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Preface

The boundaries between Operations Research and Compigec&tave become
blurred. Important new theories and whole fields, like Pebtal Combinatorics,
have been and are being developed jointly by computer $signbperations re-
searchers, and applied mathematicians.

Placed in this scope, the aim of this disertation is to engsame points of these
topics. Thus, the Traveling Purchaser Problem (TPP) pesvath excuse to go deep
in Polyhedral Combinatorics and in several topics whichticbuate to the resolution
of the optimization problems.

The grateful experience of realizing how the theoreticsilifts leads to successful
computational results by mean the computer programm hasostggl our hipotesis
and verified that our research results become very appliég pfeponderant role
played by the engineer in Computer Sciences in this area sl research to
finish the travel starting at the mathematical model andHingsat the computational
resolution of the problem.

Sumarizing, the aim of this thesis is to carry out a thoroutgtalys on the TPP
which lead to the development of several algorithms with réhkr computational
evaluation. These algorithms solve the TPP in both exaciapdoximated ways.
To achieve this goal we have carried out

i) an exhaustive study on the previous works, taking into agteuery single
previous algorithm. Each technique involved in those alfgor has been also
studied testing the quality of the results, and compilingdienark instances.

ixX



X PREFACE

ii) astudy on the real world applications of the TPP as well astbpe where it
is included.

iii) the development of mathematical models, which will be padur exact ap-
proach, and of valid inequalities allowing to strengh theedir programming
relaxation of the above mentioned models.

iv) the development of exact and heuristic algorithms for diffié variations of
the TPP, based on the theoretical results computationalyated on intances
proposed by the previous works and additional families nflcam instances.

A preliminary version of an exact algorithm for the TPP wabmiited to theEu-
ropean Chapter on Combinatorial Optimizatigg CCO) Xll which took place in
Bendol Island, Marselle. This branch-and-cut approachimasoved, and the new
results were exposed in tiworkshop on Discrete Mathematics @90’99) given
in RUTCOR, Rutger, New Jersey. A worthy contribution of tbismference was an
interesting discussion with the Professor Peter Bruckeugtte classification of the
TPP as a job scheduling problem. Finally, this article wdsstted toOperations
Researchand currently is under revision.

A study on the bicriterion TPP was submitted to the confez€Pangreso sobre
Técnicas de Ayuda a la Decision en la Defemseh took place in Madrid. In IRIT
Laboratory in Toulouse, during the XIKURO Summer Instituteas also presented an
algorithm for the bicriterion TPP, as well as a new and ugeftiinique to speed up the
computational time computing the non-dominated pointss Works was submitted
to European Journal of Operational Reseai@hd currently is under revision.

Because of its computational complexity, most of the redean TPP has been
directed towards the development of heuristic approacbespite of this, we have
develop a heuristic approach for the TPP which is able toestilis problem with
more precision and faster than the previous approachedimiPrary results were
presented in the ECCO XIV in Bonn, and the article was sulechito European
Journal of Operational Research

Finally, the only aspect we had not approached was the astnomersion of the
TPP. Only one previous article had focused it. Thus, a mdigezit exact algorithm
was presented in tHeombinatorial Optimizatio2002 in Paris, and the related article
has been recently submitted@iscrete Applied Mathematics

Those results obtained in this thesis were sumarized armsegpluring the sem-
inar The Travelling Salesman Probleémthe International Conferece and Research
Center for Computer Sciencelragstuh] Germany, and in the semingiathematical
Methods in Manufacturing and Logistic (MathematischessEbungsinstitut Ober-
wolfach)in Oberwolfach-Walke, also in Germany.

These four articles have been treated in eigth chaptersthendbtained results
have been sumarized in the chapter of Conclusions. The fiegiter introduces the
basic concepts underlying in the development of the prapadgorithms. These
topics are Graph Theory, Computational Complexity, PallybETheory, Polyhedral
Combinatorics and Multicriterion Optimization. In addit, some basic optimization
problems which take part of our algorithms are also desdiibbthis chapter. Chapter
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2 provides an introduction to the TPP which also includesesdture review and a
description of related problems in order to place the TPBiadope. Additionally, a

transformation of the TPP into the Generalized TravelinigSaan Problem is also
described in this chapter. The next four chapters are dévotthe different aspects
of the exact algorithms developed for the directed and extid versions of the TPP.
Chapter 3, provides the mathematical formulation of bogtdinected and undirected
versions of the TPP. Chapter 4 gives and polyhedral andiysibie TPP, and as in
the previous chapter, for both cases. And Chapters 5 and®@ilded the specific

characteristics of each of the two exact algorithm. Thei&idon TPP is approached
in Chapter 7 of this thesis, and a heuristic approach for i i€ given in Chapter 8.
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Mathematical Background

This chapter is devoted to the introduction of different@gpts from Graph Theory,
Computational Complexity, Polyhedral Theory and Multierion Optimization, that
will be used later on. These concepts are the basis of theati@background that
underlies behind the algorithms we introduce in this theliswever, this is only a
brief overview on each area so we also refer to related lgidiphy in each section
for a deeper treatment of these topics. In addition, a detsani of all those problems
mentioned as subproblems during the development of ouritligts, is also given
in the last section of this chapter.

1.1 GRAPH THEORY

Graph Theory is a way of representing and analyzing matheahgtroblems. We
refer the reader not familiar with graphs to the textbookB@rfge [20], Christofides
[30], and Bondy and Murty [23]. Many combinatorial optimiza problems can
be formulated as problems in graphs, which is the case ofribig@lgm analyzed in
this thesis. In this section we give a brief review of somengetary concepts and
properties on Graphs Theory.

A (undirected graph G = (V, E) is a pair of sets, wher& := {vy,...,v,} is
a finite and non-empty set arld = {ey, ..., e,, } is a set of pairs of elements ¥f.
The elements of are calledrertices and the elements @ are callecedgesand are
represented by, = [v;, v;], wherev;, v; € V. We will consider onlysimplegraphs,
i.e., graphs containing at most one edge linking each paiexices.



2 MATHEMATICAL BACKGROUND

Given the graplG = (V, E) andS C V, the edge set
6(8) = {[vi,vj] ekl v € S,’Uj S V\S}

is called thecut induced byS. We write 6 (.S) to make clear (in order to avoid
possible ambiguities) with respect to which graph the adiged bysS is considered.
We will write §(v) instead ofé({v}). Thedegreeof a vertexwv is the cardinality of
d(v). The set

E(S) = {[’Ui,’l)j] eFE: Vi, V5 € S,Z < j}

is the set of edges having both end vertice$'inWe denote by (S) = (S, E(S5))
the subgraph induced by edges having both end vertic8sihE(.S) is empty,S is
anindependent set

Thecomplementary grapbf G, denoted by, is the simple graph with the same
vertex set a&7, and with edges all pajp;, v,] of vertices which are noti&'. A graph
G = (V,E) is said to becompleteif it contains edggv;,v;] € E for all vertices
v;,v; € V. We denote the complete graphwfvertices byK,, = (V,, E,) and
assume unless otherwise stated jat= {v1,va,..., v, }.

Two graphsG’ = (V', E’) andG” = (V" E") areisomorphicif there exists a
bijective mappingf : V' — V" such thafv;, v;] € E’ifand only if[f(v;), f(v;)] €
E”.

A graphG = (V, E) is calledbipartite if its vertex setl” can be partitioned into
two nonempty disjoint set®;, V5 with V; U V5, = V such that no two vertices in
V1 and no two vertices iV, are connected by an edge. |Wfy| = nq, |[Va| = na
andE = {[v;,v,] : v; € Vq,v; € Va} then we callG the complete bipartite graph
Km,ng-

An edge setP = {[v1, v2), [v2,v3], ..., [vk—1,vk]} is called awalk betweenu,
andv,. The vertices; andv,, are thestarting pointand theend pointof the walk,
respectively, or just thend points If v; # v; for all i # j thenP is calledpath The
lengthof a walk (or path) is the number of its edges and is denotd@hyif v; = vy
in a walk we speak of alosed walk

Awalk C = {[v1,va],. .., [Vk—1, V&), [V, v1]} With v; # v; forall i # j is called
acycle(or k-cycle), also named simple cycle. An edgg v;], 1 < i # j < k, not
in C'is calledchordof C. The length of a cycl€ is denoted byC|. For conve-
nience we shall sometimes abbreviate the cyple, vs], . .., [vp—1, vk], [k, v1]} DY
(v1,...,v;) and also say that a graghis a cycle if its edge set forms cycle. A graph
or edge set is calledcyclicif it contains no cycle. An acyclic graph is also called a
forest

A graphG = (V, E) is said to beconnectedf it contains a path for every pair
of vertices; otherwisé= is calleddisconnected Concreteness by path induces a
equivalence relation on the vertices. Its classes aredddiééconnected) components
of the graph. Atreeis a connected forest containing all vertices of the grapis.rot
difficult to see that the following are equivalent for a giv@mple graptG = (V, E):

(i) Gisatree;

(i) G contains no circuits an®| = |V| — 1;
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(i) G isconnected antF| = |V| — 1;
(iv) any two vertices of5 are connected by exactly one simple path.

If we add one new edge connecting two vertices of the tree biarma graph with a
unique circuit. Each tree with at least two vertices has seentices of degree one,
which are called leaf of the tree.

A subgraphz’ = (V', E') of G = (V, E) is aspanning (sub)treef G if V' =V
andG’ is a tree. Thert¢ has a spanning subtree if and onlydfis connected. A
maximalforest inG = (V, E) is a subgrapiV, E’) which is a forest, wheré’
not contained in the edges of a larger fortes. This implies(f, E’) has the same
components afV, E).

Sometimes itis useful to associate a direction with the gdfja graph. Alirected
graph(or digraph) D = (V, A) consists of a finite set aferticesl” and a set o&rcs
A CV xV\{(v,v) : v € V} (we do not consider loops or multiple arcs). If
e = (v;,v;) is an arc ofD with end vertices); andv; then we cally; its tail andv;
its head The arce is said to balirectedor incident fromw; to v;. The number of arcs
incident to a vertex is calledindegreeof v and the number of arcs incident fram
is called theoutdegreef v. Thedegreeof v is the sum of its indegree and outdegree.
For a vertexv the sets of arcs incident from incident tov, and incident from or to
v are denoted by (v), §~(v), 6(v), respectively. Two vertices aszljacentf there
is an arc connecting them.

Most of the definitions for undirected graphs carry over itraightforward way to
directed graphs. For exampliiywalks dipaths anddicyclesare defined analogously
to walks, path, and cycles with the additional requirembat the arcs are directed
in the same orientation.

AdigraphD = (V, A) is said to becompletsf for all v;, v; € V it contains both
arcs(v;,v;) and (v, v;). We denote the complete digraph emodes byD,, =
(Va, Ay). For each graptD = (V, A) we can construct itanderlying graphG =
(V, E) by settingEl = {[v;, v;] : v; andv; are adjacent itD}.

A walk (diwalk) that traverses every edge (arc) of a grapbré@h) exactly once
is calledEulerian trail (Eulerian ditrail). If such a walk (diwalk) is closed we speak
of aEulerian tour. A graph (digraph) i&ulerianif its edge (arc) set can be traversed
by a Eulerian tour.

A cycle (dicycle) of lengthe in a graph (digraph) on nodes is calletiamiltonian
cycle(Hamiltonian dicyclg¢ or Hamiltonian tout A path (dipath) of length is called
Hamiltonian path(Hamiltonian dipath. A graph (digraph) containing a Hamiltonian
tour is calledHamiltonian

Often we have to deal with graphs where a rational numbere(edegjght) is
associated with each edge. We call a function — Q (whereQ denotes a set of
rational numbers) weight functiordefining a weight. for every edge = [v;, v;] €
E. The weight of a set of edgds C FE is defined as

c(F) = Z Ce-

ecF
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The weight of a tour is usually called itsngth A tour of smallest weight is called
shortest tour

1.2 COMPUTATIONAL COMPLEXITY

The main purpose of the Complexity Theory is to determine difficult a problem
may be to solve. This involves not only to establish a coniplexiassification
according to time or space complexity of its best exact algar, but also to seek the
different types of performance guarantees that are pessild heuristic approach.
Some concepts related to Complexity Theory are defined pirethis section. For
precise discussions we refer to the books by Aho, Hopcraftdman [1] and Garey
and Johnson [59].

Ground objects when formalizing problem complexity are bgta and string of
symbols. Let® be a finite set called thalphabet The elements oE are called
symbolsor letters An ordered finite sequence of symbols frains called astring
or aword. ¥* stands for the collection of all strings of symbols frain Thesizeof
a string is the numbers of its components. The string of @iizetheempty string
denoted by.

A string can have the form of rational number, vectors, masj graphs, linear
equations or inequalities, and so on. There are some stamdeys of transforma-
tions to encode these objects uniformly as proper stringmi®ls from some fixed
alphabet like{0, 1}. Depending on the chosen transformation, this induces eegn
of size of these objects.

A problemwill be a general question to be answered, usually procgssen-
eral parametersor free variables, whose values are left unspecified. Alprolhs
described by giving a general description of its parametard a statement of what
properties the answer, (solutior) must satisfy. Annstanceof a problemis obtained
by specifying particular values for all problem parameté&msrmally, a problem is a
subsefll of ¥* x ¥*, whereX: is some alphabet. The corresponding mathematical
problem the is:

given a stringz € ¥*, find a stringy such that(z, y) € II, or decide that no
such stringy exist.

Here the string is called arinstanceor theinputof the problem, ang is asolution
or output
A problemII is called adecision problenor ayes/no problenif, for each(z, y)
in IT, has only two possible valuegjs e the empty string. In that case, the problem
is often identified with the sel (called thelanguage of the problejof stringsz in
¥* for which (z, €) belongs tdI. The problem is to decide whethebelongs toL.
An algorithmis a list of instructions to solve a problem, and it can be falired
in terms of aTuring Machine(see Turing [149] and Aho, Hopcroft and Uliman [1]).
For a given input € ¥*, an algorithm for problendl C >* x ¥* determines an
outputy such that(z, y) is in II, or stops without delivering an output if there exists
no suchy. One says that an algoritha solves a problentl, or A is an algorithm
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for I1, if for any instance: of I1, when giving the stringA, z) to a ‘universal Turing
machine’, the machine stops after a finite number of stepsewlklivering a string
y with (z,y) € II, or delivering no string in the case where such a stgimpes not
exist.

Therunning timeof an algorithmA for certain problem instancecan be defined
as the number of moves the ‘head’ that a universal Turing &chakes before
stopping, when it is given the algorithrh and the input:. We define theunning
time functionof an algorithmA as the functiory : Z* — Z* with

f(n):= max (running time ofA for inputz) forn € Z*.
z,SIZ§z)<n

If f,91,-..,g9marereal-valued functions, thetis said to bgpolynomially bounded
bygi, ..., g ifthereisafunctions suchthat) > f and suchthat arises by sequence
of compositions from the functionsg, . . ., g,, and from some polynomials.

In the special case that, ..., g, are polynomials, it follows that wherf is
polynomially bounded by, . .., g., then f is bounded above by a polynomial. In
that casef is called gpolynomially boundeéunction.

An algorithm is callegolynomial-timgor simplypolynomia) if its running time
function is polynomially bounded. A problem is said to smvable in polynomial
time or polynomially solvablef the problem can be solved by a polynomial-time
algorithm. We are interested mostly in the asymptotic bahanof the running time
of the algorithm. Therefore, one often says that the runtiimg is O(g(n)), for
some functiory(n), meaning that there is a const@hsuch that the running time is
upper bounded b¢'g(n).

The class of decision problems solvable in polynomial timelénoted byP.
Another, possibly larger, complexity class is the cl&&B. Informally, the classV'P
can be described as the class of those decision problerafysagi

foranyz € L, the factthat is in L has a proof of length polynomially bounded
by the size otf.

More formally, a decision problerh C * belongs toVP if there exist a polynomi-
ally solvable decision problerh C ¥* x ¥* and a polynomiad such that for each
zin X*:

z€ L« Jyex*:(z,y) € L' and siz¢y) < ¢(sizgz)).

As an interpretationy here fulfills the role of a polynomial length proof of the fact
thatz is in L. This proof can be checked in polynomial time,ldss polynomially
solvable. The crucial pointis that it is not required thatust be found in polynomial
time.

Thecomplementfa decision problemh C ¥* is the decision problerf*\ L. The
class of decision problen’swhose complement is iN“P is denoted by coVP. So
co-N'P consist of those decision problersor which the fact that a certain strings
notin L has a proof of length polynomially bounded by sizeSince the complement
of every polynomially solvable decision problem is triyabolynomially solvable
again, we know thaP Cco-NP, and hencé® C AN'PNco-NP.
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The classNV"Pnco-NP consists of those decision problems for which both a
positive answer and a negative answer have a proof of poliaiéemgth. That is, it
consists of all problend, C 3* for which there exist polynomially solvable decision
problemZ’,L” and a polynomiad, such that for each stringe >*:

z € L < (z,z) € L' for some stringe with size(z) < ¢(sizez))

2z ¢ L« (z,y) € L" for some stringy with sizgy) < ¢(sizez))

A problem iswell-characterizedf it belongs to APnco-NP. To any well-
characterized problem there correspondsad characterizationwhich is the theo-
rem asserting that, in the above notation:

Jx: (z,2) € L'ifand only if Vy : (2,y) & L”,
whereL’ andL” satisfy, for a certain polynomia:
if(z,2) € L' then(z,2’) € L' for some string:’ with sizgz") < ¢(sizgz))

if(z,y) € L" then(z,y’) € L” for some string/’ with sizgy’) < ¢(sizg2)).

It is known that certain problems in the cla8%> are hardest among all problems in
NP, under a certain ordering of the problems by difficulty.

A polynomial transformatiofrom a languagd.; C X7 to a languagd., C X3
is a functionf : ¥7 — X3 that satisfies the following two conditions:

(i) There is a polynomial time transformation that computes
(i) Forallz € X3,z € Ly ifand only if f(x) € Lo.

If there is a polynomial transformation frofy to L, we write Ly oc L. Trivially, if
L, is polynomially solvable, and; is reducible tal,, then alsal; is polynomially
solvable. Similarly, ifL, belongs ta\NP, and L, is reducible toL, then alsoL
belong taAP. The same applies to ch“P.

A problem L is called V"P-complete if it is inA"P and each problem iWP
is reducible toL. So if anyN'P-complete problem is polynomially solvable, then
all problems in\P are polynomially solvable, and henge= N'P. Similarly, if
any A'P-complete problem has a good characterization, théP=co-N"P =N"PN
co-NP.

Note thatifL is reducible to probleni’ € A'P, andL is N'P-complete, then also
L’ is N'P-complete.

1.3 POLYHEDRAL THEORY

In this section we summarize some concepts and results fiogat. Algebra and
Polyhedral Theory which are necessary for our dissertatidowever, a detailed
treatment of the Theory of Polyhedra is presented in BacheinGratschel [7],
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Grunbaum [82], Rockafellar [132], Stoer and Witzgall [144HdPulleyblank [125],
as well as in some books on Integer Linear Programming asj@ahfl138] and
Nemhauser and Wolsey [114].

Definition 1.1. A vectorz € R" is called alinear combinationof the vectors
T1,..., o ifx =Mz + ...+ Mo With z1, ..., 2, € R*and)\,... A\, € R.

Definition 1.2. If in addition the\; satisfyA\; + ... + Ay = 1, thenz is called an

affine combinatiomf vectorsey, ..., z,. And if x = A\yzq + ... + Agx IS an affine
combination suchthat; > 0fori =1,...,k, thenz is called aconvex combination
of the vectorsey, . . ., zg.

Definition 1.3. If @ # S C R", thenthe setof all linear (affine, convex) combinations
of finitely many vectors inS is called thelinear (affine, convex) hubf S and it is
denoted by ling) (aff(S), conv(S)); by convention ling)={0}, aff()= conv@)=2.

Definition 1.4. AsetS C R™ with S=lin(.S) (S=aff(S), S=conv(5)) is called dinear
subspacdaffine subspace, convex set).

It can be shown that a sét ¢ R" is a linear (affine) subspace if and only if
there is an(m, n)-matrix A (an (m,n)-matrix A and a vectob € R™) such that
L={zeR": Ar = 0} (L = {x € R* : Az = b}). Affine subspaces of
particular interest areyperplanesi.e. sets of the fornfz € R™ : o’z = ay} where
a € R™\ {0} anda, € R. Clearly, every affine subspace different fr@fi is the
intersection of hyperplanes.

Definition 1.5. A nonempty setS C R" is calledlinearly (affinely) independent
if for every finite set{x1, o, ..., 2} C S, the equationsyx; + ... + Mgz =0
()\1%1 + ..+ Mx =0andM; + ...+ A, = 1) |mp|y N =0,71=1,...,k;
otherwisesS is calledlinearly (affinely) dependent

Every linearly (affinely) independent sefi®® contains at most (n+1) elements.
Moreover, for sets$ with at least two elements, linear (affine) independencensea
that nox € S can be represented as a linear (affine) combination of thwvec
S\ {z}. All sets{z},x # 0, are affinely and linearly independeqf} is linearly
dependent but affinely independent. By convention, the gregt is linearly and
affinely independent.

Definition 1.6. Therank (affine rankof setS € R™ is the cardinality of the largest
linearly (affinely) independent subset$fand thelimensiorof S, denoted by dimgf),
is the affine rank o5 minus one.

Definition 1.7. A setS C R" is calledfull dimensionalif dim(S) = n; this is
equivalent to say that there is no hyperplane contaifing

Itis clear from the definition that the affine rank of a set is&do the affine rank
of its affine hull. Moreover, i0 ¢ aff(S), i.e. if S is contained in a hyperplane
{z :a¥x = ap} with ag # 0, then dim@) is the maximum cardinality of a linearly
independent set if minus one.



8 MATHEMATICAL BACKGROUND

Definition 1.8. The maximum number of linearly independent rows or colunfres o
matrix A is therankand is denoted by rani.

Definition 1.9. An (m,n)-matrix is said to havédull rank if its rank is equal to
min{m, n}.

Definition 1.10. AsetH C R" is called ahalfspacédf there is a vecton € R™ and a
scalarag € R suchthat! = {x € R" : a’'z < a}. Itis said thatH is the halfspace
defined by the inequality” = < ag, and it is also said that (if # 0) the hyperplane
{z : aTx < ap} is the hyperplane defined by = < ao.

Definition 1.11. An inequalitya” 2 < b is calledvalid with respect taS C R™ if
S C {z € R": aTz < b}, i.e. if S is contained in the halfspace definedddyr < b.

Definition 1.12. A valid inequalitya” = < b for S is calledsupportingif SN {z €
R":aTz =0} # 2.

Definition 1.13. An inequalitya” 2 < b valid with respect toS is called aproper
valid inequalityif S is not contained in the hyperplage € R" : aTz = b}.

Definition 1.14. A valid inequality for S which is not proper is called amplicit
equationfor S.

Definition 1.15. A polyhedronis the intersection of finitely many halfspaces, i.e.
every polyhedrorP can be represented in the foffh= {z € R" : Az < b}.

Since an equation systeux: = ¢ can be written adzx < ¢, —Dx < —c¢, every
set of the form{xz € R"™ : Ax < b, Dz = ¢} is a polyhedron.

Definition 1.16. A bounded polyhedron (i.e. a polyhedréhwith P C {x € R" :
||z|| < B} for someB > 0 where||z|| is, for example, the Euclidean norm ©f is
calledpolytope Polytopes are precisely those set&ihwhich are the convex hulls
of finitely many points, i.e. every polytopB can be written ag> =conv(X) for a
finite setX C R™.

Definition 1.17. Let us define daceas a subsel’ of a polyhedronP such that there
exist an inequality” 2 < a, valid with respectta® andF = {z € P : aTz < ap}.
Thus, we say that inequality’ = < a, definesF.

Definition 1.18. A face F' is calledproperif F' £ P andF # @.

Infact, if P = {z € R" : a] x < b;,i =1,...,k}is apolyhedron and is a face
of P, then it can be showed that there exists an indeX set{1, ..., k} such that
F ={x € P:alz <b;iec I}. Similarly, if P =conv(X) for a finite setX C R”
and if F' is a face of the polytop®, then there exista s&ét’ C V with F' =conv(V).

Definition 1.19. It is said that two valid inequalities! = < ao andb! = < b, for a
polyhedronP areequivalentwith respecttaP if {z € P:alz < ao} ={r € P:
bI'z < by} (i.e. both inequalities ‘defines’ or ‘induce’ the same face)
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Definition 1.20. A face which contains one element only is callegestex If {z} is
a vertex of P we shall simply say that is a vertex or extreme point d?.

Definition 1.21. A facetF' of a polyhedronP is a proper, nonempty face (i.e. a face
satisfyinge # F' # P) which is maximal with respect to set inclusion.

In Combinatorial Optimization, a polyhedron is usually gjivby an inequality
system. However, one wants to find inequality systems witfeasinequalities as
possible. For this reason facet-defining inequalities fpadicular importance. The
following theorem provides the two basic methods to prow thgiven inequality
a®r < ay defines a facet for a polyhedrdn

Theorem 1.1. Let P C R™ be a polyhedron and assume thats an (m, n)-matrix,
b € R™ such that affP)= {x € R" : Az = b}. LetF be a nonempty face &f, then
the following statements are equivalent:

(a) Fis afacet ofP.
(b) F'is a maximal proper face af.
(c) dim@F)=dim(P)—1.

(d) There exists an inequality’ 2 < a valid with respect taP with the following
three properties:

() FC{zeP:a"z=ap}.
(d2) There existg € P witha’x < ao, i.e. the inequality is proper.

(d3) If any other inequality”z < ¢y valid with respect taP satisfiesF’ C
{z € P: "z = ¢p}, then there exists an scalar > 0 and a vector
A € R™ such that

T = aaT + \T A,

co = aag + ATh.

Conditions(c) and(d) provide the two basic methods to prove that a given inequal-
ity a”z < ag defines a facet of a polyhedrdn (see Chapter 4 for several examples
of proofs of facets). In both cases it has to be checkeddthat< a is valid for P
and thatP is not contained i{z € P : a”x = ap}. This is usually trivial.

The first method consist of exhibiting a settof=dim(P) vectors (usually vertices
of P) x1,...,x, € P satisfyinga”z; = ag, i = 1,...,k, and showing that these
vectors are affinely independent. ¢lf # 0 this is equivalent to showing that thelse
vectors are linearly independent.) Let us call this mettediirect method

In most cases the secomlirect methodased on conditiofd) of Theorem 1.1,
is more suitable, and it is as follows. One assumes the existef a valid inequality
'z < cowith {z € P:alz = ag} C {z € P: Tz = ¢}. Using the known
equation systemsgla = b for P, one can determine a vectar € R™ such that
¢ := c+ AT X has certain useful properties, i.e. some of the coefficietsre equal
to the corresponding coefficients of the given
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Then using known properties of the pointsin P satisfyinga’z = ag, one
determines the still unknown coefficients ofteratively. If it turns out that =
ac + ATy for somea > 0 andy € R™, then condition(d) of Theorem 1.1 implies
thata” 2 < ay defines a facet aP.

Facets are of importance since they have to be known in avdgatain a minimal
inequality representation of a polyhedron.

Definition 1.22. Let P # R"™ be a polyhedron. Then a system of equations and
inequalitiesDx = ¢, Az < b is said to becompletewith respect ofP if P = {z €
R™: Dx = ¢, Ax < b}.

Definition 1.23. Let us call a systemrx < b non-redundanif it contains no implicit
equations and if the deletion of any equation or inequalitthe system results in
a polyhedron different fron®. Any equation or inequality which can be deleted
without changing the polyhedron is callestiundant

Theorem 1.2. Let P C R"™ be a polyhedron andz < b, Dx = ¢ be a complete and
non-redundant system fd@t, whereD is an(m, n)-matrix andA is a (k, n)-matrix.
Then the following hold:

(a) aff(P)={z € R": Dz = ¢} andm =rank(D).
(b) aff(P) and P have dimension, — m.

(c) Everyinequality:! z < b, of the systemlz < b defines a facek; of P, where
Fo={zeP:alz=0}i=1,... k.

(d) ifalz <b,i=1,...,k d'z <é,i=1,...,m,is any other complete and
non-redundant system f@t, then

(dl) k= ‘12:7m = ﬁ'L,

(d2) dF = (\)TD for somex’ € R™ — {0}(i = 1,...,m)

(ds) aj = a;al) + (X)) D for somen; > 0, X € R™, andj € {1,...,k}
(i=1,...,k)

Theorem 1.2(d) implies that for a full-dimensional polyhmdP there is a com-
plete non-redundant inequality systefi < b;, i =1,...,k, such that every com-
plete and non-redundant inequality systefnwr < b;,i = 1,...,k, satisfyk = k
anda; = «;a; for someq; > 0 andi = 1,..., k. This justifies the statement that
a full-dimensional polyhedron is defined byuaiquenon-redundant and complete
inequality system. Moreover, for every facBtof P there is a unique inequality
defining F'.

Sequential Lifting

We shall now introduce a technique, callggiquential lifting which leads to new
facet-defining inequalities for a polyhedron from a knoweoefadefining inequality
of a face.
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The following theorem has been extracted from Padberg [TH6ik is the method
in which our theorems for obtaining facet defining are maip&sed on. Let us
consider a convex polytope IR™ given by

P={zeR": Az <bh,0< 2 <1}

whered € R™*™ with A > 0 and integer, and in which; is a column vector, for
jeN=/{1,...,n}. Letus denote by

Pr=conMz € P:z € {0,1}").

We observe first that the inequalities > 0 are facets of;, provide that; > ag for
allj =1,...,n. We shall call the inequalities; > 0, j =1, ..., n, trivial facets of
Pr. Observe that for any nontrivial facet < =, of P we haver; > 0,5 =1,...,n
andm, > 0. Consequently, requirement in Theorem 1.1 (c) states lieae tmust
existd = dim(Py) affinely independent vertices &f; satisfying this condition. We
now assume explicitly that; < a, for all j € N. Hence, dinP;) = n.

Let T be a nonempty proper subset df. Let us denote by?? the polytope
obtained fromP by setting the variables;, j € T, equal to zero, i.e.,

P'=Pn(){z eR":z; =0} (1.1)
JjeT

and defineP! to be the convex hull of the zero-one pointsiof.
LetT = {j1,...,J:}, wheret = |T| and the elements &F are arbitrary ordered.
Forqg=1,...,t defineTj to be

Ty =T4-1U g

with the convention thaly = . Similar to P” and P, we denote byP” 74 the
polytope obtained fron® by setting the variables;, j € T — Ty, equal to zero and
defineP”T—T4 to be the convex hull of the zero-one pointsfof —7«. Note that with
the above definition®”~7 = PT and P"-"¢ = P. Furthermore, by the above
assumptions we have that dif! ~7«) =dim(P?~14) = (n — t + q).

Let 2 < my be any valid inequality forP;, that is a (nontrivial) facet for the
(n — t)-dimensional polytop&! and consider the zero-one problem

z = max {ﬂ'x,x cePl M n{zeR"z;, = 1}} ) (1.2)

where we have set the variablesj € T — 17, equal to zero and the variahlg,
equal tol.

Let us define the vector' as follows. n} = 7, forallj € N - T, n} =
T — Z, 7r]1- = 0 otherwise, where is the optimal objective function value of (1.2). It
follows easily thatrj > 0 and that the inequality' < 7 is a valid inequality for
PIT‘Tl. Continuing the above process with, etc., untilT' is exhausted, we obtain
a (nontrivial) facet for the:-dimensional polytopé®;. To be more specific, suppose
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thatm;, j € N —T, andm, > 0 are given. Let us define a sequence of maximization

problems(H,) as
Zg = max Z ;T + Z T

JEN-T FE€Ty—1
subject to
Z ajxj + Z CLjIj S apg — ajq
JEN-T J€ETy 1

xzj € {0,1} forallj e (N-T)UT,_1
where ther;, j € T,_;, are defined recursively by

Tjq = T0 — Zq

andz, is the optimal value of the objective function of the problgih ), ¢ = 1, ..., ¢

Theorem 1.3. (Padberg [120]) Letl" = {ji,...,j:}, wherel <t = [T| <n -1,
be an arbitrarily ordered subset 6f and letrz < 7 be a nontrivial facet o’! as
defined in (1.1). Let’ be defined by} = m; forall j € N - T, 7 = m — 2, for
g =1,...,t, wherez, are obtained by solving the problert&,) for qg=1,.
Themr T g 7o IS a nontrivial facet ofP;.

1.4 POLYHEDRAL COMBINATORICS

The area of research in which polyhedra arising from conbite optimization
problems are investigated is often referred tdPatyhedral Combinatoricand its
principal ideas are discussed next. Schrijver [138], Nammbaand Wolsey [114] and
Wolsey [152] are some of the books where those techniqueteaibed in details.

Connections between Combinatorial Optimization and ooiis or zero-one
Linear Optimization can be established as follows.

Definition 1.24. Given afinite seFE, letZ C 2F be a collection ofeasible solutions
and letc : £ — R be the so calleabjective function For each set” C F let
c(F) == > .crcle). A linear combinatorial optimization problens to find a set
I* € T with

e(I")y =max{c(I): I € I}.

We denote a linear combinatorial optimization problem(ByZ, ¢).

For the finite ground sef let R” be theR-vector space indexed by the elements
of E.

Definition 1.25. Given a finite seF7, and aseF’ C F, theincidence vector? € RZ

is defined by
F _ { 17 |f e e F

Ye TV 0,ifeg F
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With a combinatorial optimization proble(, Z, ¢) we associate the polytope
Pr=conv{z! : T €T}

Because the incidence vectors are 0-1-vectors, they alexhe vertices of the
polytopePr. If we associate with the function: £ — R of a combinatorial opti-
mization problem by a vectar € R”, we can solve the combinatorial optimization
problem by solving the optimization problemax{c’z : z € Pr}. Unfortunately
we do not know any efficient algorithm to solve an optimizagiwoblem, when the so-
lution space is only defined as the convex hull of an impliaiscribed set of points.
However, according to classical result of Farkas, Weyl amikiivsky (see Schrijver
[138]) there exists a finite set of inequalitids: < b, such thatPr = {x : Az < b}.
Hence we could transform the combinatorial optimizatioobpem (E, Z, ¢) to the
linear programmax{z : Az < b}. There are finite algorithms to transform one rep-
resentation of the polytopE; into the other that can be used for very small problem
instances.

As we have already mentioned, since the number of constraiay be too large
to be represented in a computer, or too large to be handlelgeblyR-solver, we can
still attempt to solve the problem with the following appcba We start with a small
subset of constraints and compute an optimal solution stigji¢ghese constraints. We
now check if any of the constraints not in the current lineagpam is not satisfied.

If such contraints are identified, we add one or more of thertheocurrent linear
program and resolve it. If no constraint is violated, themdbrrent optimum solution
also solves the original problem. This is the basic prirecipfl the so calledutting
plane approachwhose name originates from the fact that the constrairdecdb
the current linear prograrcut offthe current solution because it is infeasible for the
original combinatorial problem.

Note the important fact that the approach does not requireath explicit list of
the constraints defining the original problem must be preskiis only required a
method for identifying inequalities that are valid for thigginal problem but violated
by the current solution.

Definition 1.26. Given a bounded rational polyhedréhC R™ and a rational vector
v € R", theseparation problens, either conclude thatbelongs taP or, if not, find
a rational vectorw € R” such thatw”z < w”v forall x € P.

According to this, the following theorem gives the equivale between solving
an optimization problem and solving the equivalent sep@rairoblem.

Theorem 1.4. For any proper class of polyhedra, the optimization probismoly-
nomially solvable if and only if the separation problem isymomially solvable.

This theorem is a consequence of the more general resultai$Eel, Loasz,
and Schrijver [78]. Its proof involves some advanced topidinear Programming,
including the Ellipsoid Method for solving Linear-Programmg problems.

