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A B S T R A C T

This paper introduces the multi-depot open location routing problem (MD-OLRP) with a heterogeneous fixed
fleet. The problem is inspired by the collection problem of a company which collects raw materials from
different suppliers coordinating several carriers. Each carrier has a heterogeneous fixed fleet. Moreover, there
is a fixed cost for contracting each vehicle and a variable cost associated with the distance traveled. The empty
haul return to the vehicles depot is not considered in the cost. The raw materials collected are delivered to
a single delivery point. The problem is modeled as a Mixed Integer Linear Program (MILP) that minimizes
the total cost, selecting the carriers to be contracted, the vehicles to be used from each contracted carrier
and the collection routes. For small instances, the model can be solved to optimality. However, approximate
procedures are necessary to handle larger instances. In this sense, in the present work we propose an intelligent
metaheuristic which incorporates problem specific knowledge to solve it. The computational results show that
the solution method is computationally efficient and provides high quality solutions. In particular, the new
solution obtained for the case of study generates savings of 30.86% to the company.

The main contributions of the paper are the new problem statement that was not found in the literature, its
association to the real problem of a company and the intelligent metaheuristic proposed to solve it. Additional
experimentation used the model proposed to solve a simpler problem obtaining new best solutions compared
to those reported in the recent literature.
1. Introduction

This study is motivated by the problem of a company located
in Mexico. This company orders raw material from several suppliers
located at the United States of America (USA), and transports this raw
material by one carrier company. Every week, the company informs the
carrier the number of units to be picked and the picking addresses, and
the carrier must collect the units to deliver them at border customs.

When analyzing the different costs incurred per year, the finance
department realized that the transportation costs were excessive. It was
then decided to analyze if it would be possible to reduce transportation
costs by contracting the service from several carriers. Under these
premises, the company’s logistics planner was able to provide a lower
cost solution for a small-sized instance. However, this solution was
improved by using a solution method which incorporates problem
specific knowledge (intelligence).
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In this work, we consider several carriers, each with different fleet
composition and established at different cities, in order to decide which
supplier(s) will be served by which carrier(s) and which type of vehicle
will be used. Even when this problem belongs to the class of vehicle
routing problems, given its particular characteristics, it differs from
the classic routing approaches addressed, including those that consider
heterogeneous fleet.

In particular, the problem faced by this company differs from the
typical vehicle routing approaches in the fact that it considers several
possible origins (carriers), each with a particular heterogeneous fleet
of vehicles (different capacity and contracting costs). The contracted
vehicles must collect a number of units (raw material) from several
locations (suppliers) and deliver them at a single point (border customs)
located at the frontier between Mexico and USA. The fleet composition
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and the routes have to be decided under total cost minimization cri-
teria. The empty haul back to the depot is not considered in routing
design.

From the theoretical perspective, this class of problems has gained
attraction among researchers because of its interesting mathematical
complexity. To the best of the authors’ knowledge, a similar problem
has been widely studied in the literature that considers homogeneous
capacities and a specific destination for each route (the multi-depot
open vehicle routing problem, MDOVRP). However, no research has
tailored to the particular situation in which multiple depots, open
routes, heterogeneous fleet, common destination, and contracting costs
are considered. Thus, the contribution of this paper to state of the art
in the literature lies in the fact of proposing new mathematical models
and algorithms to deal with more complex situations and that can solve
the classic MDOVRP.

For the problem under study, a new mixed integer formulation
is proposed in which routes and the fleet composition are decided
simultaneously to ensure that all the raw material is collected. For
small instances, the model can be solved to optimality. However,
approximate procedures are necessary to handle larger instances. In
this sense, in the present work we propose a solution method based
on a multistart metaheuristic.

Heuristics and metaheuristics are solution methods that develop an
intelligent exploration of the search space to find high quality solutions.
As Verdegay et al. (2008) established, heuristics and metaheuristics
constitute, together with probabilistic models, fuzzy and multivalued
logics and neural networks, the basic components of soft computing.
These tools are used to build intelligent systems in different domains.
Some efficient implementations can be found in Moura and Oliveira
(2005), Yu et al. (2020) and Zhao et al. (2020).

Problem specific knowledge can help to increase the efficiency and
effectiveness of a metaheuristic. Our solution method consists of a con-
structive phase and an improvement phase that are executed iteratively
until the stop criterion is met. In the constructive phase, a feasible
solution is obtained by randomly selecting a subset of vehicles with
sufficient total capacity to collect the raw material from the suppliers,
prioritizing the trade-off between capacity and contracting cost. Then
the suppliers are clustered and served by one of these vehicles. In the
improvement phase, the obtained solution is improved by applying a
mechanism based on local search. We use problem specific knowledge
to design the previous phases.

Our proposal can be used as part of a decision support system to
identify high quality schedules. The system should also incorporate a
model to estimate the demand for raw material. Using the estimated
demand as input, our solution method provides a minimum cost quality
planning. We consider the design and implementation of such a system
as a future line of work.

A metaheuristic procedure that solves the problem in reasonable
computation time is also presented. Even when the algorithm was
appropriately designed to deal with the case study, its robustness was
also verified by solving theoretical scenarios based on adapting bench-
mark instances proposed in the literature for similar problems. Both the
model and the algorithm were also implemented using instances for the
classic MDOVRP and their results were compared with the formulations
and relevant methods reported in the literature.

2. Literature review

According to Christofides and Eilon (1969), the vehicle routing
problem (VRP) was introduced by Dantzig and Ramser (1959) under
the name of the ‘‘truck dispatching problem’’. The problem was initially
defined as ‘‘A set of customers, each with a known location and a
known requirement for some commodity, is to be supplied from a single
depot by delivery vehicles of known capacity’’. In addition, Christofides
and Eilon (1969) proposed three solution methods: branch and bound,
savings, and 3-optimal tour. Ten problems (instances) were considered
2

and found that the 3-optimal tour produced the best results. Five years
later, Gillett and Miller (1974) proposed a sweep algorithm to solve the
VRP using polar-coordinate angles of locations.

The problem proposed in our research has four particular charac-
teristics in the domain of vehicle routing problems. The first one is the
multiple depot feature. Differently to most of the vehicle routing prob-
lems where only one depot is considered, in our case multiple depots
are considered. This characteristic receives an expanded complexity
because these depots are not considered as effective operational, but
a location decision will result in using only some of them. The second
feature is then the decision that has to be made regarding which depots
(carriers) will be the starting point of a route. The third distinguishing
feature of our problem is the use of a heterogeneous fleet. In the earliest
versions of the vehicle routing problem only homogeneous fleet was
considered, i.e. all vehicles have the same characteristics. In our case,
each depot has a fleet composed of different types and number of
vehicles, and these fleets may be different between depots. A fourth
feature of the problem is that routing tours are ‘‘open’’, i.e. the tour
does not consider the return to the depot. In practice, transportation
companies include the empty-haul return into the costs, but this feature
opens the door to select distant depots when empty-haul costs are
negligible.

Finally, unlike the traditional location routing problems, variable
costs are associated for each type of contracted vehicle (instead of
having a fixed opening cost for the selected depots). These costs are
independent for each origin. In addition, since each potential origin has
a number of vehicles available, it could be (eventually) possible that all
of the required vehicles depart from the same origin.

The following lines in this section will describe first the earliest
works on these characteristics along with the most recent examples.
Later, those works that combine some of these characteristics will be
described in order to differentiate our scientific contribution beyond
the fact that our study was motivated by a practical need from a
company.

In the multi-depot multiple vehicle routing problems (MDVRP),
each vehicle must leave and return to the same depot as with the
VRP, but customers are serviced from one of several depots (Kim et al.,
2011). The first description and treatment of the multiple depot vehicle
routing problem is due to Wren and Holliday (1972). They used a
two-step heuristic where an initial solution is constructed and later is
refined.

Subsequently, Gillett and Johnson (1976) also addressed this prob-
lem using a modification of the sweep algorithm to solve eleven in-
stances with 2 to 4 depots and 50–249 customers. The MDVRP is
well-known as a combinatorial optimization problem, and it is shown
to be NP-complete, since it can be reduced to the classical VRP which
is known to be NP-hard (Salhi et al., 2014; Tang et al., 2010). Tang
et al. (2010) proposed a solution with a multi-objective genetic al-
gorithm. With an application to reverse logistics, Kim et al. (2011)
proposed a multi-depot vehicle-routing method to minimize distance
traveled for MDVRP. They designed a two-stage solution procedure:
first, they determine which client will be served from which depot and,
second, they generated routes for each vehicle-based at a depot. Zhu
et al. (2015) proposed a solution with particle swarm optimization
and their problem considered 2-dimensional weighted items. Juan
et al. (2015) proposed a hybrid metaheuristic combining iterated local
search and biased randomization to solve the MDVRP. Wang and Lin
(2017) decomposed the MDVRP into several VRPs which are then
decomposed into traveling salesman problem (TSP). They proposed a
hybrid mosquito host-seeking algorithm optimized with the 3-opt local
method. Bezerra et al. (2018) addressed a MDVRP using a General
Variable Neighborhood Search with a random neighborhood ordering
scheme. They solved a set of benchmark instances available with results
of up to 4.41% over the best known solution. A complete literature re-
view of MDVRP may be found in Eksioglu et al. (2009), Montoya-Torres

et al. (2015), and Braekers et al. (2016).
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Recently, Lalla-Ruiz and Voß (2019) studied a customer-centric
variant of the MDVRP, named as the multi-depot cumulative capaci-
tated vehicle routing problem (MDCCVRP) and addressed it via two
approaches: (1) a mathematical formulation enhanced by incorporating
lower bound inequalities, and (2) an optimization metaheuristic under
special intensification conditions. However, their problem differs form
our approach because they considered a different objective function,
and they set the number of depots and fixed the number of vehicles
with homogeneous capacity.

