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Preface

This thesis contains the work published in several papers during these four years of research. Briefly, the
first part of Chapter (5) is based on paper [1], Chapters (8) and (9) contains some of the results of [2] and
[3, 4] respectively, and the evolution of quantum mean values in PBG materials developed in Part (IV) is
based on [5, 6].

Nevertheless, the present work is not just a juxtaposition of those papers, but we have tried to integrate
them into a coherent discourse. In doing so, we have made further contributions. First, we have made an
effort to contextualize the results, second, in many cases we have elaborated ideas and arguments beyond
the scope of the articles, and third, we have suggested some research possibilities that may be explored in
future work.
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Introduction

In general, physical systems (both classical and quantum mechanical) are not found in nature in complete
isolation from their environment. For that reason, they may be considered as open systems, and the interaction
with the environment may be taken into account in their dynamics.

In order to describe such interaction, one possibility is to integrate the degrees of freedom of the total
system, composed by the open system and its environment. However, since the number of environmental
degrees of freedom is usually very large, to describe all of them may be unpractical (and even impossible). In
addition, it would give a large amount of information unnecessary to describe the open system dynamics. In
fact, only two quantities may be taken into account in system dynamical equations to describe the effects of
the interaction: the environmental vacuum fluctuations, which in some circumstances may be considered as a
noise, and the autocorrelation function of the vacuum fluctuations, known as the environmental correlation
function. This function generally decays within so-called correlation time (also memory time), which is
the time the environment takes to recover from the interaction. Briefly speaking, the noise describes the
random effects produced in the system by the large number of environmental degrees of freedom, while the
correlation function describes the system dissipation or relaxation to equilibrium, and how this is affected
by the environmental memory effects.

A classical system may be described either by its coordinates, or by the probability density of those
coordinates. The probability density evolves through a Chapman-Kolmogorov type of equation, which
includes a dissipative term that makes it irreversible [7]. The evolution of system variables, particularly
position and momentum, may be obtained through a Langevin equation, which in addition to the dissipative
term includes a noise term. An average over the different stochastic trajectories obtained through the
Langevin equation gives rise to the probability density obtained through the Chapman-Kolmogorov equation.
Relaxation properties are particularly important in the comprehension of the appearance of anomalous
transport in dynamical systems [8, 9].

In this thesis, we deal particularly with quantum open systems (QOS). Even if the total system is in a pure
state, the QOS is a statistical mixture of states which may be described with the so-called reduced density
operator. Density operators where introduced by Landau in the frame of statistical physics [16], and von-
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Neumann [15] for systems far from equilibrium. This operator can be obtained by computing its evolution
equation, commonly known as master equation, or by performing an average over the different states of a
mixture, which are solutions of a stochastic Scrödinger equation (SSE). While a master equation includes
dissipative terms, a SSE includes both fluctuation and dissipative terms. Because of them, the Schrödinger
equation is no longer unitary and reversible.

A common example of QOS is found in quantum optics, when describing an atom in contact with the
radiation field. The interaction produces an exchange of energy between the atom and the field, which in
most cases leads to atomic relaxation towards the ground state, and the irreversible loss of its energy into
the environmental degrees of freedom.

The atomic relaxation dynamics depends critically on the boundaries and spatial conditions in which the
surrounding field is placed. This has been known since the seminal work of Purcell [10], later extended by
Kleppner [11], who observed that the relaxation rate of a two level atom placed in a cavity can be enhanced
with respect to that of the vacuum, when the radiation wavelength of the emitted photon is comparable to
the cavity dimensions, and inhibited when it is far to be comparable. Similar effects may occur within a
waveguide. The emission can also be strongly modified when the atom is coupled to a radiation field within a
crystal with spatially periodic refraction index. These materials, which were first suggested by Yablonovitch
[12] and John [13], are commonly known as photonic band gap materials (PBG) or photonic crystals
(PC).

How is the atomic dynamics modified by the surrounding spatial and boundary conditions? These
dynamics are dependent on the density of field modes around the atomic emission frequency, and it is
such density of modes, encoded in the photonic density of states (DOS), that is modified when the field is
immersed in a structured environment like a quantum cavity, a waveguide, or a PBG material.

In free space, the photonic density of states is a function that grows with ω2 and varies in a frequency
range which is larger than the atomic spontaneous emission rate. In such conditions, the emitted photon is
absorbed instantaneously by the field, which leads to a zero environmental memory time. In that way, the
correlation function appearing in the dissipative terms of the atomic dynamical equations is a delta function,
and the atom decays exponentially to its ground state as described within the Wigner-Weisskopf theory [14].
This kind of interaction, known as Markovian may also occur in a cavity, but again only when the photonic
DOS, which has the shape of a Lorentzian, varies smoothly around the atomic emission frequency. In such
systems, an enhancement in the spontaneous emission rate occurs for atomic emission frequencies tuned to
the Lorentzian maxima or resonance frequency, and a suppression of the emission occurs when the atomic
frequency lies far away from the cavity resonance.

In some structured environments, the photonic DOS may present sudden jumps or singular behavior in a
frequency range comparable to the spontaneous emission rate. For instance, the periodicity in the refraction
index occurring in PC produces the scattering of light outside of the crystal for certain frequencies that are
related to the lattice periodicity. Since these modes are absent from the cystal, the photonic DOS is zero
in the corresponding frequencies, so that a gap is formed. The frequency ranges in which the photonic
DOS is non-zero are known as bands. In the band edges, the photonic DOS presents a sudden jump from
the zero value it has in the gap, to a non-zero value, which gives rise to a group velocity of light that
approaches to zero 1. Hence, when an atom emits a photon in such region, it tends to freeze or localize
around it, which leads to an eventual reabsortion by the atom. The time in which the environment recovers
from the interaction, the memory time, is no longer zero but has a certain finite value which is typical of
non-Markovian interactions. In non-Markovian interactions the atomic decaying is no longer exponential,
and it may even present oscillations due to the exchange of energy between the atomic and photonic degrees

1The group velocity is given by vg = (∂D(ω)/∂ω)−1, where D(ω) is the photonic DOS.
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Fig. I.1 Comparison of the photonic DOS of the electromagnetic field in free space, to the photonic DOS typical of a
PBG. The latter is characterized by having a gap region where it vanishes D(ω) = 0, and a band, where it is no longer
zero and can even present values in which it is larger than the photonic DOS in free space. The singular behavior of the
DOS in the band edges can also be observed.

of freedom . This kind of oscillatory (non-Markovian) behavior may also be found in a quantum cavity,
when the range of variation of the photonic DOS is comparable to the spontaneous emission rate. Figure
(I.1) represents schematically the photonic DOS in a PBG in comparison to that in free space.

In general, master and SSE can be either Markovian or non-Markovian, depending on whether the
correlation function appearing in the dissipative term is a delta function or not, and, for SSE, if the noise is
a Gaussian white or colored noise. However, although knowledge of the reduced density operator allows
calculus of the quantum mean values of system operators, the dynamics of a quantum open system is not only
described with such quantities. For instance, in quantum optics some multiple time correlation functions
(MTCFs) of system observables may be computed to describe quantities such as the atomic emission spectra,
or the joint probability of photon detection.

For Markovian interactions, it was discovered by Onsager (especially for the case of fluctuations around
equilibrium) [17], and Lax (for the more general case of a system far from equilibrium) [18, 19], that the
evolution of two-time correlations can be computed with the master equation for the system reduced density
matrix. This result, known as the Quantum Regression Theorem (QRT), can be generalized to N -time
correlations, which also obey the same evolution equation as quantum mean values. The atomic emission
spectra, which is the Fourier transform of a the two-time correlation of the system coupling operators, is a
Lorentzian, as it corresponds to the Fourier transform of an exponential-like decay.

For non-Markovian interactions the emission spectra is no longer just the Fourier transform of the two-
time correlation of the coupling operators, but it still depends on such correlation. Nevertheless, the two-time
correlations, and in general N -time correlations, can no longer be computed through the QRT. Hence, in
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non-Markovian interactions the master equation and the reduced density operator are no longer the only
tool needed to compute all the dynamical quantities of the system. A new theory is needed to derive the
dynamical equations of non-Markovian MTCF.

It is the purpose of the present work to study and develop the dynamical equations of a quantum open
system linearly coupled to an environment of harmonic oscillators. These include the equations needed to
compute quantum mean values, which are mainly the master equation and the SSEs, and the equations that
allow the evaluation of MTCFs. The interest in developing such a theory is to be able to describe systems
with non-Markovian interactions, like for instance an atom in contact with a structured environment such as
the radiation field within a PC.

The work is organized in four parts.

• In Part (I) are two chapters in which the statement of the problem is formulated.

In Chapter (1), we present the Hamiltonian model studied in this thesis, in which the interaction part
represents a linear coupling between system and environment operators. Particularly, it is shown that
the interaction Hamiltonian of an atom with the radiation field obeys this linear form, once the rotating
wave and dipolar coupling approximations are applied to the general Hamiltonian of a bosonic field
in contact with a fermionic field.

In Chapter (2), we derive the reduced propagator, an object that evolves the system wave function
conditioned to a certain initial and final state of the environment, and obtain its dynamical equation.
This reduced propagator is the essential tool we are going to use during most of this work to derive
all the system dynamical equations, for both quantum mean values and multiple-time correlation
functions.

• Part (II) is devoted to the study of the quantum mean values of a non-Markovian QOS. It is made up
of two chapters:

In Chapter (4) there is a brief introduction to the different derivations of master and SSE that exist
in the literature both for Markovian and non-Markovian interactions, in order to contextualize the
particular ones that are used in this work.

In Chapter (5) we already focus on the study of non-Markovian QOS in two different Sections. In
Section (5.1) we study the efficiency of some of the SSEs existing in the literature, an issue that
is usually known as the sampling problem. Indeed, certain SSEs give rise to an ensemble of wave
vectors with more significant weight in the stochastic sampling of the reduced density operator than
other SSEs. For a spin-boson model, we show that the significance of such improvement in the
sampling depends on the physical conditions of the total system, particularly on the temperature
of the environment. In Section (5.2), we discuss the problem of generating master equations from
the evolution equation of the reduced propagator. On the one hand, when the initial state of the
environment is considered the vacuum, the reduced propagator gives rise to the usual non-Markovian
stochastic Schrödinger equations found in literature, and after an average over the different states of
the environment is made, it reproduces the results of the master equation.While the former case has
been already treated in literature, our new contribution is to consider a reduced propagator with an
initial environmental state different from the vacuum, obtaining a master equation for general initial
conditions, and not necessarily for an initially disentangled state for system and environment. The
derivation of this master equation implies a generalization of the Novikov theorem, which we also
develop in this work.

• Part (III) contains most of the main results of this thesis. A theory of non-Markovian MTCFs is derived
from reduced propagators, and also from the Heisenberg equations of motion of system operators.
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This part starts by motivating the problem, showing how these MTCFs are very useful in quantum
optics to compute quantities such as the emission spectra or photon statistics of an emitting atom. The
discussion is divided in two chapters:

In Chapter (8) we show that the non-Markovian MTCF obeys hierarquical structure when no approx-
imations are made. To be more specific, it is found that one-time correlation functions (or quantum
mean values), depend on two-time correlations, while two-time correlations depend on three-time
correlations. The hierarchy structure is extended to higher order correlations, in such a way that in
general, N -time correlations depend on N + 1-time correlations. Although this is a formal result
which can not be used for computational purposes, it provides a systematic way to derive equations
for arbitrary N -time correlations. Those equations become useful for practical purposes once the
dependency on higher order correlations is broken by means of some approximation, which is done
in the next chapter.

In Chapter (9) we break the hierarchy by assuming a weak coupling approximation, and derive equa-
tions for N -time correlations up to second order in the perturbative parameter. This permits us to
show that the QRT theorem does not apply for non-Markovian MTCF.

• In Part (IV), some of the equations presented throughout the work are applied to a two level system
immersed in the radiation field within a PBG material. The discussion is again divided in two chapters.

In Chapter (11) an appropriate model for the problem is presented. While the Hamiltonian corresponds
to a two level atom dipolarly coupled to a radiation field, and therefore has the same form as the general
Hamiltonian presented in Chapter (1), we make some new contributions in the characterization of the
environmental correlation function. To this end, we propose a new model of dispersion relation of the
field, showing the band-gap periodic structure which is characteristic of the electromagnetic radiation
in a PC. Once the correlation function is computed, the corresponding noise can be obtained.

In Chapter (12) we use the new correlation function and noise to evaluate the quantum mean values
of some system operators by integrating the SSE. First, we show that the SSE is equivalent to the
master equation which has been traditionally used to study this problem. Second, it is shown that the
correlation function we propose gives rise to the same physical effects as the one previously existing
in the literature, presenting the advantage that it describes the short time behavior in a more accurate
way. Finally, some MTCF are computed, which may be used in future work to derive quantities such
as the atomic emission spectra.

• In Part (V) some conclusions and perspectives for future work are drawn.

At the end of the thesis, we include several appendices. These are not essential to follow the work, but
complete some of the concepts and the derivations.

We shall make a brief note about the units here used. In Chapter (1) and Appendix (A), where the model
for the systems under study is presented, we display the dependencies of all the constants, including h̄. In
the rest of the chapters, which are devoted to present and integrate the dynamical equations of those systems,
we set for simplicity h̄ = 1.



Part I

THE REDUCED PROPAGATOR
OF A NON-MARKOVIAN QOS

This part of the work presents two basic concepts, corresponding to each of the chapters: In Chapter (1)
the basic model of the systems that are going to be studied is established, namely a quantum open system
linearly coupled to an environment of harmonic oscillators through a non-Markovian interaction. In Chapter
(2), we present the system reduced propagator, an object that is used in the next parts of the thesis to derive
the dynamical equations of quantum mean values and multiple time correlation functions.



1
Non-Markovian quantum open

systems

The dynamics of a quantum open system is often described by considering it as a part of a larger total
system which is isolated from the rest of the world. The Hamiltonian of the total system is denoted by
Htot = HS + HB + HI , where HS is the Hamiltonian of the quantum open system (hereafter referred
simply as system),HB is the Hamiltonian of its environment, andHI is the interaction Hamiltonian between
the system and environment.

When the environment is large, its evolution time scale may be small in comparison to the relevant time
scales of the system. The environment time scale is characterized by the so-called correlation time τc,
which is the time it takes to recover from the interaction with the system. In the same way, the system time
scale is characterized by the time TA it takes to relax to equilibrium once it is brought into in contact with
the environment. There are certain situations in which the separation of time scales is so large that τc is
practically zero in comparison with TA. This kind of interaction can be treated with the so-called Markov
approximation, and lead to system dynamics that is local in time, i.e. that does not depend on the previous
history of the evolution. In other situations the environment correlation time is of the order of TA, and
may significantly influence the dynamics of the open system, making necessary a non-Markovian treatment
to describe it. Non-Markovian interactions occur in several contexts, among which we can mention the
following examples,

• In solid state physics non-Markovian effects are particularly visible in the system dynamics at low
temperatures, a fact that will be clarified in Section (1.3.1.2). One of the most generally used models
in solid state physics is the one of Caldeira and Legget [20, 22], which describes a harmonic oscillator
linearly coupled through its displacement coordinate q to a fluctuating dynamical reservoir or bath,
which may represent for instance the phonons of a lattice. In many physical and chemical systems, the
generalized coordinate q is associated with an effective potential with two separate minima placed at
the same energy. Since only these two states are available, the Hilbert space of the system reduces to a
two-dimensional space. This situation, which is described by the so-called spin-boson model, occurs
in the motion of light particles in metals, or types of chemical reactions involving electron transfer
processes (see [22] and references therein).

1
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• In quantum optics non-Markovian effects are present in the emission or absorption of light in the
presence of a structured environment. These are electromagnetic fields which are under spatial bound-
ary conditions, like quantum cavities [23, 24, 25, 26], or interacting with a Photonic Band Gap (PBG)
material which presents a certain periodicity in the refraction index [27, 28]. An interesting general
discussion about the influence of the environmental structure in the atomic dynamics can be found in
[29].

• Non-Markovian effects also arise in the dynamics of a Bose-Einstein condensate (BEC). In these
systems the atoms in the fundamental state are within a trap, and they are coupled by two laser
transitions to a final atomic state outside of the trap, so that an atomic “laser” beam is extracted from
the BEC. As a particular example of non-Markovian behavior, the dynamics of the occupation number
of the BEC exhibit strong oscillations that can be interpreted as a quantum interference effect, and
clearly reveal departures from the Golden Rule that predicts exponential decay [30, 31, 32].

Throughout this thesis we mainly study two different sorts of systems: (a) The spin-boson model, valid
for the interaction of a two level system with any bosonic reservoir (either phonons or photons) under certain
phenomenological conditions. (b) An atom coupled to a radiation field with dipolar interaction. However, the
dynamical equations here discussed are valid for a general model of linear system-environment Hamiltonian,
and therefore the methodology may be applied to other problems such as the dynamics of Bose-Einstein
condensates.

The chapter is organized as follows,

• In Section (1.1) we present the Caldeira and Legget model, as well as the spin-boson model to which
it reduces under certain conditions [20, 22, 33, 34]. Within this scheme the interaction Hamiltonian
HI is proportional to SB, where B is an operator belonging to the environment Hilbert space, and
S = q is the system coupling operator. The environment coupling operator B ∝

∑

λ gλF(aλ, a
†
λ),

where gλ are the coupling constants of the system with each of the λ harmonic oscillators describing
the environment, and F(aλ, a

†
λ) is a particular function of the creation and annihilation operators a†λ

and aλ.

• The linear interaction Hamiltonian proposed in the Caldeira-Legget model can be generalized as a
sum of many system and environment operators, HI =

∑

β SβBβ . Particulary, it is shown in Section
(1.2) how the interaction Hamiltonian between a bosonic field and a fermionic field has this form.
An example of this kind of systems is an atom (whose electrons form the fermionic field) dipolarly
coupled with the radiation (bosonic) field. In the same way as in the Caldeira and Legget model, the
operatorsBβ are found to beBβ ∝

∑

λ gλ,βFβ(aλ, a
†
λ). However, in contrast with the former model,

in that system the exact dependencies of the coupling constants gλ,β are known.

In Section (1.2.1) a new notation is introduced which consists in expressing the interaction Hamilto-
nian in terms of the so-called Lindblad operators {Lλ}, which represent combinations of the system
coupling operators {Sβ}. The Hamiltonian of the total system in its Lindblad form, will serve as a
general model to develop most of the equations that are used to describe the dynamics of a quantum
open system. The argument to use the Lindblad model of Hamiltonian is two-fold: first, as will be
explained later, when the interaction is Markovian it gives rise to a master equation that preserves
positivity for the reduced density operator of the system, the so-called Lindblad equation, and second,
it is one of the most often used Hamiltonians when studying quantum open systems.

• Some aspects concerning the so called correlation function, α(t), and the spectral density, J(ω),
are shown in Section (1.3), specially those that determine whether the interaction is Markovian or
non-Markovian.
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The environmental correlation function is a very important quantity to describe the system dynamics,
first because it appears in its dynamical equations, and second because it determines the environmental
relaxation time τc. It is proportional to a sum of the square of the coupling constants of the system,
α(t) ∝∑λ g

2
λP(t, ωλ), with P(t, ωλ) a certain function that will be specified later.

In the continuum, this sum is transformed into an integral where the kernel is the so-called spectral
density, J(ω), in such a way that α(t) =

∫

dωJ(ω)P(t, ω). Since P(t, ω) has the same form for any
system, the spectral density basically contains the same information as the correlation function, and
just in the same way it characterizes the environment and its interaction with the system.

In Section (1.3.1) we describe the two different methods to derive the correlation function.

The first is called microscopic since it relies on the knowledge of the form of the coupling constants.
As an illustration, we use the gλ’s that characterize the interaction of a two level atom with the
vacuum radiation field, to derive a Markovian correlation function. Within that interaction, the spectral
density J(ω) is found to be a smoothly varying function of frequency in comparison with the atomic
spontaneous emission decay rate Γ, so that it can be considered approximately a constant. More
complicated microscopic calculus of the correlation function correspond to interactions of an atom
with structured environments. Those systems are typically non-Markovian, since the spectral density
changes on a frequency scale comparable to the spontaneous emission rate and can not be considered
a constant. Some examples are treated in next chapters.

When the exact form of the couplings is not known, as happens in the Caldeira and Legget model,
a second method is needed which consists in deriving the spectral density J(ω) according to several
phenomenological arguments. As an example, we discuss the J(ω) that is used in this thesis to
describe the spin-boson model.

It is important to note that none of the derivations presented in this chapter are original. For that reason,
most of them are not shown in their complete version, and therefore the reader interested in further details
should go to the original references. The main goal is to give the ideas and the proper references to derive
the Hamiltonian of the physical systems that are studied in this work, namely the spin-boson model and an
atom in contact with a radiation field. The main results of the thesis concern the development and study
of the dynamical equations describing non-Markovian quantum open systems, and therefore these models
are only useful as examples in which such equations are applied. An exception to this is the two level atom
immersed in a PBG material, where we make some contributions to the model. Since, in addition, the PBG
system presents interesting new physics, it deserves special treatment and will be explained in detail in Part
(IV).

1.1 CALDEIRA-LEGGET MODEL

We shall consider in this section the general Hamiltonian of a system with one or few degrees of freedom
coupled to a bath of harmonic oscillators as described in [20, 22, 33, 34]. The Hamiltonian of the total
system is the following,

Htot = HS +HB +HI (1.1)

where the Hamiltonian of the system with generalized coordinate q is

HS =
P 2

2M
+ V (q), (1.2)
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with P and M the momentum and mass of the particle respectively, and the Hamiltonian of the bath of
harmonic oscillators is

HB =
∑

λ

(

1

2

p2
λ

mλ
+

1

2
mλω

2
λx

2
λ

)

. (1.3)

Here, the pλ and xλ are the momentum and position coordinates of the λ harmonic oscillator. The interaction
of the system with each mode of the reservoir is proportional to the inverse volume of the reservoir, so that for
a spatially large environment this coupling is small. Therefore, it is a good approximation for macroscopic
environments to consider that the system-reservoir coupling is a linear function of the bath coordinates, so
that the interaction Hamiltonian has the form

HI = −
∑

λ

Fλ(q)xλ + ∆V (q). (1.4)

In the former Hamiltonian, a counterterm has been added to renormalize the potential V (q). Indeed, in
presence of the interaction, the minima of the potential for a given q is displaced a certain quantity, in such a
way that the effective potential in (1.2) is Veff (q) = V (q) − ∆′V (q). Renormalization consists in making
∆V (q) = ∆′V (q), so that the minima of the potential is replaced to its initial value. For the special case of
a separable interaction [22],

Fλ(q) = CλF (q), (1.5)

and the simplest case in which F (q) = q, the total Hamiltonian is written as

Htot =
P 2

2M
+ V (q) +

1

2

∑

λ

[

p2
λ

mλ
+mλω

2
λ

(

xλ −
Cλ

mλω2
λ

)2
]

, (1.6)

where the renormalization factor is identified as

∆V (q) =
C2
λ

mλω2
λ

q2. (1.7)

Replacing (1.5) in (1.4), the interaction term of the Hamiltonian (1.6), without the renormalization term, has
the general form

HI = BS (1.8)

with B = −∑λ Cλxλ and S = F (q) = q. The Hamiltonian (1.6) has been widely used to describe
dissipation in open quantum systems and is often referred in literature as the Caldeira-Legget model [22, 34].

From the Caldeira and Legget it is possible to derive the Hamiltonian of a two level atom in contact with
a harmonic environment, namely a spin-boson model. There are some systems where the potential function
V (q) appearing in (1.6) has the form of a double well with two separated minima. When certain conditions
in the parameters are fulfilled by the two wells and the barrier between existing between them, the Hilbert
space of the system can be reduced to a two state space, and the problem simplifies considerably. These
systems are often referred as truncated two state systems [34]. Let us now explain briefly the conditions
for obtaining a truncated two state system. Consider h̄ω2 and h̄ω1 as the energy separation between ground
and excited level of left and right well respectively, and V0 the height of the potential barrier. If ω0 is of the
order of magnitude of ω2 and ω1, the first condition to be fulfilled is

V0 >> h̄ω0, (1.9)
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so that when both wells are put in contact with each other through the potential barrier h̄ω2 and h̄ω1 remain
approximately constant. The second condition assures that the system is effectively restricted to the two
level system conformed by the ground levels of both wells. For that reason, no thermal excitations to the
upper levels of both wells should be allowed,

κBT ¿ h̄ω0, (1.10)

while the energy difference between the two levels, h̄ω12 = |ω2 − ω1|h̄ is considered much smaller with
respect to ω0 and arbitrary with respect to the thermal energy κBT . In addition, the two states can be weakly
coupled through a transfer o tunneling matrix element ∆0, giving rise to oscillations in the population of the
left and right well that are responsible for quantum interference effects.

Apart from truncated two level systems, there exist intrinsical two state systems, for instance a nucleus
of spin 1/2, or a photon with two polarization states.

When any two level system (both intrinsecal or truncated) is in contact with an environment which can
be modeled as a bath of bosons (for instance a phononic bath or an electromagnetic field), the global system
is considered a spin-boson model, and has the following Hamiltonian

Htot = HSB =
1

2
h̄ω12σz −

1

2
h̄∆0σx +HB +BS, (1.11)

where the interaction term has the form (1.8) with B =
∑

λ Cλxλ as the environment coupling operator,
and the system coupling operator S depends on the particular model considered. Expressing the former
Hamiltonian in terms of creation and annihilation operators,

HSB =
1

2
h̄ω12σz −

1

2
h̄∆0σx +

N
∑

λ=1

h̄ωλa
†
λaλ +

N
∑

λ=1

h̄gλ(aλ + a†λ)S, (1.12)

since xλ =
√

h̄
2mλωλ

(aλ + a†λ), and pλ = −i
√

h̄mλωλ

2 (aλ − a†λ). From now on, we will use the constant

gλ =
√

1
2h̄mλωλ

Cλ as the coupling parameter.

1.2 BOSONIC-FERMIONIC FIELD INTERACTION HAMILTONIAN

In the former section we have shown how the Hamiltonian of a quantum open system in contact with an
environment of harmonic oscillators can be modeled with a simple form (1.1), by choosing a linear interaction
of the form (1.8). A particular HS and HI was given for the case of a two-level system coupled with the
environment through a single Hermitian operator S. In this section we show how the coupling Hamiltonian
HI can be generalized by considering it as a sum of many linear couplings between a set of bath operators,
{Bα}, and system operators, {Sα} [35],

HI =

M
∑

β=1

BβSβ , (1.13)

which we assume Hermitian. Despite this assumption, the Hamiltonian (1.13) is quite general, as shown
in Section (1.2.2). We derive the interaction Hamiltonian between a bosonic field and a fermionic field,
showing how it is reduced to the form (1.13). From now on, we will often refer the bosonic field as a
radiation field, and the fermionic field as an electron wave field. With this particular choice the atom-photon
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interaction is described, since an atom interacts with the radiation field through its electrons. Particularly,
the interaction of the electron wave field of a single electron, with the radiation field is equivalent to the
problem of a single electron atom interacting with an electromagnetic field.

Let us follow the derivation presented in [21]. In order to give a quantized theory of the interaction, the
electron is quantized in a similar way as the electromagnetic field. A general wave function for the electron
field Ψ(r) may be expanded in terms of a complete set of wave functions φj obeying the Schrödinger
equation

Helφj(r) =

(

− h̄2

2m
52 +eV (r)

)

φj(r) = Ejφj(r), (1.14)

where V (r) is the Coulomb potential, and the interaction between electrons has been neglected. Thus, we
can expand Ψ(r) in such a set as

Ψ(r) =
∑

j

bjφj(r). (1.15)

By analogy with the quantization of the light field the expansion coefficients bj will become operators in the
quantized electron field, and Ψ(r) becomes a field operator. The basis functions obey the orthonormality
relations

∫

φ∗i (r)φj(r) = δij . (1.16)

The Hamiltonian describing the interaction between the electromagnetic field and an electron field, discarding
the spin of the electron, is

H̃tot =
1

2m
(p − eA(r))2 + eV (r) +HB , (1.17)

where e and m are the electronic charge and mass respectively, p is the momentum of the electron, and
A is the vector potential of the electromagnetic field. When the electron wave field is quantized, the last
Hamiltonian becomes

Htot = Hel +HI1 +HI2 =

∫

d3rΨ†(r)H̃totΨ(r), (1.18)

where

Hel =

∫

d3rΨ†(r)

[−h̄2

2m
52 +eV (r)

]

Ψ(r),

HI1 =

∫

d3rΨ†(r)
[

− e

m
A(r) · p

]

Ψ(r),

HI2 =

∫

d3rΨ†(r)
[

− e

m
A2(r)

]

Ψ(r). (1.19)

Since Helφj(r) = Ejφj(r), with Ej the electronic energy corresponding to the state φj , we have

Hel =
∑

jk

b†jbkEk

∫

d3rφ∗j (r)φk(r) =
∑

j

Ejb
†
jbj , (1.20)
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because following (1.16) the basis functions are orthogonal, and

HI1 =
∑

jk

b†jbk

∫

d3rφ∗j (r)
[

− e

m
A(r) · p

]

φk(r), (1.21)

with

A(r) =
∑

λ

√

h̄

2ωλε0

[

aλAλ(r) + a†λA
∗
λ(r)

]

. (1.22)

The term HI2 is discarded, being negligible for processes of one photon. The functions Aλ(r) ≡ Akσ(r)
appearing in (1.22) are the mode functions of the electromagnetic field, which may in general be any complete
set of basis functions spanning the region under consideration. In free space, one might consider the basis
functions as simple plane waves

Akσ(r) =

√

1

υ
eik·rêkσ, (1.23)

where êkσ is the unit vector in the direction of the polarization state σ for a given wave vector k, and υ is the
quantization volume. In Part (IV) will be studied how this basis functions should be chosen as Bloch modes
for the case of a radiation field immersed in a photonic band gap material. The reason is that within such
materials the translation symmetry characteristic of free space is broken, and the radiation modes present
periodicity in the wave vector k. In any case, the expansion (1.23) is valid even in that case, provided that
we are restricted to a single cell of the reciprocal lattice, i.e. the first Brillouin zone. At this point, in order to
proceed with the calculus, we put the Hamiltonian (1.21) in terms of the so-called coupling strenghts gλ,j,k,

gλ,j,k = − e

m

√

1

2h̄ωλε0

∫

d3rφ∗j (r) [Ak,σ(r) · p]φk(r), (1.24)

so that

HI1 = h̄
∑

λ,j,k

b†jbk
(

gλ,j,kaλ + g∗λ,j,ka
†
λ

)

. (1.25)

The coupling strengths can be further simplified by considering that the mode functions in the position of the
electron r, given by (1.23), can be replaced to first approximation by its value in the position of the atomic
nucleus r0

Akσ(r) =

√

1

υ
eik·r0

(

1 + ik · δr − (k · δr)2
2

)

êkσ ∝
√

1

υ
eik·r0 êkσ. (1.26)

This approximation, also known as the electric dipole approximation, is justified in the optical region,
since in that range the wavelength of the photon is much greater than the linear dimension of the atom
λ̂photon = 1

|k| À ratom, since λ̂photon ∼ 103Ȧ, and ratom ∼ 1Ȧ. Additionally, the coupling strenghts can
be further simplified by considering that p = im

h̄ [Hel, r], and also the fact that {φj} are eigenfunctions of
Hel with eigenvalues ωj . With this consideration and the dipole approximation, we have

gλ,j,k = −i
√

1

2h̄ωλε0
ωjkAk,σ(r0) · djk, (1.27)
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where ωjk =
Ej−Ek

h̄ = ωj − ωk, and

djk = e

∫

d3rφ∗j (r)rφk(r), (1.28)

is the dipolar moment. As shown in Appendix (A), a different coupling constant gλ,j,k is obtained by using
a gauge dependent Hamiltonian. If we now choose the phase of Ak,σ(r0) in (1.27) so that gλ,j,k is real, the
total Hamiltonian is

Htot =
∑

j

Ejb
†
jbj +

∑

λ

h̄ωλa
†
λaλ + h̄

∑

λ,j,k

gλ,j,kb
†
jbk

(

aλ + a†λ

)

, (1.29)

where the first and second terms corresponds to the electron and photon field respectively, and the last term
HI corresponds to the interaction between them. Notice that such interaction is already of the form (1.13),
i.e a sum in β ≡ {j, k} of Hermitian system operators Sβ ≡ b†jbk and Hermitian environmental operators
Bβ ≡ gλ,j,k(aλ+a†λ). For a single electron in contact with the photonic field, gλ,2,1 = gλ,1,2, and therefore
we have

HI = h̄
∑

λ

gλ,1,2

(

aλ + a†λ

) [

b†1b2 + b†2b1
]

, (1.30)

which is again of the form (1.13). In the last expression, the coupling constant are given by

gλ1,2 = −i
√

1

2h̄ε0ωλ
ω12Aλ(r0) · d12. (1.31)

1.2.1 Lindblad form for the interaction Hamiltonian

It is often convenient to put the generalHI given by (1.13), in terms of the so-called Lindblad operators {Lγ},
with γ = 1, · · · , P , that are operators belonging to the system Hilbert space, but not necessarily Hermitian.
The Lindbland form Hamiltonian is interesting, first because it permits generation of an evolution equation
for the system reduced propagator ρS = TrB(ρtot) that in the Markov limit reduces to the Lindblad master
equation [36] which has been shown to preserve positivity [37, 38], and second, because it is quite a general
model, since many system-environment interaction Hamiltonians reduce to this form once the necessary
hypothesis are made. For instance, in the case we have described above of a photon field in contact with
an electron field, the necessary approximation for arriving to the Lindbland form is, apart from the dipolar
approximation, the so-called rotating wave approximation. Thus, let us consider two cases in the Hamiltonian
(1.29),

• When j < k, the electron operator b†jbk gives rise to a decay from the upper level Ek to the lower
Ej , and the emission of a photon. As a consequence, in order to conserve the energy, it is necessary
that this term is accompained with a creation operator for the photonic field, a†λ, where the photon
frequency is ωλ = ωjk. The term b†jbkaλ is discarded, since it would correspond to the highly non-
energy-conserving process of annihilating two photons simultaneously in both electron and photon
field.

• When j > k, b†jbk corresponds to a electronic excitation that should be accompained with the anni-
hilation of a photon in the field represented by the operator aλ. The terms b†jbka

†
λ corresponds to the

simultaneous creation of a photon in both fields, which may be neglected in comparison to one-photon
processes.
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When expressing the Hamiltonian (1.29) in the interaction picture, it is found that the terms that are not
discarded, also known as resonant terms, rotate with frequencies ωλ − ωjk, whereas the neglected terms
rotate much faster with frequencies of order ωλ + ωjk = 2ωλ. Within the rotating wave approximation, the
interaction Hamiltonian appearing in (1.29) is expressed in Lindblad form as

HI = h̄
∑

λ

∑

γ

gλ,γ

(

aλL
†
γ + a†λLγ

)

, (1.32)

with the Lindblad operators defined as

Lγ = b†jbk, (1.33)

where γ ≡ j, k with the condition j > k. For a single electron in contact with the photonic field we have

HI = h̄
∑

λ

gλ

[

σ21aλ + σ12a
†
λ

]

, (1.34)

for (1.30), where we have considered that gλ ≡ gλ,2,1 = gλ,1,2, and the electron operators expressed in
pseudo-spin operators, where σ21 ≡ σ+ = b†2b1 is the rising operator, and σ12 ≡ σ− = b†1b2 is the lowering
operator.

1.2.2 Relation between different linear interaction Hamiltonians

In this section we show how the Hamiltonian (1.13) is in fact the most general form of linear interaction
Hamiltonian. The derivation is based in a result appearing in [37]. Indeed, any interaction Hamiltonian
in terms of non-Hermitian operators, H ′

I , can be expressed in terms of Hermitian operators assuming the
form HI of (1.13). Since the Lindblad Hamiltonian, here referred as H ′Lin

I , is a specific case of H ′
I , the

derivation is also useful to relate the Hamiltonian (1.32) with (1.13). Suppose that we have

H ′
I =

N
∑

β=1

S′
βB

′
β , (1.35)

where contrary to (1.13) the system and environmental operators (S ′
β and B′

β) are not Hermitian. The
Hamiltonian in the general form (1.35) (and also in its Lindblad form (1.38) with the choice (1.39) for the
operators), can be expressed as a sum of Hermitian operators by simply setting,

S̃β =
1

2

(

S′
β + S′†

β

)

˜̃Sβ =
i

2

(

S′
β − S′†

β

)

B̃β =
1

2

(

B′
β +B′†

β

)

˜̃Bβ = − i

2

(

B′
β −B′†

β

)

, (1.36)

so that the interaction Hamiltonian becomes written inthe form (1.13),

HI =

N
∑

β=1

(

S̃βB̃β + ˜̃Sβ
˜̃Bβ

)

=

2N
∑

β=1

SβBβ (1.37)

with

Sβ = S̃β ∀β = 1, N

Sβ = ˜̃Sβ−N ∀β = N + 1, 2N, (1.38)
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and

Bβ = B̃β ∀β = 1, N

Bβ = ˜̃Bβ−N ∀β = N + 1, 2N. (1.39)

The Lindblad form of (1.35) corresponds to the case in which (a) N = 2p, so that

H ′
I = S′

1B
′
1 + S′

2B
′
2 + · · · + S′

2p−1B
′
2p−1 + S′

2pB
′
2p, (1.40)

and (b) the coupling operators are related by couples in such a way that

S′
p+1 = S′†

1 ; · · ·S′
2p = S′†

p−1

B′†
p+1 = B′

1; · · ·B′†
2p = B′

p−1. (1.41)

Relabeling the former elements, we have

H ′Lin
I = L1E

†
1 + L†

1E1 + · · · + LpE
†
p + L†

pEp =

p
∑

γ=1

(

LγE
†
γ + L†

γEγ
)

, (1.42)

where

S′
1 = L1, S

′
2 = L2, · · ·S′

p = Lp,

S′
p+1 = L†

1, S
′
p+2 = L†

2, · · ·S′
2p = L†

p

B′
1 = E1, B

′
2 = E2, · · ·B′

p = Ep,

B′
p+1 = E†

1, B
′
p+2 = E†

2, · · ·B′
2p = E†

p. (1.43)

Note that in (1.32) the environmental operators are Eγ = h̄
∑

λ gλ,γaλ.
To transform the Lindbland Hamiltonian into the form (1.37), it is necessary to take into account in (1.36)

that S̃1 = 1
2 (S′

1 + S′†
1) = 1

2 (S′
p+1 + S′†

p+1) = S̃p+1. Therefore,

HLin
I = 2

p
∑

β=1

(

S̃βB̃β + ˜̃Sβ
˜̃Bβ

)

=

N
∑

β=1

SβBβ , (1.44)

with

Sβ = 2S̃β ∀β = 1, p

Sβ = 2˜̃Sβ−p ∀β = p+ 1, 2p, (1.45)

and

Bβ = B̃β ∀β = 1, p

Bβ = ˜̃Bβ−p ∀β = p+ 1, 2p. (1.46)

Let us for instance derive the form (1.44) (or (1.13)) for a the case of a single Lindblad operator. In that
case, since p = 1 then M = 2. Then

S1 = L+ L† ; S2 = i(L− L†), (1.47)
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and
B1 =

1

2

∑

λ

gλ(aλ + a†λ) ; B2 =
i

2

∑

λ

gλ(aλ − a†λ). (1.48)

Notice that B1 and B2 are proportional to a sum over xλ and pλ respectively, and that all the {Bβ} and the
{Sβ}, with β = 1, 2, are effectively Hermitian. It can be checked with the replacement of (1.47) and (1.48)
in (1.13), that we arrive to the Lindblad Hamiltonian

Htot = HS +HB +
∑

λ

gλ(L
†aλ + La†λ). (1.49)

The relations (1.47) and (1.48) will be useful in Chapter (II) when the Stochastic Schrödinger equation
derived by Pierre and Nagaoka in [35] for an interaction in the form (1.13) is compared to that derived in
[39, 40, 41] for anHI of the form (1.49). In addition, the last Hamiltonian will be used as an essential piece
for starting the derivation of most of the dynamical equations presented in this work. Indeed, the equations
derived for (1.49) are very appropriate for describing linear coupling, since the results are easily generalized
by considering a sum over the set of Lindblad operators, Lγ .

1.3 CHARACTERIZATION OF THE RESERVOIR: RELEVANCE OF NON-MARKOVIAN
INTERACTIONS

We discuss in this section the different forms of the spectral function J(ω), as well as its relation with
the correlation function α(t) which characterizes the system-environment interaction. Additionally, some
ways to derive J(ω) are presented. At this stage of the exposition we will remain qualitative, and only give
the reader some ideas to understand the two different kind of interactions, Markovian and non-Markovian,
existing between system and environment. Further details of the derivations, as well as computation of J(ω)
(or alternatively α(t)) for particular systems are given in the next chapters.

An important quantity to characterize the influence of the environment on the system dynamics is the
so-called spectral function J(ω), defined as

J(ω) = h̄π
∑

λ

g2
λδ(ω − ωλ) (1.50)

where gλ are the coupling strengths defined in the former sections. In the limit of large number of oscillators
gλ → g(ω), and the (1.50) may be considered in the continuum as,

J(ω) = g2(ω)D(ω), (1.51)

whereD(ω) is the photonic density of states (DOS). The function J(ω) defines the environmental correlation
function α(t). For instance, for a Hamiltonian (1.49) with L = L† and a thermal reservoir in equilibrium,
α(t) is defined as

α(t) =

∫ ∞

0

dωJ(ω)

[

coth (
ωβ

2
) cos (ωt) − i sin (ωt)

]

, (1.52)

where β = (κBT )−1, with κB the Boltzmann constant and T the environmental temperature. For T = 0
the correlation function becomes simply a Fourier transform of the function J(ω)

α(t) =

∫ ∞

0

dωJ(ω)eiωt. (1.53)
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The behavior of the open system depends quite strongly on the shape of α(t) and therefore of J(ω). The
reason is that the environmental correlation function appears in all the system dynamical equations, both
in those that describe the dynamics of its expectation values and in those describing the dynamics of its
fluctuations. It acts as the kernel of integral terms over the past history of the system evolution.

Thus, the correlation function is responsible for the dependency of the system’s evolution over its past
history. As previously noted, when the decaying time of the correlation function, namely the environmental
correlation time, τc, is comparable to the evolution time of the system, TA, the interaction is considered
non-Markovian. The interaction is Markovian when the correlation time is practically zero compared to TA,
so that α(t − τ) = Γδ(t − τ), with Γ = 1/TA the system relaxation rate. In Markovian interactions the
memory of the system evolution over its history disappears.

The correlation time τc is determined by the shape of the spectral density. Let us see this more carefully
by considering the following possibilities for J(ω),

• J(ω) is composed by the sum of a finite number of harmonic oscillators. Hence, the correlation
function might decay within a time τc, but revival is observed after the so-called recurrence time τR.
The oscillators define a spectrum and τR is roughly determined by the inverse of ∆Emin, the minimum
separation between energies. In that way, the less harmonic oscillators there are, the larger is ∆Emin
and the smaller is τR. In some situations, τR can be smaller than the time in which the system energy
is dissipated, so that a revival is observed in its dynamics. This means that the system may dissipate
to a certain state, but may be re-excited by the environment after a certain time τR. It can also be
the case that τR is even smaller than τc, in which case such correlation time can not even be properly
defined. In summary, a J(ω) composed of a small number of oscillators usually gives rise to a highly
non-Markovian interaction.

• J(ω) composed by an infinite sum of harmonic oscillators. The corresponding frequency spectrum is
sufficiently dense as to produce an infinite recurrence time. Dissipation is therefore observed (except
for very special situations like an atom with rotating frequency placed in the gap of a photonic band
gap material), and there are no revival effects in the system dynamics. Nevertheless, the interaction is
Markovian only when, in addition, the spectral function is smoothly varying function of ω particularly
within the region nearby the characteristic frequencies of the open system. Otherwise, when J(ω)
changes abruptly along that region, it gives rise to a correlation function that might decay within a time
of the order of the atomic decaying time. This situation may be produced by a D(ω) which exhibits
a sudden jump or some weaker kind of singular non-analytic behavior. This occurs, for example, in a
waveguide close to its fundamental frequency, or nearby the band edge of a PBG. In the last case, the
photonic DOS of the radiation field presents two kind of regions: a gap where D(ω) vanishes, and
a band where the density of states is non-zero, but present a rapid variation with frequency near the
gap, as does J(ω).

If the correlation time τc cannot be defined, the interaction should not be treated by using a perturbative
approximation. It will become clear in the next chapter that the perturbative parameter and the correlation
time are related with each other. Thus, the larger the environmental relaxation time is, the smaller has to be
the coupling between system and environment in order to perform a perturbative expansion 1. Obviously,
when τc is not even defined (for instance because τR < τc), it means that the environmental relaxation
time should be taken to be infinite, and therefore the coupling between system and environment may be
zero in order to justify the use of a perturbative expansion. This situation will only be studied for special

1To be more precise, when τc is large, it is necessary either to arrive to high orders the perturbative expansion, or to have a small
perturbation parameter.
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choices of coupling operators L which gives rise to exact solutions and therefore do not need the use of any
approximation, particularly the perturbative approximation.

1.3.1 Derivations of the spectral function

There are two different possibilities to determine the spectral function J(ω), depending on the particular
model.

As noted above, when the environment is a continuum reservoir of harmonic oscillators and the quantum
open system can be described by a single extended coordinate q, the spectral function can be determined
phenomenologically, particularly from the knowledge of the coefficients of the classical equation of motion
[22, 34].

For more general environments that shall not necessarily be reservoirs (i.e. that shall not be infinite), and
for more general systems than those described by a single coordinate q, a microscopical knowledge of the
interaction is needed to derive J(ω). Particularly, to perform the sum (1.50), it is necessary to know the
form of the coupling constants gλ.

In the next sections we present the microscopic derivation of the correlation function for Markovian
interactions, and a phenomenological derivation of the model of J(ω) we are going to use in this thesis when
studying the spin-boson system.

1.3.1.1 Microscopic Here we present a microscopic derivation of the correlation function for an atom
interacting with an electromagnetic field in the simplest case in which the interaction is Markovian. More
complicated microscopic derivations of J(ω), or equivalently of the environmental correlation function are
presented in the next chapters for non-Markovian interactions. For instance, in Part (IV) the correlation
function which describes the atomic interaction with an electromagnetic field immersed in a photonic crystal
is obtained.

In general, a microscopic derivation is possible for atoms interacting with electromagnetic fields since
the coupling constants are given by (1.24) for a dipolar coupling between levels |j〉 and |k〉. The coupling
constants corresponding to the interaction of a two level atom with the electromagnetic field are expressed
in (1.31) as,

gλ1,2 = −i
√

1

2h̄ε0ωλ
ω12Aλ(r0) · d12 =

−i
√

1

2υh̄ε0ωλ
ω12e

−ik·r0d12êλ · d̂12, (1.54)

where we have inserted Aλ(r0) =
√

1
υ e

−ik·r0 êλ to go from the first to the second line. Let us now take
equation (1.53) in its discrete version,

α(t) =
∑

λ

|gλ|2e−iωλt. (1.55)

The sum in λ is in fact a sum over the two polarization modes, denoted by σ and the electromagnetic wave
vector k. In the continuum limit, we then have

∑

λ

≡
∑

σ

∑

k

→ 2
υ

(2π)3

∫ 2π

0

dφ

∫ π

0

dθ sin θ

∫ ∞

0

dkk2, (1.56)
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where the factor 2 in the last expression comes from the sum in σ. From (1.54), we have

g∗λgλ =
1

2h̄ωλε0υ
ω2

12d
2
12 cos2 θ, (1.57)

where |êk,σ · d̂12|2 = cos2 θ, and θ is the angle between the atomic dipole moment d̂12 and the electric field
polarization vector êkσ . Replacing (1.57) together with (1.56) in (1.55), we have

α(t) = 2
υ

(2π)3

∫ 2π

0

dφ

∫ π

0

dθ sin θ

∫ ∞

0

dk
k2

2υh̄ω(k)ε0
ω2

12d
2
12 cos2 θe−iω(k)t, (1.58)

where we have also assumed that the dispersion relation is such thatω(k) = ω(k). Considering the dispersion
relation of an electromagnetic field in the vacuum, we have k = ω/c, and we can easily transform the k
integral into a frequency integral,

α(t) =
2

3

∫ ∞

0

dω
υω2

(2π)2c3
ω2

12d
2
12

4υh̄ωε0
e−iωt (1.59)

where we have already solved the angular integrals. From the last expression, we can already identify the
photonic density of states as

D(ω) =
υω2

(2π)2c3
, (1.60)

and the function g2(ω)

g2(ω) =
ω2

12d
2
12

6υh̄ωε0
, (1.61)

so that following (1.51), the spectral function is

J(ω) =
υω2

(2π)2c3
ω2

12d
2
12

6υh̄ωε0
. (1.62)

In terms of J(ω), and from (1.51), the correlation function (1.59) is expressed as

α(t) =

∫ ∞

0

dωJ(ω)e−iωt ≈ J(ω12)2πδ(t), (1.63)

where
∫∞
0
dωe−iωt = 2πδ(t). The last expression contains the crucial approximation which characterizes

Markovian interactions. This consists in considering J(ω) = D(ω)g2(ω) approximately constant nearby
the atomic rotating frequency ω12, and equal to J(ω12). Notice that this is only justified for interactions
such that the variation of the spectral function J(ω) is smoothly varying function nearby the atomic rotating
frequency. For instance, in a PBG material this situation only occurs when ω12 is placed in the middle of a
band which is sufficiently broad as to make the band border effects negligible.

Since the correlation function appears as a kernel in the integral terms of the system dynamics that are
responsible of the dissipation, it determines its relaxation time TA. Particularly, the correlation function
fixes the system decay rate Γ as

Γ =

∫ ∞

0

dτα(τ), (1.64)
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where TA = Γ−1. For a Markovian system with (1.63), the decay constant is

Γ = 2πJ(ω12) =
d2
12ω

3
12

6πh̄ε0c3
. (1.65)

The fact that α(t) depends on F (ω) = g2(ω)D(ω) explains why the spontaneous decaying of atoms is
not fully characterized by intrinsical atomic properties, but by quantities such as the photonic DOS of the
surrounding radiation field, and the coupling strengths with each of the harmonic oscillators that form the
environment.