An algorithm that solves the general separation probleraliedexact separation
algorithm Unfortunately, exact algorithm are often not known forsskas of valid
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Initialize the constraint system (A’,b') with a small subset of
the constraints system (A,b).
repeat
Conput e an optimum sol ution of ¢’z =max{cTz: A’z <b,x € R}
if ( z not feasible)
Generate a cutting plane (f,f0), fER™ with
(i) ffz>fo
(ii) ffz<fo for all ye{x:Ax<bx; integer for all i€T}
Add the inequality fTx < fo to the constraint system (A’,¥)
endif
until ( =z be feasible)

Fig. 1.1 Cutting plane algorithm.

inequalities and in some cases it can even be shown that plagasion problem in

its optimization form for a certain class of inequalities\i$>-hard. In this case, we
usually have to resort to laeuristic separation algorithmwhich may find violated

inequalities, but it may also fails since, it is not guaradtéhat no constraint of the
class is violated.

Figure 1.1 shows a generic cutting plane algorithm for smj\a mixed Integer
Linear Programmingnax{c’z! : Az’ < b,z integer for alll € T}.

Cutting plane algorithms using specific cutting planesy.(dfacet defining in-
equalities) often have to stop without finding an optimunusoh. This can have
two different reasons. First, the complete linear desioripfor A"P-hard combi-
natorial optimization problem is unknown. Second, evenhigclass of facets is
known, no efficient algorithm may be available for the s@noibf the exact separation
problem of this class. At this point we can apply anotherdalgjorithmic technique
for solving hard mixed integer optimization problentsanch-and-bound

Branch-and-bound is a divided-and-conquer approachgnygrsolve the original
problem by splitting it into smaller problems, denoted abmablems, for which
upper and lower bounds are computed. The crucial part of @esstul branch-and-
bound algorithm is the computation of upper and lower bofimdthese subproblems.
Here one uses the fundamental concept of relaxation.

Definition 1.27. Let F = {z! : Az' < b, 2!, integer for alli € T} be the set of
feasible solutions of a mixed integer optimization problemx{c’z : + € F}. A
maximization problem

max{r(z) : x € R}
is a relaxation of the mixed integer optimization problefn, i

FCRandc"z <r(z) forallzeF.

Hence, a solution of the relaxed problem gives an upper bourthe optimum
objective function value of the problem it was derive fronieTighter the relaxation,
the better this bound will be. But a relaxation is only uséffitican be treated at least
practically efficiently by optimization algorithms.



MULTICRITERIA OPTIMIZATION 15

By dropping the integrality conditions of the integer vates of a mixed integer
optimization problem we getliear programming relaxatiorwhich is basic in the
context of the cutting plane algorithms. This relaxation ba tightened by adding
further valid inequalities.

A branch-and-bound algorithm maintains a list of subprotdeof the original
problem, which is initialized with the original problemeét$. In each major iteration
step the algorithm selects a subproblem from this list, adepa local upper bound for
this subproblem, and tries to improve the global lower boufithe local upper bound
does not exceed the global lower bound, the active subproisiéathomed, because
its solution cannot be better than the best known feasilllgisn. Otherwise, we
check if the optimal solution of the relaxation of the sulienn is a feasible solution
of the original problem. In this case, we have solved the maliipm and thus, it is
fathomed.

If the local upper bound exceeds the global lower bound anfeéasible solution
was found for the active problem, we perform a branching Byegplitting the active
subproblem into a collection of new subproblems whose uafdeasible solutions
contains all feasible solutions of the active subproblenhe Simplest branching
strategy consists of defining two new subproblems by chantia bounds of the
variable. Supposéc< 7 has a fractional valug; in the LP-solution. Then, the new
upper bound of the variablein the fist new subproblem igz; |, whereas its lower
bound remains unchanged. In the second subproblem the bpped keeps its old
value, but the new lower bound of the variabis [Z;].

If the list of subproblems becomes empty, then the memoffieasible solution
(whose objective function value is equal to the global ugyemd) is the optimum
solution.

A Branch-and-Cutlgorithm is a branch-and-bound algorithm in which cutting
planes are generated throughout the branch-and-boundiiteeugh this may seem
to be a minor difference, in practice there is a change ofopbjphy. Rather than
reoptimizing fast at each node, the new philosophy is to dowsh work as necessary
to get a tight upper bound for the subproblem. Now the goabtsonly to reduce
the number of required branching in the tree significantluéing cuts and improved
formulations, but also to try anything else that may be Usafah as preprocessing
at each node, a primal heuristic at each node, and so fortls t&thnique will be
used in Chapter 5.

1.5 MULTICRITERIA OPTIMIZATION

Some concepts on Multicriterion Optimization as well asdbscription of the basic
algorithm for solving bicriterion problems are providediliis section. They will be
used in Chapter 7. For more details on this topic we referaa&t[143], Goicoechea,
Hansen and Duckstein [70] and Ehrgott [49].

Optimization can be viewed as a discipline which comprisesvihole interac-
tive process of analysis and design resulting in an optiystlesn. Instead of one
scalar objective function, usually several conflicting and-commensurate (i.e. such
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guantities which have different units) criteria appeammptimization problem. This
situation forces the designer or analyst to look for a goadp@mise solution by
considering trade-off between the competing criteria. $2guently, he/she must take
a decision-maker’s role in an interactive design procesasravtypically several op-
timization problems must be solved. Multicriterion (malijective, Pareto, vector)
optimization offers a flexible approach for the designer ¢aldvith this decision-
making problem in a systematic way.

An important drawback of considering such problems lieshia difficulty of
defining an appropriate notion of optimality and, given sachotion, finding an
optimal solution. Obviously, the situation becomes mormglicated when more
criteria are involved, unless the criteria are not in conflith each other; roughly
speaking, two criteria are notin conflictif a solution thatferms well on one criterion
is likely to perform well on the other criterion. If the crita are conflicting, then the
different solutions have to be weighted against each offeahat end, various options
exist. The first one is to specify a score on the value on the imertant criterion;
a solution is then selected to perform well on the other gatehile satisfying the
bound. The second optionis to aggregate the criteria intagesobjective function; a
solution is chosen that is optimal for this objective funnti The third option is based
upon an interactive version of decision making: an analgstmnines a candidate
solution and presents it to a decision maker, who eitherdésdo accept it or tells
the analyst on which criterion the score should be improved.

Anotherimportantissue concerns the question what cotesit representative set
of candidates solutions. An obvious choice is the set ai@l-dominatedolutions.
A solution is said to be non-dominated if it outperforms athyen solution on at least
one criterion. If the number of non-dominated solutiongigé, then an analyst may
impose extra restrictions upon the set of candidate saisitior example, he/she can
impose an upper bound on the value of a criterion.

In Chapter 7 of this thesissimultaneousninimization, in contrast thierarchical
minimization, is performed in order to combine conflictingteria. In case of hi-
erarchical minimization, the performance criteria arekeghin order of importance;
the less important criterion is minimized subject to thestmint that the solution
of the problem is optimal with respect to the more importaitedon. In case if
simultaneous minimization, the criteria are aggregatsaarsingle composite objec-
tive function, which is then minimized. Note that simultane minimization turns
into hierarchical minimization for an appropriate choiddgte composite objective
function.

We assume that any composite objective function is nonedsang in both argu-
ments. This assumptions reflects the opinion that a dondrsatieition should not be
chosen as the optimal solution.

Definition 1.28. Let f; andf, be two performance criteria. Then tbiterion space
is

Z={:€R: 2= (fi(0), (o)), 0 €T},

whereZ is the set of feasible solutions of an optimization problem.
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Definition 1.29. Let (f1, f2) € Z. Then(fi, f>) is non-dominatedf there does not
exist anothex f1, f3) € Z such thatf; < f] and f, < f4, and at least one of the
inequalities is strict.

Definition 1.30. Let (fi, f») € Z. Then(fy, f») is efficientif there exist a real
nonnegative value € [0, 1] such thatv f1 + (1 — w) fo < wf] + (1 —w)f; for all

(fi:fs) € Z.

Definition 1.31. Theefficient frontieris the shortest curve that connects all efficient
points.

Definition 1.32. (fh f2) € Z is extremewith respect tof; and f, if it corresponds
to a vertex of the efficient frontier.

Definition 1.33. A feasible solutiorv is Pareto optimalwith respect to two perfor-
mance criteriaf; and f; if there is no feasible solution such thatf, (7) < fi(o)
andfx(m) < f2(o), where at least one of the inequalities is strict.

Theorem 1.5. If the composite objective functidi of (fi, f2) is hon-decreasing
in both arguments, then there exists a Pareto optimal painf f;, f2) in which the
function F' attains its minimum.

Proof. Let 1(1), 2(1))beapointinwhictFattains its minimum. Iffl(l), 2(1))is not

Pareto optimal, then there exists a Pareto optimal ggifft, £.%), with & < f{M
andf$? < V. Hence (£, £ < F(fM, f{V), implying thatF also attains
its minimum in(£{?, £{*). O

Figures 1.2 and 1.3 show the non-dominated solutions asasethe efficient
frontier in a problem minimizing two performance critefiaand f5.

We describe now an algorithm to obtain all non-dominatedtsmis and to gener-
ate the efficient frontier solving iteratively single okjge problems. This algorithm
is based on the general scheme of the hybrid method desanilmicoechea, Duck-
stein and Fogel [69] that combines both thieighting methodnd thee-constraint
method This scheme combines both criteria linearly and introdueesighting fac-
tor for each of them. If these weighting coefficients, deddtere byw; andw-, are
interpreted as parameters we obtain a linear weightingadesich can be used for
the generation of non-dominated points. Without loss ofgality the normalization
w1 +wy = 1 may be applied, so we will only relate t@,. By varying the weights,
and by solving this scalar problem separately for each fixedmpeter combination,
we can compute all non-dominated points.

The basic steps of the general method are showed in FigureThetinitial step
computes the two starting pointg ¢, £{") and (**’, £{*)) by optimizing hierarchi-
cally both criteriaf, and f, (see Figure 1.6). These two initial points constitute the
first interval to be examined as well as the first two non-datad points. The sdt
stores the remaining intervals andD is the set of non-dominated points. Both the
weightw; and the bounds are computed as long as a new interval isestlzom
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Fig. 1.2 Set of non-dominated solutions with respect to critgfiand f-.
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Fig. 1.3 Efficient frontier with respect to criterif and fs.
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Input:  f1, f2, o Output: ND
M) = minyep f1(0)
3 = mingep(f2(0) : f1(o) < £17)
5 =mingep fa(o)
@ = minyep(fi1(0) : f2(0) < £57)
L=l i) P i)

ND = (Y, i) U (), 1)
while T # &

Select from I an interval [(f, £V, (f@, £
L=\ {I(AHY 5D), 0 1520

(1%, 57 : =stack. pop()
f§2)7f2(1)
m = 7f£1)—f1(2)

- _m _
m—1

o* := arg WBCP(w, fl(l)y f2(2))
if o* £ o
ND := NDU(fi(c*), fa(c*))
[:=1U[(FD, 1D, (fa(0®), F20* N U [(fr(0%), F2(0*)), (£2, £52)]

Fig. 1.4 Pseudocode of the hybrid algorithm.

the set of intervald. Accordingly, the weighted single criterion problem (WSCP
is solved. If the current WSCP is feasible, a new non-dorethabint and two new
intervals are generated.

We now provide the basis for the construction the algoritlescdibed in Chapter
7.

Theorem 1.6. Let .S be the set of feasible solutions.9thas an efficient point, then
at least one extreme point §fis efficient.

Definition 1.34. Let C'gz denote the basic columns of the criterion ma@ixCy the
non basic columns, and the non-basic columns of the constraints matixThen
let W denote theé: x (n — m) reduced costnatrix whereW = Cy — Cg B~ N.

Definition 1.35. B is aefficient basidf and only if B is an optimal basis of the
weighted-sum LP for some vectar

Since the reduced cost row of the weighted-sums LP is givexiB¥/, basisB is
efficient if and only if the system

Mw <o
A>0
is consistent.

Theorem 1.7. Letz € S be the extreme point associated with efficient b&sihen,
x if efficient.



20 MATHEMATICAL BACKGROUND

Fig. 1.5 First step of the weighting method.

Fig. 1.6 Two new intervals obtained from the first optimization step.
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Theorem 1.8. Letx € S be an efficient extreme point. Then, there exist an efficient
basisB associated with.

Definition 1.36. BasesB and B areadjacentf and only if one can be obtained from
the other in one pivot.

Definition 1.37. Let B be an efficient basis. Them;; is an efficient non-basic
variableif and only if there exists a vector such that

MW <o

MNw =0
wherew? is thej*"* column of V.

Definition 1.38. Let B be an efficient basis angd; an efficient non-basic entering
variable. Then, any feasible pivot from is anefficient pivobperation.

Theorem 1.9. Let B an efficient basis. Then, any efficient pivot fréhyields an
adjacent efficient basis.

Theorem 1.10.Let B and B be adjacent efficient bases such that one can be obtained
from the other by means of an efficient pivot. keand Z be the extreme points
associated wittB and B, respectively. Then, the edgéz, 1) is efficient.

Definition 1.39. Let B and B be efficient bases. If one can be obtained from the
other by performing only efficient pivot$; and B are said to beonnected

Theorem 1.11. All efficient bases are connected.

Definition 1.40. Two efficient extreme points of are edge-connectei they are
connected by means of a path of efficient edgeS.of

Theorem 1.12. All efficient extreme points ¢f are edge-connected.

1.6 SOME BASIC OPTIMIZATION PROBLEMS

Some of the algorithms described in this thesis are methmdslve subproblems
involved in some stages of the resolution of the main problEhose subproblems are
described in this section. THesignment Probletis referred in Chapters 3and 4 as a
subproblem of the asymmetric Traveling Purchaser ProbldreKnapsack Problem
andUncapacitated Facility Location Probleare mentioned in the polyhedral study
carried out in Chapter 4. Finally ti&et Covering Problens referred as a relaxation
of a subproblem of the Traveling Purchaser Problem duriegdiscription of the
heuristic approach in Chapter 8.
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The Assignment Problem

Let us considen workers available to carry outjobs. Each person must be assigned
to perform exactly one job. Some workers are better suitguhtticular jobs than
others, so there is an estimated agsitf person: is assigned to jol. The problem

is to find a minimum cost assignment. Using the binary vageabl

R 1, if personi does the joly
77 0, otherwise

a mathematical model is

n n
ming E CijTij

i=1 j=1
S.t.

n
day=1 fori=1....n
j=1

ay=1 forj=1,....n
=1

zi; € {0,1} fori=1,...,n,andj=1,...,n.

The 0-1 Knapsack Problem

There is a budgét available for investment in projects during the coming yaaal
n projects are under consideration, whereis the outlay for projecy, andc; is
its expected return. The goal is to choose a set of projectisesdhe budget is not
exceeded and the expected return is maximized. Using tlaeybuariables

~_J 1, ifprojectj is selected
i = 0, otherwise

a mathematical model is
n
max Z Cj.’L'j
j=1

S.t.
Zajxj S b
=1
z; € {0,1} forj=1,...,n.

The Set Covering Problem

Given a certain number of regions, the problem is where taliires set of emergency
service center. For each possible center the cost of iimgtal service center, and
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which regions it can service are known. The goal is to choasénanum cost set
of service centers so that each region is covered Met {1,..., m} be the set of
regions, andV = {1,...,n} the set of potential centers. L&f C M the regions
that can be serviced by a centerjat NV, andc; its installation cost.

To facilitate the description, we first construct a 0-1 irride matrixA such that
a;j = 1if i € Sj, anda;; = 0 otherwise. Using the binary variables

. 1, if centerj is selected
771 0, otherwise

a mathematical model is

min E CiT;

JEN
S.t.

Z ;5T >1 forie M
jEN
zj € {0,1} forj € N.

The Uncapacitated Facility Location Problem

Given a set of potential depad = {1,...,n}andasef = {1,...,m} of clients,
suppose there is a fixed cgitassociated with the use of degoaind a transportation
costc;; if all of clients i’s order is delivered from depgt The problem is to decide
which depots to open, and which depot serves each clientt®omisimize the sum
of the fixed and transportation costs. Using the binary te=

~_J 1, ifdepotjis used
Yi=) 0, otherwise
x;; is the fraction of the demanisatisfied from depot
a mathematical model is
min } D e+ Sy,
i€M jEN jeN
S.t.
Z zi;=1 forieM
JEN
Zi; < Y5 fori € M, andj € N
x;; € {0,1} fori e M, andj € N
y; € {0,1} forj e N.






The Traveling Purchaser

~ Problem:
An Iintroduction

An introduction on the Traveling Purchaser Problem (TPBjasided in this chapter.
The aimis to give a wide description of this problem; to pdavan extensive literature
review, taking into account all the previous works on the ;TlBRRnumerate potential
applications to real world problems; and to place the TPBsisGope by describing
some related problems; finally a trnasformation of the TRB the Generalized
Traveling Salesman Probleim also provided.

This dissertation is concerned with a generalization oftk#-known Traveling
Salesman Problem (TSP), known as Tiraveling Purchaser ProbleriTPP). The
problem can be defined as follows. Let us consider a set ofugtedr items to be
purchased and a vehicle originally at a depot. There is dnegent of units for each
different product. Let us also consider a set of markets) satting some units of a
certain number of products. The unit price of a product ddpem the market where
it is available. It is also known the travel cost between d@aahlocations. The TPP
asks for selecting a subset of markets and routing the selecarkets with a vehicle
such that the demand of each product is satisfied and theptatethasing and travel
cost is minimized. It is assumed that

i) each product is available in at least one market;
i) no product is available in the depot;
iii) the required demand can be purchased.

The particular case in which there is not restricted offea pfoduct at each market
is calledunrestricted TPPIt can be seen as the TPP with one-unit demand for each
product.

25
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This problem also arises in the Scheduling context. Let asider a multipurpose
machine. This machine is designed for performing diffekémds of tasks or jobs by
changing its specific tool, available in a magazine or sebolst Each one of these
tools corresponds to an state of a multipurpose machineicétitat to change the
machine from the statg to the states; takes ssetuptime, and that, return to state
from states; takes a different time, since the procedure of installing @minstalling
the tool could be not symmetric (see the state diagram in Rid). Let us also
consider a set of jobs that can be grouped according to thereeltool needed to
be processed. Each of this jobs could be processed in onfferedi states, that is,
with one or several tools, but the processing time is closehnected with this tool.
The TPP looks for a sequence of a subset of states to perfersettof jobs, starting
and finishing in a base state without tool, minimizing thakptocessing time, which
includes both the total setup time and the total procesgimg. tIf each state is able
to process as many units as necessary then an unrestrickedrige. On the other
hand, if the processing capacity of a specific state is resaronstrained then we are
addressing a restricted or general TPP.

Fig. 2.1 State diagram of a multipurpose machine.

2.1 LITERATURE REVIEW

Most of the works in literature deal with the unrestrictedPTPPhe name of Traveling
Purchaser Problem for the unrestricted TPP was coined beR@afh26]. He presents
two algorithms, alexicographic search algorithm and a neighbour algorithm. The
former is an exact algorithm based on lexicographic sealtlhis approach each
solution is represented as a sequence of symbols and seaeshdptimal solution is
analogous to search for a specific word’s location in a dietig. From a partial word,
solutions are generated in some hierarchy which reflectsxalogous hierarchy in
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theirs values. Each partial word defines a block of solutiansl for each block of

solutions a lower bound is computed. If this lower bound exlsethe value of a

known solution (trial solution), the entered block of worslsejected as it necessarily
does not contain solutions of value better than the trialtem value, and the next
block of solutions is explored. However, the lower boundatets only on the travel

cost from different markets to the depot and it is indepehdéthe purchasing cost.

Probably that is the reason for the bad performance of thrighm.

The near neighbour algorithm also proposed by Ramesh in] [§28ased on
a heuristic called NEARINSERT (see [134] and [137] for deddfor the Traveling
Salesman Problem, that starts inserting a single vertebitemnatively extend a path by
inserting all other vertices in a greedy way. The Rameshisistic begins considering
the first solution obtained in the lexicographic search agpproximate solution for
TPP, and adapts the former algorithm making use of the meadideuristic for the
TPP.

Computational experience is presented in that articlelunvg instances only up
to 12 markets and 10 products, and 8 markets and 22 products.

Prior to Ramesh, Burstall [25] described a real world prob&é similar structure
in a tube manufacturing firm, but focused on a schedulingagr. The problem of
Burstall was to do technical planning, in order to deternfiime@ach batch of tubes the
range of technically feasible ways in which they could be ufactured. In essence,
a set of batches of tubes has to be processed by a multi-statéme. The processing
time of each batch as well as technical feasibility depentherstate. On the other
hand, the setup time taken by the machine when it change fratat@to another is
also given. The problem is to process the set of batches nzinignthe total time,
that includes both the total setup time and the processing tor each processed
batch. If additionally, we consider one dummy state in whighmachine has to start
and stop, it is clear that this problem becomes the TPP, wtherstates become the
markets and each batch of jobs is a product. However, it @asatize that neither
triangle inequality hold nor a symmetric representatiouarisuitable in this type of
problem.

Burstall developed a heuristic which was further commemrdoy Lomnicki
[107]. He checked his algorithm on a set of instances obdfirmen the real problem
he was addressing, solving problems up to 27 states (maégetd 7 jobs (products).
One of these instances is used as illustrative example ipt€hd in order to show
the behaviour of the proposed algorithm.

Buzacottand Dutta [26] developed an exact procedure basegrmamic Program-
ming for this sequencing problem. His program is able toesatgtances having 12
jobs or less, and he checked it on the Burstall’'s factoryaimsés other instances
involving 10 jobs and 10 states that we presume randomlyrgest:

Another exact algorithm was presented by Singh and van Qusdies [141]. They
developed a branch-and-bound algorithm. The main ideasétiproach is to break
up the set of all possible tours into smaller and smalleresishand to calculate for
each of them a lower bound on the sum of the travel cost anchpsirng cost. The
lower bound is computed by solving a relaxation of the pngblehich is similar to
theUncapacitated Facility Location Proble(WFLP). The bounds guide the partition
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of the subset and identify an optimal solution when a sulssfetuind that contains a
single tour, and whose bound is less than or equal to the Ibaxgnds for all other
subsets.

Their computer program, called TRAPUR is checked on botmasgtric and
symmetric instances. For the asymmetric case, the tragéd ape integer randomly
generated from a uniform distribution in the rangé, 30]. The purchasing cost
different from arbitrary large valuey/, are also integer generated from a uniform
distribution in the rangéa, a + 10], whereaq is an integer whose value does not
influence the optimal solution as all the products are to setased. The proportion
of purchasing cost different fromy/ is around50%. They generated a total of 65
problems with asymmetric costs, and 10 to 25 markets and 10Qgroducts.

For the symmetric case, the travel cost values are takentfiertravel cost date
for the 33-city TSP given in Karg and Thompson [90]. Noticatttihose instances do
not satisfy the triangle inequality. The purchasing cofedént from M are integer
randomly generated from a uniform distribution in the raftjg00]. They generated
a total of 40 problems with 10 to 20 markets and 15 to 50 preduct

Since the unrestricted TPP is known taAf@-hard in the strong sense (it becomes
the TSP when each product can be purchased in only one m#rkdt)erature on
TPP is mostly directed towards the development of heulistiear optimal methods.
One of these heuristic procedures developed so far is dugeGolLevy and Dahl
[73]. They proposed th&eneralized Saving Heuristidt starts with an initial tour
containing the depot and the markets selling the largesbeumf products at their
lowest available price. Ties are broken by selecting theketavith the smallest sum
of product prices. At each iteration, the non-visited magkeducing the largest cost
saving is inserted in the current tour. The heuristic stopemno more saving can
be achieved. Their heuristic was, later on, modified by Od®]ho proposed the
Tour Reduction Heuristi€TRH) It starts with an initial tour containing a subset of
markets offering the products and iteratively drops the markets yielding thgdat
cost reduction until no further improvement can be obtain€uhg also suggested
using a good TSP algorithm to resequence the markets intireriadiate tours. The
performance on this approach heavily depends on the isitibtet of markets, on
the number of times the TSP heuristic is applied, and on thifeimeance of the TSP
heuristic.

Pearn and Chien [123] suggested some improvements of thprev@mus works
from Golden, Levy and Dahl [73] and Ong [116]. Two of them weekated to the
Generalized Saving Heuristic from Golden, Levy and Dah].[#®e first one called
Parameter Selection Generalized Saving Heurjstges a weighted saving function
where a term reflecting the purchasing saving at a given rmakaultiplied by a
weightand added to the travel cost saving. The second versitied theélie Selection
Generalized Saving Heuristis similar to the original heuristic, but the tie-breaking
rule selects the market closest to the depot instead of thieetraffering the smallest
sum of product price.

Two improvements were also suggested by Ong [116] for the. TRy suggested
initially selecting the set of markets selling at least onedpict at its lowest price.
They also tested two variants of the TRH. In the first one ecldjusted-Cheapest
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Tour-Reduction Heuristighe initial set of markets contains all markets for which th
price of one or more products augmented by their travel cabte depot is minimal.
In the second variant, callddearest-Cheapest Tour-Reduction Heurigtie initial
set includes the closegtmarkets to the domicile. They solved the TPP with five
different values of.

Another heuristic proposed by Pearn and Chien [123] isd&@mmodity Adding
Heuristic This heuristic implicitly assumes that all products arailable at all
markets. The procedure considers the first product front atid constructs a least
cost solution for this product. At each following iteratjaninserts the next product
in the solution in a least cost manner. The authors also gminaproving the solution
by mean of the Basart and Huguet [17] TSP heuristic, or by etattop or market
interchange operations.

Vol3 [151] presented metaheuristics bases on dynamic taparsand simulated
annealing for the TPP, which used dynamic strategies foagiag of tabu list. In this
paper he presents two of these dynamic strategiesetieese elimination methaehd
thecancellation sequence methadudying their impact on the Traveling Purchaser
Problem. In order to compare his dynamic strategies Voleptesiwumerical results
for the TPP computed on three known graphs from the litegattith 10, 31 (Clarke
and Wright [35]) and 52 (Paessens and Weuthen [122]) markeially, tabu search
seems to work better on the TPP.

Two heuristic procedure$yDD-procedureand DROP-procedurgare also devel-
oped for constructing the initial tours. TR D-procedurds a iterative procedure
that build a feasible tour by adding new markets to the tocepeding to a saving
criterion. As soon as a feasible cycle is created, additioraakets are added until
not improvement in the objective function is achieved.

On the other hand, thBROP-proceduras an inversion of théADD-procedure
It starts with a feasible tour containing the whole set of kets. The procedure
removes in each step the market which gives the largest tieduo the objective
function. If no more reduction is possible, it terminateghwé feasible solution. This
procedure has been also described as a so calledreduction heuristidoy Ong
[116]. Afterwards, the initial tour is determined by applgisome TSP heuristic.

Based on those two procedures some deterministic exchawngedures have
been proposed in [151], the IMP1 and IMP2. The IMP1 procedampute the
best tour after adding a market by tABD-procedureand remove another one with
DROP-procedure By changing the order of these procedures it becomes th@ IMP
Therefore, IMP1 and IMP2 produce two possible neibourhagfahidions.

Another metaheuristic approach is presented by Boctogitta@nd Renaud [22].
They presented several algorithms based on tabu searchl¥img approximately
TPP instances, both in the unrestricted and general vessiomwhich the markets
are locations in the Euclidean plane. These algorithmsested on benchmarks
up tom < 200 andn < 200 comparing with it exacts solutions. They also test
their approach on bigger instances, but they compare thsults with their own
algorithm after running several times, and not with a loweard. They compare
two implementations of thEommodity Adding Heuristi@gCAH) described by Pearn
and Chien [123] called CAH1 and CAH2, three implementatibtheir Perturbation
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Heuristics(PH) called UPH1 and UPH2 for the unrestricted TPP and CPHhier
general TPP. These PH combine in different ways basic ptoesdasnarket drop
market addmarket exchang& SP heuristicssheapest insertigrdouble market drop
anddouble market exchang@able 2.1 summarizes this section, including in addition
the contribution of this dissertation.

2.2 APPLICATIONS

The structure of the traveling purchaser problem appligsaay real life problems.
We discuss here some of its potential applications to joledeling, warehousing,
routing and ring network desing.

Job scheduling

The TPP can be found in a scheduling context as noticed byt&luf25] and by
Buzacott and Dutta [26]. Let us consider a setofobs to be performed, and a
multi-purpose machine, i.e., a machine that can assumiéferent configurations.
Each job requires a given dedication (i.e. a set of tasksjeveach configuration
of the machine can execute only part of the dedication ofdbe Pepending on the
configuration, it is known the time to perform a task of a jobeTasks of the jobs can
be processed by different configurations and a configuratornbe used to perform
tasks of different jobs. Itis also known the time to changedsom one configuration
to another. The machine is initially in a default status fumrationwv,), in which
the machine must be after all the jobs are completely exdc(tee TPP consists in
selecting and sequencing a set of configurations to fullg@besthe jobs minimizing
the total processing and changeover time. This applicaifonbe seen as the TPP
with one-unit demand for each product.

Warehousing

One of the mostinteresting problems associated with waigihg is theorder-picking
problem. Arorderconsists of a subset of required items that are stored inehoase.
On receiving an order, the warehouse dispatches a vehartetfie picking area to
pick the items in the order and transport them back to thepgingarea. The objective
is to minimize the distance travelled by the vehicle.

For the situation when only one item is stored in a single tiocaarea of the
warehouse, the order-picking has been recognized as axwwafid SP. However,
when an item is stored in more than one location area, thdearobas the structure
of the unrestricted TPP. Even more, not only one unit of eta but also some
demand is required, the item is located at different locestiof the warehouse, and
in some cases it is not possible to satisfy the demand \gsitive location. Then we
are dealing with an instance of the TPP.



Table 2.1 Literature review and contributions of this Thesis.

Reference Problefn Algorithm Instances Biggest

Burstall [25] USTPP Ad hocheuristic Real instances (27 x 17)

Buzacott and Dutta [26] USTPP Dynamic Programming — —
Lexicographic search .

Ramesh [126] USTPP Ad hocheuristic (12 x 10) and(8 x 22)

Golden, Levy and Dahl [73] USTPP Ad hocheuristic — —

Ong [116] USTPP Ad hocheuristic [61, 35, 42] (42 x 44)

Vo3 [151] USTPP meta-heuristic [35, 122] (52 x 83)

. USTPP Random (20 x 50)
Singh and Oudheusden [141] UATPP Branch and Bound [90] (25 x 100)
Pearn and Chien [123] USTPP Ad hocheuristic Random (50 x 60)

. USTPP . (200 x 200)
Laporte, Riera and Salazdgi02] RSTPP Branch and Cut Euclidean/[141, 123] (200 x 100)
Boctor, Laporte and Renaud [22] :2?;:3 meta-heuristic [102] (200 x 200)

: USTPP . (200 x 200)
Riera and Salaz4f129] RSTPP Ad hocheuristic [102] (200 x 100)
Riera and Salazaf130] Bicr. USTPP Branch and Cut [102] (100 x 200)

. UATPP (200 x 200)
Riera and Salazaf131] RATPP Branch and Cut Random/[141] (150 x 200)

@ USTPP
RSTPP
UATPP
Bicr. USTPP

b Contributions of this thesis

Unrestricted Symmetric Traveling Purchaser Problem
Restricted Symmetric Traveling Purchaser Problem
Unrestricted Asymmetric Traveling Purchaser Pnoble
Bicriterion Unrestricted Traveling PurchaBeoblem
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Routing

One of the routing applications of the TPP is the school bablpm. A school bus
has to pass by many points to get children to the school. Glveristance from
the child’s house to the potential bus stop as well as theafadtiving from point
to point the problem is determine a tour of the bus which mings the sum of the
driving cost and the weighted distances walked by the ahildrom their houses to
the nearest points of the tour.

Another related problem is the called shortest covering GCPP), introduced
by Current, Revelle and Cohon [40], which is a synthesis @it covering location
problem and the shortest path problem. The SCPP deterntieeshbrtest path
between two given vertices in a graph such that all the demarittes are covered.
A demand vertex is considered covered if either it is diseatl the shortest covering
path of if it is within a predetermined maximum distance framertex on the path.
The SCPP can be shown to be an special case of TPP. The desigiovedy line or
rail line may also be of particular interest. The stations/rina located at some of
the population centers while the neighboring areas willdneced by these stations.
Similarly, the same principle may be applied to develogation network in a given
region of a road network between two principal cities.

Ring Network Design

Recently, the design of information and communicationaigfructure has become a
major challenge both within companies and between widesiplkaces, e.g., in major
cities where metropolitan area networks are of interesghHiandwidth fiber optic
networks occupy an intermediate position between LocabAetworks (LANS)
and Wide Area Networks. Among the various topologies al&léo the design of
such networks, ring networks may be beneficial because tieide some protection
againstlink failures. Now we consider tBeneral Network Design Problef@NDP),
which may be described as follow: There is a set of verticpseenting routing
devices that may be linked to a network. Any two vertices anrthg are able to
communicate with each other so one gains a certain revenoeedver, there may
be revenues for each vertex includes in the ring. On the dtaed, constructions
costs are incurred for the design of direct links. The babjedive is to maximize
the sum of all revenues minus the construction costs.

Corresponding modifications of the GNDP arise from the mwbbf connecting
LAN clients using the ring topology. Apart fromgiven vertices of the basic problem,
there are some secondary vertices that have to be connetheding. Consequently,
additional costs have to be taken into account. This prolider@lated to TPP. Here
the items correspond to the secondary vertices, and thestsatkthe vertices of the
basic GNDP, respectively.

A related problem is thRing Network Design ProbleRNDP), which has been
discussed in Gendreau, Laband Laporte [63] who concentrate on the development
of efficient heuristics such as greedy construction, asagajreedy add-and-drop ex-
change based local search. Also,8teiner Ring Network Design ProbldBRNDP),
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introduce by Laporte and Norbert [99] is another relatedenm, which find a sub-
tour of minimum length including a given subset of the versex. Gouviea and
Pires [76] develop mathematical model for Bteiner Ring Network Design Problem
with Revenue€SRNDPR) that generalizes the (SRNDP) with respect to teeeand
additional constraints. Th&elective Traveling Salesman Probl€&TSP) orOrien-
teering Problen{OP) (Laporte and Martello [97], Fichetti, Salazar and T&th|) is
to maximize the revenues associated with the verticesdedin the ring while there
is an upper bound(R). On the other hand, tHerize Collecting TSRPPCTSP) (Balas
[8]) is to minimize link costs and penalties due to verticesinclude in the ring while
there is a lower bound for vertex revenues associated watladttices included in the
ring. Some of these problems will be briefly presented in tiiewing section.

2.3 RELATED PROBLEMS

As already mentioned, the Traveling Purchaser Problem isnermglization of the
well known Traveling Salesman Problem. In this section w&slome problems from
literature which are related to the problem we study. Sontleesf ask for optimizing
a Hamiltonian cycle according to their specific criteriah@t look for a minimum
subcycle subject to additional constraints.

The Traveling Salesman Problem

The Traveling Salesman Proble@@SP) is one of the most prominent combinatorial
optimization problem, and it is the benchmark problem fow redgorithmic ideas
in this field. The TSP has influenced significantly the devedept of cutting plane
algorithms of polyhedral combinatoric like the Branch-adutts algorithms. The TSP
is ease to state: given a finite number of cities along withctis of travel between
each pair of them, find the cheapest way of visiting all thiesiand returning to the
starting point. Surveys of works on TSP can be found in Belerand Nemhauser
[19], Lawler, Lenstra, Rinnooy Kan, and Shmoy [103], Reir#&28], and dinger,
Reinelt and Rinaldi [87] and recently in Guting and Punne3j.[8

The TSP can be modelled as follows. We are given a completieaated graph
G = (V, E) with vertex setV := {vy,...,v,} and edge seE := {[i,j] : i,j €
V,i # j}. Inaddition, a routing cost, is defined for each € E. Letx, = 1if edge
e € E'is chosen in the optimal solution, and = 0 otherwise. The next ILP model
formulates the TSP.

w?SP .= min E CeTe,

ecE

subject to

> we=2 forallv, e V (2.1)
e€d(v;)
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Y we>2 forall S c Vv (2.2)
e€d(S)
z. € {0,1} foralle € E.

