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1 Abstract

There exists a growing interest in the application of Machine Learning methods to Astrophysics,
as they have proven to be very useful in the past. Following this line of work and motivated
by a reduction in computation time, we explored the use of an artificial neural network (ANN)
in the synthesis of Stokes profiles through the direct mapping of solar atmosphere magnitudes
and profiles. First, some basic concepts regarding Machine Learning and the problem at hand
are presented, followed by a complete description of the ANN training process. Finally, a Stokes
profile inversion (which requires a great number of synthesis) is carried out using an optimization
algorithm to recover the solar atmosphere magnitudes.

Resumen

Existe un interés creciente en la aplicación de métodos de Aprendizaje automático a Astrof́ısica,
ya que han demostrado ser de gran utilidad a lo largo de los años. Siguiendo esta ĺınea de trabajo
y motivado por una reducción en el tiempo de computación, se explora el uso de una red neuronal
artificial (ANN) en la śıntesis de perfiles de Stokes mediante un mapeo directo de magnitudes de la
atmósfera solar y perfiles. Primero, se exponen una serie de conceptos básicos sobre Aprendizaje
automático y el problema que nos ocupa, seguido de una descripción completa del proceso de en-
trenamiento de la ANN. Por último, se realiza la inversión de un perfil de Stokes (lo cual requiere
un gran número de śıntesis) haciendo uso de un algoritmo de optimización con el fin de recuperar
las magnitudes de la atmósfera solar.
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2 Introduction

En primer lugar, se expone la motivación del trabajo junto a la razón por la cual los métodos
de Aprendizaje automático (ML) han ganado popularidad en Astrof́ısica, además de enumerar
ejemplos concretos de su uso. Se prosigue con una presentación detallada de conceptos claves en
ML, tales como red neuronal artificial, parámetros del modelo, retropropagación o entrenamiento
supervisado. En un último sub-apartado, se definen los parámetros de Stokes y los métodos de
śıntesis e inversión, que realacionan los perfiles con una serie de magnitudes de la atmósfera solar
mediante la ecuación de transporte radiativo.

2.1 Motivation

Machine Learning algorithms have been gaining popularity throughout the years among a great
number of sectors such as Finances, Logistics, medical diagnosis or transport, offering different and
better approaches, solving challenging problems and opening the door to brand-new technology.

These methods have experienced a rise in Astrophysics too [Longo et al., 2019]. Datasets are
quickly becoming larger and more complex, therefore the need for a tool able to process high-
dimensional data quickly. In this regard, Machine Learning contributes to anomaly and object
detection, classification, clustering, as well as inference, prediction and faster problem resolution.

2.2 Machine Learning and Deep Learning

Machine Learning, a subfield of Computer Science and a branch of Artificial Intelligence, develop
techniques to give computers the ability to “learn” (i.e., progressively improve performance on a
specific task) with data, without being explicitly programmed.

At the heart of every machine learning algorithm lies a model, a set of successive operations
needed to transform raw data (input) into some desired result (output). In this project, artificial
neural networks (ANNs) will be used as models. ANNs employ nodes or neurons that are linked to
one another in a specific way, conforming the architecture. Each connection has a weight associ-
ated, a value representing a neuron influence over another. These model parameters are unknown
at first, and the objective is to iteratively adapt them through a training process until a good
enough performance is achieved.

Deep Learning refers to machine learning algorithms whose architecture allows learning in mul-
tiple successive levels of abstraction, establishing a hierarchy among the elements found in data
so that complex high-level features are defined in terms of simple lower-level ones. This technique
usually employs ANNs where neurons are arranged in layers and information only moves forward
from the input to the output. Taking the picture of a bird species as an example, the first layers
would excel detecting lines; the next group, borders, and so on with feathers, body parts, birds
in general and, finally, concrete species of birds. This behaviour can be visualized in [Zeiler and
Fergus, 2013]. For groups of layers to be able to specialize in such a way, a large number of them
is required, being this the main difference with other machine learning algorithms using ANNs.