Regarding the variant of the MDVRP that considers open routes
(MDVORP) problem was introduced in the literature by Tarantilis and
Kiranoudis (2002) to tackle a distribution problem of fresh meat, con-
sidering a homogeneous fleet of vehicles. Since then, relevant studies
such as (Lalla-Ruiz et al., 2016; Lalla-Ruiz & Mes, 2020; Liu et al., 2014;
Soto et al., 2017) proposed mathematical formulations and efficient
metaheuristic algorithms to handle this problem.

The Heterogeneous Fleet Vehicle Routing Problem (HFVRP) is a
variant of the VRP with vehicles of different capacities and costs (Penna
et al., 2013). There are two basic versions of this problem. In one
version, the composition of the fleet is fixed, and the number of vehicles
per type is known, proposed by Taillard (1999), and known also as Het-
erogeneous Fixed Fleet Vehicle Routing Problem (HFFVRP). Another
version of the problem considers an infinite availability of vehicles of
different capacities, proposed by Golden et al. (1984), and also named
as the Fleet Size and Mix Vehicle Routing Problem (FSMVRP). In the
first case, the number of vehicles is a constraint but in the presence
of a large number of vehicles, not all of them may be used. In the
second version, part of the decision is to determine the composition of
the fleet. The case presented in our research is better associated to the
Heterogeneous Fixed Fleet Vehicle Routing Problem, since the size of
the fleet is known for each of the depots but in our case, we determine
the composition of the fleet as in the FSMVRP.

Euchi and Chabchoub (2010) proposed a metaheuristic solution
based on tabu search to solve the HFFVRP and tested it for up to
15 vehicles, verifying the performance with respect to the quality of
the solution and computation time. Markov et al. (2015) solved a
waste collection problem integrating a heterogeneous fixed fleet and
flexible assignment of origin and destination depot. They propose a
local search heuristic that first proposes an initial feasible solution
and then improves these solutions by an iterative procedure that con-
siders infeasible intermediate solutions. Wang et al. (2014) addressed
the HFFVRP with multi-compartment vehicles. This variation allows
transporting different types of products with special requirements into
the vehicles. This additional level of availability in the resources and
demand increases the complexity with respect to the original problem.
They designed a reactive guided tabu search (RGTS) to solve 8 instances
and compared different guiding mechanisms.

The Open Vehicle Routing Problem (OVRP) is a variant of the VRP
in which vehicles do not need to return to the depot. This problem
was introduced by Schrage (1981), and later Sariklis and Powell (2000)
named it formally as OVRP (Soto et al., 2017). Niu et al. (2018) studied
an OVRP with fuel consumption constraint to reduce the environmental
impact. They developed a tabu search algorithm to solve instances of
up to 120 nodes based on Beijing roads.

Given the nature of Vehicle Routing Problems of having a high
number of variants, also the combination of these variants produce a
great number of situations. The study of these combinations results in
a wide body of literature addressing complex problems that require
sophisticated methods to solve them. In the following paragraphs we
will explain some of these combinations found in literature related to
the characteristics of our problem.

Soto et al. (2017) studied a multi-depot open vehicle routing prob-
lem (MDOVRP), which combines the MDVRP and the OVRP. They
proposed a solution method based on a hybridization of Multiple Neigh-
borhood Search with Tabu Search and Ejection Chains. They solved sets
3

of instances modified from benchmark capacitated VRP instances.
An interesting logistic problem for cargo aircraft was solved by Ak-
soy and Kapanoglu (2012) as a multi-commodity, multi-depot and
heterogeneous vehicle pickup and delivery problem with a mixed in-
teger linear program (MILP). In this problem, the vehicles load from
any of the pickup points and deliver to each delivery point a variety
of supplies. Lahyani et al. (2018) modeled the Multi-depot Fleet Size
and Mix VRP with five different formulations, identifying which ones
provide better results. The Fleet Size and Mix component is similar to
the Heterogeneous Fixed Fleet variant, but with unlimited number of
vehicles. In both cases these problems do not contain the Open and
Location components.

Regarding the Location Routing Problem (LRP), most of the authors
study this problem from the point of view of minimizing distribution
cost. In other words, the manufacturer must decide for the best strategy
for delivery. An interesting and extensive review related to this perspec-
tive can be found in Drexl and Schneider (2015). In particular, Markov
et al. (2015) studied a waste collection problem that is a vehicle routing
problem with heterogeneous fixed fleet and a more general version of
the open location routing problem. In their case, the assignment of
origin and destination depot is flexible. They proposed a mixed integer
linear program enhanced with valid inequalities, but for solving large
instances they implemented a local search heuristic.

Within the literature reviewed only three works were found which
considered the MDOLRP. First, Yu and Lin (2015) introduced the
combination of the location decision and the open routing structure.
Their research was motivated from the rise in contracting with third-
party logistic and consider the open-routing approach, but consider
fixed costs at the moment of contracting the vehicles (they used a
homogeneous fleet). As a mechanism of solution, they developed a
simulated annealing heuristic implemented over a set of adapted in-
stances from Ting and Chen (2013) (up to 318 customer nodes and
15 origin nodes). Secondly, Koç et al. (2016) addressed the location-
routing problem from the perspective of emissions and analyzed the
effect of parameters such as depot cost/location, fuel consumption
and operational costs. Although these works share features with our
problem, they consider a homogeneous fleet while we are modeling a
heterogeneous fleet. Third, Pichka et al. (2018) studied a two echelon
open location routing problem and developed mixed-integer linear
programming models and a hybrid heuristic approach (based on sim-
ulated annealing). The heuristic divides the problem by echelon and
the simulated annealing is used in both sub-problems. The effectiveness
of their approach was validated using instances obtained from the
literature.

To the best of our knowledge, none of the described formulations
and algorithms were particularly suitable to solve the problem under
study. We decided to adapt the formulations and procedures described
in Angel-Bello et al. (2017) and Nucamendi-Guillén et al. (2018) to
develop an appropriate mathematical formulation and a metaheuristic
procedure to address the MD-OLRP. Angel-Bello et al. (2017) propose
mathematical models, some derived from the multiple traveling sales-
man problem, and proposed time-dependent formulations to reduce
the number of binary variables required. Nucamendi-Guillén et al.
(2018) propose two metaheuristic procedures to solve the Cumulative
Capacitated Vehicle Routing Problem (CCVRP).

In summary, the problem studied here has the following charac-
teristics: (1) A set of depots (which are our carriers) exist, each with
heterogeneous fleet of vehicles; (2) A route may start at any origin but
all of them end at the same delivery point; (3) Customers (which are in
our case the suppliers of raw material) must be visited once by a vehicle
(demand cannot be split); (4) The capacity of each vehicle must not be
exceeded and, (5) A trade-off between routing and contracting costs is

sought.
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3. Problem description

In this work, a collecting problem for a manufacturing plant is
addressed. The company receives the raw materials in Nuevo Laredo
(border customs) from different suppliers located in USA. The collection
is done via third-party companies. Based on the agreement with the
suppliers, the company under study manages this service.

Formally, the problem can be formulated as follows: Let 𝑂 be the
set of carriers, 𝑃 = {1, 2,… , 𝑛 + 1} be the set of nodes to visit, were
𝑃 ′ = {1, 2,… , 𝑛} denotes the suppliers set and node 𝑛 + 1 corresponds
to the location of the delivery point. Also, let 𝐹 be the set of potential
carriers to contract. Each carrier has a heterogeneous limited fleet of
vehicles, each vehicle 𝑟 with a particular contracting cost and capacity.
Associated with each supplier there is an amount of raw material
that must be collected and transported to the delivery point. Routes
must be designed to minimize the costs of contracting (fixed fee) and
transporting (based on distance) without exceeding the capacity of the
vehicles. Therefore, this is a problem of designing routes with different
potential origins (carriers) and a single destination (delivery point).

The following assumptions are made:

1. Service times are not considered for the problem under study
2. The cost of empty-haul return is absorbed by the carriers,
3. The demands (of raw material) are deterministic and quantified

in pallets, and
4. The traveled distance of the routes is properly translated into

monetary costs to standardize the objective function.

A solution (𝑆), for this problem is composed of a set of disjoint
routes that, departing from their corresponding origins (carriers), all
of them end in the delivery point. Each supplier is visited by only one
vehicle, which collects completely the demand without exceeding the
capacity of the vehicle.

4. Mathematical formulation

This section provides the mathematical formulation for the problem
under study.