Constraints (2.1) impose that the number of edges incidéht avwertex is 2. In
order to avoid subcycles the subtour elimnation conssghP) state that the subset
S C V must be connected to it complement by at least two edges aftie.

The Bottleneck TSP

The Bottleneck Traveling Salesman probléBTSP) is a variation of the classical
TSP that differs from the TSP only in the objective functidnstead of min-sum
criterion, the min-max criterion is optimized.

The bottleneck TSP was introduced by Gilmore and Gomory. [&8]rfinkel and
Gilbert [60] considered the general BTSP model and disclasepplication of the
problem in the context of machine scheduling. Meaningfterpretations of the
BTSP model and its variations can be given in the context nfesmoute planning
problems and transportation of goods perishable by timefirtkal and Gilbert [60],
Carpaneto, Martello and Toth [28], and Sergeev and Cheemksh[140] developed
specialized branch and bounds algorithm to solve BTSP. Qtatipnal results based
on instances with less than or equal 200 are reported in [60, 28].

The BTSP can be modelled as follows. ét= (V, E') be a complete undirected
graph with vertex st := {v1,...,v,} and edge sek := {[i,j] : i,5 € V,i # j}.
Let c. be the cost associated with each edge E. A simple cycle is calledeasible
initial vertex if it goes through each vertex once and go hbacthe begining. The
BTSP consist of finding a feasible cycle minimizing the maxiniength of the edges
belonging to the cycle. Let. = 1 if edgee € E is chosen in the optimal solution,
andzx, = 0 otherwise. Then BTSP calls for

wBTSP .= min max Cee,
eckE

subject to

Z Te =2 forallv; € V
e€d(v;)

Y me>2 forall S c vV
e€d(S)
z. € {0,1} foralle € E.

The set constraints is identical to the TSP set of consgaint

The Maximum Scatter TSP

TheMaximum Scatter TS@MSTSP) is another variant that is based on the objective of
finding, in a edge-weighted complete graphk= (V, F), a tour that is mostcattered
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Specifically, the goal is to maximize the length of a shoréelgte in the tour, i.e., to
have each point be far from the points that are visited jufstrbeof just after it in the
tour. This problem is also reffered as timax-min 1-neighbour TSP

The MSTSP arises in some manufacturing processes wheimjdstant to have
substantial separation between consecutive operatioasmamkpiece. The MSTSP
also arises in some medical imaging applications. Wheniimggzhysiological func-
tions using a Dynamic Spartial Reconstructor (DSR), th&tamh sources are placed
along the top half of a circular ring, with sensors placeedlly opposite, in the
bottom half of the ring. The firing sequence determines inclwlihe sources, and
their partnered sensors, are activated, usually in a pgerpattern. This motivated
the study of firing sequence ordering for some specific gedesatf DSR hardware.

To our knowledge few works deal with this problem. Penavi24lstudies the
optimal firing for a DSR application in which all sources agaially spaced. Arking,
Chiang, Mitchell, Skiena and Yang [5] show that the MSTSR/iB-hard and give
some approximation algorithms for the case of Euclideatadces. In a similar way
that the TSP, let us defin@ = (V, E) with vertex sef := {v,...,v,} and edge
setF = {[i,j] : i,5 € V,i # j}. For eacte € E ¢, is the routing cost of the edge
e. Letx, = 1if edgee € F is chosen in the optimal solution, amd = 0 otherwise.
MSTSP can be modelled as follows.

wscatterTSP -— max min Celle,
eekE

subject to

Z To =2 forallv, e V

e€d(v;)

erZQ forall S cV
e€d(S)
z. € {0,1} foralle € E.

The TSP with time windows

TheTraveling Salesman Problems with time wind@&BESP-TW), that can be defined
asfollows. Consider a undirected gra@h= (VU{wvo}, E) onn+1nodes. Vertex,

is the starting vertex (depot) for a salesman. With each edgé’, an edge duration
c. > 0 is associated. Furthermore, assume that for each verteX/, a processing
timep; > 0, arelease time; > 0, and a due daté;, > r; are given. The release date
r; denotes the earliest possible (and the due datke latest possible) starting time
for visiting vertexv; € V. For the depot vertex, we assume thaty = dy = 0. The
processing time, represents the elapsed time between the arrival and depaittu
vertexv;. The intervallr;, d;] is called thetime windowof the vertexv;. The width
of the time windows is given by, — r;. The time window for vertex; is called
active if ; > 0 ord; < oco. Atime window|0, ) is calledrelaxed The problem is
to find a sequence of the vertices (starting at the depotvegtat time 0 and ending
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in vertexvg) with minimal cost such that for every vertex € V the arrival timet;

at vertexw; lies within the given time window§-;, d;]. It is also assumed that one
may arrive at a vertex; € V earlier than; and wait until the vertex is released at
time r;. Waiting has no influence on the cost of a solution.

The TSP-TW reduces to the TSPyuf = 0, r;, = 0, andd; = +oo, for every
v;. Therefore the TSP-TW with general time windows\i$?-hard. Tsitsiklis [148]
showed that the TSP-TW with general time windows is strongfy-complete, even
if the underlying graplt is a path and all processing times are equal O.

Adynamic programming algorithm for TWP-TW was presenteB®hynas, Desrisuers,
Gelinas and Solomon [47], able to solve problems up to 20@s.o®alas and Si-
monetti [14] presented a new dynamic programming algorittethcan be applied to
awide class of restricted TSP’s. This approach yields gesdlts on the asymmetric
TSP-TW. Bianco, Mingozzi and Ricciardelli [21] presentetiyaamic programming
algorithm for TSP-TW with precedent constraints and presgiomputational re-
sults for instances up to 120 nodes. Finally, Ascheuerheiticand Gotschel [6]
developed a Branch-and-Cut algorithm for the asymmetrie-T8V. For surveys in
time constrained routing and scheduling problems see Bl5a#nong others.

The following model is defined on binary edge variablesd.et 1 ifedgee € E
is chosen in the optimal solution, and = 0 otherwise. Then the TSP-TW can be

modelled as
wlSP=TW .— min Z CeTe,
ecE
subject to
> we=2 forallv; € V U {vg} (2.3)
e€d(v;)
> me>2 forall S C V (2.4)
e€s(S)
> . <|P|-1 for all infeasible pathP (2.5)
eeP
z. € {0,1} foralle € E. (2.6)

Inequalities (2.5) forbid infeasible path, i.e., path aihg the given time windows.
Therefore, each solutianof (2.3)—(2.6) is the incidence vector of a feasible Hamil-
tonian tour, and vice versa. Constraints (2.3) and (2.4graetly the same that the
degree constraints and sub tour elimination constrairttsam SP.

The Cycle Problem

TheCycle Problenis the problem of finding a minimum weight circuit (i.e. a siep
cycle) in an undirected (directed) graph= (V, E) (G = (V, A)) with costc, (c,)
associated with each edge= F (arca € A). This problem is in generay"P-hard,
since the TSP can be reduce to it by substracting a largeygos@nstant from each
edge.



RELATED PROBLEMS 37

However, polynomial solvable cases can be obtained ifiogistn on the graphs
or the cost vector are considered. If we have nonnegativis aosf the costs of
the edges of each circuit sum up to a nonnegative number, eighted problem is
solvable in polynomial time (see Coullard and PulleyblaBiK]].

The undirected and Directed Cycle Polytope has been sthgi&huer [18] and
Balas and Oosten [13] respectively. In addition, a polyhkdtudy for the Cycle
Polytope with loop variables can be found in Salazar [136}lie undirected case,
and in Balas [8] for the directed case (referred as”hpolytope).

A model for the directed cycle problem described in Balasq&lescribed below.
The following model is defined on binary edge variables andtyiloop variables.Let
z. = lifedgee € FE is chosenin afeasible solution of the cycle problem,ane 0
otherwise. The variablg; is equal to 1 if the vertex; belong to the solution and
equal to 0 otherwise.

Z Lo =Y forallv; € V

a€dt(v;)

Y za=uyi forallv, e V
a€d— (v;)

Z T > Y forall S cV
a€st(S)

zq € {0,1} foralla € A
y; € {0,1} forallv; € V.

The Generalized TSP

TheGeneralized Traveling Salesman Probl&&TSP) can be defined as follows. We
are given a complete undirected graph= (V, E) with vertexselV := {vy,...,v,}
and edge setl := {[i,j] : i,5 € V,i # j}. In addition, a proper partition
M, ..., M,, of V is given in which each vertex subset is callddster Let c.

be the cost associated with each edge E. A simple cycle is calledeasibleif it
goes through each cluster at least once. GSTP consists indiadfeasible cycle
T C E whose global cos} ., c. is minimum. The problem involves two related
decisions:

(i) choosing a vertex subsAtC V, suchthatS N M| > 1fork=1,...,m;
(i) finding a minimum cost Hamiltonian cycle in the subgrayittz induced bys.

A different version of the problem, called E-GTSP (whered&hds for Equality),
arises when imposing the additional constraint that exacté vertex of each cluster
must be visited. Notice that GTSP and E-GTSP are equivalbahwhe costs satisfy
the triangle inequality, i.ec;; < c;x + cx; for all vertex triples(v;, v;, vg).

Both GTSP and E-GTSP are cleaN§P-hard, as they reduce to TSP when= n,

i.e., |My| = 1 for all h. They have been studied, among others, by Laporte and
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Norbert [100], Salazar [135], Fischetti, Salazar and Té#] pnd [53], and Sepehri
[139]. Their asymmetric counterparts have been invegyat Laporte, Mercure
and Nobert [98] and Noon and Bean [115].

An integer linear programming model for GTSP is as followt kg = 1 if edge
e € Fischosenin the optimal solution, amd = 0 otherwise. In addition, lej; = 1
if the vertexv; € V is visited, andy; = 0 otherwise. GTSP then calls for

wCTSP .= min E Cee,

eckE
subject to
> oz =2y, forallv, € V (2.7)
e€d(v;)
> yix1 forallh:=1,...,m (2.8)
v, €M,
forallS CcV,2<|S|<n-2,
T > ) N
Z Te = 2(3/2 + Y; 1) v; €S, v € 174 \ S (2.9)
e€s(S)

ze € {0,1} foralle € E (2.10)

y; € {0,1} forallv; € V. (2.11)

Constraints (2.7) impose that the number of edges incidéhtawertex is either
2 (if v, is visited) or O (otherwise). Constraints (2.8) force asteane vertex in each
cluster to be visited. Inequalities (2.9) are connectigibpstraints saying that each
cut separating two visited vertices; (andv;) must be crossed at least twice by the
cycle.

The Orienteering Problem

TheOrienteering ProblerfOP) can be defined as follows. Given a sei ofties, each
having an associated nonnegative prize, and a vehiclestatin a depot located in
city v1. Letc;; = ¢j; be the time spent for routing cities andv; in sequence. The
OP is to find a route for a vehicle, visiting each city at mosterrequiring a total
time not exceeding a given boumg, and collecting a maximum total prize. This
problem isAP-hard, and arises in several routing and scheduling apjoits see
e.g., Golden, Levy, and Vohra [74].

Heuristic Algorithms for OP and some generalizations hasenbproposed by
Tsiligires [147], Golden, Levy and Vohra [74], Golden, Warand Liu [75] and
Chao, Golden, and Wasil [29]. Exact enumerative methodg teen proposed
by Laporte and Martello [97], and by Ramesh, Yoon, and Karji#Y]. Leifer
and Rosenwein [105] have discussed an LP-based boundingcune. Gendreau,
Laporte, and Semet [64] proposed a branch-and-cut apréaadly Fichetti, Salazar
and Toth [55] introduced a new family of cuts and developedaat¢h-and-cut for
this problem.
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We consider a complete gragh = (V, E) with n := |V| nodes. Vertex
represent the depot. Lgt denote the nonnegative prize associated with eaehl
(with p; = 0), c. be the nonnegative travel time associated with @agy F, andcg
be the maximum total travel time allowed for the vehicle.

We assume throughout that all valygsc., andcg are integer.

OP can then be formulated as the 0-1 Integer Linear Prognagnmodel;

oP
w ‘= Inax Z PiYi,

v, EV
subject to

> tewe <ty (2.12)

e€d(v;)
> we=2y forallv, e V (2.13)

e€d(v;)
> we =2y forallScV, v eS8, v, eV\S (2.14)

e€d(S)
=1 (2.15)
ze € {0,1} foralle e E (2.16)
Y; € {O, 1} forallv, e V \ {1}1}. (217)

Constraints (2.12) impose the boutydbn the total travel time. The degree equa-
tions (2.13) stipulate that a feasible solution has to gatyxance through each
visited node. The Generalized subtour Elimination Coirsisg2.14) force each vis-
ited vertexv; € V' \ {v; } to be reachable from vertex by mean two edge-disjoint
paths. Finally, (2.15) imposes that verigxmust be visited, and (2.16)—(2.17) require
that all variables are 0-1 valued.

The Vehicle Routing Problem

Vehicle Routing ProblemgRP deal with the optimal use of a fleet of vehicles to
transport (pick up or deliver) goods between a central depdta set of clients.
Several interesting examples arise in scheduling schagdyumail collection from
the mail-boxes, delivery of laundry, garbage collectida, Because of this enormous
number of practical applications several particular \@rsihave been studied in the
literature. For surveys on the subject see, e.g., Chrigefislingozzi and Toth [32],
Christofides [31], Laporte and Nobert [101], Golden and A§%2] and Laporte [96].
We consider now th€apacitated Vehicle Routing Problei@VRP), introduced by
Dantzig and Ramser [43]. In this problem a quandifyof a single commodity is to
be delivered to each customere V, from a central depot, usingk independent
delivery vehicles of identical capaciy. Delivery is to be accomplished at minimum
total cost, withc;; > 0 denoting the transit cost fromy to v;, for v;,v; € V. The
cost structure is assumed to be symmetric, é;¢.= ¢;; andc;; = 0.
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Combinatorially, a solution for this problem consists oéatjtion{ Ry, . . ., Ry } of

V intok routes, each satisfyinEvjeRi d; <Qfori=1,...,k andacorresponding
permutatiory; of each route specifying the service ordering. This probtamaturally
associated with the complete undirected grépk= (V U {vp}, E), and the edge-
traversal costs, for alle € E. Inthis graph, a solution is the unionbtycles whose
only intersection is the depot node. Each cycle corresptmtl®e route serviced by
one of thek vehicles. By associating a binary variable with each edghkérgraph,
we obtain the following ILP formulation.

wCVEP = ming CeTe,

eckE
subject to
> @ =2k (2.18)
e€d(vo)

> we=2 forallv; € V (2.19)

e€d(v;)
> x> 26(S) forall ScV, |S|>1 (2.20)

e€d(S)

z. € {0,1} foralle € E\ {6(vo)} (2.21)
ze € {0,1,2} forall e € §(wvo). (2.22)

We defineb(S) = [(3,,csdi) /Q1, an obvious lower bound on the number of
vehicles needed to service the customers it's&ontraints (2.18) and (2.19) are the
degree constraints. Constraints (2.20) can be viewed assiaization of the subtour
elimination constraints from the TSP and enforce the cativigcof the solution as
well as to ensure that no route has total demand exceedirmafaeity().

The Median Cycle Problem

TheMedian Cycle ProblerfMCP) can be defined as follow. L&t = (V, EU A) be

a complete mixed graph whe¥é = {vy,...,v,} is the vertex setE = {[v;,v;] :
v,v; € Vi < j}isthe edge set, and = {(v;,v;) : v;,v; € V}is the arc set
(loops(v;,v;) are included ind). Vertexwv, is referred to as the depot. With each
edge[v;,v;] € E is associated a non-negative routing cast and with each arc
(vi,v;) € A is associated a non-negative assignment dgst A solution to the
MCP is a simple cycle through a sub3étof V includingv; and at least two other
vertices. The routing cost of a solution is the sum of theingutost of all edges on
the cycle. The assignment cost of a solution is defineﬁjgi%v\v, min,, ey dij.
Two versions of MCP have been investigated. In the first varstalled MCP1 or
Ring Star Problemthe aim is to determine a solution so as to minimize the sutimeof
routing cost and the assignment cost. In the second versidied MCP2, we seek
a solution of least routing cost, subject to an upper baignoh the assignment cost.
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A deep treatment of MCP, including both exact and heuristigerithms, is made
in the PhD disertation of Rodjuez [133]. Lee, Chiu and Sanchez [104] defined a
very closely related problem to MCP1 by considering an éalufi set of vertice$l’
and setting the assignment costX@; cw Miny, ey di;. They developed a branch-
and-cut solving intances witfV'| < 50 W] < 90 and|V| + |[W| < 100. Xu, Chiu
and Glover [153] proposed a tabu search aproach for thidgmmobRecently Labé,
Laporte, Rodiguez and Salazar [95] and [94] developed a branch-andpguibach
for MCP1 and MCP2 involving instances up [3| < 300 and up to|V| < 150
respectively.

MCP1 can be formulate as an ILP model as follows. For each pdge] € E,
letx;; be a binary variable equal to 1 if and only if edge v;] appears on the cycle.
For each ar¢v;,v;) € A, lety;; be a binary variable equal to 1 if and only if vertex
v; iS assigned to vertex; on the cycle. Notice that if a vertex is on the cycle, it is
then assigned to itself, i.y;; = 1. The formulation is then:

MCP1 .__ _ - § : § /‘
w = min CijTij + dijyij

[vi,v;]EE (vi,vj)EA
subject to
Z Te = 2y forallv, € V (2.23)
e€d(v;)

S y=1 forallv; € V' \ {v1} (2.24)

v; €V
S owe=2) yy foralScV, v, ¢S, we€S (2.25)

e€d(S) v; €S

x;; € {0,1} for all [v;,v;] € E (2.26)
yij >0 for all (v;,v;) € A (2.27)
yn =1 (2.28)
y1;, =0 for all v; €V \ {1)1} (2.29)
y;; integer forallv; € V' \ {v1}. (2.30)

In this formulation, Contraints (2.23) are degree constgi They ensure that the
degree of avertey; is 2 if and only ifit belongs to the cycle (i.a;; = 1). Constraints
(2.24) state that eithaer; is a vertex on the cycle (in that cagg), or v; is assigned
to a vertexv; on the cycle (in that cagg; = 1). Constraints (2.25) are connectivity
constraints since they state ttfamust be connected to it complement by at least two
edges of the cycle whenever at least one verigg assigned te; € S.

The ILP formulation of MCP2 is identical to that of MCP1 ext#yat the objective
becomes

wMEP2 .— min Z CijTij

[vi,v;]€E
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and the constraint
Z dijyij < do
(’Ui, ’Uj) cA
Vi # U

is introduced.

The Prize Collecting TSP

ThePrize Collecting TSPPCTSP) was introduced by Balas [8] and can be described
as follows. Let us consider a depot at which a vehicle is@tati, and a set of cities,
each one having a non-negative prizefor each cityv; when visited, and a penalty
¢; to every cityv; when no visited. With a traveling cost af for all arcsa = (v;, v;)
joining citiesv; andv;. This problem looks for a tour that minimizes the travel cost
and penalties, subject to a lower bounglon the amount of prize money it collects. A
branch and bound method for the exact solution of PCTSP weedajeed by Fischetti
and Toth [57]. Polyhedral results was obtained by Balas][8, 9

Let y; be 1 if city v; is included into the tour and O otherwise, andaidbe the
incidence vector of the arcs in the tour, then PCTSP can neulated on a complete
directed grapltz’ = (V, A)

!
wPC i= min E Calq + E CiYi

acA v, €V

subject to

Z Lo =y forallv; e V

a€dt(v;)

Y aa=y;  forallv; eV
a€d~ (vy)

Z wW;Y; = Wo

v, EV

zq €{0,1} forallaec A
y; € {0,1} forallv, e V
G'(y,x)is acycle.

HereG'(y, z) is the subgrapli=’ whose vertices and arcs are those defined agd
x, respectively. As also happens in the definition of Mexdian Cycle Problerrit is
convenient to complement the variablgsv; € V, i.e. introducen new variables
i = 1—y;,v; € V, representing loops of agragh= (V, AUO) obtained fromG’
by endowing every vertex with a loop. Now, the incidence wegy, z) € {0,1}"" of
vertices and arcs @¥’ is replaced by the incidence vectoe {0, 1}”2 of loops and
arcs ofG. If we definec;; := p;, v; € V, andU := Zu,,ev w; — wo, the problem
can be restated as follow
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w’® := min g Caq

a€AUO

subject to

Z To+ T =1 forallv, e V
a€d(v;)t

> wata=1 forallv; € V
a€d(v;)~
Z wizy < U
v, EV
zq € {0,1} foralla €c AUO
G(z) is a cycle of length> 2.

The Covering Tour Problem

The Covering Tour Problen{CTP) is defined as follows. L&t = (VU W, E)
be an undirected graph, whetéu W is the vertex sety = {v,...,v,} and
E = {[v,v;] : vi,v; € VUW,i < j} is the edge set. Vertex is a depotV is
a set of vertices that can be visitéd,C V is a set of vertices that must be visited
(v1 € T), andWV is a set of vertices that must be covered. For each kdge;] € E
a distance;; is defined. The CTP consists in determining a minimum lengit of
Hamiltonian cycle over a subset Bfin such a way that the tour contains all vertices
T, and every vertex dfi’ is covered by the tour. Such tour may not always exist. CTP
was introduced by Current [39]. It is formulated in Currend&schilling [41]. In
[41] a two-objective version of the problem is also conséderThe authors propose
a heuristic to generate a set of efficient solutions. Regéntindreau, Laporte and
Semet [65] developed an exact branch-and-cut algorithrthfeproblem.

The CTP can be formulated as an ILP model as follows. For each V, let
Yy, be a binary variable equal to 1 if and only if the vertexbelongs to the tour. If
v, € T, theny, is neccesary equal to 1. Foy,v; € V andi < j, letz;; a binary
variable equal to 1 if and only if edde;, v;] belongs to the tour. Also define binary
coefficientss;; equal to 1 if and only ify; € W can be covered by, € V, and let
S; = {v, € V|o, = 1} for everyy; € W. Then the CTP can be stated as:

wCTP .= ming Cele

ecE
subject to
PORTES! forallv, € W (2.31)
v; €S
> we=2y forallv, € V (2.32)

e€d(v;)
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S mez2y  OC gf;fgi"&f (2.33)
e€8(S)

z. € {0,1} foralle ¢ E (2.34)

yi =1 forallv, e T (2.35)

y; € {0,1} forallv; e V\T. (2.36)

In this formulation, Constraints (2.31) ensure that evegtex of W is covered
by the tour, while Constraints (2.32) are the degree cantsaConstraints (2.33) are
connectivity constraints. They force the presence of a&tleeo edges between any
setS andV'\ S, for every proper subsét C V such thatl’ \ S # @ andS contains
a vertexv, belinging to the tour. Finally, constraints (2.34)—(2.36) the integrality
requirements.

The Pickup-and-Delivery TSP

There are different versions of tiéckup-and-Delivery Traveling Salesman Problem
in the literature. They all concerns with the collection aedivery of some products
a each customer, and differes in the number of product t@beported, the existence
of precence constraints, the existence of time windowsetigtence of capacities,
diffeent vehicles, etc. Thene-commodity Pickup-and-Delivery Traveling Salesman
Problem(1PDTSP) is a generalization of the TSP in which a specialeitonsidered
as thedepot and the other cities asistomergartitioned into two groups according
to the type of the required service. Eadérivery customerequires a given non-
zero amount of the product, while eapltkup customeprovides a given non-zero
amount of the product. The product collected in a pickupamst can be served to
a delivery customer, as it is assumed non-deterioratiothiduse of the product. It
is also considered a vehicle with a fixed upper-lin@pacitythat starts and ends the
route at the depot, and the classical travel distances beteach pair of locations.
Then the 1PDTSP calls for a minimum distance tour for the alehiisiting each
customer once and satisfying the customer requiremeni®utitever violating the
vehicle capacity.

On the other hand, there is another variant known in thealitee as thdraveling
Salesman Problem with Pickups-and-DelivefySPPD). As in the 1-PDTSP, there
are two types of customers, each one with a given demand, &tdae with a given
capacity originally in the depot. Also travel distancesgiven. The main difference
between the two problems is that in the TSPPD the productaell from pickup
customer is different than the product served to delivesstamers. Therefore, the
total amount of product collected from pickup customers tbesdelivered only at
the depot, and there is another different product going fiteerdepot to the delivery
customers.

The TSPPD was introduced by Mosheiov [111], who proposeticgtipns and
heuristic approaches. Anily and Mosheiov [3] and Gendrkeaporte and Vigo [66]
present approximation algorithms for the TSPPD. Anily arad$in [2] introduce the
Swapping Problenthe particular case of 1-PDTSP in which the customer desiand
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and vehicle capacity are all identical numbers, and proposgpproximation algo-
rithm. Finally, Herrandez and Salazar [85] propose a 0-1 integer linear progiagnm
model, as well as a Branch-and-Cut approach for solving {R®TSP and TSPPD
for both the symmetric case.

We now present an ILP model for the 1-PDTSP. Get (V, E, A) an undirected
(directed) graph. Let” := {v1,vs, ..., v, } athe setof vertices and I&tbe the edge
set, in which each edge= [v;,v;] € E joins the vertex); andv,; and letA be the
arc set, consisting of the ar¢s;, v;) € A joining the vertices; andv;. The depot
is denoted by the vertex,, and the customers by the remaining vertices. For each
customew; € V'\ {v; } the demand; is given, inducing aelivery customeif ¢; < 0
and apickup customeif ¢; > 0. The capacity of the vehicle is representedyyand
it is assumed to be a positive number. For each pair of vertice;, € V' a travel
distancer;; is also given. Let us consider the symmetric case, in whigk= c;;.

Without lost of generality, the depot can be considered #oousr by defining
q1 = — Zme\/\{vl} qi-

Let us consider the for each edge E the edge-decision variable that is equal
to 1 if and only if edge: belongs to the cycle and O otherwise. Let us also consider
the continuous variablg, certificating the existence of a load of the vehicle going
through ara:. Then, the symmetric case can be formulated as follows.

w'PPTSP . — min g CeTe

ecE
subject to

> me=2 forallv; € V (2.37)

e€d(v;i)
S w2 Scv (2.38)

ecs(S)
ze € {0,1} foralle e E (2.39)
Y Ga— D Ga=uai forallv; € V (2.40)

acdt(v;) acd™(v;)

Constraints (2.37) impose that each customer must visited,and Constraints
(2.38) force the 2-connectivity between customers. Caimdt (2.40) and (2.41)
guarantee the existence of a certificgte: a € A] proving that a vectofz, : e € E]
defines a feasible 1-PDTSP cycle.

The Black and White TSP

The Black and White Traveling Salesman Probl¢BWTSP) is first analyzed in
Ghiani, Laporte and Semet [67] and Bourgeois, Laporte anteSg24]. A BWTSP
is defined on a grapty = (V, E) where vertex set’ is partitioned into black nodes,
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denoted by3, and white nodes, denoted by = V' \ B. A solution of a BWTSP is a
tourinG, satisfying some additional constrainid) defines a “black-to-black” path to
be a sequence of verticés,, , . .., v;, ) wherev; ,v;, € B, andv;,,...,v;,_, € W.

A feasible BWTSP tour must comply the following conditiodsteasible tour cannot
use more tha®) € Z* white vertices in any black-to-black path, which we refer to
as cardinality constraints; the total arc cost of any blacklack path between two
black vertices cannot exceed a fixed value, denoted iy R+, which refer to as
cost constraints.

Ghiani, Laporte and Semet [67] present a branch-and-cfitfting exact solutions
for the undirected BWTSP. They also introduce several ems$ valid cuts, which
can be classified into two groups: cardinality constraimid eost constraints. This
branch-and-cut algorithm was tested on a large number oforaty generated test
problems with different characteristics with respectip|B| and L. The method
seems to perform well on problem with no restriction cosdt th with . = oo, and
with cardinality loosely constrained. For this type of pehs, the largest instances
solved have 100 nodes. However, for problems with tightigstimined cardinality
and cost, the largest problems successfully solved are 80naertices instances.

Bourgeois, Laporte and Semet [24] present heuristic appesafor obtaining
feasible solutions and thus upper bounds to undirected BREISThe heuristic
approaches introduced by them can be described as followst, & TSP feasible
solution is obtained using the GENIUS heuristic describg&bndreau, Hertz and
Laporte [62]. If the solution is infeasible to the BWTSP,leme swapping heuris-
tics and insertion heuristics are applied in an attemptitaores infeasibilities (they
refer to these heuristics as feasibility heuristics). Beois, Laporte and Semet [24]
point out that these heuristics do not guarantee feasihliéi@as. Then, if a feasible
solution is obtained, a somewhat restricted 2-opt proeethat only allows moves
within some neighbourhood of feasible solutions is appiedrder to obtain better
feasible solutions.

2.4 TRANSFORMATION OF THE STPP INTO THE GTSP

A transformation to solve the TPP is presented in this sectichis transformation
allow us to solve the STPP by mean a GTSP solver (see FiscBaltizar and Toth
[53] for an exact algorithm for the symmetric GTSP).

The unlimited-supply TPP can readily be formulated agaeralized TSRvith
equality constrains (E-GTSP) consisting in designing inaariliary graphG’ =
(V', E’) aminimum-cost simple cycle visiting exactly one vertexadlegiven cluster
(see, e.g., Fischetti, Salazar and Toth [53]). More spetifiche auxiliary grapt’
is obtained as follows. Let; represent atall at which producp;, can be purchased
at marketv;. ThenV’ := {vo} U {vk; : pr € K, v; € My} is the vertex set
andE’ := {[vgi,vn;] © vki,vn; € V' k < h}is the edge set. The cost of using
edge(vi;, vp;| € E' is zero ifi = j, andc;; otherwise; the cost of visiting, is
zero and the cost of visiting,; is bg; (Fig. 2.2 and 2.3 illustrate this transformation
for both the symmetric and asymmetric case). The correspgrietGTSP is then
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defined with the cluster§y := {vo} andCy, := {vy; : v; € My} forall p, € K.
Clearly an optimal solution of this E-GTSP gives a sequefstatis to purchase each
product in one stall of one market with minimum pricing andtiog costs, i.e., an
optimal solution of the unlimited-supplied TPP. In a simikay, it could be possible
to transform a general TPP in a GTSP visitiagleastone node for each cluster.
Since in generdlV’| is much larger thahl’|, using this transformation for solving
TPP is likely to be rather inefficient.
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P m

/M\

blz ba; by bo;

=ci + %bki + %blj

@ Clki,l4]

Fig. 2.2 Transformation of the STPP into GTSP.
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P m

/M\

b1 ba; by boj

Clki,lj] = Cij + bij

Clij ki) = Cji + bii

Cliki] = 0

Clkie] = i,
©--oe T ®

Fig. 2.3 Transformation of the ATPP into the GTSP.






Mathematical Models

The purpose of this chapter is to provide a model for bothigessof the TPP,
the symmetric and asymmetric, and to introduce the notatgad throughout the
chapter. Sections 3.1 and 3.3 describe the Integer Progregnmodel proposed
for the symmetric and asymmetric cases respectively. @ec8.2 and 3.4 provide
additional inequalities which strength the LP-relaxatidéthe proposed models.

The aim in the Traveling Purchaser Problem is to determirmiteramong a set
of selected markets as well as an assignment of the prodisfyssy the demand
constrains. The given set of potentiaarketsM := {vy, ..., v, } with thedepotuvy,
and the possible connections between each pair of them caphesented formally
by a undirected (directed) gragh= (V, E) (G = (V, A)), whereV := {vo} UM is
the vertex setand := {[v;, v;] : v;,v; € Vi < j}(A = {[vi, v5] 1 v3,v; € V})is
the edge (arc) set, representing all the possible pair aésadth direct connection.

Eachproductp, € K := {p1,...,pm} is available at a subsétl;, C M of
markets. We will assume for convenience that> 4 andm > 1. Let us denote
by di the number of units of produgt, that must be purchased, and dgt be the
number of units ofp; that are available at the market We assumey; anddy
satisfy0 < qi; < dy andzvjeMk grj > di for all p, € K andv; € M. Letby;
be the price of the produgt, at the market; and the let us denote hy (c,) the
travel cost between; andv,;, wheree = [v;, v;] (a = (v;,v,)). The TPP consists in
determining a simple cycle i@ passing through the depot and a subset of markets so
that all products are purchased at a total minimum costioédddy adding the routing
cost and the purchase price. This definition of the TPP géresahe classical case
with unlimited supplies, i.eqy; = d;, for all 7, k.

51
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Fig. 3.1 Feasible solution of TPP.

Fig. 3.1 shows an instance of TPP containingarketsM := {v1,...,v9} and
5 type of different product¥( := {p;,...,ps}. Notice that, both the producis
andps are available at the market, sinceM> N M3 = {vs}. Moreover, in order
to satisfy the demand of produgt it is mandatory to visit markets; andwv,. This
also happen with produgt since it is only available in market; . In this particular
case the markets are locations in the plane, so the travisl lsesveen two markets
are given by the Euclidean distance.

The TPP isNP-hard since it reduces to thigaveling Salesman Proble(iiSP)
whenm = n and|My| = 1 for all p, € K. The TPP also reduces to thimcapac-
itated Facility Location ProblenfUFLP) (see section 1.6) whewl,, = M for all £,
qri = dy forall i, k, ande;; = (f; + f;)/2 forall [v;, v;] € E, wheref; is the cost of
opening facilityv; (fy := 0) andbg; is the cost of serving customgy, from facility
(N

3.1 ILP FORMULATION FOR THE STPP
An integer linear programming formulation for the undiesttor symmetric TPP
(STPP) is presented in this section. This formulation isebam the notation intro-

duced in the previous section as well as in Section 1.1 of @ndpwhich was related
to graph theory. In addition to this, let us define

M* = {v} U {vi € M : there existgy, € K such that Z Qrj < dk},
v €M \{v;}

as the set of vertices that must necessarily be part of asjbfeal PP solution.
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To model the STPP we use three types of decision variablesrsifdimily of
variables associated to edges is

v, = { 1 if edgee belongs to the solution foralle € E.

0 otherwise

A second family is defined by the variablgss follows

yi = { 1 if vertexwv; belongs to the solution for all v; € V.

0 otherwise

It should be noticed that this variable has just the oppgsitse that the loop variables
defined for thePrize Collecting TSPy Balas in [8, 9, 10], and Balas and Oosten in
[13]. In those articles the variableis related to a grapty(V, E, L), whereL is the
set of loops, that is, edges from a vertex to itself. And thiéatdesy; take the value 1
if the vertexv; is not visited,i.e., there exist aloop in the vertexNevertheless, other
authors, as Fischetti, Salazar and Toth [53, 54, 55, 56]riBoez [133], Gendreau,
Laporte and Semet [65], etc., make use of the former notation

In addition, the third family: has the following meaning,

the amount of produgt;, is purchased

2k 1= at markety;, for all p;,, € K and allv; € M.

The TPP formulation for the STPP is as follows

wOFT .= min Z CeZe + Z Z briZki (3.1

ecE prEK vi€ My
subject to
> we=2y, forallveV (3.2)
e€d({vi})
> z.>2y forallSC Mandally; € S (3.3)
e€s(S)
Z 2ki = dk for a”pk c K (34)
v € My,
ki < QkiYi forall pr, € K and allv; € My, (35)
z. € {0,1} foralle e E (3.6)
y; € {0,1} forallv; € M\ M* (3.7)
yi =1 forall v; € M* (3.8)
zki >0 forall p, € K and allv; € M;,. (3.9

The objective function is to minimize the sum of both the totaiting cost, given
for the sum of the cost associated to the edges belonging othtion, and the total
purchasing cost, that is the sum of the selected productdigyuhit price.

Constrains (3.2), that are tllegree constrain®nsure that the degree of a market
v; is 2 if the markets is visited){ = 1), i.e., each selected market is visited just once.



