIC | · JIIAN          | Ī       |     |      |     |     |     |       | X7R      |      |         |     |     |     |     |          |
|-------------------------|------------------|---------|-----|------|-----|-----|-----|-------|----------|------|---------|-----|-----|-----|-----|----------|
| STYLE                   |                  |         | VI  | 0402 | 7   | _   |     | VJ060 |          | 1    | _       |     | VIO | 805 |     |          |
| CASE CODE               |                  |         |     | 402  |     | _   |     | 0603  | 3        |      |         |     |     | 05  |     |          |
|                         |                  | 10      |     |      | 100 | 16  | OF. |       | 100      | 200  | 10      | OF. |     |     | 200 | 250      |
| VOLTAGE (VDC)           |                  | 16<br>J | 25  | 50   | 100 | 16  | 25  | 50    | 100<br>B |      | 16<br>J | 25  | 50  | 100 |     | 250<br>P |
| VOLTAGE COD             |                  | J       | Х   | Α    | В   | J   | Х   | Α     | В        | С    | J       | Х   | Α   | В   | С   | P        |
| 121                     | CAP.             | ••      | ••  | ••   | ••  | _   |     | _     |          |      | _       | -   | _   | -   | _   | +-       |
|                         | 120 pF           | ••      | ••  | ••   | ••  | _   | -   | -     |          |      |         | -   |     | _   |     | -        |
| 151<br>181              | 150 pF           | ••      | ••• | •••  | ••  | _   |     | _     |          |      |         | _   | _   | _   | _   | -        |
| 221                     | 180 pF           | ••      | ••  |      | ••  | _   |     | _     |          |      |         | _   | _   |     |     | $\vdash$ |
| 271                     | 220 pF<br>270 pF | ••      | ••  | ••   | ••  |     |     | 1     |          |      |         |     |     |     |     | 1        |
| 331                     |                  | ••      | ••  | ••   | ••• | _   | -   | ••    | ••       | ••   |         | -   | -   | _   | ••  |          |
| 391                     | 330 pF<br>390 pF | ••      | ••  | ••   | ••  | ••  | ••  | ••    | ••       | ••   |         | _   | _   |     | ••  | -        |
| 471                     | 470 pF           | ••      | ••  | ••   | ••  | ••  | ••  | ••    | ••       | ••   | ••      | ••  | ••  | ••  | ••  |          |
| 561                     | 560 pF           | ••      | ••  | ••   | ••  | ••• | ••  | ••    | ••       | ••   | ••      | ••  | ••  | ••  | ••  |          |
| 681                     | 680 pF           | ••      | ••• | ••   | ••  | ••• | ••  | ••    | ••       | ••   | •••     | ••  | ••  | ••  | ••  |          |
| 821                     | 820 pF           | ••      | ••  | ••   | ••  | ••  | ••  | ••    | ••       | ••   | ••      | ••  | ••  | ••  | ••  |          |
| 102                     | 1.0 nF           | ••      | ••• | •••  |     | ••• | ••• | •••   | •••      | ••   |         | ••• | ••• | ••• | ••• |          |
| 122                     | 1.2 nF           | ••      | ••  | ••   | ••• | ••• | ••• | ••    | ••       | ••   | •••     | ••  | ••• | ••  | ••  | •••      |
| 152                     | 1.5 nF           | ••      | ••  | ••   | ••  | ••  | ••  | ••    | ••       | ••   | ••      | ••  | ••  | ••  | ••  | •••      |
| 182                     | 1.8 nF           | ••      | ••  | ••   | ••  | ••  | ••  | ••    | ••       | ••   | ••      | ••  | ••  | ••  | ••  | •••      |
| 222                     | 2.2 nF           | ••      | ••  | ••   | ••  | ••  | ••  | ••    | ••       | ••   | ••      | ••  | ••  | ••  | ••  | ••       |
| 272                     | 2.7 nF           | ••      | ••  | ••   | ••  | ••  | ••  | ••    | ••       | ••   | ••      | ••  | ••  | ••  | ••  | •••      |
| 332                     | 3.3 nF           | ••      | ••  | ••   | ••  | ••  | ••  | ••    | ••       | ••   | ••      | ••  | ••  | ••  | ••  | •••      |
| 392                     | 3.9 nF           | ••      | ••  | ••   | ••  | ••  | ••  | ••    | ••       | ••   | ••      | ••  | ••  | ••  | ••  | •••      |
| 472                     | 4.7 nF           | ••      | ••  | ••   | ••  | ••  | ••  | ••    | ••       | ••   | ••      | ••  | ••  | ••  | ••  | •••      |
| 562                     | 5.6 nF           | ••      | ••  | ••   |     | ••  | ••  | ••    | ••       |      | ••      | ••  | ••  | ••  | ••  | ••       |
| 682                     | 6.8 nF           | ••      | ••  | ••   |     | ••  | ••  | ••    | ••       |      | ••      | ••  | ••  | ••  | ••  | ••       |
| 822                     | 8.2 nF           | ••      | ••  | ••   |     | ••  | ••  | ••    | ••       |      | ••      | ••  | ••  | ••  | ••  | ••       |
| 103                     | 10 nF            | ••      | ••  | ••   |     | ••  | ••  | ••    | ••       |      | ••      | ••  | ••  | ••  | ••  |          |
| 123                     | 12 nF            | ••      | ••  | 2000 |     | ••  | ••  | ••    | ••       |      | ••      | ••  | ••  | ••  | ••  |          |
| 153                     | 15 nF            | ••      | ••  |      |     | ••  | ••  | ••    | ••       |      | ••      | ••  | ••  | ••  | •   |          |
| 183                     | 18 nF            | ••      | ••  |      |     | ••  | ••  | ••    | ••       |      | ••      | ••  | ••  | ••  | •   |          |
| 223                     | 22 nF            | ••      |     |      |     | ••  | ••  | ••    | ••       |      | ••      | ••  | ••  | ••  | •   |          |
| 273                     | 27 nF            | ••      |     |      |     | ••  | ••  | ••    | ••       |      | ••      | ••  | ••  | ••  | •   |          |
| 333                     | 33 nF            | ••      |     |      |     | ••  | ••  | ••    | ••       |      | ••      | ••  | ••  |     |     |          |
| 393                     | 39 nF            | ••      |     |      |     | ••  | ••  | ••    | ••       |      | ••      | ••  | ••  | •   |     |          |
| 473                     | 47 nF            | ••      |     |      |     | ••  | ••  | ••    |          |      | ••      | ••  | ••  |     |     |          |
| 563                     | 56 nF            |         |     |      |     | ••  | ••  | ••    |          |      | ••      | ••  | ••  | •   |     |          |
| 683                     | 68 nF            |         |     |      |     | ••  | ••  | ••    |          |      | ••      | ••  | •   | •   |     |          |
| 823                     | 82 nF            |         |     |      |     | ••  | ••  | ••    |          |      | ••      | ••  | •   |     |     |          |
| 104                     | 100 nF           |         |     |      |     | ••  | ••  | ••    |          |      | ••      | ••  | •   | •   |     |          |
| 124                     | 120 nF           |         |     |      |     | ••  |     |       |          |      | ••      | ••  | •   |     |     |          |
| 154                     | 150 nF           |         |     |      |     | ••  |     |       |          |      | •       | •   | •   |     |     |          |
| 184                     | 180 nF           |         |     |      |     |     |     |       |          |      | •       | •   |     |     |     |          |
| 224                     | 220 nF           |         |     |      |     |     |     |       |          |      | •       | •   |     |     |     |          |
| 274                     | 270 nF           |         |     |      |     |     |     |       |          |      | •       | •   |     |     |     |          |
| 334                     | 330 nF           |         |     |      |     |     |     |       |          |      | •       | •   |     |     |     |          |
| 394                     | 390 nF           |         |     |      |     |     |     |       |          |      | •       |     |     |     |     |          |
| 474                     | 470 nF           |         |     |      |     |     |     |       |          | la . | •       |     |     |     |     |          |
| 564                     | 560 nF           |         |     |      |     |     |     |       |          |      |         |     |     |     |     | _        |
| 684                     | 680 nF           |         |     |      |     |     |     |       |          |      |         |     |     |     |     | -        |
| 824                     | 820 nF           |         |     |      |     |     |     |       |          |      |         |     |     |     |     | _        |
| 105                     | 1.0 µF           |         |     |      | _   |     |     |       |          |      |         |     |     |     |     | -        |
| 125                     | 1.2 µF           |         |     |      |     |     |     |       |          |      |         |     |     |     |     | 1        |
| 155                     | 1.5 µF           | _       |     |      |     |     |     |       |          | 1    |         |     |     |     |     | -        |
| 185                     | 1.8 µF           |         |     |      | -   |     | -   | -     |          |      | _       | -   |     |     |     | -        |
| 225                     | 2.2 µF           |         |     |      |     |     |     |       |          |      |         |     |     |     |     | _        |
|                         | 2.7 µF           |         |     |      |     | _   |     | -     |          |      |         |     | _   |     |     | -        |
|                         |                  |         | 1   |      |     |     | 1   | 1     |          | 1    | 1       | 1   |     |     |     |          |
| 275<br>335              | 3.3 µF           |         |     | _    | -   | _   | _   | _     |          |      |         | _   | _   | -   |     |          |
| 335<br>395              | 3.9 µF           |         |     |      |     |     |     |       |          |      |         |     |     |     |     | 1        |
| 335                     |                  |         |     |      |     |     |     |       |          |      |         |     |     |     |     |          |

Notes

RoHS-compliant

•• Paper tape • Plastic tape

Revision: 09-Sep-14

Document Number: 45199



Vishay Vitramon

| DIEL COTO:  |                  | т — |     |        |       |          |          |     |      | 70 |    |    |          |                   |      |     |          |
|-------------|------------------|-----|-----|--------|-------|----------|----------|-----|------|----|----|----|----------|-------------------|------|-----|----------|
| DIELECTRIC  |                  | -   |     |        | 1/140 | 206 (1)  |          |     | Х    | 7R |    |    | 1/14/    | 10 <sup>(1)</sup> |      |     |          |
| CASE CODE   |                  | -   |     |        |       | 206 (1)  |          |     |      | _  |    |    |          | 210 (1)           |      |     |          |
|             | `                | 10  | 05  |        |       |          | 050      | F00 | 000  | 40 | 05 |    |          |                   | 050  | 500 | 000      |
| VOLTAGE (VD |                  | 16  | 25  | 50     | 100   | 200      | 250<br>P | 500 | 630  | 16 | 25 | 50 | 100      | 200               | 250  | 500 | 630      |
| VOLTAGE CO  |                  | J   | Х   | Α      | В     | С        | Р        | E   | L    | J  | Х  | Α  | В        | С                 | Р    | E   | L        |
| CAP. CODE   | CAP.             | _   |     |        |       |          |          |     |      | _  |    |    |          |                   |      |     | —        |
| 121         | 120 pF           |     | _   |        | -     |          |          |     |      |    |    |    | -        |                   |      |     | $\vdash$ |
| 151         | 150 pF           |     |     |        |       |          |          |     |      |    |    |    |          |                   |      |     | _        |
| 181         | 180 pF           | -   |     |        | _     |          |          |     |      |    | -  |    | -        |                   |      |     | -        |
| 221         | 220 pF           |     |     |        |       |          |          |     |      |    |    |    |          |                   |      |     | _        |
| 271         | 270 pF           | -   | _   |        | _     |          |          |     |      |    |    |    | _        |                   |      |     | _        |
| 331         | 330 pF           | -   | _   | -      | -     |          |          | ••  | ••   |    | -  |    | -        |                   |      |     | -        |
| 391         | 390 pF           | -   |     | 100000 |       | 2000     |          | ••  | ••   |    |    |    | _        |                   |      |     | •        |
| 471         | 470 pF           | -   | ••  | ••     | ••    | ••       |          | ••  | ••   |    | -  |    | -        |                   |      |     | •        |
| 561         | 560 pF           | -   |     | ••     | ••    | ••       |          | ••  | ••   | _  | -  |    | -        | -                 |      |     | •        |
| 681<br>821  | 680 pF           | -   | ••  | ••     | ••    | ••       |          | ••  | ••   | _  | -  |    | -        |                   |      | _   | •        |
|             | 820 pF           |     |     | 70.00  |       | 7.70     |          |     |      | _  | -  |    | -        |                   |      |     | 100.00   |
| 102         | 1.0 nF           | ••  | ••  | ••     | ••    | ••       |          | ••  | ••   | _  | -  |    | -        | _                 |      | •   | •        |
| 122<br>152  | 1.2 nF           | ••  | ••  | ••     | ••    | ••       |          | ••  | ••   | _  | -  |    | -        |                   |      | •   |          |
|             | 1.5 nF           | ••• | ••  | 50000  | ••    | ••       |          | ••  | ••   | _  | -  |    | -        |                   |      |     | <b>:</b> |
| 182<br>222  | 1.8 nF<br>2.2 nF | ••  | ••  | ••     | ••    | ••       |          | ••  | ••   |    | -  | -  | -        |                   |      | •   |          |
| 272         | 2.7 nF           | ••• | ••  | ••     | ••    | ••       |          | ••  | ••   | _  | -  | -  | -        | -                 |      | -   | -        |
| 332         | 3.3 nF           | ••• | ••• | •••    | ••    | ••       |          | ••  | ••   | _  | -  |    | -        |                   |      | -   | -        |
| 392         | 3.9 nF           | ••  | ••  | •••    | ••    | ••       |          | ••  | ••   |    | -  | -  | -        | •                 |      | •   | •        |
| 472         | 4.7 nF           | ••  | ••  | •••    | ••    | ••       |          | ••  | ••   | _  | -  | -  | -        | •                 |      | -   |          |
| 562         | 5.6 nF           | ••• | ••• | •••    | •••   | ••       |          | •   | •    |    | -  |    | -        | •                 |      | -   | -        |
| 682         | 6.8 nF           | ••• | ••• | •••    | ••    | ••       |          | •   |      | _  | -  |    | _        | •                 |      | •   |          |
| 822         | 8.2 nF           | ••  | ••• | ••     | ••    | ••       |          | •   | •    |    | -  |    | -        | •                 |      | •   |          |
| 103         | 10 nF            | ••• | ••• | •••    | ••    | ••       | •        |     | •    | •  |    | •  | •        | •                 |      | •   |          |
| 123         | 10 nF            | ••  | ••  | •••    | ••    | ••       | •        |     | •    |    |    |    |          | •                 |      | •   |          |
| 153         | 15 nF            | ••  | ••  | •••    | ••    | ••       | •        |     | •    |    | -  |    |          | •                 |      | •   |          |
| 183         | 18 nF            | ••• | ••• | •••    | •••   | •••      |          | -   |      | -  |    | -  | -        |                   |      | •   | -        |
| 223         | 22 nF            | ••  | ••  | ••     | ••    | ••       | •        | 7   | 2000 |    |    |    |          | •                 |      | •   | •        |
| 273         | 27 nF            | ••  | ••• | •••    | ••    | •••      |          | _   |      |    | -  | -  |          |                   |      | •   |          |
| 333         | 33 nF            | ••  | ••  | ••     | ••    | ••       | •        |     |      | •  | -  |    | •        | •                 | •    | •   |          |
| 393         | 39 nF            | ••  | ••  | ••     | ••    | •        | •        |     |      |    |    |    |          | •                 | •    | •   |          |
| 473         | 47 nF            | ••  | ••  | ••     | ••    |          |          |     |      | •  | •  | •  |          | •                 | •    | •   | •        |
| 563         | 56 nF            | ••  | ••  | ••     | ••    |          |          |     |      | •  |    | •  |          |                   | •    |     |          |
| 683         | 68 nF            | ••  | ••  | ••     | ••    |          | •        |     |      | •  |    | •  |          |                   |      |     | -        |
| 823         | 82 nF            | ••  | ••  | •      | •     | •        | •        |     |      | •  |    | •  |          | •                 | •    |     | -        |
| 104         | 100 nF           | ••  | ••  |        | •     |          | •        |     |      | •  |    | •  |          |                   | •    |     | -        |
| 124         | 120 nF           | ••  | ••  | •      | •     |          |          |     |      | •  | •  | •  |          |                   | 1000 |     | _        |
| 154         | 150 nF           | ••  | ••  | •      | •     |          |          |     |      | •  |    | •  | •        |                   |      |     | _        |
| 184         | 180 nF           | ••  | ••  |        | •     |          |          |     |      | •  |    | •  |          | •                 |      |     | -        |
| 224         | 220 nF           | •   | •   |        | •     |          | -        |     |      | •  |    | •  |          |                   |      |     | -        |
| 274         | 270 nF           | •   | •   | •      | •     |          |          |     |      | •  | •  | •  | •        |                   |      |     | -        |
| 334         | 330 nF           | •   | •   | •      |       |          |          |     |      | •  | •  | •  | •        |                   |      |     |          |
| 394         | 390 nF           | •   | •   | •      |       |          |          |     |      | •  | •  | •  | •        |                   |      |     |          |
| 474         | 470 nF           | •   | •   | •      |       |          |          |     |      | •  | •  | •  | •        |                   |      |     |          |
| 564         | 560 nF           | •   | •   |        |       |          |          |     |      | •  | •  | •  |          |                   |      |     |          |
| 684         | 680 nF           | •   | •   |        |       |          |          |     |      | •  | •  | •  |          |                   |      |     |          |
| 824         | 820 nF           | •   | •   |        |       |          |          |     |      | •  |    | •  |          |                   |      |     |          |
| 105         | 1.0 µF           | •   |     |        |       |          |          |     |      | •  | •  | •  | 3        |                   |      |     |          |
| 125         | 1.2 µF           |     |     |        |       |          |          |     |      |    |    |    |          |                   |      |     |          |
| 155         | 1.5 µF           |     |     |        |       |          |          |     |      |    |    |    |          |                   |      |     |          |
| 185         | 1.8 µF           |     |     |        |       |          |          |     |      |    |    |    |          |                   |      |     |          |
| 225         | 2.2 µF           | 1   |     |        |       |          |          |     |      |    |    |    |          |                   |      |     |          |
| 275         | 2.7 µF           |     |     |        |       |          |          |     |      |    |    |    | 1        |                   |      |     |          |
| 335         | 3.3 µF           |     |     |        |       |          |          |     |      |    |    |    |          |                   |      |     |          |
| 395         | 3.9 µF           | 1   |     |        |       |          |          |     |      |    |    |    |          |                   |      |     |          |
| 475         | 4.7 µF           |     |     |        |       |          |          |     |      |    |    |    |          |                   |      |     |          |
| 565         | 5.6 µF           |     |     |        |       |          |          |     |      |    |    |    |          |                   |      |     |          |
| 685         | 6.8 µF           | +   |     |        |       | <b>T</b> |          |     |      |    |    |    | <b>T</b> |                   |      |     | -        |

Revision: 09-Sep-14 Document Number: 45199

Notes

RoHS-compliant

Paper tape • Plastic tape

(1) See soldering recommendations within this data book, or visit <a href="https://www.vishay.com/doc?45034">www.vishay.com/doc?45034</a>



Vishay Vitramon

|            | ON CH            | Anı      | i i      |        |     |   |          |     |     |         |        |     |     |      |          |    |     |          |      |   |      |
|------------|------------------|----------|----------|--------|-----|---|----------|-----|-----|---------|--------|-----|-----|------|----------|----|-----|----------|------|---|------|
| DIELECTRIC | 2                |          |          |        |     |   |          |     |     |         |        | X7R |     |      |          |    |     |          |      |   |      |
| STYLE      |                  |          | ٧        | /J1808 |     |   |          |     |     | 0.507/0 | 1812 ( | 1)  |     |      |          |    |     | VJ182    |      |   |      |
| CASE CODE  |                  |          | _        | 1808   |     |   |          | _   |     |         | 1812   |     |     |      |          |    | _   | 182      |      |   |      |
| VOLTAGE (  |                  | 50       | 100      |        | 500 |   | 25       | 50  | 100 | 200     |        | 500 | 630 | 1000 | 25       | 50 | 100 |          | 250  |   | 1000 |
| VOLTAGE C  |                  | Α        | В        | С      | E   | G | Х        | Α   | В   | С       | Р      | E   | L   | G    | Х        | Α  | В   | С        | Р    | E | G    |
| 121        | 120 pF           |          |          |        |     |   |          |     |     |         |        |     |     |      |          |    |     | _        |      |   | _    |
| 151        | 150 pF           | _        | _        |        |     |   |          | -   | _   |         | -      |     | _   |      |          |    | -   |          |      |   |      |
| 181        | 180 pF           |          |          |        |     |   |          |     |     |         |        |     |     |      |          |    |     |          |      |   |      |
| 221        | 220 pF           |          |          |        |     |   |          |     |     |         |        |     |     |      |          |    |     |          |      |   |      |
| 271        | 270 pF           |          |          |        |     |   |          |     |     |         |        |     |     |      |          |    |     |          |      |   |      |
| 331        | 330 pF           |          |          |        |     |   |          |     |     |         |        |     |     |      |          |    |     |          |      |   |      |
| 391        | 390 pF           | _        |          |        |     |   |          |     |     |         |        |     | _   |      | _        |    |     | _        |      |   |      |
| 471<br>561 | 470 pF           | _        | -        |        | -   | • |          | _   |     |         |        |     |     |      | _        |    |     |          |      |   | _    |
| 681        | 560 pF<br>680 pF |          | -        |        |     | • |          | -   |     |         |        |     |     | _    |          | -  |     |          |      | - | _    |
| 821        | 820 pF           |          |          |        |     | • |          |     |     |         |        |     |     |      |          |    |     |          | 1 11 | - |      |
| 102        | 1.0 nF           | -        |          |        | •   | • |          |     |     |         |        | •   | •   | •    |          |    |     |          |      |   | -    |
| 122        | 1.2 nF           |          |          |        | •   | • |          |     |     |         |        | •   | •   | •    |          |    |     |          |      |   |      |
| 152        | 1.5 nF           |          |          |        | •   | • |          |     |     |         |        | •   | •   | •    |          |    |     |          |      |   |      |
| 182        | 1.8 nF           |          |          |        | •   | • |          |     |     |         |        | •   | •   | •    |          |    |     |          |      |   |      |
| 222<br>272 | 2.2 nF<br>2.7 nF | <u> </u> | <u> </u> |        | :   | : |          |     |     |         |        | :   | :   | :    | _        | _  |     | _        |      |   |      |
| 332        | 3.3 nF           | _        | -        |        | •   | • | _        | -   |     |         |        | •   | •   | •    |          | -  | -   | _        |      |   |      |
| 392        | 3.9 nF           |          |          |        | •   | • |          |     |     |         |        | •   | •   |      | $\vdash$ | _  |     |          | -    |   |      |
| 472        | 4.7 nF           |          |          | •      | •   |   |          |     |     |         |        | •   | •   | •    |          |    |     |          |      |   |      |
| 562        | 5.6 nF           |          |          | •      | •   | • |          |     |     |         |        | •   | •   | •    |          |    |     |          |      |   |      |
| 682        | 6.8 nF           |          |          | •      | •   | • |          | . , |     |         |        | •   | •   | •    |          |    |     |          |      |   |      |
| 822        | 8.2 nF           |          |          | •      | •   | • |          |     |     |         |        | •   | •   | •    |          |    |     |          |      |   |      |
| 103        | 10 nF            | •        | •        | •      | •   | • |          |     |     | •       |        | •   | •   | •    | •        | •  | •   | •        | •    | • | •    |
| 123<br>153 | 12 nF            | •        | •        | •      | •   |   |          | -   |     | •       |        | •   | •   | •    | •        | •  | •   | •        | •    | • | •    |
| 183        | 15 nF<br>18 nF   | :        | :        | ÷      | •   |   | _        | _   | _   | •       |        | •   | :   | •    | •        | :  | :   | :        | •    | • | •    |
| 223        | 22 nF            | •        | ÷        | •      | ÷   |   | •        | •   | •   | ·       |        | •   |     | •    | ÷        |    | -   | -        | •    | • |      |
| 273        | 27 nF            |          |          | •      | •   |   | •        |     | •   | •       |        | •   |     |      | •        | •  |     | •        | •    |   |      |
| 333        | 33 nF            | •        | •        | •      |     |   | •        | •   | •   | •       |        | •   | •   |      | •        | •  | •   | •        | •    | • | •    |
| 393        | 39 nF            | •        | •        | •      |     |   | •        | •   | •   | •       |        | •   | •   |      | •        | •  | •   | •        | •    | • | •    |
| 473        | 47 nF            | •        | •        | •      |     |   | •        | •   | •   | •       |        | •   | •   |      | •        | •  | •   | •        | •    | • | •    |
| 563        | 56 nF            | •        | •        | •      |     |   | •        | •   | •   | •       |        | •   | •   |      | •        | •  | •   | •        | •    | • | •    |
| 683        | 68 nF            | •        | •        | •      |     |   | •        | •   | •   | •       |        | •   | •   |      | •        | •  | •   | •        | •    | • |      |
| 823<br>104 | 82 nF<br>100 nF  | :        | :        | :      |     |   | •        | :   | :   | :       | •      | •   | •   | _    | •        | :  | :   | :        | :    | : |      |
| 124        | 120 nF           | •        | •        |        |     |   | •        |     |     | •       | •      |     |     |      | •        | •  |     | •        | •    | • |      |
| 154        | 150 nF           |          |          |        |     |   |          |     | •   | •       |        |     |     |      |          |    |     |          |      |   |      |
| 184        | 180 nF           | •        | •        |        |     |   | •        | •   | •   | •       | •      |     |     |      | •        | •  | •   | •        | •    | • |      |
| 224        | 220 nF           | •        |          |        |     |   | •        | •   | •   | •       | •      |     |     |      | •        | •  |     | •        | •    |   |      |
| 274        | 270 nF           | •        |          |        |     |   | •        | •   | •   | •       | •      |     |     |      | •        | •  | •   | •        | •    |   |      |
| 334        | 330 nF           |          |          |        |     |   | •        | •   | •   | •       | •      |     |     |      | •        | •  | •   | •        | •    |   |      |
| 394<br>474 | 390 nF           |          |          |        |     |   | •        | •   | •   | •       |        |     |     |      | •        | •  | •   | •        | •    |   |      |
| 564        | 470 nF<br>560 nF | _        |          |        | -   |   | •        | •   | •   | •       |        |     |     |      | •        | •  | :   | :        | :    |   |      |
| 684        | 680 nF           | $\vdash$ | -        | -      |     |   | ÷        |     |     | -       |        |     |     |      | ÷        | ·  | ·   | •        |      |   |      |
| 824        | 820 nF           |          |          |        |     |   | •        | •   | •   |         |        |     |     |      | •        | •  | •   | •        | •    |   |      |
| 105        | 1.0 µF           |          |          |        |     |   | •        | •   |     |         |        |     |     |      | •        | •  | •   | •        | •    |   |      |
| 125        | 1.2 µF           |          |          |        |     |   |          |     |     |         |        |     |     |      | •        | •  | •   |          |      |   |      |
| 155        | 1.5 µF           |          |          |        |     |   |          |     |     |         |        |     |     |      | •        | •  | •   |          |      |   |      |
| 185        | 1.8 µF           |          |          |        |     |   |          |     |     |         |        |     |     |      | •        | •  |     |          |      |   |      |
| 225        | 2.2 µF           |          |          |        |     |   |          |     |     |         |        |     |     |      | •        |    |     | _        |      |   | _    |
| 275<br>335 | 2.7 µF<br>3.3 µF | <u> </u> | -        |        |     |   | <u> </u> |     |     |         |        |     |     |      | •        |    | -   | _        | -    |   |      |
| 335        | 3.9 uF           | -        | -        |        | -   |   |          | 10. |     |         |        |     | -   | _    |          |    | -   | -        |      |   |      |
| 475        | 4.7 µF           |          |          |        |     |   |          |     |     |         |        |     |     |      |          |    |     | $\vdash$ |      |   |      |
| 565        | 5.6 µF           |          |          |        |     |   |          |     |     |         |        |     |     |      |          |    |     |          |      |   |      |
| 685        | 6.8 µF           |          |          |        |     |   |          |     |     |         |        |     |     |      |          |    |     |          |      |   |      |

Revision: 09-Sep-14 Document Number: 45199

RoHS-compliant

Plastic tape

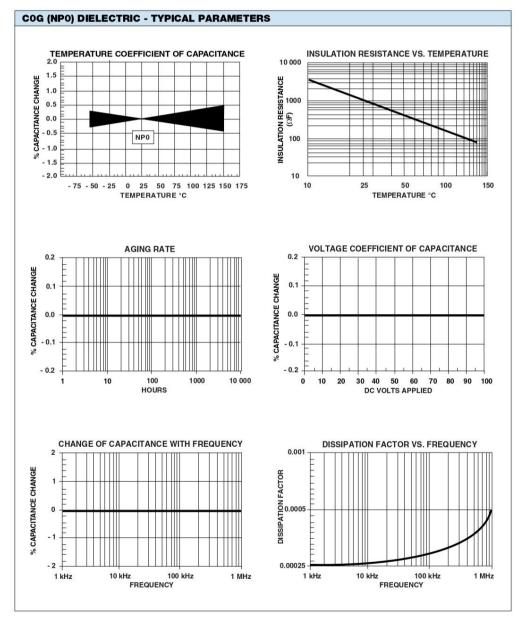
See soldering recommendations within this data book, or visit <a href="https://www.vishay.com/doc?45034">www.vishay.com/doc?45034</a>



Vishay Vitramon

| STYLE CASE CODE VOLTAGE (VDC VOLTAGE CODE 121 151 181 221     |                  |    | VJ22 | 20 (1) |     |    |    | 17.10 | (4)     |     |      |    |    | J3640 ( | 1)  |    |
|---------------------------------------------------------------|------------------|----|------|--------|-----|----|----|-------|---------|-----|------|----|----|---------|-----|----|
| VOLTAGE (VDC<br>VOLTAGE COI<br>CAP. CODE<br>121<br>151<br>181 |                  |    |      |        |     |    |    | VJ2   | 225 (1) |     |      |    | V  | J304U 1 | .,  |    |
| VOLTAGE COL<br>CAP. CODE<br>121<br>151<br>181                 |                  |    | 22   | 20     |     |    |    | 2     | 225     |     |      |    |    | 3640    |     |    |
| VOLTAGE COL<br>CAP. CODE<br>121<br>151<br>181                 |                  | 50 | 100  | 200    | 500 | 25 | 50 | 100   | 200     | 500 | 1000 | 25 | 50 | 100     | 200 | 50 |
| 121<br>151<br>181                                             | )E               | A  | В    | С      | Е   | Х  | Α  | В     | С       | E   | G    | х  | Α  | В       | С   | E  |
| 151<br>181                                                    | CAP.             |    |      |        |     |    |    |       |         |     |      |    |    |         |     |    |
| 181                                                           | 120 pF           |    |      |        |     |    |    | ) )   |         |     |      |    |    |         |     |    |
|                                                               | 150 pF           |    |      |        |     |    |    | 9     |         |     |      |    |    |         |     |    |
| 004                                                           | 180 pF           |    |      |        |     |    |    |       |         |     |      |    |    |         |     |    |
|                                                               | 220 pF           |    |      |        |     |    |    |       |         |     |      |    |    |         |     |    |
| 271                                                           | 270 pF           |    |      |        |     |    |    |       |         |     |      |    |    |         |     |    |
| 331                                                           | 330 pF           |    |      |        |     |    |    |       |         |     |      |    |    |         |     |    |
| 391                                                           | 390 pF           |    |      |        |     |    |    |       |         |     |      |    |    |         |     |    |
| 471                                                           | 470 pF           |    |      |        |     |    |    |       |         |     |      |    |    |         |     |    |
| 561                                                           | 560 pF           |    |      |        |     |    |    |       |         |     |      |    |    |         |     |    |
| 681                                                           | 680 pF           |    |      |        |     |    |    |       |         |     |      |    |    |         |     |    |
| 821                                                           | 820 pF           |    |      |        |     |    |    |       |         |     |      |    |    |         |     |    |
| 102                                                           | 1.0 nF           |    |      |        |     |    |    |       |         |     |      |    |    |         |     |    |
| 122                                                           | 1.2 nF           |    |      |        |     |    |    |       |         |     |      | _  |    |         |     |    |
| 152                                                           | 1.5 nF           |    |      |        |     |    |    |       |         |     |      |    |    |         |     |    |
| 182                                                           | 1.8 nF           |    |      |        |     |    |    |       |         |     | _    |    |    |         |     |    |
| 222                                                           | 2.2 nF           |    |      |        |     |    |    |       |         |     |      |    |    |         |     | -  |
| 272                                                           | 2.7 nF           |    |      |        |     |    |    |       | -       |     |      |    |    |         |     | -  |
| 332                                                           | 3.3 nF           |    |      |        |     |    |    |       |         |     |      |    |    |         |     | _  |
| 392<br>472                                                    | 3.9 nF<br>4.7 nF | -  |      |        |     |    | -  |       |         |     |      |    | _  |         |     |    |
|                                                               |                  |    |      |        |     |    |    | 0     | (a )    |     |      |    |    |         |     |    |
| 562                                                           | 5.6 nF           |    |      |        |     |    |    |       |         |     |      |    |    |         |     |    |
| 682                                                           | 6.8 nF           | _  |      |        |     |    |    |       |         |     |      |    |    |         |     |    |
| 822<br>103                                                    | 8.2 nF<br>10 nF  | _  |      |        |     |    |    |       | -       |     |      |    |    |         |     |    |
| 123                                                           | 10 nF            | _  |      |        |     |    |    | 0 0   | 3 3     |     |      |    |    |         |     |    |
| 153                                                           | 15 nF            | _  |      |        | _   |    |    |       | -       |     |      |    |    |         |     |    |
| 183                                                           | 18 nF            |    |      |        | •   |    |    |       |         | - 0 |      |    |    |         |     |    |
| 223                                                           | 22 nF            | _  |      |        |     |    |    |       |         |     |      |    |    |         |     |    |
| 273                                                           | 27 nF            | -  |      |        | •   |    |    |       |         |     |      |    | -  |         | •   | •  |
| 333                                                           | 33 nF            | _  |      |        | •   | •  | •  | •     | •       | •   | •    |    |    |         | •   |    |
| 393                                                           | 39 nF            |    |      |        | •   | •  | •  | •     | •       | •   | •    |    |    |         | •   |    |
| 473                                                           | 47 nF            |    |      |        | •   | •  | •  | •     | •       | •   | •    |    |    |         | •   |    |
| 563                                                           | 56 nF            |    |      |        | •   | •  | •  | •     | •       | •   | •    |    |    |         | •   | •  |
| 683                                                           | 68 nF            |    |      |        | •   | •  | •  |       | •       | •   | •    |    |    |         | •   |    |
| 823                                                           | 82 nF            | -  |      |        | •   | •  | •  | •     | •       | •   | •    |    |    |         | •   |    |
| 104                                                           | 100 nF           | _  |      | •      | •   | •  | •  | •     | •       | •   | •    |    |    |         | •   |    |
| 124                                                           | 120 nF           |    |      | •      | •   | •  | •  | •     | •       |     |      |    |    |         | •   |    |
| 154                                                           | 150 nF           |    |      | •      | •   | •  | •  | •     | •       | •   |      |    |    |         | •   |    |
| 184                                                           | 180 nF           |    |      | •      | •   | •  | •  | •     | •       | •   |      | •  | •  | •       | •   |    |
| 224                                                           | 220 nF           |    | •    | •      | •   | •  | •  | •     | •       | •   |      | •  | •  | •       | •   | •  |
| 274                                                           | 270 nF           | •  | •    | •      |     | •  | •  | •     | •       | •   |      | •  | •  | •       | •   | •  |
| 334                                                           | 330 nF           | •  | •    | •      |     | •  | •  | •     | •       | •   |      | •  | •  | •       | •   | •  |
| 394                                                           | 390 nF           | •  | •    | •      |     | •  | •  | •     | •       |     |      | •  | •  | •       | •   | •  |
| 474                                                           | 470 nF           | •  | •    | •      |     | •  | •  | •     | •       |     |      | •  | •  | •       | •   | •  |
| 564                                                           | 560 nF           | •  | •    | •      |     | •  | •  | •     | •       |     |      | •  | •  | •       | •   | •  |
| 684                                                           | 680 nF           | •  | •    | •      |     | •  | •  | •     |         |     |      | •  | •  | •       | •   | •  |
| 824                                                           | 820 nF           | •  | •    | •      |     | •  | •  | •     | •       |     |      | •  | •  | •       | •   |    |
| 105                                                           | 1.0 µF           | •  | •    | •      |     | •  | •  | •     | •       |     |      | •  | •  | •       |     |    |
| 125                                                           | 1.2 µF           | •  | •    |        |     | •  | •  | •     | •       |     |      | •  | •  | •       | •   |    |
| 155                                                           | 1.5 µF           | •  |      |        |     | •  | •  | •     |         |     |      | •  | •  | •       | •   |    |
| 185                                                           | 1.8 µF           | •  |      |        |     | •  | •  | •     |         |     |      | •  | •  | •       | •   |    |
| 225                                                           | 2.2 µF           | •  |      |        |     | ٠  | •  |       |         |     |      | •  | •  | •       |     |    |
| 275                                                           | 2.7 µF           |    |      |        |     | •  | •  |       |         |     |      | •  | •  | •       |     |    |
| 335                                                           | 3.3 µF           |    |      |        |     | •  |    |       |         |     |      | •  | •  | •       |     |    |
| 395                                                           | 3.9 µF           |    |      |        |     | •  |    |       |         |     |      | •  | •  | •       |     |    |
| 475                                                           | 4.7 µF           |    |      |        |     | •  |    |       |         |     |      | •  | •  |         |     |    |
| 565                                                           | 5.6 μF<br>6.8 μF |    |      |        |     |    |    |       |         |     |      | •  |    |         |     |    |

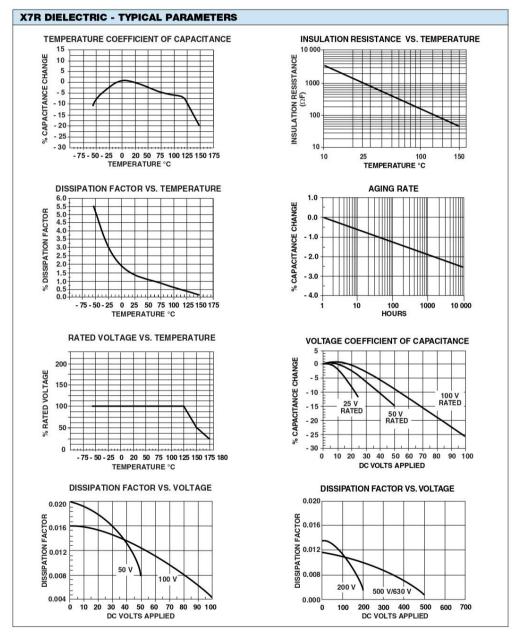
Notes


RoHS-compliant

Plastic tape
 See soldering recommendations within this data book, or visit <a href="https://www.vishay.com/doc?45034">www.vishay.com/doc?45034</a>

Revision: 09-Sep-14 Document Number: 45199




Vishay Vitramon



Revision: 09-Sep-14 12 Document Number: 45199



Vishay Vitramon



Revision: 09-Sep-14 Document Number: 45199



#### **VJ Commercial Series**

Vishay Vitramon

|           |           | 7" REEL Q                                 | UANTITIES                             | 11 1/4" AND 13" F                         | REEL QUANTITIES                       |
|-----------|-----------|-------------------------------------------|---------------------------------------|-------------------------------------------|---------------------------------------|
| CASE CODE | TAPE SIZE | PAPER TAPE<br>PACKAGING CODE<br>"C" / "O" | PLASTIC TAPE<br>PACKAGING CODE<br>"T" | PAPER TAPE<br>PACKAGING CODE<br>"P" / " " | PLASTIC TAPE<br>PACKAGING CODE<br>"R" |
| 0402      | 8 mm      | 5000                                      | n/a                                   | 10 000                                    | n/a                                   |
| 0603 (4)  | 8 mm      | 4000                                      | 4000                                  | 10 000                                    | 10 000                                |
| 0805 (4)  | 8 mm      | 3000                                      | 3000                                  | 10 000                                    | 10 000                                |
| 1206 (4)  | 8 mm      | 3000                                      | 2500 / 3000                           | 10 000                                    | 9000 / 10 000                         |
| 1210 (4)  | 8 mm      | n/a                                       | 2000 / 2500 / 3000                    | n/a                                       | 9000 / 10 000                         |
| 1808      | 12 mm     | n/a                                       | 2000                                  | n/a                                       | 10 000                                |
| 1812      | 12 mm     | n/a                                       | 1000                                  | n/a                                       | 4000                                  |
| 1825      | 12 mm     | n/a                                       | 1000                                  | n/a                                       | 4000                                  |
| 2220      | 12 mm     | n/a                                       | 1000                                  | n/a                                       | 4000                                  |
| 2225      | 12 mm     | n/a                                       | 1000                                  | n/a                                       | 4000                                  |
| 3640      | 16 mm     | n/a                                       | 500                                   | n/a                                       | n/a                                   |

#### Notes

- Vishay Vitramon uses embossed plastic carrier tape
   REFERENCE: EIA standard RS 481 "Taping of Surface Mount Components for Automatic Placement"
- (a) n/a = not available
  (b) Packaging "C" / "P" / "O" / "I" and "T" / "R" or lower quantities can depend from product thickness

#### STORAGE AND HANDLING CONDITIONS

- (1) Store the components at 5 °C to 40 °C ambient temperature and ≤ 70 % relative humidity conditions.
- (2) The product is recommended to be used within a time-frame of 2 years after shipment. Check solderability in case extended shelf life beyond the expiry date is needed.

- a. Do not store products in an environment containing corrosive elements, especially where chloride gas, sulfide gas, acid, alkali, salt or the like are present. This may cause corrosion or oxidization of the terminations, which can easily lead to poor soldering.
- b. Store products on the shelf and avoid exposure to moisture or dust.
  c. Do not expose products to excessive shock, vibration, direct sunlight and so on.



#### **Legal Disclaimer Notice**

Vishay

#### Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

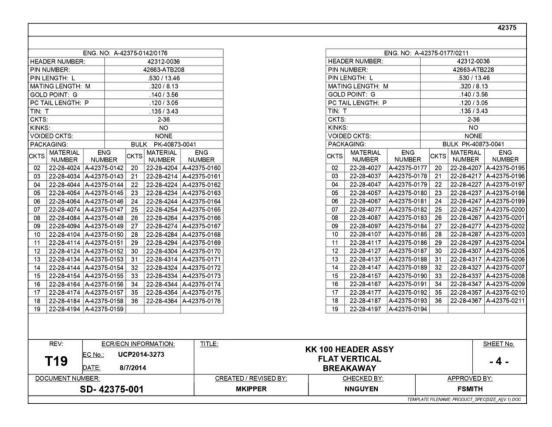
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

#### **Material Category Policy**

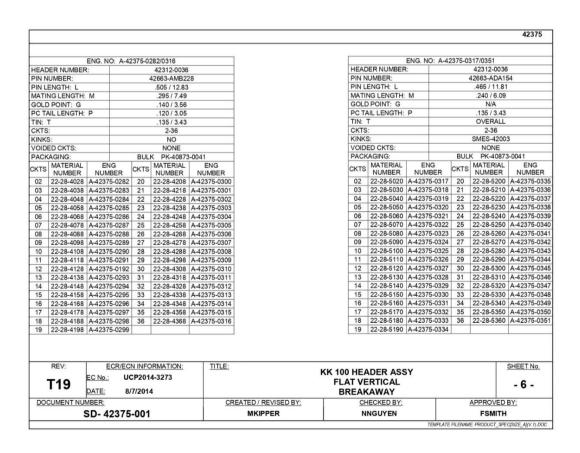
Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (EEE) - recast, unless otherwise specified as non-compliant.

Please note that some Vishay documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU.

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as Halogen-Free follow Halogen-Free requirements as per JEDEC JS709A standards. Please note that some Vishay documentation may still make reference to the IEC 61249-2-21 definition. We confirm that all the products identified as being compliant to IEC 61249-2-21 conform to JEDEC JS709A standards.


Revision: 02-Oct-12 1 Document Number: 91000

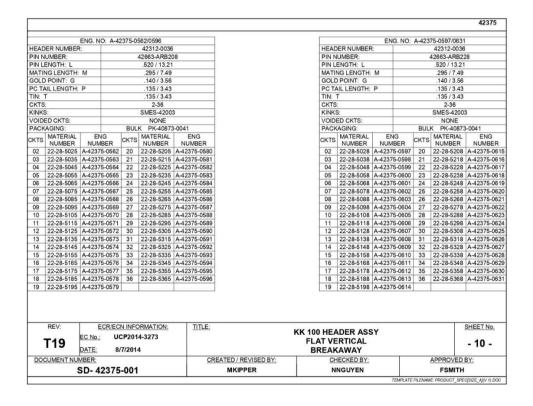
#### 2. Conectores.


|                      |                                                      |                                              |                |                                        |                                              |                     |                                          |                                        |                                              |                      |                                        | 42375                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|----------------------|------------------------------------------------------|----------------------------------------------|----------------|----------------------------------------|----------------------------------------------|---------------------|------------------------------------------|----------------------------------------|----------------------------------------------|----------------------|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                      |                                                      | ENG. NO: A-42                                | 2375-00        | 02/0036                                |                                              |                     |                                          |                                        | ENG. NO: A-42                                | 375-00               | 37/0071                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| HEAD                 | ER NUMBER                                            |                                              | 00 00          | 42312-0036                             |                                              |                     | HEAD                                     | DER NUMBER:                            | LITO. 110. A 42                              | 010.000              | 42312-00                               | 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                      | UMBER:                                               |                                              |                | 42663-ABA15                            |                                              |                     |                                          | UMBER:                                 |                                              |                      | 42663-ABE                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                      | ENGTH: L                                             |                                              |                | .455 / 11.56                           |                                              |                     |                                          | ENGTH: L                               |                                              |                      | 455 / 11                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                      | IG LENGTH:                                           | M                                            |                | .240 / 6.09                            |                                              |                     | MATI                                     | NG LENGTH: I                           | M                                            |                      | .240 / 6.0                             | 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                      | POINT: G                                             |                                              |                | N/A                                    |                                              |                     |                                          | POINT: G                               |                                              |                      | .100 / 2.5                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                      | IL LENGTH:                                           | P                                            |                | .125 / 3.18                            |                                              |                     |                                          | AIL LENGTH: F                          |                                              |                      | .125 / 3.1                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| TIN: T               |                                                      |                                              |                | OVERALL                                |                                              |                     | TIN;                                     |                                        |                                              |                      | .100 / 2.5                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| CKTS                 |                                                      |                                              |                | 2-36                                   |                                              |                     | CKTS                                     |                                        |                                              |                      | 2-36                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| KINKS                |                                                      |                                              |                | NO                                     |                                              |                     | KINK                                     |                                        |                                              |                      | NO                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                      | D CKTS:                                              |                                              |                | NONE                                   |                                              |                     |                                          | ED CKTS:                               |                                              |                      | NONE                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                      | AGING:                                               |                                              | BUL            | K PK-40873                             | -0041                                        |                     |                                          | KAGING:                                |                                              | BL                   |                                        | 373-0041                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| ктѕ                  | MATERIAL<br>NUMBER                                   | ENG<br>NUMBER                                | сктѕ           | MATERIAL<br>NUMBER                     | ENG<br>NUMBER                                |                     | CKTS                                     | MATERIAL                               | ENG<br>NUMBER                                | CKTS                 | MATERIAL<br>NUMBER                     | ENG<br>NUMBER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 02                   | 22-28-4020                                           | A-42375-0002                                 | 20             | 22-28-4200                             | A-42375-0020                                 |                     | 02                                       | 22-28-4023                             | A-42375-0037                                 | 20                   | 22-28-4203                             | A-42375-005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                      |                                                      | A-42375-0003                                 | 21             | 22-28-4210                             | A-42375-0021                                 |                     | 03                                       | 22-28-4033                             | A-42375-0038                                 | 21                   | 22-28-4213                             | A-42375-005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 04                   | 22-28-4040                                           | A-42375-0004                                 | 22             | 22-28-4220                             | A-42375-0022                                 |                     | 04                                       | 22-28-4043                             | A-42375-0039                                 | 22                   | 22-28-4223                             | A-42375-005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 05                   | 22-28-4050                                           | A-42375-0005                                 | 23             | 22-28-4230                             | A-42375-0023                                 |                     | 05                                       | 22-28-4053                             | A-42375-0040                                 | 23                   | 22-28-4233                             | A-42375-005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 06                   | 22-28-4060                                           | A-42375-0006                                 | 24             | 22-28-4240                             | A-42375-0024                                 |                     | 06                                       | 22-28-4063                             | A-42375-0041                                 | 24                   | 22-28-4243                             | A-42375-005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                      |                                                      | A-42375-0007                                 | 25             |                                        | A-42375-0025                                 |                     | 07                                       | 22-28-4073                             | A-42375-0042                                 | 25                   |                                        | A-42375-006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                      | 22-28-4080                                           |                                              |                |                                        | A-42375-0026                                 |                     | 08                                       | 22-28-4083                             | A-42375-0043                                 |                      |                                        | A-42375-006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 09                   | 22-28-4090                                           | A-42375-0009                                 | 27             | 22-28-4270                             | A-42375-0027                                 |                     | 09                                       | 22-28-4093                             | A-42375-0044                                 | 27                   | 22-28-4273                             | A-42375-006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 10                   | 22-28-4100                                           | A-42375-0010                                 | 28             | 22-28-4280                             | A-42375-0028                                 |                     | 10                                       | 22-28-4103                             | A-42375-0045                                 | 28                   | 22-28-4283                             | A-42375-006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                      |                                                      | A-42375-0011                                 | 29             |                                        | A-42375-0029                                 |                     | 11                                       | 22-28-4113                             | A-42375-0046                                 |                      | 22-28-4293                             | A-42375-006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 12                   | 22-28-4120                                           | A-42375-0012                                 | 30             | 22-28-4300                             | A-42375-0030                                 |                     | 12                                       | 22-28-4123                             | A-42375-0047                                 | 30                   | 22-28-4303                             | A-42375-006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                      |                                                      | A-42375-0013                                 |                |                                        | A-42375-0031                                 |                     | 13                                       | 22-28-4133                             | A-42375-0048                                 | 31                   | 22-28-4313                             | A-42375-006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 14                   | 22-28-4140                                           | A-42375-0014                                 | 32             | 22-28-4320                             | A-42375-0032                                 |                     | 14                                       | 22-28-4143                             | A-42375-0049                                 |                      | 22-28-4323                             | A-42375-006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                      |                                                      | A-42375-0015                                 |                |                                        | A-42375-0033                                 |                     | 15                                       | 22-28-4153                             | A-42375-0050                                 |                      |                                        | A-42375-006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 16                   |                                                      | A-42375-0016                                 |                | 22-28-4340                             | A-42375-0034                                 |                     | 16                                       | 22-28-4163                             | A-42375-0051                                 | 34                   |                                        | A-42375-006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                      |                                                      | A-42375-0017                                 | 35             |                                        | A-42375-0035                                 |                     | 17                                       | 22-28-4173                             | A-42375-0052                                 | 35                   | 22-28-4353                             | A-42375-007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                      |                                                      | A-42375-0018                                 |                |                                        | A-42375-0036                                 |                     | 18                                       | 22-28-4183                             | A-42375-0053                                 |                      |                                        | A-42375-007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                      |                                                      |                                              |                | EE EU 1000                             | 71 12010 0000                                |                     | 19                                       |                                        |                                              |                      |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 15<br>16<br>17<br>18 | 22-28-4150<br>22-28-4160<br>22-28-4170<br>22-28-4180 | A-42375-0015<br>A-42375-0016<br>A-42375-0017 | 33<br>34<br>35 | 22-28-4330<br>22-28-4340<br>22-28-4350 | A-42375-0033<br>A-42375-0034<br>A-42375-0035 |                     | 15<br>16<br>17                           | 22-28-4153<br>22-28-4163<br>22-28-4173 | A-42375-0050<br>A-42375-0051<br>A-42375-0052 | 33<br>34<br>35<br>36 | 22-28-4233<br>22-28-4343<br>22-28-4353 | A-42375-0<br>A-42375-0<br>A-42375-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                      | REV:                                                 |                                              |                | RMATION:                               | TITLE:                                       |                     | KK 100 H                                 | EADER AS                               | SY                                           |                      |                                        | SHEET No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                      | Г19                                                  |                                              | CP201          | 4-3273<br>4                            |                                              |                     | W 1000 100 100 100 100 100 100 100 100 1 | VERTICAL                               |                                              |                      |                                        | - 2 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| DOC                  | UMENT NU                                             | MBER:                                        |                |                                        | CR                                           | EATED / REVISED BY: |                                          | CHECKED BY:                            |                                              |                      | APPROVED                               | BY:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                      |                                                      | SD- 42375                                    | 5-001          |                                        |                                              | MKIPPER             |                                          | NNGUYEN                                |                                              |                      | FSMITH                                 | - Control of the Cont |
|                      |                                                      |                                              |                |                                        | _                                            |                     |                                          |                                        | TEMPI AT                                     | C EU ENAL            | AE DOON INT SOE                        | CISIZE AI(V.1). DOC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

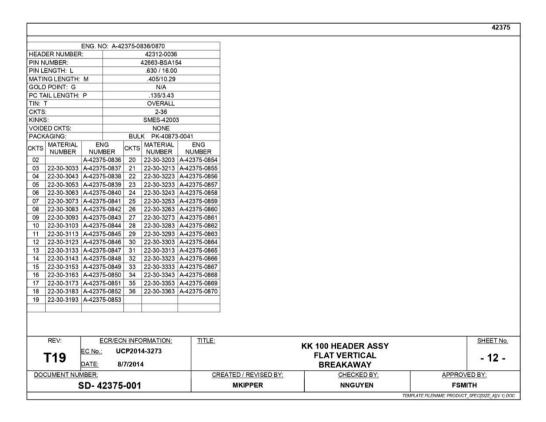
|       |                    |                              |        |                     |                              |                    |        |                    |                              |         |                    | 42375                      |
|-------|--------------------|------------------------------|--------|---------------------|------------------------------|--------------------|--------|--------------------|------------------------------|---------|--------------------|----------------------------|
|       |                    | ENG. NO: A-42                | 375.00 | 02/0036             |                              |                    |        |                    | ENG. NO: A-423               | 375.003 | 7/0071             |                            |
| HEAD  | ER NUMBER          |                              | 373-00 | 42312-0036          |                              |                    | HEAD   | ER NUMBER:         | ENG. NO. A-420               | 373-000 | 42312-00           | 36                         |
|       | UMBER:             |                              | - 5    | 42663-ABA15         |                              |                    |        | UMBER:             |                              |         | 42663-ABE          |                            |
|       | ENGTH: L           |                              | -      | .455 / 11.56        |                              |                    |        | NGTH: L            |                              |         | .455 / 11.         |                            |
| MATI  | NG LENGTH:         | M                            |        | .240 / 6.09         |                              |                    | MATIN  | IG LENGTH: 1       | M                            |         | .240 / 6.0         | 9                          |
| GOLD  | POINT: G           |                              |        | N/A                 |                              |                    | GOLD   | POINT: G           |                              |         | .100 / 2.5         | 54                         |
| PC TA | ALL LENGTH:        | P                            |        | .125 / 3.18         |                              |                    | PC TA  | IL LENGTH: F       |                              |         | .125 / 3.1         | 18                         |
| TIN:  | Т                  |                              |        | OVERALL             |                              |                    | TIN: T |                    |                              |         | .100 / 2.5         | 54                         |
| CKTS  | i.                 |                              |        | 2-36                |                              |                    | CKTS   |                    |                              |         | 2-36               |                            |
| KINK  |                    | 1                            |        | NO                  |                              |                    | KINKS  |                    |                              |         | NO                 |                            |
|       | ED CKTS:           |                              |        | NONE                |                              |                    | -      | D CKTS:            |                              |         | NONE               |                            |
| PACK  | AGING:             |                              | BUL    | K PK-40873          |                              |                    | PACK   | AGING:             |                              | BU      |                    | 73-0041                    |
| CKTS  | MATERIAL<br>NUMBER | ENG<br>NUMBER                | CKTS   | MATERIAL<br>NUMBER  | ENG<br>NUMBER                |                    | CKTS   | MATERIAL<br>NUMBER | ENG<br>NUMBER                | CKTS    | MATERIAL<br>NUMBER | ENG<br>NUMBER              |
| 02    | 22-28-4020         | A-42375-0002                 | 20     | 22-28-4200          | A-42375-0020                 |                    | 02     | 22-28-4023         | A-42375-0037                 | 20      |                    | A-42375-005                |
| 03    | 22-28-4030         | A-42375-0003                 | 21     |                     | A-42375-0021                 |                    | 03     | 22-28-4033         | A-42375-0038                 | 21      |                    | A-42375-005                |
| 04    | 22-28-4040         | A-42375-0004                 | 22     |                     | A-42375-0022                 |                    | 04     | 22-28-4043         | A-42375-0039                 | 22      |                    | A-42375-00                 |
| 05    | 22-28-4050         | A-42375-0005                 | 23     |                     | A-42375-0023                 |                    | 05     | 22-28-4053         | A-42375-0040                 | 23      |                    | A-42375-005                |
| 06    | 22-28-4060         | A-42375-0006                 | 24     |                     | A-42375-0024                 |                    | 06     | 22-28-4063         | A-42375-0041                 | 24      |                    | A-42375-005                |
| 07    |                    | A-42375-0007                 | 25     |                     | A-42375-0025                 |                    | 07     | 22-28-4073         | A-42375-0042                 | 25      |                    | A-42375-006                |
| 08    | 22-28-4080         | A-42375-0008                 | 26     |                     | A-42375-0026                 |                    | 08     | 22-28-4083         | A-42375-0043                 | 26      |                    | A-42375-006                |
| 10    | 22-28-4090         | A-42375-0009<br>A-42375-0010 | 27     |                     | A-42375-0027<br>A-42375-0028 |                    | 10     | 22-28-4093         | A-42375-0044<br>A-42375-0045 | 27      |                    | A-42375-006<br>A-42375-006 |
| 11    |                    | A-42375-0010<br>A-42375-0011 | 29     |                     | A-42375-0028<br>A-42375-0029 |                    | 11     | 22-28-4113         | A-42375-0045                 | 29      |                    | A-42375-006                |
| 12    | 22-28-4110         | A-42375-0011                 | 30     |                     | A-42375-0029                 |                    | 12     | 22-28-4113         | A-42375-0047                 | 30      |                    | A-42375-006                |
| 13    | 22-28-4120         | A-42375-0012                 | 31     |                     | A-42375-0030                 |                    | 13     | 22-28-4133         | A-42375-0048                 | 31      |                    | A-42375-006                |
| 14    | 22-28-4140         | A-42375-0014                 | 32     |                     | A-42375-0032                 |                    | 14     | 22-28-4143         | A-42375-0049                 | 32      |                    | A-42375-006                |
| 15    | 22-28-4150         | A-42375-0015                 | 33     |                     | A-42375-0033                 |                    | 15     | 22-28-4153         | A-42375-0050                 | 33      |                    | A-42375-006                |
| 16    | 22-28-4160         | A-42375-0016                 | 34     | 22-28-4340          | A-42375-0034                 |                    | 16     | 22-28-4163         | A-42375-0051                 | 34      | 22-28-4343         | A-42375-006                |
| 17    | 22-28-4170         | A-42375-0017                 | 35     | 22-28-4350          | A-42375-0035                 |                    | 17     | 22-28-4173         | A-42375-0052                 | 35      | 22-28-4353         | A-42375-007                |
| 18    | 22-28-4180         | A-42375-0018                 | 36     | 22-28-4360          | A-42375-0036                 |                    | 18     | 22-28-4183         | A-42375-0053                 | 36      | 22-28-4363         | A-42375-007                |
| 19    | 22-28-4190         | A-42375-0019                 |        |                     |                              |                    | 19     | 22-28-4193         | A-42375-0054                 |         |                    |                            |
| 1     | REV:               | EC No.: UC                   |        | DRMATION:<br>4-3273 | TITLE:                       | кк                 | FLAT V | ADER ASSERTICAL    | SY                           |         |                    | SHEET No.                  |
| DO    | CUMENT NUI         | 1000                         |        | 200                 | CR                           | ATED / REVISED BY: |        | HECKED BY:         |                              |         | APPROVED           | BY:                        |
|       |                    | SD- 42375                    | -001   |                     |                              | MKIPPER            |        | NNGUYEN            |                              |         | FSMITH             |                            |

| =    |                    | ENG. NO: A-4  | 2275 00 | 72/0106      |               |                    |            |                    | ENG. NO: A-423  | 375 N1/ | 7/01/11            |                                         |
|------|--------------------|---------------|---------|--------------|---------------|--------------------|------------|--------------------|-----------------|---------|--------------------|-----------------------------------------|
| JEΔΓ | DER NUMBER         |               | 23/3-00 | 42312-0036   |               |                    | HEAD       | ER NUMBER:         | LING. NO. A-423 | 770-011 | 42312-00           | 136                                     |
|      | UMBER:             |               |         | 42663-ABB22  | •             |                    |            | UMBER:             |                 |         | 42663-ATA          |                                         |
|      | FNGTH: I           | -             |         | .455 / 11.56 | •             |                    |            | FNGTH: I           |                 |         | .530 / 13          | 000000000000000000000000000000000000000 |
|      | NG LENGTH          | M             |         | .240 / 6.09  |               |                    | 7 111 4    | NG LENGTH: N       | 4               |         | .320 / 8.          |                                         |
|      | POINT: G           | IVI           |         | .100 / 2.54  |               |                    | 500000000  | POINT: G           | vi              |         | N/A                | 10                                      |
|      | AIL LENGTH:        | D             |         | .125 / 3.18  |               |                    |            | ALLENGTH: F        | ,               |         | .120 / 3.0         | 15                                      |
| TIN: |                    | -             |         | .100 / 2.54  |               |                    | TIN:       |                    | 100             |         | OVERAL             |                                         |
| CKTS |                    | -             |         | 2-36         |               |                    | CKTS       |                    |                 |         | 2-36               |                                         |
| INK  | *                  |               |         | NO<br>NO     | -             |                    | KINK       | 7.                 |                 |         | NO.                |                                         |
|      | ED CKTS:           | -             |         | NONE         |               |                    | 10000      | ED CKTS:           |                 |         | NONE               |                                         |
|      | (AGING:            |               | BUL     |              | -00/11        |                    |            | AGING:             |                 | B       | ULK PK-408         |                                         |
| KTS  | MATERIAL<br>NUMBER | ENG<br>NUMBER | CKTS    | MATERIAL     | ENG<br>NUMBER |                    | CKTS       | MATERIAL<br>NUMBER | ENG<br>NUMBER   | сктѕ    | MATERIAL<br>NUMBER | ENG<br>NUMBER                           |
| 02   |                    | A-42375-0072  | 20      |              | A-42375-0090  |                    | 02         | 22-28-4021         | A-42375-0107    | 20      | 22-28-4201         |                                         |
| 03   |                    | A-42375-0073  |         |              | A-42375-0091  |                    | 03         | 22-28-4031         | A-42375-0108    | 21      |                    | A-42375-01                              |
| 04   | 22-28-4046         | A-42375-0074  | 22      | 22-28-4226   | A-42375-0092  |                    | 04         | 22-28-4041         | A-42375-0109    | 22      | 22-28-4221         | A-42375-012                             |
| 05   | 22-28-4056         | A-42375-0075  | 23      | 22-28-4236   | A-42375-0093  |                    | 05         | 22-28-4051         | A-42375-0110    | 23      | 22-28-4231         | A-42375-01                              |
| 06   | 22-28-4066         | A-42375-0076  | 24      | 22-28-4246   | A-42375-0094  |                    | 06         | 22-28-4061         | A-42375-0111    | 24      | 22-28-4241         | A-42375-01                              |
| 07   | 22-28-4076         | A-42375-0077  | 25      | 22-28-4256   | A-42375-0095  |                    | 07         | 22-28-4071         | A-42375-0112    | 25      | 22-28-4251         | A-42375-01                              |
| 08   | 22-28-4086         | A-42375-0078  | 26      | 22-28-4266   | A-42375-0096  |                    | 08         | 22-28-4081         | A-42375-0113    | 26      | 22-28-4261         | A-42375-01                              |
| 09   | 22-28-4096         | A-42375-0079  | 27      | 22-28-4276   | A-42375-0097  |                    | 09         | 22-28-4091         | A-42375-0114    | 27      | 22-28-4271         | A-42375-01                              |
| 10   | 22-28-4106         | A-42375-0080  | 28      | 22-28-4286   | A-42375-0098  |                    | 10         | 22-28-4101         | A-42375-0115    | 28      | 22-28-4281         | A-42375-01                              |
| 11   | 22-28-4116         | A-42375-0081  | 29      | 22-28-4296   | A-42375-0099  |                    | 11         | 22-28-4111         | A-42375-0116    | 29      | 22-28-4291         | A-42375-01                              |
| 12   | 22-28-4126         | A-42375-0082  | 30      | 22-28-4306   | A-42375-0100  |                    | 12         | 22-28-4121         | A-42375-0117    | 30      | 22-28-4301         | A-42375-01                              |
| 13   | 22-28-4136         | A-42375-0083  | 31      | 22-28-4316   | A-42375-0101  |                    | 13         | 22-28-4131         | A-42375-0118    | 31      | 22-28-4311         | A-42375-01                              |
| 14   | 22-28-4146         | A-42375-0084  | 32      | 22-28-4326   | A-42375-0102  |                    | 14         | 22-28-4141         | A-42375-0119    | 32      | 22-28-4321         | A-42375-01                              |
| 15   | 22-28-4156         | A-42375-0085  | 33      | 22-28-4336   | A-42375-0103  |                    | 15         | 22-28-4151         | A-42375-0120    | 33      | 22-28-4331         | A-42375-01                              |
| 16   | 22-28-4166         | A-42375-0086  | 34      | 22-28-4346   | A-42375-0104  |                    | 16         | 22-28-4161         | A-42375-0121    | 34      | 22-28-4341         | A-42375-01                              |
| 17   | 22-28-4176         | A-42375-0087  | 35      | 22-28-4356   | A-42375-0105  |                    | 17         | 22-28-4171         | A-42375-0122    | 35      | 22-28-4351         | A-42375-01                              |
| 18   | 22-28-4186         | A-42375-0088  | 36      | 22-28-4366   | A-42375-0106  |                    | 18         | 22-28-4181         | A-42375-0123    | 36      | 22-28-4361         | A-42375-01                              |
| 19   | 22-28-4196         | A-42375-0089  |         |              |               |                    | 19         | 22-28-4191         | A-42375-0124    |         |                    |                                         |
|      |                    |               |         |              |               |                    |            |                    |                 |         |                    |                                         |
| _    | REV:               | ECR/E         | N INFO  | DRMATION:    | TITLE:        |                    | KK 400 III | ADER ASS           | ev.             |         |                    | SHEET No.                               |
|      | T19                |               |         | 4-3273       |               |                    | FLAT \     | ERTICAL            | ) i             |         |                    | - 3 -                                   |
|      |                    |               | /7/201  | 4            |               |                    |            | KAWAY              |                 |         |                    |                                         |
| DO   | CUMENT NU          |               |         |              | CRE           | ATED / REVISED BY: |            | CHECKED BY:        |                 |         | APPROVED           |                                         |
|      |                    | SD- 4237!     | 5-001   |              |               | MKIPPER            |            | NNGUYEN            |                 |         | FSMITH             |                                         |