Let:

𝑛 = number of suppliers to attend

𝑚 = number of available origins (carriers) to

consider for contracting vehicles

𝑃 ′ = {𝑝1, 𝑝2,… , 𝑝𝑛}, set of suppliers

𝑑𝑗 , demand of the 𝑗th supplier

𝑄 =
𝑛
∑

𝑗=1
𝑑𝑗 , total demand of raw material

𝐹 = {𝑓1, 𝑓2,… , 𝑓𝑚}, set of carriers

𝑅𝑖, set of vehicles for carrier 𝑓𝑖
𝑖 = 1, 2,… , 𝑚

𝑘𝑖, number of available vehicles for carrier 𝑓𝑖
𝑖 = 1, 2,… , 𝑚

𝑄𝑟
𝑖 , Capacity of the 𝑟th vehicle for carrier 𝑓𝑖

𝑖 = 1, 2,… , 𝑚; 𝑟 = 1, 2,… , 𝑘𝑖
𝑄𝑚𝑎𝑥, maximum capacity of any vehicle

𝑤𝑟
𝑖 , contracting (fixed) cost for the 𝑟th vehicle

of carrier 𝑓𝑖
4

𝑖 = 1, 2,… , 𝑚; 𝑟 = 1, 2,… , 𝑘𝑖
𝑅 =
𝑚
⋃

𝑖=1
𝑅𝑖 Set of total available vehicles

𝐷𝑖𝑗 transportation cost between nodes (carriers) 𝑖

and suppliers 𝑗

𝐶𝑖𝑗 transportation cost between nodes (suppliers)

𝑖 and 𝑗

When needed, to simplify notation, 𝑓 (𝑟), 𝑞(𝑟) and 𝑤(𝑟) will be used
to denote the carrier (origin), capacity and contracting cost of vehicle
𝑟. Likewise, 𝑐𝑖𝑗 will be used instead of 𝐶(𝑖, 𝑗) when required. The
transportation cost for each arc is calculated as the distance multiplied
by the corresponding rate ($/km).

The variables associated to the model are the following:
Let 𝑜𝑟𝑖𝑗 be equal to 1 if the arc (𝑖, 𝑗) is used for transportation between

carrier 𝑖 and the first node 𝑗 through vehicle 𝑟 and equal to zero
otherwise. Let 𝑥𝑖𝑗 be equal to 1 if the arc(𝑖, 𝑗) is used for transportation
between nodes 𝑖 and 𝑗 and equal to zero otherwise. Let 𝑧𝑟𝑖 be equal to
1 if vehicle 𝑟 is contracted from carrier 𝑖 and equal to zero otherwise.
Let 𝑣𝑟𝑖𝑗 denotes the sum of the remaining demands of the route after
departing from carrier 𝑖 using vehicle 𝑟 when 𝑜𝑟𝑖𝑗 = 1. In the same
way, 𝑟𝑖𝑗 indicates the sum of remaining demands after visiting supplier
𝑖 when 𝑥𝑖𝑗 = 1.

Our formulation is stated as follows:
Minimize:

𝑚
∑

𝑖=1

𝑛
∑

𝑗=1
𝐷𝑖𝑗

|𝑅𝑖|
∑

𝑟=1
𝑜𝑟𝑖𝑗 +

𝑛
∑

𝑖=1

𝑛+1
∑

𝑗=1
𝑗≠𝑖

𝐶𝑖𝑗𝑥𝑖𝑗 +
𝑚
∑

𝑖=1

|𝑅𝑖|
∑

𝑟=1
𝑤𝑟

𝑖𝑧
𝑟
𝑖 , (1)

subject to:
𝑛
∑

𝑗=1
𝑜𝑟𝑖𝑗 ≤ 1, ∀𝑖 ∈ 𝐹 ; 𝑟 ∈ 𝑅𝑖, (2)

𝑚
∑

𝑖=1

|𝑅𝑖|
∑

𝑟=1
𝑜𝑟𝑖𝑗 +

𝑛
∑

𝑖=1
𝑖≠𝑗

𝑥𝑖𝑗 = 1, ∀𝑗 ∈ 𝑃 ′, (3)

𝑛+1
∑

𝑖=1
𝑖≠𝑗

𝑥𝑗𝑖 = 1, ∀𝑗 ∈ 𝑃 ′, (4)

𝑧𝑟𝑖 ≥
𝑛
∑

𝑗=1
𝑜𝑟𝑖𝑗 , ∀𝑖 ∈ 𝐹 ; 𝑟 ∈ 𝑅𝑖, (5)

𝑣𝑟𝑖𝑗 ≥ 𝑑𝑗𝑜
𝑟
𝑖𝑗 , ∀𝑖 ∈ 𝐹 ; 𝑗 ∈ 𝑃 ′; 𝑟 ∈ 𝑅𝑖, (6)

𝑣𝑟𝑖𝑗 ≤ 𝑄𝑟
𝑖𝑜

𝑟
𝑖𝑗 , ∀𝑖 ∈ 𝐹 ; 𝑗 ∈ 𝑃 ′; 𝑟 ∈ 𝑅𝑖, (7)

𝑟𝑖𝑗 ≥ 𝑑𝑗𝑥𝑖𝑗 , ∀𝑖 ∈ 𝑃 ′; 𝑗 ∈ 𝑃 ′; 𝑖 ≠ 𝑗 (8)

𝑟𝑖𝑗 ≤ (𝑄𝑚𝑎𝑥 − 𝑑𝑖)𝑥𝑖𝑗 , ∀𝑖 ∈ 𝑃 ′; 𝑗 ∈ 𝑃 ; 𝑖 ≠ 𝑗 (9)
𝑚
∑

𝑖=1

|𝑅𝑖|
∑

𝑟=1
𝑣𝑟𝑖𝑘 +

𝑛
∑

𝑖=1
𝑖≠𝑘

𝑟𝑖𝑘 −
𝑛+1
∑

𝑗=1
𝑗≠𝑘

𝑟𝑘𝑗 = 𝑑𝑘, ∀𝑘 ∈ 𝑃 ′, (10)

𝑜𝑟𝑖𝑗 ∈ {0, 1}, ∀𝑖 ∈ 𝐹 ; 𝑗 ∈ 𝑃 ′; 𝑟 ∈ 𝑅𝑖, (11)

𝑥𝑖𝑗 ∈ {0, 1}, ∀𝑖 ∈ 𝑃 ′; 𝑗 ∈ 𝑃 , (12)

𝑧𝑟𝑖 ∈ {0, 1}, ∀𝑖 ∈ 𝐹 ; 𝑟 ∈ 𝑅𝑖, (13)

𝑣𝑟𝑖𝑗 ≥ 0, ∀𝑖 ∈ 𝐹 ; 𝑗 ∈ 𝑃 ′; 𝑟 ∈ 𝑅𝑖, (14)

𝑟𝑖𝑗 ≥ 0, ∀𝑖 ∈ 𝑃 ′; 𝑗 ∈ 𝑃 . (15)

In this formulation, the objective function (1) aims at minimizing
the total cost incurred by transportation and contracting. Constraints
(2) allow that only active carriers must be considered for constructing
each route. Constraints (3) and (4) force suppliers to be visited only
once. It can be noticed that constraints (2) and (3) ensure that only one
vehicle is assigned to start the route and, in particular, constraints (4)
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Fig. 1. Outline for the multi-start procedure.

ensure that all of the vehicles end their routes at the final destination
(𝑛 + 1). Constraints (5) force to use vehicles only from active carriers.
Constraints (6) and (8) establish the minimum values for 𝑣𝑘𝑖𝑗 and 𝑟𝑖𝑗 ,
and allows to compute the minimum capacity required to collect the
demand of supplier 𝑗. Constraints (7) and (9) force the same variables to
be zero when 𝑜𝑟𝑖𝑗 and 𝑥𝑖𝑗 are zero. For these constraints, 𝑄𝑟

𝑖 ensures that
the route assigned to vehicle 𝑟 departing from carrier 𝑖 does not exceed
its capacity while 𝑄𝑚𝑎𝑥 establishes an upper bound for the sum of the
demands of the remaining nodes in any active route. Constraints (10)
allow to meet the demand with an active vehicle and avoid sub-tours.
Finally, constraints (11) to (15) establish the domain of the variables.

5. Metaheuristic algorithm

This section describes the metaheuristic procedure developed for
solving the Multi-depot Open Location Routing Problem with Heteroge-
neous Fixed Fleet. It consists of a multi-start algorithm with two phases:
construction and improvement. During the constructive phase, a subset
of vehicles is selected and the construction of routes is done (initial
solution). The cost any constructed solution is denoted as 𝐿. The initial
solution is then improved by applying different local searches in the
improvement phase. Fig. 1 exhibits the pseudocode of the metaheuristic
procedure.

It is important to mention here that we explored an Iterated Local
Search (ILS) approach during the process of the design of the algorithm.
However, due to the capacity constraints, the perturbation was not
as successful as the reconstruction process, and also required longer
computational times to obtain a new feasible initial solution. Due to
this, we decided to implement a partial destroy-construction procedure,
which reduced the probability of infeasibility, but being aware that
the construction process could lead to a previous initial solution, i.e. a
solution previously explored.

Next, detailed descriptions of the constructive (Section 5.1) and
improvement (Section 5.2) phases are provided.

5.1. Constructive phase

A feasible solution for this problem is composed by a subset of
vehicles capable of collecting the raw material from suppliers. It should
be observed that it is not enough that the sum of the capacities of the
vehicles is greater than the sum of all demands, because the capacity of
each vehicle must not be exceeded (and for each supplier, its demand
must be collected entirely by only one vehicle).

Our constructive method selects, on a first place, a subset of vehicles
with enough total capacity. Then, each supplier is assigned to one
vehicle by procuring feasibility in terms of capacity. We incorporate
problem specific knowledge to design these components of the solution
method. Thus, the vehicles are selected using a probability distribution
which depends on their capacity, distance to the delivery point and con-
tracting cost. The assignment is carried out by clustering the suppliers
according to the proximity criterion.
5

5.1.1. Computation of the number of vehicles to use
The number of required vehicles to serve the total demand depends

on both the capacity of the vehicles and the demand of each supplier.
For instance, if two orders should be collected from two different
suppliers with respective values of 10 and 15 units of raw material,
and the carrier owns two vehicles with 20 and 15 units of capacity,
the required amount of vehicles is 2. By the contrary, if the size of the
orders are 10 and 15 units, and the capacities of the vehicles are 20 are
30 units, it would be enough to use only one vehicle to collect the total
demand (the one with capacity of 30 units).

