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DEL ÁREA DE ESTAD́ISTICA E INVESTIGACIÓN OPERATIVA DE LA UNI-
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Preface

The boundaries between Operations Research and Computer Science have become
blurred. Important new theories and whole fields, like Polyhedral Combinatorics,
have been and are being developed jointly by computer scientists, operations re-
searchers, and applied mathematicians.

Placed in this scope, the aim of this disertation is to embrace some points of these
topics. Thus, the Traveling Purchaser Problem (TPP) provides an excuse to go deep
in Polyhedral Combinatorics and in several topics which contribute to the resolution
of the optimization problems.

The grateful experience of realizing how the theoretical results leads to successful
computational results by mean the computer programm has supported our hipotesis
and verified that our research results become very applied. The preponderant role
played by the engineer in Computer Sciences in this area makes this research to
finish the travel starting at the mathematical model and finishing at the computational
resolution of the problem.

Sumarizing, the aim of this thesis is to carry out a thorough study on the TPP
which lead to the development of several algorithms with a further computational
evaluation. These algorithms solve the TPP in both exact andapproximated ways.
To achieve this goal we have carried out

i) an exhaustive study on the previous works, taking into account every single
previous algorithm. Each technique involved in those algorithm has been also
studied testing the quality of the results, and compiling benchmark instances.

ix



x PREFACE

ii) a study on the real world applications of the TPP as well as thescope where it
is included.

iii) the development of mathematical models, which will be part of our exact ap-
proach, and of valid inequalities allowing to strengh the linear programming
relaxation of the above mentioned models.

iv) the development of exact and heuristic algorithms for different variations of
the TPP, based on the theoretical results computationally evaluated on intances
proposed by the previous works and additional families of random instances.

A preliminary version of an exact algorithm for the TPP was submitted to theEu-
ropean Chapter on Combinatorial Optimization(ECCO) XII which took place in
Bendol Island, Marselle. This branch-and-cut approach wasimproved, and the new
results were exposed in theWorkshop on Discrete Mathematics 99(DO’99) given
in RUTCOR, Rutger, New Jersey. A worthy contribution of thisconference was an
interesting discussion with the Professor Peter Brucker about the classification of the
TPP as a job scheduling problem. Finally, this article was submitted toOperations
Researchand currently is under revision.

A study on the bicriterion TPP was submitted to the conference Congreso sobre
Técnicas de Ayuda a la Decisión en la Defensawich took place in Madrid. In IRIT
Laboratory in Toulouse, during the XIXEURO Summer Institutewas also presented an
algorithm for the bicriterion TPP, as well as a new and usefultechnique to speed up the
computational time computing the non-dominated points. This works was submitted
to European Journal of Operational Researchand currently is under revision.

Because of its computational complexity, most of the research on TPP has been
directed towards the development of heuristic approaches.Despite of this, we have
develop a heuristic approach for the TPP which is able to solve this problem with
more precision and faster than the previous approaches. Preliminary results were
presented in the ECCO XIV in Bonn, and the article was submitted to European
Journal of Operational Research.

Finally, the only aspect we had not approached was the asymmetric version of the
TPP. Only one previous article had focused it. Thus, a more efficient exact algorithm
was presented in theCombinatorial Optimization2002 in Paris, and the related article
has been recently submitted toDiscrete Applied Mathematics.

Those results obtained in this thesis were sumarized and exposed during the sem-
inar The Travelling Salesman Problemin the International Conferece and Research
Center for Computer Science inDagstuhl, Germany, and in the seminarMathematical
Methods in Manufacturing and Logistic (Mathematisches Forschungsinstitut Ober-
wolfach)in Oberwolfach-Walke, also in Germany.

These four articles have been treated in eigth chapters, andthe obtained results
have been sumarized in the chapter of Conclusions. The first chapter introduces the
basic concepts underlying in the development of the proposed algorithms. These
topics are Graph Theory, Computational Complexity, Polyhedral Theory, Polyhedral
Combinatorics and Multicriterion Optimization. In addition, some basic optimization
problems which take part of our algorithms are also described in this chapter. Chapter
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2 provides an introduction to the TPP which also includes a literature review and a
description of related problems in order to place the TPP in its scope. Additionally, a
transformation of the TPP into the Generalized Traveling Salesman Problem is also
described in this chapter. The next four chapters are devoted to the different aspects
of the exact algorithms developed for the directed and undirected versions of the TPP.
Chapter 3, provides the mathematical formulation of both the directed and undirected
versions of the TPP. Chapter 4 gives and polyhedral analysisfor the TPP, and as in
the previous chapter, for both cases. And Chapters 5 and 6 described the specific
characteristics of each of the two exact algorithm. The Bicriterion TPP is approached
in Chapter 7 of this thesis, and a heuristic approach for the TPP is given in Chapter 8.
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1
Mathematical Background

This chapter is devoted to the introduction of different concepts from Graph Theory,
Computational Complexity, Polyhedral Theory and Multicriterion Optimization, that
will be used later on. These concepts are the basis of the theoretic background that
underlies behind the algorithms we introduce in this thesis. However, this is only a
brief overview on each area so we also refer to related bibliography in each section
for a deeper treatment of these topics. In addition, a description of all those problems
mentioned as subproblems during the development of our algorithms, is also given
in the last section of this chapter.

1.1 GRAPH THEORY

Graph Theory is a way of representing and analyzing mathematical problems. We
refer the reader not familiar with graphs to the textbooks ofBerge [20], Christofides
[30], and Bondy and Murty [23]. Many combinatorial optimization problems can
be formulated as problems in graphs, which is the case of the problem analyzed in
this thesis. In this section we give a brief review of some elementary concepts and
properties on Graphs Theory.

A (undirected) graphG = (V, E) is a pair of sets, whereV := {v1, . . . , vn} is
a finite and non-empty set andE = {e1, . . . , em} is a set of pairs of elements ofV .
The elements ofV are calledvertices, and the elements ofE are callededgesand are
represented byek = [vi, vj ], wherevi, vj ∈ V . We will consider onlysimplegraphs,
i.e., graphs containing at most one edge linking each pair ofvertices.

1



2 MATHEMATICAL BACKGROUND

Given the graphG = (V, E) andS ⊂ V , the edge set

δ(S) := {[vi, vj ] ∈ E : vi ∈ S, vj ∈ V \ S}

is called thecut induced byS. We write δG(S) to make clear (in order to avoid
possible ambiguities) with respect to which graph the cut induced byS is considered.
We will write δ(v) instead ofδ({v}). Thedegreeof a vertexv is the cardinality of
δ(v). The set

E(S) := {[vi, vj ] ∈ E : vi, vj ∈ S, i < j}

is the set of edges having both end vertices inS. We denote byG(S) = (S, E(S))
the subgraph induced by edges having both end vertices inS. If E(S) is empty,S is
an independent set.

Thecomplementary graphof G, denoted byG, is the simple graph with the same
vertex set asG, and with edges all pair[vi, vj ] of vertices which are not inE. A graph
G = (V, E) is said to becompleteif it contains edge[vi, vj ] ∈ E for all vertices
vi, vj ∈ V . We denote the complete graph ofn vertices byKn = (Vn, En) and
assume unless otherwise stated thatVn = {v1, v2, . . . , vn}.

Two graphsG′ = (V ′, E′) andG′′ = (V ′′, E′′) areisomorphicif there exists a
bijective mappingf : V ′ → V ′′ such that[vi, vj ] ∈ E′ if and only if [f(vi), f(vj)] ∈
E′′.

A graphG = (V, E) is calledbipartite if its vertex setV can be partitioned into
two nonempty disjoint setsV1, V2 with V1 ∪ V2 = V such that no two vertices in
V1 and no two vertices inV2 are connected by an edge. If|V1| = n1, |V2| = n2

andE = {[vi, vj ] : vi ∈ V1, vj ∈ V2} then we callG thecomplete bipartite graph
Kn1,n2

.
An edge setP = {[v1, v2], [v2, v3], . . . , [vk−1, vk]} is called awalk betweenv1

andvk. The verticesv1 andvk are thestarting pointand theend pointof the walk,
respectively, or just theend points. If vi 6= vj for all i 6= j thenP is calledpath. The
lengthof a walk (or path) is the number of its edges and is denoted by|P |. If v1 = vk

in a walk we speak of aclosed walk.
A walk C = {[v1, v2], . . . , [vk−1, vk], [vk, v1]} with vi 6= vj for all i 6= j is called

a cycle(or k-cycle), also named simple cycle. An edge[vi, vj ], 1 ≤ i 6= j ≤ k, not
in C is calledchordof C. The length of a cycleC is denoted by|C|. For conve-
nience we shall sometimes abbreviate the cycle{[v1, v2], . . . , [vk−1, vk], [vk, v1]} by
(v1, . . . , vk) and also say that a graphG is a cycle if its edge set forms cycle. A graph
or edge set is calledacyclic if it contains no cycle. An acyclic graph is also called a
forest.

A graphG = (V, E) is said to beconnectedif it contains a path for every pair
of vertices; otherwiseG is calleddisconnected. Concreteness by path induces a
equivalence relation on the vertices. Its classes are called the(connected) components
of the graph. Atreeis a connected forest containing all vertices of the graph. It is not
difficult to see that the following are equivalent for a givensimple graphG = (V, E):

(i) G is a tree;

(ii) G contains no circuits and|E| = |V | − 1;
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(iii) G is connected and|E| = |V | − 1;

(iv) any two vertices ofG are connected by exactly one simple path.

If we add one new edge connecting two vertices of the tree, we obtain a graph with a
unique circuit. Each tree with at least two vertices has somevertices of degree one,
which are called leaf of the tree.

A subgraphG′ = (V ′, E′) of G = (V, E) is aspanning (sub)treeof G if V ′ = V
andG′ is a tree. ThenG has a spanning subtree if and only ifG is connected. A
maximalforest inG = (V, E) is a subgraph(V, E′) which is a forest, whereE′

not contained in the edges of a larger fortes. This implies that (V, E′) has the same
components as(V, E).

Sometimes it is useful to associate a direction with the edges of a graph. Adirected
graph(or digraph) D = (V, A) consists of a finite set ofverticesV and a set ofarcs
A ⊆ V × V \ {(v, v) : v ∈ V } (we do not consider loops or multiple arcs). If
e = (vi, vj) is an arc ofD with end verticesvi andvj then we callvi its tail andvj

its head. The arce is said to bedirectedor incident fromvi to vj . The number of arcs
incident to a vertexv is calledindegreeof v and the number of arcs incident fromv
is called theoutdegreeof v. Thedegreeof v is the sum of its indegree and outdegree.
For a vertexv the sets of arcs incident fromv, incident tov, and incident from or to
v are denoted byδ+(v), δ−(v), δ(v), respectively. Two vertices areadjacentif there
is an arc connecting them.

Most of the definitions for undirected graphs carry over in a straightforward way to
directed graphs. For example,diwalks, dipaths, anddicyclesare defined analogously
to walks, path, and cycles with the additional requirement that the arcs are directed
in the same orientation.

A digraphD = (V, A) is said to becompleteif for all vi, vj ∈ V it contains both
arcs(vi, vj) and (vj , vi). We denote the complete digraph onn nodes byDn =
(Vn, An). For each graphD = (V, A) we can construct itsunderlying graphG =
(V, E) by settingE = {[vi, vj ] : vi andvj are adjacent inD}.

A walk (diwalk) that traverses every edge (arc) of a graph (digraph) exactly once
is calledEulerian trail (Eulerian ditrail). If such a walk (diwalk) is closed we speak
of aEulerian tour. A graph (digraph) isEulerianif its edge (arc) set can be traversed
by a Eulerian tour.

A cycle (dicycle) of lengthn in a graph (digraph) onn nodes is calledHamiltonian
cycle(Hamiltonian dicycle) orHamiltonian tour. A path (dipath) of lengthn is called
Hamiltonian path(Hamiltonian dipath). A graph (digraph) containing a Hamiltonian
tour is calledHamiltonian.

Often we have to deal with graphs where a rational number (edge weight) is
associated with each edge. We call a functionc : E → Q (whereQ denotes a set of
rational numbers) aweight functiondefining a weightce for every edgee = [vi, vj ] ∈
E. The weight of a set of edgesF ⊆ E is defined as

c(F ) :=
∑

e∈F

ce.
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The weight of a tour is usually called itslength. A tour of smallest weight is called
shortest tour.

1.2 COMPUTATIONAL COMPLEXITY

The main purpose of the Complexity Theory is to determine howdifficult a problem
may be to solve. This involves not only to establish a complexity classification
according to time or space complexity of its best exact algorithm, but also to seek the
different types of performance guarantees that are possible in a heuristic approach.
Some concepts related to Complexity Theory are defined briefly in this section. For
precise discussions we refer to the books by Aho, Hopcroft and Ulman [1] and Garey
and Johnson [59].

Ground objects when formalizing problem complexity are symbols and string of
symbols. LetΣ be a finite set called thealphabet. The elements ofΣ are called
symbolsor letters. An ordered finite sequence of symbols fromΣ is called astring
or aword. Σ∗ stands for the collection of all strings of symbols fromΣ. Thesizeof
a string is the numbers of its components. The string of size0 is theempty string,
denoted byε.

A string can have the form of rational number, vectors, matrices, graphs, linear
equations or inequalities, and so on. There are some standard ways of transforma-
tions to encode these objects uniformly as proper string of symbols from some fixed
alphabet like{0, 1}. Depending on the chosen transformation, this induces a concept
of size of these objects.

A problemwill be a general question to be answered, usually processing sev-
eralparameters, or free variables, whose values are left unspecified. A problem is
described by giving a general description of its parameters, and a statement of what
properties the answer, (orsolution) must satisfy. Aninstanceof a problem is obtained
by specifying particular values for all problem parameters. Formally, a problem is a
subsetΠ of Σ∗ × Σ∗, whereΣ is some alphabet. The corresponding mathematical
problem the is:

given a stringz ∈ Σ∗, find a stringy such that(z, y) ∈ Π, or decide that no
such stringy exist.

Here the stringz is called aninstanceor theinputof the problem, andy is asolution
or output.

A problemΠ is called adecision problemor ayes/no problemif, for each(z, y)
in Π, has only two possible values,y is ε the empty string. In that case, the problem
is often identified with the setL (called thelanguage of the problem) of stringsz in
Σ∗ for which (z, ε) belongs toΠ. The problem is to decide whetherz belongs toL.

An algorithm is a list of instructions to solve a problem, and it can be formalized
in terms of aTuring Machine(see Turing [149] and Aho, Hopcroft and Ullman [1]).

For a given inputz ∈ Σ∗, an algorithm for problemΠ ⊆ Σ∗ × Σ∗ determines an
outputy such that(z, y) is in Π, or stops without delivering an output if there exists
no suchy. One says that an algorithmA solves a problemΠ, or A is an algorithm
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for Π, if for any instancez of Π, when giving the string(A, z) to a ‘universal Turing
machine’, the machine stops after a finite number of steps, while delivering a string
y with (z, y) ∈ Π, or delivering no string in the case where such a stringy does not
exist.

Therunning timeof an algorithmA for certain problem instancez can be defined
as the number of moves the ‘head’ that a universal Turing Machine makes before
stopping, when it is given the algorithmA and the inputz. We define therunning
time functionof an algorithmA as the functionf : Z+ → Z+ with

f(n) := max
z,size(z)≤n

(running time ofA for inputz) for n ∈ Z+.

If f, g1, . . . , gm are real-valued functions, thenf is said tobepolynomially bounded
byg1, . . . , gm if there is a functionφsuch thatφ ≥ f and such thatφarises by sequence
of compositions from the functionsg1, . . . , gm and from some polynomials.

In the special case thatg1, . . . , gm are polynomials, it follows that whenf is
polynomially bounded byg1, . . . , gm thenf is bounded above by a polynomial. In
that case,f is called apolynomially boundedfunction.

An algorithm is calledpolynomial-time(or simplypolynomial) if its running time
function is polynomially bounded. A problem is said to besolvable in polynomial
time or polynomially solvableif the problem can be solved by a polynomial-time
algorithm. We are interested mostly in the asymptotic behaviour of the running time
of the algorithm. Therefore, one often says that the runningtime is O(g(n)), for
some functiong(n), meaning that there is a constantC such that the running time is
upper bounded byCg(n).

The class of decision problems solvable in polynomial time is denoted byP.
Another, possibly larger, complexity class is the classNP . Informally, the classNP
can be described as the class of those decision problems satisfying:

for anyz ∈ L, the fact thatz is inL has a proof of length polynomially bounded
by the size ofz.

More formally, a decision problemL ⊆ Σ∗ belongs toNP if there exist a polynomi-
ally solvable decision problemL ⊆ Σ∗ × Σ∗ and a polynomialφ such that for each
z in Σ∗:

z ∈ L ↔ ∃y ∈ Σ∗ : (z, y) ∈ L′ and size(y) ≤ φ(size(z)).

As an interpretation,y here fulfills the role of a polynomial length proof of the fact
thatz is in L. This proof can be checked in polynomial time, asL′ is polynomially
solvable. The crucial point is that it is not required thaty must be found in polynomial
time.

Thecomplementof a decision problemL ⊆ Σ∗ is the decision problemΣ∗\L. The
class of decision problemsL whose complement is inNP is denoted by co-NP . So
co-NP consist of those decision problemsL for which the fact that a certain stringz is
not inL has a proof of length polynomially bounded by size(z). Since the complement
of every polynomially solvable decision problem is trivially polynomially solvable
again, we know thatP ⊆co-NP , and henceP ⊆ NP∩co-NP .
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The classNP∩co-NP consists of those decision problems for which both a
positive answer and a negative answer have a proof of polynomial length. That is, it
consists of all problemL ⊆ Σ∗ for which there exist polynomially solvable decision
problemL′,L′′ and a polynomialφ, such that for each stringz ∈ Σ∗:

z ∈ L ↔ (z, x) ∈ L′ for some stringx with size(x) ≤ φ(size(z))

z 6∈ L ↔ (z, y) ∈ L′′ for some stringy with size(y) ≤ φ(size(z))

A problem iswell-characterizedif it belongs toNP∩co-NP. To any well-
characterized problem there corresponds agood characterization, which is the theo-
rem asserting that, in the above notation:

∃x : (z, x) ∈ L′if and only if ∀y : (z, y) 6∈ L′′,

whereL′ andL′′ satisfy, for a certain polynomialφ:

if(z, x) ∈ L′ then(z, x′) ∈ L′ for some stringx′ with size(x′) ≤ φ(size(z))

if(z, y) ∈ L′′ then(z, y′) ∈ L′′ for some stringy′ with size(y′) ≤ φ(size(z)).

It is known that certain problems in the classNP are hardest among all problems in
NP , under a certain ordering of the problems by difficulty.

A polynomial transformationfrom a languageL1 ⊆ Σ∗
1 to a languageL2 ⊆ Σ∗

2

is a functionf : Σ∗
1 → Σ∗

2 that satisfies the following two conditions:

(i) There is a polynomial time transformation that computesf .

(ii) For all x ∈ Σ∗
1, x ∈ L1 if and only if f(x) ∈ L2.

If there is a polynomial transformation fromL1 to L2 we writeL1 ∝ L2. Trivially, if
L2 is polynomially solvable, andL1 is reducible toL2, then alsoL1 is polynomially
solvable. Similarly, ifL2 belongs toNP, andL1 is reducible toL2, then alsoL
belong toNP . The same applies to co-NP .

A problemL is calledNP-complete if it is inNP and each problem inNP
is reducible toL. So if anyNP-complete problem is polynomially solvable, then
all problems inNP are polynomially solvable, and henceP = NP . Similarly, if
anyNP-complete problem has a good characterization, thenNP=co-NP =NP∩
co-NP .

Note that ifL is reducible to problemL′ ∈ NP , andL isNP-complete, then also
L′ isNP-complete.

1.3 POLYHEDRAL THEORY

In this section we summarize some concepts and results from Linear Algebra and
Polyhedral Theory which are necessary for our dissertation. However, a detailed
treatment of the Theory of Polyhedra is presented in Bachem and Gröotschel [7],
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Grünbaum [82], Rockafellar [132], Stoer and Witzgall [144] and Pulleyblank [125],
as well as in some books on Integer Linear Programming as Schrijver [138] and
Nemhauser and Wolsey [114].

Definition 1.1. A vector x ∈ Rn is called alinear combinationof the vectors
x1, . . . , xk if x = λ1x1 + . . . + λkxk with x1, . . . , xk ∈ Rn andλ1, . . . λk ∈ R.

Definition 1.2. If in addition theλi satisfyλ1 + . . . + λk = 1, thenx is called an
affine combinationof vectorsx1, . . . , xk. And if x = λ1x1 + . . . + λkxk is an affine
combination such thatλi ≥ 0 for i = 1, . . . , k, thenx is called aconvex combination
of the vectorsx1, . . . , xk.

Definition 1.3. If ∅ 6= S ⊆ Rn, then the set of all linear (affine, convex) combinations
of finitely many vectors inS is called thelinear (affine, convex) hullof S and it is
denoted by lin(S) (aff(S), conv(S)); by convention lin(∅)={0}, aff(∅)= conv(∅)=∅.

Definition 1.4. A setS ⊆ Rn with S=lin(S) (S=aff(S), S=conv(S)) is called alinear
subspace(affine subspace, convex set).

It can be shown that a setL ⊂ Rn is a linear (affine) subspace if and only if
there is an(m, n)-matrix A (an (m, n)-matrix A and a vectorb ∈ Rm) such that
L = {x ∈ Rn : Ax = 0} (L = {x ∈ Rn : Ax = b}). Affine subspaces of
particular interest arehyperplanes, i.e. sets of the form{x ∈ Rn : aT x = a0} where
a ∈ Rn \ {0} andao ∈ R. Clearly, every affine subspace different fromRn is the
intersection of hyperplanes.

Definition 1.5. A nonempty setS ⊆ Rn is calledlinearly (affinely) independent,
if for every finite set{x1, x2, . . . , xk} ⊆ S, the equationsλ1x1 + . . . + λkxk = 0
(λ1x1 + . . . + λkxk = 0 andλ1 + . . . + λk = 1) imply λi = 0, i = 1, . . . , k;
otherwiseS is calledlinearly (affinely) dependent.

Every linearly (affinely) independent set inRn contains at mostn (n+1) elements.
Moreover, for setsS with at least two elements, linear (affine) independence means
that nox ∈ S can be represented as a linear (affine) combination of the vector in
S \ {x}. All sets{x}, x 6= 0, are affinely and linearly independent,{0} is linearly
dependent but affinely independent. By convention, the empty set is linearly and
affinely independent.

Definition 1.6. Therank (affine rank)of setS ∈ Rn is the cardinality of the largest
linearly (affinely) independent subsetofS, and thedimensionofS, denotedbydim(S),
is the affine rank ofS minus one.

Definition 1.7. A set S ⊆ Rn is called full dimensionalif dim(S) = n; this is
equivalent to say that there is no hyperplane containingS.

It is clear from the definition that the affine rank of a set is equal to the affine rank
of its affine hull. Moreover, if0 6∈ aff(S), i.e. if S is contained in a hyperplane
{x : aT x = a0} with a0 6= 0, then dim(S) is the maximum cardinality of a linearly
independent set inS minus one.
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Definition 1.8. The maximum number of linearly independent rows or columns of a
matrixA is therankand is denoted by rank(A).

Definition 1.9. An (m, n)-matrix is said to havefull rank if its rank is equal to
min{m, n}.

Definition 1.10. A setH ⊂ Rn is called ahalfspaceif there is a vectora ∈ Rn and a
scalara0 ∈ R such thatH = {x ∈ Rn : aT x ≤ a0}. It is said thatH is the halfspace
defined by the inequalityaT x ≤ a0, and it is also said that (ifa 6= 0) the hyperplane
{x : aT x ≤ a0} is the hyperplane defined byaT x ≤ a0.

Definition 1.11. An inequalityaT x ≤ b is calledvalid with respect toS ⊆ Rn if
S ⊆ {x ∈ Rn : aT x ≤ b}, i.e. if S is contained in the halfspace defined byaT x ≤ b.

Definition 1.12. A valid inequalityaT x ≤ b for S is calledsupportingif S ∩ {x ∈
Rn : aT x = b} 6= ∅.

Definition 1.13. An inequalityaT x ≤ b valid with respect toS is called aproper
valid inequalityif S is not contained in the hyperplane{x ∈ Rn : aT x = b}.

Definition 1.14. A valid inequality forS which is not proper is called animplicit
equationfor S.

Definition 1.15. A polyhedronis the intersection of finitely many halfspaces, i.e.
every polyhedronP can be represented in the formP = {x ∈ Rn : Ax ≤ b}.

Since an equation systemDx = c can be written asDx ≤ c, −Dx ≤ −c, every
set of the form{x ∈ Rn : Ax ≤ b, Dx = c} is a polyhedron.

Definition 1.16. A bounded polyhedron (i.e. a polyhedronP with P ⊆ {x ∈ Rn :
||x|| ≤ B} for someB > 0 where||x|| is, for example, the Euclidean norm ofx) is
calledpolytope. Polytopes are precisely those sets inRn which are the convex hulls
of finitely many points, i.e. every polytopeP can be written asP =conv(X) for a
finite setX ⊆ Rn.

Definition 1.17. Let us define afaceas a subsetF of a polyhedronP such that there
exist an inequalityaT x ≤ a0 valid with respect toP andF = {x ∈ P : aT x ≤ a0}.
Thus, we say that inequalityaT x ≤ a0 definesF .

Definition 1.18. A faceF is calledproper if F 6= P andF 6= ∅.

In fact, if P = {x ∈ Rn : aT
i x ≤ bi, i = 1, . . . , k} is a polyhedron andF is a face

of P , then it can be showed that there exists an index setI ⊆ {1, . . . , k} such that
F = {x ∈ P : aT

i x ≤ bi, i ∈ I}. Similarly, if P =conv(X) for a finite setX ⊆ Rn

and ifF is a face of the polytopeP , then there exist a setW ⊆ V with F =conv(W ).

Definition 1.19. It is said that two valid inequalitiesaT
i x ≤ a0 andbT

i x ≤ b0 for a
polyhedronP areequivalentwith respect toP if {x ∈ P : aT

i x ≤ a0} = {x ∈ P :
bT
i x ≤ b0} (i.e. both inequalities ‘defines’ or ‘induce’ the same face).
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Definition 1.20. A face which contains one element only is called avertex. If {x} is
a vertex ofP we shall simply say thatx is a vertex or extreme point ofP .

Definition 1.21. A facetF of a polyhedronP is a proper, nonempty face (i.e. a face
satisfying∅ 6= F 6= P ) which is maximal with respect to set inclusion.

In Combinatorial Optimization, a polyhedron is usually given by an inequality
system. However, one wants to find inequality systems with asfew inequalities as
possible. For this reason facet-defining inequalities are of particular importance. The
following theorem provides the two basic methods to prove that a given inequality
aT x ≤ a0 defines a facet for a polyhedronP .

Theorem 1.1. LetP ⊆ Rn be a polyhedron and assume thatA is an(m, n)-matrix,
b ∈ Rn such that aff(P )= {x ∈ Rn : Ax = b}. LetF be a nonempty face ofP , then
the following statements are equivalent:

(a) F is a facet ofP .

(b) F is a maximal proper face ofP .

(c) dim(F )=dim(P )−1.

(d) There exists an inequalityaT x ≤ a0 valid with respect toP with the following
three properties:

(d1) F ⊆ {x ∈ P : aT x = a0}.

(d2) There exists̄x ∈ P with aT x < a0, i.e. the inequality is proper.

(d3) If any other inequalitycT x ≤ c0 valid with respect toP satisfiesF ⊆
{x ∈ P : cT x = c0}, then there exists an scalarα ≥ 0 and a vector
λ ∈ Rm such that

cT = αaT + λT A,

c0 = αa0 + λT b.

Conditions(c) and(d) provide the two basic methods to prove that a given inequal-
ity aT x ≤ a0 defines a facet of a polyhedronP (see Chapter 4 for several examples
of proofs of facets). In both cases it has to be checked thataT x ≤ a0 is valid for P
and thatP is not contained in{x ∈ P : aT x = a0}. This is usually trivial.

The first method consist of exhibiting a set ofk =dim(P ) vectors (usually vertices
of P ) x1, . . . , xk ∈ P satisfyingaT xi = a0, i = 1, . . . , k, and showing that these
vectors are affinely independent. (Ifc0 6= 0 this is equivalent to showing that thesek
vectors are linearly independent.) Let us call this method thedirect method.

In most cases the secondindirect methodbased on condition(d) of Theorem 1.1,
is more suitable, and it is as follows. One assumes the existence of a valid inequality
cT x ≤ c0 with {x ∈ P : aT x = a0} ⊆ {x ∈ P : cT x = c0}. Using the known
equation systemsAx = b for P , one can determine a vectorλ ∈ Rm such that
c̄ := c+AT λ has certain useful properties, i.e. some of the coefficientsof d̄ are equal
to the corresponding coefficients of the givenc.



10 MATHEMATICAL BACKGROUND

Then using known properties of the pointsx in P satisfyingaT x = a0, one
determines the still unknown coefficients ofc̄ iteratively. If it turns out that̄c =
αc + AT µ for someα ≥ 0 andµ ∈ Rm, then condition(d) of Theorem 1.1 implies
thataT x ≤ a0 defines a facet ofP .

Facets are of importance since they have to be known in order to obtain a minimal
inequality representation of a polyhedron.

Definition 1.22. Let P 6= Rn be a polyhedron. Then a system of equations and
inequalitiesDx = c, Ax ≤ b is said to becompletewith respect ofP if P = {x ∈
Rn : Dx = c, Ax ≤ b}.

Definition 1.23. Let us call a systemAx ≤ b non-redundantif it contains no implicit
equations and if the deletion of any equation or inequality of the system results in
a polyhedron different fromP . Any equation or inequality which can be deleted
without changing the polyhedron is calledredundant.

Theorem 1.2. LetP ⊆ Rn be a polyhedron andAx ≤ b, Dx = c be a complete and
non-redundant system forP , whereD is an(m, n)-matrix andA is a (k, n)-matrix.
Then the following hold:

(a) aff(P )= {x ∈ Rn : Dx = c} andm =rank(D).

(b) aff(P ) andP have dimensionn − m.

(c) Every inequalityaT
i x ≤ bi of the systemAx ≤ b defines a facetFi of P , where

Fi = {x ∈ P : aT
i x = bi}, i = 1, . . . , k.

(d) if āT
i x ≤ b̄i, i = 1, . . . , k̄; d̄T

i x ≤ c̄i, i = 1, . . . , m̄; is any other complete and
non-redundant system forP , then

(d1) k = k̄, m = m̄,

(d2) d̄T
i = (λi)T D for someλi ∈ Rm − {0}(i = 1, . . . , m)

(d3) āT
i = αia

T
j ) + (λi)T D for someαi > 0, λi ∈ Rm, andj ∈ {1, . . . , k}

(i = 1, . . . , k̄)

Theorem 1.2(d) implies that for a full-dimensional polyhedron P there is a com-
plete non-redundant inequality systemaT

i x ≤ bi, i = 1, . . . , k, such that every com-
plete and non-redundant inequality systemāT

i x ≤ b̄i, i = 1, . . . , k̄, satisfyk = k̄
andāi = αiai for someαi > 0 andi = 1, . . . , k. This justifies the statement that
a full-dimensional polyhedron is defined by auniquenon-redundant and complete
inequality system. Moreover, for every facetF of P there is a unique inequality
definingF .

Sequential Lifting

We shall now introduce a technique, calledsequential lifting, which leads to new
facet-defining inequalities for a polyhedron from a known facet-defining inequality
of a face.
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The following theorem has been extracted from Padberg [120]. This is the method
in which our theorems for obtaining facet defining are mainlybased on. Let us
consider a convex polytope inRn given by

P = {x ∈ Rn : Ax ≤ b, 0 ≤ x ≤ 1}

whereA ∈ Rn×m with A ≥ 0 and integer, and in whichaj is a column vector, for
j ∈ N = {1, . . . , n}. Let us denote by

PI = conv(x ∈ P : x ∈ {0, 1}n).

We observe first that the inequalitiesxj ≥ 0 are facets ofPI , provide thataj ≥ a0 for
all j = 1, . . . , n. We shall call the inequalitiesxj ≥ 0, j = 1, . . . , n, trivial facets of
PI . Observe that for any nontrivial facetπx ≤ π0 of PI we haveπj ≥ 0, j = 1, . . . , n
andπ0 > 0. Consequently, requirement in Theorem 1.1 (c) states that there must
existd = dim(PI) affinely independent vertices ofPI satisfying this condition. We
now assume explicitly thataj ≤ a0 for all j ∈ N . Hence, dim(PI) = n.

Let T be a nonempty proper subset ofN . Let us denote byPT the polytope
obtained fromP by setting the variablesxj , j ∈ T , equal to zero, i.e.,

PT = P ∩
⋂

j∈T

{x ∈ Rn : xj = 0} (1.1)

and definePT
I to be the convex hull of the zero-one points ofPT .

Let T = {j1, . . . , jt}, wheret = |T | and the elements ofT are arbitrary ordered.
For q = 1, . . . , t defineTq to be

Tq = Tq−1 ∪ jq,

with the convention thatT0 = ∅. Similar toPT andPT
I , we denote byPT−Tq the

polytope obtained fromP by setting the variablesxj , j ∈ T − Tq, equal to zero and
definePT−Tq to be the convex hull of the zero-one points ofPT−Tq . Note that with
the above definitionsPT−T0 = PT andPT−Tt = P . Furthermore, by the above
assumptions we have that dim(PT−Tq ) =dim(PT−Tq ) = (n − t + q).

Let πx ≤ π0 be any valid inequality forPI , that is a (nontrivial) facet for the
(n − t)-dimensional polytopePT

I and consider the zero-one problem

z = max
{

πx, x ∈ PT−TI

I ∩ {x ∈ Rn : xj1 = 1}
}

, (1.2)

where we have set the variablesxj ,j ∈ T − T1, equal to zero and the variablexj1

equal to1.
Let us define the vectorπ1 as follows. π1

j = πj for all j ∈ N − T , π1
j1

=

π0 − z̄, π1
j = 0 otherwise, wherēz is the optimal objective function value of (1.2). It

follows easily thatπ1
j1

≥ 0 and that the inequalityπ1x ≤ π0 is a valid inequality for

PT−T1

I . Continuing the above process withj2, etc., untilT is exhausted, we obtain
a (nontrivial) facet for then-dimensional polytopePI . To be more specific, suppose
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thatπj , j ∈ N −T , andπ0 > 0 are given. Let us define a sequence of maximization
problems(Hq) as

zq = max
∑

j∈N−T

πjxj +
∑

j∈Tq−1

πjxj

subject to
∑

j∈N−T

ajxj +
∑

j∈Tq−1

ajxj ≤ a0 − ajq

xj ∈ {0, 1} for all j ∈ (N − T ) ∪ Tq−1

where theπj , j ∈ Tq−1, are defined recursively by

πjq
= π0 − zq

andzq is the optimal value of the objective function of the problem(Hq), q = 1, . . . , t.

Theorem 1.3. (Padberg [120]) LetT = {j1, . . . , jt}, where1 ≤ t = |T | ≤ n − 1,
be an arbitrarily ordered subset ofN and letπx ≤ π0 be a nontrivial facet ofPT

I as
defined in (1.1). Letπ′ be defined byπ′

j = πj for all j ∈ N − T , π′
jq

= π0 − zq for
q = 1, . . . , t, wherezq are obtained by solving the problems(Hq) for q = 1, . . . , t.
Thenπ′x ≤ π0 is a nontrivial facet ofPI .

1.4 POLYHEDRAL COMBINATORICS

The area of research in which polyhedra arising from combinatorial optimization
problems are investigated is often referred to asPolyhedral Combinatoricsand its
principal ideas are discussed next. Schrijver [138], Nemhauser and Wolsey [114] and
Wolsey [152] are some of the books where those techniques aredescribed in details.

Connections between Combinatorial Optimization and continuous or zero-one
Linear Optimization can be established as follows.

Definition 1.24. Given a finite setE, letI ⊆ 2E be a collection offeasible solutions,
and letc : E → R be the so calledobjective function. For each setF ⊆ E let
c(F ) :=

∑

e∈F c(e). A linear combinatorial optimization problemis to find a set
I∗ ∈ I with

c(I∗) = max{c(I) : I ∈ I}.

We denote a linear combinatorial optimization problem by(E, I, c).

For the finite ground setE let RE be theR-vector space indexed by the elements
of E.

Definition 1.25. Given a finite setE, and a setF ⊆ E, theincidence vectorxF ∈ RE

is defined by

xF
e =

{

1, if e ∈ F
0, if e 6∈ F
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With a combinatorial optimization problem(E, I, c) we associate the polytope

PI = conv{xI : I ∈ I}

Because the incidence vectors are 0-1-vectors, they are exactly the vertices of the
polytopePI . If we associate with the functionc : E → R of a combinatorial opti-
mization problem by a vectorc ∈ RE , we can solve the combinatorial optimization
problem by solving the optimization problemmax{cT x : x ∈ PI}. Unfortunately
we do not know any efficient algorithm to solve an optimization problem, when the so-
lution space is only defined as the convex hull of an implicitly described set of points.
However, according to classical result of Farkas, Weyl and Minkowsky (see Schrijver
[138]) there exists a finite set of inequalitiesAx ≤ b, such thatPI = {x : Ax ≤ b}.
Hence we could transform the combinatorial optimization problem(E, I, c) to the
linear programmax{x : Ax ≤ b}. There are finite algorithms to transform one rep-
resentation of the polytopePI into the other that can be used for very small problem
instances.

As we have already mentioned, since the number of constraints may be too large
to be represented in a computer, or too large to be handled by the LP-solver, we can
still attempt to solve the problem with the following approach. We start with a small
subset of constraints and compute an optimal solution subject to these constraints. We
now check if any of the constraints not in the current linear program is not satisfied.
If such contraints are identified, we add one or more of them tothe current linear
program and resolve it. If no constraint is violated, then the current optimum solution
also solves the original problem. This is the basic principle of the so calledcutting
plane approach, whose name originates from the fact that the constraints added to
the current linear programcut off the current solution because it is infeasible for the
original combinatorial problem.

Note the important fact that the approach does not require that an explicit list of
the constraints defining the original problem must be present. It is only required a
method for identifying inequalities that are valid for the original problem but violated
by the current solution.

Definition 1.26. Given a bounded rational polyhedronP ⊆ Rn and a rational vector
v ∈ Rn, theseparation problemis, either conclude thatv belongs toP or, if not, find
a rational vectorw ∈ Rn such thatwT x < wT v for all x ∈ P .

According to this, the following theorem gives the equivalence between solving
an optimization problem and solving the equivalent separation problem.

Theorem 1.4. For any proper class of polyhedra, the optimization problemis poly-
nomially solvable if and only if the separation problem is polynomially solvable.

This theorem is a consequence of the more general result of Grötschel, Lov́asz,
and Schrijver [78]. Its proof involves some advanced topicsin Linear Programming,
including the Ellipsoid Method for solving Linear-Programming problems.