The importance of the medium in the atomic emission was first pointed out by Purcell in 1946 [10], who
predicted that the spontaneous emission rate of a cavity containing atoms becomes enhanced in the case of
atom-cavity resonance. Atoms in the cavity may therefore radiate spontaneously faster than in free space.
This can be explained more clearly by considering that the photonic density of states of the radiation field
in a cavity with resonance placed in the atomic rotating frequency is [43]

Dcav(ω) =
1

π

ω/2Q

(ω12 − ω) + (ω/2Q)2
, (1.66)

where Q is the so-called quality factor of the cavity on which the enhancement depends. Now suppose that
the atomic rotating frequency is placed nearby the lowest cavity mode, so that ω12 ∝ πc/L, where L is the
length of the side of the cavity. In that region, the former photonic DOS simplifies as

Dcav(ω12) = 2Q/πω12 ∝ 2LQ

π2c
, (1.67)

so that we have,

Γcav = 2πg2(ω12)D
cav(ω12) =

2d2
12Q

3h̄ε0υ
, (1.68)

where we have also inserted (1.61) evaluated at ω12. Comparing the former decaying rate with that of the
vacuum, given by (1.65), we have,

Γcav = ΓQ

(

2πc3

ϕω3
12

)

. (1.69)

Considering the lowest cavity mode, ω12 = πc
L , the former expression is simplified as

Γcav = ΓQ
2

π2
, (1.70)

where we have also considered υ = L3. Considering that the factor 2
π2 is of order one, the last relation

shows that the spontaneous emission rate of an atom in a quantum cavity is enhanced by a factor Q with
respect to that of the vacuum. In the same way, if atomic transitions are far from any cavity resonance,
the spontaneous emission process will be inhibited. The same kind of inhibition of spontaneous emission
occurs if atoms are located in a waveguide and their transition frequency is below the fundamental frequency
of the waveguide [11, 44]. In the same way, this picture shows that the spontaneous emission rate can be
enhanced in a photonic band gap material, since there are frequency ranges where D(ω) can be larger than
in free space. Additionally, within the gap D(ω) = 0, which in turn means that Γ = 0. In other words,
single photon spontaneous emission is completely inhibited. This implies that the vacuum fluctuations or
zero-point fluctuations are absent for frequencies inside a gap, and thus, within the forbidden frequency band
the PBG materials are emptier than even the vacuum.
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This rough picture of spontaneous emission is equivalent to the one that follows from the Fermi Golden
rule [45, 46]. The spontaneous emission rate Wfi ≡ Γ for an atom initially in the excited state |i〉 to a final
state |f〉 after the emission of a single photon of wavevector k (and therefore λ = k, σ) is

Wfi =
2π

h̄
|〈Hi,k〉|2D(ω12), (1.71)

where Hi,k = gk(r0)(akL
† + La†

k
) and gλ(r0) = 2gk(r0). A comparison of (1.65) together with (1.51)

leads to the conclusion that g2(ω12) = 2π
h̄ |〈Hi,k〉|2.

Before ending with this section, we should stress again that the above picture is very approximate for
non-Markovian processes, since it assumes that D(ω) and F (ω) are smooth varying functions in the region
nearby the atomic resonant frequency compared with Γ. For instance, in the above example of a quantum
cavity, when the cavity decay rate is much less than the atomic spontaneous emission rate there will be
an oscillatory exchange of the energy between the atomic and the photonic degrees of freedom before the
spontaneously emitted photon leaks out of the cavity. This is no longer the typical Markovian exponential
decaying with rate Γ given by the Fermi Golden Rule.

In the next section we give an example of phenomenological derivation of the spectral function, as
described by Legget and co-workers in [34].

1.3.1.2 Phenomenological In order to obtain a spectral function for the Caldeira-Legget Hamiltonian
(1.6), it is necessary to make some phenomenological approximations, since the exact form of the coupling
coefficients Cλ is in principle not known. To do that, it is possible to extract some parameters form the
classical evolution equation for the generalized coordinate of the system, q, namely the generalized Langevin
equation [22]

Mq̈(t) + V ′(q) +M

∫ t

0

dt′γ(t− t′)q̇(t′) = ζ̂(t), (1.72)

where V ′(q) = ∂V
∂q , and M is the mass of the system. The function ζ̂(t) = ζ(t) −Mγ(t)q(0), where q(0)

is the initial value of the generalized coordinate and

ζ(t) =
∑

λ

Cλ

(

x
(0)
λ +

p
(0)
λ

mλωλ
sin (ωλt)

)

, (1.73)

with x(0)
λ and p(0)

λ the initial values of the environmental coordinates. Taking the average of the initial
values x(0)

λ and p(0)
λ with respect to the canonical classical equilibrium density of the unperturbed reservoir,

ρ
(0)
B = Z−1 exp (−βHB)

ρ
(0)
B = Z−1e

−β
∑

λ

(

p
(0)2

λ
2mλ

+
mλω2

λ
2 x

(0)2

λ

)

, (1.74)

where Z is the partition function, the function ζ(t) becomes a fluctuating force with Gaussian statistical
properties,

〈ζ(t)〉
ρ
(0)

R

= 0

〈ζ(t)ζ(t′)〉
ρ
(0)

R

= MκBTγ(t− t′). (1.75)
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Given its relation with ζ(t), then the quantity ζ̂(t) is also a Gaussian noise with the same properties. The
second equality of (1.75) is an example of the classical fluctuation-dissipation theorem [16], which expresses
the relation between the fluctuating quantities ζ̂(t) appearing in (1.72), and the dissipative function or memory
friction kernel γ(t), which is responsible of the lost of energy from system to environment. Such function
is defined as

γ(t− t′) = Θ(t− t′)
1

M

∑

λ

C2
λ

mλω2
λ

cos (ωλ(t− t′)), (1.76)

where Θ(t − t′) is the step function introduced to ensure causality. Taking into account that Cλ =√
2h̄ωλmλgλ, and inserting the definition (1.50) of the spectral function in the last expression, we get

γ(t− t′) = Θ(t− t′)
2

πM

∫

dω
J(ω)

ω
cos (ω(t− t′)). (1.77)

The microscopic properties encoded in the function J(ω) can now be expressed in terms of the phenomeno-
logical damping kernel γ(t) by only applying the inverse Fourier transform in the last expression,

J(ω) = Mω

∫ ∞

0

dtγ(t) cos (ωt). (1.78)

The Markovian limit corresponds to a flat reservoir, which gives rise to a Fourier transform of the friction
kernel, γ̂(ω) =

∫∞
0
dtγ(t) cos (ωt) = γ, so that

J(ω) = ωMγ̂(ω) = ωη, (1.79)

where η = Mγ is a dissipative coefficient with the dimensions of viscosity. The Markovian case corresponds
to what is referred in literature as ohmic damping, in which J(ω) ∝ ω. However, it is often the case that
we find non-Markovian reservoirs in which on one hand the spectrum is not flat, and on the other hand, the
memory friction kernel is not known, so that J(ω) cannot be fixed with the use of (1.78). In those cases, it
is always possible to assume that the spectral function behaves in the short frequency limit as ωs,

J(ω) = ηsω
sω1−s
c e−ω/ωc , (1.80)

where 0 < s < 1 in the sub-ohmic case, and s > 1 in the super-ohmic [34]. The constant ηs has the
dimensions of viscosity and is equal to Mγs, where γs is the dissipative coefficient for the particular choice
of s which can be obtained from (1.76) as γs =

∫∞
0
dtγs(t). The exponential factor appearing in the last

expression has been added to provide a smooth cut-off for the spectral density, which is modulated by the
frequency ωc. Although the cutoff frequency shall be conveniently chosen in accordance with other scales
and parameters of the problem, it turns out that the dependency of all the physical results on ωc cancel out for
a vast range of the parameter space. Whether we have ohmic, sub-ohmic or a super-ohmic spectral function
depends on the type of reservoir, and determines quite strongly the evolution behavior of the coupled system.
For instance, the case of ohmic friction is important for charged intersticials in metals. A phonon bath in d
spatial dimensions corresponds to the case s = d or s = d + 2 depending on the symmetry properties of
the field. Non integral values of s may be relevant for fractal environments. Further examples of different
systems in interaction with environments that falls in these three categories, as well as the description of
their dynamics are found in [20, 22, 34]. For the spin-boson model studied in this thesis, we will consider a
superohmic reservoir with s = 3,

J(ω) =
ω3

ω2
c

e−ω/ωc . (1.81)
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Let us now discuss the properties of the model (1.81). The temperature plays an important role to determine
the relevance of non-Markovian effects within the system dynamics. As displayed in Fig (1.1), decreasing
the temperature (i.e. increasing β) gives rise to an increase of the maximum of the real part of the correlation
function (1.50), through the coefficient coth( wλ

2kT ). The real part reflects then the magnitude of the envi-
ronmental thermal fluctuations. In the limit of zero temperature such coefficient is one, and the magnitude
of the real part of the correlation is equivalent to the imaginary part, both corresponding to purely quantum
fluctuations. As mentioned before, the correlation function enters in all the system dynamical equations,
and its real part is responsible of the dissipation which leads the system to an equilibrium state. In that
way, lower temperatures give rise to less dissipation, which means that the system takes a larger time TA to
relax. Since the effects of a finite correlation time τc operates at very short time scales, it is obvious that
they will be more visible when the system decays slowly. In other words, a slow decaying permits to see
some structure in the relaxation, which is due to non-Markovian effects occurring at the short time scale τc.
On the contrary, a rapid decaying erases these non-Markovian effects.
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Fig. 1.1 Correlation function displayed for different temperatures. The imaginary part is displayed in dashed line,
while the real part is in continuous line. The correlation time is the same for high temperatures (small β) than for low
temperatures (large β). Nevertheless, as the temperature becomes smaller the magnitude of the correlation function
(specially of its real part, which is responsible of the dissipation) becomes smaller, so that the system takes a longer time
TA to relax to equilibrium. Because of that, although the correlation time τc remains the same, non-Markovian effects
are more present at low temperatures.
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Fig. 1.2 Spontaneous decay rate Γ of the system displayed for different temperatures. Non-Markovian effects are
visible in the system dynamics when the variation of J(ω) nearby the resonance frequency is comparable to the spon-
taneous decay rate of the system Γ. For a high temperature the coefficient Γ is so high that it would be necessary a very
rapid variation of J(ω) to observe non-Markovian effects in the dynamics.



2
The reduced propagator of a QOS

We present in this chapter the reduced propagator, an object that evolves the system wave function con-
ditioned to a certain initial and final state of the environment. The reduced propagator is an essential tool
to derive the dynamical equations which describe a QOS interacting with its environment. First, when the
initial state of the environment is taken the vacuum, the reduced propagator gives rise to the usual non-
Markovian stochastic Schrödinger equations found in literature. Also, after an average over the different
initial and final states of the environment, it reproduces the master equation. Second, when the initial state of
the environment is not the vacuum, the reduced propagator gives rise to a master equation for general initial
conditions (and not necessarily a decorrelated state between system and environment), and to the evaluation
of system fluctuations.

2.1 INTRODUCTION

The reduced propagator permits us to derive all the dynamical equations for a non-Markovian quantum open
system. This includes not only the evolution of its expectation values, but also of its fluctuations. The
reduced propagator, denoted asG(z∗i zi+1|titi+1), is the matrix element of the total evolution operator in the
Bargmann coherent basis of the environment [47], {|zi〉 = |zi,1 · · · , zi,λ · · ·〉}. Hence, it lives in the Hilbert
space of the system. Furthermore, it represents transitions between the environmental state zi+1 to zi. In
that way, when applied to the system wave function, it propagates the system state from an initial time ti+1

to a final time ti, conditioned that the environmental state is initially in |zi+1〉 and finally in |zi〉.
The evolution of expectation values (also quantum mean values) have been widely described both for

Markovian and non-Markovian interactions. Two equivalent schemes are currently used. The first consists
in evolving the reduced density matrix of the system, defined as a trace over the environmental degrees
of freedom of the total system density matrix, through some master equation [22, 38, 50, 51, 52, 53]. In
the Markovian case, the reduced density matrix has been shown to preserve positivity when the master
equation is expressed in the Lindblad form [36]. The second scheme has been developed more recently,
and consists in the so-called stochastic Schrödinger equation (SSE) that evolves state vectors in such a way

21
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that an average over an ensemble of solutions equals the reduced density matrix. In the Markov case, the
stochastic term of SSE can have the form of discontinuous jumps randomly interrupting the evolution, or a
diffusive term acting continuously every time step of the evolution. This last type of SSE has been extended
to treat non-Markovian interactions. The reduced propagators derived in this thesis can be used to derive a
non-Markovian diffusive SSE, provided that the initial and final environmental states, zi+1 and zi are chosen
randomly according to their distribution [41, 3, 4].

Apart from expectation values, fluctuations (also multiple-time correlation functions, MTCF) of system
observables are found in the dynamical description of different phenomena, such as in the atomic emission
spectra or the statistics of emitted photons. In the Markov case, the knowledge of the evolution of the system
reduced density matrix is sufficient to derive both quantum mean values and MTCF. This result, known as
Quantum Regression Theorem (QRT) [50, 51, 53], has been also derived by using SSE [56, 57, 58, 59].
Nevertheless, as we show in this thesis this is no longer the case for non-Markovian interactions, which have
to be computed with some new equations. Although there do exist some numerical methods to evaluate
non-Markovian MTCF, for instance the one proposed by Breuer in [60, 61], before our work there had not
yet been derived the evolution equation for those quantities. Reduced propagators becomes a basic tool to
compute such evolution equations [2, 3, 4].
This chapter is organized as follows:

• Section (2.2) shows how the reduced propagator G(z∗i zi+1|titi+1) can be used to obtain:

– The evolution of the reduced density matrix ρs(t). In order to do this, it is necessary to perform
an average over the environment initial and final states (zi+1 and zi respectively).
This can be done numerically, by considering that since there is a very large number of these
states, they can be chosen randomly according to the environment state distribution. The reduced
propagator becomes a stochastic propagator, and its evolution equation a SSE.
Alternatively, it is possible to perform the sum analytically, so that a master equation for ρs(t)
can be obtained. The object G(z∗i 0|ti0) has been already introduced in literature by Strunz
in [41] as a stochastic propagator. Since it corresponds to the particular case in which the
initial environmental state is the vacuum, zi+1 = 0, it will be here referred to as vacuum
propagator. The vacuum propagator corresponds to the SSE derived in [40, 41, 54], and has
been already used in literature to derive analytically master equations (see for instance [6, 54, 55]).
However, all these equations keep the restriction that the initial environmental state has to be
the vacuum1. The reduced propagator G(z∗i zi+1|titi+1) permits the derivation of more general
master equations corresponding to other environments (like for instance a thermal reservoir), or
even to initially correlated states for the environment and system. The derivation of some of
these master equations is made in Part (II).

– The evolution of non-Markovian MTCF, by performing numerically an average over different
trajectories. However, the advantage of reduced propagators is that this average can also be
done analytically which gives rise to a set of evolution equations of the MTCF within the weak
coupling limit. These equations clearly show that only a set of particular multiple-time correlation
functions satisfy the Quantum Regression Theorem (QRT), whereas in general MTCF do not. It
is important to stress that the computation of MTCF can only be done with propagators where
the initial environmental state, |zi+1〉 6= |0〉, which makes vacuum propagators unsuitable. The
complete derivation of the theory of MTCF is discussed in Part (III).

1In [40] a SSE is derived for thermal environments, but it is not derived from reduced propagators. This equation is presented in Part
(II), and compared to the one derived in [35] also for thermal environments.
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The reduced propagator is, then, a very useful tool to derive any aspect of the dynamic of a QOS, provided
that its evolution equation is obtained. This is done in the next sections:

• In Section (2.3) an open equation is derived: Since the system and its environment are entangled, the
dynamics of the first is conditioned to particular environmental states. In addition, such entanglement
gives rise to an evolution equation for the system reduced propagator that is not closed. To be more
specific, it does not depend only on the reduced propagator that is being evolved but on a family of
these corresponding to different initial and final environmental states. Due to this dependency over
other propagators, this equation is referred in this thesis as open equation.

• In Section (2.4) a closed equation is derived: For non-Markovian interactions the dependency on
other trajectories of propagators only disappear in special systems which have an exact solution. This
systems are those with diagonal coupling operator in the free Hamiltonian basis, i.e. L ∝ HS . In
general systems, some approximations have to be made. We show some of these approximations
that are needed to obtain a closed equation for the reduced propagator, namely the expansion, the
weak coupling and the near-Markov approximations. It also becomes clear in this section that the
entanglement between trajectories occurs during the correlation time τc, and therefore disappears in
the Markovian limit.

Some comments about the numerical and analytical way to obtain an average over reduced propagators
are made in Section (2.5).

From now on and throughout the rest of the thesis (except where indicated), we take h̄ = 1.

2.2 REDUCED PROPAGATOR: A TOOL TO COMPUTE THE DYNAMICS OF A QOS

As noted in the first chapter, a frequently used Hamiltonian model in the study of the dynamics of S with
Hamiltonian HS , in interaction with HI is

Htot = HS +HB +HI

= HS +
∑

λ

ωλa
†
λaλ +

∑

λ

gλ

(

a†λL+ L†aλ
)

, (2.1)

where the operator L acts on the Hilbert space of the system and aλ, a
†
λ are the annihilation and creation

operators on the environment Hilbert space. The g′λs are the coupling constants that can be taken as real
numbers, and the ω′

λs are the frequecies of the harmonic oscillators that constitute the environment [20].
Instead of a single system coupling operatorL inHI we could consider a set of them, but such generalization
is straightforward and does not affect the conclusions we shall derive in this thesis. The wave function
corresponding to the total Hamiltonian (2.1), evolves from its initial value | Ψ0〉 as,

| Ψt〉 = UI | Ψ0〉 (2.2)

where UI(t, 0) is the evolution operator in interaction picture,

UI(t, 0) = eiHBte−iHtott. (2.3)

We can represent the state (2.2) in an environmental basis, which is here chosen as the Bargmann coherent
state basis (see Appendix (B) for a explanation of the coherent and Bargmann basis) [47, 48]. Thus, the total
system state can be expressed as [41, 43],

| Ψt〉 =

∫

dµ(zi)G(z∗i 0|t0)|ψ0〉|zi〉. (2.4)
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In the last expression we have used the Gaussian measure

dµ(zi) =
∏

λ

d2zi,λ
π

e−|zi,λ|2 , (2.5)

and we have used the notation | zi〉 =| zi,1〉 | zi,2〉... | zi,λ〉... for the state of the environment, given by a
tensorial product of the states of all the λ environmental oscillators. The basis states for each oscillator are,
in terms of the number states basis | zi,λ〉 = exp(zi,λa

†
i,λ) | 0〉. The function

G(z∗i 0|t0) = 〈zi | UI(t, 0) | 0〉, (2.6)

with UI(t, 0) given by (2.3), is the vacuum reduced propagator, that was interpreted by Strunz in [41] as a
“stochastic propagator”. Vacuum reduced propagators gives rise to a displacement of the wave function from
its initial value | ψ0〉, to the value | ψt(z∗i )〉 at time t, provided that the environment oscillators have evolved
from the vacuum state | 0〉 to the state | zi〉. Mathematically, this is expressed asG(z∗i 0|t0) | ψ0〉 =| ψt(z∗i )〉.
For other situations in which the environment is not initially in the vacuum and the evolution time does not
start at zero, a more general propagator is needed [3]. Such propagator is obtained by representing the
system evolution operator UI(ti, ti+1), with ti > ti+1 in the Bargmann coherent state basis [47],

G(z∗i zi+1|titi+1) = 〈zi | UI(ti, ti+1) | zi+1〉. (2.7)

Here | zi+1〉 represents the initial state of the environment at time ti+1, and | zi〉 its final state at time ti.
The interaction picture evolution operator UI(ti, ti+1) is defined as

UI(ti, ti+1) = eiHBtie−iHtot(ti−ti+1)e−iHBti+1 . (2.8)

Therefore, the reduced propagator G(z∗i zi+1|titi+1) = 〈zi|UI(ti, ti+1)|zi+1〉 acts on the system Hilbert
space, giving the evolution of system state vectors from ti+1 to ti, conditioned that in the same time interval
the environment coordinates go from zi+1 to zi. The stochastic interpretation of the reduced propagator
with stochastic Schrödinger equations is discussed in section (2.5).

Let us show briefly in the following sections how the reduced propagator can be used to compute the
most general quantity which characterizes the dynamics of a quantum open system, namely the N-time
correlation function of its observables, for different initial conditions of the total system. How to compute
the corresponding reduced density matrix is also shown.

2.2.1 Initial decorrelated state ρtot(t0) = ρs(t0) ⊗ ρB(t0)

We assume an initially decorrelated state ρtot(0) = ρs(0) ⊗ ρB , where ρs(t0) = |ψ0〉〈ψ0| and ρB =
|z0〉〈z0|/〈z0|z0〉. Let us for instance define the N -time correlation function for a set of observables in
Heisenberg representation, {A1(t1), · · · , AN (tN )} = A(t) as 2

CA1,A2,···,AN
(t1, t2, · · · , tN |Ψ0) = CA(t|Ψ0)

= 〈Ψ0|A1(t1) · · ·AN (tN )|Ψ0〉, (2.9)

with t1 > t2 > · · · > tN and t = {t1, · · · , tN}. In the partial interaction picture with respect to the
environment, the N-time correlation function is given by

CA(t|Ψ0) = 〈Ψ0|
N
∏

i=1

U−1
I (ti, 0)AiUI(ti, 0)|Ψ0〉

2We will see in Part (III) MTCF can be defined with a different time ordering.
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= 〈Ψ0|U−1
I (t1, 0)A1UI(t1, t2)A2UI(t2, t3) · · ·

UI(tN−1, tN )ANUI(tN , t0)|Ψ0〉 (2.10)

where UI(t1, t2) is the evolution operator of the system in the interaction picture defined in (2.8), and
|Ψt〉 = |ψ0〉|z0〉/〈z0|z0〉. We now chose the Bargmann coherent state basis for the environment whose
resolution of the identity is given by

1 =

∫

dµ(z)|z〉〈z|. (2.11)

If we introduce N identity operators (2.11) in (2.10), the correlation function is given by

CA(t|Ψ0) =

N
∏

i=1

∫

dµ(zi)〈ψ0|G†(z∗0z1|t0t1)AiG(z∗i zi+1|titi+1)|ψ0〉. (2.12)

For a one-time correlation function (also referred as expectation value) of an observable,

〈A1〉 = CA1
(t1|Ψ0) = 〈Ψ0|A1(t1)|Ψ0〉

=

∫

dµ(z1)〈ψ0|G†(z∗0z1|t0t1)A1G(z∗1z0|t1t0)|ψ0〉

=

∫

dµ(z1)
∑

mm′

〈ψ0| ×G†(z∗0z1|t0t1)|m〉〈m|A1|m′〉

〈m′|G(z∗1z0|t1t0)|ψ0〉
=

∑

m′

〈m′|ρs(t1t0|z0)A1|m′〉, (2.13)

where we have defined

ρs(t1t0|z0) =

∫

dµ(z1)|ψt1t0(z∗1z0)〉〈ψt1t0(z∗0z1)|, (2.14)

with |ψt1t0(z∗1z0)〉 = G(z∗1z0|t1t0)|ψ0〉 and 〈ψt1t0(z∗0z1)| = 〈ψ0|G†(z∗0z1|t0t1), which is the reduced
density operator. We have also considered the system closure relation as 1 =

∑

m |m〉〈m|. Equation (2.13)
can be expressed in the usual manner as,

CA1
(t1|Ψ0) = 〈Ψ0|A1(t1)|Ψ0〉 = TrS (ρs(t1t0|z0)A) , (2.15)

or, in terms of |ψt1t0(z∗1z0)〉,

CA1
(t1|Ψ0) =

∫

dµ(z1)〈ψt1t0(z∗0z1)|A1|ψt1t0(z∗1z0)〉. (2.16)

With t0 = 0 and z0 = 0, the we obtain the reduced density matrix usually found in the literature 3,

ρs(t) =

∫

dµ(z)|ψt(z∗)〉〈ψt(z)|, (2.17)

and

CA1
(t1|Ψ0) =

∫

dµ(z)〈ψt(z)|A1|ψt(z∗)〉. (2.18)

3When only the environmental state z1 and the time t1 enters in the equations, we will often denote them just as z and t for simplicity.
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Notice that we have simplified the notation by setting z1 = z. These simplifications in the notation are made
throughout the whole work whenever it is possible and do not lead to confusion.

Let us now suppose the following initial state for the total system in terms of the coherent state basis

ρtot(t0) = |ψ0〉〈ψ0| ⊗
∫

dµ(z0)P (z0, z
∗
0)|z0〉〈z0| (2.19)

where P (z0, z
∗
0) is the coherent state diagonal distribution [43, 53] to be chosen for each particular envi-

ronment 4, and |Ψ0〉 = |ψ0〉||z0〉 in terms of coherent states ||z0〉, and |Ψ0〉 = exp (−|z0|2/2)|ψ0〉|z0〉 in
terms of Bargmann coherent states (see Appendix (B)). Then, ρtot(0) is a decorrelated state, since it can
be written as ρtot(t0) = ρs(t0) ⊗ ρB(t0), with ρs(t0) = |ψ0〉〈ψ0|, and ρB(t0) =

∫

d2z0P (z0, z
∗
0)|z0〉〈z0|.

We then define theN -time correlations as (2.12), but adding an additional average with respect to the initial
distribution P (z0, z

∗
0),

CA(t|ρtot(t0)) = Trtot (A1(t1) · · ·AN (tN )ρtot(0))

=

∫

dµ(z0)P (z0, z
∗
0)〈ψ0(z0)|

(

∑

m

|m〉〈m|
)

×〈z0|
(
∫

dµ(z)|z〉〈z|
)

|A1(t1) · · ·AN (tN )|z0〉|ψ0〉

=

∫

dµ(z)

∫

dµ(z0)P (z0, z
∗
0)〈ψ0|〈z0|A1(t1) · · ·AN (tN )〉|z0〉|ψ0〉, (2.20)

where we have used the Bargmann unitary relation
∫

dµ(z)|z〉〈z| = 1, and a basis {|m〉} for the system
with unitary relation

∑

m |m〉〈m| = 1 [47, 48].
As before, expectation values can be expressed in terms of the former equation by setting N = 1, or in

terms of the density operatorρs(t1, t0), which now is defined in terms ofρtot(t1, t0) = UI(t1, t0)ρtot(t0)U−1
I (t1, t0),

with ρtot(t0) given by (2.19), as

ρs(t1, t0) =

∫

dµ(z1)

∫

dµ(z0)P (z0, z
∗
0)|ψt1t0(z∗1z0)〉〈ψt0t1(z∗0z1)|, (2.21)

where |ψt1t0(z∗1z0)〉 = G(z∗1z0|t1t0)|ψ0〉. In the same way, it can be easily verified that with ρtot(0) given
by (2.19), the environmental density operator is just

ρB(t0) = TrS (ρtot(t0)) =

∫

d2z0P (z0, z
∗
0)e−|z0|2 |z0〉〈z0|. (2.22)

In Section (5.2.1.2) of Chapter (II) we derive an equation thermal master equation for ρs(t) (considering
for simplicity t0 = 0). Such equation corresponds to a ρtot(t0) given by (2.19) with P (z0, z

∗
0) chosen as

the coherent P representation of a thermal environment. Analogously, in Appendix (L) we derive evolution
equation for two-time correlations in a thermal environment.

It is possible to use other distributions for the environment. If we represent ρB in the R(α, β) represen-
tation of coherent states [43, 53], then we would obtain

ρB =

∫

d2z′0dµ(z′0)

∫

d2z0dµ(z0)R(z′∗0 , z0)|z′0〉〈z0|, (2.23)

4Since it is a quantum distribution, P (z0, z∗0 ) can take negative values over a limited range and therefore should not be considered as
a probability distribution. Instead, it is often referred to as quasi-distribution function [53]. In the present case, in order to perform the
sampling or the analytical sum over the coherent states, it is convenient that P is a positive definite function. This is the case of the P
function corresponding to a thermal reservoir, which is one we study in this thesis.



REDUCED PROPAGATOR: A TOOL TO COMPUTE THE DYNAMICS OF A QOS 27

where

R(z′∗0 , z0) = 〈z′0|ρB |z0〉 (2.24)

Inserting (2.22) in the former expression, one obtains the relation between the P and the R representations,

R(z′∗0 , z0) = e−
|z′

0
|2

2 e−
|z0|2

2

∫

d2αP (α, α∗)e−|α|2ez
′∗
0 αeα

∗z0 . (2.25)

2.2.2 Initially correlated state ρtot(t0) = ρs(t0) ⊗ ρB(t0) + ρcorr(t0)

2.2.2.1 Pure state We set ρtot(t0) =
∫

dµ(z0)
∫

dµ(z′0)|Ψ0(z
∗
0)〉〈Ψ0(z

′
0)|, where

|Ψ0(z0)〉 = 〈z0|Ψ0〉|z0〉 = |ψ0(z
∗
0)〉|z0〉. (2.26)

Then, the MTCF are written in a similar manner as (2.12), but adding two integrals: one over the variable
z0, and another over the variable zN+1 = z′0,

CA(t|Ψ0) =

N+1
∏

i=0

[
∫

dµ(zi)

]

〈ψ0(z0)|G†(z∗0z1|t0t1)
N
∏

i=1

AiG(z∗i zi+1|titi+1)|ψ0(z
′∗
0 )〉. (2.27)

Notice that these two integrals will also be performed over the wave vectors |〈ψ0(z0)| and |ψ0(z
′∗
0 )〉 respec-

tively. The same considerations have to be made in the reduced density operator, that is written like (2.14),
but with two additional integrals over z0 and z′0,

ρs(t1t0|0) =

∫

dµ(z0)

∫

dµ(z′0)

∫

dµ(z1)G(z∗1z
′
0|t0t1)|ψ0(z

′∗
0 )〉〈ψ0(z0)|G†(z∗0z1|t0t1), (2.28)

which is reduced to the following mixture,

ρs(t1t0|0) =

∫

dµ(z1)|ψt1,t0(z∗1)〉〈ψt1,t0(z1)| (2.29)

with |ψt1,t0(z∗1)〉 =
∫

dµ(z0)G(z∗1z0|t0t1)|ψ0(z
∗
0)〉.

2.2.2.2 Statistical mixture Let us now suppose a mixture for ρtot(t0),

ρtot(t0) =

∫

dµ(z0)J (z0, z
∗
0)|Ψ0(z

∗
0)〉〈Ψ0(z0)|, (2.30)

whereJ (z0, z
∗
0) is the statistical probability for the member |Ψ0(z

∗
0)〉 of the statistical ensemble. Notice that

this expansion is similar in form to (2.19), but now with |ψ0(z
∗
0)〉|z0〉, and a different probability distribution

(the statistical mixture now is not the environment, but the total system). TheN -time correlations are defined
as (2.20) but replacing 〈ψ0| by 〈ψ0(z0)|, |ψ0〉 by |ψ0(z

∗
0)〉, and P (z0, z

∗
0) by J (z0, z

∗
0).

CA(t|ρtot(t0)) = Trtot (A1(t1) · · ·AN (tN )ρtot(0))

=

∫

dµ(z)

∫

d2z0J (z0, z
∗
0)〈ψ0(z0)|〈z0|A1(t1) · · ·AN (tN )〉|z0〉|ψ0(z0)〉,

(2.31)
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In the same way as (2.21), the reduced density operator is defined as

ρs(t1, t0) =

∫

dµ(z1)

∫

dµ(z0)J (z0, z
∗
0)|ψt1t0(z∗1z0)〉〈ψt0t1(z∗0z1)|, (2.32)

where |ψt1t0(z∗1z0)〉 = G(z∗1z0|t1t0)|ψ0(z
∗
0)〉. The environmental density operator is equal to

ρB(t1, t0) = TrS (ρtot(t1, t0)) =

∫

dµ(z0)J (z0, z
∗
0)|z0〉〈z0|

×
∑

m

〈m|UI(t1, t0)|ψ0(z
∗
0)〉〈ψ0(z0)|U−1

I (t1, t0)|m〉

=

∫

dµ(z0)J (z0, z
∗
0)〈ψ0(z0)|ψ0(z

∗
0)〉|z0〉〈z0|. (2.33)

A description of the different elements of the reduced density operator, as well as some of its properties
is given in Appendix (C).

Once the evolution equation for the reduced propagators G(z∗i zi+1|titi+1) is known, any quantity of the
system (either quantum mean values or multiple-time correlations) can be computed, provided that the sums
∫

dµ(zi) over the coherent state labels can be performed. In the Sections (2.3) and (2.4) we show how to
compute the evolution equation for the reduced propagator, while the Section (2.5) is devoted to the problem
of how to perform the integrals over the coherent state labels.

2.3 EVOLUTION EQUATION FOR THE REDUCED PROPAGATOR

To proceed further we need to derive the equation of motion of the reduced propagator G(z∗i zi+1|titi+1)
[3, 4]. Obviously, once the time evolution of the reduced propagator is obtained, the one corresponding
to the vacuum reduced propagator (2.6) follows from the identities zi+1 = ti+1 = 0. Let us consider the
following time derivative

∂G(z∗i zi+1|titi+1)

∂ti
=

〈

zi

∣

∣

∣

∣

∂UI(ti, ti+1)

∂ti

∣

∣

∣

∣

zi+1

〉

. (2.34)

The evolution operator UI(ti, ti+1) given by (2.8) satisfies the Schrödinger equation in the partial interaction
picture

∂UI(ti, ti+1)

∂ti
=

(

− iHS − i
∑

n

gλ(L
†aλe

−iωλti + La†λe
iωλti)

)

UI(ti, ti+1). (2.35)

When inserted in (2.34) this equation leads to

∂G(z∗i zi+1|titi+1)

∂ti
=

(

− iHS − iL
∑

λ

gλe
iωλtiz∗i,λ

)

G(z∗i zi+1|titi+1)

−iL†
∑

λ

gλe
−iωλti〈zi|aλUI(ti, ti+1)|zi+1〉, (2.36)

where we have used the property 〈z|a†λ = 〈z|z∗λ. To proceed further it is convenient to treat the ma-
trix element 〈zi|aλUI(ti, ti+1)|zi+1〉 that equals to 〈zi|UI(ti, ti+1)aλ(ti, ti+1)|zi+1〉, with aλ(ti, ti+1) =
U−1
I (ti, ti+1)aλUI(ti, ti+1). Integrating the Heisenberg equations of motion for aλ(ti, ti+1),

d

dti
aλ(ti, ti+1) = iωλaλ(ti, ti+1)
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+ i

[

HS +HB +
∑

λ

gλ
(

aλL
†eiωλti+1 + Laλe

−iωλti+1
)

, aλ(ti, ti+1)

]

=

− igλe
−iωλtiL(ti, ti+1), (2.37)

with [A,B] = AB −BA, it follows

aλ(ti, ti+1) = aλ(ti+1, ti+1) − igλ

∫ ti

ti+1

dτL(τ, ti+1)e
iωλτ , (2.38)

with
L(ti, ti+1) = eiHBti+1e−iHtot(ti+1−ti)LeiHtot(ti+1−ti)e−iHBti+1 . (2.39)

Gathering the results, the equation (2.36) becomes

∂G(z∗i zi+1|titi+1)

∂ti
=

(

− iHS + Lz∗i,ti − L†zi+1,ti

)

G(z∗i zi+1|titi+1)

− L†
∫ ti

ti+1

dτα(ti − τ)〈zi|UI(ti, ti+1)L(τ, ti+1)|zi+1〉, (2.40)

where we defined the functions
zi,t = i

∑

λ

gλzi,λe
−iωλt, (2.41)

and
α(t− τ) =

∑

λ

|gλ|2e−iωλ(t−τ). (2.42)

The function zi,t is a sum over time dependent coherent states and α(t − τ) is its time autocorrelation
function, as it can be easily verified by computing the average M[zi,tz

∗
i,τ ] with respect to the measure

dµ(zi) =
∏

(d2ziλ exp(−|zi,λ|2)/π. The function α(t − τ) is the environmental correlation function
introduced in Chapter (1). In terms of the spectral function J(ω) and for zero temperature is (1.50)

α(t− τ) =

∫

dωJ(ω)e−iω(t−τ), (2.43)

from where it can be inferred that effectively J(ω) =
∑

λ |gλ|2δ(ω − ωλ). We can now see from equation
(2.40) why the environmental function is responsible of the dependence of the evolution of the system over
its past history, being the kernel of an integral term from the initial time ti+1 to the actual time ti. The last
equation can be written in a different manner by noting that

〈zi|UI(ti, ti+1)L(τ, ti+1)|zi+1〉 =
δG(z∗i zi+1|titi+1)

δz∗i,τ
, (2.44)

as derived in Appendix (K), so that equation (2.40) becomes

∂G(z∗i zi+1|titi+1)

∂ti
=

(

− iHS + Lz∗i,ti − L†zi+1,ti

)

G(z∗i zi+1|titi+1)

−L†
∫ ti

ti+1

dτα(ti − τ)
δG(z∗i zi+1|titi+1)

δz∗i,τ
. (2.45)

From equation (2.40) (or its equivalent version (2.45)), we could integrate the reduced propagators with the
initial conditions G(z∗i zi+1|titi) = exp (z∗i zi+1). However, the time dependency of the operator appearing
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in the last term of (2.40), L(τ, ti+1) = U−1
I (τ, ti+1)LUI(τ, ti+1), with UI(τ, ti+1) given by (2.8), is over

the total Hamiltonian operator, so that equation (2.40) is still not a closed equation over the reduced Hilbert
space of the system, and it is just a particular representation of the Schrödinger equation for the system and
the environment.

If we want to express the last term of equation (2.40) as an object in the system Hilbert space without the
use of any approximation, it is necessary to do the following

〈zi | UI(ti, τ)LUI(τ, ti+1) | zi+1〉 = Ml

[

〈zi | UI(ti, τ) | zl〉L〈zl | UI(τ, ti+1) | zi+1〉
]

= Ml

[

G(z∗i zl|tiτ)LG(z∗l zi+1|τti+1)
]

, (2.46)

where in the second line we have inserted 1 =
∫

d2z
π e−|z|2 |z〉〈z|, and we have defined

Ml[· · ·] =

∫

dµ(zl) · · · . (2.47)

In that notation, equation (2.40) can be written as

∂G(z∗i zi+1|titi+1)

∂ti
=

(

− iHS + Lz∗i,ti − L†zi+1,ti

)

G(z∗i zi+1|titi+1)

−L†
∫ ti

ti+1

dτα(ti − τ)Ml [G(z∗i zl|tiτ)LG(z∗l zi+1|τti+1)] . (2.48)

In this equation, the last term expresses how the dissipation at time t depends on previous trajectories of
other system propagators [49].

In the next section we discuss some schemes and approximations to compute this last term in order to
express it as a function of the reduced propagator belonging to the system Hilbert space, which makes (2.40)
an explicit equation for the reduced propagator.

2.4 CLOSED FORM FOR THE EVOLUTION EQUATION OF THE REDUCED PROPAGATOR

It is not always possible to compute exactly the matrix element 〈zi|UI(ti, ti+1)L(τ, ti+1)|zi+1〉, and to
express it as a function of the reduced propagator.

As previously noted, only in very exceptional cases this can be done. Particularly, when L(τ, ti+1) ∝
HS(τ, ti+1), then [L,Htot] = 0 and therefore HS(τ, ti+1) = HS , so that

〈zi|L(τ, ti)UI(ti, ti+1)|zi+1〉 ∝ HSG(titi+1|z∗i zi+1). (2.49)

For the particular case HS = ωsσz/2, the choice L = σz represents a solvable model that will serve in
next chapters to derive analytical expressions for the evolution of quantum mean values and multiple-time
correlation functions of system observables.

For other choices of L some approximate scheme has to be taken. We shall focus on the weak coupling
assumption and the near Markovian limit. We start by discussing in Section (2.4.1) a method to derive an
approximate solution based on assuming, as an ansatz, that the coupling operatorL(τ, ti+1) can be expanded
in a certain way. This method is based on a procedure proposed by Cresser in [70], and gives similar results as
the consistency condition proposed in [40]. Other approximations are discussed in Sections (2.4.2), (2.4.3)
and (2.4.4). In all these schemes, the idea is to express the matrix element as a certain system operator
O(zi+1z

∗
i , t, τ) multiplied by the propagator,

〈zi|UI(ti, ti+1)L(τ, ti+1)|zi+1〉 = 〈zi|L(τ, ti)UI(ti, ti+1)|zi+1〉
= O(zi+1z

∗
i , t, τ)G(z∗i zi+1|titi+1) (2.50)
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where the operator O is constructed in an approximate manner. Following the relation (2.44), the former
expression is equivalent to

δG(z∗i zi+1|titi+1)

δz∗i,τ
= O(zi+1z

∗
i , t, τ)G(z∗i zi+1|titi+1) (2.51)

The last expression was proposed in [40, 54] for the evolution equation of vacuum propagators (2.6). Inserting
(2.50) in (2.40), we get the following closed evolution equation for the general reduced propagator,

∂G(z∗i zi+1|titi+1)

∂ti
=

(

− iHS + Lz∗i,ti − L†zi+1,ti

)

G(z∗i zi+1|titi+1)

− L†
∫ ti

ti+1

dτα(ti − τ)O(zi+1z
∗
i , t, τ)G(z∗i zi+1|titi+1). (2.52)

The open equation (2.40) is used in Chapter (8) to derive a theory of MTCF without the use of any
approximation. Because the open structure of the reduced propagators, N -time correlations are found to
depend on N + 1-time correlations. When a perturbative hypothesis is assumed, the hierarchy is used to
derive N -time correlation functions up to second order in the coupling parameter.

The closed equation (2.52) is used,

• As a second order equation in the coupling parameter, in Part (II) to derive a second order master
equation, and in Part (III) to get N -time correlation functions up to the same order.

• As an equation obtained within the expansion assumption, for L = σ12 and initial vacuum state for
the environment, in Part (IV) for the two level atom coupled to the radiation field of a PBG.

• As an exact model for L = σz and general zi+1, also referred as solvable model, in Chapter (9) to
compute two-time correlation functions.

2.4.1 Expansion assumption and consistency condition

The coupling operator appearing in (2.40) can be expressed in the following way as an ansatz [70],

L(τ, ti+1) =
∑

α

Fα(τ, ti, {aλ})Sα(ti, ti+1), (2.53)

where the set {Si} represent a basis of system operators, and Fα(τ, ti, {aλ}) is a certain set of operators
of the total Hilbert space5. The replacement of the last expression in the matrix element of the last term of
(2.40) gives the following formal expression

〈zi|UI(ti, ti+1)L(τ, ti+1)|zi+1〉 = 〈zi|UI(ti, ti+1)

(

∑

α

Fα(τ, ti, {aλ})Sα(ti, ti+1)

)

|zi+1〉

= F(ti, τ, [zi+1])〈zi|UI(ti, ti+1)|zi+1〉 (2.54)

where we have defined the following functional of zi+1
6,

F(ti, τ, [zi+1]) =
∑

α

fα(τ, ti, [zi+1])Sα. (2.55)

5Notice that Fα does not depend on a†, since in the Heisenberg equation of L such term would correspond to [L,L]a† = 0. This is
more clearly seen with the examples we discuss later in this section.
6The object F(ti, τ, [zi+1]) depends on the environmental coordinates zi+1 through the function zi+1,τ−ti+1 , defined in (2.41).
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Thefα(τ, ti, [zi+1]) are also functionals obtained by consideringFα(τ, ti, {aλ})|zi+1〉 = |zi+1〉fα(τ, ti, [zi+1]).
The evolution equation for each function of the expansion is computed taking into account the Heisenberg
equation of L(τ, ti+1), so that

d

dτ
L(τ, ti+1, {aλ})|zi+1〉 =

∑

α

(

d

dτ
fα(τ, ti, [zi+1])

)

Sα(ti, ti+1)|zi+1〉

= −i [Htot, L(τ, ti+1)] |zi+1〉 (2.56)

However, not in all cases can the system of equations for {fα} be solved. First of all, applying the vector
|zi+1〉 simplifies considerably the problem, but only for vacuum reduced propagators, i.e. when zi+1 = 0,
and for particular couplingsL. Specifically, whenL is a member of the atomic basis of matrices (for instance
{σ12, σ21, σ11} for a two level atom7), the problem is exact. Let us show this in more detail with some
examples.

Suppose first that L = σ12. Notice that this case is quite useful, since it corresponds to an atom
dipolarly coupled to an electromagnetic field, or to a Bose-Einstein condensate with an output coupling.
Then, considering that for any system operator S the time dependencies are such that Sα(ti, ti+1) =
U−1
I (ti, ti+1)SαUI(ti, ti+1), with the evolution operators given by (2.8), the evolution equation of each

member of the basis and for the Hamiltonian (2.1) are

dσ12(τ, ti+1)

dτ
= iωSσ12(τ, ti+1) − σz(τ, ti+1)ν(τ)

−
∫ τ

ti+1

dlα(τ − l)σz(τ, ti+1)σ12(l, ti+1);

dσ21(τ, ti+1)

dτ
= −iωSσ21(τ, ti+1) − ν†(τ)σz(τ, ti+1)

−
∫ τ

ti+1

dlα∗(τ − l)σ21(l, ti+1)σz(τ, ti+1);

dσz(τ, ti+1)

dτ
= 2σ21(τ, ti+1)ν(τ) +

∫ τ

ti+1

dlα(τ − l)σ12(τ, ti+1)σ21(l, ti+1)

+ 2ν†(τ)σ12(τ, ti+1) +

∫ τ

ti+1

dlα∗(τ − l)σ21(l, ti+1)σ12(τ, ti+1), (2.57)

with

ν†(t) = −i
∑

λ

gλa
†
λ(0)e

iωλt

ν(t) = i
∑

λ

gλaλ(0)e
−iωλt. (2.58)

Let us now consider the matrix element of the open equation (2.40), 〈zi|UI(ti, ti+1)L(τ, ti+1)|zi+1〉. For
the moment we will suppose zi+1 6= 0. Considering L(τ, ti+1) = σ12(τ, ti+1), we have

dσ12(τ, ti+1)

dτ
|zi+1〉 = iωSσ12(τ, ti+1)|zi+1〉 − σz(τ, ti+1)zi+1,τ−ti+1

|zi+1〉

−
∫ τ

ti+1

dlα(τ − l)σz(τ, ti+1)σ12(l, ti+1)|zi+1〉, (2.59)

7There should be four elements in the basis of a two-level atom. However, since the trace of the density matrix, i.e. the sum of
occupation probabilities of all the two levels has to be one, σ22(t) = 1 − σ11(t) at any time t.
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where zi+1,τ−ti+1
= i
∑

λ gλzi+1e
iωλ(τ−ti+1). Now we consider the aforementioned expansion ofσ12(l, ti+1)

in terms of the basis matrices,

σ12(l, ti+1) = f1(l, τ)σ11(τ, ti+1) + f2(l, τ)σ12(τ, ti+1) + f3(l, τ)σ21(τ, ti+1), (2.60)

which replaced in (2.59) gives rise to the following result

dσ12(τ, ti+1)

dτ
|zi+1〉 = iωSσ12(τ, ti+1)|zi+1〉 − (1 − 2σ11(τ, ti+1))zi+1,τ−ti+1

|zi+1〉

−
∫ τ

ti+1

dlα(τ − l)(1 − 2σ11(τ, ti+1))

{

f1(l, τ)σ11(τ, ti+1)

+ f2(l, τ)σ12(τ, ti+1) + f3(l, τ)σ21(τ, ti+1)

}

|zi+1〉, (2.61)

where we have also considered σz(τ, ti+1) = (1 − 2σ11(τ, ti+1)). Simplifying and ordering the last
expression, we get

dσ12(τ, ti+1)

dτ
|zi+1〉 = zi+1,τ−ti+1

|zi+1〉

−
(

∫ τ

ti+1

α(τ − l)f1(l, ti+1) + 2zi+1,τ−ti+1

)

σ11(τ, ti+1)|zi+1〉

+

(

iωS −
∫ τ

ti+1

dlα(τ − l)f2(l, ti+1)

)

σ12(τ, ti+1)|zi+1〉

+

∫ τ

ti+1

dlα(τ − l)f3(l, ti+1)σ21(τ, ti+1). (2.62)

To proceed further, it is necessary to replace in (2.62) the expansion of all the basis operators {σj,k}(τ, ti+1),
with j, k = 1, · · · 3 in terms of the functions {fα(τ, ti+1)} where α = 1, 2, 3, which according to (2.60) is,

σ21(τ, ti+1) = σ∗
12(τ, ti+1) = f∗1 (τ, ti+1)σ11(ti+1, ti+1) + f∗2 (τ, ti+1)σ21(ti+1, ti+1)

+ f∗3 (τ, ti+1)σ21(ti+1, ti+1)

σ11(τ, ti+1) = σ12(τ, ti+1)σ21(τ, ti+1) = |f3(τ, ti+1)|2

+
(

|f1(τ, ti+1)|2 + |f2(τ, ti+1)|2 − |f3(τ, ti+1)|2
)

σ11(ti+1, ti+1)

+ f1(τ, ti+1)f
∗
3 (τ, ti+1)σ12(ti+1, ti+1) + f3(τ, ti+1)f

∗
1 (τ, ti+1)σ21(ti+1, ti+1).(2.63)

Note that Sα(ti+1, ti+1) = Sα(0) = Sα. Inserting (2.63) in (2.62), we find

dσ12(τ, ti+1)

dτ
|zi+1〉 = zi+1,τ−ti+1

|zi+1〉 −
(

∫ τ

ti+1

α(τ − l)f1(l, ti+1) + 2zi+1,τ−ti+1

)

{

|f3(τ, ti+1)|2

+
(

|f1(τ, ti+1)|2 + |f2(τ, ti+1)|2 − |f3(τ, ti+1)|2
)

σ11

+ f1(τ, ti+1)f
∗
3 (τ, ti+1)σ12 + f3(τ, ti+1)f

∗
1 (τ, ti+1)σ21

}

|zi+1〉

+

(

iωS −
∫ τ

ti+1

dlα(τ − l)f2(l, ti+1)

){

f1(τ, ti+1)σ11 + f2(τ, ti+1)σ12 + f3(τ, ti+1)σ12

}

|zi+1〉

+

∫ τ

ti+1

dlα(τ − l)f3(l, ti+1)

{

f∗1 (τ, ti+1)σ11 + f∗2 (τ, ti+1)σ21 + f∗3 (τ, ti+1)σ21

}

|zi+1〉. (2.64)
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On the other hand, the time derivative with respect to τ of σ12(τ, ti+1) expanded in the basis operators has
the same form as (2.56) but projected over |zi+1〉, so that

dσ12(τ, ti+1)

dτ
|zi+1〉 =

df1(τ, ti+1)

dτ
σ11|zi+1〉 +

df2(τ, ti+1)

dτ
σ12|zi+1〉

+
df3(τ, ti+1)

dτ
σ21|zi+1〉. (2.65)

Rearranging (2.64) and comparing with (2.65), we get the following system of equations,

2zi+1,τ−t −
∫ τ

ti+1

dlα(τ − l)|f3(τ, ti+1)|2 − 2zi+1,τ−t|f3(τ, ti+1)|2 = 0;

df1(τ, ti+1)

dτ
= −

(

∫ τ

ti+1

α(τ − l)f1(l, ti+1) + 2zi+1,τ−ti+1

)

(

|f1(τ, ti+1)|2 + |f2(τ, ti+1)|2 − |f3(τ, ti+1)|2
)

+

(

iωS −
∫ τ

ti+1

dlα(τ − l)f2(l, ti+1)

)

f1(τ, ti+1)

+

∫ τ

ti+1

dlα(τ − l)f3(l, ti+1)f
∗
1 (τ, ti+1);

df2(τ, ti+1)

dτ
= f1(τ, ti+1)f

∗
3 (τ, ti+1)

+

(

iωS −
∫ τ

ti+1

dlα(τ − l)f2(l, ti+1)

)

f2(τ, ti+1)

+

∫ τ

ti+1

dlα(τ − l)f3(l, ti+1)f
∗
3 (τ, ti+1);

df3(τ, ti+1)

dτ
= f3(τ, t)f

∗
1 (τ, t)

+

(

iωS −
∫ τ

ti+1

dlα(τ − l)f2(l, ti+1)

)

f3(τ, ti+1)

+

∫ τ

ti+1

dlα(τ − l)f3(l, ti+1)f
∗
2 (τ, ti+1). (2.66)

From (2.60) the initial conditions for the system are such that f1(ti+1, ti+1) = f3(ti+1, ti+1) = 0 and
f2(ti+1, ti+1) = 1. The former system is quite complicated to solve, since the terms of the evolution
equations are themselves the functions that are being evolved, but in a domain where they have not already
been calculated. To our knowledge, the only way to obtain an easy solution is to set zi+1 = 0, so that the
functions f1(τ, 0) = f3(τ, 0) = 0, and there is only one equation left

df2(τ, ti+1)

dτ
=

(

iωS −
∫ τ

ti+1

dlα(τ − l)f2(l, ti+1)

)

f2(τ, ti+1). (2.67)

In that case, the matrix element

〈zi|UI(ti, ti+1)σ12(τ, ti+1)|0〉 = 〈zi|σ12(τ, ti)UI(ti, ti+1)|0〉 = f2(τ, ti)σ12G(titi+1|z∗i 0). (2.68)
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A similar process can be followed for the case L(τ, 0) = σ21, in which case the solution is

〈zi|σ21(τ, ti)UI(ti, ti+1)|0〉 = f∗2 (τ, ti)σ21G(titi+1|z∗i 0). (2.69)

Notice that for L = σ12, σ21, σz , the functional (2.55) becomes an operator F(ti, τ, [zi+1]) = O(ti, τ).
Before ending this section, it is worth mentioning that for vacuum propagators there exists another

possibility which for the choices of L above discussed gives the same results as the last derivation. It
consists in assuming (2.51) as an ansatz, and then determining the operatorO from the so-called consistency
condition [40],

d

dt

δ | ψt(z∗)〉
δz∗τ

=
δ

δz∗τ

d | ψt(z∗)〉
dt

. (2.70)

With this considerations, the evolution equation for several systems, like a quantum brownian motion model
(in whichL = q, and q is the position coordinate of the particle), and a simple harmonic oscillator at zero and
finite temperature (with L = a, with a its annihilation operator) can be obtained (see for instance [40, 55]).