54 MATHEMATICAL MODELS

However, this would produce a set of subtours the followegify of inequalities.
Constrains (3.3), refereed ¥SEC and can be equivalently re-written as

Y we< Yy foralSC Mandal; €S, (3.10)
e€E(S) v; €S\ {v;}

which ensure that a subsgt C M of visited markets must be connected to the
remaining vertices by at least two edges, in order to avoaonected subcycles. It
should be noticed that the numbert8ECGnequalities i<D(2™), that is, exponential
in the size of the problem. This may seem to be a serious difficklowever, this
drawback has been overcame, since an efficient algorithreptarate this family of
inequalities, based on the efficient algorithm from Padl@dRinaldi [117] for the
minimum capacity cut, has been found. It is described in@eé&.4.

Inequalities (3.4) guarantee that the exact amount of mtogy is purchased.
Notice that, for the particular case of the TPP, this equatimuld be replaced by a
greater or equal inequality, since the objective functioargntee that no more than
the strictly necessary amount of product would be purchdsedjualities (3.5) mean
that is not possible to purchase a productn a markety; if is not visited and that it
is not possible to purchase more than it offgrs Constrains (3.6) to (3.9) impose
bounds and integrality conditions on the variables.

3.2 VALID INEQUALITIES FOR THE STPP

The linear relaxation of model (3.1)—(3.9) can be strenmugheby using valid inequal-
ities for two of its subproblems.
First observe that constrains

Z z.=2y; forallvy; eV
e€o({vi})
> x.>2y; forallSC Mandall,; € S
c€3(S)
ze € {0,1} foralle e E
y; € {0,1} forallv; € M,

are those of &ycle Problem(see Coullard and Pulleyblank [37], Bauer [18], and
Salazar [136]), a generalization of the TSP in which onlylzsstiof vertices must be
in the cycle. Thus, for example, one can impose the triviadjiralities

Tlyw,] S y; forallv; € V. (3.11)

Notice that (3.11) in not included in (3.10) since thieC M, andvg & M.

Other valid inequalities for the cycle part of this problera ¢the2-matching in-
equalitiesfor the TSP from Edmons [48], which are a particular case efGh\atal
combs (Chatal [34]) and of the comb inequalities (introduced andismily Gidtschel
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and Padberg [79, 80]).

Yowe— > oz <I|T-1 (3.12)

e€T e€S(H\T
forall H C V andT C §(H) satisfying
() {vi,vj} N{vs, v} =0 for [v;,v;], [vs,v:] € T andlv;, v;] # [vs, ve],
(i) |T) > 3 and odd.

These inequalities are obtained by summing up the degrestiegs (3.2) for all
v; € H and the bound restrictions, < 1 for all e € T, dividing all by 2, and
rounding down all coefficientes to the closest integer. SmeeB[18] for others valid
inequalities for theCyclepolytope.

A second subproblem defined by

Z Zki = dy, forallp, € K
v, €My,
ki < QriYi for all p, € K and allv; € M,
y; € {0,1} forallv, e M
zki >0 forall p, € K and allv; € My,

correspondto a generalization of the UFLP with upper boondke customer-facility
variables. Valid inequalities for the subproblem whgn= d;, can be obtained from
the Set Covering Problemolytope (see e.g., Balas and Ng [12]). Consider a subset
of productsL C S with 3 < |L| < |K| — 1, let M'(L) := Ny, e M}, be the set

of markets each one selling all productslirand M" (L) := U,, c1, My, the set of
markets each one selling at least one producis iWe can then impose the constraint

2 > wmt Y w22 (3.13)

v, eM’(L) v, €M (L)\M' (L)

which stipulates that at least two marketslifi’ (L) must be visited if no market in
M'(L) is visited. Decomposing this second subproblem for eactiymtoyields the
family of cover inequalities:

Z y; > 1 forall S C My such that Z Qi < dy, (3.14)
v, ES v, € ME\S

for all p, € K. These constrains state that a marke$imust be visited if markets
in My, \ S are not enough to provide the required demédpaf productpy.
If we sum up (3.2) for alb; € .S, we obtain

Z Te+ 2 Z %222%7

e€d(S) ecE(S) v; €S
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Z xe§2zyz

e€d(S) v; €S
Then, a simple strengthening of constrains (3.14) is giwen b

S we>2 forallSC Msuchthat > qu < ds, (3.15)
ecd(S) v; EMp\S
forall py, € K.

Finally, some valid constrains particular to the STPP casdsived. For example,
the constraint

2
Z Te > — Z ze;  forall S C M andp, € K (3.16)
ees(S) k viesny,

states that at least two edges must be inciderst tehenever some amount of any
productp;, is purchased in a market ¢f N Mj. Constrains (3.16) coincide with
inequalities (3.5) whey = {v;}. Clearly, ifzvieMk\S qri < dj for some product
Pk, then constrains (3.16) are dominated by constrains (3.2g)ain, constrains
(3.16) can be strengthened by

2 .
2 mez i Lo, 2 forall S C M andp;, € K,
e€4(9) min{d, ZvieSka Qri}

wheremin{dy, >, cs~as, Ixi} IS @ stronger upper bound on the quantity of product
px, that can be purchased i

Additional inequalities involving more than one productidrased on subset of
markets can also be derived. The advantage of constrairt8) (i3 that they allow
the generation of violated inequalities in polinomial tifsee Section 5.4 in Chapter
5), which has proved useful in our computational experiméate Section 5.7 in
Chapter 5).

3.3 ILP FORMULATION FOR THE ATPP

Now we present an Integer Programming model for the asynnedrsion of the
TPP (ATPP). We also use three types of decision variablésatieaidentical to the
undirected case but the variables related to the arcs.dnaisie, since both extremities
of the arc play different roles, it is necessary taking intoaunt a different variable
for each case:

- {1 if arCa_beIongs to the solution forall a € A;
0 otherwise
yi = { 1 if vertegvi belongs to the solution forallv; € V:
0 otherwise

the amount of produgi;, is purchased

i = at market;, for all p,, € K and allv; € Mj,.



ILP FORMULATION FOR THE ATPP

The ATPP formulation is the following
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wOPT .= min Z Calq + Z Z briZki (3.17)
a€A prEK vi €M
subject to
Y ae=y; forally; eV (3.18)
a€st ({vi})
> aa=y  forallv; eV (3.19)
a€s~ ({vi})
> wa>y  forall SC Mandall,; € S (3.20)
a€st(S)
Y ai=dp forallp, € K (3.21)
v EMy
Zki < Qkili for all pr € K and allvi € M (322)
x4 € {0,1} foralla € A (3.23)
y; €{0,1} forallv; € M\ M* (3.24)
yi =1 forallv;, € M* (3.25)
Zki > 0 for all p, € K and allv; € M;,. (3.26)

The objective function is defined in the same sense that was symmetric
counterpart.

Constrains (3.18) and (3.19) impose the in-degree and eyitee of each visited
vertex be equal to one, respectively. Constrains (3.20)eguY SEC™ impose strong
connectivity. Because of (3.18) and (3.19), inequality2(3.can be equivalently
re-written as

> za< > y; forall§C Mandally; € S.
a€A(S) v;€S\{v;}

These constraints ensure that a visited market in a s§bSed/ must be connected to
the depot through a path. By also using equations (3.18)2a@Y), these constrains
are also equivalent to:

Z T 2 Yi

a€és—(S)

forall S ¢ M andallv; € S.

As in the directed case, inequalities (3.21) guarantedhieatxact amount of product
P IS purchased. Inequalities (3.22) mean that it is not péssitpurchase a product
pi INn a markety; if it is not visited, and that it is not possible to purchaserenthan
its offer qy; if it is visited. Constraints (3.23)—(3.26) impose boundd antegrality
conditions on the variables.
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3.4 VALID INEQUALITIES FOR THE ATPP

When using model (3.17)—(3.26) in a cutting-plane apprdaicthe exact solution of
the ATPP, one observe thatthe basic linear relaxation reiti@nal valid inequalities
to close the integrality gap. To this end this section shamsssconsiderations leading
to a tighter linear relaxation.

A first observation is based on the fact that constraintsOj3c2n be trivially
strengthened if there is a prodygtthat cannot be totally purchased outside markets
in .S. More precisely, ifS C M suchthab, .y, \s qk: < di. foraproducpy, € K,
then the inequality:

> wa>1 (3.27)

agd*(S)

is valid for all ATTP solutions. This inequality imposes thequirement that the
purchaser must visit a market

As in the undirected version some problems underlying ia thodel. A first
subproblem of this family is the one defined by the assignieattiem, i.e., all span-
ning unions of directed cycles. Another subproblem isBirected Cycle Problem
with the y variables, which is obtained from assignment problem ictstg the set
of assignments to those having exactly one cycle of lengthtgr than one, i.e.,

Z To = Yi forallv, e V

aest ({vi})
Z z,=vy;, forallu;eV
ags~ ({vi})
> wa>y forallSC Mandally; € S
a€dt(S)

xq €{0,1} forallae A
y; € {0,1} forall v; € M.

It is referred in Balas [8, 9, 10] and in Balas and Oostend Hs3theP, polytope.
Thus valid inequalities fron¥, are also valid for the ATPP. For example,

Z Tij < Z Yn + (1 —yp),

(i,7)€A(S) vp€S\{vi }

forall S c V,2 <|S| <|V|-1,andy € S, v, & S, which Balas [8, 10] proved
that were valid forP, and facet defining whef < |V| — 2. As consequence, the
inequalities

Yo wzuty -l
(,5)€67(9)

forall S cV,2<|S|<|V|—-1,andy € S,v, ¢ S, are also valid foy.



VALID INEQUALITIES FOR THE ATPP 59

or @“@ -
| |
O

Fig. 3.2 Inequalities (3.28) for the ATPP.

Proposition 3.1. Inequalities
Z Tij < Z Yhs (3.28)
(4,5)EA(S) vn €S\ {1}

are valid for the ATPP if}_ .,/ \g ¢k = di for all productsp, € K and for
SCM.

Proof. To prove the validity of (3.28) let us consider that the péirit y*, z*) violates
(3.28), then the cycle iGr has its nodes it¥, but, sinceS C M andvy ¢ M, and
then(z*, y*, z*) would violate (3.25) and it would not belong to the ATPP. [

Proposition 3.2. Inequalities

o< ) w1, (3.29)

(4,5)€A(S) R €S
for S ¢ M are valid for the ATPP if
S qui < dy (3.30)
v, EME\S

for a productp;, € K.

Proof. If («*,y*, 2*) violates (3.29) then the cycle @@ has all its nodes either ifi,
orinV'\ S. Itis clear that at least one vertexiifi\ S has to be visited since ¢ S.
In addition, if (3.30) holds then at least one vertexSimas to be visited in order to
satisfy (3.21), theriz*, y*, z*) does not belong to the ATPP. O

On the other hand, the lifted cyclé,ir inequalities

-1 ! 1 g1 !
Tii, + Zl‘ihihﬂ +2 Zl‘ilih + Z Zl?ijih < Yi, + Zyih + (1 —vi,),
h=3 h=3

h=1 j=4 h=3
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foranyl € {3,...,n—2}and anyp € {{ + 1,...,n}, which are facet for thé®,
polytope (see Balas [9, 10] for details), are also valid ffier ATPP.
These inequalities come from

Tiyiy + Z‘rlhlh-'.l + 2meh + szz in <l-1,

h=1 Jj=4 h=

which have been proposed byd®schel and Padberg [81] for the Asymmetric TSP,
Fischeti [51] proved that they are facets for the asymm@i8€, and a separation
algorithm was proposed by Fischetti and Toth [58].

Proposition 3.3. Foranyk € {3,...,n—2}and anyl € {k+1,...,n}, the lifted
cycle inequalities

k j—1
x1k21+lehlh+1+2thlh+szlﬂh — yll +Z ylh 1 yll (331)
h=1 j=4 h=3

are valid for the ATPP.

O
>
/ a @@

Fig. 3.3 Primitive lifted cycle inequalities for the ATPP for 5 and &rtices.

Proof. Let us suppose that the claim is false. Therefore the geinty*, z*) for the
ATPP violates (3.31). Let us consider the following two case

1. The node;, does not belong to the cycle, so the cy€lassociated is a subset
of A({i1,...,ix}). Theny;, = 0, and since (3.31) is violated the sum of the
remaining components ¢&*, y*, z*) associated to the arcs is at least the sum
of the components associated to the vertices plus one. Buhit possible
because a simple cycle contains at most one arc with coeffi2gi@and the
remaining arcs with coefficiert

2. The nodey;, belongs to the cycle. Theyj = 1 and the sum of the component
of (z*,y*,z*) corresponding to arcs is at least the sum of the component
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corresponding to vertices buy,, if (3.31) is violated. For this to be true, if
p is the number of nodes belonging to the cycle of the{set, ..., v;, }, the
cycle would have to contaih — p arcs with coefficientd of the subgraph
induced by the — p remaining nodes of the sét;,...,v;, }, ork —p —2
arcs with coefficieni and one arc with coefficiert (notice that if nodev,,
belongs to the cycle no coefficiedtarcs are allowed), of the same subgraph.
Both possibilities are excluded since the cycle containsden;, .

O
The lifted inequalities (3.31) can be strengthened asvallo

Proposition 3.4. Inequalities

j—1 l
*Luzl + Z xzhthr] + 2 Z lez;l + Z Z l'zjz S Z yih, — Y2, (332)

j=4 h=3 h=1

are valid for the ATPP, forany € {3,..., [M| = 2}if }°, crp 0\ 5 qri = dy for all
productspy,.

Proof. Let us suppose thdt:*, y*, z*) belonging to the ATPP violates (3.32), then
the cycle is entirely contained in the subgraph induced bytide sefv;, , ..., v;, },
andy; = 0 for all v; € {vg41,...,v,}. Butthere must be a produgt such that its
demand is not satisfied, and this contradicts the assumgigd(w*, y*, 2*) is in the
ATPP. O

Proposition 3.5. Inequalities

1 g—1

l
Tiyiy + Z'IZ}LZ}H»I + 2meh + Z szm < Z Yi, — 1, (3.33)

j=4 h=3

forl:={3,...,[M|-2},arevalidforthe ATPP i}, _,/ \sari < diforaproduct
pr € K for S ={v;,,...,v;,} C M.

As in the symmetric case, a second subproblem defined by

Z 2 =dp  forallp, € K
v; €My,
Zki < QriYi forall p, € K and allv; € My,
y; € {0,1} forallv, e M
2k >0 forall p;, € K and allv; € My,
corresponds to a generalization of the UFLP with upper bswrdthe customer-

facility variables. Valid inequalities for this subprobiewhenq,; = di can be
obtained from th&et Covering Problemolytope (see e.g., Balas and Ng [12]).
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Decomposing this second subproblem for each product yik&itamily of cover
inequalities:

> yi>1 forallSC Msuchthat Y qu<dy,  (3.34)
v, €S v, EMp\S

for all p,, € K. These constraints state that a market imust be visited if markets
in My, \ S are not enough to provide the required demédnaf productp,.
If we sum up (3.18) for alb; € S, we obtain

Z Ta + Z xa_zyia

a€d(S)* acA(S) v; €S

Y w <> ui

a€d(S)+ v, €S

Therefore, a simple strengthening of constraints (3.3dsn by

Y w=1 (3.35)

(4,4)€6H(5)

forall S C M such thatzvieMk\S qri < dg, forallpg € K.
Some valid constraints particular to the ATPP can be derien example, the
constraint

1
Z Tij 2 - Z 2k forall S C M andpy € K (3.36)
(6,4)€6%(S) k vesnmy

states that at least two edges must be inciderst tehenever some amount of any
productp;, is purchased in a market ¢f N Mj. Constraints (3.36) coincide with
inequalities (3.22) whefl = {v;}. Clearly, ivaieMk\S qri < dj for some product
Pk, then constraints (3.36) are dominated by constraint$)3.8gain, constraints
(3.36) can be strengthened by

I Pk
> wy > — %”’GSQM’“ ‘ forall S C M andpy, € K,
(i,5)€6+(S) min{ kvzviesmuk Qri}

wheremin{dy, ZmeSka qx: } 1S a stronger upper bound on the quantity of product
pi that can be purchased



Polyhedral Analysis

This chapter focuses on the polyhedral aspects of the TingvBlurchaser Problem
from a theoretical point of view. It is assumed that the reddes a deep knowledge
on Linear Algebra and Polyhedral theory. Neverthelesstised.3 provides an

introduction to the basic concepts on those topics. Thetfivstsections of this

chapter are devoted to the dimension of the TPP polytopeoin the symmetric

and asymmetric versions. A general procedure to obtairt thefning inequalities

is described in section 4.3. Finally, facets for the symimoetnd asymmetric TPP
(STPP and ATPP) are described in sections 4.4 and 4.5 resggct

4.1 DIMENSION OF THE STPP POLYTOPE

Let X be the set of all vectors, y, z) satisfying constraints

Z LTe = 2yz

e€d({vi})

Z Te Z2yz

e€d(S)
Z 2 = dy,
v, €My,
Zki < QriYi
z. € {0,1}
Y; € {0, 1}

forallv, e V
forall S C M and ally; € S

forallp, € K

forall p, € K and allv;, € M,
foralle e F
forallv; e M\ M*

63
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yi =1 forallv; € M*
2k >0 for all pr, € K and allv; € My,

i.e., the set of all feasible STPP solutions. Kgt"? := conx’} be the STPP
polytope. Let als@) := {(=z,y, z) € QTFP .y, = 1forallv; € V \ M*},i.e. the
STPP in which all the vertices have to be visited. Qgtbe the projection of) onto
the affine space of the variables, and) . the projection of onto the affine space
of the z variables. Ther, is the symmetric TSP polytope @k = (V, E) andQ.

is the polytope of a generalization of thssignment Problendefined by

Z 2 =dp  forallps € K
v EMy
0 < zig < qik-

The following well known graph theoretical lemma is goingo®useful proving
the dimension of),..

Lemma 4.1. (Grotschel and Padberg [81]) L&k, = (V, E)) be the complete graph
onn vertices, and let denote any integer.

(i) if |V| = 2k+1, then there exist edge-disjoint tourd; such thatt = Ufil T;.

(i) if |V| = 2k, then there exist edge-disjoint tourd’; and a perfect 1-matching
M edge-disjoint from an§’; such thattl = M U Uf;ll T;.

Theorem 4.1. (Naddef [112]) The dimension ¢}, is |E| — |V].

Proof. (sketch) Fom = 3 there is only one tour, so the theorem is true in that case.
The equations

Z Te = 2y; forallv, e V
e€d({v;})

are linearly independent (See Figure 4.1 for an example edettequations in the
undirected grapli,) so the dimension can not be more than what is announced in
the theorem. Itis therefore enough to exhijliit— |V'|+ 1 affinely independent tours.
For this we use Lemma 4.1.4f = 2k, then the edges df,,_; can be partitioned into

k — 1 edge disjoint Hamiltonian cycles. #f = 2k + 1, then the edges df,,_; can

be partitioned intd: — 1 edges disjoint Hamiltonian cycles and a perfect matching.
In the first case, for each Hamiltonian cycle ®f,_; and each edge on that cycle,
we create a one Hamiltonian cycle &%, by inserting node: between the endnodes
of that edge, i.e. it = (4, ), we remove edge and add the two edgds, n) and
(j,n). In the second case, for the Hamiltonian cycle we do the shing.tWe also
complete the perfect matching to a Hamiltonian cycle aahltr, and do as previously
only with the edges of the perfect matching. Now it only remsatio check that in
both cases we have the right number of cycles and that thespmnding vectors are
affinely independent. O
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Theorem 4.2. For the particular case in which botf), andq;.; are equal tal, for each
pr € K and for each market; € M, the dimensionaf). is3°,  \ g« (|Mx] —1).

Proof. For each produgi;, € K the number of variables |31 |, and there is just one
equation, so the dimension €f, is no more thanM},| — 1 for each producpy, € K.
Itis hence enough to exhib}t, , -\ ;- (| M| — 1) + 1 affinely independent points
{z1,..., ZZ”,EK\K*(IMM—lHl} belonging to@,. This set of points is described in
Table 4.1, and is constructed as follows.

For each produgt, € K there is a variable,; for each market; € M. Let us
construct the sequeneg,, , . . ., v;,,,, | according to an arbitrary order of the 3¢,
for eachp,, € K. For each produgt;, € K each point inQ, has exactly a variable
of the setzy,, for j := 1...,|My| with value1. The first group of A, | affinely
independent points is constructed fixingltthe variablesy;, , for j := 1,..., | M|
andk :=2,...,|K]|, and varyingey;,, == 1forj:=1,...,|M|.

The remainind K'| — 1 groups of points of sizeM| — 1 fork :=2,...,|K| are
created by fixinge;,, to 1 for b # k andk := 2,...,|K]|, and varyingz;,, := 1
forj:=1,...,|My]|. '

It is clear that the point$zo — 21, ..., 25, crnce (M =1)+1 — z1} are linearly
k
independent, since the matrix described in Table 4.1 issiogdlar, and they are in
Q. O

Since® := Q, x {y:y; = 1foralli € V} x Q., the following result follows.

Lemma 4.2. dim(Q) = |[E| = [V|+ >, c i\ i« (IMi] — 1), and the facets af are
the facets of the TSP polytopk, and the facets of)..

Since the polyhedral structure ¢f is widely known (see, e.g., Naddef [112]),
our first aim is to extend results froM onto @77, To this end we introduce the
following intermediate polytopes:

Q(F) :={(z,y,2) €Q:y, =1forallv; e V\ (M*"UF)},

forall F C V'\ M*. Moreover, the integer STPP solutiongjdF') also must contain
vertices inV \ (M* U F). HenceQ() = Q andQ(V \ M*) = QTP
We first compute the dimension Gf(F') for any givenF'.

Theorem4.3. Forall F' C V\ M*, dim(Q(F)) = [E| = |[V|+ 32, e\« (| Mi] —
1)+ |F|.

Proof. In the space of all of the&| + |V |+ >
in Q(F) satisfies theV| equations

oeek | M| variables(z, y, 2), a vector

Z Te = 2u; forallv; € V,
e€d({vi})

the | K| equations

Z 2 =d  forallpg € K,
vy €My
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1
|Mq| —1
|Ma| — 1
SRCIES
M| -1

21i11

=

Table 4.1 Setof}

Z1i1o

0
1

[oNe]

pREK
ALin|ary )

0
0

(B

o o

o o

22in1

1
1

=

= o

22ino

0
0

=Y

O o

O o

#2z) a1y

0
0

(|My| — 1) + 1 affinely independent points i)...

Rkig1

1
1

Rkigo

0
0

Phik|ay|
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the|V| — |F| equations
y; =1 forallv; e V\ F,

and thed . (

M| — 1) equations
Zki = Qk; for all P € K™ andv; € M.

Since all the equations are linearly independent,

dim(Q(F)) < (|E[+|V[+ D [Mp) = ([VI+IK[+|VI=|F|+ > (|My|-1)).
pLEK prEK*

The other direction of the inequality (and hence the thési®)ws by induction onF|.
Indeed, forl F'| = 0 thenF = () andQ(F) = Q, and we are done. Suppose now that
the thesisis true forasét ¢ V'\ M*, and letus prove itfoF’ = F'U{v;} withv; ¢

FU M. By the induction hypothesis there dfg| — [V'|+3° e\ g« (| Mk — 1) +
|F'|+1 affinelyindependent STPP solutions wjth= 1; because; ¢ M* there exists
alsoa STPP solutionwitly = 0 (e.g., aHamiltonian cycle in the subgraph induced by
V\{v:}). Therefore, there existatledst| — [V + 3" e\ g« (Mg —1) + | F'|+1
affinely independent STPP solutions. d

Afirst trivial consequence of Theorem 4.3 is the dimensiomefSTPP polytope.

Corollary 4.1. The dimension a@”** is |E| — [M*| + 35 o\ k- (

M| - 1).

4.2 DIMENSION OF THE ATPP POLYTOPE

Let ) be the set of all vector&e, y, z) satisfying constraints

Y aa=y;  forally; eV (4.1)
a€dt ({vi})
Y awa=y;  forally eV (4.2)
a€d— ({vi})
> wa>y  forallSC Mandall; € S (4.3)
a€dt(S)
> mi=dp  foralip, € K (4.4)
v; €My,
Zki < QriYi for all p, € K and allv; € M, (4.5)
x4 € {0,1} foralla € A (4.6)
y; €{0,1} forallv, € M\ M* 4.7)
yi =1 forallv; € M* (4.8)

2ki >0 forall pr, € K and allv; € M. (4.9
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Let PTPP .= con{ )} be the ATPP polytope. Let alsB := {(x,y,z) € PTPF .
y; = 1forallv; € V'\ M*}, P, be the projection o onto the affine space of the
x variables, let

AP :=con{(z,y) € R x RV : (z,y) satisfieg4.1), (4.2) and(4.6)—(4.8)}

be the convex hull of incidence vectors of all spanning usioidirected cycles, and
let
Py :=conV{(z,y) € R xRV : (z,y) € AP and satisfie$4.3)}

be the restriction of the set of assignments to those hawactly one cycle of length
greater than one.

Let us also defing’, as the projection aof onto the affine space of thevariables.
Then P, is the asymmetric TSP off = (V, A) and P, = Q. is the polytope of a
generalization of théssignment Problemefined as the in the symmetric case.

©

Z12 x13 14 Z23 T24 T34
1 1 1
1 1 1
1 1 1
1 1 1

Fig. 4.1 Anillustration of the degree equations for the STSP.

Theorem 4.4. (Grdtschel and Padberg [81] and Fischetti [51]) The dimimsof P,
is|Al —2|V]|+ 1.

Notice that the rank of

Y aa=y; forallv; eV
a€dt ({vi})
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Fig. 4.2 Anillustration of the assignment equations for the ATSP.

Z o=y, foralvy eV
a€d~({vi})

is 2|V| — 1, so dimP,)< |A| — 2|V| + 1. Figure 4.2 shows an example of these
equations for the directed graghy. Itis easy realize each row is linearly dependent
from the remaining rows.

A direct proof of this theorem has been given in6Gchel and Padberg [81].
However, it is not too difficult to give a proof of this theorgraralleling the proof of
theorem 4.1. From thgZ| + |V| 4+ 1 undirected tour constructed in the proof of the
theorem 4.1 we can obtajnl| — 2|V| + 2 directed tours by taking the two possible
orientations of each undirected tour. In order to complategpproach we must show
that the incidence vectors of these directed tours arerlinealependent. Another
interesting proof of this theorem is given in Fischetti [51]

Lemma4.3. dim(P) = [A] = 2[V|+ 143" e\ g« (|Mk| — 1), and the facets of
P are the facets of the TSP polytopg and the facets oP, .

Since it is quite important the sequence in which the vestare taken during the
sequential lifting procedure described in the next sectiomintermediate polytopes
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are restated considering this sequence. Pé&fv,,...,v;}) be the intermediate
polytopes such as

P({v1,...,vx}) :={(z,y,2) € P:y; =1forallv, € V\ (M*U{vy,...,v})}
for a given sequencgyy, . . ., vx } of vertices belonging t&” \ M*.

Theorem4.5.Forall /' C VAM™, dim(P(F)) = [A[=|V[+14+3_, e\ g+ (
1)+ |F|.

Mj,|—

Proof. In the space of all of thed| + [V + > - | M| variables(z, y, z), a vector
in P(F) satisfies the|V| equations in

Z Ty =Y forallv; e V
a€d*({vi})

Z o=y, forallu;eV
a€é ({vi})

with rank2|V| — 1, the| K| equations

> ami=dy  forallp, € K,
v; €My,

the|V| — |F'| equations
y;=1 forallv, e V\F,

and thed . (

M| — 1) equations
ki = qr;  forall p, € K* andv; € M;,.
Therefore,

dim(P(F)) < (JA[+[VI+ Y [IMe)=QIVI=1+[K[+|[V|=|F[+ > (|Mg]-1)).
prEK prEK™*

The other direction of the inequality (and hence the thdsif)ws by induction on
|F|. Indeed, forF'| = 0 thenF = () and P(F') = P, and we are done. Suppose
now that the thesis is true for a st C V \ M*, and let us prove it fof’ =
FU{v;}withv; ¢ FUM*. By the induction hypothesis there arél — 2|V |+ 1 +
Yopeer\ i+ (M| = 1) + || 4 1 affinely independent TPP solutions wigh = 1;
because; ¢ M* there exists also a TPP solution wigh= 0 (e.g., a Hamiltonian
cycle in the subgraph induced By \ {v;}). Therefore, there exist at lealst| —
2VI+1+32,, e\ (IMi| = 1) +[F'| + 1 affinely independent TPP solutioris.

Corollary 4.2. The dimension ofy is [A| — [V| + 1 — |M*|.
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Corollary 4.3. The dimension aP” 7 is |A| = [V/|[+1—|M*[+37 e\ - (
1).

A second immediate consequence is R&F") and P(F') with |F| = |V| — 1 are
facet-defining forP, as stated in the following result.

My |-

Corollary 4.4. The inequalityy; < 1 defines a facet @’ " and PT"" if and only
ifv, eV \ M*.

A more important consequence of Theorem 4.3 is that, givarbaet of markets
F C V\ M*, adding a new market € V' \ (FUM*) to F increases the dimension
of Q(F) andP(F') by exactly one unit.

4.3 THE LIFTING THEOREM

We use standard sequential lifting (see section 1.3 foildein this procedure) to
calculate the coefficients of the variables. Since in the previous basic theorem
on sequential lifting is stated for full-dimensional poédra, and neithe®””* nor
PTFP grefull-dimensional, we restate it here in the appropti&tem. The following
lemma based on the well-known sequential lifting theorescdbed, e.g., in Balas
[10].

Suppose that wiatroducethe variableg into @ (P), one by one in some arbitrary

sequences, ..., v,. Notice that tdntroduceay; variable for a vertex; belonging
toasequence,...,v;j_1,v;,. .., INt0Q (P), is equivalent to obtain the polytope
Q({’l}l, .. ,’Ujfl} @] ’Uj) (P({Ul, .. ,Ujfl} @] ’Uj)).
Lemma 4.4. Letvy, ..., v, a sequence of vertices belongingifo, M *. Let
D temet D> wizki =1 (4.10)
eckl prEK v €My

be a facet-defining inequality f@p (P). Then the lifted inequality

k
S aeme+ Y Bl—y)+ D D> kizki =7 (4.11)
j=1

eeFE prEK v; €My,

is valid and facet-defining fa@ ({v1, ..., vx}) (P({v1,...,vx})), where

Jj—1
B; ::n—min{Zaexe+Zﬁi(1—yi)+ S0 wizw
i=1

eckE prEK v; EMy

(z,y,2) € Q({v1,...,vj_1}) andy; = O}. (4.12)

Proof. By induction onk. Fork = 0, Q(0) = @, and (4.11) becomes (4.10),
which is a valid facet defining fof). Suppose that the hypothesis is true for=
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0,1,...,¢9—1, andlett = ¢q. From the definition of the coefficients, j = 1,...,q,
(4.11) withk = ¢ is valid for Q({v1,...,v4}). To see that it is facet defining,
note that be the induction hypothesis (4.11) with= ¢ — 1 is a facet defining for
Q{v1,...,v4-1}); hence, there exist dir{({v1, . . . , v4—1})) affinely independent
points (2%, y*, 2*) € Q({v1,...,v,-1}) Satisfying (4.11) at equality. To each such
point (z*,y", 2") € Q({v1,...,v,-1}, there corresponds a point@({v1, ..., v,})

of the form (z*, 3,1, 2), in which 1 is the value of the componept. It is easy
to see that dim@({v1, ..., v,}))= dim @Q({v1,...,v4—1}))+1) = dim +1), since

Q{v1,...,vq}) has one morg variable thar)({v1, ..., v,—1}) has, and the rank
of the equalities system @ ({v1, ..., vq}) is equal toQ({v1,...,v4-1}) . SO, we
need one additional point iQ({v1,...,v,}) . For this purpose, we use the vector

(x*,y%,0,2%) € Q{v1,...,v,}) that minimizes the expression defining (4.12). By
construction, this point satisfies (4.11) at equality. Rertsincey; = 0, whereas
yi, = 1forallother points(z*, y*, 0, z*) and the remaining dinf({v1, . . . , v4_1}))
(dim ) points (z*, y*, 1, z*) form a set of dim Q({v1,...,v,})) (dim ) affinely
independent points i@ ({v1,. .., v,}) . This completes the induction. O

As a consequence, any facet-defining inequality@¢F’) (P(F)) can be lifted
in a simple way so as to be facet-defining @&¢F U {v;}) (P(F U {v;})) as well.
The idea is to chooselidting sequencef the vertices il \ M*, say{v!, ... v®},
and iteratively derive a facet ¥ ({v', ..., vt~ vt}) (P({v!, ..., vi71 vt})) from
afacetofQ({v',..., v 1}) (P({v!,..., 0" 1}))fort =1,...,s.

We now use this technique for the trivial inequalities anel tonnectivity con-
straints.

4.4 FACETS OF THE STPP POLYTOPE

Theorem 4.6. The inequalityz, > 0 defines a facet of)” " for everye € E
(z, > 0 defines a facet aP”"” for everya € A).

Proof. This is a direct consequence of Lemmas 4.2 and 4.4 (4.3 ahcihder, > 0
(z. > 0) defines afacet of the symmetric (asymmetric) TSP polytopeszery lifting
sequence producglv’) = 0 for all v* € V'\ M*. a

Theorem 4.7. Let.S ¢ M with2 < |S| < |M| — 1. Then the inequality

erz

{ 2 if there exists a produgi;, such that
e€d(S)

Zviezwk\s qri < dgor|S|=|M|-1
2y, foranyw, € S, otherwise,

is facet-defining foQQ 7",

Proof. If /"= {), the inequality} 55, ze > 2 is known to be facet-defining for the
TSP polytope, and therefore @f(Lemma 4.2). To apply Lemma 4.4, let us consider
any sequence of the marketslin\ M *. Clearly, when there exists a prodggtsuch
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that)_,, cars dwi < di OF[S| = [M| -1, thenfS(v?) = 0 for any sequence of the
markets inl” \ M*, since is mandatory to visit at least a marketsf. Otherwise,
considering any; € S and a sequenca€g, ..., v* with v® = v; yields 3(v?) = 0 for
allt=1,...,s—1andf(v*) = 2. O

For a particular subset of markefswith |S| = |M| — 1, constraints
Tew;) < y;  forallv; € V.

define facets of”F. Moreover, for the particular cagé| = 2 we obtain the
following general result.

Corollary 4.5. Lete = [v;,v;] € E be a given edge. The upper-bound inequality
on z. is the following:

o ifv; € M* andv; € M*, thenz, < 1;

o ifv, & M*, v; ¢ M* and there existg;, € K : szeMk\{vi,vj} Qrs < dg;
thenz, <y, +y; — 1;

e otherwisex. < y; whenv; & M* andz. < y; whenv; & M*.
It defines a facet o)’ P>,

In the same spirit, using Lemma 4.4, it is possible to deriheis facet-defining
inequalities forQ” " coming from facet-defining inequalities of the TSP polytope
Q. (like comb inequalities). It is also possible to lift faaddfining inequalities from
Q. as the following theorem shows.

Theorem 4.8. If d;, < ZvjeMk\{m} gx; then the inequality;; > 0 defines a facet
of QTP if p, € K\ K* satisfieg M| > 3 andv; € M;,.

Proof. If F' = (), thenzy; > 0is facet-defining for(F’) since it defines a facet of the
assignment polytop@ . whend, < ZvjeMk\{w} gxj- Indeed, this trivially follows
by observing that). is the Cartesian product of simplexes, each ong\i| — 1
dimensions whep;, € K\ K*. Moreover, for any sequenceBf\ M/* one computes
B(v') = 0in Lemma 4.4 for alb’ € M;, since there is a market iV}, \ {v;,v'}. O

Whend;, > ZvjeMk\{vi} qx; or whenMj, = {v;,v;}, thenzy, > 0is dominated
by z; < qx;y;. We now analyze this upper-bound constraint onzhevariables.

Theorem 4.9. Letp, € K\ K* andv; € M. If v; ¢ M* then the inequality
i < quiy; defines a facet o7 . Otherwise,z,; < qi; defines a facet when
qri < di.