An algorithm that solves the general separation problem is calledexact separation
algorithm. Unfortunately, exact algorithm are often not known for classes of valid
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Initialize the constraint system (A′, b′) with a small subset of
the constraints system (A, b).
repeat

Compute an optimum solution of cT x̄ = max{cT x : A′x ≤ b′, x ∈ R}
if ( x̄ not feasible )
Generate a cutting plane (f, f0), f ∈ R

n with
(i) fT x̄ > f0

(ii) fT x̄ ≤ f0 for all y ∈ {x : Ax ≤ b, xi integer for all i ∈ I}
Add the inequality fT x ≤ f0 to the constraint system (A′, b′)

endif
until ( x̄ be feasible )

Fig. 1.1 Cutting plane algorithm.

inequalities and in some cases it can even be shown that the separation problem in
its optimization form for a certain class of inequalities isNP-hard. In this case, we
usually have to resort to aheuristic separation algorithm, which may find violated
inequalities, but it may also fails since, it is not guaranteed that no constraint of the
class is violated.

Figure 1.1 shows a generic cutting plane algorithm for solving a mixed Integer
Linear Programmingmax{cT xI : AxI ≤ b, xI integer for allI ∈ I}.

Cutting plane algorithms using specific cutting planes, (e.g., facet defining in-
equalities) often have to stop without finding an optimum solution. This can have
two different reasons. First, the complete linear description for NP-hard combi-
natorial optimization problem is unknown. Second, even if abig class of facets is
known, no efficient algorithm may be available for the solution of the exact separation
problem of this class. At this point we can apply another basic algorithmic technique
for solving hard mixed integer optimization problems:branch-and-bound.

Branch-and-bound is a divided-and-conquer approach trying to solve the original
problem by splitting it into smaller problems, denoted as subproblems, for which
upper and lower bounds are computed. The crucial part of a successful branch-and-
bound algorithm is the computation of upper and lower boundsfor these subproblems.
Here one uses the fundamental concept of relaxation.

Definition 1.27. Let F = {xI : AxI ≤ b, xI , integer for alli ∈ I} be the set of
feasible solutions of a mixed integer optimization problemmax{cT x : x ∈ F}. A
maximization problem

max{r(x) : x ∈ R}

is a relaxation of the mixed integer optimization problem, if

F ⊆ R andcT x ≤ r(x) for all x ∈ F.

Hence, a solution of the relaxed problem gives an upper boundon the optimum
objective function value of the problem it was derive from. The tighter the relaxation,
the better this bound will be. But a relaxation is only usefulif it can be treated at least
practically efficiently by optimization algorithms.
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By dropping the integrality conditions of the integer variables of a mixed integer
optimization problem we get alinear programming relaxation, which is basic in the
context of the cutting plane algorithms. This relaxation can be tightened by adding
further valid inequalities.

A branch-and-bound algorithm maintains a list of subproblems of the original
problem, which is initialized with the original problem itself. In each major iteration
step the algorithm selects a subproblem from this list, computes a local upper bound for
this subproblem, and tries to improve the global lower bound. If the local upper bound
does not exceed the global lower bound, the active subproblem is fathomed, because
its solution cannot be better than the best known feasible solution. Otherwise, we
check if the optimal solution of the relaxation of the subproblem is a feasible solution
of the original problem. In this case, we have solved the subproblem and thus, it is
fathomed.

If the local upper bound exceeds the global lower bound and nofeasible solution
was found for the active problem, we perform a branching stepby splitting the active
subproblem into a collection of new subproblems whose unionof feasible solutions
contains all feasible solutions of the active subproblem. The simplest branching
strategy consists of defining two new subproblems by changing the bounds of the
variable. Supposei ∈ I has a fractional valuēxi in the LP-solution. Then, the new
upper bound of the variablei in the fist new subproblem isbx̄ic, whereas its lower
bound remains unchanged. In the second subproblem the upperbound keeps its old
value, but the new lower bound of the variablei is dx̄ie.

If the list of subproblems becomes empty, then the memorizedfeasible solution
(whose objective function value is equal to the global upperbound) is the optimum
solution.

A Branch-and-Cutalgorithm is a branch-and-bound algorithm in which cutting
planes are generated throughout the branch-and-bound tree. Although this may seem
to be a minor difference, in practice there is a change of philosophy. Rather than
reoptimizing fast at each node, the new philosophy is to do asmuch work as necessary
to get a tight upper bound for the subproblem. Now the goal is not only to reduce
the number of required branching in the tree significantly byusing cuts and improved
formulations, but also to try anything else that may be useful such as preprocessing
at each node, a primal heuristic at each node, and so forth. This technique will be
used in Chapter 5.

1.5 MULTICRITERIA OPTIMIZATION

Some concepts on Multicriterion Optimization as well as thedescription of the basic
algorithm for solving bicriterion problems are provided inthis section. They will be
used in Chapter 7. For more details on this topic we refer to Steuer [143], Goicoechea,
Hansen and Duckstein [70] and Ehrgott [49].

Optimization can be viewed as a discipline which comprises the whole interac-
tive process of analysis and design resulting in an optimal system. Instead of one
scalar objective function, usually several conflicting andnon-commensurate (i.e. such
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quantities which have different units) criteria appear in an optimization problem. This
situation forces the designer or analyst to look for a good compromise solution by
considering trade-off between the competing criteria. Consequently, he/she must take
a decision-maker’s role in an interactive design process where typically several op-
timization problems must be solved. Multicriterion (multiobjective, Pareto, vector)
optimization offers a flexible approach for the designer to deal with this decision-
making problem in a systematic way.

An important drawback of considering such problems lies in the difficulty of
defining an appropriate notion of optimality and, given sucha notion, finding an
optimal solution. Obviously, the situation becomes more complicated when more
criteria are involved, unless the criteria are not in conflict with each other; roughly
speaking, two criteria are not in conflict if a solution that performs well on one criterion
is likely to perform well on the other criterion. If the criteria are conflicting, then the
different solutions have to be weighted against each other.To that end, various options
exist. The first one is to specify a score on the value on the most important criterion;
a solution is then selected to perform well on the other criteria while satisfying the
bound. The second option is to aggregate the criteria into a single objective function; a
solution is chosen that is optimal for this objective function. The third option is based
upon an interactive version of decision making: an analyst determines a candidate
solution and presents it to a decision maker, who either decides to accept it or tells
the analyst on which criterion the score should be improved.

Another important issue concerns the question what constitutes a representative set
of candidates solutions. An obvious choice is the set of allnon-dominatedsolutions.
A solution is said to be non-dominated if it outperforms any other solution on at least
one criterion. If the number of non-dominated solutions is large, then an analyst may
impose extra restrictions upon the set of candidate solutions; for example, he/she can
impose an upper bound on the value of a criterion.

In Chapter 7 of this thesis asimultaneousminimization, in contrast tohierarchical
minimization, is performed in order to combine conflicting criteria. In case of hi-
erarchical minimization, the performance criteria are ranked in order of importance;
the less important criterion is minimized subject to the constraint that the solution
of the problem is optimal with respect to the more important criterion. In case if
simultaneous minimization, the criteria are aggregated into a single composite objec-
tive function, which is then minimized. Note that simultaneous minimization turns
into hierarchical minimization for an appropriate choice of the composite objective
function.

We assume that any composite objective function is non-decreasing in both argu-
ments. This assumptions reflects the opinion that a dominated solution should not be
chosen as the optimal solution.

Definition 1.28. Let f1 andf2 be two performance criteria. Then thecriterion space
is

Z = {z ∈ R2 : z = (f1(σ), f2(σ)), σ ∈ I},

whereI is the set of feasible solutions of an optimization problem.
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Definition 1.29. Let (f̃1, f̃2) ∈ Z. Then(f̃1, f̃2) is non-dominatedif there does not
exist another(f ′

1, f
′
2) ∈ Z such thatf̃1 ≤ f ′

1 and f̃2 ≤ f ′
2, and at least one of the

inequalities is strict.

Definition 1.30. Let (f̃1, f̃2) ∈ Z. Then(f̃1, f̃2) is efficient if there exist a real
nonnegative valueω ∈ [0, 1] such thatωf̃1 + (1 − ω)f̃2 ≤ ωf ′

1 + (1 − ω)f ′
2 for all

(f ′
1, f

′
2) ∈ Z.

Definition 1.31. Theefficient frontieris the shortest curve that connects all efficient
points.

Definition 1.32. (f̃1, f̃2) ∈ Z is extremewith respect tof1 andf2 if it corresponds
to a vertex of the efficient frontier.

Definition 1.33. A feasible solutionσ is Pareto optimalwith respect to two perfor-
mance criteriaf1 andf2 if there is no feasible solutionπ such thatf1(π) ≤ f1(σ)
andf2(π) ≤ f2(σ), where at least one of the inequalities is strict.

Theorem 1.5. If the composite objective functionF of (f1, f2) is non-decreasing
in both arguments, then there exists a Pareto optimal point for (f1, f2) in which the
functionF attains its minimum.

Proof. Let (f (1)
1 , f

(1)
2 ) be a point in whichF attains its minimum. If(f (1)

1 , f
(1)
2 ) is not

Pareto optimal, then there exists a Pareto optimal point(f
(2)
1 , f

(2)
2 ), with f

(2)
1 ≤ f

(1)
1

andf
(2)
2 ≤ f

(1)
2 . Hence,F (f

(2)
1 , f

(2)
2 ) ≤ F (f

(1)
1 , f

(1)
2 ), implying thatF also attains

its minimum in(f
(2)
1 , f

(2)
2 ). �

Figures 1.2 and 1.3 show the non-dominated solutions as wellas the efficient
frontier in a problem minimizing two performance criteriaf1 andf2.

We describe now an algorithm to obtain all non-dominated solutions and to gener-
ate the efficient frontier solving iteratively single objective problems. This algorithm
is based on the general scheme of the hybrid method describedin Goicoechea, Duck-
stein and Fogel [69] that combines both theweighting methodand theε-constraint
method. This scheme combines both criteria linearly and introducea weighting fac-
tor for each of them. If these weighting coefficients, denoted here byω1 andω2, are
interpreted as parameters we obtain a linear weighting method which can be used for
the generation of non-dominated points. Without loss of generality the normalization
w1 +w2 = 1 may be applied, so we will only relate tow1. By varying the weightω1

and by solving this scalar problem separately for each fixed parameter combination,
we can compute all non-dominated points.

The basic steps of the general method are showed in Figure 1.4. The initial step
computes the two starting points (f

(1)
1 ,f (1)

2 ) and (f (2)
1 ,f (2)

2 ) by optimizing hierarchi-
cally both criteriaf1 andf2 (see Figure 1.6). These two initial points constitute the
first interval to be examined as well as the first two non-dominated points. The setI
stores the remaining intervals andND is the set of non-dominated points. Both the
weightω1 and the bounds are computed as long as a new interval is selected from
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Fig. 1.2 Set of non-dominated solutions with respect to criteriaf1 andf2.
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Input: f1, f2, σ Output: ND

f
(1)
1 := minσ∈P f1(σ)

f
(1)
2 := minσ∈P (f2(σ) : f1(σ) ≤ f

(1)
1 )

f
(2)
2 := minσ∈P f2(σ)

f
(2)
1 := minσ∈P (f1(σ) : f2(σ) ≤ f

(2)
2 )

I:=[(f
(1)
1 ,f

(1)
2 ),(f

(2)
1 ,f

(2)
2 )]

ND := (f
(1)
1 , f

(1)
2 ) ∪ (f

(2)
1 , f

(2)
2 )

while I 6= ∅

Select from I an interval [(f
(1)
1 , f

(1)
2 ), (f

(2)
1 , f

(2)
2 )]

I := I \ {[(f
(1)
1 , f

(1)
2 ), (f

(2)
1 , f

(2)
2 )]}

(f
(2)
1 ,f

(2)
2 ):=stack.pop()

m :=
f
(2)
2 −f

(1)
2

f
(1)
1 −f

(2)
1

ω := m
m−1

σ∗ := arg WSCP(ω,f
(1)
1 ,f

(2)
2 )

if σ∗ 6= ∅

ND := ND ∪ (f1(σ∗), f2(σ∗))

I := I ∪ [(f
(1)
1 , f

(1)
2 ), (f1(σ∗), f2(σ∗))] ∪ [(f1(σ∗), f2(σ∗)), (f

(2)
1 , f

(2)
2 )]

Fig. 1.4 Pseudocode of the hybrid algorithm.

the set of intervalsI. Accordingly, the weighted single criterion problem (WSCP)
is solved. If the current WSCP is feasible, a new non-dominated point and two new
intervals are generated.

We now provide the basis for the construction the algorithm described in Chapter
7.

Theorem 1.6. LetS be the set of feasible solutions. IfS has an efficient point, then
at least one extreme point ofS is efficient.

Definition 1.34. Let CB denote the basic columns of the criterion matrixC; CN the
non basic columns, andN the non-basic columns of the constraints matrixA. Then
let W denote thek × (n − m) reduced costmatrix whereW = CN − CBB−1N .

Definition 1.35. B is a efficient basisif and only if B is an optimal basis of the
weighted-sum LP for some vectorλ.

Since the reduced cost row of the weighted-sums LP is given byλT W , basisB is
efficient if and only if the system

λT W ≤ 0

λ > 0

is consistent.

Theorem 1.7. Letx ∈ S be the extreme point associated with efficient basisB. Then,
x if efficient.
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Fig. 1.5 First step of the weighting method.
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Theorem 1.8. Letx ∈ S be an efficient extreme point. Then, there exist an efficient
basisB associated withx.

Definition 1.36. BasesB̄ andB̂ areadjacentif and only if one can be obtained from
the other in one pivot.

Definition 1.37. Let B be an efficient basis. Then,xj is an efficient non-basic
variable if and only if there exists a vectorλ such that

λT W ≤ 0

λT wj = 0

wherewj is thejth column ofW .

Definition 1.38. Let B be an efficient basis andxj an efficient non-basic entering
variable. Then, any feasible pivot fromB is anefficient pivotoperation.

Theorem 1.9. Let B an efficient basis. Then, any efficient pivot fromB yields an
adjacent efficient basiŝB.

Theorem 1.10.LetB̄ andB̂ be adjacent efficient bases such that one can be obtained
from the other by means of an efficient pivot. Letx̄ and x̂ be the extreme points
associated with̄B andB̂, respectively. Then, the edgeγ(x̄, x̂) is efficient.

Definition 1.39. Let B̄ andB̂ be efficient bases. If one can be obtained from the
other by performing only efficient pivots,̄B andB̂ are said to beconnected.

Theorem 1.11. All efficient bases are connected.

Definition 1.40. Two efficient extreme points ofS areedge-connectedif they are
connected by means of a path of efficient edges ofS.

Theorem 1.12. All efficient extreme points ofS are edge-connected.

1.6 SOME BASIC OPTIMIZATION PROBLEMS

Some of the algorithms described in this thesis are methods to solve subproblems
involved in some stages of the resolution of the main problem. Those subproblems are
described in this section. TheAssignment Problemis referred in Chapters 3 and 4 as a
subproblem of the asymmetric Traveling Purchaser Problem.TheKnapsack Problem
andUncapacitated Facility Location Problemare mentioned in the polyhedral study
carried out in Chapter 4. Finally theSet Covering Problemis referred as a relaxation
of a subproblem of the Traveling Purchaser Problem during the description of the
heuristic approach in Chapter 8.
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The Assignment Problem

Let us considern workers available to carry outn jobs. Each person must be assigned
to perform exactly one job. Some workers are better suited toparticular jobs than
others, so there is an estimated costcij if personi is assigned to jobj. The problem
is to find a minimum cost assignment. Using the binary variables

xij =

{

1, if personi does the jobj
0, otherwise

a mathematical model is

min
n

∑

i=1

n
∑

j=1

cijxij

s.t.
n

∑

j=1

xij = 1 for i = 1, . . . , n

n
∑

i=1

xij = 1 for j = 1, . . . , n

xij ∈ {0, 1} for i = 1, . . . , n, andj = 1, . . . , n.

The 0-1 Knapsack Problem

There is a budgetb available for investment in projects during the coming yearand
n projects are under consideration, whereaj is the outlay for projectj, andcj is
its expected return. The goal is to choose a set of projects sothat the budget is not
exceeded and the expected return is maximized. Using the binary variables

xj =

{

1, if project j is selected
0, otherwise

a mathematical model is

max
n

∑

j=1

cjxj

s.t.
n

∑

j=1

ajxj ≤ b

xj ∈ {0, 1} for j = 1, . . . , n.

The Set Covering Problem

Given a certain number of regions, the problem is where to install a set of emergency
service center. For each possible center the cost of installing a service center, and
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which regions it can service are known. The goal is to choose aminimum cost set
of service centers so that each region is covered. LetM = {1, . . . , m} be the set of
regions, andN = {1, . . . , n} the set of potential centers. LetSj ⊆ M the regions
that can be serviced by a center atj ∈ N , andcj its installation cost.

To facilitate the description, we first construct a 0-1 incidence matrixA such that
aij = 1 if i ∈ Sj , andaij = 0 otherwise. Using the binary variables

xj =

{

1, if centerj is selected
0, otherwise

a mathematical model is
min

∑

j∈N

cjxj

s.t.
∑

j∈N

aijxj ≥ 1 for i ∈ M

xj ∈ {0, 1} for j ∈ N.

The Uncapacitated Facility Location Problem

Given a set of potential depotsN = {1, . . . , n} and a setM = {1, . . . , m} of clients,
suppose there is a fixed costfj associated with the use of depotj, and a transportation
costcij if all of clients i’s order is delivered from depotj. The problem is to decide
which depots to open, and which depot serves each client so asto minimize the sum
of the fixed and transportation costs. Using the binary variables

yj =

{

1, if depotj is used
0, otherwise

xij is the fraction of the demandi satisfied from depotj

a mathematical model is

min
∑

i∈M

∑

j∈N

cijxij +
∑

j∈N

fjyj

s.t.
∑

j∈N

xij = 1 for i ∈ M

xij ≤ yj for i ∈ M, andj ∈ N

xij ∈ {0, 1} for i ∈ M, andj ∈ N

yj ∈ {0, 1} for j ∈ N.





2
The Traveling Purchaser

Problem:
An introduction

An introduction on the Traveling Purchaser Problem (TPP) isprovided in this chapter.
The aim is to give a wide description of this problem; to provide an extensive literature
review, taking into account all the previous works on the TPP; to enumerate potential
applications to real world problems; and to place the TPP in its scope by describing
some related problems; finally a trnasformation of the TPP into the Generalized
Traveling Salesman Problemis also provided.

This dissertation is concerned with a generalization of thewell-known Traveling
Salesman Problem (TSP), known as theTraveling Purchaser Problem(TPP). The
problem can be defined as follows. Let us consider a set of products or items to be
purchased and a vehicle originally at a depot. There is a requirement of units for each
different product. Let us also consider a set of markets, each selling some units of a
certain number of products. The unit price of a product depends on the market where
it is available. It is also known the travel cost between eachtwo locations. The TPP
asks for selecting a subset of markets and routing the selected markets with a vehicle
such that the demand of each product is satisfied and the totalpurchasing and travel
cost is minimized. It is assumed that

i) each product is available in at least one market;

ii) no product is available in the depot;

iii) the required demand can be purchased.

The particular case in which there is not restricted offer ofa product at each market
is calledunrestricted TPP. It can be seen as the TPP with one-unit demand for each
product.

25
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This problem also arises in the Scheduling context. Let us consider a multipurpose
machine. This machine is designed for performing differentkinds of tasks or jobs by
changing its specific tool, available in a magazine or set of tools. Each one of these
tools corresponds to an state of a multipurpose machine. Notice that to change the
machine from the statesi to the statesj takes asetuptime, and that, return to statesi

from statesj takes a different time, since the procedure of installing and uninstalling
the tool could be not symmetric (see the state diagram in Fig.2.1). Let us also
consider a set of jobs that can be grouped according to the required tool needed to
be processed. Each of this jobs could be processed in one or different states, that is,
with one or several tools, but the processing time is closelyconnected with this tool.
The TPP looks for a sequence of a subset of states to perform the set of jobs, starting
and finishing in a base state without tool, minimizing the total processing time, which
includes both the total setup time and the total processing time. If each state is able
to process as many units as necessary then an unrestricted TPP arise. On the other
hand, if the processing capacity of a specific state is resource constrained then we are
addressing a restricted or general TPP.

s1

s2s3

s0

s4 s5

s6

Fig. 2.1 State diagram of a multipurpose machine.

2.1 LITERATURE REVIEW

Most of the works in literature deal with the unrestricted TPP. The name of Traveling
Purchaser Problem for the unrestricted TPP was coined by Ramesh [126]. He presents
two algorithms, a lexicographic search algorithm and a nearneighbour algorithm. The
former is an exact algorithm based on lexicographic search.In this approach each
solution is represented as a sequence of symbols and search for an optimal solution is
analogous to search for a specific word’s location in a dictionary. From a partial word,
solutions are generated in some hierarchy which reflects an analogous hierarchy in
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theirs values. Each partial word defines a block of solutions, and for each block of
solutions a lower bound is computed. If this lower bound exceeds the value of a
known solution (trial solution), the entered block of wordsis rejected as it necessarily
does not contain solutions of value better than the trial solution value, and the next
block of solutions is explored. However, the lower bound depends only on the travel
cost from different markets to the depot and it is independent of the purchasing cost.
Probably that is the reason for the bad performance of this algorithm.

The near neighbour algorithm also proposed by Ramesh in [126] is based on
a heuristic called NEARINSERT (see [134] and [137] for details) for the Traveling
Salesman Problem, that starts inserting a single vertex, and iteratively extend a path by
inserting all other vertices in a greedy way. The Ramesh’s heuristic begins considering
the first solution obtained in the lexicographic search as anapproximate solution for
TPP, and adapts the former algorithm making use of the mentioned heuristic for the
TPP.

Computational experience is presented in that article involving instances only up
to 12 markets and 10 products, and 8 markets and 22 products.

Prior to Ramesh, Burstall [25] described a real world problem of similar structure
in a tube manufacturing firm, but focused on a scheduling approach. The problem of
Burstall was to do technical planning, in order to determinefor each batch of tubes the
range of technically feasible ways in which they could be manufactured. In essence,
a set of batches of tubes has to be processed by a multi-state machine. The processing
time of each batch as well as technical feasibility depend onthe state. On the other
hand, the setup time taken by the machine when it change from astate to another is
also given. The problem is to process the set of batches minimizing the total time,
that includes both the total setup time and the processing time for each processed
batch. If additionally, we consider one dummy state in whichthe machine has to start
and stop, it is clear that this problem becomes the TPP, wherethe states become the
markets and each batch of jobs is a product. However, it easy to realize that neither
triangle inequality hold nor a symmetric representation isunsuitable in this type of
problem.

Burstall developed a heuristic which was further commentedon by Lomnicki
[107]. He checked his algorithm on a set of instances obtained from the real problem
he was addressing, solving problems up to 27 states (markets) and 17 jobs (products).
One of these instances is used as illustrative example in Chapter 7 in order to show
the behaviour of the proposed algorithm.

Buzacott and Dutta [26] developed an exact procedure based on Dynamic Program-
ming for this sequencing problem. His program is able to solve instances having 12
jobs or less, and he checked it on the Burstall’s factory instances other instances
involving 10 jobs and 10 states that we presume randomly generated.

Another exact algorithm was presented by Singh and van Oudheusden [141]. They
developed a branch-and-bound algorithm. The main idea of this approach is to break
up the set of all possible tours into smaller and smaller subsets, and to calculate for
each of them a lower bound on the sum of the travel cost and purchasing cost. The
lower bound is computed by solving a relaxation of the problem which is similar to
theUncapacitated Facility Location Problem(UFLP). The bounds guide the partition
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of the subset and identify an optimal solution when a subset is found that contains a
single tour, and whose bound is less than or equal to the lowerbounds for all other
subsets.

Their computer program, called TRAPUR is checked on both asymmetric and
symmetric instances. For the asymmetric case, the travel costs are integer randomly
generated from a uniform distribution in the range[15, 30]. The purchasing cost
different from arbitrary large value,M , are also integer generated from a uniform
distribution in the range[a, a + 10], wherea is an integer whose value does not
influence the optimal solution as all the products are to be purchased. The proportion
of purchasing cost different fromM is around50%. They generated a total of 65
problems with asymmetric costs, and 10 to 25 markets and 10 to100 products.

For the symmetric case, the travel cost values are taken fromthe travel cost date
for the 33-city TSP given in Karg and Thompson [90]. Notice that those instances do
not satisfy the triangle inequality. The purchasing cost different fromM are integer
randomly generated from a uniform distribution in the range[0,500]. They generated
a total of 40 problems with 10 to 20 markets and 15 to 50 products.

Since the unrestricted TPP is known to beNP-hard in the strong sense (it becomes
the TSP when each product can be purchased in only one market)the literature on
TPP is mostly directed towards the development of heuristicor near optimal methods.
One of these heuristic procedures developed so far is due Golden, Levy and Dahl
[73]. They proposed theGeneralized Saving Heuristic. It starts with an initial tour
containing the depot and the markets selling the largest number of products at their
lowest available price. Ties are broken by selecting the market with the smallest sum
of product prices. At each iteration, the non-visited market producing the largest cost
saving is inserted in the current tour. The heuristic stops when no more saving can
be achieved. Their heuristic was, later on, modified by Ong [116] who proposed the
Tour Reduction Heuristic(TRH) It starts with an initial tour containing a subset of
markets offering then products and iteratively drops the markets yielding the largest
cost reduction until no further improvement can be obtained. Ong also suggested
using a good TSP algorithm to resequence the markets in the intermediate tours. The
performance on this approach heavily depends on the initialsubset of markets, on
the number of times the TSP heuristic is applied, and on the performance of the TSP
heuristic.

Pearn and Chien [123] suggested some improvements of the twoprevious works
from Golden, Levy and Dahl [73] and Ong [116]. Two of them wererelated to the
Generalized Saving Heuristic from Golden, Levy and Dahl [73]. The first one called
Parameter Selection Generalized Saving Heuristic, uses a weighted saving function
where a term reflecting the purchasing saving at a given market is multiplied by a
weight and added to the travel cost saving. The second version, called theTie Selection
Generalized Saving Heuristicis similar to the original heuristic, but the tie-breaking
rule selects the market closest to the depot instead of the market offering the smallest
sum of product price.

Two improvements were also suggested by Ong [116] for the TRH. They suggested
initially selecting the set of markets selling at least one product at its lowest price.
They also tested two variants of the TRH. In the first one, calledAdjusted-Cheapest
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Tour-Reduction Heuristic, the initial set of markets contains all markets for which the
price of one or more products augmented by their travel cost to the depot is minimal.
In the second variant, calledNearest-Cheapest Tour-Reduction Heuristicthe initial
set includes the closestq markets to the domicile. They solved the TPP with five
different values ofq.

Another heuristic proposed by Pearn and Chien [123] is called Commodity Adding
Heuristic. This heuristic implicitly assumes that all products are available at all
markets. The procedure considers the first product from a list and constructs a least
cost solution for this product. At each following iteration, it inserts the next product
in the solution in a least cost manner. The authors also propose improving the solution
by mean of the Basart and Huguet [17] TSP heuristic, or by market drop or market
interchange operations.

Voß [151] presented metaheuristics bases on dynamic tabu search and simulated
annealing for the TPP, which used dynamic strategies for managing of tabu list. In this
paper he presents two of these dynamic strategies, thereverse elimination methodand
thecancellation sequence method, studying their impact on the Traveling Purchaser
Problem. In order to compare his dynamic strategies Voß presents numerical results
for the TPP computed on three known graphs from the literature with 10, 31 (Clarke
and Wright [35]) and 52 (Paessens and Weuthen [122]) markets. Finally, tabu search
seems to work better on the TPP.

Two heuristic procedures,ADD-procedureandDROP-procedure, are also devel-
oped for constructing the initial tours. TheADD-procedureis a iterative procedure
that build a feasible tour by adding new markets to the tour, according to a saving
criterion. As soon as a feasible cycle is created, additional markets are added until
not improvement in the objective function is achieved.

On the other hand, theDROP-procedureis an inversion of theADD-procedure.
It starts with a feasible tour containing the whole set of markets. The procedure
removes in each step the market which gives the largest reduction in the objective
function. If no more reduction is possible, it terminates with a feasible solution. This
procedure has been also described as a so calledtour reduction heuristicby Ong
[116]. Afterwards, the initial tour is determined by applying some TSP heuristic.

Based on those two procedures some deterministic exchange procedures have
been proposed in [151], the IMP1 and IMP2. The IMP1 procedurecompute the
best tour after adding a market by theADD-procedureand remove another one with
DROP-procedure. By changing the order of these procedures it becomes the IMP2.
Therefore, IMP1 and IMP2 produce two possible neibourhood definitions.

Another metaheuristic approach is presented by Boctor, Laporte and Renaud [22].
They presented several algorithms based on tabu search for solving approximately
TPP instances, both in the unrestricted and general versions, in which the markets
are locations in the Euclidean plane. These algorithms are tested on benchmarks
up to m ≤ 200 andn ≤ 200 comparing with it exacts solutions. They also test
their approach on bigger instances, but they compare their results with their own
algorithm after running several times, and not with a lower bound. They compare
two implementations of theCommodity Adding Heuristic(CAH) described by Pearn
and Chien [123] called CAH1 and CAH2, three implementation of their Perturbation
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Heuristics(PH) called UPH1 and UPH2 for the unrestricted TPP and CPH forthe
general TPP. These PH combine in different ways basic procedures asmarket drop,
market add, market exchange, TSP heuristics,cheapest insertion, double market drop
anddouble market exchange. Table 2.1 summarizes this section, including in addition
the contribution of this dissertation.

2.2 APPLICATIONS

The structure of the traveling purchaser problem applies tomany real life problems.
We discuss here some of its potential applications to job scheduling, warehousing,
routing and ring network desing.

Job scheduling

The TPP can be found in a scheduling context as noticed by Burstall [25] and by
Buzacott and Dutta [26]. Let us consider a set ofm jobs to be performed, and a
multi-purpose machine, i.e., a machine that can assumen different configurations.
Each job requires a given dedication (i.e. a set of tasks), while each configuration
of the machine can execute only part of the dedication of the job. Depending on the
configuration, it is known the time to perform a task of a job. The tasks of the jobs can
be processed by different configurations and a configurationcan be used to perform
tasks of different jobs. It is also known the time to changeover from one configuration
to another. The machine is initially in a default status (configurationv0), in which
the machine must be after all the jobs are completely executed. The TPP consists in
selecting and sequencing a set of configurations to fully execute the jobs minimizing
the total processing and changeover time. This applicationcan be seen as the TPP
with one-unit demand for each product.

Warehousing

One of the most interesting problems associated with warehousing is theorder-picking
problem. Anorderconsists of a subset of required items that are stored in a warehouse.
On receiving an order, the warehouse dispatches a vehicle from the picking area to
pick the items in the order and transport them back to the shipping area. The objective
is to minimize the distance travelled by the vehicle.

For the situation when only one item is stored in a single location area of the
warehouse, the order-picking has been recognized as a variant of TSP. However,
when an item is stored in more than one location area, the problem has the structure
of the unrestricted TPP. Even more, not only one unit of each item but also some
demand is required, the item is located at different locations of the warehouse, and
in some cases it is not possible to satisfy the demand visiting one location. Then we
are dealing with an instance of the TPP.
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Table 2.1 Literature review and contributions of this Thesis.

Reference Problema Algorithm Instances Biggest

Burstall [25] USTPP Ad hocheuristic Real instances (27 × 17)
Buzacott and Dutta [26] USTPP Dynamic Programming — —

Lexicographic searchRamesh [126] USTPP
Ad hocheuristic

— (12 × 10) and(8 × 22)

Golden, Levy and Dahl [73] USTPP Ad hocheuristic — —
Ong [116] USTPP Ad hocheuristic [61, 35, 42] (42 × 44)
Voß [151] USTPP meta-heuristic [35, 122] (52 × 83)

USTPP Random (20 × 50)Singh and Oudheusden [141]
UATPP

Branch and Bound
[90] (25 × 100)

Pearn and Chien [123] USTPP Ad hocheuristic Random (50 × 60)
USTPP (200 × 200)Laporte, Riera and Salazarb [102]
RSTPP

Branch and Cut Euclidean/[141, 123]
(200 × 100)

USTPPBoctor, Laporte and Renaud [22]
RSTPP

meta-heuristic [102] (200 × 200)

USTPP (200 × 200)Riera and Salazarb [129]
RSTPP

Ad hocheuristic [102]
(200 × 100)

Riera and Salazarb [130] Bicr. USTPP Branch and Cut [102] (100 × 200)
UATPP (200 × 200)Riera and Salazarb [131]
RATPP

Branch and Cut Random/[141]
(150 × 200)

a USTPP Unrestricted Symmetric Traveling Purchaser Problem
RSTPP Restricted Symmetric Traveling Purchaser Problem
UATPP Unrestricted Asymmetric Traveling Purchaser Problem
Bicr. USTPP Bicriterion Unrestricted Traveling PurchaserProblem

b Contributions of this thesis
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Routing

One of the routing applications of the TPP is the school bus problem. A school bus
has to pass by many points to get children to the school. Giventhe distance from
the child’s house to the potential bus stop as well as the costof driving from point
to point the problem is determine a tour of the bus which minimizes the sum of the
driving cost and the weighted distances walked by the children from their houses to
the nearest points of the tour.

Another related problem is the called shortest covering path (SCPP), introduced
by Current, Revelle and Cohon [40], which is a synthesis of the set covering location
problem and the shortest path problem. The SCPP determines the shortest path
between two given vertices in a graph such that all the demandvertices are covered.
A demand vertex is considered covered if either it is directly on the shortest covering
path of if it is within a predetermined maximum distance froma vertex on the path.
The SCPP can be shown to be an special case of TPP. The design ofsubway line or
rail line may also be of particular interest. The stations may be located at some of
the population centers while the neighboring areas will be covered by these stations.
Similarly, the same principle may be applied to develop irrigation network in a given
region of a road network between two principal cities.

Ring Network Design

Recently, the design of information and communication infrastructure has become a
major challenge both within companies and between widespread places, e.g., in major
cities where metropolitan area networks are of interest. High-bandwidth fiber optic
networks occupy an intermediate position between Local Area Networks (LANs)
and Wide Area Networks. Among the various topologies available to the design of
such networks, ring networks may be beneficial because they provide some protection
against link failures. Now we consider theGeneral Network Design Problem(GNDP),
which may be described as follow: There is a set of vertices representing routing
devices that may be linked to a network. Any two vertices on the ring are able to
communicate with each other so one gains a certain revenue. Moreover, there may
be revenues for each vertex includes in the ring. On the otherhand, constructions
costs are incurred for the design of direct links. The basic objective is to maximize
the sum of all revenues minus the construction costs.

Corresponding modifications of the GNDP arise from the problem of connecting
LAN clients using the ring topology. Apart fromn given vertices of the basic problem,
there are some secondary vertices that have to be connected to the ring. Consequently,
additional costs have to be taken into account. This problemis related to TPP. Here
the items correspond to the secondary vertices, and the markets to the vertices of the
basic GNDP, respectively.

A related problem is theRing Network Design Problem(RNDP), which has been
discussed in Gendreau, Labbé and Laporte [63] who concentrate on the development
of efficient heuristics such as greedy construction, as wellas greedy add-and-drop ex-
change based local search. Also, theSteiner Ring Network Design Problem(SRNDP),
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introduce by Laporte and Norbert [99] is another related problem, which find a sub-
tour of minimum length including a given subset of the vertexset. Gouviea and
Pires [76] develop mathematical model for theSteiner Ring Network Design Problem
with Revenues(SRNDPR) that generalizes the (SRNDP) with respect to revenues and
additional constraints. TheSelective Traveling Salesman Problem(STSP) orOrien-
teering Problem(OP) (Laporte and Martello [97], Fichetti, Salazar and Toth[55]) is
to maximize the revenues associated with the vertices included in the ring while there
is an upper boundc(R). On the other hand, thePrize Collecting TSP(PCTSP) (Balas
[8]) is to minimize link costs and penalties due to vertices not include in the ring while
there is a lower bound for vertex revenues associated with the vertices included in the
ring. Some of these problems will be briefly presented in the following section.

2.3 RELATED PROBLEMS

As already mentioned, the Traveling Purchaser Problem is a generalization of the
well known Traveling Salesman Problem. In this section we list some problems from
literature which are related to the problem we study. Some ofthem ask for optimizing
a Hamiltonian cycle according to their specific criteria. Others look for a minimum
subcycle subject to additional constraints.

The Traveling Salesman Problem

TheTraveling Salesman Problem(TSP) is one of the most prominent combinatorial
optimization problem, and it is the benchmark problem for new algorithmic ideas
in this field. The TSP has influenced significantly the development of cutting plane
algorithms of polyhedral combinatoric like the Branch-and-Cuts algorithms. The TSP
is ease to state: given a finite number of cities along with thecost of travel between
each pair of them, find the cheapest way of visiting all the cities and returning to the
starting point. Surveys of works on TSP can be found in Bellmore and Nemhauser
[19], Lawler, Lenstra, Rinnooy Kan, and Shmoy [103], Reinelt [128], and J̈unger,
Reinelt and Rinaldi [87] and recently in Guting and Punnen [83].

The TSP can be modelled as follows. We are given a complete undirected graph
G = (V, E) with vertex setV := {v1, . . . , vn} and edge setE := {[i, j] : i, j ∈
V, i 6= j}. In addition, a routing costce is defined for eache ∈ E. Letxe = 1 if edge
e ∈ E is chosen in the optimal solution, andxe = 0 otherwise. The next ILP model
formulates the TSP.

wTSP := min
∑

e∈E

cexe,

subject to

∑

e∈δ(vi)

xe = 2 for all vi ∈ V (2.1)
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∑

e∈δ(S)

xe ≥ 2 for all S ⊂ V (2.2)

xe ∈ {0, 1} for all e ∈ E.

Constraints (2.1) impose that the number of edges incident with a vertex is 2. In
order to avoid subcycles the subtour elimnation constraints (2.2) state that the subset
S ⊂ V must be connected to it complement by at least two edges of thecycle.

The Bottleneck TSP

The Bottleneck Traveling Salesman problem(BTSP) is a variation of the classical
TSP that differs from the TSP only in the objective function.Instead of min-sum
criterion, the min-max criterion is optimized.

The bottleneck TSP was introduced by Gilmore and Gomory [68]. Garfinkel and
Gilbert [60] considered the general BTSP model and discussed an application of the
problem in the context of machine scheduling. Meaningful interpretations of the
BTSP model and its variations can be given in the context of some route planning
problems and transportation of goods perishable by time. Garfinkel and Gilbert [60],
Carpaneto, Martello and Toth [28], and Sergeev and Chernyshenko [140] developed
specialized branch and bounds algorithm to solve BTSP. Computational results based
on instances withn less than or equal 200 are reported in [60, 28].

The BTSP can be modelled as follows. LetG = (V, E) be a complete undirected
graph with vertex setV := {v1, . . . , vn} and edge setE := {[i, j] : i, j ∈ V, i 6= j}.
Let ce be the cost associated with each edgee ∈ E. A simple cycle is calledfeasible
initial vertex if it goes through each vertex once and go backto the begining. The
BTSP consist of finding a feasible cycle minimizing the maximum length of the edges
belonging to the cycle. Letxe = 1 if edgee ∈ E is chosen in the optimal solution,
andxe = 0 otherwise. Then BTSP calls for

wBTSP := min max
e∈E

cexe,

subject to
∑

e∈δ(vi)

xe = 2 for all vi ∈ V

∑

e∈δ(S)

xe ≥ 2 for all S ⊂ V

xe ∈ {0, 1} for all e ∈ E.