The consistency condition has been also used by Gambetta and Wiseman in [94] to derive a perturbative
approach for non-Markovian SSE. Nevertheless, their derivation is only valid for baths at T = 0. In the next
section we discuss in detail a different perturbative expansion, which is the one used in this thesis.

2.4.2 Weak coupling assumption

The method proposed in this section consists in expanding the element L(τ, ti, {aλ}) ≡ L(τ, ti) of (2.53)
in powers of a small coupling parameter g. Such parameter defines the difference in magnitude between the
interaction Hamiltonian, HI , and the so-called free term of the HamiltonianH0 = HS +HB , in such a way
that g[H0] = [HI ] (where [A] denotes the magnitude of A). The derivation followed here is based on the
one proposed in [54] for the case of a vacuum propagator (i.e. with zi+1 = 0). It is clear from (2.54), that
the perturbative expansion of L is equivalent to an expansion of O,

O(zi+1z
∗
i , t, τ) =

∑

n=0

gnOn(zi+1z
∗
i , t, τ). (2.71)

Let us remind the definition of L(τ, ti),

L(ti, τ) = eiHBtie−i(HS+HB+HI)(ti−τ)Lei(HS+HB+HI)(ti−τ)e−iHBti , (2.72)

that can be written as

L(ti, τ) = eiHBtiL(τ − ti)e
−iHBti , (2.73)

as a function of an operator L(−t) that corresponds to a backward Heisenberg propagation

L(−t) = e−iHtottLeiHtott. (2.74)

This propagator can be formally integrated as

L(−t) = V−tL− ig

∫ t

0

dτe−i(HS+HB)t[HI , V−τL]ei(HS+HB)t (2.75)

where we have defined Vt as a Liouville superoperator such that

V−tL = e−iH0tLeiH0t = e−iHStLeiHSt. (2.76)



36 THE REDUCED PROPAGATOR OF A QOS

It is important to note that while V−tL is already an operator of the Hilbert space of the system, L(−t)
still acts over the total Hilbert space. Inserting (2.75) into (2.73), we get the zero order of the expansion of
L(ti, τ)

L(ti − τ) = eiHBtiVτ−tiLe
iHBti − igeiHBτ

′

∫ ti−τ

0

dτ ′e−iHS(ti−τ−τ ′)

× [HI ,L(−τ ′)]eiHS(ti−τ−τ ′)e−iHBτ
′

. (2.77)

In order to extract the first order, it is necessary to replace in the last expression the first term of the expansion
(2.75) of L(−τ ′) = V−τL+ O(g). In that way, and after replacing the form (2.1) for HI , we get

L(ti − τ) = Vτ−tiL

− i
∑

λ

gλ

∫ ti−τ

0

dτ ′e−iHS(ti−τ−τ ′)
{

a†λe
iωλτ

′

[L†, V−τL]

+ [L, V−τL
†]aλe

−iωλτ
′
}

eiHS(ti−τ−τ ′) + O(g2) (2.78)

Inserting the last expression in (2.53), we get the following form for the operator O,

O(zi+1z
∗
i , t, τ) = Vτ−tiL+

∫ ti−τ

0

dτ ′
{

z∗i,τ ′Vτ+τ ′−ti{[L†, V−τL]}

−zi+1,τ ′Vτ+τ ′−ti{[L, V−τL†]}
}

+ O(g2), (2.79)

where we the functions z∗i,τ ′ and z∗i,τ ′ are defined according to (2.41), and Vτ+τ ′−ti{· · ·} acts on all the
operators inside the brackets. Inserting the last expression in (2.52) we obtain an equation for the reduced
propagator up to the third order in the perturbation parameter. For the applications studied in this work we
will just use the second order equation, for which only the first term in (2.79) is needed.

2.4.3 Near Markov approximation

In this approximation, the element L(τ, ti+1) is expanded in a time series in parameter (ti+1 − τ), which is
modulated by the time in which the correlation function appearing as an integrand of the last term in (2.40)
decays. Since this is the so-called correlation time τc, this means that (ti+1 − τ) ∼ τc. Let us take the
matrix element

〈zi|UI(ti, ti+1)L(τ, ti+1)|zi+1〉 = 〈zi|L(τ, ti)UI(ti, ti+1)|zi+1〉 (2.80)

and perform an expansion of L(τ, ti) = L(τ − ti) in Taylor series arround ti = τ ,

L(τ − ti) = L+
dL(τ − ti)

dti

∣

∣

∣

∣

ti=τ

(ti − τ)

+
d2L(τ − ti)

dt2i
(ti − τ)2 + O((ti − τ)3). (2.81)

Let us keep just the first order of the last expansion. From the Heisenberg equation for L(τ − ti), we have

dL(τ − ti)

dτ

∣

∣

∣

∣

τ=ti

= −i[HS , L] − i[L†, L]
∑

λ

gλaλe
−iωλti , (2.82)
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that replaced in (2.81) gives the following value for the matrix element (2.80),

〈zi|L(τ, ti)UI(ti, ti+1)|zi+1〉 = LG(z∗i zi+1|titi+1) − i[HS , L]G(z∗i zi+1|titi+1)(ti − τ)

− i[L†, L]
∑

λ

gλe
−iωλti〈zi|aλUI(ti, ti+1)|zi+1〉(ti − τ) + O((ti − τ)3). (2.83)

To proceed further, it is necessary to calculate the element 〈zi|aλUI(ti, ti+1)|zi+1〉. As before, it is only
necessary to consider that it is equal to 〈zi|UI(ti, ti+1)aλ(ti, ti+1)|zi+1〉, where aλ(ti, ti+1) is given by
(2.38). Hence,

〈zi|aλUI(ti, ti+1)|zi+1〉 = zi+1,λ − igλ

∫ ti

ti+1

dτe−iωλτ 〈zi | L(τ, ti)UI(ti, ti+1)|zi+1〉. (2.84)

Considering an expansion of the operatorL(τ, ti) appearing in (2.81) up to zero order, we have an expansion
of the last expression up to such order

〈zi|aλUI(ti, ti+1)|zi+1〉 = zi+1,λ − igλ

∫ ti

ti+1

dτe−iωλτLG(z∗i zi+1|titi+1) + O((ti − τ)),

(2.85)

which can be inserted in (2.83) to obtain a term of order (ti− τ). Therefore, the equation for the propagator
is, up to first order,

∂G(z∗i zi+1|titi+1)

∂ti
=

(

− iHS + Lz∗i,t − L†zi+1,t

−L†Ô(zi+1z
∗
i , ti, ti+1)

)

+ O((ti − τ)2), (2.86)

where

Ô(zi+1z
∗
i , ti, ti+1) =

∫ ti

ti+1

dτα(ti − τ)O(zi+1zi, ti, τ) =

= g0(ti, ti+1)L+ g1(ti, ti+1)

(

− i[HS , L] + g0(ti, ti+1)[L
†, L]L

)

− zi+1,tg1(ti, ti+1)[L
†, L]. (2.87)

The last expression can be defined in terms of a new operator Ô′(ti, ti+1) as

Ô(zi+1z
∗
i , ti, ti+1) = Ô′(ti, ti+1) − zi+1,tg1(ti, ti+1)[L

†, L], (2.88)

where

Ô′(ti, ti+1) = g0(ti, ti+1)L+ g1(ti, ti+1)

(

− i[HS , L] + g0(ti, ti+1)[L
†, L]L

)

. (2.89)

In the last equations we have defined the following set of functions,

gγ(ti, ti+1) =

∫ ti

ti+1

dτα(ti − τ)(ti − τ)(γ), (2.90)
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for γ = 0, 1, 2. Arranging together the terms depending on the environmental coordinates zi and zi+1, we
have

∂G(z∗i zi+1|titi+1)

∂ti
=

(

− iHS + Lz∗i,t − P (ti, ti+1)zi+1,t

− L†Ô′(ti, ti+1)

)

+ O((ti − τ)2), (2.91)

where we have defined

P (ti, ti+1) = L†
(

1 − g1(ti, ti+1)[L
†, L]

)

Ô′(ti, ti+1) =

= g0(ti, ti+1)L+ g1(ti, ti+1)

(

− i[HS , L] + g0(ti, ti+1)[L
†, L]L

)

. (2.92)

In the particular case of zi+1 = 0 the previous result of [54] is obtained.

2.4.4 Relation between weak coupling and near Markov approximation

There is a relation between the correlation time τc, the weak coupling parameter g, and the maximum time tm
up to which any of the corresponding approximations (namely near Markov and weak coupling respectively)
are valid. Thus, when interactions become highly non-Markovian, so τc increases, tm remains constant only
if the square of the coupling parameter g decreases at the same rate. This can be seen more clearly with
an example. Let us suppose that we have a two level system dipolarly coupled with a Lindblad operator
L = σ12 and a total Hamiltonian given by (2.1). As it will be studied in more detail in Chapter (12), the
population of the upper level is in general given by

dρ22(t)

dt
= −2g2

∫ t

0

dτ<{α̂(t− τ)}ρ22(τ) + O(g3), (2.93)

which up to second order in the perturbative parameter g is

ρ22(t) = ρ22(0)

[

1 − 2g2

∫ t

0

dl

∫ l

0

dτ<[α̂(l − τ)

]

+ O(g4). (2.94)

The population ρ22 should always be 0 < ρ22 < 1, in such a way that, if ρ22(0) = 1, then it is necessary
that

[

1 − 2g2

∫ t

0

dl

∫ l

0

dτ<[α̂(l − τ)

]

< 1. (2.95)

The limit condition is then defined as

1

g2
= 2

∫ tm

0

dl

∫ l

0

dτ<[α̂(l − τ)] (2.96)

where tm is the maximum time in which the condition is fulfilled. For a simple exponentially decaying
correlation α(t) = exp (−Γt), the condition reads as follows,

tm =
1

τcg2
, (2.97)

which illustrates the relation between correlation time and perturbative parameter, and therefore the equiva-
lence between the weak coupling and Markov approximation. A new aspect of this equivalence is discussed
in the next chapter, when it is shown that both approximations lead to the same master equation.
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2.5 STOCHASTIC INTERPRETATION OF THE REDUCED PROPAGATOR.

As discussed in the first chapter, our knowledge of the system could be such that if the bath frequecies ω ′
λs

and the coupling constants g′λs are known. Then, it is possible to construct the functions zt as

zi,t = i
∑

λ

gλzi,λe
−iωλt, (2.98)

and the correlation function α(t) with (2.41). Then, if we were able to perform the integrations over the
coherent state variables zi,λ according to the measure dµ(zi), we would obtain the MTCF following (2.12),
and the master equation (2.13). However, the complex Gaussian integrals over coherent states can only be
completely done in the very special case of a solvable model (for instance if L ∝ HS).

In general, some numerical or approximate schemes are needed.

• A numerical way is to choose at random a set of coherent state coordinates z = {z1, · · · , zλ, · · ·} that
are distributed according to the measure dµ(z), i.e such that

zλ = ξ1 + iξ2, (2.99)

where ξi, with i = 1, 2 is a Gaussian distributed real noise. With the set z, and the knowledge of the
corresponding coupling strengths gλ, the functions zi,ti can be generated from equation (2.41). In
that way, we know that the corresponding correlation function α(t), will have the desired form (2.41).
Let us emphasize that within this scheme there is no assumption concerning the size of the system or
the size of the environment, except those made to go from the equation (2.40) to the equation (2.52).
The whole information of the system and environment is available, and we just decide to solve the
multidimensional integrals over coherent states by a Monte-Carlo method. As a consequence the better
the sampling is, the closer we are to the exact solution of the problem, except for the approximations
made, if any, in the equations of motion for the reduced propagators. It turns out that the states of
the oscillators that have a mayor contribution are first of all those that are close to the vacuum, (at
zero temperature), a fact that is encoded in the measure dµ(z), and second the pair of coherent states
zi, zi+1 that have a significant overlap exp(|z∗i − zi+1|2). This last point is relevant if we want to
have a reliable method of stochastic sampling, and it is a consequence of the initial condition for
the reduced propagator. If we consider time averages of observables, such overlap is irrelevant but
becomes important when computing the MTCF.

• The analytical way is to perform the sum over z through Gaussian multidimensional integrals. In
this case it is necessary to use either a weak coupling expansion of the reduced propagators or certain
mathematical theorem established by Novikov [104].

Both techniques will be used and discussed in detail in next chapters, both for evolving expectation values
or MTCF.

In many applications the detailed information of the environment is not known, i.e the individual frequen-
cies ω′

λs and coupling constants g′λs are not accessible. At this point we should keep in mind that the only
required information of the environment is its correlation function. Ifα(t) is at our disposal, we can generate
a Gaussian distributed set of complex random numbers in such a way that they have the required correlation
function (see Appendix (P) and ([35]) for a method). In other words, the synthesis of such complex noise
consists in the construction of a bath of oscillators that has the desired correlation function. Once the noise
is generated, the equations that rule the dynamics of the system state vectors can be integrated, so that an
average over many realizations of the noise leads to the MTCF or to a master equation. Notice that now the
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environment does not need to be composed of harmonic oscillators. Even though equations (2.40) and (2.52)
have been obtained through a microscopical derivation, when zi+1 = 0 they can be considered as the phe-
nomenological description of the interaction of a system with any environment, provided that the last can be
described by a certain fluctuation zi,t with a certain correlation functionα(t). The case with zi+1 6= 0 is more
complicated because the initial condition ofG(z∗i zi+1|titi+1) depends on the particular representation used.
In the present case, where Bargmann states are used, G(z∗i zi+1|ti+1ti+1) = 〈zi|zi+1〉 = exp (z∗i zi+1).

When the variables zi and zi+1 are chosen randomly, equations (2.40) and (2.52) become SSEs. In
addition, when zi+1 = 0, the second order version of (2.52) coincides with the SSE derived by Diósi, Gisin
and Strunz in [40], and later by Strunz in [41].



3
Conclusions of this part

We have presented in this part the general model of Hamiltonian for the systems studied in this thesis, and
the general tool we are going to use to this end, namely the reduced propagator.

In Chapter (1), we discuss the Caldeira and Legget Hamiltonian, which describes a system with a single
generalized coordinate in contact with a harmonic oscillator environment. Under certain conditions, this
system may be reduced to the spin-boson model commonly found in the literature, and which will be studied
in Chapter (5) of this thesis. The interaction part of this Hamiltonian describes a linear coupling between an
environment and a system operator. A more general Hamiltonian for linear couplings consists in a sum over
many environment and system operators. In particular, we show that the Hamiltonian of an atom dipolarly
coupled to the radiation field has this form. In the last part of the chapter is introduced the concept of
Markovian and non-Markovian interactions. Whether the interaction is Markovian or not is determined by
the so-called environmental correlation function. We present such function and discuss some of the different
methods used in its generation.

In Chapter (2) we introduce the reduced propagator as a tool to derive many of the dynamical equations
used in this thesis. When no approximations are made, the evolution equation of the reduced propagator is
an open equation (2.40), belonging to the Hilbert space of the total system. Some approximations can be
assumed to reduce it to a closed equation for the reduced propagator into the system Hilbert space, with the
general form (2.52). In general, both type of equations depend on two-time dependent functions, z∗i,ti and
z∗i+1,ti

, that take into account the “history” of the environment and lead to a conditioned dynamics of the
system with respect to the environment dynamics.

The closed equation (2.52) is used in the Parts (II) and (III) to derive master and MTCF equations up
to second order in the perturbative parameter. When zi+1 = 0, the integration of the equation for the
reduced propagator leads to the evaluation of the reduced density operator with initial condition ρs(0) =
TrS (ρtot(0)) = TrS (|ψ0〉〈ψ0| ⊗ |0〉〈0|), once the average over the final states zi is performed. For initial
environmental state different from the vacuum, zi+1 6= 0, the reduced propagator can be used to evaluate
multiple time correlation functions, as well as the expectation values of system observables with more general
initial conditions.

41



42 CONCLUSIONS OF THIS PART

The open equation (2.40) provides a basic tool to derive in Chapter (III) the hierarchy that MTCF formally
obey when no approximations are made.

When the initial and final environmental states are chosen randomly according to their Gaussian distri-
bution, the equation for the reduced propagator, particularly its closed version, may be considered a SSE.



Part II

QUANTUM MEAN VALUES



4
Introduction

In the last chapter we presented the system reduced propagators G(z∗i zi+1|titi+1) as the essential piece to
calculate any aspect of the dynamics of a quantum open system, including its expectation values and its
fluctuation properties. This chapter examines the former, while the analysis of fluctuations is left for Part
(III).

The dynamics of expectation values of operators of a QOS is studied by using master equations that
evolve the reduced density matrix ρs(t), or SSE that evolve the system wave function 1 |ψt(z∗)〉 in terms of
stochastic trajectories. Both schemes are related with each other by

ρs = M[|ψt(z∗)〉〈ψt(z)|] (4.1)

whereM[∗] denotes the average over the ensemble of trajectories weighted by the distribution of the classical
driving noise appearing in the SSE. Depending on the method used in its derivation, there are many different
SSE that, having the property (4.1) are called unravelings of the reduced density matrix.

In some of these unravelings the stochastic evolution is represented by sudden changes in the wave
vector, giving rise to quantum jump trajectories (see for instance [62, 63, 64, 65, 66, 67]). In some others the
stochastic increment is a diffusive process and gives rise to the quantum state diffusion model of trajectory
(QSD) [68, 69]. This last model has also been extended to non-Markovian interactions [35, 41, 54, 40, 70],
and it is the one studied in this thesis. In the last chapter we have already derived non-Markovian SSE from
the reduced propagator, where it has also been shown that for a bath of harmonic oscillators, the average
appearing in (4.1) is of a Gaussian type M[· · ·] ≡

∫

dµ(z) · · · (see equation (2.47)).
In the first part of the chapter we set up the framework for the dynamical equations used in this thesis to

describe the evolution of expectation values. A broad description of all the alternative methods that exist
in the literature is out of the scope of this work. In consequence, details will only be given when deriving
results that are relevant for the present work. The chapter is divided into two parts,

1By system wave function we mean a vector that lives in the Hilbert space of the system.
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• Section (4.1) starts with a brief historical review of Markovian master equations. A more detailed
derivation of a non-Markovian master equation within the weak coupling approximation is then dis-
cussed. Such equation is later used to describe several systems. We present some references and
discuss some alternative non-Markovian master equations.

• Section (4.2) follows the same structure for introducing SSE. Here, the two types of Markovian
equation, namely jump-like and diffusive are briefly treated. For non-Markovian interactions some
different stochastic schemes are also explained, in order to provide a context for the two particular
ones that are studied in this work. The first scheme is the one proposed by Diósi, Strunz and Gisin in
[39, 40, 71], which can be derived from the formalism of reduced propagators. The second is the one
proposed by Gaspard and Nagaoka in [35]. We note that in the last chapter and in [3, 4], an equation
was presented for propagators starting from an arbitrary environmental state, and which can also be
interpreted as an stochastic equation.

4.1 MASTER EQUATIONS

4.1.1 Markovian master equation

The theory for describing the dynamics of open quantum system is well developed under the Markov
hypothesis, assuming that the relaxation time of the bath is much smaller than any relevant time scale of
the system. One of the first evolution equation was derived in 1917 by Einstein [51, 72], and described the
atomic population dynamics of an atom emitting and absorbing light in a thermal field. This generalization
of this equation, made in 1928 by Pauli [51, 73], reads as follows

dPn(t)

dt
=
∑

m>n

(Anm +BnmD)Pm(t) +
∑

m<n

BnmDPm(t)

−
∑

m<n

(Amn +Bmn D)Pn(t) −
∑

m>n

Bmn DPn(t), (4.2)

where thePn(t) are the occupation probabilities of the energy levels. The coefficientsAmn andBmn represent
the transition rates from the atomic state n to the atomic statem due to spontaneous and stimulated emission
respectively. In this equation,D ≡ D(ωmn) is the energy density of the electromagnetic field at the emitting
frequency, ωmn = (Em−En), whereEn is the energy of the level n. The energy density is given by Plank’s
radiation law, D(ωmn) = αω3

mn exp−(ωmn/κBT ) 2.
The positive terms represent the gain of probability from transitions into the state n, and the negative

terms represent loss of probability by transitions from the state n. The transition rates between populations
{Amn , Bmn } are given by the Fermi Golden Rule within the weak coupling approximation [74]. When the
Hamiltonian of the system is unknown, transition rates can be calculated from experimental data, or chosen
by a phenomenological ansatz. The use of a quantum theory that only has to deal with probabilities was
justified by Pauli with the so-called “repeated random phase assumption” [51], which consisted in assuming
that the phase relation between wave functions are always (repeatedly) randomized, so that only the square
of the wave function (i.e. the probabilities) are relevant.

Later on, a new object was introduced by von-Neumann and Landau [15, 16, 38, 51, 74], the density
operator ρ(t), which is more convenient to describe systems where the repeated random phase assumption

2Let us remind here that we have settled h̄ = 1, so that ωmn = (Em − En)/h̄ ≡ Em − En and D(ωmn) =
αω3

mn exp−(h̄ωmn/κBT ) ≡ D(ωmn) = αω3
mn exp−(ωmn/κBT ).
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can not be applied. A good example of those systems are lasers, which were developed in 1960s. A laser
is a highly coherent field, so that the Pauli equation is not sufficient to describe either its dynamics or the
dynamics of a system interacting with it.

The density operator may in general correspond to a pure quantum state ρ(t) = |Ψt〉〈Ψt|, or to a statistical
mixture, ρ(t) =

∑

k Pk|Ψk〉〈Ψk|, where Pk represents the probability of the state |Ψk〉 in the mixture. In
general, the density operator of a quantum open system corresponds to the later case. For instance, in Chapter
(2) it has been proven that when choosing a coherent state representation for the environment, the reduced
density operator is a statistical mixture of vectors |ψt(z∗)〉, where the sum in k is replaced by an integral
over the different coherent state eigenvalues z∗ ≡ z∗1 · · · z∗λ · · ·. In addition, when the reduced density
matrix is represented in the atomic energy basis, the diagonal elements, called populations, correspond to
the occupation probabilities Pn computed with the Pauli master equation, while the off-diagonal elements,
called coherences, correspond to transitions between the different energy eigenstates of the QOS.

Among the different Markovian master equations proposed in the last decades, the most popular one is
the Lindblad equation [36], which gives positive ρs(t) for all initial conditions,

dρs(t)

dt
= −i[Hs, ρs(t)] +

1

2
([Lρs(t), L

†] + [L, ρs(t)L
†]). (4.3)

Although the positivity of the density operator has been considered an important property to be kept by a
master equation, it can only be expected for initially decorrelated states between system and environment.

In Appendix (C) it is discussed in detail the problem of positivity of the density operator, as well as its
representation in terms of coherences and populations.

4.1.2 Non-Markovian master equations

The first non-Markovian master equation was derived by Redfield within the context of nuclear magnetic
resonance [75]. A more precise non-Markovian master equation and the Redfield equation itself was later
derived by performing a second order perturbative approximation of the von-Neumann equation, which is
the evolution equation for the density matrix of the total system [37, 50]. The same equation can also be
obtained by making certain considerations about the evolution time scales and using the Born approximation,
which consists in assuming ρtot(t) ≈ ρs(t)⊗ ρB [50]. We start this section by deriving the master equation
with the Born approximation, and then with the second order perturbative approximation. Furthermore, we
show in Appendix (D) that the Born approximation is exact up to second order in the perturbation parameter.

4.1.2.1 Time scales and Born approximation The von-Neumann equation for the density operator
of the total system Htot = HS +HB +HI in interaction picture, ρItot(t), reads as follows

dρItot(t)

dt
=

1

i
[VtHI , ρ

I
tot(t)], (4.4)

where VtHI = U−1
0 (t, t0)HIU0(t, t0), ρItot = U−1

0 (t, t0)ρtot(t)U0(t, t0) and the free evolution operator is
U0(t, t0) = exp[−iH0(t − t0)]. To simplify the notation, we set ρItot(t) = ρtot(t). We can integrate (4.4)
between t0 and t, with t− t0 = ∆t. After some iterations and a trace over the bath degrees of freedom, this
leads to the following equation,

∆ρs(t) =
1

i

∫ t

t0

dτTrB{[VτHI , ρtot(t0)]}

+

(

1

i

)2 ∫ t

t0

dτ

∫ τ

t0

dτ ′TrB{[VτHI , [Vτ ′HI , ρtot(τ
′)]]}, (4.5)
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where ρs(t) = TrB{ρtot(t)} is the system reduced density operator and,

∆ρs(t) = ρs(t) − ρs(t0). (4.6)

Equation (4.5) is exact, but some assumptions have to be made in order to express it in a more simple way.
Choosing the vacuum as the initial environmental state, then ρtot(t0) = ρs(t0) ⊗ ρB(t0), and the average
value in ρB(t0) of the coupling HI(t) is zero,

TrB [Vt0HIρB(t0)] = 0, (4.7)

so that the first term in (4.5) can be eliminated. After the change of variable T = τ and s = τ − τ ′, equation
(4.5) becomes,

ρs(t) = ρs(t0) −
∫ t

t0

dT

∫ T−t0

0

dτTrB{[VTHI , [VT−τHI , ρtot(T − τ)]]}. (4.8)

The evolution equation for the reduced density operator can be obtained by deriving (4.8) with respect to t,

dρs(t)

dt
= −

∫ t−t0

0

dτTrB

(

[VtHI , [Vt−τHI , ρtot(t− τ)]]

)

, (4.9)

with initial condition ρs(t0). In order to transform (4.8) into an equation for ρs local in time, it is necessary
to perform a Markovian approximation over the time evolution of the system. In this approximation, the
evolution of ρtot from t0 to t is neglected, provided that the domain of integration time ∆t = t − t0 is
small enough in comparison with the evolution time scale of the system TA (∆t ¿ TA). Notice that this
Markovian approximation, which is related to the evolution time scale of the density operator, is not the
same as the Markovian approximation over the bath evolution time scale. In the latter, the correlation time
of the bath, τc is considered much less than the evolution time of the system (τc ¿ TA). In this derivation
the Markovian approximation is considered over the density operator, but not over the bath. In that way, the
density operator appearing in the right hand side of (4.9) is already local in time, but is still composed of
three terms:

ρtot(t) = ρs(t) ⊗ TrS{ρtot(t)} + ρcorrel(t). (4.10)

The term ρcorrel(t), which describes the correlation between the system and the bath at time t, can be
neglected with the assumption that τC ¿ ∆t, considering that the correlations at time t disappear after a
time which is approximately equal to τc. This is the so-called Born approximation, which is only valid up
to order g2 in perturbation parameter [50, 76].

With those approximations and choosing t0 = 0, the evolution equation (4.9) becomes,

dρs(t)

dt
= −

∫ t

0

dτTrB{[VtHI , [Vt−τHI , ρB(t) ⊗ ρs(t)]]}, (4.11)

where ρB(t) = TrS{ρtot(t)}, and the initial condition is ρs(0). The two approximations described above
are essentially equivalent up to second order in the coupling constant. As discussed in the last chapter, there
is a close connection between the relevant time scales of the problem and the coupling parameter between
system and environment.

4.1.2.2 Second order perturbative approximation in the coupling constant The equivalence
between approximations on time scales and Born approximation, and the weak coupling assumption can be
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easily seen by returning to (4.4) and performing a perturbative integration of ρtot(t). After tracing out again
the bath’s degrees of freedom, we get something very similar to (4.8),

ρs(t) = ρs(t0) −
∫ t

t0

dT

∫ T

0

dτTrB{[VTHI , [VT−τHI , ρtot(t0)]]}, (4.12)

but now with t0 = 0 and ρtot(t0) instead of ρtot(t− τ) inside the integral term. In order to obtain the last
expression we have considered the vacuum initial state for the environment, so thatρtot(t0) = ρB⊗ρt0 . After
deriving equation (4.12) with respect to t, the equation (4.11) is again obtained, once it has been considered
that in the second order term, ρs(0) can be replaced by ρs(t)+O(g). In summary, the assumptions over the
time-scales hierarchy (τc ¿ ∆t¿ TA) are related to the perturbative approximation (g ¿ 1).

We can replace in (4.11) the general form of HI given in the first chapter as

HI =
∑

β

SβBβ , (4.13)

so that

VtHI =
∑

β

Vt {SβBβ} , (4.14)

with

VtSβ = exp (iH0t)Sβ exp (−iH0t) = exp (iHSt)Sβ exp (−iHSt),

VtBβ = exp (iH0t)Bβ exp (−iH0t) = exp (iHBt)Bβ exp (−iHBt). (4.15)

In that way, we get

dρs(t)

dt
= −

∑

γ,β

∫ t

0

dτTrB([VtSγVtBγ , [Vt−τSβVt−τBβ , ρs(t) ⊗ ρB ]]) =

−
∑

γ,β

{
∫ t

0

dτ(VtSγVt−τSβρs(t) − Vt−τSβρs(t)VtSγ)Cγβ(τ)

+

∫ t

0

dτ(ρs(t)Vt−τSβVtSγ − VtSγρs(t)Vt−τSβ)C
∗
γβ(τ)

}

(4.16)

where we have defined

Cγβ(τ) = 〈VtBγVt−τBβ〉B
Cγβ(−τ) = C∗

γβ(τ) = 〈Vt−τBβVtBγ〉B , (4.17)

and we have used the cyclic property of the trace Tr(ABC) = Tr(CAB) = Tr(BCA) to write,

〈Bγ(t)Bβ(t− τ)〉B = TrB(ρBBγ(t)Bβ(t− τ))

〈Bβ(t− τ)Bγ(t)〉B = TrB(ρBBγ(t− τ)Bβ(t)). (4.18)

The master equation, in interaction image with respect to the system and taking into account the relations
between {Bβ}, {Sβ} with the Lindblad operatorL (equations (1.48) and (1.49) of Chapter (1)), is expressed
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as [54]

dρs(t)

dt
= −i[HS , ρs(t)] +

∫ t

0

dτα+∗(t− τ)[L†, ρs(t)Vτ−tL]

+

∫ t

0

dτα+(t− τ)[Vτ−tL
†ρs(t), L]

+

∫ t

0

dτα−(t− τ)[Vτ−tLρs(t), L
†]

+

∫ t

0

dτα−∗(t− τ)[L, ρs(t)Vτ−tL
†] + O(g3), (4.19)

with

α−(t− τ) =
∑

λ

g2
λ(N(ωλ) + 1)e−iωλ(t−τ), (4.20)

and

α+(t− τ) =
∑

λ

g2
λN(ωλ)e

iωλ(t−τ). (4.21)

The function N(ω) = [exp(ωβ) − 1]−1,is the average thermal number of quanta in the mode ω. As will
be shown in more detail in(5.1.1.2), for the choice (1.48) of {Bβ} the relation between the correlations
appearing in the master equation (4.16) and those appearing in (4.19) is α±(t) = 2 (C11(t) ± iC21(t)) [1].

On the one hand, for zero temperature,N(ω),α+(t− τ) and z+ are zero, while α−(t− τ) becomes equal
to

α(t− τ) =
∑

λ

g2
λe

−iωλ(t−τ), (4.22)

and the master equation becomes

dρs(t)

dt
= −i[HS , ρs(t)] − g2

∫ t

0

dτα(τ)L†V−τLρs(t)

− g2

∫ t

0

dτα∗(τ)ρs(t)V−τL
†L

+ g2

∫ t

0

dτα(τ)V−τLρs(t)L
†

+ g2

∫ t

0

dτα∗(τ)Lρs(t)V−τL
†. (4.23)

On the other hand, for L = L† = K, we have

dρs(t)

dt
= −i[HS , ρs(t)] − g2

∫ t

0

dταT (τ)KV−τKρs(t)

− g2

∫ t

0

dτα∗
T (τ)ρs(t)V−τKK

+ g2

∫ t

0

dταT (τ)V−τKρs(t)L

+ g2

∫ t

0

dτα∗
T (τ)Kρs(t)V−τK, (4.24)
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where

αT (t− τ) =
∑

λ

g2
λ

[

coth

(

ωλβ

2

)

cos (ωλ(t− τ)) − i sin (ωλ(t− τ))

]

. (4.25)

The non-Markovian master equation (4.23) leads to the so-called Redfield master equation [75] when
∫ t

0

can be replaced by
∫∞
0

. It is important to point out that the Redfield master equation has been shown to break
the positivity of the density matrix for initial conditions near the border of the space of physically admissible
density matrices, i.e when det(ρs(0)) ≥ 0 but very close to 0. This issue, which has been a subject of
research during the last decade, occurs because the non-Markovian effects that happen at the initial stage
of the evolution are not being taken into account when the integral limits of equation (4.23) are extended
to infinity [77]. The application of an slippage (i.e. a displacement) of initial conditions, first suggested by
Suarez and co-workers [78] for the case of a spin-boson model, and then extended by P. Gaspard and M.
Nagaoka [37] for general systems, appears to solve this problem.

The non-Markovian memory effects occurring in (4.23) through the integrals over the correlation function
α(τ), may disappear in the Markov approximation, in which α(τ) = δ(τ). In that limit, eq. (4.23) turns
out to be the Lindblad master equation (4.3).

Apart from the second order perturbative expansion, there are other methods to derive non-Markovian
master equations. The Nakajima-Zwanzing projection operator technique [76, 79, 80] is one of the most
well known examples. It is based on a partition of the state of a system into a relevant and an irrelevant part,
by defining a suitable projection operator P which projects the state into the relevant part, and a projector
Q = 1 − P which projects into the irrelevant part. For a system coupled to an environment, the most
common choice of P is such that

Pρtot(t) = ρs(t) ⊗ ρB(t), (4.26)

where ρs(t) = TrB (ρtot(t)), and therefore there is an effective decorrelation between system and environ-
ment. The final equation obtained within this method is quite complicated, since it is an integro-differential
equation for Pρtot(t), which implies a non-local time dependence on such operator. The so-called time-
convolutionless projection operator technique solves this problem, giving rise to an equation for Pρtot(t)
with a time-local generator K(t),

dρs(t)

dt
= K(t)ρs(t) (4.27)

which can be derived up to any arbitrary order in the coupling parameter [76]. Specific examples are the
time-convolutionless master equation describing spin-relaxation, the spin-boson model, systems coupled
to a spin bath, charged particles interacting with an electromagnetic field and the atom-laser (see [81] and
references therein). Notice that the second order master equation (4.23) has also the form (4.27).

4.2 STOCHASTIC SCHRÖDINGER EQUATIONS

4.2.1 Markovian SSEs

Stochastic Schrödinger equations were introduced in the 70s within the context of dynamical reduction
models [82, 83, 84, 85, 86] (see also [87] for a recent review). In those models (particularly in the so-called
Continuous Localization Models) a modified Schrödinger equation is generated which, besides the standard
Hamiltonian, contains stochastic terms acting at every time step of the evolution, and nonlinear terms. These
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new terms induce a diffusion process for the state vector which is responsible for its reduction to a particular
subspace or channel in the system’s Hilbert space. In Continuous Localization Models the stochasticity is
associated to the action of some measurement over the system or some interaction with its environment .
For instance, the continuously diffusive non-linear stochastic Schrödinger equation derived by N. Gisin in
[83] departs from the von-Neumann-Lüders postulate [15], considering that the stochastic trajectory of the
system reduces thanks to a sequence of projective measurements performed by an external apparatus.

In the 90s, N. Gisin and I.C. Percival [88], presented a new SSE very similar to the former one which is
driven by a complex white noise, z∗t , and reads as follows

d|ψ̃t〉
dt

= −iHS |ψ̃t〉 + (L− 〈L〉t)
(

z∗t + 〈L†〉t
)

|ψ̃t〉

−Γ

2

(

L†L− 〈L†L〉
)

|ψ̃t〉 + O(g3), (4.28)

in Stratonovich form [51]. The mean value appearing in the former equation is 〈L†〉 = 〈ψ̃t|L†|ψ̃t〉, and the
complex white noise has the following statistical properties,

M[ztz
∗
τ ] = Γδ(t− τ);

M[ztzτ ] = M[zt] = 0, (4.29)

where Γ is the dissipative constant and M[· · ·] denote as usual an average over many realizations of zt.
In addition, a real valued noise Markovian SSE was presented by G. C. Ghirardi, P. Pearle and A. Rimini

[86] also from a dynamical reduction model,

d|ψt〉
dt

= −iHS |ψt〉 + Lξt|ψt〉 −
dtΓ

2
L†L|ψt〉 (4.30)

where ξt is a real-valued Gaussian white noise such that M[ξtξτ ] = α(t− τ) = Γδ(t− τ) [51, 134]. The
former equation is still linear, since it represents the evolution of a non-normalized state. In order to write the
density operator as a mixture of pure state vectors, then it has to be transformed into a non-linear equation
for normalized states |ψ̃t〉. The transformation is formally made as follows,

d|ψ̃t〉
dt

=
d|ψt〉
dt

1√
N

+ |ψt〉
d

dt

1√
N
, (4.31)

where N = 〈ψt|ψt〉.
Several models of Markovian SSE have been derived in the frame of theories of continuous observation

(see for instance [89, 90, 91, 7]). In those models, contrary to dynamical reduction ones, a particular
measuring device is chosen, which determines the kind of trajectory or unraveling that is going to be obtained.
In order to minimize the perturbation caused to the system by the measuring device, the measurement is
not performed directly on the system but on its environment. Since they are entangled, a measurement
of the environment selects the particular state of the mixture compatible with the measurement result. In
that way, the quantity that is continuously measured, which is not necessarily the environmental state but a
combination of its eigenvalues, is related to the stochastic variable zt that drives the SSE. Then a sequence of
measurement results zt corresponds to a single trajectory of a Markovian SSE. In other words, the trajectory
|ψt(z∗)〉 represents the system state conditioned to the sequence of measurements which have given the result
zt. This kind of measurements that are performed over an auxiliary system (in this case the environment) to
which the system of interest is entangled are called indirect.

The SSE generated by dynamical reduction models are of quantum state diffusion type, since the
stochastic element acts on every time step of the trajectory. These diffusive SSE can also be developed in
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the frame of continuous measurement theories. Particularly, in the frame of quantum optics Carmichael
shows that the real noise SSE (4.30) derived by Ghirardi and co-workers in [86] corresponds to continuous
homodyne detection [53]. An example of homodyne detection is discussed by P. Goetsch and co-workers
in [92] to describe the evolution of an initial Schrödinger cat state of a damped harmonic oscillator. The
quantity to be measured in each experimental run is the quadrature of the field emitted by the oscillator
〈X(t)〉θ, where θ is the noise of the trajectory, and the quadrature operator is X = 1/2(b + b†) (where b
and b† are the annihilation and creation operators of the local oscillator and its phase has been set zero).
This output field is put to interfere with a local oscillator of large amplitude and stable phase, in which case
sharp values of the noise θ can be measured. In this scheme, which corresponds particularly to a balanced
homodyne experiment, the indirect variable to be measured is the continuous noise, and such noise defines
a certain diffusive trajectory.

In addition, Wiseman and Milburn showed in [93] that the linear version of the the Gisin and Percival
complex noise SSE (4.28), i.e. the equation

d|ψt〉
dt

= −iHS |ψt〉 + Lz∗t |ψt〉 −
1

2
L†L|ψt〉, (4.32)

derived in [89, 90] corresponds to a continuous heterodyne detection of the bath. In the last equation,
z∗t = ζt = ξ1,t + iξ2,t, where ξi,t with i = 1, 2 is a real-valued Gaussian white noise process. The basis
chosen for homodyne and heterodyne detection is the quadrature and the coherent basis respectively. A
formal derivation of equations (4.30) and (4.32), as well as their correspondence to homodyne and heterodyne
detection, is performed by Gambetta and Wiseman in [94] from the measurement theory. This is discussed
with some more detail in the next section.

Apart from diffusive trajectories, there exist in the Markovian case quantum trajectories in which the
stochastic influence occurs in sudden jumps that interrupt a deterministic non-unitary evolution. The quan-
tum jumps formalism was developed first by Zoller, Marte and Walls [62] as a theory to calculate density
operators conditioned to different number of photon emissions. The density operator corresponding to the
emission of n photons, ρ(n)

S (t), is related with the total density operator by

ρ
(n)
S (t) = TrB (Pnρtot(t)) , (4.33)

where Pn is the projection operator onto the state of the quantized radiation field that contains n photons.
Later on, a formulation of quantum jumps as a stochastic equation was proposed by Hegerfeldt and Wilser
[63], Dalibard, Castin and K. Mølmer [65, 66] and Zoller and co-workers [51, 62, 64] (see [67] for more
details). In all these methods, a non-Hermitian term and a white noise term is added to the Schrödinger
equation. Because of the non-Hermitian term, the trace of the reduced density operator is no longer conserved,
being restored again by imposing stochastically chosen quantum jumps. For instance, in the algorithm by
Dalibard et. al [65]3, the total wave function at time t+dt is |Ψ(t+dt)〉 = |Ψ(0)(t+dt)〉+ |Ψ(1)(t+dt)〉,
where |Ψ(1)〉 represents the product state of the atom in the ground state |1〉 and a photon in the field, and
|Ψ(0)〉 represents the product state of an entangled state between atomic ground and excited level and no
photon in the field. When a photon is detected, the total state is projected into |Ψ(1)〉, and when no photon
is detected it stays in |Ψ(0)(t + dt)〉. The probability for a spontaneous emission during dt is given by
dp = 〈Ψ(1)|Ψ(1)〉. The randomness in the detection and no detection of a photon is simulated by numerical
generation of a random number ε chosen from the interval [0, 1]. Thus, when ε > dp, it is assumed that no
photons are detected, so that |Ψ(t + dt)〉 = |Ψ(0)(t + dt)〉 = µ(1 − idtHeff ), where µ = (1 − dp)−1/2,

3Further details of the derivation should be found in the original paper and references therein, but we here give a brief report of the
method.
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and Heff is a non-Hermitian Hamiltonian. The norm of this state is no longer 1, being given by 1 − dp.
As a consequence, the quantity dp represents the loss of norm of the total state when no photon is detected.
When ε < dp a photon is detected and the total state is projected into the normalized state |Ψ(1)〉 = |1〉⊗|0〉,
where |1〉 is the atomic ground state (where it is supposed that there had not been time for the atom to be
reexcited after having emitted a photon), and the field is reset to the vacuum state (where it has been assumed
that the detected photon is destroyed).

As shown in 1993 by Carmichael [53], the Jump-like Markov SSE corresponds to direct photon detection,
where the experimental set up consists in a photon counter, and the environmental state is expressed in the
number basis. An extended review of the quantum jump approach is found in [67].

Further details of continuous measurement interpretation of Markovian SSE as well as some more refer-
ences are given in Appendix (E).

4.2.2 Non-Markovian SSE

Several methods have been derived in the last decades to obtain non-Markovian SSE. Some of them are
based on expanding the total wave vector into the environmental basis. The coefficients of such expansion
can be sometimes considered stochastic. In addition, their evolution equation can be computed with the
Schrödinger equation for the total wave vector, since they carry all its time dependency. In the last chapter,
we have shown that some linear QSD trajectories are obtained within this method by using a Bargmann
coherent state basis for the bath. On the one hand, for an initial environmental vacuum state, the following
linear equation is obtained up to second order in perturbation parameter g [41]

d|ψt(z∗)〉
dt

= −iHS |ψt(z∗)〉 + Lz∗t |ψt(z∗)〉

− L†
∫ t

0

dτα(t− τ)Vτ−tL|ψt(z∗)〉 + O(g3). (4.34)

This equation was first derived in 1997 by Diósi, Gisin and Strunz [39]. On the other hand, for a more
general initial environmental state z0, the former equation becomes [3, 4]

d|ψt(z∗, z0)〉
dt

= −iHS |ψt(z∗, z0)〉 + Lz∗t |ψt(z∗, z0)〉 − L†z0,t|ψt(z∗, z0)〉

− L†
∫ t

0

dτα(t− τ)Vτ−tL|ψt(z∗, z0)〉 + O(g3). (4.35)

In the second part of the chapter both equations, (4.34) and (4.35), are studied in more detail, and we also
obtain their non-linear version. Deriving a SSE with this method provides a good way to understand the
origin of the stochasticity in the evolution of a quantum open system, as well as the connection between the
noise and the particular state of the environment.

Another proposal is the one from Gaspard and Nagaoka [35] who derive a non-Markovian SSE within the
so-called Feshbach projection-operator method, which is based on the same idea as the Nakajima-Zwanzig
projection operator method but is applied to Schrödinger equation ruling the wave function instead of the
master equation ruling the density operator. The method is explained in some more detail in the next part of
the chapter, where the resulting SSE is also compared to that of Diósi, Gisin and Strunz [1].

A third possibility is to add fictitious modes to the non-Markovian system in such a way as to make the
enlarged hypothetical system dynamics Markovian again. This method, was first proposed by Imamoglu
[95, 96], Garraway [97], and S. Bay and co-workers [98], and then extended by Breuer and co-workers in
several works [76, 81]. In the most recent one (see [81] for details), Breuer proposes an enlarged system
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with density operator W , composed by the original system and a tree level system. The state space of the
auxiliary system, C3, can be spanned by the tree basis states |a〉, |b〉, |c〉. The formalization of the method
is encoded in the embedding theorem, which for that case states that the dynamics of the original system
ρs(t) can be expressed through the time evolution of a certain set of coherences Wab of the density matrix
W of the extended system. The SSE for the wave functions of the extended space |Φt〉 are Markovian, and
therefore have the physical interpretation of continuous measurements. Considering that the extended state
space is given by a tensorial product of the original system state space H and C3, the states |Φt〉 can have
the general form

|Φt〉 = |ϕa(t)〉|a〉 + |ϕb(t)〉|b〉 + |ϕc(t)〉|c〉, (4.36)

where |ϕk〉 εH. Following the embedding theorem we have

ρs(t) =
M [|ϕa(t)〉〈ϕb(t)|]
M〈ϕb(t)|ϕa(t)〉

. (4.37)

Thus, an unraveling is constructed for non-Markovian dynamics which consists in two wave functions, each
of them described by a particular Markovian SSE in the extended Hilbert space. The method has some
restrictions. First, it starts from the general form of the time-convolutionless equation (4.27), which may not
exist for very strong couplings. In addition, the generator of the equation K(t) is written in terms of certain
time-dependent operators belonging to H, to which some restrictions are imposed that might not be valid in
certain cases.

Some other methods are based on continuous measurement theories. For instance, M.W. Jack, M.J. Collet
and D. F. Walls present in [99, 100] a formulation of non-Markovian quantum trajectories which simulate
real-time spectral detection of the light emitted from a localized system. In this case, the non-Markovian
behavior is not intrinsic to the interaction of the system with its environment, but arises from the uncertainty
in the time of emission of particles that are later detected.

In a more recent work, Gambetta and Wiseman propose in [94] a formal way to obtain non-Markovian
SSE from a continuous measurement scheme. In their paper they discuss all the mathematical ingredients to
describe a continuous measurement [101, 102, 103]. This includes a probability-operator-measure element,
or effect,

F̃{qλ} = |{qλ}〉〈{qλ}|, (4.38)

where |{qλ}〉 is the environmental basis, and {qλ} is the result of the measurement. A set of measurement
operators M̃qλ

is also necessary, with the constraint F̃{qλ} = M̃†
qλ
M̃qλ

. For example, we can decompose
the measurement operators as

M̃qλ
= |{nλ}〉〈{qλ}|, (4.39)

where the final state of the environment after a measurement, {nλ} can be chosen as the vacuum, since
generally in most detection situations the measurement results in annihilating the detected field. A noise
operator Ẑ(t) is also defined in such a way that

Ẑ(t)|{qλ}〉 = ẑt|{qλ}〉, (4.40)

where ẑt is the noise function from which the conditioned state after a measurement depend. With this
definitions at hand, two kind of such conditioned system states after measurement can be obtained. The
first state |ψqλ

(t)〉 is such that: a) depends linearly on the premeasurement state |ψt〉, and b) depends on
an environmental state {qλ} which is distributed according to a probability Λ({qλ}) that does not take into
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account the effects of the interaction of the environment, and remains constant in time. In such terms, the
linear state after the measurement of {qλ} is written as

|ψqλ
(t)〉 =

〈{qλ}|ψt〉
√

Λ({qλ})
. (4.41)

Because it is not normalized, the authors argue that the linear conditioned system state does not have a clear
physical interpretation, but is useful to derive the actual probability P ({qλ}, t) that the environmental states
have considering its interaction with the system as

P ({qλ}, t) = 〈ψqλ
(t)|ψqλ

(t)〉Λ({qλ}) (4.42)

Such probability is obtained through a Girsanov transformation of the variables {qλ} [104]. The Girsanov
transformation is explained in some more detail in Appendix H.2. Thanks to this actual probability, it is
possible to derive the second kind of conditioned state |ψ̃qλ

(t)〉 that: a) evolve in a non-linear way, and b)
depends on an environmental state {qλ} that is sampled according to the actual distribution (4.42),

|ψ̃qλ
(t)〉 =

〈{qλ}|ψt〉
√

P ({qλ}, t)
. (4.43)

A linear SSE can be derived from (4.41) as,

d|ψ{qλ}(t)〉
dt

=
∂|ψ{qλ}(t)〉

∂t
+
∑

λ

dqλ
dt

∂|ψ{qλ}(t)〉
∂t

, (4.44)

and provided that a Girsanov transformation can be made, a non-linear SSE results in

d|ψ̃{qλ}(t)〉
dt

=
1

|ψ{qλ}(t)|
d|ψ{qλ}(t)〉

dt
+ |ψ{qλ}(t)〉

d

dt

1

|ψ{qλ}(t)|
, (4.45)

where

|ψ̃{qλ}(t)〉 =
1

|ψ{qλ}(t)|
|ψ{qλ}(t)〉, (4.46)

and |ψ{qλ}(t)| = 〈ψ{qλ}(t)|ψ{qλ}(t)〉. Since it is normalized, the former state represents, with a probability
equal to 1, the conditioned state of the system after a measurement of output {qλ} has been performed
at time t in the environment. This statement is true no matter whether the interaction is Markovian or
non-Markovian. However, the linking of such state with earlier states obtained by evolving (4.45), is only
possible in the first type of interaction. Once a measurement of the environmental state has been made at time
t, a future measure performed at time t+ ∆t is altered if ∆t < τc. In other words, the measurement at time
t+∆t is performed before the environment have recovered from the last measurement, since the recovering
time is of order τc. Considering that ∆t→ 0 for a continuous measurement, only in the Markovian case in
which the correlation time τc = 0 the sequence of measurements that monitorize a trajectory do not affect
each others.