|       |            |         |         |         |                     |              |                     |          |                     |                              |          |                    | 42375              |
|-------|------------|---------|---------|---------|---------------------|--------------|---------------------|----------|---------------------|------------------------------|----------|--------------------|--------------------|
|       |            | ENG. N  | O: A-42 | 2375-02 | 212/0246            |              |                     |          |                     | ENG. NO: A-42                | 375-024  | 17/0281            |                    |
| HEAD  | DER NUMBE  | R:      |         |         | 42312-0036          |              |                     | HEAL     | DER NUMBER:         | LINO. 110. A 42              | .010-02- | 42312-00           | 36                 |
| PIN N | IUMBER:    |         |         | -       | 42663-AMA15         | 54           |                     |          | NUMBER:             |                              |          | 42663-AME          |                    |
|       | ENGTH: L   |         |         |         | .505 / 12.83        |              |                     |          | ENGTH: L            |                              |          | .505 / 12          |                    |
| MATI  | NG LENGTH  | : M     |         |         | .295 / 7.49         |              |                     |          | ING LENGTH: 1       | 4                            |          | .295 / 7.4         |                    |
| GOLE  | POINT: G   |         |         |         | N/A                 |              |                     |          | D POINT: G          | VI                           |          | .140 / 3.5         |                    |
|       | AIL LENGTH | · P     |         |         | .120 / 3.05         |              |                     |          | AIL LENGTH: F       | ,                            |          | .120 / 3.0         |                    |
| TIN:  |            |         |         |         | OVERALL             |              |                     | TIN:     |                     | 10                           |          | .135 / 3.4         |                    |
| CKTS  |            |         | -       |         | 2-36                |              |                     | CKT      |                     | -                            |          | 2-36               | +3                 |
| KINK  |            |         |         |         | NO                  |              |                     | KINK     |                     |                              |          |                    |                    |
|       | ED CKTS:   |         |         |         | NONE                | -            |                     |          |                     |                              |          | NONE               |                    |
| -     | (AGING:    |         |         | BULE    |                     | 3.0041       |                     |          | ED CKTS:            |                              | -        |                    | 70 0011            |
|       | MATERIAL   | EN      | IG      |         | MATERIAL            | ENG          |                     | PAC      | KAGING:             | FNO                          | BL       |                    | 373-0041           |
| CKTS  | NUMBER     | NUM     |         | CKTS    | NUMBER              | NUMBER       |                     | сктя     | MATERIAL<br>NUMBER  | ENG<br>NUMBER                | CKTS     | MATERIAL<br>NUMBER | ENG<br>NUMBER      |
| 02    | 22-28-4022 |         |         | 20      |                     | A-42375-0230 |                     | 02       | 22-28-4025          | A-42375-0247                 | 20       |                    | A-42375-026        |
| 03    | 22-28-4032 |         |         | 21      |                     | A-42375-0231 |                     | 03       | 22-28-4035          | A-42375-0248                 | -        |                    | A-42375-026        |
| 04    | 22-28-4042 | A-4237  | 5-0214  | 22      |                     | A-42375-0232 |                     | 04       | 22-28-4045          | A-42375-0249                 |          |                    | A-42375-026        |
| 05    | 22-28-4052 | A-4237  | 5-0215  | 23      | 22-28-4232          | A-42375-0233 |                     | 05       | 22-28-4055          | A-42375-0250                 |          |                    | A-42375-026        |
| 06    | 22-28-4062 | A-4237  | 5-0216  | 24      | 22-28-4242          | A-42375-0234 |                     | 06       | 22-28-4065          | A-42375-0251                 |          |                    | A-42375-026        |
| 07    | 22-28-4072 | A-4237  | 5-0217  | 25      | 22-28-4252          | A-42375-0235 |                     | 07       | 22-28-4005          | A-42375-0252                 |          |                    | A-42375-020        |
| 08    | 22-28-4082 | A-4237  | 5-0218  | 26      | 22-28-4262          | A-42375-0236 |                     | 08       | 22-28-4075          | A-42375-0252                 |          |                    | A-42375-027        |
| 09    | 22-28-4092 | A-4237  | 5-0219  | 27      | 22-28-4272          | A-42375-0237 |                     | 09       | 22-28-4095          | A-42375-0254                 |          |                    | A-42375-027        |
| 10    | 22-28-4102 |         |         | 28      |                     | A-42375-0238 |                     | 10       | 22-28-4105          | A-42375-0255                 |          |                    | A-42375-027        |
| 11    | 22-28-4112 | A-4237  | 5-0221  | 29      |                     | A-42375-0239 |                     | 11       | 22-28-4115          | A-42375-0256                 |          |                    | A-42375-027        |
| 12    | 22-28-4122 |         |         | 30      | 22-28-4302          | A-42375-0240 |                     | 12       | 22-28-4115          | A-42375-0250                 |          |                    | A-42375-027        |
| 13    | 22-28-4132 |         |         | 31      |                     | A-42375-0241 |                     | 13       | 22-28-4125          | A-42375-0258                 |          |                    | A-42375-027        |
| 14    | 22-28-4142 |         |         | 32      |                     | A-42375-0242 |                     |          | 22-28-4135          | A-42375-0258                 |          |                    | A-42375-027        |
| 15    | 22-28-4152 |         |         | 33      |                     | A-42375-0243 |                     | 14       |                     |                              |          |                    |                    |
| 16    | 22-28-4162 |         |         | 34      |                     | A-42375-0244 |                     |          | 22-28-4155          | A-42375-0260                 |          |                    | A-42375-027        |
| 17    | 22-28-4172 |         |         | 35      |                     | A-42375-0245 |                     | 16       | 22-28-4165          | A-42375-0261                 |          |                    | A-42375-027        |
| 18    | 22-28-4172 |         |         | 36      |                     | A-42375-0246 |                     | 17       | 22-28-4175          | A-42375-0262                 |          |                    | A-42375-028        |
| 19    | 22-28-4192 |         |         | 30      | 22-20-4302          | A-42373-0240 |                     | 18       | 22-28-4185          | A-42375-0263<br>A-42375-0264 |          | 22-28-4365         | A-42375-028        |
|       | REV:       | EC No.: |         |         | DRMATION:<br>4-3273 | TITLE:       |                     | KK 100 H | EADER ASS           |                              |          |                    | SHEET No.          |
|       |            | DATE:   | 8/      | 7/201   | 4                   |              |                     | BRE      | AKAWAY              |                              |          |                    | <del></del>        |
| DO    | CUMENT NU  | JMBER:  |         |         |                     | CR           | EATED / REVISED BY: |          | CHECKED BY:         |                              |          | APPROVED           | BY:                |
|       |            | SD- 4   | 2375    | -001    |                     |              | MKIPPER             |          | NNGUYEN             |                              |          | <b>FSMITH</b>      |                    |
|       |            |         |         |         |                     |              | 1888 5077 130 100   |          | volunt Cymythaidd R |                              |          |                    | C[SIZE_A](V.1) DOC |




| DOCUMENT NUI        | DATE:                      | 0///201  | 4                           |                              | EATED / REVISED BY: | BREAM      | ECKED BY:          |                            |         | APPROVED           | DV                       |
|---------------------|----------------------------|----------|-----------------------------|------------------------------|---------------------|------------|--------------------|----------------------------|---------|--------------------|--------------------------|
| T19                 | EC No.:                    | UCP201   |                             | TITLE:                       |                     | KK 100 HEA | RTICAL             | SY                         |         |                    | - 7 -                    |
|                     |                            |          |                             |                              |                     |            |                    |                            |         |                    |                          |
|                     |                            |          |                             |                              |                     |            |                    |                            |         |                    |                          |
|                     | A-42375-036                |          | 22-20-0000                  | 742070-0000                  |                     | 19         | 22-28-5196         | A-42375-040                | 4       |                    |                          |
|                     | A-42375-036                |          |                             | A-42375-0386                 |                     | 18         | 22-28-5186         | A-42375-040                | 3 36    | 22-28-5366         | A-42375-04               |
|                     | A-42375-036                |          |                             | A-42375-0384<br>A-42375-0385 |                     | 17         | 22-28-5176         | A-42375-040                | 2 35    | 22-28-5356         | A-42375-04               |
|                     | A-42375-036                |          |                             | A-42375-0384                 |                     | 16         |                    | A-42375-040                |         |                    | A-42375-04               |
|                     | A-42375-036<br>A-42375-036 |          |                             | A-42375-0382<br>A-42375-0383 |                     | 15         |                    | A-42375-040                |         |                    | A-42375-04               |
|                     | A-42375-036                |          |                             | A-42375-0381                 |                     | 14         |                    | A-42375-039                |         |                    | A-42375-04<br>A-42375-04 |
|                     | A-42375-036                |          |                             | A-42375-0380                 |                     | 13         |                    | A-42375-039                |         |                    | A-42375-04<br>A-42375-04 |
|                     | A-42375-036                |          |                             | A-42375-0379                 |                     | 12         |                    | A-42375-039<br>A-42375-039 |         |                    | A-42375-04<br>A-42375-04 |
|                     | A-42375-036                |          |                             | A-42375-0378                 |                     | 10         |                    | A-42375-039<br>A-42375-039 |         |                    | A-42375-04<br>A-42375-04 |
|                     | A-42375-035                |          |                             | A-42375-0377                 |                     | 09         |                    | A-42375-039                |         |                    | A-42375-04               |
| 08 22-28-5083       | A-42375-035                | 58 26    | 22-28-5263                  | A-42375-0376                 |                     | 08         |                    | A-42375-039                |         |                    | A-42375-04               |
|                     | A-42375-038                |          |                             | A-42375-0375                 |                     | 07         |                    | A-42375-039                |         |                    | A-42375-04               |
| 06 22-28-5063       | A-42375-035                | 56 24    | 22-28-5243                  | A-42375-0374                 |                     | 06         |                    | A-42375-039                |         |                    | A-42375-04               |
| 05 22-28-5053       | A-42375-035                | 55 23    | 22-28-5233                  | A-42375-0373                 |                     | 05         |                    | A-42375-039                |         |                    | A-42375-040              |
| 04 22-28-5043       | A-42375-035                | 54 22    | 22-28-5223                  | A-42375-0372                 |                     | 04         |                    | A-42375-038                |         |                    | A-42375-040              |
| 03 22-28-5033       | A-42375-035                | 53 21    | 22-28-5213                  | A-42375-0371                 |                     | 03         |                    | A-42375-038                |         |                    | A-42375-04               |
| 02 22-28-5023       | A-42375-035                | 52 20    | 22-28-5203                  | A-42375-0370                 |                     | 02         |                    | A-42375-038                |         |                    | A-42375-04               |
| KTS MATERIAL NUMBER | ENG<br>NUMBER              | CKTS     | MATERIAL<br>NUMBER          | ENG<br>NUMBER                |                     | CKTS       | MATERIAL<br>NUMBER | ENG<br>NUMBER              | CKTS    | MATERIAL<br>NUMBER | ENG<br>NUMBER            |
| PACKAGING:          |                            | BUL      | K PK-40873                  | -0041                        |                     | PACK       | AGING:             |                            | BUL     | K PK-40873         |                          |
| VOIDED CKTS:        |                            |          | NONE                        |                              |                     |            | ED CKTS:           |                            |         | NONE               |                          |
| KINKS:              |                            |          | SMES-42003                  | 3                            |                     | KINK       |                    |                            |         | SMES-4200          | 3                        |
| CKTS:               |                            |          | 2-36                        |                              |                     | CKTS       |                    |                            |         | 2-36               |                          |
| TIN: T              |                            |          | .100 / 2.54                 |                              |                     | TIN:       |                    |                            |         | .100 / 2.54        |                          |
| C TAIL LENGTH:      | Р                          |          | .135 / 3.43                 |                              |                     | PC TA      | AIL LENGTH:        | P                          |         | .135 / 3.43        |                          |
| GOLD POINT: G       | . IVI                      |          | .100 / 2.54                 |                              |                     | GOLD       | POINT: G           |                            |         | .100 / 2.54        |                          |
| MATING LENGTH: L    | M                          |          | .240 / 6.09                 |                              |                     |            | NG LENGTH:         | M                          |         | .240 / 6.09        |                          |
| PIN NUMBER:         |                            |          | 42663-ADB20<br>.465 / 11.81 | 8                            |                     |            | ENGTH: L           |                            |         | .465 / 11.81       |                          |
|                     | ₹:                         |          |                             |                              |                     |            | IUMBER:            |                            |         | 42663-ADB2         |                          |
|                     |                            | -42375-0 |                             |                              |                     | HEAT       | ED NII IMDEE       |                            | 42375-0 |                    |                          |
| HEADER NUMBER       | ENG. NO: A                 | -42375-0 | 352/0386<br>42312-0036      |                              |                     |            | DER NUMBER         | ENG. NO: A-                |         | 42312-0036         | _                        |

|       |                    |                  |           |                    |               |                     |            |                    |               |        |                    | 42375         |
|-------|--------------------|------------------|-----------|--------------------|---------------|---------------------|------------|--------------------|---------------|--------|--------------------|---------------|
|       |                    | ENG. NO:         | A-42375-0 | 0422/0456          |               |                     |            |                    | ENG. NO: A-   | 2375-0 | 457/0491           |               |
| HEA   | ADER NUMBI         |                  |           | 42312-0036         |               |                     | HEA        | ADER NUMBE         |               |        | 42312-0036         | 3             |
|       | IUMBER:            |                  |           | 42663-AYA15        |               |                     |            | IUMBER:            |               |        | 42663-AYB2         |               |
| PIN L | ENGTH: L           |                  |           | .545 / 13.84       |               |                     | PIN L      | ENGTH: L           |               |        | .545 / 13.84       | 1             |
| MATI  | NG LENGTH          | : M              |           | .320 / 8.13        |               |                     | MATI       | NG LENGTH:         | M             |        | .320 / 8.13        |               |
| GOLD  | POINT: G           |                  |           | N/A                |               |                     | GOLD       | POINT: G           |               |        | .140 / 3.56        |               |
| PC TA | ALL LENGTH:        | P                |           | .135 / 3.43        |               |                     | PC TA      | AIL LENGTH:        | P             |        | .135 / 3.43        |               |
| TIN:  | Т                  |                  |           | OVERALL            |               |                     | TIN:       | T                  |               |        | .135 / 3.43        |               |
| CKTS  | :                  |                  |           | 2-36               |               |                     | CKTS       | i:                 |               |        | 2-36               |               |
| KINK  | S:                 |                  |           | SMES-4200          | 3             |                     | KINK       | S:                 |               |        | SMES-4200          | 3             |
| VOID  | ED CKTS:           |                  |           | NONE               |               |                     | VOID       | ED CKTS:           |               |        | NONE               |               |
| PACK  | AGING:             |                  | BUI       | K PK-40873         | 3-0041        |                     | PACH       | AGING:             |               | BUL    | K PK-4087          | 3-0041        |
| CKTS  | MATERIAL<br>NUMBER | ENG<br>NUMBE     | R CKTS    | MATERIAL<br>NUMBER | ENG<br>NUMBER |                     | сктѕ       | MATERIAL<br>NUMBER | ENG<br>NUMBER | сктѕ   | MATERIAL<br>NUMBER | ENG<br>NUMBER |
| 02    | 22-28-5021         |                  |           | 22-28-5201         | A-42375-0440  |                     | 02         |                    | A-42375-045   | 20     |                    | A-42375-047   |
| 03    | 22-28-5031         | A-42375-0        | 1423 21   | 22-28-5211         | A-42375-0441  |                     | 03         | 22-28-5034         | A-42375-045   | 3 21   | 22-28-5214         | A-42375-047   |
| 04    | 22-28-5041         | A-42375-0        | 1424 22   | 22-28-5221         | A-42375-0442  |                     | 04         | 22-28-5044         | A-42375-0459  | 22     | 22-28-5224         | A-42375-047   |
| 05    | 22-28-5051         | A-42375-0        | 425 23    | 22-28-5231         | A-42375-0443  |                     | 05         | 22-28-5054         | A-42375-0460  | 23     | 22-28-5234         | A-42375-047   |
| 06    | 22-28-5061         | A-42375-0        | 1426 24   | 22-28-5241         | A-42375-0444  |                     | 06         | 22-28-5064         | A-42375-046   | 1 24   | 22-28-5244         | A-42375-047   |
| 07    | 22-28-5071         | A-42375-0        | 427 25    | 22-28-5251         | A-42375-0445  |                     | 07         | 22-28-5074         | A-42375-046   | 2 25   | 22-28-5254         | A-42375-048   |
| 08    | 22-28-5081         | A-42375-0        | 1428 26   | 22-28-5261         | A-42375-0446  |                     | 08         | 22-28-5084         | A-42375-046   | 3 26   | 22-28-5264         | A-42375-048   |
| 09    | 22-28-5091         | A-42375-0        | 1429 27   | 22-28-5271         | A-42375-0447  |                     | 09         | 22-28-5094         | A-42375-046   | 1 27   | 22-28-5274         | A-42375-048   |
| 10    | 22-28-5101         | A-42375-0        | 430 28    | 22-28-5281         | A-42375-0448  |                     | 10         | 22-28-5104         | A-42375-046   | 28     | 22-28-5284         | A-42375-048   |
| 11    | 22-28-5111         | A-42375-0        | 431 29    | 22-28-5291         | A-42375-0449  |                     | 11         | 22-28-5114         | A-42375-046   | 3 29   | 22-28-5294         | A-42375-048   |
| 12    | 22-28-5121         | A-42375-0        | 1432 30   | 22-28-5301         | A-42375-0450  |                     | 12         | 22-28-5124         | A-42375-046   | 7 30   | 22-28-5304         | A-42375-048   |
| 13    | 22-28-5131         | A-42375-0        | 1433 31   | 22-28-5311         | A-42375-0451  |                     | 13         | 22-28-5134         | A-42375-046   | 3 31   | 22-28-5314         | A-42375-048   |
| 14    | 22-28-5141         | A-42375-0        | 1434 32   | 22-28-5321         | A-42375-0452  |                     | 14         | 22-28-5144         | A-42375-0469  | 32     | 22-28-5324         | A-42375-048   |
| 15    | 22-28-5151         | A-42375-0        | 1435 33   | 22-28-5331         | A-42375-0453  |                     | 15         | 22-28-5154         | A-42375-0470  | 33     | 22-28-5334         | A-42375-048   |
| 16    | 22-28-5161         | A-42375-0        | 1436 34   | 22-28-5341         | A-42375-0454  |                     | 16         | 22-28-5164         | A-42375-047   | 34     | 22-28-5344         | A-42375-048   |
| 17    | 22-28-5171         | A-42375-0        | 437 35    | 22-28-5351         | A-42375-0455  |                     | 17         | 22-28-5174         | A-42375-047   | 2 35   | 22-28-5354         | A-42375-049   |
| 18    | 22-28-5181         | A-42375-0        | 1438 36   | 22-28-5361         | A-42375-0456  |                     | 18         | 22-28-5184         | A-42375-047   | 36     | 22-28-5364         | A-42375-049   |
| 19    | 22-28-5191         | A-42375-0        | 1439      |                    |               |                     | 19         | 22-28-5194         | A-42375-0474  | 1      |                    |               |
|       |                    |                  |           |                    |               |                     |            |                    |               |        |                    |               |
|       | REV:               | ECF              | R/ECN INF | ORMATION:          | TITLE:        |                     | KK 100 HEA | NEE VE             | ev.           |        |                    | SHEET No.     |
| •     | T19                | EC No.:<br>DATE: | UCP201    |                    |               |                     | FLAT VE    | RTICAL             | )             |        |                    | -8-           |
| DO    | CUMENT NU          |                  | 0///20    | -                  | -             | EATED / REVISED BY: |            | ECKED BY:          |               |        | APPROVED           | DV-           |
| טטנ   |                    | SD- 423          | 275-00    | 1                  | L CR          | MKIPPER             | 1          | NGUYEN             |               |        | FSMITH             | differentials |
|       | 15                 | 3D- 423          | 7 3-00    |                    | 1             | mixir r ER          | 1 14       | HOU! EN            |               |        | LOMITH             |               |

|        |                    |                  |                   |                    |               |                     |           |                    |               |           |                    | 42375             |
|--------|--------------------|------------------|-------------------|--------------------|---------------|---------------------|-----------|--------------------|---------------|-----------|--------------------|-------------------|
|        |                    | ENG. NO:         | A_42375_0         | 492/0526           |               |                     |           |                    | ENG NO        | Δ.423     | 75-0527/0561       | 1                 |
| HEAD   | ER NUMBER          |                  | 1 420/00          | 42312-0036         |               |                     | HEAD      | ER NUMBER          |               | . / 420   | 42312-0036         |                   |
| PIN NI | UMBER:             |                  | 70                | 42663-AYB2         | 28            |                     | PIN N     | IUMBER:            |               | 33        | 42663-ARA1         | 54                |
|        | ENGTH: L           |                  |                   | .545 / 13.84       |               |                     |           | ENGTH: L           |               |           | .520 / 13.21       |                   |
|        | IG LENGTH:         | M                |                   | .320 / 8.13        |               |                     |           | NG LENGTH:         | М             |           | .295 / 7.49        |                   |
| GOLD   | POINT: G           |                  |                   | .140 / 3.56        |               |                     | GOLI      | POINT: G           |               |           | N/A                |                   |
| C TA   | IL LENGTH:         | P                |                   | .135 / 3.43        |               |                     |           | AIL LENGTH:        | P             |           | .135 / 3.43        |                   |
| TIN: T |                    |                  |                   | .135 / 3.43        |               |                     | TIN:      | Т                  |               |           | OVERALL            | 2                 |
| CKTS:  |                    |                  |                   | 2-36               |               |                     | CKTS      | i:                 |               |           | 2-36               |                   |
| KINKS  | 3:                 |                  |                   | SMES-4200          | 3             |                     | KINK      | S:                 |               |           | SMES-4200          | 3                 |
| /OIDE  | ED CKTS:           |                  |                   | NONE               |               |                     | VOID      | ED CKTS:           |               |           | NONE               |                   |
| PACK   | AGING:             |                  | BUL               | K PK-4087          | 3-0041        |                     | PACE      | (AGING:            |               | BUL       | K PK-4087:         | 3-0041            |
| сктѕ   | MATERIAL<br>NUMBER | ENG<br>NUMBER    | CKTS              | MATERIAL<br>NUMBER | ENG<br>NUMBER |                     | сктѕ      | MATERIAL<br>NUMBER | ENG<br>NUMBER | сктѕ      | MATERIAL<br>NUMBER | ENG<br>NUMBER     |
| 02     | 22-28-5027         | A-42375-04       | 92 20             | 22-28-5207         | A-42375-0510  |                     | 02        | 22-28-5022         | A-42375-052   | 20        | 22-28-5202         | A-42375-054       |
| 03     | 22-28-5037         | A-42375-04       | 93 21             | 22-28-5217         | A-42375-0511  |                     | 03        | 22-28-5032         | A-42375-0528  | 3 21      | 22-28-5212         | A-42375-054       |
| 04     | 22-28-5047         | A-42375-04       | 194 22            | 22-28-5227         | A-42375-0512  |                     | 04        | 22-28-5042         | A-42375-0529  | 22        | 22-28-5222         | A-42375-054       |
| 05     | 22-28-5057         | A-42375-04       | 95 23             | 22-28-5237         | A-42375-0513  |                     | 05        | 22-28-5052         | A-42375-0530  | 23        | 22-28-5232         | A-42375-054       |
| 06     | 22-28-5067         | A-42375-04       | 96 24             | 22-28-5247         | A-42375-0514  |                     | 06        | 22-28-5062         | A-42375-053   | 24        | 22-28-5242         | A-42375-054       |
| 07     | 22-28-5077         | A-42375-04       | 97 25             | 22-28-5257         | A-42375-0515  |                     | 07        | 22-28-5072         | A-42375-0532  | 2 25      | 22-28-5252         | A-42375-058       |
| 80     | 22-28-5087         | A-42375-04       | 98 26             | 22-28-5267         | A-42375-0516  |                     | 08        | 22-28-5082         | A-42375-053   | 3 26      | 22-28-5262         | A-42375-058       |
| 09     | 22-28-5097         | A-42375-04       | 199 27            | 22-28-5277         | A-42375-0517  |                     | 09        | 22-28-5092         | A-42375-0534  | 27        | 22-28-5272         | A-42375-055       |
| 10     | 22-28-5107         | A-42375-05       | 00 28             | 22-28-5287         | A-42375-0518  |                     | 10        | 22-28-5102         | A-42375-053   | 28        | 22-28-5282         | A-42375-05        |
| 11     | 22-28-5117         | A-42375-05       | 01 29             | 22-28-5297         | A-42375-0519  |                     | 11        | 22-28-5112         | A-42375-0536  | 29        | 22-28-5292         | A-42375-058       |
| 12     | 22-28-5127         | A-42375-05       | 02 30             | 22-28-5307         | A-42375-0520  |                     | 12        | 22-28-5122         | A-42375-053   | 7 30      | 22-28-5302         | A-42375-055       |
| 13     | 22-28-5137         | A-42375-05       | 03 31             | 22-28-5317         | A-42375-0521  |                     | 13        | 22-28-5132         | A-42375-0538  | 31        | 22-28-5312         | A-42375-055       |
| 14     | 22-28-5147         | A-42375-05       | 04 32             | 22-28-5327         | A-42375-0522  |                     | 14        | 22-28-5142         | A-42375-0539  | 32        | 22-28-5322         | A-42375-058       |
| 15     | 22-28-5157         | A-42375-05       | 05 33             | 22-28-5337         | A-42375-0523  |                     | 15        | 22-28-5152         | A-42375-0540  | 33        | 22-28-5332         | A-42375-055       |
| 16     | 22-28-5167         | A-42375-05       | 06 34             | 22-28-5347         | A-42375-0524  |                     | 16        | 22-28-5162         | A-42375-054   | 34        |                    | A-42375-055       |
| 17     | 22-28-5177         | A-42375-05       | 07 35             | 22-28-5357         | A-42375-0525  |                     | 17        | 22-28-5172         | A-42375-0542  | 35        | 22-28-5352         | A-42375-056       |
|        | 22-28-5187         |                  |                   | 22-28-5367         | A-42375-0526  |                     | 18        |                    | A-42375-0543  |           | 22-28-5362         | A-42375-056       |
| 19     | 22-28-5197         | A-42375-05       | 509               |                    |               |                     | 19        | 22-28-5192         | A-42375-054   | 1         |                    |                   |
|        |                    |                  |                   |                    |               |                     |           |                    |               |           |                    |                   |
|        | REV:               | ECR              |                   | ORMATION:          | TITLE:        |                     | KK 100 HE | DER ASS            | SY            |           |                    | SHEET No.         |
| 9      | Т19                | EC No.:<br>DATE: | UCP201<br>8/7/201 |                    |               |                     |           | RTICAL             |               |           |                    | - 9 -             |
| DOC    | UMENT NU           | MBER:            |                   |                    | CR            | EATED / REVISED BY: | CH        | ECKED BY:          |               | - 8       | APPROVED           | BY:               |
|        |                    | SD- 423          | 75-001            |                    |               | MKIPPER             | N         | NGUYEN             |               |           | FSMITH             |                   |
|        |                    |                  |                   |                    | - 1           |                     |           |                    | TEMPLAT       | E FILENAM | E: PRODUCT_SPE     | C[SIZE_A](V.1).DO |



|       |             |                  |                   |              |                        |                    |            |                    |               |           |                    | 42375         |
|-------|-------------|------------------|-------------------|--------------|------------------------|--------------------|------------|--------------------|---------------|-----------|--------------------|---------------|
|       |             | ENG. NO: A       | -42375-0          | 667/0699     |                        |                    |            |                    |               |           |                    |               |
| HEAD  | ER NUMBER   |                  |                   | 42312-0036   |                        |                    |            |                    | ENG. NO:      | A-423     | 75-0700/0732       | 2             |
| PIN N | IUMBER:     | -                |                   | 42663-ABB20  | 18                     |                    | HEAD       | DER NUMBER         |               | , , , , , | 42312-0036         |               |
|       | ENGTH: L    |                  |                   | .455 / 11.56 |                        |                    |            | UMBER:             |               | -         | 12663-ADB20        |               |
| MATI  | NG LENGTH   | : M              |                   | .240 / 6.09  |                        |                    | PIN L      | ENGTH: L           |               |           | .465 /11.81        |               |
| GOL   | POINT: G    |                  |                   | .100 / 2.54  |                        |                    |            | NG LENGTH:         | M             |           | .240 / 6.09        |               |
| PC T  | ALL LENGTH: | P                |                   | .125 / 3.18  |                        |                    | GOLE       | POINT: G           |               |           | .100 / 2.54        |               |
| TIN:  | T           |                  |                   | .100 / 2.54  |                        |                    | PC TA      | AIL LENGTH:        | P             |           | .135 / 3.43        |               |
| CKTS  | :           |                  |                   | 4-36         |                        |                    | TIN:       | Т                  |               |           | .100 / 2.54        |               |
| KINK  | S:          |                  |                   | NO           |                        |                    | CKTS       | 3:                 |               |           | 4-36               |               |
| /OID  | ED CKTS:    |                  |                   | 4            |                        |                    | KINK       | S:                 |               |           | SMES-4200          | 3             |
| PACE  | AGING:      |                  | BUL               | K PK-40873   | 3-0041                 |                    | VOID       | ED CKTS:           |               |           | 4                  |               |
| CKTS  | MATERIAL    | ENG              | сктя              | MATERIAL     | ENG                    |                    | PACK       | (AGING:            |               | BUL       | C PK-40873         | 3-0041        |
| 02    | NUMBER      | NUMBER           | 20                | NUMBER       | NUMBER<br>A-42375-0683 |                    | сктѕ       | MATERIAL<br>NUMBER | ENG<br>NUMBER | сктѕ      | MATERIAL<br>NUMBER | ENG<br>NUMBER |
| 03    |             |                  | 21                | 42375-0684   | A-42375-0684           |                    | 02         |                    |               | 20        | 42375-0716         | A-42375-071   |
| 04    | 42375-0667  | A-42375-06       | 37 22             | 42375-0685   | A-42375-0685           |                    | 03         |                    |               | 21        | 42375-0717         | A-42375-071   |
| 05    | 42375-0668  | A-42375-06       | 88 23             | 42375-0686   | A-42375-0686           |                    | 04         | 42375-0700         | A-42375-0700  | 22        | 42375-0718         | A-42375-071   |
| 06    | 22-30-3060  | A-42375-06       | 69 24             | 42375-0687   | A-42375-0687           |                    | 05         | 42375-0701         | A-42375-0701  | 23        | 42375-0719         | A-42375-071   |
| 07    | 42375-0670  | A-42375-06       | 70 25             | 42375-0688   | A-42375-0688           |                    | 06         | 22-30-3061         | A-42375-0702  | 24        | 42375-0720         | A-42375-072   |
| 80    | 42375-0671  | A-42375-06       |                   |              | A-42375-0689           |                    | 07         | 42375-0703         | A-42375-0703  | 25        | 42375-0721         | A-42375-072   |
| 09    |             | A-42375-06       |                   |              | A-42375-0690           |                    | 08         |                    | A-42375-0704  | 26        |                    | A-42375-072   |
| 10    |             | A-42375-06       |                   |              | A-42375-0691           |                    | 09         | 42375-0705         | A-42375-0705  | 27        | 42375-0723         | A-42375-072   |
| 11    |             | A-42375-06       |                   |              | A-42375-0692           |                    | 10         |                    | A-42375-0706  | 28        |                    | A-42375-072   |
| 12    |             | A-42375-06       |                   |              | A-42375-0693           |                    | 11         |                    | A-42375-0707  | 29        |                    | A-42375-072   |
| 13    |             | A-42375-06       |                   | 12010        | A-42375-0694           |                    | 12         |                    | A-42375-0708  | 30        |                    | A-42375-072   |
| 14    | 12010       | A-42375-06       |                   | 10010        | A-42375-0695           |                    | 13         |                    | A-42375-0709  | 31        |                    | A-42375-072   |
| 15    |             | A-42375-06       |                   |              | A-42375-0696           |                    | 14         |                    | A-42375-0710  | 32        |                    | A-42375-072   |
| 16    |             | A-42375-06       |                   |              | A-42375-0697           |                    | 15         |                    | A-42375-0711  | 33        |                    | A-42375-072   |
| 17    | 12010       | A-42375-06       |                   |              | A-42375-0698           |                    | 16         |                    | A-42375-0712  | 34        |                    | A-42375-073   |
| 18    |             | A-42375-06       |                   | 42375-0699   | A-42375-0699           |                    | 17         |                    | A-42375-0713  | 35        |                    | A-42375-073   |
| 19    | 42375-0682  | A-42375-06       | 32                |              |                        |                    | 18         |                    | A-42375-0714  | 36        | 42375-0732         | A-42375-073   |
|       |             |                  | 1                 |              |                        |                    | 19         | 42375-0715         | A-42375-0715  |           |                    |               |
|       | REV:        | ECR/             | ECN INFO          | ORMATION:    | TITLE:                 |                    | KK 100 HEA | ADER ASS           | v             |           |                    | SHEET No.     |
| .21   | T19         | EC No.:<br>DATE: | UCP201<br>8/7/201 |              |                        |                    |            | RTICAL             |               |           |                    | - 11 -        |
| DO    | CUMENT NU   | MBER:            |                   |              | CRE                    | ATED / REVISED BY: | CH         | HECKED BY:         |               | - 1       | APPROVED           | BY:           |
|       | - 3         | SD- 423          | 75-001            |              | 1                      | MKIPPER            | N          | NGUYEN             |               |           | FSMITH             |               |
|       |             | UD 420           | 5 50              |              | 8 8                    |                    |            |                    |               |           |                    | ·             |



| DO   | CUMENT NU          | MBER:        |         |                             | CRI                    | ATED / REVISED BY: | CH                             | HECKED BY:          |              |         | APPROVED                  | BY:                  |
|------|--------------------|--------------|---------|-----------------------------|------------------------|--------------------|--------------------------------|---------------------|--------------|---------|---------------------------|----------------------|
| 22   | REV:<br>T19        | EC No.: U    |         | 0RMATION:<br>4-3273         | TITLE:                 |                    | KK 100 HEA<br>FLAT VE<br>BREAK |                     | SY           |         |                           | - 13 -               |
|      |                    |              |         |                             |                        |                    |                                |                     |              |         |                           |                      |
| 19   | 22-30-3194         | A-42375-0887 |         |                             |                        |                    | 19                             | 42375-0984          | A-42375-098  | 4       |                           |                      |
| 18   |                    | A-42375-0886 | 36      | 22-30-3364                  | A-42375-0904           |                    | 18                             |                     | A-42375-098  | -       | 42375-1001                | A-42375-100          |
| 17   |                    | A-42375-0885 | 35      |                             | A-42375-0903           |                    | 17                             |                     | A-42375-098  |         |                           | A-42375-10           |
| 16   |                    | A-42375-0884 | 34      |                             | A-42375-0902           |                    | 16                             |                     | A-42375-098  |         |                           | A-42375-09           |
| 15   |                    | A-42375-0883 | 33      |                             | A-42375-0901           |                    | 15                             |                     | A-42375-098  |         |                           | A-42375-09           |
| 14   |                    | A-42375-0882 | 32      |                             | A-42375-0900           |                    | 14                             |                     | A-42375-0979 | -       |                           | A-42375-09           |
| 13   | 22-30-3134         | A-42375-0881 | 31      | 22-30-3314                  | A-42375-0899           |                    | 13                             |                     | A-42375-0978 |         | 42375-0996                | A-42375-09           |
| 12   | 22-30-3124         | A-42375-0880 | 30      | 22-30-3304                  | A-42375-0898           |                    | 12                             | 42375-0977          | A-42375-097  | 7 30    | 42375-0995                | A-42375-09           |
| 11   | 22-30-3114         | A-42375-0879 | 29      | 22-30-3294                  | A-42375-0897           |                    | 11                             | 42375-0976          | A-42375-0976 | 3 29    | 42375-0994                | A-42375-09           |
| 10   |                    | A-42375-0878 | 28      |                             | A-42375-0896           |                    | 10                             |                     | A-42375-097  |         |                           | A-42375-09           |
| 09   |                    | A-42375-0877 | 27      |                             | A-42375-0895           |                    | 09                             |                     | A-42375-0974 |         |                           | A-42375-09           |
| 08   |                    | A-42375-0876 | 26      |                             | A-42375-0894           |                    | 08                             | 42375-0973          | A-42375-097  |         |                           | A-42375-09           |
| 07   |                    | A-42375-0875 | 25      |                             | A-42375-0893           |                    | 07                             |                     |              | 25      |                           | A-42375-09           |
| 06   |                    | A-42375-0874 | 24      |                             | A-42375-0892           |                    | 06                             |                     |              | 24      |                           | A-42375-09           |
| 05   |                    | A-42375-0873 | 23      |                             | A-42375-0891           |                    | 05                             |                     |              | 23      |                           | A-42375-09           |
| 04   |                    | A-42375-0872 | 22      |                             | A-42375-0890           |                    | 04                             |                     |              | 22      |                           | A-42375-09           |
| 03   | 22-30-3034         | A-42375-0871 | 21      |                             | A-42375-0889           |                    | 03                             |                     | -            | 21      |                           | A-42375-09           |
| 02   | NUMBER             | NUMBER       | 20      | NUMBER                      | NUMBER<br>A-42375-0888 |                    | 02                             | NUMBER              | NUMBER       | 20      | NUMBER                    | NUMBER<br>A-42375-09 |
| ckts | MATERIAL           | ENG          | CKTS    | MATERIAL                    | ENG                    |                    | сктѕ                           | MATERIAL            | ENG          | сктѕ    | MATERIAL                  | ENG                  |
| PACK | AGING:             |              | BUL     | K PK-40873                  | -0041                  |                    | PACK                           | (AGING:             |              | BUL     | K PK-40873                | 3-0041               |
| VOID | ED CKTS:           |              |         | 2                           |                        |                    | VOID                           | ED CKTS:            |              |         | 3,8                       |                      |
| KINK | S:                 |              |         | NO                          |                        |                    | KINK                           | S:                  | 7            |         | NO                        |                      |
| СКТ  | :                  |              |         | 3-36                        |                        |                    | CKTS                           | i:                  |              |         | 8-36                      |                      |
| TIN: |                    |              |         | OVERALL                     |                        |                    | TIN:                           |                     |              |         | OVERALL                   |                      |
|      | AL LENGTH:         | P            |         | .120 / 3.05                 |                        |                    |                                | AIL LENGTH:         | Р            |         | .125 / 3.18               |                      |
|      | POINT: G           | IVI          |         | N/A                         |                        |                    |                                | POINT: G            | IVI          |         | N/A                       |                      |
|      | NG LENGTH:         | M            |         | .320 / 8.13                 |                        |                    |                                | NG LENGTH:          | M            |         | .240 / 6.09               | )                    |
|      | UMBER:<br>ENGTH: L |              |         | 42663-ATA15<br>.530 / 13.46 | +                      |                    |                                | IUMBER:<br>ENGTH: L |              |         | .455 / 11.56              |                      |
|      | ER NUMBER          | t:           |         | 42312-0036                  |                        |                    |                                | DER NUMBER          | t:           |         | 42312-0036<br>42663-ABA15 |                      |
|      |                    |              | 2010-01 | 871/0904                    |                        |                    |                                |                     |              | . M-423 | 75-0973/1001              |                      |

|      |             | SD- 4237                   | 5-001   | ľ                         |                              | MKIPPER            | NN                               | GUYEN                    |              | FSMITH                   |
|------|-------------|----------------------------|---------|---------------------------|------------------------------|--------------------|----------------------------------|--------------------------|--------------|--------------------------|
| DO   | CUMENT NU   | MBER:                      |         |                           | CR                           | ATED / REVISED BY: | CHE                              | CKED BY:                 | APF          | PROVED BY:               |
| 10   | REV:<br>T19 | EC No.: L                  | -       | ORMATION:<br>14-3273<br>4 | TITLE:                       |                    | KK 100 HEAD<br>FLAT VER<br>BREAK | RTICAL                   |              | - 14 -                   |
|      |             |                            |         |                           |                              |                    |                                  |                          |              |                          |
| 10   | 72313-1122  | N-423/3-112                | -1      |                           |                              |                    | 19                               | 423/5-1201               |              |                          |
| 19   |             | A-42375-112                |         | -2375-1139                | A-42373-1139                 |                    | 18                               | 42375-1260               | 36           | 423/5-12/8               |
| 18   |             | A-42375-112                |         |                           | A-42375-1138<br>A-42375-1139 |                    | 18                               | 42375-1259               | 36           | 42375-1277               |
| 17   |             | A-42375-111                |         |                           | A-42375-1137                 |                    | 17                               | 42375-1258               | 35           | 42375-1276               |
| 16   |             | A-42375-111                |         |                           | A-42375-1137                 |                    | 16                               | 42375-1257               | 34           | 42375-1276               |
| 15   |             | A-42375-111                |         |                           | A-42375-1136                 |                    | 15                               | 42375-1256               | 32           | 42375-1274               |
| 14   | 100010      | A-42375-111                |         | 10010                     | A-42375-1134<br>A-42375-1135 |                    | 14                               | 42375-1256               | 32           | 42375-1273               |
| 13   |             | A-42375-111                |         |                           | A-42375-1133<br>A-42375-1134 |                    | 13                               | 42375-1254<br>42375-1255 | 30           | 42375-1272               |
| 12   |             | A-42375-111                |         | 10010                     | A-42375-1132<br>A-42375-1133 |                    | 11                               | 42375-1253<br>42375-1254 | 30           | 42375-1271<br>42375-1272 |
| 11   |             | A-42375-111                |         |                           | A-42375-1131<br>A-42375-1132 |                    | 10                               | 42375-1252               | 28           | 42375-1270               |
| 10   |             | A-42375-111                |         |                           | A-42375-1130<br>A-42375-1131 |                    | 09                               | 42375-1251               | 27           | 42375-1269               |
| 08   |             | A-42375-111<br>A-42375-111 |         |                           | A-42375-1129                 |                    | 08                               | 42375-1250               | 26           | 42375-1268               |
| 07   |             | A-42375-111                |         | 100.0                     | A-42375-1128                 |                    | 07                               | 42375-1249               | 25           | 42375-1267               |
| 06   | 10010       | A-42375-110                |         | 1001010                   | A-42375-1127                 |                    | 06                               | 42375-1248               | 24           | 42375-1266               |
| 05   |             | A-42375-110                |         |                           | A-42375-1126                 |                    | 05                               | 42375-1247               | 23           | 42375-1265               |
| • •  |             |                            |         |                           |                              |                    | 04                               | 42375-1246               | 22           | 42375-1264               |
| 03   |             | A-42375-110<br>A-42375-110 |         |                           | A-42375-1124<br>A-42375-1125 |                    | 03                               | 42375-1245               | 21           | 42375-1263               |
| 02   |             | A-42375-110                |         |                           | A-42375-1123                 |                    | 02                               | 42375-1244               | 20           | 42375-1262               |
| KTS  | NUMBER      | NUMBER                     | CKTS    | NUMBER                    | NUMBER                       |                    | CKTS                             | NUMBER                   | сктѕ         | NUMBER                   |
|      | MATERIAL    | ENG                        | 1       | MATERIAL                  | ENG                          |                    | 111010                           | ITEM                     | 1 1          | ITEM                     |
|      | AGING:      |                            | BUL     | K PK-40873                | -0041                        |                    | PACKA                            |                          | BULK         | PK-40873-0041            |
| VOID | ED CKTS:    |                            |         | 2                         |                              |                    |                                  | O CKTS:                  |              | 2                        |
| KINK | S:          |                            |         | NO                        |                              |                    | KINKS:                           |                          |              | NO                       |
| CKTS |             |                            |         | 2-36                      |                              |                    | CKTS:                            |                          |              | 2-36                     |
| IN:  |             |                            |         | .100 / 2.54               |                              |                    | TIN: T                           |                          |              | VERALL                   |
|      | ALL LENGTH: | P                          |         | .125 / 3.18               |                              |                    |                                  | L LENGTH: P              | 1            | 25 / 3.18                |
|      | POINT: G    |                            |         | .100 / 2.54               |                              |                    |                                  | POINT: G                 | .2           | N/A                      |
|      | NG LENGTH:  | M                          |         | .240 / 6.09               |                              |                    |                                  | G LENGTH: M              |              | 40 / 6.09                |
|      | ENGTH: L    |                            |         | 455 / 11.56               |                              |                    |                                  | NGTH: L                  |              | 55 / 11.56               |
|      | UMBER:      |                            |         | 42663-ABB20               | 3                            |                    | PIN NU                           |                          |              | 63-ABA154                |
| HEAL | FR NUMBER   |                            |         | 42312-0036                |                              |                    | HEADE                            | R NUMBER:                |              | 312-0036                 |
|      |             | ENG. NO: A-                | 12375-1 | 105/1139                  |                              |                    |                                  | ENC NO                   | 42375-1244/1 | 279                      |

|                           | SD- 423   | 75-001               |                           | MKIPPER                | NN                 | GUYEN                    |           | FSMITH                   |
|---------------------------|-----------|----------------------|---------------------------|------------------------|--------------------|--------------------------|-----------|--------------------------|
| DOCUMENT                  |           | <b></b>              |                           | CREATED / REVISED BY:  | -                  | CKED BY:                 | A         | PPROVED BY:              |
| T19                       | DATE:     | UCP2014-<br>8/7/2014 | 3273                      | ODE ATER A DEVICED DAY | FLAT VER<br>BREAKA | RTICAL<br>NWAY           | 20.4      | - 15 -                   |
| REV:                      | ECR       | ECN INFOR            |                           | TITLE:                 | KK 100 HEAD        | DER ASSY                 |           | SHEET No                 |
|                           |           |                      |                           |                        | 19                 | 42370-1031               |           |                          |
| 19 4                      | 2375-1365 |                      |                           |                        | 18                 | 42375-1530<br>42375-1531 | 30        | 42375-1548               |
|                           | 2375-1364 | 36                   | 42375-138                 | 2                      | 17                 | 42375-1529<br>42375-1530 | 35<br>36  | 42375-1547<br>42375-1548 |
|                           | 2375-1363 | 35                   | 42375-138                 |                        | 16                 |                          |           | 42375-1546               |
|                           | 2375-1362 | 34                   | 42375-138                 |                        | 15                 | 42375-1527<br>42375-1528 | 33        | 42375-1545               |
|                           | 2375-1361 | 33                   | 42375-137                 |                        | 14                 | 42375-1526               | 32        | 42375-1544               |
| 14 4                      | 2375-1360 | 32                   | 42375-137                 | 8                      | 13                 | 42375-1525               | 31        | 42375-1543               |
| 13 4                      | 2375-1359 | 31                   | 42375-137                 | 7                      | 12                 | 42375-1524               | 30        | 42375-1542               |
| 12 4                      | 2375-1358 | 30                   | 42375-137                 | 6                      | 11                 | 42375-1523               | 29        | 42375-1541               |
| 11 4                      | 2375-1357 | 29                   | 42375-137                 | 5                      | 10                 | 42375-1522               | 28        | 42375-1540               |
|                           | 2375-1356 | 28                   | 42375-137                 |                        | 09                 | 42375-1521               | 27        | 42375-1539               |
|                           | 2375-1355 | 27                   | 42375-137                 |                        | 08                 | 42375-1520               | 26        | 42375-1538               |
|                           | 2375-1354 | 26                   | 42375-137                 |                        | 07                 | 42375-1519               | 25        | 42375-1537               |
|                           | 2375-1353 | 25                   | 42375-137                 |                        | 06                 | 42375-1518               | 24        | 42375-1536               |
|                           | 2375-1352 | 24                   | 42375-137                 |                        | 05                 | 42375-1517               | 23        | 42375-1535               |
|                           | 2375-1351 | 23                   | 42375-136                 |                        | 04                 | 42375-1516               | 22        | 42375-1534               |
|                           | 2375-1350 | 22                   | 42375-136                 |                        | 03                 | 42375-1515               | 21        | 42375-1533               |
| 02                        | 2375-1349 | 20                   | 42375-136                 |                        | 02                 |                          | 20        | 42375-1532               |
| KTS                       | NUMBER    | CKTS                 | NUMBER<br>42375-136       |                        | сктѕ               | ITEM<br>NUMBER           | сктѕ      | ITEM<br>NUMBER           |
|                           | ITEM      |                      | ITEM                      |                        | PACKA              |                          | BULK      | PK-40873-0041            |
| PACKAGING:                |           | BULK                 | PK-40873-0041             |                        | VOIDE              |                          |           | 2                        |
| OIDED CKTS                |           |                      | 2                         |                        | KINKS:             |                          |           | SMES-42003               |
| (INKS:                    |           | S                    | MES-42003                 |                        | CKTS:              |                          |           | 3-36                     |
| CKTS:                     |           |                      | 3-36                      |                        | TIN: T             |                          |           | .100 / 2.54              |
| IN: T                     | O. F.     |                      | OVERALL                   |                        | PC TAIL            | LENGTH: P                |           | .135 / 3.43              |
| C TAIL LENG               |           |                      | .135 / 3.43               |                        | GOLD F             | POINT: G                 |           | .140 / 3.56              |
| SOLD POINT:               |           | 9,                   | N/A                       |                        | MATING             | G LENGTH: M              |           | .230 / 5.84              |
| IATING LENG               |           |                      | .230 / 5.84               |                        | PIN LEI            | NGTH: L                  |           | .455 / 11.56             |
| IN LENGTH:                |           |                      | 455 / 11.56               |                        | PIN NU             |                          |           | 2663-ABB208              |
| IN NUMBER:                | BER:      |                      | 12312-0036<br>1663-ABA154 |                        | HEADE              | R NUMBER:                |           | 42312-0036               |
| PIN NUMBER:               |           |                      |                           |                        |                    | ENG. NO:                 | 42375-151 | 5/1548                   |
| HEADER NUM<br>PIN NUMBER: |           | 42375-1349           | /1382                     |                        |                    |                          |           | - 000 terror 000         |

|           |                          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |              |               |                | 423           |
|-----------|--------------------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|--------------|---------------|----------------|---------------|
|           | ENC NO                   | 42375-1720 | /4752                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                       |              | ENG. NO       | : 42375-1855/1 | 889           |
| IEADER N  |                          |            | 12312-0036                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       | HEAD         | ER NUMBER:    | 42             | 312-0036      |
| IN NUMBE  |                          |            | 1663-ABB208                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       |              | IUMBER:       |                | 63-CJA154     |
| IN LENGT  |                          |            | 455 / 11.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       | PIN L        | ENGTH: L      | .70            | 00 / 17.78    |
|           | ENGTH: M                 |            | .240 / 6.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       |              | NG LENGTH: M  |                | 38 / 12.40    |
| SOLD POIL |                          |            | .140 / 3.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       | GOLE         | POINT: G      |                | N/A           |
|           | NGTH: P                  |            | .125 / 3.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       |              | AIL LENGTH: P | 1              | 22 / 3.10     |
| IN: T     | NGTH: P                  |            | .125 / 3.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       | TIN:         |               |                | VERALL        |
|           |                          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | CKTS         |               |                | 2-36          |
| KTS:      |                          |            | 3-36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                       | KINK         |               |                | NO            |
| (INKS:    | CT-0                     |            | NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                       | VOIDED CKTS: |               |                | NONE          |
| OIDED CH  |                          | DITT       | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |              | AGING:        |                | PK-40873-0041 |
| PACKAGIN  |                          | BULK       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | 11111        | ITEM          |                | ITEM          |
| CKTS      | ITEM<br>NUMBER           | CKTS       | ITEM<br>NUMBER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                       | сктѕ         | NUMBER        | CKTS           | NUMBER        |
| 02        | NUMBER                   | 20         | 42375-173                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       | 02           | 42375-1855    | 20             | 42375-1873    |
| 03        | 42375-1720               | 21         | 42375-173                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       | 03           | 42375-1856    | 21             | 42375-1874    |
| 04        | 42375-1720               | 21         | 42375-173                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       | 04           | 42375-1857    | 22             | 42375-1875    |
| 05        | 42375-1721               | 23         | 42375-173                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                     | 05           | 42375-1858    | 23             | 42375-1876    |
| 06        | 42375-1722               | 24         | 42375-174                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       | 06           | 42375-1859    | 24             | 42375-1877    |
| 07        | 42375-1723               | 25         | 42375-174                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       | 07           | 42375-1860    | 25             | 42375-1878    |
| 08        | 42375-1724               | 26         | 42375-174                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       | 08           | 42375-1861    | 26             | 42375-1879    |
|           | 42375-1725               | 26         | 42375-174                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       | 09           | 42375-1862    | 27             | 42375-1880    |
| 10        | 42375-1726               |            | 42375-174                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       | 10           | 42375-1863    | 28             | 42375-1881    |
|           |                          | 28         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | 11           | 42375-1864    | 29             | 42375-1882    |
| 11        | 42375-1728<br>42375-1729 | 30         | 42375-174<br>42375-174                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                       | 12           | 42375-1865    | 30             | 42375-1883    |
| 13        | 42375-1729               | 31         | 42375-174                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       | 13           | 42375-1866    | 31             | 42375-1884    |
|           |                          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | 14           | 42375-1867    | 32             | 42375-1885    |
| 14        | 42375-1731               | 32         | 42375-174                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       | 15           | 42375-1868    | 33             | 42375-1886    |
| 15        | 42375-1732               | 33         | 42375-175<br>42375-175                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                       | 16           | 42375-1869    | 34             | 42375-1887    |
| 16        | 42375-1733               | 34         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | 17           | 42375-1870    | 35             | 42375-1888    |
| 17        | 42375-1734               | 35         | 42375-175                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       | 18           | 42375-1871    | 36             | 42375-1889    |
| 18        | 42375-1735<br>42375-1736 | 36         | 42375-175                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 13                    | 19           | 42375-1872    | - 00           | 12010 1000    |
| REV       | /: ECR                   | /ECN INFOR | Date de la constante de la con | TITLE:                | KK 100 HEA   |               |                | SHEET N       |
|           | DATE:                    | 8/7/2014   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CREATED / REVISED BY: | BREAK        |               | ΔDD            | PROVED BY:    |
| _ COONIL  |                          | 75 004     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | _            |               |                |               |
|           | SD- 423                  | /5-001     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MKIPPER               | l N          | NGUYEN        | 1              | FSMITH        |

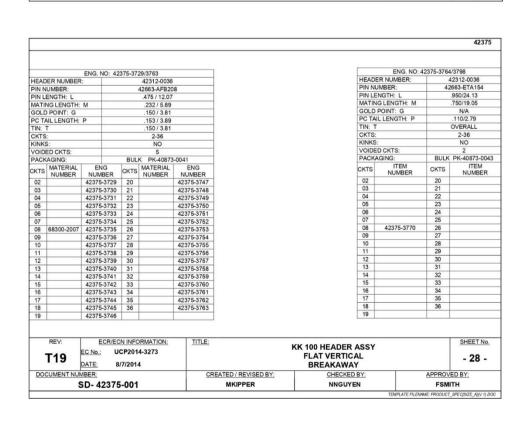
| 6/2275<br>42312-0036<br>2663-ABA154<br>.455 / 11.56<br>.240 / 6.09<br>N/A<br>.125 / 3.18<br>OVERALL |
|-----------------------------------------------------------------------------------------------------|
| 2663-ABA154<br>.455 / 11.56<br>.240 / 6.09<br>N/A<br>.125 / 3.18                                    |
| .455 / 11.56<br>.240 / 6.09<br>N/A<br>.125 / 3.18                                                   |
| .240 / 6.09<br>N/A<br>.125 / 3.18                                                                   |
| N/A<br>.125 / 3.18                                                                                  |
| .125 / 3.18                                                                                         |
|                                                                                                     |
| OVERALL                                                                                             |
| 7-36                                                                                                |
|                                                                                                     |
| NO<br>2.7                                                                                           |
|                                                                                                     |
|                                                                                                     |
| ITEM<br>NUMBER                                                                                      |
| 42375-2259                                                                                          |
| 42375-2260                                                                                          |
| 42375-2261                                                                                          |
| 42375-2262                                                                                          |
| 42375-2263                                                                                          |
| 42375-2264                                                                                          |
| 42375-2265                                                                                          |
| 42375-2266                                                                                          |
| 42375-2267                                                                                          |
| 42375-2268                                                                                          |
| 42375-2269                                                                                          |
| 42375-2270                                                                                          |
| 42375-2271                                                                                          |
| 42375-2272                                                                                          |
| 42375-2273                                                                                          |
| 42375-2274                                                                                          |
| 42375-2275                                                                                          |
|                                                                                                     |
|                                                                                                     |

| ENG. NO HEADER NUMBER: PIN NUMBER: PIN LENGTH: L | : 42375-248 |                |   |        |                |              |                |  |
|--------------------------------------------------|-------------|----------------|---|--------|----------------|--------------|----------------|--|
| PIN NUMBER:                                      |             |                |   |        | ENG. NO:       | 42375-2521/2 | 2555           |  |
|                                                  |             | 42312-0036     |   |        | R NUMBER:      |              | 2312-0036      |  |
| PIN LENGTH: L                                    | 4           | 2663-AFB208    |   | PIN NU |                | 7/15-5-0     | 63-AFB228      |  |
|                                                  |             | .475 / 12.07   |   |        | NGTH: L        | .475 / 12.07 |                |  |
| MATING LENGTH: M                                 |             | .232 / 5.89    |   |        | G LENGTH: M    |              | 232 / 5.89     |  |
| GOLD POINT: G                                    |             | .150 / 3.81    |   |        | POINT: G       |              | 150 / 3.81     |  |
| PC TAIL LENGTH: P                                |             | .153 / 3.89    |   |        | LENGTH: P      |              | 153 / 3.89     |  |
| TIN: T                                           |             | .100 / 2.54    |   | TIN: T |                |              | 100 / 2.54     |  |
| CKTS:                                            |             | 2-36           |   | CKTS:  |                |              | 2-36           |  |
| KINKS:                                           |             | NO             |   | KINKS: |                |              | NO             |  |
| VOIDED CKTS:                                     |             | NONE           |   | VOIDED |                |              | NONE           |  |
| PACKAGING:                                       | BULK        |                |   | PACKA  |                | BULK         | PK-40873-0041  |  |
| OKTS ITEM<br>NUMBER                              | сктѕ        | ITEM<br>NUMBER |   | сктѕ   | ITEM<br>NUMBER | сктѕ         | ITEM<br>NUMBER |  |
| 02 42375-2486                                    | 19          | 42375-250      |   | 02     | 42375-2521     | 20           | 42375-2539     |  |
| 03 42375-2487                                    | 20          | 42375-250      | 4 | 03     | 42375-2522     | 21           | 42375-2540     |  |
| 68300-2008                                       | 21          | 42375-250      |   | 04     | 42375-2523     | 22           | 42375-2541     |  |
| 04 42375-2488                                    | 22          | 42375-250      |   | 05     | 42375-2524     | 23           | 42375-2542     |  |
| 05 42375-2489                                    | 23          | 42375-250      | 7 | 06     | 42375-2525     | 24           | 42375-2543     |  |
| 06 42375-2490                                    | 24          | 42375-250      |   | 07     | 42375-2526     | 25           | 42375-2544     |  |
| 07 42375-2491                                    | 25          | 42375-250      |   | 08     | 42375-2527     | 26           | 42375-2545     |  |
| 08 42375-2492                                    | 26          | 42375-251      | 0 | 09     | 42375-2528     | 27           | 42375-2546     |  |
| 09 42375-2493                                    | 27          | 42375-251      |   | 10     | 42375-2529     | 28           | 42375-2547     |  |
| 10 42375-2494                                    | 28          | 42375-251      |   | 11     | 42375-2530     | 29           | 42375-2548     |  |
| 11 42375-2495                                    | 29          | 42375-251      |   | 12     | 42375-2531     | 30           | 42375-2549     |  |
| 12 42375-2496                                    | 30          | 42375-251      |   | 13     | 42375-2532     | 31           | 42375-2550     |  |
| 13 42375-2497                                    | 31          | 42375-251      |   | 14     | 42375-2533     | 32           | 42375-2551     |  |
| 14 42375-2498                                    | 32          | 42375-251      |   | 15     | 42375-2534     | 33           | 42375-2552     |  |
| 15 42375-2499                                    | 33          | 42375-251      |   | 16     | 42375-2535     | 34           | 42375-2553     |  |
| 16 42375-2500                                    | 34          | 42375-251      |   | 17     | 42375-2536     | 35           | 42375-2554     |  |
| 17 42375-2501                                    | 35          | 42375-251      |   | 18     | 42375-2537     | 36           | 42375-2555     |  |
| 18 42375-2502                                    | 36          | 42375-252      | 0 | 19     | 42375-2538     |              |                |  |