The set constraints is identical to the TSP set of constraints.

The Maximum Scatter TSP

TheMaximum Scatter TSP(MSTSP) is another variant that is based on the objective of
finding, in a edge-weighted complete graphG = (V, E), a tour that is mostscattered.
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Specifically, the goal is to maximize the length of a shortestedge in the tour, i.e., to
have each point be far from the points that are visited just before of just after it in the
tour. This problem is also reffered as themax-min 1-neighbour TSP.

The MSTSP arises in some manufacturing processes where it isimportant to have
substantial separation between consecutive operations ona workpiece. The MSTSP
also arises in some medical imaging applications. When imaging physiological func-
tions using a Dynamic Spartial Reconstructor (DSR), the radiation sources are placed
along the top half of a circular ring, with sensors placed directly opposite, in the
bottom half of the ring. The firing sequence determines in which the sources, and
their partnered sensors, are activated, usually in a periodic pattern. This motivated
the study of firing sequence ordering for some specific geometries of DSR hardware.

To our knowledge few works deal with this problem. Penavic [124] studies the
optimal firing for a DSR application in which all sources are equally spaced. Arking,
Chiang, Mitchell, Skiena and Yang [5] show that the MSTSP isNP-hard and give
some approximation algorithms for the case of Euclidean distances. In a similar way
that the TSP, let us defineG = (V, E) with vertex setV := {v1, . . . , vn} and edge
setE := {[i, j] : i, j ∈ V, i 6= j}. For eache ∈ E ce is the routing cost of the edge
e. Letxe = 1 if edgee ∈ E is chosen in the optimal solution, andxe = 0 otherwise.
MSTSP can be modelled as follows.

wscatterTSP := max min
e∈E

cexe,

subject to

∑

e∈δ(vi)

xe = 2 for all vi ∈ V

∑

e∈δ(S)

xe ≥ 2 for all S ⊂ V

xe ∈ {0, 1} for all e ∈ E.

The TSP with time windows

TheTraveling Salesman Problems with time windows(ATSP-TW), that can be defined
as follows. Consider a undirected graphG = (V ∪{v0}, E) onn+1 nodes. Vertexv0

is the starting vertex (depot) for a salesman. With each edgee ∈ E, an edge duration
ce > 0 is associated. Furthermore, assume that for each vertexvi ∈ V , a processing
timepi ≥ 0, a release timeri ≥ 0, and a due datedi ≥ ri are given. The release date
ri denotes the earliest possible (and the due datedi the latest possible) starting time
for visiting vertexvi ∈ V . For the depot vertexv0 we assume thatr0 = d0 = 0. The
processing timepi represents the elapsed time between the arrival and departure at
vertexvi. The interval[ri, di] is called thetime windowof the vertexvi. The width
of the time windows is given bydi − ri. The time window for vertexvi is called
active, if ri > 0 or di < ∞. A time window[0,∞) is calledrelaxed. The problem is
to find a sequence of the vertices (starting at the depot vertex v0 at time 0 and ending
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in vertexv0) with minimal cost such that for every vertexvi ∈ V the arrival timeti
at vertexvi lies within the given time windows[ri, di]. It is also assumed that one
may arrive at a vertexvi ∈ V earlier thanri and wait until the vertex is released at
time ri. Waiting has no influence on the cost of a solution.

The TSP-TW reduces to the TSP ifpi = 0, ri = 0, anddi = +∞, for every
vi. Therefore the TSP-TW with general time windows isNP-hard. Tsitsiklis [148]
showed that the TSP-TW with general time windows is stronglyNP-complete, even
if the underlying graphG is a path and all processing times are equal 0.

A dynamic programmingalgorithm forTWP-TW was presentedbyDumas, Desrisuers,
Gelinas and Solomon [47], able to solve problems up to 200 nodes. Balas and Si-
monetti [14] presented a new dynamic programming algorithmthat can be applied to
a wide class of restricted TSP’s. This approach yields good results on the asymmetric
TSP-TW. Bianco, Mingozzi and Ricciardelli [21] presented adynamic programming
algorithm for TSP-TW with precedent constraints and presented computational re-
sults for instances up to 120 nodes. Finally, Ascheuer, Fischetti and Gr̈otschel [6]
developed a Branch-and-Cut algorithm for the asymmetric TSP-TW. For surveys in
time constrained routing and scheduling problems see [45, 46], among others.

The following model is defined on binary edge variables.Letxe = 1 if edgee ∈ E
is chosen in the optimal solution, andxe = 0 otherwise. Then the TSP-TW can be
modelled as

wTSP−TW := min
∑

e∈E

cexe,

subject to
∑

e∈δ(vi)

xe = 2 for all vi ∈ V ∪ {v0} (2.3)

∑

e∈δ(S)

xe ≥ 2 for all S ⊆ V (2.4)

∑

e∈P

xe ≤ |P | − 1 for all infeasible pathP (2.5)

xe ∈ {0, 1} for all e ∈ E. (2.6)

Inequalities (2.5) forbid infeasible path, i.e., path violating the given time windows.
Therefore, each solutionx of (2.3)–(2.6) is the incidence vector of a feasible Hamil-
tonian tour, and vice versa. Constraints (2.3) and (2.4) areexactly the same that the
degree constraints and sub tour elimination constraints inthe TSP.

The Cycle Problem

TheCycle Problemis the problem of finding a minimum weight circuit (i.e. a simple
cycle) in an undirected (directed) graphG = (V, E) (G = (V, A)) with costce (ca)
associated with each edgee ∈ E (arca ∈ A). This problem is in generalNP-hard,
since the TSP can be reduce to it by substracting a large positive constant from each
edge.
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However, polynomial solvable cases can be obtained if restriction on the graphs
or the cost vector are considered. If we have nonnegative costs or if the costs of
the edges of each circuit sum up to a nonnegative number, the weighted problem is
solvable in polynomial time (see Coullard and Pulleyblank [37]).

The undirected and Directed Cycle Polytope has been studiedby Bauer [18] and
Balas and Oosten [13] respectively. In addition, a polyhedral study for the Cycle
Polytope with loop variables can be found in Salazar [136] for the undirected case,
and in Balas [8] for the directed case (referred as theP0 polytope).

A model for the directed cycle problem described in Balas [8]is described below.
The following model is defined on binary edge variables and binary loop variables.Let
xe = 1 if edgee ∈ E is chosen in a feasible solution of the cycle problem, andxe = 0
otherwise. The variableyi is equal to 1 if the vertexvi belong to the solution and
equal to 0 otherwise.

∑

a∈δ+(vi)

xa = yi for all vi ∈ V

∑

a∈δ−(vi)

xa = yi for all vi ∈ V

∑

a∈δ+(S)

xa ≥ yi for all S ⊂ V

xa ∈ {0, 1} for all a ∈ A

yi ∈ {0, 1} for all vi ∈ V.

The Generalized TSP

TheGeneralized Traveling Salesman Problem(GTSP) can be defined as follows. We
are given a complete undirected graphG = (V, E) with vertex setV := {v1, . . . , vn}
and edge setE := {[i, j] : i, j ∈ V, i 6= j}. In addition, a proper partition
M1, . . . , Mm of V is given in which each vertex subset is calledcluster. Let ce

be the cost associated with each edgee ∈ E. A simple cycle is calledfeasibleif it
goes through each cluster at least once. GSTP consists in finding a feasible cycle
T ⊂ E whose global cost

∑

e∈T ce is minimum. The problem involves two related
decisions:

(i) choosing a vertex subsetS ⊆ V , such that|S ∩ Mk| ≥ 1 for k = 1, . . . , m;

(ii) finding a minimum cost Hamiltonian cycle in the subgraphof G induced byS.

A different version of the problem, called E-GTSP (where E stands for Equality),
arises when imposing the additional constraint that exactly one vertex of each cluster
must be visited. Notice that GTSP and E-GTSP are equivalent when the costs satisfy
the triangle inequality, i.e.,cij ≤ cik + ckj for all vertex triples(vi, vj , vk).

Both GTSP and E-GTSP are clearlyNP-hard, as they reduce to TSP whenm = n,
i.e., |Mh| = 1 for all h. They have been studied, among others, by Laporte and
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Norbert [100], Salazar [135], Fischetti, Salazar and Toth [54] and [53], and Sepehri
[139]. Their asymmetric counterparts have been investigated in Laporte, Mercure
and Nobert [98] and Noon and Bean [115].

An integer linear programming model for GTSP is as follow. Let xe = 1 if edge
e ∈ E is chosen in the optimal solution, andxe = 0 otherwise. In addition, letyi = 1
if the vertexvi ∈ V is visited, andyi = 0 otherwise. GTSP then calls for

wGTSP := min
∑

e∈E

cexe,

subject to
∑

e∈δ(vi)

xe = 2yi for all vi ∈ V (2.7)

∑

vi∈Mh

yi ≥ 1 for all h := 1, . . . , m (2.8)

∑

e∈δ(S)

xe ≥ 2(yi + yj − 1)
for all S ⊂ V, 2 ≤ |S| ≤ n − 2,

vi ∈ S, vj ∈ V \ S
(2.9)

xe ∈ {0, 1} for all e ∈ E (2.10)

yi ∈ {0, 1} for all vi ∈ V. (2.11)

Constraints (2.7) impose that the number of edges incident with a vertex is either
2 (if vi is visited) or 0 (otherwise). Constraints (2.8) force at least one vertex in each
cluster to be visited. Inequalities (2.9) are connectivityconstraints saying that each
cut separating two visited vertices (vi andvj) must be crossed at least twice by the
cycle.

The Orienteering Problem

TheOrienteering Problem(OP) can be defined as follows. Given a set ofn cities, each
having an associated nonnegative prize, and a vehicle stationed in a depot located in
city v1. Let cij = cji be the time spent for routing citiesvi andvj in sequence. The
OP is to find a route for a vehicle, visiting each city at most once, requiring a total
time not exceeding a given boundc0, and collecting a maximum total prize. This
problem isNP-hard, and arises in several routing and scheduling applications, see
e.g., Golden, Levy, and Vohra [74].

Heuristic Algorithms for OP and some generalizations have been proposed by
Tsiligires [147], Golden, Levy and Vohra [74], Golden, Wang, and Liu [75] and
Chao, Golden, and Wasil [29]. Exact enumerative methods have been proposed
by Laporte and Martello [97], and by Ramesh, Yoon, and Karwan[127]. Leifer
and Rosenwein [105] have discussed an LP-based bounding procedure. Gendreau,
Laporte, and Semet [64] proposed a branch-and-cut aproach.Finally Fichetti, Salazar
and Toth [55] introduced a new family of cuts and developed a branch-and-cut for
this problem.
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We consider a complete graphG = (V, E) with n := |V | nodes. Vertexv1

represent the depot. Letpi denote the nonnegative prize associated with eachvi ∈ V
(with p1 = 0), ce be the nonnegative travel time associated with anye ∈ E, andc0

be the maximum total travel time allowed for the vehicle.
We assume throughout that all valuespi, ce, andc0 are integer.
OP can then be formulated as the 0–1 Integer Linear Programming model:

wOP := max
∑

vi∈V

piyi,

subject to
∑

e∈δ(vi)

texe ≤ t0 (2.12)

∑

e∈δ(vi)

xe = 2yi for all vi ∈ V (2.13)

∑

e∈δ(S)

xe ≥ 2yi for all S ⊂ V, vi ∈ S, v1 ∈ V \ S (2.14)

y1 = 1 (2.15)

xe ∈ {0, 1} for all e ∈ E (2.16)

yi ∈ {0, 1} for all vi ∈ V \ {v1}. (2.17)

Constraints (2.12) impose the boundt0 on the total travel time. The degree equa-
tions (2.13) stipulate that a feasible solution has to go exactly once through each
visited node. The Generalized subtour Elimination Constraints (2.14) force each vis-
ited vertexvi ∈ V \ {v1} to be reachable from vertexv1 by mean two edge-disjoint
paths. Finally, (2.15) imposes that vertexv1 must be visited, and (2.16)–(2.17) require
that all variables are 0–1 valued.

The Vehicle Routing Problem

Vehicle Routing ProblemsVRP deal with the optimal use of a fleet of vehicles to
transport (pick up or deliver) goods between a central depotand a set of clients.
Several interesting examples arise in scheduling school buses, mail collection from
the mail-boxes, delivery of laundry, garbage collection, etc. Because of this enormous
number of practical applications several particular versions have been studied in the
literature. For surveys on the subject see, e.g., Christofides, Mingozzi and Toth [32],
Christofides [31], Laporte and Nobert [101], Golden and Assad [72] and Laporte [96].
We consider now theCapacitated Vehicle Routing Problem(CVRP), introduced by
Dantzig and Ramser [43]. In this problem a quantitydi of a single commodity is to
be delivered to each customervi ∈ V , from a central depotv0 usingk independent
delivery vehicles of identical capacityQ. Delivery is to be accomplished at minimum
total cost, withcij ≥ 0 denoting the transit cost fromvi to vj , for vi, vj ∈ V . The
cost structure is assumed to be symmetric, i.e.,cij = cji andcii = 0.
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Combinatorially, a solution for this problem consists of a partition{R1, . . . , Rk}of
V intok routes, each satisfying

∑

vj∈Ri
dj ≤ Q for i = 1, . . . , k, and a corresponding

permutationσi of each route specifying the service ordering. This problemis naturally
associated with the complete undirected graphG = (V ∪ {v0}, E), and the edge-
traversal costsce for all e ∈ E. In this graph, a solution is the union ofk cycles whose
only intersection is the depot node. Each cycle correspondsto the route serviced by
one of thek vehicles. By associating a binary variable with each edge inthe graph,
we obtain the following ILP formulation.

wCV RP := min
∑

e∈E

cexe,

subject to

∑

e∈δ(v0)

xe = 2k (2.18)

∑

e∈δ(vi)

xe = 2 for all vi ∈ V (2.19)

∑

e∈δ(S)

xe ≥ 2b(S) for all S ⊂ V, |S| > 1 (2.20)

xe ∈ {0, 1} for all e ∈ E \ {δ(v0)} (2.21)

xe ∈ {0, 1, 2} for all e ∈ δ(v0). (2.22)

We defineb(S) = d
(
∑

vi∈S di

)

/Qe, an obvious lower bound on the number of
vehicles needed to service the customers in setS. Contraints (2.18) and (2.19) are the
degree constraints. Constraints (2.20) can be viewed as a generalization of the subtour
elimination constraints from the TSP and enforce the connectivity of the solution as
well as to ensure that no route has total demand exceeding thecapacityQ.

The Median Cycle Problem

TheMedian Cycle Problem(MCP) can be defined as follow. LetG = (V, E ∪A) be
a complete mixed graph whereV = {v1, . . . , vn} is the vertex set,E = {[vi, vj ] :
vi, vj ∈ V, i < j} is the edge set, andA = {(vi, vj) : vi, vj ∈ V } is the arc set
(loops(vi, vi) are included inA). Vertexv1 is referred to as the depot. With each
edge[vi, vj ] ∈ E is associated a non-negative routing costcij , and with each arc
(vi, vj) ∈ A is associated a non-negative assignment costdij . A solution to the
MCP is a simple cycle through a subsetV ′ of V includingv1 and at least two other
vertices. The routing cost of a solution is the sum of the routing cost of all edges on
the cycle. The assignment cost of a solution is defined as

∑

vi∈V \V ′ minvj∈V ′ dij .
Two versions of MCP have been investigated. In the first version, called MCP1 or
Ring Star Problem, the aim is to determine a solution so as to minimize the sum ofthe
routing cost and the assignment cost. In the second version,called MCP2, we seek
a solution of least routing cost, subject to an upper boundd0 on the assignment cost.
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A deep treatment of MCP, including both exact and heuristicsalgorithms, is made
in the PhD disertation of Rodrı́guez [133]. Lee, Chiu and Sanchez [104] defined a
very closely related problem to MCP1 by considering an additional set of verticesW
and setting the assignment cost to

∑

vi∈W minvj∈V ′ dij . They developed a branch-
and-cut solving intances with|V | ≤ 50, |W | ≤ 90 and|V | + |W | ≤ 100. Xu, Chiu
and Glover [153] proposed a tabu search aproach for this problem. Recently Labb́e,
Laporte, Rodŕıguez and Salazar [95] and [94] developed a branch-and-cut approach
for MCP1 and MCP2 involving instances up to|V | ≤ 300 and up to|V | ≤ 150
respectively.

MCP1 can be formulate as an ILP model as follows. For each edge[vi, vj ] ∈ E,
let xij be a binary variable equal to 1 if and only if edge[vi, vj ] appears on the cycle.
For each arc(vi, vj) ∈ A , let yij be a binary variable equal to 1 if and only if vertex
vi is assigned to vertexvj on the cycle. Notice that if a vertexvi is on the cycle, it is
then assigned to itself, i.e.,yii = 1. The formulation is then:

wMCP1 := min
∑

[vi,vj ]∈E

cijxij +
∑

(vi,vj)∈A

dijyij

subject to

∑

e∈δ(vi)

xe = 2yii for all vi ∈ V (2.23)

∑

vj∈V

yij = 1 for all vi ∈ V \ {v1} (2.24)

∑

e∈δ(S)

xe ≥ 2
∑

vj∈S

yij for all S ⊂ V, v1 6∈ S, vi ∈ S (2.25)

xij ∈ {0, 1} for all [vi, vj ] ∈ E (2.26)

yij ≥ 0 for all (vi, vj) ∈ A (2.27)

y11 = 1 (2.28)

y1j = 0 for all vj ∈ V \ {v1} (2.29)

yjj integer for all vj ∈ V \ {v1}. (2.30)

In this formulation, Contraints (2.23) are degree constraints. They ensure that the
degree of a vertexvi is 2 if and only if it belongs to the cycle (i.e.,yii = 1). Constraints
(2.24) state that eithervi is a vertex on the cycle (in that caseyii), or vi is assigned
to a vertexvj on the cycle (in that caseyij = 1). Constraints (2.25) are connectivity
constraints since they state thatS must be connected to it complement by at least two
edges of the cycle whenever at least one vertexvi is assigned tovj ∈ S.

The ILP formulation of MCP2 is identical to that of MCP1 except that the objective
becomes

wMCP2 := min
∑

[vi,vj ]∈E

cijxij
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and the constraint
∑

(vi, vj) ∈ A
vi 6= vj

dijyij ≤ d0

is introduced.

The Prize Collecting TSP

ThePrize Collecting TSP(PCTSP) was introduced by Balas [8] and can be described
as follows. Let us consider a depot at which a vehicle is stationed, and a set of cities,
each one having a non-negative prizewi for each cityvi when visited, and a penalty
ci to every cityvi when no visited. With a traveling cost ofca for all arcsa = (vi, vj)
joining citiesvi andvj . This problem looks for a tour that minimizes the travel cost
and penalties, subject to a lower boundw0 on the amount of prize money it collects. A
branch and bound method for the exact solution of PCTSP was developed by Fischetti
and Toth [57]. Polyhedral results was obtained by Balas [8, 9].

Let yi be 1 if city vi is included into the tour and 0 otherwise, and letx be the
incidence vector of the arcs in the tour, then PCTSP can be formulated on a complete
directed graphG′ = (V, A)

wPC′

:= min
∑

a∈A

caxa +
∑

vi∈V

ciyi

subject to
∑

a∈δ+(vi)

xa = yi for all vi ∈ V

∑

a∈δ−(vi)

xa = yi for all vi ∈ V

∑

vi∈V

wiyi ≥ w0

xa ∈ {0, 1} for all a ∈ A

yi ∈ {0, 1} for all vi ∈ V

G′(y, x) is a cycle.

HereG′(y, x) is the subgraphG′ whose vertices and arcs are those defined byy and
x, respectively. As also happens in the definition of theMedian Cycle Problem, it is
convenient to complement the variablesyi, vi ∈ V , i.e. introducen new variables
xii = 1−yi, vi ∈ V , representing loops of a graphG = (V, A∪O) obtained fromG′

by endowing every vertex with a loop. Now, the incidence vector (y, x) ∈ {0, 1}n2

of
vertices and arcs ofG′ is replaced by the incidence vectorx ∈ {0, 1}n2

of loops and
arcs ofG. If we definecii := pi, vi ∈ V , andU :=

∑

vi∈V wi − w0, the problem
can be restated as follow
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wPC := min
∑

a∈A∪O

caxa

subject to
∑

a∈δ(vi)+

xa + xii = 1 for all vi ∈ V

∑

a∈δ(vi)−

xa + xii = 1 for all vi ∈ V

∑

vi∈V

wixii ≤ U

xa ∈ {0, 1} for all a ∈ A ∪ O

G(x) is a cycle of length≥ 2.

The Covering Tour Problem

The Covering Tour Problem(CTP) is defined as follows. LetG = (V ∪ W, E)
be an undirected graph, whereV ∪ W is the vertex set,V = {v1, . . . , vn} and
E = {[vi, vj ] : vi, vj ∈ V ∪ W, i < j} is the edge set. Vertexv1 is a depot,V is
a set of vertices that can be visited,T ⊆ V is a set of vertices that must be visited
(v1 ∈ T ), andW is a set of vertices that must be covered. For each edge[vi, vj ] ∈ E
a distancecij is defined. The CTP consists in determining a minimum lenght tour of
Hamiltonian cycle over a subset ofV in such a way that the tour contains all vertices
T , and every vertex ofW is covered by the tour. Such tour may not always exist. CTP
was introduced by Current [39]. It is formulated in Current and Schilling [41]. In
[41] a two-objective version of the problem is also considered. The authors propose
a heuristic to generate a set of efficient solutions. Recently Gendreau, Laporte and
Semet [65] developed an exact branch-and-cut algorithm forthis problem.

The CTP can be formulated as an ILP model as follows. For eachvk ∈ V , let
yk be a binary variable equal to 1 if and only if the vertexvk belongs to the tour. If
vk ∈ T , thenyk is neccesary equal to 1. Forvi, vj ∈ V andi < j, let xij a binary
variable equal to 1 if and only if edge[vi, vj ] belongs to the tour. Also define binary
coefficientsδlj equal to 1 if and only ifvl ∈ W can be covered byvk ∈ V , and let
Sl = {vk ∈ V |δlk = 1} for everyvl ∈ W . Then the CTP can be stated as:

wCTP := min
∑

e∈E

cexe

subject to
∑

vi∈Sl

yi ≥ 1 for all vl ∈ W (2.31)

∑

e∈δ(vi)

xe = 2yi for all vi ∈ V (2.32)
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∑

e∈δ(S)

xe ≥ 2yi
S ⊂ V, 2 ≥ |S| ≥ n − 2,

T \ S 6= ∅, vi ∈ S
(2.33)

xe ∈ {0, 1} for all e ∈ E (2.34)

yi = 1 for all vi ∈ T (2.35)

yi ∈ {0, 1} for all vi ∈ V \ T. (2.36)

In this formulation, Constraints (2.31) ensure that every vertex of W is covered
by the tour, while Constraints (2.32) are the degree contraints. Constraints (2.33) are
connectivity constraints. They force the presence of at least two edges between any
setS andV \ S, for every proper subsetS ⊆ V such thatT \ S 6= ∅ andS contains
a vertexvt belinging to the tour. Finally, constraints (2.34)–(2.36)set the integrality
requirements.

The Pickup-and-Delivery TSP

There are different versions of thePickup-and-Delivery Traveling Salesman Problem
in the literature. They all concerns with the collection anddelivery of some products
a each customer, and differes in the number of product to be transported, the existence
of precence constraints, the existence of time windows, theexistence of capacities,
diffeent vehicles, etc. Theone-commodity Pickup-and-Delivery Traveling Salesman
Problem(1PDTSP) is a generalization of the TSP in which a special city is considered
as thedepot, and the other cities ascustomerspartitioned into two groups according
to the type of the required service. Eachderivery customerrequires a given non-
zero amount of the product, while eachpickup customerprovides a given non-zero
amount of the product. The product collected in a pickup customer can be served to
a delivery customer, as it is assumed non-deterioration forthe use of the product. It
is also considered a vehicle with a fixed upper-limitcapacitythat starts and ends the
route at the depot, and the classical travel distances between each pair of locations.
Then the 1PDTSP calls for a minimum distance tour for the vehicle visiting each
customer once and satisfying the customer requirements without ever violating the
vehicle capacity.

On the other hand, there is another variant known in the literature as theTraveling
Salesman Problem with Pickups-and-Delivery(TSPPD). As in the 1-PDTSP, there
are two types of customers, each one with a given demand, and avehicle with a given
capacity originally in the depot. Also travel distances aregiven. The main difference
between the two problems is that in the TSPPD the product collected from pickup
customer is different than the product served to delivery customers. Therefore, the
total amount of product collected from pickup customers must be delivered only at
the depot, and there is another different product going fromthe depot to the delivery
customers.

The TSPPD was introduced by Mosheiov [111], who proposed applications and
heuristic approaches. Anily and Mosheiov [3] and Gendreau,Laporte and Vigo [66]
present approximation algorithms for the TSPPD. Anily and Hassin [2] introduce the
Swapping Problem, the particular case of 1-PDTSP in which the customer demands
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and vehicle capacity are all identical numbers, and proposean approximation algo-
rithm. Finally, Herńandez and Salazar [85] propose a 0-1 integer linear programming
model, as well as a Branch-and-Cut approach for solving the 1-PDTSP and TSPPD
for both the symmetric case.

We now present an ILP model for the 1-PDTSP. LetG = (V, E, A) an undirected
(directed) graph. LetV := {v1, v2, . . . , vn} a the set of vertices and letE be the edge
set, in which each edgee = [vi, vj ] ∈ E joins the vertexvi andvj ; and letA be the
arc set, consisting of the arcs(vi, vj) ∈ A joining the verticesvi andvj . The depot
is denoted by the vertexv1, and the customers by the remaining vertices. For each
customervi ∈ V \{v1} the demandqi is given, inducing adelivery customerif qi < 0
and apickup customerif qi > 0. The capacity of the vehicle is represented byQ, and
it is assumed to be a positive number. For each pair of vertices vi, vj ,∈ V a travel
distancecij is also given. Let us consider the symmetric case, in whichcij = cji.

Without lost of generality, the depot can be considered a customer by defining
q1 := −

∑

vi∈V \{v1}
qi.

Let us consider the for each edgee ∈ E the edge-decision variablexe that is equal
to 1 if and only if edgee belongs to the cycle and 0 otherwise. Let us also consider
the continuous variablega certificating the existence of a load of the vehicle going
through arca. Then, the symmetric case can be formulated as follows.

w1PDTSP := min
∑

e∈E

cexe

subject to
∑

e∈δ(vi)

xe = 2 for all vi ∈ V (2.37)

∑

e∈δ(S)

xe ≥ 2 S ⊂ V (2.38)

xe ∈ {0, 1} for all e ∈ E (2.39)
∑

a∈δ+(vi)

ga −
∑

a∈δ−(vi)

ga = qi for all vi ∈ V (2.40)

0 ≤ g(i,j) ≤
Q

2
xij for all (i, j) ∈ A. (2.41)

Constraints (2.37) impose that each customer must visited once, and Constraints
(2.38) force the 2-connectivity between customers. Constraints (2.40) and (2.41)
guarantee the existence of a certificate[ga : a ∈ A] proving that a vector[xe : e ∈ E]
defines a feasible 1-PDTSP cycle.

The Black and White TSP

The Black and White Traveling Salesman Problem(BWTSP) is first analyzed in
Ghiani, Laporte and Semet [67] and Bourgeois, Laporte and Semet [24]. A BWTSP
is defined on a graphG = (V, E) where vertex setV is partitioned into black nodes,
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denoted byB, and white nodes, denoted byW = V \B. A solution of a BWTSP is a
tour inG, satisfying some additional constraints.W defines a “black-to-black” path to
be a sequence of vertices(vi1 , . . . , vik

) wherevi1 , vik
∈ B, andvi2 , . . . , vik−1

∈ W .
A feasible BWTSP tour must comply the following conditions.A feasible tour cannot
use more thanQ ∈ Z+ white vertices in any black-to-black path, which we refer to
as cardinality constraints; the total arc cost of any black-to-black path between two
black vertices cannot exceed a fixed value, denoted byL ∈ R+, which refer to as
cost constraints.

Ghiani, Laporte and Semet [67] present a branch-and-cut forfinding exact solutions
for the undirected BWTSP. They also introduce several classes of valid cuts, which
can be classified into two groups: cardinality constraints and cost constraints. This
branch-and-cut algorithm was tested on a large number of randomly generated test
problems with different characteristics with respect toQ, |B| andL. The method
seems to perform well on problem with no restriction cost, that is withL = ∞, and
with cardinality loosely constrained. For this type of problems, the largest instances
solved have 100 nodes. However, for problems with tightly constrained cardinality
and cost, the largest problems successfully solved are some20 vertices instances.

Bourgeois, Laporte and Semet [24] present heuristic approaches for obtaining
feasible solutions and thus upper bounds to undirected BWTSP’s. The heuristic
approaches introduced by them can be described as follows. First, a TSP feasible
solution is obtained using the GENIUS heuristic described by Gendreau, Hertz and
Laporte [62]. If the solution is infeasible to the BWTSP, then some swapping heuris-
tics and insertion heuristics are applied in an attempt to remove infeasibilities (they
refer to these heuristics as feasibility heuristics). Bourgeois, Laporte and Semet [24]
point out that these heuristics do not guarantee feasible solutions. Then, if a feasible
solution is obtained, a somewhat restricted 2-opt procedure that only allows moves
within some neighbourhood of feasible solutions is appliedin order to obtain better
feasible solutions.

2.4 TRANSFORMATION OF THE STPP INTO THE GTSP

A transformation to solve the TPP is presented in this section. This transformation
allow us to solve the STPP by mean a GTSP solver (see Fischetti, Salazar and Toth
[53] for an exact algorithm for the symmetric GTSP).

The unlimited-supply TPP can readily be formulated as ageneralized TSPwith
equality constrains (E-GTSP) consisting in designing in anauxiliary graphG′ =
(V ′, E′) a minimum-cost simple cycle visiting exactly one vertex of each given cluster
(see, e.g., Fischetti, Salazar and Toth [53]). More specifically, the auxiliary graphG′

is obtained as follows. Letvki represent astall at which productpk can be purchased
at marketvi. ThenV ′ := {v0} ∪ {vki : pk ∈ K, vi ∈ Mk} is the vertex set
andE′ := {[vki, vhj ] : vki, vhj ∈ V ′, k < h} is the edge set. The cost of using
edge[vki, vhj ] ∈ E′ is zero if i = j, andcij otherwise; the cost of visitingv0 is
zero and the cost of visitingvki is bki (Fig. 2.2 and 2.3 illustrate this transformation
for both the symmetric and asymmetric case). The corresponding E-GTSP is then
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defined with the clustersC0 := {v0} andCk := {vki : vi ∈ Mk} for all pk ∈ K.
Clearly an optimal solution of this E-GTSP gives a sequence of stalls to purchase each
product in one stall of one market with minimum pricing and routing costs, i.e., an
optimal solution of the unlimited-supplied TPP. In a similar way, it could be possible
to transform a general TPP in a GTSP visitingat leastone node for each cluster.
Since in general|V ′| is much larger than|V |, using this transformation for solving
TPP is likely to be rather inefficient.
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vi vj

p1 p2 pm. . .
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Fig. 2.2 Transformation of the STPP into GTSP.
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vki vli

c[ki,li] = c[li,ki] = 0

(c)

Fig. 2.3 Transformation of the ATPP into the GTSP.





3
Mathematical Models

The purpose of this chapter is to provide a model for both versions of the TPP,
the symmetric and asymmetric, and to introduce the notationused throughout the
chapter. Sections 3.1 and 3.3 describe the Integer Programming model proposed
for the symmetric and asymmetric cases respectively. Sections 3.2 and 3.4 provide
additional inequalities which strength the LP-relaxationof the proposed models.

The aim in the Traveling Purchaser Problem is to determine a route among a set
of selected markets as well as an assignment of the product satisfying the demand
constrains. The given set of potentialmarketsM := {v1, . . . , vn} with thedepotv0,
and the possible connections between each pair of them can berepresented formally
by a undirected (directed) graphG = (V, E) (G = (V, A)), whereV := {v0}∪M is
the vertex set andE := {[vi, vj ] : vi, vj ∈ V, i < j} (A := {[vi, vj ] : vi, vj ∈ V }) is
the edge (arc) set, representing all the possible pair of nodes with direct connection.

Eachproduct pk ∈ K := {p1, . . . , pm} is available at a subsetMk ⊆ M of
markets. We will assume for convenience thatn ≥ 4 andm ≥ 1. Let us denote
by dk the number of units of productpk that must be purchased, and letqki be the
number of units ofpk that are available at the marketvi. We assumeqki anddk

satisfy0 < qki ≤ dk and
∑

vj∈Mk
qkj ≥ dk for all pk ∈ K andvi ∈ Mk. Let bki

be the price of the productpk at the marketvi and the let us denote byce (ca) the
travel cost betweenvi andvj , wheree = [vi, vj ] (a = (vi, vj)). The TPP consists in
determining a simple cycle inG passing through the depot and a subset of markets so
that all products are purchased at a total minimum cost obtained by adding the routing
cost and the purchase price. This definition of the TPP generalizes the classical case
with unlimited supplies, i.e.,qki = dk for all i, k.

51
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M1

M2

M3

M4

M5

v0

v1

v2

v4
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v3
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v7v9

Fig. 3.1 Feasible solution of TPP.

Fig. 3.1 shows an instance of TPP containing9 marketsM := {v1, . . . , v9} and
5 type of different productsK := {p1, . . . , p5}. Notice that, both the productsp2

andp3 are available at the marketv3, sinceM2 ∩ M3 = {v3}. Moreover, in order
to satisfy the demand of productp4 it is mandatory to visit marketsv4 andv2. This
also happen with productp5 since it is only available in marketv1. In this particular
case the markets are locations in the plane, so the travel costs between two markets
are given by the Euclidean distance.

The TPP isNP-hard since it reduces to theTraveling Salesman Problem(TSP)
whenm = n and|Mk| = 1 for all pk ∈ K. The TPP also reduces to theUncapac-
itated Facility Location Problem(UFLP) (see section 1.6) whenMk = M for all k,
qki = dk for all i, k, andcij = (fi + fj)/2 for all [vi, vj ] ∈ E, wherefi is the cost of
opening facilityvi (f0 := 0) andbki is the cost of serving customerpk from facility
vi.

3.1 ILP FORMULATION FOR THE STPP

An integer linear programming formulation for the undirected or symmetric TPP
(STPP) is presented in this section. This formulation is based on the notation intro-
duced in the previous section as well as in Section 1.1 of Chapter 1, which was related
to graph theory. In addition to this, let us define

M∗ := {v0} ∪

{

vi ∈ M : there existspk ∈ K such that
∑

vj∈Mk\{vi}

qkj < dk

}

,

as the set of vertices that must necessarily be part of any feasible TPP solution.
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To model the STPP we use three types of decision variables. A first family of
variables associated to edges is

xe :=
{

1 if edgee belongs to the solution
0 otherwise

for all e ∈ E.

A second family is defined by the variablesy as follows

yi :=
{

1 if vertexvi belongs to the solution
0 otherwise

for all vi ∈ V.

It should be noticed that this variable has just the oppositesense that the loop variables
defined for thePrize Collecting TSPby Balas in [8, 9, 10], and Balas and Oosten in
[13]. In those articles the variabley is related to a graphG(V, E, L), whereL is the
set of loops, that is, edges from a vertex to itself. And the variablesyi take the value 1
if the vertexvi is not visited,i.e., there exist a loop in the vertexvi. Nevertheless, other
authors, as Fischetti, Salazar and Toth [53, 54, 55, 56], Rodrı́guez [133], Gendreau,
Laporte and Semet [65], etc., make use of the former notation.

In addition, the third familyz has the following meaning,

zki :=
the amount of productpk is purchased

at marketvi, for all pk ∈ K and allvi ∈ Mk.

The TPP formulation for the STPP is as follows

wOPT := min
∑

e∈E

cexe +
∑

pk∈K

∑

vi∈Mk

bkizki (3.1)

subject to
∑

e∈δ({vi})

xe = 2yi for all vi ∈ V (3.2)

∑

e∈δ(S)

xe ≥ 2yi for all S ⊆ M and allvi ∈ S (3.3)

∑

vi∈Mk

zki = dk for all pk ∈ K (3.4)

zki ≤ qkiyi for all pk ∈ K and allvi ∈ Mk (3.5)

xe ∈ {0, 1} for all e ∈ E (3.6)

yi ∈ {0, 1} for all vi ∈ M \ M∗ (3.7)

yi = 1 for all vi ∈ M∗ (3.8)

zki ≥ 0 for all pk ∈ K and allvi ∈ Mk. (3.9)

The objective function is to minimize the sum of both the total routing cost, given
for the sum of the cost associated to the edges belonging to the solution, and the total
purchasing cost, that is the sum of the selected product by their unit price.

Constrains (3.2), that are thedegree constrains, ensure that the degree of a market
vi is 2 if the markets is visited (yi = 1), i.e., each selected market is visited just once.
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However, this would produce a set of subtours the following family of inequalities.
Constrains (3.3), refereed asYSEC, and can be equivalently re-written as

∑

e∈E(S)

xe ≤
∑

vj∈S\{vi}

yj for all S ⊆ M and allvi ∈ S, (3.10)

which ensure that a subsetS ⊆ M of visited markets must be connected to the
remaining vertices by at least two edges, in order to avoid unconnected subcycles. It
should be noticed that the number ofYSECinequalities isO(2n), that is, exponential
in the size of the problem. This may seem to be a serious difficulty. However, this
drawback has been overcame, since an efficient algorithm to separate this family of
inequalities, based on the efficient algorithm from Padbergand Rinaldi [117] for the
minimum capacity cut, has been found. It is described in section 5.4.

Inequalities (3.4) guarantee that the exact amount of product pk is purchased.
Notice that, for the particular case of the TPP, this equation could be replaced by a
greater or equal inequality, since the objective function guarantee that no more than
the strictly necessary amount of product would be purchased. Inequalities (3.5) mean
that is not possible to purchase a productpk in a marketvi if is not visited and that it
is not possible to purchase more than it offersqki. Constrains (3.6) to (3.9) impose
bounds and integrality conditions on the variables.

3.2 VALID INEQUALITIES FOR THE STPP

The linear relaxation of model (3.1)–(3.9) can be strengthened by using valid inequal-
ities for two of its subproblems.

First observe that constrains
∑

e∈δ({vi})

xe = 2yi for all vi ∈ V

∑

e∈δ(S)

xe ≥ 2yi for all S ⊆ M and allvi ∈ S

xe ∈ {0, 1} for all e ∈ E

yi ∈ {0, 1} for all vi ∈ M,

are those of aCycle Problem(see Coullard and Pulleyblank [37], Bauer [18], and
Salazar [136]), a generalization of the TSP in which only a subset of vertices must be
in the cycle. Thus, for example, one can impose the trivial inequalities

x[v0,vj ] ≤ yj for all vj ∈ V. (3.11)

Notice that (3.11) in not included in (3.10) since theS ⊆ M , andv0 6∈ M .
Other valid inequalities for the cycle part of this problem are the2-matching in-

equalitiesfor the TSP from Edmons [48], which are a particular case of the Chv́atal
combs (Chv́atal [34])andof the comb inequalities (introducedandstudiedbyGr̈otschel



VALID INEQUALITIES FOR THE STPP 55

and Padberg [79, 80]).