When the environmental basis is chosen as the coherent state basis, |{qλ}〉 ≡ ||{zλ}〉, where ||zλ〉 is a
coherent state (see Appendix (B)), the noise operator is

Ẑ(t) =
∑

λ

gλaλe
−iΩλt, (4.47)
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and therefore the noise function is

ẑt =
∑

λ

gλzλe
−iΩλt, (4.48)

where Ωλ = ωλ − ωS . The phase factor iωSt, appears because the equations derived in the paper are in the
interaction picture with respect to the diagonal part of the system Hamiltonian, HS = −ωSσz/2. Except
for this factor and a constant i, the last equation corresponds to the noise appearing in the Markov equation
(4.32) and in the non-Markovian equation (4.34), obtained by Diósi, Gisin and Strunz [40]. Moreover, the
linear equation (4.44) of a coherent unraveling equals the linear equations (4.32) and (4.34) in the Markov
and non-Markovian case respectively. The distribution used for the linear equation is the Gaussian

Λ({qλ}) = 〈0|z〉〈z|0〉 =
∏

λ

e−|zλ|2

π
. (4.49)

A different unraveling is obtained when choosing a quadrature basis, |{qλ}〉 ≡ |{X+
λ , Y

−
λ }〉, with {X+

λ }
and {Y −

λ } the eigenvalues corresponding to the two-mode quadrature operators

X̂+
λ =

x̂λ + x̂−λ√
2

X̂−
λ =

ŷλ − ŷ−λ√
2

, (4.50)

and x̂λ, ŷλ the quadratures of the annihilation operator âλ,

âλ =
x̂λ + iŷλ√

2
, (4.51)

the resulting linear equation is a real-valued noise equation. For Markovian interactions, such equation
becomes equal to (4.30), and ẑt =

√
Γξt is a real-valued Gaussian white noise. For the non-Markovian case,

the linear equation is

d|ψt(ẑ)〉
dt

=

{

−iHS + ẑtL− LX

∫ t

0

dτβ(t− τ)
δ

δẑτ

}

|ψt(ẑ)〉, (4.52)

with LX = L + L†, which is equal to the linear equation derived by Bassi and Ghirardi in [87] from a
dynamical reduction model. In this unraveling, the noise operator is

Ẑ(t) =
∑

λ>0

2gλ

[

X̂+
λ cos (Ωλ)t+ Ŷ −

λ sin (Ωλt)
]

, (4.53)

and the noise function

ẑt =
∑

λ>0

2gλ
[

X+
λ cos (Ωλ)t+ Y −

λ sin (Ωλt)
]

, (4.54)

in such a way that

M[ẑtẑτ ] = β(t− τ);

M[ẑt] = 0, (4.55)
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with β(t− τ) the memory function for the noise,

β(t− τ) = 2
∑

λ

g2
λ cos (Ωλ(t− τ)). (4.56)

Hence, for non-Markovian interactions, ẑt is a real-valued Gaussian coloured noise. The quadrature unrav-
eling corresponds to a very special type of interaction Hamiltonian in which for each mode λ there exists
another mode that we can label as −λ in such a way that ω−λ = −ωλ, and g−λ = g∗λ. Thus, the interaction
Hamiltonian4 is

HI =
∑

λ>0

gλ

{

L
(

a†λe
iΩλt + a†−λe

−iΩλt
)

− L†
(

a†λe
−iΩλt + a−λe

iΩλt
)

}

. (4.57)

This Hamiltonian could be used as a starting point to derive a SSE by expanding |Ψt〉 in the quadrature
basis. It would be interesting to verify if the resulting equation is equal to (4.52). At the end of the chapter,
we display in serveral tables the different stochastic equations that exist and the different methods that have
been used to derive them. Indeed, the SSE with complex noise (and as noted above maybe also those with
real noise, by using (4.57)) can be derived by representing the total wave function |Ψt〉 within a certain
environmental basis. To this end, it is important that the coefficients of the expansion can be considered
as the stochastic wave vectors5. The average of all these SSEs correspond to closed master equations for
the reduced density matrix. As discussed above, there are several methods for obtaining such closed master
equations, but they mostly rely in assuming some approximation, like the weak coupling or the near-Markov
approximations 6. As an example, the time-convolutionless projection operator technique (TCL) consists in a
systematic perturbative expansion for the time-dependent generator of the master equation (4.27). However,
for strong couplings such an expansion becomes very complicated, so that obtaining a master equation is not
feasible in practice. In order to avoid the problems of a perturbative expansion, Breuer propose in [60, 61]
a method which is based on reconstructing the total density matrix as the expectation value of a pair of
stochastic vectors |Φ1(t)〉, |Φ2(t)〉, such that

ρtot = M[|Φ1(t)〉〈Φ2(t)|], (4.58)

where M denotes a certain stochastic average. It is supposed that the stochastic state vectors are direct
product states of certain system states ψν ∈ HS , and environmental states ξν ∈ HB , where HS and HB

are the system and environmental Hilbert space respectively. Notice that the total density matrix is not
decomposed into the environmental basis. Thus,

|Φν(t)〉 = ψν(t) ⊗ ξν(t); ν = 1, 2, (4.59)

4Expressed in interaction image with respect to the environment and HS .
5This can be seen easily when a coherent state basis is chosen for the environment, since in this basis the measure dµ(z) is a Gaussian
function. Nevertheless, for a general basis some assumptions have to be made. For instance, the Feshbach projection-operator method
used in [35] to derive a SSE decomposes the total wave vector in a general (discrete) environmental basis. In this derivation, the
stochastic interpretation comes from the assumption that the environment is composed of a large number of harmonic oscillators, and
moreover, that the equivalent classical system is chaotic. Thus, the quantities appearing in the evolution of the system wave vector
which are sum over environmental eigenvalues, can be considered as noises through the central limit theorem. This is explained in
more detail in the original paper [35] and in Appendix (F) of this thesis.
6For instance, in Chapter (2) we have seen that the evolution equation of the coefficients of the expansion of |Ψt〉 in a coherent state
basis, namelyG(z∗i zi+1|titi+1)|ψ0〉, is open, i.e. it does not only depend on the coefficient that is being evolved, but on a set of them.
In order to obtain a closed equation which can be interpreted as a SSE, it is in general necessary to perform some of the approximation
described in the same chapter.
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and

ρs(t) = TrB(ρtot) = M[|ψ1(t)〉〈ψ2(t)|〈ξ2(t)|ξ1(t)〉]. (4.60)

The stochastic differential equations for the ψν(t) and the ξν(t) are then constructed in such a way that
|Φν(t)〉 reproduces the exact von-Neumann equation with (4.58). These equations have the structure of
quantum jumps, with a term that represents the periods of deterministic evolution (drift terms), and a term
that provide the contribution from random instantaneous jumps. The method have two mayor advantages: it
gives the exact solution of the von-Neumann equation, and it is valid for other couplings as well as the linear
ones on which most of the former SSE are based. Furthermore, it provides the possibility of determining
numerically MTCF even in the non-Markovian case. Nevertheless, first, to our knowledge there is not an
analytic way to perform the averages M[· · ·], so that no explicit equation of non-Markovian MTCF can
be obtained, and second, when the environmental degrees of freedom is large, the number of spinorial
components of the vector ξν(t) is also large, what might make the numerical convergence slower. For
instance, the electromagnetic field is described through a continuous set of harmonic oscillators, that would
give rise in principle to environmental vectors of infinite dimension.
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DYNAMICAL REDUCTION
HI zt α(t− τ) Equation

No model Real White M[ẑtẑτ ] = Γδ(t− τ) Eq. (4.30)
No model Real Coloured M[ẑtẑτ ] = <α(t− τ) Eq. (4.52)
No model Complex White M [ztz

∗
τ ] = Γδ(t− τ) Eq. (4.32)

MEASUREMENT
HI zt α(t− τ) Equation

HI =
∑

λ>0
gλ{L

(

a†λe
iωλt + a†−λe

−iωλt
)

Real white: M[ẑtẑτ ] = Γδ(t− τ) Eq. (4.30)
−L† (a†λe

−iωλt + a−λe
iωλt
)

} ẑt =
√

Γξt

Real coloured:
Idem ẑt =

∑

λ>0
2gλ{X+

λ cos (ωλ)t M[ẑtẑτ ] = <α(t− τ) Eq. (4.52)
+Y −

λ sin (ωλt)}
Complex white:

HI =
∑

λ
gλ

{

a†λL+ L†aλ

}

ẑt =
√

Γζt =
√

Γ(ξ1,t + iξ2,t) M [ztz
∗
τ ] = Γδ(t− τ) Eq. (4.32)

Complex coloured:
Idem ẑt = −izt M[ztz

∗
τ ] = α(t− τ) Eq. (4.34)

EXPANSION |Ψt〉
HI zt α(t− τ) Equation

Complex white:
HI =

∑

λ
gλ

{

a†λL+ L†aλ

}

zt = −i
∑

λ
gλzλe

−iωλt M [ztz
∗
τ ] = Γδ(t− τ) Eq. (4.32)

Complex coloured:
Idem zt = −i

∑

λ
gλzλe

−iωλt M[ztz
∗
τ ] = α(t− τ) Eqs. (4.34) and (4.35)



5
Quantum mean values a

non-Markovian QOS

In the last chapter we have discussed the different derivations of SSEs that appear in literature, both Markovian
and non-Markovian, as well as the interpretation that the first type of equations have in terms of continuous
measurement. In this chapter, we intend to particularize to the non-Markovian SSE derived from the Feshbach
projection operator method, and from reduced propagators when they are considered as stochastic objects.
In addition, as introduced in Chapter (2), if reduced propagators are not considered stochastic, they can be
used to derive master equations for all the different situations that can be encountered, provided that a closed
equation of G(z∗i , zi+1|titi+1) can be found, and that the analytical average over the z∗i and zi+1 can be
made. The situations here treated are summarized as follows,

• The system and the environment are initially decorrelated, so that

ρtot(t0) = ρs(t0) ⊗ ρB(t0). (5.1)

We consider two cases: ρB corresponding to the vacuum state ρB = |0〉〈0| (although it can also be
written as a thermal reservoir at zero temperature), and ρB a thermal state. In both cases ρB can be
expressed in the coherent state P representation as ρB =

∫

dµ(z0)P (z∗0 , z0)|z0〉〈z0|.
For such initial conditions,

ρs(t) =

∫

dµ(z)

∫

dµ(z0)P (z∗0z0)G(z∗z0|t0)|ψ0〉〈ψ0|G†(z∗0z|0t), (5.2)

〈A〉 = TrS(ρs(t)A), (5.3)

• The system and the environment are initially correlated, so that

ρtot(t0) = ρs(t0) ⊗ ρB(t0) + ρcorrel(t0), (5.4)
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where the last term ρcorrel denotes a certain initial correlation. For instance, this situation corresponds
to

|Ψ0〉 =

∫

dµ(z0)|ψ0(z
∗
0)〉|z0〉 (5.5)

so that the reduced density matrix becomes

ρs(t) =

∫

dµ(z0)

∫

dµ(z′0)ρs(z0z
′∗
0 |t), (5.6)

where we have defined

ρs(z0z
′∗
0 |t) =

∫

dµ(z1)G(z∗1z0|t0)〉|ψ0(z
∗
0)〉〈ψ0(z

′
0)|G†(z′∗0 z1|t0). (5.7)

The motivation of this chapter is double folded: First, we study and compare some of the different SSE
in the literature, in order to prove their correspondence to the master equation, as well as their efficiency in
terms of number of trajectories needed to obtain ρs. Second, we use the reduced propagators to derive some
master equations corresponding to some of the different initial conditions above described. According to
this, the chapter is then divided in two sections:

• In Section (5.1), we focus in the evaluation of quantum mean values by performing a numerical sam-
pling of different stochastic trajectories. Although there is no continuous measurement interpretation
for non-Markovian SSE, their usefulness is not only related to their interpretation in terms of trajecto-
ries of the state vector of a measured system. Without making any attempt to give a physical meaning
to single stochastic trajectories, the SSEs are useful to compute the quantum mean values of a QOS,
being sometimes more efficient than master equations. Such efficiency of the SSE with respect to
master equations depends on two factors: 1) that the system degrees of freedom is large, and 2) that the
sampling of the SSE is good, so that a small number of trajectories is needed to perform the averages.
The first factor is intrinsic to the problem under study, whereas the second depends on the particular
SSE that is chosen. In the first section we try to answer the question of which are the SSE that improve
the sampling, or, to be more exact, when such improvement is significant enough. It is argued that
temperature of the environment is an important parameter to take into account, and we show this in
Section (5.1.3) for a spin boson system.

• In Section (5.2), we show how reduced propagators can be used to derive master equations by perform-
ing analytically the average over different trajectories. In addition, thanks to the reduced propagator,
a master equation is derived which is more general than the existing ones, since it allows the evolution
of system density operators which are initially entangled with the environment, as well as a master
equation for non-zero temperature.

As usual, the coupling parameter g, is defined as g[H0] = [HI ], where H0 = HS + HB . The model
Hamiltonian chosen is the same as in Chapter (2),

H = HS +HB +HI

= HS +
∑

λ

ωλa
†
λaλ +

∑

λ

gλ

(

a†λL+ L†aλ
)

. (5.8)
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5.1 STUDY OF THE SAMPLING OF STOCHASTIC SCRÖDINGER EQUATIONS

As noted in the introduction, the stochastic Schrödinger equation scheme may provide a significant numerical
advantage over the master equation approach, in particular, as soon as the Hilbert space dimension F of the
QOS is large. In order to obtain ρs, the stochastic approach only needs to integrate a state of dimension F for
a certain number of realizations κ. In contrast, the solution of the master equation demands the integration
of F2/2 elements of the density operator. If the number of realizations of the stochastic scheme is not too
large (which also depends on the accuracy one aims to achieve), then stochastic Schrödinger equations may
be in practice more advantageous than master equations, being intrinsically paralelizable. A more accurate
comparison of the performance of both methods can be found in [38], where the time needed to numerically
compute the quantum mean value of a certain operator is studied both with the master equation (TME) and
with the stochastic sampling (TSSE), the latter one within a certain standard error. The relation between
both times is such that

TME

TSSE
∝ F1+x, (5.9)

where x is a parameter that depends on the operator, but generally is equal to 0 or 1. Evidently, the former
is a rough relation. In a more precise calculus, the time TSSE is found to be dependent on the number
of realizations of the stochastic process (also number of trajectories κ) that are necessary to reproduce the
result with a certain accuracy. Therefore, to be numerically efficient it may be very important to choose a
stochastic equation giving solutions with a significant weight in the average

ρs(t) =
M[|ψt(z∗)〉〈ψt(z)|]
M[〈ψt(z)|ψt(z∗)〉]

, (5.10)

so that the number of trajectories needed κ in the stochastic scheme is small. In other words, it is important
to choose the SSE that provides the best possible sampling. Although M[〈ψt(z)|ψt(z∗)〉] = Tr (ρs(t)) = 1,
in practical applications along the chapter the use of (5.10) leads to more stable results, since such average
of the norm is performed numerically and might have not converged to one. As we have seen in Chapter
(2), the distribution of states of the bath, exp (−|z|2) = exp (

∑

λ z
∗
λzλ) also corresponds to that of the

variable zt, since it is composed with the sum zt = i
∑

λ zλgλ exp (−iωλt). Therefore, in the equation of
the reduced propagator, once the variable zt is considered as a noise, it is sampled over the same Gaussian
distribution during the whole evolution. The equation of the vacuum reduced propagator, that is linear
with the wave function, gives rise to two different equations within the weak coupling limit, a convoluted
equation in which the evolution of |ψt(z∗)〉 is local in time, and a non-convoluted equation in which it is not.
These two linear equations, which corresponds to environments at zero temperature, are studied in detail
in Section (5.1.1.1), where it is also shown that they are equivalent with each other up to second order in
the perturbation parameter. The extension of each equation to a model valid at environmental temperatures
different from zero is made in Section (5.1.1.2). In such section, two different derivations are described, the
one performed in [41, 39, 54, 40, 71], and the one presented in [35].

In certain situations the system-environment interaction is responsible for a significant displacement of
the environment oscillators from their initial values. This means that if we keep on sampling the oscillator
eigenvalues according to a Gaussian distribution centered at the origin, they will give stochastic solutions
with negligible weight in the sum (5.10). In other words, since the interaction is also affecting the bath, a
Gaussian distribution centered at the origin might become a poor description of its statistics. To overcome this
problem, a second kind of stochastic Schrödinger equation has been proposed, in which the noise probability
distribution is considered in evolution during the interaction [41, 40]. Due to such dynamical dependence
in its statistics, the equation appears to have a more complicated form than any of the linear ones, showing
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a non-linear dependence with the wave function. Non-linear equations are more convenient especially in
situations where the environmental oscillators, and in consequence their probability distribution (which is
also the one corresponding to the noise), is considerably altered during the interaction. In particular, this
situation occurs in the high temperature regime, in which the non-linear equation has been shown to present
a much more efficient sampling than the linear ones [6]. This result, exemplified with the spin-boson model,
will be further explained in Section (5.1.3).

5.1.1 Non-Markovian linear equation: convoluted and convolutionless

In the non-Markovian regime there are several suitable types of Stochastic equations. In some of these
equations, the noise probability distribution is not considered in evolution during the interaction with the
system, resting as a Gaussian centered at the origin at all times. These are linear equations. Depending on
the derivation and assumptions made, two different linear equations appear in literature: a linear equation
derived in [39, 71, 54, 41] which is local in time for the wave function (here referred as non-convoluted
equation), and a second time non-local equation derived by Gaspard and Nagaoka [35], referred here as
the convoluted equation. Although different in form, both equations are equivalent up to order g2 in the
coupling constant [1]. We study in the first place two linear equations suitable for environments at zero
temperature and weak couplings. The extension of those equations to non-zero temperatures is obtained in
Section (5.1.1.2), where new models of correlation function appear due to the temperature dependence.

5.1.1.1 Zero temperature. Two linear stochastic equations, convoluted and non-convoluted, are pre-
sented in this section. The evolution equation (2.40) for the reduced propagator G(z∗i zi+1|titi+1), can be
used to derive a SSE. For a total system with initial state |Ψ0〉 = |ψ0〉|0〉, we have |ψt(z∗)〉 = G(z∗0|t0)|ψ0〉,
where we have eliminated the subindex i, and made zi+1 = 0 and ti+1 = 0. We then have the following
SSE,

d

dt
|ψt(z∗)〉 = −iHS |ψt〉 + gLz∗t |ψt(z∗)〉

− g2L†
∫ t

0

dτα(t− τ)
δ|ψt(z∗)〉
δz∗τ

, (5.11)

where the quantity δ|ψt(z
∗)〉

δz∗τ
is a functional derivative of |ψt(z∗)〉 with respect to z∗t . This equation, as well

as the vacuum reduced propagator G(z∗0|t0), was first derived by W. T. Strunz and Diósi in [39, 41]. As
derived in Chapter (2), the variable zt is the following combination of coherent state labels zλ,

z∗t = −i
∑

λ

gλz
∗
λe
iwλt, (5.12)

where ωλ represents the frequency of the λ oscillator. Changing to interaction picture with respect to the
subsystem, the equation (5.11) becomes:

d

dt
|ψIt (z∗)〉 = gVtLz

∗
t |ψIt (z∗)〉 − g2VtL

†
∫ t

0

dτα(t− τ)
δ|ψIt (z∗)〉
δz∗τ

, (5.13)

where as usual VtL = eiHStLe−iHSt and |ψt(z∗)〉 = eiHSt|ψspt (z∗)〉, and the index I represents the
interaction picture. Equation (5.11) (or its interaction picture version (5.13)), is equal to the equation (2.45)
for the propagator with zi+1 = ti+1 = 0, and once the propagator is applied to |ψ0〉. As explained in
[41] and Section (2.5), they are just a particular representation of the Schrödinger equation for the system
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and the environment, representing an evolution in the total system state space. The equations only become
stochastic when, for practical reasons we have to choose random realizations of the variables zλ appearing
in z∗t to perform the sum (5.10), establishing a sort of Montecarlo method that permits to consider z∗t as a
noise. The statistical properties of zt are such that:

M[zt] = 0,M[ztzτ ] = 0 (5.14)
M[ztz

∗
τ ] = α(t− τ),

where α(t− τ) is the correlation function of zt, the noise, defined in (2.42) as in (4.22).
Once we consider z∗t as an stochastic variable, the two terms of (5.13) can be interpreted as follows: the

first one represents a stochastic forcing against the system produced by the fluctuations of the bath, and the
last term represents the damping or dissipation, also caused by the interaction with the bath. Whether a
convoluted or a non-convoluted stochastic equation is obtained from (5.13) depends on the treatment of the
functional derivative δ|ψt〉(z∗)

δz∗τ
. In particular, as described in Chapter (2), the following form is proposed as

an ansatz in [54, 40, 71],
δ|ψt(z∗)〉
δz∗τ

= O(t, τ, zt)|ψt(z∗)〉, (5.15)

where O(t, τ, zt) is a linear operator that has to be constructed for each case. Notice that replacing (5.15)
into equation (5.13) we obtain a non-convoluted equation, as the time dependence of the wave function
remains local during the evolution. Naturally, such equation is equal to the closed equation (2.52) for a
vacuum propagator once the last one is applied to an initial state |ψ0〉.

Within the weak coupling approximation scheme developed in chapter (2) (a result obtained in [41, 55]
for the case of a vacuum propagator), the operator O(t, τ, zt) is, up to zero order

O(t, τ, z) = Vτ−tL+ O(g). (5.16)

It should be stressed that since the noise term is of order g, and the dissipative term is at least of order g2

(due to the presence of the correlation function of the noise), only such zero term is necessary for a second
order linear stochastic equation. With (5.16), the second order non-convoluted linear equation becomes:

d

dt
|ψt(z∗)〉 = gVtLz

∗
t |ψt(z∗)〉 − g2VtL

†
∫ t

0

dτα(t− τ)VτL|ψt(z∗)〉. (5.17)

A convoluted linear stochastic equation, analogous to the one obtained in [35], can now be deduced by
performing a perturbative integration of equation (5.13),

|ψt(z∗)〉 − |ψ0〉 = g

∫ t

0

dτz∗τVτL|ψ0〉

+ g2

∫ t

0

dτVτLz
∗
τ

∫ τ

0

dτ ′z∗τ ′Vτ ′L|ψ0〉

− g2

∫ t

0

dτVτL
†
∫ τ

0

dτ ′α(τ − τ ′)Vτ ′L|ψ0〉 + O(g3), (5.18)

and then applying the functional derivative δ|ψt(z
∗)〉

δz∗τ
. Since the functional derivative already appears in a

second order term in g, we restrict ourselves to terms of order g0, so that

δ|ψt(z∗)〉
δz∗τ

= VτL|ψτ (z∗)〉 + O(g). (5.19)
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Here, following a perturbative integration of the wave function, similar to (5.18) but from 0 to τ , we
have settled that |ψ0〉 = |ψτ (z∗)〉 + O(g), up to the zero order needed. Notice that the non-convoluted
equation can also be obtained with this method, by considering that, at the same order, it is also true that
|ψ0〉 = |ψt(z∗)〉+O(g). Let us here point out that in order to keep the correct dependence on the perturbative
variable, it should be taken into account that the functional derivative with respect to z∗τ is in fact equivalent
to δ(∗)

δ(gz∗τ ) . Finally, the linear convoluted equation obtained substituting (5.19) in (5.13) is

d

dt
|ψt(z∗)〉 = gVtLz

∗
t |ψt(z∗)〉 − g2VtL

†
∫ t

0

dτα(t− τ)VτL|ψτ (z∗)〉. (5.20)

5.1.1.2 Non-zero temperature So far, the stochastic equation was derived for an initial state at
zero temperature, corresponding to |Ψ0〉 = |ψ0〉|0〉 for the total state. A more general linear stochastic
Schrödinger equation, valid for baths at finite temperature, can be derived by canonically mapping the
nonzero temperature density operator of the heat bath onto the zero-temperature density operator of a larger
hypothetical environment [40]. The resulting finite temperature linear equation is

d

dt
|ψt〉 = −iHS |ψt〉 + gLz−t |ψt〉 + gL†z+

t |ψt〉

− g2L†
∫ t

0

α−(t− τ)
δ|ψt〉
δz−τ

dτ

− g2L

∫ t

0

α+(t− τ)
δ|ψt〉
δz+
τ
dτ. (5.21)

For simplicity we have dropped the explicit dependence of the wave function on the two independent Gaussian
noises z−t and z+

t , which have zero means and the following correlations:

M[z−t z
−
τ ] = 0,

M[z−∗
t z−τ ] = α−(t− τ) =

∑

λ

g2
λ(N(ωλ) + 1)e−iωλ(t−τ),

M[z+
t z

+
τ ] = 0,

M[z+∗
t z+

τ ] = α+(t− τ) =
∑

λ

g2
λN(ωλ)e

iωλ(t−τ)

M[z+∗
t z−τ ] = 0. (5.22)

Again one can try to replace the functional derivatives in (5.21) by an ansatz of type (5.15). Using a
perturbative expansion for O(t, τ, z) we again find

δ|ψt〉
δz−τ

= O−(t, τ, z±)|ψt〉 = Vτ−tL|ψt(z∗)〉 + O(g),

δ|ψt〉
δz+
τ

= O+(t, τ, z±)|ψt〉 = Vτ−tL
†|ψt〉 + O(g). (5.23)

It can be easily checked that the ensemble average of (5.21) leads to the master equation (4.19). Notice that
at zero temperature, the linear stochastic equation (5.13) is re-obtained, since for this caseN(ω), α+(t− τ)
and z+ are zero, while α−(t− τ) becomes equal to (4.22). For finite temperature and a Hermitian coupling
operator L = L† = K equation (5.21) is simplified as

d

dt
|ψt〉 = −iHS |ψt〉 + gKzt|ψt〉
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−g2K

∫ t

0

dταT (t− τ)Vτ−tK|ψt〉 + O(g3). (5.24)

where now the noise is zt = z+
t + z−t and has the following statistical properties:

M[ztzτ ] = 0,

M[z∗t zτ ] = α−(t− τ) + α+(t− τ) = αT (t− τ)

=
∑

λ

g2
λ

[

coth

(

ωλβ

2

)

cos (ωλ(t− τ)) − i sin (ωλ(t− τ))

]

, (5.25)

this latter being the standard bath correlation function at non-zero temperature [20, 105], previously defined
in (4.25). Clearly, as the temperature goes to zero, αT (t−τ) coincides with the zero-temperature expression
(4.22).

A second linear non-Markovian stochastic Schrödinger equation has been proposed by Gaspard and
Nagaoka [35]. In this section it will be shown that their equation is equivalent to (5.21) up to the relevant
second order in the coupling parameter g, although its derivation is based on very different hypothesis.
Following [35], let us start from a general Hamiltonian for a system and its environment in the form

Htot = HS +HB +HI = H0 + gV, (5.26)

with H0 = HS +HB and an interaction potential V that we assume takes the form

V = V † =
∑

β

SβBβ . (5.27)

The Hermitian subsystem and bath coupling operators are Sβ and Bβ , respectively. This form of the
interaction Hamiltonian covers our earlier model (5.8) by choosing two contribution β = 1, 2 in the sum,
with

S1 = L+ L† ; S2 = i(L− L†), (5.28)

and
B1 =

1

2

∑

λ

gλ(aλ + a†λ) ; B2 =
i

2

∑

λ

gλ(aλ − a†λ). (5.29)

In this approach to a stochastic equation the total wave function is again expanded, here in the basis of
eigenfunctions of the bath {|n〉}, to get

|Ψt〉 =
∑

n

|ψnt 〉|n〉. (5.30)

As before, the ensemble of system states |ψnt 〉 recovers the mixed reduced density operator. The evolution
of each of these states will depend on the evolution of others through a set of coupled differential equations.
Due to this mutual interaction, and provided that the number of system states is sufficiently large, they will
behave in a random way. This brings the idea of deriving a stochastic Schrödinger equation, which evolves
only one member of the ensemble of system states |ψnt 〉, under the assumption that such a state is statistically
representative of the rest. To decouple the evolution equation of such a state from the time evolution of
the rest, the Feshbach projection-operator method is used. Using a perturbative expansion in the coupling
strength, and for the special choice of operators (5.28) and (5.29), the following equation is obtained,

d

dt
|ψt〉 = −iHS |ψt〉 + g

(

LηA(t) + L†ηB(t)
)

|ψt〉
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− 2g2L†
∫ t

0

dτ [C11(τ) − iC21(τ)]V−τLe
−iHSτ |ψt−τ 〉

− 2g2L

∫ t

0

dτ [C11(τ) + iC21(τ)]V−τL
†e−iHSτ |ψt−τ 〉 + O(g3), (5.31)

where the selected system state |ψlt〉 now represents the wave function |ψt(ηA, ηB)〉 ≡ |ψt〉. The variables
ηA(t) and ηB(t) are the combinations,

ηA(t) = η2(t) − iη1(t)

ηB(t) = −η2(t) − iη1(t), (5.32)

with

ηi(t) ≡
∑

m(6=l)
〈l|VtBi|m〉e−β(εm−εl)/2ei(θm−θl). (5.33)

It is assumed that the {θi} form a set of independent random phases, uniformly distributed in the interval
[0, 2π], and εm and εl are eigenvalues corresponding to eigenfunctions |m〉 and |l〉 of the bath Hamiltonian,
respectively. The stochastic nature of equation (5.31) is contained in the behavior of ηi(t). If the number
of states is large enough to perform the sum (5.33) over a large set of phases {θm}, these quantities can be
characterized as Gaussian random variables by the central limit theorem. As complex Gaussian variables,
ηi(t) satisfy the following statistical properties,

M [ηi(t)] = 0 ; M [ηi(t)ηj(τ)] = 0

M
[

ηi(t)η
∗
j (τ)

]

= C∗
ij(t− τ). (5.34)

Following the definition (5.33) for the noise and since M[exp (i(θm − θn))] = δmn, the noise correlation
is given by,

M
[

ηi(t)η
∗
j (τ)

]

=
∑

n

eβ(εl−εn)〈l|VtBi|n〉〈n|VτBj |l〉, (5.35)

or equivalently,

M
[

ηi(t)η
∗
j (τ)

]∣

∣

l
=

Zb
e−βεl

〈l|VtBiρeqb VτBj |l〉, (5.36)

where ρeqb = Z−1
b exp(−Hbβ) is the bath density matrix in equilibrium. In order to obtain the typical

value of this correlation function, a thermal average is performed (see [35] and references therein for further
details), so that

∑

l

e−βεl

Zb
M
[

ηi(t)η
∗
j (τ)

]
∣

∣

l
= Trb[ρ

eq
b VτBjVtBi] = C∗

ij(t− τ). (5.37)

With the choice (5.29) for the bath coupling operators B1 and B2 we find

C12(t) = −C21(t) =
i

4

∑

λ

g2
λ

{

N(ωλ)e
iωλt − (N(ωλ) + 1) e−iωλt

}

C11(t) = C22(t) =
1

4

∑

λ

g2
λ

{

N(ωλ)e
iωλt + (N(ωλ) + 1) e−iωλt

}

, (5.38)

where the thermal averages of aλ, a
†
λ are [51],

Trb [ρeqb aλ(0)aλ(0)] = 0,

Trb
[

ρeqb a
†
λ(0)aλ′(0)

]

= δλλ′N(ωλ), (5.39)
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and N(ωλ) is again the average thermal number of quanta in the mode ωλ. With expressions (5.39), the
combinations 2 (C11(t) ± iC21(t)) appearing in equation (5.31) are equal to the correlation functions α±(t)
of (5.22), as it was already noted in Section (4.1.2), and the noise combinations ηA and ηB are equal
respectively to the noises z− and z+ of that equation. As in the previous approach, when we consider the
case of a system coupling operator L that is Hermitian L = L† = K, we find

d

dt
|ψt(z∗)〉 = −iHS |ψt(z∗)〉 + gKzt|ψt(z∗)〉

− g2K

∫ t

0

dταT (t− τ)Vτ−tKe
−iHS(t−τ)|ψτ (z∗)〉 + O(g3), (5.40)

where we have already changed the notation for the noise, ηB(t) + ηA(t) ≡ zt.
Let us now show how equation (5.24) derived in [41, 39] and equation (5.40) obtained in [35] are equivalent

up to order g2. Indeed, it is consistent with the second order approximation to substitute the wave function
|ψτ (z∗)〉 appearing in the dissipative term of equation(5.40) by its expansion up to order g0 only. For that it
is enough to see that |ψτ (z∗)〉 =

(

e−iHSτ + O(g)
)

|ψ0〉 and furthermore, |ψ0〉 =
(

eiHSt + O(g)
)

|ψt(z∗)〉.
Replacing this expression for |ψ0〉 in the expression for |ψτ (z∗)〉, we conclude that

|ψτ (z∗)〉 =
(

eiHS(t−τ) + O(g)
)

|ψt(z∗)〉. (5.41)

Therefore, within second order in the coupling strength g, equation (5.40) becomes equal to the convolu-
tionless equation (5.24). The same holds true for its non-Hermitian version (5.31), which becomes equal to
equation (5.21). Clearly, this equivalence also extends to the zero temperature equations.

5.1.2 Non-Markovian non-linear equations

As noted in [40], the linear equation has an important drawback. During the evolution of the trajectories,
which is driven by an input noise governed by the initial state of the bath, the solutions |ψt(z∗)〉 may lose
their norm and therefore statistical relevance. This problem comes from not having considered that the
interaction between the system and the bath not only affects the system, but also the bath itself. To see this
more clearly (see [41] for further details) let us define the Husimi function (or Q-function) of the bath as

Qt(z, z
∗) =

e−|z|2

π
〈z|Trs [|Ψt〉〈Ψt|] |z〉, (5.42)

where |z〉 denotes a coherent state of the bath in the Bargmann basis. Since each of these states corresponds
to a certain value of the noise the function Qt(z, z∗) may be interpreted as the probability distribution of
the noise. The substitution of |ψt(z∗)〉 =

∫

dµ(z)|ψt(z∗)〉〈ψt(z)| ⊗ |z〉〈z| in (5.42) gives the following
expression,

Qt(z, z
∗) = 〈ψt(z)|ψt(z∗)〉Q0(z, z

∗), (5.43)

with Q0(z, z
∗) the initial Gaussian distribution of coherent states Q0(z, z

∗) = e−|z|2

π . In terms of (5.43),
the density operator (5.10) can be defined as a mixture of pure normalized states weighted by Qt(z, z

∗),

ρt =

∫

d2z Qt(z, z
∗)
|ψt(z∗)〉〈ψt(z)|
〈ψt(z)|ψt(z∗)〉

. (5.44)

With this expression it is clearer to see that, once the interaction is “switched on” and the environmental
oscillators start to move away from the origin according to the distribution Qt(z, z∗), the states

|ψt(z∗)/〈ψt(z)|ψt(z∗)〉1/2, (5.45)
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which according to Q0(z, z
∗) correspond to small z, will have a decreasing weight in the sum (5.44).

The Husimi function shows a closed time evolution of Liouville form for the set of oscillators zλ composing
the quantity zt, corresponding to the following phase space flow (see [40] and Appendices (5.46) and (H)
for further details of the derivation):

ż∗λ = igλe
−iωλt〈L†〉t. (5.46)

In terms of the trajectories z(t) that follow this flow, the Husimi functionQt(z, z∗) at time t can be expressed
as

Qt(z, z
∗) =

∫

d2z0Q0(z0, z
∗
0)δ2(z − z(t)), (5.47)

where somewhat symbolically, z(t) represents the set of solutions of the different trajectories of the oscillators
starting from the set of initial values {z∗λ(0) = z∗λ,0}. In that way, we can now replace (5.44) by an integral
of wave functions evaluated in the dynamical states z∗(t) ≡ {z∗λ(t)} as

ρt =

∫

d2z0Q0(z0, z
∗
0)

|ψt(z∗(t))〉〈ψt(z∗(t))|
〈ψt(z∗(t))|ψt(z∗(t))〉

=

∫

d2z0
π

e−|z0|2 |ψt(z∗(t))〉〈ψt(z∗(t))|
〈ψt(z∗(t))|ψt(z∗(t))〉

. (5.48)

Now, to perform the integral (5.48) with a Monte-Carlo method, a new stochastic variable z̃∗t is defined,
which corresponds to z∗(t) with a random selection of the initial values for the environmental oscillators
{z∗λ(0)}. From the flow equation (5.46), one obtains

z̃∗t = z∗t + g

∫

dτα∗(t− τ)〈L†〉τ . (5.49)

Here, the variable z∗t is the noise as it appears in the linear stochastic Schrödinger equation, which corresponds
to the stationary statistics with distribution function Q0(z, z

∗). The last term represents a dynamical shift
or displacement of each zt which depends on the history of the interaction with the system. The stochastic
equation for the wave function |ψ(z(t))〉 with a shifted noise in the driving term is [40]

|ψt(z∗(t))〉
dt

= −iHS |ψt(z∗(t))〉 + gLz̃∗t |ψt(z∗(t))〉

− g2(L† − 〈L†〉t)Ō(t, z∗(t))|ψt(z∗(t))〉, (5.50)

with Ō =
∫ t

0
dτα(t − τ)O(t, τ, z∗(t)). In order to make clear that the wave function now depends on the

shifted noise, we show this dependency explicitly through the notation |ψt(z∗(t))〉. By evolving (5.50) we
ensure that the wave functions |ψt(z∗(t))〉 correspond to those realizations that contribute with a significant
probability (importance sampling), which according to (5.49) is ensured by the shift term. It is important
to note that the difference between the original and the shifted noise is of order of the coupling strength
parameter g. Thus, the contribution of the shift turns out to be of the relevant order g2 in the evolution of
the wave functions.

We see from (5.48) that the reduced density operator can now be written as a mixture of normalized
stochastic states,

ρt =

∫

d2z0
π

e−|z0|2 |ψ̃t(z∗(t))〉〈ψ̃t(z∗(t))| (5.51)

with |ψ̃t(z∗(t))〉 = |ψt((z∗(t)))〉/
√

〈ψt((z∗(t))|ψt(z∗(t))〉. From (5.50) one obtains an evolution equation
for these normalized states [40], giving

d|ψ̃t(z∗(t))〉
dt

= −iHS |ψ̃t(z∗(t))〉 + g(L− 〈L†〉)z̃∗t |ψ̃t(z∗(t))〉
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− g2[(L† − 〈L†〉t)Ō(t, z̃t) − 〈(L† − 〈L†〉t)Ō(t, z∗(t))〉]|ψ̃t(z∗(t))〉 (5.52)

Let us now investigate the three equations described above, the linear (5.13), the shifted (5.50) and the non-
linear (5.52) equation by applying them to a spin-boson model. We are interested in studying the numerical
equivalence of both linear equations that has been already proved analytically. Finally, we will focus on the
problem of sampling, and the convenience of using a linear or a non-linear stochastic Schrödinger equation.

5.1.3 Importance of temperature in the sampling: The spin-boson model

A spin-boson model consists of a two-level system (or a spin s = 1
2 ) coupled to a thermal bath of bosonic

harmonic oscillators. Defining the Pauli matrices σz and σx as usual,

σz =

(

1 0
0 −1

)

σx =

(

0 1
1 0

)

the spin-boson model takes the form of the total Hamiltonian (5.8),

Htot = −∆

2
σz + g

∑

λ

gλσx(aλ + a†λ) +
∑

λ

ωλa
†
λaλ, (5.53)

where ∆ is the energy splitting between the two levels, g is the coupling parameter, and σx is the coupling
operator of the system with the bath. Here we have chosen ∆ = 0.1 and g = 0.1. Since in this model
L = σx = L†, we use the master equation (4.24), the linear equation (5.24) (equal to (5.21) forL = L† = K),
the shifted equation (5.50), and the non-linear equation (5.52). In addition, they are all computed using the
correlation function given by (5.25), which can be expressed as follows in terms of the spectral function
J(ω)

αT (t) =

∫ ∞

0

dωJ(ω)

[

coth

(

ωβ

2

)

cos (ωt) − i sin (ωt)

]

. (5.54)

Here, J(ω) is the spectral strength,

J(ω) =
ω3

ω2
c

exp (−ω/ωc), (5.55)

where ωc is a cutoff frequency [35], here chosen as ωc = 1.

5.1.3.1 Comparison of the linear equations The linear equation (5.24), which reads as follows for
the present case,

∂|ψ1(t)〉
dt

= −iHS |ψ1(t)〉 + z∗t |ψ2(t)〉 −
∫ t

0

dτα(t− τ)e−i∆(τ−t)|ψ1(t)〉

∂|ψ2(t)〉
dt

= iHS |ψ2(t)〉 + z∗t |ψ1(t)〉 −
∫ t

0

dτα(t− τ)ei∆(τ−t)|ψ2(t)〉, (5.56)

where |ψt(z)〉 = {ψ1(t)〉, |ψ2(t)〉}. The convoluted linear equation (5.31), for L = L† is equivalent to the
former equation but replacing |ψi(t)〉 by |ψi(t−τ)〉 for i = 1, 2 in the integrals. It has been shown at the end
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Fig. 5.1 Comparison of the convolutionless linear equation (5.24) (dotted line) and the convoluted linear equation
(5.40) (long dashed line) for the same number of trajectories (κ = 10000). It can be observed that both equations present
the same degree of approximation to the non-Markovian master equation (4.24) (solid line). The difference between
them increases with time as the second order approximation becomes less accurate.

of Section (5.1.1.2) that the linear equation (5.21) with the perturbative replacement (5.23) of the functional
derivative is equivalent to (5.31) up to second order in g. Figure 5.1 confirms this expectation where we
compare the ensemble averaged result of both equations obtained with the same number of trajectories,
with that of the master equation. Indeed, the difference between each result and the master equation is
approximately equal, and the discrepancy between both results increases with time as the effects of the
perturbation becomes more important and the second order approximation less accurate.

5.1.3.2 Norm of the wave function We first study the norm of the linear equation (5.13) and the
shifted equation (5.50) for a single trajectory representative of the rest. As we see in Fig. 5.2, norm
preservation is lost after very few time steps for high temperatures. In the lower temperature case (Fig. 5.3),
the norm of the solutions of either equation is clearly more stable than for the high temperature β = 0.01,
and remains approximately bounded in the time interval studied. Finally, the non-linear normalized equation
(5.52) properly maintains the norm provided that the time step of the numerical integration of the equations is
small enough to avoid the problems derived from its discretization. In practice, one keeps the states properly
normalized numerically.
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Fig. 5.2 Evolution of the norm of a single trajectory for high temperature, β = 0.01 using the linear equation (5.13)
(dotted line), and the shifted equation (5.50) (solid line).

5.1.3.3 Ensemble averaged results at different temperatures We have seen in the last section
that norm preservation is rapidly lost at high temperatures. However, the important aspect is that despite of
this problem, the shifted equation (5.50) gives good averaged results. Averaging with the same number of
trajectories, the linear equation, in contrast, presents a solution which during the evolution becomes more
and more fluctuating and far away from the master equation curve. For this model, the shifted equation has
the form

∂|ψ1(z
∗(t))〉

dt
= −iHS |ψ1(z

∗(t))〉 + z̃∗t [|ψ2(z
∗(t))〉 − 〈σx〉|ψ1(z

∗(t))〉]

−
∫ t

0

dτα(t− τ)
[

e−i∆(τ−t)|ψ1(z
∗(t))〉 + 〈σx〉ei∆(τ−t)|ψ2(z

∗(t))〉
]

(5.57)

∂|ψ2(z
∗(t))〉

dt
= iHS |ψ2(z

∗(t))〉 + z̃∗t [|ψ1(z
∗(t))〉 − 〈σx〉|ψ2(z

∗(t))〉]
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Fig. 5.3 Same as Fig. 5.3 but for low temperature, β = 10.
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−
∫ t

0

dτα(t− τ)
[

ei∆(τ−t)|ψ2(z
∗(t))〉 + 〈σx〉e−i∆(τ−t)|ψ1(z

∗(t))〉
]

, (5.58)

where z̃∗t = z∗t +
∫ t

0
dτα(t − τ)〈σx〉, and 〈σx〉 = 〈ψ(zt)|σz|ψ(zt)〉/〈ψ(zt)|ψ(zt)〉. These results, shown

in Figs. 5.4 and 5.5 for κ = 100 and κ = 10000 trajectories respectively, suggest that the shift becomes
essential for the true evolution at high temperature, improving significantly the results in comparison with
those of the linear (non-shifted) equation.
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Fig. 5.4 Solutions of the linear equation (5.13) (dashed line) and the shifted equation (5.50) (long dashed line) for
β = 0.01 (high temperatures), using an ensemble of κ = 100 trajectories. Results are compared to the master equation
(thick black line)

A further question shall be addressed next: Does a normalization of the wave function during the evolution
still improve the statistics? To answer we compare in Fig. 5.6 the results of the shifted equation (5.50) and
the non-linear (also shifted) equation (5.52), which evolves normalized states and has the following form
for the present system,

∂|ψ̃1(z
∗(t))〉

dt
= −iHS |ψ̃1(z

∗(t))〉 + z̃∗t

[

|ψ̃2(z
∗(t))〉 − 〈σx〉|ψ̃1(z

∗(t))〉
]

−
∫ t

0

dτα(t− τ)

[

e−i∆(τ−t)|ψ̃1(z
∗(t))〉 + 〈σx〉ei∆(τ−t)|ψ̃2(z

∗(t))〉
]
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Fig. 5.5 Same as Fig. 5.4 but with κ = 10000 trajectories.
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+

∫ t

0

dτα(t− τ)

[

e−i∆(τ−t)〈ψ̃1(z
∗(t))|ψ̃1(z

∗(t))〉

+ ei∆(τ−t)〈ψ̃2(z
∗(t))|ψ̃2(z

∗(t))〉
]

|ψ̃1(z
∗(t))〉

− 〈σx〉
∫ t

0

dτα(t− τ)

[

ei∆(τ−t)〈ψ̃1(z
∗(t))|ψ̃2(z

∗(t))〉

+ e−i∆(τ−t)〈ψ̃2(z
∗(t))|ψ̃1(z

∗(t))〉
]

|ψ̃1(z
∗(t))〉

(5.59)

∂|ψ̃2(z
∗(t))〉

dt
= iHS |ψ̃2(z

∗(t))〉 + z̃∗t

[

|ψ̃1(z
∗(t))〉 − 〈σx〉|ψ̃2(z

∗(t))〉
]

−
∫ t

0

dτα(t− τ)

[

ei∆(τ−t)|ψ̃2(z
∗(t))〉 + 〈σx〉e−i∆(τ−t)|ψ̃1(z

∗(t))〉
]

+

∫ t

0

dτα(t− τ)

[

e−i∆(τ−t)〈ψ̃1(z
∗(t))|ψ̃2(z

∗(t))〉

+ ei∆(τ−t)〈ψ̃2(z
∗(t))|ψ̃2(z

∗(t))〉
]

|ψ̃1(z
∗(t))〉

− 〈σx〉
∫ t

0

dτα(t− τ)

[

ei∆(τ−t)〈ψ̃1(z
∗(t))|ψ̃2(z

∗(t))〉

+ e−i∆(τ−t)〈ψ̃2(z
∗(t))|ψ̃1(z

∗(t))〉
]

|ψ̃2(z
∗(t))〉, (5.60)

where again z̃∗t = z∗t +
∫ t

0
dτα(t − τ)〈σx〉, and 〈σx〉 = 〈ψ̃(z∗(t))|σz|ψ̃(z∗(t))〉. Using an ensemble of

κ = 1000 trajectories it appears that they both give the same degree of accuracy. To be more specific, for
this number of trajectories it seems that the solutions of both equations still present some fluctuations around
the result of the master equation, but these have the same amplitude in both cases. As a consequence, we can
conclude that, at least for the spin-boson model, no further improvement of the statistics is achieved when
averaging over the normalized solutions of equation (5.52). We conclude that in practice, it is irrelevant
whether one normalizes after each time step. As long as one uses the shifted noise and keeps track of the
norm in order to evaluate expectation values with the correct normalization factor, both the linear shifted
equation (5.50) and the full nonlinear equation (5.52) give results of equal quality.

It is now important to study whether the shifted equation (5.50) still presents a better sampling than the
linear equation (5.24) for low temperatures (β = 10). As shown by Gaspard and Nagaoka [35], the linear
equation already gives averages that are in good agreement with the master equation. Figures 5.7 and 5.8
show that indeed, there is no appreciable improvement of the shifted equation with respect to the linear one
in any of the two statistical ensembles of trajectories used (10000 and 150000 trajectories respectively).
These results, added to the fact that the shifted equation is numerically slower, make the linear equation a
more sensible choice in the low temperature regime.
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Fig. 5.6 Solutions of the shifted equation (5.50) and the non-linear equation (5.52) (long dashed and dotted line
respectively) for β = 0.01 (high temperatures), with an average of κ = 1000 trajectories. The result of the master
equation is displayed with a solid line.
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Fig. 5.7 Solutions of the linear equation (long dashed line) and the shifted equation (dotted line) for β = 10, averaged
for 10000 trajectories. The results are compared to the one obtained from the master equation (thick black line).
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Fig. 5.8 Same as Fig. 5.7 but now with 150000 trajectories.

5.1.3.4 A study of the noise and the shifted noise When comparing the shift term in equation
(5.49), g

∫ t

0
dτα(t−τ)∗〈σx†〉τ , and the original noise zt that appears in expression (5.49) for both temperature

regimes, we find the reason for the previous observations. We present in Fig. 5.9 the time evolution of the
real and imaginary parts of both quantities. For low temperatures β = 10, the shift remains close to zero
during the whole evolution, and therefore its significance relative to the noise zt is small. However, the
situation changes for high temperatures, (β = 0.01), in which the real part of the shift reaches an amplitude
of fluctuations equal to that of the noise, producing a shifted noise very distant from the non-shifted one.