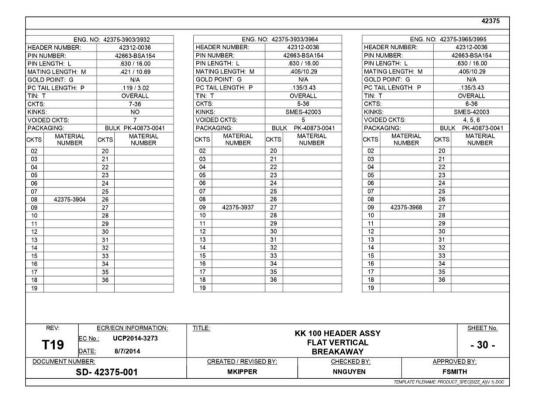
|         | ENG. NO:                 | 42375-2801/       | 2835                     |                     |                    | ENG NO:        | 42375-2836  | 3/2870         |  |
|---------|--------------------------|-------------------|--------------------------|---------------------|--------------------|----------------|-------------|----------------|--|
| HEADER  | NUMBER:                  |                   | 312-0036                 |                     | HEADE              | R NUMBER:      |             | 42312-0036     |  |
| PIN NUN |                          | 426               | 63-HDB228                |                     | PIN NUI            |                |             | 2663-EMA154    |  |
| PIN LEN | GTH: L                   | 1.2               | 200 / 30.48              |                     |                    | NGTH: L        |             | 925 / 23.50    |  |
| MATING  | LENGTH: M                | 1.0               | 00 / 25.40               |                     |                    | LENGTH: M      |             | .625 / 15.88   |  |
| GOLD P  | DINT: G                  | .2                | 00 / 5.08                |                     | GOLD POINT: G      |                | N/A         |                |  |
|         | LENGTH: P                |                   | 10 / 2.79                |                     | PC TAIL LENGTH: P  |                | .210 / 5.33 |                |  |
| TIN: T  |                          |                   | 200 / 5.08               |                     | TIN: T             | LLITO III.     |             | OVERALL        |  |
| CKTS:   |                          |                   | 2-36                     |                     | CKTS:              |                |             | 2-36           |  |
| KINKS:  |                          |                   | NO                       |                     | KINKS:             |                |             | NO             |  |
| VOIDED  |                          |                   | NONE                     |                     | VOIDED             | CKTS:          |             | NONE           |  |
| PACKAG  |                          | BULK              | PK-40873-0043            |                     | PACKA              | GING:          | BULK        | PK-40873-0041  |  |
| CKTS    | ITEM<br>NUMBER           | CKTS              | ITEM<br>NUMBER           |                     | сктѕ               | ITEM<br>NUMBER | сктѕ        | ITEM<br>NUMBER |  |
| 02      | 42375-2801               | 20                | 42375-2819               |                     | 02                 | 42375-2836     | 20          | 42375-2854     |  |
| 03      | 42375-2802               | 21                | 42375-2820               |                     | 03                 | 42375-2837     | 21          | 42375-2855     |  |
| 04      | 42375-2803               | 22                | 42375-2821               |                     | 04                 | 42375-2838     | 22          | 42375-2856     |  |
| 05      | 42375-2804               | 23                | 42375-2822               |                     | 05                 | 42375-2839     | 23          | 42375-2857     |  |
| 06      | 42375-2805               | 24                | 42375-2823               |                     | 06                 | 42375-2840     | 24          | 42375-2858     |  |
| 07      | 42375-2806               | 25                | 42375-2824               |                     | 07                 | 42375-2841     | 25          | 42375-2859     |  |
| 08      | 42375-2807               | 26<br>27          | 42375-2825               |                     | 08                 | 42375-2842     | 26          | 42375-2860     |  |
| 09      | 42375-2808<br>42375-2809 | 28                | 42375-2826<br>42375-2827 |                     | 09                 | 42375-2843     | 27          | 42375-2861     |  |
| 10      | 42375-2810               | 29                | 42375-2827               |                     | 10                 | 42375-2844     | 28          | 42375-2862     |  |
| 12      | 42375-2810               | 30                | 42375-2828               |                     | 11                 | 42375-2845     | 29          | 42375-2863     |  |
| 13      | 42375-2811               | 31                | 42375-2829               |                     | 12                 | 42375-2846     | 30          | 42375-2864     |  |
| 14      | 42375-2813               | 32                | 42375-2831               |                     | 13                 | 42375-2847     | 31          | 42375-2865     |  |
| 15      | 42375-2814               | 33                | 42375-2832               | _                   | 14                 | 42375-2848     | 32          | 42375-2866     |  |
| 16      | 42375-2815               | 34                | 42375-2833               |                     | 15                 | 42375-2849     | 33          | 42375-2867     |  |
| 17      | 42375-2816               | 35                | 42375-2834               |                     | 16                 | 42375-2850     | 34          | 42375-2868     |  |
| 18      | 42375-2817               | 36                | 42375-2835               |                     | 17                 | 42375-2851     | 35          | 42375-2869     |  |
| 19      | 42375-2818               | - 50              | 42070-2000               |                     | 18                 | 42375-2852     | 36          | 42375-2870     |  |
|         |                          |                   |                          |                     | 19                 | 42375-2853     |             |                |  |
| REV:    |                          | INFORMATIO        | N: TITLE:                |                     | KK 100 HEAD        | ER ASSY        |             | SHEET          |  |
| T19     |                          | 2014-3273<br>2014 |                          |                     | FLAT VER<br>BREAKA | TICAL          |             | - 19           |  |
| CUMENT  | NUMBER:                  |                   | CRE                      | EATED / REVISED BY: | CHEC               | CKED BY:       | A           | PPROVED BY:    |  |
|         | SD- 42375-0              | 001               |                          | MKIPPER             | NNO                | GUYEN          |             | FSMITH         |  |

|                | ENG NO:    | 42375-304 | 1/3078         |    |    |            | ENG. NO        | 42375-3114 | /3148          |
|----------------|------------|-----------|----------------|----|----|------------|----------------|------------|----------------|
| HEADER NUMBER  |            |           | 42312-0036     |    |    | HEAD       | ER NUMBER:     | 4          | 2312-0036      |
| PIN NUMBER:    |            |           | 2663-KHB208    |    |    | PIN N      | UMBER:         | 42         | 663-BXA154     |
| PIN LENGTH: L  |            |           | 1.430 / 36.32  |    |    | PIN LI     | ENGTH: L       | .6         | 645 / 16.38    |
| MATING LENGTH: | M          |           | .867 / 22.02   | -  |    | MATIN      | IG LENGTH: M   |            | 431 / 10.95    |
| OLD POINT: G   | 141        |           | .200 / 5.08    |    |    | GOLD       | POINT: G       |            | N/A            |
| C TAIL LENGTH: | P          |           | 473 / 12.01    |    |    | PC TA      | IL LENGTH: P   | -          | 124 / 3.15     |
| IN: T          |            |           | .200 / 5.08    |    |    | TIN: 7     |                |            | OVERALL        |
| CKTS:          |            |           | 2-36           |    |    | CKTS       |                |            | 2-36           |
| (INKS:         |            |           | NO             |    |    | KINKS      |                |            | NO             |
| OIDED CKTS:    |            |           | NONE           |    |    |            | D CKTS:        |            | NONE           |
| PACKAGING:     |            | BULK      |                | 3  |    | PACK       | AGING:         | BULK       | PK-40873-0041  |
|                | EM<br>VBER | сктѕ      | ITEM<br>NUMBER |    |    | сктѕ       | ITEM<br>NUMBER | сктѕ       | ITEM<br>NUMBER |
|                | 5-3044     | 20        | 42375-306      |    |    | 02         | 42375-3114     | 20         | 42375-3132     |
|                | 5-3045     | 21        | 42375-306      |    |    | 03         | 42375-3115     | 21         | 42375-3133     |
|                | 5-3046     | 22        | 42375-306      |    |    | 04         | 42375-3116     | 22         | 42375-3134     |
|                | 5-3047     | 23        | 42375-306      | 35 |    | 05         | 42375-3117     | 23         | 42375-3135     |
|                | 5-3048     | 24        | 42375-306      |    |    | 06         | 42375-3118     | 24         | 42375-3136     |
| 07 42375       | 5-3049     | 25        | 42375-306      | 37 |    | 07         | 42375-3119     | 25         | 42375-3137     |
|                | 5-3050     | 26        | 42375-306      |    |    | 08         | 42375-3120     | 26         | 42375-3138     |
| 09 42375       | 5-3051     | 27        | 42375-306      | 9  |    | 09         | 42375-3121     | 27         | 42375-3139     |
| 10 42375       | 5-3052     | 28        | 42375-307      | 70 |    | 10         | 42375-3122     | 28         | 42375-3140     |
| 11 42375       | 5-3053     | 29        | 42375-307      |    | 11 | 42375-3123 | 29             | 42375-3141 |                |
| 12 42375       | 5-3054     | 30        | 42375-307      | 2  |    | 12         | 42375-3124     | 30         | 42375-3142     |
| 13 42375       | 5-3055     | 31        | 42375-307      | 73 |    | 13         | 42375-3125     | 31         | 42375-3143     |
| 14 42375       | 5-3056     | 32        | 42375-307      | 74 |    | 14         | 42375-3126     | 32         | 42375-3144     |
| 15 42375       | 5-3057     | 33        | 42375-307      | 5  |    | 15         | 42375-3127     | 33         | 42375-3145     |
| 16 42375       | 5-3058     | 34        | 42375-307      | 76 |    | 16         | 42375-3128     | 34         | 42375-3146     |
|                | 5-3059     | 35        | 42375-307      |    |    | 17         | 42375-3129     | 35         | 42375-3147     |
| 18 42379       | 5-3060     | 36        | 42375-307      | 78 |    | 18         | 42375-3130     | 36         | 42375-3148     |
| 19 42375       | 5-3061     |           |                |    |    | 19         | 42375-3131     |            |                |

|                                   |                  |          |           |                      |        |                          |           |                |           |                          |           | 42375          |  |  |
|-----------------------------------|------------------|----------|-----------|----------------------|--------|--------------------------|-----------|----------------|-----------|--------------------------|-----------|----------------|--|--|
|                                   | ENG              | . NO: 42 | 2375-3149 | / 3183               |        | ENG. NO: 4               | 2375-3184 | / 3218         |           | ENG. NO: 4               | 2375-3219 | / 3253         |  |  |
| HEADE                             | ER NUMBI         | ER:      | 4         | 42312-0036           | HEADE  | R NUMBER:                | 4         | 12312-0036     | HEADE     | R NUMBER:                |           | 42312-0036     |  |  |
| PIN NI                            | JMBER:           |          |           | 2663-BEB208          |        | IMBER:                   | 42        | 663-GNB208     | PIN NU    |                          | 42        | 2663-BPA154    |  |  |
|                                   | NGTH: L          | 9        |           | .575 / 14.61         |        | NGTH: L                  |           | .140 / 28.96   |           | NGTH: L                  |           | .620 / 15.75   |  |  |
| MATIN                             | G LENGT          | H: M     |           | .350 / 8.89          | MATIN  | G LENGTH: M              |           | 913 / 23.20    | MATIN     | G LENGTH: M              |           | .280 / 7.11    |  |  |
|                                   | POINT: G         |          |           | .200 / 5.08          |        | POINT: G                 |           | .200 / 5.08    |           | POINT: G                 |           | NA             |  |  |
|                                   | IL LENGT         | H: P     |           | .135 / 3.43          | 1 17.  | L LENGTH: P              | _         | .137 / 3.48    | 1 4 11 11 | L LENGTH: P              |           | .250 / 6.35    |  |  |
| IN: T                             |                  |          |           | .200 / 5.08          | TIN: T |                          |           | .200 / 5.08    | TIN: T    |                          |           | OVERALL        |  |  |
| KTS:                              |                  |          |           | 2-36                 |        |                          |           | 2-36           | CKTS:     |                          |           | 2-36           |  |  |
| INKS                              |                  |          |           | NO                   | KINKS  | 111101                   |           | NO             | KINKS:    |                          |           | NO             |  |  |
|                                   | D CKTS:          |          |           | NONE                 |        | D CKTS:                  |           | NONE           |           | D CKTS:                  |           | NONE           |  |  |
| ACK                               | AGING:           |          | BULK      | PK-40873-0041        | PACKA  |                          | BULK      | PK-40873-0043  | PACKA     |                          | BULK      |                |  |  |
| ктѕ                               | NUME             |          | сктѕ      | ITEM<br>NUMBER       | сктѕ   | ITEM<br>NUMBER           | CKTS      | ITEM<br>NUMBER | сктѕ      | ITEM<br>NUMBER           | CKTS      | ITEM<br>NUMBER |  |  |
| 02                                | 42375-           | 3149     | 20        | 42375-3167           | 02     | 42375-3184               | 20        | 42375-3202     | 02        | 42375-3219               | 20        | 42375-3237     |  |  |
| 03                                | 42375-           |          | 21        | 42375-3168           | 03     | 42375-3185               | 21        | 42375-3203     | 03        | 42375-3220               | 21        | 42375-3238     |  |  |
| 04                                | 42375-           |          | 22        | 42375-3169           | 04     | 42375-3186               | 22        | 42375-3204     | 04        | 42375-3221               | 22        | 42375-3239     |  |  |
| 05                                | 42375-           |          | 23        | 42375-3170           | 05     | 42375-3187               | 23        | 42375-3205     | 05        | 42375-3222               | 23        | 42375-3240     |  |  |
| 06                                | 42375-           | 3153     | 24        | 42375-3171           | 06     | 42375-3188               | 24        | 42375-3206     | 06        | 42375-3223               | 24        | 42375-3241     |  |  |
| 07                                | 42375-           |          | 25        | 42375-3172           | 07     | 42375-3189               | 25        | 42375-3207     | 07        | 42375-3224               | 25        | 42375-3242     |  |  |
| 08                                | 42375-           |          | 26        | 42375-3173           | 08     | 42375-3190               | 26        | 42375-3208     | 08        | 42375-3225               | 26        | 42375-3243     |  |  |
| 09                                | 42375-           |          | 27        | 42375-3174           | 09     | 42375-3191               | 27        | 42375-3209     | 09        | 42375-3226               | 27        | 42375-3244     |  |  |
| 10                                | 42375-           |          | 28        | 42375-3175           | 10     | 42375-3192               | 28        | 42375-3210     | 10        | 42375-3227               | 28        | 42375-3245     |  |  |
| 11                                | 42375-           |          | 29        | 42375-3176           | 11     | 42375-3193               | 29        | 42375-3211     | 11        | 42375-3228               | 29        | 42375-3246     |  |  |
| 12                                | 42375-           |          | 30        | 42375-3177           | 12     | 42375-3194               | 30        | 42375-3212     | 12        | 42375-3229               | 30        | 42375-3247     |  |  |
| 13                                | 42375-           |          | 31        | 42375-3178           | 13     | 42375-3195               | 31        | 42375-3213     | 13        | 42375-3230               | 31        | 42375-3248     |  |  |
| 14                                | 42375-           |          | 32        | 42375-3179           | 14     | 42375-3196               | 32        | 42375-3214     | 14        | 42375-3231               | 32        | 42375-3249     |  |  |
| 15                                | 42375-           |          | 33        | 42375-3180           | 15     | 42375-3197               | 33        | 42375-3215     | 15        | 42375-3232               | 33        | 42375-3250     |  |  |
| 16                                | 42375-           |          | 34        | 42375-3181           | 16     | 42375-3198               | 34        | 42375-3216     | 16        | 42375-3233               | 34        | 42375-3251     |  |  |
| 17                                | 42375-           |          | 35        | 42375-3182           | 17     | 42375-3199               | 35        | 42375-3217     | 17        | 42375-3234               | 35        | 42375-3252     |  |  |
| 18                                | 42375-<br>42375- |          | 36        | 42375-3183           | 18     | 42375-3200<br>42375-3201 | 36        | 42375-3218     | 18        | 42375-3235<br>42375-3236 | 36        | 42375-3253     |  |  |
| 19                                | 42375-           | 3100     |           |                      | 19     | 42375-3201               |           |                | 19        | 42375-3236               |           |                |  |  |
|                                   | REV:             | FON      |           | INFORMATION:         | TITLE: |                          |           | KK 100 HEADE   | ER ASSY   |                          |           | SHEET No.      |  |  |
| 1                                 | Г19              | DATE:    |           | P2014-3273<br>7/2014 |        | FLAT VER<br>BREAKA       |           |                |           |                          |           | - 21 -         |  |  |
| DOC                               | UMENT N          | UMBER:   |           |                      | CF     | EATED / REVISE           | DBY:      | CHEC           | KED BY:   |                          | APPROV    | ED BY:         |  |  |
| DOCUMENT NUMBER:<br>SD- 42375-001 |                  |          |           |                      |        |                          |           |                | NNGUYEN   |                          |           | FSMITH         |  |  |


| 0036<br>CA154<br>7.02<br>1.18<br>3.56<br>ALL<br>6<br>.2003 |  |
|------------------------------------------------------------|--|
| 7.02<br>1.18<br>3.56<br>ALL<br>6<br>.2003                  |  |
| 7.02<br>1.18<br>3.56<br>ALL<br>6<br>.2003                  |  |
| 7.02<br>1.18<br>3.56<br>ALL<br>6<br>.2003                  |  |
| 3.56<br>ALL<br>6<br>.2003                                  |  |
| 3.56<br>ALL<br>6<br>2003                                   |  |
| ALL<br>6<br>2003                                           |  |
| 2003<br>E                                                  |  |
| 2003<br>E                                                  |  |
| E                                                          |  |
|                                                            |  |
|                                                            |  |
| PK-40873-00                                                |  |
| ITEM<br>JMBER                                              |  |
| 75-334                                                     |  |
| 75-334                                                     |  |
| 75-334                                                     |  |
| 75-334                                                     |  |
| 75-334                                                     |  |
| 75-334                                                     |  |
| 75-334                                                     |  |
| 75-334                                                     |  |
| 75-335                                                     |  |
| 75-335                                                     |  |
| 75-335                                                     |  |
| 75-335                                                     |  |
| 75-335                                                     |  |
| 75-335                                                     |  |
| 75-335                                                     |  |
| 75-335                                                     |  |
| 75-335                                                     |  |
|                                                            |  |
| 3 3 3 3 3 3 3 3 3 3                                        |  |

|       | ENG NO                | 10075 0056   | 10000                 |                                         | ======================================= |      |                |         |                          |        |                |
|-------|-----------------------|--------------|-----------------------|-----------------------------------------|-----------------------------------------|------|----------------|---------|--------------------------|--------|----------------|
| IFAD  | ENG. NO<br>ER NUMBER: | : 42375-3359 | 42312-0036            | 115455                                  | ENG. NO: 4                              |      |                | LIEADE  | ENG. NO: 42<br>R NUMBER: |        |                |
|       |                       | _            |                       |                                         | R NUMBER:                               | _    | 12312-0036     |         |                          | _      | 42312-0036     |
|       | JMBER:                | 4.           | 2663-ABB228           | PIN NU                                  |                                         | 42   | 2663-EZB208    | PIN NU  |                          | 42     | 2663-ARA154    |
|       | NGTH: L               |              | .455 / 11.56          |                                         | NGTH: L                                 |      | .970/24.64     |         | NGTH: L                  |        | .520/13.21     |
|       | IG LENGTH: N          | 1            | .170 / 4.32           | 170000000000000000000000000000000000000 | G LENGTH: M                             | _    | .780/19.81     |         | G LENGTH: M              | -      | .386/9.80      |
|       | POINT: G              |              | .100 / 2.54           |                                         | POINT: G                                | _    | .200/5.08      |         | POINT: G                 | -      | N/A            |
|       | IL LENGTH: P          |              | .195 / 4.95           | 1 11                                    | L LENGTH: P                             |      | .100/ 2.54     |         | L LENGTH: P              |        | .044/1.12      |
| IN: T |                       |              | .100 / 2.54           | TIN: T                                  |                                         |      | .200/5.08      |         |                          | -      | OVERALL        |
| KTS:  |                       | _            | 2-36                  | CKTS:                                   |                                         |      | 2-36           |         |                          |        | 2-36           |
| INKS  | -                     |              | NO                    | KINKS:                                  |                                         |      | NO             | KINKS:  |                          | -      | NO             |
|       | D CKTS:               |              | NONE                  |                                         | D CKTS:                                 |      | NONE           |         | D CKTS:                  |        | NONE           |
| ACK   | AGING:                | BULK         |                       | PACKA                                   |                                         | BULK | PK-40873-0043  | PACKA   |                          | BULK   | PK-40873-004   |
| KTS   | ITEM<br>NUMBER        | сктѕ         | ITEM<br>NUMBER        | сктѕ                                    | ITEM<br>NUMBER                          | CKTS | ITEM<br>NUMBER | сктѕ    | ITEM<br>NUMBER           | CKTS   | ITEM<br>NUMBER |
| 02    | 42375-3359            |              | 42375-3377            | 02                                      | 42375-3394                              | 20   | 42375-3412     | 02      | 42375-3429               | 20     | 42375-3447     |
| 03    | 42375-3360            | 21           | 42375-3378            | 03                                      | 42375-3395                              | 21   | 42375-3413     | 03      | 42375-3430               | 21     | 42375-3448     |
| 04    | 42375-336             | 22           | 42375-3379            | 04                                      | 42375-3396                              | 22   | 42375-3414     | 04      | 42375-3431               | 22     | 42375-3449     |
| 05    | 42375-3362            | 23           | 42375-3380            | 05                                      | 42375-3397                              | 23   | 42375-3415     | 05      | 42375-3432               | 23     | 42375-3450     |
| 06    | 42375-3363            | 24           | 42375-3381            | 06                                      | 42375-3398                              | 24   | 42375-3416     | 06      | 42375-3433               | 24     | 42375-3451     |
| 07    | 42375-3364            | 25           | 42375-3382            | 07                                      | 42375-3399                              | 25   | 42375-3417     | 07      | 42375-3434               | 25     | 42375-3452     |
| 80    | 42375-3368            | 26           | 42375-3383            | 08                                      | 42375-3400                              | 26   | 42375-3418     | 08      | 42375-3435               | 26     | 42375-3453     |
| 09    | 42375-3366            | 27           | 42375-3384            | 09                                      | 42375-3401                              | 27   | 42375-3419     | 09      | 42375-3436               | 27     | 42375-3454     |
| 10    | 42375-3367            | 28           | 42375-3385            | 10                                      | 42375-3402                              | 28   | 42375-3420     | 10      | 42375-3437               | 28     | 42375-3455     |
| 11    | 42375-3368            | 29           | 42375-3386            | 11                                      | 42375-3403                              | 29   | 42375-3421     | 11      | 42375-3438               | 29     | 42375-3456     |
| 12    | 42375-3369            | 30           | 42375-3387            | 12                                      | 42375-3404                              | 30   | 42375-3422     | 12      | 42375-3439               | 30     | 42375-3457     |
| 13    | 42375-3370            | 31           | 42375-3388            | 13                                      | 42375-3405                              | 31   | 42375-3423     | 13      | 42375-3440               | 31     | 42375-3458     |
| 14    | 42375-337             | 32           | 42375-3389            | 14                                      | 42375-3406                              | 32   | 42375-3424     | 14      | 42375-3441               | 32     | 42375-3459     |
| 15    | 42375-3372            | 33           | 42375-3390            | 15                                      | 42375-3407                              | 33   | 42375-3425     | 15      | 42375-3442               | 33     | 42375-3460     |
| 16    | 42375-3373            | 34           | 42375-3391            | 16                                      | 42375-3408                              | 34   | 42374-3426     | 16      | 42375-3443               | 34     | 42374-3461     |
| 17    | 42375-3374            | 35           | 42375-3392            | 17                                      | 42375-3409                              | 35   | 42375-3427     | 17      | 42375-3444               | 35     | 42375-3462     |
| 18    | 42375-3375            | 36           | 42375-3393            | 18                                      | 42375-3410                              | 36   | 42375-3428     | 18      | 42375-3445               | 36     | 42375-3463     |
| 19    | 42375-3376            | 3            |                       | 19                                      | 42375-3411                              |      |                | 19      | 42375-3446               |        |                |
|       |                       |              |                       |                                         |                                         |      |                |         |                          |        |                |
| _     | REV:                  | ECR/EC       | N INFORMATION:        | TITLE:                                  |                                         |      | KK 400 HEAD    | D ACCV  |                          |        | SHEET No.      |
|       | Г19 🗆                 |              | CP2014-3273<br>7/2014 |                                         | KK 100 HEA<br>FLAT VE<br>BREAK          |      |                | ICAL    |                          |        | - 23 -         |
| DOC   | UMENT NUME            | BER:         |                       | CR                                      | EATED / REVISE                          | DBY: |                | KED BY: |                          | APPROV | ED BY:         |
|       | SI                    | 0- 42375     | -001                  |                                         | MKIPPER                                 |      | NNG            | NNGUYEN |                          |        | ITH            |


|      |                                                                                                                                                                                    |                                                                                                                                                                      |                                                                                         |                                                                                                                                                          |                                                                                                                                                                      |         |                                                                |               |              |                                                                      |                    | 42375  |  |  |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------------------------------------------------------------|---------------|--------------|----------------------------------------------------------------------|--------------------|--------|--|--|
|      |                                                                                                                                                                                    | ENG. NO: A                                                                                                                                                           | 12375-3                                                                                 | 569/3603                                                                                                                                                 |                                                                                                                                                                      |         |                                                                |               | ENG. NO: A-4 | 2375-20                                                              | 274/3008           |        |  |  |
| HΕΔΓ | ER NUMBE                                                                                                                                                                           |                                                                                                                                                                      | 42010-0                                                                                 | 42312-0036                                                                                                                                               |                                                                                                                                                                      |         | HEAD                                                           | ER NUMBER     |              | 2010-2                                                               | 42312-003          | â      |  |  |
| _    | UMBER:                                                                                                                                                                             |                                                                                                                                                                      | 7                                                                                       | 42663-ABB20                                                                                                                                              | Q                                                                                                                                                                    |         |                                                                | UMBER:        |              |                                                                      | 42663-FKB2         |        |  |  |
|      | ENGTH: L                                                                                                                                                                           |                                                                                                                                                                      |                                                                                         | .455 / 11.56                                                                                                                                             | _                                                                                                                                                                    |         |                                                                | ENGTH: L      |              | -                                                                    | 1.020 / 25.9       |        |  |  |
|      | NG LENGTH                                                                                                                                                                          | · M                                                                                                                                                                  |                                                                                         | .240 / 6.09                                                                                                                                              |                                                                                                                                                                      |         |                                                                | NG LENGTH:    | M            | .805 / 20.45                                                         |                    |        |  |  |
|      | POINT: G                                                                                                                                                                           | . IVI                                                                                                                                                                |                                                                                         | .100 / 2.54                                                                                                                                              |                                                                                                                                                                      |         |                                                                | GOLD POINT: G |              |                                                                      | .200 / 5.08        |        |  |  |
|      | AIL LENGTH                                                                                                                                                                         | D                                                                                                                                                                    |                                                                                         | .125 / 3.18                                                                                                                                              |                                                                                                                                                                      |         |                                                                | AL LENGTH:    | D            |                                                                      | .125 / 3.18        |        |  |  |
| TIN: |                                                                                                                                                                                    |                                                                                                                                                                      |                                                                                         | .100 / 2.54                                                                                                                                              |                                                                                                                                                                      |         | TIN:                                                           |               |              | .200 / 5.08                                                          |                    |        |  |  |
| CKTS |                                                                                                                                                                                    | _                                                                                                                                                                    |                                                                                         | 4-36                                                                                                                                                     |                                                                                                                                                                      |         | CKTS                                                           |               |              | 2-36                                                                 |                    |        |  |  |
| KINK |                                                                                                                                                                                    |                                                                                                                                                                      |                                                                                         | NO<br>NO                                                                                                                                                 |                                                                                                                                                                      |         | KINK                                                           |               |              | 2-36<br>NO                                                           |                    |        |  |  |
|      | FD CKTS:                                                                                                                                                                           |                                                                                                                                                                      |                                                                                         | 5                                                                                                                                                        |                                                                                                                                                                      |         |                                                                | FD CKTS:      |              | NONE                                                                 |                    |        |  |  |
|      | (AGING:                                                                                                                                                                            |                                                                                                                                                                      | RIII                                                                                    | K PK-40873                                                                                                                                               | -0041                                                                                                                                                                |         |                                                                | PACKAGING:    |              |                                                                      | BULK PK-40873-0043 |        |  |  |
| KTS  | MATERIAL                                                                                                                                                                           | ENG                                                                                                                                                                  | CKTS                                                                                    | MATERIAL                                                                                                                                                 | ENG                                                                                                                                                                  |         | CKTS                                                           | MATERIAL      | ENG          | CKTS                                                                 | MATERIAL           | ITEM   |  |  |
|      | NUMBER                                                                                                                                                                             | NUMBER                                                                                                                                                               |                                                                                         | NUMBER                                                                                                                                                   | NUMBER                                                                                                                                                               |         |                                                                | NUMBER        | NUMBER       |                                                                      | NUMBER             | NUMBER |  |  |
| 02   |                                                                                                                                                                                    |                                                                                                                                                                      | 20                                                                                      | 423753587                                                                                                                                                | 42375-3587                                                                                                                                                           |         | 02                                                             |               |              | 20                                                                   |                    |        |  |  |
| 03   |                                                                                                                                                                                    |                                                                                                                                                                      | 21                                                                                      | 423753588                                                                                                                                                | 42375-3588                                                                                                                                                           |         | 03                                                             |               |              | 21                                                                   |                    |        |  |  |
| 04   |                                                                                                                                                                                    |                                                                                                                                                                      | 22                                                                                      | 423753589                                                                                                                                                | 42375-3589                                                                                                                                                           |         | 04                                                             |               |              | 22                                                                   |                    |        |  |  |
| 05   | 423753572                                                                                                                                                                          |                                                                                                                                                                      |                                                                                         | 423753590                                                                                                                                                | 42375-3590                                                                                                                                                           |         | 05                                                             | 423752977     | 42375-2977   | 23                                                                   |                    |        |  |  |
| 06   | 423753573                                                                                                                                                                          | 100000                                                                                                                                                               | -                                                                                       | 423753591                                                                                                                                                | 42375-3591                                                                                                                                                           |         | 06                                                             | / -           |              | 24                                                                   |                    |        |  |  |
| 07   |                                                                                                                                                                                    |                                                                                                                                                                      |                                                                                         |                                                                                                                                                          |                                                                                                                                                                      |         |                                                                |               |              |                                                                      |                    |        |  |  |
| 80   |                                                                                                                                                                                    |                                                                                                                                                                      |                                                                                         |                                                                                                                                                          |                                                                                                                                                                      |         |                                                                |               |              |                                                                      |                    |        |  |  |
| 09   |                                                                                                                                                                                    |                                                                                                                                                                      |                                                                                         |                                                                                                                                                          |                                                                                                                                                                      |         |                                                                |               |              |                                                                      |                    |        |  |  |
| 10   |                                                                                                                                                                                    |                                                                                                                                                                      |                                                                                         |                                                                                                                                                          |                                                                                                                                                                      |         |                                                                | 3             |              |                                                                      |                    |        |  |  |
| 11   |                                                                                                                                                                                    |                                                                                                                                                                      |                                                                                         |                                                                                                                                                          |                                                                                                                                                                      |         |                                                                |               |              |                                                                      |                    |        |  |  |
| 12   |                                                                                                                                                                                    |                                                                                                                                                                      |                                                                                         |                                                                                                                                                          |                                                                                                                                                                      |         |                                                                |               |              |                                                                      |                    |        |  |  |
| 13   |                                                                                                                                                                                    |                                                                                                                                                                      |                                                                                         |                                                                                                                                                          |                                                                                                                                                                      |         |                                                                | -             |              |                                                                      |                    |        |  |  |
| 14   |                                                                                                                                                                                    |                                                                                                                                                                      |                                                                                         |                                                                                                                                                          |                                                                                                                                                                      |         |                                                                |               |              |                                                                      |                    |        |  |  |
| 15   |                                                                                                                                                                                    |                                                                                                                                                                      |                                                                                         |                                                                                                                                                          |                                                                                                                                                                      |         |                                                                |               |              |                                                                      |                    |        |  |  |
| 16   |                                                                                                                                                                                    |                                                                                                                                                                      | -                                                                                       |                                                                                                                                                          |                                                                                                                                                                      |         |                                                                |               |              |                                                                      |                    |        |  |  |
| 17   |                                                                                                                                                                                    |                                                                                                                                                                      |                                                                                         |                                                                                                                                                          |                                                                                                                                                                      |         |                                                                | -             |              |                                                                      |                    |        |  |  |
| 18   |                                                                                                                                                                                    |                                                                                                                                                                      |                                                                                         | 423/53603                                                                                                                                                | 42375-3603                                                                                                                                                           |         |                                                                |               |              | 36                                                                   |                    |        |  |  |
| 19   | 423753586                                                                                                                                                                          | 42375-3586                                                                                                                                                           |                                                                                         |                                                                                                                                                          |                                                                                                                                                                      |         | 19                                                             |               |              |                                                                      |                    |        |  |  |
|      | 423753574<br>423753575<br>423753576<br>423753576<br>423753577<br>423753578<br>423753589<br>423753581<br>423753582<br>423753584<br>423753584<br>423753584<br>423753584<br>423753584 | 42375-357-<br>42375-357-<br>42375-357-<br>42375-357-<br>42375-358-<br>42375-358-<br>42375-358-<br>42375-358-<br>42375-358-<br>42375-358-<br>42375-358-<br>42375-358- | 25<br>3 26<br>3 27<br>28<br>3 29<br>3 30<br>3 31<br>3 2<br>3 33<br>3 34<br>3 35<br>3 36 | 423753592<br>423753593<br>423753593<br>423753595<br>423753596<br>423753597<br>423753598<br>423753599<br>423753600<br>423753601<br>423753602<br>423753603 | 42375-3592<br>42375-3593<br>42375-3594<br>42375-3596<br>42375-3596<br>42375-3596<br>42375-3597<br>42375-3599<br>42375-3600<br>42375-3601<br>42375-3602<br>42375-3603 |         | 07<br>08<br>09<br>10<br>11<br>11<br>12<br>13<br>14<br>15<br>16 |               |              | 25<br>26<br>27<br>28<br>29<br>30<br>31<br>32<br>33<br>34<br>35<br>36 |                    |        |  |  |
| REV: |                                                                                                                                                                                    |                                                                                                                                                                      |                                                                                         | TITLE:                                                                                                                                                   | EATED / REVISED BY:                                                                                                                                                  | 1       | RTICAL<br>AWAY<br>ECKED BY:                                    | SY            |              | APPROVED                                                             | SHEET No 25 - BY:  |        |  |  |
|      |                                                                                                                                                                                    | SD- 4237                                                                                                                                                             | 5-001                                                                                   |                                                                                                                                                          |                                                                                                                                                                      | MKIPPER | l N                                                            | NGUYEN        |              |                                                                      | FSMITH             |        |  |  |

| ()             |
|----------------|
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
| , 16           |
| 041            |
| ITEM<br>NUMBER |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |

|               |                  |                   |             |               |                     |                                |                    |               |             |                    | 42375             |  |
|---------------|------------------|-------------------|-------------|---------------|---------------------|--------------------------------|--------------------|---------------|-------------|--------------------|-------------------|--|
|               | ENG. NO:         | 42375-36          | 59/3693     |               |                     |                                |                    | ENG. NO: 42   | 2375-369    | 94/3728            |                   |  |
| HEADER NUME   |                  |                   | 42312-0036  |               |                     | HEAD                           | ER NUMBER          |               |             | 42312-003          | 8                 |  |
| PIN NUMBER:   |                  |                   | 42663-AXB20 | 18            |                     | PIN N                          | IUMBER:            |               |             | 42663-AXB2         | 08                |  |
| PIN LENGTH: L |                  |                   | .540 /13.72 | 8             |                     | PIN L                          | ENGTH: L           |               |             | .540 / 13.7        | 2                 |  |
| MATING LENGT  |                  |                   | .250 / 6.35 |               |                     |                                | NG LENGTH:         | M             |             | .250 / 6.35        |                   |  |
| GOLD POINT:   |                  |                   | .140 / 3.56 |               |                     |                                | POINT: G           |               | .140 / 3.56 |                    |                   |  |
| PC TAIL LENGT |                  |                   | .200 / 5.08 |               |                     |                                | AIL LENGTH:        | P             | .200 / 5.08 |                    |                   |  |
| TIN: T        |                  |                   | .135 / 3.43 |               |                     | TIN:                           |                    |               | .135 / 3.43 |                    |                   |  |
| CKTS:         |                  |                   | 2-36        |               |                     |                                | CKTS:              |               |             | 2-36               |                   |  |
| KINKS:        |                  |                   | NO          |               |                     | KINK                           |                    |               |             | NO.                |                   |  |
| VOIDED CKTS:  |                  |                   | NONE        |               |                     |                                | ED CKTS:           |               |             | 5                  |                   |  |
| PACKAGING:    |                  | RUI               | K PK-40873  | L0041         |                     |                                | AGING:             |               | RUI         | K PK-4087          | 3_0041            |  |
| KTS MATERIA   |                  | CKTS              | MATERIAL    | ENG<br>NUMBER |                     | CKTS                           | MATERIAL<br>NUMBER | ENG<br>NUMBER | сктѕ        | MATERIAL<br>NUMBER | ENG<br>NUMBER     |  |
| 02 68300-20   |                  |                   | IVOIVIDEIX  | 42375-3677    |                     | 02                             | INDIVIDEN          | 42375-3694    | 20          | HOWIDER            | 42375-3712        |  |
| 03 68300-20   |                  |                   |             | 42375-3678    |                     | 03                             |                    | 42375-3695    | 21          |                    | 42375-3713        |  |
| 04            | 42375-366        |                   |             | 42375-3679    |                     | 04                             |                    | 42375-3696    | 22          |                    | 42375-3714        |  |
| 05 68300-20   |                  |                   |             | 42375-3680    |                     | 05                             |                    | 42375-3697    | 23          |                    | 42375-371         |  |
| 06            | 42375-366        |                   |             | 42375-3681    |                     | 06                             |                    | 42375-3698    | 24          |                    | 42375-3716        |  |
| 07            | 42375-366        |                   |             | 42375-3682    |                     | 07                             |                    | 42375-3699    | 25          |                    | 42375-3717        |  |
| 08            | 42375-366        |                   |             | 42375-3683    |                     | 08                             | 68300-2002         | 42375-3700    | 26          |                    | 42375-3718        |  |
| 09            | 42375-366        |                   |             | 42375-3684    |                     | 09                             |                    | 42375-3701    | 27          |                    | 42375-3719        |  |
| 10            | 42375-366        |                   |             | 42375-3685    |                     | 10                             |                    | 42375-3702    | 28          |                    | 42375-3720        |  |
| 11            | 42375-366        |                   | 1           | 42375-3686    |                     | 11                             | _                  | 42375-3703    | 29          | e e                | 42375-372         |  |
| 12            | 42375-366        |                   |             | 42375-3687    |                     | 12                             |                    | 42375-3704    | 30          |                    | 42375-372         |  |
| 13            | 42375-367        | 0 31              |             | 42375-3688    |                     | 13                             |                    | 42375-3705    | 31          |                    | 42375-372         |  |
| 14            | 42375-367        | 1 32              |             | 42375-3689    |                     | 14                             |                    | 42375-3706    | 32          |                    | 42375-372         |  |
| 15            | 42375-367        | 2 33              |             | 42375-3690    |                     | 15                             |                    | 42375-3707    | 33          |                    | 42375-372         |  |
| 16            | 42375-367        |                   |             | 42375-3691    |                     | 16                             |                    | 42375-3708    | 34          |                    | 42375-3726        |  |
| 17            | 42375-367        |                   |             | 42375-3692    |                     | 17                             |                    | 42375-3709    | 35          |                    | 42375-3727        |  |
| 18            | 42375-367        |                   |             | 42375-3693    |                     | 18                             |                    | 42375-3710    | 36          |                    | 42375-3728        |  |
| 19            | 42375-367        | 6                 |             |               |                     | 19                             |                    | 42375-3711    |             |                    |                   |  |
| REV:          | FCR.             | ECN INFO          | ORMATION:   | TITLE:        |                     |                                |                    |               |             |                    | SHEET No.         |  |
| T19           | EC No.:<br>DATE: | UCP201<br>8/7/201 | 14-3273     | 11100         |                     | KK 100 HEA<br>FLAT VE<br>BREAK | RTICAL             | Υ             |             |                    | - 27 -            |  |
| DOCUMENT N    | NUMBER:          |                   |             | CF            | EATED / REVISED BY: | CH                             | ECKED BY:          |               |             | APPROVED           | BY:               |  |
|               | SD- 423          | 75-001            | i i         |               | MKIPPER             | N                              | NGUYEN             |               |             | <b>FSMITH</b>      |                   |  |
|               |                  | 00                |             |               |                     |                                |                    |               |             |                    | CISIZE_A)(V 1).DO |  |



|                                                                     | / 3902         |
|---------------------------------------------------------------------|----------------|
|                                                                     | 42312-0036     |
| 42663-ABA154 PIN NUMBER: 42663-ABB208 PIN NUMBER: 426               | 663-DWA154     |
| .455 / 11.56 PIN LENGTH: L .455 / 11.56 PIN LENGTH: L .8            | 850 / 21.59    |
| .240 / 6.09 MATING LENGTH: M .250 / 6.35 MATING LENGTH: M .6        | 640 / 16.26    |
| N/A GOLD POINT: G .100 / 2.54 GOLD POINT: G                         | N/A            |
| .125 / 3.18 PC TAIL LENGTH: P .115 / 2.92 PC TAIL LENGTH: P .       | .120 / 3.05    |
| OVERALL TIN: T .100 / 2.54 TIN: T                                   | OVERALL        |
| 3-36 CKTS: 2-36 CKTS:                                               | 2-36           |
| NO KINKS: NO KINKS:                                                 | NO             |
| 3 VOIDED CKTS: NONE VOIDED CKTS:                                    | NONE           |
|                                                                     | PK-40873-004   |
| S MATERIAL NUMBER CKTS MATERIAL NUMBER CKTS NUMBER CKTS NUMBER CKTS | ITEM<br>NUMBER |
| 02 20 02 20                                                         |                |
| 03 21 03 21                                                         |                |
| 04 22 04 42375-3870 22                                              |                |
| 05 42375-3836 23 05 23                                              |                |
| 06 24 06 42375-3872 24                                              |                |
| 07 25 07 25                                                         |                |
| 08 26 08 26                                                         |                |
| 09 27 09 27                                                         |                |
| 10 28 10 28                                                         |                |
| 11 29 11 29                                                         |                |
| 12 30 12 30                                                         |                |
| 13 31 13 31                                                         |                |
| 14 32 14 32                                                         |                |
| 15 33 15 33                                                         |                |
| 16 34 16 34                                                         |                |
| 17 35 17 35                                                         |                |
| 18 36 18 36                                                         |                |
| 19 19                                                               |                |



|        | ENG. NO: A-    | 42375-39                   | 96/4030                                     |                                        | ENO A          | IO: 4227                               | 5-4031/4059                          |                                        | ENC N       | O: 42375                               | 5-4060 / 4094          |
|--------|----------------|----------------------------|---------------------------------------------|----------------------------------------|----------------|----------------------------------------|--------------------------------------|----------------------------------------|-------------|----------------------------------------|------------------------|
| HEADE  | R NUMBER:      | 4                          | 2312-0036                                   | HEADE                                  | R NUMBER:      | 10. 4237                               | 42312-0036                           | HEADE                                  | R NUMBER:   | 0. 42375                               | 42312-0036             |
| NU NI  | MBER:          | 42                         | 663-AXA154                                  | PIN NU                                 |                | +                                      | 2663-ABA154                          | PIN NL                                 |             | 1                                      | 2663-CGA154            |
| IN LE  | NGTH: L        |                            | 540 / 13.72                                 |                                        | NGTH: L        | - 4                                    | .455 / 11.56                         |                                        | NGTH: L     | - 4                                    | .690 / 17.53           |
| MATING | LENGTH: M      |                            | 390 / 9.91                                  |                                        | G LENGTH: M    | +                                      | .240 / 6.09                          |                                        | G LENGTH: M | +                                      | .521 / 13.23           |
| OLD F  | POINT: G       |                            | N/A                                         |                                        | POINT: G       | +                                      | N/A                                  |                                        | POINT: G    | _                                      | N/A                    |
| C TAIL | LENGTH: P      |                            | .060 / 1.52                                 |                                        | L LENGTH: P    | +                                      | .125 / 3.18                          |                                        | L LENGTH: P | _                                      | .079 / 2.01            |
| IN: T  |                |                            | OVERALL                                     | TIN: T                                 | LLENGIH. F     | +                                      | OVERALL                              | TIN: T                                 | L LENGTH. F | _                                      | OVERALL                |
| KTS:   |                |                            | 2-36                                        | CKTS:                                  |                | +                                      | 8-36                                 | CKTS:                                  |             | -                                      | 2-36                   |
| INKS:  | 8              |                            | NO                                          | KINKS:                                 |                | +                                      | NO NO                                | KINKS:                                 |             | +                                      | NO<br>NO               |
| OIDE   | CKTS:          |                            | NONE                                        |                                        | D CKTS:        | +                                      | 2. 4. 6. 8                           |                                        | D CKTS:     | +                                      | NONE                   |
| ACKA   | GING:          | BULK                       | PK-40873-0041                               | PACKA                                  |                | DIII                                   | PK-40873-0041                        | PACKA                                  |             | BULK                                   |                        |
| CKTS   | ITEM<br>NUMBER | сктѕ                       | ITEM<br>NUMBER                              | CKTS                                   | MATERIAL       | CKTS                                   | MATERIAL                             | CKTS                                   | MATERIAL    | CKTS                                   | MATERIAL               |
| 02     |                | 20                         |                                             |                                        | NUMBER         | - 00                                   | NUMBER                               | - 00                                   | NUMBER      | 20                                     | NUMBER                 |
| 03     |                | 21                         |                                             | 02                                     |                | 20                                     |                                      | 02                                     |             | 20                                     |                        |
| 04     |                | 22                         |                                             |                                        |                |                                        |                                      |                                        |             |                                        |                        |
| 05     |                | 23                         |                                             | 04                                     |                | 22                                     |                                      | 04                                     |             | 22                                     |                        |
| 06     | 42375-4000     | 24                         |                                             |                                        |                |                                        |                                      |                                        | 10075 1001  |                                        |                        |
| 07     | 42375-4001     | 25                         |                                             | 06                                     |                | 24                                     |                                      | 06                                     | 42375-4064  | 24                                     |                        |
| 08     |                | 26                         |                                             | 07                                     |                | 25                                     |                                      | 07                                     |             | 25                                     |                        |
| 09     |                | 27                         |                                             | 08                                     |                | 26                                     |                                      | 08                                     |             | 26                                     |                        |
| 10     |                | 28                         |                                             | 09                                     | 42375-4032     | 27                                     |                                      | 09                                     |             | 27                                     |                        |
| 11     |                | 29                         |                                             | 10                                     |                | 28                                     |                                      | 10                                     |             | 28                                     |                        |
| 12     |                | 30                         |                                             | 11                                     |                | 29                                     |                                      | 11                                     |             | 29                                     |                        |
| 13     |                | 31                         |                                             |                                        |                |                                        |                                      |                                        |             |                                        |                        |
| 14     |                | 32                         |                                             |                                        |                |                                        |                                      |                                        |             |                                        |                        |
| 15     |                | 33                         |                                             |                                        |                |                                        |                                      |                                        |             |                                        |                        |
| 16     |                | 34                         |                                             |                                        |                |                                        |                                      |                                        |             |                                        |                        |
| 17     |                | 35                         |                                             |                                        |                |                                        |                                      | -                                      |             |                                        |                        |
| 18     |                | 36                         |                                             |                                        |                |                                        |                                      |                                        |             |                                        |                        |
| 19     |                |                            |                                             |                                        |                | 36                                     |                                      |                                        |             | 36                                     |                        |
|        |                | 31<br>32<br>33<br>34<br>35 |                                             | 12<br>13<br>14<br>15<br>16<br>17<br>18 |                | 30<br>31<br>32<br>33<br>34<br>35<br>36 |                                      | 12<br>13<br>14<br>15<br>16<br>17<br>18 |             | 30<br>31<br>32<br>33<br>34<br>35<br>36 |                        |
|        | T19 DAT        | No.: L                     | CN INFORMATION:<br>JCP2014-3273<br>8/7/2014 | TITLE:                                 |                |                                        | KK 100 HEADE<br>FLAT VERT<br>BREAKAV | ICAL                                   |             |                                        | SHEET No.              |
| DOCI   | JMENT NUMBE    |                            |                                             | CR                                     | EATED / REVISE | D BY:                                  |                                      | KED BY:                                |             | APPRO                                  | VED BY:                |
| 2000   |                | 4237                       | 5-001                                       | j on                                   | MKIPPER        |                                        |                                      | UYEN                                   |             | hards beautiful and an incident        | AITH                   |
|        | an.            | 423/                       | J-00 I                                      |                                        | WINIFFER       |                                        | NNG                                  | OIEN                                   |             | 11000000                               | AT SPECISIZE ANV.1).DO |

|         |                |          |                                 |         |                |          |                         |                |                    |           | 42375              |
|---------|----------------|----------|---------------------------------|---------|----------------|----------|-------------------------|----------------|--------------------|-----------|--------------------|
|         | ENG. NO: A     | 42375-40 | 95/4129                         |         | ENG. NO: A     | 42375-41 | 30/4161                 |                | FNG N              | IO: 42375 | 4162/4196          |
| HEADE   | R NUMBER:      |          | 2312-0036                       | HEADE   | R NUMBER:      |          | 12312-0036              | HEADE          | R NUMBER:          |           | 42312-0036         |
| PIN NU  |                |          | 663-DEB228                      | PIN NUI |                |          | 663-ATA154              | PIN NU         |                    |           | 2663-BSC228        |
| PIN LEN | NGTH: L        |          | 785 / 19.94                     |         | IGTH: L        |          | .530/13.46              | PIN LE         | NGTH: L            |           | .630/16.00         |
| MATING  | LENGTH: M      |          | 470 / 11.94                     | MATING  | LENGTH: M      |          | .320/8.13               | MATIN          | G LENGTH: M        |           | .400/10.16         |
| OLD F   | POINT: G       |          | .250 / 6.35                     | GOLD P  | OINT: G        |          | N/A                     | GOLD           | POINT: G           |           | .345/8.76          |
| C TAIL  | LENGTH: P      |          | .225 / 5.72                     | PC TAIL | LENGTH: P      |          | .120/3.05               | PC TAI         | L LENGTH: P        | 1         | .140/3.56          |
| IN: T   |                |          | .200 / 5.08                     | TIN: T  |                |          | OVERALL                 | TIN: T         |                    |           | .100/2.54          |
| KTS:    |                |          | 2-36                            | CKTS:   |                |          | 5-36                    | CKTS:          |                    |           | 2-36               |
| INKS:   |                |          | NO                              | KINKS:  |                | S        | MES-42003               | KINKS          |                    |           | NO                 |
| OIDE    | CKTS:          |          | NONE                            | VOIDED  | CKTS:          |          | 2, 3, 4                 | VOIDE          | D CKTS:            |           | NONE               |
| PACKA   | GING:          | BULK     | PK-40873-0041                   | PACKA   | GING:          | BULK     | PK-40873-0041           | PACKA          | GING:              | BULK      | PK-40873-004       |
| сктѕ    | ITEM<br>NUMBER | сктѕ     | ITEM<br>NUMBER                  | сктѕ    | ITEM<br>NUMBER | CKTS     | ITEM<br>NUMBER          | сктѕ           | MATERIAL<br>NUMBER | сктѕ      | MATERIAL<br>NUMBER |
| 02      |                | 20       |                                 |         |                | 20       |                         | 02             |                    | 20        |                    |
| 03      |                | 21       |                                 |         |                | 21       |                         | 03             |                    | 21        |                    |
| 04      |                | 22       |                                 |         |                | 22       |                         | 04             | 42375-4164         | 22        |                    |
| 05      |                | 23       |                                 | 05      | 42375-4130     | 23       |                         | 05             | 42375-4165         | 23        |                    |
| 06      |                | 24       |                                 | 06      |                | 24       |                         | 06             |                    | 24        |                    |
| 07      |                | 25       |                                 | 07      |                | 25       |                         | 07             |                    | 25        |                    |
| 08      |                | 26       |                                 | 08      |                | 26       |                         | 08             |                    | 26        |                    |
| 09      |                | 27       |                                 | 09      |                | 27       |                         | 09             |                    | 27        |                    |
| 10      | 42375-4103     | 28       |                                 | 10      |                | 28       |                         | 10             | 42375-4170         | 28        |                    |
| 11      |                | 29       |                                 | 11      |                | 29       |                         | 11             |                    | 29        |                    |
| 12      |                | 30       |                                 | 12      |                | 30       |                         | 12             |                    | 30        |                    |
| 13      |                | 31       |                                 | 13      |                | 31       |                         | 13             |                    | 31        |                    |
| 14      |                | 32       |                                 | 14      |                | 32       |                         | 14             |                    | 32        |                    |
| 15      |                | 33       |                                 | 15      |                | 33       |                         | 15             |                    | 33        |                    |
| 16      |                | 34       |                                 | 16      |                | 34       |                         | 16             |                    | 34        |                    |
| 17      |                | 35       |                                 | 17      |                | 35       |                         | 17             |                    | 35        |                    |
| 18      | 42375-4111     | 36       |                                 | 18      |                | 36       |                         | 18             |                    | 36        |                    |
| 19      |                |          |                                 | 19      |                |          |                         | 19             |                    |           |                    |
| F       | REV:           | -        | CN INFORMATION:<br>JCP2014-3273 | TITLE:  |                |          | KK 100 HEAD<br>FLAT VER | ER ASSY        |                    |           | SHEET No.          |
|         | DAT<br>DAT     |          | 8/7/2014                        | CRE     | ATED / REVISE  | D BY:    | BREAKA                  | WAY<br>KED BY: | 1                  | APPRO\    |                    |
| 2000    |                |          | E 004                           | J. SKE  |                |          | 1                       |                |                    |           |                    |
|         | SD.            | 4237     | 5-007                           |         | MKIPPER        |          | NNG                     | UYEN           |                    | FSM       | пн                 |

|                    |                                  |                    |                                        |                                          |                                  |                    |                                        | 8                                       |                                  |                    |        |
|--------------------|----------------------------------|--------------------|----------------------------------------|------------------------------------------|----------------------------------|--------------------|----------------------------------------|-----------------------------------------|----------------------------------|--------------------|--------|
| 5-4200             | A-42375-                         | ENG. NO:           |                                        | 4199                                     | A-42375                          | ENG. NO:           |                                        | 622                                     | -42375-1                         | ENG. NO: A         |        |
| 42312-0036         | 4                                | R NUMBER:          | HEADER                                 | 2312-0036                                | 4                                | R NUMBER:          | HEADER                                 | 2312-0036                               | 4:                               | R NUMBER:          | HEADE  |
| 2663-ADB208        | 42                               | MBER:              | PIN NUM                                | 663-ARB228                               | 42                               | MBER:              | PIN NUN                                | 663-AYB208                              | 426                              | BER:               | IN NUN |
| .465 / 11.81       |                                  | IGTH: L            | PIN LEN                                | 520 / 13.21                              |                                  | GTH: L             | PIN LEN                                | 545 / 13.84                             | .5                               | TH: L              | IN LEN |
| .240 / 6.09        |                                  | LENGTH: M          |                                        | 230 / 5.84                               |                                  | LENGTH: M          | MATING                                 | 320 / 8.13                              |                                  | ENGTH: M           | IATING |
| .100 / 2.54        |                                  | POINT: G           |                                        | 140 / 3.56                               |                                  |                    | GOLD P                                 | 140 / 3.56                              |                                  |                    | OLD P  |
| .135 / 3.43        |                                  | LENGTH: P          |                                        | 200 / 5.08                               |                                  | LENGTH: P          |                                        | 135 / 3.43                              |                                  | ENGTH: P           |        |
| .100 / 2.54        |                                  |                    | TIN: T                                 | 135 / 3.43                               |                                  |                    | TIN: T                                 | 135 / 3.43                              | - 2                              |                    | N: T   |
| 2-36               |                                  |                    | CKTS:                                  | 2-36                                     |                                  |                    | CKTS:                                  | 2-36                                    |                                  |                    | KTS:   |
|                    | SMES-42003                       |                    | KINKS:                                 | NO                                       |                                  |                    | KINKS:                                 | MES-42003                               | SI                               |                    | INKS:  |
| 3, 4               |                                  |                    | VOIDED                                 | NONE                                     |                                  |                    | VOIDED                                 | 3                                       |                                  |                    | OIDED  |
|                    | BULK                             |                    | PACKA                                  | PK-40873-0041                            | BULK                             |                    | PACKAC                                 | PK-40873-0041                           | BULK                             |                    | ACKAG  |
| MATERIAL<br>NUMBER | CKTS                             | MATERIAL<br>NUMBER | CKTS                                   | MATERIAL<br>NUMBER                       | CKTS                             | MATERIAL<br>NUMBER | сктѕ                                   | MATERIAL<br>NUMBER                      | CKTS                             | MATERIAL<br>NUMBER | сктѕ   |
|                    | 20                               |                    | 02                                     |                                          | 20                               | 42375-4199         | 02                                     |                                         | 20                               |                    | 02     |
|                    | 21                               |                    | 03                                     |                                          | 21                               |                    | 03                                     |                                         | 21                               |                    | 03     |
|                    | 22                               |                    | 04                                     |                                          | 22                               |                    | 04                                     |                                         | 22                               |                    | 04     |
|                    | 23                               | 42375-4200         | 05                                     |                                          | 23                               |                    | 05                                     |                                         | 23                               |                    | 05     |
|                    | 24                               |                    | 06                                     |                                          | 24                               |                    | 06                                     |                                         | 24                               |                    | 06     |
|                    | 25                               |                    | 07                                     |                                          | 25                               |                    | 07                                     |                                         | 25                               |                    | 07     |
|                    | 26                               |                    | 08                                     |                                          | 26                               |                    | 08                                     |                                         | 26                               |                    | 08     |
|                    | 27                               |                    | 09                                     |                                          | 27                               |                    | 09                                     |                                         | 27                               | 42375-1622         | 09     |
|                    | 28                               |                    | 10                                     |                                          | 28                               |                    | 10                                     |                                         | 28                               |                    | 10     |
|                    | 29<br>30                         |                    | 11                                     |                                          | 29<br>30                         |                    | 11                                     |                                         | 30                               |                    | 11     |
|                    |                                  |                    |                                        |                                          |                                  |                    |                                        |                                         |                                  |                    | 13     |
|                    |                                  |                    |                                        |                                          |                                  |                    |                                        |                                         |                                  |                    | 14     |
|                    |                                  |                    | 15.00                                  |                                          |                                  |                    | 2025                                   |                                         |                                  |                    | 15     |
|                    |                                  |                    |                                        |                                          |                                  |                    |                                        |                                         |                                  |                    | 16     |
|                    |                                  |                    |                                        |                                          |                                  |                    |                                        |                                         |                                  |                    | 17     |
|                    |                                  |                    |                                        |                                          |                                  |                    |                                        |                                         |                                  |                    | 18     |
|                    |                                  |                    |                                        |                                          | - 00                             | -                  |                                        |                                         |                                  |                    | 19     |
|                    | 31<br>32<br>33<br>34<br>35<br>36 |                    | 13<br>14<br>15<br>16<br>17<br>18<br>19 |                                          | 31<br>32<br>33<br>34<br>35<br>36 |                    | 13<br>14<br>15<br>16<br>17<br>18<br>19 |                                         | 31<br>32<br>33<br>34<br>35<br>36 |                    |        |
|                    | APPROVE                          |                    | AL<br>Y<br>BY:                         | KK 100 HEADER<br>FLAT VERTIC<br>BREAKAWA | DBY:                             | ATED / REVISE      | TITLE:                                 | N INFORMATION:<br>CP2014-3273<br>7/2014 | .: UC                            | 9 DATE:            | - 5    |
| IITH               | FSMI                             |                    | :N                                     | NNGUYE                                   |                                  | MKIPPER            |                                        | -001                                    | 42375                            | SD-                |        |

| 42375              |           |                    |         |                    |         |       |                    |         |                |                          |                    |         |
|--------------------|-----------|--------------------|---------|--------------------|---------|-------|--------------------|---------|----------------|--------------------------|--------------------|---------|
|                    |           |                    |         |                    |         |       |                    |         |                |                          |                    |         |
| 8/4341             | 12375-433 | ENG. NO: 4         |         |                    |         | : 423 | ENG. NO            |         |                |                          | ENG. NO:           |         |
| 2312-0036          |           | R NUMBER:          |         | 2312-0036          |         |       | R NUMBER:          |         | 42312-0036     |                          | MBER:              | DER     |
| 663-BGA154         |           |                    | PIN NUM | 663-BDA154         |         |       |                    | PIN NUI | 2663-CCA118    |                          |                    | NUME    |
| 585 / 14.86        |           |                    | PIN LEN | 570 / 14.48        |         |       |                    | PIN LEN | .670 / 17.02   | _                        |                    | LENG    |
| 398 / 10.11        | .:        | ELENGTH: M         |         | .339 / 8.61        | .3      | _     | LENGTH: M          |         | 440 / 11.18    | .4                       | GTH: M             |         |
| N/A                |           | POINT: G           |         | N/A                |         | -     | OINT: G            |         | NA             |                          |                    | D PO    |
| .097 / 2.46        |           | LENGTH: P          |         | .141 / 3.58        |         | -     | LENGTH: P          |         | .140 / 3.56    |                          | GTH: P             |         |
| OVERALL            |           |                    | TIN: T  | OVERALL            | 0       | -     |                    | TIN: T  | OVERALL        | - 0                      |                    | Т       |
| 2-36               |           |                    | CKTS:   | 2-36               |         | -     |                    | CKTS:   | 2-36           |                          |                    | S:      |
| NO                 |           |                    | KINKS:  | NO                 | _       | -     |                    | KINKS:  | SMES-42003     | SI                       |                    | KS:     |
| NONE               |           |                    | VOIDED  | NONE               |         | -     |                    | VOIDED  | NONE           |                          |                    | DED (   |
| PK-40873-004       | BULK      |                    | PACKA   | PK-40873-0041      | K       | BU    |                    | PACKA   |                | BULK                     |                    | KAGI    |
| MATERIAL<br>NUMBER | сктѕ      | MATERIAL<br>NUMBER | сктѕ    | MATERIAL<br>NUMBER | 3       | CKT   | MATERIAL<br>NUMBER | CKTS    | ITEM<br>NUMBER | CKTS                     | TEM<br>JMBER       | S       |
|                    | 20        |                    | 02      |                    |         | 20    |                    | 02      |                | 20                       |                    |         |
|                    | 21        | 42375-4338         | 03      |                    | $\perp$ | 21    |                    | 03      |                | 21                       |                    |         |
|                    | 22        |                    | 04      |                    | $\perp$ | 22    |                    | 04      |                | 22                       |                    |         |
|                    | 23        |                    | 05      |                    |         | 23    | 42375-4305         | 05      |                | 23                       |                    |         |
|                    | 24        | 42375-4341         | 06      |                    |         | 24    |                    | 06      |                | 24                       | 75-4236            |         |
|                    | 25        |                    | 07      |                    |         | 25    |                    | 07      |                | 25                       |                    |         |
|                    | 26        |                    | 08      |                    | _       | 26    |                    | 08      |                | 26                       |                    |         |
|                    | 27        |                    | 09      |                    | _       | 27    |                    | 09      |                | 27                       |                    |         |
|                    | 28        |                    | 10      |                    | $\perp$ | 28    |                    | 10      |                | 28                       |                    |         |
|                    | 29        |                    | 11      |                    | $\perp$ | 29    |                    | 11      |                | 29                       |                    |         |
|                    | 30        |                    | 12      |                    |         | 30    |                    | 12      |                | 30                       |                    |         |
|                    | 31        |                    | 13      |                    | $\perp$ | 31    |                    | 13      |                | 31                       |                    |         |
|                    | 32        |                    | 14      |                    | _       | 32    |                    | 14      |                | 32                       |                    |         |
|                    | 33        |                    | 15      |                    | $\perp$ | 33    |                    | 15      |                | 33                       |                    |         |
|                    | 34        |                    | 16      |                    | +       | 34    |                    | 16      |                | 34                       |                    | _       |
|                    | 35        |                    | 17      |                    | +       | 35    | 1/2                | 17      |                | 35                       |                    | _       |
|                    | 36        |                    | 18      |                    | +       | 36    |                    | 18      |                | 36                       |                    | 1       |
|                    |           |                    | 19      |                    |         |       |                    | 19      |                |                          |                    |         |
|                    |           |                    |         |                    |         |       |                    |         |                |                          |                    |         |
| SHEET No.          |           |                    |         |                    |         |       |                    | TITLE:  | INFORMATION:   | ECR/ECN                  |                    | RE      |
| - 34 -             |           |                    | AL      | FLAT VERTICA       |         |       |                    |         |                | T19 EC No.: UCP2014-3273 |                    | T1      |
| ED BV-             | APPROVE   | 1                  |         | BREAKAWA' CHECKED  |         | DRY   | ATED / REVISE      | CRE     | 7/2014         | 8//                      | DATE:<br>T NUMBER: | CLIM    |
|                    |           |                    |         |                    |         |       |                    | OKE     | 004            | 0075                     |                    | J C J W |
| TH                 | FSMI      |                    | :N      | NNGUYE             |         |       | MKIPPER            |         | -001           | 2375-                    | SD-                |         |

| 4237         |                      |                           |           |                   |         |                |            |                |        |
|--------------|----------------------|---------------------------|-----------|-------------------|---------|----------------|------------|----------------|--------|
|              | 7                    |                           |           |                   |         |                |            |                |        |
|              |                      |                           | : 42375-4 |                   |         |                |            | ENG. NO:       |        |
|              |                      | 2312-0036                 |           | R NUMBER:         |         | 42312-0036     |            | ER NUMBER:     |        |
|              |                      | 2663-0364                 | 4         |                   | PIN NUI | 2663-ABB208    | -          | JMBER:         |        |
|              |                      | 228                       |           |                   | PLATING | .455 / 11.56   |            | NGTH: L        |        |
|              |                      | 590 / 14.99               |           |                   | PIN LEN | .240 / 6.09    |            | IG LENGTH: M   |        |
|              |                      | .380 / 9.65               | _         | LENGTH: M         |         | .100 / 2.54    | _          | POINT: G       |        |
|              |                      | .200 / 5.08               |           | OINT: G           |         | .125 / 3.18    | -          | IL LENGTH: P   |        |
|              |                      | .120 / 3.05               |           | LENGTH: P         |         | .100 / 2.54    | -          |                | TIN: T |
|              |                      | .135 / 3.43               |           |                   | TIN: T  | 6-36           | -          |                | CKTS:  |
|              |                      | 2-36                      |           |                   | CKTS:   | NO             | -          |                | KINKS  |
|              | -                    | NO                        |           |                   | KINKS:  | 2, 4, 6        |            | D CKTS:        |        |
|              | -                    | NONE                      |           |                   | VOIDED  |                | BULK       | AGING:         | ACK/   |
|              | -                    | PK-40873-0041<br>MATERIAL | BULK      | GING:<br>MATERIAL | PACKA   | ITEM<br>NUMBER | CKTS       | ITEM<br>NUMBER | ктѕ    |
|              |                      | NUMBER                    |           | NUMBER            |         |                | 20         |                | 02     |
|              |                      |                           | 20        |                   | 02      |                | 21         |                | 03     |
|              |                      |                           | 21        |                   | 03      |                | 22         |                | 04     |
|              | -                    |                           | 22        | 42375-4445        | 04      |                | 23         |                | 05     |
|              | -                    |                           | 23        |                   | 05      |                | 24         |                | 06     |
|              | -                    |                           | 24        |                   | 06      |                | 25         | 42375-4413     | 07     |
|              | -                    |                           | 25        |                   | 07      |                | 26         |                | 08     |
|              |                      |                           | 26        |                   | 08      |                | 27         |                | 09     |
|              | -                    |                           | 27        |                   | 09      |                | 28         |                | 10     |
|              | _                    |                           | 28        |                   | 10      |                | 29         |                | 11     |
|              | -                    |                           | 29        |                   | 11      |                | 30         |                | 12     |
|              | -                    |                           | 30        |                   | 12      |                | 31         |                | 13     |
|              | -                    |                           | 31        |                   | 13      |                | 32         |                | 14     |
|              | -                    |                           | 32        |                   | 14      |                | 33         |                | 15     |
|              | 4                    |                           | 33        |                   | 15      |                | 34         |                | 16     |
|              | -                    |                           | 34        |                   | 16      |                | 35         |                | 17     |
|              | -                    |                           | 35        |                   | 17      |                | 36         |                | 18     |
|              | -                    |                           | 36        |                   | 18      |                |            |                | 19     |
|              | J                    |                           |           |                   | 19      |                |            |                |        |
| SHEET No     |                      | 10000 1000                |           |                   | TITLE:  | N INFORMATION: | ECR/ECN    | REV:           | _      |
| - 35 -       | ADER ASSY<br>ERTICAL | FLAT V                    |           |                   |         | P2014-3273     | <u></u> uc | Г19 EC No      |        |
| 4000015001   | KAWAY                |                           | D D)/     | .TED / DE\ // DE  | 005     | 7/2014         |            | DATE           |        |
| APPROVED BY: | HECKED BY:           | 1                         | DRA:      | ATED / REVISE     | CRE     | •••            |            | UMENT NUMBER:  | DOC    |
| FSMITH       | INGUYEN              | l N                       |           | MKIPPER           |         | -001           | 42375      | SD-            |        |

#### 3.- Resistencias.



Thick Film Chip Resistors

#### **Type CRG Series**

#### **Key Features**

- Thick film resistors with a high power to size ratio,ideally suited to industrial and general purpose use.
  A range from 1 ohm to 10M and tolerances of 1% and 5%. Also including zero ohm links.
- Suitable for most applications, including high frequency operation, owing to the short lead structure and low capacitance.
- Seven Package Sizes
- Terminal finish: Matte Sn
- MSL Level 2

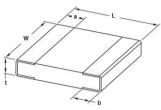


Precious metal terminations are screen printed onto a ceramic base and fired. The resistive element is screen printed and fired and the passivation layer added. Each resistor is trimmed to tolerance by laser. The pre-scribed tile is broken into strips, the end plating is fired on and the strips broken into individual components. Final termination is made by electroplating.