To determine the number of vehicles, we apply a heuristic proce-
dure that takes into account the demand of raw material, the distances
between carriers and the delivery point, the contracting costs and the
capacities of the vehicles, as shown in Fig. 2. The procedure iteratively
selects vehicles until the total demand of raw material is fulfilled. The
algorithm tends to select vehicles with high capacities, low contracting
costs, and close to the manufacturing company.

Let 𝑄 be the total demand of raw material, 𝐹 = {𝑓1, 𝑓2,… , 𝑓𝑚}
be the set of carriers and 𝑘𝑖 be the number of vehicles of carrier 𝑖
(𝑖 = 1, 2,… , 𝑚). Let 𝑞𝑟𝑖 y 𝑤𝑟

𝑖 , be the capacity and the contracting cost
of the 𝑟th vehicle from carrier 𝑖, respectively. Also, let 𝑐𝑖,𝑛+1 be the
distance between carrier 𝑖 and the delivery point (customs location)
𝑛+1. Associated to each vehicle 𝑟 from carrier 𝑖, we compute the index

𝐼𝑟𝑖 =
𝑄𝑟

𝑖
(𝑐𝑖,𝑛+1 +𝑤𝑟

𝑖 )
.

The procedure iteratively chooses the vehicles based on the previous
index using a roulette wheel selection. Therefore, the probability of
selection for vehicle 𝑟 from carrier (freighter) 𝑖 is estimated as:

𝑝𝑟𝑖 =
𝐼𝑟𝑖

∑

𝑖
∑

𝑟 𝐼
𝑟
𝑖
.

Every single time a vehicle is selected, it is removed from the list of
available vehicles and its capacity is subtracted from the total demand
to collect. Additionally, the probabilities of selection are updated for
the remaining vehicles. The procedure ends when the sum of the
capacities for the selected vehicles is greater than or equal to the total
demand to collect. Let 𝑅′ ⊆ 𝑅 be the subset of selected vehicles.

It is important to note that the subset of vehicles selected by
the previous procedure does not guarantee feasibility for the initial
solution. For instance, when on any moment during the construction
of the routes, the demand of one supplier equals to the sum of the
remaining capacities of the selected vehicles, but it is greater that any of
them separately. This is why our heuristic artificially increases the total
demand to collect (by using a parameter), and the selection of vehicles
ends when the total artificial demand is satisfied (or exceeded). More
specifically, given the total demand 𝑄, we compute the total artificial
demand as 𝑄′ = (1+𝛿 ⋅𝑄). The procedure starts with 𝛿 = 0. If a feasible
solution cannot be obtained, the value of 𝛿 is increased in 𝛥𝛿 = 0.1
and the procedure starts over again. It ends when a feasible solution is
obtained.

5.1.2. Suppliers clustering
The previous procedure provides the subset of vehicles, 𝑅′ ⊆ 𝑅,

available to serve the demand. To obtain a feasible solution using this
number of vehicles, the suppliers are clustered and served by one of
these vehicles, as shown in Fig. 3. The assignment is made considering
the proximity criterion by preserving feasibility in terms of capacity.
Then, the supplier 𝑝𝑗 is assigned to the closest vehicle that can satisfy its
demand. If more than one vehicle is located at the same distance from
𝑝𝑗 , the supplier is assigned to the vehicle with the highest free capacity.
If the tie persists, the vehicle that serves 𝑝𝑗 is selected arbitrarily. The
route for each vehicle is built by visiting suppliers in the same order as
they are included during the assignment procedure.

Note that, even when the artificial demand is considered, it is
possible to obtain an infeasible solution. When this happens, the value
of 𝛿 is increased and a new subset of vehicles is selected with the
purpose of constructing new clusters of suppliers.
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Fig. 2. Procedure for the selection of vehicles.

Fig. 3. Procedure for the assignment of suppliers to vehicles.

5.2. Improvement phase

Keeping in mind that the constructive procedure previously de-
scribed can generate low quality initial solutions, the algorithm in-
corporates an improvement procedure based on local search. Two
local searches are considered: (1) intra-route local search, which ap-
plies movements that only affects the sequence in a single route; (2)
inter-routes local search, which involves movements affecting suppliers
belonging to different routes. Both local searches incorporate two types
of movements: interchange and reallocation.

The objective of the intra-route procedure is to reallocate suppliers
inside each route separately, while the inter-routes movement searches
for reallocating suppliers from different routes. Note that the intra-
route movements are always feasible since the route is feasible in terms
of capacity. However, this is not always possible for the inter-route
movements.

Next, the moves of 2 − 𝑜𝑝𝑡, interchange and reallocation employed
by both local searches are explained.

• Intra-route 2-opt. Two edges are deleted from the current route
and paths are reconnected in a different way, obtaining a new
route.

• Intra-route interchange. Given two suppliers belonging to the same
route, their positions are interchanged into the route. If the
suppliers belong to positions 𝑖 and 𝑗, arcs (𝑖−1, 𝑖), (𝑖, 𝑖+1), (𝑗−1, 𝑗)
and (𝑗, 𝑗 + 1) are replaced by arcs (𝑖 − 1, 𝑗), (𝑗, 𝑖 + 1), (𝑗 − 1, 𝑖) and
6

Fig. 4. Improvement Phase.

(𝑖, 𝑗+1). It is important to remark that these movements are always
feasible in terms of capacity.

• Intra-route reallocation. For a given supplier, its best position
inside of the route is identified. If the best identified position is
different to the current one, the movement is performed.

• Inter-routes interchange. Given two suppliers belonging to different
routes, they are interchanged as long as the improvement move
keeps feasibility (in terms of capacity).

• Inter-routes reallocation. For a given supplier, its best position is
identified in any of the remaining routes, i.e.,an exhaustive search
is performed through all of the available positions in the other
routes to find the position in which the minimum increase is
produced. If the new best position is identified, i.e. the global
objective value is improved, the movement is performed.

Both local searches are applied hierarchically. Initial solutions are im-
proved by applying the intra-local search procedure first, starting with
the 2-opt. Next, the obtained local minima is improved by applying the
inter-routes local search (starting with the inter-routes interchange).
These procedures are iteratively applied while the current solution
value 𝐿 keeps improving. In each procedure, the reallocation move-
ment is performed first and the interchange movement is executed next.
Fig. 4 exhibits this process.

6. Computational experiments

In this section, the experimental results are reported. First, the
details for the results of the case of study are presented. Next, the
current solution implemented by the company is used to compare with
the results obtained by both, the mathematical model and the algorithm
proposed.

A second analysis studies the performance of the metaheuristic
compared to the model solved using commercial optimization software,
in instances obtained by variations of the data of the company. These
variations involved an increase in the number of the suppliers and
variations of their demands. In this additional experimentation two
indicators were used: (1) efficiency regarding the quality of the solution
and (2) size of the instances (regarding the number of nodes) solved
in a reasonable amount of time. A third analysis was conducted by
modifying benchmark instances, and solving them using the mathe-
matical model and the algorithm. The limits of the implementation of
the model were determined in terms of the size of the instances that
can be solved optimally in a time limit of two hours. Regarding the
performance of the algorithm, it was evaluated in terms of the quality
of the best solutions found. Sections 6.5.2 and 6.5.3 discuss the results
obtained.

Finally, experimentation considering the set of instances proposed
for the MDOVRP (the most similar problem identified in the literature)
was used to assess the performance of the proposed approaches with
respect to the best-known results (BKR) reported in the literature.
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Table 1
Suppliers information.

Supplier code City 𝑥_𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒 𝑦_𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒 Units to collect
(pallets)

𝑃1 Manchester 42.90959 −89.20563 10
𝑃2 Bardstown 44.45500 −89.49700 8
𝑃3 Chicago 42.02182 −88.32232 15
𝑃4 Endeavor 41.70834 −87.79828 11
𝑃5 Hackensack 38.15349 −85.68189 13
𝑃6 Duluth 40.95986 −81.46269 9
𝑃7 Copley 38.09182 −84.51974 10
𝑃8 Boston 33.96039 −84.08368 12
𝑃9 Milwakee 33.41514 −84.74180 9
𝑃10 Asheboro 36.13115 −80.08082 14
𝑃11 Fairburn 40.83432 −74.05586 12
𝑃12 New Berlin 41.57194 −72.77388 8
𝑃13 Washington 42.26526 −71.69248 12

All of the experiments were executed using an Intel Core i5-6300 @
.40 GHz 8 GB RAM PC under Windows 10. The mathematical model
as implemented in the AMPL optimization language and solved with
PLEX 12.6.0. Regarding the algorithm, it was coded in C++ under
isual Studio 2015.

.1. Case of study

As previously described, the case of study is inspired on a company
hat uses a single carrier to collect raw material from different suppliers
ocated in United States. This document analyze the case if, in stead
f a single carrier, several carriers are hired for the transportation of
aw material to the delivery point. The interest raised because of the
igh transportation costs of having a single carrier. In order to do this,
hey identified the potential carriers that may provide the service, their
ocation, their available fleet and the costs that will be charged. The
bjective is to compare the costs charged by the current company, with
he costs of working with several transportation companies.