Proof. If qx; < di, then—zy; > —qi,; defines a facet of)((), so Lemma 4.4 can
be applied to obtain a facet-defining inequality@fl” \ M*). Indeed, ifv; € M*,
then for any sequence of marketslin\ M* one computeé(vt) = 0; otherwise,
considering a sequene@, . .., v'~!, ! with with v* = v;, one obtains3(v*) = 0
fors=1,...,t —1andf(v;) = —qui.
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Whengy; = di, Lemma 4.4 cannot be used singe < ¢y; is dominated by (3.4).
We are going to exhibilim(Q**F) affinely independent solutions which will prove
the claim. Considep,, € K \ K* andv; € M}, \ M*, and denote by

K, = {ph, e K v € Mh}

the set of products available at markgtand by

M} = {vj ¢ M* : there exist®y, such that Z qhs < dh},

vs €Mp\{vi,v;}

the set of new markets that must be visited wheis not. Sincev; ¢ M* we have
K; N K* = (. Also because of Corollary 4.3, there alien(Q* ") — (|5({v;})| +
|K;| + |M;|) + 1 affinely independent TPP solutions with = 0, and therefore
satisfyingzi; = y;. We need anothéé({v;})|+|K;|+|M;|—1 affinely independent
TPP solutions withy; = 1 andz; = q;. Indeed,|§({v;})| can be constructed as
follows: for an arbitrary but fixe¢ € §({v;}), consider a Hamiltonian cycle i&
usinge ande’ for eache’ € 6({v;}) \ {e}, plus another Hamiltonian cycle not using
e; in all such solutions, products can be purchased in suchyatvedz;; = qx; and
zni = 0 for all p, € K; \ {px}. Moreover, for eaclp, € K; \ {px} consider a
Hamiltonian cycle withex; = gy, 2ni = qn; andz; = 0 for all p; € K; \ {px,pn}-
Finally, for eactw; € M. consider a Hamiltonian cycle on the subgraph induced by
%4 \ {’Uj}, with Zki = Qki- O

4.5 FACETS OF THE ATPP POLYTOPE

The following facet proofs are related to lifted inequalitirom the cycle inequalities
z(C)<|Cl—-1 (4.13)

for C C F the arc set of a directed cyclg,< |C| < |V| — 1 for the TSP polytope
PTSP |n particular, to the Subtour Elimination Constraints

Z Lij S |S| -1
(1,5)€A(S)
and theD™ andD~
Ligiq + Z Lipiptr +2 Z Liqip, + Z le i =0T ’
j=4 h=3

-1 j5—1

Tiyiy + E Tipingr +2 E xllﬂl + E E :‘/Ehlh =0t 7

h=1 Jj=3 h=
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foranyl € {3,...,|V| — 2}. However the incoming results can be extended to all
those inequalities obtained from the lifted cycle inediesdi We now give an outline

of atechnique to prove that a certain face /I’ " obtained by lifting they variables
from alifted cycle facet oP7S” is facet defining. LeF be ainequality facet defining

Z QeTe 21,

eck

for PTSP obtained by sequential lifting of (4.13) on thevariables. And lef”’ the
lifted valid inequality forPT 2P

Z QeTe + Z Bzyl > 77/7

ecE v, €V

obtained by sequential lifting of' on they variables. A sefX of |A] — [V|+ 1 —
|M* [+, e i (M| = 1) (dim (PTFFY) affinely independent points satisfying
with equality " have to be found. Those point are obtained in three stages.

First, a setX 757 of |A| — 2|V | + 1 (dim (PT*T)) point is built as follows. Let us
consider the polyhedroR := {(z,y,2) € PTFP .y, = 1, forallv; € V' \ M*},
and letP, = PTSP pe the affine projection aP onto thex variables. Therefore,
dim (PT5P) affinely independent points iR” """ are obtained by considering the
dim (PTSP) affinely independent tours for TSP satisfyifigwith equality, setting
y; := 1 for all v; € V and setting the variables with a feasible assignment, let us
say, the first row of the matrix in Table 4.1. Obviously, fomma 4.4, and sincé’
is facet defining for?”” those dim P7") points satisfyF’ with equality and are
affinely independent.

In the second stage a s&t of ZpkeK\K*( M| — 1) (dim (P,)) points is built
by setting ther, y components as a feasible cycle visiting all vertice¥’inThe z
components take the value of the dif.J assignment values of Table 4.1. Because
of how Table 4.1 is constructed these assignments are gffirdgpendent.

Two setsX ® andX* are constructed from the partition on the vertexisa@tduced
by the vertices it of (4.13), letus say (C) andV' \ (V(C)UM*), in the third stage.
X#isconstructed withV (C')|—1 affinely independent poinfs;, y, 2)* € PTFF one
foreachw € V(C)\{v,}, suchthay; = 0,andy; = 1forallv; € V'\ {vs}. Thatis,
allthe remaining vertices but belong to the cycle. Thecomponents are constructed
according to a feasible assignment, andtfmmponents are constructed such that
a simple cycle pass throughoiit\ {v,}. In a similar way the seX* is constructed,
but taking into account the s&t\ (V(C)UM™*). Therefore|V|— | M x| — 2 affinely
independent cycles are constructed in this third stage.

The remaining two points are more specific, and depend onghéehand side.
Let us see now four examples.

Theorem 4.10. Inequalities

Z Tij < Z Yhs (4.14)

(i,5)€A(S) vh€S\{v1}
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arevalidforPTPF forall S ¢ M\M*,andv; € S,and define facetlf”,, .o/, \s ari >
dy, for all productsp;, € K.

Proof.

We prove this by constructing a s€tof | A| —[V[+1—[M* |+, g\ g ([ M| —
1) affinely independent points, y, 2) € PTPP satisfying (4.14) with equality.

Let us consider the polytopE := {PTFPP Ny, = 1, forallv; € V \ M*},
and let P, be the affine projection aP on thex variables, already defined above.
The inequality obtained from (4.14) by settipg = 1 for all v; € V \ M*, that
is, the subtour elimination constraint inequality asstawith S is known to be
facet defining forP, (see Goétschel [77]) if2 < |S| < |V| — 1. Since dimE,) is
|A| = 2|V| + 1 there is a selX" with |A| — 2|V| + 1 affinely independent points
(x,1,2)" € PTPP with y; = 1 forallv; € V, satisfying (4.14) with equality. For all
those points, the components have to contain a feasible assignment, for deamp
the first row of Table 4.1.

An additional setX * with 3° e\ . (| My| — 1) points(z, 1, 2)* € PT"" are
added to the seX. These new points are constructed by settingithecomponents
as the first of theA| — 2|V| 4 1 points described above, and then satisfy (4.14) with
equality. Thez components take the value of the, _ ;-\ x. (| M| — 1) remaining
values of Table 4.1. Because of how Table 4.1 is construtiesetnew points are
affinely independent.

Let us suppose now ”@:viem\s qri > dy, for all productsp, € K. Then we

can construct a sef® of | S| — 1 affinely independent pointg:, y, 2)* € PTPF, one
foreachv € S\ {v,}, suchthay; = 0, andy; = 1forallv; € V'\ {vs}. Thatisthe
remaining all the vertices but belong to the cycle. Thecomponents are constructed
according to a feasible configuration, and theomponents are constructed such that
asimple cycle pass throughdut, {v; }. Because of the values takengthesd.S|—1
points are affinely independent (see Table 4.2) and satlsiy] with equality.

Next we put intoX a setX* of |V| — |S| — |M*| — 1 affinely independent points
(x,y,2)" belonging toPT"F . In this case, we follow a similar scheme to the one
followed in the construction of the s&t®. For each vertex; € V'\ ({v;}USUM™),
yl, = 0,andy}, = 1forallv € V \ {v;}. The components andz are constructed
as in the previos set. Again, these points clearly existsafiinely independent (see
Table 4.2), belong t&®7 " and satisfy (4.14) with equality.

We need two additional points, with coefficient equal to 1tf@ nodes, andy,
respectively. Letx,y, z)¥ be a point suchy; := 1 for all verticesv; € V \ S and
y; = 0 forv; € S. In addition, ther components are constructed such that this point
be a simple cycle passing throughout the verticelg in.S, and thez according to a
feasible solution. The second poiat y, z)! is constructed as follows. Lét,y, z)!
be a point sucly; := 1 for all verticesv; € V'\ S andv; € S\ {v;} andy; := 0.




Xt

Ym= 1

Table 4.2 SetX®y X*and pointst”, 2! andz” affinely independent points.

Ymr | M~|

1

Ys,1

0

Ys,18]—-1

1

Ys,|8|

1

Yv\s,1

1

Yv\S,|V\S|-1

1

Yv\S,IV\S]|

1

3dOLA10d dd1V 3HL 40 S130v4
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Theorem 4.11. Inequalities

Sowp< ) w1, (4.15)

(i,7)€A(S) vp €S

for S ¢ M are valid and define facet if

Z qri < di, (4.16)

’UiEMk\S
for a productp;, € K.

Proof.

To prove that these inequalities are facet defining we coaista sefX of |A| —
[VI+1=[M*[+32, e\ e+ (| M| 1) affinely independent points., y, z) € PTFF
satisfying (4.14) with equality.

The proof is analogous to the previous one. In fact, it isfidahuntil the two last
points since the point* does not satisfy (4.16) with equality. Therefore, a new poin
let us sayr* has to be added to the sEt\ {z*}. This pointis constructed by setting
y; = Lforallv, € V'\ Sandv; € S\ {vx}, andy, = 0. O

Let us focus now on the lifted cycl@,‘j inequalities coming from

1 j-1
Liyiy + Z Lipinyr +2 Z Liyip, + Z le ih < l— 1 (417)
j=4 h=
already described above.
Theorem 4.12. Inequalities
I j-1
xllll + Z xlhlh+1 + 2 Z x’bllh + Z Z le’Lh = Z y’Lh - Y2, (418)
j=4 h=3 h=1
are valid and define facet for thBTF?, for anyl € {3,...,|M| — 2} if for all

productspy 3, car\s ki = di for S = {vi,,..., v, } € M.

Proof. The following proof follows the same scheme in the previol¢efprove this
by constructing a seX of |A| — |V| + 1 affinely independent pointge, y, z) €
PTFPP satisfying (4.18) with equality. The inequality (4.17) aisted by removing
the coefficients corresponding to the vertices is facet ofifor the ATSP polytope
P, (see Fischetti [51]); hence , there exists a setiof- 2|V | + 1 (dim(P,)) affinely
independent points € P satisfying (4.17) with equality.

We initialize X by putting in it, for each of these € P, the point(z, y, z) defined
byy; = 1, v; € V. The variables takes the value of the first point of Table 4.1, for
each of those¢A| — 2|V | + 1 points. Clearly, each point defined this way igih 7,
since (3.22) holds, satisfies (4.18) with equality, and gueyaffinely independent.
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Additional } - (|Mx| — 1) points are added to our constructian This new
set of point is constructed by fixing one of the solutions dbsd above with respect
to the variables: andy, and varying thee components with the remaining points of
Table 4.1, i.e., all points but the first one.

Let us suppose th@vle{v”+1 77777 vs, oy Gri = defor S ={vi, ;... v, } € M.

Then we can construct, a setiof 1 affinely independent points:, y, z) € PTFP
that satisfy (4.18) with equality. We put into- 1 points(xz,y, z)* € PTPF one for
eachv;, € {vi,,...,v;} \ {vi, }, such thay? = 0,y = 1 for all v; # v, , and
zi .., = Lforallv; € {vi,...,vi,_,,vi,,,...,v;}. Inother words the cycle
induced byz* contains all of the nodes other thanand all but two arcs, of the cycle
(Viy, -+, vi,, v, ). Clearly, suciz, y, z)* exists, is inP?F'F and, and satisfies (4.18)
with equality. Further, suctw, y, z)® has a unique componegt equal to0, which
is equal tol for all other points ofX .

Nextwe putintoX n —k —1— |M*| points(x y,2)t € PTPF such that for each

v;, € {vilﬂ,.. Un b\ ({wi, } UM™), yl = 0y! = 1foralli # i;, andx! i =1
forj=1,...,1—1. Thatis, the mduced cycle contains all of the nodes anbluell
one of the arcs, of the cycley;, , . . ., v;,, vi, ;. Again, these points clearly exist,are in

PTFPP and satisfy (4.18) with equality. Furthermore, they afmaly independent

from each other and the remaining pointsJ6f Notice that, thez components in

both the pointgx, y, z)* and the pointgz, y, z)! contains a feasible assignment.
We need two additional points, with coefficient equal for the nodes;, andv;,,

respectively. Letz,y, )% be such thay!> = 0 for all v; € {v;,,...,v;,}, y> = 1
forv; € {vi,,,...,vi,}, andthecycleinduced hy> hasanodesét;lm, ce U b
A last point(z, y, z)% such thaiy P =90 andy“’ = 1foralli # i, anda:z i =1

forj =1,...,01— 1. Then,(z,y, 2 )ZP is in PTPP and satisfy (4.18) with equality.
Also, the points inX are affinely independent; thus (4.18) defines facgt®f . O

Theorem 4.13. Inequalities

1 j—1

l
Liyiq + lehzh+1 + 2 lellh + Z szjzh S Z Yiy, — ]-7 (419)
h=1

j=4 h=3

fori:={3,...,|M| -2}, are valid and facet defining fdP* " if -,/ \ ¢ ari <
dy, for a productp, € Kor M* NS # O for S = {v;,,...,v;,} C M.

Proof. The proof of (4.19) is analogous to the previous proof, ekéepthe point
(z,y,2)". In this particular case, a new poiit, y, z)" replaces(z, y,2)%2, and
it is defined as follows. y“ =0 andy“ = 1forall i # i,, andz” = 1 for

Z7,+1

j=1,...,1—-1. O
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Fig. 4.3 SetsX® and X* of affinely independent points for facets from the cycleetift
inequalities.
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Fig. 4.5 Additional affinely independent poirf for inequalities (4.18).

81






A Branch-and-Cut
Algorithm

for the STPP

The Branch-and-Cut technique applied to both the symmatiicasymmetric Trav-
eling Purchaser Problem is described in the following twapthlrs. These algorithms
are based on the models described in Chapter 3 and on theeplofflanalysis carried
outin Chapter 4. In this chapter the implementation for farsetric case is studied.
An overview containing the main steps of this method is giveBection 5.1. This
scheme is also used in the next chapter for the asymmetiéc &8s go deeply into
the initial step and the initial heuristic in Sections 5.21&n3 respectively. Section
5.4 studies the separation procedures of some of the valipladities described in the
previous chapter. Column generation and different strasdg the branching phase
are treated in Sections 5.5 and 5.6 respectively. Finallygomputational experience
is shown in Sections 5.7.

5.1 THE BRANCH-AND-CUT SCHEME

In this section we give a short overview of the Branch-andt€ehnique which is also
used in the next chapter applied to the asymmetric versitimedf PP. For a extensive
and comprehensive description of this method we refer toghder to Padberg and
Rinaldi [119], dinger and Thienel [89],uhger, Reinelt and Thienel [88], Thienel
[145], and Caprara and Fischetti [27].

Thelinear relaxationof an integer linear program (IP) is the linear program ob-
tained from IP by dropping the constraints that all varialiiave to be integer. For
example, the linear relaxation of STPP and ATPP are obtdigedtopping the in-
tegrality constraints. Therefore, the optimal valwé” of the relaxation (in the

83
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minimization case) is a lower bound to the optimal valu” of the integer linear
program, i.e.w’” < w!P.

Branch-and-Cut is a solution technique to solve integezdirprograms with an
exponential, or at least very large, number of constraifthese constraints are
generally only known implicitly and not explicitly. The Bmah-and-Cut method is
illustrated by pseudocode in Figures 5.1, 5.2 and 5.3.

Input: 11
Output: z, wYE, status
PRE- PROCESI NG II, status );

if ( status = infeas ) return;
I NI TIAL- HEURI STIC( II, 2, wYB );
LP .= Py

while ( £F £ @)
extract IT from LF;
OPTI M ZE- SUBPROBLEM ( II, z, wUYB, status );
if ( status = Branching ) BRANCHING ( II, £F );

Fig. 5.1 The Branch-and-Cut method.

Input: II, z, wUB
Output: I, z, wYEB, status
status := Optinm ze;
while ( status = Optimze )
SOLVE-LP ( 1I);

if ( ( I.status = Infeas ) or ( ILwiB >WUB))
status : = Fathom
else

if ( FEASIBLE ( II, z wYB)) then
status : = Fathom
else
PRIMAL-HEURI STIC ( II, 2, wYB);
SEPARATE- ELI M NATE ( II, #cuts );
if ( #cuts =0)
status : = Branching;

Fig. 5.2 Optimizing node. Branch-and-Cut.

A generic optimization problem is referredidsn this pseudocode. The problem
I is a data structure that consists of the list of active caimstis £, the list of active
variables£", the optimization vectotv, the solution vector of the current linear
relaxationz*, the objective value of the current linear relaxatioh® according to
w, and the status of linear relaxation (status).

According to Fig. 5.1, in a basic sketch of a Branch-and-Cetivod for a min-
imization problem, a lisC” of subproblems is initialized with the linear relaxation
of the problemll. The value of best solution found so far is stored in the global
upper boundvVZ. Each major iteration step (referred as procedure OPTIMIZE
SUBPROBLEM in Figures 5.2 and 5.3), proceeds by selectingopreblem from
the list. A local lower bound is computed for this subprobleynsolving the linear
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Input: TII, =z, wUB
Output: II, z, wYB, status
status := Optim ze;
while ( status = Optim ze )
repeat
SOLVE-LP ( II, status );
if ((( IL.status = Infeas ) or ( MwlB >WVEB))
PRICING ( II, #var );
status : = Fathom
until ((II.status # Infeas) and (wfB <wUB)) or (#var # 0));
if ( FEASIBLE (( II, 2z, wYB)) and ( status # Fathom))
status := Fathom
else
PRI MAL- HEURI STIC ( II, z, wYB);
repeat
SEPARATE- ELI M NATE ( II, #cuts );
if ( #cuts =0)
PRICING ( II, #var );
status : = Branching;
until ( #cuts + #var # 0 );

Fig. 5.3 Optimizing node. Branch-and-Cut-and-Price.

relaxation with the current set of active constraints antiv@c/ariables (SOLVE-
LP), and the algorithm tries to improve the global upper libbbp mean a heuristic
based on solution obtained in the current linear relaxgffRIMAL-HEURISTIC).
A subproblem is fathomed from the list if either:

¢ ainteger feasible solution for the original problem is afea from de linear
relaxation,

o the linear relaxation is infeasible,

¢ the local lower bound associated with the subproblem istgréiaan the global
upper bound.

If the current linear relaxation does not become a feasibligtion of the original
problem (FEASIBLE) then an attempt is made to generate vradigualities violated
and drop non-violated inequalities by the current solytising separation procedures
(SEPARATE-ELIMINATE). New inequalities are added to th& £ (#cuts# 0) as
long as they are generated, and, in order to avoid a hugthkstare ranked according
to how violated their are. This procedure (OPTIMIZATION-R@) is repeated until
either no more violated constraints are found, or the suideno is fathomed. If not
violated constraints are found then the branching phas@&BERHING) is launched.
The current subproblem is then divided into disjoint subpgms whose union of
feasible solutions contains all feasible solution of ther@ot subproblem. As soon
the list of subproblems is empty the algorithm stops, and the global upper bound
can be output as the optimum solution.

Nevertheless, since the number of variables is also vege ldue partly to the
presence ofy; variables. For example, aninstance with 200 markets angi2@iicts
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could have 4000Qy; variables, a large number of columns for the LP relaxation
in a cutting-plane approach. We have therefore devised wigolmethod using
variable generation and pricing, on top of the usual comgtralaxation scheme.
To operationalize this mechanism, and based on our conipuéhexperiments, the
algorithm works with dynamically augmented subsets or tgbof variables and
constraints previously mentioned and cal@dand£¢, respectively. The procedure
OPTIMIZATION-SUBPROBLEM described in Fig. 5.2 shows a 'aidn of the
original optimization procedure. Notice that new variatdee added to the pogl”

if

e linear relaxation becomes infeasible,

e the lower bound computed by the linear relaxation is greth@n the global
upper bound,

e N0 new cuts are generated by the separation procedure.

We next address the main steps of our algorithm. A deepereatibn of the pro-
cedures involved in the Branch-and-Cut is provided in thiedidng sections, taking
into account preprocessing, separation, heuristics, eartthing scheme. The tacti-
cal choices for the parameters were fixed from our computakiexperiences solving
the instances described in Sections 5.7 and 6.4.

5.2 PREPROCESSING

The preprocessing phase tries to build the initial modehftbe input data. This
step involves checking feasibility, initializing the vables and constraints pool, and
fixing some variables in order to reduce the size of the system

1. Check feasibility

This steps checks wheth®r, ., gix > di forallp, € K. An O(|V||K])
time complexity algorithm checks for each produygte K whether the offer
satisfies the total demantj.. If it does not, the program exits with an error
message.

2. Initial pool of variables

This step defines the initial pool of variablé¥', by including all variables:,

for all e € E associated with ten least cost edges incident to each yaitelx
variableszy; for all p, € K andv; € M, corresponding to the ten cheapest
markets for each product.

3. Initial pool of constraints

Define £¢ by including constraints (3.5), (3.11), all constraintsl with
S := M, for all pg, as well as the lower and upper bounds on the variables.

4. Initial heuristic
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In order to obtain a initial value @V Z, a feasible solution is computed by an
simple heuristic described in section 5.3. In additionjniiteal feasible solution
will provide to the variables pool as well as to the initiaddiar programming
the variables associated to the set of arcs and verticesdietpto this solution,
which guarantee the feasibility of the initial linear pragming.

5. Initial Linear programming
The initial linear programming consist of

(a) the set of all variableg; for all v; € V associated to the set of markets,
all variablesr,. with edges belonging to the heuristic solution and the five
least costedges incidentto each vertex, and all variap)esrresponding
to the assignments made in the heuristic solution and toubefieapest
markets for each product;

(b) the set of constraints consisting of equalities (3.2) @4);

(c) and the lower and upper bounds on the variables.

This initial linear programming initializes the list of sptwblems,”.

5.3 HEURISTICS

Two heuristics procedures have been developed in this Brand-Cut algorithm for
obtaining feasible solutions. Thitial heuristic builds a feasible solution from the
input data, and thprimal heuristictries to improve the upper bound’? from the
current LP-relaxation.

Initial Heuristic

The heuristic used to construct a first incumbent solutiorke/along the lines of the
methods described in Ong [116] and Pearn and Chien [123].

An initial solution containing all vertices is built by theell-known nearest-
neighbor TSP heuristic, and it is then improved by the Linfghan procedure
(see [106] for detalils).

The method gradually reduces the initial cycle by droppihgach step a new
marketvy. For each vertex; belonging to current cycle, the tour reductidiw; ), as
well as the increasing in the purchasing cBst;) after removingy; is computed. If
dropping the vertex; could cause infeasibility, them will be removed from the list
of potential candidates. The vertexthat maximized (v;) + P (v;) will be selected
for be dropped.

If no further reduction is possible, then an insertion pthoe is performed. For
each vertex; not belonging to the current cycle the tour increaﬁr(g;i), as well
as the purchasing reductioh(v;) is computed. IfP(v;) > 7 (v;) thenv; is added
to the cycle. This procedure is repeated until no furtherowement is possible.
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After each removal/insertion a post-optimization progeds carried out by this
algorithm. In particular, we use a simple 2-opt mechanismrder to improve the
tour. With respect to the purchasing cost, for a given setarkets is easy to compute
the optimal assignment of products. Finally, a cleaningedure dropping all those
markets without influence in the purchasing cost is perfakme

LP-Based Heuristic

The primal heuristic is applied from a fractional LP solatia:*, y*, z*) in order to
construct a new feasible solution improving the best uppend computed so far.
Since the primal heuristic is frequently applied, emphhasbeen put on speed. The
heuristic, that consist of two phases, proceed as follow.

In the first phase, the set of candidate markets has to bdiskth Accordingly,
an initial set of markef\/ is built from those markets; € V such ag); = p, where
p is a threshold initially set to 1. If not enough markets areced for making a
feasible solution, thep is decreased in a small amount. This procedure is repeated
until feasibility is restored.

The second phase tries to build a Hamiltonian cycle paskioggh the vertices of
set)M. This procedure follows the same scheme described in thiopiephase. That
is, the thresholg selects those edges belonging to the solution. If is notiples®
close the cycle then the nearest-neighbour method is peefbover the no connected
markets.

After these two phases, a post-optimization procedurerisechout applying a
2-opt algorithm if triangle inequality hold for the curreénstance.

5.4 SEPARATION PROCEDURES

As already mentioned in section 1.4 of chapter 1, it is noteesary an explicit
list of constraints defining the original problem. It is omgguired a method for
identifying inequalities that are valid for the originalgilem, but violated by the
current linear relaxation, i.e., given a fractional salatiobtained from the linear
relaxation(z*, y*, z*), a separation procedure consists of determining a member
ax + By + vz > n of a given family of valid TPP inequalities such that* + Sy* +
vz* <.

The aim of this section is describing the separation metlwodamilies (3.3),
(3.16), (3.15) and (3.12). These separation problems dte standard (see, e.g.,
Junger, Reinelt and Rinaldi [87]) and are solved exactly ilypomial time for the
first two cases, while heuristic approaches are used foatawo.

Letus define theupport grapHor a fractional solutioriz*, y*, z*) as the weighted
graph(G*, z*,y*, z*) = (V*, E* x*, y*, z*) whereV* := {v € V|y* > 0} ,E* :=
{e € E|z} > 0}.
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Separation of the INCOMPA Inequalities

This section describes the separation algorithm for thelyaof constraints (3.5)
(INCOMPA). Despite of be a polynomial number of inequast{g\/ || K |), we prefer

perform a dynamic separation. Given a fractional solutioh y*, z*), separating a
INCOMPA constraints is to find a markef € M and a producp, € K such as
zp /e > yi. An exhaustive algorithm for checking if this inequalityvielated is

carried out by checking for each market and each produdadleiin this market the
inequality is violated. Notice that, only those marketsuchy > 0 should be taken
into account. Fig. 5.4 describes this simple algorithm.

Input:  (G*,y*,2*), L€
Output: £€
foral v, e M
it (yr>0)
foral py € K
it (zgi/ak > yi)
L£C =L Uzki/an < ys

Fig. 5.4 Separation of the INCOMPA inequalities.

Separation of YSEC Inequalities

Proposition 5.1. Given a markew; with ¢ > 0, a most violated YSEC constraint
(3.3) corresponds to a minimum-capacity cut (min-¢@t)V’* \ S) with v; € S and
vg ¢ S in the support grapl&z* by imposing a capacity’ on each edge € E*.

In practice, two cases are taken into account in order to céerhe separation.

1. The solution is not connected (see separation algorithRig. 5.5). In this
case for each connected compong&nt V' \ {v,} the inequalities

Z ZTe > 2y, forallv; € S,
e€d(S)

are violated. The procedure (COMPONENTS) computing eacinected
component takes a time complexity (see Mehlhorn [110[pGV | + | E|).

2. The solution is connected, or is not connected but a caedesomponent
S C V containing the depot is being studied. For this other caseinacut
algorithm (MINCUT) based on an implementation describeGaidberg and
Tarjan [71] is performed between every pais, v;) for eachv; € S C \{vo},
in order to obtain the most violated inequalities. This gsxtakes a time
complexity ofO(|V]4).
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In order to reduce the number of non-zero when a new YSEC aulded to the LP,
the constraint is introduced in the following way.

Sowe— >y <0, (5.1)

e€E(S) v; €S8\ {v;}

for a violated set of verticeS C V' \ {vo} and a vertex; € S. Notice that (3.3)
imply (5.1), since adding (3.2) for all vertex € S we obtain

2 Zme—kae—ZZyl (5.2)

e€E(S) e€d(S v; €S

Replacing (5.2) in (3.3) we obtain (5.1).
Fig. 5.6 shows a fractional point violating the following &3

Z Te Z 2y6

e€d(S

With S := {v1, v3, v4, V5, Vg, Vg }, sinceze€5(s) z. = 0.5 andyg = 1, and then

Input:  (G*,z*,y*), £C
Output: £
COVPONENTS( G*, C)
forall SecC
if (vo¢S)
foral v, € S
£C :=rCu 2665(5) Te 2> 2y;
else
foral v; € S\ {vo}
cut-value : = MNCUT( G*, vg, v;, S );
if ( cut-value <2y; )
£C :=rCu ZeeE(S) Te — Z’U]ES\{W} y; <0

Fig. 5.5 Separation of the YSEC inequalities.

Separation of ZSEC Inequalities

Proposition 5.2. Given a producpy, determining a most violated ZSEC constraint
(3.16) is equivalent to finding a subsgtvith minimum value of

PSR 2 . (5.3)
e€d(S) v, EME\S
Observe that equations (3.4) imply (5.3), since

> owz2 > T

e€d(9) vi€MpNS
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Fig. 5.6 Fractional point violating a YSEC inequality.

Yore+2 Y Feo %+2 3 ZL

e€s(S) uleMk\s vieMnS F vieM\S "
Zhi Zhi
D T2 Z 2y o
e€d(S) vieMp\S F viean,

But by (3'4)2’111:61\@ Zkz/dk =1.

This reduces the separation problem to a maximum-flow pnoldefined on the
following weighted graph. Consider a dummy markeand letG := (V, E), where
V:=V*U{o}andF := EU {[v;,9] : v; € My}. The capacity of edge € E is
*, and the capacity of each new edgg 7] is equal t@2z}, /dy.. Let (S, V' \ S’) be
a minimum-capacity cut iy separating,, andd, with o € S’. If the capacity of this
cut is at least 2, thef*, y*, 2*) satisfies all constraints (3.16) associated with
Otherwise,S := S’ \ {0} yields a most violated constraint (3.16). This algorithm is
described by pseudocode in Fig. 5.7 and its time compleity(| K ||V |?).

As in the previous separation algorithm, in order to redheenion-zero elements
the ZSEC cuts are introduced in the LP as follows.

Zki
DR SRR DR )
e€E(S) v; €S vy ESNMj,

This inequality is equivalent to (3.16) if we replace (512)3.16).
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Fig. 5.8 shows a fractional solution violating (3.16). Iistbarticular case.75/ds
and0.25/d3 units of the producps are offered at markets anduv, respectively. The
subsetS’ consist of the verticeS’ := {#, vy, v3} and according to Fig. 5.8 it follows
Decs(sie) Te = 1andy_, . 2s/ds = 1. Therefore inequality

Z J;ezd% Z 234, S = {vy,v4}

e€d(S) v; ESNM3

is violated.

Input:  (G*,z*,y*,2*), L£C
Output: L€
forAaII pr € K
Vi=V*Udo
for all v; € My
E:=E*Ue=[0,v;]
Tk = 22’—:
G=(V,B)
cut-value := MNCUT( G, vo, 9, S );
if ( cut-value <2)
S =S\ {0}
LC =LYUY ces(s) T2 2200, emyns 2

Fig. 5.7 Separation of the ZSEC inequalities.

Fig. 5.8 Fractional point violating a ZSEC inequality.
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Separation of 2SEC Inequalities

Two heuristics methods have been developed in order to atepaonstraints 2SEC
(3.15).

1. The first heuristic proceed as follows. Let us consideapctp, and deter-
mine asef\f;, C M suchthagmeMk\Ml; qri < dg, startingwithM, := M,
and cumulating markets in M}, as long 'aivieMk\Mé gr; does not exceed

dy,. Then construct a grapi = (V, E), whereV := V U {#}, ¢ is a dummy
market, and? := E U {[v;,7] : v; € M}. The capacity:* of edgee € E is

x}, and the capacityr%ﬁ] of each new edgp;, 0] is equal to 2. As above, let
us determine a minimum-capacity qift’, V \ ) in G with & € S” and sep-
aratingvy andd. If the capacity of this cut is less than 2, a violated coristra
(3.15) with S := S’ \ {¢} has been identified. Otherwisk{;, is modified by
means of a vertex interchange mechanism and the procedtepaated. In
total, at mos{},| candidate set8/;, are considered. Note that in the case of
the TPP with unlimited suppliesd; = M, and this separation procedure is
exact and runs i (| K ||V |?) time.

Input:  (G*,z*,y*, z*), LC
Output: £
forall pp € K
Vi=V*Ub
forall v; € My
E:=E*Ue = [b,v;]
i =2
G=(V,E)
cut-value := MNCUT( G, vo, 9, S );
if ( cut-value <2y; )
S =S\ {8}
LC = LOU Y ces(s) T8 2 2V empns 2

Fig. 5.9 Separation of the 2SEC inequalities: Heuristic 1.

2. In the second heuristic, we first attempt to identify a%$gtelding a violation
of the weaker cover inequalities (3.13). If this is succeisdfen constraint
(3.15) associated t§ is also violated. Otherwise, we still check whether a
violation of (3.15) has been identified. As in Crowder, Jahmand Padberg
[38], constraints (3.13) can easily be separated by solthieg)-1Knapsack
Problem(KP)

ot = max{ Z yiug Z giru; < dp—e,u; € {0,1} forall v; € Mk},
v; €My, v, €V

wheree is a small positive value (if alf;;, andd;, are integer numbers, then
e := 1). Indeed,S is defined by the set of markeiswith v = 0in the optimal
KP solution. Ifo* >3\, yi — 1, then constraints (3.13) associated with
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S'is violated. Otherwise all constraints (3.13) associatid wy, are satisfied.
The KP is relatively easy to solve (see, e.g., Martello antth To09]), and its
size can in fact be reduced by fixing to 1 all variablgswith y; = 1 since

u; = 0 would imply o* > ZmeMk y; — 1. Similarly, u, can be fixed to 0
whenevery; = 0 since in this case its weight in the KP objective function
vanishes.

Notice that a violated inequality (3.3) or (3.16) identiftacbugh the above procedures
is not necessarily facet-defining. This only occurs wherglegists a produgt;, that
cannot be entirely purchased outsitle Therefore, whenever a violation of (3.3) or
(3.16) occurs for a givep;, and.S, a check should be made for a violation of the
stronger (and facet-defining) constraint (3.15) over tlmeesg. Finally, although the
complexity of the above separation procedures may seerarraith, these can be
executed quite rapidly sinc&is typically sparse and contains many isolated vertices.
Moreover, for constraints (3.3), several maximum-flow catations can be avoided
since somey; values are very small.

Separation of 2-matching Inequalities

The 2-matching inequalities (3.12) can be separated innpaoiyal time through a
simple modification of the Padberg and Rao [121] odd-cutrsdioa scheme. How-
ever, in order to reduce the computational effort spent engbparation, we have
implemented the following simple heuristic initially proged by Fischetti, Salazar
and Toth [54], also illustrated in Fig. 5.10.

In order to obtain a set of potential handles, the7get- P(V) of connected
components from the subgragh, = (V, E,) induced byE, := {e € E : 0 <
x> < p} is computed, for every threshojdcorresponding to an* value. Each
vertex setH € H becoming a clique is then considered as a potentially \edlat
handle of a 2-matching constraint. For each one of thesewedts tooth edges are
determined by the following simple greedy procedure. &E¥) = {e1,...,¢e,}
with zy > 7, > ... > a:’gp. The requirement that the teeth have to be pairwise
disjoint is initially relaxed. Among those edge sétsatisfying|7’| > 3 and odd, the
best choice fofl” consists of edges, . . ., ¢j7|. Therefore a most violated inequality
corresponds to the choice of the odd inte@&r> 3 maximizingz}, + (z}, +x}, —
D)4+ (2, _, ¢, —1). Ifnoviolated cut could be produced in this way, then
clearly no violated 2-matching constraint exists for theegihandle. Otherwise we
have a violated 2-matching constraint, in which two toothes] say and f, may be
incident to the same vertex In this case, we simplify the inequality by defining a
new handle-teeth pafid’, ") with T’ := T'\ {e, f}, andH’ := H\ {v} (if v € H)
orH' := HU{v} (if v ¢ H). Itisthen easy to see that the new 2-matching inequality
is stronger violated than the previous one. Indeed, remlpd?, T") with (H',T")
increases the violation by atledst y; — >~ s, 3) Te 2 2¥i = Dces(fui}) Te =0
(if v; € H),orl —y; >0 (if v; ¢ H).