#### Characteristics - Electrical

|                      |        |      | 0201 |      |      | 0402  |      |      | 06   | 03   |      |      | 08   | 05   |      |
|----------------------|--------|------|------|------|------|-------|------|------|------|------|------|------|------|------|------|
| Rated Power @ 70 °   | C (W)  |      | 0.05 | ,    |      | 0.063 |      |      | 0.   | 1    |      |      | 0.1  | 25   |      |
| Resistance Range     | Min    | 10   | 1    | 11   | 10   | 1     | 11   | 1    | 101  | 1    | 11   | 1    | 101  | 1    | 11   |
| (Ohms)               | Max    | 1M0  | 10   | 1M0  | 2M0  | 10    | зМз  | 100  | 1M0  | 10   | 10M  | 100  | 1M0  | 10   | 10M  |
| Tolerance (%)        |        | 1    | 5    | 5    | 1    | 5     | 5    | 1    | 1    | 5    | 5    | 1    | 1    | 5    | 5    |
| Code letter          |        | F    | J    | J    | F    | J     | J    | F    | F    | J    | J    | F    | F    | J    | J    |
| Selection Series     |        | E24  | E24  | E24  | E24  | E24   | E24  | E24  | E24  | E24  | E24  | E24  | E24  | E24  | E24  |
|                      |        | E96  |      |      | E96  |       |      |      | E96  |      |      |      | E96  |      |      |
| Temp. Coefficient (p | pm/°C) | ±200 | ±400 | ±200 | ±100 | ±400  | ±200 | ±200 | ±100 | ±200 | ±200 | ±200 | ±100 | ±400 | ±200 |

|                      |        |      | 12   | 06   |      |      | 20   | 10   |      |      | 25   | 12   |      |
|----------------------|--------|------|------|------|------|------|------|------|------|------|------|------|------|
| Rated Power @ 70 °   | C (W)  |      | 0.   | 25   |      |      | 0    | .5   |      |      | 85   | 1    |      |
| Resistance Range     | Min    | 1    | 101  | 1    | 11   | 1    | 101  | 1    | 11   | 1    | 101  | 1    | 11   |
| Ohms                 | Max    | 100  | 1M0  | 10   | 10M  | 100  | 1M0  | 10   | 10M  | 100  | 1M0  | 10   | 10M  |
| Tolerance (%)        |        | 1    | 1    | 5    | 5    | 1    | 1    | 5    | 5    | 1    | 1    | 5    | 5    |
| Code letter          |        | F    | F    | J    | J    | F    | F    | J    | J    | F    | E    | J    | J    |
| Selection Series     |        | E24  |
|                      |        |      | E96  |      |      |      | E96  |      |      |      | E96  |      |      |
| Temp. Coefficient (p | pm/°C) | ±200 | ±100 | ±400 | ±200 | ±200 | ±100 | ±400 | ±200 | ±200 | ±100 | ±400 | ±200 |


|                                          | 0201     | 0402 | 0603 | 0805        | 1206 | 2010 | 2512 |
|------------------------------------------|----------|------|------|-------------|------|------|------|
| Working Voltage (V)                      | 25       | 50   | 50   | 150         | 200  | 200  | 200  |
| Max. Overload Voltage (V)                | 50       | 100  | 100  | 300         | 400  | 400  | 400  |
| Operating Temp. Range (°C)               |          |      |      | -55 to +125 |      |      |      |
| Climatic Category (°C)                   |          |      |      | 55/125/56   |      |      |      |
| Insulation Resistance Dry<br>Min (Mohms) |          |      |      | 1000        |      |      |      |
| Stability (%)                            |          |      |      | 3           |      |      |      |
| Zerohm (A) Current Max                   | 0.5      | 1    | 1    | 2           | 2    | 2    | 2    |
| Resistance Max                           | <50 mOhm |      |      | <50 n       | nOhm |      |      |



Thick Film Chip Resistors

#### **Type CRG Series**

#### Dimensions



| Style | L         | W          | t          | а          | b          |
|-------|-----------|------------|------------|------------|------------|
| 0201  | 0.6 ±0.03 | 0.3 ±0.03  | 0.23 ±0.03 | 0.10 ±0.05 | 0.15 ±0.05 |
| 0402  | 1.0 ±0.1  | 0.5 ±0.05  | 0.35 ±0.05 | 0.2 ±0.1   | 0.25 ±0.1  |
| 0603  | 1.6 ±0.1  | 0.8 ±0.15  | 0.45 ±0.1  | 0.3 ±0.2   | 0.3 ±0.1   |
| 0805  | 2.0 ±0.15 | 1.25 ±0.15 | 0.55 ±0.1  | 0.4 ±0.2   | 0.4 ±0.2   |
| 1206  | 3.1 ±0.15 | 1.55 ±0.15 | 0.55 ±0.1  | 0.45 ±0.2  | 0.45 ±0.2  |
| 2010  | 5.0 ±0.1  | 2.5 ±0.15  | 0.55 ±0.1  | 0.6 ±0.25  | 0.5 ±0.2   |
| 2512  | 6 35 +0 1 | 3 2 +0 15  | 0.55 +0.1  | 06+025     | 0.5 +0.2   |

#### Marking Codes - Case Sizes 0805 to 2512

#### IEC 4 Digit Marking

| Resistance   | 100Ω | 2.2ΚΩ | 10ΚΩ | 49.9ΚΩ | 100ΚΩ |
|--------------|------|-------|------|--------|-------|
| Marking Code | 1000 | 2201  | 1002 | 4992   | 1003  |

#### Case Sizes 0603

#### E24 3 Digit Marking - Example: 101=100 $\Omega$ 102=1K $\Omega$

| E24 | 10 | 11 | 12 | 13 | 15 | 16 | 18 | 20 | 22 | 24 | 27 | 30 |
|-----|----|----|----|----|----|----|----|----|----|----|----|----|
|     | 33 | 36 | 39 | 43 | 47 | 51 | 56 | 62 | 68 | 75 | 82 | 91 |

E96 3 Digit Marking - Examples: 14C=13K7 $\Omega$ , 13C=13K3 $\Omega$ , 68B=4K99 $\Omega$ , 68X=49.9 $\Omega$ 

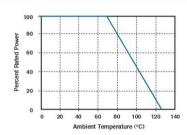


#### 0603 E96 Marking Code Table

| Code       | E   | 96 | Code | E   | 96              | Code | E   | 96  | Code | E   | 96 |
|------------|-----|----|------|-----|-----------------|------|-----|-----|------|-----|----|
| 01         | 10  | 00 | 25   | 17  | 78              | 49   | 3   | 16  | 73   | 5   | 62 |
| 02         | 10  | 02 | 26   | 18  | 32              | 50   | 3   | 24  | 74   | 5   | 76 |
| 03         | 10  | 05 | 27   | 18  | 37              | 51   | 3   | 32  | 75   | 5   | 90 |
| 04         | 10  | 07 | 28   | 19  | 91              | 52   | 3   | 40  | 76   | 6   | 04 |
| 05         | 1   | 10 | 29   | 19  | 96              | 53   | 3   | 48  | 77   | 6   | 19 |
| 06         | 1   | 13 | 30   | 20  | 00              | 54   | 3   | 57  | 78   | 6   | 34 |
| 07         | 1   | 15 | 31   | 20  | 05              | 55   | 3   | 65  | 79   | 6   | 49 |
| 08         | 11  | 18 | 32   | 2   | 10              | 56   | 3   | 74  | 80   | 6   | 65 |
| 09         | 1:  | 21 | 33   | 2   | 15              | 57   | 3   | 83  | 81   | 6   | 81 |
| 10         | 1:  | 24 | 34   | 22  | 21              | 58   | 3   | 92  | 82   | 6   | 98 |
| 11         | 1:  | 27 | 35   | 22  | 26              | 59   | 4   | 02  | 83   | 7   | 15 |
| 12         | 10  | 30 | 36   | 23  | 32              | 60   | 4   | 12  | 84   | 7   | 32 |
| 13         | 1;  | 33 | 37   | 23  | 37              | 61   | 4   | 22  | 85   | 7   | 50 |
| 14         | 13  | 37 | 38   | 24  | 13              | 62   | 4   | 32  | 86   | 7   | 68 |
| 15         | 14  | 40 | 39   | 24  | 19              | 63   | 4   | 42  | 87   | 7   | 87 |
| 16         | 14  | 43 | 40   | 25  | 55              | 64   | 4   | 53  | 88   | 8   | 06 |
| 17         | 1-  | 47 | 41   | 26  | 31              | 65   | 4   | 64  | 89   | 8   | 25 |
| 18         | 15  | 50 | 42   | 26  | 67              | 66   | 4   | 75  | 90   | 8   | 45 |
| 19         | 15  | 54 | 43   | 2   | 74              | 67   | 4   | 87  | 91   | 8   | 66 |
| 20         | 15  | 58 | 44   | 28  | 30              | 68   | 4   | 99  | 92   | 8   | 87 |
| 21         | 10  | 62 | 45   | 28  | 37              | 69   | 5   | 11  | 93   | 9   | 09 |
| 22         | 10  | 65 | 46   | 29  | 94              | 70   | 5   | 23  | 94   | 9   | 31 |
| 23         | 10  | 69 | 47   | 30  | 01              | 71   | 5   | 36  | 95   | 9   | 53 |
| 24         | 17  | 74 | 48   | 30  | 09              | 72   | 5   | 49  | 96   | 9   | 76 |
| Code       | Α   | В  | С    | D   | Е               | F    | G   | Н   | Х    | Υ   | Z  |
| Multiplier | 10° | 10 | 10²  | 10° | 10 <sup>4</sup> | 10   | 106 | 107 | 10   | 10² | 10 |

1773204 CIS WR 03/2012

Dimensions are in millimeters and inches unless otherwise specified. Values in brackets are standard equivalents. Dimensions are shown for reference purposes only. Specifications subject to change.


For email, phone or live chat, go to: te.com/help



Thick Film Chip Resistors

#### **Type CRG Series**

#### **Derating Curve**



#### Mounting

The resistors are suitable for processing on automatic insertion equipment.

#### Marking

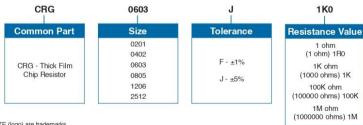
CRG0805, CRG1206, CRG2010, CRG2512
E24 series resistors are marked with a three digit code.
E96 series resistors are marked with a four digit code.
Zerohm components are marked '0'.

#### CRG0603

E24 5% series are marked with a three digit code.
E24 1% series are marked with a three digit code.
E24 1% series are marked with a three digit code.
E96 series are marked with the international alphanumeric three character code (available on request).
EXCEPT 10, 11, 13, 15, 20 & 75 decades which are marked as the E24 series.

CRG0201 & CRG0402 series unmarked.

#### **Performance Characteristics**


The evaluation of the performance characteristics is carried out with reference to IECQ specifications QC 400 000 and QC 400 100.

| TEST REF | Long Term Tests ±(3% + 0.1 ohm)   |  |
|----------|-----------------------------------|--|
| 4.23     | Climatic sequence                 |  |
| 4.24     | Damp heat, steady state           |  |
| 4.25.1   | Endurance at 70 °C                |  |
| 4.25.3   | Endurance at 125 °C               |  |
| TEST REF | Short Term Tests ±(1% + 0.05 ohm) |  |
| 4.13     | Overload                          |  |
| 4.32     | Adhesion                          |  |
| 4.33     | Bond strength of end face plating |  |
| 4.19     | Rapid change of temperature       |  |
| 4.18     | Resistance to soldering heat      |  |

#### Storage

Unopened reels should be stored within a temperature range of +5 °C to +25 °C, separated from any dust, chemicals and solvent based materials. Non-adherence to this procedure could effect the solderability of this product.

#### How to Order



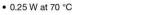
TE Connectivity, TE connectivity (logo) and TE (logo) are trademarks.

Other logos, product and Company names mentioned herein may be trademarks of their respective owners.

While TE has made every reasonable effort to ensure the accuracy of the information in this datasheet, TE does not guarantee that it is error-free, nor does TE make any other representation, warranty or guarantee that the information is accurate, correct, reliable or current. TE reserves the right to make any adjustments to the information contained herein at any time without notice. TE expressly disclaims all implied warranties regarding the information contained herein, including, but not imited to, any implied warranties of merchantability or filmess for a particular purpose. The dimensions in this datashed are for reference purposes only and are subject to change without notice. Specifications are subject to change without notice. Carsult TE for the latest dimensions and design specifications.

#### 4.- Potenciómetro.



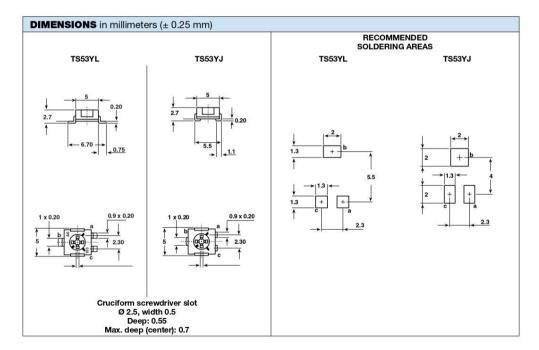

**TS53** 

Vishay Sfernice

#### 5 mm Square Surface Mount Miniature Trimmers Single-Turn Cermet Sealed



**FEATURES** 



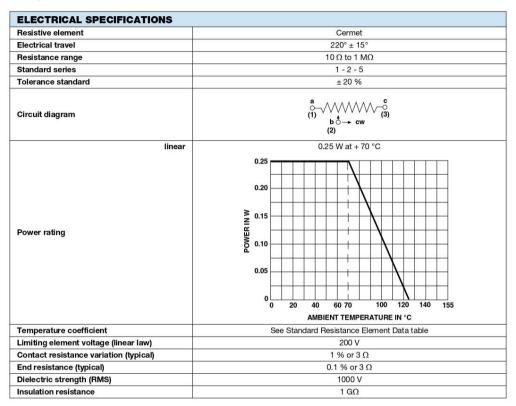



- For through hole version see T53Y series
- Wide ohmic range (10  $\Omega$  to 1 M $\Omega$ )
- Small size for optimum packaging density
- Tests according to CECC 41000 or IEC 60393-1
- Material categorization: For definitions of compliance please see <u>www.vishay.com/doc?99912</u>

The TS53 trimming potentiometer has been designed for surface mount applications and offers volumetric efficiency (5 mm x 5 mm x 2.7 mm) with high performance and stability.

The TS53 design is suitable for both manual or automatic operation, and can withstand wave, and reflow soldering techniques.




Revision: 13-Aug-13 1 Document Number: 51008

For technical questions, contact: sferpottrimmers@vishay.com, see also Application Note: <a href="www.vishay.com/doc?51001">www.vishay.com/doc?51001</a> and <a href="www.vishay.com/doc?52029">www.vishay.com/doc?52029</a>
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <a href="www.vishay.com/doc?91000">www.vishay.com/doc?91000</a>



**TS53** 

#### Vishay Sfernice



| MECHANICAL SPECIFICATIONS   |              |  |
|-----------------------------|--------------|--|
| Mechanical travel           | 270 ° ± 10°  |  |
| Operating torque (max. Ncm) | 1.5          |  |
| End stop torque (max. Ncm)  | 3.5          |  |
| Unit weight (max. g)        | 0.15         |  |
| Terminals                   | Pure Sn (e3) |  |

| ENVIRONMENTAL SPECIFICATIONS |                       |  |  |  |
|------------------------------|-----------------------|--|--|--|
| Temperature range            | - 55 °C to + 125 °C   |  |  |  |
| Climatic category            | 55/125/56             |  |  |  |
| Sealing                      | Sealed container IP67 |  |  |  |
| MSL level                    | 4                     |  |  |  |

#### **SOLDERING RECOMMENDATIONS**

Recommended reflow profile 2, see Application Note www.vishay.com/doc?52029

Caution

Reflow soldering must be done within 72 h while stored under a max. temperature of 30 °C, 60 % RH after opening the dry pack envelope.

Revision: 13-Aug-13 2 Document Number: 51008

For technical questions, contact: <a href="mailto:seepottrimmers@vishay.com">see also Application Note: <a href="www.vishay.com/doc?51001">www.vishay.com/doc?51001</a> and <a href="www.vishay.com/doc?52029">www.vishay.com/doc?51001</a> and <a href="www.vishay.com/doc?51001">www.vishay.com/doc?52029</a>
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <a href="www.vishay.com/doc?91000">www.vishay.com/doc?91000</a>



Vishay Sfernice

#### RECOMMENDED METHOD OF STORAGE

Dry box storage is recommended as soon as the hermetic bag has been opened to prevent moisture absorption. The following conditions should be observed, if dry boxes are not available:

- Storage temperature 10 °C to 30 °C
- Storage humidity ≤ 60 % RH max.

After more than 72 h under these conditions, moisture content will be too high for reflow soldering.

In case of moisture absorption, the devices will recover to the former condition by drying under the following condition:

192 h at 40 °C + 5 °C/- 0 °C and < 5 % RH (dry air/nitrogen) or 96 h at 60 °C + 5 °C and < 5 % RH for all device containers (not suitable for reel) or 24 h at 125 °C + 5 °C (not suitable for reel)

|                                                            |                                                                                                    | TYPICAL VALUES AND DRIFTS           |                                         |                                                                                           |  |
|------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-------------------------------------|-----------------------------------------|-------------------------------------------------------------------------------------------|--|
| TESTS                                                      | CONDITIONS                                                                                         | ∆R <sub>T</sub> /R <sub>T</sub> (%) | ΔR <sub>1-2</sub> /R <sub>1-2</sub> (%) | OTHER                                                                                     |  |
| Electrical endurance                                       | 1000 h at rated power<br>90'/30' - ambient temp. + 70 °C                                           | ± 2 %                               | ±3 %                                    | Contact resistance variation: $\Delta R < 1 \% Rn$                                        |  |
| Climatic sequence                                          | Phase A dry heat 125 °C<br>Phase B damp heat<br>Phase C cold - 55 °C<br>Phase D damp heat 5 cycles | ± 2 %                               | ± 3 %                                   |                                                                                           |  |
| Damp heat steady state Temperature 40 °C - RH 93 % 56 days |                                                                                                    | ± 2 %                               | ±3 %                                    | Dielectric strength: 1000 V <sub>RMS</sub><br>Insulation resistance: > 10 <sup>4</sup> MΩ |  |
| Charge of temperature                                      | - 55 °C to + 125 °C - 5 cycles                                                                     | ± 1 %                               |                                         | $\Delta V_{1-2}/\Delta V_{1-3} \le \pm 2 \%$                                              |  |
| Mechanical endurance                                       | 100 cycles - rated power                                                                           | ± (3 % + 5 Ω)                       |                                         |                                                                                           |  |
| Shock                                                      | 50 g - 11 ms<br>3 successive shocks in 3 directions                                                | ± 1 %                               |                                         | $\Delta V_{1-2}/\Delta V_{1-3} \le \pm 1 \%$                                              |  |
| 10 Hz to 55 Hz<br>0.75 mm or 10 g - 6 h                    |                                                                                                    | ± 1 %                               |                                         | $\Delta V_{1-2}/\Delta V_{1-3} \le \pm \ 1 \ \%$                                          |  |

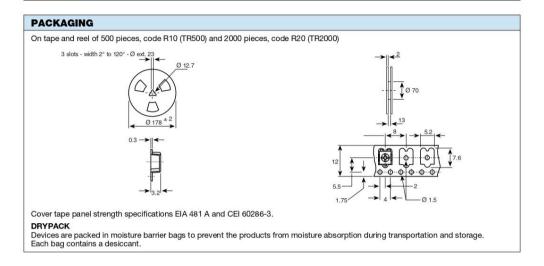
| STANDARD RESISTANCE ELEMENT DATA |                        |                         |                                 |                            |  |
|----------------------------------|------------------------|-------------------------|---------------------------------|----------------------------|--|
| STANDARD                         |                        | LINEAR LAW              |                                 | TYPICAL                    |  |
| RESISTANCE<br>VALUES             | MAX. POWER<br>AT 70 °C | MAX. WORKING<br>VOLTAGE | MAX. CURRENT<br>THROUGH ELEMENT | TCR<br>- 55 °C<br>+ 125 °C |  |
| Ω                                | w                      | ٧                       | mA                              | ppm/°C                     |  |
| 10                               | 0.25                   | 1.58                    | 158                             |                            |  |
| 20                               | 0.25                   | 2.24                    | 112                             |                            |  |
| 50                               | 0.25                   | 3.54                    | 71                              |                            |  |
| 100                              | 0.25                   | 5.00                    | 50                              |                            |  |
| 200                              | 0.25                   | 7.07                    | 35                              |                            |  |
| 500                              | 0.25                   | 11.2                    | 22                              |                            |  |
| 1K                               | 0.25                   | 15.8                    | 16                              |                            |  |
| 2K                               | 0.25                   | 22.4                    | 11                              | . 100                      |  |
| 5K                               | 0.25                   | 35.4                    | 7                               | ± 100                      |  |
| 10K                              | 0.25                   | 50.0                    | 5                               |                            |  |
| 20K                              | 0.25                   | 70.7                    | 3.5                             |                            |  |
| 50K                              | 0.25                   | 112                     | 2.2                             |                            |  |
| 100K                             | 0.25                   | 158                     | 1.6                             |                            |  |
| 200K                             | 0.20                   | 200                     | 1.0                             |                            |  |
| 500K                             | 0.08                   | 200                     | 0.4                             |                            |  |
| 1M                               | 0.04                   | 200                     | 0.2                             |                            |  |

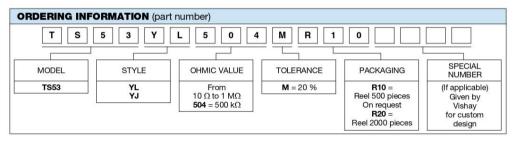
Revision: 13-Aug-13 Document Number: 51008

For technical questions, contact: sferpottrimmers@vishay.com, see also Application Note: www.vishay.com/doc?51001 and www.vishay.com/doc?52029 THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <a href="https://www.vishay.com/doc?91000">www.vishay.com/doc?91000</a>



www.vishay.com


Vishay Sfernice


# MARKING

Vishay trademark, ohmic value, manufacturing date

The ohmic value is indicated by a 3 figure code, the first two are significant figures, the third one is the multiplier. Example:  $100 = 10 \Omega$ 

value is indicated  $100 = 10 \ \Omega$   $101 = 100 \ \Omega$   $102 = 1000 \ \Omega$   $503 = 50 \ 000 \ \Omega$ 

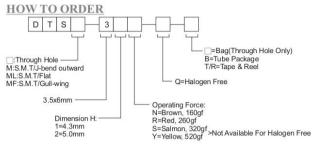






Revision: 13-Aug-13 Document Number: 51008

For technical questions, contact: sferpottrimmers@vishay.com, see also Application Note: www.vishay.com/doc?51001 and www.vishay.com/doc?52029 THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <a href="https://www.vishay.com/doc?91000">www.vishay.com/doc?91000</a>


#### 5.- Pulsador de reset.

### DTS-3, DTSM(L)-3 **SERIES**

#### 3.5x6 Through Hole & SMT Type **Tactile Switch**







#### **SPECIFICATION**

#### MECHANICAL

Operation Force: 520+130gf Yellow(Y)

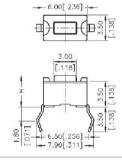
320±80gf Salmon(S) 260±50gf Red(R) 160±50gf Brown(N) Stroke: 0.25+0.2/-0.1mm

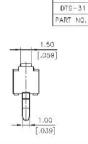
#### ENVIRONMENTAL

Operation Temperature Range: -25°C to +70°C Storage Temperature Range: -30°C to +80°C

#### **ELECTRICAL**

Electrical Life: 50,000 cycles for 160gf 30,000 cycles for 260gf, 320gf, 520gf Rating: 50mA, 12VDC


#### PACKAGE

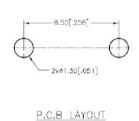

Tube: 135 pcs/tube DTSM(L)-31: 1800 pcs/reel DTSM(L)-32: 1600 pcs/reel Bulk: 1000 pcs/bag

#### **CIRCUIT**

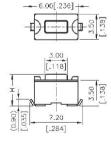


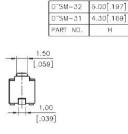
#### DTS-3

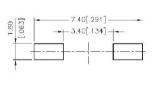





DTS-32


5.00[.197]


4.30[.169]


Н



#### DTSM-3



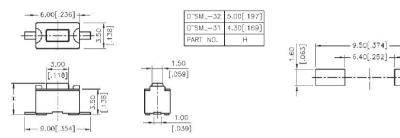




P.C.B LAYOUT

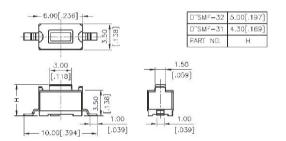
87

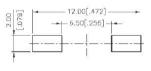



# TACT SWITCH

# DTS-3,DTSM(L)-3 SERIES

# 3.5x6 Through Hole & SMT Type Tactile Switch



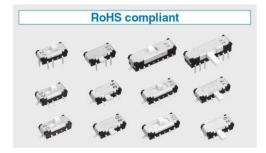






P.C.B LAYCUT

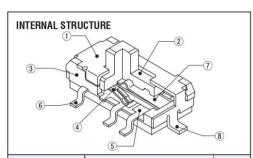






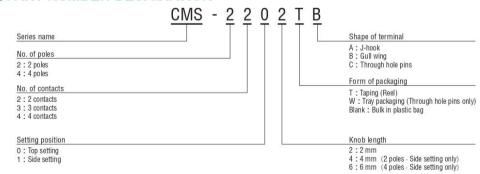

P.C.B LAYCUT

#### 6.- Interruptor.


# **SLIDE SWITCHES (SMD)**






#### **FEATURES**

- RoHS compliant
- Excellent contact stability by twin Gold-plated contact mechanism
- Load life of 30,000 cycles
- Compatible with automatic mounting
- Withstands high soldering temperature



|     | Part name       | Material                  | Flammability |
|-----|-----------------|---------------------------|--------------|
| 1   | Cover           | Steel (SPCC), Tin-plated  | _            |
| 2   | Slider          | Dollows - Loo             | 111.041.0    |
| 3   | Housing         | Polyamide                 | UL94V-0      |
| 4   | Slider contact  |                           |              |
| (5) | Fixed contact   | Copper alloy, Gold-plated |              |
| 6   | Terminal pin    |                           |              |
| 7   | Click spring    | Copper alloy              |              |
| 8   | Ground terminal | Steel (SPCC), Tin-plated  |              |

#### **PART NUMBER DESIGNATION**



**% Please refer to the LIST OF PART NUMBERS when placing orders.** 



#### **■ LIST OF PART NUMBERS**

#### • 2 poles

| Setting  |                        | Knob   |                   |            | No. of contacts |            | Pieces in     |
|----------|------------------------|--------|-------------------|------------|-----------------|------------|---------------|
| position | Shape of terminals     | length | Form of packaging | 2          | 3               | 4          | package       |
|          | • / 11 12              |        | Taping            | CMS-2202TA | CMS-2302TA      | CMS-2402TA | 900 pcs./reel |
|          | A (J-hook)             |        | Plastic bag       | CMS-2202A  | CMS-2302A       | CMS-2402A  | 50 pcs./pack  |
| Тор      | D (CIIi)               |        | Taping            | CMS-2202TB | CMS-2302TB      | CMS-2402TB | 900 pcs./reel |
| setting  | B (Gull wing)          | 2 mm   | Plastic bag       | CMS-2202B  | CMS-2302B       | CMS-2402B  | 50 pcs./pack  |
|          | O (Thereach halo size) |        | Tray packaging    | CMS-2202WC | CMS-2302WC      | CMS-2402WC | 50 pcs./tray  |
|          | C (Through hole pins)  |        | Plastic bag       | CMS-2202C  | CMS-2302C       | CMS-2402C  | 50 pcs./pack  |
|          |                        | 2 mm   | Taping            | CMS-2212TA | CMS-2312TA      | CMS-2412TA | 900 pcs./reel |
|          | * / 11 1 1             |        | Plastic bag       | CMS-2212A  | CMS-2312A       | CMS-2412A  | 50 pcs./pack  |
|          | A (J-hook)             | 4 mm   | Taping            | CMS-2214TA | CMS-2314TA      | CMS-2414TA | 900 pcs./reel |
|          |                        |        | Plastic bag       | CMS-2214A  | CMS-2314A       | CMS-2414A  | 50 pcs./pack  |
|          |                        | 0      | Taping            | CMS-2212TB | CMS-2312TB      | CMS-2412TB | 900 pcs./reel |
| Side     | - /0 II :- \           | 2 mm   | Plastic bag       | CMS-2212B  | CMS-2312B       | CMS-2412B  | 50 pcs./pack  |
| setting  | B (Gull wing)          | 4      | Taping            | CMS-2214TB | CMS-2314TB      | CMS-2414TB | 900 pcs./reel |
|          |                        | 4 mm   | Plastic bag       | CMS-2214B  | CMS-2314B       | CMS-2414B  | 50 pcs./pack  |
|          |                        | 0      | Tray packaging    | CMS-2212WC | CMS-2312WC      | CMS-2412WC | 50 pcs./tray  |
|          | Thursday hala aire     | 2 mm   | Plastic bag       | CMS-2212C  | CMS-2312C       | CMS-2412C  | 50 pcs./pack  |
|          | Through hole pins      | 4      | Tray packaging    | CMS-2214WC | CMS-2314WC      | CMS-2414WC | 50 pcs./tray  |
|          |                        | 4 mm   | Plastic bag       | CMS-2214C  | CMS-2314C       | CMS-2414C  | 50 pcs./pack  |

#### 4 poles

| Setting         | Shape of terminals     | Knob   | Form of packaging | No. of contacts | Pieces in     |  |
|-----------------|------------------------|--------|-------------------|-----------------|---------------|--|
| position        | Shape of terminals     | length | Form of packaging | 2               | package       |  |
| Top<br>setting  | A / I b = - I \        |        | Taping            | CMS-4202TA      | 500 pcs./reel |  |
|                 | A (J-hook)             |        | Plastic bag       | CMS-4202A       | 25 pcs./pack  |  |
|                 | D (Cull using)         |        | Taping            | CMS-4202TB      | 500 pcs./reel |  |
|                 | B (Gull wing)          | 2 mm   | Plastic bag       | CMS-4202B       | 25 pcs./pack  |  |
|                 | O (Thursuph halo sine) |        | Tray packaging    | CMS-4202WC      | 50 pcs./tray  |  |
|                 | C (Through hole pins)  |        | Plastic bag       | CMS-4202C       | 25 pcs./pack  |  |
|                 | A / L1 - L3            |        | Taping            | CMS-4216TA      | 500 pcs./reel |  |
|                 | A (J-hook)             |        | Plastic bag       | CMS-4216A       | 25 pcs./pack  |  |
| Side<br>setting | D (Cull using)         | 0      | Taping            | CMS-4216TB      | 500 pcs./reel |  |
|                 | B (Gull wing)          | 6 mm   | Plastic bag       | CMS-4216B       | 25 pcs./pack  |  |
|                 | O (Thorough halo sing) |        | Tray packaging    | CMS-4216WC      | 50 pcs./tray  |  |
|                 | C (Through hole pins)  |        | Plastic bag       | CMS-4216C       | 25 pcs./pack  |  |

Werify the above part numbers when placing orders.
Taping and tray version can be supplied only in reel or tray unit.



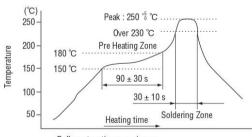
#### **■ STANDARD SPECIFICATIONS**

| Operating temp. range | 40                                                                                                                         | ~ 85 °C                                                                                               |
|-----------------------|----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| Storage temp. range   | _ 4u                                                                                                                       | ~ 65 C                                                                                                |
| Sealing               | Non- W                                                                                                                     | /ashable                                                                                              |
| Net weight            | 0.40 g (CMS-2202)<br>0.45 g (CMS-2302)<br>0.50 g (CMS-2402)<br>0.42 g (CMS-2212)<br>0.48 g (CMS-2312)<br>0.54 g (CMS-2412) | 0.42 g (CMS-2214)<br>0.48 g (CMS-2314)<br>0.54 g (CMS-2414)<br>0.80 g (CMS-4202)<br>0.84 g (CMS-4216) |

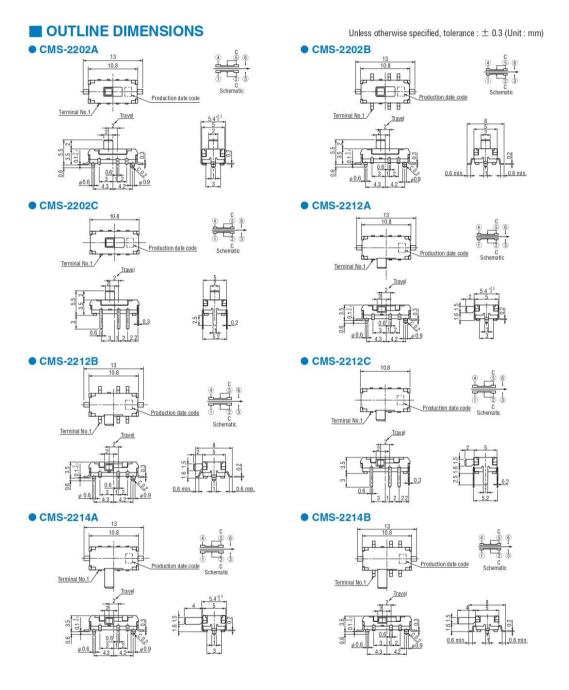
#### **■ ELECTRICAL CHARACTERISTICS**

| Contact rating<br>Non-switching<br>Switching<br>Minimum | DC50 V 100 mA DC12 V 100 mA DC20 mV 1 $\mu$ A |
|---------------------------------------------------------|-----------------------------------------------|
| Contact timing                                          | Non-shorting                                  |
| Contact resistance                                      | 70 m Ω maximum                                |
| Insulation resistance                                   | 100 M Ω minimum (DC500 V)                     |
| Dielectric strength                                     | AC500 V, 60 s                                 |

#### **■ MECHANICAL CHARACTERISTICS**

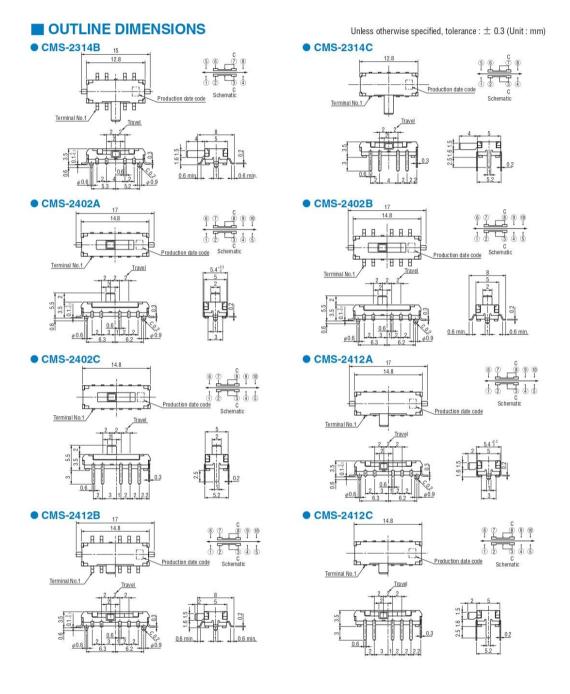

| No. of positions  | 2, 3, 4                                                                   |  |  |  |
|-------------------|---------------------------------------------------------------------------|--|--|--|
| Stroke            | 2 mm                                                                      |  |  |  |
| Operating force   | 1.5 $\pm$ 1 N {0.15 $\pm$ 0.1 kgf}                                        |  |  |  |
| Stop strength     | 30N(3.06 kgf) 15 s (Top setting)<br>10N(1.02 kgf) 15 s (Side setting)     |  |  |  |
| Solderability     | 245 ± 3 °C 2 ~ 3 s                                                        |  |  |  |
|                   | Reflow : 255 °C (Peak temperature)<br>(Please refer to the profile below) |  |  |  |
| Soldering heat    | Flow: 260 $\pm$ 3 °C, 5~6 s                                               |  |  |  |
|                   | Manual soldering : 350 $\pm$ 10 °C, 3 ~ 4 s                               |  |  |  |
| Shear (Adhesion)  | 50 N {5.09 kgf} 10 s                                                      |  |  |  |
| Substrate bending | Width 90 mm, bend 3 mm, 5 s, 1 time                                       |  |  |  |
| Pull-off strength | 50 N (5.09 kgf) 10 s                                                      |  |  |  |

#### { }: Reference only


#### **■ ENVIRONMENTAL CHARACTERISTICS**

| Vibration           | (Amplitude) 1.5 mmor<br>(Acceleration) 98 m/s²,<br>10-500-10 Hz, 3 directions for 10 cycles each |
|---------------------|--------------------------------------------------------------------------------------------------|
| Shock               | 490 m/s², 11 ms, sinusoidal wave half cycle,<br>6 directions for 3 times each                    |
| Load life           | Continuous load 30000 cycles,<br>DC12 ± 0.5 V, 100 ± 10 mA                                       |
| Humidity            | 40 °C, Relative humidity 90 ~ 95 %,<br>240 h, No load                                            |
| High temp. exposure | 85 °C, 96 h, No load                                                                             |
| Low temp. exposure  | — 40 °C, 96 h, No load                                                                           |
| Thermal shock       | - 40 (0.5 h) ~ 85 °C (0.5 h), 5 cycles                                                           |

#### (Reflow profile for soldering heat evaluation)




Reflow: two times maximum

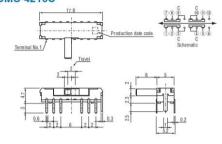


**OUTLINE DIMENSIONS** 

# Unless otherwise specified, tolerance : $\pm$ 0.3 (Unit : mm) ● CMS-2214C CMS-2302A Production date code Terminal No.1 ● CMS-2302B ● CMS-2302C Production date code Sch Terminal No.1 ● CMS-2312A ● CMS-2312B 88488 Production date code Terminal No.1 Terminal No.1 ● CMS-2312C ● CMS-2314A Production date code Terminal No.1 Terminal No.1

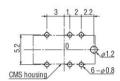


# ■ CMS-2414A CMS-2414B Terminal Na. CMS-2414B Terminal Na. CMS-2414C CMS-4202B CMS-4202B CMS-4206A CMS-4216A CMS-4216A CMS-4216A CMS-4216A

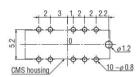

(Unit: mm)

# CMS SLIDE SWITCHES (SMD)

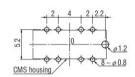
### **OUTLINE DIMENSIONS**


Unless otherwise specified, tolerance : ± 0.3 (Unit : mm)

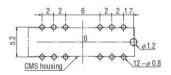
● CMS-4216C




## ■ SIZE OF P.C.B. PROCESSING


● CMS-22 □ □ C

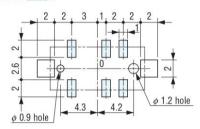



● CMS-24 □ □ C

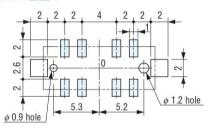


● CMS-23 □ □ C

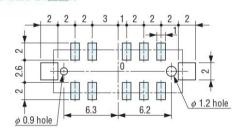



● CMS-42□□C

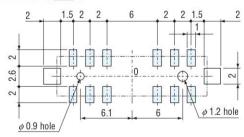



# CMS SLIDE SWITCHES (SMD)

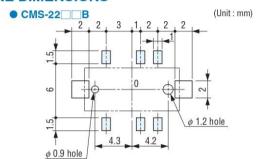
### ■ RECOMMENDED P.C.B. PAD OUTLINE DIMENSIONS

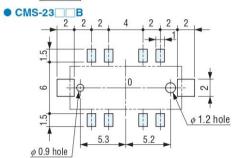

### ● CMS-22 □ □ A



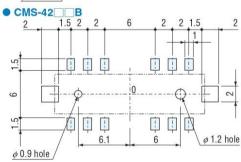

#### ● CMS-23 A




### ● CMS-24□□A




### ● CMS-42 □ □ A




Note) The zero point is the center of mounting.





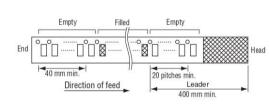


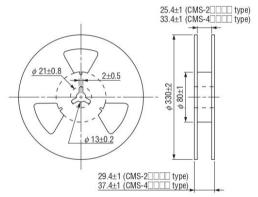




#### PACKAGING SPECIFICATIONS

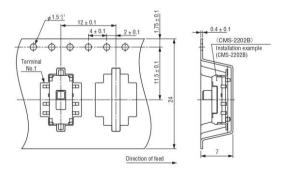
- <Taping packaging specifications>


   CMS-2 □ □ □ type is packaged in 900 pcs. per reel. Orders will be accepted for units of 900 pcs., i.e., 900, 1800, 2700 pcs., etc. CMS-4 type is packaged in packaged in 500 pcs. per reel. Orders will be accepted for units of 500 pcs.
- Taping version is boxed with one reel.

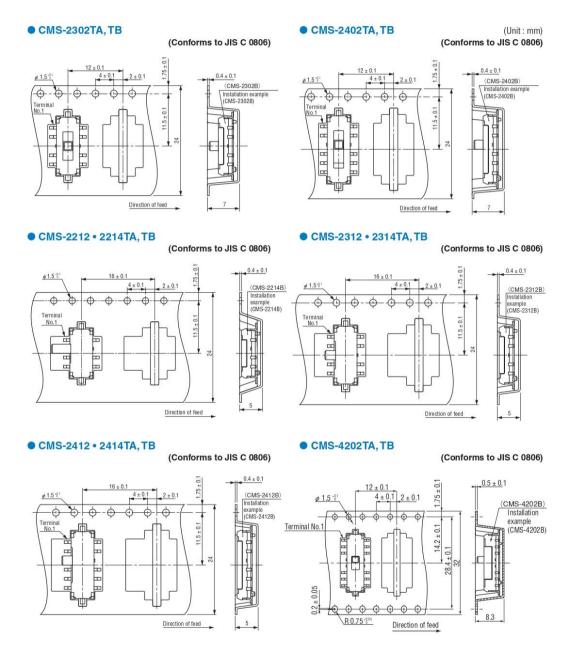

Maximum number of consecutive missing pieces=2 Leader length and reel dimension are shown in the diagrams below:

### Embossed tape dimensions

### Reel dimensions


(Unit: mm) (Conforms to JIS C 0806) (In accordance with EIAJ ET-7200A)

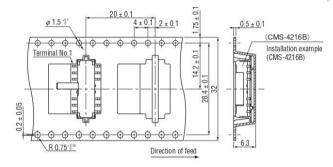





### CMS-2202TA, TB

(Unit: mm) (Conforms to JIS C 0806)




## CMS SLIDE SWITCHES (SMD)





#### • CMS-4216TA, TB

(Unit:mm)
(Conforms to JIS C 0806)



#### <Tray packaging specifications>

- Tray version is packaged in 50 pcs. per tray. Orders will be accepted for units of 50 pcs., i. e., 50, 100, 150 pcs. etc.
- Tray version is boxed with 10 trays.

#### <Bulk pack specifications>

- The smallest unit of bulk pack in a plastic bag is 10 pcs. per pack.
  - Orders will be accepted for unit of minimum 10 pcs., i.e., 10, 20, 30 pcs., etc.
- Boxing of bulk in plastic bag is performed with 50 pcs. (standard 100 pcs. / CMS-2 \_\_\_\_, 50 pcs. / CMS-4 \_\_\_\_) per box.

#### 7.-74LS390



CD74HC390, CD54HCT390, CD74HCT390

Data sheet acquired from Harris Semiconductor SCHS185C

High-Speed CMOS Logic Dual Decade Ripple Counter

#### September 1997 - Revised October 2003

#### Features

- · Two BCD Decade or Bi-Quinary Counters
- One Package Can Be Configured to Divide-by-2, 4, 5,10, 20, 25, 50 or 100
- Two Master Reset Inputs to Clear Each Decade Counter Individually
- Fanout (Over Temperature Range)
- Bus Driver Outputs ............ 15 LSTTL Loads
- Wide Operating Temperature Range . . . -55°C to 125°C
- · Balanced Propagation Delay and Transition Times
- Significant Power Reduction Compared to LSTTL Logic ICs
- · HC Types
  - 2V to 6V Operation
  - High Noise Immunity: N<sub>IL</sub> = 30%, N<sub>IH</sub> = 30% of V<sub>CC</sub> at V<sub>CC</sub> = 5V
- HCT Types
  - 4.5V to 5.5V Operation
- Direct LSTTL Input Logic Compatibility, V<sub>IL</sub>= 0.8V (Max), V<sub>IH</sub> = 2V (Min)
- CMOS Input Compatibility, II ≤ 1µA at VOL, VOH

CD54HCT390

#### Description

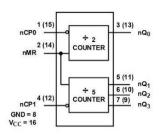
The CD74HC390 and 'HCT390 dual 4-bit decade ripple counters are high-speed silicon-gate CMOS devices and are pin compatible with low-power Schottky TTL (LSTTL). These devices are divided into four separately clocked sections. The counters have two divide-by-2 sections and two divide-by-5 sections. These sections are normally used in a BCD decade or bi-quinary configuration, since they share a common master reset (nMR). If the two master reset inputs (1MR and 2MR) are used to simultaneously clear all 8 bits of the counter, a number of counting configurations are possible within one package. The separate clock inputs (nCP0 and nCP1) of each section allow ripple counter or frequency division applications of divide-by-2, 4. 5, 10, 20, 25, 50 or 100. Each section is triggered by the High-to-Low transition of the input pulses (nCP0 and nCP1).

For BCD decade operation, the nQ0 output is connected to the n $\overline{CP1}$  input of the divide-by-5 section. For bi-quinary decade operation, the nO3 output is connected to the n $\overline{CP0}$  input and nQ0 becomes the decade output.

The master reset inputs (1MR and 2MR) are active-High asynchronous inputs to each decade counter which operates on the portion of the counter identified by the "1" and "2" prefixes in the pin configuration. A High level on the nMR input overrides the clock and sets the four outputs Low.

#### Ordering Information

| PART NUMBER   | TEMP. RANGE<br>(°C) | PACKAGE      |
|---------------|---------------------|--------------|
| CD54HCT390F3A | -55 to 125          | 16 Ld CERDIP |
| CD74HC390E    | -55 to 125          | 16 Ld PDIP   |
| CD74HC390M    | -55 to 125          | 16 Ld SOIC   |
| CD74HC390MT   | -55 to 125          | 16 Ld SOIC   |
| CD74HC390M96  | -55 to 125          | 16 Ld SOIC   |
| CD74HCT390E   | -55 to 125          | 16 Ld PDIP   |
| CD74HCT390M   | -55 to 125          | 16 Ld SOIC   |
| CD74HCT390MT  | -55 to 125          | 16 Ld SOIC   |
| CD74HCT390M96 | -55 to 125          | 16 Ld SOIC   |


NOTE: When ordering, use the entire part number. The suffix 96 denotes tape and reel. The suffix T denotes a small-quantity reel of 250.

#### **Pinout**

(CERDIP) CD74HC390, CD74HCT390 (PDIP, SOIC) 1CP0 1 16 V<sub>CC</sub> 15 2CP0 1MR 2 1Q<sub>0</sub> 3 14 2MR 1CP1 4 13 2Q0 12 2CP1 11 2Q<sub>1</sub> 1Q<sub>1</sub> 5 1Q2 6 10 2Q<sub>2</sub> 1Q<sub>3</sub> 7 9 2Q<sub>3</sub> GND 8

CAUTION: These devices are sensitive to electrostatic discharge. Users should follow proper IC Handling Procedures. Copyright © 2003, Texas Instruments Incorporated





#### TRUTH TABLE

| INP   | UTS |            |  |
|-------|-----|------------|--|
| CP MR |     | ACTION     |  |
| 1     | L   | No Change  |  |
| Ţ     | L   | Count      |  |
| X     | Н   | All Qs Low |  |

H = High Voltage Level, L = Low Voltage Level, X = Don't Care,
↑ = Transition from Low to High Level, ↓ = Transition from High to Low.

#### BCD COUNT SEQUENCE FOR 1/2 THE 390

Н

L

Н

8

9

#### COUNT Q0 Q1 Q2 Q3 Н L Н L Н Н L Н Н Н L 6 L Н Н L

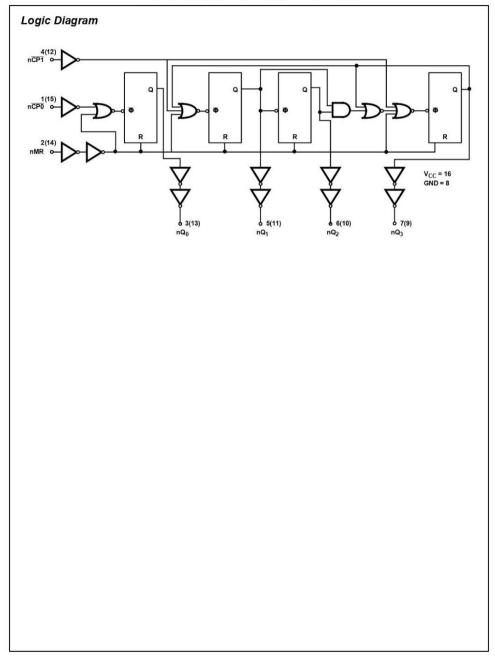
Н

L

Н

L

Н


Н

### Output nQ0 connected to n $\overline{\mbox{CP1}}$ with counter input on n $\overline{\mbox{CP0}}.$

#### B-QUINARY COUNT SEQUENCE FOR 1/2 THE 390

|       |    | OUT | PUTS |    |
|-------|----|-----|------|----|
| COUNT | Q0 | Q1  | Q2   | Q3 |
| 0     | L  | L   | L    | L  |
| 1     | L  | Н   | L    | L  |
| 2     | L  | L   | Н    | L  |
| 3     | L  | Н   | Н    | L  |
| 4     | L  | L   | L    | Н  |
| 5     | Н  | L   | L    | L  |
| 6     | Н  | Н   | Н    | L  |
| 7     | Н  | L   | Н    | L  |
| 8     | Н  | Н   | Н    | L  |
| 9     | Н  | L   | L    | Н  |

Output nQ3 connected to nCP0 with counter input on nCP1.



### **Absolute Maximum Ratings Thermal Information** DC Supply Voltage, $V_{CC}$ -0.5V to 7V DC Input Diode Current, $I_{IK}$ For $V_I < -0.5V$ or $V_I > V_{CC} + 0.5V$ . $\pm 20$ mA DC Output Diode Current, $I_{OC}$ For $V_O < -0.5V$ or $V_O > V_{CC} + 0.5V$ . $\pm 20$ mA DC Output Source or Sink Current per Output Pin, $I_O$ For $V_O > 0.5V$ or $V_O > V_{CC} + 0.5V$ . $\pm 25$ mA DC $V_{CC}$ or Ground Current, $I_{CC}$ or $I_{GND}$ . $\pm 25$ mA 0<sub>JA</sub> (°C/W) Thermal Resistance (Typical, Note 1) 67 73 . 150°C M (SOIC) Package 67 Maximum Junction Temperature 150°C Maximum Storage Temperature Range 65°C to 150°C Maximum Lead Temperature (Soldering 10s) 300°C (SOIC - Lead Tips Only) Operating Conditions Temperature Range ( $T_{\rm A}$ ) ... -55°C to 125°C Supply Voltage Range, V<sub>CC</sub> ырру voitage кange, V<sub>CC</sub> HC Types HCT Types CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

1. The package thermal impedance is calculated in accordance with JESD 51-7.

#### **DC Electrical Specifications**

|                             |                 | CONDI                              |                     | v <sub>cc</sub> |      | 25°C |      | -40°C 1         | O 85°C | -55°C T | O 125°C |       |
|-----------------------------|-----------------|------------------------------------|---------------------|-----------------|------|------|------|-----------------|--------|---------|---------|-------|
| PARAMETER                   | SYMBOL          | V <sub>I</sub> (V)                 | I <sub>O</sub> (mA) | (V)             | MIN  | TYP  | MAX  | MIN             | MAX    | MIN     | MAX     | UNITS |
| HC TYPES                    |                 |                                    |                     |                 |      |      |      |                 |        |         |         |       |
| High Level Input            | VIH             | -                                  | -                   | 2               | 1.5  | -    | - 5  | 1.5             | -      | 1.5     | -       | V     |
| Voltage                     |                 |                                    |                     | 4.5             | 3,15 | -    | -    | 3.15            | -      | 3.15    | -       | V     |
|                             |                 |                                    |                     | 6               | 4.2  | -    | -    | 4.2             | -      | 4.2     | -       | V     |
| Low Level Input             | V <sub>IL</sub> | -                                  | -                   | 2               | 1.5  | -    | 0.5  | -               | 0.5    |         | 0.5     | V     |
| Voltage                     |                 |                                    |                     | 4.5             | -    | 141  | 1.35 | -               | 1.35   | -       | 1.35    | V     |
|                             |                 |                                    |                     | 6               | 199  | - A1 | 1.8  |                 | 1.8    | -       | 1.8     | V     |
| High Level Output           | V <sub>OH</sub> | V <sub>IH</sub> or V <sub>IL</sub> | -0.02               | 2               | 1.9  |      | 20   | 1.9             | 20     | 1.9     |         | V     |
| Voltage<br>CMOS Loads       |                 |                                    | -0.02               | 4.5             | 4.4  | 187  | +:   | 4.4             | -      | 4.4     | 1941    | V     |
| CIVICO Edads                |                 |                                    | -0.02               | 6               | 5.9  | -    | ĕ    | 5.9             | -      | 5.9     | -       | V     |
| High Level Output           | 7               |                                    | -                   | 747             | -    | -    | - 2  | -               | =      | -       | (4)     | V     |
| Voltage<br>TTL Loads        |                 |                                    | -4                  | 4.5             | 3.98 | -    | 5    | 3.84            | -      | 3.7     | -       | V     |
| TTE EOGGS                   |                 |                                    | -5.2                | 6               | 5.48 | -    | 2    | 5.34            | -      | 5.2     | -       | V     |
| Low Level Output            | V <sub>OL</sub> | V <sub>IH</sub> or V <sub>IL</sub> | 0.02                | 2               | -    | -    | 0.1  | 5. <del>0</del> | 0.1    | -       | 0.1     | V     |
| Voltage<br>CMOS Loads       |                 |                                    | 0.02                | 4.5             | -    | -    | 0.1  | -               | 0.1    | 2       | 0.1     | V     |
| CIVIOS LOAUS                |                 |                                    | 0.02                | 6               | 181  | 340  | 0.1  | 78              | 0.1    | H       | 0.1     | ٧     |
| Low Level Output            | 7               |                                    | 120                 | 1550            | 101  | -    | 8    | 15              | 151    |         | (8)     | V     |
| Voltage<br>TTL Loads        |                 |                                    | 4                   | 4.5             | 2    | 120  | 0.26 | 12              | 0.33   | 2       | 0.4     | V     |
| TTE LOads                   |                 |                                    | 5.2                 | 6               |      | -    | 0.26 | 2.62            | 0.33   | -       | 0.4     | V     |
| Input Leakage<br>Current    | Ц               | V <sub>CC</sub> or<br>GND          | -                   | 6               | -    | -    | ±0.1 | -               | ±1     | -       | ±1      | μA    |
| Quiescent Device<br>Current | lcc             | V <sub>CC</sub> or<br>GND          | 0                   | 6               | -5   | -    | 8    |                 | 80     | H       | 160     | μA    |

### DC Electrical Specifications (Continued)

|                                                                      |                              | CONDI                              |                     | Vcc           |                    | 25°C |      | -40°C 1 | 0 85°C | -55°C T  | O 125°C |       |
|----------------------------------------------------------------------|------------------------------|------------------------------------|---------------------|---------------|--------------------|------|------|---------|--------|----------|---------|-------|
| PARAMETER                                                            | SYMBOL                       | V <sub>I</sub> (V)                 | I <sub>O</sub> (mA) | (V)           | MIN                | TYP  | MAX  | MIN     | MAX    | MIN      | MAX     | UNITS |
| HCT TYPES                                                            |                              |                                    |                     |               |                    |      |      | •       |        |          | •       |       |
| High Level Input<br>Voltage                                          | VIH                          | -                                  | - 3                 | 4.5 to<br>5.5 | 2                  | -    | 2    | 2       | 2      | 2        | 547     | V     |
| Low Level Input<br>Voltage                                           | V <sub>IL</sub>              | 17                                 | -                   | 4.5 to<br>5.5 | 12                 |      | 0.8  | -       | 0.8    | -        | 0.8     | ٧     |
| High Level Output<br>Voltage<br>CMOS Loads                           | V <sub>OH</sub>              | V <sub>IH</sub> or V <sub>IL</sub> | -0.02               | 4.5           | 4.4                | -    | (6)  | 4.4     | -      | 4.4      | -       | ٧     |
| High Level Output<br>Voltage<br>TTL Loads                            |                              |                                    | -4                  | 4.5           | 3.98               | 181  | =    | 3.84    |        | 3.7      |         | V     |
| Low Level Output<br>Voltage<br>CMOS Loads                            | V <sub>OL</sub>              | V <sub>IH</sub> or V <sub>IL</sub> | 0.02                | 4.5           | lo <del>s</del> ti |      | 0.1  | 18      | 0.1    | -        | 0.1     | V     |
| Low Level Output<br>Voltage<br>TTL Loads                             |                              |                                    | 4                   | 4.5           | =                  | =    | 0.26 | -       | 0.33   | ¥.       | 0.4     | V     |
| Input Leakage<br>Current                                             | Iį                           | V <sub>CC</sub> and<br>GND         | 0                   | 5.5           | -                  | -    | ±0.1 | -       | ±1     | ħ        | ±1      | μA    |
| Quiescent Device<br>Current                                          | lcc                          | V <sub>CC</sub> or<br>GND          | 0                   | 5.5           | -                  | -    | 8    | -       | 80     | -        | 160     | μA    |
| Additional Quiescent<br>Device Current Per<br>Input Pin: 1 Unit Load | Δl <sub>CC</sub><br>(Note 2) | V <sub>CC</sub><br>-2.1            |                     | 4.5 to<br>5.5 | 121                | 100  | 360  | -       | 450    | <u> </u> | 490     | μA    |

#### NOTE

2. For dual-supply systems theoretical worst case (V<sub>I</sub> = 2.4V,  $V_{CC}$  = 5.5V) specification is 1.8mA.

### **HCT Input Loading Table**

| INPUT    | UNIT LOADS |
|----------|------------|
| nCP0     | 0.45       |
| nCP1, MR | 0.6        |

NOTE: Unit Load is  $\Delta I_{CC}$  limit specified in DC Electrical Table, e.g., 360  $\mu A$  max at 25  $^{o}C$  .

### Prerequisite for Switching Specifications

|                    |                  |                     |     | 25°C |      | -40°C 1 | O 85°C | -55°C T | O 125°C |       |
|--------------------|------------------|---------------------|-----|------|------|---------|--------|---------|---------|-------|
| CHARACTERISTIC     | SYMBOL           | V <sub>CC</sub> (V) | MIN | TYP  | MAX  | MIN     | MAX    | MIN     | MAX     | UNITS |
| HC TYPES           |                  |                     |     |      |      |         |        |         |         |       |
| Maximum Clock      | f <sub>MAX</sub> | 2                   | 6   | -    | 140  | 5       | 141    | 4       | -       | MHz   |
| Frequency          |                  | 4.5                 | 30  | -    | (*)  | 24      | -      | 20      | (=)     | MHz   |
|                    |                  | 6                   | 35  | -    | 1901 | 28      | 100    | 24      | (80)    | MHz   |
| Clock Pulse Width, | t <sub>W</sub>   | 2                   | 80  | 100  | (3)  | 100     | 3.5    | 120     | 100     | ns    |
| nCP0, nCP1         | 0.35             | 4.5                 | 16  | -    | 1.50 | 20      | 1.5    | 24      | (5)     | ns    |
|                    |                  | 6                   | 14  | -    | -    | 17      | -      | 20      | -       | ns    |

|                                  | SYMBOL           |                     |     | 25°C |     | -40°C | TO 85°C | -55°C T |      |       |
|----------------------------------|------------------|---------------------|-----|------|-----|-------|---------|---------|------|-------|
| CHARACTERISTIC                   |                  | V <sub>CC</sub> (V) | MIN | TYP  | MAX | MIN   | MAX     | MIN     | MAX  | UNITS |
| Reset Removal Time               | t <sub>REM</sub> | 2                   | 70  | -    | -   | 90    | -       | 105     | 1-01 | ns    |
|                                  |                  | 4.5                 | 14  |      | (5) | 18    | 1-1     | 21      |      | ns    |
|                                  |                  | 6                   | 12  | -    | -   | 15    | S=S     | 18      | (8)  | ns    |
| Reset Pulse Width                | t <sub>W</sub>   | 2                   | 50  | 1-   | 170 | 65    | 150     | 75      | -    | ns    |
|                                  |                  | 4.5                 | 10  | -    | 150 | 13    | -       | 15      | -    | ns    |
|                                  |                  | 6                   | 9   | - 6  | 151 | 11    | -       | 13      | 181  | ns    |
| HCT TYPES                        | -10              |                     |     |      |     |       |         |         |      |       |
| Maximum Clock<br>Frequency       | fMAX             | 4.5                 | 27  | -    | 121 | 22    | 121     | 18      | -    | MHz   |
| Clock Pulse Width,<br>nCP0, nCP1 | t <sub>W</sub>   | 4.5                 | 19  |      | 576 | 24    | -       | 29      | 2000 | ns    |
|                                  | +                |                     | _   |      |     |       |         |         | _    |       |

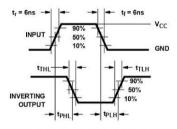
4.5

13

### Switching Specifications Input $t_{\rm f},\,t_{\rm f}$ = 6ns

Reset Pulse Width

|                                     |                    | TEST                  | v <sub>cc</sub> |        | 25°C  |     | -40°C | TO 85°C | -55°C T | O 125°C |       |
|-------------------------------------|--------------------|-----------------------|-----------------|--------|-------|-----|-------|---------|---------|---------|-------|
| PARAMETER                           | SYMBOL             | CONDITIONS            | (V)             | MIN    | TYP   | MAX | MIN   | MAX     | MIN     | MAX     | UNITS |
| HC TYPES                            |                    |                       |                 |        |       |     |       | •       |         | •       |       |
| Propagation Delay (Figure 1)        | t <sub>PLH</sub> , | C <sub>L</sub> = 50pF | 2               |        | 525   | 175 | 12    | 220     | 12      | 265     | ns    |
| nCP0 to nQ0                         | t <sub>PHL</sub>   |                       | 4.5             | 121    | - 121 | 35  | 12    | 44      | 12      | 53      | ns    |
|                                     |                    | C <sub>L</sub> =15pF  | 5               | 220    | 14    | 120 | 1)21  | - 2     | -       | 2       | ns    |
|                                     |                    | C <sub>L</sub> = 50pF | 6               | 74     | -     | 30  | -     | 37      | -       | 45      | ns    |
| nCP1 to nQ <sub>1</sub>             | t <sub>PLH</sub> , | C <sub>L</sub> = 50pF | 2               | -      | -     | 185 | -     | 230     | 4       | 280     | ns    |
|                                     | t <sub>PHL</sub>   |                       | 4.5             | -      | 14    | 37  | -     | 46      | -       | 56      | ns    |
|                                     |                    | [                     | 6               | 28     | -     | 31  | -     | 39      | -       | 48      | ns    |
| nCP1 to nQ <sub>2</sub>             | t <sub>PLH</sub> , | C <sub>L</sub> = 50pF | 2               | 1000   | -     | 245 | 05.   | 305     | -       | 370     | ns    |
|                                     | t <sub>PHL</sub>   |                       | 4.5             | 5.531  | 153   | 49  | 0.5   | 61      | 151     | 74      | ns    |
|                                     |                    |                       | 6               | 35-231 | 953   | 42  | 15    | 52      | 1174    | 63      | ns    |
| nCP1 to nQ <sub>3</sub>             | t <sub>PLH</sub> , | C <sub>L</sub> = 50pF | 2               | 15.    | -     | 180 | of.   | 225     | eBi     | 270     | ns    |
|                                     | t <sub>PHL</sub>   |                       | 4.5             | 15.    | -     | 36  | -     | 45      |         | 54      | ns    |
|                                     |                    |                       | 5               | 100    | 15    | -   | 15    | -       |         | 8       | ns    |
|                                     |                    |                       | 6               | 1-1    | -     | 31  | -     | 38      | 15      | 46      | ns    |
| nCP0 to nQ3                         | t <sub>PLH</sub> , | C <sub>L</sub> = 50pF | 2               | 040    | 1-1   | 365 | -     | 455     | -       | 550     | ns    |
| (nQ <sub>0</sub> connected to nCP1) | t <sub>PHL</sub>   |                       | 4.5             | 380    | (4)   | 73  | 3140  | 91      | -       | 110     | ns    |
|                                     |                    |                       | 6               |        | 3-8   | 62  | -     | 77      |         | 94      | ns    |
| MR to Q <sub>n</sub>                | t <sub>PLH</sub> , | C <sub>L</sub> = 50pF | 2               | 250    | 270   | 190 | 115   | 240     | 10      | 285     | ns    |
|                                     | t <sub>PHL</sub>   |                       | 4.5             | X-F    | 101   | 38  | na.   | 48      | 100     | 57      | ns    |
|                                     |                    | C <sub>L</sub> =15pF  | 5               | 101    | 16    | (3) | 1.5   | -       | -       | -       | ns    |
|                                     |                    | C <sub>L</sub> = 50pF | 6               | 0.78   | 1077  | 32  | -     | 41      | -       | 48      | ns    |


| Cwitching | Specifications | Input t t - Gnc | (Continued) |
|-----------|----------------|-----------------|-------------|
|           |                |                 |             |

|                                                    |                                       | TEST                  | Vcc |       | 25°C |     | -40°C | O 85°C | -55°C T | O 125°C |       |
|----------------------------------------------------|---------------------------------------|-----------------------|-----|-------|------|-----|-------|--------|---------|---------|-------|
| PARAMETER                                          | SYMBOL                                | CONDITIONS            | (V) | MIN   | TYP  | MAX | MIN   | MAX    | MIN     | MAX     | UNITS |
| Output Transition Time                             | t <sub>TLH</sub> , t <sub>THL</sub>   | C <sub>L</sub> = 50pF | 2   | 851(  | -    | 75  | (e)   | 95     | 1.5     | 110     | ns    |
| (Figure 1)                                         |                                       |                       | 4.5 | 351   | (5)  | 15  | LIE.  | 19     | 15      | 22      | ns    |
|                                                    |                                       |                       | 6   | 251   | 77.5 | 13  | 115   | 16     | 1.51    | 19      | ns    |
| Input Capacitance                                  | CIN                                   | C <sub>L</sub> = 50pF | -   | 251   | 9=4  | 10  | (16)  | 10     | West.   | 10      | pF    |
| Power Dissipation Capacitance (Notes 3, 4)         | C <sub>PD</sub>                       | C <sub>L</sub> =15pF  | 5   | -     | 28   | 120 | (4    | -      | -2      | Ħ       | pF    |
| HCT TYPES                                          |                                       |                       |     |       |      |     |       |        |         |         | 0     |
| Propagation Delay (Figure 1)                       | t <sub>PLH,</sub>                     | C <sub>L</sub> = 50pF | 4.5 | -     | -    | 40  | -     | 50     | -       | 60      | ns    |
| nCP0 to nQ0                                        | t <sub>PHL</sub>                      | C <sub>L</sub> =15pF  | 5   | 1.5   | 17   | (=) | (H)   | -      | -       | *       | ns    |
| nCP1 to nQ <sub>1</sub>                            | t <sub>PLH,</sub><br>t <sub>PHL</sub> | C <sub>L</sub> = 50pF | 4.5 | 301   | 100  | 43  | ı     | 51     | 15      | 65      | ns    |
| nCP1 to nQ <sub>2</sub>                            | t <sub>PLH,</sub><br>t <sub>PHL</sub> | C <sub>L</sub> = 50pF | 4.5 | (12)  | 340  | 55  | 100   | 69     | -2      | 83      | ns    |
| nCP1 to nQ <sub>3</sub>                            | t <sub>PLH,</sub><br>t <sub>PHL</sub> | C <sub>L</sub> = 50pF | 4.5 | (170) | -    | 42  | -     | 53     | 1-      | 63      | ns    |
|                                                    |                                       | C <sub>L</sub> =15pF  | 5   | -     | 18   | -   | 19    | -      | -       | -       | ns    |
| nCP0 to nQ2<br>(nQ <sub>0</sub> connected to nCP1) | t <sub>PLH,</sub><br>t <sub>PHL</sub> | C <sub>L</sub> = 50pF | 4.5 | -     | -    | 84  |       | 105    | -       | 126     | ns    |
| MR to Q <sub>n</sub>                               | t <sub>PLH</sub> ,                    | C <sub>L</sub> = 50pF | 4.5 | -     | -    | 42  | la .  | 53     | -       | 63      | ns    |
|                                                    | t <sub>PHL</sub>                      | C <sub>L</sub> =15pF  | 5   | 1/21  | 18   | 121 | 15    | 2      | 2       | 9       | ns    |
| Output Transition                                  | t <sub>TLH</sub> , t <sub>THL</sub>   | C <sub>L</sub> = 50pF | 4.5 | -     | 120  | 15  | 12    | 19     | 12      | 22      | ns    |
| Input Capacitance                                  | C <sub>IN</sub>                       | C <sub>L</sub> =15pF  | 12  | -     | -    | 10  | ÷     | 10     | _       | 10      | pF    |
| Power Dissipation Capacitance<br>(Notes 3, 4)      | C <sub>PD</sub>                       | C <sub>L</sub> =15pF  | 5   | -     | 32   | -   | -     | -      | -       | ¥       | pF    |

#### NOTES:

- 3.  $C_{\mbox{\scriptsize PD}}$  is used to determine the dynamic power consumption, per multiplexer.
- 4.  $P_D = V_{CC}^2 f_i (C_{PD} + C_L)$  where  $f_i$  = Input Frequency,  $C_L$  = Output Load Capacitance,  $V_{CC}$  = Supply Voltage.