These results can be seen more clearly in Figs. 5.10 and 5.11, which show the real and imaginary parts of
the shift term and the noise for low and high temperatures, respectively. We observe that at low temperatures
the region in which the shift is distributed (a black point located around the center of the coordinate system
in Fig. 5.10) is small in comparison with the region of values of zt. The situation at high temperatures is
different, as we can see in Fig. 5.11. Here, the values of the shift term spreads horizontally across the real
axis with magnitudes equal to those of the noise.

The latter results explain why at high temperatures it is essential to use the shifted noise equation (5.50),
taking into account dynamically the dynamics of the probability distribution. For lower temperatures this
shift is much less important, and the original linear equation can still be used satisfactorily.
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Fig. 5.9 Real and imaginary part of the noise (solid lines) and the shift term (dashed lines) as a function of time for
both temperature regimes.
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Fig. 5.10 Real and imaginary part of the noise (circles) and shift term (crosses) for low temperature, β = 10.
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Fig. 5.11 Same as Fig. 5.10 but now for high temperature β = 0.01.
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5.1.3.5 Noise and shift for other temperatures. Let us study the time averaged magnitude of the
shift term in comparison to that of the noise for other temperature values. Here we define the time averaged
magnitude of a stochastic quantity f(t) simply as T [f ] = 1

T

∫ T

0
dτ |f(τ)|. The relation between these

values will again give us an idea of the necessity of using a non-linear equation instead of the linear one.
For intermediate temperatures (for values of β between 0.01 and 10) we see in Fig. 5.12 that only for very
high temperatures (values of β close to zero), the magnitude of the real part of the shift is comparable to
that of the noise, and therefore a non-linear equation is needed. However, for β greater than 0.1, even the
real part of the shift term saturates to magnitudes very close to zero in comparison to the magnitude of the
noise, which saturates to values of approximately 100 (in inverse time units).
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Fig. 5.12 Real and imaginary part of the time average (denoted as T [∗]) of the absolute value of the noise (solid
line with circles) and shift term (dotted line with crosses) for different inverse temperatures β. Only for very high
temperatures the time average of the shift is relevant in comparison to the non-shifted noise.

5.2 REDUCED PROPAGATOR AS A TOOL TO DERIVE MASTER EQUATIONS

We show in this part different derivations of the master equation, according to different possible initial
conditions for ρtot(t). In order to obtain closed equations, we use the evolution equation of the reduced
propagator up to second order in the perturbative parameter,

dG(z∗i zi+1|t0)
dt

= −iHSG(z∗i zi+1|t0) + Lz∗tG(z∗i zi+1|t0) − L†zi+1,tG(z∗i zi+1|t0)

− L†
∫ t

0

dτα(t− τ)Vτ−tLG(z∗i zi+1|t0) + O(g3). (5.61)

with zi+1 = z0 and zi = z.
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5.2.1 Dissipative master equation with decorrelated initial condition

Let us start by deriving the master equation of an initially decorrelated state ρtot(0) = ρs(0) ⊗ ρB for two
cases: ρB = |0〉〈0|, and ρB =

∫

dµ(z0)P (z∗0 , z0)|z0〉〈z0|.

5.2.1.1 Zero temperature Let us here derive a master equation up to order g2 in coupling constant for
ρB = |0〉〈0|. We define the projector Pt(z∗t zt) ≡ Pt = |ψt(z∗)〉〈ψt(z)| = G(z∗0|t0)|ψ0〉〈ψ0|G†(0z|0t),
so that ρ̇t = M[Ṗt], and

dPt
dt

=
d|ψt(z∗)〉

dt
〈ψt(z)| + |ψt(z∗)〉

d〈ψt(z)|
dt

. (5.62)

In order to perform the average, it will be necessary to use the following properties,

M[Ptzt] =

∫ t

0

dτM[ztz
∗
τ ]M

[

δPt
δz∗τ

]

M[Ptz∗t ] =

∫ t

0

dτM[z∗t zτ ]M

[

δPt
δzτ

]

, (5.63)

which hold for any complex Gaussian noise [54]. From the non-convoluted equation (5.61), with z0 = 0,
the time evolution (5.62) is

dPt
dt

= gz∗t VtLPt − g2VtL
†
∫ t

0

dτα(t− τ)VτLPt + gztPtVtL†

− g2Pt
∫ t

0

dτα∗(t− τ)VτL
†VtL. (5.64)

Using equations (5.15) and (5.63), together with the fact that the wave function |ψt(z∗)〉 depends only on
z∗, the ensemble average of the terms zt in Ṗt has been shown to be [54]:

M[Ptz∗t ] =

∫ t

0

dτM[z∗t zτ ]M

[

|ψt(z∗)〉
δ〈ψt(z)|
δzτ

]

=

∫ t

0

dτM[z∗t zτ ]ρtO
†(t, τ, z),

M[Ptzt] =

∫ t

0

dτM[ztz
∗
τ ]M

[

δ|ψt(z∗)〉
δz∗τ

〈ψt(z)|
]

=

∫ t

0

dτM[ztz
∗
τ ]O(t, τ, z)ρt. (5.65)

Performing the average of (5.64) with the use of the former properties, a (non-convoluted) second order
master equation is obtained

dρt
dt

= g2VtLρt

∫ t

0

dτα∗(t− τ)VτL
† + g2

∫ t

0

dτα(t− τ)VτLρtVtL
†

− g2VtL
†
∫ t

0

dτα(t− τ)VτLρt − g2ρt

∫ t

0

dτα∗(t− τ)VτL
†VtL. (5.66)
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There is a convoluted version of (5.61) that is equivalent up to the same order

dG(z∗z0|t0)
dt

= −iHSG(z∗z0|t0) + Lz∗tG(z∗z0|t0) − L†z0,tG(z∗z0|t0)

− L†
∫ t

0

dτα(t− τ)Vτ−tLG(z∗z0|τ0) + O(g3), (5.67)

and it corresponds to the stochastic equation (5.20) when z0 = 0 and zt is interpreted as a noise. Inserting
this equation into (5.62),

dPt
dt

= gz∗t VtLPt − g2VtL
†
∫ t

0

dτα(t− τ)VτL|ψτ (z∗)〉〈ψt(z)|

+ gztPtVtL† − g2

∫ t

0

dτα∗(t− τ)|ψt(z∗)〉〈ψτ (z)|VτL†VtL, (5.68)

and then performing again an average over the variable z, a second order convoluted master equation can be
obtained. Since the dissipative terms are already of second order, we can follow the same argument as in the
previous section and consider the perturbative integration of the wave function, (this time from τ to t), only
up to order zero. Under this assumption, |ψt〉 = |ψτ 〉 + O(g) and 〈ψt| = 〈ψτ | + O(g). We can therefore
consider, |ψτ 〉〈ψt| = |ψt〉〈ψτ | = Pτ +O(g). The functional derivative in (5.63) is now directly performed
in the analytic form of the projector Pt obtained from the perturbative integration of the last equation,

Pt − P0 = g

∫ t

0

dτVτLz
∗
τP0 + g

∫ t

0

P0VτL
†zτdτ

+ g2

∫ t

0

dτVτLz
∗
τ

∫ τ

0

dτ ′Vτ ′Lz∗τ ′P0

+ g2

∫ t

0

dτ

[
∫ τ

0

dτ ′Vτ ′Lz∗τ ′P0

]

VτL
†zτ

− g2

∫ t

0

dτVτL
†
∫ τ

0

dτ ′α(τ − τ ′)Vτ ′LP0

− g2

∫ t

0

dτ

[
∫ τ

0

dτ ′α∗(τ − τ ′)P0Vτ ′L†
]

VτL+ O(g3). (5.69)

Keeping terms only up to g0, we find

δPt
δz∗τ

= VτLP0 + O(g),

δPt
δzτ

= P0VτL
† + O(g). (5.70)

As before, we can consider the zero order term of an expansion of the type (5.69), so that P0 = Pt+O(g) or
P0 = Pτ +O(g). Choosing the second possibility, and after the average, we find the following convoluted
master equation:

dρt
dt

= g2VtL

∫ t

0

dτα∗(t− τ)ρτVτL
† + g2

∫ t

0

dτα(t− τ)VτLρτVtL
†

− g2VtL
†
∫ t

0

dτα(t− τ)VτLρτ − g2

∫ t

0

dτρτα
∗(t− τ)VτL

†VtL. (5.71)
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To summarize, the second order equations (5.61) and (5.67) (which correspond respectively to (5.13) and
(5.20)) have been used to obtain a convoluted and a non-convoluted master equation respectively. The
method is based on solving perturbatively the dynamical equations of |ψt〉 and Pt. The fact that all the
integral terms appearing in the equations are already of second order (so that it is equivalent to consider in
them |ψ0〉 = |ψt〉 + O(g) or |ψ0〉 = |ψτ 〉 + O(g), and analogously with P0), emphasizes that, up to this
order, a convoluted equation is equivalent to a non-convoluted one. For that reason, a remarkable difference
in the result derived from a convoluted and a non-convoluted equation will therefore indicate a failure in the
second order perturbative approximation. This issue is discussed with further detail in Chapter (IV) for a
two level atom in a PBG material.

5.2.1.2 Non-zero temperature As mentioned Section (2.2), the propagator with evolution given by
(5.61) permits us to calculate the master equation for a system with ρs(0) = |ψ0〉〈ψ0| coupled to an environ-
ment represented by a generalP coherent distribution, in such a way thatρtot(0) =

∫

dµ(z0)P (z0, z
∗
0)|ψ0〉|z0〉〈z0|〈ψ0|.

This density matrix evolves in time as follows,

ρtot(t) =

∫

dµ(z0)P (z0, z
∗
0)UI(t, 0)|z0〉|ψ0〉〈ψ0|〈z0|U−1

I (t, 0). (5.72)

Inserting twice the identity of the Bargmann representation, the former expression can be written as

ρtot(t) =

∫

dµ(z2)

∫

dµ(z1)

∫

dµ(z0)P (z0, z
∗
0)〈z1|UI(t, 0)|z0〉|ψ0〉

〈ψ0|〈z0|U−1
I (t, 0)|z2〉|z1〉〈z2|, (5.73)

which shows that although system and environment might be initially decorrelated, they become correlated
during the interaction. The reduced density matrix of the system, which is defined as ρs = TrB (ρtot) is
equal to,

ρs(t) =

∫

dµ(z0)P (z0, z
∗
0)ρs(z

∗
0z0|t), (5.74)

where we have made the following definition,

ρs(z
∗
0z0|t) =

∫

dµ(z1)G(z∗1z0|t0)〉|ψ0〉〈ψ0|G†(z∗0z1|0t). (5.75)

The evolution of ρs(z∗0z0|t) is given by

dρs(z
∗
0z0|t)
dt

=
d

dt
M1

[

G(z∗1z0|t0)|ψ〉〈ψ|G†(z∗0z1|0t)
]

. (5.76)

If we insert in the former expression the second order perturbative evolution equation (5.61), as well as its
complex conjugated version, it becomes

dρs(z
∗
0z0|t)
dt

= −i[HS , ρs(z
∗
0z0|t)] − z0,tL

†ρs(z
∗
0z0|t) − z′∗0,tρs(z

∗
0z0|t)L

+

∫ t

0

dτα(t− τ)L†Vτ−tLρs(z
∗
0z0|t) −

∫ t

0

dτα∗(t− τ)ρs(z
∗
0z0|t)Vt−τL†L

+ M1

[

z1,tG(z∗z0|t0)|ψ0〉〈ψ0|G†(z∗0z1|t0)L†]

+ M1

[

z∗1,tLG(z∗1z0|t0)|ψ0〉〈ψ0|G†(z∗0z1|t0)
]

+ O(g3). (5.77)
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In order to perform the average in z1, it is necessary to take into account that the initial condition of the
functional appearing inside the corresponding terms is

G(z∗1z0|00)|ψ0〉〈ψ0|G†(z∗0z1|00) = e(z
∗
1z0)e(z

∗
0z1)|ψ0〉〈ψ0|. (5.78)

In that case, the average cannot be made using the property (5.65). Instead, we have to use the property

Mi [zi,tiW[ti, ti+1]] = zi+1,tiMi [W[ti, ti+1]]

+

∫ ti

ti+1

dτMi

[

zi,tz
∗
i,τ

]

Mi

[(

δW[ti, ti+1]

δz∗i,τ

)]

, (5.79)

obtained in Appendix (I) for the average of zi,ti with general functionals W[ti, ti+1] with initial condition
exp (z∗i zi+1). Then, the average of the noise term z1,t is the following 1

M
[

z1,tG(z∗1z0|t0)|ψ0(z0)〉〈ψ0(z0)|G†(z′∗0 z1|0t)L†] = z0tρs(z0z
∗
0 |t)L†

+

∫ t

0

dτα(t− τ)Vτ−tLρs(z0z
∗
0 |t)L† + O(g3), (5.80)

where we have considered that δG(z∗1z0|t0)
δz∗1,τ

= Vτ−tLG(z∗1z0|t0) In the same way we have,

M
[

z∗1,tLG(z∗1z0|t0)|ψ0(z0)〉〈ψ0(z0)|G†(z∗0z1|0t)
]

= z∗0tLρs(z
∗
0z0|t)

+ Lρs(z
∗
0z0|t)

∫ t

0

dτα∗(t− τ)Vτ−tL
† + O(g3). (5.81)

Inserting (5.80) and (5.81) in (5.73), we have the following second order master equation for ρs(z∗0z0|t),

dρs(z
∗
0z0|t)
dt

= −i[HS , ρs(z
∗
0z0|t)] + z0,t[ρs(z

∗
0z0|t), L†]

+ z∗0,t[L, ρs(z
∗
0z0|t)] +

∫ t

0

dτα(t− τ)[Vτ−tLρs(z
∗
0z0|t), L†]

+

∫ t

0

dτα∗(t− τ)[L, ρs(z
∗
0z0|t)Vτ−tL†] + O(g3). (5.82)

Let us now perform the average of (5.82) with respect to z0. The terms with z0,t and z∗0,t are of order g. For
that reason, in order to obtain a second order perturbative master equation, it is necessary to compute their
average by inserting first order perturbative expansion of ρ(z∗0z0), which is given by (J.7) as,

ρs(z
∗
0z0|t) =

∫

dµ(z1)G(z∗1z0|t0)|ψ0〉〈ψ0|G†(z∗0z1)

= ez
∗
0z0

(

ρs(z
∗
0z0|t) +

∫ t

0

dτz∗0,τ [Vτ−tL, ρs(z
∗
0z0|t)]

+

∫ t

0

dτz0,τ [ρs(z
∗
0z0|t), Vτ−tL†]

)

+ O(g2). (5.83)

1Such properties can be derived within a second order perturbative approximation, as shown in Appendix (J)
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If we now chose the P (z0, z
∗
0) as the P distribution of a thermal reservoir,

P (z0, z
∗
0) =

∏

λ

1

πN(ωλ)
e−|z0|2N(ωλ), (5.84)

it can be easily checked that

M0[z0tρs(z
∗
0z0|t)] = −

∫

dµ(z)

∫

dµ(z0)P (z0, z
∗
0)ez0z

∗+zz∗0

∫ t

0

dτz0tz
∗
0τ [Vτ−tL, |ψ0〉〈ψ0|]

= −
∫ t

0

dτα+∗(τ − t)[Vτ−tL, ρs(t)] + O(g3). (5.85)

Then the average of the second term of (5.82) is

M0[z0tρs(z
∗
0z0|t)] =

∫ t

0

dτα+∗(τ − t)[ρs(t), Vτ−tL
†]. (5.86)

We have here defined the funtion α+(t − τ) as in (4.21). Where, as before, N(ωλ) is the average thermal
number of quanta in the mode ωλ, defined in terms of the temperature β = 1/κBT as N(ω) = [exp(ωβ)−
1]−1. After a replacement of (5.85) and (5.86), the average of (5.82) over z0 is

dρs(t)

dt
= −i[HS , ρs(t)] +

∫ t

0

dτα+∗(t− τ)[[Vτ−tL, ρs(t)], L
†]

+

∫ t

0

dτα+(t− τ)[L, [ρs(t), Vτ−tL
†]]

+

∫ t

0

dτα(t− τ)[Vτ−tLρs(t), L
†]

+

∫ t

0

dτα∗(t− τ)[L, ρs(t)Vτ−tL
†] + O(g3). (5.87)

Let us now define the correlation function α−(t − τ) defined in (4.20). In terms of such correlation, the
former equation becomes like (4.19),

dρs(t)

dt
= −i[HS , ρs(t)] +

∫ t

0

dτα+∗(t− τ)[L†, ρs(t)Vτ−tL]

+

∫ t

0

dτα+(t− τ)[Vτ−tL
†ρs(t), L]

+

∫ t

0

dτα−(t− τ)[Vτ−tLρs(t), L
†]

+

∫ t

0

dτα−∗(t− τ)[L, ρs(t)Vτ−tL
†] + O(g3). (5.88)

This equation is the same as the one obtained by Gaspard and Nagaoka in [35, 37] 2, and the one obtained
by making an ensemble average of the equation (5.21) derived by Diósi, Gisin and Strunz in [40].

2Which is identical to equation (4.16), considering (5.29) and (5.28) as the environment and system operators, and identifying the
correlation functions α(±) = 2 (C11 ± C21).
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5.3 DISSIPATIVE MASTER EQUATION WITH CORRELATED INITIAL CONDITIONS

As mentioned in the introduction, the propagator with evolution given by (5.61) permits us to calculate
master equations with general initial conditions. Suppose for instance that we have a pure initial state for
the total density matrix,

ρtot(0) = |Ψ0〉〈Ψ0| =

∫

dµ(z0)

∫

dµ(z′0)|z0〉|ψ0(z
∗
0)〉〈ψ0(z

′
0)|〈z′0|. (5.89)

In order to obtain physical results, this state should be normalized as ρtot(0) = |Ψ0〉〈Ψ0|/〈Ψ0|Ψ0〉. For
simplicity, we will omit in the calculus that follows the normalization factor, although it will be taken into
account in the initial condition of the examples we show in the next sections. Then the total density matrix
reads as follows,

ρtot(t) =

∫

dµ(z0)

∫

dµ(z′0)UI(t, 0)|z0〉|ψ0(z
∗
0)〉〈ψ0(z

′
0)|〈z′0|U−1

I (t, 0). (5.90)

The reduced density matrix of the system, which is defined as ρs = TrB{ρtot} is equal to,

ρs(t) =

∫

dµ(z0)

∫

dµ(z′0)ρs(z
′∗
0 z

′
0z

∗
0z0|t), (5.91)

where we have made the following definition,

ρs(z
′∗
0 z

′
0z

∗
0z0|t) =

∫

dµ(z1)G(t0|z∗1z0)〉|ψ0(z
∗
0)〉〈ψ0(z

′
0)|G†(t0|z′∗0 z1). (5.92)

Once ρs(z′∗0 z
′
0z

∗
0z0|t) is known, then the sum (5.91) can be performed in order to obtain the reduced density

operator. This may be done for each particular initial condition, which is given by the set of values |ψ0(z
∗
0)〉

for each z0. Hence, it is interesting to compute the evolution equation of ρs(z′∗0 z
′
0z

∗
0z0|t), since it represents

the most general object needed to compute ρs. Such evolution,

dρs(z
′∗
0 z

′
0z

∗
0z0|t)

dt
=

d

dt
M1

[

G(z∗1z0|t0)|ψ(z0)〉〈ψ(z′0)|G†(z′∗0 z1|t0)
]

, (5.93)

can obtained within the perturbative approximation by using equation (5.61) for the propagator. In that way
equation (5.93) becomes

dρs(z
′∗
0 z

′
0z

∗
0z0|t)

dt
= −i[HS , ρs(z

′∗
0 z

′
0z

∗
0z0|t)] − z0,tL

†ρs(z
′∗
0 z

′
0z

∗
0z0|t) − z′∗0,tρs(z

′∗
0 z

′
0z

∗
0z0|t)L

+

∫ t

0

dτα(t− τ)L†Vτ−tLρs(z
′∗
0 z

′
0z

∗
0z0|t) −

∫ t

0

dτα∗(t− τ)ρs(z
′∗
0 z

′
0z

∗
0z0|t)Vt−τL†L

+ M1

[

z∗1,tLG(z∗1z0|t0)|ψ0(z
∗
0)〉〈ψ0(z

′
0)|G†(z′∗0 z1|t0)

]

+ M1

[

z1,tG(z∗1z0|t0)|ψ0(z
∗
0)〉〈ψ0(z

′
0)|G†(z′∗0 z1|t0)L†]+ O(g3), (5.94)

where we stress again that the initial condition should be normalized

ρs(z
′∗
0 z

′
0z

∗
0z0|0) = |ψ0(z

∗
0)〉〈ψ0(z

′
0)|/(exp (z′∗0 z0)〈ψ0(z

′
0)||ψ0(z

∗
0)〉. (5.95)
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In order to obtain the master equation up to second order in the perturbative parameter, we can use the
perturbative expansion

G(z∗1 , z0|t10) =

{

1 +

∫ t1

0

dτz∗1,τVτ−t1L−
∫ t1

0

dτz0,τVτ−t1L
†

−
∫ t1

0

dτ

∫ τ

t

dτ ′α(τ − τ ′)Vτ−t1L
†Vτ ′−t1L+

∫ t1

t

dτ

∫ τ

t

dτ ′z∗1,τz
∗
1,τ ′Vτ−t1LVτ ′−t1L

−
∫ t1

t

dτ

∫ τ

0

dτ ′z∗1,τz0,τ ′Vτ−t1LVτ ′−t1L
† −

∫ t1

0

dτ

∫ τ

0

dτ ′z0,τz
∗
1,τ ′Vτ−t1L

†Vτ ′−t1L

−
∫ t1

0

dτ

∫ τ

0

dτ ′z0,τz0,τ ′Vτ−t1L
†Vτ ′−t1L

†
}

G(0)(z∗1z0|t10) + O(g3), (5.96)

considering now t = 0 and the proper labels for the noises. Such expansion can be inserted in the average
of the noise term zt,

M1

[

z1,tG(z∗1z0|t0)|ψ0(z
∗
0)〉〈ψ0(z

′
0)|G†(z′∗0 z1|t0)L†] , (5.97)

to find that, up to second order (see Appendix (J) for details),

M1

[

z1,tG(z∗1z0|t0)|ψ0(z
∗
0)〉〈ψ0(z

′
0)|G†(z′∗0 z1|t0)L†] = z0,tρs(z

′∗
0 z

′
0z

∗
0z0|t)L†

+

∫ t

0

dτα(t− τ)Vτ−tLρs(z
′∗
0 z

′
0z

∗
0z0|t)L† + O(g3). (5.98)

In the last expression, we have replaced the first order density operator in perturbation parameter

ρ(1)
s (z′∗0 z

′
0z

∗
0z0|t) = ρ(0)

s (z′∗0 z
′
0z

∗
0z0|t) +

∫ t

0

dτz′∗0,τ [Vτ−tL, ρ
(0)
s (z′∗0 z

′
0z

∗
0z0|t)]

+

∫ t

0

dτz0,τ [ρ
(0)
s (z′∗0 z

′
0z

∗
0z0|t), Vτ−tL†], (5.99)

by ρs(z′∗0 z
′
0z

∗
0z0|t), since it appears in terms which are at least of first order in g. Note that the last expression

is in terms of the zero order density operator

ρ(0)
s (z′∗0 z

′
0z

∗
0z0|t) = e−iHSt|ψ0(z0)〉〈ψ0(z

′
0)|eiHStez

′∗
0 z0 . (5.100)

In the same way we have,

M1

[

z∗1,tLG(z∗z0|t0)|ψ0(z
∗
0)〉〈ψ0(z

′
0)|G†(z′∗0 z1|t0)

]

= z′∗0,tLρs(z0z
′∗
0 |t0)

+ Lρs(z
′∗
0 z

′
0z

∗
0z0|t)

∫ t

0

dτα∗(t− τ)Vτ−tL
† + O(g3). (5.101)

Inserting (5.98) and (5.101) in (5.94), we have the following second order master equation for ρs(z0z′∗0 ),

dρs(z
′∗
0 z

′
0z

∗
0z0|t)

dt
= −i[HS , ρs(z

′∗
0 z

′
0z

∗
0z0|t)] + z0,t[ρs(z0z

′∗
0 ), L†] + z′∗0,t[L, ρs(z

′∗
0 z

′
0z

∗
0z0|t)]

+

∫ t

0

dτα(t− τ)[Vτ−tLρs(z
′∗
0 z

′
0z

∗
0z0|t), L†]

+

∫ t

0

dτα∗(t− τ)[L, ρs(z
′∗
0 z

′
0z

∗
0z0|t)Vτ−tL†] + O(g3). (5.102)



DISSIPATIVE MASTER EQUATION WITH CORRELATED INITIAL CONDITIONS 93

Suppose now that we have an initial mixed state for the total system, as defined in Section (2.2.2.2),

ρtot(0) =

∫

dµ(z0)J (z0, z
∗
0)|Ψ0(z

∗
0)〉〈Ψ0(z0)|, (5.103)

where J (z0, z
∗
0) is the statistical probability for the member |Ψ0(z

∗
0)〉 of the statistical ensemble. Then, the

reduced density matrix of the system, ρs = TrB{ρtot} is equal to,

ρs(t) =

∫

dµ(z0)J (z0z
∗
0)ρs(z

∗
0z0|t), (5.104)

which is equal to (5.91), but now with the following definition,

ρs(z
∗
0z0|t) =

∫

dµ(z1)G(t0|z∗1z0)〉|ψ0(z
∗
0)〉〈ψ0(z0)|G†(t0|z∗0z1), (5.105)

which is equal to (5.92), but with z′0 = z0. Once such replacement is made, equation (5.102) represents
the evolution of ρs(z∗0z0|t). As in the pure case, provided that the whole set of initial conditions |ψ0(z

∗
0)〉

is known for the problem, as well as the probability distribution J (z0, z
∗
0) which describes its frequency in

the mixture, then the sum (5.104) can be performed with the solutions ρs(z∗0z0|t).
In the next sections, we are going to compute the evolution of ρs(z′∗0 z

′
0z

∗
0z0|t) with two examples, the

solvable model with L ∝ HS , and the spin boson model. The evolution of ρs(z∗0z0|t) is just a particular
case of the former one. To this end, we will verify the equation (5.102) by comparing its results with
those obtained by performing a numerical sampling over stochastic trajectories of the reduced propagator,
following the relation (5.93).

It is clear that equation (5.102) is the essential piece for calculating the evolution equation of single mean
values for general initial conditions. The next sections are devoted to prove such an equation by applying it
to a model with L = σz and HS = ωsσz/2, which is analytically solvable, and to a spin-boson model.

5.3.1 A solvable model

We illustrate the equation (5.102) by applying it to a solvable model, where L = σz and HS = ωσz/2.
First of all, we calculate the mean value of an observable A that has, in the basis of eigenvectors of σz ,

the matrix representation A =

(

0 α
β 0

)

. Taking as the initial values for the states of the total system

|Ψ0(z
∗
0)〉 = |ψ0(z

∗
0)〉|z0〉 and |Ψ0(z

′
0)〉 = |ψ0(z

′∗
0 )〉|z′0?〉, the average of A over these two vectors is given

by
〈Ψ0(z

′
0)|A|Ψ0(z

∗
0)〉 = M1

[

〈ψ0(z
′
0)|G†(z′∗0 z1|0t)AG(z∗1z0|t0)|ψ0(z

∗
0)〉
]

. (5.106)

In the present case, the solution of the equation (5.61) can simply be written as

G(z∗1z0|t10) = exp

{

−iωS
2

(t1 − 0)σz + L

∫ t1

0

dτz∗1,τ − L†
∫ t1

0

dτz∗0,τ

− LL†
∫ t1

0

dτ

∫ τ

0

dsα(τ − s) + z∗1z0

}

. (5.107)

From the equation (5.107), performing the average over the environment degrees of freedom z1 we obtain,

〈A〉 = e
−2
∫

t

0
dτ
∫

τ

0
ds(α(τ−s)+α∗(τ−s)){

α〈ψ0,1|ψ0,2〉eiωt+2
∫

t

0
dτ(z0,τ−z′∗0,τ )
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+ β〈ψ02|ψ01〉e−iωt−2
∫

t

0
dτ(z0,τ−z′∗0,τ )}

, (5.108)

where we have taken a normalized initial system state |ψ0(z
′∗
0 )〉 = |ψ0〉 = |ψ01〉 + |ψ02〉. In the same

manner it follows for 〈σz〉

〈σz〉 = 〈ψ01|ψ01〉 − 〈ψ02|ψ02〉. (5.109)

Figure 5.13 represents (5.108) for A = σi, i = x, y, and (5.109) compared to the result obtained using
the propagator (5.61). When the number of stochastic trajectories included in the ensemble mean (5.93)
is large enough, both results coincide. The correlation function is obtained for 2 oscillators with coupling
parameters g1 = g2 = g = 0.1, frequencies ω1 = 6 and ω2 = 2, and for an atom with rotating frequency
ωS = 4.

5.3.2 A dissipative example: the spin-boson model

Let us now calculate the expectation value 〈Ψ0|A|Ψ0〉, whereA is an operator belonging to the Hilbert space
of a spin which is coupled to a thermal bath of harmonic oscillators, as described by the spin-boson model
[35]. We consider the interaction Hamiltonian of (5.8) with a coupling operator L = σx, and a magnitude
small enough to be considered perturbative. Within this model, the bath can be characterized by the spectral
strength

J(ω) =
ω3

ω2
c

e−ω/ωc , (5.110)

where ωc is a cutoff frequency [22, 34, 35, 37], here chosen as ωc = 1. The correlation function of the noise
generated by a termal bath is given in terms of J(ω) as

α(t) =

∫ ∞

0

dωJ(ω)

[

coth

(

ωβ

2

)

cos (ωt) − i sin (ωt)

]

. (5.111)

The inverse temperature β = (κBT )−1 is chosen according to the energy of the bath, and considering that
the energy of the subsystem is very small compared to it [35]. As noted when introducing the reduced
propagator, when the environment is at high temperatures the noise statistics evolve quite significantly in
time, so that a non-linear equation (see appendix (H)) needs to be considered in order to take this into account.
On the contrary, for low temperatures the state distribution of the bath (i.e. the noise distribution), remains
quite close to a Gaussian during the interaction, and linear equations are a good enough description of the
problem. Since in our present case we consider low temperatures, β = 10, the linear stochastic equations for
the propagators presented in this paper are suitable. In order to reduce the computational effort, we propose
a Fourier expansion of (5.111) of the form

αapprx(t− τ) =

ν/2
∑

m=−ν/2
C(m)e−iπm(t−τ)/Tmax , (5.112)

with the coefficients

C(m) =
1

2Tmax

∫ Tmax

−Tmax

dtα(t)eiπmt/Tmax . (5.113)

where, Tmax is the time window in which the correlation function is expanded in the series. With only
m = 6 oscillators, the obtained correlation function is a good approximation of (5.111) up to T = 5. The
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Fig. 5.13 Evolution of single mean values of TrS(ρs(z
′∗
0 z

′
0z

∗
0z0|t)σi, with i = {x, y, z} and normaliced initial

condition ρs(z
′∗
0 z

′
0z

∗
0z0|0) = TrB (|ψ0〉|z0〉〈z′0|〈ψ0|/〈ψ0|〈z′0|z0〉|ψ0〉) = |ψ0〉〈ψ0|/〈ψ0|ψ0〉. We have taken initial

value already normalized |ψ0〉 = (1+2i)|−〉+(1+i)|+〉√
7

. The average of equation (5.94) is numerically computed using the
evolution (5.61) for an ensemble of 100 trajectories (dotted line) and 103 (long dashed line). The last result is practically
equal to that of the solutions (5.108) and (5.109) obtained analytically (solid line).
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procedure consists in plottingC(m) with a high number of oscillators, and then sample it withm = 6 values
of frequency. By doing this, the 6 frequencies of oscillators entering in the sum (5.112) will correspond
to some of the most representative values of the coefficients. The comparison between (5.111) and the
approximate correlation for 6 oscillators is shown in Figure 5.14.

0 2 4
t

-0.02

0

0.02

0.04

0.06

 α
(t

)

Fig. 5.14 Thermal correlation function α(t), given as (5.111) with β = 10 (solid line), compared to its Taylor
expansion αappx given as (5.112) with only m = 6 oscillators (long-dashed line). Despite the fact that the number of
oscillators is very short, the approximation is quite good. This is due to the fact that the frequencies of those oscillators
have been chosen between the most significant ones of the function C(m).

For the thermal correlation function, we show in Figure (5.15) the evolution of TrS(ρs(z
′∗
0 z

′
0z

∗
0z0|t)σi),

with i = {x, y, z}. It can be observed how the average of equation (5.94), which is numerically computed
using the evolution (5.61), approaches to the result of (5.101) when a large enough ensemble of trajectories
is used. Again, this is a numerical verification of the averages of the variable zt that has been performed
analytically by using a perturbative expansion of the propagators.
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Fig. 5.15 Evolution of TrS(ρs(z
′∗
0 z

′
0z

∗
0z0|t)σi), with i = {x, y, z} and normaliced initial condition

ρs(z
′∗
0 z

′
0z

∗
0z0|0) = |ψ0〉〈ψ0|/〈ψ0|ψ0〉. We have taken the value |ψ0〉 = (1+2i)|−〉+(1+i)|+〉√

7
. The average of equation

(5.94) is numerically computed using the evolution (5.61) for an ensemble of 14 × 103 trajectories (dotted line) and
18 × 106 (long dashed line). The latter result is practically equal to that of the general condition perturbative master
equation (5.101) (solid line). The correlation function is obtained from the model (5.110) with 6 oscillators in the Fourier
expansion (5.112), coupling parameter g = 0.1 and rotating frequency ωS = 0.1.



6
Conclusions of this part

We now briefly review the conclusions of this part of the thesis.
In Chapter (4) there was a brief introduction of Markovian and non-Markovian master and SSE. Although

the results of this chapter are not original, they serve as a framework to contextualize the particular equations
which are used in this work.

In Chapter (5) we presented some original results, which can be summarized as follows.

• In Section (5.1) different models of SSE are studied.

– First, we compared two different stochastic linear equations, the convolutionless equation (5.21)
[40, 39] and the convoluted equation (5.31) [35], showing that they are equivalent up to second
order in the perturbation parameter. We have verified their equivalence numerically for a spin-
boson system with a Hermitian coupling operator σx.

– Second, we focused on the problem of sampling of SSE. When considering the effects of the
interaction with the QOS in the probability distribution of the bath, the linear equation (5.21) gives
rise to a second type of stochastic equation, which is non-linear with the wave function |ψt(z∗)〉,
and which may evolve non-normalized states (in the case of equation (5.50)) or normalized
states, in the case of equation (5.52) [40, 41]. Since they take into account the evolution of
the environmental state distribution, non-linear equations are supposed to improve the sampling
with respect to the linear ones. For the spin-boson model, the linear and the two non-linear
equations have been studied for high and low temperatures, showing how the temperature is
a very important parameter to decide whether it is necessary to use a non-linear equation. In
non-linear equations, the effects of having a dynamical distribution are reflected in the use of a
shifted noise z̃t, instead of the original one.
In the high temperature regime, the shifted noise z̃t becomes very different from the zt that drives
the linear equation, and the improvement in the sampling of non-linear equations is significant.
The physical reason is that only for high temperatures the environmental distribution (Husimi)
function Qt(z, z∗) may evolve considerably throughout the phase space. In such a case, non-
linear equations lead to a much more efficient sampling than linear ones. At low temperatures,
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however, we show that the noise probability distribution does not evolve significantly and the
shifted noise remains approximately equal to the non-shifted noise which drives the linear equa-
tion. As a consequence, the improvement in the sampling provided by non-linear equations is
not very appreciable, and the best choice in this case is the simpler linear equation.
It is also interesting to point out that the non-linear equation that evolves normalized states
(5.52), does not present a further improvement in the sampling (at least in the spin-boson model)
in comparison with the non-linear equation (5.50) which still evolves non-normalized states,with
the need, however, to keep track of the norm. While mathematically, both equations should give
identical results, we here see that even in practical applications, there is no difference in the
quality or efficiency of the results obtained from these two nonlinear equations, at least for the
particular model studied.

• In Section (5.2) of the chapter, we have used the reduced propagators as a tool to derive different
master equations by performing analytically the sum over the different initial and final states of the
environment. This methodology can be found in the literature when such initial state is the vacuum.
However, we have extended it to treat a new situation in which the environment and the system are
initially correlated, generating a new master equation which depends on the environmental initial state.
The extension of the methodology consists basically in a generalization of the Novikov theorem, on
which is based the analytical average of the initial and final states. The generalization is needed in
order to perform averages over reduced propagators in which the initial state is not the vacuum, and
is explained in Appendix (I) and (J). In addition, we have considered the case in which system and
environment are initially decorrelated, but the last one is in a thermal state. By using the general
Novikov theorem and reduced propagators, it is obtained ithe same master equation for non-zero
temperature already derived in the literature, which verifies the validity of our method.
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7
Introduction and motivation

There are situations in which the expectation values of system observables are not enough to describe the
essential features of the physical behavior of the system dynamics. Simple examples are found in statistical
physics and spectroscopy, where the response of a system to an external electromagnetic field is studied.
Particularly, in quantum optics, two-time correlation functions of the electromagnetic field emitted by an
atom are useful in the study of the atomic spectroscopic properties. As a second example, the two-time
correlations of the number of emitted photons, permit the description of a purely quantum mechanical effect,
the photon anti-bunching. We illustrate this in the following section, where we also discuss the relation
between the correlation of field operators and the correlation of system operators.

7.1 CORRELATIONS OF THE FIELD

Let us illustrate two examples of correlations in quantum optics. We start by studying the atomic emission
spectra, which is related with two-time correlation of the field intensity. As a second example, we discuss the
two-time correlations of the number of emitted photons, as well as their relation with the photon antibunching
effect.

7.1.1 Atomic emission spectrum

Consider a rather idealized experimental set up for measuring the output spectrum of a quantum mechanical
system, in our case, a set of two level atom linearly coupled with a radiation field. As explained in Chapter
(1), the Hamiltonian of the emitting atom (with levels |1〉 and |2〉) is given by

HS = −ω12

2
(σ22 − σ11) =

ω12

2
σz, (7.1)

and the total Hamiltonian of emitting atom and radiation field is described by a Hamiltonian HR, given
by HR = HS +HB +

∑

λ gλ(L
†aλ + a†λL). In order to detect the emitted radiation, suppose we have a
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detecting atom with Hamiltonian HD = Ωσz/2 , where Ω is its rotating frequency. The Hamiltonian of the
total system (detector atom, emitting atom and radiation field) reads as follows,

H = HD +HR +W. (7.2)

Here the coupling between the detecting atomHD withHB is dipolar and given by a HamiltonianW , which
in interaction image with respect to the detector is given by

W̃ (t) =
[

σ21d
D · E(+)(r, t)eiΩt + σ12d

D · E(−)(r, t)e−iΩt
]

, (7.3)

where we have considered dD21d̂
D = dD12d̂

D = 〈1 | D | 2〉 = dD. The superindex D reminds that these are
the components of the detector’s dipole. It is important to note here that the field operators E(+) and E(−),
correspond to the radiative atoms and the radiation field with HR. The positive part of the field situated in
(r) is defined in Chapter (1) as 1

E(+)(r, r0, t) =
∑

λ

ελAλ(r)aλ(r0, t)eλ (7.4)

and E(−)(r, r0, t) = [E(+)(r, r0, t)]
† [50]. In the last expression (and from now on) we have added explicitly

the dependency on the position r0 of the source dipole that originates the field. The quantity ελ =
√

ωλ

2ε0
,

with υ the quantization volume. In terms of the coupling strengths we find that gλ ≡ gλ(r) = ελAλ(r)d ·eλ.
As a condition, the time of observation T is much bigger that the inverse of the natural width Γ of the

detecting atom excited level. In addition, the Rabi frequency of the emitting atom has to be bigger than
the inverse of T . With this set up, the idea is to calculate the spectral distribution of the fluorescence light,
P (Ω, T ). This is defined as the probability of excitation of the detecting atom at the time of observation T ,
i.e.

P (Ω, T ) = TrR,D (| 2〉〈2 | ρ(T )) , (7.5)

where ρ(T ) is the density matrix of the total system at time T . In interaction representation, this density
matrix is,

ρ(T ) = ρ(0) − i

∫ T

0

[

W̃ (t), ρ(0)
]

−
∫ T

0

dt

∫ t

0

dt′
[

W̃ (t),
[

W̃ (t′), ρ(0)
]]

, (7.6)

for an expansion in which ρ(T ) ≈ ρ(0). Replacing (7.6) in (7.5), we get the following expression for
P (Ω, T ),

P (Ω, T ) = TrR

(

∫ T

0

dt

∫ t

0

dt′eiΩ(t−t′)dD · E(+)(r, r0, t)ρRdD · E(−)(r, r0, t
′)

+

∫ T

0

dt

∫ t

0

dt′eiΩ(t′−t)dD · E(+)(r, r0, t
′)ρRdD · E(−)(r, r0, t)

)

. (7.7)

1We remind here that only in Chapter (1) and Appendix (A) of this work we use h̄ 6= 1. The reason is that they introduce the standard
models for the system under study. We here follow the convention h̄ = 1 followed for simplicity in the rest of the work.
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If we now change t into t′, and t′ into t in the second integral,

P (Ω, T ) = TrR

(

∫ T

0

dt

∫ t

0

dt′eiΩ(t−t′)dD · E(+)(r, r0, t)ρRdD · E(−)(r, r0, t
′)

+

∫ T

0

dt′
∫ t′

0

dteiΩ(t−t′)dD · E(+)(r, r0, t)ρRdD · E(−)(r, r0, t
′)

)

, (7.8)

both integrands becomes the same. On the other hand, the regions of integration are the complementary
parts of a square of side T (see Fig. (7.1)), so that the last expression can be written as

P (Ω, T ) =

∫ T

0

dt

∫ T

0

dt′eiΩ(t−t′)g(1)(r, r0; t, t
′), (7.9)

where the average 〈· · ·〉 = TrR (ρR · · ·), and we have defined

g(1)(r, r0; t, t
′) = 〈dD · E(−)(r, r0, t)d

D · E(+)(r, r0, t
′)〉, (7.10)

as the first order correlation of the projection of the emitted field in the direction of the dipole.
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Fig. 7.1 The figure displays the regions of integration of equation (7.8).

In order to express the last equation in terms of observables of the emitting atoms, it is necessary to express
the field operator, which is defined in (7.4) in terms of the atomic dipolar momentum. We insert in (7.4)
the solution of the Heisenberg equation for aλ(r0, t) with the total Hamiltonian (7.2) , i.e. daλ(r0, t)/dt =
−i[HB , aλ(r0, t)],

an(r0, t) = aλ(r0, 0)e
−iωλτ − i

∫ t

0

dτgλL(t′)e−iωλ(t−τ) (7.11)

a result which has been already obtained in (2.38). Here, the coupling constant between emitting atoms and
surrounding field is gλ ≡ gλ(r0) = ελAλ(r0)d · eλ. After this replacement, the component of E(+) in the
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direction and position of the detector is

dD · E(+)(r, r0, t) = −i
∑

λ

gλg
D
λ

∫ t

0

dτL(τ)e−iωλ(t−τ), (7.12)

where we have defined gDλ ≡ gDλ (r) = ελAλ(r)d
D · eλ as the coupling constant of the detector with the

emitted field. In expression (7.12) we only keep the part of the field corresponding to the radiated field from
the dipole (also “source field”). The other part, corresponding to the quantum vacuum field

E
(+)
0 (r, r0, t) =

∑

λ

ελAλ(r)aλ(r0, 0)e
−iωλteλ, (7.13)

does not contribute to photodetection signals, since provided that the field is in the vacuum state |0〉,

〈0|
(

dD · E(−)
0 (r, r0, τ)

)

= 0
(

dD · E(+)
0 (r, r0, 0)

)

|0〉 = 0 (7.14)

in (7.10). We now introduce a distribution function ρ(r0), which describes the density of radiating atoms at
a given positions of the crystal. Assuming that the atomic distribution is the same for each Wigner Seitz cell
(WSC) of the crystal [106], we perform an average over the atomic distribution within the crystal, obtaining
the following expression for the positive part of the radiation field,

〈dD · E(+)(r, r0, t)〉r0
=

1

Ne

∫

WSC

dr0ρ(r0)d
D · E(+)(r, r0, t) (7.15)

whereNe =
∫

WSC
dr0ρ(r0) is the number of active atoms in a cell. Considering one single atom at position

ra in each cell, such that ρ(r0) = δ(r0 − ra) and Ne = 1. Then we have

〈d̂D · E(+)(r, r0, t)〉r0
= −i

∫ t

0

dτS(r, ra, t, τ)L(τ) (7.16)

with the S(r, ra, t, τ) =
∑

λ g
D
λ gλe

−iωλ(t−τ), with gλ ≡ gλ(ra) . Replacing (7.16) in the integrand of
(7.9), we get

g(1)(r, ra, t, t
′) = 〈g(1)(r, r0, t, t

′)〉r0

=

〈(

〈dD · E(−)(r, ra, t)〉r0

)(

〈dD · E(+)(r, ra, t
′)〉r0

)〉

=

∫ t

0

dτ

∫ t′

0

dτ ′S∗(r, ra, t, τ)S(r, ra, t
′, τ ′)〈L†(τ)L(τ ′)〉 (7.17)

Following (7.9) the spectra has the following form,

P (Ω, T ) =

∫ T

0

dt

∫ T

0

dt′eiΩ(t−t′)g(1)(r, ra, t, t
′)

=

∫ T

0

dt

∫ T

0

dt′eiΩ(t−t′)
{
∫ t

0

dτ

∫ t′

0

dτ ′S∗(r, ra, t, τ)S(r, ra, t
′, τ ′)

×〈L†(τ)L(τ ′)〉
}

. (7.18)
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When there is no spatial dependency of the functions S∗(r, ra, t, τ), then they are the usual correlation
functions α(t− τ). In that case, we can write (7.18) as

P (Ω, T ) =

∫ T

0

dt

∫ T

0

dt′eiΩ(t−t′)
{
∫ t

0

dτ

∫ t′

0

dτ ′α∗(t− τ)α(t′ − τ ′)〈L†(τ)L(τ ′)〉
}

. (7.19)

In addition, in the Markov case, such correlation is a delta function, α(t − τ) = Γδ(t − τ), and the last
formula is just

P (Ω, T ) = Γ2

∫ T

0

dt

∫ T

0

dt′eiΩ(t−t′)〈L†(t)L(t′)〉. (7.20)

In the case of fluorescence, this expression has to be averaged in time, in such a way that in the long time
limit, and provided that the field operators are correlated only over a short period of time, the power spectra
is defined as [43],

P (Ω) = limT→∞
1

T
P (Ω, T ) = Γ2Real

[
∫ ∞

0

dτeiΩτ 〈L†(0)L(τ)〉
]

(7.21)

The system correlations 〈L†(0)L(τ)〉 can be computed with the Quantum Regression Theorem. In the
non-Markovian case, we cannot assume that the correlation function is a delta, and it is necessary to use
the original formula, (7.19). In addition, as we will show in this part of the thesis, for non-Markovian
interactions that an alternative theory to the QRT is needed to compute the system correlation functions.
The derivation of such a theory, which we also present here, is therefore necessary for the description of
non-Markovian emission spectra.

7.1.2 Joint emission probability and photon antibunching.

Just in the same way as in the former section, the probability P (t, t′) of detecting a photon at time t and
another one at a later time t′ = t+ τ is related to higher order correlation functions of the electric field,

g(2)(t, t′) = 〈dD · E(−)(r, t)dD · E(−)(r, t′)dD · E(+)(r, t′)dD · E(+)(r, t)〉

=

∫ t

0

dτ

∫ t′

0

dτ ′S∗(r, ra, t, τ)S∗(r, ra, t
′, τ ′)

×
∫ t

0

ds

∫ t′

0

ds′S(r, ra, t, s)S(r, ra, t
′, s′)〈L†(τ)L†(τ ′)L(s′)L(s)〉. (7.22)

Here, a four-time correlation function 〈L†(τ)L†(τ ′)L(s′)L(s)〉 of the system coupling operator is needed.
The former correlation can normalised as

g̃(2)(t, t′) =
〈dD · E(−)(r, t)dD · E(−)(r, t′)dD · E(+)(r, t′)dD · E(+)(r, t)〉
〈dD · E(−)(r, t)dD · E(+)(r, t)〉〈dD · E(−)(r, t′)dD · E(+)(r, t′)〉 . (7.23)

When the radiation field consists in a single mode, then most factors cancel in the mode expansions for E(−)

and E(+), and the former expression is just the time ordered average of the correlation of the photon number
n = a†a,

g̃(2)(τ) =
〈: n(t)n(t+ τ) :〉

〈n(t)〉2 , (7.24)
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where : ∗ : represents the time-ordered sequence of the operators inside. The time dependency is over the
total system Hamiltonian. As noted in the introduction, the measurement of g̃(2)(τ) permits the description
of the so-called photon antibunching. This effect, first described by Glauber in [48], consists in an initial
positive slope of the two-time correlation function of number of emitted photons. In 1975, Carmichael
and Walls [107] predicted that photon antibunching can be generated in resonance fluorescence of a two-
level atom, being experimentally observed in 1977 by Kimble et al [108]. While for the light emitted by a
thermal source g̃(2)(0) = 2, indicating the tendency of photons to be emitted in bunches (photon bunching),
in resonance fluorescence we find g̃(2)(0) = 0, indicating the tendency of the photons to be emitted in a
separated way, or an anti-bunching effect. This last result is due to the thermal nature of the light emitted
by resonance fluorescence. The detection of the first photon prepares the atom in the ground state. Since
any subsequent emission must begin with an excited atom, a delay corresponding to the time taken for the
atom to be re-excited is naturally expected. Antibuching is therefore a purely quantum effect, not predicted
by classical theory. Additionally, it is only expected for the emission of a single atom, since the time-delay
of successive emissions is not appreciable when having a large number of independent emitting atoms, as
occurs with thermal light.

Further discussions about photon bunching and antibunching can be found in [21, 43, 53] for Markovian
type of interactions.

Before starting with our theory, let us present in the next section a brief discussion about the Markovian
theory of quantum fluctuations.

7.2 MARKOVIAN INTERACTIONS: THE QUANTUM REGRESSION THEOREM

In the Markov case, it is possible to derive a formula which permits the evaluation of two-time correlations
(and even N -time correlations) using the master equation for the reduced density operator. This result,
which was first obtained by Lax [18, 19], receives the name of Quantum Regression Theorem 2. It should be
noted here that there is a classical hypothesis by Onsager [17] which leads to the same formula as the QRT
for two-time correlations. However, as noted by Carmichael in [53], the difference between both formulas
is that Onsager’s concerns fluctuations about the equilibrium, while the Lax formula is valid for calculating
two time correlations even in the non-equilibrium case. We here follow the derivation of the Quantum
Regression Theorem presented in [51]. Analogous derivations might be found in the original paper of Lax,
and also in several books of Quantum Optics, for instance [43, 50, 53].