The fundamental process involving linear neurons is displayed in Figure 1. Note that this is
just a general example and variations are applicable. The first step is taking the values stored
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in previous neurons and multiply by the corresponding weights. Then, a bias is added, a neuron
unconnected to previous ones that adds a constant term to the operation. Next, a weighted sum
of these terms is calculated and fed to an activation function, which normally is used to introduce
non-linearity and help the ANN learn complex data. There could be other features attributed to
a particular activation function (e.g. restricting values within a range). Finally, the result of these
operations is transmitted to the next group of neurons.

Figure 1: Main components of ANNs with linear nodes and the basic interactions that take place
whitin them.

The process outlined above is applied to every neuron composing the network until a final group
of nodes is reached which returns the model output.
In supervised learning, every input is associated with an expected output provided by the user.
This paired information is known as “labeled data”. Here, the output predicted by the model is
compared against the expected outcome via a loss function.

Weights must be adapted to minimize the loss function and improve the model. A popular and
fast method to do so consists in, first, applying the so-called backpropagation algorithm, which
computes the gradient of the loss function with respect to any weights or bias in the network for
every iteration (knows as epoch) and, second, couple it with another algorithm that update the
weights taking steps proportional to the negative gradient calculated previously. The step size is
known as the learning rate.

2.3 Stokes profiles and inversions

The outer region of the Sun is known as the solar atmosphere and can be divided into three dif-
ferent layers: the photosphere, the chromosphere and the corona.

Light stems from the photosphere and escapes the Sun after passing through the higher lay-
ers, and once this radiation is observed, it can be characterized by its spectrum, intensity and
polarization state. There are several possible descriptions of radiation, but a convenient one is the
given by the Stokes parameters (I,Q, U, V ) [Stokes, 1852, Chandrasekhar, 1960]. These quantities
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correspond to a sum or difference of easily measurable intensities when light is viewed through a
polarizing filter oriented at various angles. I represents the intensity, while Q, U and V account
for the linear polarization, inclination of the plane of polarization, and circular polarization.

Once these parameters are obtained for a certain range of wavelengths (i.e. the Stokes profiles
are acquired), one may ask what are the physical conditions of the solar atmosphere that originated
them and how to infer these magnitudes.

Nowadays, the combination of synthesis and inversion methods constitutes a powerful technique
that yields good estimates. In synthesis, Stokes profiles are generated from sets of atmospheric
quantities (models) employing the radiative transfer equation (RTE). Taking into account the
polarization effect that the scattering of photons and the solar magnetic field have over radiation,
the RTE takes the form

dI

dτc
= K(I− S)1

where I = (I,Q, U, V ) is the Stokes vector, τc the optical depth at the continuum wavelength,
S the source function vector and K the propagation matrix. From this equation, it can be drawn
that the changes in the Stokes vector with respect to the optical depth are due to radiation ab-
sorption and dispersion on one hand, and photon emission on the other, represented by KI and
KS respectively.

To execute a synthesis, one must provide temperature T , total preassure P , line-of-sight veloc-
ity VLOS , microturbulent velocity Vmic and magnetic field strength |B̄|, inclination γ and azimuth θ.

An inversion takes place when the state of the atmosphere is inferred from observed Stokes
profiles. This can be done by iteratively synthesizing Stokes profiles and comparing them with the
observation, carrying out an optimization process over the physical conditions, with the objective
of minimizing the difference between the real and synthesized profile until a defined threshold is
reached. The magnitudes from which the profile with the greatest agreement was synthesized, will
constitute the best estimates of the atmosphere state that generated the observed profile.

3 Objectives

Se presenta el objetivo de este trabajo, partiendo del hecho de que realizar inversiones usando la
ecuación de transporte radiativo para luz polarizada es un proceso largo y costoso computacional-
mente. Se identifica entonces la ANN como una posible alternativa en el cálculo de śıntesis.