To generate an instance that represents a typical workday, the
oordinates of the suppliers and the potential carriers are considered.
n total, 13 suppliers and 13 carriers are included. For each carrier,
p to 4 different vehicles per carrier are considered. As a result, up to
1 vehicles are available. To maintain confidentiality of the data, the
nformation is disguised.

Tables 1 and 2 describe the information used to configure the
nstance. In Table 1, the first column displays the label of the instance
nd column 2 indicates the name of the city. Columns 3, 4 and 5
ndicate the coordinates (𝑥, 𝑦) and the units to collect, respectively. On

the other hand, in Table 2, the first column also indicates the label
of the instance, and column 2 the name of the city. Columns 3, and
4 display the coordinates (𝑥, 𝑦) while columns 5, 6 and 7 show the
details for the number of available vehicles, vehicles’ capacities and
contracting fixed costs. The carriers 𝑜1, 𝑜2,… , 𝑜13 are located in the
following cities, respectively: Stoughton-Madison, Stevens Point, Elgin,
Bridgeview, Louisville, Akron-Canton, Lexington, Norcross, Newman,
Winston, Carlstadt, Hartford and Worcester.

The delivery point (border customs) is located in Carretera Nuevo
Laredo – Piedras Negras km. 12.5, Puente Comercio Mundial Sector
Centro, 88000. Nuevo Laredo, Tamaulipas, México, with coordinates
(27.595137, −99.544912).

.2. New scenarios for the case of study

From the data provided by the company, we created new instances
y varying the demands of the suppliers. As result, 15 new instances
imulating workday scenarios were created. Table 3 displays the de-
and of each supplier in accordance with each scenario. Column 1

hows the code of the scenario, and the headers of the columns exhibits
7

he code of the supplier. The numbers into the table represent the units
Table 3
New scenarios.

𝑝1 𝑝2 𝑝3 𝑝4 𝑝5 𝑝6 𝑝7 𝑝8 𝑝9 𝑝10 𝑝11 𝑝12 𝑝13
𝐼1 12 14 11 10 10 8 9 0 14 12 14 13 10
𝐼2 10 0 10 13 9 13 12 23 14 15 10 15 0
𝐼3 9 8 14 0 10 9 11 13 0 15 9 9 0
𝐼4 10 13 0 0 8 15 9 0 14 11 15 8 11
𝐼5 10 10 0 13 11 12 13 0 13 11 12 13 9
𝐼6 0 11 13 0 9 12 10 13 19 15 13 0 10
𝐼7 9 0 14 0 13 9 15 11 0 8 12 11 14
𝐼8 0 21 0 14 0 13 10 0 14 12 19 0 0
𝐼9 9 0 14 0 13 9 15 11 0 8 12 11 14
𝐼10 9 14 11 13 14 15 12 13 8 9 13 14 15
𝐼11 0 13 11 0 10 20 11 13 0 11 15 13 0
𝐼12 8 15 11 14 12 10 13 14 0 10 8 18 9
𝐼13 12 0 10 15 14 0 15 14 8 15 9 11 10
𝐼14 14 13 10 14 14 12 15 13 12 13 14 0 10
𝐼15 15 15 12 9 14 0 24 18 8 9 0 10 13

to be collected from each supplier, in number of pallets. A value of
zero means that the supplier has no units to be collected, and shall
be omitted in the routing. For instance, in scenario 𝐼8 raw material of
7 suppliers must be collected (𝑝2, 𝑝4, 𝑝6, 𝑝7, 𝑝9, 𝑝10, 𝑝11) by selecting
vehicles from the 13 carriers available.

6.3. Set of additional instances

To validate the effectiveness of the model and the efficiency of the
metaheuristic, benchmark instances from the literature were adapted.
To facilitate the modification, these test instances were extracted from
those available for the multi-depot vehicle routing problem. These in-
stances also consider the fact that from each depot, more than one vehi-
cle is available. Finally, one of the nodes belonging to the ‘‘customers’’
set, is defined as the delivery point.

The instances used to conduct the additional experimentation were
obtained from Koulaeian et al. (2015) (Kou15), Chunyu and Xiaobo
(2010) (CaX10), Wang and Wu (2015) (WaW15), Gillett and Miller
(1974) (GaMG74) and Gillett and Johnson (1976) (GaJ76-7 to 12),
since they show a close relationship with the purpose of this research.
The adaption consists of selecting one of the nodes from the customers
set as the delivery point, and defining the depot (carrier) nodes as
the potential origins. In each origin, both the contracting costs and
vehicle capacities were diversified. These instances were useful because
they also consider a heterogeneous fleet. Information about the fleet is
displayed in Table 4.

6.4. Benchmark MDOVRP instances

The set of instances proposed by Cordeau et al. (1997) were tested,
but specific adjustments were made to both the formulation and the
algorithm for making them able to deal with the MDOVRP. It is
important to remark that, for this analysis, we are only interested in
comparing the performance in terms of the quality of the solutions,
leaving aside the discussion of the elapsed times, since our approaches
are not specifically designed for the MDOVRP.

6.5. Experimental results

This section is devoted to reporting the computational experiments
carried out for assessing the performance of the mathematical model
and the computational algorithm proposed in this work. Regarding the
model, a time limit of two hours (7200 s) was set for CPLEX to solve
each instance. For the cases in which the model reached the time limit,
the best solution obtained so far is reported. The metaheuristic was
executed 15 times, and the results displayed correspond to the best

solution found and the average CPU time.
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6.5.1. Case of study
Fig. 5 illustrates the solution given by the logistic planner of the

company for the workday used in the case of study. Four vehicles
were used, incurring in a total cost of 133.8611. The planner justified
this solution by the fact that the contracting cost is minimum and the
arrival time to the final destination is ‘‘short‘‘. It can be observed that 3
routes are balanced (in terms of total cost) and the other one is lightly
superior.

Both, the formulation and the metaheuristic procedure, were capa-
ble to solve the case study. In particular, the metaheuristic algorithm
was also able to find the optimal solution. The solution obtained is
exhibited in Fig. 6. Two vehicles were employed, representing a total
cost of 92.5384. That is, it produced savings of 30.86%.

It is important to remark that the optimal solution was obtained
n a significantly short time (2.64 s), and the metaheuristic found the
ptimal solution even in a shorter time (0.113 s).

.5.2. New scenarios
Table 5 reports the results obtained by both the model and the

lgorithm for the scenarios shown in Table 3. The first three columns of
able 5 show the name of the instance, number of suppliers and number
f carriers available, respectively. In these scenarios derived from the
ata provided by the manufacturing company, it is considered that
he vehicles available for each carrier have the characteristics shown
n Table 2. As indicated above, only the orders of the suppliers were
odified. The next three columns show the optimal objective value, the
umber of vehicles chosen and the time (seconds) required by CPLEX to
olve the model. Columns 7, 8 and 9 show the value of the best solution
btained by the metaheuristic, the number of vehicles selected in this
olution and the execution time (seconds). The last column presents the
ercentage of improvement of the metaheuristic respect to the solutions
btained by the model, calculated as shown in Eq. (16):

𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑜𝑓 𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡 =
100 ⋅ (𝑀𝑜𝑑𝑒𝑙 𝑓 ∗ −𝑀𝑒𝑡𝑎ℎ𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐 𝑓 𝑏𝑒𝑠𝑡)

𝑀𝑜𝑑𝑒𝑙 𝑓 ∗

(16)

As it can be observed, the algorithm was able to find the optimal
solution for 12 out of 14 instances.

Table 6 exhibits the statistics for the objective function of the
solutions obtained with the metaheuristic algorithm, for all the runs
executed. The first column shows the ID of the instance. The second and
third columns present the results of the average and standard deviation
of the objective function, respectively. The third column calculates
the coefficient of variation, i.e. the standard deviation divided by the
average. Columns 4, 5 and 6 show the median, minimum and maximum
values. In the seventh column, the objective function obtained with
the model is presented, which is the same value shown in column 4
of Table 5. A statistical non-parametric test of signs was conducted
to determine if the median of the objective function obtained with
8

the metaheuristic is equal to the objective function obtained with the
model. This test was selected because of the small number of runs
executed, and the assumption of a distribution biased to the optimal
value. The test was executed in Minitab, and the resulting p-values are
shown in the eight column of the table. It can be observed that the
coefficient of variation is below 11% in general, which is interpreted
as a low variation of the results respect to the metaheuristic. Finally,
the p-values allows concluding that, with a significance level of 0.05,
the median values of the metaheuristic are not equal to those obtained
with the model in all of the instances. Although the optimal values are
found with the algorithm, the variation of the results pushes up the
median values. Considering the computational effort required by the
algorithm to solve these small instances, it can be run many times and
eventually the optimal value will be found.

6.5.3. Additional benchmark modified instances
To validate the effectiveness of both, the formulation and the algo-

rithm, the set of additional instances was solved. Table 7 reports these
results. The first four columns of Table 7 display the name of the in-
stance, number of suppliers, number of carriers (depots) available, and
the number of available vehicles respectively. The next three columns
show the number of vehicles chosen in the optimal solution, the optimal
objective value, and the time (seconds) required by CPLEX for the
solution of the model, respectively. Columns 8, 9, and 10 indicate for
the metaheuristic, the number of vehicles chosen, the best objective
value, and the time (seconds) required for the execution. The last
column presents the percentage of improvement of the metaheuristic
respect to the solutions obtained by the model, calculated as shown
in Eq. (16).