By performing this simplification step a 2-matching conisir&zan be detected
with non-overlapping teeth. In some cases this proceduntdaven lead to a 2-
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matching constraint witlil’| = 1; if this occurs, we reject the inequality in favour of
a constraint YSEC (3.3) or 2SEC(3.15) associated with tinellea

Fig. 5.11 illustrates a fractional point violating two 2-tolaing inequalities. Two
handles,H; := {vq,v5,v6} and Hy := {v1,v4,vs}, have been detected by the
previously described algorithm. And for each of them teethissalso computed, i.e.,
T = {e[vlm],e[v47v5],e[vs7v3]} for handleH; andT5 := {6[1,271,9], Clvg,vs]> e[vsﬂjo]}
for handleH>.

Input:  (G*,z*), LS, p
Output: £€
forall e€ E* :x% > p
E,=E,Ue
Vp = V(Ep)
COVPONENTS( G, H)
foral HeH:H is a clique
T := arg{maxp sy Y eeps Te — (T =1) : |[T’| > 3 and odd}
foral e,f €T such as vi=enNf#@
T:=T\{e, f}
if ( veH ) H:=H\wv
ese H:=HUwv
if( (Xeer e — Xecsunr e >1TI—1) and (|7] >3 and odd))

£C = ECUZEGTU% 7Ze€§(H)\Txe <|T|-1

Fig. 5.10 Heuristic separation of the 2-matching inequalities.

Fig. 5.11 Fractional point violating two 2-matching inequalities.
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Clique Lifting and Shrinking Animportant application in the design of separa-
tion algorithm in that it allows one to simplify the sepacatiproblem is the shrinking
procedure, proposed by Padberg and Rinaldi [117].

As a complementary concept of the shrinkicigjue lifting can be described as
follows (see Balas and Fischetti [11]). LB{G’) denote theAT'S P polytope asso-
ciated with a complete digraghi’ = (V’/, A’). Given a valid inequalitypy < 3, for
P(G"), we define

ﬂhh = max{ﬁij + ﬁh,j - ﬂij : i,j (S V/ \ {h},Z 75 ]} forall h V/

and construct an enlarge complete digr&ph= (V, A) obtained fromG’ by re-
placing each nodé € V' by a cliqueS; containing at least one node (hence,
V| = > hev/ ISal = [V']). In other words(Sy, ..., Sy) is a proper partition
of V, in which theh-th set corresponds to ttteth node inV”.

Forallv € V, letv € Sy(,). We define a newlique liftedinequality for P(G),
sayax < ag, Whereag := 8o+, ey Bun(|Sh| — 1) anda; := B iyn(;) for each
(i,j) € A. Balas and Fichetti [11] show that the new inequality is gisvaalid for
P(G); in addition, if the starting inequalitgz < 3, defines a facet foP(G’), then
ax < o is guaranteed to be facet-inducing B(G).

LetS C V, 2 < |S] < n — 2, be a vertex subset saturateddsy, in the sense
thatz*(E(S)) = |S| — 1, and supposé is shrunk into a single node, say and
x* is updated accordingly. Let’ = (V/, A") denote the shrunken digraph, where
V' .= V\Su{c}, andlety* be the shrunken couterpartof. Every valid inequality
By < By for P(G’) that is violated byy* correspond inG to a violated inequality,
sayar < ap, Obtained througtelique lifting by replacing back: with the original
setS. As observed Padberg and Rinaldi [118], this shrinking apen can affect the
possibility of detecting violated cuts d&’, as it may produce a poigt belonging
to P(G') even whenr* ¢ P(G).

There are simple conditions on the choic&dhat guaranteg* ¢ P(G’), provide
xz* ¢ P(G) as in the cases of interest for separation. The simplest comtiition
concerns the shrinking of — arcs (i.e., ares(s, j) with z7; = 1), and requires
S = {i, j} for a certain node pair, j with z; = 1.

Itis known thatl — edges cannot be shrunk for th&€7'S P, instead. In this respect
ATS P behaves more nicely tha#il'S P, in that the information associated with the
orientation of the arcs allows for more powerful shrinking.

In our Branch-and-Cut — arc shrinking is applied iteratively, so as to replace
each path of — arc by a single node. As a result of this pre-processingrall the
nonzero variables are fractional. Notice that a similaultesannot be obtained for
the symmetric TSP, where eath- edge chain can be replaced by a sindle edge,
but not by a single node.

5.5 PRICING BY REDUCED COSTS

The size of the linear program contains too many variableg &olve explicitly. Itis
clear that the total number afvariables iV |(|V| — 1) /2 if the graph is undirected,
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or |V|(|[V] — 1) if it is directed. On the other hand, in the worst case, thaf &ll
products are available in th#% of the markets, the number efvariables is of
|M||K|/2. That means, that if we have a problem of §izé = 100 and| K| = 100,
the total number of variables for a undirected probleF0i0.

That is why we initialize the linear program with a small setbsf variables and
compute the optimal solution of that linear program. Aftards, we check if the
addition of a variable, which is not in the current lineargmam, might improve the
LP-solution. According to the linear programming theoristban be done by the
computation of the reduced cost of the variables. In a lipgagram of the form
min{cTz : z € P} a variable with positive reduced cost can improve the swruti

Thereduced cost; of a non basic variablg with associated columa; € R™
and objective function coefficiem} corresponding to a basic LP-solution with dual
variabley € R™ is defined as; = ¢; — y”a;.

If no variables have positive reduced cost, then the cuptitnal solution also
solves the original problem. In this case, it is said thealdgs does not price out
correctly. The computation of the reduced cost is catieding. If a variable does
not price out correctly we add it to the linear program, réirajze and iterate.

Essential for the practically efficient solution of the TPBhwnore than 100 mar-
kets is the application of sparse graph techniques. It has bbserved by mean
computational experience that many edges of the optimatisalare contained in
the 5-nearest neighbour graph and almost all edges areimedta the 10-nearest
neighbour graph. It also happens with theariables, but the size of the neighbour-
hood is slightly bigger. Therefore, we initialize the vénlia set of the root node of
the branch-and-bound tree with thenearest neighbour graph and augment it with
the the edges belonging to the feasible solution from th&lrieuristic.

5.6 BRANCHING STEP

According to the algorithms described in Fig. 5.1, 5.2 ar®] §.both new cuts,
and new variables are not generated then the branching ghastve by mean the
flag status. There are many different strategies to achieymitiing of the current
subproblem in two or more new subproblems. For example,

e afractional0/1 variable is setto 0 and 1,

e upper and lower bounds for integer variables are changed,
¢ dividing the polytope by hyperplanes,

e specific strategies for the problem.

Since we choose the first method, some variable is choser beatfiching variable

and two new BC nodes, which are the two sons of the current Bie rere created
and added to the set of active BC nodes. In the first son thebirmgvariable is set to
1, and in the second one to 0. Different strategies about b@xyilore the branching
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tree as well as what variable should be selected for spgittie current subproblem
are described in the next two sections.

Node selection

Three different strategies to select the node to be prodessé are discussed in this
section.

1. Best First Search

This strategy chooses a node with the worst dual boundairede with lowest
lower bound. The goalisto improve the dual bound. Howe¥this fails early
in the solution process, the branch-and-bound tree tengi®ow considerably
resulting in large memory requirements.

. Depth First Search

This rule chooses the node thatdisepestn the branch-and-bound tree, i.e.,
whose path to the root is longest. The advantages are thimétheends to stay
small, since always one of the two sons are processed nthe,ribde could not
be fathomed. This fact implies that the linear programs foma node to the
next are very similar, usually the difference is just thercf@of one variable
bound and thus the re-optimization goes fast. The main désddge is that
the dual bound basically stays untouched during the selygiocess resulting
in bad solution guarantees.

. Breadth First Search

This strategy, in opposite to the previous, choose the ndues&the path to
the root is shortest.

Some computational experience has been carried out intordelect the best strategy
for this particular problem. Finally, the best performanee offered by the Best First
Search strategy.

Variable selection

There are a variety of different strategies for the seleabithe branching variable,
and some of them are enumerated in this section.ul*ef(xz*,y*,z*) the fractional
solution of the last solved LP, then only variabiesandy* will be taken in account.

1. Select a variable with value close to 0.5 that has a bigetibgefunction coef-

ficient.

2. Select the variable that has an LP-value closest to 0.5.
3. Select the fractional variable that has maximum objedtimction coefficient.

. If there were fractional variables that are equal to 1 éxdhrrently best known

feasible solution, select the one with maximum cost of thetimerwise, apply
strategy 1.
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5. Select a fractional variable that is closest to one.

6. Selecta set c £V of promising branching variables candidates. Létbe
the constraints system of the last solved LP. Solve for eadhMew; € L the
two linear programs

vi = max{cTw|w € con{ L}, w; = 0}
i T c _
v] = max{c" w|w € conL" },w; = 1}
and select the branching variahie with

max{vy, v} } = ingi max{vj, v} }.
:

Some running time can be saved if instead of the solutionedfttlear programs
to optimality only a restricted number of iterations of theglex-method is
performed.

The last strategy, also known sgong branchindhas been chosen according to our
experimental results. The reduction on the overall runtimg compensates widely
for the extra running time spent in solving the LP.

5.7 COMPUTATIONAL RESULTS

The algorithm described in Section 3 was coded in C++ and rua Bentium 500
MHz computer running Linux. ABACUS 2.2 linked with CPLEX 6vias used as a
framework (seeilhger and Thienel [89] for details on this software).

We have considered the following four classes of test im&an

Class 1 contains 33-market symmetric instances defined with theesaput data as
in Singh and van Oudheusden [141]. These correspond toriestanstance
size solved by these authors. The routing costs are thos@®fvartex TSP
described in Karg and Thompson [90] and do not satisfy thegle inequality.
The first vertex is the depot and all markets sell all produeteduct prices are
generated in [1,500] according to a discrete uniform distion. We generated
five instances with/'|=50, 100, 150, 200 and 250.

Class 2instances are randomly generated by using the processhiban Pearn
and Chien [123]. Routing costs are randomly generatgd,in] wherer is
generated in [15,140]. Each market sells a humber of predaetdomly
generated iril, m], wherem = |K | is the number of products. Purchase costs
are randomly generated[i®, w] wherew is generated in [5,75] for each market.
Contrary to Pearn and Chien, we have used symmetric routisigimstead of
asymmetric costs. We defined instances With=50, 100, 150, 200 and 250,
and|K|=50, 100, 150, 200 and 250.
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Class 3instances were defined by first generatjilig integer coordinate vertices in
the[0, 1000] x [0, 1000] square according to a uniform distribution and defining
routing costs by Euclidean distances. Each progietas associated witld /|
randomly selected markets, wheiéy, | was randomly generatedfih |V'|—1].
The remaining characteristics of these instances are dediméor Class 1.

Class 4 instances were generated in the same manner as Class Testanith a
limit on supplies. For each produgt and each market;, q,; was randomly
generated in [1,15] and;, := [Amax,,enr, qri + (1 = A) X2, cay, hi fOr
A=0.5,0.7,0.9 and 0.99.

To analyze the performance of the algorithm, we have usedhtances for each
value of|V| and| K| in {50, 100, 150, 200}. Computational results are summarized
in Tables 5.1 to 5.4. The column headings are defined as fellow

|V |: number of vertices (including the depot);

|K|: number of products;

Visit: number of markets visited in the optimal solution;
(3.15): number of generated constraints of type (3.15);
(3.3): number of generated constraints of type (3.3);
(3.16): number of generated constraints of type (3.16);
(3.12): number of generated constraints of type (3.12);

LB%: percentage ratia/optimum, wheraw is the value of the last LP solved at the
root node;

UB%: percentage ratia/optimum, wherew is the value of the heuristic solution
value computed at the root node;

Root sec:computing time for solving the root node;
Total sec: total computing time spent by the branch-and-cut code;
Nodes: number of nodes generated (1 means that the problem reequaitegdnching).

Computational results relative with the TPP with unlimigegbplies (Tables 5.1 to
5.3) indicate that the algorithm can successfully solveptineality instances involv-
ing up to 200 vertices and 200 products within short comjgutiime. This compares
favourably with the best known exact results obtained byglssnd van Oudheusden
[141] whose largest instances contained at most 20 veritgsit most 50 products
(see Table 5.1). Note that constraints (3.15) are not usélddee instances since each
market sells all products. Results presented in Tablesrddba indicate that the
proportion of markets present in the optimal solution taflicvaries between 20%
and 40%, which means that the instances are not uniquelgrdhby routing costs
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and market selection decisions play an important role, ifer@asing the difficulty
of the problem. Instances from Class 2, where travel costagiformly distributed,
are much easier to solve than instances from Class 3, whickwith a Euclidean
travel cost structure. This is consistent with what is obséifor the TSP (Balas and
Toth [15]). Problem difficulty increases witli’| and|K|. Both the heuristic upper
bound and the lower bound at the root node the search tre¢ddrewithin a small
percentage of the optimum, typically less than 5%, and thglity is more closely
related to the number of markets than to the number of preduts expected, the
computational time and the number of branch-and-cut nadgease strongly with
|V|. While performing the tests, we have observed that spendorg time execut-
ing the pricing heuristic can help reducing significantlg time required by the LP
solver.

Table 5.4 contains computational results for instancels kivitited product avail-
ability at some markets. To our knowledge, we are the firstdadress this more
difficult variant of the classical TPP. For this class of artes, problem difficulty is
clearly related to the size of which effectively controls the percentage of markets
in the solution. When is small, most markets are visited and the TPP becomes very
closetoa TSP and is thusrelatively easy to solve for the mumfmarkets considered
in our experiments. A grows both the upper bound and the lower bound at the root
node deteriorate, which translate again into more bragchim larger computation
times. However, we have observed that problems generathdwi 0.95 tend to be
easier than those generated with< 0.95 since the problem is then almost identical
to the unlimited supply case asapproaches 1. Table 5.4 shows results for only four
values of\. Overall, we were able to solve instances involving up toa8fices and
200 products.

On average, the purchasing cost and of routing cost hadesipribportions on the
optimal solution values of the above described instancesndasure the difficulty
of the problem comparing the routing and the purchasingscest have conducted
some further experiments. In particular, we have generateldsolved instances of
Class 1 with product prices in [1,50], [1,500], [1,5000] ga¢b0000], of Class 2
with |V| = 100 andw in [2,30], [5,75], [20,300] and [50,750], and of Class 3 with
|V| = 100 with product prices in [1,50], [1,500], [1,5000] and [1,B@). Table 5.9
shows the average results of the five instances for each ef|B&. For each group
of instances, four features are given:

Vis.: the number of visited markets in an optimal solution;

Nod.: the number of explored branching nodes;

PC: the percentage of the pricing cost over the total cost of dimapsolution;
Sec.: the total time of solving an instance.

As it is observed from the table, the difficulty of solving astance is not strongly
affected by the magnitude of the pricing costs comparedgodhting costs. Solving
instances from Classes 1 and 2, a problem is easier whenitivegprosts are bigger
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than the routing costs, even if an optimal decision invosggcting more markets.
The difficulty of the problem seems to be more related witlyX$#/ | and|K|.

An overview to the three unlimited-supply TPP classes shivasthe proposed
algorithm works better on the instances of Class 2, whereahing costs are ran-
domly generated. This is due to better lower bounds on iostanof Class 2 when
compared with instances of Class 3, where more efforts (ugs) are required by
the separation procedures to approximate the lower bouBf@%oover the optimal
solution when|V| = 200. The heuristic produced worse results when the routing
costs are non-Euclidean, but the branch-and-cut algontasless sensitive to this
drawback. Indeed, the algorithm executes more branchingstances of Classes 1
and 2 where the upper bound is worse, but the total compaotdttome is smaller.
Because of this observation, we did not implemented a mgyiisticated heuristic.

The harder instances of our benchmarks correspond to Clds®4o the limited
supply constraints. Indeed, whéli| = 200, it was only possible to solve six and
seven instances over the twenty trials f&f| = 150 and|K| = 200, respectively.
When the execution was aborted due to the 3 hours of time, lthiét average gap
between the final upper and lower bounds was 2.7% and 8.8% e 150 and
| K| = 200, respectively, while at the end of the root node, the avegagebetween
lower and upper bounds was 7.5% and 21.5% wHeéh= 150 and |K| = 200,
respectively. We guest that these big values are mainly dube lower bound
quality and not to the primal heuristic procedure.

We have formulated, analyzed and solved the undirected TMRPversions were
considered: the classical one where products are availahlalimited supply in
the markets, and a new more difficult version where upper ®@ane imposed on
supplies. Facet-defining inequalities applicable to bettsions were proposed, and
a branch-and-cut algorithm encompassing a heuristic,cangrmechanism as well
as several separation procedures were developed. Exdamsiyputational results on
four instance classes indicate that for the classical TRRalgorithm outperforms
by far all previously available methods. For both versiohthe TPP, it can solve
instances involving up to 200 markets and 200 products.



Table 5.1 Average results over 5 random instances of Class 1 Wwith33.

|K| visit (3.15) (3.3) (3.16) (3.12) LB% UB% Root sec Total sec Nodes
50 8.4 0.0 6.2 173.2 1.4 99.468 106.312 0.4 1.6 3.0
100 104 0.0 43.8 1164.8 5.0 98.535 104.150 2.4 8.6 8.2
150 13.2 0.0 58.6 2245.2 6.6 98.491 104.760 4.6 17.8 10.6
200 13.8 0.0 133.2 4917.0 22.2 97.798 108.567 6.2 49.2 254
250 15.2 0.0 144.2 5879.6 17.2 97.541 105.478 6.4 63.0 31%)
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Table 5.2 Average results over 5 random instances of Class 2.

V] |K]| visit (3.15) (3.3) (3.16) (3.12) LB% UB% Root sec Total sec Nodes
50 25.8 0.6 34.0 105.4 14.0 99.791 103.545 0.8 2.6 4.6
50 100 37.2 18.0 62.8 173.0 7.8 100.000 100.309 1.2 2.6 3.8
150 43.0 1.2 24.0 76.6 0.2 100.000 100.000 0.2 1.2 1.0
200 44.8 49.5 72.2 357.5 8.0 100.000 100.155 1.8 3.8 3.5
50 34.4 18.6 370.8 888.8 48.0 99.663 104.890 5.6 17.2 7.8
100 100 52.0 18.0 62.2 155.0 15.4 100.000 102.059 3.0 7.0 3.4
150 71.0 0.0 6.0 15.4 4.8 100.000 100.362 2.6 6.8 3.4
200 76.4 44.0 178.8 468.6 12.8 100.000 100.139 54 12.4 5.0
50 38.2 23.2 87.0 385.8 33.6 99.017 123.587 8.8 33.2 10.2
150 100 62.5 186.8 401.2 3001.2 100.5 99.456 108.707 17.8 147.8 2.0 3
150 77.2 355.8 615.2 2454.2 111.0 99.845 101.451 12.0 163.8 7.4 3
200 91.6 6.8 158.6 392.8 32.6 99.961 100.773 8.6 25.0 6.6
50 33.6 2.0 469.4 2804.8 114.2 98.494 153.614 10.8 222.2 31.0
200 100 65.4 6.8 327.6 760.8 81.4 99.752 115.347 12.2 105.8 32.6
150 92.6 17.2 267.4 611.0 91.0 99.857 104.444 16.6 141.6 32.2
200 106.0 9.6 97.4 222.2 50.8 100.000 100.448 13.6 59.2 11.8




Table 5.3 Average results over 5 random instances of Class 3.

V| | K| visit (3.15) (3.3) (3.16) (3.12) LB% UB% Rootsec  Total sec Nodes
50 7.6 321.2 234.2 1027.4 42.6 100.000 100.000 6.2 6.4 1.0
50 100 13.0 731.4 362.4 2050.4 113.6 99.959 102.549 20.2 216 4 1.
150 15.0 948.6 353.2 33194 107.8 99.938 102.286 28.4 322 2 2.
200 16.6 1245.2 345.8 3704.6 95.6 99.766  101.372 33.2 354 8 1.
50 104 1052.0 1685.0 2730.0 479.6 99.988 100.000 120.0 4122. 1.4
100 100 14.2 1844.0 1800.4 5929.8 537.0 99.914 100.029 293.8 4309 2.2
150 18.0 2895.8 1921.0 8659.4 566.8 99.494 103.706 346.4 .0423 3.0
200 19.8 2600.0 1545.0 9117.8 528.2 99.511 105.514 280.8 4344 6.6
50 10.6 1719.0 4988.0 4793.2 14542 99.986  100.000 953.0 0957 14
150 100 154 3340.0 4323.2 8442.4 1302.0 99.700 105.814 1795.6 918.0 3.8 g
150 20.2 4863.6 4132.0 11120.8 1244.6 99.805 111.154 1602.21936.6 50 2
200 22.0 6530.0 3679.4 14500.0 1076.0 99.528 110.873 1578.02126.4 8.2 g
o)
50 10.0 1238.8 4423.2 3032.0 1235.0 97.722 108.923 842.0 5.412 2.6 E
200 100 186 6780.4 9460.6 13270.8  2488.4 98.478  109.866 3401.64897.8 5.0 2
150 21.8 12843.6 12288.8 30708.0 3558.6 95.834 109.389 4455 9933.4 14.6 2
200 22.2 14015.8 9612.0 29578.8 2780.0 90.449 110.013 ©630. 9198.2 7.8 5
wn

SOT
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Table 5.4 Average results over 5 random instances of Class 4 jWith50.

|K| A visit (3.15) (3.3) (3.16) (3.12) LB% UB% Root sec Total sec Nodes
0.50 46.2 31.0 161.4 193.0 134 99.994 100.021 14 2.8 1.8
50 0.70 40.6 1154 436.4 425.4 115.6 99.649 100.324 3.8 10.6 4 17.
0.90 22.0 724.6 1281.0 2522.8 408.0 97.631 101.675 9.0 50.4 8.6 4
0.99 11.6 369.6 349.8 1008.4 122.0 99.936 100.000 9.2 102 4 3.
0.50 50.0 48.0 257.8 588.0 37.4 99.966 100.000 1.6 4.8 54
100 0.70 46.0 493.4 774.8 1597.6 156.4 99.799 100.096 34 16.6 .0 25
0.90 30.4 739.0 864.2 2888.0 277.8 98.170 101.650 8.0 46.6 .8 37
0.99 15.0 499.4 309.6 1523.4 98.0 99.991 100.000 11.6 124 4 1.
0.50 50.0 82.4 206.2 767.2 39.2 99.976 100.000 2.0 5.6 6.6
150 0.70 48.4 88.2 308.0 1049.8 41.8 99.937 100.009 2.6 7.4 9.0
0.90 35.0 844.0 949.4 3794.0 298.0 97.870 101.544 9.0 66.0 .8 55
0.99 15.2 972.0 537.8 4184.0 150.6 99.877 100.029 18.8 214 .0 3
0.50 50.0 98.6 222.2 1114.8 38.0 99.982 100.000 2.8 7.2 54
200 0.70 50.0 96.8 163.4 793.4 30.8 99.925 100.000 2.6 6.0 3.8
0.90 38.2 972.0 952.0 4514.0 334.8 98.382 100.269 8.8 80.4 .8 53
0.99 16.6 608.4 418.6 4290.6 126.0 99.728 100.244 17.8 208 4 3




Table 5.5 Average results over 5 random instances of Class 4 Witk100.

| K| A visit (3.15) (3.3) (3.16) (3.12) LB% UB% Rootsec  Totalsec  Nodes
0.50  100.0 37.0 593.8 316.2 89.8 99.976  100.000 10.8 16.2 34
50 0.70 87.8 89.8 834.0 394.4 139.2  99.939  100.069 17.4 24.0 5.0
0.90 40.4 3719.2 8760.6 11818.8 2411.4 98.402 100.729 57.0 09.84 94.2
0.99 12.6 686.2 1460.0 2245.2 445.2 99.042 100.027 68.8 98.0 7.0
0.50 100.0 57.2 536.2 525.2 79.6  99.988  100.001 11.2 17.4 4.2
100 0.70 91.0 221.0 1414.4 1471.6 200.6 99.979 100.004 254 32.8 3.8
0.90 57.8 6860.8 20450.2 32340.0 5621.8 98.233 102.915 49.8 906.4 166.6
0.99 16.8 1431.4 1742.4 5872.0 515.4 99.367 100.054 164.2 5.622 9.4
0.50 97.8 187.8 812.2 1264.2 111.4  99.994  100.004 19.0 248 4 3
150 0970 99.8 136.8 720.0 981.2 163.2  99.969  100.001 16.8 322 6 1@
0.90 64.2 16607.4 33279.2 80920.8 7810.8 98.719 101.303 2 65. 1651.8 196.2 2
0.99 19.2 3551.6 2978.2 16949.0 817.2 98.273 100.675 219.8 88.26 274 g
o
0.50 100.0 131.0 596.8 1391.2 90.4  99.994  100.000 16.0 228 4 '§
200 0.70 100.0 134.0 523.8 1146.4 81.2 99.984 100.000 16.6 240 .8 %
0.90 72.4 7147.8 20553.4 39334.6 5170.6 98.882 101.453 64.61315.2 234.6 0
0.99 24.6 238314 9501.8 80025.0 2892.2 98.292 100.862 6312. 1900.2 57.0 a

10T
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Table 5.6 Average results over 5 random instances of Class 4 Witk150.

|K]| A visit (3.15) (3.3) (3.16) (3.12) LB% UB%  Rootsec Totalsec  Nodes
0.50 148.6 59.0 5332.4 1459.6 19554 99.924 100.027 20.4 2204 91.4
50 0.70 132.8 414.8 9517.0 2465.6 1812.4 99.911 100.162 62.2 5.627 814
0.90 62.8 18174.0 69428.4 62122.6 22382.8 98.909 102.216 6.821 4721.8 185.4
0.99 14.6 1473.0 4727.2 4266.0 1071.8 99.084 101.151 433.0 10.86 13.0
0.50 149.8 582.8 8600.8 4465.4 2040.2 99.958 100.008 26.6 8.228 86.6
100 0.70 148.0 341.4 10684.0 5054.6 3245.8 99.893 100.037 36.8 01.24 127.0

0.90 88.6 43316.2 167347.4 177371.0 46220.6 99.109 101.829 194.0 8334.6 418.2
0.99 22.0 10440.6 12072.8 49225.2 3078.4 97.745 100.534 4921 4712.6 41.0

0.50 149.0 796.4 19342.6 12959.2 5218.2 99.974  100.015 32.8 914.8 208.6
150 0.70  148.6 360.4 6565.2 5096.4 2229.4  99.925  100.005 36.4 0.637 109.8
0.90 101.8 27404.6 93793.0 104034.4 26977.8 99.290 100.990 179.6 4877.4 238.2
0.99 26.2  26033.2 23285.2 109225.4 6444.8 96.918 102.375 71.241 8564.0 84.2
0.50 150.0 436.4 5409.4 6151.0 1575.4 99.977  100.001 36.8 5.834 90.6
200 0.70  150.0 635.8 7702.2 7570.8 2450.6  99.936  100.017 40.0 1.442 96.6

0.90 117.0 29086.0 92983.4  120420.8 21252.0 99.502  100.872 158.0 5907.2 329.4
0.99 30.6 28492.8 28961.8  143598.8 8131.8 96.444 101.582 6.087 81254 63.8




Table 5.7 Average results over 5 random instances of Class 4 Witk200.

| K| A visit (3.15) (3.3) (3.16) (3.12) LB% UB% Rootsec Totalsec Nodes
0.50 1974 2667.4  139468.6 26936.2 27509.8 99.931 100.040 4.0 8 4804.2 608.6
59 070 18738 3640.4  187580.2 39422.2 28992.0 99.650 100.196 2.8 7 5898.6 697.0
0.90 87.8 4224.0 34169.0 17022.4 9356.4 99.452 100.505 4377. 2164.4 99.4
0.99 20.8 7200.8 22881.4 22076.0 4199.2 98.627 101.280 .2363 6253.0 51.8
0.50  200.0 272.2 16759.2 5036.0 4208.5 99.968  100.002 53.5 45.87 1120
100 0.70 197.0 774.0 37428.3 11764.7 9154.3 99.894 100.036 70.01578.7 249.7
0.90 121.8 33020.4 174537.8 140296.6 44897.6 99.095 102.02 447.6 11925.6 297.4
0.99 28.2 18219.4 24826.8 70204.8 6359.2 93.539 107.540 5.243 11872.4 67.0

S11NS3Y TVNOILVLINdINOD
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Class 1:|V| = 33

Table 5.8

Statistics using different pricing and routing costs

50 500 5000 50000
|[K|  Vis. Nod. PC Sec. Vis.  Nod. PC  Sec. Vis.  Nod. PC  Sec. Vis. NodC Bec.
50 3.6 1.0 331 0.0 8.4 3.0 488 1.6 16.8 42 60.2 1.8 25.2 22.8 8406
100 4.4 14 411 4.8 10.4 82 522 8.6 22.0 26 67.8 1.2 29.2 189.6 0.0
150 5.8 2.6 407 114 132 106 498 17.8 244 1.0 724 0.0 3240 913 00
200 6.4 1.8 433 17.4 13.8 254 545 492 26.6 10 742 0.0 32.2.8 935 0.0
250 7.0 26 448 27.0 152 31.0 554 630 27.2 10 772 0.0 33.A.0 946 0.0
Class 2:|V| = 100
2, 30] [5,75] 20, 300] [50, 750]
|[K| VMis. Nod. PC Sec. Vis.  Nod. PC  Sec. Vis.  Nod. PC Sec. Vis. NodC Bec.
50 13.6 126 185 56.4 34.4 78 444 172 45.6 114 60.8 3.6 049.18 718 0.0
100 242 438 211 1680 52.0 34 592 7.0 66.8 54 762 138 2 66.66 867 0.6
150 356 59.0 295 196.2 71.0 34 715 6.8 79.2 6.2 854 3.6 277.42 925 1.2
200 424 426 320 1410 76.4 50 80.0 124 83.6 126 90.5 90 188 26 974 1.2




Class 3:|V| = 100

Table 5.9 Statistics using different pricing and routing costs (cpnt

50 500 5000 50000
|K| Vis Nod PC Sec Vis  Nod PC Sec Vis  Nod PC Sec Vis Nod PC
50 9.2 19.8 9.4 104.4 104 14 431 1224 350 8.6 745 81.0 8 41.21.0 9438 66.6
100 13.0 142 10.7 179.8 14.2 22 50.0 3094 488 3.0 815 34@.2 1402 97.1 115.2
150 178 193.0 126 15528 18.0 30 553 4230 606 118 8549.0 6 634 1850 98.0 638.4
200 19.0 11.8 15.0 256.4 198 6.6 569 3444 772 422 882 .215477.0 4814 983 2557.8

Sec
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A Branch-and-Cut
Algorithm

for the ATPP

ABranch-and-Cutapproach forthe Asymmetric Travelingdhaser Problem (ATPP)
is performed in this chapter. The general scheme descnbdtiprevious chapter
is also followed, but taking into account the model for thgnasetric case. It also
proposes a transformation of the ATPP into its symmetrisioar, so a second exact
method is also presented. An extensive computational sisabn several classes
of instances from literature evaluates the proposed appesa A previous work by
Singh and Oudheusden published in 1999 solves instandesivtb 25 markets and
100 products, while the here-presented approaches préiveadipy on instances with
up to 200 markets and 200 products.

Since the Branch-and-Cut skeleton is quite similar to the described in Chap-
ter 5, only those specific issues of this problem are includetthis chapter. The
first section is devoted to a specific heuristics involvedhis fipproach. Section
6.2 sketches the above mentioned transformation. Sect®bdescribes the separa-
tion algorithms, and finally, our computational experierecehown in Section 6.4.
This experience compares the classical implementatioheoBranch-and-Cut, the
improved implementation by the branching heuristic anddfarmation approach.

6.1 B&C BASED HEURISTIC

The hardness of solving ATPP instances motivates the deweémbheuristic approach
based on the branch-and-cut algorithm. According to thegmore introduced by
Fischetti, Lodi and Toth [52], a reasonable branching seh@alledocal branching
considers the incumbent feasible ATPP circdiitC A at the end of each node of the

113
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decision tree, and proceed by creating two new nodes wittitijenction:

D (l—z)<k o > (- 2k +1, (6.1)

acA* acA*

wherek is an small integer number. Notice thal, . ,.. (1 —x,) is the number of arcs
in the solution: and not in the heuristic circut*. Clearly, solving the left-hand side
node is similar to explore &-neighbourhood of the ATPP solution represented by
A*. This exploration could only be done by full enumeration whe< 3, while the
branch-and-cut code could succeed for some larger valui® gfarametek, even
if the ideal situation of solving the node whén= n (i.e., solving the original ATPP
instance to optimality) is unlikely. The right-hand sidedieds more difficult to be
solved, and indeed it is as difficult as the original problehewnk is an small value.

Based on the above consideration we have modified the bramdicut code to
produce a good solutions for large ATPP instances. The nmészhaconsists in
solving the root node by using the algorithm described ingidreb. LetA* C A the
arcs representing the best feasible ATPP solution provigettie heuristic routines
in the code (i.e., the initial and primal heuristics, bots@ing a 3-optimality on the
circuit). To look for a better ATPP solution, we add the coaisit

k<Y (1= 2a) < ko,

a€A*

wherek; := 3 and ks := 6 where choosing after some computational experi-
ments. This constraint addresses the branch-and-cutthlydo explore outside a 3-
neighbourhood (which has been explored by the heuristitireside a 6-neighbourhood
(which is probably a limited region that can be explored ®/lihanch-and-cut).
Based on our computational experiments, solving the nebi@norequires many
computational effort, hence we also decided to fix some kb In particular, when
a new node contains only the variables with a fractionalealuthe current fractional
solution, plus all the variables that have been useful iregipus ATPP solution.
The heuristic approach stops when a better ATPP solutiorotifaund when
solving the current node, or after a given time limit.

6.2 TRANSFORMATION OF THE ATPP INTO THE STPP

We now introduce an alternative proposal to find an optimarofATPP instance
when an exact algorithm for solving symmetric instancewvaslable. The aim is to
transform an asymmetric instance into a symmetric one ispiré of similar works
done for similar routing problems. Inspired by tBenode transformatioof Karp
[91] and the2-node transformationf Jonker and Volgenant [86], both for the ATSP,
we next propose a transformation for the ATPP into the STPP.

We propose a simpl2-nodetransformation for the TPP ( see Fig. 6.1 for details).
A complete undirected grapgh’ (V’, E) with 2|V| vertices is built from the original
directed on&7(V, A) as follows. For each vertax € V a new vertexy,,; is added
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Fig. 6.1 Transformation of the ATPP into the STPP.

to V', thatisV' = VU, cy{vitv(}- In addition, for each pair of vertices and
v; , the cost of both edg€s;, v,,+;] and[v;, v, ;] are set to-A{, and the cost of
the edgesv, ., v;] and[v,;,v;] are set tac;; + M andc;; + M respectively. It
is easy show that an optimal solution of the ATPRAinduces an optimal solution
for the STPP inG’ andvice versa Then, a minimum-cost cycle i@’ solving the
STPP corresponds to a minimum-cost circuiGirsolving the ATPP, and vice versa.
Indeed, an optimal cycle cannot use two consecutive edgbswgative cost, so it
will alternate positive and negative cost, so the valudbfvill not affect the total
cost.

There are in literature transformations for the ATSP insosymmetric version.
Nevertheless, these transformations are not useful wieehRP is approached. Two
of the most important transformations are described below.

The 3-node Transformation for the TSP

This transformation, called tf&nodetransformation was proposed by Karp [91]. A
complete undirected graph witln vertices is obtained from the original complete
directed one by adding two copies,; andvs,;, of each vertex; € V, and by (i)
setting to O the cost of the edges,, ; ande(,, 1; 2,14 for eachv; € V, (ii) setting

to c;; the cost of edgeyy,, 4, 5 for all v;, v; € V, and (iii) setting to+-oo the cost of
all remaining edges.
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Fig. 6.2 Transformation of the ATSP into the STSP.