∑

e∈T

xe −
∑

e∈δ(H)\T

xe ≤ |T | − 1 (3.12)

for all H ⊂ V andT ⊂ δ(H) satisfying

(i) {vi, vj} ∩ {vs, vt} = ∅ for [vi, vj ], [vs, vt] ∈ T and[vi, vj ] 6= [vs, vt],

(ii) |T | ≥ 3 and odd.

These inequalities are obtained by summing up the degree equations (3.2) for all
vi ∈ H and the bound restrictionsxe ≤ 1 for all e ∈ T , dividing all by 2, and
rounding down all coefficientes to the closest integer. See Bauer [18] for others valid
inequalities for theCyclepolytope.

A second subproblem defined by

∑

vi∈Mk

zki = dk for all pk ∈ K

zki ≤ qkiyi for all pk ∈ K and allvi ∈ Mk

yi ∈ {0, 1} for all vi ∈ M

zki ≥ 0 for all pk ∈ K and allvi ∈ Mk,

correspond to a generalization of the UFLP with upper boundson the customer-facility
variables. Valid inequalities for the subproblem whenqki = dk can be obtained from
theSet Covering Problempolytope (see e.g., Balas and Ng [12]). Consider a subset
of productsL ⊆ S with 3 ≤ |L| ≤ |K| − 1, let M ′(L) := ∩pk∈LMk be the set
of markets each one selling all products inL andM ′′(L) := ∪pk∈LMk, the set of
markets each one selling at least one products inL. We can then impose the constraint

2
∑

vi∈M ′(L)

yi +
∑

vi∈M ′′(L)\M ′(L)

yi ≥ 2, (3.13)

which stipulates that at least two markets inM ′′(L) must be visited if no market in
M ′(L) is visited. Decomposing this second subproblem for each product yields the
family of cover inequalities:

∑

vi∈S

yi ≥ 1 for all S ⊆ Mk such that
∑

vi∈Mk\S

qki < dk, (3.14)

for all pk ∈ K. These constrains state that a market inS must be visited if markets
in Mk \ S are not enough to provide the required demanddk of productpk.

If we sum up (3.2) for allvi ∈ S, we obtain

∑

e∈δ(S)

xe + 2
∑

e∈E(S)

xe = 2
∑

vi∈S

yi,
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∑

e∈δ(S)

xe ≤ 2
∑

vi∈S

yi.

Then, a simple strengthening of constrains (3.14) is given by
∑

e∈δ(S)

xe ≥ 2 for all S ⊆ M such that
∑

vi∈Mk\S

qki < dk, (3.15)

for all pk ∈ K.
Finally, some valid constrains particular to the STPP can bederived. For example,

the constraint
∑

e∈δ(S)

xe ≥
2

dk

∑

vi∈S∩Mk

zki for all S ⊆ M andpk ∈ K (3.16)

states that at least two edges must be incident toS whenever some amount of any
productpk is purchased in a market ofS ∩ Mk. Constrains (3.16) coincide with
inequalities (3.5) whenS = {vi}. Clearly, if

∑

vi∈Mk\S qki < dk for some product
pk, then constrains (3.16) are dominated by constrains (3.15). Again, constrains
(3.16) can be strengthened by

∑

e∈δ(S)

xe ≥
2

∑

vi∈S∩Mk
zki

min{dk,
∑

vi∈S∩Mk
qki}

for all S ⊆ M andpk ∈ K,

wheremin{dk,
∑

vi∈S∩Mk
qki} is a stronger upper bound on the quantity of product

pk that can be purchased inS.
Additional inequalities involving more than one product and based on subset of

markets can also be derived. The advantage of constraints (3.16) is that they allow
the generation of violated inequalities in polinomial time(see Section 5.4 in Chapter
5), which has proved useful in our computational experiments (see Section 5.7 in
Chapter 5).

3.3 ILP FORMULATION FOR THE ATPP

Now we present an Integer Programming model for the asymmetric version of the
TPP (ATPP). We also use three types of decision variables that are identical to the
undirected case but the variables related to the arcs. In this case, since both extremities
of the arc play different roles, it is necessary taking into account a different variable
for each case:

xa :=
{

1 if arc a belongs to the solution
0 otherwise

for all a ∈ A;

yi :=
{

1 if vertexvi belongs to the solution
0 otherwise

for all vi ∈ V ;

zki :=
the amount of productpk is purchased

at marketvi, for all pk ∈ K and allvi ∈ Mk.
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The ATPP formulation is the following

wOPT := min
∑

a∈A

caxa +
∑

pk∈K

∑

vi∈Mk

bkizki (3.17)

subject to

∑

a∈δ+({vi})

xa = yi for all vi ∈ V (3.18)

∑

a∈δ−({vi})

xa = yi for all vi ∈ V (3.19)

∑

a∈δ+(S)

xa ≥ yi for all S ⊆ M and allvi ∈ S (3.20)

∑

vi∈Mk

zki = dk for all pk ∈ K (3.21)

zki ≤ qkiyi for all pk ∈ K and allvi ∈ Mk (3.22)

xa ∈ {0, 1} for all a ∈ A (3.23)

yi ∈ {0, 1} for all vi ∈ M \ M∗ (3.24)

yi = 1 for all vi ∈ M∗ (3.25)

zki ≥ 0 for all pk ∈ K and allvi ∈ Mk. (3.26)

The objective function is defined in the same sense that was inits symmetric
counterpart.

Constrains (3.18) and (3.19) impose the in-degree and out-degree of each visited
vertex be equal to one, respectively. Constrains (3.20), namedYSEC+ impose strong
connectivity. Because of (3.18) and (3.19), inequality (3.20) can be equivalently
re-written as

∑

a∈A(S)

xa ≤
∑

vj∈S\{vi}

yj for all S ⊆ M and allvi ∈ S.

These constraints ensure that a visited market in a subsetS ⊆ M must be connected to
the depot through a path. By also using equations (3.18) and (3.19), these constrains
are also equivalent to:

∑

a∈δ−(S)

xa ≥ yi for all S ⊂ M and allvi ∈ S.

As in the directed case, inequalities (3.21) guarantee thatthe exact amount of product
pk is purchased. Inequalities (3.22) mean that it is not possible to purchase a product
pk in a marketvi if it is not visited, and that it is not possible to purchase more than
its offer qki if it is visited. Constraints (3.23)–(3.26) impose bounds and integrality
conditions on the variables.
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3.4 VALID INEQUALITIES FOR THE ATPP

When using model (3.17)–(3.26) in a cutting-plane approachfor the exact solution of
the ATPP, one observe that the basic linear relaxation need additional valid inequalities
to close the integrality gap. To this end this section shows some considerations leading
to a tighter linear relaxation.

A first observation is based on the fact that constraints (3.20) can be trivially
strengthened if there is a productpk that cannot be totally purchased outside markets
in S. More precisely, ifS ⊆ M such that

∑

vi∈Mk\S qki < dk for a productpk ∈ K,
then the inequality:

∑

a∈δ+(S)

xa ≥ 1 (3.27)

is valid for all ATTP solutions. This inequality imposes therequirement that the
purchaser must visit a market inS.

As in the undirected version some problems underlying in this model. A first
subproblem of this family is the one defined by the assignmentproblem, i.e., all span-
ning unions of directed cycles. Another subproblem is theDirected Cycle Problem
with they variables, which is obtained from assignment problem restricting the set
of assignments to those having exactly one cycle of length greater than one, i.e.,

∑

a∈δ+({vi})

xa = yi for all vi ∈ V

∑

a∈δ−({vi})

xa = yi for all vi ∈ V

∑

a∈δ+(S)

xa ≥ yi for all S ⊆ M and allvi ∈ S

xa ∈ {0, 1} for all a ∈ A

yi ∈ {0, 1} for all vi ∈ M.

It is referred in Balas [8, 9, 10] and in Balas and Oostend [13]as theP0 polytope.
Thus valid inequalities fromP0 are also valid for the ATPP. For example,

∑

(i,j)∈A(S)

xij ≤
∑

vh∈S\{vl}

yh + (1 − yp),

for all S ⊂ V , 2 ≤ |S| ≤ |V | − 1, andvl ∈ S, vp 6∈ S, which Balas [8, 10] proved
that were valid forP0 and facet defining whenS ≤ |V | − 2. As consequence, the
inequalities

∑

(i,j)∈δ+(S)

xij ≥ yl + yp − 1,

for all S ⊂ V , 2 ≤ |S| ≤ |V | − 1, andvl ∈ S, vp 6∈ S, are also valid forP0.
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v1

v3v4

v5

v0

v2

v6

Fig. 3.2 Inequalities (3.28) for the ATPP.

Proposition 3.1. Inequalities
∑

(i,j)∈A(S)

xij ≤
∑

vh∈S\{vl}

yh, (3.28)

are valid for the ATPP if
∑

vi∈Mk\S qki ≥ dk for all productspk ∈ K and for
S ⊆ M .

Proof. To prove the validity of (3.28) let us consider that the point(x∗, y∗, z∗) violates
(3.28), then the cycle inG has its nodes inS, but, sinceS ⊆ M andv0 6∈ M , and
then(x∗, y∗, z∗) would violate (3.25) and it would not belong to the ATPP. �

Proposition 3.2. Inequalities
∑

(i,j)∈A(S)

xij ≤
∑

vh∈S

yh − 1, (3.29)

for S ⊂ M are valid for the ATPP if
∑

vi∈Mk\S

qki < dk (3.30)

for a productpk ∈ K.

Proof. If (x∗, y∗, z∗) violates (3.29) then the cycle inG has all its nodes either inS,
or in V \S. It is clear that at least one vertex inV \S has to be visited sincev0 6∈ S.
In addition, if (3.30) holds then at least one vertex inS has to be visited in order to
satisfy (3.21), then(x∗, y∗, z∗) does not belong to the ATPP. �

On the other hand, the lifted cycleD+
k inequalities

xili1 +

l−1
∑

h=1

xihih+1
+ 2

l
∑

h=3

xi1ih
+

l
∑

j=4

j−1
∑

h=3

xijih
≤ yi1 +

l
∑

h=3

yih
+ (1 − yip

),
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for any l ∈ {3, . . . , n − 2} and anyp ∈ {l + 1, . . . , n}, which are facet for theP0

polytope (see Balas [9, 10] for details), are also valid for the ATPP.
These inequalities come from

xili1 +

l−1
∑

h=1

xihih+1
+ 2

l
∑

h=3

xi1ih
+

l
∑

j=4

j−1
∑

h=3

xijih
≤ l − 1,

which have been proposed by Grötschel and Padberg [81] for the Asymmetric TSP,
Fischeti [51] proved that they are facets for the asymmetricTSP, and a separation
algorithm was proposed by Fischetti and Toth [58].

Proposition 3.3. For anyk ∈ {3, . . . , n− 2} and anyl ∈ {k + 1, . . . , n}, the lifted
cycle inequalities

xiki1 +

k−1
∑

h=1

xihih+1
+2

k
∑

h=3

xi1ih
+

k
∑

j=4

j−1
∑

h=3

xijih
≤ yi1 +

k
∑

h=3

yih
+(1−yil

), (3.31)

are valid for the ATPP.

vi1
vi4

vi3
vi5

vi2

(a)

vi1

vi3
vi4

vi6

vi5

vi7

vi2

(b)

Fig. 3.3 Primitive lifted cycle inequalities for the ATPP for 5 and 7 vertices.

Proof. Let us suppose that the claim is false. Therefore the point(x∗, y∗, z∗) for the
ATPP violates (3.31). Let us consider the following two cases.

1. The nodevil
does not belong to the cycle, so the cycleC associated is a subset

of A({i1, . . . , ik}). Thenyil
= 0, and since (3.31) is violated the sum of the

remaining components of(x∗, y∗, z∗) associated to the arcs is at least the sum
of the components associated to the vertices plus one. But itis not possible
because a simple cycle contains at most one arc with coefficient 2 and the
remaining arcs with coefficient1.

2. The nodevil
belongs to the cycle. Theny∗

il
= 1 and the sum of the component

of (x∗, y∗, z∗) corresponding to arcs is at least the sum of the component
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corresponding to vertices butvi2 , if (3.31) is violated. For this to be true, if
p is the number of nodes belonging to the cycle of the set{vi1 , . . . , vik

}, the
cycle would have to containk − p arcs with coefficients1 of the subgraph
induced by thek − p remaining nodes of the set{vi1 , . . . , vik

}, or k − p − 2
arcs with coefficient1 and one arc with coefficient2 (notice that if nodevi2

belongs to the cycle no coefficient2 arcs are allowed), of the same subgraph.
Both possibilities are excluded since the cycle contains a nodevil

.

�

The lifted inequalities (3.31) can be strengthened as follows.

Proposition 3.4. Inequalities

xili1 +
l−1
∑

h=1

xihih+1
+ 2

l
∑

h=3

xi1ih
+

l
∑

j=4

j−1
∑

h=3

xijih
≤

l
∑

h=1

yih
− y2, (3.32)

are valid for the ATPP, for anyl ∈ {3, . . . , |M | − 2} if
∑

vi∈Mk\S qki ≥ dk for all
productspk.

Proof. Let us suppose that(x∗, y∗, z∗) belonging to the ATPP violates (3.32), then
the cycle is entirely contained in the subgraph induced by the node set{vi1 , . . . , vik

},
andyi = 0 for all vi ∈ {vk+1, . . . , vn}. But there must be a productpk such that its
demand is not satisfied, and this contradicts the assumptionthat(x∗, y∗, z∗) is in the
ATPP. �

Proposition 3.5. Inequalities

xili1 +
l−1
∑

h=1

xihih+1
+ 2

l
∑

h=3

xi1ih
+

l
∑

j=4

j−1
∑

h=3

xijih
≤

l
∑

h=1

yih
− 1, (3.33)

for l := {3, . . . , |M |−2}, are valid for the ATPP if
∑

vi∈Mk\S qki < dk for a product
pk ∈ K for S = {vi1 , . . . , vil

} ⊂ M .

As in the symmetric case, a second subproblem defined by

∑

vi∈Mk

zki = dk for all pk ∈ K

zki ≤ qkiyi for all pk ∈ K and allvi ∈ Mk

yi ∈ {0, 1} for all vi ∈ M

zki ≥ 0 for all pk ∈ K and allvi ∈ Mk,

corresponds to a generalization of the UFLP with upper bounds on the customer-
facility variables. Valid inequalities for this subproblem whenqki = dk can be
obtained from theSet Covering Problempolytope (see e.g., Balas and Ng [12]).
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Decomposing this second subproblem for each product yieldsthe family of cover
inequalities:

∑

vi∈S

yi ≥ 1 for all S ⊆ Mk such that
∑

vi∈Mk\S

qki < dk, (3.34)

for all pk ∈ K. These constraints state that a market inS must be visited if markets
in Mk \ S are not enough to provide the required demanddk of productpk.

If we sum up (3.18) for allvi ∈ S, we obtain

∑

a∈δ(S)+

xa +
∑

a∈A(S)

xa =
∑

vi∈S

yi,

∑

a∈δ(S)+

xa ≤
∑

vi∈S

yi.

Therefore, a simple strengthening of constraints (3.34) isgiven by

∑

(i,j)∈δ+(S)

xij ≥ 1 (3.35)

for all S ⊆ M such that
∑

vi∈Mk\S qki < dk, for all pk ∈ K.
Some valid constraints particular to the ATPP can be derived. For example, the

constraint

∑

(i,j)∈δ+(S)

xij ≥
1

dk

∑

vi∈S∩Mk

zki for all S ⊆ M andpk ∈ K (3.36)

states that at least two edges must be incident toS whenever some amount of any
productpk is purchased in a market ofS ∩ Mk. Constraints (3.36) coincide with
inequalities (3.22) whenS = {vi}. Clearly, if

∑

vi∈Mk\S qki < dk for some product
pk, then constraints (3.36) are dominated by constraints (3.35). Again, constraints
(3.36) can be strengthened by

∑

(i,j)∈δ+(S)

xij ≥

∑

vi∈S∩Mk
zki

min{dk,
∑

vi∈S∩Mk
qki}

for all S ⊆ M andpk ∈ K,

wheremin{dk,
∑

vi∈S∩Mk
qki} is a stronger upper bound on the quantity of product

pk that can be purchased inS.



4
Polyhedral Analysis

This chapter focuses on the polyhedral aspects of the Traveling Purchaser Problem
from a theoretical point of view. It is assumed that the reader has a deep knowledge
on Linear Algebra and Polyhedral theory. Nevertheless, section 1.3 provides an
introduction to the basic concepts on those topics. The firsttwo sections of this
chapter are devoted to the dimension of the TPP polytope, in both the symmetric
and asymmetric versions. A general procedure to obtain facet defining inequalities
is described in section 4.3. Finally, facets for the symmetric and asymmetric TPP
(STPP and ATPP) are described in sections 4.4 and 4.5 respectively.

4.1 DIMENSION OF THE STPP POLYTOPE

Let X be the set of all vectors(x, y, z) satisfying constraints

∑

e∈δ({vi})

xe = 2yi for all vi ∈ V

∑

e∈δ(S)

xe ≥ 2yi for all S ⊆ M and allvi ∈ S

∑

vi∈Mk

zki = dk for all pk ∈ K

zki ≤ qkiyi for all pk ∈ K and allvi ∈ Mk

xe ∈ {0, 1} for all e ∈ E

yi ∈ {0, 1} for all vi ∈ M \ M∗

63
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yi = 1 for all vi ∈ M∗

zki ≥ 0 for all pk ∈ K and allvi ∈ Mk,

i.e., the set of all feasible STPP solutions. LetQTPP := conv{X} be the STPP
polytope. Let alsoQ := {(x, y, z) ∈ QTPP : yi = 1 for all vi ∈ V \ M∗}, i.e. the
STPP in which all the vertices have to be visited. LetQx be the projection ofQ onto
the affine space of thex variables, andQz the projection ofQ onto the affine space
of thez variables. ThenQx is the symmetric TSP polytope onG = (V, E) andQz

is the polytope of a generalization of theAssignment Problemdefined by

∑

vi∈Mk

zki = dk for all pk ∈ K

0 ≤ zik ≤ qik.

The following well known graph theoretical lemma is going tobe useful proving
the dimension ofQx.

Lemma 4.1. (Grötschel and Padberg [81]) LetKn = (V, E) be the complete graph
onn vertices, and letk denote any integer.

(i) if |V | = 2k+1, then there existk edge-disjoint toursTi such thatE =
⋃K

i=1 Ti.

(ii) if |V | = 2k, then there existk edge-disjoint toursTi and a perfect 1-matching
M edge-disjoint from anyTi such thatE = M ∪

⋃k−1
i=1 Ti.

Theorem 4.1. (Naddef [112]) The dimension ofQx is |E| − |V |.

Proof. (sketch) Forn = 3 there is only one tour, so the theorem is true in that case.
The equations

∑

e∈δ({vi})

xe = 2yi for all vi ∈ V

are linearly independent (See Figure 4.1 for an example of these equations in the
undirected graphK4) so the dimension can not be more than what is announced in
the theorem. It is therefore enough to exhibit|E|−|V |+1 affinely independent tours.
For this we use Lemma 4.1. Ifn = 2k, then the edges ofKn−1 can be partitioned into
k − 1 edge disjoint Hamiltonian cycles. Ifn = 2k + 1, then the edges ofKn−1 can
be partitioned intok − 1 edges disjoint Hamiltonian cycles and a perfect matching.
In the first case, for each Hamiltonian cycle ofKn−1 and each edge on that cycle,
we create a one Hamiltonian cycle ofKn by inserting noden between the endnodes
of that edge, i.e. ife = (i, j), we remove edgee and add the two edges(i, n) and
(j, n). In the second case, for the Hamiltonian cycle we do the same thing. We also
complete the perfect matching to a Hamiltonian cycle arbitrarily, and do as previously
only with the edges of the perfect matching. Now it only remains to check that in
both cases we have the right number of cycles and that the corresponding vectors are
affinely independent. �
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Theorem 4.2.For the particular case in which bothdk andqki are equal to1, for each
pk ∈ K and for each marketvi ∈ M , the dimension ofQz is

∑

pk∈K\K∗(|Mk|−1).

Proof. For each productpk ∈ K the number of variables is|Mk|, and there is just one
equation, so the dimension ofQz is no more than|Mk|− 1 for each productpk ∈ K.
It is hence enough to exhibit

∑

pk∈K\K∗(|Mk| − 1) + 1 affinely independent points
{z1, . . . , z∑

pk∈K\K∗ (|Mk|−1)+1} belonging toQz. This set of points is described in
Table 4.1, and is constructed as follows.

For each productpk ∈ K there is a variablezki for each marketvi ∈ Mk. Let us
construct the sequencevik1

, . . . , vik|Mk|
according to an arbitrary order of the setMk

for eachpk ∈ K. For each productpk ∈ K each point inQz has exactly a variable
of the setzkikj

for j := 1 . . . , |Mk| with value1. The first group of|M1| affinely
independent points is constructed fixing to1 the variableszkikj

for j := 1, . . . , |Mk|
andk := 2, . . . , |K|, and varyingz1i1j

:= 1 for j := 1, . . . , |M1|.
The remaining|K| − 1 groups of points of size|Mk| − 1 for k := 2, . . . , |K| are

created by fixingzhih1
to 1 for h 6= k andk := 2, . . . , |K|, and varyingzkikj

:= 1
for j := 1, . . . , |Mk|.

It is clear that the points{z2 − z1, . . . , z∑

pk∈K\K∗(|Mk|−1)+1 − z1} are linearly
independent, since the matrix described in Table 4.1 is non-singular, and they are in
Qz. �

SinceQ := Qx × {y : yi = 1 for all i ∈ V } × Qz, the following result follows.

Lemma 4.2. dim(Q) = |E|− |V |+
∑

pk∈K\K∗(|Mk|− 1), and the facets ofQ are
the facets of the TSP polytopeQx and the facets ofQz.

Since the polyhedral structure ofQ is widely known (see, e.g., Naddef [112]),
our first aim is to extend results fromQ ontoQTPP . To this end we introduce the
following intermediate polytopes:

Q(F ) := {(x, y, z) ∈ Q : yi = 1 for all vi ∈ V \ (M∗ ∪ F )},

for all F ⊆ V \M∗. Moreover, the integer STPP solutions inQ(F ) also must contain
vertices inV \ (M∗ ∪ F ). Hence,Q(∅) = Q andQ(V \ M∗) = QTPP .

We first compute the dimension ofQ(F ) for any givenF .

Theorem 4.3. For all F ⊆ V \M∗, dim(Q(F )) = |E|− |V |+
∑

pk∈K\K∗(|Mk|−

1) + |F |.

Proof. In the space of all of the|E|+ |V |+
∑

pk∈K |Mk| variables(x, y, z), a vector
in Q(F ) satisfies the|V | equations

∑

e∈δ({vi})

xe = 2yi for all vi ∈ V,

the|K| equations
∑

vi∈Mk

zki = dk for all pk ∈ K,
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Table 4.1 Set of
∑

pk∈K(|Mk| − 1) + 1 affinely independent points inQz .

z1i11 z1i12 · · · z1i1|M1|
z2i21 z2i22 · · · z2i2|M2|

· · · zkik1
zkik2

· · · zkik|Mk|

1 1 0 0 1 0 0 1 0 0
0 1

· · ·
0 1 0

· · ·
0 1 0

· · ·
0

|M1| − 1
...

. . .
...

...
...

...
...

...

0 0 1 1 0 0 1 0 0
1 0

· · ·
0 0 1

· · ·
0 1 0

· · ·
0

|M2| − 1
...

...
...

...
. . .

...
...

...

1 0 0 0 0 1 1 0 0
1 0

· · ·
0 1 0

· · ·
0 1 0

· · ·
0

∑|K|−1
k=3 (|Mk| − 1)

...

1 0 0 1 0 0 1 0 0
1 0

· · ·
0 1 0

· · ·
0 0 1

· · ·
0

|M|K|| − 1
...

...
...

...
...

...
...

. . .

1 0 · · · 0 1 0 · · · 0 0 0 · · · 1
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the|V | − |F | equations

yi = 1 for all vi ∈ V \ F,

and the
∑

pk∈K∗(|Mk| − 1) equations

zki = qki for all pk ∈ K∗ andvi ∈ Mk.

Since all the equations are linearly independent,

dim(Q(F )) ≤ (|E|+|V |+
∑

pk∈K

|Mk|)−(|V |+|K|+|V |−|F |+
∑

pk∈K∗

(|Mk|−1)).

The other direction of the inequality (and hence the thesis)follows by induction on|F |.
Indeed, for|F | = 0 thenF = ∅ andQ(F ) = Q, and we are done. Suppose now that
the thesis is true for a setF ⊂ V \M∗, and let us prove it forF ′ = F ∪{vi}with vi 6∈
F ∪M∗. By the induction hypothesis there are|E|− |V |+

∑

pk∈K\K∗(|Mk|−1)+

|F |+1affinely independentSTPPsolutions withyi = 1; becausevi 6∈ M∗ there exists
also a STPP solution withyi = 0 (e.g., a Hamiltonian cycle in the subgraph induced by
V \{vi}). Therefore, there exist at least|E|−|V |+

∑

pk∈K\K∗(|Mk|−1)+ |F ′|+1
affinely independent STPP solutions. �

A first trivial consequence of Theorem 4.3 is the dimension ofthe STPP polytope.

Corollary 4.1. The dimension ofQTPP is |E| − |M∗| +
∑

pk∈K\K∗(|Mk| − 1).

4.2 DIMENSION OF THE ATPP POLYTOPE

Let Y be the set of all vectors(x, y, z) satisfying constraints

∑

a∈δ+({vi})

xa = yi for all vi ∈ V (4.1)

∑

a∈δ−({vi})

xa = yi for all vi ∈ V (4.2)

∑

a∈δ+(S)

xa ≥ yi for all S ⊆ M and allvi ∈ S (4.3)

∑

vi∈Mk

zki = dk for all pk ∈ K (4.4)

zki ≤ qkiyi for all pk ∈ K and allvi ∈ Mk (4.5)

xa ∈ {0, 1} for all a ∈ A (4.6)

yi ∈ {0, 1} for all vi ∈ M \ M∗ (4.7)

yi = 1 for all vi ∈ M∗ (4.8)

zki ≥ 0 for all pk ∈ K and allvi ∈ Mk. (4.9)
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Let PTPP := conv{Y} be the ATPP polytope. Let alsoP := {(x, y, z) ∈ PTPP :
yi = 1 for all vi ∈ V \ M∗}, Px be the projection ofP onto the affine space of the
x variables, let

AP := conv{(x, y) ∈ RA × RV : (x, y) satisfies(4.1), (4.2) and(4.6)–(4.8)}

be the convex hull of incidence vectors of all spanning unions of directed cycles, and
let

P0 := conv{(x, y) ∈ RA × RV : (x, y) ∈ AP and satisfies(4.3)}

be the restriction of the set of assignments to those having exactly one cycle of length
greater than one.

Let us also definePz as the projection ofP onto the affine space of thez variables.
ThenPx is the asymmetric TSP onG = (V, A) andPz = Qz is the polytope of a
generalization of theAssignment Problemdefined as the in the symmetric case.

v1

v2

v3

v4

x12 x13 x14 x23 x24 x34

1 1 1
1 1 1

1 1 1
1 1 1

Fig. 4.1 An illustration of the degree equations for the STSP.

Theorem 4.4. (Grötschel and Padberg [81] and Fischetti [51]) The dimension ofPx

is |A| − 2|V | + 1.

Notice that the rank of
∑

a∈δ+({vi})

xa = yi for all vi ∈ V
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v1

v2

v3

v4

x12 x13 x14 x21 x23 x24 x31 x32 x34 x41 x42 x43

1 1 1
1 1 1

1 1 1
1 1 1

1 1 1
1 1 1

1 1 1
1 1 1

Fig. 4.2 An illustration of the assignment equations for the ATSP.

∑

a∈δ−({vi})

xa = yi for all vi ∈ V

is 2|V | − 1, so dim(Px)≤ |A| − 2|V | + 1. Figure 4.2 shows an example of these
equations for the directed graphD4. It is easy realize each row is linearly dependent
from the remaining rows.

A direct proof of this theorem has been given in Grötschel and Padberg [81].
However, it is not too difficult to give a proof of this theoremparalleling the proof of
theorem 4.1. From the|E| + |V | + 1 undirected tour constructed in the proof of the
theorem 4.1 we can obtain|A| − 2|V | + 2 directed tours by taking the two possible
orientations of each undirected tour. In order to complete this approach we must show
that the incidence vectors of these directed tours are linearly independent. Another
interesting proof of this theorem is given in Fischetti [51].

Lemma 4.3. dim(P ) = |A| − 2|V |+ 1 +
∑

pk∈K\K∗(|Mk| − 1), and the facets of
P are the facets of the TSP polytopePx and the facets ofPz.

Since it is quite important the sequence in which the vertices are taken during the
sequential lifting procedure described in the next section, the intermediate polytopes
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are restated considering this sequence. LetP ({v1, . . . , vk}) be the intermediate
polytopes such as

P ({v1, . . . , vk}) := {(x, y, z) ∈ P : yi = 1 for all vi ∈ V \ (M∗ ∪ {v1, . . . , vk})}

for a given sequence{v1, . . . , vk} of vertices belonging toV \ M∗.

Theorem 4.5.For all F ⊆ V \M∗,dim(P (F )) = |A|−|V |+1+
∑

pk∈K\K∗(|Mk|−

1) + |F |.

Proof. In the space of all of the|A|+ |V |+
∑

pk∈K |Mk| variables(x, y, z), a vector
in P (F ) satisfies the2|V | equations in

∑

a∈δ+({vi})

xa = yi for all vi ∈ V

∑

a∈δ−({vi})

xa = yi for all vi ∈ V

with rank2|V | − 1, the|K| equations

∑

vi∈Mk

zki = dk for all pk ∈ K,

the|V | − |F | equations

yi = 1 for all vi ∈ V \ F,

and the
∑

pk∈K∗(|Mk| − 1) equations

zki = qki for all pk ∈ K∗ andvi ∈ Mk.

Therefore,

dim(P (F )) ≤ (|A|+|V |+
∑

pk∈K

|Mk|)−(2|V |−1+|K|+|V |−|F |+
∑

pk∈K∗

(|Mk|−1)).

The other direction of the inequality (and hence the thesis)follows by induction on
|F |. Indeed, for|F | = 0 thenF = ∅ andP (F ) = P , and we are done. Suppose
now that the thesis is true for a setF ⊂ V \ M∗, and let us prove it forF ′ =
F ∪{vi} with vi 6∈ F ∪M∗. By the induction hypothesis there are|A| − 2|V |+ 1 +
∑

pk∈K\K∗(|Mk| − 1) + |F | + 1 affinely independent TPP solutions withyi = 1;
becausevi 6∈ M∗ there exists also a TPP solution withyi = 0 (e.g., a Hamiltonian
cycle in the subgraph induced byV \ {vi}). Therefore, there exist at least|A| −
2|V |+1+

∑

pk∈K\K∗(|Mk| − 1)+ |F ′|+1 affinely independent TPP solutions.�

Corollary 4.2. The dimension ofP0 is |A| − |V | + 1 − |M∗|.
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Corollary 4.3. The dimension ofPTPP is |A|−|V |+1−|M∗|+
∑

pk∈K\K∗(|Mk|−

1).

A second immediate consequence is thatQ(F ) andP (F ) with |F | = |V | − 1 are
facet-defining forP , as stated in the following result.

Corollary 4.4. The inequalityyi ≤ 1 defines a facet ofQTPP andPTPP if and only
if vi ∈ V \ M∗.

A more important consequence of Theorem 4.3 is that, given a subset of markets
F ⊂ V \M∗, adding a new marketvi ∈ V \ (F ∪M∗) to F increases the dimension
of Q(F ) andP (F ) by exactly one unit.

4.3 THE LIFTING THEOREM

We use standard sequential lifting (see section 1.3 for details on this procedure) to
calculate the coefficients of they variables. Since in the previous basic theorem
on sequential lifting is stated for full-dimensional polyhedra, and neitherQTPP nor
PTPP are full-dimensional, we restate it here in the appropriated form. The following
lemma based on the well-known sequential lifting theorem described, e.g., in Balas
[10].

Suppose that weintroducethe variablesy intoQ (P ), one by one in some arbitrary
sequencev1, . . . , vn. Notice that tointroduceayj variable for a vertexvj belonging
to a sequencev1, . . . , vj−1, vj , . . . , vk intoQ (P ), is equivalent to obtain the polytope
Q({v1, . . . , vj−1} ∪ vj) (P ({v1, . . . , vj−1} ∪ vj)).

Lemma 4.4. Letv1, . . . , vk a sequence of vertices belonging toV \ M∗. Let
∑

e∈E

αexe +
∑

pk∈K

∑

vi∈Mk

γkizki ≥ η (4.10)

be a facet-defining inequality forQ (P ). Then the lifted inequality

∑

e∈E

αexe +

k
∑

j=1

βj(1 − yj) +
∑

pk∈K

∑

vi∈Mk

γkizki ≥ η (4.11)

is valid and facet-defining forQ({v1, . . . , vk}) (P ({v1, . . . , vk})), where

βj := η − min

{

∑

e∈E

αexe +

j−1
∑

i=1

βi(1 − yi) +
∑

pk∈K

∑

vi∈Mk

γkizki :

(x, y, z) ∈ Q({v1, . . . , vj−1}) andyj = 0

}

. (4.12)

Proof. By induction onk. For k = 0, Q(∅) = Q, and (4.11) becomes (4.10),
which is a valid facet defining forQ. Suppose that the hypothesis is true fork =
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0, 1, . . . , q−1, and letk = q. From the definition of the coefficientsβj , j = 1, . . . , q,
(4.11) with k = q is valid for Q({v1, . . . , vq}). To see that it is facet defining,
note that be the induction hypothesis (4.11) withk = q − 1 is a facet defining for
Q({v1, . . . , vq−1}); hence, there exist dim(Q({v1, . . . , vq−1})) affinely independent
points(xi, yi, zi) ∈ Q({v1, . . . , vq−1}) satisfying (4.11) at equality. To each such
point (xi, yi, zi) ∈ Q({v1, . . . , vq−1}, there corresponds a point inQ({v1, . . . , vq})
of the form (xi, yi, 1, zi), in which 1 is the value of the componentyi

j . It is easy
to see that dim (Q({v1, . . . , vq}))= dim (Q({v1, . . . , vq−1}))+1) = dim +1), since
Q({v1, . . . , vq}) has one morey variable thanQ({v1, . . . , vq−1}) has, and the rank
of the equalities system ofQ({v1, . . . , vq}) is equal toQ({v1, . . . , vq−1}) . So, we
need one additional point inQ({v1, . . . , vq}) . For this purpose, we use the vector
(x∗, y∗, 0, z∗) ∈ Q({v1, . . . , vq}) that minimizes the expression defining (4.12). By
construction, this point satisfies (4.11) at equality. Further, sincey∗

q = 0, whereas
yi

q = 1 for all other points,(x∗, y∗, 0, z∗) and the remaining dim (Q({v1, . . . , vq−1}))
(dim ) points (x∗, y∗, 1, z∗) form a set of dim (Q({v1, . . . , vq})) (dim ) affinely
independent points inQ({v1, . . . , vq}) . This completes the induction. �

As a consequence, any facet-defining inequality forQ(F ) (P (F )) can be lifted
in a simple way so as to be facet-defining forQ(F ∪ {vi}) (P (F ∪ {vi})) as well.
The idea is to choose alifting sequenceof the vertices inV \ M∗, say{v1, . . . , vs},
and iteratively derive a facet ofQ({v1, . . . , vt−1, vt}) (P ({v1, . . . , vt−1, vt})) from
a facet ofQ({v1, . . . , vt−1}) (P ({v1, . . . , vt−1})) for t = 1, . . . , s.

We now use this technique for the trivial inequalities and the connectivity con-
straints.

4.4 FACETS OF THE STPP POLYTOPE

Theorem 4.6. The inequalityxe ≥ 0 defines a facet ofQTPP for everye ∈ E
(xa ≥ 0 defines a facet ofPTPP for everya ∈ A).

Proof. This is a direct consequence of Lemmas 4.2 and 4.4 (4.3 and 4.4), sincexe ≥ 0
(xa ≥ 0) defines a facet of the symmetric (asymmetric) TSP polytope and every lifting
sequence produces̃β(vt) = 0 for all vt ∈ V \ M∗. �

Theorem 4.7. LetS ⊂ M with 2 ≤ |S| ≤ |M | − 1. Then the inequality

∑

e∈δ(S)

xe ≥

{ 2 if there exists a productpk such that
∑

vi∈Mk\S qki < dk or |S| = |M | − 1
2yi for anyvi ∈ S, otherwise,

is facet-defining forQTPP .

Proof. If F = ∅, the inequality
∑

e∈δ(S) xe ≥ 2 is known to be facet-defining for the
TSP polytope, and therefore ofQ (Lemma 4.2). To apply Lemma 4.4, let us consider
any sequence of the markets inV \M∗. Clearly, when there exists a productpk such
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that
∑

vi∈Mk\S qki < dk or |S| = |M | − 1, thenβ̃(vt) = 0 for any sequence of the
markets inV \ M∗, since is mandatory to visit at least a market in|S|. Otherwise,
considering anyvi ∈ S and a sequencev1, . . . , vs with vs = vi yieldsβ̃(vt) = 0 for
all t = 1, . . . , s − 1 andβ̃(vs) = 2. �

For a particular subset of marketsS with |S| = |M | − 1, constraints

x[v0,vj ] ≤ yj for all vj ∈ V.

define facets ofQTPP . Moreover, for the particular case|S| = 2 we obtain the
following general result.

Corollary 4.5. Let e = [vi, vj ] ∈ E be a given edge. The upper-bound inequality
onxe is the following:

• if vi ∈ M∗ andvj ∈ M∗, thenxe ≤ 1;

• if vi 6∈ M∗, vj 6∈ M∗ and there existspk ∈ K :
∑

vs∈Mk\{vi,vj}
qks < dk;

thenxe ≤ yi + yj − 1;

• otherwise,xe ≤ yi whenvi 6∈ M∗ andxe ≤ yj whenvj 6∈ M∗.

It defines a facet ofQTPP .

In the same spirit, using Lemma 4.4, it is possible to derive others facet-defining
inequalities forQTPP coming from facet-defining inequalities of the TSP polytope
Qx (like comb inequalities). It is also possible to lift facet-defining inequalities from
Qz as the following theorem shows.

Theorem 4.8. If dk <
∑

vj∈Mk\{vi}
qkj then the inequalityzki ≥ 0 defines a facet

of QTPP if pk ∈ K \ K∗ satisfies|Mk| ≥ 3 andvi ∈ Mk.

Proof. If F = ∅, thenzki ≥ 0 is facet-defining forQ(F ) since it defines a facet of the
assignment polytopeQz whendk <

∑

vj∈Mk\{vi}
qkj . Indeed, this trivially follows

by observing thatQz is the Cartesian product of simplexes, each one in|Mk| − 1
dimensions whenpk ∈ K \K∗. Moreover, for any sequence ofV \M∗ one computes
β̃(vt) = 0 in Lemma 4.4 for allvt ∈ Mk since there is a market inMk \ {vi, v

t}. �

Whendk ≥
∑

vj∈Mk\{vi}
qkj or whenMk = {vi, vj}, thenzki ≥ 0 is dominated

by zkj ≤ qkjyj . We now analyze this upper-bound constraint on thezki variables.