As it can be seen in Table 7, the metaheuristic shows a good
behavior. For nine out of the ten instances, it provides solutions equal
to or better than those found by the commercial solver. In the other
instances, the difference is 1.010%. On the other hand, it must be un-
derlined that, for the instances GaJ76-7, GaJ76-8, GaJ76-9, GaJ76-10,
GaJ76-11 and GaJ76-12, the commercial solver reached the maximum
time allowed. In all of these cases, the metaheuristic reported solutions
that improved up to 14.683% the solution reported by the solver,
spending around 7 seconds. The average metaheuristic execution time
was 9.333 s versus to the 4690.307 s required by the solver. This means
a reduction of 99.8%.

Table 8 exhibits the statistics for the objective function of the
solutions obtained with the metaheuristic algorithm, for all the runs
executed, for the additional instances. The first column shows the ID
of the instance. The second and third column present the results of the
average and standard deviation of the objective function, respectively.
The third column calculates the coefficient of variation, i.e. the stan-
dard deviation divided by the average. Columns 4, 5 and 6 show the
median, minimum and maximum values. In the seventh column, the
objective function obtained with the model is presented, which is the
same value shown in column 6 of Table 7. A statistical non-parametric
Table 2
Carriers information.
Carrier
code

City 𝑥_𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒 𝑦_𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒 Number of
vehicles

Capacities Contracting
costs

𝑂1 Stoughton - Madison 41.795667 −72.581040 3 45, 60, 75 7.5, 12, 15
𝑂2 Stevens Point 37.825464 −85.431051 4 50, 60, 70, 75 10, 12, 14, 15
𝑂3 Elgin 42.111290 −88.060750 3 40, 45, 55 7, 8.5, 12.5
𝑂4 Bridgeview 43.708506 −89.470503 2 45, 55 9, 12
𝑂5 Louisville 40.908300 −74.044800 3 45, 50, 65 8.5, 10, 12
𝑂6 Akron - Canton 33.971643 −84.154134 4 40, 55, 65, 75 7.5, 10, 13, 14
𝑂7 Lexington 41.100610 −81.652772 3 45, 50, 60 9, 10, 11.5
𝑂8 Norcross 42.414253 −71.684454 3 60, 65, 75 12, 13.5, 15
𝑂9 Newman 43.116437 −89.660384 3 45, 45, 55 8, 8, 9.5
𝑂10 Winston 35.678212 −79.857301 4 50, 60, 65, 70 10, 12, 13, 14
𝑂11 Carlstadt 33.554384 −84.593951 2 40, 70 7, 13
𝑂12 Hartford 41.794759 −87.758490 4 40, 50, 70, 75 7, 9, 13, 15
𝑂13 Worcester 38.174316 −84.805903 3 45, 55, 70 9, 10, 13.5
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Table 4
Additional modified benchmark instances.

Instance
name

𝑜𝑟𝑖𝑔𝑖𝑛 Number of
vehicles

Capacities Contracting costs

Kou15
𝑂1 2 400, 400 22, 22
𝑂2 4 200, 200, 200, 200 11, 11, 11, 11
𝑂3 2 400, 400 22, 22

CaX10 𝑂1 3 8, 6, 4 3, 2, 1
𝑂2 3 8, 6, 4 3, 2, 1

WaW15
𝑂1 4 20, 20, 15, 15 5, 5, 4, 4
𝑂2 5 20, 20, 15, 15, 15 5, 5, 4, 4, 4
𝑂3 6 20, 20, 20, 15, 15, 15 5, 5, 5, 4, 4, 4

GaMG74
𝑂1 6 30, 40, 50, 50, 75, 75 2522.266, 2898.474, 3202.73, 3202.73, 3648.58, 3648.58
𝑂2 6 8, 8, 18, 20, 40, 75 1412.7235, 1412.7235, 1950.8235, 2074.106, 2898.474, 3648.58
𝑂3 6 20, 30, 40, 50, 50, 75 2074.106, 2522.266, 2898.474, 3202.73, 3202.73, 3648.58

GaJ76-7

𝑂1 4 55, 60, 65, 75 3327.876, 3435.034, 3524.204, 3648.58
𝑂2 4 8, 20, 40, 50 1412.7235, 2074.106, 2898.474, 3202.73
𝑂3 4 10, 30, 50, 75 1553.994, 2522.266, 3202.73, 3648.58
𝑂4 4 75, 75, 75, 75 3648.58, 3648.58, 3648.58, 3648.58

GaJ76-8 𝑂1 7 30, 30, 40, 50, 50, 75, 75 2522.266, 2522.266, 2898.474, 3202.73, 3202.73, 3648.58, 3648.58
𝑂2 7 50,50, 50, 75, 75, 75, 75 3202.73, 3202.73, 3202.73, 3648.58, 3648.58, 3648.58, 3648.58

GaJ76-9
𝑂1 10 8, 8, 18, 18, 30, 30, 40, 40, 50, 50 1412.7235, 1412.7235, 1950.8235, 1950.8235, 2522.266, 2522.266, 2898.47
𝑂2 10 8, 20, 20, 50, 50, 75, 75, 75, 75, 75 1412.7235, 2074.106, 2074.106, 3202.73, 3202.73, 3648.58, 3648.58, 3648.58, 3648.58, 3648.58
𝑂3 10 18, 18, 50, 50, 50, 75, 75, 75, 75, 75 1950.8235, 1950.8235, 3202.73, 3202.73, 3202.73, 3648.58, 3648.58, 3648.58, 3648.58, 3648.58

GaJ76-10

𝑂1 8 50, 50, 75, 75, 75, 75, 75, 75 3202.73, 3202.73, 3648.58, 3648.58, 3648.58, 3648.58, 3648.58, 3648.58
𝑂2 8 8, 8, 18, 18, 30, 30, 40, 40 1412.7235, 1412.7235, 1950.8235, 1950.8235, 2522.266, 2522.266, 2898.474, 2898.474
𝑂3 8 18, 18, 50, 50, 50, 75, 75, 75 1950.8235, 1950.8235, 3202.73, 3202.73, 3202.73, 3648.58, 3648.58, 3648.5
𝑂4 8 8, 20, 20, 50, 50, 75, 75, 75 1412.7235, 2074.106, 2074.106, 3202.73, 3202.73, 3648.58, 3648.58, 3648.58
𝑂5 8 30, 30, 40, 40, 50, 50, 75, 75 2522.266, 2522.266, 2898.474, 2898.474, 3202.73, 3202.73, 3648.58, 3648.58

GaJ76-11

𝑂1 8 50, 50, 75, 75, 75, 75, 75, 75, 3202.73, 3202.73, 3648.58, 3648.58, 3648.58, 3648.58, 3648.58, 3648.58
𝑂2 8 8, 8, 18, 18, 30, 30, 40, 40 1412.7235, 1412.7235, 1950.8235, 1950.8235, 2522.266, 2522.266, 2898.474, 2898.474
𝑂3 8 18, 18, 50, 50, 50, 75, 75, 75 1950.8235, 1950.8235, 3202.73, 3202.73, 3202.73, 3648.58, 3648.58, 3648.58
𝑂4 8 8, 20, 20, 50, 50, 75, 75, 75 1412.7235, 2074.106, 2074.106, 3202.73, 3202.73, 3648.58, 3648.58. 3648.58

GaJ76-12

𝑂1 8 8, 8, 18, 18, 30, 30, 40, 40 1412.7235, 1412.7235, 1950.8235, 1950.8235, 2522.266, 2522.266, 2898.474
𝑂2 8 8, 20, 20, 50, 50, 75, 75, 75 1412.7235, 2074.106, 2074.106, 3202.73, 3202.73, 3648.58, 3648.58, 3648.58
𝑂3 8 18, 18, 50, 50, 50, 75, 75, 75 1950.8235, 1950.8235, 3202.73, 3202.73, 3202.73, 3648.58, 3648.58, 3648.58
𝑂4 8 50, 50, 75, 75, 75, 75, 75, 75 3202.73, 3202.73, 3648.58, 3648.58, 3648.58, 3648.58, 3648.58, 3648.58
Fig. 5. Diagram of the Current Situation for the case of study.
test of signs was applied to determine if the median of the objective
function obtained with the metaheuristic is less than or equal to the
objective function obtained with the model. This test was selected
because of the small number of runs executed, and the assumption of
a distribution biased to the optimal value. The test was executed in
Minitab, and the resulting p-values are shown in the eight column of
the table. It can be observed that the coefficient of variation is below
7% for the smaller instances, and below 4% for the larger instances,
which are interpreted as a low variation of the results obtained with
the metaheuristic. Finally, the p-values allows concluding that, with a
significance level of 0.05, the median values of the metaheuristic are
9

less than or equal to those obtained with the model in 5 out of 10
instances. Comparing these results with those obtained in Table 6 it
becomes evident that the algorithm is efficient to find better solutions
than the model solved with the commercial solver for large instances,
and its efficiency is lower for small instances.