### Test Circuits and Waveforms



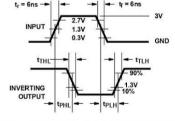
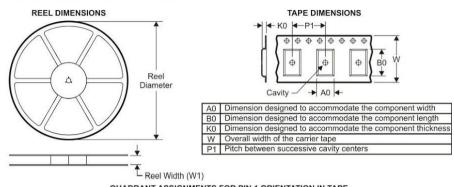
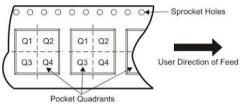



FIGURE 1. HC AND HCU TRANSITION TIMES AND PROPAGATION DELAY TIMES, COMBINATION LOGIC


FIGURE 2. HCT TRANSITION TIMES AND PROPAGATION DELAY TIMES, COMBINATION LOGIC




### PACKAGE MATERIALS INFORMATION

19-Mar-2008

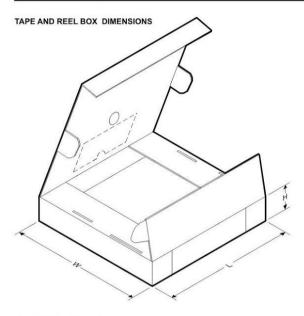
#### TAPE AND REEL INFORMATION



#### QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE



\*All dimensions are nominal


| Device        | Package<br>Type | Package<br>Drawing |    | SPQ  | Reel<br>Diameter<br>(mm) | Reel<br>Width<br>W1 (mm) | A0 (mm) | B0 (mm) | K0 (mm) | P1<br>(mm) | W<br>(mm) | Pin1<br>Quadrant |
|---------------|-----------------|--------------------|----|------|--------------------------|--------------------------|---------|---------|---------|------------|-----------|------------------|
| CD74HC390M96  | SOIC            | D                  | 16 | 2500 | 330.0                    | 16.4                     | 6.5     | 10.3    | 2.1     | 8.0        | 16.0      | Q1               |
| CD74HCT390M96 | SOIC            | D                  | 16 | 2500 | 330.0                    | 16.4                     | 6.5     | 10.3    | 2.1     | 8.0        | 16.0      | Q1               |

Pack Materials-Page 1

### TEXAS INSTRUMENTS

### PACKAGE MATERIALS INFORMATION

19-Mar-2008



#### \*All dimensions are nominal

| Device        | Package Type | Package Drawing | Pins | SPQ  | Length (mm) | Width (mm) | Height (mm) |
|---------------|--------------|-----------------|------|------|-------------|------------|-------------|
| CD74HC390M96  | SOIC         | D               | 16   | 2500 | 333.2       | 345.9      | 28.6        |
| CD74HCT390M96 | SOIC         | D               | 16   | 2500 | 333.2       | 345.9      | 28.6        |

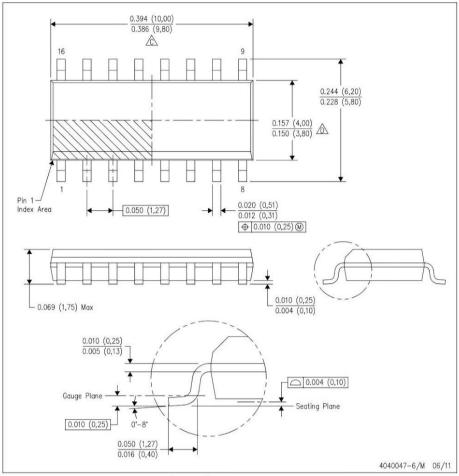
Pack Materials-Page 2

#### MECHANICAL DATA

#### N (R-PDIP-T\*\*) 16 PINS SHOWN PLASTIC DUAL-IN-LINE PACKAGE PINS \*\* 14 16 20 DIM 16 0.920 (23,37) 0.775 0.775 1.060 A MAX (19,69) (26,92) (19,69) 0.260 (6,60) 0.240 (6,10) 0.745 (18,92) 0.745 (18,92) 0.850 (21,59) 0.940 (23,88) A MIN MS-001 VARIATION 0 BB AD 8 0.070 (1,78) 0.045 (1,14) 0.045 (1,14) 0.030 (0,76) 0.325 (8,26) 0.300 (7,62) 0.020 (0,51) MIN 0.015 (0,38) 0.200 (5,08) MAX Gauge Plane Seating Plane -0.010 (0,25) NOM 0.125 (3,18) MIN 0.100 (2,54) → 0.430 (10,92) MAX ← 0.021 (0,53) 0.015 (0,38) ⊕ 0.010 (0,25) M 14/18 Pin Only 20 Pin vendor option 🛕 4040049/E 12/2002

All linear dimensions are in inches (millimeters). This drawing is subject to change without notice. NOTES:

Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).


The 20 pin end lead shoulder width is a vendor option, either half or full width.

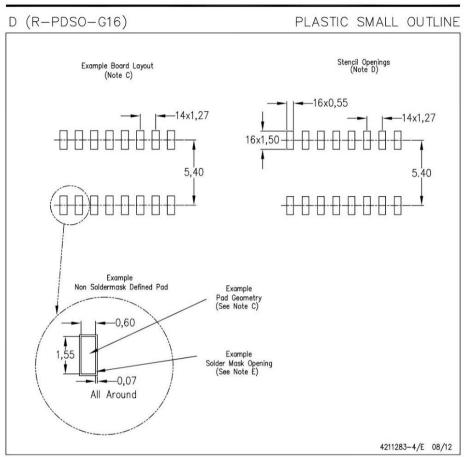


### **MECHANICAL DATA**

### D (R-PDSO-G16)

### PLASTIC SMALL OUTLINE




- All linear dimensions are in inches (millimeters). This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.

  Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.

  Reference JEDEC MS-012 variation AC. 8

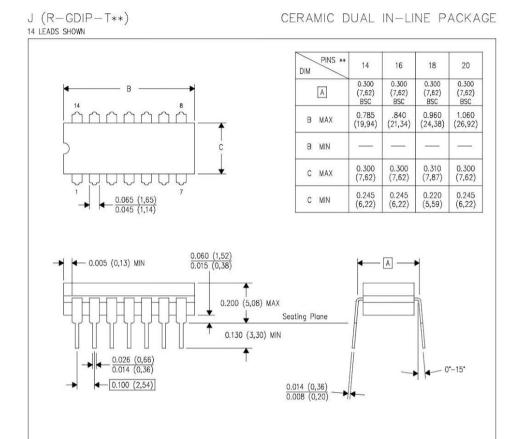


### **LAND PATTERN DATA**



- A. All linear dimensions are in millimeters.

  B. This drawing is subject to change without notice.


  C. Publication IPC-7351 is recommended for alternate designs.

  D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.

  E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.



4040083/F 03/03



- A. All linear dimensions are in inches (millimeters).
  B. This drawing is subject to change without notice.
  C. This package is hermetically sealed with a ceramic lid using glass frit.
  D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
  E. Falls within MIL STD 1835 GDIP1—T14, GDIP1—T16, GDIP1—T18 and GDIP1—T20.

#### 8.-74LS374



# CD54/74HC374, CD54/74HCT374, CD54/74HC574, CD54/74HCT574

Data sheet acquired from Harris Semiconductor SCHS183C

High-Speed CMOS Logic Octal D-Type Flip-Flop, 3-State Positive-Edge Triggered

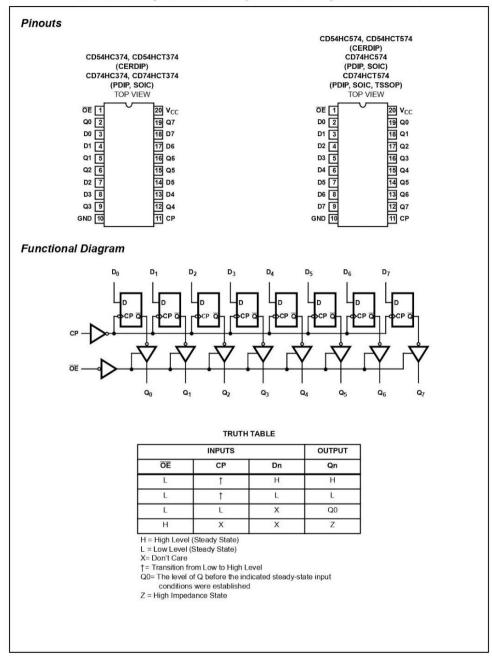
#### February 1998 - Revised May 2004

#### Features

- · Buffered Inputs
- · Common Three-State Output Enable Control
- · Three-State Outputs
- Bus Line Driving Capability
- Typical Propagation Delay (Clock to Q) = 15ns at  $V_{CC}$  = 5V,  $C_L$  = 15pF,  $T_A$  = 25°C
- · Fanout (Over Temperature Range)
- Wide Operating Temperature Range . . . -55°C to 125°C
- · Balanced Propagation Delay and Transition Times
- Significant Power Reduction Compared to LSTTL Logic ICs
- HC Types
- 2-V to 6-V Operation
- High Noise Immunity: N $_{\rm IL}$  = 30%, N $_{\rm IH}$  = 30% of V $_{\rm CC}$  at V $_{\rm CC}$  = 5V
- HCT Types
- 4.5-V to 5.5-V Operation
- Direct LSTTL Input Logic Compatibility,  $V_{IL}$ = 0.8V (Max),  $V_{IH}$  = 2V (Min)
- CMOS Input Compatibility, II  $\leq$  1 $\mu$ A at V<sub>OL</sub>, V<sub>OH</sub>

#### Description

The 'HC374, 'HCT374, 'HC574, and 'HCT574 are octal D-type flip-flops with 3-state outputs and the capability to drive 15 LSTTL loads. The eight edge-triggered flip-flops enter data into their registers on the LOW to HIGH transition of clock (CP). The output enable ( $\overline{\text{OE}}$ ) controls the 3-state outputs and is independent of the register operation. When  $\overline{\text{OE}}$  is HIGH, the outputs are in the high-impedance state. The 374 and 574 are identical in function and differ only in their pinout arrangements.


#### Ordering Information

| PART NUMBER   | TEMP. RANGE<br>(°C) | PACKAGE      |
|---------------|---------------------|--------------|
| CD54HC374F3A  | -55 to 125          | 20 Ld CERDIP |
| CD54HC574F3A  | -55 to 125          | 20 Ld CERDIP |
| CD54HCT374F3A | -55 to 125          | 20 Ld CERDIP |
| CD54HCT574F3A | -55 to 125          | 20 Ld CERDIP |
| CD74HC374E    | -55 to 125          | 20 Ld PDIP   |
| CD74HC374M    | -55 to 125          | 20 Ld SOIC   |
| CD74HC374M96  | -55 to 125          | 20 Ld SOIC   |
| CD74HC574E    | -55 to 125          | 20 Ld PDIP   |
| CD74HC574M    | -55 to 125          | 20 Ld SOIC   |
| CD74HC574M96  | -55 to 125          | 20 Ld SOIC   |
| CD74HCT374E   | -55 to 125          | 20 Ld PDIP   |
| CD74HCT374M   | -55 to 125          | 20 Ld SOIC   |
| CD74HCT374M96 | -55 to 125          | 20 Ld SOIC   |
| CD74HCT574E   | -55 to 125          | 20 Ld PDIP   |
| CD74HCT574M   | -55 to 125          | 20 Ld SOIC   |
| CD74HCT574M96 | -55 to 125          | 20 Ld SOIC   |
| CD74HCT574PWR | -55 to 125          | 20 Ld TSSOP  |

NOTE: When ordering, use the entire part number. The suffixes 96 and R denote tape and reel.

CAUTION: These devices are sensitive to electrostatic discharge. Users should follow proper IC Handling Procedures.

Copyright © 2004, Texas Instruments Incorporated



| Absolute Maximum Ratings                                                                                                                                      | Thermal Information                                                                                                                    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| DC Supply Voltage, $V_{CC}$                                                                                                                                   | Thermal Resistance (Typical, Note 1)                                                                                                   |
| Temperature Range, T <sub>A</sub> 55°C to 125°C                                                                                                               |                                                                                                                                        |
| Supply Voltage Range, VCC                                                                                                                                     |                                                                                                                                        |
| HC Types2V to 6V                                                                                                                                              |                                                                                                                                        |
| HCT Types                                                                                                                                                     |                                                                                                                                        |
| DC Input or Output Voltage, $V_{l}, V_{O}$ 0V to $V_{CC}$ Input Rise and Fall Time                                                                            |                                                                                                                                        |
| 2V                                                                                                                                                            |                                                                                                                                        |
| 4.5V                                                                                                                                                          |                                                                                                                                        |
| 6V                                                                                                                                                            |                                                                                                                                        |
| CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may ca<br>of the device at these or any other conditions above those indicated in the open | use permanent damage to the device. This is a stress only rating, and operation ational sections of this specification is not implied. |
| NOTE:                                                                                                                                                         |                                                                                                                                        |
| 1. The package thermal impedance is calculated in accordance with                                                                                             | JESD 51 7                                                                                                                              |

1. The package thermal impedance is calculated in accordance with JESD 51-7.

### DC Electrical Specifications

|                                                      |                                    | CONDI                              | 500                 | Vcc  |      | 25°C |      |      | го 85°С | -55°C TO 125°C |      |       |
|------------------------------------------------------|------------------------------------|------------------------------------|---------------------|------|------|------|------|------|---------|----------------|------|-------|
| PARAMETER                                            | SYMBOL                             | V <sub>I</sub> (V)                 | I <sub>O</sub> (mA) | (V)  | MIN  | TYP  | MAX  | MIN  | MAX     | MIN            | MAX  | UNITS |
| HC TYPES                                             |                                    |                                    |                     |      |      |      |      |      |         |                |      |       |
| High Level Input                                     | V <sub>IH</sub>                    | -                                  | -                   | 2    | 1.5  |      | -    | 1.5  | -       | 1.5            | -    | V     |
| Voltage                                              |                                    |                                    |                     | 4.5  | 3.15 | -    |      | 3.15 | -       | 3.15           | 140  | V     |
|                                                      |                                    |                                    |                     | 6    | 4.2  | -    | 8    | 4.2  |         | 4.2            | (4)  | V     |
| Low Level Input                                      | V <sub>IL</sub>                    | -                                  | - 9                 | 2    | -    | -    | 0.5  | 14   | 0.5     |                | 0.5  | ٧     |
| Voltage                                              | 11.000                             |                                    |                     | 4.5  | - 2  | 3-8  | 1.35 | 5745 | 1.35    | W              | 1.35 | ٧     |
|                                                      |                                    |                                    | 6                   | 161  | 100  | 1.8  | 28   | 1.8  | - 81    | 1.8            | V    |       |
| High Level Output V <sub>OH</sub> Voltage CMOS Loads | V <sub>IH</sub> or V <sub>IL</sub> | -0.02                              | 2                   | 1.9  | 120  | 2    | 1.9  | -    | 1.9     | 120            | V    |       |
|                                                      |                                    |                                    | -0.02               | 4.5  | 4.4  | 140  | ¥    | 4.4  | -       | 4.4            | -    | V     |
| OWICO LOUGS                                          |                                    |                                    | -0.02               | 6    | 5.9  |      | 5    | 5.9  | -       | 5.9            | (3)  | V     |
| High Level Output                                    | 7                                  |                                    | -                   | -    | -    | -    | +    |      | -       | -              | -    | V     |
| Voltage<br>TTL Loads                                 |                                    |                                    | -6                  | 4.5  | 3.98 | 7-1  | H    | 3.84 | -1      | 3.7            | -    | V     |
| TTE EOGGS                                            |                                    |                                    | -7.8                | 6    | 5.48 | -    | 2    | 5.34 | -       | 5.9 -          | -    | V     |
| Low Level Output                                     | V <sub>OL</sub>                    | V <sub>IH</sub> or V <sub>IL</sub> | 0.02                | 2    |      | 300  | 0.1  |      | 0.1     | *              | 0.1  | V     |
| Voltage<br>CMOS Loads                                |                                    |                                    | 0.02                | 4.5  | 74   | - 1  | 0.1  | 3.6  | 0.1     | -              | 0.1  | V     |
| CIVICO Edads                                         |                                    |                                    | 0.02                | 6    | :40  | 140  | 0.1  | 19   | 0.1     | 2              | 0.1  | V     |
| Low Level Output                                     | 7                                  |                                    | (#8                 | 1980 | -    | -    | - 10 | 2.60 | lie!    | -              | 19   | V     |
| Voltage<br>TTL Loads                                 |                                    |                                    | 6                   | 4.5  | 12   | 100  | 0.26 | -    | 0.33    | - 8            | 0.4  | ٧     |
| TTE EOGGS                                            |                                    |                                    | 7.8                 | 6    |      | -    | 0.26 | 1.0  | 0.33    | -              | 0.4  | V     |
| Input Leakage<br>Current                             | II                                 | V <sub>CC</sub> or<br>GND          | -                   | 6    | 18   | (8)  | ±0.1 | 0.75 | ±1      | ā              | ±1   | μA    |

### DC Electrical Specifications (Continued)

|                                                                      |                                    | CONDI                                      |                     | Vcc           |      | 25°C |      | -40°C 1 | 0 85°C | -55°C TO 125°C |      |       |
|----------------------------------------------------------------------|------------------------------------|--------------------------------------------|---------------------|---------------|------|------|------|---------|--------|----------------|------|-------|
| PARAMETER                                                            | SYMBOL                             | V <sub>I</sub> (V)                         | I <sub>O</sub> (mA) | (V)           | MIN  | TYP  | MAX  | MIN     | MAX    | MIN            | MAX  | UNITS |
| Quiescent Device<br>Current                                          | Icc                                | V <sub>CC</sub> or<br>GND                  | 0                   | 6             | 1175 | (5)  | 8    | 551     | 80     | 8              | 160  | μA    |
| Three- State Leakage<br>Current                                      | V <sub>IL</sub> or V <sub>IH</sub> | V <sub>O</sub> = V <sub>CC</sub><br>or GND | (5)                 | 6             | -    | =    | ±0.5 | 2.5     | ±5.0   | 5              | ±10  | μA    |
| HCT TYPES                                                            |                                    |                                            |                     |               |      |      |      |         |        |                |      |       |
| High Level Input<br>Voltage                                          | V <sub>IH</sub>                    |                                            | -                   | 4.5 to<br>5.5 | 2    | -    | -    | 2       | ě      | 2              | -    | V     |
| Low Level Input<br>Voltage                                           | V <sub>IL</sub>                    |                                            |                     | 4.5 to<br>5.5 | - 15 | 174  | 0.8  |         | 0.8    | - 1            | 0.8  | V     |
| High Level Output<br>Voltage<br>CMOS Loads                           | V <sub>OH</sub>                    | V <sub>IH</sub> or V <sub>IL</sub>         | -0.02               | 4.5           | 4.4  |      | 70   | 4.4     | D      | 4.4            | 350  | V     |
| High Level Output<br>Voltage<br>TTL Loads                            |                                    |                                            | -6                  | 4.5           | 3.98 | -    | Đ.   | 3.84    | 91     | 3.7            | 1/20 | V     |
| Low Level Output<br>Voltage<br>CMOS Loads                            | V <sub>OL</sub>                    | V <sub>IH</sub> or V <sub>IL</sub>         | 0.02                | 4.5           | 14   | -    | 0.1  |         | 0.1    | -              | 0.1  | V     |
| Low Level Output<br>Voltage<br>TTL Loads                             |                                    |                                            | 6                   | 4.5           | 23.  | .=:  | 0.26 |         | 0.33   |                | 0.4  | V     |
| Input Leakage<br>Current                                             | Iį                                 | V <sub>CC</sub> and<br>GND                 | 0                   | 5.5           | 028  |      | ±0.1 |         | ±1     | 9              | ±1   | μA    |
| Quiescent Device<br>Current                                          | Icc                                | V <sub>CC</sub> or<br>GND                  | 0                   | 5.5           | -    | -    | 8    | 16      | 80     | 7              | 160  | μA    |
| Three-State Leakage<br>Current                                       | V <sub>IL</sub> or V <sub>IH</sub> | V <sub>O</sub> = V <sub>CC</sub><br>or GND | -                   | 6             |      | -    | ±0.5 |         | ±5.0   | ā.             | ±10  | μA    |
| Additional Quiescent<br>Device Current Per<br>Input Pin: 1 Unit Load | ΔI <sub>CC</sub><br>(Note 2)       | V <sub>CC</sub><br>-2.1                    | =                   | 4.5 to<br>5.5 | -    | 100  | 360  | -       | 450    | -              | 490  | μA    |

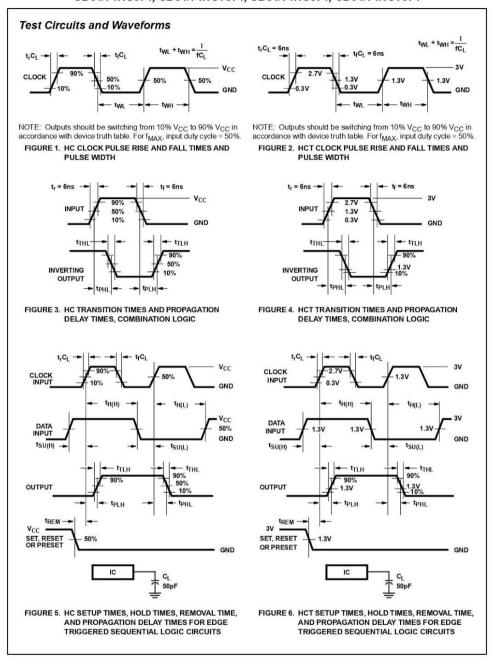
#### NOTE

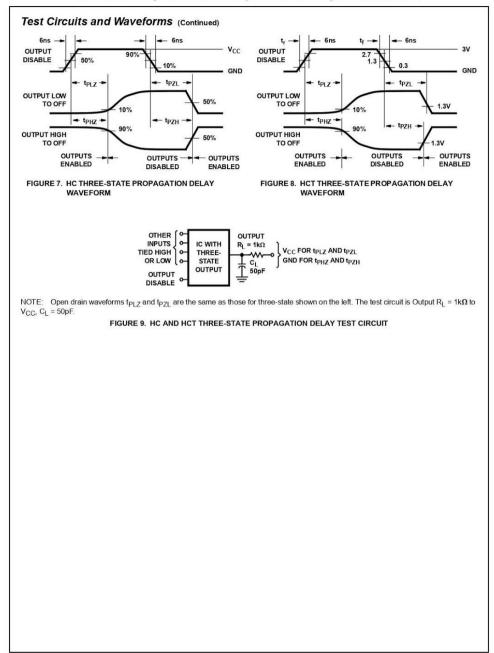
2. For dual-supply systems, theoretical worst case ( $V_1 = 2.4V$ ,  $V_{CC} = 5.5V$ ) specification is 1.8mA.

### **HCT Input Loading Table**

|         | UNIT I | OADS   |
|---------|--------|--------|
| INPUT   | НСТ374 | HCT574 |
| D0 - D7 | 0.3    | 0.4    |
| CP      | 0.9    | 0.75   |
| ŌĒ      | 1.3    | 0.6    |

NOTE: Unit Load is  $\Delta l_{CC}$  limit specific in DC Electrical Specifications Table, e.g.,  $360\mu A$  max. at  $25^{\rm o}C$ .


|                                      |                       |                     | П        | :                                      | 25°C  |       |      | -40  | C TO 8 | °C    | -55°        | C TO 12 | 25°C        |       |
|--------------------------------------|-----------------------|---------------------|----------|----------------------------------------|-------|-------|------|------|--------|-------|-------------|---------|-------------|-------|
| PARAMETER                            | SYMBOL                | V <sub>CC</sub> (   | (V)      | MIN                                    | TYP   | MA    | x    | MIN  | TYP    | MAX   | MIN         | TYP     | MAX         | UNITS |
| HC TYPES                             |                       |                     |          |                                        |       |       |      |      |        |       |             |         |             |       |
| Maximum Clock                        | fMAX                  | 2                   |          | 6                                      | 20794 | 100   |      | 5    | e.     | 11078 | 4           | 1500    | 170         | MHz   |
| Frequency                            |                       | 4.5                 | 5        | 30                                     |       | -     |      | 25   | -      | -     | 20          | 121     | -           | MHz   |
|                                      |                       | 6                   |          | 35                                     | -     | de    | 8 6  | 29   | -      | -     | 23          | -       | -           | MHz   |
| Clock Pulse Width                    | t <sub>W</sub>        | 2                   |          | 80                                     |       | 12    |      | 100  | -      | -     | 120         | -       | -           | ns    |
|                                      |                       | 4.5                 | ,        | 16                                     | -     | -     |      | 20   | -      | -     | 24          | -       | -           | ns    |
|                                      |                       | 6                   |          | 14                                     | -2    | -     | 1    | 17   | 2      | 11620 | 20          | 127     | - 20        | ns    |
| Setup Time                           | t <sub>SU</sub>       | 2                   | $\dashv$ | 60                                     |       | -     | - 1  | 75   | -      |       | 90          | -       |             | ns    |
| Data to Clock                        |                       | 4.5                 | 5        | 12                                     | (8)   | -     | +    | 15   | -      | -     | 18          | -       | -           | ns    |
|                                      |                       | 6                   | +        | 10                                     | H     | -     | +    | 13   | -      | -     | 15          | (+)     | 190         | ns    |
| Hold Time                            | t <sub>H</sub>        | 2                   | 1        | 5                                      | -8    | -     | +    | 5    | -      | 170   | 5           |         | -           | ns    |
| Data to Clock                        |                       | 4.5                 | ,        | 5                                      | -     |       | +    | 5    | -      | -     | 5           | -       | -           | ns    |
|                                      |                       | 6                   |          | 5                                      | sē.   | -     |      | 5    |        | 19a   | 5           | -       | -           | ns    |
| HCT TYPES                            |                       | _                   | _        |                                        |       | _     |      |      |        |       |             |         | _           |       |
| Maximum Clock<br>Frequency           | f <sub>MAX</sub>      | 4.5                 | 5        | 30                                     |       | 100   |      | 25   |        | (5)   | 20          | 151     | 150         | MHz   |
| Clock Pulse Width                    | t <sub>W</sub>        | 4.5                 | 5        | 16                                     | 28    | -     |      | 20   | н      | 18    | 24          | 100     | -           | ns    |
| Setup Time<br>Data to Clock          | t <sub>SU</sub>       | 4.5                 | 5        | 12                                     | 15    | -     |      | 15   | Ħ      | 120   | 18          |         |             | ns    |
| Hold Time<br>Data to Clock           | t <sub>H</sub>        | 4.5                 | 5        | 5                                      | -     | P     |      | 5    | -      |       | 5           | -       |             | ns    |
| Switching Specifica                  | ations C <sub>L</sub> | = 50pF,             | Inpu     | t t <sub>r</sub> , t <sub>f</sub> = 6n | s     |       |      |      |        |       |             |         | •           |       |
|                                      |                       |                     |          | TEST                                   |       |       |      | 25°  | С      |       | с то<br>5°С |         | с то<br>5°с |       |
| PARAMETER                            | SY                    | MBOL                |          | NDITIONS                               | Vc    | c (V) | MIN  | TY   | MAX    | MIN   | MAX         | MIN     | MAX         | UNIT  |
| HC TYPES                             |                       |                     |          |                                        |       |       |      |      | -      |       |             |         |             |       |
| Propagation Delay<br>Clock to Output | <sup>t</sup> PLH      | i, t <sub>PHL</sub> | Cl       | _ = 50pF                               |       | 2     | -    | -    | 165    | 8     | 205         | -       | 250         | ns    |
|                                      |                       |                     |          |                                        | 4     | 1.5   |      | 7-2  | 33     | 5     | 41          | -       | 50          | ns    |
|                                      |                       |                     |          | _ = 15pF                               |       | 5     | -    | 15   | 3      | -5    | 15.         | -       | -           | ns    |
| S7=                                  |                       |                     | - 10     | _ = 50pF                               |       | 6     | 378  | 7.5  | 28     | -     | 35          | 35      | 43          | ns    |
| Output Disable to Q                  | t <sub>PLZ</sub>      | , t <sub>PHZ</sub>  | $C_l$    | _ = 50pF                               |       | 2     | (17) | -    | 135    | -     | 170         | 35      | 205         | ns    |
|                                      |                       |                     |          |                                        | -     | 1.5   | ~    | - 19 | 27     | -     | 34          | 91      | 41          | ns    |
|                                      | - 1                   |                     | C        | = 15pF                                 |       | 5     | 940  | 11   | 122    | 121   | 120         | e ·     | 120         | ns    |

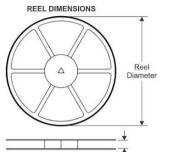

### Switching Specifications $C_L = 50pF$ , Input $t_r$ , $t_f = 6ns$ (Continued)

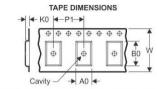
|                                            |                                     | TEST                  |                     | 25°C              |     |     |      | C TO<br>S°C | -55°C TO<br>125°C |     |       |
|--------------------------------------------|-------------------------------------|-----------------------|---------------------|-------------------|-----|-----|------|-------------|-------------------|-----|-------|
| PARAMETER                                  | SYMBOL                              | CONDITIONS            | V <sub>CC</sub> (V) | MIN               | TYP | MAX | MIN  | MAX         | MIN               | MAX | UNITS |
| Output Enable to Q                         | t <sub>PZL</sub> , t <sub>PZH</sub> | C <sub>L</sub> = 50pF | 2                   | 8 <del>5</del> 81 | 250 | 150 | -    | 190         | iR.s              | 225 | ns    |
|                                            |                                     |                       | 4.5                 | -                 | 351 | 30  | В    | 38          | 18/               | 45  | ns    |
|                                            |                                     | C <sub>L</sub> = 15pF | 5                   | (-)               | 12  | -2  | -    | (5)         | -                 | 151 | ns    |
|                                            |                                     | C <sub>L</sub> = 50pF | 6                   |                   | -   | 26  | -    | 33          | 4.                | 38  | ns    |
| Maximum Clock Frequency                    | f <sub>MAX</sub>                    | C <sub>L</sub> = 15pF | 5                   | -                 | 60  | -   | -    | -           | :=                | -   | MHz   |
| Output Transition Time                     | t <sub>THL</sub> , t <sub>TLH</sub> | C <sub>L</sub> = 50pF | 2                   | 15                | -   | 60  | -    | 75          | 97                | 90  | ns    |
|                                            |                                     |                       | 4.5                 | -                 | -   | 12  | 2    | 15          | 91                | 18  | ns    |
|                                            |                                     |                       | 6                   | 1541              | 921 | 10  | 112  | 13          | 101               | 15  | ns    |
| Input Capacitance                          | CI                                  | C <sub>L</sub> = 50pF | - 10                | 10                | 721 | 10  | -    | 10          | -                 | 10  | pF    |
| Three-State Output<br>Capacitance          | CO                                  | -                     | - 5                 | 20                | 15  | 20  | -    | 20          |                   | 20  | pF    |
| Power Dissipation Capacitance (Notes 3, 4) | C <sub>PD</sub>                     | C <sub>L</sub> = 15pF | 5                   | -                 | 39  | -   | -    | -           | -                 | -   | pF    |
| HCT TYPES                                  |                                     |                       |                     |                   |     |     |      |             |                   |     |       |
| Propagation Delay<br>Clock to Output       | tPHL, tPLH                          | C <sub>L</sub> = 50pF | 4.5                 | -                 |     | 33  | -    | 41          | -                 | 50  | ns    |
|                                            |                                     | C <sub>L</sub> = 15pF | 5                   | -                 | 15  | 18  | -    | 100         | 90                | (8) | ns    |
| Output Disable to Q                        | t <sub>PLZ</sub> , t <sub>PHZ</sub> | C <sub>L</sub> = 50pF | 4.5                 | (41)              | 721 | 28  | -    | 35          | 121               | 42  | ns    |
|                                            |                                     | C <sub>L</sub> = 15pF | 5                   | 923               | 11  | 5   | 2    | 2           | 2                 | (2) | ns    |
| Output Enable to Q                         | t <sub>PZL</sub> , t <sub>PZH</sub> | C <sub>L</sub> = 50pF | 4.5                 | -                 | -   | 30  | 2    | 38          | -                 | 45  | ns    |
|                                            |                                     | C <sub>L</sub> = 15pF | 5                   | -                 | 12  | (8) |      | 9           | 8                 | -   | ns    |
| Maximum Clock Frequency                    | f <sub>MAX</sub>                    | C <sub>L</sub> = 15pF | 5                   | -                 | 60  |     | - 4  | -           | -                 | -   | MHz   |
| Output Transition Time                     | t <sub>TLH</sub> , t <sub>THL</sub> | C <sub>L</sub> = 50pF | 4.5                 | -                 | -   | 12  | - 72 | 15          | -                 | 18  | ns    |
| Input Capacitance                          | CI                                  | C <sub>L</sub> = 50pF | -                   | 10                | 250 | 10  | -    | 10          | -                 | 10  | pF    |
| Three-State Output<br>Capacitance          | CO                                  | 19 <b>5</b> .1        | 25                  | 20                | 351 | 20  | -    | 20          | 3                 | 20  | pF    |
| Power Dissipation Capacitance (Notes 3, 4) | C <sub>PD</sub>                     | C <sub>L</sub> = 15pF | 5                   | ie.               | 47  | -   | -    | -           | 8                 | -   | pF    |

<sup>3.</sup>  $C_{\mbox{\scriptsize PD}}$  is used to determine the dynamic power consumption, per package.

<sup>4.</sup>  $P_D = C_{PD} \, V_{CC}^2 \, f_i + \Sigma \, V_{CC}^2 \, f_O \, C_L$  where  $f_i$  = Input Frequency,  $f_O$  = Output Frequency,  $C_L$  = Output Load Capacitance,  $V_{CC}$  = Supply Voltage.



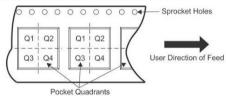



### PACKAGE MATERIALS INFORMATION

www.ti.com 2-Oct-2019

#### TAPE AND REEL INFORMATION





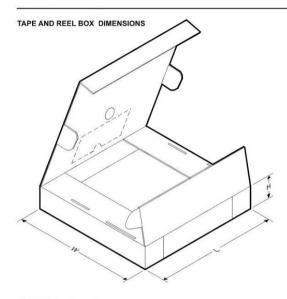

A0 Dimension designed to accommodate the component width
 B0 Dimension designed to accommodate the component length
 K0 Dimension designed to accommodate the component thickness
 W Overall width of the carrier tape
 P1 Pitch between successive cavity centers

Reel Width (W1)

#### QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE



\*All dimensions are nominal

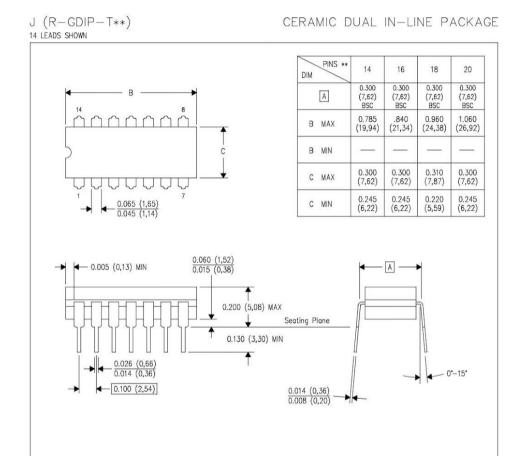

| Device        | Package<br>Type | Package<br>Drawing |    | SPQ  | Reel<br>Diameter<br>(mm) | Reel<br>Width<br>W1 (mm) | A0<br>(mm) | B0<br>(mm) | K0<br>(mm) | P1<br>(mm) | W<br>(mm) | Pin1<br>Quadran |
|---------------|-----------------|--------------------|----|------|--------------------------|--------------------------|------------|------------|------------|------------|-----------|-----------------|
| CD74HC374M96  | SOIC            | DW                 | 20 | 2000 | 330.0                    | 24.4                     | 10.8       | 13.3       | 2.7        | 12.0       | 24.0      | Q1              |
| CD74HC574M96  | SOIC            | DW                 | 20 | 2000 | 330.0                    | 24.4                     | 10.8       | 13.3       | 2.7        | 12.0       | 24.0      | Q1              |
| CD74HCT374M96 | SOIC            | DW                 | 20 | 2000 | 330.0                    | 24.4                     | 10.8       | 13.3       | 2.7        | 12.0       | 24.0      | Q1              |
| CD74HCT574M96 | SOIC            | DW                 | 20 | 2000 | 330.0                    | 24.4                     | 10.8       | 13.3       | 2.7        | 12.0       | 24.0      | Q1              |
| CD74HCT574PWR | TSSOP           | PW                 | 20 | 2000 | 330.0                    | 16.4                     | 6.95       | 7.0        | 1.4        | 8.0        | 16.0      | Q1              |

Pack Materials-Page 1



### PACKAGE MATERIALS INFORMATION

www.ti.com 2-Oct-2019

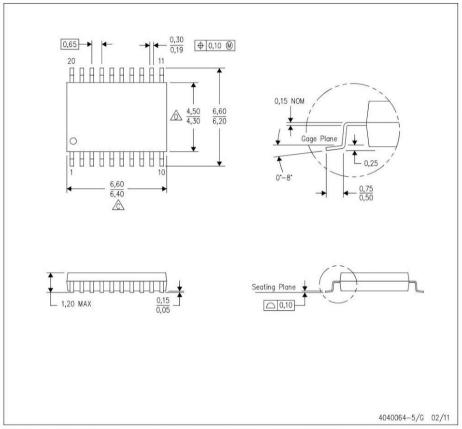



#### \*All dimensions are nominal

| Device        | Package Type | Package Drawing | Pins | SPQ  | Length (mm) | Width (mm) | Height (mm) |
|---------------|--------------|-----------------|------|------|-------------|------------|-------------|
| CD74HC374M96  | SOIC         | DW              | 20   | 2000 | 367.0       | 367.0      | 45.0        |
| CD74HC574M96  | SOIC         | DW              | 20   | 2000 | 367.0       | 367.0      | 45.0        |
| CD74HCT374M96 | SOIC         | DW              | 20   | 2000 | 367.0       | 367.0      | 45.0        |
| CD74HCT574M96 | SOIC         | DW              | 20   | 2000 | 367.0       | 367.0      | 45.0        |
| CD74HCT574PWR | TSSOP        | PW              | 20   | 2000 | 367.0       | 367.0      | 38.0        |

Pack Materials-Page 2

4040083/F 03/03




- A. All linear dimensions are in inches (millimeters).
  B. This drawing is subject to change without notice.
  C. This package is hermetically sealed with a ceramic lid using glass frit.
  D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
  E. Falls within MIL STD 1835 GDIP1—T14, GDIP1—T16, GDIP1—T18 and GDIP1—T20.

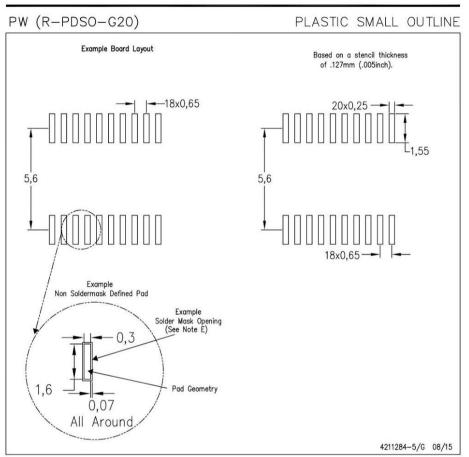
### **MECHANICAL DATA**

PW (R-PDSO-G20)

PLASTIC SMALL OUTLINE



- A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M—1994.


  B. This drawing is subject to change without notice.

  Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0,15 each side.

  Body width does not include interlead flash. Interlead flash shall not exceed 0,25 each side.
- E. Falls within JEDEC MO-153



### **LAND PATTERN DATA**

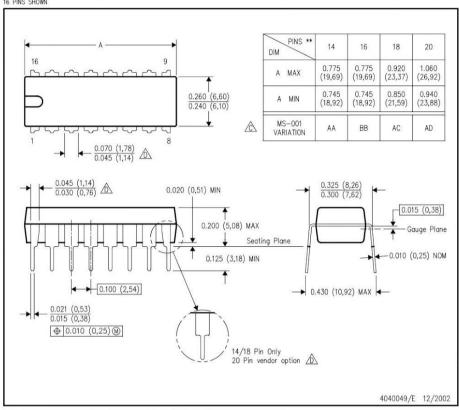


- A. All linear dimensions are in millimeters.

  B. This drawing is subject to change without notice.

  C. Publication IPC-7351 is recommended for alternate design.

  D. Laser cutting opertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.


  E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

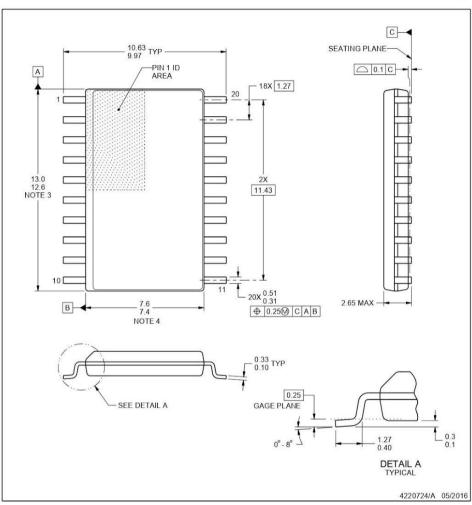


### **MECHANICAL DATA**

# N (R-PDIP-T\*\*) 16 PINS SHOWN

### PLASTIC DUAL-IN-LINE PACKAGE




- All linear dimensions are in inches (millimeters). This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).

  The 20 pin end lead shoulder width is a vendor option, either half or full width.



### **PACKAGE OUTLINE**

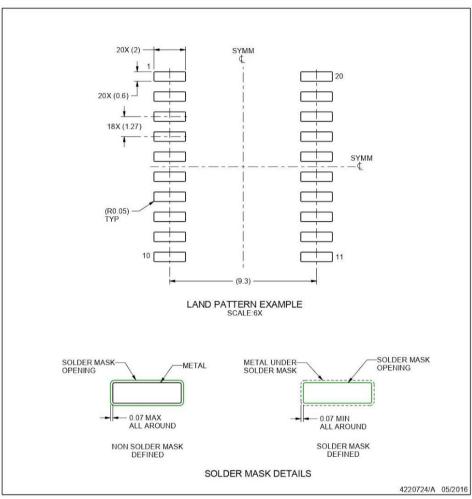
### SOIC - 2.65 mm max height



### NOTES

DW0020A

- All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
   This drawing is subject to change without notice.
   This drawing is subject to change without notice.
   This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm per side.
   This dimension does not include interlead flash. Interlead flash shall not exceed 0.43 mm per side.
   Reference JEDEC registration MS-013.




### **EXAMPLE BOARD LAYOUT**

### DW0020A

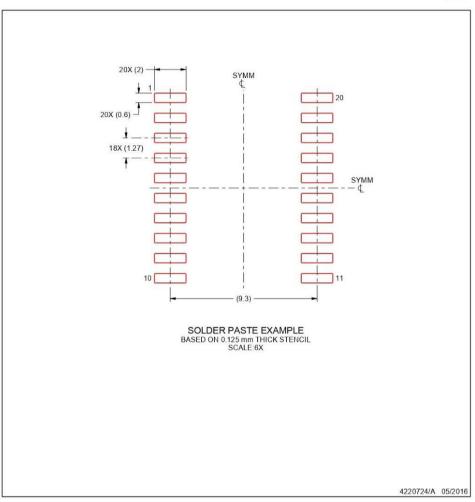
SOIC - 2.65 mm max height

SOIC



NOTES: (continued)

- Publication IPC-7351 may have alternate designs.
   Solder mask tolerances between and around signal pads can vary based on board fabrication site.

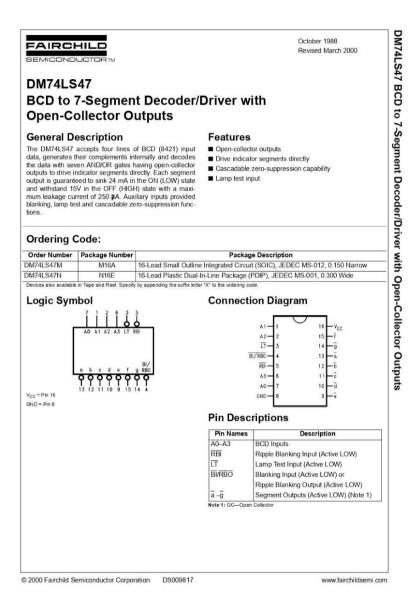



### **EXAMPLE STENCIL DESIGN**

### DW0020A

SOIC - 2.65 mm max height

SOIC




NOTES: (continued)



Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate
design recommendations.
 Board assembly site may have different recommendations for stencil design.

### 9.- 74LS47



pág. 144

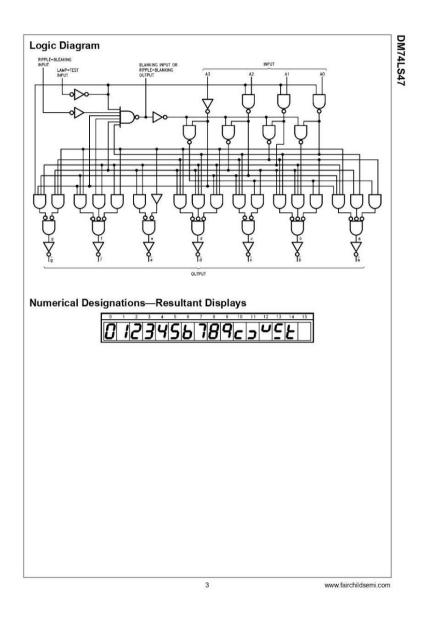
| Decimal<br>or |    | Inputs |    |    |    |    | Outputs |   |   |   |   |   |   | Note |         |
|---------------|----|--------|----|----|----|----|---------|---|---|---|---|---|---|------|---------|
| Function      | LT | RBI    | АЗ | A2 | A1 | A0 | BI/RBO  | ā | b | c | ď | ē | f | g    |         |
| 0             | Н  | Н      | L  | L  | L  | L  | Н       | L | L | L | L | L | L | Н    | (Note 2 |
| 1             | Н  | Х      | L  | L  | L  | H  | Н       | Н | L | L | Н | Н | Н | Н    | (Note 2 |
| 2             | Н  | Х      | L  | L  | Н  | L  | Н       | L | L | H | L | L | H | L    |         |
| 3             | Н  | X      | L  | L  | Н  | Н  | Н       | L | L | L | L | Н | Н | L    |         |
| 4             | Н  | x      | L  | Н  | L  | L  | Н       | Н | L | L | Н | Н | L | L    |         |
| 5             | Н  | Х      | L  | Н  | L  | H  | Н       | L | H | L | L | H | L | L    |         |
| 6             | Н  | Х      | L  | Н  | Н  | L  | Н       | Н | Н | L | L | L | L | L    |         |
| 7             | Н  | X      | L  | Н  | Н  | Н  | Н       | L | L | L | Н | Н | Н | Н    |         |
| 8             | Н  | X      | Н  | L  | L  | L  | Н       | L | L | L | L | L | L | L    |         |
| 9             | Н  | x      | Н  | L  | L  | Н  | н       | L | L | L | Н | Н | L | L    |         |
| 10            | Н  | Х      | Н  | L  | Н  | L  | Н       | Н | Н | H | L | L | Н | L    |         |
| 11            | Н  | Х      | Н  | L  | Н  | Н  | Н       | Н | Н | L | L | Н | Н | L    |         |
| 12            | Н  | Х      | Н  | Н  | L  | L  | Н       | Н | L | Н | Н | Н | L | L    |         |
| 13            | Н  | X      | Н  | Н  | L  | Н  | Н       | L | Н | Н | L | Н | L | L    |         |
| 14            | Н  | х      | Н  | Н  | Н  | L  | н       | Н | Н | Н | L | L | L | L    |         |
| 15            | Н  | X      | Н  | Н  | Н  | Н  | Н       | Н | Н | Н | Н | Н | Н | Н    |         |
| BI            | X  | Х      | X  | X  | X  | X  | L       | Н | H | Н | Н | H | H | Н    | (Note 3 |
| RBI           | Н  | L      | L  | L  | L  | L  | L       | Н | H | H | Н | Н | Н | Н    | (Note 4 |
| Ī.T           | L  | X      | X  | X  | X  | X  | H       | L | L | L | L | L | L | L    | (Note 5 |

Note 2: BiRBO is wire-AND logic serving as blenking input (Bi) and/or ripple-blanking output (RBO). The blanking out (Bi) must be open or held at a HIGH level when output functions 0 through 15 are desired, and ripple-blanking input (RBO) must be open or at a HIGH level if blanking or a decimal 0 is not desired. X = input may be HIGH or LOW.

Note 3: When a LOW level is applied to the blanking input (forced condition) all segment outputs go to a HIGH level regardless of the state of any other input condition.

Note 4: When ripple-blanking input (RBO) and inputs A0, A1, A2 and A3 are LOW level, with the lamp test input at HIGH level, all segment outputs go to a HIGH level and the ripple-blanking output (RBO) goes to a LOW level (response condition).

Note 5: When the blanking input ripple-blanking output (RBO) so OPEN or held at a HIGH level, and a LOW level is applied to lamp test input, all segment outputs go to a LOW level.


### **Functional Description**

Functional Description

The DMT4LS47 decodes the input data in the pattern indicated in the Truth Table and the segment identification illustration. If the input data is decimal zero, a LOW signal applied to the RBI blanks the display and causes a multidigit display, For example, by grounding the RBI of the highest order decoder and connecting its BI/RBO to RBI of the next lowest order decoder, etc., leading zeros will be suppressed. Similarly, by grounding RBI of the lowest order decoder and connecting its BI/RBO to RBI of the next highest order decoder and connecting its BI/RBO to RBI of the next highest order decoder, etc., Iralling zeros will be suppressed. Leading and trailing zeros can be suppressed simultaneously by using external gates, i.e.: by driving RBI of a

intermediate decoder from an OR gate whose inputs are BI/RBO of the next highest and lowest order decoders. BI/RBO also serves as an unconditional blanking input. The internal NAND gate that generates the RBO signal has a resistive pull-up, as opposed to a totem pole, and thus BI/RBO can be forced LOW by external means, using wired-collector logic. A LOW signal thus applied to BI/RBO turns off all segment outputs. This blanking feature can be used to control display intensity by varying the duty cycle of the blanking signal. A LOW signal applied to LT turns on all segment outputs, provided that BI/RBO is not forced LOW.

www.fairchildsemi.com



### Absolute Maximum Ratings(Note 6)

Supply Voltage Input Voltage 7V 7V Operating Free Air Temperature Range 0°C to +70°C
Storage Temperature Range -65°C to +150°C

Note 6: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametic values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

#### **Recommended Operating Conditions**

| Symbol          | Parameter                                                                       | Min  | Nom | Max  | Units |
|-----------------|---------------------------------------------------------------------------------|------|-----|------|-------|
| Vcc             | Supply Voltage                                                                  | 4.75 | 5   | 5.25 | V     |
| V <sub>IH</sub> | HIGH Level Input Voltage                                                        | 2    |     |      | V     |
| V <sub>IL</sub> | LOW Level Input Voltage                                                         |      |     | 0.8  | V     |
| Гон             | HIGH Level Output Current $\overline{a} - \overline{g} @ 15V = V_{OH} (Note 7)$ |      |     | -250 | μА    |
| I <sub>OH</sub> | HIGH Level Output Current BI /RBO                                               |      |     | -50  | μA    |
| I <sub>OL</sub> | LOW Level Output Current                                                        |      |     | 24   | mA    |
| TA              | Free Air Operating Temperature                                                  | 0    |     | 70   | °C    |

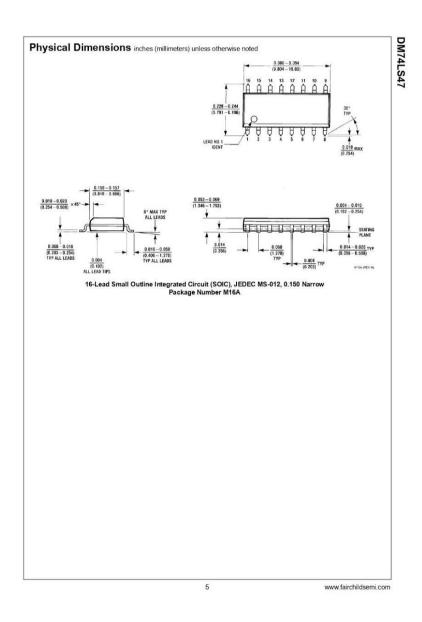
Note 7: OFF-State at a-g.

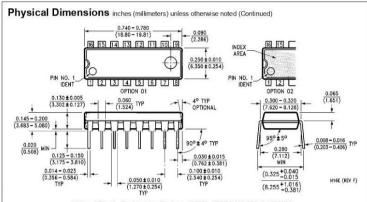
#### **Electrical Characteristics**

Over recommended operating free air temperature range (unless otherwise noted)

| Symbol            | Parameter                           | Conditions                                                                                            | Min  | Typ<br>(Note 8) | Max  | Units |
|-------------------|-------------------------------------|-------------------------------------------------------------------------------------------------------|------|-----------------|------|-------|
| VI                | Input Clamp Voltage                 | V <sub>CC</sub> = Min, I <sub>I</sub> = -18 mA                                                        |      |                 | -1.5 | V     |
| V <sub>OH</sub>   | HIGH Level<br>Output Voltage        | V <sub>CC</sub> = Min, I <sub>OH</sub> = Max,<br>V <sub>IL</sub> = Max, BI /RBO                       | 2.7  | 3.4             |      | ٧     |
| loff              | Output HIGH Current Segment Outputs | V <sub>CC</sub> = 5.5V, V <sub>O</sub> = 15V a - g                                                    |      |                 | 250  | μA    |
| V <sub>OL</sub>   | LOW Level<br>Output Voltage         | V <sub>CC</sub> = Min, I <sub>OL</sub> = Max,<br>V <sub>IH</sub> = Min, $\overline{a} - \overline{g}$ |      | 0.35            | 0.5  |       |
|                   |                                     | I <sub>OL</sub> = 3.2 mA, BI /RBO                                                                     |      |                 | 0.5  | V     |
|                   |                                     | I <sub>OL</sub> = 12 mA, a -g                                                                         |      | 0.25            | 0.4  | 1     |
| I <sub>i</sub> In |                                     | I <sub>OL</sub> = 1.6 mA, BI /RBO                                                                     |      |                 | 0.4  | 1     |
| l <sub>i</sub>    | Input Current @ Max                 | V <sub>CC</sub> = Max, V <sub>I</sub> = 7V                                                            |      |                 | 100  | μA    |
|                   | Input Voltage                       | V <sub>CC</sub> = Max, V <sub>I</sub> = 10V                                                           |      | 1 1             | 100  | p/A   |
| l <sub>н</sub>    | HIGH Level Input Current            | V <sub>CC</sub> = Max, V <sub>I</sub> = 2.7V                                                          |      |                 | 20   | μA    |
| I <sub>IL</sub>   | LOW Level Input Current             | V <sub>CC</sub> = Max, V <sub>I</sub> = 0.4V                                                          |      |                 | -0.4 | mA    |
| los               | Short Circuit                       | V <sub>CC</sub> = Max (Note 9),                                                                       |      |                 |      | mA    |
|                   | Output Current                      | I <sub>OS</sub> at BI/RBO                                                                             | -0.3 |                 | -2.0 | mA    |
| lcc               | Supply Current                      | V <sub>CC</sub> = Max                                                                                 |      |                 | 13   | mA    |

Note 9: Not more than one output should be shorted at a time, and the duration should not exceed one second.


## **Switching Characteristics**


at V<sub>CC</sub> = +5.0V, T<sub>A</sub> = +25°C

|                  |                       |            | R <sub>L</sub> = | 665Ω  |    |  |
|------------------|-----------------------|------------|------------------|-------|----|--|
| Symbol           | Parameter             | Conditions | C <sub>L</sub> = | Units |    |  |
|                  |                       |            | Min              | Max   |    |  |
| t <sub>PLH</sub> | Propagation Delay     |            |                  | 100   |    |  |
| t <sub>PHL</sub> | An to a -g            |            |                  | 100   | ns |  |
| t <sub>PLH</sub> | Propagation Delay     |            |                  | 100   |    |  |
| t <sub>PHL</sub> | RBI to a -g (Note 10) |            |                  | 100   | ns |  |

Note 10: LT = HIGH, A0-A3 = LOW

www.fairchildsemi.com





16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide Package Number N16E

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

#### LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- CEMINICATION OF CORPORATION. As used herein:

  Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com

www.fairchildsemi.com

#### 10.-74LS393

## 74HC393; 74HCT393

**Dual 4-bit binary ripple counter** 

Rev. 6 — 3 December 2015

Product data sheet

### 1. General description

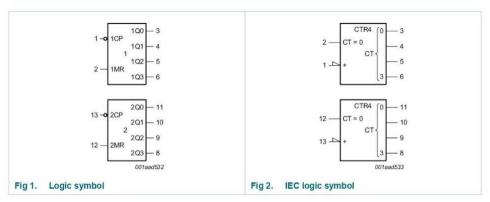
The 74HC393; 7474HCT393 is a dual 4-stage binary ripple counter. Each counter features a clock input ( $\overline{\text{nCP}}$ ), an overriding asynchronous master reset input ( $\overline{\text{nMR}}$ ) and 4 buffered parallel outputs ( $\overline{\text{nQ0}}$  to  $\overline{\text{nQ3}}$ ). The counter advances on the HIGH-to-LOW transition of  $\overline{\text{nCP}}$ . A HIGH on  $\overline{\text{nMR}}$  clears the counter stages and forces the outputs LOW, independent of the state of  $\overline{\text{nCP}}$ . Inputs include clamp diodes. This enables the use of current limiting resistors to interface inputs to voltages in excess of V<sub>CC</sub>.

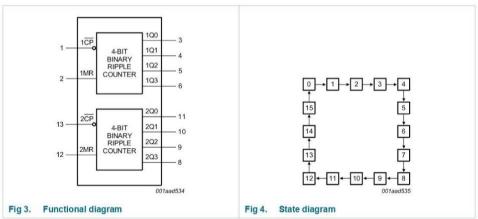
#### 2. Features and benefits

- Input levels:
  - For 74HC393: CMOS level
  - ◆ For 74HCT393: TTL level
- Complies with JEDEC standard no. 7A
- ESD protection:
  - ♦ HBM JESD22-A114F exceeds 2000 V
  - ♦ MM JESD22-A115-A exceeds 200 V.
- Two 4-bit binary counters with individual clocks
- Divide by any binary module up to 28 in one package
- Two master resets to clear each 4-bit counter individually

## 3. Ordering information

Table 1. Ordering information


| Type number | Package           |          |                                                                               |          |
|-------------|-------------------|----------|-------------------------------------------------------------------------------|----------|
|             | Temperature range | Name     | Description                                                                   | Version  |
| 74HC393D    | -40 °C to +125 °C | SO14     | plastic small outline package; 14 leads; body width 3.9 mm                    | SOT108-1 |
| 74HCT393D   |                   |          |                                                                               |          |
| 74HC393DB   | -40 °C to +125 °C | SSOP14   | plastic shrink small outline package; 14 leads; body width                    | SOT337-1 |
| 74HCT393DB  |                   |          | 5.3 mm                                                                        |          |
| 74HC393PW   | -40 °C to +125 °C | TSSOP14  | plastic thin shrink small outline package; 14 leads; body                     | SOT402-1 |
| 74HCT393PW  |                   |          | width 4.4 mm                                                                  |          |
| 74HC393BQ   | -40 °C to +125 °C | DHVQFN14 | plastic dual in-line compatible thermal enhanced very thin                    | SOT762-1 |
| 74HCT393BQ  |                   |          | quad flat package; no leads; 14 terminals; body $2.5 \times 3 \times 0.85$ mm |          |




## 74HC393; 74HCT393

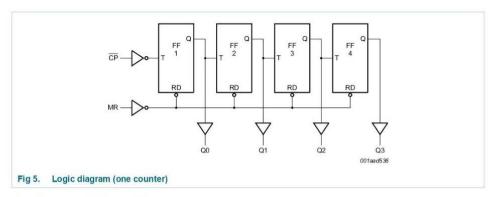
Dual 4-bit binary ripple counter

## 4. Functional diagram



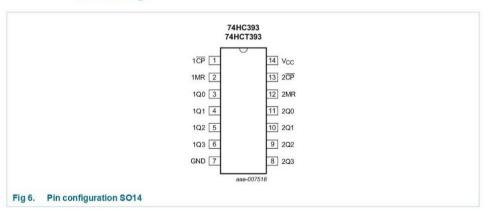


74HC\_HCT393


All information provided in this document is subject to legal disclaimer

<sup>®</sup> Nexperia B.V. 2017. All rights reserved 2 of 19

Product data sheet


## 74HC393; 74HCT393

Dual 4-bit binary ripple counter

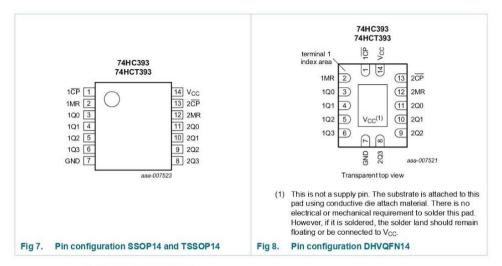


## 5. Pinning information

### 5.1 Pinning



74HC\_HCT303


Product data sheet

All information provided in this document is subject to legal disclaimer Rev. 6 — 3 December 2015

Nexperia B.V. 2017. All rights reserved
 3 of 19

## 74HC393; 74HCT393

Dual 4-bit binary ripple counter



#### 5.2 Pin description

Table 2. Pin description

| Symbol          | Pin | Description                                   |  |
|-----------------|-----|-----------------------------------------------|--|
| 1CP             | 1   | clock input (HIGH-to-LOW, edge-triggered)     |  |
| 1MR             | 2   | asynchronous master reset input (active HIGH) |  |
| 1Q0             | 3   | flip-flop output                              |  |
| 1Q1             | 4   | flip-flop output                              |  |
| 1Q2             | 5   | flip-flop output                              |  |
| 1Q3             | 6   | flip-flop output                              |  |
| GND             | 7   | ground (0 V)                                  |  |
| 2Q3             | 8   | flip-flop output                              |  |
| 2Q2             | 9   | flip-flop output                              |  |
| 2Q1             | 10  | flip-flop output                              |  |
| 2Q0             | 11  | flip-flop output                              |  |
| 2MR             | 12  | asynchronous master reset input (active HIGH) |  |
| 2CP             | 13  | clock input (HIGH-to-LOW, edge-triggered)     |  |
| V <sub>CC</sub> | 14  | supply voltage                                |  |

74HC\_HCT393

All information provided in this document is subject to legal disclaiment

<sup>6</sup> Nexperia B.V. 2017. All rights reserved 4 of 19

Product data sheet

## 74HC393; 74HCT393

Dual 4-bit binary ripple counter

## 6. Functional description

Table 3. Count sequence for one counter [1]

| Count | Output |     |     |     |
|-------|--------|-----|-----|-----|
|       | nQ0    | nQ1 | nQ2 | nQ3 |
| 0     | L      | L   | L   | L   |
| 1     | Н      | L   | L   | L   |
| 2     | L      | Н   | L   | L   |
| 3     | Н      | н   | L   | L   |
| 4     | L      | L   | Н   | L   |
| 5     | Н      | L   | Н   | L   |
| 6     | L      | Н   | Н   | L   |
| 7     | Н      | Н   | Н   | L   |
| 8     | L      | L   | L   | Н   |
| 9     | Н      | L   | L   | Н   |
| 10    | L      | Н   | L   | Н   |
| 11    | Н      | Н   | L   | Н   |
| 12    | L      | L   | Н   | Н   |
| 13    | Н      | L   | Н   | Н   |
| 14    | L      | Н   | Н   | Н   |
| 15    | Н      | Н   | Н   | Н   |

<sup>[1]</sup> H = HIGH voltage level; L = LOW voltage level.