Theorem 4.9. Let pk ∈ K \ K∗ and vi ∈ Mk. If vi 6∈ M∗ then the inequality
zki ≤ qkiyi defines a facet ofQTPP . Otherwise,zki ≤ qki defines a facet when
qki < dk.

Proof. If qki < dk, then−zki ≥ −qki defines a facet ofQ(∅), so Lemma 4.4 can
be applied to obtain a facet-defining inequality ofQ(V \ M∗). Indeed, ifvi ∈ M∗,
then for any sequence of markets inV \ M∗ one computes̃β(vt) = 0; otherwise,
considering a sequencev1, . . . , vt−1, vt with with vt = vi, one obtains̃β(vs) = 0
for s = 1, . . . , t − 1 andβ̃(vi) = −qki.
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Whenqki = dk, Lemma 4.4 cannot be used sincezki ≤ qki is dominated by (3.4).
We are going to exhibitdim(QTPP ) affinely independent solutions which will prove
the claim. Considerpk ∈ K \ K∗ andvi ∈ Mk \ M∗, and denote by

Ki := {ph ∈ K : vi ∈ Mh}

the set of products available at marketvi, and by

M∗
i :=

{

vj 6∈ M∗ : there existsph such that
∑

vs∈Mh\{vi,vj}

qhs < dh

}

,

the set of new markets that must be visited whenvi is not. Sincevi 6∈ M∗ we have
Ki ∩ K∗ = ∅. Also because of Corollary 4.3, there aredim(QTPP ) − (|δ({vi})| +
|Ki| + |M∗

i |) + 1 affinely independent TPP solutions withyi = 0, and therefore
satisfyingzki = yi. We need another|δ({vi})|+|Ki|+|M∗

i |−1 affinely independent
TPP solutions withyi = 1 andzki = qki. Indeed,|δ({vi})| can be constructed as
follows: for an arbitrary but fixede ∈ δ({vi}), consider a Hamiltonian cycle inG
usinge ande′ for eache′ ∈ δ({vi}) \ {e}, plus another Hamiltonian cycle not using
e; in all such solutions, products can be purchased in such a way thatzki = qki and
zhi = 0 for all ph ∈ Ki \ {pk}. Moreover, for eachph ∈ Ki \ {pk} consider a
Hamiltonian cycle withzki = qki, zhi = qhi andzli = 0 for all pl ∈ Ki \ {pk, ph}.
Finally, for eachvj ∈ M∗

i consider a Hamiltonian cycle on the subgraph induced by
V \ {vj}, with zki = qki. �

4.5 FACETS OF THE ATPP POLYTOPE

The following facet proofs are related to lifted inequalities from the cycle inequalities

x(C) ≤ |C| − 1 (4.13)

for C ⊆ E the arc set of a directed cycle,2 ≤ |C| ≤ |V | − 1 for the TSP polytope
PTSP . In particular, to the Subtour Elimination Constraints

∑

(i,j)∈A(S)

xij ≤ |S| − 1,

and theD+ andD−

xili1 +

l−1
∑

h=1

xihih+1
+ 2

l
∑

h=3

xi1ih
+

l
∑

j=4

j−1
∑

h=3

xijih
≤ l − 1,

xili1 +

l−1
∑

h=1

xihih+1
+ 2

l−1
∑

h=2

xihi1 +

l−1
∑

j=3

j−1
∑

h=2

xijih
≤ l − 1,
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for any l ∈ {3, . . . , |V | − 2}. However the incoming results can be extended to all
those inequalities obtained from the lifted cycle inequalities. We now give an outline
of a technique to prove that a certain face forPTPP obtained by lifting they variables
from a lifted cycle facet ofPTSP is facet defining. LetF be a inequality facet defining

∑

e∈E

αexe ≥ η,

for PTSP obtained by sequential lifting of (4.13) on thex variables. And letF ′ the
lifted valid inequality forPTPP

∑

e∈E

αexe +
∑

vi∈V

βiyi ≥ η′,

obtained by sequential lifting ofF on they variables. A setX of |A| − |V | + 1 −
|M∗|+

∑

pk∈K\K∗(|Mk| − 1) (dim (PTPP )) affinely independent points satisfying
with equalityF ′ have to be found. Those point are obtained in three stages.

First, a setXTSP of |A|−2|V |+1 (dim (PTSP )) point is built as follows. Let us
consider the polyhedronP := {(x, y, z) ∈ PTPP : yi = 1, for all vi ∈ V \ M∗},
and letPx = PTSP be the affine projection ofP onto thex variables. Therefore,
dim (PTSP ) affinely independent points inPTPP are obtained by considering the
dim (PTSP ) affinely independent tours for TSP satisfyingF with equality, setting
yi := 1 for all vi ∈ V and setting thez variables with a feasible assignment, let us
say, the first row of the matrix in Table 4.1. Obviously, for Lemma 4.4, and sinceF
is facet defining forPTSP those dim (PTSP ) points satisfyF ′ with equality and are
affinely independent.

In the second stage a setXzof
∑

pk∈K\K∗(|Mk| − 1) (dim (Pz)) points is built
by setting thex, y components as a feasible cycle visiting all vertices inV . Thez
components take the value of the dim (Pz) assignment values of Table 4.1. Because
of how Table 4.1 is constructed these assignments are affinely independent.

Two setsXs andXt are constructed from the partition on the vertex setV induced
by the vertices inC of (4.13), let us sayV (C) andV \(V (C)∪M∗), in the third stage.
Xs is constructed with|V (C)|−1affinely independent points(x, y, z)s ∈ PTPP , one
for eachv ∈ V (C)\{vp}, such thatys

s = 0,andys
i = 1 for all vi ∈ V \{vs}. That is,

all the remaining vertices butvs belong to the cycle. Thez components are constructed
according to a feasible assignment, and thex components are constructed such that
a simple cycle pass throughoutV \ {vs}. In a similar way the setXt is constructed,
but taking into account the setV \ (V (C)∪M∗). Therefore,|V |−|M ∗ |−2 affinely
independent cycles are constructed in this third stage.

The remaining two points are more specific, and depend on the right hand side.
Let us see now four examples.

Theorem 4.10. Inequalities

∑

(i,j)∈A(S)

xij ≤
∑

vh∈S\{vl}

yh, (4.14)
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are valid forPTPP , for all S ⊂ M\M∗, andvl ∈ S, anddefine facet if
∑

vi∈Mk\S qki ≥
dk for all productspk ∈ K.

Proof.
We prove this by constructing a setX of |A|−|V |+1−|M∗|+

∑

pk∈K\K∗(|Mk|−

1) affinely independent points(x, y, z) ∈ PTPP satisfying (4.14) with equality.
Let us consider the polytopeP := {PTPP ∩ yi = 1, for all vi ∈ V \ M∗},

and letPx be the affine projection ofP on thex variables, already defined above.
The inequality obtained from (4.14) by settingyi = 1 for all vi ∈ V \ M∗, that
is, the subtour elimination constraint inequality associated with S is known to be
facet defining forPx (see Gr̈otschel [77]) if2 ≤ |S| ≤ |V | − 1. Since dim(Px) is
|A| − 2|V | + 1 there is a setXr with |A| − 2|V | + 1 affinely independent points
(x, 1, z)r ∈ PTPP with yi = 1 for all vi ∈ V , satisfying (4.14) with equality. For all
those points, thez components have to contain a feasible assignment, for example,
the first row of Table 4.1.

An additional setXz with
∑

pk∈K\K∗(|Mk| − 1) points(x, 1, z)z ∈ PTPP are
added to the setX. These new points are constructed by setting thex, y components
as the first of the|A| − 2|V |+ 1 points described above, and then satisfy (4.14) with
equality. Thez components take the value of the

∑

pk∈K\K∗(|Mk| − 1) remaining
values of Table 4.1. Because of how Table 4.1 is constructed these new points are
affinely independent.

Let us suppose now that
∑

vi∈Mk\S qki ≥ dk for all productspk ∈ K. Then we

can construct a setXs of |S|− 1 affinely independent points(x, y, z)s ∈ PTPP , one
for eachv ∈ S \{vp}, such thatys

s = 0, andys
i = 1 for all vi ∈ V \{vs}. That is the

remaining all the vertices butvs belong to the cycle. Thez components are constructed
according to a feasible configuration, and thex components are constructed such that
a simple cycle pass throughoutV \{vs}. Because of the values taken byy these|S|−1
points are affinely independent (see Table 4.2) and satisfy (4.14) with equality.

Next we put intoX a setXt of |V | − |S| − |M∗| − 1 affinely independent points
(x, y, z)t belonging toPTPP . In this case, we follow a similar scheme to the one
followed in the construction of the setXs. For each vertexvt ∈ V \({vl}∪S∪M∗),
yt

vt
= 0,andyt

v = 1 for all v ∈ V \ {vt}. The componentsx andz are constructed
as in the previos set. Again, these points clearly exists, are affinely independent (see
Table 4.2), belong toPTPP and satisfy (4.14) with equality.

We need two additional points, with coefficient equal to 1 forthe nodesvk andvl

respectively. Let(x, y, z)k be a point suchyi := 1 for all verticesvi ∈ V \ S and
yi = 0 for vi ∈ S. In addition, thex components are constructed such that this point
be a simple cycle passing throughout the vertices inV \ S, and thez according to a
feasible solution. The second point(x, y, z)l is constructed as follows. Let(x, y, z)l

be a point suchyi := 1 for all verticesvi ∈ V \ S andvi ∈ S \ {vl} andyl := 0.
�
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Table 4.2 SetXs y Xt and pointsxk, xl andxk̄ affinely independent points.

yM∗,1 · · · yM∗,|M∗| yS,1 · · · yS,|S|−1 yS,|S| yV \S,1 · · · yV \S,|V \S|−1 yV \S,|V \S|

1 · · · 1 0 1 1 1 · · · 1 1

Xs
...

...
. ..

...
...

...
...

1 · · · 1 1 0 1 1 · · · 1 1

1 · · · 1 1 · · · 1 1 0 1 1

Xt
...

...
...

...
...

. . .
...

1 · · · 1 1 · · · 1 1 1 0 1

xk 1 1 0 · · · 0 0 1 1 1

xl 1 1 1 · · · 1 0 1 1 1

xk̄ 1 1 1 · · · 1 1 1 1 0
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Theorem 4.11. Inequalities

∑

(i,j)∈A(S)

xij ≤
∑

vh∈S

yh − 1, (4.15)

for S ⊂ M are valid and define facet if

∑

vi∈Mk\S

qki < dk (4.16)

for a productpk ∈ K.

Proof.
To prove that these inequalities are facet defining we constructs a setX of |A| −

|V |+1−|M∗|+
∑

pk∈K\K∗(|Mk|−1) affinely independent points(x, y, z) ∈ PTPP

satisfying (4.14) with equality.
The proof is analogous to the previous one. In fact, it is identical until the two last

points since the pointxk does not satisfy (4.16) with equality. Therefore, a new point
let us sayxk̄ has to be added to the setX \ {xk}. This point is constructed by setting
yi = 1 for all vi ∈ V \ S andvi ∈ S \ {vk}, andyk = 0. �

Let us focus now on the lifted cycleD+
k inequalities coming from

xili1 +

l−1
∑

h=1

xihih+1
+ 2

l
∑

h=3

xi1ih
+

l
∑

j=4

j−1
∑

h=3

xijih
≤ l − 1, (4.17)

already described above.

Theorem 4.12. Inequalities

xili1 +

l−1
∑

h=1

xihih+1
+ 2

l
∑

h=3

xi1ih
+

l
∑

j=4

j−1
∑

h=3

xijih
≤

l
∑

h=1

yih
− y2, (4.18)

are valid and define facet for thePTPP , for any l ∈ {3, . . . , |M | − 2} if for all
productspk

∑

vi∈Mk\S qki ≥ dk for S = {vi1 , . . . , vil
} ⊂ M .

Proof. The following proof follows the same scheme in the previous fWe prove this
by constructing a setX of |A| − |V | + 1 affinely independent points(x, y, z) ∈
PTPP satisfying (4.18) with equality. The inequality (4.17) obtained by removing
the coefficients corresponding to the vertices is facet defining for the ATSP polytope
Px (see Fischetti [51]); hence , there exists a set of|A| − 2|V |+ 1 (dim(Px)) affinely
independent pointsx ∈ P satisfying (4.17) with equality.

We initializeX by putting in it, for each of thesex ∈ P , the point(x, y, z) defined
by yi = 1, vi ∈ V . The variablesz takes the value of the first point of Table 4.1, for
each of those|A|−2|V |+1 points. Clearly, each point defined this way is inPTPP ,
since (3.22) holds, satisfies (4.18) with equality, and theyare affinely independent.
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Additional
∑

pk∈K(|Mk| − 1) points are added to our constructionX. This new
set of point is constructed by fixing one of the solutions described above with respect
to the variablesx andy, and varying thez components with the remaining points of
Table 4.1, i.e., all points but the first one.

Let us suppose that
∑

vi∈{vil+1
,...,vin}∩Mk

qki ≥ dk for S = {vi1 , . . . , vil
} ⊂ M .

Then we can construct, a set ofl − 1 affinely independent points(x, y, z) ∈ PTPP

that satisfy (4.18) with equality. We put intol− 1 points(x, y, z)s ∈ PTPP , one for
eachvis

∈ {vi1 , . . . , vil
} \ {vi2}, such thatys

is
= 0, ys

i = 1 for all vi 6= vis
, and

xs
ijij+1

= 1 for all vij
∈ {vi1 , . . . , vis−2

, vis+1
, . . . , vil

}. In other words the cycle
induced byxs contains all of the nodes other thanis, and all but two arcs, of the cycle
(vi1 , . . . , vil

, vi1). Clearly, such(x, y, z)s exists, is inPTPP and, and satisfies (4.18)
with equality. Further, such(x, y, z)s has a unique componentys

is
equal to0, which

is equal to1 for all other points ofX.
Next we put intoX n−k−1−|M∗| points(x, y, z)t ∈ PTPP such that for each

vit
∈ {vil+1

, . . . , vn} \ ({vip
} ∪M∗), yt

it
= 0 yt

i = 1 for all i 6= it, andxt
ijij+1

= 1
for j = 1, . . . , l − 1. That is, the induced cycle contains all of the nodes, and allbut
one of the arcs, of the cycle{vi1 , . . . , vil

, vi1}. Again, these points clearly exist,are in
PTPP , and satisfy (4.18) with equality. Furthermore, they are affinely independent
from each other and the remaining points ofX. Notice that, thez components in
both the points(x, y, z)s and the points(x, y, z)t contains a feasible assignment.

We need two additional points, with coefficient equal to0 for the nodesvi2 andvip

respectively. Let(x, y, z)i2 be such thatyi2
i = 0 for all vi ∈ {vi1 , . . . , vil

}, yi2
i = 1

for vi ∈ {vil+1
, . . . , vin

}, and the cycle induced byxi2 has a node set{vil+1
, . . . , vin

}.

A last point(x, y, z)ip such thatyip

ip
= 0 andy

ip

i = 1 for all i 6= ip, andx
ip

ijij+1
= 1

for j = 1, . . . , l − 1. Then,(x, y, z)ip is in PTPP and satisfy (4.18) with equality.
Also, the points inX are affinely independent; thus (4.18) defines facet ofPTPP . �

Theorem 4.13. Inequalities

xili1 +
l−1
∑

h=1

xihih+1
+ 2

l
∑

h=3

xi1ih
+

l
∑

j=4

j−1
∑

h=3

xijih
≤

l
∑

h=1

yih
− 1, (4.19)

for l := {3, . . . , |M |−2}, are valid and facet defining forPTPP if
∑

vi∈Mk\S qki <

dk for a productpk ∈ K or M∗ ∩ S 6= ∅ for S = {vi1 , . . . , vil
} ⊂ M .

Proof. The proof of (4.19) is analogous to the previous proof, except for the point
(x, y, z)i2 . In this particular case, a new point(x, y, z)ĩ2 replaces(x, y, z)i2 , and

it is defined as follows.yĩs

is
= 0 andyĩs

i = 1 for all i 6= ip, andx
ip

ijij+1
= 1 for

j = 1, . . . , l − 1. �
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Fig. 4.3 SetsXs andXt of affinely independent points for facets from the cycle lifted
inequalities.
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Fig. 4.4 Additional affinely independent pointil for inequalities (4.18) and (4.19).
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Fig. 4.5 Additional affinely independent pointik̄ for inequalities (4.18).





5
A Branch-and-Cut

Algorithm
for the STPP

The Branch-and-Cut technique applied to both the symmetricand asymmetric Trav-
eling Purchaser Problem is described in the following two chapters. These algorithms
are based on the models described in Chapter 3 and on the polyhedral analysis carried
out in Chapter 4. In this chapter the implementation for the symmetric case is studied.
An overview containing the main steps of this method is givenin Section 5.1. This
scheme is also used in the next chapter for the asymmetric case. We go deeply into
the initial step and the initial heuristic in Sections 5.2 and 5.3 respectively. Section
5.4 studies the separation procedures of some of the valid inequalities described in the
previous chapter. Column generation and different strategies in the branching phase
are treated in Sections 5.5 and 5.6 respectively. Finally, our computational experience
is shown in Sections 5.7.

5.1 THE BRANCH-AND-CUT SCHEME

In this section we give a short overview of the Branch-and-Cut technique which is also
used in the next chapter applied to the asymmetric version ofthe TPP. For a extensive
and comprehensive description of this method we refer to thereader to Padberg and
Rinaldi [119], J̈unger and Thienel [89], Jünger, Reinelt and Thienel [88], Thienel
[145], and Caprara and Fischetti [27].

The linear relaxationof an integer linear program (IP) is the linear program ob-
tained from IP by dropping the constraints that all variables have to be integer. For
example, the linear relaxation of STPP and ATPP are obtainedby dropping the in-
tegrality constraints. Therefore, the optimal valuewLP of the relaxation (in the

83
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minimization case) is a lower bound to the optimal valuewIP of the integer linear
program, i.e.,wLP ≤ wIP .

Branch-and-Cut is a solution technique to solve integer linear programs with an
exponential, or at least very large, number of constraints.These constraints are
generally only known implicitly and not explicitly. The Branch-and-Cut method is
illustrated by pseudocode in Figures 5.1, 5.2 and 5.3.

Input: Π
Output: z, ωUB, status

PRE-PROCESING( Π, status );
if ( status = infeas ) return;
INITIAL-HEURISTIC( Π, z, ωUB );
LP := LP ∪ Π;
while ( LP 6= ∅ )

extract Π from LP ;
OPTIMIZE-SUBPROBLEM ( Π, z, ωUB, status );
if ( status = Branching ) BRANCHING ( Π, LP );

Fig. 5.1 The Branch-and-Cut method.

Input: Π, z, ωUB

Output: Π, z, ωUB, status
status := Optimize;

while ( status = Optimize )
SOLVE-LP ( Π);
if ( ( Π.status = Infeas ) or ( Π.ωLB ≥ ωUB ))
status := Fathom;

else
if ( FEASIBLE ( Π, z, ωUB)) then
status := Fathom;

else
PRIMAL-HEURISTIC ( Π, z, ωUB);
SEPARATE-ELIMINATE ( Π, #cuts );

if ( #cuts = 0 )
status := Branching;

Fig. 5.2 Optimizing node. Branch-and-Cut.

A generic optimization problem is referred asΠ in this pseudocode. The problem
Π is a data structure that consists of the list of active constraintsLC , the list of active
variablesLV , the optimization vectorw, the solution vector of the current linear
relaxationz∗, the objective value of the current linear relaxationωLB according to
w, and the status of linear relaxation (status).

According to Fig. 5.1, in a basic sketch of a Branch-and-Cut method for a min-
imization problem, a listLP of subproblems is initialized with the linear relaxation
of the problemΠ. The value of best solutionz found so far is stored in the global
upper boundωUB . Each major iteration step (referred as procedure OPTIMIZE-
SUBPROBLEM in Figures 5.2 and 5.3), proceeds by selecting a subproblem from
the list. A local lower bound is computed for this subproblemby solving the linear
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Input: Π, z, ωUB

Output: Π, z, ωUB, status
status := Optimize;

while ( status = Optimize )
repeat
SOLVE-LP ( Π, status );
if ((( Π.status = Infeas ) or ( Π.ωLB ≥ ωUB ))
PRICING ( Π, #var );
status := Fathom;

until ((Π.status 6= Infeas) and (ωLB < ωUB)) or (#var 6= 0));
if ( FEASIBLE (( Π, z, ωUB)) and ( status 6= Fathom ))
status := Fathom;

else
PRIMAL-HEURISTIC ( Π, z, ωUB);
repeat
SEPARATE-ELIMINATE ( Π, #cuts );
if ( #cuts = 0 )
PRICING ( Π, #var );
status := Branching;

until ( #cuts + #var 6= 0 );

Fig. 5.3 Optimizing node. Branch-and-Cut-and-Price.

relaxation with the current set of active constraints and active variables (SOLVE-
LP), and the algorithm tries to improve the global upper bound by mean a heuristic
based on solution obtained in the current linear relaxation(PRIMAL-HEURISTIC).
A subproblem is fathomed from the list if either:

• a integer feasible solution for the original problem is obtained from de linear
relaxation,

• the linear relaxation is infeasible,

• the local lower bound associated with the subproblem is greater than the global
upper bound.

If the current linear relaxation does not become a feasible solution of the original
problem (FEASIBLE) then an attempt is made to generate validinequalities violated
and drop non-violated inequalities by the current solution, using separation procedures
(SEPARATE-ELIMINATE). New inequalities are added to the listLC (#cuts6= 0) as
long as they are generated, and, in order to avoid a huge list,they are ranked according
to how violated their are. This procedure (OPTIMIZATION-NODE) is repeated until
either no more violated constraints are found, or the subproblem is fathomed. If not
violated constraints are found then the branching phase (BRANCHING) is launched.
The current subproblem is then divided into disjoint subproblems whose union of
feasible solutions contains all feasible solution of the current subproblem. As soon
the list of subproblems is empty the algorithm stops, and then the global upper bound
can be output as the optimum solution.

Nevertheless, since the number of variables is also very large due partly to the
presence ofzki variables. For example, an instance with 200 markets and 200products
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could have 40000zki variables, a large number of columns for the LP relaxation
in a cutting-plane approach. We have therefore devised a solution method using
variable generation and pricing, on top of the usual constraint relaxation scheme.
To operationalize this mechanism, and based on our computational experiments, the
algorithm works with dynamically augmented subsets or “pools” of variables and
constraints previously mentioned and calledLV andLC , respectively. The procedure
OPTIMIZATION-SUBPROBLEM described in Fig. 5.2 shows a variation of the
original optimization procedure. Notice that new variables are added to the poolLV

if

• linear relaxation becomes infeasible,

• the lower bound computed by the linear relaxation is greaterthan the global
upper bound,

• no new cuts are generated by the separation procedure.

We next address the main steps of our algorithm. A deeper explanation of the pro-
cedures involved in the Branch-and-Cut is provided in the following sections, taking
into account preprocessing, separation, heuristics, and branching scheme. The tacti-
cal choices for the parameters were fixed from our computational experiences solving
the instances described in Sections 5.7 and 6.4.

5.2 PREPROCESSING

The preprocessing phase tries to build the initial model from the input data. This
step involves checking feasibility, initializing the variables and constraints pool, and
fixing some variables in order to reduce the size of the system.

1. Check feasibility

This steps checks whether
∑

vi∈Mk
qik ≥ dk for all pk ∈ K. An O(|V ||K|)

time complexity algorithm checks for each productpk ∈ K whether the offer
satisfies the total demanddk. If it does not, the program exits with an error
message.

2. Initial pool of variables

This step defines the initial pool of variablesLV , by including all variablesxe

for all e ∈ E associated with ten least cost edges incident to each vertex, and
variableszki for all pk ∈ K andvi ∈ Mk corresponding to the ten cheapest
markets for each product.

3. Initial pool of constraints

DefineLC by including constraints (3.5), (3.11), all constraints (3.15) with
S := Mk for all pk, as well as the lower and upper bounds on the variables.

4. Initial heuristic
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In order to obtain a initial value ofωUB , a feasible solution is computed by an
simple heuristic described in section 5.3. In addition, theinitial feasible solution
will provide to the variables pool as well as to the initial linear programming
the variables associated to the set of arcs and vertices belonging to this solution,
which guarantee the feasibility of the initial linear programming.

5. Initial Linear programming

The initial linear programming consist of

(a) the set of all variablesyi for all vi ∈ V associated to the set of markets,
all variablesxe with edges belonging to the heuristic solution and the five
least cost edges incident to each vertex, and all variableszki corresponding
to the assignments made in the heuristic solution and to the five cheapest
markets for each product;

(b) the set of constraints consisting of equalities (3.2) and (3.4);

(c) and the lower and upper bounds on the variables.

This initial linear programming initializes the list of subproblemsLP .

5.3 HEURISTICS

Two heuristics procedures have been developed in this Branch-and-Cut algorithm for
obtaining feasible solutions. Theinitial heuristic builds a feasible solution from the
input data, and theprimal heuristictries to improve the upper boundωUB from the
current LP-relaxation.

Initial Heuristic

The heuristic used to construct a first incumbent solution works along the lines of the
methods described in Ong [116] and Pearn and Chien [123].

An initial solution containing all vertices is built by the well-known nearest-
neighbor TSP heuristic, and it is then improved by the Lin-Kernighan procedure
(see [106] for details).

The method gradually reduces the initial cycle by dropping at each step a new
marketv∗i . For each vertexvi belonging to current cycle, the tour reductionT (vi), as
well as the increasing in the purchasing costP(vi) after removingvi is computed. If
dropping the vertexvi could cause infeasibility, thenvi will be removed from the list
of potential candidates. The vertexv∗i that maximizesT (vi)+P(vi) will be selected
for be dropped.

If no further reduction is possible, then an insertion procedure is performed. For
each vertexvi not belonging to the current cycle the tour increasingT̂ (vi), as well
as the purchasing reduction̂P(vi) is computed. IfP̂(vi) > T̂ (vi) thenvi is added
to the cycle. This procedure is repeated until no further improvement is possible.
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After each removal/insertion a post-optimization procedure is carried out by this
algorithm. In particular, we use a simple 2-opt mechanism inorder to improve the
tour. With respect to the purchasing cost, for a given set of markets is easy to compute
the optimal assignment of products. Finally, a cleaning procedure dropping all those
markets without influence in the purchasing cost is performed.

LP-Based Heuristic

The primal heuristic is applied from a fractional LP solution (x∗, y∗, z∗) in order to
construct a new feasible solution improving the best upper bound computed so far.
Since the primal heuristic is frequently applied, emphasishas been put on speed. The
heuristic, that consist of two phases, proceed as follow.

In the first phase, the set of candidate markets has to be established. Accordingly,
an initial set of marketM̂ is built from those marketsvi ∈ V such asyi = ρ, where
ρ is a threshold initially set to 1. If not enough markets are selected for making a
feasible solution, thenρ is decreased in a small amount. This procedure is repeated
until feasibility is restored.

The second phase tries to build a Hamiltonian cycle passing through the vertices of
setM̂ . This procedure follows the same scheme described in the previous phase. That
is, the thresholdρ selects those edges belonging to the solution. If is not possible to
close the cycle then the nearest-neighbour method is performed over the no connected
markets.

After these two phases, a post-optimization procedure is carried out applying a
2-opt algorithm if triangle inequality hold for the currentinstance.

5.4 SEPARATION PROCEDURES

As already mentioned in section 1.4 of chapter 1, it is not necessary an explicit
list of constraints defining the original problem. It is onlyrequired a method for
identifying inequalities that are valid for the original problem, but violated by the
current linear relaxation, i.e., given a fractional solution obtained from the linear
relaxation(x∗, y∗, z∗), a separation procedure consists of determining a member
αx+βy +γz ≥ η of a given family of valid TPP inequalities such thatαx∗ +βy∗ +
γz∗ < η.

The aim of this section is describing the separation method for families (3.3),
(3.16), (3.15) and (3.12). These separation problems are quite standard (see, e.g.,
Jünger, Reinelt and Rinaldi [87]) and are solved exactly in polynomial time for the
first two cases, while heuristic approaches are used for the last two.

Let us define thesupport graphfor a fractional solution(x∗, y∗, z∗) as the weighted
graph(G∗, x∗, y∗, z∗) = (V ∗, E∗, x∗, y∗, z∗) whereV ∗ := {v ∈ V |y∗

v > 0} ,E∗ :=
{e ∈ E|x∗

e > 0}.
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Separation of the INCOMPA Inequalities

This section describes the separation algorithm for the family of constraints (3.5)
(INCOMPA). Despite of be a polynomial number of inequalities (|M ||K|), we prefer
perform a dynamic separation. Given a fractional solution(x∗, y∗, z∗), separating a
INCOMPA constraints is to find a marketvi ∈ M and a productpk ∈ K such as
z∗ki/qk > y∗

i . An exhaustive algorithm for checking if this inequality isviolated is
carried out by checking for each market and each product available in this market the
inequality is violated. Notice that, only those marketsvi suchy∗

i > 0 should be taken
into account. Fig. 5.4 describes this simple algorithm.

Input: (G∗, y∗, z∗), LC

Output: LC

for all vi ∈ M
if ( y∗

i > 0)
for all pk ∈ K

if (zki/qk > yi)
LC := LC ∪ zki/qk ≤ yi

Fig. 5.4 Separation of the INCOMPA inequalities.

Separation of YSEC Inequalities

Proposition 5.1. Given a marketvi with y∗
i > 0, a most violated YSEC constraint

(3.3) corresponds to a minimum-capacity cut (min-cut)(S, V ∗ \ S) with vi ∈ S and
v0 6∈ S in the support graphG∗ by imposing a capacityx∗

e on each edgee ∈ E∗.

In practice, two cases are taken into account in order to compute the separation.

1. The solution is not connected (see separation algorithm in Fig. 5.5). In this
case for each connected componentS ⊆ V \ {v0} the inequalities

∑

e∈δ(S)

xe ≥ 2yi, for all vi ∈ S,

are violated. The procedure (COMPONENTS) computing each connected
component takes a time complexity (see Mehlhorn [110]) ofO(|V | + |E|).

2. The solution is connected, or is not connected but a connected component
S ⊆ V containing the depot is being studied. For this other case, amin-cut
algorithm (MINCUT) based on an implementation described inGoldberg and
Tarjan [71] is performed between every pair(v0, vi) for eachvi ∈ S ⊆ \{v0},
in order to obtain the most violated inequalities. This process takes a time
complexity ofO(|V |4).
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In order to reduce the number of non-zero when a new YSEC cut isadded to the LP,
the constraint is introduced in the following way.

∑

e∈E(S)

xe −
∑

vj∈S\{vi}

yj ≤ 0, (5.1)

for a violated set of verticesS ⊆ V \ {v0} and a vertexvi ∈ S. Notice that (3.3)
imply (5.1), since adding (3.2) for all vertexvi ∈ S we obtain

2
∑

e∈E(S)

xe +
∑

e∈δ(S)

xe = 2
∑

vi∈S

yi. (5.2)

Replacing (5.2) in (3.3) we obtain (5.1).
Fig. 5.6 shows a fractional point violating the following (3.3).

∑

e∈δ(S)

xe ≥ 2y6

With S := {v1, v3, v4, v5, v6, v9}, since
∑

e∈δ(S) xe = 0.5 andy6 = 1, and then
0.5 6≥ 2y6.

Input: (G∗, x∗, y∗), LC

Output: LC

COMPONENTS(G∗, C)
for all S ∈ C

if ( v0 6∈ S )
for all vi ∈ S
LC := LC ∪

∑

e∈δ(S) xe ≥ 2yi

else
for all vi ∈ S \ {v0}
cut-value := MINCUT( G∗,v0,vi, S′ );
if ( cut-value < 2yi )
LC := LC ∪

∑

e∈E(S) xe −
∑

vj∈S\{vi}
yj ≤ 0

Fig. 5.5 Separation of the YSEC inequalities.

Separation of ZSEC Inequalities

Proposition 5.2. Given a productpk, determining a most violated ZSEC constraint
(3.16) is equivalent to finding a subsetS with minimum value of

∑

e∈δ(S)

x∗
e +

∑

vi∈Mk\S

2
z∗ki

dk

. (5.3)

Observe that equations (3.4) imply (5.3), since
∑

e∈δ(S)

xe ≥ 2
∑

vi∈Mk∩S

zki

dk

,
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Fig. 5.6 Fractional point violating a YSEC inequality.

∑

e∈δ(S)

xe + 2
∑

vi∈Mk\S

zki

dk

≥ 2
∑

vi∈Mk∩S

zki

dk

+ 2
∑

vi∈Mk\S

zki

dk

,

∑

e∈δ(S)

xe + 2
∑

vi∈Mk\S

zki

dk

≥ 2
∑

vi∈Mk

zki

dk

.

But by (3.4)
∑

vi∈Mk
zki/dk = 1.

This reduces the separation problem to a maximum-flow problem defined on the
following weighted graph. Consider a dummy marketv̂, and letĜ := (V̂ , Ê), where
V̂ := V ∗ ∪ {v̂} andÊ := E ∪ {[vi, v̂] : vi ∈ Mk}. The capacity of edgee ∈ E is
x∗

e, and the capacity of each new edge[vi, v̂] is equal to2z∗ki/dk. Let (S′, V̂ \ S′) be
a minimum-capacity cut in̂G separatingv0 andv̂, with v̂ ∈ S′. If the capacity of this
cut is at least 2, then(x∗, y∗, z∗) satisfies all constraints (3.16) associated withpk.
Otherwise,S := S′ \ {v̂} yields a most violated constraint (3.16). This algorithm is
described by pseudocode in Fig. 5.7 and its time complexity isO(|K||V |3).

As in the previous separation algorithm, in order to reduce the non-zero elements
the ZSEC cuts are introduced in the LP as follows.

∑

e∈E(S)

xe −
∑

vi∈S

yi +
∑

vu∈S∩Mk

zki

dk

≤ 0.

This inequality is equivalent to (3.16) if we replace (5.2) in (3.16).
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Fig. 5.8 shows a fractional solution violating (3.16). In this particular case0.75/d3

and0.25/d3 units of the productp3 are offered at marketsv1 andv4 respectively. The
subsetS′ consist of the verticesS′ := {v̂, v1, v3} and according to Fig. 5.8 it follows
∑

e∈δ(S′\v̂) x∗
e = 1 and

∑

vi∈M3
zi3/d3 = 1. Therefore inequality

∑

e∈δ(S)

xe ≥
2

dk

∑

vi∈S∩M3

z3i, S := {v1, v4}

is violated.

Input: (G∗, x∗, y∗, z∗), LC

Output: LC

for all pk ∈ K
V̂ := V ∗ ∪ v̂
for all vi ∈ Mk

Ê := E∗ ∪ e = [v̂, vi]

x∗
e = 2

z∗
ik

dk

Ĝ = (V̂ , Ê)

cut-value := MINCUT( Ĝ,v0,v̂, S′ );
if ( cut-value < 2 )

S := S′ \ {v̂}
LC := LC ∪

∑

e∈δ(S) x∗
e ≥ 2

∑

vi∈Mk∩S
zki

dk

Fig. 5.7 Separation of the ZSEC inequalities.
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Fig. 5.8 Fractional point violating a ZSEC inequality.
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Separation of 2SEC Inequalities

Two heuristics methods have been developed in order to separate constraints 2SEC
(3.15).

1. The first heuristic proceed as follows. Let us consider a productpk and deter-
mine a setM ′

k ⊆ Mk such that
∑

vi∈Mk\M ′
k
qki < dk, starting withM ′

k := Mk

and cumulating marketsvi in Mk as long as
∑

vi∈Mk\M ′
k
qki does not exceed

dk. Then construct a grapĥG = (V̂ , Ê), whereV̂ := V ∪ {v̂}, v̂ is a dummy
market, andÊ := E ∪ {[vi, v̂] : vi ∈ M ′

k}. The capacityx∗
e of edgee ∈ E is

x∗
e, and the capacityx∗

[vi,v̂] of each new edge[vi, v̂] is equal to 2. As above, let

us determine a minimum-capacity cut(S′, V̂ \ S′) in Ĝ with v̂ ∈ S′ and sep-
aratingv0 andv̂. If the capacity of this cut is less than 2, a violated constraint
(3.15) withS := S′ \ {v̂} has been identified. Otherwise,M ′

k is modified by
means of a vertex interchange mechanism and the procedure isrepeated. In
total, at most|Mk| candidate setsM ′

k are considered. Note that in the case of
the TPP with unlimited supplies,M ′

k = Mk and this separation procedure is
exact and runs inO(|K||V |3) time.

Input: (G∗, x∗, y∗, z∗), LC

Output: LC

for all pk ∈ K
V̂ := V ∗ ∪ v̂
for all vi ∈ Mk

Ê := E∗ ∪ e = [v̂, vi]
x∗

e = 2

Ĝ = (V̂ , Ê)

cut-value := MINCUT( Ĝ,v0,v̂, S′ );
if ( cut-value ≤ 2yi )

S := S′ \ {v̂}
LC := LC ∪

∑

e∈δ(S) x∗
e ≥ 2

∑

vi∈Mk∩S
zki

dk

Fig. 5.9 Separation of the 2SEC inequalities: Heuristic 1.

2. In the second heuristic, we first attempt to identify a setS yielding a violation
of the weaker cover inequalities (3.13). If this is successful then constraint
(3.15) associated toS is also violated. Otherwise, we still check whether a
violation of (3.15) has been identified. As in Crowder, Johnson and Padberg
[38], constraints (3.13) can easily be separated by solvingthe 0-1Knapsack
Problem(KP)

σ∗ := max
{

∑

vi∈Mk

y∗
i ui :

∑

vi∈Vk

qikui ≤ dk−ε, ui ∈ {0, 1} for all vi ∈ Mk

}

,

whereε is a small positive value (if allqik anddk are integer numbers, then
ε := 1). Indeed,S is defined by the set of marketsvi with u∗

i = 0 in the optimal
KP solution. Ifσ∗ >

∑

vi∈Mk
y∗

i − 1, then constraints (3.13) associated with
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S is violated. Otherwise all constraints (3.13) associated with pk are satisfied.
The KP is relatively easy to solve (see, e.g., Martello and Toth [109]), and its
size can in fact be reduced by fixing to 1 all variablesui with y∗

i = 1 since
ui = 0 would imply σ∗ >

∑

vi∈Mk
y∗

i − 1. Similarly, ui can be fixed to 0
whenevery∗

i = 0 since in this case its weight in the KP objective function
vanishes.

Notice that a violated inequality (3.3) or (3.16) identifiedthrough the above procedures
is not necessarily facet-defining. This only occurs when there exists a productpk that
cannot be entirely purchased outsideS. Therefore, whenever a violation of (3.3) or
(3.16) occurs for a givenpk andS, a check should be made for a violation of the
stronger (and facet-defining) constraint (3.15) over the sameS. Finally, although the
complexity of the above separation procedures may seem rather high, these can be
executed quite rapidly sincêG is typically sparse and contains many isolated vertices.
Moreover, for constraints (3.3), several maximum-flow computations can be avoided
since somey∗

i values are very small.