Suppose that we have a certain set of system operators Ai, and that for some initial value of the density
operator ρs, the evolution of their quantum mean values is given by the master equation,

d

dt
〈Ai(t)〉 =

∑

j

Gij(t)〈Aj(t)〉, (7.25)

where 〈Ai(t)〉 = TrS (ρS(t)Ai). Then, we can assert that

d

dτ
〈Ai(t1)Al(t2)〉 =

∑

j

Gij(t1)〈Aj(t1)Al(t2)〉. (7.26)

Let us consider the two time correlation function of operators A1 = A and A2 = B [51],

〈A(t1)B(t2)〉 = TrSTrB

(

U−1(t2, 0)U−1(t1, t2)AU(t1, t2)

2Although as noted by Carmichael in [53] it would be more appropriate to use the word “formula” instead of “theorem”.
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×U(t2, 0)U−1(t2, 0)BU(t2, 0)ρtot(0)

)

, (7.27)

where the unitary evolution operator from t2 to t1 = t2 + τ , which is assumed to be in interaction picture, is

U(t1, t2) = eiH0t1e−iHtot(t1−t2)e−iH0t2 . (7.28)

Considering the unitarity of the evolution operators U(t, 0)U−1(t, 0) = 1 and the cyclic property of the
trace, we can write (7.27) as,

〈A(t1)B(t2)〉 = TrA
(

ATrB
{

U(t1, t2)Bρtot(t2)U−1(t1, t2)
})

, (7.29)

where ρtot(t2) = U(t2, 0)ρtot(0)U−1(t2, 0). Let us now consider the evolution equation of the term inside
the brackets of the environmental trace

ξ(t1, t2) = U(t1, t2)Bρtot(t2)U−1(t1, t2), (7.30)

with respect to t1 and in interaction picture,

dξ(t1, t2)

dt1
=

1

i
[Vt1HI , ξ(t1, t2)]. (7.31)

The form of this equation is identical to the von-Neumann equation for ρtot(t2) in interaction picture, (4.4).
Hence, in order to obtain a closed evolution equation for TrB (ξ(t1, t2)), we can follow the same procedure
we used in Section (4.1.2.2) for obtaining the master equation up to second order in g. In that way, performing
a perturbative expansion of (7.31), and then deriving the result, we get

dξ(t1, t2)

dt1
= −i[Vt1HI , ξ(t2, t2)] −

∫ t1

t2

dτ [Vt1HI , [Vt1−τHI , ξ(t2, t2)]] , (7.32)

with
ξ(t2, t2) = Bρtot(t2). (7.33)

We can now proceed to trace out the bath degrees of freedom, so that the final equation for TrB (ξ(t1, t2)) =
ξS(t1, t2) can be written in a similar way as (4.9),

dξS(t1, t)

dt1
= −

∫ t1

t

dτTrB

(

[Vt1HI , [Vt1−τHI , ξ
B(t, t)]]

)

ξS(t, t), (7.34)

where we have assumed an initially decorrelated state ξ(t2, t2) = ξB(t2, t2) ⊗ ξS(t2, t2), which since
the definition (7.33), is equivalent to assuming the Born approximation. Assuming that the ξS(t1, t2) =
ξS(t2, t2) + O(g), we can approximate the last equation, up to second order as

dξS(t1, t2)

dt1
= −

∫ t1

t2

dτTrB

(

[Vt1HI , [Vt1−τHI , ξ
B(t2, t2)]]

)

ξS(t1, t2), (7.35)

which is not equal to the master equation (4.11), because of the limits of integration. Only in the Markov
case, the former equation in which the integral disappears and the equation becomes local in time, the
evolution equation of ξS(t1, t2) becomes equal to the Linbland master equation (4.3),

dξS(t1, t2)

dt2
= −i[HS , ξ

S(t1, t2)] +
1

2
([LξS(t1, t2), L

†] + [L, ξS(t1, t2)L
†]), (7.36)
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with initial condition ξS(t2, t2) = TrB(Bρtot(t2)) = BρS(t2). In this relation, one can easily observe
that the evolution equation in t1 has the same form as an ordinary master equation, but considering as initial
conditionBρ(t2). This procedure can be repeated to show that, in general,N -time correlation functions are
computed by considering the N − 1-time correlations as initial condition, and using the evolution equation
of 1-time correlations, namely the Markovian master equation.

The last derivation can be mathematically expressed in terms of the so-called evolution super-operators,
Z(t1, t2) , which define the following mapping over the operator ξS(t1, t2) (see [38, 51] for further details),

ξS(t1, t2) = Z(t1, t2)ξ
S(t2, t2). (7.37)

The evolution equation of Z(t1, t2) has the same form as the evolution of ξS(t1, t2) which, as derived above,
turns out to be equal to the evolution for ρs(t1), but with a different initial condition. The important fact
about evolution superoperators is that they have the semigroup property,

Z(t1, t2)Z(t2, t0) = Z(t1, t0), (7.38)

but only when they are Markovian, i.e. when the memory effects can be neglected in the system dynamics.
In terms of Z(t1, t2), the two-time correlation (7.29) can be written as

〈A(t1)B(t2)〉 = TrA (AZ(t1, t2)TrB (Bρtot(t2))) . (7.39)

In addition, the theory of stochastic Schrödinger equations, initially elaborated to compute the expectation
values of system observables, has been extended by many groups [56, 58, 59] to calculate multiple-time
correlation functions for the Markovian case. Such stochastic methods agree with the results expected from
the QRT.

7.3 NON-MARKOVIAN INTERACTIONS

It is natural to develop a theory equivalent to that existing for Markovian interactions, in order to evaluate
multiple-time correlation functions for systems with non-Markovian effects, such as atom lasers formed from
Bose-Einstein condensates. Another interesting application of non-Markovian multiple-time correlation
function is an atom immersed in the modified radiation field that exists in a Photonic crystal (PC) [109]. As
will be later explained, in PCs the refraction index is periodic, which produces Bragg scattering of photons
with wave lengths related with the periodicity of the lattice. As a consequence, those photonic modes do not
appear within the crystal, and the dispersion relation of the electromagnetic field displays a band structure
interrupted with gaps of forbidden frequencies. In such structured materials, within the edges of the bands,
the correlation function of the electromagnetic field is highly non-Markovian. Therefore, the dynamics of
an atom interacting with such radiation field, including its fluctuations is typically non-Markovian.

In this part of the thesis, we intend to complete the description of non-Markovian quantum open systems by
generating a theory of MTCFs. To this purpose, we describe the dynamics of the QOS with the system reduced
propagator. The reduced propagator was introduced in Chapter (2), where we also made a general description
of how MTCFs can be written in terms of these. In the next section we summarize this discussion by
considering particularly an initially decorrelated state between system and environment, ρtot = |ψ0〉〈ψ0| ⊗
|0〉〈0|, which is here chosen for deriving the dynamical equations. In Appendix (L) the dynamical equation
for two-time correlation functions within a thermal environment is computed.
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7.3.1 Multiple-time correlation functions from reduced propagators

We start as usual from the model Hamiltonian introduced in Chapter (1) to study the dynamics of S with
Hamiltonian HS , in interaction with B

Htot = HS + L
∑

λ

gλ

(

a†λL+ L†aλ
)

+
∑

λ

ωλa
†
λaλ. (7.40)

We are interested in the evaluation of N-time correlation functions. For a set of observables in Heisenberg
representation, {A1(t1), · · · , AN (tN )} = A(t), we defined them in Section (2.2) as

CA1,A2,···,AN
(t1, t2, · · · , tN |Ψ0) = CA(t|Ψ0) = 〈Ψ0|A1(t1) · · ·AN (tN )|Ψ0〉, (7.41)

with t1 > t2 > · · · > tN and t = {t1, · · · , tN}. Particularly, we have chosen here the initial state of the full
system as the tensor product of a system state |ψ0〉 and the environment state |z0〉, i.e. |Ψ0〉 = |ψ0〉|z0〉, as
defined in Section (2.2.1).

In the partial interaction picture with respect to the environment, the N-time correlation function is defined
as

CA(t|Ψ0) = 〈Ψ0|
N
∏

i=1

U−1
I (ti, 0)AiUI(ti, 0)|Ψ0〉, (7.42)

It is important to stress that in this part of the thesis two different time dependencies for the system
operators will often appear:

• A time dependency on the Hamiltonian of the total system is denoted byAi(ti) = U−1
I (ti, 0)AiUI(ti, 0),

where UI is the evolution operator of the total system in the interaction picture,

UI(titi+1) = eiHBtie−iHtot(ti−ti+1)eiHBti+1 . (7.43)

• A time dependency with the free Hamiltonian of the systems and environment H0 is denoted by
VtiAi = exp{iLSti}L = exp (iH0ti)Ai exp (−iH0ti) = exp (iHSti)Ai exp (−iHSti), where
therefore Vti = exp{iLSti} is the free system Liouville operator, acting in the two sides of the
inmediatly contiguous system operator.

In the Bargmann basis for the environment, |z1, z2, · · · , zλ, · · ·〉 = |z〉, the resolution of the identity is
given by [43, 48] 1 =

∫

dµ(z)|z〉〈z|, with dµ(z) defined in (2.5). If we introduce N identity operators in
(7.42), the correlation function is given by

CA(t|Ψ0) =

∫
( N
∏

i=1

dµ(zi)

)

〈ψ0|G†(z∗0z1|t0t1)
N
∏

i=1

AiG(z∗i zi+1|titi+1)|ψ0〉, (7.44)

with the definitions t0 = 0, tN+1 = 0, zN+1 = z0, in terms of the reduced propagatorsG(z∗i zi+1|titi+1) =
〈zi|UI(ti, ti+1)|zi+1〉 introduced in Chapter (2). With the expression (7.44), the evolution equation of
multiple-time correlation functions is formally given by

dCA(t|Ψ0)

dt1
=

∫

dµ(z)〈ψ0|
∂G†(z∗0z1|t0t1)

∂t1

N
∏

i=1

AiG(z∗i zi+1|ti, ti+1)|ψ0〉

+

∫

dµ(z)〈ψ0|G†(z∗0z1|t0t1)A1
∂G(z∗1z2|t1, t2)

∂t1

N
∏

i=2

AiG(z∗i zi+1|ti, ti+1)|ψ0〉,

(7.45)
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As noted before, we consider for simplicity the case in which the initial state of the bath is the vacuum,
z0 = 0. The evolution equations for two-time correlations with an initial condition for the environment
different than the vacuum (particularly a thermal environment), will be derived in Appendix (L).

It is clear from (7.45) that once the evolution in time of the reduced propagator is solved, then the time-
correlation function (7.44) can be obtained. Therefore, to proceed further we need to use the equation
of motion of the reduced propagator G(z∗i zi+1|titi+1). This equation was derived in Chapter (2), in two
different versions, an open equation in the total Hilbert space (equation (2.40)) ,

∂G(z∗i zi+1|titi+1)

∂ti
=

(

− iHS + Lz∗i,ti − L†zi+1,ti

)

G(z∗i zi+1|titi+1)

− L†
∫ ti

ti+1

dτα(ti − τ)〈zi|UI(ti, ti+1)L(τ, ti+1)|zi+1〉, (7.46)

where, as usual
zi,t = i

∑

λ

gλzi,λe
iωλt, (7.47)

and,
α(t− τ) =

∑

λ

g2
λe

−iωλ(t−τ), (7.48)

and a closed equation in the Hilbert space of the system in which the matrix element in the last term was
expressed as

〈zi|UI(ti, ti+1)L(τ, ti+1)|zi+1〉 = O(zi+1z
∗
i , t, τ)G(z∗i zi+1|titi+1), (7.49)

generally with the use of some approximation. In that case, the equation was expressed in terms of the
reduced propagator as

∂G(z∗i zi+1|titi+1)

∂ti
=

(

− iHS + Lz∗i,ti − L†zi+1,ti

)

G(z∗i zi+1|titi+1)

− L†
∫ ti

ti+1

dτα(ti − τ)O(zi+1z
∗
i , t, τ)G(z∗i zi+1|titi+1). (7.50)

The equations used in this chapter are linear, since the environment distribution function is considered
constant during the interaction with the system. As already seen in Chapter (5), this is a good approximation
for environments at low temperature. However, when the environment is at high temperatures, then its state
distribution changes considerably due to the interaction [1].

In order to take this into account, the statistical distribution of the noise has to be considered in evolution,
and this is precisely what non-linear equations do [40]. In Appendix (H.2), we present a non-linear equation
for the propagator G(z∗i zi+1|titi+1) that has been derived following the same method used by Diósi, Gisin
and Strunz in [40] to generate the non-linear equation for vacuum propagatorsG(z∗i 0|ti0). It is important to
stress that the use of a non-linear equation instead of a linear one is only necessary to improve the sampling
when the MTCFs are obtained numerically. It is evident that an analytical average (which does not depend
on the sampling) over both non-linear and linear equations gives rise to the same MTCF equations.

The study of MTCF is divided in three chapters:

• Chapter (8): The open form of the reduced propagator (7.46) is used to derive a set of MTCF without
the use of any approximation. This equations are ordered in a hierarchy, in such a way that N -time
correlations depend on N + 1-time correlations. The hierarchy represents a useful tool to derive the
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general equation for non-Markovian N -time correlations. This equation provides an excellent basis
to computeN -time correlations once the appropriate approximations are made in order to destroy the
dependency with higher order correlations [2]. Indeed, since the hierarchy is an open structure, its
practical use is limited to those cases in which such dependency can be broken. This can be done
within the weak coupling approximation, as discussed in Chapter (9).

• Chapter (9): We use a second order perturbative approximation with respect to the coupling constant,
which destroys the dependency of N -time correlations with N + 1 [4]. In this part we use the closed
equation for the reduced propagator (7.50), with O(zi+1z

∗
i , t, τ) = Vτ−tL + O(g), to obtain an

equation up to second order in g. Three methods are then proposed to compute MTCF: First, stochastic
sampling, based on evolving the propagator by choosing random realizations of the variables zi and
zi+1, and then performing numerically an average over different trajectories. Second perturbative
expansion, in which MTCF are computed by inserting the perturbative expansion of the propagators
into (7.45), and then performing analytically the Gaussian averages of the variables zi,ti and zi+1,ti .
These first two methods are illustrated by computing two-time correlations. The third method consists
in applying the perturbative hypothesis to the hierarchy of equations. As noted above, the hierarchy
is broken: the dependency on higher order vanishes, and closed equations forN -time correlations are
obtained. For two-time correlations, the equation is shown to be the same as the one obtained with the
perturbative expansion. A three-time correlation is also obtained. The main advantage of using the
second order perturbative hypothesis in the hierarchy of equations is that it permit us to obtain easily
a general equation of non-Markovian MTCF.

Let us make a comment about the time-ordering of multiple-time correlation functions. In this part of
the thesis, we start by deriving the evolution equation of multiple-time correlation functions CA(t|Ψ0) =
〈A1(t1) · · ·AN (tN )〉 with t ≡ tN ≤ · · · ≤ t1. Nevertheless, in Appendix (M) is shown how to derive a
new type of correlations CA′,A(t′, t|Ψ0) = 〈Ψ0|A′

N (t′N ) · · ·A′
2(t

′
2)A1(t1) · · ·AN (tN )|Ψ0〉, with the time

ordering such that t′n ≤ t′N−1 ≤ · · · ≤ t′2 ≤ t1 and tn ≤ tN−1 ≤ · · · ≤ t2 ≤ t1. These 2N + 1-time
correlation functions can correspond to a sequence of measurements performed over the system. On the
other hand, formula (7.22) expresses in a clear way that correlations with these time orderings are not the
only ones needed to describe the other quantities such as the joint emission probability of a photon P (t′, t).
Nevertheless, we stress that although we only compute the evolution ofCA(t|Ψ0) andCA′,A(t′, t|Ψ0) with
the time-ordering described above, the methods derived in this thesis are useful for any given time ordering
for multiple-time correlation functions.



8
Hierarchy of non-Markovian

MTCF

We derive in this Chapter the hierarchy of equations that formally obey non-Markovian MTCFs, when no
approximations are made. To this end, two different methods are used: the first, described in Section (8.1),
is based on using system propagators, while the second, discussed in Section (8.2), relies on the use of the
Heisenberg equation of system operators.

The hierarchy structure consists in the following: The evolution equation of one-time correlations (i.e.
quantum mean values), depends on two-time correlations. Furthermore, the evolution equation of two time
correlations depends on three-time correlations. The same happens with the evolution equation for three
time correlations, which also shows a dependency on fourth order correlations. In summary, the evolution
of non-Markovian N -time correlations of system operators, when no approximations are made, depends on
the N + 1-time correlations.

The hierarchy only occurs in non-Markovian interactions, since it vanishes when the bath correlation
function α(t) is chosen Markovian, i.e. α(t) = Γδ(t). In the non-Markovian case, in order to make
practical use of the MTCF equations, it is necessary to break up the hierarchy and eliminate the dependency
on higher order correlation functions by using some approximations. This is done in the next chapter by
considering a second order perturbative approximation.

8.1 METHOD I: MTCF IN THE SCHRÖDINGER FORMALISM

8.1.1 Evolution equation of one-time correlations

We present in this section the evolution of the quantum mean value of a system operator A. Following the
general form (7.45), it is given by

dCA(t|Ψ0)

dt
= M1

[

〈ψ0|
∂G†(0z1|0t1)

∂t1
AG(z∗10|t10)|ψ0〉

]

115
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+

[

〈ψ0|G†(0z1|0t1)A
∂G(z∗10|t10)

∂t1
|ψ0〉

]

(8.1)

Replacing the evolution equation (7.46)of vacuum propagators,

d

dt1
M1

[

〈ψ0 | G†(0z1|0t1)AG(z∗1 |t10) | ψ0〉
]

= M1

[

〈ψ0 |
{

G†(0z1|0t1)
(

iHS + L†z1,t1
)

−
∫ t1

0

dτα∗(t− τ)M2

[

G†(0z2|0τ)L†G†(z∗2z1|τt1)
]

L

}

AG(z∗10|t10) | ψ0〉
]

+ M1

[

〈ψ0 | G†(0z1|0t1)A
{

(

− iHS + Lz∗1,t1
)

G(z∗10|t10)

− L†
∫ t1

0

dτα(t1 − τ)M2

[

G(z∗1z2|t1τ)LG(z∗2 |τ0)
]

}

| ψ0〉
]

(8.2)

Let us now perform in the former equation the average in z1 of the term

M1

[

z1,t1〈ψ0|G†(0z1|0t1)AG(z∗10|t10)|ψ0〉
]

. (8.3)

It is shown in Appendix (I), that the functionals Ŵ [ti+1, ti+1] with initial condition such that

∂Ŵ [ti+1, ti+1]

∂zi
= 0 (8.4)

have the following property,

Mi

[

zi,tiŴ[ti, ti+1]
]

=

∫ ti

ti+1

dτMi

[

zi,tz
∗
i,τ

]

Mi

[(

δŴ [ti, ti+1]

δz∗i,τ

)]

, (8.5)

where it is assumed that zi,ti is a Gaussian noise of zero mean with the measure (2.5). This property can be
used to evaluate (8.3), since Ŵ[ti+1, ti+1] = Ŵ [0, 0] = 〈ψ0|G†(0z1|00)AG(z∗10|00)|ψ0〉 = 〈ψ0|A|ψ0〉.
Then the average of the first noise term is,

M1

[

z1,t1〈ψ0 | G†(0z1|0t1)L†AG(z∗10|t10) | ψ0〉
]

=
∫ t1

0

dτα(t1 − τ)M1

[

〈ψ0 | G†(0z1|0t1)L†AM2

[

G(z∗1z2|t1τ)LG(z∗20|τ0)
]

| ψ0〉
]

. (8.6)

Here we have used the expression

δ

δz∗1,τ
G(z∗10|t10) = 〈z1 | UI(t10)U−1

I (τ, 0)LUI(τ, 0) | 0〉 =

= M2 [G(z∗1z2|t1τ)LG(z∗20|τ0)] , (8.7)

obtained in Appendix (K). In an analogous way, we get the following result for the average of the term with
z∗1,t,

M1

[

z∗1,t1〈ψ0 | G†(0z1|0t1)ALG(z∗10|t10) | ψ0〉
]

=

=

∫ t1

0

dτα∗(t1 − τ)M1

[

〈ψ0 | M2

[

G†(0z2|0τ)L†G†(z∗2z1|τt1)
]

×ALG(z∗10|t10) | ψ0〉
]

. (8.8)



METHOD I: MTCF IN THE SCHRÖDINGER FORMALISM 117

Inserting equations (8.6) and (8.8) in (8.2), we obtain the following equation for one time correlations,

M1[
d

dt1
〈ψ0 | G†(0z1|0t1)AG(z∗10|t10) | ψ0〉] =

= M1

[

〈ψ0 | G†(0z1|0t1)i[HS , A]G(z∗10|t10) | ψ0〉
]

+

∫ t1

0

dτα(t1 − τ)M1,2

[

〈ψ0 | G†(0z1|0t1)L†AG(z∗1z2|t1τ)LG(z∗20|τ0) | ψ0〉
]

−
∫ t1

0

dτα∗(t1 − τ)M1,2

[

〈ψ0 | G†(0z2|0τ)L†G†(z∗2z1|τt1)LAG(z∗10|t10) | ψ0〉
]

+

∫ t1

0

dτα∗(t1 − τ)M1,2

[

〈ψ0 | G†(0z2|0τ)L†G†(z∗2z1|τt1)LG(z∗10|t10) | ψ0〉
]

−
∫ t1

0

dτα(t1 − τ)M1,2

[

〈ψ0 | G†(0z1|0t1)AL†G(z∗1z2|t1τ)LG(z∗20|τ0) | ψ0〉
]

. (8.9)

Expressed in a simpler manner, the equation becomes,

d

dt1
〈Ψ0 | A(t1) | Ψ0〉 = i〈Ψ0 | [HS(t1), A(t1)] | Ψ0〉

+

∫ t1

0

dτα(t1 − τ)〈Ψ0 | [L†(t1), A(t1)]L(τ) | Ψ0〉

+

∫ t1

0

dτα∗(t1 − τ)〈Ψ0 | L†(τ)[A(t1), L(t1)] | Ψ0〉. (8.10)

In the last expression it can be observed that the exact evolution of single mean values depends on two
time correlations. Notice that this dependency is destroyed in the Markovian case, when the environmental
correlation functionα(t−τ) = Γδ(t−τ). Another possibility to break the dependency on higher correlations
is to consider some approximation on the terms with two-time correlations. In Section (9.2.2), a perturbative
approximation will be assumed, so that the equation (8.10) becomes a closed equation in terms of single
mean values.

8.1.2 Evolution equation of two-time correlations

Let us now calculate the evolution equation for CAB(t|Ψ0) = 〈Ψ0 | A(t1)B(t2) | Ψ0〉,

dCAB(t|Ψ0)

dt1
= M12

[

〈ψ0|
∂G†(0z1|0t1)

∂t1
AG(z∗1z2|t1t2)BG(z∗20|t20)〉

]

+M12

[

〈ψ0|G†(0z1|0t1)A
∂G(z∗1z2|t1t2)

∂t1
BG(z∗2 |t20)〉

]

. (8.11)

Inserting (7.46) and its complex conjugated, the following equation is obtained

d〈Ψ0 | A(t1)B(t2) | Ψ0〉
dt1

= M1,2

[

〈ψ0 |
{

G†(0z1|0t1)(iHS + z1,t1L
†)

−
∫ t1

0

dτα∗(t1 − τ)M3

[

G†(0z3|0τ)L†G†(z∗3z1|τt1)
]

L

}

×AG(z∗1z2|t1t2)BG(z∗20|t20) | ψ0〉
]
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+ M1,2

[

〈ψ0 | G†(0z1|0t1)A
{

(−iHS + z∗1,t1L− z2,t1L
†)G(z∗1z2|t1t2)

−
∫ t1

t2

dτα(t1 − τ)〈ψ0 | G†(0z1|0t1)AL†M3 [G(z∗1z3|t1τ)LG(z∗3z2|τt2)]
}

×BG(z∗20|t20) | ψ0〉
]

. (8.12)

Now, for functionals with initial condition such that ∂Ŵ [ti+1, ti+1]/∂zi = 0, we have the property (8.5) for
the average, and for functionals such that ∂W[ti+1, ti+1]/∂zi = zi+1, we have

Mi [zi,tiW[ti, ti+1]] = zi+1,tiMi [W[ti, ti+1]] +

∫ ti

ti+1

dτMi

[

zi,tz
∗
i,τ

]

Mi

[(

δW[ti, ti+1]

δz∗i,τ

)]

,

(8.13)

as obtained in Appendix (I). Since the average of the noise term in z∗1,t1 is performed with a functional of
the first type we use the property (8.5),

M1,2

[

z∗1,t1〈ψ0 | G†(0z1|0t1)ALG(z∗1z2|t1t2)BG(z∗20|t20) | ψ0〉
]

=

∫ t1

0

dτα∗(t1 − τ)M1,2

[

〈ψ0 | δ

δz1,τ
G†(0z1|0t1)

×ALG(z∗1z2|t1t)BG(z∗20|t20) | ψ0〉
]

=

∫ t1

0

dτα∗(t1 − τ)M1,2,3

[

〈ψ0 | G†(0z3|0τ)L†G†(z∗3z1|τt1)

×ALG(z∗1z2|t1t2)BG(z∗20|t20) | ψ0〉
]

. (8.14)

Here, we have also considered the fact that the functional derivative can be in general expressed as,

δG(z∗i zi+1|titi+1)

δz∗i,τ
= 〈zi|UI(ti, ti+1)L(τ, ti+1)|zi+1〉

= Ml [G(z∗i zl|tiτ)LG(z∗l zi+1|τti+1)] . (8.15)

The first equality appearing in the last expression is derived in Appendix (K), while the second equality, is
obtained by expressing the evolution operators as reduced propagators with the insertion of a closure relation
in a new variable zl. The average of the term with z1,t1 is performed by using the property (8.13) since the
initial condition of the functional is exp (z∗i zi+1). Thus,

M1,2

[

z1,t1〈ψ0 | G†(0z1|0t1)L†AG(z∗1z2|t1t2)BG(z∗2 |t20) | ψ0〉
]

=

∫ t1

t2

dτα(t1 − τ)M1,2,3

[

〈ψ0 | G†(0z1|0t1)L†A

G(z∗1z3|t1τ)LG(z∗3z2|τt2)BG(z∗2 |t20) | ψ0〉]

+

∫ t2

0

dτα(t1 − τ)M1,2,3

[

〈ψ0 | G†(0z1|0t1)L†A

G(z∗1z2|t1t2)BG(z∗2z3|t2τ)LG(z∗3 |τ0) | ψ0〉] . (8.16)
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In this expression we have also used (8.15). Finally, the average of the term with z2,t1 is solved using again
(8.5) together with (8.15),

M1,2

[

z2,t1〈ψ0 | G†(0z1|0t1)AL†G(z∗l z2|t1t2)BG(z∗2 |t20) | ψ0〉
]

=

∫ t2

0

dτα(t1 − τ)M1,2,3

[

〈ψ0 | G†(0z1|0t1)AL†

×G(z∗1z2|t1t2)BG(z∗2z3|tτ)LG(z∗3 |τ0) | ψ0〉
]

. (8.17)

The replacement of (8.14), (8.16) and (8.17) in (8.12) gives the following evolution equation,

d〈Ψ0 | A(t1)B(t2) | Ψ0〉
dt1

= i〈Ψ0 | [HS(t1), A(t1)]B(t2) | Ψ0〉

+

∫ t1

0

dτα∗(t1 − τ)〈Ψ0 | L†(τ)[A(t1), L(t1)]B(t2) | Ψ0〉

+

∫ t1

t2

dτα(t1 − τ)〈Ψ0 | [L†(t1), A(t1)]L(τ)B(t2) | Ψ0〉

+

∫ t2

0

dτα(t1 − τ)〈Ψ0 | [L†(t1), A(t1)]B(t2)L(τ) | Ψ0〉, (8.18)

that shows a dependency with three-time correlations.

8.1.3 Evolution equation of three time correlations

Let us now calculate the following evolution equation,

d〈Ψ0 | A(t1)B(t2)C(t3) | Ψ0〉
dt1

= M1,2,3

[

〈ψ0 |
{

G†(0z1|0t1)
(

iHS + z1,t1L
†)

−
∫ t1

0

dτα∗(t1 − τ)M4

[

G†(0z4|0τ)L†G†(z∗4z1|τt1)
]

L

}

×AG(z∗1z2|t1t2)BG(z∗2z3|t2t3)CG(z∗30|t30) | ψ0〉
]

+ M1,2,3

[

〈ψ0 | G†(0z1|0t1)A
{

(

− iHS + z∗1,t1L− z2,t1L
†)G(z∗1z2|t1t2)

−
∫ t1

t2

dτα(t1 − τ)L†M4 [G(z∗1z4|t1τ)LG(z∗4z2|τt2)]
}

BG(z∗2z3|t2t3)CG(z∗30|t30) | ψ0〉.
]

(8.19)

The average of the term with noise z∗1 is performed using the property (8.5) and the relation (8.15),

M1,2,3

[

z∗1,t1〈ψ0 | G†(0z1|0t1)L†AG(z∗l z2|t1t2)BG(z∗2z3|t2t3)CG(z∗30|t30) | ψ0〉
]

=

∫ t1

0

dτα∗(t1 − τ)M1,2,3,4

[

〈ψ0 | G†(0z4|0τ)L†G†(z∗4z1|τt1)

× ALG(z∗1z2|t1t2)BG(z∗2z3|t2t3))CG(z∗30|t30) | ψ0〉] (8.20)
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Using the Novikov property (8.13) and the relation (8.15), we get the following result for the average of the
term z1,t1 ,

M1,2,3

[

z1,t1〈ψ0 | G†(0z1|0t1)L†AG(z∗l z2|t1t2)BG(z∗2z3|t2t3)CG(z∗30|t30) | ψ0〉
]

=

∫ t1

t2

dτα(t1 − τ)M1,2,3,4

[

〈ψ0 | G†(0z1|0t1)L†AG(z∗1z4|t1τ)LG(z∗4z2|τt2)

× BG(z∗2z3|t2t3)CG(z∗30|t30) | ψ0〉]

+

∫ t2

t3

dτα(t1 − τ)M1,2,3,4

[

〈ψ0 | G†(0z1|0t1)L†AG(z∗1z2|t1t2)

BG(z∗2z4|tτ)LG(z∗4z3|τt3)CG(z∗30|t30) | ψ0〉]

+

∫ t3

0

dτα(t1 − τ)M1,2,3,4

[

〈ψ0 | G†(0z1|0t1)L†AG(z∗1z2|t1t2)

× BG(z∗2z3|t2t3)CG(z∗3z4|t3τ)LG(z∗40|τ0) | ψ0〉] . (8.21)

Finally, in an analogous way, using the same properties we can calculate the following average,

M1,2,3

[

z2,t1〈ψ0 | G†(0z1|0t1)AL†G(z∗l z2|t1t2)BG(z∗2z3|t2t3)CG(z∗30|t30) | ψ0〉
]

+

∫ t2

t3

dτα(t1 − τ)M1,2,3,4

[

〈ψ0 | G†(0z1|0t1)L†AG(z∗1z2|t1t2)

× BG(z∗2z4|tτ)LG(z∗4z3|τt3)CG(z∗30|t30) | ψ0〉]

+

∫ t3

0

dτα(t1 − τ)M1,2,3,4

[

〈ψ0 | G†(0z1|0t1)AL†G(z∗1z2|t1t2)

× BG(z∗2z3|t2t3)CG(z∗3z4|t3τ)LG(z∗40|τ0) | ψ0〉] . (8.22)

The replacement of (8.20), (8.21) and (8.22) in (8.19) gives rise to the following equation for three time
correlations,

d〈Ψ0 | A(t1)B(t2)C(t3) | Ψ0〉
dt1

= i〈{[HS , A]} (t1)B(t2)C(t3)〉

+

∫ t1

0

dτα∗(t1 − τ)〈Ψ0 | L†(τ)[A(t1), L(t1)]B(t)C(t3) | Ψ0〉

+

∫ t1

t2

dτα(t1 − τ)〈Ψ0 | [L†(t1), A(t1)]L(τ)B(t2)C(t3) | Ψ0〉

+

∫ t2

t3

dτα(t1 − τ)〈Ψ0 | [L†(t1), A(t1)]B(t2)L(τ)C(t3) | Ψ0〉

+

∫ t3

0

dτα(t1 − τ)〈Ψ0 | [L†(t1), A(t1)]B(t2)C(t3)L(τ) | Ψ0〉. (8.23)

This equation shows how the evolution of non-Markovian three-time correlations depends in principle on
four-time correlations.

8.2 METHOD II: MTCF IN THE HEISENBERG FORMALISM.

In this section we show how the equations obtained in the former section can also be derived within the
Heisenberg formalism. The idea is to express dA1(t1) · · ·AN (tN )/dt1 in such a way that the environmental
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operators aλ(0) are placed on the right hand side of the terms, while the a†λ(0) appear in the left hand side.
Thus, when we compute the MTCF as the quantum mean value of A1(t1) · · ·AN (tN ), i.e. as CA(t|Ψ0) =
〈ψ0|〈0|A1(t1) · · ·AN (tN )|0〉|ψ0〉, where we have considered ρtot(0) = |ψ0〉〈ψ0| ⊗ |0〉〈0|, those terms are
zero, and only system operators appear in the equations. Let us consider the Heisenberg evolution equation
for a system observable A(t) = U−1(t, 0)AU(t, 0), where U(t, 0) is the evolution operator with the total
Hamiltonian (7.40),

dA(t1)

dt1
= iU−1(t1, 0)[Htot, A]U(t1, 0) = −i[HS(t1), A(t1)]

+ i
∑

λ

gλ

(

a†λ(t1, 0)[L(t1), A(t1)] + [L†(t1), A(t1)]aλ(t1, 0)
)

, (8.24)

We can replace in (8.24) the formal solution of the evolution equation of the environmental operators,
daλ(t1, 0)/dt1 = i[Htot(t1), aλ(t1, 0)] = −iωλaλ(t1, 0) − igλL(t1),

aλ(t1, 0) = e−iωλt1a(0, 0) − igλ

∫ t1

0

dτe−iωλ(t1−τ)L(τ). (8.25)

The single evolution equation (8.24) becomes as follows,

dA(t1)

dt1
= i[HS(t1), A(t1)] − ν†(t1)[L(t1), A(t1)]

+

∫ t1

0

dτα∗(t1 − τ)L†(τ)[A(t1), L(t1)] + [L†(t1), A(t1)]ν(t1)

+

∫ t1

0

dτα(t1 − τ)[L†(t1), A(t1)]L(τ), (8.26)

where we have used the definition (7.48) of the environment correlation function. In the last expression, we
have also defined, like in Chapter (2) the bath operators

ν†(t1) = −i
∑

λ

gλa
†
λ(0, 0)e

iωλt1

ν(t1) = i
∑

λ

gλaλ(0, 0)e
−iωλt1 (8.27)

It is easy to see from (8.26) that the evolution equation of the quantum mean value of A, provided that the
total initial state is | Ψ0〉 =| ψ0〉 | 0〉, is equal to the equation (8.10) derived in last section through the
system propagators formalism. Let us now calculate the following evolution equation,

dA(t1)B(t2)

dt
= iU−1(t1)[Htot, A]U(t1)B(t) = i[HS(t1), A(t1)]B(t2)

+ i
∑

λ

gλ

(

a†λ(t1, 0)[L(t1), A(t1)]B(t2) + [L†(t1), A(t1)]aλ(t1, 0)B(t2)
)

. (8.28)

The idea is again to eliminate the dependency on the environmental operators once the average over the total
system state is performed. First, we again replace the analytical solution of the creation operator a†λ(t1, 0),
so that the term a†λ(0, 0) appears in the left hand side of the expression and can be eliminated when applying
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the vacuum initial state. Second, we move the annihilation operator to the right hand side by doing the
following,

aλ(t1, 0)B(t2) = U−1(t2)aλ(t1, t2)BU(t2)

= U−1(t2)e
−iωλ(t1−t2)aλ(0, 0)BU(t2) − igλ

∫ t1

t2

dτe−iωλ(t1−τ)L(τ)B(t2)

= B(t2)aλ(t2, 0) − igλ

∫ t1

t2

dτe−iωλ(t1−τ)L(τ)B(t2) (8.29)

where we have used

aλ(t1, t2) = e−iωλ(t1−t2)aλ(t2, t2) − igλ

∫ t1

t2

dτe−iωλ(t1−τ)L(τ, t2), (8.30)

with aλ(t2, t2) = aλ(0, 0) ≡ aλ, and [B, aλ(0, 0)] = 0. We now insert in the former expression the solution
of aλ(t2, 0), which is of the form (8.25), and obtain

aλ(t1, 0)B(t2) = e−iωλt1B(t2)aλ(0, 0) − igλ

∫ t2

0

dτe−iωλ(t1−τ)B(t2)L(τ)

− igλ

∫ t1

t2

dτe−iωλ(t1−τ)L(τ)B(t2). (8.31)

Replacing (8.31) in (8.28), and considering the solution of a†λ(t1, 0), we obtain the following

dA(t1)B(t2)

dt1
= i[HS(t1), A(t1)]B(t2) − ν†(t1)[L(t1), A(t1)]B(t2)

−
∫ t1

0

dτα∗(t1 − τ)L†(τ)[L(t1), A(t1)]B(t2) + [L†(t1), A(t1)]B(t2)ν(t1)

+

∫ t1

t2

dτα(t1 − τ)[L†(t1), A(t1)]L(τ)B(t2) +

∫ t2

0

dτα(t1 − τ)[L†(t1), A(t1)]B(t2)L(τ).

(8.32)

The evolution of the quantum mean value 〈A(t1)B(t2)〉 is again obtained by applying the total initial state
on both sides of the former expression. When such initial state is | ψ0〉 | 0〉, we again obtain the same result
as with the method of system propagators, i.e. equation (8.18). For triple correlations, we start from

dA(t1)B(t2)C(t3)

dt1
= iU−1(t1)[Htot, A]U(t1)B(t2)C(t3)

= i[HS(t1), A(t1)]B(t2)C(t3) + i
∑

λ

gλ

(

a†λ(t1, 0)[L(t1), A(t1)]B(t2)C(t3)

+ [L†(t1), A(t1)]aλ(t1, 0)B(t2)C(t3)
)

. (8.33)

While the term with a†λ(t1, 0) can be treated by simply replacing the solution of its Heisenberg equation, the
term with the combination aλ(t1, 0)B(t)C(t3) needs further simplification,

aλ(t1, 0)B(t2)C(t3) =
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= U−1(t2)e
−iωλ(t1−t2)aλ(0, 0)BU(t2)C(t3) − igλ

∫ t1

t2

dτe−iωλ(t1−τ)L(τ)B(t2)C(t3)

= e−iωλ(t1−t2)B(t2)U−1(t3)a(t2, t3)CU(t3) − igλ

∫ t1

t2

dτe−iωλ(t1−τ)L(τ)B(t2)C(t3)

= B(t2)C(t3)aλ(0, 0)e
−iωλt1 − igλ

∫ t1

t2

dτe−iωλ(t1−τ)L(τ)B(t2)C(t3)

− igλ

∫ t2

t3

dτe−iωλ(t1−τ)B(t2)L(τ)C(t3)

− igλ

∫ t3

0

dτe−iωλ(t1−τ)B(t2)C(t3)L(τ). (8.34)

Inserting the last expression in (8.33), and the expression for a†λ(t1, 0), we get the following equation,

dA(t1)B(t2)C(t3)

dt1
= i[HS(t1), A(t1)]B(t2)C(t3)

− ν†(t1)[L(t1), A(t1)]B(t2)C(t3) + [L†(t1), A(t1)]B(t2)C(t3)ν(t1)

+

∫ t1

0

dτα∗(t1 − τ)L†(τ)[A(t1), L(t1)]B(t2)C(t3)

+

∫ t1

t2

dτα(t1 − τ)[L†(t1), A(t1)]L(τ)B(t2)C(t3)

+

∫ t2

t3

dτα(t1 − τ)[L†(t1), A(t1)]B(t2)L(τ)C(t3)

+

∫ t3

0

dτα(t1 − τ)[L†(t1), A(t1)]B(t2)C(t3)L(τ) (8.35)

Since the annihilation operators aλ(0, 0) are on the right, and the creation operators a†λ(0, 0) are on the left,
this expression is identical to equation (8.23), once the initial state for the total wave vector, |Ψ0〉 = |ψ0〉|0〉,
is applied.

8.3 GENERALIZATION TO A N-TIME CORRELATION FUNCTION

The evolution equations presented in Sections (8.1) and (8.2) with the reduced propagator and the Heisenberg
equation method respectively, can be generalized to N -time correlations. The reason is that the different
terms of the equation, as well as their corresponding integration limits are ordered in a sequence. To see this
more clearly, let us consider the following string of operators {L(τ)A2(t2) · · ·AN (tN )} = L(τ)Ã(2)(̃t(2)),
where t̃(2) = {t2 · · · tN}, and we have defined

Ã(n)(̃t(n)) = An(tn) · · ·AN (tN ), (8.36)

with t̃(n) = {tn · · · tN}. We define a displacement superoperator PR that translate the operator L(τ) to the
right one place inside the string Ã(̃t). In such terms, we have

dA(t)

dt1
= i[HS(t1), A1(t1)]Ã

(2)(̃t(2))
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− ν†(t1)[L(t1), A(t1)]Ã
(2)(̃t(2)) + [L†(t1), A(t1)]Ã

(2)(̃t(2))ν(t1)

+

∫ t1

0

dτα∗(t1 − τ)L†(τ)[A1(t1), L(t1)]Ã
(2)(̃t(2))

+
N−1
∑

i=0

∫ ti+1

ti+2

dτα(t1 − τ)[L†(t1), A1(t1)]PiRL(τ)Ã(2)(̃t(2)) (8.37)

and the evolution equation for the N -time correlation function for ρtot(0) = |Ψ0〉〈Ψ0| = |ψ0〉〈ψ0| ⊗ |0〉〈0|
reads as follows,

dCA(t|Ψ0)

dt1
= i〈Ψ0 | [HS(t1), A1(t1)]Ã

(2)(̃t(2)) | Ψ0〉

+

∫ t1

0

dτα∗(t1 − τ)〈Ψ0 | L†(τ)[A1(t1), L(t1)]Ã
(2)(̃t(2)) | Ψ0〉

+

N−1
∑

i=0

∫ ti+1

ti+2

dτα(t1 − τ)〈Ψ0 | [L†(t1), A1(t1)]PiRL(τ)Ã(2)(̃t(2)) | Ψ0〉 (8.38)

Notice that here, the displacement operator is defined in such a way that

P0
RL(τ)Ã(2)(̃t(2)) = L(τ)Ã(2)(̃t(2))

P1
RL(τ)Ã(2)(̃t(2)) = A2(t2)L(τ)Ã(3)(̃t(3))

P2
RL(τ)Ã(2)(̃t(2)) = A2(t2)A3(t3)L(τ)Ã(4)(̃t(4))

· · ·
PN−1
R L(τ)Ã(2)(̃t(2)) = Ã(2)(̃t(2))L(τ). (8.39)

Replacing N = 0, N = 1 and N = 2 in (8.38), the one-time evolution equation (8.10), the two-time
evolution equation (8.18), and the three-time evolution equation (8.23) is obtained respectively 1.

1It should be reminded that the initial time, t0 = tN+1 = 0.



9
Non-Markovian MTCF up to
second order in perturbation

parameter.
In this chapter we discuss three different methods to derive MTCF up to second order in the coupling constant.

The first, treated in Section (9.1), is essentially numeric, and consists in making an ensemble average
of different stochastic trajectories. These trajectories are obtained by using the second order perturbative
equation for the reduced propagator (7.50), in which O(zi+1z

∗
i , t, τ) = Vt−τL.

The other two methods consist in deriving a set of coupled differential equations for MTCF: In Section
(9.2.1) such set is obtained by using a weak coupling expansion of the reduced propagator, and then per-
forming analytically the average over the environmental variables zi+1 and zi. In Section (9.2.2), a third
method is presented which consists in applying the second order perturbative hypothesis to the hierarchy of
evolution equations derived in the last chapter. As noted before, in order to use the hierarchy for computa-
tional purposes and not just as a formal derivation, the dependency on higher order correlations should be
broken. This is done in this chapter by applying a second perturbative hypothesis directly on the N -time
correlation we want to compute, so that its dependency on the N + 1-time correlations vanishes.

9.1 COMPUTING SECOND ORDER MTCFS WITH STOCHASTIC SAMPLING

The solutions of the equations of motion for the reduced propagators, once they are replaced in (7.44), are
the starting point to compute correlation functions. Once the noises, i.e. the set of coherent states appearing
(7.44), {zi = zi,1 · · · zi,λ · · ·} for i = 0, · · · , N + 1, has been chosen, the element

〈ψ0|G†(z′∗z1|0t1)
N
∏

i=1

AiG(z∗i zi+1|titi+1)|ψ0〉, (9.1)

can be integrated. If for instance we want to compute numerically two-time correlations, it is necessary
to make an average with the functions 〈ψ0|G†(z1|0t1)AG(z∗1z2|t1t2)BG(z∗2 |t20)|ψ0〉 for different noise
histories. To construct each function, the following steps have to be taken:

125
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• Propagate G(z∗2 |t20)|ψ0〉 from 0 to t2, choosing randomly the set of z2,λ appearing in the function
z2,t2 . This choice is made according to a Gaussian distribution dµ(z) =

∏ν
λ=1(d

2zλ exp(−|zλ|2))/π,
where ν is the number of environmental modes we consider. In the same way, chose the set of {z1,λ},
and evolve the function | ψt2(z∗10)〉 = G(z∗1 |t20)|ψ0〉 ;

• Apply the matrixB to the wave function evolving with z2, so that we obtain | φt2(z∗2)〉 = BG(z∗20|t20)|ψ0〉.

• Propagate from t2 to t1 the functions | ψt2(z∗1)〉 and | φt2(z∗2)〉. The first one is evolved just
continuing with the evolution given by the vacuum propagator, while the evolution of the sec-
ond one has to be performed by applying the propagator G(z∗1z2|t1t2), that gives a wave function
| φt1,t2(z∗2 , z∗1 , z2)〉 = G(z∗1z2|t1t2) | φt2(z∗2)〉. It is important to stress that the noises z1,t1 and
z2,t1 appearing in the evolution of the propagator are calculated respectively with the sets {z1,λ} and
{z2,λ} already chosen. Another important point is to take into account that the propagator has as
initial condition G(z∗1z2|t2t2) = exp (z∗1z2), with z∗1z2 =

∑

λ z
∗
1,λz2,λ.

• Reconstruct 〈ψ0|G†(z1|0t1)AG(z∗1z2|t1t2)BG(z∗2 |t20)|ψ0〉 with 〈ψt1(z1) | A | φt1,t2(z∗2 , z∗1 , z2)〉.

This steps are repeated as many times as needed to obtain a good sampling of (7.44). The figure (9.1) is
represents an scheme of these steps.

t2

t 2

t 2

t 1

t2

t 2t 2 2 21 (z* z* z  ) >φ |

ψ

|

|

φ  (z*) >

 (z*) >

ψ >0

| 1

2

2

t

|

2 21 (z* z* z  ) >φ | t 1

 (z*) >ψ

t1

Fig. 9.1 Schematic evolution of the two vectors, |ψt1(z1)〉 (in blue), and | φt1,t2(z
∗
2 , z

∗
1 , z2)〉 (in red), needed to

obtain one single stochastic value of the element 〈ψt1(z1) | A | φt1,t2(z
∗
2 , z

∗
1 , z2)〉. A sum of different elements,

obtained with an ensemble of noise values of z1,t and z2,t gives rise to the desired two time correlation function
〈Ψ0 | A(t1)B(t2) | Ψ0〉.

9.2 COMPUTING MTCF WITH A SET OF COUPLED DIFFERENTIAL EQUATIONS

Once we have the multiple time correlation functions, we may compute them directly from the stochastic
method. Nonetheless, this may turn to be an expensive strategy from the numerical point of view, which
is particularly true when the number of environmental degrees of freedom needed to correctly describe its
correlation function is large. Therefore, it may be convenient to have a set of differential equations from
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which the MTCF may be obtained, and where the stochastic average has been performed analytically. In
this section, we calculate such a set of coupled differential equations which evolve, up to second order
in a convenient perturbation parameter g, the non-Markovian two-time correlations. We also show how to
calculate such set of coupled equations from the hierarchy of equations derived in the Chapter (8), and derive
the general equation for N -time correlation functions up to second order. Finally, it will be shown that only
under several conditions do these equations reduce to those of the Quantum Regression Theorem. This
chapter ends with the application of the two-time correlation functions to a solvable example, a dissipative
system with exponential correlation function and a spin-boson model. In those examples the equivalence
of using a stochastic sampling and using the set of coupled differential equations is shown. The choice of
the stochastic method or the system of equations for computing the MTCF has to be made according to the
particular problem. When evolving quantum mean values we saw that for a system with a large number of
degrees of freedom, F , the stochastic method is generally more convenient, since in the dimension of the
density matrix grows with F2. The same happens in MTCF. When a N -time correlation function has to be
computed, the quantity that should be taken into account is the number Y of matrices that form a basis for
the QOS. The correlation of other system observables can be computed by combining correlations of this
basic set of observables. As an example,for a two level system the basis is {σx, σy, σz}, so that Y = 3. In
that case, stochastic method permit us to compute only the particular correlation function that is needed, and
not the whole set of YN correlations that appears interrelated in the set of differential equations.