### 7. Limiting values

Table 4. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

| Symbol           | Parameter               | Conditions                                                     |     | Min  | Max  | Unit |
|------------------|-------------------------|----------------------------------------------------------------|-----|------|------|------|
| V <sub>CC</sub>  | supply voltage          |                                                                |     | -0.5 | +7   | V    |
| I <sub>IK</sub>  | input clamping current  | $V_1 < -0.5 \text{ V or } V_1 > V_{CC} + 0.5 \text{ V}$        |     | -    | ±20  | mA   |
| lok              | output clamping current | $V_{\rm O}$ < $-0.5$ V or $V_{\rm O}$ > $V_{\rm CC}$ + $0.5$ V |     | -    | ±20  | mA   |
| lo               | output current          | $V_{\rm O} = -0.5 \text{ V to } V_{\rm CC} + 0.5 \text{ V}$    |     | -    | ±25  | mA   |
| I <sub>CC</sub>  | supply current          |                                                                |     | -    | ±50  | mA   |
| I <sub>GND</sub> | ground current          |                                                                |     | -    | ±50  | mA   |
| T <sub>stg</sub> | storage temperature     |                                                                |     | -65  | +150 | °C   |
| P <sub>tot</sub> | total power dissipation | SO14, (T)SSOP14 and DHVQFN14 package                           | [1] | -    | 500  | mW   |

<sup>[1]</sup> For SO14 package: P<sub>tot</sub> derates linearly with 8 mW/K above 70 °C. For (T)SSOP14 packages: P<sub>tot</sub> derates linearly with 5.5 mW/K above 60 °C. For DHVQFN14 packages: P<sub>tot</sub> derates linearly with 4.5 mW/K above 60 °C.

74HC\_HCT393

All information provided in this document is subject to legal disclaimers.

Nexperia B.V. 2017. All rights reserved
 5 of 19

Product data sheet

## 74HC393; 74HCT393

Dual 4-bit binary ripple counter

## 8. Recommended operating conditions

 Table 5.
 Recommended operating conditions

 Voltages are referenced to GND (ground = 0 V)

| Symbol           | Parameter                           | Conditions              |       | 74HC39 | 3               | 7             | 13   | Unit            |      |
|------------------|-------------------------------------|-------------------------|-------|--------|-----------------|---------------|------|-----------------|------|
|                  |                                     |                         | Min   | Тур    | Max             | Min           | Тур  | Max             |      |
| Vcc              | supply voltage                      |                         | 2.0   | 5.0    | 6.0             | 4.5           | 5.0  | 5.5             | V    |
| VI               | input voltage                       |                         | 0     | -      | Vcc             | 0             | -    | Vcc             | V    |
| Vo               | output voltage                      |                         | 0     | -      | V <sub>CC</sub> | 0             | -    | V <sub>CC</sub> | V    |
| T <sub>amb</sub> | ambient temperature                 |                         | -40   | +25    | +125            | -40           | +25  | +125            | °C   |
| Δt/ΔV            | input transition rise and fall rate | V <sub>CC</sub> = 2.0 V | 1.5   | -      | 625             | 100           | -    | (5)             | ns/V |
|                  |                                     | $V_{\rm CC}$ = 4.5 V    | 120   | 1.67   | 139             | (1 <b>2</b> ) | 1.67 | 139             | ns/V |
|                  |                                     | V <sub>CC</sub> = 6.0 V | 25.50 | -      | 83              | 23-23         | -    |                 | ns/V |

#### 9. Static characteristics

#### Table 6. Static characteristics

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

| Symbol          | Parameter                | Conditions                                              |      | 25 °C |      | -40 °C t | o +85 °C | -40 °C to         | +125 °C | Unit |
|-----------------|--------------------------|---------------------------------------------------------|------|-------|------|----------|----------|-------------------|---------|------|
|                 |                          |                                                         | Min  | Тур   | Max  | Min      | Max      | Min               | Max     |      |
| 74HC39          | 3                        |                                                         |      |       |      |          |          |                   |         |      |
| V <sub>IH</sub> | HIGH-level               | V <sub>CC</sub> = 2.0 V                                 | 1.5  | 1.2   | -    | 1.5      | -        | 1.5               | -       | ٧    |
|                 | input voltage            | V <sub>CC</sub> = 4.5 V                                 | 3.15 | 2.4   | -    | 3.15     | 1-1      | 3.15              | -       | ٧    |
|                 |                          | V <sub>CC</sub> = 6.0 V                                 | 4.2  | 3.2   | -    | 4.2      | 120      | 4.2               | -       | V    |
| V <sub>IL</sub> | LOW-level                | V <sub>CC</sub> = 2.0 V                                 | -    | 8.0   | 0.5  | 1.00     | 0.5      | 10=1              | 0.5     | ٧    |
|                 | input voltage            | V <sub>CC</sub> = 4.5 V                                 | -    | 2.1   | 1.35 | (2)      | 1.35     | -                 | 1.35    | ٧    |
|                 |                          | V <sub>CC</sub> = 6.0 V                                 | -    | 2.8   | 1.8  | -        | 1.8      | 949               | 1.8     | ٧    |
| V <sub>OH</sub> | HIGH-level               | V <sub>I</sub> = V <sub>IH</sub> or V <sub>IL</sub>     |      |       |      |          |          |                   |         |      |
|                 | output voltage           | $I_{O} = -20 \mu A$ ; $V_{CC} = 2.0 V$                  | 1.9  | 2.0   | -    | 1.9      |          | 1.9               | -       | ٧    |
|                 |                          | $I_{\rm O}$ = -20 $\mu$ A; $V_{\rm CC}$ = 4.5 $V$       | 4.4  | 4.5   | 15-1 | 4.4      | -        | 4.4               | -       | V    |
|                 |                          | $I_{\rm O}$ = -20 $\mu$ A; $V_{\rm CC}$ = 6.0 $V$       | 5.9  | 6.0   | 121  | 5.9      | -        | 5.9               | 12      | ٧    |
|                 |                          | $I_{O}$ = -4.0 mA; $V_{CC}$ = 4.5 V                     | 3.98 | 4.32  | 1000 | 3.84     | (=)      | 3.7               | -       | ٧    |
|                 |                          | $I_{\rm O}$ = -5.2 mA; $V_{\rm CC}$ = 6.0 V             | 5.48 | 5.81  |      | 5.34     | 121      | 5.2               | -       | ٧    |
| V <sub>OL</sub> | LOW-level                | $V_I = V_{IH}$ or $V_{IL}$                              |      |       |      |          |          |                   |         |      |
|                 | output voltage           | $I_{\rm O}$ = 20 $\mu$ A; $V_{\rm CC}$ = 2.0 $V$        | 8    | 0     | 0.1  | -        | 0.1      | -                 | 0.1     | ٧    |
|                 |                          | $I_O = 20 \mu A$ ; $V_{CC} = 4.5 V$                     | -    | 0     | 0.1  | -        | 0.1      | (9 <b>=</b> )     | 0.1     | ٧    |
|                 |                          | $I_{O} = 20 \mu A; V_{CC} = 6.0 V$                      | 7.   | 0     | 0.1  | -        | 0.1      | ) <del>-</del>    | 0.1     | V    |
|                 |                          | $I_O = 4.0 \text{ mA}$ ; $V_{CC} = 4.5 \text{ V}$       | -    | 0.15  | 0.26 | -        | 0.33     | -                 | 0.4     | V    |
|                 |                          | $I_{\rm O}$ = 5.2 mA; $V_{\rm CC}$ = 6.0 V              | -    | 0.16  | 0.26 | -        | 0.33     | 9 <del>.7</del> 0 | 0.4     | ٧    |
| lı              | input leakage<br>current | $V_I = V_{CC}$ or GND;<br>$V_{CC} = 6.0 \text{ V}$      | -    | -     | ±0.1 | -        | ±0.1     | -                 | ±0.1    | μΑ   |
| lcc             | supply current           | $V_I = V_{CC}$ or GND; $I_O = 0$ A;<br>$V_{CC} = 6.0$ V | -    | -     | 8.0  | -        | 80       | -                 | 160     | μΑ   |

74HC\_HCT393 Product data sheet All information provided in this document is subject to legal disclaimers.

6 of 19

## 74HC393; 74HCT393

Dual 4-bit binary ripple counter

Table 6. Static characteristics ...continued
At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

| Symbol               | Parameter                 | Conditions                                                                                                                          |      | 25 °C |      | -40 °C t | o +85 °C | -40 °C to +125 °C |      | Unit |
|----------------------|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------|------|-------|------|----------|----------|-------------------|------|------|
|                      |                           |                                                                                                                                     | Min  | Тур   | Max  | Min      | Max      | Min               | Max  |      |
| Cı                   | input<br>capacitance      |                                                                                                                                     | -    | 3.5   | -    | -        | -        | -                 | -    | pF   |
| 74HCT3               | 93                        |                                                                                                                                     |      |       |      |          |          |                   |      |      |
| V <sub>IH</sub>      | HIGH-level input voltage  | V <sub>CC</sub> = 4.5 V to 5.5 V                                                                                                    | 2.0  | 1.6   | 870  | 2.0      |          | 2.0               | -    | V    |
| V <sub>IL</sub>      | LOW-level input voltage   | V <sub>CC</sub> = 4.5 V to 5.5 V                                                                                                    | -    | 1.2   | 8.0  | (=)      | 0.8      | (=)               | 0.8  | V    |
| V <sub>OH</sub>      | HIGH-level                | $V_I = V_{IH}$ or $V_{IL}$ ; $V_{CC} = 4.5 \text{ V}$                                                                               |      |       |      |          |          |                   |      |      |
|                      | output voltage            | I <sub>O</sub> = -20 μA                                                                                                             | 4.4  | 4.5   | 177  | 4.4      | -        | 4.4               | -    | V    |
|                      |                           | I <sub>O</sub> = -6 mA                                                                                                              | 3.98 | 4.32  | 527  | 3.84     | -        | 3.7               | 12   | V    |
| V <sub>OL</sub> LOW- | LOW-level                 | $V_I = V_{IH}$ or $V_{IL}$ ; $V_{CC} = 4.5 \text{ V}$                                                                               |      |       |      |          |          |                   |      |      |
|                      | output voltage            | I <sub>O</sub> = 20 μA                                                                                                              | =    | 0     | 0.1  | -        | 0.1      | -                 | 0.1  | V    |
|                      |                           | I <sub>O</sub> = 6.0 mA                                                                                                             | -    | 0.15  | 0.26 |          | 0.33     | ( <del>-</del>    | 0.4  | V    |
| I                    | input leakage<br>current  | $V_1 = V_{CC}$ or GND;<br>$V_{CC} = 5.5 \text{ V}$                                                                                  |      | -8    | ±0.1 | -        | ±1.0     | -                 | ±1.0 | μΑ   |
| I <sub>CC</sub>      | supply current            | $V_I = V_{CC}$ or GND; $I_O = 0$ A;<br>$V_{CC} = 5.5$ V                                                                             | =    | -     | 8.0  |          | 80       | 1076              | 160  | μΑ   |
| Δl <sub>CC</sub>     | additional supply current | $V_{I} = V_{CC} - 2.1 \text{ V;}$ other inputs at $V_{CC}$ or GND; $V_{CC} = 4.5 \text{ V to } 5.5 \text{ V; } I_{O} = 0 \text{ A}$ |      |       |      |          |          |                   |      |      |
|                      |                           | per input pin; nCP                                                                                                                  |      | 40    | 144  | -        | 180      | 100               | 196  | μΑ   |
|                      |                           | per input pin; nMR                                                                                                                  | -    | 100   | 360  | -        | 450      | 0=0               | 490  | μΑ   |
| CI                   | input<br>capacitance      |                                                                                                                                     |      | 3.5   |      |          | (=)      | (14)              | -    | pF   |

74HC\_HCT393

All information provided in this document is subject to legal disclaimers.

7 of 19

Product data sheet

## 74HC393; 74HCT393

Dual 4-bit binary ripple counter

## 10. Dynamic characteristics

Table 7. Dynamic characteristics

| Symbol           | Parameter           | Conditions                                    |               | 25 °C |     | -40 °C | to +85 °C | -40 °C t | o +125 °C | Unit |
|------------------|---------------------|-----------------------------------------------|---------------|-------|-----|--------|-----------|----------|-----------|------|
|                  |                     |                                               | Min           | Тур   | Max | Min    | Max       | Min      | Max       | Ī    |
| 74HC39           | 3                   |                                               |               |       |     |        |           |          |           |      |
| t <sub>pd</sub>  | propagation         | nCP to nQ0; see Figure 9                      |               |       |     |        |           |          |           |      |
|                  | delay               | V <sub>CC</sub> = 2.0 V                       | -             | 41    | 125 | -      | 155       | -        | 190       | ns   |
|                  |                     | V <sub>CC</sub> = 4.5 V                       | 7-0           | 15    | 25  | -      | 31        | (1=)     | 38        | ns   |
|                  |                     | V <sub>CC</sub> = 5 V; C <sub>L</sub> = 15 pF | 107           | 12    | -   |        | -         | 1551     | -         | ns   |
|                  |                     | V <sub>CC</sub> = 6.0 V                       | (1 <b>4</b> ) | 12    | 21  | 147    | 26        | -        | 32        | ns   |
|                  |                     | nQx to nQ(x+1); [1] see Figure 9              |               |       |     |        |           |          |           |      |
|                  |                     | V <sub>CC</sub> = 2.0 V                       | -             | 14    | 45  | -      | 55        | -        | 70        | ns   |
|                  |                     | V <sub>CC</sub> = 4.5 V                       | -             | 5     | 9   | -2     | 11        | -        | 14        | ns   |
|                  |                     | V <sub>CC</sub> = 5 V; C <sub>L</sub> = 15 pF | -             | 5     | -   | (I+)(c | 14        | -        | -         | ns   |
|                  |                     | V <sub>CC</sub> = 6.0 V                       | (0)           | 4     | 8   | 70     | 9         | -        | 12        | ns   |
| t <sub>PHL</sub> | HIGH to             | nMR to nQx; see Figure 10                     |               |       |     |        |           |          |           |      |
|                  | LOW                 | V <sub>CC</sub> = 2.0 V                       |               | 39    | 140 | 0.50   | 175       | -        | 210       | ns   |
|                  | propagation delay   | V <sub>CC</sub> = 4.5 V                       | -             | 14    | 28  | -      | 35        | -        | 42        | ns   |
|                  | 13707070 <b>5</b> 4 | V <sub>CC</sub> = 5 V; C <sub>L</sub> = 15 pF | -             | 11    | -   | -      | -         |          | -         | ns   |
|                  |                     | V <sub>CC</sub> = 6.0 V                       | -             | 11    | 24  | 147    | 30        | -        | 36        | ns   |
| t <sub>t</sub>   | transition          | Qn; see Figure 9 [2]                          |               |       |     |        |           |          |           |      |
|                  | transition<br>time  | V <sub>CC</sub> = 2.0 V                       |               | 19    | 75  | 15.    | 95        | -        | 110       | ns   |
|                  |                     | V <sub>CC</sub> = 4.5 V                       | 848           | 7     | 15  | -      | 19        | 1-2      | 22        | ns   |
|                  |                     | V <sub>CC</sub> = 6.0 V                       | -             | 6     | 13  |        | 16        | -        | 19        | ns   |
| t <sub>W</sub>   | pulse width         | nCP HIGH or LOW;<br>see Figure 9              |               |       |     |        |           |          |           |      |
|                  |                     | V <sub>CC</sub> = 2.0 V                       | 80            | 17    | -   | 100    | -         | 120      | -         | ns   |
|                  |                     | V <sub>CC</sub> = 4.5 V                       | 16            | 6     | -   | 20     | -         | 24       | -         | ns   |
|                  |                     | V <sub>CC</sub> = 6.0 V                       | 14            | 5     | -   | 17     | -         | 20       | -         | ns   |
|                  |                     | nMR HIGH; see Figure 10                       |               |       |     |        |           |          |           |      |
|                  |                     | V <sub>CC</sub> = 2.0 V                       | 80            | 19    | =   | 100    | -         | 120      | 194       | ns   |
|                  |                     | V <sub>CC</sub> = 4.5 V                       | 16            | 7     | 2   | 20     | 2         | 24       | -         | ns   |
|                  |                     | V <sub>CC</sub> = 6.0 V                       | 14            | 6     | -   | 17     |           | 20       | -         | ns   |
| t <sub>rec</sub> | recovery            | nMR to nCP; see Figure 10                     |               |       |     |        |           |          |           |      |
|                  | time                | V <sub>CC</sub> = 2.0 V                       | 5             | 3     | -   | 5      |           | 5        | -         | ns   |
|                  |                     | V <sub>CC</sub> = 4.5 V                       | 5             | 1     | -   | 5      | 19        | 5        | -         | ns   |
|                  |                     | V <sub>CC</sub> = 6.0 V                       | 5             | 1     | -   | 5      | 0±1       | 5        | -         | ns   |

74HC\_HCT393

All information provided in this document is subject to legal disclaimers.

<sup>®</sup> Nexperia B.V. 2017. All rights reserved 8 of 19

Product data sheet

## 74HC393; 74HCT393

Dual 4-bit binary ripple counter

Table 7. Dynamic characteristics ...continued

| Voltages are referenced to GNI | ground = 0 V | ); $C_L = 50 pF$ unless otherwise s | specified; for test circuit see Figure 11. |
|--------------------------------|--------------|-------------------------------------|--------------------------------------------|
|--------------------------------|--------------|-------------------------------------|--------------------------------------------|

| Symbol                   | Parameter                                     | Conditions                                        |      | 25 °C |     |      | -40 °C to +85 °C |         | -40 °C to +125 °C |     |
|--------------------------|-----------------------------------------------|---------------------------------------------------|------|-------|-----|------|------------------|---------|-------------------|-----|
|                          |                                               |                                                   | Min  | Тур   | Max | Min  | Max              | Min     | Max               |     |
| f <sub>clk(max)</sub>    | maximum                                       | see Figure 9                                      |      |       |     |      |                  |         |                   |     |
|                          | clock<br>frequency                            | V <sub>CC</sub> = 2.0 V                           | 6    | 30    | -   | 5    | -                | 4       | -                 | MHz |
|                          | requency                                      | V <sub>CC</sub> = 4.5 V                           | 30   | 90    | -   | 24   | -                | 20      | -                 | MHz |
|                          |                                               | V <sub>CC</sub> = 5 V; C <sub>L</sub> = 15 pF     | 3.50 | 99    | -   | -    | -                | 0=2     | 1.50              | MHz |
|                          |                                               | V <sub>CC</sub> = 6.0 V                           | 35   | 107   | -   | 28   |                  | 24      | -                 | MHz |
| C <sub>PD</sub>          | power<br>dissipation<br>capacitance           | $C_L$ = 50 pF; f = 1 MHz; $V_I$ = GND to $V_{CC}$ | 3-3  | 23    | -   | (8)0 | -                | 1-1     | -                 | pF  |
| 74HCT3                   | 93                                            |                                                   |      |       |     |      |                  |         |                   |     |
| t <sub>pd</sub>          | propagation                                   | nCP to nQ0; see Figure 9                          |      |       |     |      |                  |         |                   |     |
|                          | delay                                         | V <sub>CC</sub> = 4.5 V                           | -    | 15    | 25  | -    | 31               | -       | 38                | ns  |
|                          | V <sub>CC</sub> = 5 V; C <sub>L</sub> = 15 pF | 12                                                | 20   | -     | 2   | -    | -                | -       | ns                |     |
|                          | nQx to nQ(x+1); [1]<br>see Figure 9           |                                                   |      |       |     |      |                  |         |                   |     |
|                          |                                               | V <sub>CC</sub> = 4.5 V                           | -    | 6     | 10  |      | 13               | -       | 15                | ns  |
|                          | V <sub>CC</sub> = 5 V; C <sub>L</sub> = 15 pF |                                                   | 6    | -     | 1.5 | -    | -                | 1070    | ns                |     |
| t <sub>PHL</sub> HIGH to | nMR to nQx; see Figure 10                     |                                                   |      |       |     |      |                  |         |                   |     |
|                          | LOW                                           | V <sub>CC</sub> = 4.5 V                           | -    | 18    | 32  | -    | 40               | 190     | 48                | ns  |
| propagation<br>delay     | V <sub>CC</sub> = 5 V; C <sub>L</sub> = 15 pF | 121                                               | 15   | 2     | 121 | -    | -                | -       | ns                |     |
| tt                       | transition                                    | Qn; see Figure 9                                  |      |       |     |      |                  |         |                   |     |
|                          | time                                          | V <sub>CC</sub> = 4.5 V                           | -    | 7     | 15  | -    | 19               | -       | 22                | ns  |
| t <sub>W</sub>           | pulse width                                   | nCP HIGH or LOW;<br>see Figure 9                  |      |       |     |      |                  |         |                   |     |
|                          |                                               | V <sub>CC</sub> = 4.5 V                           | 19   | 11    | -   | 24   |                  | 29      | -                 | ns  |
|                          |                                               | nMR HIGH; see Figure 10                           |      |       |     |      |                  |         |                   |     |
|                          |                                               | V <sub>CC</sub> = 4.5 V                           | 16   | 6     | -   | 20   | -                | 24      | -                 | ns  |
| t <sub>rec</sub>         | recovery<br>time                              | nMR to nCP;<br>see Figure 10                      |      |       |     |      |                  | 1011120 |                   |     |
|                          |                                               | V <sub>CC</sub> = 4.5 V                           | 5    | 0     | -   | 5    | -                | 5       | -                 | ns  |
| f <sub>clk(max)</sub>    | maximum                                       | see Figure 9                                      |      |       |     |      |                  |         |                   |     |
|                          | clock                                         | V <sub>CC</sub> = 4.5 V                           | 27   | 48    | -   | 22   | -                | 18      | -                 | MHz |
|                          | requency                                      | V <sub>CC</sub> = 5 V; C <sub>L</sub> = 15 pF     | -    | 53    | -   | -    | -                | -       | -                 | MHz |

74HC\_HCT393

All information provided in this document is subject to legal disclaimers.

Nexperia B.V. 2017. All rights reserved
 9 of 19

Product data sheet

## 74HC393; 74HCT393

Dual 4-bit binary ripple counter

Table 7. Dynamic characteristics ...continued

Voltages are referenced to GND (ground = 0 V); C<sub>L</sub> = 50 pF unless otherwise specified; for test circuit see Figure 11.

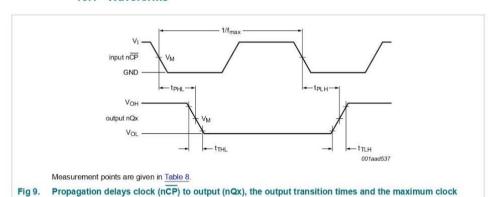
| Symbol Parameter | er Conditions                       |                                                                                            | 25 °C |     | -40 °C to +85 °C |     | -40 °C to +125 °C |     | Unit |   |    |
|------------------|-------------------------------------|--------------------------------------------------------------------------------------------|-------|-----|------------------|-----|-------------------|-----|------|---|----|
|                  |                                     |                                                                                            | Min   | Тур | Max              | Min | Max               | Min | Max  |   |    |
| C <sub>PD</sub>  | power<br>dissipation<br>capacitance | $C_L = 50 \text{ pF}; f = 1 \text{ MHz};$<br>$V_I = \text{GND to } V_{CC} - 1.5 \text{ V}$ | [3]   | -   | 25               | -   | -                 | -   | -    | - | pF |

- [1] t<sub>pd</sub> is the same as t<sub>PLH</sub> and t<sub>PHL</sub>
- [2]  $t_t$  is the same as  $t_{THL}$  and  $t_{TLH}$ .
- [3]  $C_{PD}$  is used to determine the dynamic power dissipation ( $P_D$  in  $\mu W$ ).

 $P_D = C_{PD} \times V_{CC}^2 \times f_i \times N + \sum (C_L \times V_{CC}^2 \times f_o)$  where:

f<sub>i</sub> = input frequency in MHz;

fo = output frequency in MHz;


C<sub>L</sub> = output load capacitance in pF;

V<sub>CC</sub> = supply voltage in V;

N = number of inputs switching;

 $\Sigma(C_L \times V_{CC}^2 \times f_o) = \text{sum of outputs}.$ 

## 10.1 Waveforms

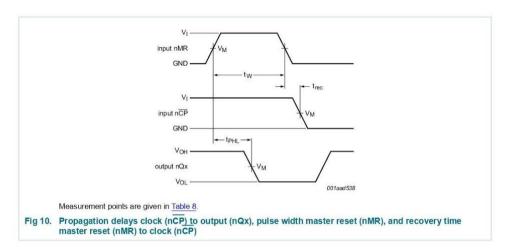


frequency

Table 8. Measurement points

| Туре     | Input              | Output             |  |
|----------|--------------------|--------------------|--|
|          | V <sub>M</sub>     | V <sub>M</sub>     |  |
| 74HC393  | 0.5V <sub>CC</sub> | 0.5V <sub>CC</sub> |  |
| 74HCT393 | 1.3 V              | 1.3 V              |  |

74HC HCT393


All information provided in this document is subject to legal disclaimers.

<sup>®</sup> Nexperia B.V. 2017. All rights reserved 10 of 19

Product data sheet

## 74HC393; 74HCT393

Dual 4-bit binary ripple counter



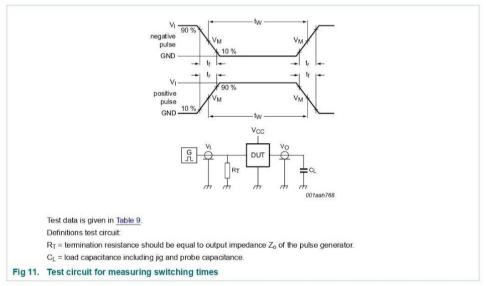



Table 9. Test data

| Туре     | Input           |                                 | Load           | Test                                |
|----------|-----------------|---------------------------------|----------------|-------------------------------------|
|          | V <sub>I</sub>  | t <sub>r</sub> , t <sub>f</sub> | C <sub>L</sub> |                                     |
| 74HC393  | V <sub>CC</sub> | 6.0 ns                          | 15 pF, 50 pF   | t <sub>PLH</sub> , t <sub>PHL</sub> |
| 74HCT393 | 3.0 V           | 6.0 ns                          | 15 pF, 50 pF   | t <sub>PLH</sub> , t <sub>PHL</sub> |

74HC\_HCT393

l information provided in this document is subject to legal disclaime

® Nexperia B.V. 2017. All rights reserve

Product data sheet

Rev. 6 — 3 December 2015

11 of 19

## 74HC393; 74HCT393

Dual 4-bit binary ripple counter

### 11. Package outline

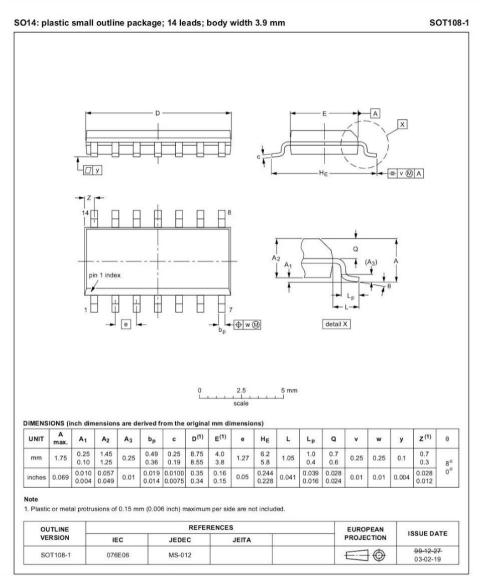



Fig 12. Package outline SOT108-1 (SO14)

HC\_HCT393 All information provided in this document is subject to legal disclaimers.

<sup>®</sup> Nexperia B.V. 2017. All rights reserved 12 of 19

Product data sheet

Rev. 6 — 3 December 2015

12 01 19

Dual 4-bit binary ripple counter

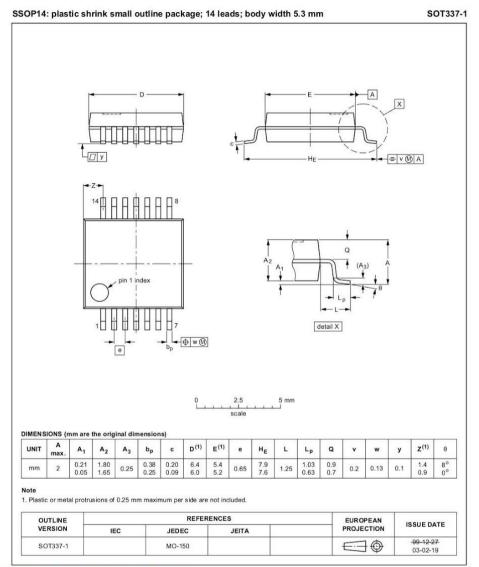



Fig 13. Package outline SOT337-1 (SSOP14)

74HC\_HCT393 All information provided in this document is subject to legal disclaimers. 

\*Nexperia B:

Product data sheet Rev. 6 — 3 December 2015

13 of 19

## 74HC393; 74HCT393

Dual 4-bit binary ripple counter

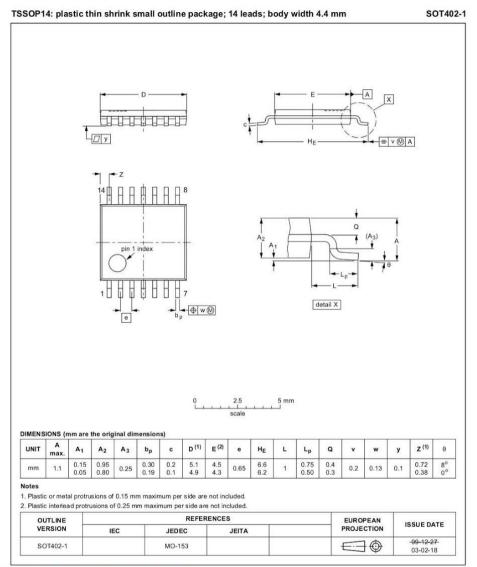



Fig 14. Package outline SOT402-1 (TSSOP14)

74HC\_HCT393 All information provided in this document is subject to legal disclaimers.

• Nexperia B.V. 2017.

Product data sheet Rev. 6 — 3 December 2015

14 of 19

Dual 4-bit binary ripple counter

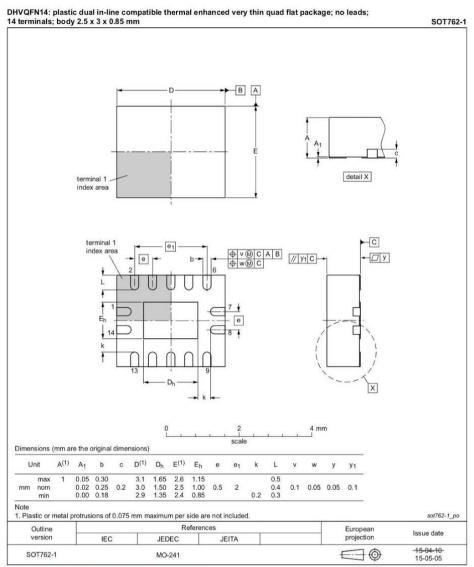



Fig 15. Package outline SOT762-1 (DHVQFN14)

74HC\_HCT303 All information provided in this document is subject to legal disclaimers. 6 Nexperia IB.V. 2017. All rights reserved

Product data sheet Rev. 6 — 3 December 2015 15 of 19

## 74HC393; 74HCT393

Dual 4-bit binary ripple counter

#### 12. Abbreviations

### Table 10. Abbreviations

| Acronym | Description                             |  |
|---------|-----------------------------------------|--|
| CMOS    | Complementary Metal-Oxide Semiconductor |  |
| DUT     | Device Under Test                       |  |
| ESD     | ElectroStatic Discharge                 |  |
| НВМ     | Human Body Model                        |  |
| MM      | Machine Model                           |  |

## 13. Revision history

#### Table 11. Revision history

| Document ID         | Release date  | Data sheet status                                                           | Change notice      | Supersedes                                      |
|---------------------|---------------|-----------------------------------------------------------------------------|--------------------|-------------------------------------------------|
| 74HC_HCT393 v.6     | 20151203      | Product data sheet                                                          | -                  | 74HC_HCT393 v.5                                 |
| Modifications:      | Type numb     | ers 74HC393N and 74HC                                                       | T393N (SOT27-1) re | emoved.                                         |
| 74HC_HCT393 v.5     | 20140401      | Product data sheet                                                          | -                  | 74HC_HCT393 v.4                                 |
| Modifications:      | The condition | ons for C <sub>PD</sub> have been co                                        | rrected (errata).  |                                                 |
| 74HC_HCT393 v.4     | 20130516      | Product data sheet                                                          | -                  | 74HC_HCT393 v.3                                 |
| Modifications:      | guidelines o  | of this data sheet has been of NXP Semiconductors. have been adapted to the |                    | mply with the new identity e where appropriate. |
| 74HC_HCT393 v.3     | 20050906      | Product data sheet                                                          | -                  | 74HC_HCT393_CNV v.2                             |
| 74HC HCT393 CNV v.2 | 19901201      | Product specification                                                       | -                  | -                                               |

74HC\_HCT393

All information provided in this document is subject to legal disclaimer

Nexperia B.V. 2017. All rights reserved
 16 of 19

Product data sheet

## 74HC393; 74HCT393

Dual 4-bit binary ripple counter

#### 14. Legal information

#### 14.1 Data sheet status

| Document status[1][2]          | Product status[3] | Definition                                                                           |
|--------------------------------|-------------------|--------------------------------------------------------------------------------------|
| Objective [short] data sheet   | Development       | This document contains data from the objective specification for product development |
| Preliminary [short] data sheet | Qualification     | This document contains data from the preliminary specification.                      |
| Product [short] data sheet     | Production        | This document contains the product specification.                                    |

- [1] Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions"
- 3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL <a href="http://www.nexperia.com">http://www.nexperia.com</a>.

#### 14.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. Nexperia does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local Nexperia sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between Nexperia and its customer, unless Nexperia and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the Nexperia product is

customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the Nexperia product is deemed to offer functions and qualities beyond those described in the Product data sheet.

#### 14.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, Nexperia does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. Nexperia takes no responsibility for the content in this document if provided by an information source outside of Nexperia.

In no event shall Nexperia be liable for any indirect, incidental, punitive, special or consequential damages (including—without limitation—lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, Nexperia's aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of Nexperia.

Right to make changes — Nexperia reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — Nexperia products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of a Nexperia product can reasonably be expected to result in personal injury, death or severe property or environmental damage. Nexperia and its suppliers accept no liability for inclusion and/or use of Nexperia products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk

Applications — Applications that are described herein for any of these products are for illustrative purposes only. Nexperia makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using Nexperia products, and Nexperia accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the Nexperia product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

Nexperia does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using Nexperia products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). Nexperia does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — Nexperia products are sold subject to the general terms and conditions of commercial sale, as published at <a href="http://www.nexperia.com/profile/terms">http://www.nexperia.com/profile/terms</a>, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. Nexperia hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of Nexperia products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

74HC HCT393

All information provided in this document is subject to legal disclaimers.

® Nexperia B.V. 2017. All rights reserve

17 of 19

Product data sheet

## 74HC393; 74HCT393

Dual 4-bit binary ripple counter

**Export control** — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Non-automotive qualified products — Unless this data sheet expressly states that this specific Nexperia product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. Nexperia accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without Nexperia's warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond

Nexperia's specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies Nexperia for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond Nexperia's standard warranty and Nexperia's product specifications.

**Translations** — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

#### 14.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

#### 15. Contact information

For more information, please visit: http://www.nexperia.com

For sales office addresses, please send an email to: <a href="mailto:salesaddresses@nexperia.com">salesaddresses@nexperia.com</a>

74нс\_нстзез
Product data sheet

All information provided in this document is subject to legal disclaimers.

Rev. 6 — 3 December 2015

<sup>6</sup> Nexperia B.V. 2017. All rights reserved 18 of 19

#### 11.- 74LS157

SDLS058

SN54157, SN54LS157, SN54LS158, SN54S157, SN54S158, SN74157, SN74LS157, SN74LS158, SN74S157, SN74S158 QUADRUPLE 2-LINE TO 1-LINE DATA SELECTORS/MULTIPLEXERS MARCH 1974 — REVISEO MARCH 1988

**Buffered Inputs and Outputs** 

Three Speed/Power Ranges Available

| TYPES          | TYPICAL<br>AVERAGE<br>PROPAGATION<br>TIME | TYPICAL<br>POWER<br>DISSIPATION |  |
|----------------|-------------------------------------------|---------------------------------|--|
| 157            | 9 ns                                      | 150 mW                          |  |
| 'LS157         | 9 ns                                      | 49 mW                           |  |
| <b>'</b> \$157 | 5 ns                                      | 250 mW                          |  |
| 'LS158         | 7 ns                                      | 24 mW                           |  |
| 'S158          | 4 ns                                      | 195 mW                          |  |

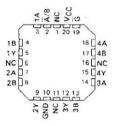
#### applications

- Expand Any Data Input Point
- Multiplex Dual Data Buses
- Generate Four Functions of Two Variables (One Variable Is Common)
- Source Programmable Counters

#### description

These monolithic data selectors/multiplexers contain inverters and drivers to supply full on-chip data selection to the four output gates. A separate strobe input is provided. A 4-bit word is selected from one of two sources and is routed to the four outputs. The '157, 'LS157, and 'S157 present true data whereas the 'LS158 and 'S158 present inverted data to minimize propagation delay time.

FUNCTION TARLE


|        | INPU          | OUTP | UT Y |                        |        |
|--------|---------------|------|------|------------------------|--------|
| STROEE | SELECT<br>A/B | А    | в    | '157,<br>'LS157, 'S157 | 'LS158 |
| н      | X             | ×    | ×    | L                      | H      |
| L      | L             | L    | ×    | L                      | н      |
| L      | L             | Н    | ×    | н                      | L      |
| L      | н             | ×    | L    | L                      | н      |
| L      | H             | ×    | H    | н                      | L      |

H = high level, L = low level, X = irrelevant

SN54157, SN54LS157, SN54S157, SN54LS158, SN64S158... J OR W PACKAGE SN74157... N PACKAGE SN74LS157, SN74S157, SN74LS158, SN74S159... D OR N PACKAGE (TOP VIEW)

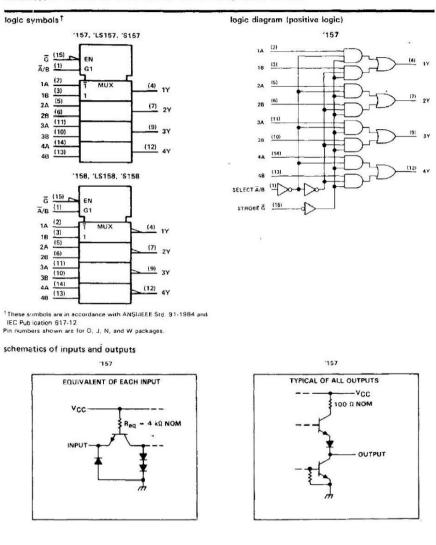
| A/B[ | Ti | U <sub>16</sub> | Vcc         |
|------|----|-----------------|-------------|
| 1AC  | 2  | 15              | G           |
| 18   | 3  | 14              | ] 4A        |
| 1Y   | 4  | 13              | ☐ 4B        |
| 2A [ | 5  | 12              | 4Y          |
| 2B [ | 6  | 11              | _ 3A        |
| 2Y [ | 7  | 10              | <b>∃</b> 3B |
| GND  | 8  | 9               | 3Y          |

\$N54L\$157. \$N64\$167, \$N64L\$168, \$N54\$158 . . . FK PACKAGE (TOP VIEW)

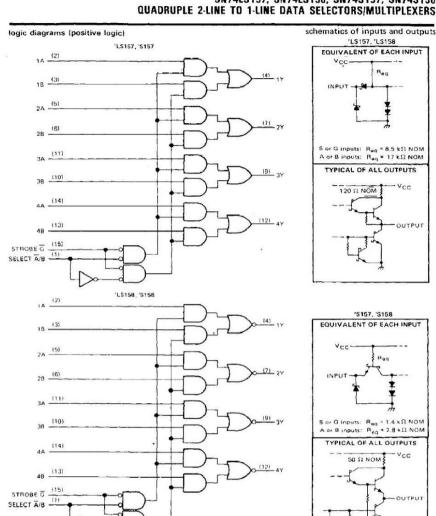


NC - No internal connection

#### absolute maximum ratings over operating free-air temperature range (unless otherwise noted)


| Supply voltage, VCC (See Note 1)      |       | 7 V               |
|---------------------------------------|-------|-------------------|
|                                       |       |                   |
|                                       |       |                   |
| Operating free-air temperature range; | SN54' | -55°C to 125°C    |
|                                       | SN74' | 0°C to 70°C       |
| Storage temperature range             |       | - 65 9C to 150 9C |

NOTE 1: Voltage values are with respect to network ground terminal


PRODUCTION DATA documents contain information current as of publication date. Products conform to specifications our the terms of Texas Instruments standard wavenety. Production processing does not not usuality include testing of all parameters.



SN54157, SN54LS157, SN54LS158, SN54S157, SN54S158, SN74157, SN74LS157, SN74LS158, SN74S157, SN74S158 QUADRUPLE 2-LINE TO 1-LINE DATA SELECTORS/MULTIPLEXERS







TEXAS INSTRUMENTS
POST OFFICE 80X 655012 + DALLAS, TEXAS 75265

Pin numbers shown are for D. J. N, and W packages

SN54LS157, SN54LS158, SN54S157, SN54S158, SN74LS157, SN74LS158, SN74S157, SN74S158 QUADRUPLE 2-LINE TO 1-LINE DATA SELECTORS/MULTIPLEXERS

# SN54157, SN74157 QUADRUPLE 2-LINE TO 1-LINE DATA SELECTORS/MULTIPLEXERS

#### recommended operating conditions

|                                    |     | SN54157 |      |      | SN74157 |      |      |
|------------------------------------|-----|---------|------|------|---------|------|------|
|                                    | MIN | NOM     | MAX  | MIN  | NOM     | MAX  | UNIT |
| Supply voltage, VCC                | 4.5 | 5       | 5.5  | 4.75 | 5       | 5.25 | V    |
| High-level output current, IOH     |     |         | -800 |      |         | -800 | μА   |
| Low-level output current, IOL      |     |         | 16   |      |         | 16   | mA   |
| Operating free-air temperature, TA | -55 |         | 125  | 0    |         | . 70 | °C   |

#### electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

|      | PARAMETER                              | 7507.0                                             |                                                     |     | SN5415 | 7     |     | SN7415 | 7     | UNIT |
|------|----------------------------------------|----------------------------------------------------|-----------------------------------------------------|-----|--------|-------|-----|--------|-------|------|
|      | PARAMETER                              | TEST C                                             | DNDITIONS                                           | MIN | TYPE   | MAX   | MIN | TYP#   | MAX   | UNII |
| VIH  | High-level input voltage               |                                                    |                                                     | 2   |        |       | 2   |        |       | V    |
| VII. | Low-level input voltage                |                                                    |                                                     |     |        | 0.8   |     |        | 0.8   | V    |
| VIK  | Input clamp voltage                    | VCC = MIN.                                         | 1 <sub>1</sub> = - 12 mA                            | 1   |        | - 1.5 |     |        | - 1.5 | V    |
| Vон  | High-level output voltage              | V <sub>CC</sub> = MIN,<br>V <sub>IL</sub> = 0.8 V, | V <sub>IH</sub> = 2 V,<br>I <sub>OH</sub> = -800 μA | 2.4 | 3.4    |       | 2.4 | 3.4    |       | v    |
| VOL  | Low-level output voltage               | V <sub>CC</sub> = MIN.<br>V <sub>IL</sub> ≈ 0.8 V, | V <sub>IH</sub> = 2 V,<br>I <sub>OL</sub> = 16 mA   |     | 0.2    | 0.4   |     | 0.2    | 0.4   | ٧    |
| 11   | Input current at maximum input voltage | VCC = MAX                                          | V <sub>I</sub> = 5.5 V                              |     |        | 1     |     |        | 1     | mA   |
| ЧН   | High-level input current               | VCC = MAX.                                         | V <sub>1</sub> = 2.4 V                              |     |        | 40    |     |        | 40    | ДД   |
| III. | Low-level input current                | VCC = MAX.                                         | V1 = 0.4 V                                          |     |        | -1.6  |     |        | -1.6  | mA   |
| los  | Short-circuit output currents          | VCC - MAX                                          |                                                     | -20 |        | -55   | -18 |        | -55   | mA   |
| ICC  | Supply current                         | VCC = MAX.                                         | See Note 2                                          |     | 30     | 48    |     | 30     | 48    | mA   |

For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions. FAII typical values are at  $V_{\rm CC} = 5$  V,  $T_{\rm A} = 25^{\circ}{\rm C}$ . 8 Not more than one output should be shorted at a time and duration of short-circuit should not exceed one second. NOTE 2:  $T_{\rm CC}$  is measured with 4.5 V applied to all inputs and all outputs open.

#### switching characteristics, VCC = 5 V, TA = 25°C

| PARAMETER        | FROM (INPUT) | TEST CONDITIONS                        | MIN       | TYP | MAX | UNI |
|------------------|--------------|----------------------------------------|-----------|-----|-----|-----|
| 1PLH             |              |                                        |           | 9   | 14  |     |
| IPHL             | Data         | 0 15 5                                 |           | 9   | 14  | ns  |
| 1PLH             | Strobe G     | CL = 15 pF,                            | 1 100 000 | 13  | 20  |     |
| 1PHL             | atrone G     | H <sub>L</sub> = 400 12,<br>See Note 3 |           | 14  | 21  | ns  |
| <sup>1</sup> PLH | Select A/B   | See Note 3                             |           | 15  | 23  |     |
| TPHL             | Select A/B   |                                        | -         | 18  | 27  | ns  |

tp<sub>LH</sub> = propagation delay time, low-to-high-level output tp<sub>HL</sub> = propagation delay time, high-to-low-level output NOTE 3: Load circuits and voltage waveforms are shown in Section 1.

Texas 🍎 Instruments INSTRUIVENTS
POST OFFICE BOX 655012 - DALLAS, YEXAS 75265

# SN54LS157, SN54LS158, SN74LS157, SN74LS158 QUADRUPLE 2-LINE TO 1-LINE DATA SELECTORS/MULTIPLEXERS

#### recommended operating conditions

|     |                                |     | SN54LS'     |      |      | SN74LS' |      |     |  |
|-----|--------------------------------|-----|-------------|------|------|---------|------|-----|--|
|     |                                | MIN | NOM         | MAX  | MIN  | NOM     | MAX  | UNI |  |
| Vcc | Supply voltage                 | 4.5 | 5           | 5.5  | 4.75 | 5       | 5.25 | ٧   |  |
| тон | High-level output current      |     |             | -400 |      |         | -400 | μА  |  |
| IOL | Low-level output current       |     | - CV-92-000 | 4    |      |         | 8    | mA  |  |
| TA  | Operating free-air temperature | -55 |             | 125  | 0    | H       | 70   | °C  |  |

#### electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

|      | 200000                   | TC0             |                                                               | T COMPLETION                                     | ot         |      | SN54LS           | *    |     | SN74LS     | 3'   | UNIT |
|------|--------------------------|-----------------|---------------------------------------------------------------|--------------------------------------------------|------------|------|------------------|------|-----|------------|------|------|
|      | PARAME                   | TEH             | TES                                                           | T CONDITION                                      | ısı        | MIN  | TYP <sup>‡</sup> | MAX  | MIN | TYP        | MAX  | UNI  |
| VIH  | High-level inpu          | t voltage       |                                                               |                                                  | S          | 2    | 200              |      | 2   |            |      | V    |
| VII. | Low-level inpu           | t voitage       |                                                               |                                                  |            |      |                  | 0.7  |     |            | 0.8  | V    |
| VIK  | Input clamp vo           | Itage           | VCC = MIN,                                                    | I <sub>I</sub> = -18 mA                          |            |      |                  | -1.5 |     |            | -1.5 | V    |
| voн  | High-level outp          | nut voltage     | VCC = MIN,<br>VIL = MAX,                                      | V <sub>IH</sub> = 2 V,<br>I <sub>OH</sub> = -400 | μΑ         | 2.5  | 3.4              |      | 2.7 | 3.4        |      | v    |
|      | Low-level outp           |                 | VCC = MIN,                                                    | VIH = 2 V.                                       | IoL = 4 mA |      | 0.25             | 0,4  |     | 0.25       | 0.4  | V    |
| VOL  | LBW-level dutp           | ot vortage      | VIL " MAX                                                     | V 4000 10-40 1000                                | IOL = 8 mA |      |                  |      |     | 0.35       | 0.5  | ,    |
| lį.  | Input current at maximum | Ā/B ar G        | V <sub>CC</sub> = MAX,                                        | V1 = 7 V                                         |            |      |                  | 0.2  |     |            | 0.2  | mA   |
|      | input voltage            | A or B          | *CC - IIIAA, *1 , *                                           |                                                  |            |      |                  | 0.1  |     |            | 0.1  |      |
| 1000 | High-level               | A/B or G        |                                                               | V <sub>1</sub> = 2.7 V                           |            |      |                  | 40   |     |            | 40   | μА   |
| 1H   | input current            | A or B          | VCC = MAX,                                                    | V1 = 2.7 V                                       |            |      |                  | 20   |     | A CORNERSO | 20   | ДД   |
|      | Low-level                | A/B or G        | V                                                             | V: = 0.4 V                                       |            |      | 100,000          | -0.8 |     |            | -0.8 | mA   |
| 1L   | input current            | A or B          | VCC = MAX,                                                    | $V_1 = 0.4 \text{ V}$                            |            |      |                  | -0.4 |     |            | -0.4 | min  |
| OS   | Short-circuit or         | utput current § | VCC = MAX                                                     | 5.00                                             |            | -20  |                  | ~100 | -20 |            | -100 | mA   |
|      |                          |                 | I                                                             |                                                  | 'LS157     |      | 9.7              | 16   |     | 9.7        | 16   |      |
|      |                          |                 | VCC = MAX,                                                    | See Note 2                                       | 'LS158     | 0.50 | 4.8              | 8    |     | 4.8        | 8    |      |
| Icc  | Supply current           |                 | V <sub>CC</sub> = MAX,<br>All A inputs at<br>All other inputs |                                                  | 'LS158     |      | 6.5              | 11   |     | 6.5        | 11   | mA   |

For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions. Tall typical values are at  $V_{\rm CC} = 5 \, V_{\rm c} T_{\rm A} = 25 \, {\rm C}$ . Shot more than one outbut should be shorted at a time and duration of short circuit should not exceed one second. NOTE 2:  $T_{\rm CC}$  is measured with 4.5 V applied to all inputs and all outputs open.

#### switching characteristics, VCC = 5 V, TA = 25°C

| PARAMETER | FROM       | TEST CONDITIONS | 'LS157 |     |     | 'LS158 |     |     | UNIT |
|-----------|------------|-----------------|--------|-----|-----|--------|-----|-----|------|
| PARAMETER | (INPUT)    | TEST CONDITIONS | MIN    | TYP | MAX | MIN    | TYP | MAX | UNIT |
| tPLH      | Data       |                 |        | 9   | 14  |        | 7   | 12  |      |
| 1PHL      | Data       | 0 15 5          |        | 9   | 14  |        | 10  | 15  | ns   |
| TPLH      |            | CL = 15 pF,     |        | 13  | 20  |        | 11  | 17  | ns   |
| 1PHL      | Strobe G   | AL = 2 kΩ,      |        | 14  | 21  |        | 18  | 24  | 1112 |
| tPLH      | Select A/B | See Note 3      |        | 15  | 23  |        | 13  | 20  | ns   |
| TPHL      | select A/B |                 |        | 18  | 27  |        | 16  | 24  | 112  |

 $\label{eq:total_total} \begin{array}{ll} t_{PLH} = propagation delay time, low-to-high-level output \\ t_{PHL} = propagation delay time, high-to-low-level output \\ \text{NOTE 3: Load circuits and voltage diagrams are shown in Section 1.} \end{array}$ 



# SN54S157, SN54S158, SN74S157, SN74S158 QUADRUPLE 2-LINE TO 1-LINE DATA SELECTORS/MULTIPLEXERS

#### recommended operating conditions

|                                    | SN54S157<br>SN54S158 |     |     | S    | UNIT |      |    |
|------------------------------------|----------------------|-----|-----|------|------|------|----|
|                                    | MIN                  | NOM | MAX | MIN  | NOM  | MAX  |    |
| Supply voltage, V <sub>CC</sub>    | 4.5                  | 5   | 5.5 | 4.75 | 5    | 5.25 | V  |
| High-level output current, IOH     |                      |     | -1  |      |      | -1   | mA |
| Low-level output current, IOL      |                      |     | 20  | Γ    |      | 20   | mA |
| Operating free-air temperature, TA | 55                   |     | 125 | 0    |      | 70   | °C |

#### electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

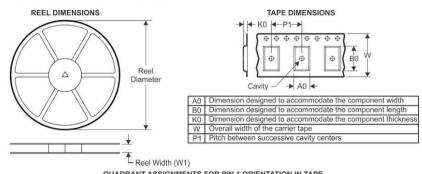
|       | PARAMETER                     |                  | TES                                           | T CONDITIONS                                                                                      | çt         | 1           | N54S1 |      | SN54S158<br>SN74S158 |                                          |      | UNIT |
|-------|-------------------------------|------------------|-----------------------------------------------|---------------------------------------------------------------------------------------------------|------------|-------------|-------|------|----------------------|------------------------------------------|------|------|
|       |                               |                  |                                               |                                                                                                   |            | MIN TYP! MA |       | MAX  | MIN TYPE M           |                                          | MAX  |      |
| VIH   | High-level input voltage      |                  |                                               |                                                                                                   | 70.02      | 2           |       |      | 2                    |                                          |      | V    |
| VIL   | Low-level input voltage       |                  |                                               |                                                                                                   |            |             |       | 8.0  |                      |                                          | 0.8  | V    |
| VIK   | Input clamp voltage           |                  | VCC = MIN,                                    | 1 = -18 mA                                                                                        |            |             |       | -1.2 |                      |                                          | -1.2 | V    |
| ·/-   | Tillet I at a second a second |                  | VCC = MIN.                                    | VIH = 2 V.                                                                                        | Series 545 | 2.5         | 3.4   |      | 2.5                  | 3.4                                      |      | v    |
| νОН   | High-level output voltage     | 2                | VIL = 0.8 V.                                  | 10H = -1 mA                                                                                       | Series 745 | 2.7         | 3.4   |      | 2.7                  | 3.4                                      |      | 1 *  |
| VOL   | Low-level output voltage      | ,                | 0.0                                           | V <sub>CC</sub> = MIN, V <sub>IH</sub> = 2 V,<br>V <sub>IL</sub> = 0.8 V, I <sub>OL</sub> = 20 mA |            |             |       | 0.5  |                      |                                          | 0.5  | ٧    |
| Ц     | Input current at maximu       | im input voltage | VCC = MAX,                                    | V1 = 5.5 V                                                                                        |            |             |       | 1    |                      | 0 00 00<br>W 00 00 00                    | 1    | mΑ   |
| i     | High-level input current      | A/B or G         |                                               | 11 17.11                                                                                          |            |             |       | 100  |                      |                                          | 100  | μА   |
| Ιн    | migh-level input current      | A or B           | VCC = MAX,                                    | V1 = 2.7 V                                                                                        |            |             |       | 50   |                      |                                          | 50   | μд   |
| 157   | Law-level input current       | A/B or G         |                                               |                                                                                                   |            | 1000        |       | -4   |                      | 2 20 00 00 00 00 00 00 00 00 00 00 00 00 | -4   | mA   |
| IIL   | Low-level input current       | A or B           | V <sub>CC</sub> = MAX,                        | VI = 0.5 V                                                                                        |            |             |       | -2   |                      |                                          | -2   | mA   |
| los   | Short-circuit ouput curre     | ent §            | V <sub>CC</sub> = MAX                         |                                                                                                   |            | -40         |       | -100 | -40                  |                                          | -100 | mA   |
| l a a | Supply and a                  |                  | VCC = MAX, All inputs at 4.5 V,<br>See Note 2 |                                                                                                   |            | 50          | 78    |      | 39                   | 61                                       |      |      |
| Icc   |                               |                  | A inputs at 4.5                               |                                                                                                   |            |             |       |      |                      | 81                                       | mA   |      |

For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions. All typical values are at  $V_{CC} = 5 V$ ,  $T_A = 25^{\circ} C$ . S Not more than one output should be shorted at a time, and duration of the short circuit should not exceed one second. Note 2:  $T_{CC}$  is measured with all outputs open.

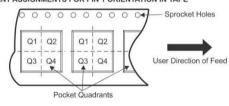
### witching characteristics, $V_{CC} = 5 \text{ V}$ , $T_A = 25^{\circ} \text{C}$

| PARAMETER!      | FROM                | TEST CONDITIONS                                    | SN54S157<br>SN74S157 |     |      | SN54S158<br>SN74S158 |     |      | UNIT |
|-----------------|---------------------|----------------------------------------------------|----------------------|-----|------|----------------------|-----|------|------|
| oran o summa    | (INPUT)             |                                                    | MIN                  | TYP | MAX  | MIN                  | TYP | MAX  |      |
| <sup>TPLH</sup> | Participant Control |                                                    |                      | 5   | 7.5  |                      | 4   | 6    |      |
| TPHL            | Data                | 0 15 -5                                            |                      | 4.5 | 6.5  |                      | 4   | 6    | ns   |
| tPLH .          | Strobe G            | C <sub>L</sub> - 15 pF,<br>R <sub>1</sub> = 280 Ω, |                      | 8.5 | 12,5 |                      | 6.5 | 11.5 | ns   |
| tPHL            | Strobe G            | See Note 3                                         |                      | 7.5 | 12   |                      | 7   | 12   | uz   |
| TPLH            | C-1 - 7/2           | 255 14015 3                                        |                      | 9.5 | 15   |                      | 8   | 12   | ns   |
| TPHL            | TPHL Select A/B     |                                                    |                      | 9.5 | 15   |                      | 8   | 12   | 11.2 |

 $\label{eq:tphi} \begin{array}{ll} t_{PLH} = propagation delay time, low-to-high-level output \\ t_{PHL} = propagation delay time, high-to-low-level output \\ NOTE 3: Load circuits and voltage waveforms are shown in Section 1, \\ \end{array}$ 







### PACKAGE MATERIALS INFORMATION

8-Apr-2013 www.ti.com

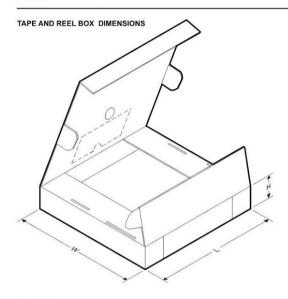
#### TAPE AND REEL INFORMATION



#### QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE



\*All dimensions are nominal

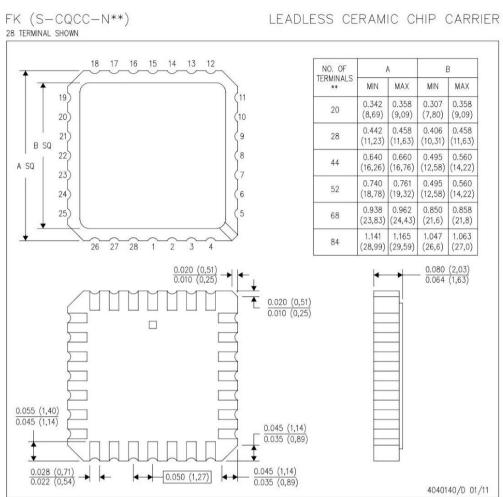

| Device       | Package<br>Type | Package<br>Drawing |    | SPQ  | Reel<br>Diameter<br>(mm) | Reel<br>Width<br>W1 (mm) | A0<br>(mm) | B0<br>(mm) | K0<br>(mm) | P1<br>(mm) | W<br>(mm) | Pin1<br>Quadran |
|--------------|-----------------|--------------------|----|------|--------------------------|--------------------------|------------|------------|------------|------------|-----------|-----------------|
| SN74LS157DR  | SOIC            | D                  | 16 | 2500 | 330.0                    | 16.4                     | 6.5        | 10.3       | 2.1        | 8.0        | 16.0      | Q1              |
| SN74LS158DR  | SOIC            | D                  | 16 | 2500 | 330.0                    | 16.4                     | 6.5        | 10.3       | 2.1        | 8.0        | 16.0      | Q1              |
| SN74LS158NSR | SO              | NS                 | 16 | 2000 | 330.0                    | 16.4                     | 8.2        | 10.5       | 2.5        | 12.0       | 16.0      | Q1              |

Pack Materials-Page 1



## PACKAGE MATERIALS INFORMATION

www.ti.com 8-Apr-2013




#### \*All dimensions are nominal

| Device       | Package Type | Package Drawing | Pins | SPQ  | Length (mm) | Width (mm) | Height (mm) |
|--------------|--------------|-----------------|------|------|-------------|------------|-------------|
| SN74LS157DR  | SOIC         | D               | 16   | 2500 | 333.2       | 345.9      | 28.6        |
| SN74LS158DR  | SOIC         | D               | 16   | 2500 | 333.2       | 345.9      | 28.6        |
| SN74LS158NSR | so           | NS              | 16   | 2000 | 367.0       | 367.0      | 38.0        |

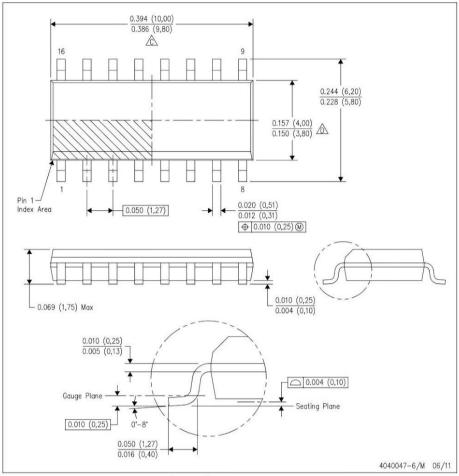
Pack Materials-Page 2

#### **MECHANICAL DATA**



- - This drawing is subject to change without notice.

    This package can be hermetically sealed with a metal lid.


    Falls within JEDEC MS-004



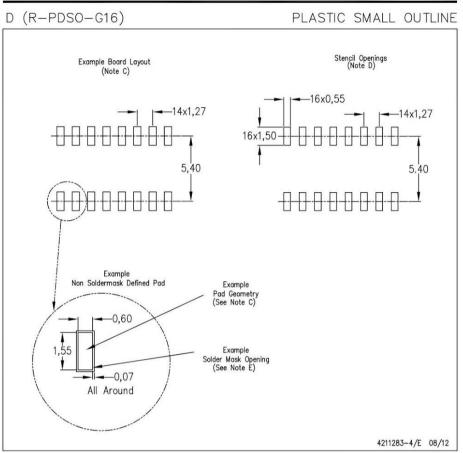
#### **MECHANICAL DATA**

## D (R-PDSO-G16)

#### PLASTIC SMALL OUTLINE



NOTES:


- All linear dimensions are in inches (millimeters). This drawing is subject to change without notice.
  - Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.

    Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.