The RTE for polarized light describes a very involved, non-local, non-linear problem, known as
non-local thermodynamic equilibrium (NLTE). Being a vector differential equation, the presented
RTE can be considered as a set of four coupled differential equations whose resolution requires the
calculation of many parameters, progressively enlarging computation time and resources.

1[del Toro Iniesta, 2003, p. 116]

6



Figure 2: Above, set of magnitudes that conform the atmosphere model. Below, the Stokes profiles
corresponding to two lines of Fe I. As has been discussed, one can be obtained from the other making
use of synthesis and inversion methods.
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This procedure starts with the calculation of the electronic and gas pressure by means of a dif-
ferential equation, as hydrostatic equilibrium is typically assumed. Next, atomic level populations
must be calculated. In the local thermodynamic equilibrium approximation, these are described by
an analytical expression, but its calculation in NLTE is much more complicated and the inclusion
of iterative operations is needed. Once the populations are known, the propagation matrix and
the source function vector can be computed, which involves the evaluation of Voigt functions for
line profiles for numerous wavelengths and heights. Note that inversions demand the synthesis of
numerous Stokes profiles until an optimal approximation is reached, following the just described
procedure every time.

This is what motivates a different approach to transfer modelling that proves to be fast and
computationally efficient. Under this frame, ANNs represent a promising alternative to find an
approximate numerical representation of the polarized radiative transfer calculations. Once the
ANN is trained and the weights fixed, it is only a matter of introducing the atmospheric quantities
as inputs in the model and, after some simple operations, obtain the corresponding Stokes profile.

Then, the objective of this project is to build an artificial neural network and study its effec-
tiveness in the synthesis and inversion of Stokes profiles, evaluating how good of an alternative it
is to radiation transfer modelling.

4 Methodology

La metodoloǵıa de estudio se desarrolla a continuación. Se señalan las caracteŕısticas del set de
datos que se usará para entrenar la red y se comenta el tratamiento previo al que se debe someter,
el cual involucra su degradación, análisis en componentes principales y escalado. Seguidamente, se
expone la configuración espećıfica de la ANN y del entrenamiento usado, mostrando, entre otros,
la arquitectura de la red, la función de activación y de error y el algoritmo de retropropagación
escogido, justificando en cada caso la razón de su elección. Por último, se señala brevemente el
procedimiento seguido para realizar la inversión.

4.1 Data provided

The atmosphere simulation that will be used in this work is conformed by 288 x 288 pixels images
of its surface extending 61 pixels in height. This cube is computed for every magnitude needed
in the synthesis (section 2.3), as it is shown in Figure 3 for temperature, where the darker side
corresponds to internal layers while the brighter one face to the exterior of the Sun.

The set of magnitudes shown in Figure 2 is extracted fixing a pixel in the square images and
moving along the height axis. Making use of available codes [Socas-Navarro et al., 2015], a Stokes
profile can be generated from each one of these sets, 288 x 288 in total, producing the labelled data
that will be used to train the ANN. We will focus on two Fe I lines located at 6301.5 and 6302.5
Å in a range of 601 wavelengths.
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Figure 3: A 288 x 288 x 61 pixels cube of temperature rotating to the left arounf a vertical axis.
The transition from cooler, lower layers to hotter, higher ones can be appreciated, along with
the convection cells. Repository: napari contributors (2019). napari: a multi-dimensional image
viewer for python. doi:10.5281/zenodo.3555620

4.2 Data preparation

4.2.1 Degradation of the synthesis

The Stokes profiles generated are closer to a theoretical ideal than they are to real observations
taken by a telescope. To resemble the latter, it is necessary to degrade the former, which can be
achieved through a convolution with the point spread function (PSF).

The PSF describes the spatial distribution of intensity in the focal plane of an imaging system
when it is illuminated by a point source. Optical instruments like telescopes are affected by the
diffraction of light and aberration effects that yield blurred spots instead of perfect points. This
response to small sources of light as stars or quasars is contained in the PSF.