The 2-node Transformation for the TSP

The 2-nodetransformation was proposed by Jonker and Volgenant [88} édso
Junger, Reinelt and Rinaldi [87]). A complete undirectedpfravith 2n vertices is
obtained from the original complete directed one by addimgg@y, v,;, of each
vertexv; € V, and by (i) setting to O the cost of the edgg ,,. . ) for each vertex
v; € V, (ii) setting toc;; + M the cost of the edge,, ., ; for all v;, v; € V, where
M is a sufficiently large positive value, and (iii) setting+ac the cost of all the
remaining edges. The transformation vatue has to be subtracted from the STSP
optimal cost.
Figure 2.3 illustrates these two last transformations.
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6.3 SEPARATION PROCEDURES

Separations algorithms for our implementation of the bnaaied-cut algorithm for
the ATPP are described in this section.

Separation of YSEC + Inequalities

Proposition 6.1. Given a market; with y > 0, a most violated YSECconstraint
(3.20) corresponds to a minimum-capacity directed cut {ouit) (S, V* \ S) with

v; € S andvg ¢ S in the support graplz* by imposing a capacity; on each arc
a € A*.

This separation algorithm is quite similar to the algoritescribed for the sym-
metric case. Instead, a YSEGSs violated if the value of the directed cut is less than
1 (See algorithm in Fig. 6.3 for details). Notice that sinifao the symmetric case,
constraints YSEC are introduced in the same short form, that is (5.1). Howiver
derives from the following equation obtained adding (3.f®)each vertex,; of a

violated setS.
Z Tq + Z Tg = Z Yi- (6.2)

acA(S) a€dt(S) v; €S

Replacing (6.2) in (3.20) we obtain (5.1).
Figure 6.4 shows a fractional point violating the followi(gy20).

Z Ta = Yo

a€dt(S)

With S := {v4, vo}, sinceza€5+(s) x, = 0.5 andyy = 1, and ther).5 2 yq.

Input:  (G*,z*,y*), L
Output: L€
COVPONENTS( G*, C)
forall SecC
if ((vogS)
foral v, € S
LE =LYUY uest(s) Ta = s
else
forall v; € S\ {vo}
cut-val ue : = DI RECTED M NCUT( G*, v, v;, S’ );
if ( cut-value <vy; )
£C :=cu ZaeA(S) Tq — Zvjes\{w} y; <0

Fig. 6.3 Separation of the YSECinequalities.



118 A B&C ALGORITHM FOR THE ATPP

Fig. 6.4 Fractional point violating a YSECinequality.

Separation of ZSEC + Inequalities

Proposition 6.2. Given a producpy, determining a most violated ZSE@onstraint
(3.36) is equivalent to finding a subsetvith minimum value of

Z x, + Z Z—Zl
) viEM\S F

Figure 6.6 shows a fractional solution violating (3.36). this particular case
0.5/d, and0.5/d,4 units of the produgs, are offered at markets andv, respectively.
The subset’ consist of the vertices” := {0, v2,v4} and according to the Figure
6.6>  cs(s1\0) Ta = 0-5@nd}Y, oy, 2ia/ds = 1. Therefore inequality

1
Z Tq 2 an Z Z4i S = {vz,v4}
a€dt(S) v; ESNMy

is violated.

Separation of the DlJr and D;  Inequalities

The separation problem for the classmf inequalities calls for a vertex sequence
(i1,...,11), 1 <1< n— 1, for which the degree of violation

. . . ! . -1
Glir, ..o, 0) =] + D o @ i F 2D Tt
6.3)

-1 . . . l
Zh:S 1'*({127 cee 7“171}3 Zh) - Zh:l y;h + y;
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Input:  (G*,z*,y*,2z*), L£C Output:
EC
forall pr € K
Vi=V*Ud
fOI’?“ v; € My,
A:=A*Ua = [0,v;)
21k

Th =2 @
G=(V,A)
cut-value := MNCUT(G, vy, &, S’ );
if ( cut-value <1)
S = S\ {0}
LC = LOU Y qes(s) %o 2 2 v, eMpns ot

Fig. 6.5 Separation of the ZSECinequalities.

Fig. 6.6 Fractional point violating a ZSECinequality.

is as large as possible. This is itself a combinatorial opgtion problem and can
be solved by the following implicit enumeration scheme. TFloeheme starts with
an empty node sequence. Then, iteratively, we extend threrdusequence in any
possible way and evaluate the degree of violation of thesspondingD;" inequality.
The process can be seen by mean of a branch-decision treerodtheode of the
tree represent the empty sequence. Each node atflévef | < n — 1) correspond
to a sequence of the tyde,,...,i;); when! < n — 1, each such node generates
n — [ descending nodes, one for each possible extended sequence, i;, i;41).
Exhaustive enumeration of all nodes of the tree is clearlyrattical, even for small
values ofn. However, a very large number of nodes can be fathomed by mean
the following simple upper bound computation. Let,...,:;) be the sequence
associated with the current branching node :sand lety,,,,,, denote the maximum
degree if violation so far found during the enumeration. €ider any potential
descendent node of associated with a sequence of the tye. . ., 41,5141, - - - , im)-
Then, directly from the definition (6.3) one has
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Plir, it iig 1y im) = XF;  + Zh 2 Th i, Tt Zh o TF i+
Sons @ ({in, - vin1}yin) = Sney vl UL =
Ty, + 22:2 T inoy b1 Topiny T
Shea @ ({ins- - vinoa}yin) + Sps g @ ({in, - ina}in)+

m—1 *
h=2 Lii, — Zh 1 yzh

we establish the following bound

¢(i17"'5il7il+1a'";iTYL) S W(ila"'ail) +ZC* 3 +

Li+1h

[2*(6% (1)) — ;] + s [0 (in)) — i, ]
and then from (3.18)—(3.19) we have
7T(Z'1,...,Z.l)+$ik . (64)

L+1

where has been defined

l l l
7T(i1, . ,il) = in}Li}L—l + Z.I*({il, ey ih—1}7ih,) — Zy,z;.
h=1 h=2 h=2

Notice thatr (i1, . . ., i;) cannot exceed the degree of violation of the YSEC associated
with S := {i1,...,4;}; hence one ag(i1,...,%) < 0 whenever all YSEC are
satisfied byx*.

According to (6.4), the only descendent nodes tfiat need to be generated are
those associated with a sequeKge. . . , 4, 4;41) such that

*

Liyiyq > (bmaac —7T(i1,. --ail)- (65)

Notice that both quantities(iy, . . .,4;) andn (i1, ..., %;) can be computed along the
branching tree as

¢(i1a ) Zl) = d)(ilv s 7il*1) +z 11” + xnzl 1 + x*({ila SR il*Q}?ilfl) — Yiy

and
ity eoyit) = wlin, ooy ii1) oy, 2 {in,d-1 ) 0) = Yy,

whereg (i) := 7 (i1) := 0 for a singleton sequende, ).

Restriction (6.5) is very effective in practice, and reddcematically the number
of nodes typically generated in the enumeration. The desdrseparation proce-
dure proved to be rather successful in that it requires al$raation of the overall
computational time, but unfortunately does not producgabimber of violated cuts.
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Symmetric Inequalities

According to Fischetti and Toth [58] and Fischetti, Lodi afath [52], an ATPP
inequalityax+py+vz < apis called symmetricwhen;; = «;; forall (v;, v;) € A.
Indeed, symmetric inequalities can be thought of as deffired valid inequalities
for the STPP. In a similar way than we have defined the vargahliet us define the
variablest as follows. Letr;; = 1if edge[v;, v;] € E belongs to the optimal STPP
solution;z;; = 0 otherwise. Every inequality_;, ., 1cp ;Ti; + By + 72 < o
for STPP can be transformed into a valid ATPP inequality loypdy replacingz;;
by z;; + x;; for all edges[v;,v;] € E. This produces the symmetric inequality
ax + By + vz < ap, Whereoy; = oy = aforall v, v; € V, @ # j. Conversely,
every symmetric ATPP inequalityr + 8y + vz < «ag corresponds to the valid STPP
inequalityz[%v?]eE Qi Ti; + By + vz < .

The above correspondence implies that every separatiorithig for inequalities
from the STPP can be used, as a “black box”, for the ATPP as Welhis end, given
the ATPP fractional poinfx*, y*, 2*) one first defines the undirected counterpart
(T, y*, z*) of (x*,y*, z*) by means of the transformation

T =l for all [v;,v;] € E,

andthen applies the STPP separation algorithf@toy*, 2*). Onreturn, the detected
most violated STPP inequality is transformed into ATPP ¢erpart, both inequalities
having the same degree of violation.

Thus, we have that the separation algorithms for the inépsadescribed in
Laporte, Riera and Salazar [102] and in the previous chéptéhe symmetric TPP
are also valid for the ATPP.

6.4 COMPUTATIONAL RESULTS

The here-proposed approaches have been implemented inrfCa+6 AMD 1333
MHz. ABACUS 2.2 linked with CPLEX 6.0 has been used as a fraorkwsee
Junger and Thienel [89] for details on this software). A tinmeil of two hours has
been established for the running time of our algorithms.

To test the performances of our code, we have considered imBRihces obtained
by using the random generator described in Singh and vanéusden [141], since
this is the only today’s article in which algorithms for th&RP are tested. Itis a
generator of unrestricted ATPP instances in which the mgutbsts:, are randomly
generated ifil, 7], wherer is generated in [15,140]. Each market sells a number of
products randomly generated ih m], wherem = | K| is the number of products.
Purchasing costs are randomly generate.iw] wherew is generated in [5,75] for
each market. We have defined instances Withe {50, 100, 150,200} and|K| €
{50, 100, 150, 200}. For each type we have generated five instances by congiderin
different seeds, thus our benchmark library contains 8@stricted ATPP instances.

In order to consider ATPP instances with restricted offdérs,generator of Singh
and van Oudheusden has been extended in the following way. e&ah prod-
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uct p,, and each market;, qx; has been randomly generated in [1,15] ahd:=
[Amaxy,en, qri + (1 — N) Z'UieMk qri| for A € {0.5,0.8,0.9,0.95,0.99}. Ob-
serve that parametercontrols the demand of each product, and therefore it affect
the number of visited markets in an optimal ATPP circuit: sheller) is, the bigger
is the number of visited markets.

Tables 6.1-6.3 show statistical results from our comparafiexperiments testing
the branch-and-cut algorithm for the ATPP. The headingroakihave the following
meaning:

|V |: number of vertices (i.en + 1);

|K|: number of products (i.em);

A: value of the parameterin the generation (only for restricted ATPP instances);
solved: number of instances solved before the time limit (over 3d)ja

#: average number of vertices in the optimal solutions;

2sec: average number of constraints (3.27) separated;

ysec: average number of constraints (3.20) separated;

zsec: average number of constraints (3.36) separated;

2mat: average number of constraints (3.12) separated,;

Dz+: average number of constraints (3.32)—(3.33) separated;

Nodes: average number of nodes explored during the branch-anexegution;

%UB: average gap between the heuristic and the optimal soludibiie end of the
root node, over the optimal solution value;

%LB: average gap between the fractional and the optimal sokitibthe end of the
root node, over the optimal solution value;

Root-t: average computational time at the end of the root node;
Total-t: average computational time for the whole branch-and-oce¢aton.

According to Table 6.1, the branch-and-cut algorithm dbsdr above was able to
solve most of the 80 unrestricted ATPP instances. Only 1faimtes has not been
solved before the time limit. Only those instances stoppigfgre the time limit have
been taken into account in the average. The difficulty of ttodlem grows clearly
as the number of available markets and required product$ i number of visited
markets in an optimal solutions tends to remain small, evieenp’| = 200. This
is mainly due to the ratio between the routing cost and thamgicost in an optimal
solution. That is, the higher the pricing costs are, the &igge number of markets
in the optimal solution is.
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All the separations procedures described in Section 6 Gesaed in finding some
violated constraints. Computational experience showtsciiastraints (3.27), (3.20)
and (3.36) become quite relevant, since the average cotignaktime grows when
the their separation procedures are unavailable. Thisvilairecannot be extended
to Constraints (3.12), (3.32) and (3.33). Computatiomaktshows a no important
increase when those constraints are avoided. By consigaliithe separated con-
straints, the lower bound at the end of root node has neverliigger than 1% with
respect to the cost of an optimal solution. A similar respjblees also to the upper
bound obtained by applying the initial and primal heuristiBecause of the small gap
between the lower and the upper bounds at the end of the rdet tize exact algo-
rithm requires a branching scheme, but despite of this, poircach have concluded,
in most of instances, with the optimality proof before thadilimit.

Tables 6.2 and 6.3 show the statistical results when thechrand-cut code is
used to solve the restricted ATTP instances. Colugarshows how important is the
choice of the values of if different size of the optimal solutions must be considere

The hardness of solving the restricted instances with thadbr-and-cut code is
observedintables 6.2 and 6.3. The total computationalgioes with the parameter
A (which is also related to the length of an optimal circuitheTcomputational time
attains its maximum at = 0.95, and immediately the hardness begins to decrease.
As it has also been observed in the unrestricted ATPP inssarthe most relevant
constraints are (3.27), (3.20) and (3.36), and the uppefawver bounds at the end
of the root node are very close to the optimal solution value.

Allinstances of Table 6.2 (100 ATPP instances Wit = 50) have been solved up
to optimality before the time limit. However, 25 over 100tensces with V| = 100
remain unsolved with our time limit, as observed in Table ®8tice that, only one
over 20 instances with = 0.95 has been solved before the time limit in this table.

The transformation from the ATPP into the STPP presenteddti@h 2.4 has been
also computationally tested on the two previous familiemsfances. Notice that a
transformation of an ATPP instance witli| vertices produces a new STPP instance
with 2|V| vertices and with a minor increment of the number of edgesrdfore,
the size of the STPP instance is still reasonable for aVeilact algorithms.

Tables 6.4, 6.5 and 6.6 show a comparative study betweerptrwuifis branch-
and-cut algorithm for the ATPP and the above mentioned ftoamation. As in the
previous tables, the three first columns show the cardynafithe instance and the
number of markets involved in the optimal circuit generafElde next four columns,
both for the specific branch-and-cut and for the transfaionatspectively, show the
number of instances solved before the time lirSiblved, the percentage of the gap
between the upper and lower bound over the upper bound atdheade $ogap, the
computational time consumed at the root nodedt-), and the total computational
time taken by the optimal algorithnigtal-1).

Table 6.4 compares the original branch-and-cut algorithairest the transforma-
tion approach in the unrestricted ATPP instances. The ipbcanch-and-cut seems
to be more efficient not only with respect to the running tinue ddso with respect
to the gap between the upper and lower bound. However, asaotige number of
markets is increased, the different between these two apbes is reduced.



124 A B&C ALGORITHM FOR THE ATPP

Tables 6.5 and 6.6 are related to restricted TPP instanckse. oh these harder
instances, the branch-and-cut code shows better perfeerhan the transformation
approach, even if there are several exceptions Whénr= 100. The smaller gap of
the direct approach is due to the nad/hocinequalities and the heuristic approaches.



Table 6.1 Solving unrestricted ATPP instances with the branch-autaalgorithm.

vV  |K| #  Solved 2sec ysec zsec 2matD;” Nodes %UB %LB Root-t Total-t
50 9.2 5 506.8 60.6 848.4 8.0 8.6 13.8 0.47 0.33 1.0 5.6
5o 100 124 5 586.8 110.0 1357.2 6.4 2.8 17.0 0.58 0.20 1.6 8.8
150 14.0 5 827.8 152.8 2345.2 54 4.0 19.4 0.38 0.12 1.8 15.8
200 16.0 5 1329.4 220.4 3925.0 6.6 4.4 25.8 0.33 0.15 1.8 25.6
50 6.0 5 223.8 44.0 1062.0 5.2 2.8 7.8 0.12 0.17 17.0 36.8
100 100 12.0 5 9378.2 11242 126194 32.8 18.6 76.2 0.79 047 21.211.0
150 14.8 5 31966.6 4024.8 55081.8 124.2 432 265.0 0.76 0.48 5.4 2 1646.4
200 17.2 5 44964.0 64316 97084.0 246.0 624 329.4 0.50 0.38 4.2 2 2237.6
50 7.6 5 5343.2 598.6 6544.2 208 28.2 49.4 0.90 0.66 87.2 2812,
150 100 10.6 5 17261.4 1958.4 26797.4 344 178 93.4 077 057 0 992302.8 2
150 14.4 5 131484 2301.2 31251.8 772 220 147.4 0.74 0.44 .0 6922474 2
200 15.8 1 32748.6 4261.0 781404 1320 314 300.2 0.68 0.6800.41 1428.0 g
o}
50 7.8 5 4186.6 326.8 6694.2 19.0 16.8 32.2 0.57 0.59 277.8 4.348;;
200 100 10.2 3 15039.2 23744 30172.0 64.2 258 117.4 0.51 0.61 2.617 3037.7 Y
150 13.2 1 25074.2 23158 41014.2 86.8 20.8 126.6 0.64  0.65 1.024 1605.0 ©
200 16.8 0 32170.0 2351.6 45997.8 48.4 7.6  119.8 0.65 0.78 .8307 - 5

STA)
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Table 6.2 Solving ATPP instances witfV'| = 50 with the branch-and-cut algorithm.

|K| A solved # 2sec ysec zsec 2mat D Nodes %UB %LB Root-t Totalt
0.50 5 50.0 636.2 1.8 35.0 90.2 133.4 22 001 0.00 0.0 0.6
0.80 5 402 294.4 3.2 324 132.4 175.6 140 0.04 o0.01 0.0 1.6
50 0.90 5 274 390.8 22.4 179.0 712.8 857.6 412 0.07 0.08 00521
0.95 5 18.0 664.8 62.4 718.8 1017.4 27230 726 024 0.19 0014 3
0.99 5 10.0 484.0 20.0 370.2 115.2 1070.2 50 062 0.30 0.6 6.2
0.50 5 50.0 1325.2 24 84.2 166.6 525.2 74 0.00 0.00 0.2 3.0
0.80 5 50.0 594.4 2.8 64.0 88.2 253.2 40.2 0.01 0.00 0.0 3.0
100 0.90 5 4238 668.8 19.4 257.0 739.8 1032.4 456 009 004 0 0.278
0.95 5 286 12748.2 6354 101774 15147.2 378122 543.8 0.2118 0.2 800.8
0.99 5 1538 1436.8  40.0 1840.6 590.4  5039.8 174 034 024 1.631.6
0.50 5 50.0 1979.6 24 101.0 134.2 678.6 8.6 0.00 0.00 0.0 2.8
0.80 5 50.0 909.8 3.4 133.6 176.2 650.0 80 0.01 0.00 0.8 3.2
150 0.90 5 46.2 617.0 4.6 148.8 2294 764.0 228 0.02 o0.01 00 0 8
0.95 5 342 5457.2 209.4  3176.8 5070.2 15189.8 2128 0.12 0 0.1 0.2 4244
0.99 5 184  2669.4 70.8  2464.2 626.0 6527.4 288 042 0.8 2.471.4
0.50 5 50.0 2704.2 2.0 94.0 61.4 542.8 128 0.00 0.00 0.0 1.8
0.80 5 4838 1254.8 2.2 154.6 184.2 917.6 6.4 0.00 0.00 0.8 5.2
200 0.90 5 4838 779.6 3.8 154.2 145.8 692.2 80 002 0.01 08 4 6.
0.95 5 40.0 3652.8 1244  2639.2 35384 11679.8 1026 0.08 7 0.0 1.0 34438
0.99 5 214 73440 180.0 5862.6 1434.6 16103.6 67.0 029 02026 2216




Table 6.3 Solving ATPP instances witf’| = 100 with the branch-and-cut algorithm.

| K| A solved # 2sec ysec zsec 2mat D" Nodes %UB %LB Root-t Total-t
0.50 5 100.0 1546.8 122.2 136.2 1095.2 502.2 576.4 0.01 0.00 .4 2265.0
0.80 5 91.2 714.2 28.8 78.2 752.8 292.0 269.4 0.02 0.00 22 0 83.
50 0.90 5 60.8 4998.4 272.0 2834.0 16540.6 8709.6 3936 0004 0 1.8 13116
0.95 1 35.0 19694.2 1189.8 13954.4 65805.4 57756.2 1440.826 0.0.16 1.8 6767.8
0.99 5 136 6407.6 2624 8251.0 3857.8 174956 100.0 0.136 0.5 5.6 2029.6
0.50 5 100.0 2856.0 13.0 101.4 433.6 534.4 270.0 0.00 0.00 4414.2
0.80 5 90.4 1325.0 6.0 81.0 476.4 460.6 87.8 0.01 0.00 3.2 33.0
100 0.90 5 71.6 1271.6 25.6 343.2 1320.4 1390.2 76.2 0.03 0.013.0 190.2
0.95 0 - - - - - - - 014 013 4.0 -
0.99 3 20.0 1118154 3087.8 89527.4 31175.0 189650.4  988.474 0 0.33 10.8 5854.4
0.50 5 100.0 4542.6 23.4 108.4 388.2 670.6 347.8 0.00 0.00 215.4
0.80 5 100.0 22563.2 1763.4 46.8 901.2 585.6 54 0.00 0.00 2 16.16.2 §
150 0.90 5 90.4 3122.6 1120.8 152.8 2632.0 1672.0 96.2 0.001 0. 8.8 8.8 =
0.95 0 - - - - - - - 007 010 5.0 - %
0.99 5 18.4 108864.2 1837.0 25643.2 20542.6 174276.0 694.230 00.26 12.2 5623.6 6'
=z
0.50 5 100.0 5866.4 15.0 215.8 625.8 1181.0 2034 000 0.00 0O 5.97.6 i
0.80 5 100.0 3338.4 77.4 347.0 676.6 1089.4  495.0 0.00 0.00 .4 46294.6 m
200 0.90 5 950 2355.8 119.6 656.0 999.8 1580.8 6178 0.011 0.0 94 72 ¢
0.95 0 - - - - - - - 006 0.09 8.6 - @
0.99 2 220 103687.6 1666.8 46234.8 13034.6 146714.6  438.031 00.23 17.6 6675.6

LT
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Table 6.4 Branch-and-cut vs Transformation for unrestricted ATPRances.

Branch-and-cut

Transformation

V| |K| # Solved %Gap Root-t Total-t Solved %Gap Root-t Total-t
50 9.2 5 0.80 1.0 5.6 5 1.42 3.0 13.2

50 100 12.4 5 0.78 1.6 8.8 5 1.01 2.8 20.0
150 14.0 5 0.51 1.8 15.8 5 0.50 3.6 40.8

200 16.0 5 0.49 1.8 25.6 5 0.45 3.6 61.0

50 6.0 5 0.29 17.0 36.8 5 0.55 30.2 57.6

100 100 12.0 5 1.26 21.2 411.0 5 1.37 44.4 956.0
150 14.8 5 1.23 25.4 1646.4 4 1.72 38.0 2137.0
200 17.2 5 0.88 24.2 2237.6 4 1.05 28.2 1157.0

50 7.6 5 1.56 87.2 812.2 5 231 148.6 1371.4
150 100 10.6 5 1.34 99.0 2302.8 5 1.69 204.4 3256.0
150 144 5 1.19 69.0 2247.4 5 1.50 111.4 3880.0
200 15.8 1 1.35 100.4 1428.0 1 1.58 131.0 2609.0

50 7.8 5 1.17 277.8 1484.8 5 1.23 290.6 1663.2
200 100 10.2 3 1.13 172.6 3037.7 3 1.55 189.6 3511.7
150 13.2 1 1.29 241.0 1605.0 1 1.47 279.2 2162.0

200 16.8 0 1.43 307.8 - 0 1.74 418.0 -




Table 6.5 Branch-and-cut vs Transformation for ATPP instances With= 50.

Branch-and-cut Transformation
|K| A # Solved %Gap Root-t Total-t Solved %Gap Root-t Total-t
0.50 49.0 5 0.01 0.0 0.6 5 0.03 0.2 6.0
0.80 40.6 5 0.05 0.0 1.6 5 0.05 0.2 5.4
50 0.90 27.4 5 0.15 0.0 15.2 5 0.20 0.0 37.6
0.95 18.0 5 0.43 0.0 31.4 5 0.41 0.0 62.0
0.99 10.0 5 0.93 0.6 6.2 5 1.35 1.4 18.6
0.50 50.0 5 0.00 0.2 3.0 5 0.01 1.0 2.8
0.80 50.0 5 0.01 0.0 3.0 5 0.01 0.8 2.0
100 0.90 42.8 5 0.14 0.0 27.8 5 0.12 0.4 74.0
0.95 27.3 5 0.38 0.2 800.8 5 0.32 0.3 921.3
0.99 15.8 5 0.58 1.6 31.6 5 0.79 2.0 82.0
0.50 50.0 5 0.00 0.0 2.8 5 0.01 1.2 5.48
0.80 50.0 5 0.01 0.8 3.2 5 0.00 0.8 6.65
150 0.90 46.4 5 0.04 0.0 8.0 5 0.03 0.8 17.45
0.95 34.0 5 0.22 0.2 424.4 5 0.18 1.0 443.@
0.99 18.2 5 0.61 2.4 71.4 5 0.52 3.0 222.%
2
0.50 49.8 5 0.00 0.0 1.8 5 0.00 2.2 6.8&
0.80 48.8 5 0.01 0.8 5.2 5 0.01 1.6 3.2¢
200 0.90 49.0 5 0.03 0.8 6.4 5 0.03 1.2 9.2
0.95 40.0 5 0.15 1.0 344.8 5 0.14 1.0 561.8
0.99 214 5 0.48 2.6 221.6 5 0.50 2.0

520.3;
(o]
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Table 6.6 Branch-and-cut vs Transformation for ATPP instances With= 100.

Branch-and-cut Transformation
|K| A # Solved %Gap Root-t Total-t Solved %Gap Root-t Total-t
0.50 99.0 5 0.01 24 265.0 5 0.02 6.6 35.4
0.80 90.8 5 0.03 2.2 83.0 5 0.03 7.0 92.8
50 0.90 64.0 5 0.10 1.8 1311.6 1 0.03 2.0 129.0
0.95 35.0 1 0.42 1.8 6767.8 0 - - -
0.99 135 5 0.69 5.6 2029.6 4 0.70 9.8 1947.0
0.50 97.2 5 0.00 4.4 114.2 5 0.01 8.6 101.6
0.80 90.2 5 0.01 3.2 33.0 5 0.01 9.6 34.8
100 0.90 69.0 5 0.05 3.0 190.2 4 0.05 3.3 535.8
0.95 - 0 - - - 0 - - -
0.99 19.0 3 1.07 10.8 5854.4 2 1.06 12.0 5736.5
0.00
0.50 100.0 5 0.00 2.6 185.4 5 0.00 21.4 21.4
0.80 99.8 5 0.00 16.2 16.2 5 0.01 9.0 9.0
150 0.90 90.2 5 0.03 8.8 8.8 5 0.03 7.8 7.8
0.95 - 0 - - - 0 - - -
0.99 19.0 5 0.56 12.2 5623.6 1 0.88 11.0 4729.0
0.00
0.50 100.0 5 0.00 5.0 97.6 5 0.00 304 122.2
0.80 100.0 5 0.00 46.4 294.6 5 0.00 10.8 46.8
200 0.90 95.4 5 0.02 9.4 7.2 5 0.02 6.0 7.2
0.95 - 0 - - - 0 - - -
0.99 22.0 2 0.54 17.6 6675.6 2 0.56 17.5 5584.0




The Biobjective Symmetric
Traveling Purchaser
Problem

The purpose of this chapter is to present a new approachve twBiobjective Trav-
eling Purchaser Problenf2 TPP), defined as the biobjective version of the Traveling
Purchaser Problem (TPP), referred as 1TPP to emphatizenitiéterion function.

A new computational technique to improve the efficiency of approach is also
introduced in this Chapter. This technique consists in mgkise of previously com-
puted cuts, in order to enlarge the initial cut pool during domputation of further
non-dominated points.

A simple cycle inG passing through the depat and a subset of markets is called
feasible solutiorif for each producp,, the cycle visits enough marketsiy, to allow
buying the required);, units. Given a feasible solution = (V (o), E(0)) visiting
nodesV (o) C V and routing edge&'(c) C E, there is an associated pricing cost
defined by

. . > bkiZhi © Dy, Zgi = dy,
ri ce .= v, EM,NV (o) v; EM NV (o)
P (0) Z mm{ andzy; < q; forallv; € M NV (o)

(7.1)
wherez;;, is a unknown value representing the amount of progitb be purchased
atv;, and an associated Traveling cost defined as

travel (o) := Z Ce.

e€E(o)

prEK

Thenthe 2TPP looks for determining a feasible solutiominimizing bothpr i ce(o)
andt ravel (o).

131
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To our knowledge all previous studies of the 2TPP are resttito the case where
the two objective functions are replaced by a single contpashjective function
obtained by simply adding the Traveling and the pricing €o%tis single-objective
problem will be denoted by 1TPP. Nevertheless, in real appibins both objectives
are not comparable, and a more sophisticated procedureededdo address the
biobjective structure of the 2TPP.

Our aim in this chapter is to address the 2TPP, providing aamwoach to gen-
erate non-dominated and extreme efficient points with r@gpeboth criteria. This
approach takes the advantage of solving 1TPPs by a brantbtamlgorithm mak-
ing use of a heuristic method based on a common cut-pooltsteuthat saves the
previously generated cuts. Since the model of this problesbieen already de-
scribed, we refer to the reader to Chapter 3 for details. EBmegal algorithm of this
approach is described in Section 7.1. In this section we @dsaribe the common
cut-pool structure and give an illustrative example. Rinebmputational results are
shown in Section 7.4, showing the good performance of ourcgmbh on instances
with [V| < 100 and| K| < 200.

7.1 THE OVERALL ALGORITHM

The aim of this section is to describe the general procederdéave developed to
generate a set of solutions for the 2TPP. Fundamental ctsxaeMulticriteria Opti-
mization are presented bellow. However, we have to remaitkiiese definitions are
not unique in literature, and we are following the notati@sctibed in Ehrgott [49].

Definition 7.1. Let f; and f> be two performance criteria. Then tbeterion space
is
Z ={z e R’z = (f1(0), fa(0)),0 € P},

whereP is the decision space defined by the convex hull of all feasblutions of
the 2TPP.

Definition 7.2. A solutionc™* € P is calledPareto optimalf there is notr € P such
that f1(o) < fi(o*) and fa(o) < fao(o™*), where at least one of the inequalities is
strict. If o* is Pareto optimal thefif; (c*), f2(c*)) is calledefficientpoint. The set
of all Pareto optimal solutions is called tRareto set The set of all efficient points
is called theefficient set

Definition 7.3. The set of thesupported efficient solutionsthe set of Pareto optimal
solutions which are optimal for any weighted sum of the dldjes. The remaining
Pareto optimal solutions are then-supported efficient solutions

The aim of the proposed algorithm is to compute the efficiehtiacluding both
supported and non-supported points in the criterion sp&yar. proposal is based
on a hybrid method that combines tiveighting methodvith additional constraints
(see Ehrgott and Gandibleux [50] for details on similar athons for bicriterion
combinatorial optimization problems). It is also relatedheparametric approach
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introduced by Solan [142] and used to solve other problergs;ekindt, Billaut and
Proust [146] and Viee, Teghem, Pirlot and Ulungu [150]. This scheme combines
linearly both criteria and introduce a weighting factor &ach of them. If these
weighting coefficients, denoted herebyandws,, are interpreted as parameters then
we obtain a linear weighting method which can be used for theemation of the
supported set. Without loss of generality the normalizatip + w, = 1 may be
applied, so we will only relate ta. This weighting procedure is embedded in a
binary search algorithm which explores different regiohshe decision space by
making use of additional constraints restricting the cdiote space. This mechanism
allows us to find the set of non-supported efficient points ak. w

The basic steps of the general method are showed in FigureThetinitial step
computes the two starting pointﬁft),fél)) and (fl(g),f2(2)) by optimizing hierarchi-
cally both criteriaf, andf,. How to obtain these two initial subproblems is described
in Section 7.1. These two initial points define the two firficegnt points and there-
fore initialize the efficient se§ E. Moreover, they also define the first intervalRd
(denoted by ([(V, £M). .. (r £*)]) to be explored, which initializes the list of
pending interval€’. This method get iteratively an interval frofif, solves a single
objective problem (if it is feasible) providing an efficigmint to be included it £
and two new intervals to be explored, which are stored’in This loop is repeated
while £ is not empty. Figure 1.6 illustrates this step. Notice thit step performs
a binary search of efficient points in the criterion space.

Each single-objective problem, named W1TPP, is defined biwengnterval

[P 759y, (f2, £12)] as follows

minwfi (o) + (1 - w) fa(o) (7.2)
subject to
oceP (7.3)
file) < £V (7.4)
falo) < 157, (7.5)
whereP can be replaced by constraints (3.2)-(3.9), and= %3, wherea :=
72 g

poEver If only the supported efficient points were required, coaists (7.4) and
(71.5) should be extended with the following constraint
wif1(0) + (1 —wi) falo) <wr fO + (1 —wy) f12. (7.6)

Since we assume that the input data are integer numbersyribgaints (7.3)—(7.6)
can be replaced by
oceP

flo) < -1
folo) < f$P =1
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whi(o) + (1= w)fa(o) < lwrf{Y + 1 —w) 52 — e,

respectively, fore > 0 an small parameter. Figure 7.2 shows how this approach is
able to generate the non-supported efficient points as fak#iie were not supported
efficient points in the explored interval.

1= mingep f1(o)
= ming ep (f2(0)f1(0) < 1)
) = mingep fa(0)

12 = mingep (f1(0)|f2(0) < f57)
ch= LY B 2 51
ND = {7 D), (12, £52))
while £ # @
Sel ect from £l an interval [(f1(1>,f2<1)) .. (f1(2>,f§2))}

£ i= LY, A5 (P

£ g0
o= 22
D@
— (o7
W= oo
o* :=arg WLTPP(w, fl(l), f2(2))
if o*# 0o

ND := ND U (f1(c*), f2(c*))
£l =" O{(( D) (o) F2 o)L [ (0, f2(0)) - (£, £57)]

Fig. 7.1 Pseudocode of the hybrid algorithm.

Since we assume that the input data are integer numbergrbgaints (7.3)—(7.6)
can be replaced by
oceP

Aoy < -1
fa(o) < f2(2) -1
wh(e)+ (1= w)fa(0) < [wh” + (1 —w) i — ],

respectively, foe > 0 an small parameter.

In order to solve each W1TPP we make use of a branch-andgurithim similar
to the algorithm proposed by Laporte, Riera and Salazar][f@2the 1TPP, but
adapted for W1TPP to manage (7.4)—(7.6). The following teatisns describe both
the branch-and-cut approach and the specific changes pexddor solving 2TPP.

Initial Efficient Points

Two specificimplementations of the W1TPP have been perfdforéhe computation
of bothinitial points gq(” ,fél)) and (fl(Z) ,f2(2)). These implementations perform atwo
phases procedure. The first phase optimjzethat isfl(l) = mingep f1(0), andfs,
that isf2(2) := minyep f2(0). The second phase optimizésand f; subject to the
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Fig. 7.2 Optimization step

optimal values obtained in the previous phase, thg(tli)s:: min,epq{ fa(o)|f1(o) <
% and £2) = mingep{fi(0)|f2(0) < £2'}. Notice that,f,() is obtained
solving the polynomial problem described by (7.1). A simgdehocalgorithm with
time complexityO(|V]log |V || K |) has been developed for this specific subproblem.

Additionally, 2(1) is the minimum cost feasible cycle. In this particular cadse t
branch-and-cut approach has been specifically adapted kipgnase of an specific
heuristic to solve th€ycle Problem Once bothfl(l) andfz(l) have been obtained,
the problemsnin,ep{ f2(0)|f1(0) < f1'} andmingep{fi(0)lf2(0) < f5"} are
solved by the branch-and-cut for the W1TPP with additionaktraints and choosing
the weighting values properly.

An important observation is that this constrained 1TPP salidpm could stops
with no feasible tour. This justifies the impossibility ofding feasible solutions in
Step 1 and 4 on some instances.