Separation of 2-matching Inequalities

The 2-matching inequalities (3.12) can be separated in polynomial time through a
simple modification of the Padberg and Rao [121] odd-cut separation scheme. How-
ever, in order to reduce the computational effort spent in the separation, we have
implemented the following simple heuristic initially proposed by Fischetti, Salazar
and Toth [54], also illustrated in Fig. 5.10.

In order to obtain a set of potential handles, the setH ⊂ P(V ) of connected
components from the subgraphGρ = (V, Eρ) induced byEρ := {e ∈ E : 0 <
x∗

e < ρ} is computed, for every thresholdρ corresponding to anx∗
e value. Each

vertex setH ∈ H becoming a clique is then considered as a potentially violated
handle of a 2-matching constraint. For each one of these vertex sets tooth edges are
determined by the following simple greedy procedure. Letδ(H) = {e1, . . . , ep}
with x∗

e1
≥ x∗

e2
≥ . . . ≥ x∗

ep
. The requirement that the teeth have to be pairwise

disjoint is initially relaxed. Among those edge setsT satisfying|T | ≥ 3 and odd, the
best choice forT consists of edgese1, . . . , e|T |. Therefore a most violated inequality
corresponds to the choice of the odd integer|T | ≥ 3 maximizingx∗

e1
+ (x∗

e2
+ x∗

e3
−

1)+ · · ·+(x∗
e|T |−1

+x∗
e|T |

−1). If no violated cut could be produced in this way, then
clearly no violated 2-matching constraint exists for the given handle. Otherwise we
have a violated 2-matching constraint, in which two tooth edges, saye andf , may be
incident to the same vertexv. In this case, we simplify the inequality by defining a
new handle-teeth pair(H ′, T ′) with T ′ := T \ {e, f}, andH ′ := H \ {v} (if v ∈ H)
orH ′ := H∪{v} (if v 6∈ H). It is then easy to see that the new 2-matching inequality
is stronger violated than the previous one. Indeed, replacing (H, T ) with (H ′, T ′)
increases the violation by at least1+yi−

∑

e∈δ({vi})
xe ≥ 2yi−

∑

e∈δ({vi})
xe = 0

(if vi ∈ H), or 1 − yi ≥ 0 (if vi 6∈ H).
By performing this simplification step a 2-matching constraint can be detected

with non-overlapping teeth. In some cases this procedure could even lead to a 2-
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matching constraint with|T | = 1; if this occurs, we reject the inequality in favour of
a constraint YSEC (3.3) or 2SEC(3.15) associated with the handle.

Fig. 5.11 illustrates a fractional point violating two 2-matching inequalities. Two
handles,H1 := {v2, v5, v6} and H2 := {v1, v4, v8}, have been detected by the
previously described algorithm. And for each of them teeth set is also computed, i.e.,
T1 := {e[v1,v7], e[v4,v5], e[v8,v3]} for handleH1 andT2 := {e[v2,v9], e[v4,v5], e[v6,v0]}
for handleH2.

Input: (G∗, x∗), LC, ρ
Output: LC

for all e ∈ E∗ : x∗
e > ρ

Eρ := Eρ ∪ e
Vρ := V (Eρ)
COMPONENTS(Gρ,H)
for all H ∈ H : H is a clique

T := arg{maxT ′⊂δ(H)

∑

e∈T ′ xe − (|T ′| − 1) : |T ′| ≥ 3 and odd}
for all e, f ∈ T such as v := e ∩ f 6= ∅

T := T \ {e, f}
if ( v ∈ H ) H := H \ v
else H := H ∪ v

if ( (
∑

e∈T xe −
∑

e∈δ(H)\T xe > |T | − 1) and (|T ′| ≥ 3 and odd))

LC := LC ∪
∑

e∈T xe −
∑

e∈δ(H)\T xe ≤ |T | − 1

Fig. 5.10 Heuristic separation of the 2-matching inequalities.

H1

H2

v0

v1

v2

v3

v4

v5

v6v7

v8

v9

Fig. 5.11 Fractional point violating two 2-matching inequalities.
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Clique Lifting and Shrinking An important application in the design of separa-
tion algorithm in that it allows one to simplify the separation problem is the shrinking
procedure, proposed by Padberg and Rinaldi [117].

As a complementary concept of the shrinkingclique lifting can be described as
follows (see Balas and Fischetti [11]). LetP (G′) denote theATSP polytope asso-
ciated with a complete digraphG′ = (V ′, A′). Given a valid inequalityβy ≤ β0 for
P (G′), we define

βhh := max{βij + βhj − βij : i, j ∈ V ′ \ {h}, i 6= j} for all h ∈ V ′

and construct an enlarge complete digraphG = (V, A) obtained fromG′ by re-
placing each nodeh ∈ V ′ by a cliqueSh containing at least one node (hence,
|V | =

∑

h∈V ′ |Sh| ≥ |V ′|). In other words(S1, . . . , S|V ′|) is a proper partition
of V , in which theh-th set corresponds to theh-th node inV ′.

For all v ∈ V , let v ∈ Sh(v). We define a newclique lifted inequality forP (G),
sayαx ≤ α0, whereα0 := β0 +

∑

h∈V ′ βhh(|Sh| − 1) andαij := βh(i)h(j) for each
(i, j) ∈ A. Balas and Fichetti [11] show that the new inequality is always valid for
P (G); in addition, if the starting inequalityβx ≤ β0 defines a facet forP (G′), then
αx ≤ α0 is guaranteed to be facet-inducing forP (G).

Let S ⊂ V , 2 ≤ |S| ≤ n − 2, be a vertex subset saturated byx∗, in the sense
thatx∗(E(S)) = |S| − 1, and supposeS is shrunk into a single node, sayσ, and
x∗ is updated accordingly. LetG′ = (V ′, A′) denote the shrunken digraph, where
V ′ := V \S∪{σ}, and lety∗ be the shrunken couterpart ofx∗. Every valid inequality
βy ≤ β0 for P (G′) that is violated byy∗ correspond inG to a violated inequality,
sayαx ≤ α0, obtained throughclique lifting by replacing backσ with the original
setS. As observed Padberg and Rinaldi [118], this shrinking operation can affect the
possibility of detecting violated cuts onG′, as it may produce a pointy∗ belonging
to P (G′) even whenx∗ 6∈ P (G).

There are simple conditions on the choice ofS that guaranteey∗ 6∈ P (G′), provide
x∗ 6∈ P (G) as in the cases of interest for separation. The simplest suchcondition
concerns the shrinking of1 − arcs (i.e., arcs(i, j) with x∗

ij = 1), and requires
S = {i, j} for a certain node pairi, j with x∗

ij = 1.
It is known that1−edges cannot be shrunk for theSTSP , instead. In this respect

ATSP behaves more nicely thanSTSP , in that the information associated with the
orientation of the arcs allows for more powerful shrinking.

In our Branch-and-Cut1 − arc shrinking is applied iteratively, so as to replace
each path of1−arc by a single node. As a result of this pre-processing onx∗, all the
nonzero variables are fractional. Notice that a similar result cannot be obtained for
the symmetric TSP, where each1− edge chain can be replaced by a single1− edge,
but not by a single node.

5.5 PRICING BY REDUCED COSTS

The size of the linear program contains too many variables tobe solve explicitly. It is
clear that the total number ofx variables is|V |(|V | − 1)/2 if the graph is undirected,
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or |V |(|V | − 1) if it is directed. On the other hand, in the worst case, that is, if all
products are available in the50% of the markets, the number ofz variables is of
|M ||K|/2. That means, that if we have a problem of size|V | = 100 and|K| = 100,
the total number of variables for a undirected problem is5050.

That is why we initialize the linear program with a small subset of variables and
compute the optimal solution of that linear program. Afterwards, we check if the
addition of a variable, which is not in the current linear program, might improve the
LP-solution. According to the linear programming theory this can be done by the
computation of the reduced cost of the variables. In a linearprogram of the form
min{cT x : x ∈ P} a variable with positive reduced cost can improve the solution.

The reduced costrj of a non basic variablej with associated columnaj ∈ Rm

and objective function coefficientcj corresponding to a basic LP-solution with dual
variabley ∈ Rm is defined asrj = cj − yT aj .

If no variables have positive reduced cost, then the currentoptimal solution also
solves the original problem. In this case, it is said the variables does not price out
correctly. The computation of the reduced cost is calledpricing. If a variable does
not price out correctly we add it to the linear program, re-optimize and iterate.

Essential for the practically efficient solution of the TPP with more than 100 mar-
kets is the application of sparse graph techniques. It has been observed by mean
computational experience that many edges of the optimal solution are contained in
the 5-nearest neighbour graph and almost all edges are contained in the 10-nearest
neighbour graph. It also happens with thez variables, but the size of the neighbour-
hood is slightly bigger. Therefore, we initialize the variable set of the root node of
the branch-and-bound tree with thek-nearest neighbour graph and augment it with
the the edges belonging to the feasible solution from the initial heuristic.

5.6 BRANCHING STEP

According to the algorithms described in Fig. 5.1, 5.2 and 5.3, if both new cuts,
and new variables are not generated then the branching phaseis active by mean the
flag status. There are many different strategies to achieve asplitting of the current
subproblem in two or more new subproblems. For example,

• a fractional0/1 variable is set to 0 and 1,

• upper and lower bounds for integer variables are changed,

• dividing the polytope by hyperplanes,

• specific strategies for the problem.

Since we choose the first method, some variable is chosen as thebranching variable
and two new BC nodes, which are the two sons of the current BC node, are created
and added to the set of active BC nodes. In the first son the branching variable is set to
1, and in the second one to 0. Different strategies about how to explore the branching
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tree as well as what variable should be selected for splitting the current subproblem
are described in the next two sections.

Node selection

Three different strategies to select the node to be processed next are discussed in this
section.

1. Best First Search

This strategy chooses a node with the worst dual bound, i.e.,a node with lowest
lower bound. The goal is to improve the dual bound. However, if this fails early
in the solution process, the branch-and-bound tree tends togrow considerably
resulting in large memory requirements.

2. Depth First Search

This rule chooses the node that isdeepestin the branch-and-bound tree, i.e.,
whose path to the root is longest. The advantages are that thetree tends to stay
small, since always one of the two sons are processed next, ifthe node could not
be fathomed. This fact implies that the linear programs fromone node to the
next are very similar, usually the difference is just the change of one variable
bound and thus the re-optimization goes fast. The main disadvantage is that
the dual bound basically stays untouched during the solution process resulting
in bad solution guarantees.

3. Breadth First Search

This strategy, in opposite to the previous, choose the node whose the path to
the root is shortest.

Some computational experience has been carried out in orderto select the best strategy
for this particular problem. Finally, the best performancewas offered by the Best First
Search strategy.

Variable selection

There are a variety of different strategies for the selection of the branching variable,
and some of them are enumerated in this section. Letw∗=(x∗,y∗,z∗) the fractional
solution of the last solved LP, then only variablesx∗ andy∗ will be taken in account.

1. Select a variable with value close to 0.5 that has a big objective function coef-
ficient.

2. Select the variable that has an LP-value closest to 0.5.

3. Select the fractional variable that has maximum objective function coefficient.

4. If there were fractional variables that are equal to 1 in the currently best known
feasible solution, select the one with maximum cost of them,otherwise, apply
strategy 1.
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5. Select a fractional variable that is closest to one.

6. Select a setL ⊂ LV of promising branching variables candidates. LetLC be
the constraints system of the last solved LP. Solve for each variablewi ∈ L the
two linear programs

vi
0 = max{cT w|w ∈ conv{LC}, wi = 0}

vi
1 = max{cT w|w ∈ conv{LC}, wi = 1}

and select the branching variablewi with

max{vi
0, v

i
1} = min

wi∈L
max{vi

0, v
i
1}.

Some running time can be saved if instead of the solution of the linear programs
to optimality only a restricted number of iterations of the simplex-method is
performed.

The last strategy, also known asstrong branchinghas been chosen according to our
experimental results. The reduction on the overall runningtime compensates widely
for the extra running time spent in solving the LP.

5.7 COMPUTATIONAL RESULTS

The algorithm described in Section 3 was coded in C++ and run on a Pentium 500
MHz computer running Linux. ABACUS 2.2 linked with CPLEX 6.0was used as a
framework (see J̈unger and Thienel [89] for details on this software).

We have considered the following four classes of test instances.

Class 1 contains 33-market symmetric instances defined with the same input data as
in Singh and van Oudheusden [141]. These correspond to the largest instance
size solved by these authors. The routing costs are those of a33-vertex TSP
described in Karg and Thompson [90] and do not satisfy the triangle inequality.
The first vertex is the depot and all markets sell all products. Product prices are
generated in [1,500] according to a discrete uniform distribution. We generated
five instances with|K|=50, 100, 150, 200 and 250.

Class 2 instances are randomly generated by using the process described in Pearn
and Chien [123]. Routing costs are randomly generated in[1, τ ] whereτ is
generated in [15,140]. Each market sells a number of products randomly
generated in[1, m], wherem = |K| is the number of products. Purchase costs
are randomly generated in[0, ω] whereω is generated in [5,75] for each market.
Contrary to Pearn and Chien, we have used symmetric routing cost instead of
asymmetric costs. We defined instances with|V |=50, 100, 150, 200 and 250,
and|K|=50, 100, 150, 200 and 250.
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Class 3 instances were defined by first generating|V | integer coordinate vertices in
the[0, 1000]×[0, 1000] square according to a uniform distribution and defining
routing costs by Euclidean distances. Each productpk was associated with|Mk|
randomly selected markets, where|Mk|was randomly generated in[1, |V |−1].
The remaining characteristics of these instances are defined as for Class 1.

Class 4 instances were generated in the same manner as Class 3 instances, with a
limit on supplies. For each productpk and each marketvi, qki was randomly
generated in [1,15] anddk := dλ maxvi∈Mk

qki + (1 − λ)
∑

vi∈Mk
qkie for

λ=0.5, 0.7, 0.9 and 0.99.

To analyze the performance of the algorithm, we have used fiveinstances for each
value of|V | and|K| in {50, 100, 150, 200}. Computational results are summarized
in Tables 5.1 to 5.4. The column headings are defined as follows:

|V |: number of vertices (including the depot);

|K|: number of products;

Visit: number of markets visited in the optimal solution;

(3.15): number of generated constraints of type (3.15);

(3.3): number of generated constraints of type (3.3);

(3.16): number of generated constraints of type (3.16);

(3.12): number of generated constraints of type (3.12);

LB%: percentage ratiow/optimum, wherew is the value of the last LP solved at the
root node;

UB%: percentage ratiow/optimum, wherew is the value of the heuristic solution
value computed at the root node;

Root sec:computing time for solving the root node;

Total sec: total computing time spent by the branch-and-cut code;

Nodes: number of nodes generated (1 means that the problem requiredno branching).

Computational results relative with the TPP with unlimitedsupplies (Tables 5.1 to
5.3) indicate that the algorithm can successfully solve to optimality instances involv-
ing up to 200 vertices and 200 products within short computing time. This compares
favourably with the best known exact results obtained by Singh and van Oudheusden
[141] whose largest instances contained at most 20 verticesand at most 50 products
(see Table 5.1). Note that constraints (3.15) are not used for these instances since each
market sells all products. Results presented in Tables 5.2 and 5.3 indicate that the
proportion of markets present in the optimal solution typically varies between 20%
and 40%, which means that the instances are not uniquely driven by routing costs
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and market selection decisions play an important role, thusincreasing the difficulty
of the problem. Instances from Class 2, where travel costs are uniformly distributed,
are much easier to solve than instances from Class 3, which work with a Euclidean
travel cost structure. This is consistent with what is observed for the TSP (Balas and
Toth [15]). Problem difficulty increases with|V | and|K|. Both the heuristic upper
bound and the lower bound at the root node the search tree tendto be within a small
percentage of the optimum, typically less than 5%, and theirquality is more closely
related to the number of markets than to the number of products. As expected, the
computational time and the number of branch-and-cut nodes increase strongly with
|V |. While performing the tests, we have observed that spendingmore time execut-
ing the pricing heuristic can help reducing significantly the time required by the LP
solver.

Table 5.4 contains computational results for instances with limited product avail-
ability at some markets. To our knowledge, we are the first to address this more
difficult variant of the classical TPP. For this class of instances, problem difficulty is
clearly related to the size ofλ which effectively controls the percentage of markets
in the solution. Whenλ is small, most markets are visited and the TPP becomes very
close to a TSP and is thus relatively easy to solve for the number of markets considered
in our experiments. Asλ grows both the upper bound and the lower bound at the root
node deteriorate, which translate again into more branching and larger computation
times. However, we have observed that problems generated with λ > 0.95 tend to be
easier than those generated withλ ≤ 0.95 since the problem is then almost identical
to the unlimited supply case asλ approaches 1. Table 5.4 shows results for only four
values ofλ. Overall, we were able to solve instances involving up to 200vertices and
200 products.

On average, the purchasing cost and of routing cost had similar proportions on the
optimal solution values of the above described instances. To measure the difficulty
of the problem comparing the routing and the purchasing costs, we have conducted
some further experiments. In particular, we have generatedand solved instances of
Class 1 with product prices in [1,50], [1,500], [1,5000] and[1,50000], of Class 2
with |V | = 100 andω in [2,30], [5,75], [20,300] and [50,750], and of Class 3 with
|V | = 100 with product prices in [1,50], [1,500], [1,5000] and [1,50000]. Table 5.9
shows the average results of the five instances for each valueof |K|. For each group
of instances, four features are given:

Vis.: the number of visited markets in an optimal solution;

Nod.: the number of explored branching nodes;

PC: the percentage of the pricing cost over the total cost of an optimal solution;

Sec.: the total time of solving an instance.

As it is observed from the table, the difficulty of solving an instance is not strongly
affected by the magnitude of the pricing costs compared to the routing costs. Solving
instances from Classes 1 and 2, a problem is easier when the pricing costs are bigger
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than the routing costs, even if an optimal decision involvesselecting more markets.
The difficulty of the problem seems to be more related with (say) |M | and|K|.

An overview to the three unlimited-supply TPP classes showsthat the proposed
algorithm works better on the instances of Class 2, where therouting costs are ran-
domly generated. This is due to better lower bounds on instances of Class 2 when
compared with instances of Class 3, where more efforts (i.e., cuts) are required by
the separation procedures to approximate the lower bound to99% over the optimal
solution when|V | = 200. The heuristic produced worse results when the routing
costs are non-Euclidean, but the branch-and-cut algorithmwas less sensitive to this
drawback. Indeed, the algorithm executes more branching oninstances of Classes 1
and 2 where the upper bound is worse, but the total computational time is smaller.
Because of this observation, we did not implemented a more sophisticated heuristic.

The harder instances of our benchmarks correspond to Class 4, due to the limited
supply constraints. Indeed, when|V | = 200, it was only possible to solve six and
seven instances over the twenty trials for|K| = 150 and |K| = 200, respectively.
When the execution was aborted due to the 3 hours of time limit, the average gap
between the final upper and lower bounds was 2.7% and 8.8% when|K| = 150 and
|K| = 200, respectively, while at the end of the root node, the averagegap between
lower and upper bounds was 7.5% and 21.5% when|K| = 150 and |K| = 200,
respectively. We guest that these big values are mainly due to the lower bound
quality and not to the primal heuristic procedure.

We have formulated, analyzed and solved the undirected TPP.Two versions were
considered: the classical one where products are availablein unlimited supply in
the markets, and a new more difficult version where upper bounds are imposed on
supplies. Facet-defining inequalities applicable to both versions were proposed, and
a branch-and-cut algorithm encompassing a heuristic, a pricing mechanism as well
as several separation procedures were developed. Extensive computational results on
four instance classes indicate that for the classical TPP our algorithm outperforms
by far all previously available methods. For both versions of the TPP, it can solve
instances involving up to 200 markets and 200 products.
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Table 5.1 Average results over 5 random instances of Class 1 with|V |=33.

|K| visit (3.15) (3.3) (3.16) (3.12) LB% UB% Root sec Total sec Nodes

50 8.4 0.0 6.2 173.2 1.4 99.468 106.312 0.4 1.6 3.0
100 10.4 0.0 43.8 1164.8 5.0 98.535 104.150 2.4 8.6 8.2
150 13.2 0.0 58.6 2245.2 6.6 98.491 104.760 4.6 17.8 10.6
200 13.8 0.0 133.2 4917.0 22.2 97.798 108.567 6.2 49.2 25.4
250 15.2 0.0 144.2 5879.6 17.2 97.541 105.478 6.4 63.0 31.0
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Table 5.2 Average results over 5 random instances of Class 2.

|V | |K| visit (3.15) (3.3) (3.16) (3.12) LB% UB% Root sec Total sec Nodes

50 25.8 0.6 34.0 105.4 14.0 99.791 103.545 0.8 2.6 4.6
100 37.2 18.0 62.8 173.0 7.8 100.000 100.309 1.2 2.6 3.850
150 43.0 1.2 24.0 76.6 0.2 100.000 100.000 0.2 1.2 1.0
200 44.8 49.5 72.2 357.5 8.0 100.000 100.155 1.8 3.8 3.5

50 34.4 18.6 370.8 888.8 48.0 99.663 104.890 5.6 17.2 7.8
100 52.0 18.0 62.2 155.0 15.4 100.000 102.059 3.0 7.0 3.4100
150 71.0 0.0 6.0 15.4 4.8 100.000 100.362 2.6 6.8 3.4
200 76.4 44.0 178.8 468.6 12.8 100.000 100.139 5.4 12.4 5.0

50 38.2 23.2 87.0 385.8 33.6 99.017 123.587 8.8 33.2 10.2
100 62.5 186.8 401.2 3001.2 100.5 99.456 108.707 17.8 147.8 32.0150
150 77.2 355.8 615.2 2454.2 111.0 99.845 101.451 12.0 163.8 37.4
200 91.6 6.8 158.6 392.8 32.6 99.961 100.773 8.6 25.0 6.6

50 33.6 2.0 469.4 2804.8 114.2 98.494 153.614 10.8 222.2 31.0
100 65.4 6.8 327.6 760.8 81.4 99.752 115.347 12.2 105.8 32.6200
150 92.6 17.2 267.4 611.0 91.0 99.857 104.444 16.6 141.6 32.2
200 106.0 9.6 97.4 222.2 50.8 100.000 100.448 13.6 59.2 11.8
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Table 5.3 Average results over 5 random instances of Class 3.

|V | |K| visit (3.15) (3.3) (3.16) (3.12) LB% UB% Root sec Total sec Nodes

50 7.6 321.2 234.2 1027.4 42.6 100.000 100.000 6.2 6.4 1.0
100 13.0 731.4 362.4 2050.4 113.6 99.959 102.549 20.2 21.6 1.450
150 15.0 948.6 353.2 3319.4 107.8 99.938 102.286 28.4 32.2 2.2
200 16.6 1245.2 345.8 3704.6 95.6 99.766 101.372 33.2 35.4 1.8

50 10.4 1052.0 1685.0 2730.0 479.6 99.988 100.000 120.0 122.4 1.4
100 14.2 1844.0 1800.4 5929.8 537.0 99.914 100.029 293.8 309.4 2.2100
150 18.0 2895.8 1921.0 8659.4 566.8 99.494 103.706 346.4 423.0 3.0
200 19.8 2600.0 1545.0 9117.8 528.2 99.511 105.514 280.8 344.4 6.6

50 10.6 1719.0 4988.0 4793.2 1454.2 99.986 100.000 953.0 957.0 1.4
100 15.4 3340.0 4323.2 8442.4 1302.0 99.700 105.814 1795.6 1918.0 3.8150
150 20.2 4863.6 4132.0 11120.8 1244.6 99.805 111.154 1602.21936.6 5.0
200 22.0 6530.0 3679.4 14500.0 1076.0 99.528 110.873 1578.02126.4 8.2

50 10.0 1238.8 4423.2 3032.0 1235.0 97.722 108.923 842.0 1125.6 2.6
100 18.6 6780.4 9460.6 13270.8 2488.4 98.478 109.866 3401.64897.8 5.0200
150 21.8 12843.6 12288.8 30708.0 3558.6 95.834 109.389 4455.4 9933.4 14.6
200 22.2 14015.8 9612.0 29578.8 2780.0 90.449 110.013 5630.0 9198.2 7.8
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Table 5.4 Average results over 5 random instances of Class 4 with|V |=50.

|K| λ visit (3.15) (3.3) (3.16) (3.12) LB% UB% Root sec Total sec Nodes

0.50 46.2 31.0 161.4 193.0 13.4 99.994 100.021 1.4 2.8 1.8
0.70 40.6 115.4 436.4 425.4 115.6 99.649 100.324 3.8 10.6 17.450
0.90 22.0 724.6 1281.0 2522.8 408.0 97.631 101.675 9.0 50.4 48.6
0.99 11.6 369.6 349.8 1008.4 122.0 99.936 100.000 9.2 10.2 3.4

0.50 50.0 48.0 257.8 588.0 37.4 99.966 100.000 1.6 4.8 5.4
0.70 46.0 493.4 774.8 1597.6 156.4 99.799 100.096 3.4 16.6 25.0100
0.90 30.4 739.0 864.2 2888.0 277.8 98.170 101.650 8.0 46.6 37.8
0.99 15.0 499.4 309.6 1523.4 98.0 99.991 100.000 11.6 12.4 1.4

0.50 50.0 82.4 206.2 767.2 39.2 99.976 100.000 2.0 5.6 6.6
0.70 48.4 88.2 308.0 1049.8 41.8 99.937 100.009 2.6 7.4 9.0150
0.90 35.0 844.0 949.4 3794.0 298.0 97.870 101.544 9.0 66.0 55.8
0.99 15.2 972.0 537.8 4184.0 150.6 99.877 100.029 18.8 21.4 3.0

0.50 50.0 98.6 222.2 1114.8 38.0 99.982 100.000 2.8 7.2 5.4
0.70 50.0 96.8 163.4 793.4 30.8 99.925 100.000 2.6 6.0 3.8200
0.90 38.2 972.0 952.0 4514.0 334.8 98.382 100.269 8.8 80.4 53.8
0.99 16.6 608.4 418.6 4290.6 126.0 99.728 100.244 17.8 20.8 3.4
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Table 5.5 Average results over 5 random instances of Class 4 with|V |=100.

|K| λ visit (3.15) (3.3) (3.16) (3.12) LB% UB% Root sec Total sec Nodes

0.50 100.0 37.0 593.8 316.2 89.8 99.976 100.000 10.8 16.2 3.4
0.70 87.8 89.8 834.0 394.4 139.2 99.939 100.069 17.4 24.0 5.050
0.90 40.4 3719.2 8760.6 11818.8 2411.4 98.402 100.729 57.0 409.8 94.2
0.99 12.6 686.2 1460.0 2245.2 445.2 99.042 100.027 68.8 98.0 7.0

0.50 100.0 57.2 536.2 525.2 79.6 99.988 100.001 11.2 17.4 4.2
0.70 91.0 221.0 1414.4 1471.6 200.6 99.979 100.004 25.4 32.8 3.8100
0.90 57.8 6860.8 20450.2 32340.0 5621.8 98.233 102.915 49.8 906.4 166.6
0.99 16.8 1431.4 1742.4 5872.0 515.4 99.367 100.054 164.2 225.6 9.4

0.50 97.8 187.8 812.2 1264.2 111.4 99.994 100.004 19.0 24.8 3.4
0.70 99.8 136.8 720.0 981.2 163.2 99.969 100.001 16.8 32.2 10.6150
0.90 64.2 16607.4 33279.2 80920.8 7810.8 98.719 101.303 65.2 1651.8 196.2
0.99 19.2 3551.6 2978.2 16949.0 817.2 98.273 100.675 219.8 688.2 27.4

0.50 100.0 131.0 596.8 1391.2 90.4 99.994 100.000 16.0 22.8 3.4
0.70 100.0 134.0 523.8 1146.4 81.2 99.984 100.000 16.6 24.0 3.8200
0.90 72.4 7147.8 20553.4 39334.6 5170.6 98.882 101.453 64.61315.2 234.6
0.99 24.6 23831.4 9501.8 80025.0 2892.2 98.292 100.862 312.6 1900.2 57.0
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Table 5.6 Average results over 5 random instances of Class 4 with|V |=150.

|K| λ visit (3.15) (3.3) (3.16) (3.12) LB% UB% Root sec Total sec Nodes

0.50 148.6 59.0 5332.4 1459.6 1955.4 99.924 100.027 20.4 204.2 91.4
0.70 132.8 414.8 9517.0 2465.6 1812.4 99.911 100.162 62.2 275.6 81.450
0.90 62.8 18174.0 69428.4 62122.6 22382.8 98.909 102.216 216.8 4721.8 185.4
0.99 14.6 1473.0 4727.2 4266.0 1071.8 99.084 101.151 433.0 610.8 13.0

0.50 149.8 582.8 8600.8 4465.4 2040.2 99.958 100.008 26.6 288.2 86.6
0.70 148.0 341.4 10684.0 5054.6 3245.8 99.893 100.037 36.8 401.2 127.0100
0.90 88.6 43316.2 167347.4 177371.0 46220.6 99.109 101.829 194.0 8334.6 418.2
0.99 22.0 10440.6 12072.8 49225.2 3078.4 97.745 100.534 921.4 4712.6 41.0

0.50 149.0 796.4 19342.6 12959.2 5218.2 99.974 100.015 32.8 914.8 208.6
0.70 148.6 360.4 6565.2 5096.4 2229.4 99.925 100.005 36.4 370.6 109.8150
0.90 101.8 27404.6 93793.0 104034.4 26977.8 99.290 100.990 179.6 4877.4 238.2
0.99 26.2 26033.2 23285.2 109225.4 6444.8 96.918 102.375 1171.2 8564.0 84.2

0.50 150.0 436.4 5409.4 6151.0 1575.4 99.977 100.001 36.8 345.8 90.6
0.70 150.0 635.8 7702.2 7570.8 2450.6 99.936 100.017 40.0 421.4 96.6200
0.90 117.0 29086.0 92983.4 120420.8 21252.0 99.502 100.872 158.0 5907.2 329.4
0.99 30.6 28492.8 28961.8 143598.8 8131.8 96.444 101.582 876.0 8125.4 63.8
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Table 5.7 Average results over 5 random instances of Class 4 with|V |=200.

|K| λ visit (3.15) (3.3) (3.16) (3.12) LB% UB% Root sec Total sec Nodes

0.50 197.4 2667.4 139468.6 26936.2 27509.8 99.931 100.040 84.0 4804.2 608.6
0.70 187.8 3640.4 187580.2 39422.2 28992.0 99.650 100.196 72.8 5898.6 697.050
0.90 87.8 4224.0 34169.0 17022.4 9356.4 99.452 100.505 377.4 2164.4 99.4
0.99 20.8 7200.8 22881.4 22076.0 4199.2 98.627 101.280 2363.0 6253.0 51.8

0.50 200.0 272.2 16759.2 5036.0 4208.5 99.968 100.002 53.5 745.8 112.0
0.70 197.0 774.0 37428.3 11764.7 9154.3 99.894 100.036 70.01578.7 249.7100
0.90 121.8 33020.4 174537.8 140296.6 44897.6 99.095 102.024 447.6 11925.6 297.4
0.99 28.2 18219.4 24826.8 70204.8 6359.2 93.539 107.540 1435.2 11872.4 67.0
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Table 5.8 Statistics using different pricing and routing costs

Class 1:|V | = 33

50 500 5000 50000
|K| Vis. Nod. PC Sec. Vis. Nod. PC Sec. Vis. Nod. PC Sec. Vis. Nod. PC Sec.

50 3.6 1.0 33.1 0.0 8.4 3.0 48.8 1.6 16.8 4.2 60.2 1.8 25.2 2.2 84.8 0.6
100 4.4 1.4 41.1 4.8 10.4 8.2 52.2 8.6 22.0 2.6 67.8 1.2 29.2 1.089.6 0.0
150 5.8 2.6 40.7 11.4 13.2 10.6 49.8 17.8 24.4 1.0 72.4 0.0 32.41.0 91.3 0.0
200 6.4 1.8 43.3 17.4 13.8 25.4 54.5 49.2 26.6 1.0 74.2 0.0 32.21.8 93.5 0.0
250 7.0 2.6 44.8 27.0 15.2 31.0 55.4 63.0 27.2 1.0 77.2 0.0 33.01.0 94.6 0.0

Class 2:|V | = 100

[2, 30] [5, 75] [20, 300] [50, 750]
|K| Vis. Nod. PC Sec. Vis. Nod. PC Sec. Vis. Nod. PC Sec. Vis. Nod. PC Sec.

50 13.6 12.6 18.5 56.4 34.4 7.8 44.4 17.2 45.6 11.4 60.8 3.6 49.0 1.8 71.8 0.0
100 24.2 43.8 21.1 168.0 52.0 3.4 59.2 7.0 66.8 5.4 76.2 1.8 66.2 6.6 86.7 0.6
150 35.6 59.0 29.5 196.2 71.0 3.4 71.5 6.8 79.2 6.2 85.4 3.6 77.2 4.2 92.5 1.2
200 42.4 42.6 32.0 141.0 76.4 5.0 80.0 12.4 83.6 12.6 90.5 9.0 81.8 2.6 97.4 1.2
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Table 5.9 Statistics using different pricing and routing costs (cont.)

Class 3:|V | = 100

50 500 5000 50000
|K| Vis Nod PC Sec Vis Nod PC Sec Vis Nod PC Sec Vis Nod PC Sec

50 9.2 19.8 9.4 104.4 10.4 1.4 43.1 122.4 35.0 8.6 74.5 81.0 41.8 21.0 94.8 66.6
100 13.0 14.2 10.7 179.8 14.2 2.2 50.0 309.4 48.8 3.0 81.5 34.861.2 140.2 97.1 115.2
150 17.8 193.0 12.6 1552.8 18.0 3.0 55.3 423.0 60.6 11.8 85.4 69.0 63.4 185.0 98.0 638.4
200 19.0 11.8 15.0 256.4 19.8 6.6 56.9 344.4 77.2 42.2 88.2 154.2 77.0 481.4 98.3 2557.8





6
A Branch-and-Cut

Algorithm
for the ATPP

A Branch-and-Cut approach for the Asymmetric Traveling Purchaser Problem (ATPP)
is performed in this chapter. The general scheme described in the previous chapter
is also followed, but taking into account the model for the asymmetric case. It also
proposes a transformation of the ATPP into its symmetric version, so a second exact
method is also presented. An extensive computational analysis on several classes
of instances from literature evaluates the proposed approaches. A previous work by
Singh and Oudheusden published in 1999 solves instances with up to 25 markets and
100 products, while the here-presented approaches prove optimality on instances with
up to 200 markets and 200 products.

Since the Branch-and-Cut skeleton is quite similar to the one described in Chap-
ter 5, only those specific issues of this problem are includedin this chapter. The
first section is devoted to a specific heuristics involved in this approach. Section
6.2 sketches the above mentioned transformation. Section 6.3 describes the separa-
tion algorithms, and finally, our computational experienceis shown in Section 6.4.
This experience compares the classical implementation of the Branch-and-Cut, the
improved implementation by the branching heuristic and transformation approach.

6.1 B&C BASED HEURISTIC

The hardness of solving ATPP instances motivates the develop of a heuristic approach
based on the branch-and-cut algorithm. According to the procedure introduced by
Fischetti, Lodi and Toth [52], a reasonable branching scheme (calledlocal branching)
considers the incumbent feasible ATPP circuitA∗ ⊆ A at the end of each node of the
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decision tree, and proceed by creating two new nodes with thedisjunction:
∑

a∈A∗

(1 − xa) ≤ k or
∑

a∈A∗

(1 − xa) ≥ k + 1, (6.1)

wherek is an small integer number. Notice that
∑

a∈A∗(1−xa) is the number of arcs
in the solutionx and not in the heuristic circuitA∗. Clearly, solving the left-hand side
node is similar to explore ak-neighbourhood of the ATPP solution represented by
A∗. This exploration could only be done by full enumeration when k ≤ 3, while the
branch-and-cut code could succeed for some larger values ofthe parameterk, even
if the ideal situation of solving the node whenk = n (i.e., solving the original ATPP
instance to optimality) is unlikely. The right-hand side node is more difficult to be
solved, and indeed it is as difficult as the original problem whenk is an small value.

Based on the above consideration we have modified the branch-and-cut code to
produce a good solutions for large ATPP instances. The mechanism consists in
solving the root node by using the algorithm described in Chapter 5. LetA∗ ⊆ A the
arcs representing the best feasible ATPP solution providedby the heuristic routines
in the code (i.e., the initial and primal heuristics, both ensuring a 3-optimality on the
circuit). To look for a better ATPP solution, we add the constraint

k1 ≤
∑

a∈A∗

(1 − xa) ≤ k2,

wherek1 := 3 and k2 := 6 where choosing after some computational experi-
ments. This constraint addresses the branch-and-cut algorithm to explore outside a 3-
neighbourhood (whichhas beenexploredby the heuristic)and inside a 6-neighbourhood
(which is probably a limited region that can be explored by the branch-and-cut).

Based on our computational experiments, solving the new problem requires many
computational effort, hence we also decided to fix some variables. In particular, when
a new node contains only the variables with a fractional value on the current fractional
solution, plus all the variables that have been useful in a previous ATPP solution.

The heuristic approach stops when a better ATPP solution is not found when
solving the current node, or after a given time limit.

6.2 TRANSFORMATION OF THE ATPP INTO THE STPP

We now introduce an alternative proposal to find an optimal ofan ATPP instance
when an exact algorithm for solving symmetric instances is available. The aim is to
transform an asymmetric instance into a symmetric one in thespirit of similar works
done for similar routing problems. Inspired by the3-node transformationof Karp
[91] and the2-node transformationof Jonker and Volgenant [86], both for the ATSP,
we next propose a transformation for the ATPP into the STPP.

We propose a simple2-nodetransformation for the TPP ( see Fig. 6.1 for details).
A complete undirected graphG′(V ′, E) with 2|V | vertices is built from the original
directed oneG(V, A) as follows. For each vertexvi ∈ V a new vertex,vn+i is added
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vi vj

c[i,j]

c[j,i]

(a)

vi vj

vn+i

vn+j

−M c[i,j] + M

−Mc[j,i] + M

(b)

Fig. 6.1 Transformation of the ATPP into the STPP.

to V ′, that isV ′ = V ∪
⋃

vi∈V {vi+|V |}. In addition, for each pair of verticesvi and
vj , the cost of both edges[vi, vn+i] and[vj , vn+j ] are set to−M , and the cost of
the edges[vn+i, vj ] and[vn+j , vi] are set tocji + M andcij + M respectively. It
is easy show that an optimal solution of the ATPP inG induces an optimal solution
for the STPP inG′ andvice versa. Then, a minimum-cost cycle inG′ solving the
STPP corresponds to a minimum-cost circuit inG solving the ATPP, and vice versa.
Indeed, an optimal cycle cannot use two consecutive edges with negative cost, so it
will alternate positive and negative cost, so the value ofM will not affect the total
cost.

There are in literature transformations for the ATSP into its symmetric version.
Nevertheless, these transformations are not useful when the TPP is approached. Two
of the most important transformations are described below.