The image recorded by an imperfect device Sdeg is the result of the convolution between the
PSF and the perfect image of the object Sobj :

Sdeg = Sreal ∗ PSF

According to the convolution theorem:

F (PSF ∗ Sreal) = F (PSF ) ·F (Sreal)

Then, the degraded image can be expressed as:

Sdeg = F−1(F (PSF ) ·F (Sreal))
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Figure 4: Point spread function in logarithmic scale of a 50 cm diameter telescope asumming a
pixel size of 0.0287 arcsec.

The PSF used is shown in Figure 4. All the 61 images of the four Stokes parameters are sub-
jected to this transformation. The result can be appreciated in Figure 5.

Figure 5: In the left panel, an original image of I is depicted. The right panel shows the same
image after degrading it.

4.2.2 Principal component analysis (PCA)

As it has been previously recalled, the samples from the set of magnitudes and profiles consist
of 427 (7 x 61) and 2404 (4 x 601) values respectively. These quantities could be the input and
expected output of the model straight away, but usually, the data is correlated in some amount
and not all the values are needed to grasp the main features of what they represent.
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A very popular and powerful technique to drastically compress the amount of data while pre-
serving the most relevant information is the PCA decomposition. Through an orthogonal linear
transformation, the samples are projected onto a new coordinate system. The first coordinate (the
first principal component) must retain the greatest variance. The next PC, similarly, must retain
the largest variation of the residual subspace and be orthogonal to the previous one, and so on with
subsequent PCs. Like so, the components are ordered by the amount of information they keep,
making it easy to discard dimensions of low relevance and end up with just a fraction of the original
values without compromising the fundamental behaviour of data. Also, having uncorrelated inputs
and expected outputs helps the ANN map both sets better.

Figure 6: A sample from the magnetic field strength and from the Stokes parameter Q are chosen
to find the minimum number of PCAs (npca) needed to recreate the original data adequately.

As it is displayed in Figure 6, only 8 and 12 PCs are needed to recreate fairly well the physical
conditions and the Stokes profiles respectively. Now, the samples consist of 56 (8 x 7) and 48 (12
x 4) values.

There is a significant difference between fitting the original and degraded data. Note in Figure 5
how the degraded image has lost contrast, i.e. the intensity distribution is more homogenous, which
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Figure 7: Sample of the Stokes parameter Q before and after degrading the data.

make the relative change between the two lines less abrupt (Figure 7). Also, subtle broadening
can be noticed. This helps the new basis recreate well the original profile with fewer components.

4.2.3 Rescaling

A usual step in Machine Learning regarding data preparation is rescaling the variables before feed-
ing them to the model. There are several possible transformations that would help the training
process, for example, standardization, which yields variables with mean equal to 0 and standard
deviation equal to 1 (useful for distributions close to Gaussians), or normalization, that limits the
range to [0,1] without changing the distribution. A version of the latter could limit the range to
[-1,1], thus centering the data.

The most effective transformation depends highly on the problem; not only on data but on the
whole model and optimization technique too [Shanker et al., 1996]. It has been found that in this
particular case, the best results are returned when the quantities are divided each by a number so
that the quotient lies approximately within the interval [-1, 1].

T P VLOS Vmic |B̄| γ θ

Factor 4 · 104 8 · 105 6 · 106 20 2 · 104 16 20
Max. coeff. (approx.) 0.128 0.133 0.986 2.914 · 10−15 1.218 0.334 0.575
Min. coeff. (approx.) -1.224 -1.046 1.197 -1.172 -1.184 -1.236 -1.220

I Q U V

Factor 3 · 1027 1 · 1025 1 · 1025 3 · 1025

Max. coeff. (approx.) 0.160 0.322 0.704 0.662
Min. coeff. (approx.) -1.465 -0.775 -0.650 -0.788