9.2.1 Computing MTCF with the weak coupling expansion

The method we will follow consists in deriving the stochastic two-time correlation with respect to t1,

d

dt1
〈ψ0 | G†(z10|t10)AG(z∗1z2|t1t2)BG(z∗20|t20) | ψ0〉 =

〈ψ0 |
(

d

dt1
G†(z10|t10)

)

AG(z∗1z2|t1t2)BG(z∗20|t20) | ψ0〉

+ 〈ψ0 | G†(z10|t10)A
(

d

dt1
G(z∗1z2|t1t2)

)

BG(z∗20|t20) | ψ0〉 (9.2)

and then performing analytically the average over the variables z1 and z2. The first derivative appearing in
(9.2) corresponds to the hermitian conjugate of the usual equation for the vacuum propagator, which reads
as follows,

d

dt1
G(z∗10|t10) =

{

−iHS + Lz∗1,t1 − L†
∫ t1

0

dτα(t1 − τ)Vτ−t1L

}

G(z∗10|t10) + O(g3). (9.3)

The second term is given by the equation,

d

dt1
G(z∗1z2|t1t2) =

{

−iHS + Lz∗1,t1 − L†z2,t1 − L†
∫ t1

t2

dτα(t1 − τ)Vτ−t1L

}

G(z∗1z2|t1t2) + O(g3),(9.4)

presented in previous sections. Inserting the last expressions in (9.2), we find that

d

dt1
〈ψ0 | G†(z10|t10)AG(z∗1z2|t1t2)BG(z∗20|t20) | ψ0〉 =

+ i〈ψ0 | G†(z10|t10)[HS , A]G(z∗1z2|t1t2)BG(z∗20|t20) | ψ0〉

−
∫ t1

0

dτα∗(t1 − τ)〈ψ0 | G†(z10|t10)Vτ−t1L†LAG(z∗1z2|t1t2)BG(z∗20|t20) | ψ0〉
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−
∫ t1

t2

dτα(t1 − τ)〈ψ0 | G†(z10|t10)AL†Vτ−t1LG(z∗1z2|t1t2)BG(z∗20|t20) | ψ0〉

+ z1,t1〈ψ0 | G†(z10|t10)L†AG(z∗1z2|t1t2)BG(z∗20|t20) | ψ0〉
+ z∗1,t1〈ψ0 | G†(z10|t10)ALG(z∗1z2|t1t2)BG(z∗20|t20) | ψ0〉
− z∗2,t1〈ψ0 | G†(z10|t10)AL†G(z∗1z2|t1t2)BG(z∗20|t20) | ψ0〉. (9.5)

In order to make the averages, we will handle second order perturbative expansions of these evolution
operators, which are

G(z∗10|t10) =

{

1 +

∫ t1

0

dτz∗1,τVτ−t1L+

∫ t1

0

dτ

∫ τ

0

dτ ′z∗1,τz
∗
1,τ ′Vτ−t1LVτ ′−t1L

−
∫ t1

0

dτ

∫ τ

0

dτ ′α(τ − τ ′)Vτ−t1L
†Vτ ′−t1L

}

G(0)(z∗10|t10) + O(g3), (9.6)

for (9.3), where G(0)(z∗10|t10) = exp (−iHSt1) represent the zero order in the perturbative expansion, and

G(z∗1 , z2|t1t2) =

{

1 +

∫ t1

t2

dτz∗1,τVτ−t1L−
∫ t1

t2

dτz2,τVτ−t1L
†

−
∫ t1

t2

dτ

∫ τ

t

dτ ′α(τ − τ ′)Vτ−t1L
†Vτ ′−t1L+

∫ t1

t

dτ

∫ τ

t

dτ ′z∗1,τz
∗
1,τ ′Vτ−t1LVτ ′−t1L

−
∫ t1

t

dτ

∫ τ

t2

dτ ′z∗1,τz2,τ ′Vτ−t1LVτ ′−t1L
† −

∫ t1

t2

dτ

∫ τ

t2

dτ ′z2,τz
∗
1,τ ′Vτ−t1L

†Vτ ′−t1L

−
∫ t1

t2

dτ

∫ τ

t2

dτ ′z2,τz2,τ ′Vτ−t1L
†Vτ ′−t1L

†
}

G(0)(z∗1 , z2|t1t2) + O(g3), (9.7)

for (9.4), where now the zero order is G(0)(z∗1z2|t1t2) = exp (−iHS(t1 − t2)) exp (z∗1z2). The average of
term in z1,t1 is such that

∫

dµ(z1)

∫

dµ(z2)z1,t1〈ψ0 | G†(z10|t10)L†AG(z∗1z2|t1t2)BG(z∗20|t20) | ψ0〉 =

=

∫

dµ(z1)

∫

dµ(z2)z1,t1〈ψ0 | G†,(0)(0z1|0t1)
{

1 +

∫ t1

0

dτz1,τVτ−t1L
†
}

L†A

×
{

1 +

∫ t1

t2

dτz∗1,τVτ−t1L−
∫ t1

t2

dτz2,τVτ−t1L
†
}

B

{

1 +

∫ t1

0

dτz∗1,τVτ−t1L

}

| ψ0〉

+ O(g3), (9.8)

where we have inserted the perturbative expansions of the propagators, (9.6) and (9.7) up to first order in g,
since the term is already of first order. The Gaussian integrals, are in fact multi-dimensional integrals over
the coordinates of each harmonic oscillator of the environment. Four types of them have to be computed,

∫

dµ(z2,λ)

∫

dµ(z1,λ)z1,λz1,λe
z∗1,λz2,λ = 0

∫

dµ(z2,λ)

∫

dµ(z1,λ)z1,λz
∗
1,λe

z∗1,λz2,λ = 1
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∫

dµ(z2,λ)

∫

dµ(z1,λ)z1,λz
∗
2,λe

z∗1,λz2,λ =

∫

dµ(z1,λ)z1,λz
∗
1,λ = 1

∫

dµ(z2,λ)

∫

dµ(z1,λ)z1,λz2,λe
z∗1,λz2,λ =

∫

dµ(z1,λ)z1,λz1,λ = 0 (9.9)

what give rise to the following result,
∫

dµ(z1)

∫

dµ(z2)z1,t1〈ψ0 | G†(0z1|0t1)L†AG(z∗1z2|t1t2)BG(z∗20|t20) | ψ0〉 =

∫ t1

t2

dτα(t1 − τ)〈ψ0|eiHSt1L†AVτ−t1Le
−iHS(t1−t2)Be−iHSt2 |ψ0〉

+

∫ t2

0

dτα(t1 − τ)〈ψ0|eiHSt1 |L†Ae−iHS(t1−t2)BVτ−t1Le
−iHSt2 |ψ0〉. (9.10)

Since the quantities eiHSt1 , e−iHS(t1−t2) and e−iHSt2 represent the Gaussian averages over z1 and z2 of the
first order term of the perturbative expansion ofG†(0z1|0t1),G(z∗1z2|t1t2) andG(z∗20|t20) respectively, we
conclude that the last terms can be written as

∫

dµ(z1)

∫

dµ(z2)z1,t1〈ψ0 | G†(0z1|0t1)L†AG(z∗1z2|t1t2)BG(z∗20|t20) | ψ0〉 =

∫ t1

t2

dτα(t1 − τ)〈Ψ0|
{

L†AVτ−t1L
}

(t1)B(t2)|Ψ0〉

+

∫ t2

0

dτα(t1 − τ)〈Ψ0

{

L†A
}

(t1) {BVτ−t1L} (t2)|Ψ0〉. (9.11)

The brackets involving a group of operators denote that the evolution affects all of them, {ABC}(t1) =
U−1
I (t1, 0)ABCUI(t1, 0) = A(t1)B(t1)C(t1). A similar procedure can be used to perform the averages of

the terms with z∗1,t1 and z2,t1 , which are such that
∫

dµ(z1)

∫

dµ(z2)z
∗
1,t1〈ψ0 | G†(0z1|0t1)ALG(z∗1z2|t1t2)BG(z∗20|t20) | ψ0〉 =

∫ t1

0

dτα∗(t1 − τ)〈Ψ0|
{

Vτ−t1L
†AL

}

(t1)B(t2)|Ψ0〉, (9.12)

and
∫

dµ(z1)

∫

dµ(z2)z
∗
1,t1〈ψ0 | G†(0z1|0t1)L†AG(z∗1z2|t1t2)BG(z∗20|t20) | ψ0〉 =

∫ t2

0

dτα(t1 − τ)〈Ψ0|
{

AL†} (t1) {BVτ−t2} (t2)|Ψ0〉. (9.13)

Inserting (9.11), (9.12) and (9.13) in (9.5), we get the following equation for two-time correlations,

d

dt1
〈Ψ0 | A(t1)B(t2) | Ψ0〉 = i〈Ψ0 | {[HS , A]} (t1)B(t2) | Ψ0〉

+

∫ t1

0

dτα∗(t1 − τ)〈Ψ0 |
{

Vτ−t1L
†[A,L]

}

(t1)B(t2) | Ψ0〉

+

∫ t1

t2

dτα(t1 − τ)〈Ψ0 |
{

[L†, A]Vτ−t1L
}

(t1)B(t2) | ψ0〉

+

∫ t2

0

dτα(t1 − τ)〈Ψ0 |
{

[L†, A]
}

(t1) {BVτ−t2L} (t2) | Ψ0〉 + O(g3). (9.14)
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Equations (9.14) represent the set of Y2 evolution equations for the correlation of system observables
defined with a basis of Y operators. For a two-level system, Y = 3, and the dimension of the operators in
their matricial representation is 2.

In order to make use of equations (9.14) to calculate two time correlations, it is necessary to evolve
initially the single mean value evolution equations up to time t. This is necessary since the initial value for
the two time correlations is given by 〈Ψ0 | A(t2)B(t2) | Ψ0〉 = 〈Ψ0 | C(t2) | Ψ0〉, where C = AB.

The procedure followed in this section can be generalized to the computation of N -time correlation
functions. Nevertheless, in the next section we propose a less involved method based on the hierarchy of
equations, by which a general second order N -time correlation function is easier to obtain.

9.2.2 Computing second order MTCF with hierarchy of equations

We have shown in the Chapter (8) that the evolution ofN -time correlation functions depends onN +1-time
correlations when no approximations are made. Because of such dependency, some approximation has to be
made in order to destroy the hierarchy and compute multiple time correlation function. Here the hierarchy
is broken at the immediately higher level by using a second order perturbative approximation, first to the
Schrödinger method described in Section (8.1), and second, to the Heisenberg method of Section (8.2), both
of Chapter (8). It is shown that the evolution of two-time correlation functions is identical to that derived in
the Section (9.2.1).

• Schrödinger formalism (Method I).

The method of reduced propagators shown in Section (8.1) shows that the dependency on higher order
correlations is due to the interaction (or coupling) between different propagators or trajectories. In
particular, such coupling comes from the functional derivative, since it can be expressed as (8.15).
The functional derivative appears in the dissipative term of the evolution equation of the propagators,
and when averaging the noise term by using the properties (8.5) and (8.13). The coupling is avoided,
and the hierarchy vanishes, when the functional derivative can be approximated as

δG(z∗i zi+1|titi+1)

δz∗i,τ
≈ O(zi+1z

∗
i , ti, τ)G(z∗i zi+1|titi+1), (9.15)

where O(zi+1z
∗
i , ti, τ) is a system operator conveniently chosen for each case (see [41, 54, 40] for

vacuum propagators, and [3, 4] for the general case zi+1 6= 0). Although expression (9.15) is exact
for some particular cases (i.e. when the interaction operator is diagonal L ∝ HS) (see for instance
[3, 4, 40, 70]), generally some approximations have to be made in order to obtain O(zi+1z

∗
i , ti, τ).

Within the weak coupling approximation, a second order equation in the perturbative parameter g is
obtained by only replacingO up to zero order in the evolution equations. The reason is that the term of
the open equation (2.45) where the functional derivative appears, i.e. the dissipative term, is already
of order g2 due to the appearance of the two order correlation function α(ti− τ). Therefore, the term
δG(z∗i zi+1|titi+1)

δz∗
i,τ

= Ml [G(z∗i zl|tiτ)LG(z∗l zi+1|τti+1)] up to order g0 is,

δG(z∗i zi+1|titi+1)

δz∗i,τ
= Ml [G(z∗i zl|tiτ)LG(z∗l zi+1|τti+1)]

= 〈zi | UI(tiτ)U−1
I (tiτ)UI(titi+1) | zi+1〉

= Vτ−tiLG(z∗i zi+1|titi+1) + O(g), (9.16)
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where Vτ−tiL = exp (iHS(τ − ti))L exp (−iHS(τ − ti)) = O(zi+1z
∗
i , ti, τ) ≡ O(ti, τ). Such

time dependencies with the system Hamiltonian (denoted with Vt1), are especially simple in the
present case, since the operators are expressed in the system basis in which HS is therefore diagonal.

Since this type of terms, which consists in a functional derivative inserted in an integral withα(ti−τ),
also appear as a result of the analytical averages of the noise terms, following the properties (8.5) and
(8.13), so that the same hypothesis can be made.

• Heisenberg formalism (Method II).

In the second method, the perturbative hypothesis is applied to the operators L(τ) which appears in
equations (8.26), (8.32) and (8.35) when inserting the analytical solution of aλ and a†λ. The idea is to
transform a two-time dependency on a one time-dependency 1, so that for instance,

L†(τ) {[L,A]} (ti) = U−1
I (ti0)L(τ, ti)[L,A]UI(ti0)

=
{

Vτ−tiL
†[L,A]

}

(ti) + O(g), (9.17)

or

L(τ)B(ti+1) = U−1
I (ti+10)L(τ, ti+1)BUI(ti+10)

=
{

Vτ−ti+1
LB
}

(ti+1) + O(g). (9.18)

The perturbative equation for single time evolution is, up to second order,

d

dt1
〈Ψ0 | A(t1) | ψ0〉 = i〈Ψ0 | {[HS , A]} (t1) | Ψ0〉〉

+

∫ t1

0

dτα∗(t1 − τ)〈Ψ0 |
{

Vτ−t1L
†[A,L]

}

(t1) | Ψ0〉

+

∫ t1

0

dτα(t1 − τ)〈Ψ0 |
{

[L†, A]Vτ−t1L
}

| Ψ0〉. (9.19)

This equation is equal to the one obtained in [35, 41, 40, 54]. The two-time correlation equation (8.32)
becomes, up to second order,

d

dt1
〈Ψ0 | A(t1)B(t2) | Ψ0〉 = i〈Ψ0 | {[HS , A]} (t1)B(t2) | Ψ0〉

+

∫ t1

0

dτα∗(t1 − τ)〈Ψ0 |
{

Vτ−t1L
†[A,L]

}

(t1)B(t2) | Ψ0〉

+

∫ t1

t2

dτα(t1 − τ)〈Ψ0 |
{

[L†, A]Vτ−t1L
}

(t1)B(t2) | ψ0〉

+

∫ t2

0

dτα(t1 − τ)〈Ψ0 |
{

[L†, A]
}

(t1) {BVτ−t2L} (t2) | Ψ0〉. (9.20)

This equation is equal to the one derived in the former section and in [3, 4, 2]. In those works the average over
the terms in zi,ti is made by performing a perturbative expansion of the propagators, so that the properties

1We stress again that by time dependency we mean that related to the evolution operator UI(t) with respec to the total Hamiltonian.
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(8.5) and (8.13) are not needed. Applying the perturbative hypothesis in equation (8.35), we get the following
equation for three time correlations up to second order in g,

d

dt1
〈Ψ0 | A(t1)B(t2)C(t3) | Ψ0〉 = i〈Ψ0 | {[HS , A]} (t1)B(t2)C(t3) | Ψ0〉

+

∫ t1

0

dτα∗(t1 − τ)〈Ψ0 |
{

Vτ−t1L
†[A,L]

}

(t1)B(t2)C(t3) | Ψ0〉

+

∫ t1

t2

dτα(t1 − τ)〈Ψ0 |
{

[L†, A]Vτ−t1L
}

(t1)B(t2)C(t3) | Ψ0〉

+

∫ t2

t3

dτα(t1 − τ)〈Ψ0 |
{

[L†, A]
}

(t1) {B, Vτ−t2L} (t2)C(t3) | Ψ0〉

+

∫ t3

0

dτα(t1 − τ)〈Ψ0 |
{

L†, A]
}

(t1)B(t2) {CVτ−t3L} (t3) | Ψ0〉. (9.21)

9.2.3 Generalization to a N-time correlation function

The second order evolution equations presented in the former sections can be generalized toN -time correla-
tions. Such general equation is just the perturbative version of the equation (8.38). For that reason, in a similar
way as in (8.38), we define a superoperator PR that acts over the string {Vτ−t1L}(t1){A2(t2) · · ·AN (tN )}
in the following way:

P0
R{Vτ−t1L}(t1)Â(2)(̂t(2)) = {Vτ−t1L}(t1)Â(2)(̂t(2))

P1
R{Vτ−t1L}(t1)Â(2)(̂t(2)) = A2(t2){Vτ−t2L}(t2)Â(3)(̂t(3)),

P2
R{Vτ−t1L}(t1)Â(2)(̂t(2)) = A2(t2)A3(t3){Vτ−t3L}(t3)Â(4)(̂t(4)),

· · ·
PN−1
R {Vτ−t1L}(t1)Â(2)(̂t(2)) = Â(2)(̂t(2)){Vτ−tNL}(tN ), (9.22)

and successively. Thus, the perturbative N -time correlation reads as follows,

dCA(t|Ψ0)

dt1
= 〈Ψ0 | [HS(t1), A1(t1)]Ã

(2)(̃t(2)) | Ψ0〉

+

∫ t1

0

dτα∗(t1 − τ)〈Ψ0 | Vτ−t1L†(t1)[A1(t1), L(t1)]Ã
(2)(̃t(2)) | Ψ0〉

+
N−1
∑

i=0

∫ ti+1

ti+2

dτα(t1 − τ)〈Ψ0 | [L†(t1), A1(t1)]PiLVτ−t1L(t1)Ã
(2)(̃t(2)) | Ψ0〉 + O(g3).(9.23)

9.3 BEYOND THE QUANTUM REGRESSION THEOREM

We show in this section how non-Markovian multiple time correlation functions do not obey the Quantum
Regression Theorem discussed in Section (7.2). This theorem, valid for Markovian interactions, states that
the coefficients of the evolution of N -time correlation functions are the same as those for the single-time
evolution,

d

dt1
〈Ψ0 | A(t1) | Ψ0〉 = i〈Ψ0 | {[HS , A]} (t1) | Ψ0〉〉



BEYOND THE QUANTUM REGRESSION THEOREM 133

+ Γ〈Ψ0 |
{

L†[A,L]
}

(t1) | Ψ0〉
+ Γ〈Ψ0 |

{

[L†, A]L
}

(t1) | Ψ0〉 + O(g3), (9.24)

where α(t1 − τ) = Γδ(t1 − τ). In the non-Markovian case, this evolution is given by

d

dt1
〈Ψ0 | A(t1) | Ψ0〉 = i〈Ψ0 | {[HS , A]} (t1) | Ψ0〉

+

∫ t1

0

dτα∗(t1 − τ)〈Ψ0 |
{

Vτ−t1L
†[A,L]

}

(t1) | Ψ0〉

+

∫ t1

0

dτα(t1 − τ)〈Ψ0 |
{

[L†, A]Vτ−t1L
}

(t1) | Ψ0〉 + O(g3). (9.25)

Since the equation for the N -time correlation function is given by (8.38) as

dCA(t|Ψ0)

dt1
= 〈Ψ0 | [HS(t1), A1(t1)]Ã

(2)(̃t(2)) | Ψ0〉

+

∫ t1

0

dτα∗(t1 − τ)〈Ψ0 | L†(τ)[A1(t1), L(t1)]Ã
(2)(̃t(2)) | Ψ0〉

+

N
∑

i=0

∫ ti

ti+1

dτα(t1 − τ)〈Ψ0 | [L†(t1), A1(t1)]PN−i
R L(τ)Ã(2)(̃t(2)) | Ψ0〉, (9.26)

the coefficients are equal to those of (9.25) only if the operators are such that the displacement superoperator
PR, that translate the operator L(τ) one place inside the string Ã(̃t), is such that

PN−i
R L(τ)Ã(2)(̃t(2)) ≡ L(τ)Ã(2)(̃t(2)), (9.27)

a condition very difficult to fulfill. Moreover, let us now show the QRT does not held for non-Markovian
interactions even within the weak coupling approximation. In order to do that, it is necessary to express in
a different way the second order perturbative equations derived in the last section. Let us take for instance
the two-time correlation function (9.14), and rearrange its last term as

∫ t2

0

dτα(t1 − τ)〈Ψ0 |
{

[L†, A]
}

(t1) {BVτ−t2L} (t2) | Ψ0〉 =

∫ t2

0

dτα(t1 − τ)〈ψ0 | G†(0z1|0t1)
{

[L†, A]
}

{[B, Vτ−t2L]} (t2) | Ψ0〉

+

∫ t2

0

dτα(t1 − τ)〈ψ0 | G†(0z1|0t1)
{

[L†, A]
}

{Vτ−t2LB} (t2) | Ψ0〉 (9.28)

Replacing this is (9.14), we get the following equation for second order two-time correlation,

d

dt1
〈Ψ0 | A(t1)B(t2) | Ψ0〉 = i〈Ψ0 | {[HS , A]} (t1)B(t2) | Ψ0〉

+

∫ t1

0

dτα∗(t1 − τ)〈Ψ0 |
{

Vτ−t1L
†[A,L]

}

(t1)B(t2) | Ψ0〉

+

∫ t1

0

dτα(t1 − τ)〈Ψ0 |
{

[L†, A]Vτ−t1L
}

(t1)B(t2) | ψ0〉

+

∫ t2

0

dτα(t1 − τ)〈Ψ0 |
{

[L†, A]
}

(t1) {[B, Vτ−t2L]} (t2) | Ψ0〉 + O(g3). (9.29)
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The first three terms are analogous to the non-Markovian evolution of the quantum average ofA from 0 to t1
given by equation (9.25), so that only when the last term vanish, i.e. when [L†, A] = 0 or [B, Vτ−t2L] = 0,
the Quantum Regression Theorem applies. Notice also that this term is zero in the Markovian case, since
the corresponding correlation function α(t1 − τ) = Γδ(t1 − τ) is zero in the domain of integration from 0
to t2.

Let us now take the perturbative equation for three time correlations (9.21), and manipulate its last two
terms with a similar procedure. Thus

+

∫ t2

t3

dτα(t1 − τ)〈Ψ0 |
{

[L†, A]
}

(t1) {B, Vτ−t2L} (t2)C(t3) | Ψ0〉 =

+

∫ t2

t3

dτα(t1 − τ)〈Ψ0 |
{

[L†, A]
}

(t1) {[B, Vτ−t2L]} (t2)C(t3) | Ψ0〉

+

∫ t2

t3

dτα(t1 − τ)〈Ψ0 |
{

[L†, A]
}

(t1) {Vτ−t2LB} (t2)C(t3) | Ψ0〉. (9.30)

For the last term of (9.21), we have
∫ t3

0

dτα(t1 − τ)〈Ψ0 |
{

L†, A]
}

(t1)B(t2) {CVτ−t3L} (t3) | Ψ0〉

=

∫ t3

0

dτα(t1 − τ)〈Ψ0 |
{

L†, A]
}

(t1)B(t2) {[C, Vτ−t3L]} (t3) | Ψ0〉

+

∫ t3

0

dτα(t1 − τ)〈Ψ0 |
{

L†, A]
}

(t1)B(t2) {Vτ−t3LC} (t3) | Ψ0〉. (9.31)

We now simplify the last term of (9.31)
∫ t3

0

dτα(t1 − τ)〈Ψ0 |
{

L†, A]
}

(t1)B(t2) {Vτ−t3LC} (t3) | Ψ0〉 =

∫ t3

0

dτα(t1 − τ)〈Ψ0 | eiHSt1
{

L†, A]
}

e−iHS(t1−t2)Be−iHS(t2−t3)

e−iHS(τ−t3)LeiHS(τ−t3)eiHSt2e−iHSt2Ce−iHSt3 | Ψ0〉 + O(g3) (9.32)

where in the second line we have replaced the reduced propagators by their zero order in a perturbative
expansion G(titi+1|z∗i zi+1) = exp (z∗i zi+1) exp (−iHS(ti − ti+1)), and we have inserted the identity
operator 1 = exp (iHSt2) exp (−iHSt2). Rearranging the terms we can express (9.32) as

+

∫ t3

0

dτα(t1 − τ)〈Ψ0 |
{

L†, A]
}

(t1)B(t2) {Vτ−t3LC} (t3) | Ψ0〉 =

=

∫ t3

0

dτα(t1 − τ)〈Ψ0 |
{

L†, A]
}

(t1) {BVτ−t2L} (t2)C(t3) | Ψ0〉 + O(g3), (9.33)

which after reinsertion in (9.31), and then again in the equation (9.21), leads to the following expression

d

dt1
〈Ψ0 | A(t1)B(t2)C(t3) | Ψ0〉 = i〈Ψ0 | {[HS , A]} (t1)B(t2)C(t3) | Ψ0〉

+

∫ t1

0

dτα∗(t1 − τ)〈Ψ0 |
{

Vτ−t1L
†[A,L]

}

(t1)B(t2)C(t3) | Ψ0〉



BEYOND THE QUANTUM REGRESSION THEOREM 135

+

∫ t1

0

dτα(t1 − τ)〈Ψ0 |
{

[L†, A]Vτ−t1L
}

(t1)B(t2)C(t3) | Ψ0〉

+

∫ t2

t3

dτα(t1 − τ)〈Ψ0 |
{

[L†, A]
}

(t1) {[B, Vτ−t2L]} (t2)C(t3) | Ψ0〉

+

∫ t3

t4

dτα(t1 − τ)〈Ψ0 |
{

[L†, A]
}

(t1)B(t2) {[C, Vτ−t3L]} (t3) | Ψ0〉

+

∫ t3

t4

dτα(t1 − τ)〈Ψ0 |
{

[L†, A]
}

(t1) {[B, Vτ−t2L]} (t2)C(t3) | Ψ0〉 + O(g3). (9.34)

Now the QRT is valid only when the last three terms are zero, which means that either [L†, A] = 0, or
[B, Vτ−t2L] = 0 and [C, Vτ−t3L] = 0. The generalization to a perturbative equation of N -time correlation
functions is straightforward, and has the following form,

dCA(t|Ψ0)

dt1
= 〈Ψ0 | [HS(t1), A1(t1)]Ã

(2)(̃t(2)) | Ψ0〉

+

∫ t1

0

dτα∗(t1 − τ)〈Ψ0 | Vτ−t1L†(t1)[A1(t1), L(t1)]Ã
(2)(̃t(2)) | Ψ0〉

+

∫ t1

0

dτα∗(t1 − τ)〈Ψ0[A1(t1), L(t1)] | Vτ−t1L(t1)Ã
(2)(̃t(2)) | Ψ0〉

+

N
∑

i=2

∫ ti

ti+1

dτα(t1 − τ)〈Ψ0 | [L†(t1), A1(t1)]

i−1
∑

p=1

PpR
(

{[A2, Vτ−t2L]} (t2)Ã
(3)(̃t(3))

)

| Ψ0〉. (9.35)

The superoperator Pp is defined in such a way that,

P1
(

{[A2, Vτ−t2L]} (t2)Ã
(3)(̃t(3))

)

= {[A2, Vτ−t2L]} (t2)Ã
(3)(̃t(3))

P2
(

{[A2, Vτ−t2L]} (t2)Ã
(3)(̃t(3))

)

= A2(t2) {[A3, Vτ−t3L]} (t3)Ã
(4)(̃t(4))

· · · (9.36)

Pi−1
(

{[A2, Vτ−t2L]} (t2)Ã
(3)(̃t(3))

)

=

A2(t2) · · ·Ai−2(ti−2)
{

[Ai−1, Vτ−ti−1
L]
}

(ti−1)Ã
(i)(̃t(i)) (9.37)

The last integral of (9.35) corresponds to terms which are additional with respect to those appearing in the
single time evolution, and therefore are responsible for the failure of the QRT in the non-Markovian limit.
In consequence, the previous equations not only lead to the computation of the MTCF in the weak coupling
limit, but they also express the conditions under which the QRT remain valid, i.e. that all the conmutators
[Ai−1, Vτ−ti−1

L] = 0 or that [L†(t1), A1(t1)] = 0. Concerning this point, it is fundamental to notice that
some correlations that formally obey the QRT might give rise to solutions from the equation (9.37) that differ
from those given by the QRT. This happens in particular for those correlations that depend on others that do
not obey the QRT.
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9.4 EXAMPLES: APPLICATION OF THE STOCHASTIC METHOD AND THE SYSTEM OF
EQUATIONS

9.4.1 A solvable example

To illustrate the theory proposed in this chapter, we shall apply it to a simple solvable model. Consider
the Hamiltonian (7.40) with HS = ωS

2 σz and L = σz . This model describes the dynamics of system state
vectors towards one of the eigenstates of the system Hamiltonian. It turns out that because [HS , L] = 0,
then O = L in equation (7.50). We have shown in Section (5.3.1) that the reduced propagator is diagonal
and it is explicitly given by

G(z∗1z2|t1t2) = exp

{

−iωS
2

(t1 − t2)σz + L

∫ t1

t2

dτz∗1,τ − L†
∫ t1

t2

dτz∗2,τ

− LL†
∫ t1

t2

dτ

∫ τ

t2

dsα(τ − s) + z∗1z2

}

. (9.38)

We first look at the expectation values of system observables, since they will be useful in our discussion.
Let us consider an observable A that has, in the basis of eigenvectors of σz , the matrix representation
A = {{0, α}, {β, 0}}. For an initial state |Ψ0〉 = |ψ0〉|0〉, the expectation value of A is formally given by

〈A〉 = M
[

〈ψ0|G†(0z|0t2)AG(z∗0|t0)|ψ0〉
]

. (9.39)

From equations (9.38) and (9.39), performing the average over the environment degrees of freedom it is
obtained,

〈A〉 = e
−2
∫

t

0
dτ
∫

τ

0
ds(α(τ−s)+α∗(τ−s)){

α〈ψ01 | ψ01〉eiωSt + 〈ψ02 | ψ02〉e−iωSt
}

,

where we have taken a normalized initial system state |ψ0〉 =| ψ01〉+ | ψ02〉. In the same manner, it follows
for 〈σz〉

〈σz〉 = 〈ψ01 | ψ01〉 − 〈ψ02 | ψ02〉.
Now we turn our attention to the multiple-time correlation functions. We shall compute in particular the
two − time correlations, whereas higher order time correlations can be treated in the same vein and they
do not introduce any new consideration. In this regard the two-time correlation functions contain all the
necessary and not trivial ingredients that enter in the computation of higher order correlation functions.
Let us consider the observables A = {{0, α}, {β, 0}}, B = {{1, 0}, {−1, 0}} = σz , and their two-time
correlation function (7.44) is

CAB(t1t2|Ψ0) = M1,2

[

〈ψ0|G†(0z1|0t1)AG(z∗1z2|t1t2)BG(z∗20|t20)|ψ0〉
]

. (9.40)

If we insert the equation (9.38) into (9.40) the following expression is obtained

CAB(t1t2|Ψ0) = e
−2
∫

t1

0
dτ
∫

t1

0
dsα(τ−s){− α〈ψ01 | ψ02〉eiωSt1 + β〈ψ02 | ψ01〉e−iωSt1

}

. (9.41)

As in the previous cases, once the environment correlation function is known, the time correlation function
can be directly computed. In the case in which A = B = σz , we have Cσzσz

= 0.
Let us now calculate the evolution equations for the two-time correlation functions and investigate their

relation to the QRT. To this purpose, we first consider the time derivative of the mean averages 〈σi〉, i =
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(x, y, z) from the general form (9.39), which results in the following set of coupled linear differential
equations

∂〈σx〉
∂t

= −D(t)〈σx〉 − ωS〈σy〉
∂〈σy〉
∂t

= −D(t)〈σy〉 + ωS〈σx〉
∂〈σz〉
∂t

= 0,

with

D(t) = 2

∫ t

0

dτ(α(t− τ) + α∗(t− τ)). (9.42)

In the same manner, the following set of equations for the two-time correlation functions is obtained by
deriving the equation (9.41),

Cσxσz

∂t1
= −D(t1)Cσxσz

− ωSCσyσz

Cσyσz

∂t1
= −D(t1)Cσyσz

+ ωSCσyσz

Cσzσz

∂t1
= 0.

Comparing the equations (9.42) with the equations (9.43), we could draw the tentative conclusion that the
QRT is valid for this model. However, as discussed in the previous sections, the validity of the QRT follows
from the fact that in this case we have [Vτ−tL,B] = 0, and therefore the last term of equation (9.14) is
zero. To illustrate that the validity of the QRT can not be considered general, we study an example in which
neither [L,B] = 0 nor [L†, A] = 0: the time correlation Cσxσy

(t1t2). We start by considering the general
anti-diagonal system operatorsA = {{0, α}, {β, 0}} andB = {{0, α′}, {β′, 0}}. The analytical derivation
of their two-time correlation function leads to

CAB(t1t2) = eD̃(t1t2)
{

αβ′〈ψ01 | ψ01〉eiωS(t1−t2) + α′β〈ψ02 | ψ02〉e−iωS(t1−t2)}, (9.43)

where we have defined

D̃(t1t2) =

∫ t1

0

dτ

∫ τ

0

dsα∗(τ − s) +

∫ t1

t2

dτ

∫ τ

t

dsα(τ − s)

+

∫ t2

0

dτ

∫ τ

0

dsα(τ − s) +

∫ t1

0

dτ

∫ t1

t

dsα(τ − s)

−
∫ t1

t2

dτ

∫ t2

0

dsα(τ − s) −
∫ t1

0

dτ

∫ t2

0

dsα(τ − s).

For the case of Cσxσy
(t1t2), on the one hand we have

Cσxσy
(t1t2) = e−D̃(t1t2)

{

i〈ψ01 | ψ01〉eiωS(t1−t2) − i〈ψ02 | ψ02〉e−iωS(t1−t2)}, (9.44)

and on the other hand its derivative with respect to t1

∂Cσxσy
(t1t2)

∂t1
=
∂D̃(t1t2)

∂t1
Cσxσy

(t1t2) − ωSCσxσx
(t1t2). (9.45)
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Fig. 9.2 In the figure different two-time correlation functions are displayed. The upper figure corresponds to the real
part of Cσxσz and the lower to the real part of Cσxσy . In the upper figure, the solid line corresponds to the analytical
result (9.41) that in this case coincides with the result expected from the Quantum Regression Theorem. The dot-dashed
line is the result of an average over 102 trajectories and the dotted line to an average over 105 trajectories. In the lower
figure, the long-dashed line is the result given by the QRT. Compared to the exact result given by (9.43) (solid line),
clearly the QRT is not valid for Cσxσy . The dot-dashed and dotted lines are the result of and average over 102 and 104

trajectories respectively.

We can see from this last equation that the time derivative of the correlation function Cσxσy
does not

satisfy the Quantum Regression Theorem, a result that illustrates the conclusion drawn in the previous section
and the fact that the theory here introduced applies for both Markovian and non-Markovian cases. Equation
(9.45) have been computed by deriving the exact solution (9.44), but it can also be obtained from the general
equation (9.14). Although this last equation is derived under the weak coupling assumption, it is also valid
for the present model, since the expression O = L is also obtained under a perturbative expansion of the
operator.

Figures 9.2 and 9.3 show respectively the real and imaginary parts of two-time correlation functions of
the system (7.40), Cσxσz

and Cσxσy
. The exact result (9.44) is compared to the one obtained through the

stochastic propagators as explained in Section 9.1. When the number of trajectories in the stochastic ensemble
is large enough, both results are the same, which proves the validity of the stochastic method. The number
of oscillators of the environment have been set equal to two. The parameters used were g1, g2 = g = 1
and ω1 = 6, ω2 = 2. The initial system state taken was |Ψ0〉 =| ψ0〉|00〉 with |ψ01〉 = 1+2i√

7
| +〉

and |ψ02〉 = 1+i√
7

| −〉. It is also clear from the figures that the QRT does not apply for Cσxσy
, since

[Vτ−tL,B] 6= 0 and [L†, A] 6= 0.
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Fig. 9.3 The figure displays the same as figure 9.2, but now for the imaginary parts of Cσxσz and Cσxσy . In the
upper figure, again the analytical result (9.41) coincides with the result expected from the Quantum Regression Theorem
(both in solid line). Dot-dashed and dotted line corresponds to the result of an average over 102 and 105 trajectories
respectively. In the lower figure, the analytical result (solid line) differs from that given by the QRT (long-dashed). The
dot-dashed and the dot lines are the result of and average over 102 and 104 trajectories respectively.



140 NON-MARKOVIAN MTCF UP TO SECOND ORDER IN PERTURBATION PARAMETER.

9.4.2 An example of dissipative system within the weak coupling limit

Let us now compute two time correlations for a two level system with HS = ωS

2 σz with a dissipative
interaction with L = σ12. Within the perturbative approximation, the operator O(zi+1z

∗
i , ti, τ) can be

replaced by its zero order perturbative expansion, Vτ−tL = σ12 exp {iωS(t− τ)}, where ωS is the system
rotating frequency. Like in Section (5.3.2), we propose the following approximated correlation function,

αapprx(t− τ) =

ν/2
∑

m=−ν/2
C(m)e−iπm(t−τ)/Tmax , (9.46)

with the coefficients

C(m) =
1

2Tmax

∫ Tmax

−Tmax

dtα(t)eiπmt/Tmax . (9.47)

which represents the Fourier series for the function α(t − τ) = (Γ/2) exp {Γ|t− τ |}. The quantity Tmax
is again the time window in which the correlation function is expanded in the series. The more members we
add in the former sum, the closer is the solution to the exponential decaying correlation function, and the
larger we can fix the the recurrence time Tmax. However, it is observed that for only ν = 8 oscillators, we
can already choose parameters (g,Γ, and the environmental correlation time τc) such that the second order
two-time correlations present a decaying behavior (i.e. dissipation) before the recurrence time.

We choose t2 = 1, g = 0.5 and Γ = 1, so that the decaying behavior can be already observed at short
times (up to t1 − t2 = τ = 50). In figure (9.4), we represent the correlation Cσxσx

, comparing the result
of the evolution equation (9.14) to the ensemble averaged stochastic evolution, given by equation (7.44) for
different number of trajectories. The last result is obtained by following the steps described in Section (9.1).

Let us now consider a very large number of oscillators composing the sum (9.46), i.e. the correlation
function α(t− τ) = (Γ/2) exp {−Γ|t− τ |}, in order to study the validity of the QRT for the Cσxσx

. This
is a typical case in which the last term of (9.14) does not vanish, so that the result of the QRT differ to the
one of (9.14), as displayed in Figure. (9.5).

9.4.3 Spin-boson model

We now apply the equations derived in this paper to the problem of a spin coupled to a thermal reservoir, as
described by [37, 35]. We consider the Hamiltonian (7.40) with HS = ω

2 σz , a coupling operator L = σx,
and an interaction Hamiltonian with magnitude small enough as to be considered perturbative. Within this
model, the bath can be characterized by the spectral strength given by (5.110),

J(ω) =
ω3

ω2
c

e−ω/ωc , (9.48)

where ωc is a cutoff frequency [35, 37], here chosen as ωc = 1. The correlation function of the noise
generated by a thermal bath and where L = L† is given in terms of J(ω) as (see Appendix (L) for a
derivation of such correlation in the case of thermal two-time correlation functions with L = L†.),

α(t) =

∫ ∞

0

dωJ(ω)

[

coth

(

ωβ

2

)

cos (ωt) − i sin (ωt)

]

. (9.49)

The inverse temperature β = (kBT )−1 is chosen according to the energy of the bath, and considering that
the energy of the subsystem is very small compared to it [37, 35].
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Fig. 9.4 Two time correlation Cxx = Cσxσx for the coupling L = σ12, and the dissipative Fourier series of the
exponential correlation function with ν = 8 oscillators. The initial condition chosen is the same as in the former figure,
|ψ0〉 =

(

(1 + 2i)|+〉 + (1 + i)|−〉
)

/
√

7, and the parameters are: ωS = 0.1, Γ = 1, perturbative parameter g = 0.2,
recurrence time Tmax = 40, and initial time for the correlation t2 = 1. Solid line represents the solution of the system
(9.14), whereas long-dashed, dot-dashed, and dotted lines gives the result of the stochastic method for κ = 50 × 104,
κ = 105 and 107 trajectories respectively. An increasing accordance with the system curve is observed, as the number
of trajectories grows.
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Fig. 9.5 Two time correlation Cxx = Cσxσx for the coupling L = σ12, and the dissipative correlation function
α(t − τ) = −(Γ/2) exp {−Γ|t− τ |}. The initial condition chosen is the same as in the former figure, and the
parameters are: ωS = 0.1, Γ = 1, perturbative parameter g = 0.4, and initial time for the correlation t2 = 10. Solid
line represents the solution of the system (9.14), and long-dashed line gives the result expected with the QRT. Because
the last term in (9.14) is non zero, both results are different from each other, and the QRT is not valid.
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Fig. 9.6 The figure displays some two-time correlation functions for the spin-boson model within the perturbative
approximation and for β = 10. In the long time limit Cσi,σj ≡ 〈σi〉〈σj〉, for i, j = x, y, z. At this low temperature, a
strong oscillatory behavior due to the mean values 〈σx〉 and 〈σy〉 is observed in the corresponding two-time correlations,
which in the long term is damped by the dissipation caused by 〈σz〉. With this reasoning, it can be easely infered why the
last correlation, Cσzσz , only presens a dissipative behavior. Some non-Markovian structure of the short time dynamics
is displayed in the caption.
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Fig. 9.7 The figure displays some two time correlation functions for the spin-boson model within the perturbative
approximation and for β = 0.1. For high temperatures the dissipation becomes much more efficient than for lower
temperatures (see Fig.(9.6)), and the oscillatory behavior is strongly damped in Cσxσz and Cσyσz . Moreover, the
correlation Cσzσz decays much faster than in the low temperature case. Again, some non-Markovian structures of the
short time dynamics are displayed in the captions.
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Fig. 9.8 Some three-time correlation function of the spin-boson model are displayed within the perturbative approxi-
mation and for β = 10.



10
Conclusions of this part

We formulate in this part of the thesis a theory of non-Markovian multiple-time correlations functions
(MTCF) with the use of the reduced propagators derived in Chapter (2). The results are discussed throughout
three different chapters.

• In Chapter (8) a hierarchy of equations is derived that formaly obey non-Markovian MTCF. This
hierarchy shows how in general N -time correlation functions depend on N + 1-time correlations.

• In Chapter (9) the weak coupling approximation is used to derive the system of equations that evolve
MTCF up to second order in the perturbative parameter g. With such approximation, the hierarchy is
destroyed, and N -time correlations only depend on other N -time correlations, as well as on N − 1-
time correlations to set up their initial conditions. The resulting equations are therefore suitable
for computational purposes. Having the evolution equations of MTCFs we show the failure of the
Quantum Regression theorem in non-Markovian interactions. This theorem states that the evolution
of N -time correlations is given by the same equation as single-time correlations, i.e. by the master
equation. In the non-Markovian equations we propose, several new terms appear with respect to those
of the equation of single-time correlations.

In this chapter, a stochastic method to compute MTCFs is also proposed, which consists in performing
a sampling of different trajectories of the reduced propagator by considering zi+1,ti and zi,ti as
Gaussian noises. The second order MTCFs obtained with the stochastic sampling and with the system
of equations above derived are equal to each other. This is illustrated by applying both methods to
three different systems: a solvable model with L ∝ HS , a system that interacts with the bath with
exponentially decaying correlation function and through a non diagonal coupling, and a spin-boson
model.
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Part IV

DYNAMICS OF A TWO LEVEL
SYSTEM IN A PBG MATERIAL

As noted in the introduction, one of the most interesting examples of non-Markovian interaction is that
of an atom coupled to a radiation field within a PBG material. In this part of the thesis we are interested in
applying some of the dynamical equations developed in Parts (II) and (III) to such a system. The study is
divided in two chapters,

• In Chapter (11) a model to describe the system is generated. The Hamiltonian of a two level atom in
contact with a radiation field, as well as the dependencies of the coupling constants gλ, were already
obtained in Chapter (1). It was also shown that the correlation function α(t− τ) can be constructed
with the knowledge of such constants and the frequencies ωλ. Among other factors, the gλ depend on
the dispersion relation of the field. In this chapter, we propose a model for the dispersion relation of
the radiation field within a PBG, and follow the microscopic derivation of Section (1.3.1.1) to generate
the α(t − τ) characteristic of such field. As we have seen throughout this work, such a function is
very important, since it enters in all the dynamical equations that evolve either quantum mean values
or MTCF of a QOS.

Several correlation functions in time have previously been proposed in the literature [42]. However,
they are singular at the origin, which makes them unsuitable to generate a noise zt such thatM[ztz

∗
τ ] =

α(t− τ). The correlation function we propose captures many of the physically relevant aspects of the
problem and describes the short time behavior in a more accurate way than previously proposed ones
[42]. In addition, it does not have a singularity at the origin. This permits a correct description of the
fluctuations of the EM field, i.e. the noise in the stochastic formalism, and a better description of the
non-Markovian effects in the atomic dynamics. Further details of such new correlation function and
its derivation can be found in Appendix (N).

• In Chapter (12) we study the dynamics of expectation values by using non-Markovian stochastic
Schrödinger equations. In order to check its validity, we shall study several of the physical phenomena
occurring in atoms within a PBG material, that have been already described in literature within non-
Markovian master equations, such as the long time limit residual population in the excited level of
the atom and the population inversion which occurs in the atomic system when applying an external
laser field [42]. In addition to the stochastic equation, we study the two second order perturbative
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master equations presented in Chapter (5): the non convoluted and the convoluted equations. We
show that this last equation, which is the one used in previous studies of the system [42], does not
preserve positivity for certain parameter values, while the non convoluted equation preserves positivity
by construction.

Finally, in Section (12.4) we study some fluctuations of the two level atom. As argued in Chapter
(III), this result may be useful in the future to compute its emission spectra. Four-time correlation
functions can also be calculated in the same way and used to compute joint-emission probabilities.
Hence, this particular issue remains open and full of interest for future work.

The formulation we present here can be extended to the study of more complex systems, such as many
level atoms embedded in more complicated band gap structures. This is interesting since, as noted before
the stochastic scheme becomes computationally more efficient than master equations when the number of
degrees of freedom of the system increases.

Several conclusions of this part of the thesis are drawn in Chapter (13).



11
The model

11.1 PHOTONIC CRYSTALS.

When light enters into a medium with a different refraction index, it may be scattered into a reflected
and a refracted part. While the reflected light is scattered back to the initial medium, the refracted light
enters through the new medium suffering a change of velocity, which produces a variation in its direction
of propagation. The light traversing a homogeneous medium which has the same refraction index in all
directions is not scattered.

Suppose that we have a material where the refraction index changes in one direction. Then, only the
light entering in such direction may be scattered (refracted and reflected). If we now consider this change
in the refraction index to be periodical, then the scattering process will be repeated every time the light
suffers a new change in the refraction index. This can be achieved by constructing a crystal with alternating
layers of width b and a high refraction index nr, with layers of low refraction index (which for simplicity
is considered the unity), in such a way that they are separated by a length a. Thanks to the periodicity, the
rays are scattered coherently, allowing some of them to interfere. A maximum in the reflection is formed
when the reflected rays interfere constructively, which occurs when the Bragg condition is verified [110].
For rays entering perpendicularly to the layers (i.e. in the direction of change of the refraction index), such
condition is given by

2a = λ0, (11.1)

with λ0 the vacuum wavelength. The rays of light entering perpendicularly to the layers and with wavelength
given by the former relation are scattered back (or reflected) and do not appear in the crystal. This gives
rise to the formation of a forbidden band or a gap within the material corresponding to those modes. In
this example, the gap is one-dimensional, since it only appears for modes corresponding to the scattering
direction 1.

1In addition to the Bragg effect, there are certain wavelengths giving rise to a maximum in the reflection coefficient from a single layer.
This maximum, known as Mie resonance [119, 46], occurs for λ/4nr = 2b. The combination of these two conditions yields to the
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This kind of crystals are known as Photonic Band Gap (PBG) materials (also photonic crystals (PC)),
and were first proposed by John and Yablonovitch [13, 12, 111] a means to localize and trap light in a bulk
material [13], and to produce a complete inhibition of spontaneous emission over a broad frequency range
[12].

Following a procedure analogous to the above described, a 3D gap can be fabricated by generating a three
dimensional dielectric periodic structure. In that case, the light incident in the material with a frequency
related with the lattice constant will be backscattered from the material, independently of the angle of
incidence.

Another way to understand the band gap structure of a PC is by considering them as the optical analogs
of semiconductor crystals for electrons. Instead of a periodically ordered array of atoms which scatters the
electrons and modifies their energy-momentum relation, PC are composed of a periodic dielectric lattice, in
such a way that the refraction index is spatially periodic. In semiconductor crystals, the eigensolutions of the
electron in the periodic potential differs from that in the absence of the potential, and for certain eigenvalues
there are no corresponding eigensolutions. In the same way, within a PC there are certain frequency values ω
for which there is no corresponding wave vector or field mode k. Thus, the relation between both magnitudes
(also known as dispersion relation) presents a special structure in which the bands of permitted frequencies
(for which there are propagating photon modes), are separated by gap regions of forbidden values of ω.

The band gap structure can also be viewed in the photonic density of states of the radiation field, which
presents frequency regions in which it is different from zero, corresponding to the bands, and regions in
which it vanishes, corresponding to the gaps. Additionally the photon density of states varies rapidly near
the edge of the gap, which implies that the correlation time of the vacuum fluctuations is not negligibly
small on the time scale of evolution of an atomic system. This fact makes inappropriate the usual Markovian
approximation applied in quantum optics in the treatment of the interaction of atoms with electromagnetic
radiation. The dynamics of an excited atom with resonant frequency near the edge of a gap presents some
particular features, including the inhibition of spontaneous emission [112], the strong localization of light
[13], the formation of atom-photon bound states [113] and the atomic inversion in the steady state [114].

PBG materials have attracted considerable attention in the scientific and engineering community because
of their many potential possibilities and applications. In that sense, the literature about PC is so large that
an exhaustive review is out of the scope of this thesis (instead, we shall refer the reader to [46] for a good
review). In this work, we are concerned about giving a theoretical description of the some of the dynamical
aspects of a two level atom inside a PBG. This includes a description of some of the effects above mentioned.
Hence, this introduction, combined with the description of the model we offer in the next sections is sufficient
for our purpose.

11.2 TWO LEVEL SYSTEM IN A PBG

In the last chapters, we have established a second order master equation, a second order stochastic Schrödinger
equation, and a set of second order MTCFs valid for describing the dynamics of any quantum open system
in contact with a non-Markovian harmonic oscillator reservoir described by a linear coupling Hamiltonian.