    Reference JEDEC MS-012 variation AC. 8

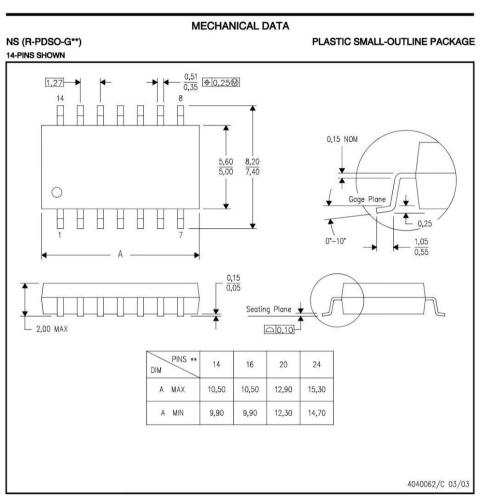


#### **LAND PATTERN DATA**



NOTES:

- A. All linear dimensions are in millimeters.


  B. This drawing is subject to change without notice.

  C. Publication IPC-7351 is recommended for alternate designs.

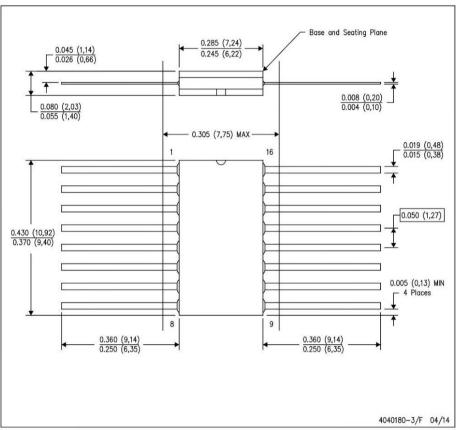
  D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.

  E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.





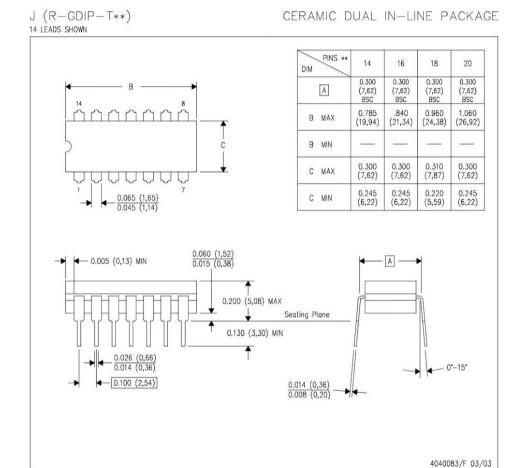
NOTES:


A. All linear dimensions are in millimeters.
 B. This drawing is subject to change without notice.
 C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.



#### **MECHANICAL DATA**

W (R-GDFP-F16)


CERAMIC DUAL FLATPACK

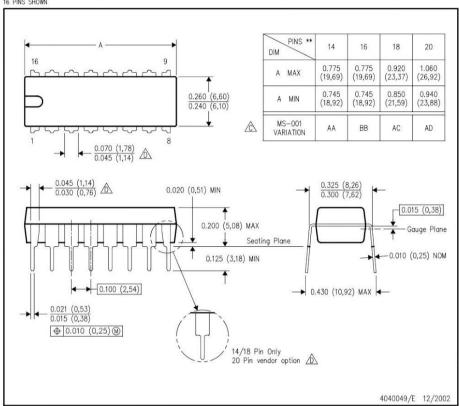


NOTES:

- A. All linear dimensions are in inches (millimeters).
   This drawing is subject to change without notice.
   This package can be hermetically sealed with a ceramic lid using glass frit.
   Index point is provided on cap for terminal identification only.
   Falls within MIL STD 1835 GDFP2-F16






NOTES:

- A. All linear dimensions are in inches (millimeters).
  B. This drawing is subject to change without notice.
  C. This package is hermetically sealed with a ceramic lid using glass frit.
  D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
  E. Falls within MIL STD 1835 GDIP1—T14, GDIP1—T16, GDIP1—T18 and GDIP1—T20.

### **MECHANICAL DATA**

# N (R-PDIP-T\*\*) 16 PINS SHOWN

### PLASTIC DUAL-IN-LINE PACKAGE



- All linear dimensions are in inches (millimeters). This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).

  The 20 pin end lead shoulder width is a vendor option, either half or full width.



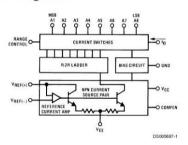
### 12.- DAC0808

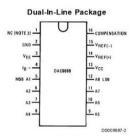


May 1999

## **DAC0808** 8-Bit D/A Converter

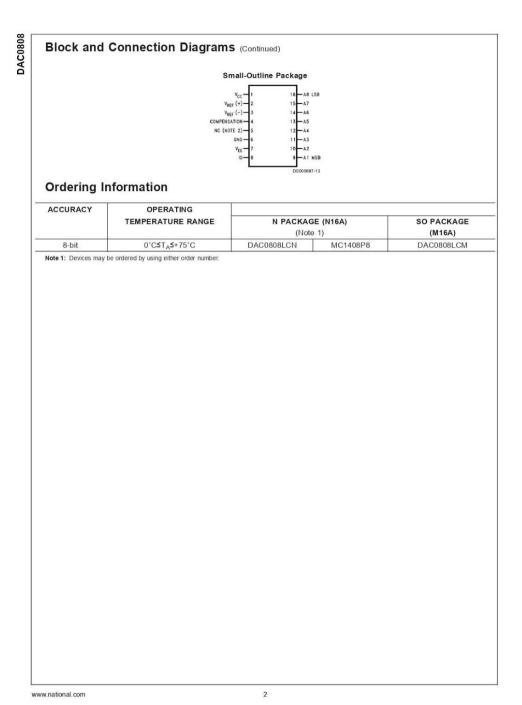
**General Description** 


The DAC0808 is an 8-bit monolithic digital-to-analog converter (DAC) featuring a full scale output current settling time of 150 ns while dissipating only 33 mW with  $\pm$ 5V supplies. No reference current (I<sub>REF</sub>) trimming is required for most applications since the full scale output current is typically ±1 LSB of 255 I<sub>REF</sub>/256. Relative accuracies of better than ±0.19% assure 8-bit monotonicity and linearity while zero level output current of less than 4  $\mu$ A provides 8-bit zero accuracy for I<sub>REF</sub>≥2 mA. The power supply currents of the DAC0808 is independent of bit codes, and exhibits essentially constant device characteristics over the entire supply


The DAC0808 will interface directly with popular TTL, DTL or CMOS logic levels, and is a direct replacement for the MC1508/MC1408. For higher speed applications, see DAC0800 data sheet

#### **Features**

- Relative accuracy: ±0.19% error maximum
- Full scale current match: ±1 LSB tvp
- Fast settling time: 150 ns typ
- Noninverting digital inputs are TTL and CMOS compatible
- High speed multiplying input slew rate: 8 mA/µs
   Power supply voltage range: ±4.5V to ±18V
- Low power consumption: 33 mW @ ±5V


#### **Block and Connection Diagrams**





Top View Order Number DAC0808 See NS Package M16A or N16A

© 2001 National Semiconductor Corporation



pág. 184

### Absolute Maximum Ratings (Note 2)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Power Supply Voltage

| V <sub>CC</sub>                      | +18 V <sub>DC</sub>                          |
|--------------------------------------|----------------------------------------------|
| V <sub>EE</sub>                      | -18 V <sub>DC</sub>                          |
| Digital Input Voltage, V5-V12        | $-10 \text{ V}_{DC}$ to $+18 \text{ V}_{DC}$ |
| Applied Output Voltage, Vo           | $-11 V_{DC}$ to $+18 V_{DC}$                 |
| Reference Current, I <sub>14</sub>   | 5 mA                                         |
| Reference Amplifier Inputs, V14, V15 | V <sub>CC</sub> , V <sub>EE</sub>            |
| Power Dissipation (Note 4)           | 1000 mW                                      |
| ESD Susceptibility (Note 5)          | TBD                                          |
|                                      |                                              |

| Storage Temperature Range          | -65°C to +150°C |
|------------------------------------|-----------------|
| Lead Temp. (Soldering, 10 seconds) |                 |
| Dual-In-Line Package (Plastic)     | 260°C           |
| Dual-In-Line Package (Ceramic)     | 300°C           |
| Surface Mount Package              |                 |
| Vapor Phase (60 seconds)           | 215°C           |
| Infrared (15 seconds)              | 220°C           |

### **Operating Ratings**

| Temperature Range | $T_{MIN} \le T_A \le T_{MAX}$ |
|-------------------|-------------------------------|
| DAC0808           | 0 ≤T <sub>A</sub> ≤ +75°C     |

### **Electrical Characteristics**

 $(V_{CC} = 5V, V_{EE} = -15 V_{DC}, V_{REF}/R14 = \frac{1}{2} mA$ , and all digital inputs at high logic level unless otherwise noted.)

| Symbol                              | Parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Conditions                                    | Min   | Тур      | Max         | Units           |
|-------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|-------|----------|-------------|-----------------|
| Er                                  | Relative Accuracy (Error Relative                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (Figure 4)                                    |       |          |             | %               |
|                                     | to Full Scale Io)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | F-96 (20) 1 200.                              |       |          |             |                 |
|                                     | DAC0808LC (LM1408-8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                               |       |          | ±0.19       | %               |
|                                     | Settling Time to Within ½ LSB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | T <sub>A</sub> =25°C (Note 7),                |       | 150      |             | ns              |
|                                     | (Includes t <sub>PLH</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (Figure 5)                                    |       |          |             |                 |
| t <sub>PLH</sub> , t <sub>PHL</sub> | Propagation Delay Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | T <sub>A</sub> = 25°C, (Figure 5)             |       | 30       | 100         | ns              |
| TCIo                                | Output Full Scale Current Drift                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                               |       | ±20      |             | ppm/°C          |
| MSB                                 | Digital Input Logic Levels                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (Figure 3)                                    |       |          |             |                 |
| V <sub>IH</sub>                     | High Level, Logic "1"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Biogrammer 2-40                               | 2     |          |             | V <sub>DC</sub> |
| VIL                                 | Low Level, Logic "0"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                               |       |          | 0.8         | V <sub>DC</sub> |
| MSB                                 | Digital Input Current                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (Figure 3)                                    |       |          |             |                 |
|                                     | High Level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | V <sub>IH</sub> = 5V                          |       | 0        | 0.040       | mA              |
|                                     | Low Level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | V <sub>IL</sub> = 0.8V                        |       | -0.003   | -0.8        | mA              |
| 15                                  | Reference Input Bias Current                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (Figure 3)                                    |       | -1       | -3          | μА              |
| 10                                  | Output Current Range                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (Figure 3)                                    |       |          |             | -               |
|                                     | 300 mail 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | V <sub>FF</sub> = -5V                         | 0     | 2.0      | 2.1         | mA              |
|                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | V <sub>EE</sub> = -15V, T <sub>A</sub> = 25°C | 0     | 2.0      | 4.2         | mA              |
| l <sub>o</sub>                      | Output Current                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | V <sub>REF</sub> = 2.000V,                    |       |          |             |                 |
|                                     | JAMA 0 + A No. ■ 1000 1 House (100 min 400 may 40 | $R14 = 1000\Omega$                            |       |          |             |                 |
|                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (Figure 3)                                    | 1.9   | 1.99     | 2.1         | mA              |
|                                     | Output Current, All Bits Low                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (Figure 3)                                    | 19400 | 0        | 4           | μА              |
|                                     | Output Voltage Compliance (Note 3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | E <sub>r</sub> ≤ 0.19%, T <sub>A</sub> = 25°C |       |          | 350-0.      | •20000          |
|                                     | V <sub>EE</sub> =-5V, I <sub>REE</sub> =1 mA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                               |       |          | -0.55, +0.4 | V <sub>DC</sub> |
|                                     | V <sub>EF</sub> Below -10V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                               |       |          | -5.0, +0.4  | V <sub>DC</sub> |
| SRI <sub>RFF</sub>                  | Reference Current Slew Rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (Figure 6)                                    | 4     | 8        |             | mA/µs           |
| T.L.                                | Output Current Power Supply                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -5V ≤ V <sub>EE</sub> ≤ -16.5V                |       | 0.05     | 2.7         | μA/V            |
|                                     | Sensitivity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                               |       | 25,50000 |             | 2/100000        |
|                                     | Power Supply Current (All Bits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (Figure 3)                                    |       |          |             |                 |
|                                     | Low)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                               |       |          |             |                 |
| lcc                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                               |       | 2.3      | 22          | mA              |
| I <sub>EE</sub>                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                               |       | -4.3     | -13         | mA              |
|                                     | Power Supply Voltage Range                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | T <sub>A</sub> = 25°C, (Figure 3)             |       |          | 10000       |                 |
| V <sub>CC</sub>                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                               | 4.5   | 5.0      | 5.5         | V <sub>DC</sub> |
| V <sub>EE</sub>                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                               | -4.5  | -15      | -16.5       | V <sub>DC</sub> |
| - LLC                               | Power Dissipation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | +                                             |       |          | 140.5350    | - 50            |

#### **Electrical Characteristics** (Continued)

 $(V_{CC} = 5V, V_{EE} = -15 V_{DC}, V_{REF}/R14 = 2 mA$ , and all digital inputs at high logic level unless otherwise noted.)

| Symbol | Parameter     | Conditions                                    | Min | Тур | Max | Units |
|--------|---------------|-----------------------------------------------|-----|-----|-----|-------|
|        | All Bits Low  | V <sub>CC</sub> = 5V, V <sub>EE</sub> = -5V   |     | 33  | 170 | mW    |
|        |               | $V_{CC} = 5V, V_{EE} = -15V$                  |     | 106 | 305 | mW    |
|        | All Bits High | $V_{CC} = 15V, V_{EE} = -5V$                  |     | 90  |     | mW    |
|        |               | V <sub>CC</sub> = 15V, V <sub>EE</sub> = -15V |     | 160 |     | mW    |

Note 2: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications do not apply when operating the device beyond its specified operating conditions.

Note 3: Range control is not required.

Note 4: The maximum power dissipation must be derated at elevated temperatures and is dictated by  $T_{JMAX}$ ,  $\theta_{JA}$ , and the ambient temperature,  $T_A$ . The maximum allowable power dissipation at any temperature is  $P_D = (T_{JMAX} - T_A)\theta_{JA}$  or the number given in the Absolute Maximum Ratings, whichever is lower. For this device,  $T_{JMAX} = 125^{\circ}C$ , and the typical junction-to-ambient thermal resistance of the dual-in-line J package when the board mounted is 100°C/W. For the dual-in-line N package, this number increases to 175°C/W and for the small outline M package this number is 100°C/W.

Note 5: Human body model, 100 pF discharged through a 1.5 k $\Omega$  resistor.

Note 6: All current switches are tested to guarantee at least 50% of rated current. Note 7: All bits switched.

Note 8: Pin-out numbers for the DAL080X represent the dual-in-line package. The small outline package pinout differs from the dual-in-line package.

### **Typical Application**

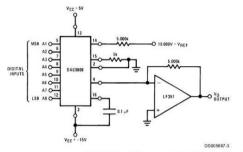
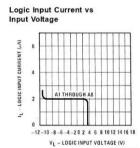
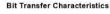
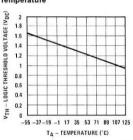
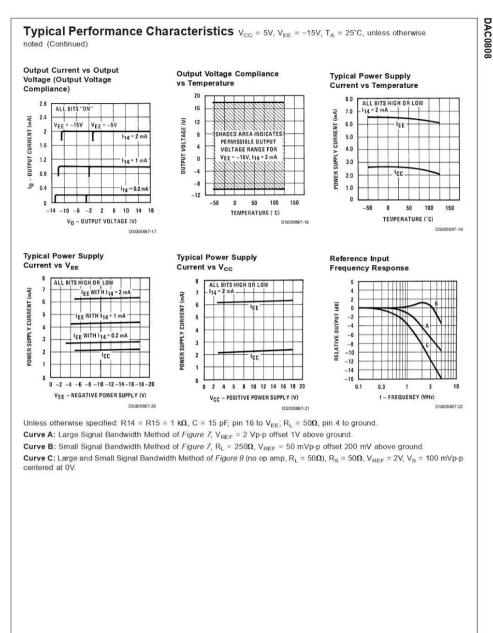
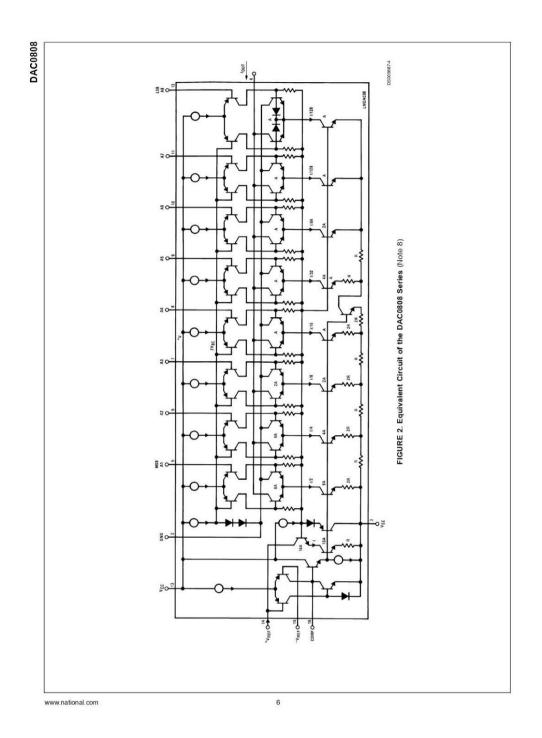




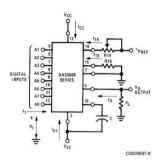

FIGURE 1. +10V Output Digital to Analog Converter (Note 8)


### Typical Performance Characteristics $v_{CC}$ = 5V, $V_{EE}$ = -15V, $T_A$ = 25°C, unless otherwise noted



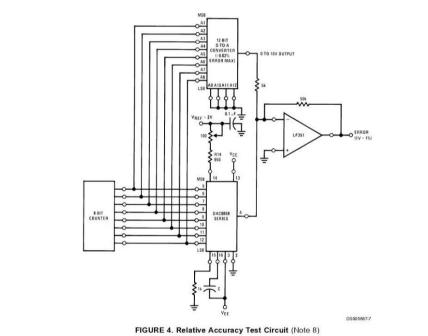


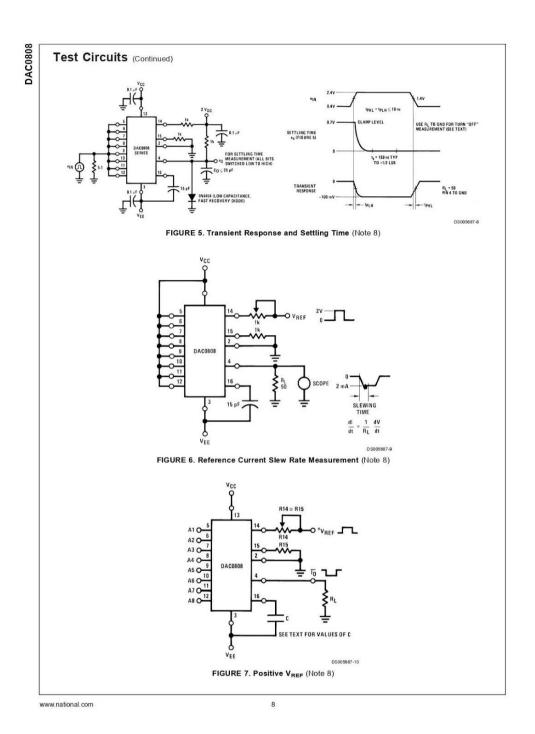


Logic Threshold Voltage vs Temperature








### **Test Circuits**




V<sub>I</sub> and I<sub>I</sub> apply to inputs A1–A8. The resistor field to pin 15 is to temperature compensate the bias current and may not be necessary for all applications.

$$I_O = K \left( \frac{A1}{2} + \frac{A2}{4} + \frac{A3}{8} + \frac{A4}{16} + \frac{A5}{32} + \frac{A6}{64} + \frac{A7}{128} + \frac{A8}{256} \right)$$

FIGURE 3. Notation Definitions Test Circuit (Note 8)





pág. 190

#### Test Circuits (Continued)

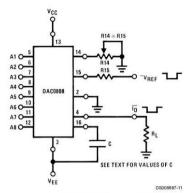



FIGURE 8. Negative V<sub>REF</sub> (Note 8)

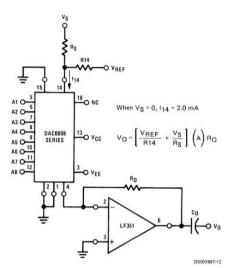



FIGURE 9. Programmable Gain Amplifier or Digital Attenuator Circuit (Note 8)

### **Application Hints**

#### REFERENCE AMPLIFIER DRIVE AND COMPENSATION

The reference amplifier provides a voltage at pin 14 for converting the reference voltage to a current, and a turn-around circuit or current mirror for feeding the ladder. The reference amplifier input currrent, I<sub>14</sub>, must always flow into pin 14, regardless of the set-up method or reference voltage polarity.

Connections for a positive voltage are shown in Figure 7. The reference voltage source supplies the full current I<sub>14</sub>.

For bipolar reference signals, as in the multiplying mode, R15 can be tied to a negative voltage corresponding to the minimum input level. It is possible to eliminate R15 with only a small sacrifice in accuracy and temperature drift.

The compensation capacitor value must be increased with increases in R14 to maintain proper phase margin; for R14 values of 1, 2.5 and 5 k $\Omega$ , minimum capacitor values are 15, 37 and 75 pF. The capacitor may be field to either  $V_{\rm EE}$  or ground, but using  $V_{\rm EE}$  increases negative supply rejection.

A negative reference voltage may be used if R14 is grounded and the reference voltage is applied to R15 as shown in *Figure 8*. A high input impedance is the main

#### Application Hints (Continued)

advantage of this method. Compensation involves a capacitor to  $V_{\text{EE}}$  on pin 16, using the values of the previous paragraph. The negative reference voltage must be at least 4V above the  $V_{\text{EE}}$  supply. Bipolar input signals may be handled by connecting R14 to a positive reference voltage equal to the peak positive input level at pin 15.

When a DC reference voltage is used, capacitive bypass to ground is recommended. The 5V logic supply is not recommended as a reference voltage. If a well regulated 5V supply which drives logic is to be used as the reference, R14 should be decoupled by connecting it to 5V through another resistor and bypassing the junction of the 2 resistors with 0.1  $\mu F$  to ground. For reference voltages greater than 5V, a clamp diode is recommended between pin 14 and ground.

If pin 14 is driven by a high impedance such as a transistor current source, none of the above compensation methods apply and the amplifier must be heavily compensated, decreasing the overall bandwidth.

#### **OUTPUT VOLTAGE RANGE**

The voltage on pin 4 is restricted to a range of -0.55 to 0.4V when  $V_{\rm EE}=-5V$  due to the current switching methods employed in the DAC0808.

The negative output voltage compliance of the DAC0808 is extended to -5V where the negative supply voltage is more negative than -10V. Using a full-scale current of 1.992 mA and load resistor of 2.5 k $\Omega$  between pin 4 and ground will yield a voltage output of 256 levels between 0 and -4.980V. Floating pin 1 does not affect the converter speed or power dissipation. However, the value of the load resistor determines the switching time due to increased voltage swing. Values of R<sub>L</sub> up to  $500\Omega$  do not significantly affect performance, but a 2.5 k $\Omega$  load increases worst-case settling time to 1.2 µs (when all bits are switched ON). Refer to the subsequent text section on Settling Time for more details on output loading.

#### OUTPUT CURRENT RANGE

The output current maximum rating of 4.2 mA may be used only for negative supply voltages more negative than –8V, due to the increased voltage drop across the resistors in the reference current amplifier.

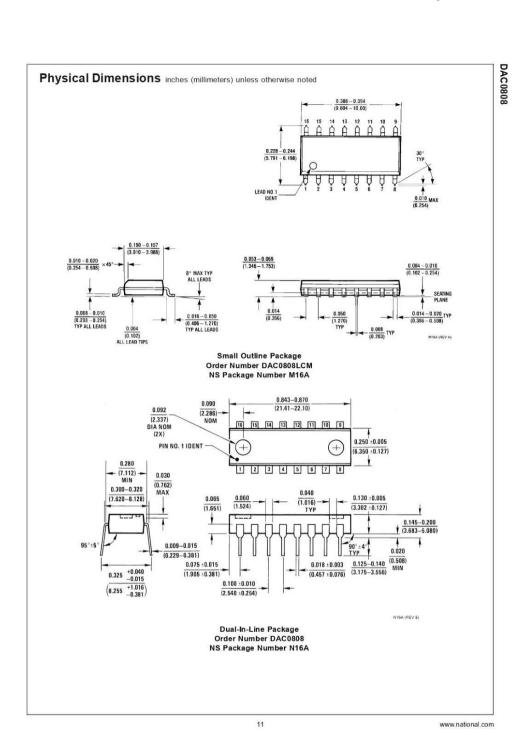
#### ACCURACY

Absolute accuracy is the measure of each output current level with respect to its intended value, and is dependent upon relative accuracy and full-scale current drift. Relative accuracy is the measure of each output current level as a fraction of the full-scale current. The relative accuracy of the DAC0808 is essentially constant with temperature due to the excellent temperature tracking of the monolithic resistor lad-

der. The reference current may drift with temperature, causing a change in the absolute accuracy of output current. However, the DAC0808 has a very low full-scale current drift with temperature.

The DAC0808 series is guaranteed accurate to within ±½ LSB at a full-scale output current of 1.992 mA. This corresponds to a reference amplifier output current drive to the ladder network of 2 mA, with the loss of 1 LSB (8 μA) which is the ladder remainder shunted to ground. The input current to pin 14 has a guaranteed value of between 1.9 and 2.1 mA, allowing some mismatch in the NPN current source pair. The accuracy test circuit is shown in *Figure 4*. The 12-bit converter is calibrated for a full-scale output current of 1.992 mA. This is an optional step since the DAC0808 accuracy is essentially the same between 1.5 and 2.5 mA. Then the DAC0808 circuits' full-scale current is trimmed to the same value with R14 so that a zero value appears at the error amplifier output. The counter is activated and the error band may be displayed on an oscilloscope, detected by comparators, or stored in a peak detector.

Two 8-bit D-to-A converters may not be used to construct a 16-bit accuracy D-to-A converter. 16-bit accuracy implies a total error of  $\pm \frac{1}{2}$  of one part in 65,536 or  $\pm 0.00076\%$ , which is much more accurate than the  $\pm 0.019\%$  specification provided by the DAC0808.


#### MULTIPLYING ACCURACY

The DAC0808 may be used in the multiplying mode with 8-bit accuracy when the reference current is varied over a range of 256:1. If the reference current in the multiplying mode ranges from 16  $\mu\text{A}$  to 4 mA, the additional error contributions are less than 1.6  $\mu\text{A}$ . This is well within 8-bit accuracy when referred to full-scale.

A monotonic converter is one which supplies an increase in current for each increment in the binary word. Typically, the DAC0808 is monotonic for all values of reference current above 0.5 mA. The recommended range for operation with a DC reference current is 0.5 to 4 mA.

#### SETTLING TIME

Extra care must be taken in board layout since this is usually the dominant factor in satisfactory test results when measuring settling time. Short leads, 100 µF supply bypassing for low frequencies, and minimum scope lead length are all mandatory.



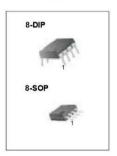
pág. 193

### 13.- LM311

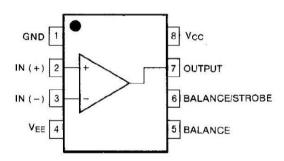


www.fairchildsemi.com

## LM311 **Single Comparator**


#### **Features**

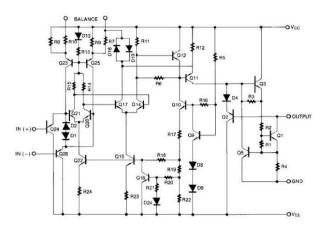
- · Low input bias current : 250nA (Max)


- Low input offset current: 50nA (Max)
  Differential Input Voltage: ±30V
  Power supply voltage: single 5.0V supply to ±15V.
  Offset voltage null capability.
  Strobe capability.

#### Description

The LM311 series is a monolithic, low input current voltage comparator. The device is also designed to operate from dual or single supply voltage.




### Internal Block Diagram



Rev. 1.0.1

©2001 Fairchild Semiconductor Corporation

## Schematic Diagram



## **Absolute Maximum Ratings**

| Parameter                               | Symbol                | Value       | Unit |
|-----------------------------------------|-----------------------|-------------|------|
| Total Supply Voltage                    | Vcc                   | 36          | V    |
| Output to Negative Supply Voltage LM311 | Vo - VEE              | 40          | V    |
| Ground to Negative voltage              | VEE                   | -30         | V    |
| Differential Input Voltage              | V <sub>I</sub> (DIFF) | 30          | V    |
| Input Voltage                           | Vı                    | ±15         | V    |
| Output Short Circuit Duration           | -                     | 10          | sec  |
| Power Dissipation                       | PD                    | 500         | mW   |
| Operating Temperature Range             | Topr                  | 0 ~ +70     | °C   |
| Storage Temperature Range               | TSTG                  | - 65 ~ +150 | °C   |

### **Electrical Characteristics**

(Vcc = 15V, TA = 25°C, unless otherwise specified)

| Parameter               | Symbol   | Condition                                                                                   | Conditions |                     | Тур.                | Max. | Unit   |  |
|-------------------------|----------|---------------------------------------------------------------------------------------------|------------|---------------------|---------------------|------|--------|--|
| I + Off+ \/- +          | 1/1-     | Rs≤50KΩ                                                                                     | 11         | -                   | 1.0                 | 7.5  | mV     |  |
| Input Offset Voltage    | Vio      | Note 1                                                                                      |            | -                   | -                   | 10   | mv     |  |
| Innut Offact Current    | lio      |                                                                                             |            | -                   | 6                   | 50   |        |  |
| Input Offset Current    | lio      |                                                                                             | Note 1     | -                   | -                   | 70   | nA     |  |
| Innut Rica Current      | leves    |                                                                                             |            | -                   | 100                 | 250  | ^      |  |
| Input Bias Current      | IBIAS    |                                                                                             | Note 1     | -                   |                     | 300  | 300 nA |  |
| Voltage Gain            | Gy       |                                                                                             |            | 40                  | 200                 | 7-   | V/m\   |  |
| Response Time           | TRES     |                                                                                             | Note 2     | -                   | 200                 | (4)  | ns     |  |
|                         |          | Io =50mA, V <sub>I</sub> ≤ -10mV                                                            |            | 14                  | 0.75                | 1.5  |        |  |
| Saturation Voltage      | VSAT     | V <sub>CC</sub> ≥ 4.5V, V <sub>EE</sub> =0V<br>I <sub>O</sub> =8mA, V <sub>I</sub> ≤ -10mV, | Note 1     |                     | 0.23                | 0.4  | V      |  |
| Strobe "ON" Current     | ISTR(ON) | -                                                                                           |            | -                   | 3                   | -    | mA     |  |
| Output Leakage Current  | Isink    | ISTR =3mA, V <sub>I</sub> ≥ 10mV<br>Vo =15V, V <sub>CC</sub> =±15V                          |            | -                   | 0.2                 | 50   | nA     |  |
| Input Voltage Range     | VI(R)    | Note 1                                                                                      |            | -14.5<br>to<br>13.0 | -14.7<br>to<br>13.8 | -    | V      |  |
| Positive Supply Current | Icc      |                                                                                             |            | -                   | 3.0                 | 7.5  | mA     |  |
| Negative Supply Current | IEE      | -                                                                                           |            | -                   | -2.2                | -5.0 | mA     |  |
| Strobe Current          | ISTR     | -                                                                                           |            | (14)                | 3                   | (44) | mA     |  |

- Notes :

  1. 0 ≤ T<sub>A</sub> ≤ +70°C

  2. The response time specified is for a 100mV input step with 5mV over drive.

### **Typical Performance Characteristics**

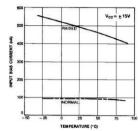



Figure 1. Input Bias Current vs Temperature

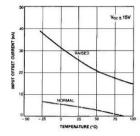



Figure 2. Input Offset Current vs Temperature

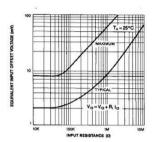



Figure 3. Offset Voltage vs Input Resistance

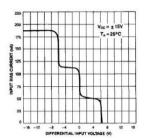



Figure 4. Input Bias Current vs Differential input voltage

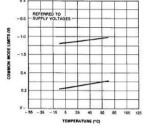



Figure 5. Common Mode Limits vs Temperature

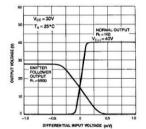



Figure 6. Output Voltage vs Differential input voltage

### **Typical Performance Characteristics (continued)**

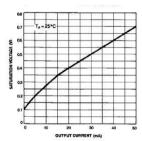



Figure 7. Saturation voltage vs Current

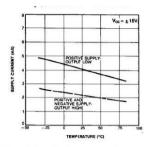



Figure 8. Supply Current vs Temperature

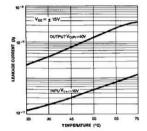



Figure 9. Leakage Current vs Temperature

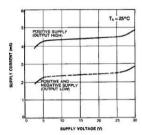



Figure 10. Supply Current vs Supply Voltage

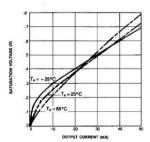



Figure 11. Current Saturation Voltage

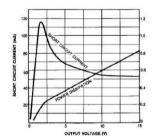
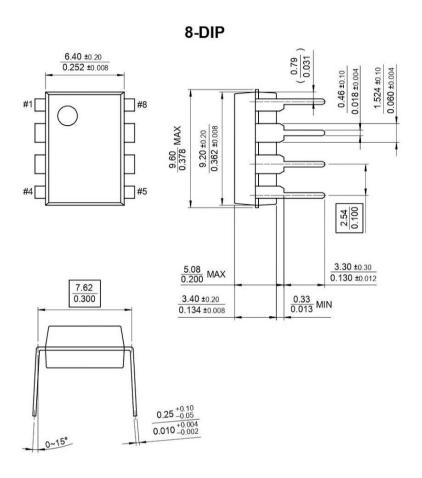
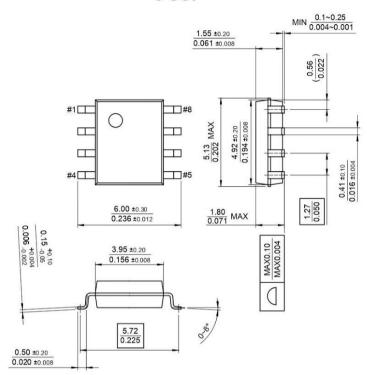




Figure 12. Output Limiting Characterstics

### **Mechanical Dimensions**


### Package



### Mechanical Dimensions (Continued)

Package

## 8-SOP



## Ordering Information

| Product Number | Package | Operating Temperature |  |  |
|----------------|---------|-----------------------|--|--|
| LM311N         | 8-DIP   | 0 ~ +70°C             |  |  |
| LM311M         | 8-SOP   | 0 ~ +/0 C             |  |  |

### 14.- LM741













SLOS094E - NOVEMBER 1970-REVISED JANUARY 2015

### µA741 General-Purpose Operational Amplifiers

#### **Features**

- Short-Circuit Protection
- Offset-Voltage Null Capability
- Large Common-Mode and Differential Voltage
- No Frequency Compensation Required
- No Latch-Up

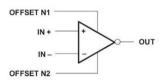
#### 2 Applications

- DVD Recorders and Players
- Pro Audio Mixers

#### 3 Description

The  $\mu$ A741 device is a general-purpose operational amplifier featuring offset-voltage null capability.

The high common-mode input voltage range and the absence of latch-up make the amplifier ideal for voltage-follower applications. The device is short-circuit protected and the internal frequency compensation ensures stability without external components. A low value potentiometer may be connected between the offset null inputs to null out the offset voltage as shown in Figure 11.


The  $\mu$ A741C device is characterized for operation from 0°C to 70°C. The  $\mu$ A741M device (obsolete) is characterized for operation over the full military temperature range of -55°C to 125°C.

#### Device Information<sup>(1)</sup>

| PART NUMBER | PACKAGE (PIN) | BODY SIZE (NOM    |  |
|-------------|---------------|-------------------|--|
|             | SOIC (8)      | 4.90 mm × 3.91 mm |  |
| μΑ741x      | PDIP (8)      | 9.81 mm × 6.35 mm |  |
|             | SO (8)        | 6.20 mm × 5.30 mm |  |

(1) For all available packages, see the orderable addendum at the end of the data sheet.

### 4 Simplified Schematic

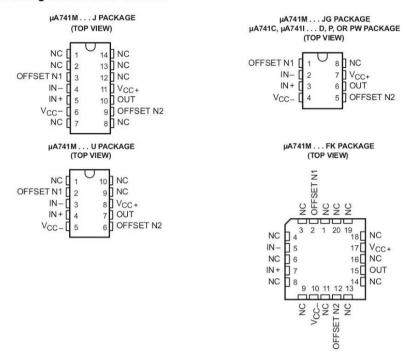


An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. PRODUCTION DATA.



| SLOS                            | 094E - NOVEMBER 1970-REVISED JANUARY 2015 | www.ti.com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|---------------------------------|-------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                 | Table o                                   | f Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1<br>2<br>3<br>4<br>5<br>6<br>7 | Applications                              | 8.2       Functional Block Diagram       9         8.3       Feature Description       10         8.4       Device Functional Modes       10         8.5       μΑ741Y Chip Information       10         9       Application and Implementation       11         9.1       Application Information       11         9.2       Typical Application       11         10       Power Supply Recommendations       13         11       Layout       13         11.1       Layout Guidelines       13         11.2       Layout Example       13         12       Device and Documentation Support       15         12.1       Trademarks       15         12.2       Electrostatic Discharge Caution       15 |
| 8                               | Detailed Description 98.1 Overview 9      | 12.3 Glossary 15  13 Mechanical, Packaging, and Orderable Information 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

### 5 Revision History


| C | hanges from Revision D (February 2014) to Revision E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Page |
|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| • | Added Applications, Device Information table, Pin Functions table, ESD Ratings table, Thermal Information table, Feature Description section, Device Functional Modes, Application and Implementation section, Power Supply Recommendations section, Layout section, Device and Documentation Support section, and Mechanical, Packaging, and Orderable Information section.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1    |
| • | Moved Typical Characteristics into Specifications section.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7    |
| _ | Copyrights (4) Supply Secretary process entending on (4) Copyrights and representational contractions are represented as the contraction of the copyrights and the copyrights are contracted as the copyrights and the copyrights are contracted as the copyright and copyrights are copyright. |      |
| С | hanges from Revision C (January 2014) to Revision D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Page |
| c |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Page |
| • | hanges from Revision C (January 2014) to Revision D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Page |
| - | hanges from Revision C (January 2014) to Revision D Fixed Typical Characteristics graphs to remove extra lines.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Page |

2 Submit Documentation Feedback

Copyright © 1970–2015, Texas Instruments Incorporated

SLOS094E - NOVEMBER 1970 - REVISED JANUARY 2015

### 6 Pin Configurations and Functions



NC - No internal connection

#### Pin Functions

| FIII FUICUOIS     |                           |                    |          |                                      |      |                                          |  |
|-------------------|---------------------------|--------------------|----------|--------------------------------------|------|------------------------------------------|--|
|                   | PIN                       |                    |          |                                      |      | 0.00                                     |  |
| NAME              | J                         | JG, D, P, or<br>PW | U        | FK                                   | TYPE | DESCRIPTION                              |  |
| IN+               | 5                         | 3                  | 4        | 7                                    | 1    | Noninverting input                       |  |
| IN-               | 4                         | 2                  | 3        | 5                                    | - 1  | Inverting input                          |  |
| NC                | 1, 2, 8,<br>12, 13,<br>14 | 8                  | 1, 9, 10 | 1,3,4,6,8,9,11,13,1<br>4,16,18,19,20 | _    | Do not connect                           |  |
| OFFSET<br>N1      | 3                         | 1                  | 2        | 2                                    | 1    | External input offset voltage adjustment |  |
| OFFSET<br>N2      | 9                         | 5                  | 6        | 12                                   | 1    | External input offset voltage adjustment |  |
| OUT               | 10                        | 6                  | 7        | 15                                   | О    | Output                                   |  |
| V <sub>CC</sub> + | 11                        | 7                  | 8        | 17                                   | -    | Positive supply                          |  |
| V <sub>CC</sub> - | 6                         | 4                  | 5        | 10                                   | _    | Negative supply                          |  |

Copyright © 1970–2015, Texas Instruments Incorporated

Submit Documentation Feedback

3



SLOS094E - NOVEMBER 1970-REVISED JANUARY 2015

www.ti.com

### 7 Specifications

#### 7.1 Absolute Maximum Ratings

over virtual junction temperature range (unless otherwise noted)<sup>(1)</sup>

|                  |                                                              |                                           | μA741C    |     | μA741N | 1       |      |  |  |  |
|------------------|--------------------------------------------------------------|-------------------------------------------|-----------|-----|--------|---------|------|--|--|--|
|                  |                                                              |                                           | MIN       | MAX | MIN    | MAX     | UNIT |  |  |  |
| Vcc              | Supply voltage (2)                                           |                                           | -18       | 18  | -22    | 22      | С    |  |  |  |
| V <sub>ID</sub>  | Differential input voltage <sup>(3)</sup>                    |                                           | -15       | 15  | -30    | 30      | V    |  |  |  |
| Vı               | Input voltage, any input (2)(4)                              |                                           | -15       | 15  | -15    | 15      | 15 V |  |  |  |
|                  | Voltage between offset null (either OFFSET N1 or OF          | FSET N2) and V <sub>CC</sub> _            | _15       |     |        |         | V    |  |  |  |
|                  | Duration of output short circuit (5)                         |                                           | Unlimited |     |        |         |      |  |  |  |
|                  | Continuous total power dissipation                           | ontinuous total power dissipation See Tab |           |     |        | Table 1 |      |  |  |  |
| TA               | Operating free-air temperature range                         |                                           | 0         | 70  | -55    | 125     | 5 °C |  |  |  |
|                  | Case temperature for 60 seconds                              | FK package                                | N/A       | N/A |        | 260     | °C   |  |  |  |
|                  | Lead temperature 1.6 mm (1/16 inch) from case for 60 seconds | J, JG, or U package                       | N/A       | N/A |        | 300     | °C   |  |  |  |
|                  | Lead temperature 1.6 mm (1/16 inch) from case for 10 seconds | D, P, or PS package                       |           | 260 | N/A    | N/A     | °C   |  |  |  |
| T <sub>stg</sub> | Storage temperature range                                    |                                           | -65       | 150 | -65    | 150     | °C   |  |  |  |

Stresses beyond those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under *Recommended Operating Conditions* is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. All voltage values, unless otherwise noted, are with respect to the midpoint between V<sub>CC+</sub> and V<sub>CC-</sub>. Differential voltages are at IN+ with respect to IN –.

The magnitude of the input voltage must never exceed the magnitude of the supply voltage or 15 V, whichever is less. The output may be shorted to ground or either power supply. For the µA741M only, the unlimited duration of the short circuit applies at (or below) 125°C case temperature or 75°C free-air temperature.

#### 7.2 Recommended Operating Conditions

|                   |                                |        | MIN | MAX | UNIT |
|-------------------|--------------------------------|--------|-----|-----|------|
| V <sub>CC+</sub>  | Supply voltage                 |        | 5   | 15  |      |
| V <sub>CC</sub> - |                                |        | -5  | -15 | ٧    |
| _                 | μΑ                             | μA741C | 0   | 70  | 00   |
| IA                | Operating free-air temperature | μA741M | -55 | 125 | °C   |

Table 1. Dissipation Ratings Table

| PACKAGE | T <sub>A</sub> ≤ 25°C<br>POWER<br>RATING | DERATING<br>FACTOR | DERATE<br>ABOVE T <sub>A</sub> | TA = 70°C<br>POWER<br>RATING | T <sub>A</sub> = 85°C<br>POWER RATING | T <sub>A</sub> = 125°C<br>POWER RATING |
|---------|------------------------------------------|--------------------|--------------------------------|------------------------------|---------------------------------------|----------------------------------------|
| D       | 500 mW                                   | 5.8 mW/°C          | 64°C                           | 464 mW                       | 377 mW                                | N/A                                    |
| FK      | 500 mW                                   | 11.0 mW/°C         | 105°C                          | 500 mW                       | 500 mW                                | 275 mW                                 |
| J       | 500 mW                                   | 11.0 mW/°C         | 105°C                          | 500 mW                       | 500 mW                                | 275 mW                                 |
| JG      | 500 mW                                   | 8.4 mW/°C          | 90°C                           | 500 mW                       | 500 mW                                | 210 mW                                 |
| P       | 500 mW                                   | N/A                | N/A                            | 500 mW                       | 500 mW                                | N/A                                    |
| PS      | 525 mW                                   | 4.2 mW/°C          | 25°C                           | 336 mW                       | N/A                                   | N/A                                    |
| U       | 500 mW                                   | 5.4 mW/°C          | 57°C                           | 432 mW                       | 351 mW                                | 135 mW                                 |

Submit Documentation Feedback

Copyright © 1970-2015, Texas Instruments Incorporated



SLOS094E - NOVEMBER 1970 - REVISED JANUARY 2015

### 7.3 Electrical Characteristics µA741C, µA741M

at specified virtual junction temperature,  $V_{CC\pm} = \pm 15 \text{ V}$  (unless otherwise noted)

|                      | DADAMETED                                                    | TEST CONDITIONS                        | T <sub>A</sub> <sup>(1)</sup> | μA741C |     | P       | A741M |     | LINUS |                                                         |
|----------------------|--------------------------------------------------------------|----------------------------------------|-------------------------------|--------|-----|---------|-------|-----|-------|---------------------------------------------------------|
|                      | PARAMETER                                                    | TEST CONDITIONS                        | MIN TYP MAX                   |        | MAX | MIN TYP |       | MAX | UNII  |                                                         |
| W                    | land effect valtage                                          | V = 0                                  | 25°C                          |        | 1   | 6       |       | 1   | 5     | /                                                       |
| Vio                  | Input offset voltage                                         | V <sub>O</sub> = 0                     | Full range                    |        |     | 7.5     |       | ±15 | 6     | mv                                                      |
| $\Delta V_{IO(adj)}$ | Offset voltage adjust range                                  | V <sub>O</sub> = 0                     | 25°C                          |        | ±15 |         |       | 20  | 200   | mV                                                      |
|                      | Various de Wood various de la                                |                                        | 25°C                          |        | 20  | 200     |       |     | 500   | mV   mV   mA   mA   mA   mA   mA   mA                   |
| lio                  | Input offset current                                         | V <sub>o</sub> = 0                     | Full range                    |        |     | 300     |       |     | 500   | nA                                                      |
|                      | 1                                                            | V - 0                                  | 25°C                          |        | 80  | 500     |       | 80  | 500   |                                                         |
| I <sub>IB</sub>      | Input bias current                                           | V <sub>O</sub> = 0                     | Full range                    |        |     | 800     |       |     | 1500  | nA                                                      |
|                      |                                                              |                                        | 25°C                          | ±12    | ±13 |         | ±12   | ±13 |       | X                                                       |
| V <sub>ICR</sub>     | Common-mode input voltage range                              |                                        | Full range                    | ±12    |     |         | ±12   |     |       | V                                                       |
| V <sub>OM</sub>      |                                                              | $R_L = 10 \text{ k}\Omega$             | 25°C                          | ±12    | ±14 |         | ±12   | ±14 |       |                                                         |
|                      | W. C                                                         | $R_L \ge 10 \text{ k}\Omega$           | Full range                    | ±12    |     |         | ±12   |     |       | .,                                                      |
|                      | Maximum peak output voltage swing                            | $R_L = 2 k\Omega$                      | 25°C                          | ±10    |     |         | ±10   | ±13 |       | V                                                       |
|                      |                                                              | $R_L \ge 2k\Omega$                     | Full range                    | ±10    |     |         | ±10   |     |       | mV                                                      |
|                      | Large-signal differential voltage                            | $R_L \ge 2k\Omega$                     | 25°C                          | 20     | 200 |         | 50    | 200 |       | V V/mV MΩ Ω pF dB                                       |
| A <sub>VD</sub>      | amplification                                                | V <sub>O</sub> = ±10 V                 | Full range                    | 15     |     |         | 25    |     |       |                                                         |
| ri                   | Input resistance                                             |                                        | 25°C                          | 0.3    | 2   |         | 0.3   | 2   |       | МΩ                                                      |
| r <sub>o</sub>       | Output resistance                                            | V <sub>o</sub> = 0, See <sup>(2)</sup> | 25°C                          |        | 75  |         |       | 75  |       | Ω                                                       |
| C <sub>i</sub>       | Input capacitance                                            |                                        | 25°C                          |        | 1.4 |         |       | 1.4 |       | pF                                                      |
| OL IDD               |                                                              | 0.00                                   | 25°C                          | 70     | 90  |         | 70    | 90  |       | ın                                                      |
| CMRR                 | Common-mode rejection ratio                                  | $V_{IC} = V_{ICRmin}$                  | Full range                    | 70     |     |         | 70    |     |       | aВ                                                      |
|                      | 0 1 11 27 74 74 74 7                                         | V .0VI .45V                            | 25°C                          |        | 30  | 150     |       | 30  | 150   | 1/0                                                     |
| k <sub>svs</sub>     | Supply voltage sensitivity ( $\Delta V_{IO}/\Delta V_{CC}$ ) | V <sub>CC</sub> = ±9 V to ±15 V        | Full range                    |        |     | 150     |       |     | 150   | μν/                                                     |
| los                  | Short-circuit output current                                 |                                        | 25°C                          |        | ±25 | ±40     |       | ±25 | ±40   | mA                                                      |
|                      | 0 -1 (                                                       | W = 0 Notes                            | 25°C                          |        | 1.7 | 2.8     |       | 1.7 | 2.8   |                                                         |
| Icc                  | Supply current                                               | V <sub>o</sub> = 0, No load            | Full range                    |        |     | 3.3     |       |     | 3.3   | - mV mV - nA - nA - V - V/mV Ω Ω pF - dB - μV/V mA - mA |
|                      |                                                              |                                        | 25°C                          |        | 50  | 85      |       | 50  | 85    | MΩ<br>Ω<br>pF<br>dB<br>- μV/V<br>mA                     |
| $P_D$                | Total power dissipation                                      | Vo = 0, No load                        | Full range                    |        |     | 100     |       |     | 100   |                                                         |

All characteristics are measured under open-loop conditions with zero common-mode input voltage unless otherwise specified. Full range for the μA741C is 0°C to 70°C and the μA741M is -55°C to 125°C.
 This typical value applies only at frequencies above a few hundred hertz because of the effects of drift and thermal feedback.

Copyright © 1970–2015, Texas Instruments Incorporated

Submit Documentation Feedback



SLOS094E - NOVEMBER 1970-REVISED JANUARY 2015

www.ti.com

### 7.4 Electrical Characteristics µA741Y

at specified virtual junction temperature,  $V_{CC\pm} = \pm 15 \text{ V}$ ,  $T_A = 25^{\circ}\text{C}$  (unless otherwise noted)<sup>(1)</sup>

| DADAMETER             |                                                                  | TEST COMPLETIONS                       |     |     |     |                                    |
|-----------------------|------------------------------------------------------------------|----------------------------------------|-----|-----|-----|------------------------------------|
|                       | PARAMETER                                                        | TEST CONDITIONS                        | MIN | TYP | MAX | UNII                               |
| V <sub>IO</sub>       | Input offset voltage                                             | V <sub>O</sub> = 0                     |     | 1   | 5   | mV                                 |
| ΔV <sub>IO(adj)</sub> | Offset voltage adjust range                                      | V <sub>0</sub> = 0                     |     | ±15 |     | mV                                 |
| I <sub>IO</sub>       | Input offset current                                             | V <sub>0</sub> = 0                     |     | 20  | 200 | nA                                 |
| I <sub>IB</sub>       | Input bias current                                               | V <sub>O</sub> = 0                     |     | 80  | 500 | nA                                 |
| V <sub>ICR</sub>      | Common-mode input voltage range                                  |                                        | ±12 | ±13 |     | V                                  |
| \/                    | Maximum peak output voltage swing                                | R <sub>L</sub> = 10 kΩ                 | ±12 | ±14 |     | 1/                                 |
| V <sub>OM</sub>       | Maximum peak output voltage swing                                | $R_L = 2 k\Omega$                      | ±10 | ±13 |     | mV nA nA V V/m\ MΩ Ω pF dB μV/V mA |
| A <sub>VD</sub>       | Large-signal differential voltage amplification                  | $R_L \ge 2k\Omega$                     | 20  | 200 |     | V/m\                               |
| ri                    | Input resistance                                                 |                                        | 0.3 | 2   |     | ΜΩ                                 |
| ro                    | Output resistance                                                | V <sub>o</sub> = 0, See <sup>(1)</sup> |     | 75  |     | Ω                                  |
| Ci                    | Input capacitance                                                |                                        |     | 1.4 |     | pF                                 |
| CMRR                  | Common-mode rejection ratio                                      | V <sub>IC</sub> = V <sub>ICRmin</sub>  | 70  | 90  |     | dB                                 |
| ksvs                  | Supply voltage sensitivity (ΔV <sub>IO</sub> /ΔV <sub>CC</sub> ) | V <sub>CC</sub> = ±9 V to ±15 V        |     | 30  | 150 | μV/V                               |
| los                   | Short-circuit output current                                     |                                        |     | ±25 | ±40 | mA                                 |
| I <sub>cc</sub>       | Supply current                                                   | Vo = 0, No load                        |     | 1.7 | 2.8 | mA                                 |
| P <sub>D</sub>        | Total power dissipation                                          | Vo = 0, No load                        |     | 50  | 85  | mW                                 |

<sup>(1)</sup> This typical value applies only at frequencies above a few hundred hertz because of the effects of drift and thermal feedback.

#### 7.5 Switching Characteristics µA741C, µA741M

over operating free-air temperature range, V<sub>CC±</sub> = ±15 V, T<sub>A</sub> = 25°C (unless otherwise noted)

|                | PARAMETER               | TEST COMPLETIONS                                                                               | ı   | A741C |     | ŀ   | A741M |     | 11117 |
|----------------|-------------------------|------------------------------------------------------------------------------------------------|-----|-------|-----|-----|-------|-----|-------|
|                |                         | TEST CONDITIONS                                                                                | MIN | TYP   | MAX | MIN | TYP   | MAX | UNIT  |
| t <sub>r</sub> | Rise time               | $V_I = 20 \text{ mV}, R_I = 2 \text{ k}\Omega,$                                                |     | 0.3   |     |     | 0.3   |     | μs    |
|                | Overshoot factor        | C <sub>L</sub> = 100 pF, See Figure 1                                                          |     | 5%    |     |     | 5%    |     | _     |
| SR             | Slew rate at unity gain | $V_I = 10 \text{ V}, R_L = 2 \text{ k}\Omega,$<br>$C_L = 100 \text{ pF}, \text{ See Figure 1}$ |     | 0.5   |     |     | 0.5   |     | V/µs  |

#### 7.6 Switching Characteristics µA741Y

over operating free-air temperature range, V<sub>CC±</sub> = ±15 V, T<sub>A</sub> = 25°C (unless otherwise noted)

|                | PARAMETER               | TEST SOUDITIONS                                                                        | l l | μΑ741Υ      |     |      |    |
|----------------|-------------------------|----------------------------------------------------------------------------------------|-----|-------------|-----|------|----|
|                |                         | TEST CONDITIONS                                                                        | MIN | MIN TYP MAX |     |      |    |
| t <sub>r</sub> | Rise time               | $V_{I} = 20 \text{ mV}, R_{L} = 2 \text{ k}\Omega,$                                    |     | 0.3         | MAX |      | μs |
|                | Overshoot factor        | C <sub>L</sub> = 100 pF, See Figure 1                                                  |     | 5%          |     | -    |    |
| SR             | Slew rate at unity gain | V <sub>I</sub> = 10 V, R <sub>L</sub> = 2 kΩ,<br>C <sub>L</sub> = 100 pF, See Figure 1 |     | 0.5         |     | V/µs |    |

Submit Documentation Feedback

Copyright © 1970–2015, Texas Instruments Incorporated

SLOS094E - NOVEMBER 1970 - REVISED JANUARY 2015

www.ti.com

### 7.7 Typical Characteristics

Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

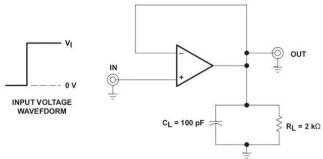
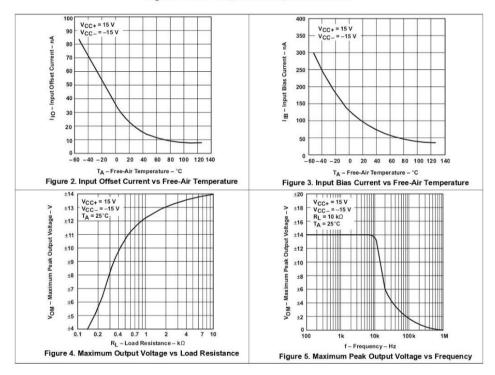
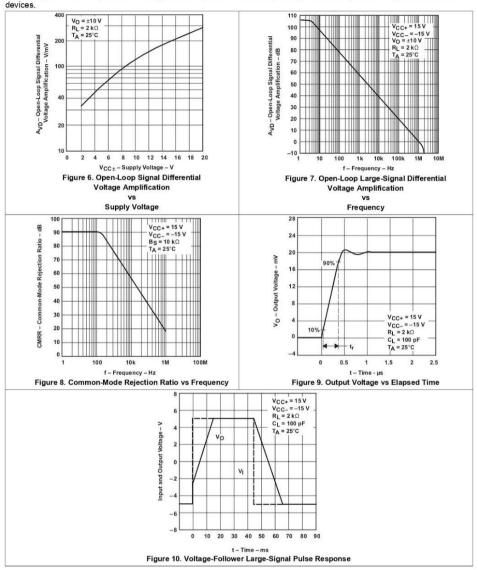




Figure 1. Rise Time, Overshoot, and Slew Rate



Copyright © 1970–2015, Texas Instruments Incorporated

Submit Documentation Feedback




SLOS094E - NOVEMBER 1970-REVISED JANUARY 2015

www.ti.com

#### Typical Characteristics (continued)

Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various



8 Submit Documentation Feedback

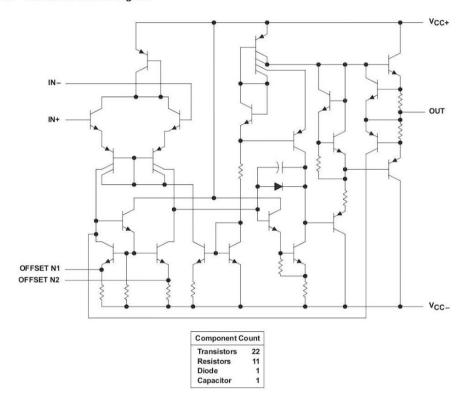
Copyright © 1970–2015, Texas Instruments Incorporated



SLOS094E - NOVEMBER 1970 - REVISED JANUARY 2015

#### ...........

### 8 Detailed Description


#### 8.1 Overview

The µA741 device is a general-purpose operational amplifier featuring offset-voltage null capability.

The high common-mode input voltage range and the absence of latch-up make the amplifier ideal for voltage-follower applications. The device is short-circuit protected and the internal frequency compensation ensures stability without external components. A low value potentiometer may be connected between the offset null inputs to null out the offset voltage as shown in Figure 11.

The  $\mu$ A741C device is characterized for operation from 0°C to 70°C. The  $\mu$ A741M device (obsolete) is characterized for operation over the full military temperature range of -55°C to 125°C.

#### 8.2 Functional Block Diagram



Copyright © 1970–2015, Texas Instruments Incorporated

Submit Documentation Feedback



SLOS094E - NOVEMBER 1970-REVISED JANUARY 2015

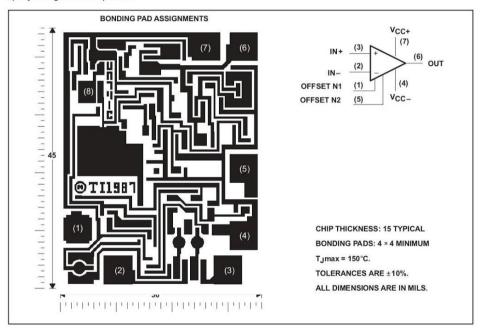
www.ti.com

#### 8.3 Feature Description

#### 8.3.1 Offset-Voltage Null Capability

The input offset voltage of operational amplifiers (op amps) arises from unavoidable mismatches in the differential input stage of the op-amp circuit caused by mismatched transistor pairs, collector currents, currentgain betas ( $\beta$ ), collector or emitter resistors, etc. The input offset pins allow the designer to adjust for these mismatches by external circuitry. See the *Application and Implementation* section for more details on design techniques.

#### 8.3.2 Slew Rate


The slew rate is the rate at which an operational amplifier can change its output when there is a change on the input. The  $\mu$ A741 has a 0.5-V/ $\mu$ s slew rate. Parameters that vary significantly with operating voltages or temperature are shown in the *Typical Characteristics* graphs.

#### 8.4 Device Functional Modes

The  $\mu$ A741 is powered on when the supply is connected. It can be operated as a single supply operational amplifier or dual supply amplifier depending on the application.

#### 8.5 µA741Y Chip Information

This chip, when properly assembled, displays characteristics similar to the  $\mu$ A741C. Thermal compression or ultrasonic bonding may be used on the doped-aluminum bonding pads. Chips may be mounted with conductive epoxy or a gold-silicon preform.



Submit Documentation Feedback

Copyright © 1970–2015, Texas Instruments Incorporated

SLOS094E - NOVEMBER 1970 - REVISED JANUARY 2015

#### www.ti.com

#### 9 Application and Implementation

#### NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

#### 9.1 Application Information

The input offset voltage of operational amplifiers (op amps) arises from unavoidable mismatches in the differential input stage of the op-amp circuit caused by mismatched transistor pairs, collector currents, currentgain betas ( $\beta$ ), collector or emitter resistors, etc. The input offset pins allow the designer to adjust for these mismatches by external circuitry. These input mismatches can be adjusted by putting resistors or a potentiometer between the inputs as shown in Figure 13. A potentiometer can be used to fine tune the circuit during testing or for applications which require precision offset control. More information about designing using the input-offset pins, see the application note *Nulling Input Offset Voltage of Operational Amplifiers*, SLOA045.

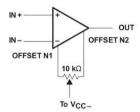



Figure 11. Input Offset Voltage Null Circuit

#### 9.2 Typical Application

The voltage follower configuration of the operational amplifier is used for applications where a weak signal is used to drive a relatively high current load. This circuit is also called a buffer amplifier or unity gain amplifier. The inputs of an operational amplifier have a very high resistance which puts a negligible current load on the voltage source. The output resistance of the operational amplifier is almost negligible, so it can provide as much current as necessary to the output load.

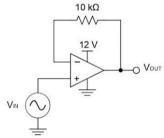



Figure 12. Voltage Follower Schematic

#### 9.2.1 Design Requirements

- Output range of 2 V to 11.5 V
- Input range of 2 V to 11.5 V

Submit Documentation Feedback

11

Copyright © 1970–2015, Texas Instruments Incorporated

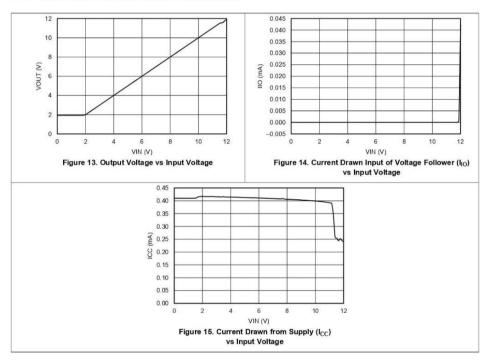
SLOS094E - NOVEMBER 1970-REVISED JANUARY 2015

www.ti.com

#### Typical Application (continued)

· Resistive feedback to negative input

#### 9.2.2 Detailed Design Procedure


#### 9.2.2.1 Output Voltage Swing

The output voltage of an operational amplifier is limited by its internal circuitry to some level below the supply rails. For this amplifier, the output voltage swing is within  $\pm 12\,$  V, which accommodates the input and output voltage requirements.

#### 9.2.2.2 Supply and Input Voltage

For correct operation of the amplifier, neither input must be higher than the recommended positive supply rail voltage or lower than the recommended negative supply rail voltage. The chosen amplifier must be able to operate at the supply voltage that accommodates the inputs. Because the input for this application goes up to 11.5 V, the supply voltage must be 12 V. Using a negative voltage on the lower rail rather than ground allows the amplifier to maintain linearity for inputs below 2 V.

#### 9.2.3 Application Curves for Output Characteristics



2 Submit Documentation Feedback

Copyright © 1970–2015, Texas Instruments Incorporated

SLOS094E - NOVEMBER 1970 - REVISED JANUARY 2015

www.ti.com

#### 10 Power Supply Recommendations

The  $\mu$ A741 is specified for operation from ±5 to ±15 V; many specifications apply from 0°C to 70°C. The *Typical Characteristics* section presents parameters that can exhibit significant variance with regard to operating voltage or temperature.

#### CAUTION

Supply voltages larger than ±18 V can permanently damage the device (see the *Absolute Maximum Ratings*).