The 3-node Transformation for the TSP

This transformation, called the3-nodetransformation was proposed by Karp [91]. A
complete undirected graph with3n vertices is obtained from the original complete
directed one by adding two copies,vn+i andv2n+i, of each vertexvi ∈ V , and by (i)
setting to 0 the cost of the edgese[i,n+i] ande[n+i,2n+i] for eachvi ∈ V , (ii) setting
to cij the cost of edgee[2n+i,j] for all vi, vj ∈ V , and (iii) setting to+∞ the cost of
all remaining edges.
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vi vj

c[i,j]

c[j,i]

(a)

vi

vj

vn+i

vn+j

v2n+i

v2n+j

0 0

00

cijcji

(b)

vi vjvn+i

0 cij + M

(c)

Fig. 6.2 Transformation of the ATSP into the STSP.

The 2-node Transformation for the TSP

The 2-nodetransformation was proposed by Jonker and Volgenant [86] (see also
Jünger, Reinelt and Rinaldi [87]). A complete undirected graph with 2n vertices is
obtained from the original complete directed one by adding acopy, vn+i, of each
vertexvi ∈ V , and by (i) setting to 0 the cost of the edgee[vi,vn+i] for each vertex
vi ∈ V , (ii) setting tocij + M the cost of the edgee[n+i,j] for all vi, vj ∈ V , where
M is a sufficiently large positive value, and (iii) setting to+∞ the cost of all the
remaining edges. The transformation valuenM has to be subtracted from the STSP
optimal cost.

Figure 2.3 illustrates these two last transformations.
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6.3 SEPARATION PROCEDURES

Separations algorithms for our implementation of the branch-and-cut algorithm for
the ATPP are described in this section.

Separation of YSEC + Inequalities

Proposition 6.1. Given a marketvi with y∗
i > 0, a most violated YSEC+ constraint

(3.20) corresponds to a minimum-capacity directed cut (min-cut) (S, V ∗ \ S) with
vi ∈ S andv0 6∈ S in the support graphG∗ by imposing a capacityx∗

a on each arc
a ∈ A∗.

This separation algorithm is quite similar to the algorithmdescribed for the sym-
metric case. Instead, a YSEC+ is violated if the value of the directed cut is less than
1 (See algorithm in Fig. 6.3 for details). Notice that similarly to the symmetric case,
constraints YSEC+ are introduced in the same short form, that is (5.1). Howeverit
derives from the following equation obtained adding (3.19)for each vertexvi of a
violated setS.

∑

a∈A(S)

xa +
∑

a∈δ+(S)

xa =
∑

vi∈S

yi. (6.2)

Replacing (6.2) in (3.20) we obtain (5.1).
Figure 6.4 shows a fractional point violating the following(3.20).

∑

a∈δ+(S)

xa ≥ y9

With S := {v4, v9}, since
∑

a∈δ+(S) xa = 0.5 andy9 = 1, and then0.5 6≥ y9.

Input: (G∗, x∗, y∗), LC

Output: LC

COMPONENTS(G∗, C)
for all S ∈ C

if ( v0 6∈ S )
for all vi ∈ S
LC := LC ∪

∑

a∈δ+(S) xa ≥ yi

else
for all vi ∈ S \ {v0}
cut-value := DIRECTED MINCUT( G∗,v0,vi, S′ );
if ( cut-value < yi )
LC := LC ∪

∑

a∈A(S) xa −
∑

vj∈S\{vi}
yj ≤ 0

Fig. 6.3 Separation of the YSEC+ inequalities.
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S

v9

v4

v0

v6

v3

v1

v5

Fig. 6.4 Fractional point violating a YSEC+ inequality.

Separation of ZSEC + Inequalities

Proposition 6.2. Given a productpk, determining a most violated ZSEC+ constraint
(3.36) is equivalent to finding a subsetS with minimum value of

∑

a∈δ+(S)

x∗
a +

∑

vi∈Mk\S

z∗ki

dk

.

Figure 6.6 shows a fractional solution violating (3.36). Inthis particular case
0.5/d4 and0.5/d4 units of the productp4 are offered at marketsv2 andv4 respectively.
The subsetS′ consist of the verticesS′ := {v̂, v2, v4} and according to the Figure
6.6

∑

a∈δ(S′\v̂) x∗
a = 0.5 and

∑

vi∈M4
zi4/d4 = 1. Therefore inequality

∑

a∈δ+(S)

xa ≥
1

dk

∑

vi∈S∩M4

z4i, S := {v2, v4}

is violated.

Separation of the D
+

l
and D

−

l
Inequalities

The separation problem for the class ofD+
l inequalities calls for a vertex sequence

(i1, . . . , il), 1 ≤ l ≤ n − 1, for which the degree of violation

φ(i1, . . . , il) := x∗
i1il

+
∑l

h=2 x∗
ih,ih−1

+ 2
∑l−1

h=2 x∗
i1ih

+

∑l−1
h=3 x∗({i2, . . . , ih−1}, ih) −

∑l
h=1 y∗

ih
+ y∗

il

(6.3)
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Input: (G∗, x∗, y∗, z∗), LC Output:
LC

for all pk ∈ K
V̂ := V ∗ ∪ v̂
for all vi ∈ Mk

Â := A∗ ∪ a = [v̂, vi]

x∗
a = 2

z∗
ik

dk

Ĝ = (V̂ , Â)

cut-value := MINCUT(Ĝ,v0,v̂, S′ );
if ( cut-value < 1)

S := S′ \ {v̂}
LC := LC ∪

∑

a∈δ(S) x∗
a ≥ 2

∑

vi∈Mk∩S
zki

dk

Fig. 6.5 Separation of the ZSEC+ inequalities.

S
′

v0

v6

v2

v4

v9

v3

v̂

Fig. 6.6 Fractional point violating a ZSEC+ inequality.

is as large as possible. This is itself a combinatorial optimization problem and can
be solved by the following implicit enumeration scheme. Thescheme starts with
an empty node sequence. Then, iteratively, we extend the current sequence in any
possible way and evaluate the degree of violation of the correspondingD+

l inequality.
The process can be seen by mean of a branch-decision tree. Theroot node of the
tree represent the empty sequence. Each node at levell (1 ≤ l ≤ n − 1) correspond
to a sequence of the type(i1, . . . , il); when l ≤ n − 1, each such node generates
n − l descending nodes, one for each possible extended sequence(i1, . . . , il, il+1).
Exhaustive enumeration of all nodes of the tree is clearly impractical, even for small
values ofn. However, a very large number of nodes can be fathomed by mean
the following simple upper bound computation. Let(i1, . . . , il) be the sequence
associated with the current branching node, sayν, and letφmax denote the maximum
degree if violation so far found during the enumeration. Consider any potential
descendent node ofν, associated with a sequence of the type(i1, . . . , il, il+1, . . . , im).
Then, directly from the definition (6.3) one has
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φ(i1, . . . , il, il+1, . . . , im) := x∗
i1im

+
∑m

h=2 x∗
ih,ih−1

+
∑m−1

h=2 x∗
i1ih

+

∑m−1
h=2 x∗({i1, . . . , ih−1}, ih) −

∑m
h=1 y∗

ih
+ y∗

im
=

x∗
i1im

+
∑l

h=2 x∗
ih,ih−1

+
∑m

h=l+1 x∗
ih,ih−1

+

∑l
h=2 x∗({i1, . . . , ih−1}, ih) +

∑m−1
h=l+1 x∗({i1, . . . , ih−1}, ih)+

∑m−1
h=2 x∗

i1ih
−

∑m−1
h=1 y∗

ih

we establish the following bound

φ(i1, . . . , il, il+1, . . . , im) ≤ π(i1, . . . , il) + x∗
il+1il

+

[

x∗(δ+(i1)) − y∗
i1

]

+
∑m−1

h=l+1

[

x∗(δ−(ih)) − y∗
ih

]

and then from (3.18)–(3.19) we have

π(i1, . . . , il) + x∗
il+1il

(6.4)

where has been defined

π(i1, . . . , il) :=
l

∑

h=1

xihih−1
+

l
∑

h=2

x∗({i1, . . . , ih−1}, ih) −
l

∑

h=2

y∗
ih

.

Notice thatπ(i1, . . . , il) cannot exceed the degree of violation of the YSEC associated
with S := {i1, . . . , il}; hence one asπ(i1, . . . , il) ≤ 0 whenever all YSEC are
satisfied byx∗.

According to (6.4), the only descendent nodes ofν that need to be generated are
those associated with a sequence(i1, . . . , il, il+1) such that

x∗
ilil+1

> φmax − π(i1, . . . , il). (6.5)

Notice that both quantitiesφ(i1, . . . , il) andπ(i1, . . . , il) can be computed along the
branching tree as

φ(i1, . . . , il) = φ(i1, . . . , il−1) + x∗
i1il

+ x∗
ilil−1

+ x∗({i1, . . . , il−2}, il−1) − yil

and

π(i1, . . . , il) = π(i1, . . . , il−1) + x∗
ilil−1

+ x∗({i1, . . . , il−1}, il) − yil
,

whereφ(i1) := π(i1) := 0 for a singleton sequence(i1).
Restriction (6.5) is very effective in practice, and reducedramatically the number

of nodes typically generated in the enumeration. The described separation proce-
dure proved to be rather successful in that it requires a small fraction of the overall
computational time, but unfortunately does not produce a big number of violated cuts.
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Symmetric Inequalities

According to Fischetti and Toth [58] and Fischetti, Lodi andToth [52], an ATPP
inequalityαx+βy+γz ≤ α0 is called symmetric whenαij = αji for all (vi, vj) ∈ A.
Indeed, symmetric inequalities can be thought of as derivedfrom valid inequalities
for the STPP. In a similar way than we have defined the variablesx, let us define the
variablesx as follows. Letxij = 1 if edge[vi, vj ] ∈ E belongs to the optimal STPP
solution;xij = 0 otherwise. Every inequality

∑

[vi,vj ]∈E αijxij + βy + γz ≤ α0

for STPP can be transformed into a valid ATPP inequality by simply replacingxij

by xij + xji for all edges[vi, vj ] ∈ E. This produces the symmetric inequality
αx + βy + γz ≤ α0, whereαij = αji = α for all vi, vj ∈ V, i 6= j. Conversely,
every symmetric ATPP inequalityαx+βy+γz ≤ α0 corresponds to the valid STPP
inequality

∑

[vi,vj ]∈E αijxij + βy + γz ≤ α0.
The above correspondence implies that every separation algorithm for inequalities

from the STPP can be used, as a “black box”, for the ATPP as well. To this end, given
the ATPP fractional point(x∗, y∗, z∗) one first defines the undirected counterpart
(x∗, y∗, z∗) of (x∗, y∗, z∗) by means of the transformation

x∗
ij := x∗

ij + x∗
ji for all [vi, vj ] ∈ E,

and then applies the STPP separation algorithm to(x∗, y∗, z∗). On return, the detected
most violated STPP inequality is transformed into ATPP counterpart, both inequalities
having the same degree of violation.

Thus, we have that the separation algorithms for the inequalities described in
Laporte, Riera and Salazar [102] and in the previous chapterfor the symmetric TPP
are also valid for the ATPP.

6.4 COMPUTATIONAL RESULTS

The here-proposed approaches have been implemented in C++ on a PC AMD 1333
MHz. ABACUS 2.2 linked with CPLEX 6.0 has been used as a framework (see
Jünger and Thienel [89] for details on this software). A time limit of two hours has
been established for the running time of our algorithms.

To test the performances of our code, we have considered ATPPinstances obtained
by using the random generator described in Singh and van Oudheusden [141], since
this is the only today’s article in which algorithms for the ATPP are tested. It is a
generator of unrestricted ATPP instances in which the routing costsca are randomly
generated in[1, τ ], whereτ is generated in [15,140]. Each market sells a number of
products randomly generated in[1, m], wherem = |K| is the number of products.
Purchasing costs are randomly generated in[0, ω] whereω is generated in [5,75] for
each market. We have defined instances with|V | ∈ {50, 100, 150, 200} and|K| ∈
{50, 100, 150, 200}. For each type we have generated five instances by considering
different seeds, thus our benchmark library contains 80 unrestricted ATPP instances.

In order to consider ATPP instances with restricted offers,the generator of Singh
and van Oudheusden has been extended in the following way. For each prod-
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uct pk and each marketvi, qki has been randomly generated in [1,15] anddk :=
dλ maxvi∈Mk

qki + (1 − λ)
∑

vi∈Mk
qkie for λ ∈ {0.5, 0.8, 0.9, 0.95, 0.99}. Ob-

serve that parameterλ controls the demand of each product, and therefore it affects
the number of visited markets in an optimal ATPP circuit: thesmallerλ is, the bigger
is the number of visited markets.

Tables 6.1–6.3 show statistical results from our computational experiments testing
the branch-and-cut algorithm for the ATPP. The heading columns have the following
meaning:

|V |: number of vertices (i.e.,n + 1);

|K|: number of products (i.e.,m);

λ: value of the parameterλ in the generation (only for restricted ATPP instances);

solved: number of instances solved before the time limit (over 5 trials);

#: average number of vertices in the optimal solutions;

2sec: average number of constraints (3.27) separated;

ysec: average number of constraints (3.20) separated;

zsec: average number of constraints (3.36) separated;

2mat: average number of constraints (3.12) separated;

D+
l : average number of constraints (3.32)–(3.33) separated;

Nodes: average number of nodes explored during the branch-and-cutexecution;

%UB: average gap between the heuristic and the optimal solutionsat the end of the
root node, over the optimal solution value;

%LB: average gap between the fractional and the optimal solutions at the end of the
root node, over the optimal solution value;

Root-t: average computational time at the end of the root node;

Total-t: average computational time for the whole branch-and-cut execution.

According to Table 6.1, the branch-and-cut algorithm described above was able to
solve most of the 80 unrestricted ATPP instances. Only 15 instances has not been
solved before the time limit. Only those instances stoppingbefore the time limit have
been taken into account in the average. The difficulty of the problem grows clearly
as the number of available markets and required products do.The number of visited
markets in an optimal solutions tends to remain small, even when|K| = 200. This
is mainly due to the ratio between the routing cost and the pricing cost in an optimal
solution. That is, the higher the pricing costs are, the bigger the number of markets
in the optimal solution is.
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All the separations procedures described in Section 6.3 succeeded in finding some
violated constraints. Computational experience shows that constraints (3.27), (3.20)
and (3.36) become quite relevant, since the average computational time grows when
the their separation procedures are unavailable. This behaviour cannot be extended
to Constraints (3.12), (3.32) and (3.33). Computational time shows a no important
increase when those constraints are avoided. By considering all the separated con-
straints, the lower bound at the end of root node has never been bigger than 1% with
respect to the cost of an optimal solution. A similar result applies also to the upper
bound obtained by applying the initial and primal heuristics. Because of the small gap
between the lower and the upper bounds at the end of the root node, the exact algo-
rithm requires a branching scheme, but despite of this, our approach have concluded,
in most of instances, with the optimality proof before the time limit.

Tables 6.2 and 6.3 show the statistical results when the branch-and-cut code is
used to solve the restricted ATTP instances. Columns# shows how important is the
choice of the values ofλ if different size of the optimal solutions must be considered.

The hardness of solving the restricted instances with the branch-and-cut code is
observed in tables 6.2 and 6.3. The total computational timegrows with the parameter
λ (which is also related to the length of an optimal circuit). The computational time
attains its maximum atλ = 0.95, and immediately the hardness begins to decrease.
As it has also been observed in the unrestricted ATPP instances, the most relevant
constraints are (3.27), (3.20) and (3.36), and the upper andlower bounds at the end
of the root node are very close to the optimal solution value.

All instances of Table 6.2 (100 ATPP instances with|V | = 50) have been solved up
to optimality before the time limit. However, 25 over 100 instances with|V | = 100
remain unsolved with our time limit, as observed in Table 6.3. Notice that, only one
over 20 instances withλ = 0.95 has been solved before the time limit in this table.

The transformation from the ATPP into the STPP presented in Section 2.4 has been
also computationally tested on the two previous families ofinstances. Notice that a
transformation of an ATPP instance with|V | vertices produces a new STPP instance
with 2|V | vertices and with a minor increment of the number of edges. Therefore,
the size of the STPP instance is still reasonable for available exact algorithms.

Tables 6.4, 6.5 and 6.6 show a comparative study between the specific branch-
and-cut algorithm for the ATPP and the above mentioned transformation. As in the
previous tables, the three first columns show the cardinality of the instance and the
number of markets involved in the optimal circuit generated. The next four columns,
both for the specific branch-and-cut and for the transformation respectively, show the
number of instances solved before the time limit (Solved), the percentage of the gap
between the upper and lower bound over the upper bound at the root node (%gap), the
computational time consumed at the root node (Root-t), and the total computational
time taken by the optimal algorithm (Total-t).

Table 6.4 compares the original branch-and-cut algorithm against the transforma-
tion approach in the unrestricted ATPP instances. The specific branch-and-cut seems
to be more efficient not only with respect to the running time but also with respect
to the gap between the upper and lower bound. However, as longas the number of
markets is increased, the different between these two approaches is reduced.
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Tables 6.5 and 6.6 are related to restricted TPP instances. Also on these harder
instances, the branch-and-cut code shows better performance than the transformation
approach, even if there are several exceptions when|V | = 100. The smaller gap of
the direct approach is due to the newad hocinequalities and the heuristic approaches.
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Table 6.1 Solving unrestricted ATPP instances with the branch-and-cut algorithm.

|V | |K| # Solved 2sec ysec zsec 2mat D+
l Nodes %UB %LB Root-t Total-t

50 9.2 5 506.8 60.6 848.4 8.0 8.6 13.8 0.47 0.33 1.0 5.6
100 12.4 5 586.8 110.0 1357.2 6.4 2.8 17.0 0.58 0.20 1.6 8.850
150 14.0 5 827.8 152.8 2345.2 5.4 4.0 19.4 0.38 0.12 1.8 15.8
200 16.0 5 1329.4 220.4 3925.0 6.6 4.4 25.8 0.33 0.15 1.8 25.6

50 6.0 5 223.8 44.0 1062.0 5.2 2.8 7.8 0.12 0.17 17.0 36.8
100 12.0 5 9378.2 1124.2 12619.4 32.8 18.6 76.2 0.79 0.47 21.2411.0100
150 14.8 5 31966.6 4024.8 55081.8 124.2 43.2 265.0 0.76 0.48 25.4 1646.4
200 17.2 5 44964.0 6431.6 97084.0 246.0 62.4 329.4 0.50 0.38 24.2 2237.6

50 7.6 5 5343.2 598.6 6544.2 20.8 28.2 49.4 0.90 0.66 87.2 812.2
100 10.6 5 17261.4 1958.4 26797.4 34.4 17.8 93.4 0.77 0.57 99.0 2302.8150
150 14.4 5 13148.4 2301.2 31251.8 77.2 22.0 147.4 0.74 0.44 69.0 2247.4
200 15.8 1 32748.6 4261.0 78140.4 132.0 31.4 300.2 0.68 0.68 100.4 1428.0

50 7.8 5 4186.6 326.8 6694.2 19.0 16.8 32.2 0.57 0.59 277.8 1484.8
100 10.2 3 15039.2 2374.4 30172.0 64.2 25.8 117.4 0.51 0.61 172.6 3037.7200
150 13.2 1 25074.2 2315.8 41014.2 86.8 20.8 126.6 0.64 0.65 241.0 1605.0
200 16.8 0 32170.0 2351.6 45997.8 48.4 7.6 119.8 0.65 0.78 307.8 -
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Table 6.2 Solving ATPP instances with|V | = 50 with the branch-and-cut algorithm.

|K| λ solved # 2sec ysec zsec 2mat D+
l Nodes %UB %LB Root-t Total-t

0.50 5 50.0 636.2 1.8 35.0 90.2 133.4 2.2 0.01 0.00 0.0 0.6
0.80 5 40.2 294.4 3.2 32.4 132.4 175.6 14.0 0.04 0.01 0.0 1.6

50 0.90 5 27.4 390.8 22.4 179.0 712.8 857.6 41.2 0.07 0.08 0.0 15.2
0.95 5 18.0 664.8 62.4 718.8 1017.4 2723.0 72.6 0.24 0.19 0.0 31.4
0.99 5 10.0 484.0 20.0 370.2 115.2 1070.2 5.0 0.62 0.30 0.6 6.2

0.50 5 50.0 1325.2 2.4 84.2 166.6 525.2 7.4 0.00 0.00 0.2 3.0
0.80 5 50.0 594.4 2.8 64.0 88.2 253.2 40.2 0.01 0.00 0.0 3.0

100 0.90 5 42.8 668.8 19.4 257.0 739.8 1032.4 45.6 0.09 0.04 0.0 27.8
0.95 5 28.6 12748.2 635.4 10177.4 15147.2 37812.2 543.8 0.210.18 0.2 800.8
0.99 5 15.8 1436.8 40.0 1840.6 590.4 5039.8 17.4 0.34 0.24 1.631.6

0.50 5 50.0 1979.6 2.4 101.0 134.2 678.6 8.6 0.00 0.00 0.0 2.8
0.80 5 50.0 909.8 3.4 133.6 176.2 650.0 8.0 0.01 0.00 0.8 3.2

150 0.90 5 46.2 617.0 4.6 148.8 229.4 764.0 22.8 0.02 0.01 0.0 8.0
0.95 5 34.2 5457.2 209.4 3176.8 5070.2 15189.8 212.8 0.12 0.10 0.2 424.4
0.99 5 18.4 2669.4 70.8 2464.2 626.0 6527.4 28.8 0.42 0.18 2.471.4

0.50 5 50.0 2704.2 2.0 94.0 61.4 542.8 12.8 0.00 0.00 0.0 1.8
0.80 5 48.8 1254.8 2.2 154.6 184.2 917.6 6.4 0.00 0.00 0.8 5.2

200 0.90 5 48.8 779.6 3.8 154.2 145.8 692.2 8.0 0.02 0.01 0.8 6.4
0.95 5 40.0 3652.8 124.4 2639.2 3538.4 11679.8 102.6 0.08 0.07 1.0 344.8
0.99 5 21.4 7344.0 180.0 5862.6 1434.6 16103.6 67.0 0.29 0.20 2.6 221.6
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Table 6.3 Solving ATPP instances with|V | = 100 with the branch-and-cut algorithm.

|K| λ solved # 2sec ysec zsec 2mat D+
l Nodes %UB %LB Root-t Total-t

0.50 5 100.0 1546.8 122.2 136.2 1095.2 502.2 576.4 0.01 0.00 2.4 265.0
0.80 5 91.2 714.2 28.8 78.2 752.8 292.0 269.4 0.02 0.00 2.2 83.0

50 0.90 5 60.8 4998.4 272.0 2834.0 16540.6 8709.6 393.6 0.06 0.04 1.8 1311.6
0.95 1 35.0 19694.2 1189.8 13954.4 65805.4 57756.2 1440.8 0.26 0.16 1.8 6767.8
0.99 5 13.6 6407.6 262.4 8251.0 3857.8 17495.6 100.0 0.13 0.56 5.6 2029.6

0.50 5 100.0 2856.0 13.0 101.4 433.6 534.4 270.0 0.00 0.00 4.4114.2
0.80 5 90.4 1325.0 6.0 81.0 476.4 460.6 87.8 0.01 0.00 3.2 33.0

100 0.90 5 71.6 1271.6 25.6 343.2 1320.4 1390.2 76.2 0.03 0.013.0 190.2
0.95 0 - - - - - - - 0.14 0.13 4.0 -
0.99 3 20.0 111815.4 3087.8 89527.4 31175.0 189650.4 988.4 0.74 0.33 10.8 5854.4

0.50 5 100.0 4542.6 23.4 108.4 388.2 670.6 347.8 0.00 0.00 2.6185.4
0.80 5 100.0 22563.2 1763.4 46.8 901.2 585.6 5.4 0.00 0.00 16.2 16.2

150 0.90 5 90.4 3122.6 1120.8 152.8 2632.0 1672.0 96.2 0.02 0.01 8.8 8.8
0.95 0 - - - - - - - 0.07 0.10 5.0 -
0.99 5 18.4 108864.2 1837.0 25643.2 20542.6 174276.0 694.2 0.30 0.26 12.2 5623.6

0.50 5 100.0 5866.4 15.0 215.8 625.8 1181.0 203.4 0.00 0.00 5.0 97.6
0.80 5 100.0 3338.4 77.4 347.0 676.6 1089.4 495.0 0.00 0.00 46.4 294.6

200 0.90 5 95.0 2355.8 119.6 656.0 999.8 1580.8 617.8 0.01 0.01 9.4 7.2
0.95 0 - - - - - - - 0.06 0.09 8.6 -
0.99 2 22.0 103687.6 1666.8 46234.8 13034.6 146714.6 438.0 0.31 0.23 17.6 6675.6
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Table 6.4 Branch-and-cut vs Transformation for unrestricted ATPP instances.

Branch-and-cut Transformation
|V | |K| # Solved %Gap Root-t Total-t Solved %Gap Root-t Total-t

50 9.2 5 0.80 1.0 5.6 5 1.42 3.0 13.2
100 12.4 5 0.78 1.6 8.8 5 1.01 2.8 20.050
150 14.0 5 0.51 1.8 15.8 5 0.50 3.6 40.8
200 16.0 5 0.49 1.8 25.6 5 0.45 3.6 61.0

50 6.0 5 0.29 17.0 36.8 5 0.55 30.2 57.6
100 12.0 5 1.26 21.2 411.0 5 1.37 44.4 956.0100
150 14.8 5 1.23 25.4 1646.4 4 1.72 38.0 2137.0
200 17.2 5 0.88 24.2 2237.6 4 1.05 28.2 1157.0

50 7.6 5 1.56 87.2 812.2 5 2.31 148.6 1371.4
100 10.6 5 1.34 99.0 2302.8 5 1.69 204.4 3256.0150
150 14.4 5 1.19 69.0 2247.4 5 1.50 111.4 3880.0
200 15.8 1 1.35 100.4 1428.0 1 1.58 131.0 2609.0

50 7.8 5 1.17 277.8 1484.8 5 1.23 290.6 1663.2
100 10.2 3 1.13 172.6 3037.7 3 1.55 189.6 3511.7200
150 13.2 1 1.29 241.0 1605.0 1 1.47 279.2 2162.0
200 16.8 0 1.43 307.8 - 0 1.74 418.0 -
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Table 6.5 Branch-and-cut vs Transformation for ATPP instances with|V | = 50.

Branch-and-cut Transformation
|K| λ # Solved %Gap Root-t Total-t Solved %Gap Root-t Total-t

0.50 49.0 5 0.01 0.0 0.6 5 0.03 0.2 6.0
0.80 40.6 5 0.05 0.0 1.6 5 0.05 0.2 5.4

50 0.90 27.4 5 0.15 0.0 15.2 5 0.20 0.0 37.6
0.95 18.0 5 0.43 0.0 31.4 5 0.41 0.0 62.0
0.99 10.0 5 0.93 0.6 6.2 5 1.35 1.4 18.6

0.50 50.0 5 0.00 0.2 3.0 5 0.01 1.0 2.8
0.80 50.0 5 0.01 0.0 3.0 5 0.01 0.8 2.0

100 0.90 42.8 5 0.14 0.0 27.8 5 0.12 0.4 74.0
0.95 27.3 5 0.38 0.2 800.8 5 0.32 0.3 921.3
0.99 15.8 5 0.58 1.6 31.6 5 0.79 2.0 82.0

0.50 50.0 5 0.00 0.0 2.8 5 0.01 1.2 5.4
0.80 50.0 5 0.01 0.8 3.2 5 0.00 0.8 6.6

150 0.90 46.4 5 0.04 0.0 8.0 5 0.03 0.8 17.4
0.95 34.0 5 0.22 0.2 424.4 5 0.18 1.0 443.3
0.99 18.2 5 0.61 2.4 71.4 5 0.52 3.0 222.8

0.50 49.8 5 0.00 0.0 1.8 5 0.00 2.2 6.8
0.80 48.8 5 0.01 0.8 5.2 5 0.01 1.6 3.2

200 0.90 49.0 5 0.03 0.8 6.4 5 0.03 1.2 9.2
0.95 40.0 5 0.15 1.0 344.8 5 0.14 1.0 561.8
0.99 21.4 5 0.48 2.6 221.6 5 0.50 2.0 520.2



13
0

A
B

&
C

A
LG

O
R

IT
H

M
F

O
R

T
H

E
AT

P
P

Table 6.6 Branch-and-cut vs Transformation for ATPP instances with|V | = 100.

Branch-and-cut Transformation
|K| λ # Solved %Gap Root-t Total-t Solved %Gap Root-t Total-t

0.50 99.0 5 0.01 2.4 265.0 5 0.02 6.6 35.4
0.80 90.8 5 0.03 2.2 83.0 5 0.03 7.0 92.8

50 0.90 64.0 5 0.10 1.8 1311.6 1 0.03 2.0 129.0
0.95 35.0 1 0.42 1.8 6767.8 0 - - -
0.99 13.5 5 0.69 5.6 2029.6 4 0.70 9.8 1947.0

0.50 97.2 5 0.00 4.4 114.2 5 0.01 8.6 101.6
0.80 90.2 5 0.01 3.2 33.0 5 0.01 9.6 34.8

100 0.90 69.0 5 0.05 3.0 190.2 4 0.05 3.3 535.8
0.95 - 0 - - - 0 - - -
0.99 19.0 3 1.07 10.8 5854.4 2 1.06 12.0 5736.5

0.00
0.50 100.0 5 0.00 2.6 185.4 5 0.00 21.4 21.4
0.80 99.8 5 0.00 16.2 16.2 5 0.01 9.0 9.0

150 0.90 90.2 5 0.03 8.8 8.8 5 0.03 7.8 7.8
0.95 - 0 - - - 0 - - -
0.99 19.0 5 0.56 12.2 5623.6 1 0.88 11.0 4729.0

0.00
0.50 100.0 5 0.00 5.0 97.6 5 0.00 30.4 122.2
0.80 100.0 5 0.00 46.4 294.6 5 0.00 10.8 46.8

200 0.90 95.4 5 0.02 9.4 7.2 5 0.02 6.0 7.2
0.95 - 0 - - - 0 - - -
0.99 22.0 2 0.54 17.6 6675.6 2 0.56 17.5 5584.0



7
The Biobjective Symmetric

Traveling Purchaser
Problem

The purpose of this chapter is to present a new approach to solve theBiobjective Trav-
eling Purchaser Problem(2TPP), defined as the biobjective version of the Traveling
Purchaser Problem (TPP), referred as 1TPP to emphatize the unicriterion function.
A new computational technique to improve the efficiency of our approach is also
introduced in this Chapter. This technique consists in making use of previously com-
puted cuts, in order to enlarge the initial cut pool during the computation of further
non-dominated points.

A simple cycle inG passing through the depotv0 and a subset of markets is called
feasible solutionif for each productpk the cycle visits enough markets inMk to allow
buying the requireddk units. Given a feasible solutionσ = (V (σ), E(σ)) visiting
nodesV (σ) ⊆ V and routing edgesE(σ) ⊆ E, there is an associated pricing cost
defined by

price(σ) :=
∑

pk∈K

min

{ ∑

vi∈Mk∩V (σ) bkizki :
∑

vi∈Mk∩V (σ) zki = dk

andzki ≤ qki for all vi ∈ Mk ∩ V (σ)

}

(7.1)
wherezik is a unknown value representing the amount of productpk to be purchased
atvi, and an associated Traveling cost defined as

travel(σ) :=
∑

e∈E(σ)

ce.

Then the 2TPP looks for determining a feasible solutionσ minimizing bothprice(σ)
andtravel(σ).

131
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To our knowledge all previous studies of the 2TPP are restricted to the case where
the two objective functions are replaced by a single composite objective function
obtained by simply adding the Traveling and the pricing costs. This single-objective
problem will be denoted by 1TPP. Nevertheless, in real applications both objectives
are not comparable, and a more sophisticated procedure is needed to address the
biobjective structure of the 2TPP.

Our aim in this chapter is to address the 2TPP, providing a newapproach to gen-
erate non-dominated and extreme efficient points with respect to both criteria. This
approach takes the advantage of solving 1TPPs by a branch-and-cut algorithm mak-
ing use of a heuristic method based on a common cut-pool structure that saves the
previously generated cuts. Since the model of this problem has been already de-
scribed, we refer to the reader to Chapter 3 for details. The general algorithm of this
approach is described in Section 7.1. In this section we alsodescribe the common
cut-pool structure and give an illustrative example. Finally computational results are
shown in Section 7.4, showing the good performance of our approach on instances
with |V | ≤ 100 and|K| ≤ 200.

7.1 THE OVERALL ALGORITHM

The aim of this section is to describe the general procedure we have developed to
generate a set of solutions for the 2TPP. Fundamental concepts on Multicriteria Opti-
mization are presented bellow. However, we have to remark that these definitions are
not unique in literature, and we are following the notation described in Ehrgott [49].

Definition 7.1. Let f1 andf2 be two performance criteria. Then thecriterion space
is

Z = {z ∈ R2|z = (f1(σ), f2(σ)), σ ∈ P},

whereP is the decision space defined by the convex hull of all feasible solutions of
the 2TPP.

Definition 7.2. A solutionσ∗ ∈ P is calledPareto optimalif there is notσ ∈ P such
thatf1(σ) ≤ f1(σ

∗) andf2(σ) ≤ f2(σ
∗), where at least one of the inequalities is

strict. If σ∗ is Pareto optimal then(f1(σ
∗), f2(σ

∗)) is calledefficientpoint. The set
of all Pareto optimal solutions is called thePareto set. The set of all efficient points
is called theefficient set.

Definition 7.3. The set of thesupported efficient solutionsis the set of Pareto optimal
solutions which are optimal for any weighted sum of the objectives. The remaining
Pareto optimal solutions are thenon-supported efficient solutions.

The aim of the proposed algorithm is to compute the efficient set, including both
supported and non-supported points in the criterion space.Our proposal is based
on a hybrid method that combines theweighting methodwith additional constraints
(see Ehrgott and Gandibleux [50] for details on similar algorithms for bicriterion
combinatorial optimization problems). It is also related to theparametric approach
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introduced by Solan [142] and used to solve other problems, e.g. T’kindt, Billaut and
Proust [146] and Viśee, Teghem, Pirlot and Ulungu [150]. This scheme combines
linearly both criteria and introduce a weighting factor foreach of them. If these
weighting coefficients, denoted here byω1 andω2, are interpreted as parameters then
we obtain a linear weighting method which can be used for the generation of the
supported set. Without loss of generality the normalization ω1 + ω2 = 1 may be
applied, so we will only relate toω. This weighting procedure is embedded in a
binary search algorithm which explores different regions of the decision space by
making use of additional constraints restricting the criterion space. This mechanism
allows us to find the set of non-supported efficient points as well.

The basic steps of the general method are showed in Figure 1.4. The initial step
computes the two starting points (f

(1)
1 ,f (1)

2 ) and (f (2)
1 ,f (2)

2 ) by optimizing hierarchi-
cally both criteriaf1 andf2. How to obtain these two initial subproblems is described
in Section 7.1. These two initial points define the two first efficient points and there-
fore initialize the efficient setSE. Moreover, they also define the first interval inR2

(denoted by ([(f (1)
1 ,f (1)

2 ). . . (f (2)
1 ,f (2)

2 )]) to be explored, which initializes the list of
pending intervalsLI . This method get iteratively an interval fromLI , solves a single
objective problem (if it is feasible) providing an efficientpoint to be included inSE
and two new intervals to be explored, which are stored inLI . This loop is repeated
whileLI is not empty. Figure 1.6 illustrates this step. Notice that this step performs
a binary search of efficient points in the criterion space.

Each single-objective problem, named W1TPP, is defined by a given interval
[(f (1)

1 ,f (1)
2 ). . . (f (2)

1 ,f (2)
2 )] as follows

min ωf1(σ) + (1 − ω)f2(σ) (7.2)

subject to

σ ∈ P (7.3)

f1(σ) < f
(1)
1 (7.4)

f2(σ) < f
(2)
2 , (7.5)

whereP can be replaced by constraints (3.2)–(3.9), andω := α
α−1 , whereα :=

f
(2)
2 −f

(1)
2

f
(1)
1 −f

(2)
1

. If only the supported efficient points were required, constraints (7.4) and

(7.5) should be extended with the following constraint

ω1f1(σ) + (1 − ω1)f2(σ) < ω1f
(1)
1 + (1 − ω1)f

(2)
2 . (7.6)

Since we assume that the input data are integer numbers, the constraints (7.3)–(7.6)
can be replaced by

σ ∈ P

f1(σ) ≤ f
(1)
1 − 1

f2(σ) ≤ f
(2)
2 − 1
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ωf1(σ) + (1 − ω)f2(σ) ≤ bω1f
(1)
1 + (1 − ω1)f

(2)
2 − εc,

respectively, forε > 0 an small parameter. Figure 7.2 shows how this approach is
able to generate the non-supported efficient points as well if there were not supported
efficient points in the explored interval.

f
(1)
1 := minσ∈P f1(σ)

f
(1)
2 := minσ∈P (f2(σ)|f1(σ) ≤ f

(1)
1 )

f
(2)
2 := minσ∈P f2(σ)

f
(2)
1 := minσ∈P (f1(σ)|f2(σ) ≤ f

(2)
2 )

LI:= {[(f
(1)
1 ,f

(1)
2 )...(f

(2)
1 ,f

(2)
2 )]}

ND := {(f
(1)
1 , f

(1)
2 ), (f

(2)
1 , f

(2)
2 )}

while LI 6= ∅

Select from LI an interval [(f
(1)
1 , f

(1)
2 ) . . . (f

(2)
1 , f

(2)
2 )]

LI := LI \ {[(f
(1)
1 , f

(1)
2 ) . . . (f

(2)
1 , f

(2)
2 )]}

α :=
f
(2)
2 −f

(1)
2

f
(1)
1 −f

(2)
1

ω := α
α−1

σ∗ := arg W1TPP(ω,f
(1)
1 ,f

(2)
2 )

if σ∗ 6= ∅

ND := ND ∪ (f1(σ∗), f2(σ∗))

LI := LI ∪{[(f
(1)
1 , f

(1)
2 ) . . . (f1(σ∗), f2(σ∗))], [(f1(σ∗), f2(σ∗)) . . . (f

(2)
1 , f

(2)
2 )]

Fig. 7.1 Pseudocode of the hybrid algorithm.

Since we assume that the input data are integer numbers, the constraints (7.3)–(7.6)
can be replaced by

σ ∈ P

f1(σ) ≤ f
(1)
1 − 1

f2(σ) ≤ f
(2)
2 − 1

ωf1(σ) + (1 − ω)f2(σ) ≤ bωf
(1)
1 + (1 − ω)f

(2)
2 − εc,

respectively, forε > 0 an small parameter.
In order to solve each W1TPP we make use of a branch-and-cut algorithm similar

to the algorithm proposed by Laporte, Riera and Salazar [102] for the 1TPP, but
adapted for W1TPP to manage (7.4)–(7.6). The following two sections describe both
the branch-and-cut approach and the specific changes performed for solving 2TPP.

Initial Efficient Points

Two specific implementations of the W1TPP have been performed for the computation
of both initial points (f (1)

1 ,f (1)
2 ) and (f (2)

1 ,f (2)
2 ). These implementations perform a two

phases procedure. The first phase optimizesf1, that isf (1)
1 := minσ∈P f1(σ), andf2,

that isf
(2)
2 := minσ∈P f2(σ). The second phase optimizesf2 andf1 subject to the
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Fig. 7.2 Optimization step

optimal values obtained in the previous phase, that isf
(1)
2 := minσ∈P{f2(σ)|f1(σ) ≤

f
(1)
1 } andf

(2)
1 := minσ∈P{f1(σ)|f2(σ) ≤ f

(2)
2 }. Notice that,f1

(1) is obtained
solving the polynomial problem described by (7.1). A simplead hocalgorithm with
time complexityO(|V | log |V ||K|) has been developed for this specific subproblem.