7.2 COMMON CUT-POOL HEURISTIC

As already mentioned, the algorithm to solve solve the W1sBiiproblems has
be embedded into an iterative approach that generates seg@md non-supported
efficient points. In order to speed up the performance of trexadl procedure we
have made use of a common cut-pool structure that saves tatidenequalities
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Fig. 7.3 Two new intervals obtained from the first optimization step.

separated during the resolution of subproblems, for besed latter on in forthcoming
subproblems.

The motivation of saving useful cuts for a former subprobiena cut pool to
be available when solving latter subproblems is based orcoheectivity of the
Pareto optimal solutions (see Steuer [143]). Therefor¢heflatter subproblems
have in advance a pool structure containing cuts that haga heeful in former
subproblems, then they might be solved with less compuratieffort. This can be
done since the cuts generated by our branch-and-cut daahgseibproblem are valid
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X3

x3

X1

o (fi(z1), f2(=1))

1

o (f1(z2), f2(z2))

o (f1(=z3), f2(z3))

fa

Fig. 7.4 Common Pool.

inequalities for all feasible tours, since the W1TPP’s pelyron is included in the
1TPP’s polyhedrorP. This is the aim of the proposed heuristic approach.

More precisely, since the full description of the probleptddyhedron is unknown,
a dynamic constraint generation has to be performed forgagte criterion subprob-
lem. Each single criterion problem produces a set of cuts éisa-ig. 7.4 illustrates,
might be useful for solving forthcoming subproblems, (f&: computing other ef-
ficient points). In order to exploit those cuts, the datacitme £¢ is shared and
updated by all subproblems. Since this structure has agléhsize we do not allow
the introduction of all violated cuts generated by all thgegation procedures. On the
contrary, we rank the violated inequalities and select tbhetmiolated ones (no more
than 50). The selected inequalities are saved in the cutgmmbused to strengthen
the current LP. To keep small the size of each LP, some unsa&gesonstraints are
removed from the LP every five iterations. In this way, thelfma-pool list £LCis
the initial list of candidate inequalities to strengthea ttext subproblem.
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A similar consideration does not arise with the variabledatt, a variable-pool is
useful when each single W1TPP is solved due to the large nuohbg variables, but
according to our experiences, it was useless to save theblespool structure from
one W1TPP to another. Thus a variable pool is initialized nvapproaching new
subproblems. Computational behavior of this improvengahbwed in Section 7.4,
which compares some instance resolutions performed witméhout the common-
cut-pool structure.

7.3 ILLUSTRATIVE EXAMPLE

(935.88, 84)

8 (937.43,76)

C

J1 (938.61, 61)

0 (943.52,53)

S (946.48, 46)

(949.59, 38)

fa

Fig. 7.5 The six efficient points from the example in Burstall [25].

In this section we introduce an example to illustrate how #iproach can provide
insight about the choice of a set of states as well as the seque which they have
to be processed.

We consider an example proposed in the first article on theeliregy Purchaser
Problem by Burstall [25] (named Batch#12) extracted froraad world applications
in the industrial context. This example arose from the diffic encountered by a
firm manufacturing steel tubes, a member of the Tube Invagsr@roup. A set of
steel tubes has to be manufactured. According to the regfimal product the tubes
are grouped into 8 batches. Those batches have to be prddgsaemulti-purpose



Table 7.1 The six efficient points from the example in Burstall [25].

States

J1

J2

Js

Ja
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J6

Jr

Js
Change-over
Processing

A B C D E F
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S1 S7 S1 S7 S1 S7
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517 S14 S17 S6 S14 S6

84 76 61 53 46 38

935.88 937.43 938.61 943.52 946.48 949.59
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machine, which is able to change its state depending onskédde carried out. The
machine has 19 potential states. Changing from a state thentakes a change-over
time. On the other hand, the processing time of a batch depemthe state of the
machine it is processed. Thus, a batch might be processexyémas states of the
machine, but spending different processing time.

We have solved the problem representing a trade-off betw@ahchange-over
time and total processing time. We have obtained the sixdwninated points (A,
B,..., F) (see Fig. 7.5) as well as the three extreme pointsJAF). For each
non-dominated point one solution is also described in Taldlewhich contains not
only information about the sequence of the states but alsagskignment of jobs to
states. The two first points and the related interval have bb&ined by mean the
procedure described in section 7.1. In the first step of dpéition the supported
point C has been obtained. This produces two news interéalC] and [C, F],
producing on its turn two new points (B and E) and four newrivdks. The next
interval to be examined is [A,B] (notice that in our parti@uimplementation the list
L' is organized as queug, but it produces a non-feasible subproblem, and therefore
neither point nor intervals are obtained. The process ooes iterating while the list
of intervals remains no-empty.

7.4 COMPUTATIONAL RESULTS

To evaluate the performance of our proposal on 2TPP instainom literature the
procedures were implemented in C++ and run on a Pentium 50@ &tthputer
running Linux. ABACUS 2.2 linked with CPLEX 6.0 was used asaniework (see
Junger and Thienel [89] for details on this software).

We have considered the following three classes of 2TPPrtstrices:

Class 1 contains 33-market symmetric instances defined with thesaput data as
in Singh and van Oudheusden [141]. These correspond torestanstance
size solved by these authors. The routing costs are thos@®fvartex TSP
described in Karg and Thompson [90] and do not satisfy thegle inequality.
The first vertex is the depot and all markets sell all produeteduct prices are
generated in [1,500] according to a discrete uniform distion. We generated
five instances with/'|=50, 100, 150, 200 and 250.

Class 2 instances are randomly generated by using the procedurglzixsin Pearn
and Chien [123]. Routing costs are randomly generatdd,in] wherer is
generated in [15,140]. All products are available at allkets. Purchase costs
are randomly generated [f, A\]| where) is generated in [5,75]. Contrary to
Pearn and Chien, we have used symmetric routing cost insfesgymmetric
costs. We defined instances wjltij=50 and 100, anfx’|=50, 100 and 150.

Class 3instances were defined by first generatifig integer coordinate vertices in
the[0, 1000] x [0, 1000] square according to a uniform distribution and defining
routing costs by Euclidean distances. Each propiatas associated witti /|
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randomly selected markets, whéid;, | was randomly generated|ih, |V|—1].
The remaining characteristics of these instances are dedméor Class 1.

Tables (1)—(3) show details on our experiment. Each line tabée reports the
average result on 5 instances. The columns have the folpmiganing:

|[V|: number of markets plus one (the depot).
|K|: number of products.
#sub: average number of W1TPP instances solved for each 2TPP.

#P: average number of feasible W1TPP instances among #suhimeber of points
in the criterion space).

no-pool-t: average CPU time to solve each 2TPP without the common altdada
structure.

pool-t: average CPU time to solve each 2TPP using the common cutspooture.

The last four columns appear twice. The first set of columfersdo the com-
putation of all efficient points, while the second set reterthe computation of the
supported efficient points. Notice that the proposed meshaproduces one Pareto
optimal solution in the decision space for each efficientpimi the criterion space.

According to Tables 1 to 3, itis clear the benefit of using treeadnic pool structure
described in Section 3.2. More precisely, on instance fas€P, there is a minor
penalty on the computational effort when computing the iefficsolutions on small
instances (fotV| = 50, the penalty is close to 4%), but in all the other situations
there is a clear saving. Indeed, the common cut-pool appnoavides a 19%, 14%
and 30% of time saving when the set of efficient points is caegbin instances of
Classes 1, 2 and 3 respectively; and a 6%, 10% and 40% tinTegsaminputing when
the set of supported efficient points is computed. The aisiysnore evident from
the summarizes in Tables 4-6, which show the percentagembiing time using
the pool structure.

The CPU time taken to solve each LP was in all cases quite #ritadl compared
to the overall algorithm. Indeed, an estimation on the ay&@PU time for solving
each W1TPP instance is obtained by dividing the CPU time sldwthe tables by
its correspondent value in columsub The time consumed is close to one minute
in the worst case, but it includes the time taken to compenhthuristic, to call the
separation procedure, to perform the LP solver, to maimesdhe pool structure,
and to perform other components of the branch-and-cutrighgo.

Finally, our experiments have also proved that the ovepgli@ach is able to fully
manage problem resolutions with up to 100 markets and 20upts.
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Table 7.2 Results solving instances from Class 1

v K] Efficient Supported
#sub #P  no-pool-t pool-t #sub #P  no-pool-t pool-t
50 215.8 109.2 1095.6  1196.2 49.0 25.0 43.2 42.8
33 100 297.6 149.6 3606.2  4462.2 55.8 28.4 129.0 136.6
150 342.6 172.0 11251.6 14726.2 58.6 29.8 361.4 405.4
200 331.0 166.0 18960.0 25296.0 58.0 29.5 683.0 755.0
Table 7.3 Results solving instances from Class 2
v K] Efficient Supported
#sub #P  no-pool-t pool-t #sub #P no-pool-t  pool-t
50 64.4 36.0 247.4 234.4 28.2 154 32.8 34.2
50 100 82.4 45.0 478.0 443.2 32.0 16.6 65.8 60.6
150 102.6 56.2 822.0 776.6 40.0 21.0 104.0 105.0
200 100.6 56.0 1555.6  1447.0 36.6 19.0 235.0 227.2
50 56.0 32.8 2422.6 23144 276 15.0 590.4 581.2
100 100 91.0 534 9466.4  7345.6 41.8 224 3745.4 3175.4
150 126.6 75.8 22853.8 15979.2 54.0 28.6 7715.8 6020.4
200 1314 81.2 61313.0 41054.4 49.8 26.8 9467.4 5944.6
Table 7.4 Results solving instances from Class3
v K] Efficient Supported
#sub #P  no-pool-t pool-t #sub #P no-pool-t pool-t
50 69.6 44.0 692.0 447.8 226 124 75.2 41.0
50 100 92.0 55.2 1303.2 979.0 33.0 18.0 219.6 139.6
150 112.2 67.0 2064.4  1455.2 38.4 20.2 340.6 201.4
200 1154 68.6 3275.4  2215.2 37.4 20.0 407.0 255.2
50 58.8 36.4 5646.4  3413.8 28.6 16.0 1459.2  877.8
100 100 82.6 49.8 15636.8 13604.6 33.2 17.6 4092.0 2247.4
150 119.0 74.0 478854 29884.8 446 23.6 10406.6 6734.0
200 128.8 80.4 66728.2 44162.4 458 24.8 10448.4 6113.6
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Table 7.5 Summarize of results in Table 7.2

Table 7.6 Summarize of results in Table 7.3

Table 7.7 Summarize of results in Table 7.4

V| |K| %-Eficient %-Supported
50 8.41 -0.93

33 100 19.18 5.56
150 23.59 10.85
200 25.05 9.54
19.06 6.25

V| |K| %-Eficient %-Supported
50 5.25 -4.27

50 100 7.28 7.90
150 5.52 -0.96
200 6.98 3.32

50 4.47 1.56

100 100 22.40 15.22
150 30.08 21.97
200 33.04 37.21
14.38 10.24

V| |K| %-Eficient %-Supported
50 29.47 41.76

50 100 26.42 35.92
50 30.50 43.77

200 30.44 37.00

50 38.32 37.57

100 100 22.28 43.46
150 37.21 36.99
200 35.45 43.01
30.75 40.22

143






A Heuristic Approach for
the STPP

As already mentioned, no efficient algorithm to solve TPPaupgtimality can be
found, unles® = N'P. Thatis why the literature on TPP is mostly directed towards
the development of heuristic or near optimal methods. 8e&il has given a review
on, among others, heuristic algorithms for obtaining ugpemds of this problem.
This chapter is devoted to the development of a heuristiordhgn for our problem.
Moreover, this method is not only a specific technique fog garticular problem but
also a general approach, which could be extended to othdaspnoblems as those
described in Section 2.3.

A feasible solutiorr of the TPP consists in a cycle i defined by an edge subset
E° C F and a vertex subsét® C V' such that:

i) the depot is visited, i.eyy € V7,
ii) for each vertexo € V7 the degree of is exactly 2,

iii) it is possible to purchase the required demand, i.e.

S i >dy for all py € K.

v; EVINMy,

The set of all feasible solutions will be denoted®y In addition, let us define the
routing costof o as

travel (o) := Z Ce;
ecE°
145
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thepurchasing cosbf productpy, in o as

price(o,k):= min{ Z 2kibri : 2vievenny 2ki = di };

< s ) o )
v EVINM), 2k < qre forallv; € Vo n My
and, thetotal purchasing costf o as

price(o):= Z price(o,k).

pLEK

The valuef(o) :=travel (o) + pri ce(o) is called thetotal costof the feasible
solutiono represented by the cycl®“, E9) in G. The TPP searches for a feasible
solution with minimum total cost, i.e.,

min{f(c): o € Q}.

Very special instances of the TPP arise whgn= 1 andq,; = 1 for eachp, € K
andv; € My, leading to the previously introduced unrestricted TPRn&stioned in
the introduction, most of the articles in literature are@amed with this unrestricted
version. Clearly, a feasible solutian of the unrestricted TPP is a simple cycle
(V?,E?)in G such that:

i) vg e VO,
iy Von M, # 0forall productspy, € K,

and the purchasing cost of a prodpgtin o is simply stated as

price(o, k) := vie%%m b

As mentioned in the introductory chapter, the TPR/i®-hard in the strong sense
since it reduces to the TSP when = n and|My| = 1 for all p,. The TPP also
reduces to the UFLP whehl;, = M for all pi, qx; = di for all v; € M and all
pr € K, andc. = (f; + f;)/2forall e = [1,j] € E, with f; the cost of opening
facility v; (fo := 0) andby; the cost of serving customgy, from facility v;.

Next sections establishes the main idea of our local-sgaogiosal, which is based
on two families of neighbourhoods. A specific procedure tiee a local minimum
is developed for each of them. The first procedure performieaative scheme
exchanging consecutive vertices in a given feasible cycle with a setesfices
not belonging to that cycle. The valdds reduced as soon as a local optimum is
achieved. The above mentioned procedure is callétbnsecut i veExchange.
The second procedure inserts as many vertices as posshi#egwver each insertion
implies a reduction in the objective value. This procedsredlledl nserti on.
We next describe more details on each one, starting withaastiatcture to speed up
the evaluation of an insertion/deletion of a market in aipbsblution.
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Fig. 8.1 (a): List for productp;, previously sorted such thak; < bgm < ... < byj.
(b) and (c): Evaluation of a potential insertion of prodygt available at market;, where
brr < bri < bem.

8.1 DATA STRUCTURE

Whenever a solution is evaluated and an insertion/deletoars, the evaluation of
a modified solution can be efficiently recomputed using@dmocdata structure. A
partial solutions has an internal representation consisting of a sequencautdets
in V7 and a dynamic array for each prodpgte K. Each component of these arrays
corresponds to a market € V° N M;, and contains the offer,; as well as the unit
price by;. These items are pre-sorted according to the purchasinggcosFigure
8.1a illustrates the array for a produgt, and Figures 8.2 and 8.1c¢ help with the
idea of inserting a new market sellingp,. According to this data structure, the
insertion of a new market; € M \ V7 in a partial solutiono would take a time
complexity ofO(log |[V? N My|) for each producp,, € K. Hence, the evaluation
of the total purchasing cost would take a time complexityOgfV?||K|). In the
particular case of the unrestricted TPP, this complexityldde reduced t®(1) for
each producp, € K.

8.2 L-CONSECUTIVE EXCHANGE

Making use of the above data structure, the algorititonsecut i veExchange
proceeds by exchanging a set/aonsecutive vertices belonging to a feasible cycle
o, with other vertices outside the cycle, in a two stage-piace. The first stage
(calledi-Consecut i veDr op) tries to reduce the length of the cycle by removing
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[ consecutive vertices. The second stage (cdi¥esit or eFeasi bi | i ty)triesto
restore the feasibility if it is lost in the previous stage.

This idea generalizes the procedilv#’1 described in Vol3 [151], in which exactly
one single vertex is removed from a feasible cycle, and a eunmbconsecutive in-
sertions is performed as long as an improvement in the dbgefeinction is achieved.

A similar idea has also been proposed by Keller [92] for@r&nteering Problem
where two consecutive vertices are replaced by othersefils to a better feasible
route.

This set of moves defines a very large neighbourhood. Beda#Hithés, in order
to select a good neighbour, the classical complete enuime@tthe neighbourhood
is avoided, and the following heuristic procedure is perfed. Given an initial
solutiono, an starting valué is chosen according to a self-tuning procedure. An
iterative mechanism to remove each sequencdeohsecutive markets is performed
by the proceduréConsecut i veDr op. Whenever a modified cycle turns out to be
infeasible, the procedufRest or eFeasi bi | i t yis called upon. The solutionis
updated if it improves the previous one. However, if no inveraent is achieved or
restoring feasibility fails, valuéis decreased by one unit. This procedure continues
iteratively, stopping wheh = 0. See Figure 8.2 for a pseudocode of the described
procedure.

Input: a feasible cycle o and 1<I< |V
Output: a feasible cycle o
whilel > 1 o’ :=[- Consecuti veDrop(o,l)
if o/ is not feasible
o' .= RestoreFeasibility(o’)
if f(¢’)> f(o) or o’is not feasible
l:=1-1
else
g = 0'/
return o

Fig. 8.2 Procedurd-ConsecutiveExchange.

l-Consecutive Drop

This routine selectsconsecutive vertices according to an estimation of theotibge
function reduction (i.e., the reduction in travel cost afiemoval and the increase
in purchasing cost). For each pathC E? consisting ofl + 1 consecutive edges
{[s, u1], [u1, us], - - -, [w—1, w], [ur, t]} belonging to a feasible cycle letV(P) :=
{u1,---,u } beinternal vertices aP. The potential reduction in the travel cost after
removing the vertices iV (P) is computed as follows

Travel Reducti on(P) := Z Ce — Cs,1]-
ecP

In addition, the potential increase in the purchasing cast(referred as Price
Increasep)), as well as the set of non-satisfied products after the vahuf ver-



L-CONSECUTIVE EXCHANGE 149

tices inV(P), are also computed. More precisely, those units of prodattwere
purchased in markets i(P) have to be acquired at marketsiof \ V(P), adding
the extra costt®r i cel ncr ease(P); if those units of product cannot be purchased
in Ve \ V(P) then we do not penaliZer i cel ncr ease(P) so as not to discourage
selecting a path leading to an infeasible solution. Theséuations are performed
on each possible patR with [ + 1 edges, and all of them are ranked according to
Travel Reducti on(P)—Pri cel ncr ease(P). The path with the biggest rank
is selected to be removed.

After removing those selectédconsecutive vertices, an improvement procedure
is applied to reduce the routing cost of the new (and possibly-feasible) cycle
o. In our implementation this improvement is a specific varsid the Lin and
Kernighan [106] algorithm, available in Applegate, Bixi§pok and Chatal [4].
The Lin-Kernighan algorithm performs a sequence 3-opt edgrchanges, each
one followed by a sequence of 2-opt edge interchanges.

Restoring Feasibility

This procedure tries to extend an infeasible cyclso as to restore the feasibility.
To this end, new markets must be inserted. Denotingy byhe set of vertices in the
previous feasible cycle, the new markets are allowed to leetsel fromM \ V* to
guarantee the generation of different cycles. In our expenis this decision proved
to give better results than usidd \ V7 as candidate markets.

The method proceeds by computing the non-satisfied amuat max{0, dj, —
>_v;evenn, ks ) for each produch,, € K, and selecting a subsgtC M, \ V* of
markets selling the required amount for each product.

A basic greedy approach finds an initial sudSetuch asy _,, - qxi > dy, for all
pr € K, by choosing the cheapest markets provideviin\ V* for each producpy.
However, this procedure admits the following improvement.

Given a non-feasible solutiom, for each vertex; € M \ V* not belonging to
o, two weights are computed. These weights are the routingase, denoted by
p(vi, o), and the purchasing cost reduction, denoted:by;, o). After computing
these estimations, asub3et M\ V* of markets is selected conveniently by solving
the following problem:

min { Z p(vi, o) — p(vi, o) : Z qri > dy, forall p, € K}

TCM\V*
v, €T v, €T

This combinatorial optimization problem is a generaliaatof theset coveringprob-
lem, which is known to beV"P-hard (see Karp [91]). Despite this, in our computa-
tional experience this combinatorial problem turns outecehbsy to solve since it is
concerned with small-size instances.

The two above mentioned weights try to establish a discentfoethe selection
of the setl" according to the two criteria involved in the objective ftian.
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The routing increase(v, o) of a marketv in the current solutiorr, which is
related to the routing cost, describes how much the routisg @ould increase after
the insertion ofv in o. In order to calculate, the classicakaving criterion(see
Clarke and Wright [35]) is used.

It should be notice that, in contrast to the case in which &wving is related to a
single vertex, there are some cases in which the sum of thedndl “saving” costs
is not an upper bound of the increase in the travel cost. Maeigely, let us denote
the sum of the individual routing cost of a vertex e M \ V* by

p(T,0) = plv,0),
veT
then condition
p(T,0) >travel (¢') —travel (o) (8.1)

whereo’ is the feasible cycle obtained after inserting the vertédsia o, does not
hold in some cases. Indeed, let us focus on a subdetbe inserted between two
verticess andt belonging to the cycle, and letP a path through the vertices @f
with extreme vertices andt. According to the classical saving criterion, each single
insertion of a vertexw € M \ V*is

p(v,0) = Cls 0] + Clut] — Clsg]-
Hence, we have that

-1

travel (¢')—travel (o) = Z Coe—Cls,y] = C[s,u1]+c[ul,t]_c[s,t]+z Clug,uis1]
ecP i=1

(8.2)
In addition,
-1
PT,0) = Clogun) + Cur) = Sl + D (Csupa] T Cund] — o). (8:3)
=1
Therefore, from (8.2) and (8.3) it follows that conditioniBholds when
-1 -1
> (Clomia] + Cuit) = D (Cus i) + Cls)- (8.4)

i=1 i=1

Figure 8.3 illustrates a simple example evaluating the travel cogtfeinsertion of
a path betweer andt. In this particular case the condition (8.4) does not hatt;es
Clsuipn] T Clust] < Clus,uisq] T Clsyy fOri = 1,2, 3 (see Figure 8.8). In spite of this
drawback, the criterion of estimatifig avel Reduct i on(P) by adding the single
savings provided a good behaviour in our experiments, assithdwn in the Section
8.5.

The purchasing cost reductiqri{v, o) describes the reduction in the purchasing
cost after the insertion of a single vertexn the current solutiow, since a cheaper
product may be provided by this new market.
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Fig. 8.3 Evaluation of the increase in the travel cost of a set of vestto be inserted between
the verticess andt.

For each produgt;, and each vertex; € M, \ V*, the savings in the purchasing
costpr i ce(c’) of the newcycle oV’ := V' U{v;} can be efficiently computed by
insertingy; in the dynamic array described in Section 8.1. More pregiséinherits
from o the amount op;, purchased in markets; € V7 whenby; < by;, while the
other amount must change taking into account the new maykén particular, it is
convenient to purchase

7% (V7) := min { gg;, max < 0, dy, — E Qkj
v; €EVINMy,br; <bp;

units of p; in the new market;. The same amount of units @f must be not
purchased in the markets & N M), with b; > by;, and the computation of this
adjustment is immediate using the data structure pointegkittion 8.1. The total
decreas@_, [price(o’,k) —price(o,k)]is considered as the insertion price
of v; in o, and denoted by(v;, o).

By using the stated dynamic data structure the theoreticaptexity is equivalent
to the direct evaluation of the pricing cost, but in practiee notice that the above
described procedure reduces the computational effort.

Finally, the procedure inserts the vertices in the selettamhe after the other, by
considering the maximum saving criterion. The obtainedecig re-optimized by
using the Lin-Kernighan refinement, already mentionedetid of thé-Consecutive
Drop section.

8.3 INSERTION

The procedurénsert i on adds a new vertex to the current feasible cyclesuch
insertion implies a reduction in the total costofIn order to perform this procedure
both thep(v, o) andu(v, o) are computed for each vertexc M \ V7. The vertex
maximizingp(v, o) — u(v, o) such thap(v, o) — p(v, o) > Oisinserted ins if such
vertex exists.
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8.4 THE OVERALL ALGORITHM

Aninitial solution containing all vertices is built by theall-known nearest-neighbour
TSP heuristic, and it is then improved by the previously nogrtd Lin-Kernighan
procedure. Afterwards, the following iterative schemeeasf@rmed. An inner loop
computes the valuk as mentioned in Section 8.2, and obtains iteratively bstiki-
tions by applying-Consecut i veExchange andl nsert i on, until no further
improvement is achieved. Once the inner loop concludesrtarpation procedure
is carried out in order to augment the current cycle with neviizes.

A perturbation schemécalled Shaki ng) controls both the number of added
vertices and the number of iterations of the outer loop. Iri@dar, for a given
solution o, each vertex not iV enlargess if the travel cost of the augmented
solution does not increase by more thapercent. The percentageis iteratively
reduced and the procedure stops when no vertex is insertedchibice of the values
for ¢ was taken based on our computational experiences: igitjalt= 35 and
iteratively it is reduced in one unit. See Figure 8.4 for aygsecode illustrating the
general procedure. The aim of this perturbation schemegsode different initial
solutions to the above procedure so as to escape from looahonin solutions.

Input: a TPP instance
Output: a feasible cycle o
o := NearestneighborTSR V)

o' =0 repeat

repeat
o’ := I- Consecut i veExchange( ¢’)
o’ := Insertion(o’)

until not i nprovenent
it f(o') < f(o)

o:=0'

until Shaki ng( ')
return o

Fig. 8.4 Overall algorithm.

8.5 COMPUTATIONAL RESULTS

Our proposal has been tested on the series of randomly ded@rablems described
in Boctor, Laporte and Renaud [22], containing instance#hfe restricted and unre-
stricted TPP versions. More precisely,+ 1 randomly generated points have been
located in the squarf, 1000] x [0,1000] according to a uniform distribution and
defining routing costs by Euclidean distances. The firsttlonacorresponds to the
domicile. Each produgt;, has been associated wjttf; | randomly selected markets,
where| M| has been randomly generated in interMaln]. Product price$y; are
generated in the intervél, 500] according to a discrete uniform distribution. For the
restricted case limit on supplies and demands have alsogeeemated in the follow-
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ing way. For each produgt, and each market;, ¢x; has been randomly generated
in [1,15] anddy, := [Amaxy,enmr, qri + (1 — A) D, ca, aril for A=0.1, 0.3, 0.5,
0.7, 0.8, 0.9, 0.95 and 0.99. Notice that, the biggerxhalue is, the shorter the
length of its optimal cycle is. For instance, with= 0 becomes a TSP, while = 1
becomes the unrestricted TPP. Five instances were getiéoateach value ofi, m
and\. Therefore, the first family contains 140 cases and the skfzonily contains
960 cases.

Tables 8.1 and 8.2 compare our results with [22] on the uricesd and restricted
TPP instances, respectively. ColunttdH1, CAH2 UPH1, UPH2 and CPH cor-
respond to the different approaches proposed by Boctopit@@and Renaud [22];
and columndS correspond to the local search algorithm described in thisle
Each column shows the quality of the heuristic solution dlaeroptimum solution
obtained by using the exact method described in LaportaaRied Salazar [102]
(column%gap), and the CPU seconds consumed by the heuristic approaclP@n a
Celeron 500 MHz (columisec.). Each row contains the average results over the
subset of instances solved to optimality by the exact mestmatigrouped according
to the valuem, n and\. The column denoted by gives the number of instances
involved in each row (i.e., the number of instances with avkmaptimal solution
from the exact method described in [102] using a time lim2 dburs of the Celeron
500 MHz). The colummoVisitedshows the average number of markets involved in
an optimal solution computed by the exact algorithm descrin [102].

Tables 8.1 and 8.2 clearly show that our approach providesi@as very close
to the optimal ones. On the restricted TPP instances (hainder the associated
unrestricted ones), the average computational time wa® d¢tw one minute of the
PC Celeron 500 MHz. Solving the set covering subprobleras @allingRest or e
Feasi bi | i ty) took about7% of the total computational time. Even if the set
covering problem is a hard problem, the low consumed timeuinexperiments is
explained by the small size of the instances of the subpnobie solved. Both
quality and consumed time on these small/medium instanees mot so dependent
on A andn as onm. The quality is slightly better wheh approximates td, which
is explained because = 0 is the TSP, whilex = 0.9 produces instances involving
both the optimal routing and selection of markets. This agsion coincides with
similar studies on other routing-location problems (seg, &eller [92]).

Regarding both the quality of the solutions and the commniateffort, we observe
that our local search proposal improves on the approacbpsged in Boctor, Laporte
and Renaud [22].

The quality of our heuristic approximation for selecting trertices to be added
in the procedurd&est or e Feasi bi l ity is measured in Table 8.3. It shows the
maximum and average percentage of the difference betwéehehristic and the
exact choice. More precisely, procedi®est or e Feasi bi | i ty, which selects
a set of vertices based on estimations of the reduction ielfective function, has
also been solved optimally using the branch-and-cut coderiiteed in [102]. It is
observed from this table th&est or e Feasi bi | ity selects and inserts new
markets with a gap df.5% of error. In spite of this gap the procedure proved to be
effective in our experiments.
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In order choose the initial value of parametels well as to prove that the
Consecut i ve Exchange has better performance than the classical approach in
which exactly one drop and several adding moves are perfrthe following ex-
periment have been carried out. For each benchmark restrid®P instance with
A € {0.8,0.9,0.95,0.99}, the proceduré-Consecuti ve Exchange has been
executed with different initial values @f Notice that this procedure starts from a
TSP solution, iteratively removes sequences of consexwéitices and inserts others
to restore feasibility, as described in Section 8.2. Thedbje value of the generated
TPP solutions and the computational time have been norettitizhe rank0, 1] with
respect to the minimum and maximum values obtained varyiagparametel. The
average (normalized) values are computed for éachl Figure 8.5 plots them, those
points associated to the objective function with boxes &ande points associated to
the consumed time with circles. For very small values, dhe computational time
is close to be proportional to the number of iterations tlewus., it is bigger fol = 1
than forl = 3. Moreover, big values imply strong modifications of the cycle, hence
the gap and the computational effort increase Withhe best results are obtained for
[ between 2 and 25, thus inspiring our proposal for manabinghe procedure.

We have also experimented with the described approach etri¢ted and un-
restricted) TPP instances involving upso = 350 andn = 200, obtaining similar
performances when comparing quality of the heuristic smhuwith the LP-relaxation
of the model in [102]. The average gap was close to 0.5% whdebmputing time
was never more than one minute.



Table 8.1 Average computational results, unrestricted (optimad)ances.

Boctor, Laporte & Renaud [22]

CAH1 CAH2 UPH1 UPH2 LS
%\Visit. # %gap Sec. %gap Sec. %gap Sec. %agap Sec. %gap Sec.

50 26 20 3.05 1 0.53 12 0.33 12 0.26 12 0.07 3
100 16 20 1.89 9 0.64 104 0.28 60 0.30 50 0.14 10
150 11 20 2.12 20 0.97 263 0.59 213 0.71 184 0.03 14
200 9 18 2.59 34 0.95 513 0.65 261 0.53 324 0.32 19
250 7 11 2.66 38 1.04 649 0.47 233 0.63 253 0.06 25
0

50 8 25 0.78 6 0.43 111 0.34 17 0.35 16 0.07 2
100 13 22 2.03 17 0.73 216 0.49 74 0.59 71 0.24 13
150 16 22 3.14 23 1.05 371 0.48 191 0.45 225 0.10 Zg
200 17 20 4.20 31 1.09 414 0.56 336 0.50 331 0.08 22?
>
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Table 8.2 Average computational results, restricted (optimal)danses.

Boctor, Laporte & Renaud [22]

A HEURISTIC APPROACH FOR THE STPP

CAH1 CAH2 CPH LS
%Visit. # %gap Sec. %gap Sec. %gap Sec. %gap Sec.
50 73 140 1.42 5 0.49 12 0.41 10 0.15 5
100 71 135 2.00 33 1.06 86 0.97 75 0.50 26
150 73 119 2.55 113 1.81 361 1.39 225 0.43 52
200 69 46 4.61 156 2.81 1465 1.32 510 1.15 100
50 63 131 3.32 34 1.72 461 111 162 0.72 43
100 71 117 1.83 65 1.27 281 0.92 154 0.56 38
150 77 94 151 58 0.87 141 0.78 113 0.42 32
200 80 98 1.96 83 1.02 161 0.89 118 0.29 32
0.1 100 70 0.16 81 0.10 190 0.15 26 0.00 8
0.5 99 68 0.50 96 0.32 393 0.48 48 0.20 25
0.7 88 66 1.65 71 0.77 387 0.76 129 0.10 29
0.8 85 68 3.02 72 1.57 526 0.99 290 0.57 62
0.9 59 64 5.24 49 3.62 262 1.88 329 1.43 86
0.95 39 41 3.09 11 1.95 54 1.13 85 0.68 26
0.99 19 63 251 5 0.88 27 1.36 51 0.31 19
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Fig. 8.5 Deviation of the objective function and CPU time from theinfmum values for different values &f
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Table 8.3 Average and maximum value of the percentage of the differdratween the
optimal and heuristic estimation in procediRest or eFeasi bility

n m
50 100 150 200 50 100 150

Avg. 2.68 2.23 2.88 2.69 2.37 2.87 2.77
Max. 13.20 11.21 17.33 11.88 13.20 17.33 14.87




Conclusions

In this dissertation we have studied a problem arising frgobacheduling real world
application: the Traveling Purchaser Problem (TPP), whiéhgeneralization of the
well known Traveling Salesman Problem. No more than eigtblas have addressed
the TPP so far, and this work is the first serious attempt teestble problem up to
optimality.

After making a deep study of tltate of the artve have realize that the attempts of
developing exact algorithms had achieved poor resultstefbie, the purpose of our
first approach was to perform two exact algorithms for bosesahe symmetric and
asymmetric TPP. To this end, new linear integer models weseribed in Chapter 3,
as well as new valid inequalities to strength the LP-relaxat

In addition, in order to avoid those redundant inequaliéied to perform a more
efficient branch-and-cut algorithm, a polyhedral study lee TPP has been carried
out in Chapter 4, proving that some of the valid inequalitiescribed in Chapter 3
defined facet for the polytope associated to the TPP.

Specific features of the both branch-and-cut algorithmstiiersymmetric and
asymmetric case are described in Chapters 5 and 6 respgctNew separation
algorithms for facets and valid inequalities described@vipus chapters are proposed
in these two chapters, whose efficiency has been tested by eneamputational
experience. The efficiency of these algorithms as a heugagfproach has been also
tested. This computational experience has been performatl mstances proposed
in the previous works on the TPP and on our own random instceevell. Chapter
6 also includes a computational experience on a transfaymaft the asymmetric
version into the symmetric one.

159
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Since no previous work had not approached the bicriteriol, T next chapter
start on this topic. Chapter 7 describes an algorithm whichputes the set of non-
dominated points and the set of extreme points of the effiientier. This algorithm
is the first based on branch-and-cut for this purposed. Tbeeglure combines the
classical methods in bicriterion programming with a braaadld-cut algorithm to
solve single-objective subproblems. The key point is to assmmmon cut-pool
structure to save cuts separated during the solution of prehlem that can help in
the solution of other forthcoming subproblems, and thusced) the computational
effort. The algorithm has been implemented and tested @ thamilies of test-bed
instances from literature proving the good performancehefgroposal. A similar
idea could be extended to other bicriterion problems whwezeetis a branch-and-cut
algorithm available for the single-objective problem.

Most of the research about TPP has been directed towardstieogment of
heuristic approaches. However, a new competitive hearggiproach has been de-
velop, and its efficiency is measured in Chapter 8. This #lyor which is based
on local search, is not only valid for the classical TPP bsbdbr the restricted
TPP. The basic idea is the definition of an exponential neightood explored by
a heuristic procedure. Given a solution, each neighboubtained by removing a
path of consecutive vertices and by inserting a new one so eestore feasibility.
The performance is favourable compared with other tabichesrproaches recently
proposed on Euclidean travel cost instances in literaflinese new neighbourhoods
adapt easily to similar problems in which a subcycle has tolidained minimizing
the sum of two objectives, and therefore, it could be an é@stimg contribution to
other local search approaches.
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