6.6. Experimentation using MDOVRP benchmark instances

As explained above, the problem addressed in this research is new
respect to the literature. Thus, our approaches are evaluated on the
MDOVRP and compared with the best-known results published in
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Fig. 6. Optimal Solution for the case of study.
Table 5
Results obtained by the formulation and metaheuristic algorithm for the case study instances.

|𝑃 | |𝑂| Model Metaheuristic Percentage of
improvement

𝑓 ∗ 𝑘 Time 𝑓 𝑏𝑒𝑠𝑡 𝑘 Time

𝐼2 12 13 92.163 2 2.000 92.163 2 0.155 0.000
𝐼3 11 13 95.081 2 1.938 95.589 2 0.161 −0.534
𝐼4 10 13 84.385 2 3.531 84.385 2 0.132 0.000
𝐼5 10 13 87.138 2 2.141 87.138 2 0.115 0.000
𝐼6 11 13 89.589 2 1.578 89.589 2 0.125 0.000
𝐼7 10 13 89.666 2 0.797 89.666 2 0.117 0.000
𝐼8 10 13 86.397 2 2.688 86.397 2 0.100 0.000
𝐼9 7 13 75.740 2 3.125 75.847 2 0.069 −0.141
𝐼10 10 13 86.397 2 2.500 86.397 2 0.105 0.000
𝐼11 13 13 114.216 3 14.094 114.216 3 0.194 0.000
𝐼12 9 13 86.384 2 1.328 86.384 2 0.104 0.000
𝐼13 11 13 92.655 2 2.719 92.655 2 0.168 0.000
𝐼14 12 13 94.959 2 1.328 94.959 2 0.143 0.000
𝐼15 11 13 91.857 2 9.859 91.857 2 0.129 0.000

Average 3.545 0.130 −0.048
Table 6
Statistics of the objective function obtained with the metaheuristic for the case study instances.

𝑓𝑎𝑣𝑒 𝑓𝑠𝑡𝑑𝑒𝑣 𝑓𝑐𝑜𝑣 𝑓𝑚𝑒𝑑𝑖𝑎𝑛 𝑓𝑚𝑖𝑛 𝑓𝑚𝑎𝑥 𝑓𝑚𝑜𝑑𝑒𝑙 𝑝-value

𝐼2 103.883 10.902 0.105 108.287 92.163 119.571 92.163 0.000
𝐼3 105.923 6.931 0.065 107.912 95.589 117.208 95.081 0.000
𝐼4 90.289 9.480 0.105 86.385 84.385 108.956 84.385 0.004
𝐼5 92.686 8.915 0.096 88.724 87.138 109.709 87.138 0.004
𝐼6 97.217 9.870 0.102 92.597 89.589 114.523 89.589 0.001
𝐼7 98.350 10.376 0.105 91.666 89.666 113.346 89.666 0.004
𝐼8 92.055 9.854 0.107 87.251 86.397 111.094 86.397 0.004
𝐼9 77.965 4.967 0.064 76.399 75.847 95.268 75.740 0.000
𝐼10 87.196 1.127 0.013 86.397 86.397 89.251 86.397 0.016
𝐼11 117.458 7.189 0.061 115.266 114.216 142.881 114.216 0.001
𝐼12 91.335 7.882 0.086 87.878 86.384 109.863 86.384 0.004
𝐼13 102.941 9.384 0.091 108.671 92.655 117.816 92.655 0.000
𝐼14 103.393 9.300 0.090 97.933 94.959 120.836 94.959 0.008
𝐼15 100.67 9.778 0.097 91.857 91.857 112.482 91.857 0.016
the literature. It is important to remark that we have to adapt our
formulation and algorithm to make them suitable to solve that par-
ticular problem. The modifications made and the obtained results are
described next.

6.6.1. Model results
Our proposed model will be compared with the ones presented

in Lalla-Ruiz et al. (2016). Before implementing our formulation to the
set of benchmark instances, we made the following adjustments: (1) we
removed the constraint that forces having a common final destination,
(2) we also relaxed the restrictions that establish a maximum fleet size
10
per origin. (3) we set the contracting cost as zero since these instances
do not consider any contracting cost. It is important to notice that, even
when we could have relaxed the constraints related to the capacity of
the vehicle, avoiding the use of index 𝑟 in variables 𝑜𝑟𝑖𝑗 and 𝑣𝑟𝑖𝑗 , we did
not want to do that so we can implement the model without losing
generality. Additionally, we maintain the 2-hours time limit established
for previous experiments.

The results are compared with the best known results published
in Lalla-Ruiz et al. (2016), who also implemented and used the for-
mulation proposed in Liu et al. (2014). Even when a recent publica-
tion (Brandão, 2020) outperformed these results, we decided not to
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Table 7
Results obtained by the formulation and the algorithm for the set of additional instances.

Instance |𝑃 | |𝑂| Total available
vehicles

Model Metaheuristic Percentage of
improvement

𝑘 𝑓 ∗ Time 𝑘 𝑓 𝑏𝑒𝑠𝑡 Time

Kou15 12 3 8 2 2903.525 0.62 5 2 903.525 1.455 0.000
Cax10 20 2 6 4 939.919 1.467 4 939.919 0.157 0.000
WaW15 25 3 15 7 689.067 29.484 7 689.067 1.384 0.000
GaMG74 29 3 18 8 26 832.365 3671.500 8 27 103.400 1.389 −1.010
GaJ76–7 49 4 16 16 51 185.302 7200.000 13 43 669.900 7.439 14.683
GaJ76–8 49 2 14 6 47 270.60 7200.000 6 47 253.400 15.835 0.036
GaJ76–9 74 3 30 10 37 349.500 7200.000 10 33 855.500 10.793 9.355
GaJ76–11 74 4 32 10 37 187.100 7200.000 8 33 352.100 9.909 10.313
GaJ76–12 74 4 32 10 37 174.675 7200.000 10 33 343.800 9.460 10.305
GaJ76–10 99 5 40 24 92 565.734 7200.000 31 89 885.700 35.508 2.895

Average 4690.307 9.333 4.658
Table 8
Statistics of the objective function obtained with the metaheuristic for the set of additional instances.

𝑓𝑎𝑣𝑒 𝑓𝑠𝑡𝑑𝑒𝑣 𝑓𝑐𝑜𝑣 𝑓𝑚𝑒𝑑𝑖𝑎𝑛 𝑓𝑚𝑖𝑛 𝑓𝑚𝑎𝑥 𝑓𝑚𝑜𝑑𝑒𝑙 𝑝-value

Kou15 3 228.564 204.016 0.063 3 218.580 2 903.525 3 557.170 2 903.525 0.004
CaX10 942.912 2.898 0.003 945.530 939.919 945.530 939.919 0.004
WaW15 702.012 6.910 0.010 702.609 689.067 713.465 689.067 0.000
GaMG74 28 319.047 1252.052 0.044 27 952.900 27 103.400 30 296.700 26 832.365 0.000
GaJ76–7 44 460.553 219.205 0.005 44 516.800 43 669.900 44 539.200 51 185.302 1.000
GaJ76–8 47 297.247 13.650 0.000 47 299.900 47 253.400 47 310.900 47 270.600 0.000
GaJ76–9 35 010.467 1231.174 0.035 34 393.400 33 855.500 38 780.700 37 349.500 1.000
GaJ76–11 34 904.760 567.251 0.016 35 106.700 33 352.100 35 162.100 37 187.100 1.000
GaJ76–12 35 080.993 497.483 0.014 35 162.500 33 343.800 35 658.200 37 174.675 1.000
GaJ76–10 89 990.147 161.193 0.002 89 907.600 89 885.700 90 350.100 92 565.734 1.000
Table 9
Comparison between the best-known results reported in Lalla-Ruiz et al. (2016), Lalla-Ruiz and Mes (2020), and Liu et al. (2014) for the MDOVRP, and the results provided by
our modified formulation.

Instance
ID

n m Q BKR Model
solution

LB % GAP
from LB

t (s) Percentage of
improvement

p01 50 4 80 386.18𝑎,𝑏,𝑐 386.18* – – 4 0.00
p02 50 4 160 375.93𝑎,𝑏,𝑐 375.93* – – 1 0.00
p03 75 5 140 474.57𝑏,𝑐 474.57* – – 6 0.00
p04 100 2 100 662.22𝑏,𝑐 662.22 648.54 2.11 7200 0.00
p05 100 2 200 607.53𝑐 607.53* – – 36 0.00
p06 100 3 100 611.99𝑏 611.99* – – 505 0.00
p07 100 4 100 608.28𝑐 608.28* – – 777 0.00
p08 249 2 500 2852.56𝑏 2853.57 2591.63 10.11 7200 −0.04
p09 249 3 500 2625.04𝑏 2595.80 2431.24 6.77 7200 1.11
p10 249 4 500 2528.98𝑐 2488.77 2357.88 5.55 7200 1.59
p11 249 5 500 2499.25𝑐 2465.28 2353.91 4.78 7200 1.36
p12 80 2 60 953.26𝑎,𝑏,𝑐 953.26* – – 2 0.00
p15 160 4 60 1885.81𝑏,𝑐 1885.81* – – 18 0.00
p18 240 6 60 2818.36𝑏,𝑐 2818.36* – – 65 0.00
pr01 48 4 200 647.03𝑎,𝑏,𝑐 647.03* – – 1 0.00
pr02 96 4 195 978.82𝑏,𝑐 978.82* – – 6 0.00
pr03 144 4 190 1423.48𝑏,𝑐 1423.48* – – 37 0.00
pr04 192 4 185 1514.07𝑐 1514.07* – – 1362 0.00
pr05 240 4 180 1706.8𝑐 1697.99 1639.41 3.57 7200 0.52
pr06 288 4 175 1978.46𝑐 1976.47 1939.13 1.93 7200 0.10
pr07 72 6 200 821.25𝑎,𝑏,𝑐 821.25* – – 1 0.00
pr08 144 6 190 1254.45𝑏,𝑐 1254.45* – – 33 0.00
pr09 216 6 180 1591.78𝑐 1591.78* – – 828 0.00
pr10 288 6 170 1977.33𝑐 1968.67 1921.08 2.48 7200 0.44

*Our formulation reported those solutions as optimal.
use it for comparison as they used approximation methods to solve
the problem. Table 9 exhibits the results, where columns 1, 2 and 3
denote the instance ID, number of customers and number of depots,
respectively. Column 4 displays the best-known result (BKR) reported
in Lalla-Ruiz et al. (2016). To make easy to recognize which formu-
lation obtained the best result, a super-index is added to the each
value of the fourth column as follows: letter a is used to indicate that
t belongs to Liu et al. (2014) while letter b is used for Lalla-Ruiz
t al. (2016). In case that both algorithms report the BKR, the two
ndices are displayed. Column 5 shows the solution obtained by our
11
formulation whereas columns 6 and 7 indicate the best lower bound
and the corresponding GAP (in percentage) reported by CPLEX. Finally,
columns 8 and 9, display respectively the elapsed CPU time (in seconds)
and the percentage of improvement respect to the BKR, calculated as
shown in Eq. (17).

𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑜𝑓 𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡 =
100 ⋅ (𝐵𝐾𝑅 −𝑀𝑜𝑑𝑒𝑙 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛)

𝐵𝐾𝑅
(17)

From Table 9, it can be observed that our formulation outperforms
the models previously presented in the literature (Lalla-Ruiz et al.,
2016; Lalla-Ruiz & Mes, 2020). Moreover, our mathematical model
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Table 10
Comparison between the best-known results reported in Brandão (2020) for the MDOVRP and the results obtained by our algorithm.

Instance
ID

BKS BSF Avg. CPU time
(s)

Percentage of
improvement

p01 386.18* 386.181 4.551 0.00
p02 375.93* 375.930 2.611 0.00
p03 474.57* 485.196 7.628 −2.24
p04 662.22𝑎,𝑏 689.138 105.709 −4.07
p05 607.53* 623.033 11.950 −2.55
p06 611.99* 628.724 20.594 −2.73
p07 608.9𝑑* 631.601 46.998 −3.73
p08 2788.96𝑑 3027.150 123.837 −6.34
p09 2578.49𝑑 3049.100 134.988 −18.25
p10 2491.44𝑑 2730.140 131.284 −9.58
p11 2468.45𝑑 2707.010 134.436 −9.66
p12 953.25* 1021.160 6.536 −7.12
p15 1885.8* 2044.420 39.893 −8.41
p18 2818.36* 2939.890 105.996 −4.31
pr01 647.03* 768.432 2.024 −18.76
pr02 979.82* 992.410 9.969 −1.29
pr03 1424.9𝑑 1475.740 27.862 −3.57
pr04 1517.6𝑑 1637.300 57.221 −7.89
pr05 1700.19𝑑 1915.100 100.717 −12.64
pr06 1985.59𝑑 2152.190 173.677 −8.39
pr07 821.25* 839.350 5.398 −2.20
pr08 1254.45𝑑 1325.120 27.883 −5.63
pr09 1592.77𝑑 1694.340 80.689 −6.38
pr10 1974.56𝑑 2186.160 176.598 −10.72

Average 64.127 −6.61

*Those solutions are proved as optimal.
olved to optimally 66.67% (16 out of 24) of the benchmark instances
the largest one solved with a size of 216 customers and 6 depots),
hereas for the remaining, in all but except one, the model improved
r tied the BKR. The notes in the BKR column indicate if the value
omes from Liu et al. (2014) with an (𝑎), from Lalla-Ruiz et al. (2016)

with a (𝑏), or from Lalla-Ruiz and Mes (2020) with a (𝑐). Given that
the purpose of this work is not to compare with the state of the art in
the MDOVRP, and we are not discussing the performance in terms of
computational time. The new best solution for instance 𝑝10 is shown in
the Appendix, and the new best solutions found for instances in Table 9
are available upon request.

6.6.2. Algorithm results
We compare the performance of our metaheuristic procedures with

respect to those designed explicitly for the MDOVRP. In particular,
we selected the publication of Brandão (2020) since he reported the
most recent results in comparison with the relevant algorithms in
the literature. As in the model, we modified our algorithm in order
to implement it by considering the characteristics of the MDOVRP.
Table 10 exhibits the obtained results, where the first column displays
the instance ID, columns 2 and 3 show the best known solution (BKS)
reported in the literature and the best solution found (BSF) by the
algorithm. Column 4 indicates the average CPU time spent over the 15
runs. Finally, the last column presents the GAP of our solution from
the BKS. For the calculation of the percentage of improvement, we
use Eq. (18):

𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑜𝑓 𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡 =
100 ⋅ (𝐵𝐾𝑆 − 𝐵𝑆𝐹 )

𝐵𝐾𝑆
(18)

In case of the solution is proved optimal, that will be marked with
the symbol (*), for the other instances, we consider the value reported
by Brandão (2020) as reference, denoting them with the symbol (𝑑).

As it can be seen, the BSF provided by the algorithm reported
olutions with an average percentage of improvement of −6.61%,

finding only the BKS for the instances p01 and p02, and going worse
up to −18.76%. Although these results may seem discouraging, our
interpretation is that they are caused by the particularity of the design
of the metaheuristic to exploit the characteristics of the problem under
12

study. In addition, it can be observed that there is a positive correlation
of the number of potential customers and origins with the elapsed CPU
time.

When revising the results obtained by our model in detail, we
realized that our algorithm has the limitation of creating longer routes,
to maximize the usage of the vehicle capacities. Given that the con-
tracting cost in the MDOVRP instances is zero, the optimal solutions
reported in the literature sub-utilize the capacity of the vehicles in
pursuit of minimizing the total traveled distance. In our problem there
is a contracting cost associated with the vehicle capacity, therefore, our
algorithm prioritizes to minimize the number of vehicles to use before
constructing the routes.

In summary, our algorithm provides acceptable results in compari-
son with the published methods for simpler problems in the literature.
However, for the particular problem under study, the metaheuristic
shows an efficient behavior outperforming the results obtained not only
by the company’s policy but also compared to the mathematical model.

7. Conclusions

In this paper, the multi-depot open location routing problem with
heterogeneous fixed fleet was introduced, with the aim of seeking to
minimize the total transportation costs (fixed and distance-based) by
determining which carrier companies and vehicles must be contracted
and designing the routes to be assigned to each vehicle. For this
problem, a mixed integer formulation and a multi-start metaheuristic
algorithm were developed. Both approaches demonstrated effectiveness
in terms of the quality of the solution and elapsed computational time.

Regarding the mathematical model, the solver was capable of solv-
ing optimally not only the case of study and its variants, but also
modified benchmark instances up to 49 nodes with 2 origins and 14
vehicles, in less than two hours. The time spent to solve each of the
scenarios derived from the case study was less than 15 s, such that
results for a real case can be obtained in ‘‘reasonable time’’. In addition,
the proposed formulation was able to deal with the MDOVRP instances,
finding new best solutions (some of them proved to be optimal) for
the benchmark instances of the well-known MDOVRP, showing its
efficiency for dealing with this particular problem.

About the algorithm, it was capable of obtaining competitive re-
sults with a significantly shorter computational time for all types of
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instances. Regarding the case of study, the algorithm showed its ef-
ficiency in terms of the quality of the solution, the reason for which
it can be implemented to solve large-size scenarios if needed. In the
case of the MDOVRP benchmark instances, the algorithm experienced
acceptable behavior, obtaining results below 5% away from the BKS
for 46% of the benchmark MDOVRP instances. Regarding the modified
benchmark instances to involve heterogeneous fleet, the algorithm
achieves high-quality solutions and spent less than 1 min for the larger
ones. Low gaps support this assessment of high quality concerning non-
optimal solutions obtained in the CPU time-limit by the commercial
solver.

As can be seen, this research contributes not only by solving a real-
life problem of a company but also by introducing a location-routing
problem that includes heterogeneous fixed fleet, which could not be
found with these particularities in the literature.

Future research lines include to study more realistic scenarios such
as considering time windows, split deliveries, or minimizing the total
arrival time to the customers instead of the total traveled distance.
Additionally, it will be interesting to evaluate the impact of the con-
tracting cost over the total cost and how it determines the configuration
of the routes, using a biobjective or bilevel optimization approach.
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ppendix

The new best solution for instance P10 is as follows (nodes from 1
o 249 correspond to the customers, whereas nodes 250–253 refer to
he depots):

250 111 236 23 120 22 44 199 200 46 216 63 180 152
250 105 132 97 29 227 20 109
250 196 48 128 179 161 93 187 45
250 92 178 210 41 110 60 158 134 159
250 85 169 171 181 162 75 59
250 117 98 240
250 174 143 14 107 212 77 91 50 88 247
250 222 165 37 6 243 16
251 223 43 122 146 84 135 3 118 123 8 190
251 214 57 203 193 101 114 148 26 9 153
251 10 238 131 13 167 89 248 189 121 106
13
251 11 241 235 82 224 163 64 125
251 225 157 249 62 237 177 69
251 56 233 176 136 226 32 78 201 67 51
251 66 168 47 55 175 17 24 40 127 147
251 242 38 39 102 15 219 52
251 42 197 194 80 113 103
252 12 49 130 129 221 61 90 211
252 137
252 173 27 195 2 170 230 58 183 150
252 54 204 198 73 207 166 96 112 213 215 126 116
252 18 30 191 5 133 79 19 185 72
252 124 53 228 65 206 83 217 36 220
253 188 34
253 4 81 186 21 138 33 234 68 142
253 87 154 76 155 232 231 202 139 1 229 71 31 205
253 115 145 100 209 99 70 108 244
253 95 182 35 239 192 184 218 119
253 160 7 164 140 172 74 104 141 25 246 208
253 28 156 144 245 94 151 86 149
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