Table 1: Factors by which each quantity is divided, and the maximum and minimum value it
reaches afterward. These should be around 1 or -1.
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Rescaling can be crucial under some circumstances. If some variables exhibit a higher order of
magnitude than others, they will have more influence over the result due to its larger value, even
if they are all equally important predictors. Also, considering that matrix multiplication is the
main operation in ANNs, products between very big or very small values cause the parameters to
explode to infinity or vanish to 0, making the model useless. In addition, relatively high absolute
values can lead to the vanishing gradient problem where weights are no longer updated. Some
activation functions present saturation areas for extreme values, like the sigmoid function shown
in Figure 8, where changes in the argument yield little to no change in the result. So when a value
stored in a neuron lies in these areas, incrementing differentially the weights and bias associated
won’t really change the result returned by the activation function, meaning that the gradients are
close to zero and the parameters won’t be adapted.

S(x) =
1

1 + exp(−x)

ELU(x) = max(0, x) + min(0, α(exp(x)− 1))

Figure 8: The sigmoid (left panel) and the exponential unit function (right panel) are often used
as activations in Machine Learning. Their equations are indicated at the bottom and their first
derivatives are represented in red.

4.3 Architecture

The ANN structure used in this project is shown in Figure 9. It consists of linear nodes arranged
in 12 layers, where each node is connected to all the others located in the previous and (or) next
layer. The information moves from the input to the output only in one direction, forward. It is,
then, a fully connected multi-layer feedforward network.

As activation function, the “exponential linear unit” (ELU) will be considered (Figure 8). It
alleviates the vanishing gradient problem as the derivative tends to zero only for negative argu-
ments, and speeds up learning compared to other similar functions [Clevert et al., 2015]. The ELU
will be applied after every layer, except the last one.
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Figure 9: ANN architecture, conformed by a series of linear layers with different sizes and the
application of an activation function (ELU) to every layer output, except the last one. One of the
components is chosen to further detail the operations that take place between one layer input and
the next.

The model parameters can be initialized randomly, following some distribution or restricting them
to a range. Starting with too large or too small parameters potentially leads to the same problems
as not rescaling the data (section 4.2.3), so boundaries are recommended. The Kaiming initial-
ization [He et al., 2015] will be applied, as it is tailored for deep ANNs that use asymmetric,
non-linear activation functions like ELU. Then, the weights will follow a zero-mean Gaussian dis-
tribution whose standard deviation is

√
2/nl, where nl is the number of values coming into a given

layer l from the previous layer output, and the biases will equal 0.

4.4 Training process

The first 80% of the 288x288 = 82944 samples in the dataset will be used as the training set and
the remaining 20% as the validation set, which will be fed to the NN in smaller batches. The
former will be used to update the model parameters while the latter to evaluate how the model
performs on unseen data. If the training loss is much lower than the validation loss, the model
would be overfitting, meaning that it is learning to reproduce really well the samples used in the
training but doesn’t generalize well to new data. The other way around, it would be underfitting,
not learning properly from the training data. Thus, similar losses are desired after every iteration.

The mean squared error (MSE) will act as loss function, which is adequate for regression
problems where data is free of outliers:

MSEloss = mean(L); L = {l1, l1, . . . , lN}, ln = (XNN −Xdata)2 ,
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where N is the batch size.

The algorithm known as Adam [Kingma and Ba, 2014] will be used to optimize the model
parameters, whose name is derived from adaptive moment estimation. In contrast to other opti-
mizers, Adam computes individual learning rates for every parameter, and these are dynamically
adapted using estimates of first and second moments of the gradients as the learning process un-
folds, thereby accelerating convergence. In addition, it works well across a wide range of deep
learning architectures and its hyper-parameters typically require little tuning. These hyperparam-
eters are set to:

learning rate = 3 · 10−4, β1 = 0.9, β2 = 0.999, ε = 10−8

The training algorithm, in each iteration, will take a batch of samples from the training set,
feed it to the ANN, compare its output with the expected one via the loss function, update the
weights and biases accordingly and carry out the same procedure with a batch of samples from the
validation set without updating the parameters.