Additionally, f
(1)
2 is the minimum cost feasible cycle. In this particular case the

branch-and-cut approach has been specifically adapted by making use of an specific
heuristic to solve theCycle Problem. Once bothf (1)

1 andf
(1)
2 have been obtained,

the problemsminσ∈P{f2(σ)|f1(σ) ≤ f
(1)
1 } andminσ∈P{f1(σ)|f2(σ) ≤ f

(1)
2 } are

solved by the branch-and-cut for the W1TPP with additional constraints and choosing
the weighting values properly.

An important observation is that this constrained 1TPP subproblem could stops
with no feasible tour. This justifies the impossibility of finding feasible solutions in
Step 1 and 4 on some instances.

7.2 COMMON CUT-POOL HEURISTIC

As already mentioned, the algorithm to solve solve the W1TPPsubproblems has
be embedded into an iterative approach that generates supported and non-supported
efficient points. In order to speed up the performance of the overall procedure we
have made use of a common cut-pool structure that saves thosevalid inequalities



136 THE BIOBJECTIVE STPP

6

-

f1

f2

q

q

q

q

q

q

a

a

a a

aa

a a

a

a

a

a

a a a

a a a

a

a

a

a

a

a

a

f
(1)
1

f
(1)
2 f

(2)
2

f
(2)
1

l
l

l
l

l
l

l
l

l
l

l
l

6

-

f1

f2

q

q

q

q

q

q

a

a

a a

aa

a a

a

a

a

a

a a a

a a a

a

a

a

a

a

a

a

f
(1)
1

f
(1)
2 f

(2)
2

f
(2)
1

f
(3)
2

f
(3)
1

B
B
B
B
B
B
BBXXXXXXXXXX

Fig. 7.3 Two new intervals obtained from the first optimization step.

separated during the resolution of subproblems, for being used latter on in forthcoming
subproblems.

The motivation of saving useful cuts for a former subproblemin a cut pool to
be available when solving latter subproblems is based on theconnectivity of the
Pareto optimal solutions (see Steuer [143]). Therefore, ifthe latter subproblems
have in advance a pool structure containing cuts that have been useful in former
subproblems, then they might be solved with less computational effort. This can be
done since the cuts generated by our branch-and-cut during each subproblem are valid
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Fig. 7.4 Common Pool.

inequalities for all feasible tours, since the W1TPP’s polyhedron is included in the
1TPP’s polyhedronP. This is the aim of the proposed heuristic approach.

More precisely, since the full description of the problem’spolyhedron is unknown,
a dynamic constraint generation has to be performed for eachsingle criterion subprob-
lem. Each single criterion problem produces a set of cuts that, as Fig. 7.4 illustrates,
might be useful for solving forthcoming subproblems, (i.e.for computing other ef-
ficient points). In order to exploit those cuts, the data structureLC is shared and
updated by all subproblems. Since this structure has a limited size we do not allow
the introduction of all violated cuts generated by all the separation procedures. On the
contrary, we rank the violated inequalities and select the most violated ones (no more
than 50). The selected inequalities are saved in the cut-pool and used to strengthen
the current LP. To keep small the size of each LP, some unnecessary constraints are
removed from the LP every five iterations. In this way, the final cut-pool listLC is
the initial list of candidate inequalities to strengthen the next subproblem.



138 THE BIOBJECTIVE STPP

A similar consideration does not arise with the variables. In fact, a variable-pool is
useful when each single W1TPP is solved due to the large number of zik variables, but
according to our experiences, it was useless to save the variable-pool structure from
one W1TPP to another. Thus a variable pool is initialized when approaching new
subproblems. Computational behavior of this improvement is showed in Section 7.4,
which compares some instance resolutions performed with and without the common-
cut-pool structure.

7.3 ILLUSTRATIVE EXAMPLE
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Fig. 7.5 The six efficient points from the example in Burstall [25].

In this section we introduce an example to illustrate how this approach can provide
insight about the choice of a set of states as well as the sequence in which they have
to be processed.

We consider an example proposed in the first article on the Traveling Purchaser
Problem by Burstall [25] (named Batch#12) extracted from a real world applications
in the industrial context. This example arose from the difficulty encountered by a
firm manufacturing steel tubes, a member of the Tube Investments Group. A set of
steel tubes has to be manufactured. According to the required final product the tubes
are grouped into 8 batches. Those batches have to be processed by a multi-purpose
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Table 7.1 The six efficient points from the example in Burstall [25].

A B C D E F
s11 → s3 → s17 s7 → s11 → s14 s11 → s1 s7 → s4 s11 → s1 s4 → s6States
→ s1 → s13 → s13 → s3 → s13 → s17 → s3 → s6 → s14 → s7

j1 s3 s3 s1 s3 s1 s4

j2 s3 s3 s1 s3 s1 s4

j3 s1 s7 s1 s7 s1 s7

j4 s11 s11 s11 s7 s11 s7

j5 s1 s7 s1 s7 s1 s7

j6 s1 s7 s1 s7 s1 s7

j7 s13 s13 s13 s4 s14 s4

j8 s17 s14 s17 s6 s14 s6

Change-over 84 76 61 53 46 38
Processing 935.88 937.43 938.61 943.52 946.48 949.59
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machine, which is able to change its state depending on the task to be carried out. The
machine has 19 potential states. Changing from a state to another takes a change-over
time. On the other hand, the processing time of a batch depends on the state of the
machine it is processed. Thus, a batch might be processed in several states of the
machine, but spending different processing time.

We have solved the problem representing a trade-off betweentotal change-over
time and total processing time. We have obtained the six non-dominated points (A,
B,. . . , F) (see Fig. 7.5) as well as the three extreme points (A, C, F). For each
non-dominated point one solution is also described in Table7.1, which contains not
only information about the sequence of the states but also the assignment of jobs to
states. The two first points and the related interval have been obtained by mean the
procedure described in section 7.1. In the first step of optimization the supported
point C has been obtained. This produces two news interval, [A, C] and [C, F],
producing on its turn two new points (B and E) and four new intervals. The next
interval to be examined is [A,B] (notice that in our particular implementation the list
LI is organized as aqueue), but it produces a non-feasible subproblem, and therefore
neither point nor intervals are obtained. The process continues iterating while the list
of intervals remains no-empty.

7.4 COMPUTATIONAL RESULTS

To evaluate the performance of our proposal on 2TPP instances from literature the
procedures were implemented in C++ and run on a Pentium 500 MHz computer
running Linux. ABACUS 2.2 linked with CPLEX 6.0 was used as a framework (see
Jünger and Thienel [89] for details on this software).

We have considered the following three classes of 2TPP test instances:

Class 1 contains 33-market symmetric instances defined with the same input data as
in Singh and van Oudheusden [141]. These correspond to the largest instance
size solved by these authors. The routing costs are those of a33-vertex TSP
described in Karg and Thompson [90] and do not satisfy the triangle inequality.
The first vertex is the depot and all markets sell all products. Product prices are
generated in [1,500] according to a discrete uniform distribution. We generated
five instances with|K|=50, 100, 150, 200 and 250.

Class 2 instances are randomly generated by using the procedure described in Pearn
and Chien [123]. Routing costs are randomly generated in[1, τ ] whereτ is
generated in [15,140]. All products are available at all markets. Purchase costs
are randomly generated in[0, λ] whereλ is generated in [5,75]. Contrary to
Pearn and Chien, we have used symmetric routing cost insteadof asymmetric
costs. We defined instances with|V |=50 and 100, and|K|=50, 100 and 150.

Class 3 instances were defined by first generating|V | integer coordinate vertices in
the[0, 1000]×[0, 1000] square according to a uniform distribution and defining
routing costs by Euclidean distances. Each productpk was associated with|Mk|
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randomly selected markets, where|Mk|was randomly generated in[1, |V |−1].
The remaining characteristics of these instances are defined as for Class 1.

Tables (1)–(3) show details on our experiment. Each line in atable reports the
average result on 5 instances. The columns have the following meaning:

|V |: number of markets plus one (the depot).

|K|: number of products.

#sub: average number of W1TPP instances solved for each 2TPP.

#P: average number of feasible W1TPP instances among #sub (i.e.number of points
in the criterion space).

no-pool-t: average CPU time to solve each 2TPP without the common cut-pool data
structure.

pool-t: average CPU time to solve each 2TPP using the common cut-poolstructure.

The last four columns appear twice. The first set of columns refers to the com-
putation of all efficient points, while the second set refersto the computation of the
supported efficient points. Notice that the proposed mechanism produces one Pareto
optimal solution in the decision space for each efficient point in the criterion space.

According to Tables 1 to 3, it is clear the benefit of using the dynamic pool structure
described in Section 3.2. More precisely, on instance for Class 2, there is a minor
penalty on the computational effort when computing the efficient solutions on small
instances (for|V | = 50, the penalty is close to 4%), but in all the other situations
there is a clear saving. Indeed, the common cut-pool approach provides a 19%, 14%
and 30% of time saving when the set of efficient points is computed in instances of
Classes 1, 2 and 3 respectively; and a 6%, 10% and 40% time saving computing when
the set of supported efficient points is computed. The analysis is more evident from
the summarizes in Tables 4-6, which show the percentage of improving time using
the pool structure.

The CPU time taken to solve each LP was in all cases quite smallif it is compared
to the overall algorithm. Indeed, an estimation on the average CPU time for solving
each W1TPP instance is obtained by dividing the CPU time showed in the tables by
its correspondent value in column#sub. The time consumed is close to one minute
in the worst case, but it includes the time taken to compute the heuristic, to call the
separation procedure, to perform the LP solver, to maintenance the pool structure,
and to perform other components of the branch-and-cut-algorithm.

Finally, our experiments have also proved that the overall approach is able to fully
manage problem resolutions with up to 100 markets and 200 products.
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Table 7.2 Results solving instances from Class 1

Efficient Supported
|V | |K|

#sub #P no-pool-t pool-t #sub #P no-pool-t pool-t
50 215.8 109.2 1095.6 1196.2 49.0 25.0 43.2 42.8

100 297.6 149.6 3606.2 4462.2 55.8 28.4 129.0 136.633
150 342.6 172.0 11251.6 14726.2 58.6 29.8 361.4 405.4
200 331.0 166.0 18960.0 25296.0 58.0 29.5 683.0 755.0

Table 7.3 Results solving instances from Class 2

Efficient Supported
|V | |K|

#sub #P no-pool-t pool-t #sub #P no-pool-t pool-t
50 64.4 36.0 247.4 234.4 28.2 15.4 32.8 34.2

100 82.4 45.0 478.0 443.2 32.0 16.6 65.8 60.650
150 102.6 56.2 822.0 776.6 40.0 21.0 104.0 105.0
200 100.6 56.0 1555.6 1447.0 36.6 19.0 235.0 227.2
50 56.0 32.8 2422.6 2314.4 27.6 15.0 590.4 581.2

100 91.0 53.4 9466.4 7345.6 41.8 22.4 3745.4 3175.4100
150 126.6 75.8 22853.8 15979.2 54.0 28.6 7715.8 6020.4
200 131.4 81.2 61313.0 41054.4 49.8 26.8 9467.4 5944.6

Table 7.4 Results solving instances from Class3

Efficient Supported
|V | |K|

#sub #P no-pool-t pool-t #sub #P no-pool-t pool-t
50 69.6 44.0 692.0 447.8 22.6 12.4 75.2 41.0

100 92.0 55.2 1303.2 979.0 33.0 18.0 219.6 139.650
150 112.2 67.0 2064.4 1455.2 38.4 20.2 340.6 201.4
200 115.4 68.6 3275.4 2215.2 37.4 20.0 407.0 255.2
50 58.8 36.4 5646.4 3413.8 28.6 16.0 1459.2 877.8

100 82.6 49.8 15636.8 13604.6 33.2 17.6 4092.0 2247.4100
150 119.0 74.0 47885.4 29884.8 44.6 23.6 10406.6 6734.0
200 128.8 80.4 66728.2 44162.4 45.8 24.8 10448.4 6113.6
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Table 7.5 Summarize of results in Table 7.2

|V | |K| %-Eficient %-Supported

50 8.41 -0.93
100 19.18 5.5633
150 23.59 10.85
200 25.05 9.54

19.06 6.25

Table 7.6 Summarize of results in Table 7.3

|V | |K| %-Eficient %-Supported

50 5.25 -4.27
100 7.28 7.9050
150 5.52 -0.96
200 6.98 3.32

50 4.47 1.56
100 22.40 15.22100
150 30.08 21.97
200 33.04 37.21

14.38 10.24

Table 7.7 Summarize of results in Table 7.4

|V | |K| %-Eficient %-Supported

50 29.47 41.76
100 26.42 35.9250
50 30.50 43.77

200 30.44 37.00

50 38.32 37.57
100 22.28 43.46100
150 37.21 36.99
200 35.45 43.01

30.75 40.22





8
A Heuristic Approach for

the STPP

As already mentioned, no efficient algorithm to solve TPP up to optimality can be
found, unlessP = NP . That is why the literature on TPP is mostly directed towards
the development of heuristic or near optimal methods. Section 2.1 has given a review
on, among others, heuristic algorithms for obtaining upperbounds of this problem.
This chapter is devoted to the development of a heuristic algorithm for our problem.
Moreover, this method is not only a specific technique for this particular problem but
also a general approach, which could be extended to other similar problems as those
described in Section 2.3.

A feasible solutionσ of the TPP consists in a cycle inG defined by an edge subset
Eσ ⊂ E and a vertex subsetV σ ⊆ V such that:

i) the depot is visited, i.e.,v0 ∈ V σ,

ii) for each vertexv ∈ V σ the degree ofv is exactly 2,

iii) it is possible to purchase the required demand, i.e.

∑

vi∈V σ∩Mk

qki ≥ dk for all pk ∈ K.

The set of all feasible solutions will be denoted byΩ. In addition, let us define the
routing costof σ as

travel(σ) :=
∑

e∈Eσ

ce;

145
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thepurchasing costof productpk in σ as

price(σ, k) := min

{

∑

vi∈V σ∩Mk

zkibki :

∑

vi∈V σ∩Mk
zki = dk

zki ≤ qki for all vi ∈ V σ ∩ Mk

}

;

and, thetotal purchasing costof σ as

price(σ) :=
∑

pk∈K

price(σ, k).

The valuef(σ) := travel(σ) + price(σ) is called thetotal costof the feasible
solutionσ represented by the cycle(V σ, Eσ) in G. The TPP searches for a feasible
solution with minimum total cost, i.e.,

min{f(σ) : σ ∈ Ω}.

Very special instances of the TPP arise whendk = 1 andqki = 1 for eachpk ∈ K
andvi ∈ Mk, leading to the previously introduced unrestricted TPP. Asmentioned in
the introduction, most of the articles in literature are concerned with this unrestricted
version. Clearly, a feasible solutionσ of the unrestricted TPP is a simple cycle
(V σ, Eσ) in G such that:

i) v0 ∈ V σ,

ii) V σ ∩ Mk 6= ∅ for all productspk ∈ K,

and the purchasing cost of a productpk in σ is simply stated as

price(σ, k) := min
vi∈V σ∩Mk

bki.

As mentioned in the introductory chapter, the TPP isNP-hard in the strong sense
since it reduces to the TSP whenm = n and |Mk| = 1 for all pk. The TPP also
reduces to the UFLP whenMk = M for all pk, qki = dk for all vi ∈ M and all
pk ∈ K, andce = (fi + fj)/2 for all e = [i, j] ∈ E, with fi the cost of opening
facility vi (f0 := 0) andbki the cost of serving customerpk from facility vi.

Next sections establishes the main idea of our local-searchproposal, which is based
on two families of neighbourhoods. A specific procedure to achieve a local minimum
is developed for each of them. The first procedure performs aniterative scheme
exchangingl consecutive vertices in a given feasible cycle with a set of vertices
not belonging to that cycle. The valuel is reduced as soon as a local optimum is
achieved. The above mentioned procedure is calledl−ConsecutiveExchange.
The second procedure inserts as many vertices as possible, whenever each insertion
implies a reduction in the objective value. This procedure is calledInsertion.
We next describe more details on each one, starting with a data structure to speed up
the evaluation of an insertion/deletion of a market in a partial solution.
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Fig. 8.1 (a): List for productpk previously sorted such thatbkl ≤ bkm ≤ . . . ≤ bkj .
(b) and(c): Evaluation of a potential insertion of productpk available at marketvi, where
bkl ≤ bki < bkm.

8.1 DATA STRUCTURE

Whenever a solution is evaluated and an insertion/deletionoccurs, the evaluation of
a modified solution can be efficiently recomputed using anad hocdata structure. A
partial solutionσ has an internal representation consisting of a sequence of markets
in V σ and a dynamic array for each productpk ∈ K. Each component of these arrays
corresponds to a marketvi ∈ V σ ∩ Mk and contains the offerqki as well as the unit
price bki. These items are pre-sorted according to the purchasing cost bki. Figure
8.1.a illustrates the array for a productpk, and Figures 8.1.b and 8.1.c help with the
idea of inserting a new marketvi selling pk. According to this data structure, the
insertion of a new marketvi ∈ M \ V σ in a partial solutionσ would take a time
complexity ofO(log |V σ ∩ Mk|) for each productpk ∈ K. Hence, the evaluation
of the total purchasing cost would take a time complexity ofO(|V σ||K|). In the
particular case of the unrestricted TPP, this complexity would be reduced toO(1) for
each productpk ∈ K.

8.2 L-CONSECUTIVE EXCHANGE

Making use of the above data structure, the algorithml-ConsecutiveExchange
proceeds by exchanging a set ofl consecutive vertices belonging to a feasible cycle
σ, with other vertices outside the cycle, in a two stage-procedure. The first stage
(calledl-ConsecutiveDrop) tries to reduce the length of the cycle by removing
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l consecutive vertices. The second stage (calledRestoreFeasibility) tries to
restore the feasibility if it is lost in the previous stage.

This idea generalizes the procedureIMP1described in Voß [151], in which exactly
one single vertex is removed from a feasible cycle, and a number of consecutive in-
sertions is performed as long as an improvement in the objective function is achieved.
A similar idea has also been proposed by Keller [92] for theOrienteering Problem,
where two consecutive vertices are replaced by others if it leads to a better feasible
route.

This set of moves defines a very large neighbourhood. Becauseof this, in order
to select a good neighbour, the classical complete enumeration of the neighbourhood
is avoided, and the following heuristic procedure is performed. Given an initial
solutionσ, an starting valuel is chosen according to a self-tuning procedure. An
iterative mechanism to remove each sequence ofl consecutive markets is performed
by the procedurel-ConsecutiveDrop. Whenever a modified cycle turns out to be
infeasible, the procedureRestoreFeasibility is called upon. The solutionσ is
updated if it improves the previous one. However, if no improvement is achieved or
restoring feasibility fails, valuel is decreased by one unit. This procedure continues
iteratively, stopping whenl = 0. See Figure 8.2 for a pseudocode of the described
procedure.

Input: a feasible cycle σ and 1 ≤ l < |V σ |
Output: a feasible cycle σ

whilel ≥ 1 σ′ := l-ConsecutiveDrop(σ, l)
if σ′ is not feasible

σ′ := RestoreFeasibility(σ′)
if f(σ′) ≥ f(σ) or σ′is not feasible

l := l − 1
else

σ := σ′

return σ

Fig. 8.2 Procedurel-ConsecutiveExchange.

l-Consecutive Drop

This routine selectsl consecutive vertices according to an estimation of the objective
function reduction (i.e., the reduction in travel cost after removal and the increase
in purchasing cost). For each pathP ⊂ Eσ consisting ofl + 1 consecutive edges
{[s, u1], [u1, u2], · · · , [ul−1, ul], [ul, t]} belonging to a feasible cycleσ, let V (P ) :=
{u1, · · · , ul} be internal vertices ofP . The potential reduction in the travel cost after
removing the vertices inV (P ) is computed as follows

TravelReduction(P ) :=
∑

e∈P

ce − c[s,t].

In addition, the potential increase in the purchasing cost (and referred as Price
Increase(P )), as well as the set of non-satisfied products after the removal of ver-
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tices inV (P ), are also computed. More precisely, those units of product that were
purchased in markets inV (P ) have to be acquired at markets ofV σ \ V (P ), adding
the extra cost toPriceIncrease(P ); if those units of product cannot be purchased
in V σ \V (P ) then we do not penalizePriceIncrease(P ) so as not to discourage
selecting a path leading to an infeasible solution. These evaluations are performed
on each possible pathP with l + 1 edges, and all of them are ranked according to
TravelReduction(P )−PriceIncrease(P ). The path with the biggest rank
is selected to be removed.

After removing those selectedl consecutive vertices, an improvement procedure
is applied to reduce the routing cost of the new (and possiblynon-feasible) cycle
σ. In our implementation this improvement is a specific version of the Lin and
Kernighan [106] algorithm, available in Applegate, Bixby,Cook and Chv́atal [4].
The Lin-Kernighan algorithm performs a sequence 3-opt edgeinterchanges, each
one followed by a sequence of 2-opt edge interchanges.

Restoring Feasibility

This procedure tries to extend an infeasible cycleσ so as to restore the feasibility.
To this end, new markets must be inserted. Denoting byV ∗ the set of vertices in the
previous feasible cycle, the new markets are allowed to be selected fromM \ V ∗ to
guarantee the generation of different cycles. In our experiments this decision proved
to give better results than usingM \ V σ as candidate markets.

The method proceeds by computing the non-satisfied amountd̄k := max{0, dk −
∑

vj∈V σ∩Mk
qkj} for each productpk ∈ K, and selecting a subsetT ⊆ Mk \ V ∗ of

markets selling the required amount for each product.
A basic greedy approach finds an initial subsetT such as

∑

vi∈T qki ≥ d̄k, for all
pk ∈ K, by choosing the cheapest markets provider inMk \ V ∗ for each productpk.
However, this procedure admits the following improvement.

Given a non-feasible solutionσ, for each vertexvi ∈ M \ V ∗ not belonging to
σ, two weights are computed. These weights are the routing increase, denoted by
ρ(vi, σ), and the purchasing cost reduction, denoted byµ(vi, σ). After computing
these estimations, a subsetT ⊆ M \V ∗ of markets is selected conveniently by solving
the following problem:

min
T⊆M\V ∗

{

∑

vi∈T

ρ(vi, σ) − µ(vi, σ) :
∑

vi∈T

qki ≥ d̄k, for all pk ∈ K

}

.

This combinatorial optimization problem is a generalization of theset coveringprob-
lem, which is known to beNP-hard (see Karp [91]). Despite this, in our computa-
tional experience this combinatorial problem turns out to be easy to solve since it is
concerned with small-size instances.

The two above mentioned weights try to establish a discernment for the selection
of the setT according to the two criteria involved in the objective function.
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The routing increaseρ(v, σ) of a marketv in the current solutionσ, which is
related to the routing cost, describes how much the routing cost could increase after
the insertion ofv in σ. In order to calculateρ, the classicalsaving criterion(see
Clarke and Wright [35]) is used.

It should be notice that, in contrast to the case in which the saving is related to a
single vertex, there are some cases in which the sum of the individual “saving” costs
is not an upper bound of the increase in the travel cost. More precisely, let us denote
the sum of the individual routing cost of a vertex setT ⊆ M \ V ∗ by

ρ(T, σ) :=
∑

v∈T

ρ(v, σ),

then condition
ρ(T, σ) ≥ travel(σ′) − travel(σ) (8.1)

whereσ′ is the feasible cycle obtained after inserting the vertex set T in σ, does not
hold in some cases. Indeed, let us focus on a subsetT to be inserted between two
verticess andt belonging to the cycleσ, and letP a path through the vertices ofT
with extreme verticess andt. According to the classical saving criterion, each single
insertion of a vertexv ∈ M \ V ∗ is

ρ(v, σ) := c[s,v] + c[v,t] − c[s,t].

Hence, we have that

travel(σ′)−travel(σ) =
∑

e∈P

ce−c[s,t] = c[s,u1]+c[ul,t]−c[s,t]+
l−1
∑

i=1

c[ui,ui+1].

(8.2)
In addition,

ρ(T, σ) = c[s,u1] + c[ul,t] − c[s,t] +
l−1
∑

l=1

(c[s,ui+1] + c[ui,t] − c[s,t]). (8.3)

Therefore, from (8.2) and (8.3) it follows that condition (8.1) holds when

l−1
∑

i=1

(c[s,ui+1] + c[ui,t]) ≥
l−1
∑

i=1

(c[ui,ui+1] + c[s,t]). (8.4)

Figure 8.3.a illustrates a simple example evaluating the travel cost forthe insertion of
a path betweens andt. In this particular case the condition (8.4) does not hold, since
c[s,ui+1] + c[ui,t] < c[ui,ui+1] + c[s,t] for i = 1, 2, 3 (see Figure 8.3.b). In spite of this
drawback, the criterion of estimatingTravelReduction(P ) by adding the single
savings provided a good behaviour in our experiments, as it is shown in the Section
8.5.

The purchasing cost reductionµ(v, σ) describes the reduction in the purchasing
cost after the insertion of a single vertexv in the current solutionσ, since a cheaper
product may be provided by this new market.
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Fig. 8.3 Evaluation of the increase in the travel cost of a set of vertices to be inserted between
the verticess andt.

For each productpk and each vertexvi ∈ Mk \ V ∗, the savings in the purchasing
costprice(σ′) of the new cycle onV σ′

:= V σ∪{vi} can be efficiently computed by
insertingvi in the dynamic array described in Section 8.1. More precisely, σ′ inherits
from σ the amount ofpk purchased in marketsvj ∈ V σ whenbkj ≤ bki, while the
other amount must change taking into account the new marketvi. In particular, it is
convenient to purchase

rki(V
σ) := min







qki, max







0, dk −
∑

vj∈V σ∩Mk,bkj≤bki

qkj













units of pk in the new marketvi. The same amount of units ofpk must be not
purchased in the markets ofV σ ∩ Mk with bkj > bki, and the computation of this
adjustment is immediate using the data structure pointed inSection 8.1. The total
decrease

∑

pk∈K [price(σ′, k)− price(σ, k)] is considered as the insertion price
of vi in σ, and denoted byρ(vi, σ).

By using the stated dynamic data structure the theoretical complexity is equivalent
to the direct evaluation of the pricing cost, but in practicewe notice that the above
described procedure reduces the computational effort.

Finally, the procedure inserts the vertices in the selectedT , one after the other, by
considering the maximum saving criterion. The obtained cycle is re-optimized by
using the Lin-Kernighan refinement, already mentioned at the end of thel-Consecutive
Drop section.

8.3 INSERTION

The procedureInsertion adds a new vertex to the current feasible cycleσ if such
insertion implies a reduction in the total cost ofσ. In order to perform this procedure
both theρ(v, σ) andµ(v, σ) are computed for each vertexv ∈ M \ V σ. The vertex
maximizingρ(v, σ)−µ(v, σ) such thatρ(v, σ)−µ(v, σ) > 0 is inserted inσ if such
vertex exists.
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8.4 THE OVERALL ALGORITHM

An initial solution containing all vertices is built by the well-known nearest-neighbour
TSP heuristic, and it is then improved by the previously mentioned Lin-Kernighan
procedure. Afterwards, the following iterative scheme is performed. An inner loop
computes the valuel, as mentioned in Section 8.2, and obtains iteratively better solu-
tions by applyingl-ConsecutiveExchange andInsertion, until no further
improvement is achieved. Once the inner loop concludes, a perturbation procedure
is carried out in order to augment the current cycle with new vertices.

A perturbation scheme(called Shaking) controls both the number of added
vertices and the number of iterations of the outer loop. In particular, for a given
solution σ, each vertex not inV σ enlargesσ if the travel cost of the augmented
solution does not increase by more thanϕ percent. The percentageϕ is iteratively
reduced and the procedure stops when no vertex is inserted. The choice of the values
for ϕ was taken based on our computational experiences: initially ϕ := 35 and
iteratively it is reduced in one unit. See Figure 8.4 for a pseudo-code illustrating the
general procedure. The aim of this perturbation scheme is toprovide different initial
solutions to the above procedure so as to escape from local minimum solutions.

Input: a TPP instance
Output: a feasible cycle σ
σ := NearestneighborTSP(V )
σ′ := σ repeat

repeat
σ′ := l-ConsecutiveExchange(σ′)
σ′ := Insertion(σ′)

until not improvement
if f(σ′) < f(σ)
σ := σ′

until Shaking(σ′)
return σ

Fig. 8.4 Overall algorithm.

8.5 COMPUTATIONAL RESULTS

Our proposal has been tested on the series of randomly generated problems described
in Boctor, Laporte and Renaud [22], containing instances for the restricted and unre-
stricted TPP versions. More precisely,m + 1 randomly generated points have been
located in the square[0, 1000] × [0, 1000] according to a uniform distribution and
defining routing costs by Euclidean distances. The first location corresponds to the
domicile. Each productpk has been associated with|Mk| randomly selected markets,
where|Mk| has been randomly generated in interval[1, m]. Product pricesbki are
generated in the interval[1, 500] according to a discrete uniform distribution. For the
restricted case limit on supplies and demands have also beengenerated in the follow-
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ing way. For each productpk and each marketvi, qki has been randomly generated
in [1,15] anddk := dλ maxvi∈Mk

qki + (1 − λ)
∑

vi∈Mk
qkie for λ=0.1, 0.3, 0.5,

0.7, 0.8, 0.9, 0.95 and 0.99. Notice that, the bigger theλ value is, the shorter the
length of its optimal cycle is. For instance, withλ = 0 becomes a TSP, whileλ = 1
becomes the unrestricted TPP. Five instances were generated for each value ofn, m
andλ. Therefore, the first family contains 140 cases and the second family contains
960 cases.

Tables 8.1 and 8.2 compare our results with [22] on the unrestricted and restricted
TPP instances, respectively. ColumnsCAH1, CAH2, UPH1, UPH2 andCPH cor-
respond to the different approaches proposed by Boctor, Laporte and Renaud [22];
and columnsLS correspond to the local search algorithm described in this article.
Each column shows the quality of the heuristic solution overthe optimum solution
obtained by using the exact method described in Laporte, Riera and Salazar [102]
(column%gap), and the CPU seconds consumed by the heuristic approach on aPC
Celeron 500 MHz (columnSec.,). Each row contains the average results over the
subset of instances solved to optimality by the exact methodand grouped according
to the valuem, n andλ. The column denoted by# gives the number of instances
involved in each row (i.e., the number of instances with a known optimal solution
from the exact method described in [102] using a time limit of2 hours of the Celeron
500 MHz). The column%Visitedshows the average number of markets involved in
an optimal solution computed by the exact algorithm described in [102].

Tables 8.1 and 8.2 clearly show that our approach provides solutions very close
to the optimal ones. On the restricted TPP instances (harderthan the associated
unrestricted ones), the average computational time was close to one minute of the
PC Celeron 500 MHz. Solving the set covering subproblems (i.e., callingRestore
Feasibility) took about7% of the total computational time. Even if the set
covering problem is a hard problem, the low consumed time in our experiments is
explained by the small size of the instances of the subproblem we solved. Both
quality and consumed time on these small/medium instances were not so dependent
onλ andn as onm. The quality is slightly better whenλ approximates to1, which
is explained becauseλ = 0 is the TSP, whileλ = 0.9 produces instances involving
both the optimal routing and selection of markets. This conclusion coincides with
similar studies on other routing-location problems (see, e.g., Keller [92]).

Regardingboth the qualityof the solutions and the computationaleffort, we observe
that our local search proposal improves on the approaches proposed in Boctor, Laporte
and Renaud [22].

The quality of our heuristic approximation for selecting the vertices to be added
in the procedureRestore Feasibility is measured in Table 8.3. It shows the
maximum and average percentage of the difference between this heuristic and the
exact choice. More precisely, procedureRestore Feasibility, which selects
a set of vertices based on estimations of the reduction in theobjective function, has
also been solved optimally using the branch-and-cut code described in [102]. It is
observed from this table thatRestore Feasibility selects and inserts new
markets with a gap of2.5% of error. In spite of this gap the procedure proved to be
effective in our experiments.
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In order choose the initial value of parameterl, as well as to prove that thel-
Consecutive Exchange has better performance than the classical approach in
which exactly one drop and several adding moves are performed, the following ex-
periment have been carried out. For each benchmark restricted TPP instance with
λ ∈ {0.8, 0.9, 0.95, 0.99}, the procedurel-Consecutive Exchange has been
executed with different initial values ofl. Notice that this procedure starts from a
TSP solution, iteratively removes sequences of consecutive vertices and inserts others
to restore feasibility, as described in Section 8.2. The objective value of the generated
TPP solutions and the computational time have been normalized in the rank[0, 1] with
respect to the minimum and maximum values obtained varying the parameterl. The
average (normalized) values are computed for eachl and Figure 8.5 plots them, those
points associated to the objective function with boxes and those points associated to
the consumed time with circles. For very small values ofl, the computational time
is close to be proportional to the number of iterations thus,e.g., it is bigger forl = 1
than forl = 3. Moreover, bigl values imply strong modifications of the cycle, hence
the gap and the computational effort increase withl. The best results are obtained for
l between 2 and 25, thus inspiring our proposal for managingl in the procedure.

We have also experimented with the described approach on (restricted and un-
restricted) TPP instances involving up tom = 350 andn = 200, obtaining similar
performances when comparing quality of the heuristic solution with the LP-relaxation
of the model in [102]. The average gap was close to 0.5% while the computing time
was never more than one minute.
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Table 8.1 Average computational results, unrestricted (optimal) instances.

Boctor, Laporte & Renaud [22]
CAH1 CAH2 UPH1 UPH2 LS

%Visit. # %gap Sec. %gap Sec. %gap Sec. %gap Sec. %gap Sec.

50 26 20 3.05 1 0.53 12 0.33 12 0.26 12 0.07 3
100 16 20 1.89 9 0.64 104 0.28 60 0.30 50 0.14 10

m 150 11 20 2.12 20 0.97 263 0.59 213 0.71 184 0.03 14
200 9 18 2.59 34 0.95 513 0.65 261 0.53 324 0.32 19
250 7 11 2.66 38 1.04 649 0.47 233 0.63 253 0.06 25

50 8 25 0.78 6 0.43 111 0.34 17 0.35 16 0.07 5
100 13 22 2.03 17 0.73 216 0.49 74 0.59 71 0.24 13

n
150 16 22 3.14 23 1.05 371 0.48 191 0.45 225 0.10 20
200 17 20 4.20 31 1.09 414 0.56 336 0.50 331 0.08 21
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Table 8.2 Average computational results, restricted (optimal) instances.

Boctor, Laporte & Renaud [22]
CAH1 CAH2 CPH LS

%Visit. # %gap Sec. %gap Sec. %gap Sec. %gap Sec.

50 73 140 1.42 5 0.49 12 0.41 10 0.15 5
100 71 135 2.00 33 1.06 86 0.97 75 0.50 26

m
150 73 119 2.55 113 1.81 361 1.39 225 0.43 52
200 69 46 4.61 156 2.81 1465 1.32 510 1.15 100

50 63 131 3.32 34 1.72 461 1.11 162 0.72 43
100 71 117 1.83 65 1.27 281 0.92 154 0.56 38

n
150 77 94 1.51 58 0.87 141 0.78 113 0.42 32
200 80 98 1.96 83 1.02 161 0.89 118 0.29 32

0.1 100 70 0.16 81 0.10 190 0.15 26 0.00 8
0.5 99 68 0.50 96 0.32 393 0.48 48 0.20 25
0.7 88 66 1.65 71 0.77 387 0.76 129 0.10 29

λ 0.8 85 68 3.02 72 1.57 526 0.99 290 0.57 62
0.9 59 64 5.24 49 3.62 262 1.88 329 1.43 86

0.95 39 41 3.09 11 1.95 54 1.13 85 0.68 26
0.99 19 63 2.51 5 0.88 27 1.36 51 0.31 19
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Fig. 8.5 Deviation of the objective function and CPU time from their minimum values for different values ofl.
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Table 8.3 Average and maximum value of the percentage of the difference between the
optimal and heuristic estimation in procedureRestoreFeasibility

n m
50 100 150 200 50 100 150

Avg. 2.68 2.23 2.88 2.69 2.37 2.87 2.77
Max. 13.20 11.21 17.33 11.88 13.20 17.33 14.87



Conclusions

In this dissertation we have studied a problem arising from ajob scheduling real world
application: the Traveling Purchaser Problem (TPP), whichis a generalization of the
well known Traveling Salesman Problem. No more than eigth articles have addressed
the TPP so far, and this work is the first serious attempt to solve the problem up to
optimality.

After making a deep study of thestate of the artwe have realize that the attempts of
developing exact algorithms had achieved poor results. Therefore, the purpose of our
first approach was to perform two exact algorithms for both cases the symmetric and
asymmetric TPP. To this end, new linear integer models were described in Chapter 3,
as well as new valid inequalities to strength the LP-relaxation.

In addition, in order to avoid those redundant inequalitiesand to perform a more
efficient branch-and-cut algorithm, a polyhedral study on the TPP has been carried
out in Chapter 4, proving that some of the valid inequalitiesdescribed in Chapter 3
defined facet for the polytope associated to the TPP.

Specific features of the both branch-and-cut algorithms forthe symmetric and
asymmetric case are described in Chapters 5 and 6 respectively. New separation
algorithms for facets andvalid inequalities described inprevious chapters are proposed
in these two chapters, whose efficiency has been tested by mean a computational
experience. The efficiency of these algorithms as a heuristic approach has been also
tested. This computational experience has been performed on all instances proposed
in the previous works on the TPP and on our own random instances as well. Chapter
6 also includes a computational experience on a transformation of the asymmetric
version into the symmetric one.

159
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Since no previous work had not approached the bicriterion TPP, the next chapter
start on this topic. Chapter 7 describes an algorithm which computes the set of non-
dominated points and the set of extreme points of the efficient frontier. This algorithm
is the first based on branch-and-cut for this purposed. The procedure combines the
classical methods in bicriterion programming with a branch-and-cut algorithm to
solve single-objective subproblems. The key point is to usea common cut-pool
structure to save cuts separated during the solution of a subproblem that can help in
the solution of other forthcoming subproblems, and thus reducing the computational
effort. The algorithm has been implemented and tested on three families of test-bed
instances from literature proving the good performance of the proposal. A similar
idea could be extended to other bicriterion problems where there is a branch-and-cut
algorithm available for the single-objective problem.

Most of the research about TPP has been directed towards the development of
heuristic approaches. However, a new competitive heuristic approach has been de-
velop, and its efficiency is measured in Chapter 8. This algorithm, which is based
on local search, is not only valid for the classical TPP but also for the restricted
TPP. The basic idea is the definition of an exponential neighbourhood explored by
a heuristic procedure. Given a solution, each neighbour is obtained by removing a
path of consecutive vertices and by inserting a new one so as to restore feasibility.
The performance is favourable compared with other tabu search approaches recently
proposed on Euclidean travel cost instances in literature.These new neighbourhoods
adapt easily to similar problems in which a subcycle has to beobtained minimizing
the sum of two objectives, and therefore, it could be an interesting contribution to
other local search approaches.
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