Place 0.1-µF bypass capacitors close to the power-supply pins to reduce errors coupling in from noisy or high impedance power supplies. For more detailed information on bypass capacitor placement, refer to the *Layout Guidelines* 

#### 11 Layout

#### 11.1 Layout Guidelines

For best operational performance of the device, use good PCB layout practices, including:

- Noise can propagate into analog circuitry through the power pins of the circuit as a whole and the operational
  amplifier. Bypass capacitors are used to reduce the coupled noise by providing low impedance power
  sources local to the analog circuitry.
  - Connect low-ESR, 0.1-µF ceramic bypass capacitors between each supply pin and ground, placed as
    close to the device as possible. A single bypass capacitor from V+ to ground is applicable for single
    supply applications.
- Separate grounding for analog and digital portions of circuitry is one of the simplest and most-effective
  methods of noise suppression. One or more layers on multilayer PCBs are usually devoted to ground planes.
  A ground plane helps distribute heat and reduces EMI noise pickup. Make sure to physically separate digital
  and analog grounds, paying attention to the flow of the ground current. For more detailed information, refer to
  Circuit Board Layout Techniques, SLOA089.
- To reduce parasitic coupling, run the input traces as far away from the supply or output traces as possible. If
  it is not possible to keep them separate, it is much better to cross the sensitive trace perpendicular as
  opposed to in parallel with the noisy trace.
- Place the external components as close to the device as possible. Keeping RF and RG close to the inverting
  input minimizes parasitic capacitance, as shown in Layout Example.
- Keep the length of input traces as short as possible. Always remember that the input traces are the most sensitive part of the circuit.
- Consider a driven, low-impedance guard ring around the critical traces. A guard ring can significantly reduce leakage currents from nearby traces that are at different potentials.

#### 11.2 Layout Example

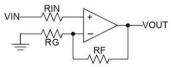



Figure 16. Operational Amplifier Schematic for Noninverting Configuration

Copyright © 1970–2015, Texas Instruments Incorporated

Submit Documentation Feedback



uA741 SLOS094E - NOVEMBER 1970 - REVISED JANUARY 2015

www.ti.com

### Layout Example (continued)

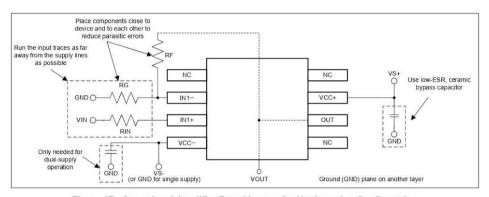



Figure 17. Operational Amplifier Board Layout for Noninverting Configuration

Submit Documentation Feedback

Copyright © 1970–2015, Texas Instruments Incorporated



SLOS094E - NOVEMBER 1970 - REVISED JANUARY 2015

#### www.u.com

### 12 Device and Documentation Support

#### 12.1 Trademarks

All trademarks are the property of their respective owners.

#### 12.2 Electrostatic Discharge Caution



These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

### 12.3 Glossary

SLYZ022 — TI Glossary.

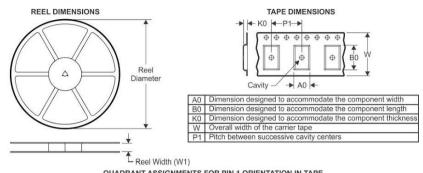
This glossary lists and explains terms, acronyms, and definitions.

#### 13 Mechanical, Packaging, and Orderable Information

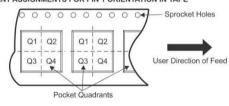
The following pages include mechanical packaging and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser based versions of this data sheet, refer to the left hand navigation.

Product Folder Links: uA741

Copyright © 1970–2015, Texas Instruments Incorporated


Submit Documentation Feedback




#### PACKAGE MATERIALS INFORMATION

www.ti.com 17-Feb-2014

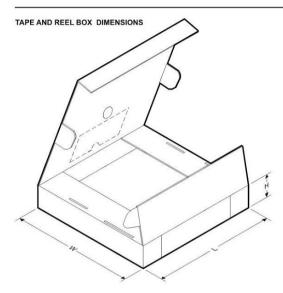
#### TAPE AND REEL INFORMATION



#### QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE



\*All dimensions are nominal

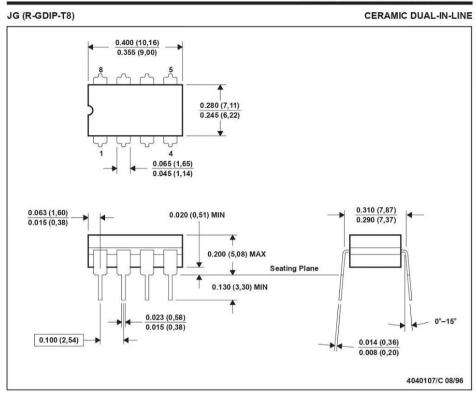

| Device    | Package<br>Type | Package<br>Drawing |   | SPQ  | Reel<br>Diameter<br>(mm) | Reel<br>Width<br>W1 (mm) | A0<br>(mm) | B0<br>(mm) | K0<br>(mm) | P1<br>(mm) | W<br>(mm) | Pin1<br>Quadrant |
|-----------|-----------------|--------------------|---|------|--------------------------|--------------------------|------------|------------|------------|------------|-----------|------------------|
| UA741CDR  | SOIC            | D                  | 8 | 2500 | 330.0                    | 12.4                     | 6.4        | 5.2        | 2.1        | 8.0        | 12.0      | Q1               |
| UA741CPSR | so              | PS                 | 8 | 2000 | 330.0                    | 16.4                     | 8.2        | 6.6        | 2.5        | 12.0       | 16.0      | Q1               |

Pack Materials-Page 1



### PACKAGE MATERIALS INFORMATION

www.ti.com 17-Feb-2014




#### \*All dimensions are nominal

| Device    | Package Type | Package Drawing | Pins | SPQ  | Length (mm) | Width (mm) | Height (mm) |
|-----------|--------------|-----------------|------|------|-------------|------------|-------------|
| UA741CDR  | SOIC         | D               | 8    | 2500 | 340.5       | 338.1      | 20.6        |
| UA741CPSR | so           | PS              | 8    | 2000 | 367.0       | 367.0      | 38.0        |

Pack Materials-Page 2

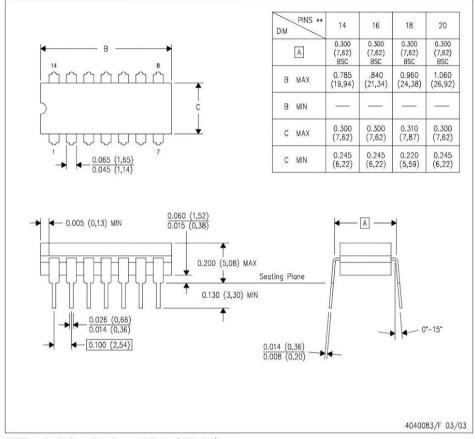
MCER001A - JANUARY 1995 - REVISED JANUARY 1997



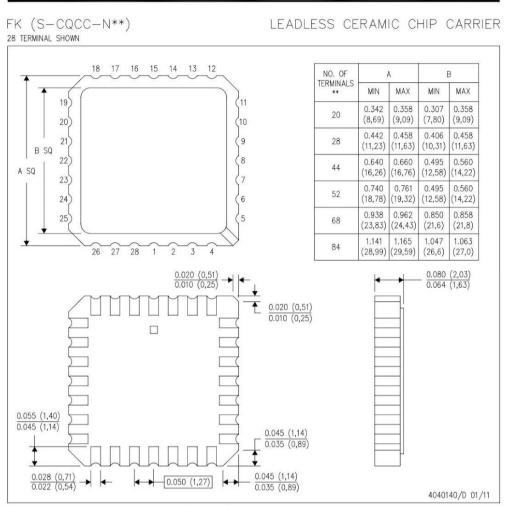
- NOTES: A. All linear dimensions are in inches (millimeters).

  B. This drawing is subject to change without notice.

  C. This package can be hermetically sealed with a ceramic lid using glass frit.


  D. Index point is provided on cap for terminal identification.

  E. Falls within MIL STD 1835 GDIP1-T8





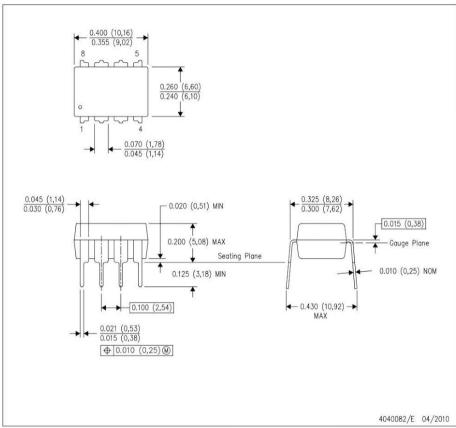

#### CERAMIC DUAL IN-LINE PACKAGE



- A. All linear dimensions are in inches (millimeters).
  B. This drawing is subject to change without notice.
  C. This package is hermetically sealed with a ceramic lid using glass frit.
  D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
  E. Falls within MIL STD 1835 GDIP1—T14, GDIP1—T16, GDIP1—T18 and GDIP1—T20.



- - This drawing is subject to change without notice.

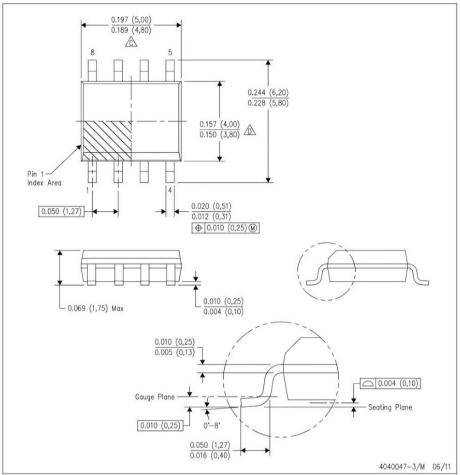

    This package can be hermetically sealed with a metal lid.

    Falls within JEDEC MS-004



P (R-PDIP-T8)

PLASTIC DUAL-IN-LINE PACKAGE



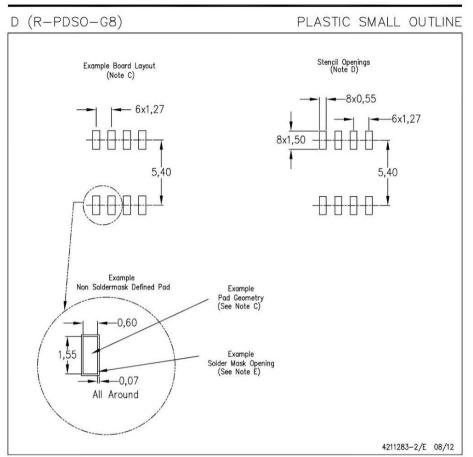

- A. All linear dimensions are in inches (millimeters).
  B. This drawing is subject to change without notice.
  C. Falls within JEDEC MS-001 variation BA.



### D (R-PDSO-G8)

#### PLASTIC SMALL OUTLINE




- All linear dimensions are in inches (millimeters). This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.

  Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.

  E. Reference JEDEC MS-012 variation AA.



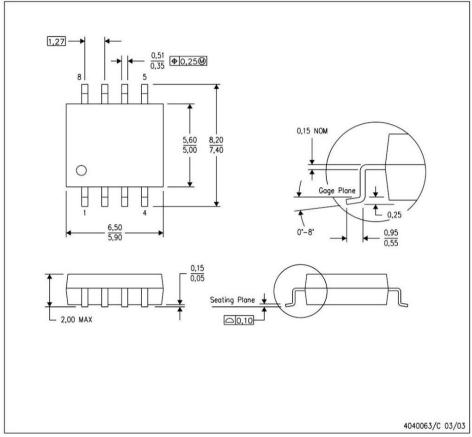
#### **LAND PATTERN DATA**



- A. All linear dimensions are in millimeters.

  B. This drawing is subject to change without notice.

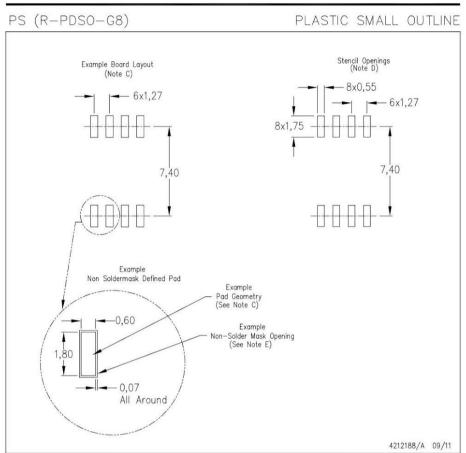
  C. Publication IPC-7351 is recommended for alternate designs.


  D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.

  E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.



#### PS (R-PDSO-G8)


#### PLASTIC SMALL-OUTLINE PACKAGE



- A. All linear dimensions are in millimeters.
  B. This drawing is subject to change without notice.
  C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.



### LAND PATTERN DATA

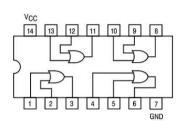


- A. All linear dimensions are in millimeters.

  B. This drawing is subject to change without notice.

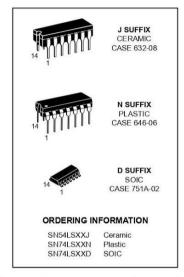
  C. Publication IPC-7351 is recommended for alternate designs.

  D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.


  E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.



### 15.- 74LS32




### **QUAD 2-INPUT OR GATE**



SN54/74LS32

QUAD 2-INPUT OR GATE LOW POWER SCHOTTKY



#### **GUARANTEED OPERATING RANGES**

| Symbol | Parameter                           |          | Min         | Тур        | Max         | Unit |
|--------|-------------------------------------|----------|-------------|------------|-------------|------|
| VCC    | Supply Voltage                      | 54<br>74 | 4.5<br>4.75 | 5.0<br>5.0 | 5.5<br>5.25 | V    |
| TA     | Operating Ambient Temperature Range | 54<br>74 | -55<br>0    | 25<br>25   | 125<br>70   | °C   |
| IOH    | Output Current — High               | 54, 74   |             |            | -0.4        | mA   |
| loL    | Output Current — Low                | 54<br>74 |             |            | 4.0<br>8.0  | mA   |

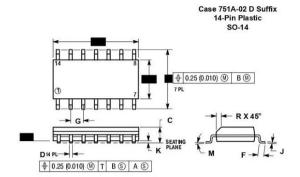
FAST AND LS TTL DATA

5-83

#### SN54/74LS32

#### DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

|                 |                                            |        |     | Limits |      |      |                                                 |                                                                         |  |
|-----------------|--------------------------------------------|--------|-----|--------|------|------|-------------------------------------------------|-------------------------------------------------------------------------|--|
| Symbol          | Parameter                                  |        | Min | Тур    | Max  | Unit | Test C                                          | Conditions                                                              |  |
| VIH             | Input HIGH Voltage                         |        | 2.0 |        |      | V    | Guaranteed Inp<br>All Inputs                    | ut HIGH Voltage for                                                     |  |
| \/              | Innut LOW/Veltere                          | 54     |     |        | 0.7  | v    | Guaranteed Inp                                  | ut LOW Voltage for                                                      |  |
| VIL             | Input LOW Voltage                          | 74     |     |        | 0.8  | 1 '  | All Inputs                                      |                                                                         |  |
| VIK             | Input Clamp Diode Voltage                  | е      |     | -0.65  | -1.5 | V    | V <sub>CC</sub> = MIN, I <sub>IN</sub> = -18 mA |                                                                         |  |
| 1/              | 0.441001116                                | 54     | 2.5 | 3.5    |      | V    | VCC = MIN, IOH = MAX, VIN =                     |                                                                         |  |
| VOH             | Output HIGH Voltage                        | 74     | 2.7 | 3.5    |      | V    | or V <sub>IL</sub> per Truth                    | Table                                                                   |  |
|                 |                                            | 54, 74 |     | 0.25   | 0.4  | ٧    | I <sub>OL</sub> = 4.0 mA                        | V <sub>CC</sub> = V <sub>CC</sub> MIN,                                  |  |
| VOL             | Output LOW Voltage                         | 74     |     | 0.35   | 0.5  | ٧    | I <sub>OL</sub> = 8.0 mA                        | V <sub>IN</sub> = V <sub>IL</sub> or V <sub>IH</sub><br>per Truth Table |  |
| F               | Innext III CI I Comment                    | ***    |     |        | 20   | μA   | V <sub>CC</sub> = MAX, V <sub>I</sub>           | N = 2.7 V                                                               |  |
| ήн              | Input HIGH Current                         |        |     |        | 0.1  | mA   | V <sub>CC</sub> = MAX, V <sub>I</sub>           | N = 7.0 V                                                               |  |
| IIL             | Input LOW Current                          |        |     |        | -0.4 | mA   | V <sub>CC</sub> = MAX, V <sub>I</sub>           | N = 0.4 V                                                               |  |
| los             | Short Circuit Current (Note                | e 1)   | -20 |        | -100 | mA   | V <sub>CC</sub> = MAX                           |                                                                         |  |
| <sup>I</sup> cc | Power Supply Current<br>Total, Output HIGH |        |     |        | 6.2  | mA   | V <sub>CC</sub> = MAX                           |                                                                         |  |
| 00              | Total, Output LOW                          |        |     |        | 9.8  | 1    |                                                 |                                                                         |  |


Note 1: Not more than one output should be shorted at a time, nor for more than 1 second.

### AC CHARACTERISTICS (TA = 25°C)

|                  |                                 |     | Limits |     |      |                         |
|------------------|---------------------------------|-----|--------|-----|------|-------------------------|
| Symbol           | Parameter                       | Min | Тур    | Max | Unit | <b>Test Conditions</b>  |
| <sup>t</sup> PLH | Turn-Off Delay, Input to Output |     | 14     | 22  | ns   | V <sub>CC</sub> = 5.0 V |
| <sup>t</sup> PHL | Turn-On Delay, Input to Output  |     | 14     | 22  | ns   | $C_L = 15 pF$           |

FAST AND LS TTL DATA

5-84



- NOTES:

  1. DIMENSIONS "A" AND "B" ARE DATUMS AND "T" IS A DATUM SURFACE.

  2. DIMENSIONING AND TO LERANCING PER ANSI Y145M, 1982.

  3. CONTROLLING DIMENSION: MILLUMETER.

  4. DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION.

  MAXMUM MOLD PROTRUSION 0.15 (0.006)
  PER SIDE.

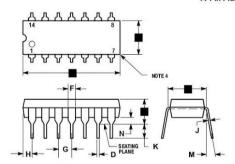
  5. 751A-01 IS OBSOLETE, NEW STANDARD 751A-02.

|     | MILLIN | IETERS | INC   | HES   |
|-----|--------|--------|-------|-------|
| DIM | MIN    | MAX    | MIN   | MAX   |
| Α   | 8.55   | 8.75   | 0.337 | 0.344 |
| В   | 3.80   | 4.00   | 0.150 | 0.157 |
| C   | 1.35   | 1.75   | 0.054 | 0.068 |
| D   | 0.35   | 0.49   | 0.014 | 0.019 |
| F   | 0.40   | 1.25   | 0.016 | 0.049 |
| G   | 1.27   | BSC    | 0.050 | BSC   |
| J   | 0.19   | 0.25   | 0.008 | 0.009 |
| K   | 0.10   | 0.25   | 0.004 | 0.009 |
| M   | 0°     | 7°     | 0°    | 7°    |
| Р   | 5.80   | 6.20   | 0.229 | 0.244 |
| R   | 0.25   | 0.50   | 0.010 | 0.019 |

## Case 632-08 J Suffix 14-Pin Ceramic Dual In-Line → D 14 PL ( 0.25 (0.010) ( T A ( S ♦ 0.25 (0.010) M T B S

- NOTES:

  1. DIMENSIONING AND TOLERANCING PER ANSI 'Y4 5M. 1982.


  2. CONTROLLING DIMENSION: INCH.
  3. DIMENSION: ITO CENTER OF LEAD WHEN FORMED PARALLE.

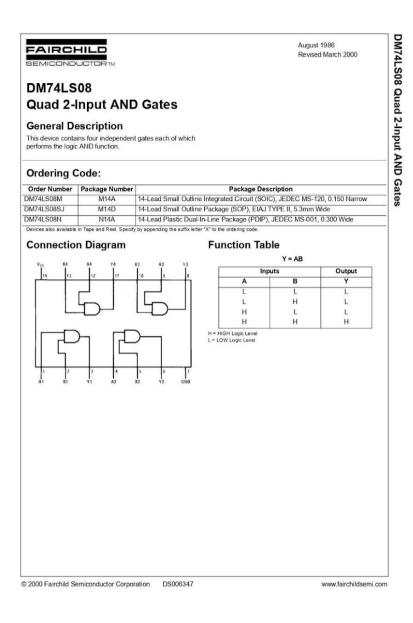
  JUME FAM YARROW TO 0.75 0.200, WHERE THE LEAD ENTERS THE CERAMIC BODY.

  5.822-01 THRU-07 OBSOLETE, NEW STANDARD 632-08.

|    | MILLIN | IETERS | INC       | HES   |  |
|----|--------|--------|-----------|-------|--|
| DM | MIN    | MAX    | MIN       | MAX   |  |
| Α  | 19.05  | 19.94  | 0.750     | 0.785 |  |
| В  | 6.23   | 7.11   | 0.245     | 0.280 |  |
| C  | 3.94   | 5.08   | 0.155     | 0.200 |  |
| D  | 0.39   | 0.50   | 0.015     | 0.020 |  |
| F  | 1.40   | 1.65   | 0.055     | 0.065 |  |
| G  | 2.54   | BSC    | 0.100 BSC |       |  |
| J  | 0.21   | 0.38   | 0.008     | 0.015 |  |
| K  | 3.18   | 4.31   | 0.125     | 0.170 |  |
| L  | 7.62   | BSC    | 0.300     | BSC   |  |
| М  | 0°     | 15°    | 0°        | 15°   |  |
| N  | 0.51   | 1.01   | 0.020     | 0.040 |  |

### Case 646-06 N Suffix 14-Pin Plastic




- NOTES:

  1. LEADS WITHIN 0.13 mm 0.005) RADIUS OF TRUE
  POSITION AT SEATING PLANE AT MAXIMUM
  MATERIAL CONDITION.
  DIMENSION OUT TO CENTER OF LEADS WHEN
  FORMED PARALLEL
  FLASH
  FLOWER OF THE OF THE OUT OF THE OUT
  FLOWER OF THE OUT
  FLOWER OUT
  FLOWER

|     | MILLIM | ETERS | INC   | HES   |
|-----|--------|-------|-------|-------|
| DIM | MIN    | MAX   | MIN   | MAX   |
| A   | 18.16  | 19.56 | 0.715 | 0.770 |
| В   | 6.10   | 6.60  | 0.240 | 0.260 |
| C   | 3.69   | 4.69  | 0.145 | 0.185 |
| D   | 0.38   | 0.53  | 0.015 | 0.021 |
| F   | 1.02   | 1.78  | 0.040 | 0.070 |
| G   | 2.54   | BSC   | 0.100 | BSC   |
| Н   | 1.32   | 2.41  | 0.052 | 0.095 |
| J   | 0.20   | 0.38  | 0.008 | 0.015 |
| K   | 2.92   | 3.43  | 0.115 | 0.135 |
| L   |        | BSC   | 0.300 | BSC   |
| M   | 00     | 10°   | 0°    | 10°   |
| N   | 0.39   | 1.01  | 0.015 | 0.039 |

FAST AND LS TTL DATA

#### 16.-74LS08



pág. 230

# DM74LS08

#### Absolute Maximum Ratings(Note 1)

 Supply Voltage
 7V

 Input Voltage
 7V

 Operating Free Air Temperature Range
 0°C to +70°C

 Storage Temperature Range
 -65°C to +150°C

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for exhall device operation.

#### **Recommended Operating Conditions**

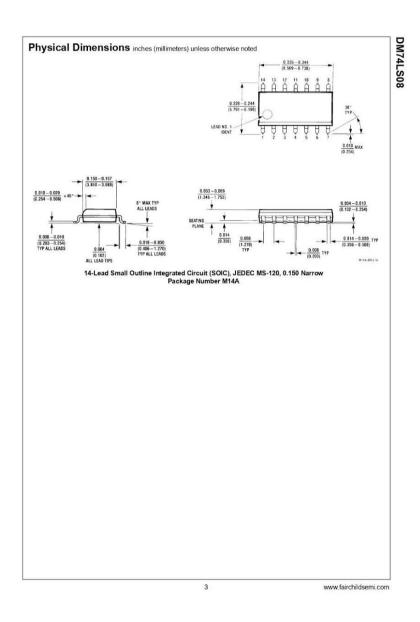
| Symbol          | Parameter                      | Min  | Nom | Max  | Units |
|-----------------|--------------------------------|------|-----|------|-------|
| V <sub>CC</sub> | Supply Voltage                 | 4.75 | 5   | 5.25 | V     |
| V <sub>IH</sub> | HIGH Level Input Voltage       | 2    |     |      | V     |
| V <sub>IL</sub> | LOW Level Input Voltage        |      |     | 0.8  | V     |
| Іон             | HIGH Level Output Current      |      |     | -0.4 | mA    |
| loL             | LOW Level Output Current       |      |     | 8    | mA    |
| TA              | Free Air Operating Temperature | 0    |     | 70   | °C    |

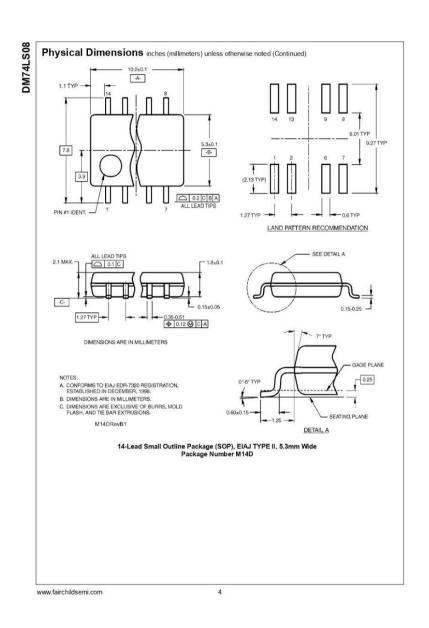
#### **Electrical Characteristics**

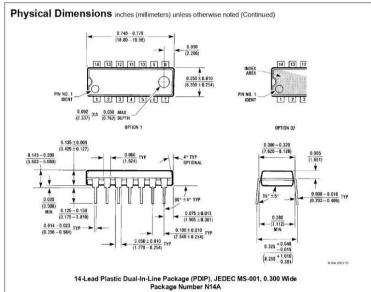
over recommended operating free air temperature range (unless otherwise noted)

| Symbol          | Parameter                         | Conditions                                                             | Min          | (Note 2) | Max   | Units |
|-----------------|-----------------------------------|------------------------------------------------------------------------|--------------|----------|-------|-------|
| Vi              | Input Clamp Voltage               | V <sub>CC</sub> = Min, I <sub>I</sub> = -18 mA                         |              |          | -1.5  | V     |
| V <sub>OH</sub> | HIGH Level<br>Output Voltage      | V <sub>CC</sub> = Min, I <sub>OH</sub> = Max,<br>V <sub>IH</sub> = Min | 2.7          | 3.4      |       | V     |
| V <sub>OL</sub> | LOW Level<br>Output Voltage       | V <sub>CC</sub> = Min, I <sub>OL</sub> = Max,<br>V <sub>IL</sub> = Max |              | 0.35     | 0.5   | v     |
|                 |                                   | I <sub>OL</sub> = 4 mA, V <sub>CC</sub> = Min                          | Min 0.25 0.4 | 0.4      |       |       |
| l <sub>i</sub>  | Input Current @ Max Input Voltage | V <sub>CC</sub> = Max, V <sub>I</sub> = 7V                             |              |          | 0.1   | mA    |
| l <sub>н</sub>  | HIGH Level Input Current          | V <sub>CC</sub> = Max, V <sub>I</sub> = 2.7V                           |              |          | 20    | μA    |
| IIL             | LOW Level Input Current           | V <sub>CC</sub> = Max, V <sub>I</sub> = 0.4V                           |              |          | -0.36 | mA    |
| los             | Short Circuit Output Current      | V <sub>CC</sub> = Max (Note 3)                                         | -20          |          | -100  | mA    |
| ССН             | Supply Current with Outputs HIGH  | V <sub>CC</sub> = Max                                                  |              | 2.4      | 4.8   | mA    |
| loci.           | Supply Current with Outputs LOW   | V <sub>CC</sub> = Max                                                  |              | 4.4      | 8.8   | mA    |

#### **Switching Characteristics**


at V<sub>CC</sub> = 5V and T<sub>A</sub> = 25°C


|                  |                                                    |                        | R <sub>L</sub> = | 2 kΩ  |     |    |
|------------------|----------------------------------------------------|------------------------|------------------|-------|-----|----|
| Symbol           | Parameter                                          | C <sub>L</sub> = 15 pF |                  | Units |     |    |
|                  |                                                    | Min                    | Max              | Min   | Max | 1  |
| t <sub>PLH</sub> | Propagation Delay Time<br>LOW-to-HIGH Level Output | 4                      | 13               | 6     | 18  | ns |
| t <sub>PHL</sub> | Propagation Delay Time<br>HIGH-to-LOW Level Output | 3                      | 11               | 5     | 18  | ns |


Note 2: All typicals are at V<sub>CC</sub> = 5V, T<sub>A</sub> = 25°C.

Note 3: Not more than one output should be shorted at a time, and the duration should not exceed one second.

www.fairchildsemi.com







Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

#### LIFE SUPPORT POLICY

- FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

  1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.

www.fairchildsemi.com

#### 17.- DISPLAY 7 SEGMENTOS.



### 7.6 mm (0.3 inch) Micro Bright Seven Segment Displays

### Technical Data

HDSP-740x Series HDSP-750x Series HDSP-780x Series HDSP-A15x Series HDSP-A40x Series

#### **Features**

- · Available with Colon for Clock Display
- Compact Package  $0.300 \times 0.500$  inches Leads on 2.54 mm (0.1 inch) Centers
- · Choice of Colors AlGaAs Red, High Efficiency Red, Yellow, Green, Orange
- Excellent Appearance **Evenly Lighted Segments** Mitered Corners on Segments Surface Color Gives Optimum Contrast ± 50° Viewing Angle
- Design Flexibility Common Anode or Common Cathode

Right Hand Decimal Point ± 1. Overflow Character

- · Categorized for Luminous Intensity Yellow and Green Categorized for Color Use of Like Categories Yields a Uniform Display
- High Light Output
- · High Peak Current
- Excellent for Long Digit String Multiplexing
- · Intensity and Color Selection Available See Intensity and Color Selected Displays Data Sheet
- Sunlight Viewable AlGaAs

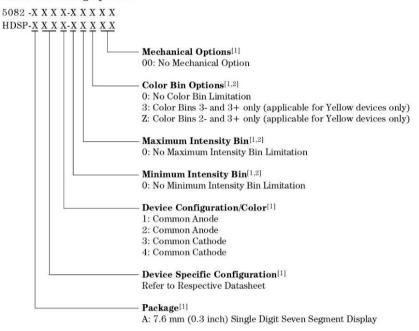


#### Description

The 7.6 mm (0.3 inch) LED seven segment displays are designed for viewing distances up to 3 metres (10 feet). These devices use an industry standard size package and pinout. Both the numeric and

#### Devices

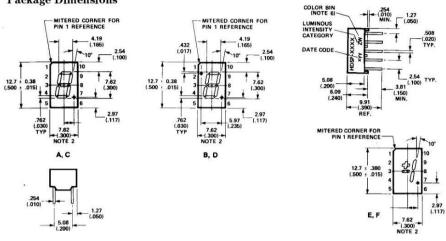
| Orange<br>HDSP- | AlGaAs <sup>[1]</sup><br>HDSP- | HER <sup>[1]</sup><br>HDSP- | Yellow <sup>[1]</sup><br>HDSP- | Green <sup>[1]</sup><br>HDSP- | Description                                 | Package<br>Drawing |
|-----------------|--------------------------------|-----------------------------|--------------------------------|-------------------------------|---------------------------------------------|--------------------|
| A401            | A151                           | 7501                        | 7401                           | 7801                          | Common Anode Right<br>Hand Decimal          | A                  |
|                 |                                | 7502                        | 7402                           | 7802                          | Common Anode Right Hand<br>Decimal, Colon   | В                  |
| A403            | A153                           | 7503                        | 7403                           | 7803                          | Common Cathode Right<br>Hand Decimal        | C                  |
|                 |                                | 7504                        | 7404                           | 7804                          | Common Cathode Right Hand<br>Decimal, Colon | D                  |
|                 | A157                           | 7507                        | 7407                           | 7807                          | Common Anode ± 1. Overflow                  | Е                  |
|                 | A158                           | 7508                        | 7408                           | 7808                          | Common Cathode ± 1. Overflow                | F                  |


Note:
1. These displays are recommended for high ambient light operation. Please refer to the HDSP-A10X AlGaAs, HDSP-335X HER, HDSP-A80X Yellow, and HDSP-A90X Green data sheet for low current operation.

± 1. overflow devices feature a right hand decimal point. All devices are available as either common anode or common cathode.

These displays are ideal for most applications. Pin for pin equivalent displays are also available in a low current design. The low current displays are ideal for

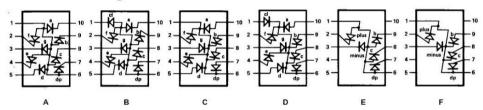
portable applications. For additional information see the Low Current Seven Segment Displays.


#### Part Numbering System



- Notes:
  1. For codes not listed in the figure above, please refer to the respective datasheet or contact your nearest
- Agilent representative for details.

  2. Bin options refer to shippable bins for a part number. Color and Intensity Bins are typically restricted to 1 bin per tube (exceptions may apply). Please refer to respective datasheet for specific bin limit information.


#### Package Dimensions



- NOTES:
  1. ALL DIMENSIONS IN MILLIMETRES (INCHES).
  2. MAXIMUM.
  3. ALL UNTOLERANCED DIMENSIONS ARE FOR REFERENCE ONLY.
  4. REDUNDANT ANODES.
  5. REDUNDANT CATHODES.
  6. FOR HDSP-7400-7800 SERIES PRODUCT ONLY.

|     | 10         |               | FUNC        | CTION       |               |             |
|-----|------------|---------------|-------------|-------------|---------------|-------------|
| PIN | A          | В             | С           | D           | E             | F           |
| 1   | ANODE[4]   | CATHODE COLON | CATHODE [5] | ANODE COLON | ANODE (4)     | CATHODE [5] |
| 2   | CATHODE f  | CATHODE 1     | ANODE f     | ANODE f     | CATHODE PLUS  | ANODE PLUS  |
| 3   | CATHODE q  | CATHODE g     | ANODE a     | ANODE q     | CATHODE MINUS | ANODE MINUS |
| 4   | CATHODE e  | CATHODE e     | ANODE e     | ANODE e     | NC            | NC          |
| 5   | CATHODE d  | CATHODE d     | ANODE d     | ANODE d     | NC            | NC          |
| 6   | ANODE [4]  | ANODE         | CATHODE [5] | CATHODE     | ANODE [4]     | CATHODE (5) |
| 7   | CATHODE DP | CATHODE DP    | ANODE DP    | ANODE DP    | CATHODE DP    | ANODE DP    |
| 8   | CATHODE c  | CATHODE c     | ANODE c     | ANODE c     | CATHODE c     | ANODE c     |
| 9   | CATHODE 6  | CATHODE b     | ANODE b     | ANODE b     | CATHODE b     | ANODE b     |
| 10  | CATHODE a  | CATHODE a     | ANODE a     | ANODE a     | NC            | NC          |

### Internal Circuit Diagram



#### **Absolute Maximum Ratings**

| Description                                                                           | AlGaAs Red<br>HDSP-A150<br>Series | HER/Orange<br>HDSP-7500/-A40X<br>Series | Yellow<br>HDSP-7400<br>Series | Green<br>HDSP-7800<br>Series | Units                |
|---------------------------------------------------------------------------------------|-----------------------------------|-----------------------------------------|-------------------------------|------------------------------|----------------------|
| Average Power per Segment or DP                                                       | 96                                | 105                                     | 80                            | 105                          | mW                   |
| Peak Forward Current per<br>Segment or DP                                             | 160[1]                            | 90[3]                                   | 60[5]                         | 90[7]                        | mA                   |
| DC Forward Current per<br>Segment or DP                                               | 40[2]                             | 30[4]                                   | 20[6]                         | 30[8]                        | mA                   |
| Operating Temperature Range                                                           | -20 to +100[9]                    | _                                       | 40 to +100                    |                              | °(                   |
| Storage Temperature Range                                                             |                                   | –55 to                                  | +100                          |                              | $^{\circ}\mathrm{C}$ |
| Reverse Voltage per Segment or DP                                                     |                                   | 8                                       | 3.0                           |                              | v                    |
| Lead Solder Temperature for 3<br>Seconds (1.59 mm [0.063 in.]<br>below seating plane) |                                   | 2                                       | 60                            |                              | °C                   |

- Notes:

  1. See Figure 1 to establish pulsed conditions.

  2. Derate above 46°C at 0.54 mŰC.

  3. See Figure 6 to establish pulsed conditions.

  4. Derate above 53°C at 0.45 mŰC.

  5. See Figure 7 to establish pulsed conditions.

  6. Derate above 81°C at 0.52 mŰC.

  7. See Figure 8 to establish pulsed conditions.

  8. Derate above 39°C at 0.37 mŰC.

  9. For operation below -20°C, contact your local Agilent components sales office or an authorized distributor.

### Electrical/Optical Characteristics at $\rm T_A = 25^{\circ}C$

#### AlGaAs Red

| Device<br>Series<br>HDSP- | Parameter                                                        | Symbol                      | Min. | Тур. | Max. | Units    | Test Conditions                    |
|---------------------------|------------------------------------------------------------------|-----------------------------|------|------|------|----------|------------------------------------|
|                           | Luminous Intensity/Segment <sup>[1,2,5]</sup><br>(Digit Average) | Iv                          | 6.9  | 14.0 |      | med      | $I_{\rm F} = 20~{ m mA}$           |
|                           | D 177 - 10 - 1 DD                                                |                             |      | 1.8  |      | v        | $I_F = 20 \text{ mA}$              |
|                           | Forward Voltage/Segment or DP                                    | $V_{\mathrm{F}}$            |      | 2.0  | 3.0  | v        | I <sub>F</sub> = 100 mA            |
| A15x                      | Peak Wavelength                                                  | APEAK                       |      | 645  |      | nm       |                                    |
|                           | Dominant Wavelength <sup>[3]</sup>                               | λd                          |      | 637  |      | nm       |                                    |
|                           | Reverse Voltage/Segment or DP <sup>[4]</sup>                     | $V_R$                       | 3.0  | 15.0 |      | v        | $I_{\mathrm{R}}=100~\mu\mathrm{A}$ |
|                           | Temperature Coefficient of V <sub>F</sub> /Segment or DP         | ΔV <sub>F</sub> /°C         |      | -2   |      | mV/°C    |                                    |
|                           | Thermal Resistance LED Junction-<br>to-Pin                       | R <b>∂</b> <sub>J-PIN</sub> |      | 255  |      | °C/W/Seg |                                    |

High Efficiency Red

| Device<br>Series<br>HDSP- | Parameter                                                   | Symbol                         | Min. | Тур. | Max. | Units       | Test Conditions                   |
|---------------------------|-------------------------------------------------------------|--------------------------------|------|------|------|-------------|-----------------------------------|
|                           | Luminous Intensity/Segment[1,2,6]                           |                                | 360  | 980  |      |             | $I_{\rm F}=5~{ m mA}$             |
|                           | (Digit Average)                                             | $I_V$                          |      | 5390 |      | <b>µ</b> ed | I <sub>F</sub> = 20 mA            |
|                           | Forward Voltage/Segment or DP                               | $V_{\mathrm{F}}$               |      | 2.0  | 2.5  | v           | $I_{\rm F}=20~{ m mA}$            |
| 750x                      | Peak Wavelength                                             | APEAK                          |      | 635  |      | nm          |                                   |
|                           | Dominant Wavelength <sup>[3]</sup>                          | λd                             |      | 626  |      | nm          |                                   |
|                           | Reverse Voltage/Segment or DP <sup>[4]</sup>                | $V_{R}$                        | 3.0  | 30   |      | v           | $I_{\mathrm{R}}=100\mu\mathrm{A}$ |
|                           | Temperature Coefficient of<br>V <sub>F</sub> /Segment or DP | ΔV <sub>F</sub> /°C            |      | -2   |      | mV/°C       |                                   |
|                           | Thermal Resistance LED Junction-<br>to-Pin                  | $R	extbf{	heta}_{	ext{J-PIN}}$ |      | 200  |      | °C/W/Seg    |                                   |

### Orange

| Device<br>Series<br>HDSP- | Parameter                                                        | Symbol              | Min. | Тур. | Max. | Units    | Test Conditions                 |
|---------------------------|------------------------------------------------------------------|---------------------|------|------|------|----------|---------------------------------|
|                           | Luminous Intensity/Segment <sup>[1,2,6]</sup><br>(Digit Average) | $I_V$               |      | 0.70 |      | med      | $I_{\mathrm{F}} = 5 \text{ mA}$ |
|                           | Forward Voltage/Segment or DP                                    | $V_{\mathrm{F}}$    |      | 2.0  | 2.5  | v        | $I_F = 20 \text{ mA}$           |
| A40x                      | Peak Wavelength                                                  | <b>N</b> PEAK       |      | 600  |      | nm       |                                 |
|                           | Dominant Wavelength <sup>[3]</sup>                               | λ <sub>d</sub>      |      | 603  |      | nm       |                                 |
|                           | Reverse Voltage/Segment or DP <sup>[4]</sup>                     | $V_{R}$             | 3.0  | 30   |      | v        | $I_R = 100  \mu A$              |
|                           | Temperature Coefficient of V <sub>F</sub> /Segment or DP         | ΔV <sub>F</sub> /°C |      | -2   |      | mV/°C    |                                 |
|                           | Thermal Resistance LED Junction-<br>to-Pin                       | $R0_{J	ext{-PIN}}$  |      | 200  |      | °C/W/Seg |                                 |

#### Yellow

| Device<br>Series<br>HDSP- | Parameter                                       | Symbol                   | Min.  | Тур. | Max.  | Units    | Test Conditions            |
|---------------------------|-------------------------------------------------|--------------------------|-------|------|-------|----------|----------------------------|
|                           | Luminous Intensity/Segment[1,2,7]               |                          | 225   | 480  |       |          | $I_{\rm F} = 5 \text{ mA}$ |
|                           | (Digit Average)                                 | $I_V$                    |       | 2740 |       | µcd      | $I_{\rm F}=20~{ m mA}$     |
|                           | Forward Voltage/Segment or DP                   | $V_{\mathrm{F}}$         |       | 2.2  | 2.5   | V        | $I_{\rm F}=20~{\rm mA}$    |
| 740x                      | Peak Wavelength                                 | <b>A</b> <sub>PEAK</sub> |       | 583  |       | nm       |                            |
|                           | Dominant Wavelength <sup>[3,9]</sup>            | λ <sub>d</sub>           | 581.5 | 586  | 592.5 | nm       |                            |
|                           | Reverse Voltage/Segment or DP <sup>[4]</sup>    | $V_R$                    | 3.0   | 50.0 |       | V        | $I_R = 100  \mu A$         |
|                           | Temperature Coefficient of $V_F$ /Segment or DP | ΔV <sub>F</sub> /°C      |       | -2   |       | mV/°C    |                            |
|                           | Thermal Resistance LED Junction-<br>to-Pin      | $R\theta_{J-PIN}$        |       | 200  |       | °C/W/Seg |                            |

#### **High Performance Green**

| Device<br>Series<br>HDSP- | Parameter                                                   | Symbol              | Min. | Тур. | Max. | Units    | Test Conditions           |
|---------------------------|-------------------------------------------------------------|---------------------|------|------|------|----------|---------------------------|
|                           | Luminous Intensity/Segment[1,2,8]                           |                     | 860  | 3000 |      |          | $I_F = 10 \text{ mA}$     |
|                           | (Digit Average)                                             | $I_V$               |      | 6800 |      | µed      | I <sub>F</sub> = 20 mA    |
|                           | Forward Voltage/Segment or DP                               | $V_{\mathrm{F}}$    |      | 2.1  | 2.5  | v        | $I_{\rm F} = 10~{\rm mA}$ |
| 780x                      | Peak Wavelength                                             | APEAK               |      | 566  |      | nm       |                           |
|                           | Dominant Wavelength <sup>[3,9]</sup>                        | λd                  |      | 571  | 577  | nm       |                           |
|                           | Reverse Voltage/Segment or DP <sup>[4]</sup>                | $V_{R}$             | 3.0  | 50.0 |      | v        | $I_{R}=100~\mu\mathrm{A}$ |
|                           | Temperature Coefficient of<br>V <sub>F</sub> /Segment or DP | ΔV <sub>F</sub> /°C |      | -2   |      | mV/°C    |                           |
|                           | Thermal Resistance LED Junction-<br>to-Pin                  | $R\theta_{J-PIN}$   |      | 200  |      | °C/W/Seg |                           |

- Notes:

  1. Case temperature of device immediately prior to the intensity measurement is 25°C.

  2. The digits are categorized for luminous intensity. The intensity category is designated by a letter on the side of the package.

  3. The dominant wavelength, \( \bar{h}\_d\), is derived from the CIE chromaticity diagram and is that single wavelength which defines the color of the device.

  4. Typical specification for reference only. Do not exceed absolute maximum ratings.

  5. For low current operation the HER HDSP-A101 series displays are recommended.

  6. For low current operation the HER HDSP-7511 series displays are recommended.

  7. For low current operation the Yellow HDSP-A801 series displays are recommended.

  8. For low current operation the Green HDSP-A901 series displays are recommended.

  9. The yellow (HDSP-7400) and Green (HDSP-7800) displays are categorized for dominant wavelength. The category is designated by a number adjacent to the luminous intensity category letter.

#### AlGaAs Red

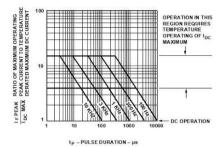



Figure 1. Maximum Allowed Peak Current vs. Pulse Duration – AlGaAs Red.

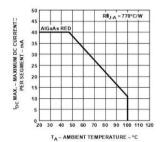



Figure 2. Maximum Allowable DC Current per Segment as a Function of Ambient Temperature.

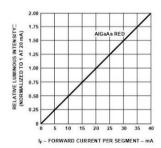



Figure 4. Relative Luminous Intensity vs. DC Forward Current.

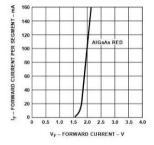



Figure 3. Forward Current vs. Forward Voltage.

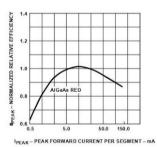



Figure 5. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak Current.

#### HER, Yellow, Green, Orange

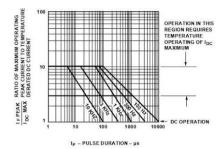



Figure 6. Maximum Tolerable Peak Current vs. Pulse Duration – HER, Orange.

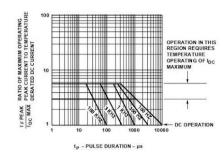



Figure 7. Maximum Tolerable Peak Current vs. Pulse Duration – Yellow.

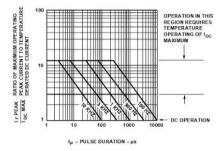



Figure 8. Allowable Peak Current vs. Pulse Duration - Green.

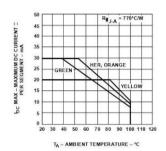



Figure 9. Maximum Allowable DC Current per Segment as a Function of Ambient Temperature.

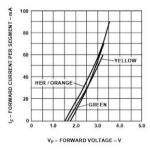



Figure 10. Forward Current vs. Forward Voltage Characteristics.

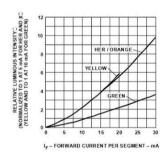



Figure 11. Relative Luminous Intensity vs. DC Forward Current.

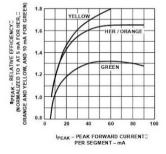



Figure 12. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak Current.

### Intensity Bin Limits (mcd)

#### AlGaAs Red

| HDSP-A15x       |       |       |  |  |  |
|-----------------|-------|-------|--|--|--|
| IV Bin Category | Min.  | Max.  |  |  |  |
| M               | 7.07  | 13.00 |  |  |  |
| N               | 10.60 | 19.40 |  |  |  |
| 0               | 15.90 | 29.20 |  |  |  |
| P               | 23.90 | 43.80 |  |  |  |
| Q               | 35.80 | 65.60 |  |  |  |

#### HER

| HDSP-750x       |       |       |  |  |  |
|-----------------|-------|-------|--|--|--|
| IV Bin Category | Min.  | Max.  |  |  |  |
| В               | 0.342 | 0.630 |  |  |  |
| C               | 0.516 | 0.946 |  |  |  |
| D               | 0.774 | 1.418 |  |  |  |
| E               | 1.160 | 2.127 |  |  |  |
| F               | 1.740 | 3.190 |  |  |  |
| G               | 2.610 | 4.785 |  |  |  |
| Н               | 3.915 | 7.177 |  |  |  |

#### Orange

| Н               | DSP-A40X |       |  |
|-----------------|----------|-------|--|
| IV Bin Category | Min.     | Max.  |  |
| A               | 0.284    | 0.433 |  |
| В               | 0.354    | 0.541 |  |
| C               | 0.443    | 0.677 |  |
| D               | 0.554    | 0.846 |  |
| E               | 0.692    | 1.057 |  |
| F               | 0.856    | 1.322 |  |
| G               | 1.082    | 1.652 |  |
| H               | 1.352    | 2.066 |  |
| I               | 1.692    | 2.581 |  |
| J               | 2.114    | 3.227 |  |
| K               | 2.641    | 4.034 |  |
| L               | 3.300    | 5.042 |  |
| M               | 4.127    | 6.303 |  |
| N               | 5.157    | 7.878 |  |

#### Yellow

| HDSP-740x       |       |       |  |  |  |
|-----------------|-------|-------|--|--|--|
| IV Bin Category | Min.  | Max.  |  |  |  |
| В               | 0.229 | 0.387 |  |  |  |
| C               | 0.317 | 0.582 |  |  |  |
| D               | 0.476 | 0.872 |  |  |  |
| E               | 0.714 | 1.311 |  |  |  |
| F               | 1.073 | 1.967 |  |  |  |
| G               | 1.609 | 2.950 |  |  |  |
| Н               | 2.413 | 4.425 |  |  |  |

### Green

| HDSP-780x       |      |      |  |  |  |
|-----------------|------|------|--|--|--|
| IV Bin Category | Min. | Max. |  |  |  |
| Н               | 0.86 | 1.58 |  |  |  |
| I               | 1.29 | 2.37 |  |  |  |
| J               | 1.94 | 3.55 |  |  |  |
| K               | 2.90 | 5.33 |  |  |  |
| L               | 4.37 | 8.01 |  |  |  |

#### **Color Categories**

|        |     | Dominant Wavelength (nm) |        |  |  |
|--------|-----|--------------------------|--------|--|--|
| Color  | Bin | Min.                     | Max.   |  |  |
| Yellow | 1   | 581.50                   | 585.00 |  |  |
|        | 3   | 584.00                   | 587.50 |  |  |
|        | 2   | 586.50                   | 590.00 |  |  |
|        | 4   | 589.00                   | 592.50 |  |  |
| Green  | 2   | 573.00                   | 577.00 |  |  |
|        | 3   | 570.00                   | 574.00 |  |  |
|        | 4   | 567.00                   | 571.00 |  |  |
| Ì      | 5   | 564.00                   | 568.00 |  |  |

Note:
All categories are established for classification of products. Products may not be available in all categories. Please contact your Agilent representatives for further clarification/information.

#### **Contrast Enhancement**

For information on contrast enhancement, please see Application Note 1015.

#### Soldering/Cleaning

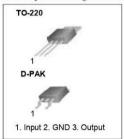
Cleaning agents from the ketone family (acetone, methyl ethyl ketone, etc.) and from the chlorinated hydrocarbon family (methylene chloride, trichloroethylene, carbon tetrachloride, etc.) are not recommended for cleaning LED parts. All of these various solvents attack or dissolve the encapsulating epoxies used to form the package of plastic LED

For further information on soldering LEDs, please refer to Application Note 1027.

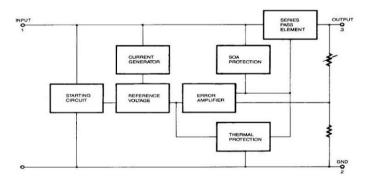
#### 18.- LM7805



www.fairchildsemi.com


# MC78XX/LM78XX/MC78XXA 3-Terminal 1A Positive Voltage Regulator

#### **Features**


- Output Current up to 1A
- Output Voltages of 5, 6, 8, 9, 10, 12, 15, 18, 24V
- Thermal Overload Protection
- · Short Circuit Protection
- Output Transistor Safe Operating Area Protection

#### Description

The MC78XX/LM78XX/MC78XXA series of three terminal positive regulators are available in the TO-220/D-PAK package and with several fixed output voltages, making them useful in a wide range of applications. Each type employs internal current limiting, thermal shut down and safe operating area protection, making it essentially indestructible. If adequate heat sinking is provided, they can deliver over 1A output current. Although designed primarily as fixed voltage regulators, these devices can be used with external components to obtain adjustable voltages and currents.



#### **Internal Block Digram**



Rev. 1.0.1

©2001 Fairchild Semiconductor Corporation

#### **Absolute Maximum Ratings**

| Parameter                                            | Symbol        | Value      | Unit   |  |
|------------------------------------------------------|---------------|------------|--------|--|
| Input Voltage (for Vo = 5V to 18V)<br>(for Vo = 24V) | VI<br>VI      | 35<br>40   | V<br>V |  |
| Thermal Resistance Junction-Cases (TO-220)           | Rauc          | 5          | °C/W   |  |
| Thermal Resistance Junction-Air (TO-220)             | R <b>8</b> JA | 65         | °C/W   |  |
| Operating Temperature Range                          | Topr          | 0 ~ +125   | οС     |  |
| Storage Temperature Range                            | TSTG          | -65 ~ +150 | °C     |  |

#### Electrical Characteristics (MC7805/LM7805)

(Refer to test circuit ,0°C < T<sub>J</sub> < 125°C, I<sub>O</sub> = 500mA, V<sub>I</sub> = 10V, C<sub>I</sub>= 0.33 $\mu$ F, C<sub>O</sub>= 0.1 $\mu$ F, unless otherwise specified)

|                          | 0       | Conditions                                    |                            | MC7805/LM7805 |      |      |        |
|--------------------------|---------|-----------------------------------------------|----------------------------|---------------|------|------|--------|
| Parameter                | Symbol  |                                               |                            | Min.          | Тур. | Max. | Unit   |
|                          |         | T <sub>J</sub> =+25 °C                        |                            | 4.8           | 5.0  | 5.2  |        |
| Output Voltage           | Vo      | 5.0mA ≤ Io ≤ 1.0A, Po ≤ 15W<br>VI = 7V to 20V |                            | 4.75          | 5.0  | 5.25 | V      |
| Line Regulation (Note1)  | Doeling | TJ=+25 °C                                     | Vo = 7V to 25V             | 3=3           | 4.0  | 100  | mV     |
| Line Regulation (Note1)  | Regline |                                               | V <sub>I</sub> = 8V to 12V | -             | 1.6  | 50   |        |
|                          | Regload | TJ=+25 °C                                     | Io = 5.0mA to1.5A          | -             | 9    | 100  | mV     |
| Load Regulation (Note1)  |         |                                               | Io =250mA to<br>750mA      |               | 4    | 50   |        |
| Quiescent Current        | lq      | T <sub>J</sub> =+25 °C                        |                            | -             | 5.0  | 8.0  | mA     |
| 0                        | ΔlQ     | Io = 5mA to 1.0A                              |                            | -             | 0.03 | 0.5  | mA     |
| Quiescent Current Change |         | V <sub>I</sub> = 7V to 25V                    |                            | -             | 0.3  | 1.3  |        |
| Output Voltage Drift     | ΔVο/ΔΤ  | Io= 5mA                                       |                            | -             | -0.8 | -    | mV/ °C |
| Output Noise Voltage     | VN      | f = 10Hz to 100KHz, TA=+25 °C                 |                            | -             | 42   | -    | μV/Vo  |
| Ripple Rejection         | RR      | f = 120Hz<br>Vo = 8V to 18V                   |                            | 62            | 73   | -    | dB     |
| Dropout Voltage          | VDrop   | Io = 1A, T <sub>J</sub> =+25 °C               |                            | 19-20         | 2    | -    | V      |
| Output Resistance        | ro      | f = 1KHz                                      |                            | -             | 15   | -    | mΩ     |
| Short Circuit Current    | Isc     | V <sub>I</sub> = 35V, T <sub>A</sub> =+25 °C  |                            | -             | 230  | -    | mA     |
| Peak Current             | IPK     | T <sub>J</sub> =+25 °C                        |                            | -             | 2.2  | -    | Α      |

Note:

1. Load and line regulation are specified at constant junction temperature, Changes in V<sub>0</sub> due to heating effects must be taken into account separately. Pulse testing with low duty is used.

### Electrical Characteristics (MC7805A)

(Refer to the test circuits. 0°C < T<sub>J</sub> < 125°C,  $I_0$  =1A, V  $I_1$  = 10V, C  $I_2$ =0.33 $\mu$ F, C  $I_2$ =0.14 $\mu$ F, unless otherwise specified)

| Parameter                   | Symbol  | Conditions                                                                       |                              | Min. | Тур. | Max.       | Unit  |
|-----------------------------|---------|----------------------------------------------------------------------------------|------------------------------|------|------|------------|-------|
|                             | Vo      | T <sub>J</sub> =+25 °C                                                           |                              | 4.9  | 5    | 5.1        | V     |
| Output Voltage              |         | I <sub>O</sub> = 5mA to 1A, P <sub>O</sub> ≤ 15W<br>V <sub>I</sub> = 7.5V to 20V |                              | 4.8  | 5    | 5.2        |       |
|                             | Regline | V <sub>I</sub> = 7.5V to 25V<br>I <sub>O</sub> = 500mA                           |                              | 1-1  | 5    | 50         | mV    |
| Line Regulation (Note1)     |         | V <sub>I</sub> = 8V to 12V                                                       |                              | (=)  | 3    | 50         |       |
|                             |         | T 05.00                                                                          | V <sub>I</sub> = 7.3V to 20V | (=)  | 5    | 50         | -     |
|                             |         | T <sub>J</sub> =+25 °C                                                           | V <sub>I</sub> = 8V to 12V   | -    | 1.5  | 25         |       |
| Load Regulation (Note1)     |         | T <sub>J</sub> =+25 °C<br>IO = 5mA to 1.5A                                       |                              | 100  | 9    | 100        | mV    |
|                             | Regload | Io = 5mA to 1A                                                                   |                              | 1=0  | 9    | 100        |       |
|                             |         | Io = 250mA to 750mA                                                              |                              | -    | 4    | 50         |       |
| Quiescent Current           | IQ      | TJ =+25 °C                                                                       |                              | -    | 5.0  | 6          | mA    |
| Quiescent Current<br>Change | ΔlQ     | Io = 5mA to 1A                                                                   |                              | -    | -    | 0.5        | mA    |
|                             |         | V <sub>I</sub> = 8 V to 25V, I <sub>O</sub> = 500mA                              |                              | -    | -    | 0.8        |       |
| Change                      |         | VI = 7.5V to 20V, TJ =+25 °C                                                     |                              | -    | -    | 0.8        |       |
| Output Voltage Drift        | ΔV/ΔΤ   | Io = 5mA                                                                         |                              | -    | -0.8 | - 14       | mV/°C |
| Output Noise Voltage        | VN      | f = 10Hz to 100KHz<br>T <sub>A</sub> =+25 °C                                     |                              | -    | 10   | -          | µV/Vo |
| Ripple Rejection            | RR      | f = 120Hz, I <sub>O</sub> = 500mA<br>V <sub>I</sub> = 8V to 18V                  |                              | -    | 68   | 12         | dB    |
| Dropout Voltage             | VDrop   | Io = 1A, T <sub>J</sub> =+25 °C                                                  |                              |      | 2    | -          | V     |
| Output Resistance           | ro      | f = 1KHz                                                                         |                              | -    | 17   | - 4        | mΩ    |
| Short Circuit Current       | Isc     | VI= 35V, TA =+25 °C                                                              |                              | -    | 250  | : <b>-</b> | mA    |
| Peak Current                | IPK     | T <sub>J</sub> = +25 °C                                                          |                              | -    | 2.2  | -          | Α     |

#### Note:

Load and line regulation are specified at constant junction temperature. Change in V<sub>O</sub> due to heating effects must be taken into account separately. Pulse testing with low duty is used.

### **Typical Perfomance Characteristics**

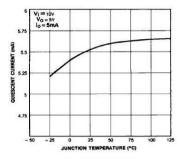



Figure 1. Quiescent Current

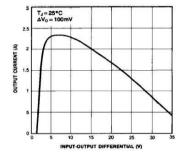



Figure 2. Peak Output Current

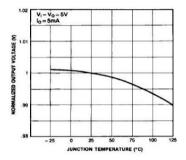



Figure 3. Output Voltage

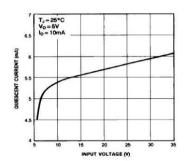



Figure 4. Quiescent Current

### **Typical Applications**

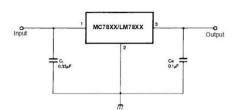



Figure 5. DC Parameters

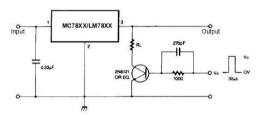



Figure 6. Load Regulation

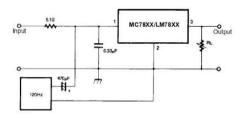



Figure 7. Ripple Rejection

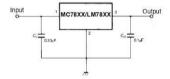



Figure 8. Fixed Output Regulator

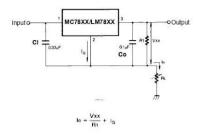
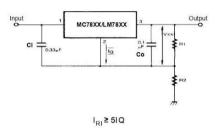
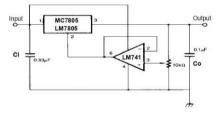




Figure 9. Constant Current Regulator


- Notes:

  (1) To specify an output voltage. substitute voltage value for "XX." A common ground is required between the input and the Output voltage. The input voltage must remain typically 2.0V above the output voltage even during the low point on the input ripple voltage.
- (2) C<sub>I</sub> is required if regulator is located an appreciable distance from power Supply filter.

  (3) C<sub>O</sub> improves stability and transient response.



 $V_O = V_X \chi (1 + R_2/R_1) + I_Q R_2$  Figure 10. Circuit for Increasing Output Voltage



IRI ≥5 IQ VO = VXX(1+R2/R1)+IQR2 Figure 11. Adjustable Output Regulator (7 to 30V)

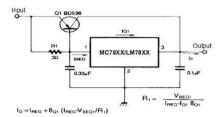



Figure 12. High Current Voltage Regulator

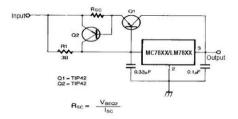



Figure 13. High Output Current with Short Circuit Protection

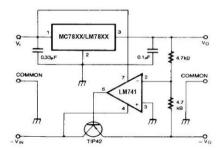



Figure 14. Tracking Voltage Regulator

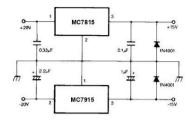



Figure 15. Split Power Supply ( ±15V-1A)

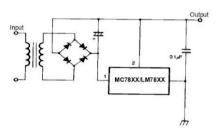



Figure 16. Negative Output Voltage Circuit

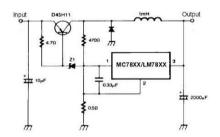
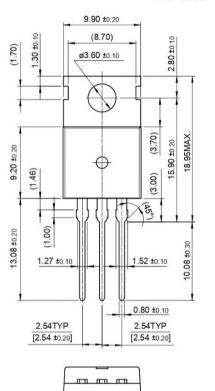
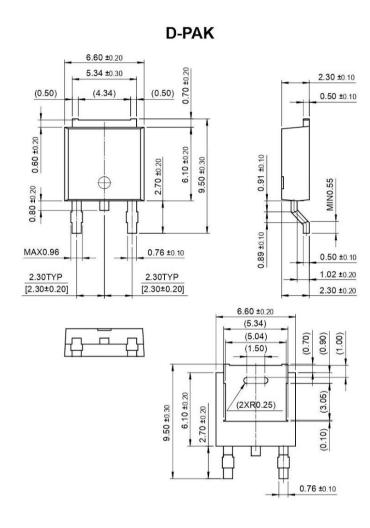




Figure 17. Switching Regulator

### **Mechanical Dimensions**

#### Package

TO-220






10.00 ±0.20

### Mechancal Dimensions (Continued)

#### Package



### Ordering Information

| Product Number | Output Voltage Tolerance | Package | Operating Temperature |  |  |
|----------------|--------------------------|---------|-----------------------|--|--|
| LM7805CT       | ±4%                      | TO-220  | 0 ~ + 125°C           |  |  |

| Product Number | Output Voltage Tolerance | Package | Operating Temperature |  |
|----------------|--------------------------|---------|-----------------------|--|
| MC7805CT       |                          |         |                       |  |
| MC7806CT       |                          |         |                       |  |
| MC7808CT       |                          |         |                       |  |
| MC7809CT       |                          |         |                       |  |
| MC7810CT       |                          | TO-220  |                       |  |
| MC7812CT       | ]                        |         |                       |  |
| MC7815CT       | -                        |         |                       |  |
| MC7818CT       | ± <b>4</b> %             |         |                       |  |
| MC7824CT       |                          |         |                       |  |
| MC7805CDT      |                          |         |                       |  |
| MC7806CDT      | -                        | D-PAK   | 0 ~ + 125°C           |  |
| MC7808CDT      |                          |         |                       |  |
| MC7809CDT      |                          | D-FAR   | 0 ~ + 125 C           |  |
| MC7810CDT      |                          |         |                       |  |
| MC7812CDT      |                          |         |                       |  |
| MC7805ACT      |                          |         |                       |  |
| MC7806ACT      |                          |         |                       |  |
| MC7808ACT      |                          |         |                       |  |
| MC7809ACT      |                          |         |                       |  |
| MC7810ACT      | ±2%                      | TO-220  |                       |  |
| MC7812ACT      |                          |         |                       |  |
| MC7815ACT      |                          |         |                       |  |
| MC7818ACT      |                          |         |                       |  |
| MC7824ACT      | 1                        |         |                       |  |