The ANN will be built and trained for 1189 epochs in batches of 5210 samples using Pytorch
as framework [Paszke et al., 2019].

4.5 Inversion method

A random sample is taken from the validation set of Stokes profiles, representing an observation
a telescope could have taken. Now, the objective is to infer the atmosphere state that produced
that observation.

First, a vector full of zeros of size 56 (8 x 7) is created. In the first iteration, this vector will be
fed to the ANN, whose parameters are fixed. The output will be compared with the observation via
the MSE function. Then, the optimizer Adam is applied over the input vector. It will calculate the
gradient of the error with respect to the values of the input vector, and update these accordingly.
This is repeated until a threshold is reached.

The optimization has been carried out in the course of 158839 iterations with the following
hyper-parameters for Adam:

learning rate = 2 · 10−2, β1 = 0.9, β2 = 0.999, ε = 10−8

5 Results and discussion

En esta sección se adjuntan los resultados y discusión del entrenamiento de la ANN por un lado,
y de la inversión de un perfil de Stokes por otro. Se presenta el error de validación y de entre-
namiento, junto a tres ejemplos mostrando la salida de la ANN y el perfil de Stokes que trata de
ajustar en cada caso. Además, se realiza un estudio estad́ıstico básico, calculando la diferencia
entre la salida de la red y el perfil real para luego obtener su media y los percentiles 5, 16, 50, 84 y
95 para cada longitud de onda. En el caso de la inversión, se muestra el error entre las magnitudes
atmosféricas recuperadas y las reales, representando además ambas curvas y las de los perfiles de
Stokes correspondientes.
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5.1 ANN training

Analysing the loss behaviour throughout the epochs (Figure 10), it can be concluded that the
training has unfolded adequately. A steep slope characterises the firsts epochs, which decreases
gradually until convergence is reached. A closer look reveals small oscillations, considered normal in
an optimization as long as the loss presents an overall decrease. Also, there is no evident overfitting
or underfitting, as both the validation and training loss evolve similarly and not far from each other.

Figure 10: The training and validation loss are depicted. The left panel shows the overall be-
haviour of the error, while the right panel focus on the last 400 epochs, displaying a more detailed
representation of it.

After some tests, it was noted that the validation loss would reach its lower value at 4.8 · 10−4

and oscillate around a higher one in subsequent epochs, so the training was stopped when that
minimum had been reached. Note that the MSE is calculated over expected outputs that mostly
lie in the range [-1, 1].

Not all samples are equally adjusted by the ANN, as can be extracted from Figures 11a, 11b and
11c. The performance varies considerably from one sample to the other (e.g., the ANN outputs in
Figure 11a are, in general, closer to the expected profiles than those in Figure 11c), but also from
one Stokes parameter to the other (e.g., in Figure 11a, the expected I, Q and U are reproduced
quite well while V differs substantially). However, all three samples agree with the fact that the
best results are obtained for I. The parameters Q, U and V present very different shapes and peak
values in the dataset used, which the ANN tries to account for, making the task of mapping the
two sets more difficult.
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Figure 11a: Comparison between an expected Stokes profile sample and the one given by the ANN.

Figure 11b: Comparison between an expected Stokes profile sample and the one given by the ANN.

17



Figure 11c: Comparison between an expected Stokes profile sample and the one given by the ANN.

To better understand how serious the discrepancies are, a basic statistical study is carried out
over the absolute difference between the expected profiles and the ANN output. Figure 12a and
12b reveal mean variations that reach the same order of magnitude than the quantity they are
attributed to. The parameter I shows a lower mean at its peak values, 6301.5 Å and 6302.5 Å,
while it is much higher around them. This phenomenon can also be visualized in Figure 11: I
peaks are generally well adjusted while the rest of the curve differs more. It happens the other way
around with Q and U , as its peaks are narrower than those in I, making it harder for the ANN to
reproduce them. The mean variation in the parameter V is more homogeneous as its shape varies
greatly from sample to sample. The percentiles follow the same behaviour described for the mean.
Considering the scale of the graphs and that the order of magnitude of I is around 1025 − 1026

and that of Q, U and V around 1022 − 1023, it can be concluded that only in 5% of the validation
samples, the differences are between one and two orders of magnitude less than the parameters.
The distribution of differences in V is particularly asymmetrical, as almost 84% of the values can
be encompassed under the mean, in a narrow range, while a larger range is needed to include the
remaining 16%.

As has been discussed, the samples of Q, U and V present very different shapes. Based on the
better results obtained for I, it is reasonable to assume that having more data, i.e. more samples
that resemble each shape, would help the ANN learn to reproduce each profile more adequately.
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Figure 12a: Mean and percentiles 5, 16, 50, 84 and 95 of the absolute difference between the
expected profiles from the validation set and the ANN output. These quantities are calculated for
every wavelength.
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Figure 12b: Mean and percentiles 5, 16, 50, 84 and 95 of the absolute difference between the
expected profiles from the validation set and the ANN output. These quantities are calculated for
every wavelength.
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5.2 Inversion

Similarly to the ANN training, the optimization stopped when the loss started converging and
reached a minimum value. The oscillations shown in Figure 13 resemble those seen in Figure
10 (note that the scale is one order of magnitude greater in that graph), and the loss descends
abruptly in the firsts iterations as it should. In the last 1000 iterations, there is no evident change
overall, i.e. it has reached convergence. Still, it can be seen in Figure 14 that the profiles fitting is
insufficient, as can be expected after the discussion in section 5.1.

Figure 13: The loss calculated in the inversion process is depicted. The left panel shows the overall
behaviour of the error, while the right panel focus on the last 1000 iterations.

Figure 14: Comparison between the observation and the ANN output at three different iterations.
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The magnitudes obtained after the optimization, shown in Figure 15a and 15b, don’t resemble
the expected ones at all. It is not possible to infer magnitudes similar to the originial ones when
the corresponding profile differs substantially from the one given by the ANN. The problem is too
degenerated.

These results could experience a slight improvement using another optimization method, one
more suitable for this problem. A viable alternative would be to implement the Levenberg–Marquardt
algorithm [Levenberg, 1944, Marquardt, 1963], used to solve non-linear least squares problems.

Figure 15a: Comparison between the expected T , P , |B̄| and Vmic, and the input vector at three
different iterations.
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Figure 15b: Comparison between the expected VLOS , γ and θ, and the input vector at three
different iterations.

6 Conclusions

Finalmente, se ofrece una visión global del trabajo llevado a cabo, junto a un resumen de los resul-
tados más relevantes y de las conclusiones extráıdas a partir de los mismos.

In this project, we have explored the application of an artificial neural network on a Solar
Physics problem, the inversion of Stokes profiles.

An introduction to ANNs and their training process has been made, followed by a description
of the inversion problem, where the motivation for trying a different approach was recognised. The
provided data was subjected to degradation, principal component analysis and rescaling before
feeding it to the ANN. The configuration of the ANN and the optimization method were chosen
in accordance with the characteristics of the problem at hand.

Although the training went satisfactorily and some good results were retrieved, the model could
not adjust decently most of the profiles, with differences of the same order of magnitude than the
parameters. As it was acknowledged that the parameters with greater variation in shape from
sample to sample were the worst fitted, the need for more data was suggested to improve the ANN
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performance.

Finally, the inversion of one of the profiles samples was attempted using the same optimization
method as in the ANN training. The inferred magnitudes disagreed completely with the expected
ones, as the problem was too degenerated. The Levenberg–Marquardt algorithm was suggested as
an alternative optimization method that could yield slightly better results.
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