In this section, we will be concerned with the study of a quantum open system with two levels (a two level
atom) interacting with an electromagnetic field or reservoir immersed in the photonic crystal. We follow the
description introduced in Section (1.2) for a general atom-electromagnetic field interaction, particularizing
the discussion for the PBG radiation field.

optimal relation between the lattice constant, a, and the microscopical elements (in this case dielectric layers) with dimension b, to
produce a wide gap. This combination is 2b/a = 1/2nr .
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The atom-radiation Hamiltonian is well known to have the form [43]:

Htot =
1

2me
[p − eA(r)]2 − eΦ(r) +

∑

λ

wλa
†
λaλ, (11.2)

where p andme represent the momentum and mass of the atomic transition electron, and A(r) and Φ(r) are
the electromagnetic vector and scalar potential. In the basis of non-perturbed wave functions of the system,
the Hamiltonian HS for a two level system is

HS =
ωS
2

(σ22 − σ11), (11.3)

whereωS is the transition frequency between the two atomic levels andσij = |i〉〈j| are the atomic pseudospin
operators. An interaction Hamiltonian of the form

∑

λ gλ(a
†
λL+L†aλ) is obtained by assuming the electric

dipole approximation in (11.2). This approximation is justified by considering that the atom is small in
comparison with the size of the unit cell of the PC [115]. In that case, the atom experimenting electronic
transitions between levels interacts with the field as an oscillatory dipole. The approximation involves
therefore not considering in (11.2) the term A(r)

2, which involves processes of more than one photon.
In general, the mode functions A(r) may be expanded in any complete set of basis functions spanning the
region under consideration. In free space the usual choice is a basis of plane waves, whereas in a photonic
crystal a periodic basis of Bloch modes [144] satisfying the Bloch-Floquet theorem [106]

Ak(r + R) = eik·RAk(r), (11.4)

is more convenient, since it permits taking advantage of the optical periodicity of the field. For the case of
a two level atom studied the coupling strengths gλ become

gλ = ωSd21[
1

2ε0ωλυ
]

1
2

eλ · ud, (11.5)

where ωλ is the frequency of the mode λ [42]. The vectors eλ ≡ ekσn, with n the band index and σ = 1, 2
representing the two transverse polarization modes of the radiation field. The magnitude of the dipolar
moment is given by d21, and its direction by the unitary vector ud. The quantization volume is represented
by the constant υ. In the frame of the dipolar approximation, the system interaction operatorL takes the form
iσ12. Finally, the Hamiltonian of a two level system in contact with an electromagnetic field can be further
simplified by applying the unitary transformation Ut = ei[

∑

λ
ωSa

†
λ
aλt+

ωS
2 (σ22−σ11)t] to such Hamiltonian,

so that now,

H̃tot =
∑

λ

∆λa
†
λaλ +

∑

λ

gλ(a
†
λL+ L†aλ), (11.6)

(hereafter referred just as Htot for simplicity), with ∆λ = ωλ − ωA. It is easy to verify that the stochastic
and master evolution equations in the interaction picture with respect to the system, presented in the last
sections, are suitable for this Hamiltonian, by only redefining the correlation function and noise as:

α̂(t) =
∑

λ

g2
λe

−i∆λt = eiωAtα(t), (11.7)

where α(t) was defined in Chapter (2) as

α(t) =
∑

λ

g2
λe

−iωλt, (11.8)
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and
ẑ∗t = −i

∑

λ

gλz
∗
λe
i∆λt = e−iωAtzt. (11.9)

Let us now introduce the correlation function which characterizes the interaction of a two level system with
the modified radiation field which lies within a PC.

11.3 THE CORRELATION FUNCTION OF THE FIELD WITHIN A PBG MATERIAL FOR A
TWO LEVEL DIPOLAR COUPLING

It has been shown in the preceding parts of this thesis that an important quantity in order to characterize
the action of the environment over the system, appearing in all the evolution equations (both stochastic and
master), is its correlation function α(t). In this section, we calculate the correlation function characteristic
of the dipolar coupling of a two level atom to the modified radiation field within a PC.

The correlation function we propose gives a better description of the frequencies in the middle of the band
and describes the short time limit behavior more accurately than previous models [42]. This is of primary
importance to describe correctly the non-Markovian effects in the dynamical equations of the quantum open
system, not only in the long time scale, but also in short time limit. In order to calculate α(t), the sum
appearing in equation (11.8) has to be performed, where λ = {kσn} and the functions gλ are those defined
in (11.5), characteristic of a dipolar coupling. As we have already noted in the introduction, the presence
of a periodic dielectric structure causes the appearance of optical bands, which are themselves periodic
structures in the reciprocal lattice. In fact, the index n which now appears in the sum (11.8) denotes each
band. Nevertheless, this index will be here dropped, since we consider the dynamics of the two level system
with rotating frequency nearby (or inside) a single band. To describe in particular the dynamics near the
edge of the band, an effective mass approximation to the full dispersion relation, based on its expansion
in the vicinity of the band edge, is often considered (see for instance [42, 116, 117, 118]). Within this
approximation, the dispersion relation becomes ω(k) = ωc + A(k − k′)2, where k′ is the origin of the
first Brillouin zone of the crystal (which is the unitary cell in k space [106]) about which we perform the
expansion in each direction, ωc is the frequency of the band edge, and A is a constant that depends on the
specific photonic crystal considered. Although it is valid for the description of several important physical
phenomena occurring in PBG materials [13, 112, 113, 114], this model of dispersion relation presents an
important drawback: it becomes inaccurate for a good description of the short time dynamics. According
to [42] it shows the following form,

α(τ) ∼= β1/2 e
i[π/4−ωcτ ]

τ3/2
, (11.10)

where the constant β is determined by the integration in k. The singularity at the origin of the last expression
is non-physical. The reason is that there is no quantity zt, which represents the fluctuations of the EM field
in the stochastic model, such that its correlation function (i.e. the average value M[ztz

∗
τ ] = α(t − τ)) is

singular at the origin. There are several ways to derive dispersion relations, most of them analogous to
those developed for obtaining the band structure for electrons in solids. In fact there exists a strong analogy
between energy bands in solids and dispersion relations of the EM field in PBG materials [46]. In this work,
we propose a model of dispersion relation (of tight-binding type) that contains all the essential features of
the EM field in a photonic band gap material,

ω(k) = A+
B

3

(

cos(kxa) + cos(kya) + cos(kza)
)

. (11.11)
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Due to its periodic character, this dispersion relation will not show the cutoff frequency problem responsible
for the appearance of the singularity at the origin in (11.10), and for short frequencies it permits the recovering
of the former dispersion relations by performing the corresponding expansion in k′s near the band edge.
In addition, the dispersion relations that has been obtained both experimentally [120] and theoretically
[118, 121], are periodic functions, and not parabolic functions. The model (11.11) of dispersion relation
is rather simple, and corresponds to a cubic lattice. If very precise quantities had to be computed, or if we
had a photonic crystal with some other structure, then it would be mandatory to use some different or more
accurate dispersion relation. However, this would neither change the methodology to derive the correlation
function presented throughout this section, nor the way to compute the corresponding Gaussian noise zt.

Figure (11.1) shows, for the direction kx in the first Brillouin zone (1BZ), that the constants A and B,
which are characteristic of material, fix the limits of the band between ωc = A−B and ω′

c = A+B. Here,
we have also considered a cubic lattice with lattice constant a. Notice that in the limit of ki → k0i, where
i = x, y, z and k0i = π/a, the dispersion relation (11.11) becomes the parabolic dispersion relation above
described.

BAND
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A−B
Aω

ωC

Cω
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K

’

−π π/a /a
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Fig. 11.1 The figure displays the band structure of the problem along one of the three directions (in particular the
direction kx) of the first Brillouin zone of the crystal. The periodic dispersion relation proposed in this work is displayed
in black solid line, and the parabolic dispersion model of S.John and T. Quang. [116] in grey solid line. Notice the
coincidence of both models in the limit of kx → π/a (where k′x = π/a is the limit of the First Brillouin zone in this
direction).

If we consider the continuum limit in the sum (11.8) which is performed over the 1BZ of the crystal, we
have

α(τ) = γ(
a

2π
)3
∑

σ

∫

1BZ

dk
|êk,σ · ûd|2
ω(k)

e−iω(k)τ , (11.12)

whereγ = ω2
Ad21/2ε0 and ε0 is the free space permitivity. We now suppose that the function |êk,σ ·ûd|2/ω(k)

changes very smoothly with k in the 1BZ, and can be considered a constant factor in comparison with the
rapidly oscillating exponential term. It is important to stress that although this approximation becomes more
accurate in the long time limit, it is not the stationary phase approximation. In the integral (11.12), the reason
why the prefactor |êk,σ · ûd|2/ω(k) can be considered constant is that it changes very slowly with the wave
vector k, and this occurs no matter how large is τ in the phase iω(k)τ . This fact makes the approximation
valid even at short times, as can be easily verified numerically by computing the integral (11.12) both
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considering the prefactor in the integral or as a constant. Once we have done these simplifications, we are
ready to substitute the periodic dispersion relation here proposed in the equation (11.12). Let us however,
distinguish between two cases: a three dimensional band structure (as the one described with (11.11)) and a
one dimensional structure in the direction denoted by k, so that now the dispersion relation becomes simply
ω(k) = A+B cos(ka).

11.3.1 Three dimensional correlation function.

For a three dimensional band structure with the periodic dispersion relation dispersion relation (11.11), the
correlation function can be obtained from the equation (11.12), once it has been assumed that the function
|êk,σ · ûd|2/ω(k) is a slowly varying function in the 1BZ. The resulting integral is analytical, and gives
rise to the following result:

α3D(τ) ∼= γ
∑

σ

|êk0,σ · ûd|2
ω(k0)

e−iAτJ3
0 (
Bτ

3
)

∼= g2
3De

−iAτJ3
0 (
Bτ

3
), (11.13)

where k0 is again a fixed point located in the three dimensional interval [0,k′]. The function (11.13) is
displayed in Fig. (11.2) for various values ofA (or, equivalently, for various values of F , sinceA = ωS−F ,
and we take ωS = 1. as explained in the next section).

In order to compare with previously established results, we perform the long time limit expansion of the
last equation,

α(τ À 1)A ∼ g2
3De

−iAτ (
6

Bτ
)3/2[

ei(
Bτ
3 + π

4 ) + e−i(
Bτ
3 + π

4 )

2
]3 (11.14)

≈ g2

8
e−iωcτ (

6

Bτ
)3/2e−i

3π
4 ,

and comparing with (11.10), we establish the following relation between constants:

β1/2 =
g2
3D

8
(
6

B
)3/2, (11.15)

where also eiπ/4 ≡ e−i3π/4 ≡ 1/(i)3/2. Equation (11.13) is therefore not only valid in the long time limit
as previous proposals, but gives more accurate description of the short times.

11.3.2 One dimensional band correlation function.

Let us suppose now that we are dealing with a one dimensional band. This band can be created in a
photonic crystal in which the periodicity of the refraction index occurs only along one direction, for instance
by alternating layers of high and low refraction index . For this one dimensional band, equation (11.12)
becomes,

α(τ)1D ∼= γ(
a

2π
)
∑

σ

|êk0σ(R) · ûd|2
ω(k0)

∫ π
a

−π
a

dke−i(A+B cos(ka))τ . (11.16)

After the integration, the one dimensional correlation function is given by

α(τ)1D ∼= γ
∑

σ

|êk0σ(R) · ûd|2
ω(k0)

e−iAτJ0(Bτ), (11.17)
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Fig. 11.2 The figure displays the real and imaginary part of the correlation function (11.13) for different values of
A = ωS −F . Particularly, forA = 1, which corresponds to the atomic frequency within the band F = 0, andA = 0.3,
which corresponds to the atomic frequency within the gap F = 0.7. It can be observed in both figures the long time
decaying τc of the correlation function, which produces a highly non-Markovian interaction.
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where J0 is the zero order Bessel function. Considering the long time limit of (11.17), we have

α(τ À 1)1D ∼ g2
1De

−iωcτ (
2

Bτ
)1/2(

e−i
π
4 + e−i2Bτei

π
4

2
) (11.18)

≈ g2
1De

−iωcτ (
1

2Bτ
)1/2e−i

π
4 ,

where we have neglected the more rapidly oscillating terms in 2B.

11.4 TYPICAL VALUES OF THE MAGNITUDES INVOLVED IN THE PROBLEM

Before starting with the discussion, let us give first an idea of the values of the different physical magnitudes
involved in the problem. As we have already sketched in the Introduction, PCs typically consist of a low-
dielectric-constant network, inserted in a high-dielectric-constant backbone in an specific structure. There
are several works containing band structure numerical calculations in which numerous structures exhibiting
band-gap are proposed (see for instance [122, 46] for a good review). These studies are often compared to
the experimental data, which is mainly based on the analysis of the reflection and transmission spectra of
the material. A large variety of these structures give rise to a complete 3D band gap. Some examples are
the inverse diamond structure formed by overlapping air spheres in a dielectric material [123], the woodpile
structure (a variation of the diamond structure) [124], SiO2 spheres in a InP backbone [125], or spiral
shaped rods arranged in simple cubic (SC), face-centered cubic (FCC) on any body centered cubic (BCC)
lattices [126]. For an extended review of the current state of photonic band structure theory, both experiments
and applications, see [122, 46]. Of special interest for optical applications are the PCs with the photonic gap
in the IR and visible regimes. One of the most recently developed PC with an optical PBG, consists in silica
spheres, with diameters between 600 and 1000 nm, periodically inserted in bulk silicon [120]. The size
and disposition of the spheres gives rise to the formation of a 5% complete 3D PBG centered near 1.5 µm,
which has been experimentally observed. We will use in our study appropriate values for the parameters
that characterize the photonic crystal in the optical regime (ωA ≈ 1015 Hz, d21 ≈ 10−29Cm, a ≈ 10−6m,
ωc ≈ 2.33 · 1015Hz and B = 0.5 · 1015Hz.). With these parameters, g1D ≈ g3D ≈ 0.1 · 1015Hz. As we
have mentioned above, the coupling constant is such thatHI is equivalent in magnitude to gH0. ButH0 has
approximately the magnitude of the atomic frequency, ωA, and this is how, from the values of g1D,3D, we
can deduce that g ≈ 0.1. For simplicity, we will consider ωA as the unit frequency of the problem.



12
Quantum mean values and

fluctuations

We describe in this chapter the evolution of single quantum mean values of a two level atom within a photonic
crystal. The chapter is divided in two sections, each of which concerns the study of the spontaneous emission
and the emission of the atom when in addition to the interaction with the electromagnetic field it is driven
by a laser. The main points treated can be summarized as follows:

• We provide a dynamical description of the problem in terms of the stochastic Scrödinger equation
formalism, within the second order perturbation theory. As already mentioned, in order to do that it is
necessary to have a good description of the environmental fluctuations, which are represented by the
noise in the stochastic equations. To this end, the use of the non-singular correlation function defined
in the former chapter is very convenient. We show how some of the physical effects already described
in literature [42], are correctly reproduced with the stochastic formalism and the new correlation
function we propose. Those effects, as well as the sections where they are treated are the following,

– In Section (12.2) we examine the atomic residual long time limit population and photon-atom
bound state, when the atomic rotating frequency is placed within the gap region of the photonic
DOS. We also show the non-exponential decay of the upper level population when the atomic
rotating frequency is within the band.

– In Section (12.3), the effects of a strong laser field in this system are studied. Particularly, we
show the conditions under which population inversion appears in the long time limit.

• We compare the second order perturbative approximation in the weak coupling parameter with the
solution given by the equation obtained with the expansion approximation discussed in Section (2.4.1).
The expansion equation seems to describe with more accuracy the system dynamics when the rotating
frequency is in the band edge. At least, it seems to reproduce a residual long time limit population of
the excited level, an effect that was previously described by S. John with an exact model. This is not
observed in the second order perturbative approximation. The reason is that in the band edge region
such approximation is not appropriate, since the photonic DOS varies very rapidly from a non-zero to
a zero value.

159
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12.1 GENERAL DYNAMICAL EQUATIONS

We present here briefly the dynamical equations we are going to use in this chapter to describe the problem.
Since we consider T = 0, it is convenient to use a linear stochastic equation (12.1), which in interaction
image with respect to the system is

d

dt
|ψt(z∗)〉 = gVtLz

∗
t |ψt(z∗)〉 − g2VtL

†
∫ t

0

dτα(t− τ)VτL|ψt(z∗)〉, (12.1)

where VtL = exp (iHAt)L exp (−iHAt). As usual, the reduced density matrix can be computed from
|ψt(z∗)〉 as

ρs(t) =
M[|ψt(z∗)〉〈ψt(z)|]
M[〈ψt(z)|ψt(z∗)〉]

. (12.2)

We also use the two models of master equation described in Section (5.1.1.1), namely the non-convoluted
master equation (5.66), which is derived by performing analytically the ensemble over the projector Pt =
|ψt(z∗)〉〈ψt(z)|,

dρt
dt

= g2L(t)ρt

∫ t

0

dτα∗(t− τ)L†(τ) + g2

∫ t

0

dτα(t− τ)L(τ)ρtL
†(t)

− g2L†(t)

∫ t

0

dτα(t− τ)L(τ)ρt − g2ρt

∫ t

0

dτα∗(t− τ)L†(τ)L(t), (12.3)

and a convoluted master equation (5.71), which is identical to the last one by only replacing ρt by ρτ in the
terms,

dρt
dt

= g2L(t)

∫ t

0

dτα∗(t− τ)ρτL
†(τ) + g2

∫ t

0

dτα(t− τ)L(τ)ρτL
†(t)

− g2L†(t)

∫ t

0

dτα(t− τ)L(τ)ρτ − g2

∫ t

0

dτρτα
∗(t− τ)L†(τ)L(t). (12.4)

As noted in Section (5.1.1.1), both master equations (convoluted and non-convoluted) are equivalent up
to second order in g. As we will show in Section (12.2.2), a remarkable difference in the result derived from
a convoluted and a non-convoluted equation will therefore indicate a failure in the second order perturbative
approximation.

12.2 TWO LEVEL ATOM SPONTANEOUS EMISSION

We have just established in Chapter (11) the Hamiltonian of the two level system within the modified radiation
of a PBG material, and also the typical magnitudes involved in the problem. Let us now start with the study
of the dynamics of the two level system for the three dimensional correlation function (11.13).

We are concerned first in reproducing, using the correlation (11.13), the non-zero steady state population
effect shown in [42] for an atom with resonant frequency inside the gap. For the atomic frequency inside the
band, we will also point out some restrictions to the validity of the second order perturbative approximation
for this model. The second and main goal of this section will be to show that, according to equation
(12.2), the master equation results can also be obtained with an ensemble average of the solutions of the
stochastic linear equations described above. Finally, we will study some aspects and properties of individual
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stochastic trajectories. For the system interaction operatorL = iσ12, the non-convoluted stochastic equation
in interaction image (12.1) reads as follows,

d|ψ1(t)〉
dt

= gz∗t |ψ2(t)〉

d|ψ2(t)〉
dt

= −g2

∫ t

0

dτα̂(t− τ)|ψ2(t)〉, (12.5)

with α̂(t− τ) and ẑ∗t defined in (11.7) and (11.9) respectively, and |ψ(t)〉 = {|ψ1(t)〉, |ψ2(t)〉} representing
the two spinorial components of the two level system stochastic wave function. The non-convoluted master
equation (12.3) becomes, for each term of the density matrix, the following,

dρ11(t)

dt
= 2g2

∫ t

0

dτ<{α̂(t− τ)}ρ22(t)

dρ12(t)

dt
= −g2

∫ t

0

dτα̂∗(t− τ)ρ12(t)

dρ22(t)

dt
= −2g2

∫ t

0

dτ<{α̂∗(t− τ)}ρ22(t). (12.6)

As we have already mentioned, up to the second order approximation, the master equation (12.6) is equivalent
to the convoluted master equation, in which the only difference is that each of the components ρij that appear
in the integral terms depend on τ , i.e. are part of the integrands. In addition to that, the convoluted equation
is equal to the one calculated in [42] by M. Florescu and S. John for the same model. A difference in the
result of the convoluted and the non-convoluted equation must be related with the fact that the second order
perturbative approximation is no longer valid. As will be shown in the next section, the range of validity of
such approximation depends not only on the coupling constant g, but also on the correlation time of α(t).
In our model, such correlation time is approximately given by 1/B3/2, where 2B is the band width.
Let us now introduce the parameter that characterizes the situation of the atomic frequency with respect to
the band. According to its definition (11.7) in terms of α(t − τ), the function α̂(t − τ) appearing in the
evolution equations depends on F = ωA − A (see Fig. (11.1)), which is the detuning between the atomic
rotating frequency ωS and the frequency of the center of the band A. Indeed, when −B < F < B, the
atomic rotating frequency is placed within the band, whereas it will lay within the gap when |F | > B. Let us
consider, as indicated, the evolution of ρ22(t) in these two cases. Since the photon density of states is zero,
no propagating modes are allowed. This means that there are no extended states expressible in Bloch form.
Instead, the wave vector is pure imaginary, and the modes decay exponentially in space forming a localized
state. When the rotating frequency ωA of an excited two level atom is placed inside the gap, and the atom
drops to the ground state through a single-photon spontaneous emission, the emitted photon will be in a
localized state corresponding to one of these purely imaginary wave vectors. The result of this localization
is a strong coupling between the electronic degrees of freedom of the atom and the electromagnetic modes of
the localized field, namely, the photon-atom bound state first predicted by John and Wang [117, 118]. On the
other hand, in the region near the band border, the photon density of states decays to zero, and therefore the
group velocity dρ(ω)/dω vanishes. In consequence, when the atomic frequency is placed nearby the band
edge, ωc, the atom will be coupled to photons with vanishing group velocity. In this case, the self-dressing
of the atom with its own radiation is strong enough to produce a splitting of the atomic level into a doublet.
One member of the doublet is pulled inside the band, where it experiments spontaneous emission, whereas
the other remains in the gap, retaining the photon-atom bound state. The interference between the doublets
causes the oscillatory behavior described in [42] and observed in the inset of fig. (12.1).
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Fig. 12.1 The atomic population of the excited state, ρ22(t), as a function of the scaled time g3Dt, for various values
of F = ωA − A. In black, the solutions corresponding to ωA inside the band (solid line for F = 0 and dot-dashed
line for |F | = 0.3) present a vanishing excited population. In change, when ωA lies inside the gap, a non-zero steady
state excitation amplitude can be observed (in grey) for different values of the detuning (dotted line for |F | = 0.55,
dot-dashed line for |F | = 0.6 and solid line for |F | = 0.7). These values of the atomic population inside the gap are
displayed in more detail in the inset of the figure. The oscillations observed are due to the energy exchange between the
atomic splitted levels, produced by the atomic self-dressing.



TWO LEVEL ATOM SPONTANEOUS EMISSION 163

Another effect of the photon-atom bound state, also shown in fig. (12.1), is that the atomic excited level
population is non zero in the steady state. Indeed, because the emitted photon localizes within a certain
region nearby the atom, it has a certain probability to be reabsorbed by the atom, producing in consequence
its re-excitation. According to [46, 118], the localization region nearby the atom is defined by a certain
localization length ζloc, which depends on the situation of the atomic frequency ωS with respect to the
band-edge ωc as ζloc ∝ c/

√

ωc|ωc − ωA|. This relation shows that ζloc is larger when approaching to the
edge ωc, which means that the photon probability becomes more extendedly distributed in the space. In
this situation, it becomes less probable for the photon to be reabsorbed by the atom, and the mechanism
of re-excitation of the atom becomes less efficient than in the region which is deeper inside the gap. A
consequence of this effect is shown in fig. (12.1), which displays a smaller long time limit population as
ωS approaches to the ωc. Attending to the other possibility, when the atomic frequency is placed inside
the band, the atomic excited population decreases up to a zero value in steady state. This result, displayed
in fig. (12.1), is expected to be correct in all regions of the band except in the border, where according to
more accurate descriptions [113, 117], a residual non-zero steady state population should be expected. This
inaccuracy is due to the fact that the low order perturbative approximation results particularly unsuitable
in the border area, where the photonic density of states rapidly increases. Some restrictions and validity
conditions of the second order perturbative approximation will be established in Section (12.2.2.1).

12.2.1 Time evolution of populations obtained from the stochastic Schrödinger equation

In the last section, we have established the validity of a non-singular correlation function, such as (11.13), to
describe the dynamics of a two level atom with resonance frequency near or inside a photonic band gap. We
now study the solutions of the corresponding stochastic equation (12.5), both statistically (comparing the
ensemble averaged solutions with that of the master equation (12.6)), and in terms of single trajectories. We
will focus on the result obtained with the spinor |ψ1(t)〉, which according to the stochastic equation (12.5)
includes all the dependence over the stochastic variable. In particular, in fig. (12.2) is shown the evolution
of the element ρ11(t) obtained from the ensemble average M[P11] = M[|ψ1(t)〉〈ψ1(t)|] over a different
number of trajectories, κ. Indeed, for the two cases studied (atom frequency in the gap, with |F | = 0.7, or
in the band, with F = 0), and provided that κ is large enough, a convergence to the master equation solution
is observed. In fig. (12.2) it is also observed that when F = 0 the statistics are considerably better than
with |F | = 0.7, and only a small number of trajectories is needed to recover the average value. A possible
explanation is found by studying the behavior of a single trajectory in each case. As shown in fig. (12.3)
(top), stochastic trajectories inside the band reduce to a certain state in which the stochastic driving term
no longer affects. This corresponds to a situation in which the coherences of the density matrix (see fig.
(12.3) below) have been destroyed by the interaction. Naturally, the ensemble average of such solutions will
be very efficient, as the fluctuation disappears at relatively short times. In contrast, in the single trajectory
corresponding to |F | = 0.7, i.e. atomic frequency inside the gap, the fluctuation term remains important
during the whole evolution. This corresponds to the special situation created inside the gap, in which the
atomic coherences are not destroyed, as they would if the atom were in the band, or even in the vacuum.
The relation between the coherences of ρ(t) and the stochastic forcing can be more clearly seen in equation
(5.68), where the noise terms are accompanied by L(t) and L†(t) (let us remind here that L = iσ12).

12.2.2 Validity of the perturbative approximation

12.2.2.1 Study of the positivity As noted in Chap (2), a physical condition to be satisfied by proper so-
lutions is that the transition probabilityP1→2(t), from the lower state |1〉 to the upper state |2〉, is positive and
smaller than one ( 0 < P1→2 < 1). Such probability is given by the averaged projector M[|ψ2(t)〉〈ψ2(t)|],
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Fig. 12.2 Ensemble averaged values of the stochastic equationM[|ψ1(t)〉〈ψ1(t)|] for different number of trajectories,
compared with the result of the (non-convoluted) master equation. Each time step represent around ten atomic transitions.
In the upper figure, corresponding to |F | = 0.7 (atomic bare state frequency inside the gap), the average corresponding
to κ = 2000 trajectories has a relative error less than ≈ 0.008 in the scale. In the lower graph, which corresponds to
a situation in which ωA is in the band, a relative error approximately inferior to 0.02 is reached with only κ = 100.
Clearly, this situation presents a considerable improvement in the statistics in comparison with the case in which ωS is
within the gap.
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Fig. 12.3 The upper figure represents the time evolution of the stochastic projector, P3 = P22 − P11 corresponding
to a single trajectory. The two curves appearing in such figure correspond to |F | = 0.7 and F = 0 respectively. The
figure below represents the density matrix coherence ρ21 in the same time scale. It displays the same two cases as the
figure above. Observing both figures, the vanishing of the stochastic forcing is found to be related to the suppression of
coherences, a process that apparently only occurs within the band. The absence of spontaneous emission which occurs
in the gap might be a possible explanation of the survival of the density matrix coherences and, in consequence, of the
stochastic driving.
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or equally, by the element ρ22(t) of the density matrix. As a secondary effect, unphysical solutions with
P1→2(t) > 1, correspond to non-positive values for the density matrix, i.e. with det{ρt} < 0. However,
let us note here that none of such problems appear when the density matrix is calculated through averaged
solutions of stochastic equation. The reason comes precisely from the definition (12.2), in which this matrix
is calculated through an averaged sum of projectors and therefore preserves positivity. In consequence, we
will base our test of validity of the second order perturbative approximation in the master equation solutions.
The calculus is identical to that performed in Section (2.4.4), where it was settled that the limit condition in
which the convoluted master equation (12.4) for ρ22(t),

dρ22(t)

dt
= −2g2

∫ t

0

dτ<{α̂(t− τ)}ρ22(τ) + O(g3), (12.7)

is positive. The solution of the former equation is given by

P1→2(t) = ρ22(t) = ρ22(0)

[

1 − 2g2

∫ t

0

dl

∫ l

0

dτ<[α̂(l − τ)

]

+ O(g4). (12.8)

Having non-negative transition probabilities implies that the integral term on the right hand side of the last
equation is positive and less or equal to one. Considering the more restrictive condition in which ρ22(0) = 1,
the maximum time tm in which such condition is fulfilled, is defined as follows,

1

g2
= 2

∫ tm

0

dl

∫ l

0

dτ<[α̂(l − τ)]. (12.9)

On the other hand, the non-convoluted version or the equation (12.3) has the following second order solution:

P1→2 = ρ22(t) = ρ22(0)e
−2g2

∫

t

0
dl
∫

l

0
dτ<α̂(l−τ)

. (12.10)

The double integral in the last expression is performed over the real part of the correlation function, and
therefore P1→2 is always a positive quantity. On the other hand, for the correlation functions (11.13) and
(11.17), the double integral itself is positive, and so P1→2 is also less than one. The fact that convoluted
master equation solutions do not preserve positivity, as follows from (12.8), whereas stochastic and non-
convoluted master solutions preserve it, as it is shown in (12.10), reflects by itself the failure of the second
order approximation. Only by considering that the second order approximation is no longer valid, can
we explain the difference between the result of the convoluted master equation and the stochastic and non-
convoluted master equations. Equation (12.9) shows clearly that the validity of the second order perturbative
approximation depends on the magnitude of g. However, as we have mentioned above, another parameter
to consider is the correlation time τc of α̂(t − τ). For a fixed value of g, we changed the band width (that
goes inversely with the correlation time), verifying that the negative values of the density matrix of the
convoluted master equation, (or analogously, the values in which P1→2(t) > 1 or P1→2(t) < 0) tend to
disappear as τc decreases. The smaller the correlation time, the longer is the time limit tm up to which the
second order perturbation theory remains valid. Finally, we also observed that the violation of positivity
(or the violation of the condition over P1→2) only occurs when the atom frequency lies inside the band,
an effect that can be easily explained as follows. Because the photon density of states (DOS) increases
very rapidly in the band, becoming larger than in the vacuum, such region results especially problematic
for a perturbative approach. This can be seen in fig. (12.4), where for the mid-band values (F = 0) the
DOS becomes so large that the perturbative approach presents some problems, as reflected by the difference
between the curves corresponding to two different equations equivalent in this order. Notice however, that
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there is a connection between the band width and the shape of the photonic DOS. In particular, the larger the
band width B, the smaller is the variation of the photonic DOS in comparison to the spontaneous emission
rate. This corresponds to a situation where the Markovian approximation becomes more suitable, which
makes a perturbative approximation more suitable.

We can have a more clear insight of these effects (dependence of the validity of perturbative theory on
τc and, in the case of PBG, dependence on position of the atom frequency), by calculating analytically the
condition (12.9) for the simplest correlation function (11.17), which corresponds to the one dimensional
band-gap structure. To this purpose, we also considered the Redfield limit of (12.7), which is based on the
fact that the integral limit of the coefficient can be extended to infinity, provided that the relaxation time of
the bath is still small compared to that of the system. Using the value of the Laplace transform of J0(x)

∫ ∞

0

dxJ0(bx)e
−px =

1
√

p2 + b2
, (12.11)

valid for <{p} > 0, we arrive to the following expression for the maximum time tm in which solutions
preserve positivity,

1

g2
= <

{

2tm√
B2 − F 2

}

, (12.12)

for values of F within the band, i.e. −B < F < B. Expression (12.12) shows that when B is bigger (so τc
smaller), the maximum time of validity of the perturbative hypothesis tm is allowed to be larger.

For rotating frequencies inside the gap, |F | > B, the expression
√
B2 − F 2 is pure imaginary, and the

perturbative solution (12.8) is always valid, without a restriction over the perturbative parameter such as
(12.12).

12.2.2.2 Comparison of the expansion equation and the perturbative equation The above
discussion about the perturbative approximation can be useful to detect some situations in which such
approximation is not valid. We present in this section a comparison of the second order perturbative equation
with an equation derived in Section (2.4.1). It is important to note that this equation is not exact, as it is
derived by assuming as an ansatz a particular expansion for the operator L(τ, ti+1). In consequence, it
can not be argued that it is better than the second order perturbative equation. The only thing we can say
when comparing both of them, is that the expansion equation seems to describe a residual long time limit
population in the band border, as is expected from more accurate models than the perturbative one.

Let us briefly mention agein the derivation of the expansion equation derived in Section (2.4.1). In order
to obtain a closed equation, the term 〈zi|UI(ti, ti+1)L(τ, ti+1)|zi+1〉 of the open equation of the reduced
propagator (2.40) has to be manipulated. As noted above, we can assume the following expansion of the
coupling operator (see Sections (2.4.1) and (9.4.2) for more details) as an ansatz,

L(τ, ti+1) =
∑

α

Fα(τ, ti, {aλ})Sα(ti, ti+1), (12.13)

where the set {Si} represent a basis of system operators, and Fα(τ, ti, {aλ}) is a certain set of operators
of the total Hilbert space. For a simple mean value, zi = z, ti = t, zi+1 = 0, and ti+1 = 0. In
addition, for L = σ12, the expansion takes the simple form L(τ, 0)|0〉 = f(τ, t)L(t, 0)|0〉, so that the
term 〈z|UI(t, 0)L(τ, 0)|0〉 = f(τ, t)L〈z|UI(t, 0)|0〉, and therefore the resulting value of the operator O is
Oe(t, τ) = f(τ, t)L. From the Heisenberg motion equations, we get

dfe(t, τ)

dt
= (iωS +Re(t)) fe(t, τ), (12.14)
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Fig. 12.4 Evolution of ρ22(t) for different values of |F | < 0.5 using the convoluted master equation (12.4), and the
non-convoluted master equation (12.3). The difference between both equations becomes larger for F = 0, which could
be explained because within that central region the the photonic DOS is so large that the perturbative approximation is
no longer valid.
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with Re(t) =
∫ t

0
τα(t − τ)fe(t, τ). The subindex e accounts for the fact that, once the last expression is

replaced in equation (2.40), a closed equation is obtained for the reduced propagator that comes from the
expansion (12.13). This equation gives rise to quantum mean values that we are interested in comparing with
those obtained in the last sections and in [42, 6] with second order perturbative equations. Considering that
the dissipative term of (2.40) is already of order g2, a second order equation is obtained by only replacing
〈z|UI(t, 0)L(τ, 0)|0〉 = fp(τ, t)L〈z|UI(t, 0)|0〉, with

dfp(t, τ)

dt
= iωSfp(t, τ), (12.15)

where the subindex p accounts for the perturbative approximation. In this approximation, a zero order
expansion of L(τ, 0), is simply L(τ, 0) = exp (iHtotτ)L exp (−iHtotτ) = VτL+O(g). In the notation of
the operator O, in which 〈z|UI(t, 0)L(τ, 0)|0〉 = O(0, z∗, t, τ)〈z|UI(t)|0〉, the latter results can be written
as O(0, z∗, t, τ) ≡ O(t, τ) = fe,p(t, τ)L, where the solution obtained with the expansion of the coupling
operator, fe(t, τ) given by (12.14), corresponds toL = σ12, while the perturbative solution fp(t, τ) = Vτ−tL
is valid for any coupling L. Then, for O(0, z∗, t, τ) ≡ O(t, τ), a closed form for the equation (2.40) is

d

dt
|ψt(z∗)〉 = −iHS |ψt(z∗)〉 + gLz∗t |ψt(z∗)〉

− g2L†
∫ t

0

dτα(t− τ)O(t, τ)L|ψt(z∗)〉. (12.16)

Once we have a closed equation for the reduced propagator, we can construct the reduced density operator
of the system, ρs(t) = TrB{ρtot(t)}, as (12.2). As previously done in Chapter (5), a master equation can
be computed by performing the average M[· · ·] analytically. For that purpose, we replace (12.16) into the
equation

d

dt
ρs(t) = M

[(

d

dt
|ψt(z∗)〉

)

〈ψt(z)| + |ψt(z∗)〉
(

〈 d
dt
ψt(z)|

)]

, (12.17)

in any of the two versions, the expansion model and the perturbative. Since in any case the operator O
does not depend on z, the procedure is analogous to that followed in Section (5.2.1), and gives rise to the
following master equation,

dρ(t)

dt
= i[HS , ρ] + L

∫ t

0

dτα∗(t− τ)ρ(t)O†(t, τ)

+

∫ t

0

dτα(t− τ)O(t, τ)ρ(t)L† − L†
∫ t

0

dτα(t− τ)O(t, τ)ρ(t)

−
∫ t

0

dτρ(t)α∗(t− τ)O†(t, τ)L. (12.18)

In the perturbative case, the operator O(t, τ) is given by (12.15), valid for any L, and the resulting equation
is equal to (5.66) computed in Section (5.2.1). For L = σ12 the operator O is given by (12.14) once the
expansion (12.13) is assumed 1. The solutions from the expansion and the perturbative model of equation
(12.18) are displayed in Fig. (12.5) for the band case, where |F | < 0.5. Special emphasis is placed on the
study of the border of the band, where the perturbative approximation is no longer valid due to the high

1We stress that the expansion (12.13) is standard for any coupling L, but the equation (12.14) is special for L = σ12



170 QUANTUM MEAN VALUES AND FLUCTUATIONS

values that the photonic DOS has in this region. Contrary to the perturbative model, the expansion model
shows that there is population in the long time limit for frequencies within the band border, in such a way
that the effective band border is not placed at F = 0.5 but deeper in the band, around F = 0.37 (see figure
(12.7)).
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Fig. 12.5 Evolution of σz(t) for |F | < 0.5 for the expansion and perturbative model. The difference between both
models becomes specially dramatic in the border of the band, where the photonic DOS is so large that the perturbative
approximation is no longer valid. Near the border of the band the asymptotic value of σ22 is zero whereas the expansion
equation reflects already a certain residual population.

Although the photonic DOS is zero in the gap region, for frequencies placed sufficiently near the band
edge the perturbative solutions differs considerably from the exact model ones. When a photon is emitted
within the gap, it remains localized in a region nearby the atom and interacting with it in such a way that a
so-called photon-atom bound state is formed [42]. Within that region the photon can tunnel through a certain
scale in frequencies, which is larger the closer the atomic frequency is to the band edge, in such a way that
there is a certain probability for the photon to be reabsorbed by the band extended modes [46]. This is how
the photonic DOS of the band border affects the dynamics of the atom even when its frequency is within the
gap, giving rise to dissipation and to the failure of the perturbative approximation. This is clearly observed
in figure (12.6), where in frequencies close to the band edge the dissipation observed in the results of the
expansion model differs from that described within the perturbative approximation.
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Fig. 12.6 The evolution σz(t) is shown for values of F within the gap. The upper level still suffers a certain
depopulation because the localization length in frequency of the photons emitted by the atom enters into the band range
of frequency, having therefore a certain probability to dissipate. Because of that, they also interact with a large DOS,
and that explains the failure of the perturbative approximation when the atomic rotating frequency is still nearby the
band edge.
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Fig. 12.7 The asymptotic value of σz(t) is displayed for each value of F , both for the expansion and perturbative
model. The residual long time limit population occurring at the edge of the band for the expansion model is clearly
displayed. In contrast, the perturbative solution exhibits a sudden change from σst

z = 1 within the band to σst
z < 1

within the gap. The perturbative approximation becomes better (closer to the expansion model solution) when the
rotating frequency is far from the band edge, no matter if it is inside the gap or the band itself.
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12.3 TWO LEVEL SYSTEM DRIVEN BY AN EXTERNAL LASER FIELD.

Let us now study the effect of a single mode laser field in a two level atom, also coupled to the radiation
reservoir of a photonic crystal. As in [42], we consider the interaction Hamiltonian HSL of the atom with
the classical coherent monochromatic laser field in the usual rotating wave approximation form [43]:

HSL = ε(σ21e
−i(ωLt+φT ) + σ12e

i(ωLt+φT )), (12.19)

where ωL is the frequency of the laser in the coherent state αe−iωLt, with α = |α|e−iφL . The quantity
ε = d21ε is the Rabi frequency, and |ε| =

√

ωL/2ε0υ
√

N̄LeL the laser field magnitude, where υ is the
volume of the cavity, and N̄L and eL, are respectively the mean number of photons and the polarization of
the laser mode. The phase φT is a global phase defined as φT = φL − π/2. Because of the magnitude of
the laser field, the Hamiltonian HSL should be considered as part of the non-interacting Hamiltonian H0,
where in this caseH0 = HS +HB +HSL. We can eliminate the explicit dependence on the laser frequency
by changing to a rotating frame with a frequency ωL by using the unitary operator

Ut = e[iωLt+iφT ][
∑

λ
a†

λ
aλ+(σ22−σ11)]. (12.20)

The rotated Hamiltonian H ′ = H ′
0 +H ′

I ,

H ′
0 =

∑

λ

ωλa
†
λaλ +

1

2
ωSσ3 + ε[σ21e

−i(ωL+φT ) + σ12e
i(ωLt+φT )],

H ′
I = i

∑

λ

gλ(a
†
λ − aλσ21), (12.21)

can still be expressed in a simpler way by projecting it into the dressed atomic basis. The new Hamiltonian
H̃ = V −1H ′V , where

V =

(

c −s

s c

)

, (12.22)

will be of the form (11.6). The constants appearing in the unitary transformation matrix V are c = cosφ
and s = sinφ, where the angle, φ, is given by sin2 φ = 1

2 [1− sgn(∆SL)/
√

ε2/∆2
SL) + 1]. The frequency

∆SL = ωS − ωL. The non interacting dressed state Hamiltonian H̃0 = H̃S + H̃B + H̃SL is equal to,

H̃0 = ΩR3 +
∑

λ

∆λa
†
λaλ, (12.23)

and the interaction Hamiltonian H̃I has the same form as in (11.6) once the interaction operator L is defined
as:

L = csR3 + c2R12 − s2R21. (12.24)

Here,Rij = |̃i〉〈j̃| are the atomic operators defined in the dressed state basis {|1̃〉, |2̃〉}, andR3 = R22−R11.
The quantity Ω = [ε2 + ∆2

SL/4]
1/2 is called the generalised Rabi frequency. According to (12.22), the

relation between the dressed atomic operators and the bare atomic operators is the following,

σ12 = csR3 + c2R12 − s2R21

σ21 = csR3 − s2R12 + c2R21

σ3 = (c2 − s2)R3 − 2cs(R12 +R21). (12.25)
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Once we have established the Hamiltonian of the driven two level atom, let us now propose the two formu-
lations we know to describe its evolutions, namely its non-Markovian stochastic Schrödinger equation and
its non-Markovian master equation. In the dressed state basis presented above, and following its general
definition (12.1), the non-convoluted stochastic equation for each component of the spinor in interaction
image becomes,

d|ψ̃1(t)〉
dt

= gẑ∗t {−cs|ψ̃1(t)〉 + c2e−i2Ωt|ψ̃2(t)〉}

+ g2

∫ t

0

dτα̂(t− τ){−c2s2|ψ̃1(t)〉 + cs3e−i2Ωt|ψ̃2(t)〉

+ sc3ei2Ω(t−τ)e−i2Ωt|ψ̃2(t)〉 − s4e−i2Ω(t−τ)|ψ̃1(t)〉} (12.26)

d|ψ̃2(t)〉
dt

= gẑ∗t {cs|ψ̃2(t)〉 − s2ei2Ωt|ψ̃1(t〉)}

+ g2

∫ t

0

dτα̂(t− τ){−c2s2|ψ̃2(t)〉 + c3sei2Ωt|ψ̃1(t)〉

− c4ei2Ω(t−τ)|ψ̃2(t)〉 + cs3e−i2Ω(t−τ)ei2Ωt|ψ̃1(t)〉}, (12.27)

where α̂(t− τ) and ẑ∗t are defined in (11.7) and (11.9) respectively, and |ψ̃i(t)〉 is the stochastic i-spinor in
the dressed state basis. Let us here define the relaxation time of the system, τR as the inverse of the largest
value of the dissipative coefficients Γi with {i = 1, 2, 3}, appearing in the Redfield limit of eq. (12.27),
which are defined as,

Γ1 =

∫ ∞

0

dτα̂(t− τ),

Γ2 =

∫ ∞

0

dτα̂(t− τ)ei2Ω(t−τ),

Γ3 =

∫ ∞

0

dτα̂(t− τ)e−i2Ω(t−τ). (12.28)

Due to the fact that the relaxation time of the system τR, is such that 1/τR << 2Ω, we can use the secular
approximation, which consists in eliminating the oscillating terms with frequencies 2Ω that appear in the
dissipative terms. In fact, the secular approximation is normally performed over the master equation, but the
dissipative terms from (12.27) will also appear in the master equation, so the approximation can be applied
over them. In change, we shall not eliminate any of the noise terms, since the ensemble average of their
contribution in the projector (namely the first and third terms of equation (5.64) of Chapter (5)), can give
rise to non-secular components. Taking into account the above mentioned points, the resulting stochastic
equation

d|ψ̃1(t)〉
dt

= gẑ∗t {−cs|ψ̃1(t)〉 + c2e−i2Ωt|ψ̃2(t)〉}

+ g2

∫ t

0

dτα̂(t− τ){−c2s2|ψ̃1(t)〉 − s4e−i2Ω(t−τ)|ψ̃1(t)〉} (12.29)

d|ψ̃2(t)〉
dt

= gẑ∗t {cs|ψ̃2(t)〉 − s2ei2Ωt|ψ̃1(t〉)}

+ g2

∫ t

0

dτα̂(t− τ){−c2s2|ψ̃2(t)〉 − c4ei2Ω(t−τ)|ψ̃2(t)〉} (12.30)
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gives rise to the following master equation,

dρ̃11

dt
= −2g2sc3

∫ t

0

dτ<{α̂(t− τ)e−i2Ωτ ρ̃21} − 2g2s4

∫ t

0

dτ<{α̂(t− τ)e−i2Ω(t−τ)}ρ̃11

− 2g2sc3

∫ t

0

dτ<{α̂(t− τ)ei2Ωtρ̃12} + 2g2c4

∫ t

0

<{α̂(t− τ)ei2Ω(t−τ)}ρ̃22

dρ̃21

dt
= −4g2c2s2

∫ t

0

dτRe{α̂(t− τ)}ρ̃21

+ g2

∫ t

0

dτα̂(t− τ){sc3ei2Ωtρ̃22 − c2s2ei2Ω(t+τ)ρ̃12

+ cs3ei2Ωτ ρ̃11 − c4ei2Ω(t−τ)ρ̃21}

+ g2

∫ t

0

dτα̂∗(t− τ){sc3ei2Ωτ ρ̃22 − c2s2ei2Ω(t+τ)ρ̃12

+ cs3ei2Ωtρ̃11 − s4ei2Ω(t−τ)ρ̃21}
dρ̃22

dt
= −2g2cs3

∫ t

0

<{α̂(t− τ)ei2Ωτ ρ̃12} + 2g2s4
∫ t

0

dτ<{α̂(t− τ)e−i2Ω(t−τ)ρ̃11}

− 2g2cs3

∫ t

0

<{α̂(t− τ)e−i2Ωtρ̃21} − 2g2c4

∫ t

0

<{α̂(t− τ)ei2Ω(t−τ)ρ̃22},

(12.31)

where ρ̃ij(t) is the component {ij} of the density matrix in the dressed basis. Some new rotating terms
have appeared due to the average of some of the noise terms of Pij(t). We can now use again the secular
approximation to obtain a much more simplified master equation,

dρ̃11

dt
= 2g2c4

∫ t

0

dτ<{α̂(t− τ)ei2Ω(t−τ)}ρ̃22

− 2g2s4

∫ t

0

dτ<{α̂(t− τ)e−i2Ω(t−τ)}ρ̃11

dρ̃21

dt
= −4g2c2s2

∫ t

0

dτRe{α̂(t− τ)}ρ̃21

− g2c4

∫ t

0

dτα̂(t− τ)ei2Ω(t−τ)ρ̃21

− g2s4

∫ t

0

dτα̂∗(t− τ)ei2Ω(t−τ)ρ̃21

dρ̃22

dt
= 2g2s4

∫ t

0

dτ<{α̂(t− τ)e−i2Ω(t−τ)}ρ̃11

− 2g2c4

∫ t

0

dτ<{α̂(t− τ)ei2Ω(t−τ)}ρ̃22. (12.32)

In the last equations we have dropped, for simplicity in the notation, the time dependence of the density
matrix components, so that ρ̃ij ≡ ρ̃ij(t). In what follows, we will compare the averaged results of (12.30)
with the simplified master equation (12.32). It is clear that they will differ in the extra fast rotating terms
appearing in the master equation (12.31). However, provided that the secular approximation is adequate in
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the present case, such difference will not affect the main relaxation dynamics of the studied quantities.
Let us first settle the conditions necessary to obtain an asymptotic population inversion (i.e. ρ3 = ρ22−ρ11 >
0, in the non-dressed basis). As explained above, the self dressing of the atom produced by the laser field
splits the original atomic level into dressed states giving rise to the well known Mollow triplet in the
emission spectra. According to [42], it is necessary that the left Mollow component (which corresponds to
transitions that depopulates the lower dressed state ω̃1), is situated inside the gap, while the other component
(corresponding to transitions from ω̃2) remains in the band (see Figure (12.8) for a schematic representation
of this.). Considering the two limits of the band (ωc, ω′

c) described before, this is equivalent to the following
restriction:

B + FL
2

< Ω <
B − FL

2
, (12.33)

where FL = ωL −A. Due to the presence of the gap, the depopulation of the dressed state |1̃〉, will be less
efficient than in |2̃〉 which remains in contact with the large photonic DOS of the band. As a consequence,
the population in |1̃〉 is much larger than the atomic population in |2̃〉 in the long-time limit. Following
(12.25), once we have ensured that < R3 >

st< 0 in the long time limit, and provided that the coherences,
< R12 > and < R21 >, tend to disappear in such limit, it is necessary that c2 < s2 for σst3 > 0. To satisfy
this condition, according to the definition of s2 presented above, it is sufficient that ∆SL < 0.

BANDGAP

ωL

ωL−2Ω ωL+2Ω

D (ω)

ωωc

Fig. 12.8 The figure represents how the Mollow triplet should be placed with respect to the band and the gap in order
to provide the necessary condition to have population inversion [42].

We must note here that {R11, R22, R21, R12} are components of the Pauli representation of the density
matrix. As shown in Appendix (Q), the element R̃3 is equivalent to ρ̃3 = ρ̃22 − ρ̃11, and can therefore be
calculated with the master equation (12.32).
The results shown in fig. (12.9) confirm the validity of the correlation function (11.13) for describing the
behavior of the two level atom in contact with a laser and the modified EM field of the PBG. It also shows
the necessity of the two conditions described above for obtaining asymptotic population inversion. We have
just established that the correlation function (11.13) reproduces the same physical effects as (11.10) for a
two level system within a PC and coupled to an external laser field. As we have mentioned, this correlation
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Fig. 12.9 The first two curves obey the two conditions necessary for asymptotic population inversion. Such property
disappears when the condition over Ω is not satisfied (figures 3 and 4), or it is not true that c2 > s

2 (curve 5).
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function is suitable to generate the corresponding noise (see the procedure explained in Appendix (P)).
Let us end this section by comparing the results of the master equation (12.32) with those of a stochastic
equation such as (12.30). As clearly seen in fig. (12.10), the ensemble averaged solutions of the stochastic
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gAt
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−0.5

0

0.5

ρ 3(t
)

master
κ=200
κ=600

Fig. 12.10 The convergence to the average value of stochastic solutions, produced when increasing sampling or
number of trajectories κ, is here displayed. As expected, such averaged value presents some additional oscillations of
frequency 2Ω with respect to the master equation (12.32), due to the extra secular terms appearing in (12.31).

Schrödinger equation permit us to recover the results of the corresponding master equation. The differences
observed between the two curves are due to the fast rotating terms that appear in the stochastic equation
(12.30), and that have been eliminated in the master equation (12.32) through the secular approximation.

12.4 FLUCTUATIONS: TWO-TIME CORRELATION FUNCTIONS

Let us finish the chapter by computing the system of two-time correlation functions of a two level atom
immersed in a PC. As discussed in Chapter (III), certain two-time correlations may be used to compute the
atomic emission spectra. According to (9.29), the non-Markovian two-time correlation functions are given,
up to second order in perturbation parameter, by the following set of differential equations,

d

dt1
〈Ψ0|A(t1)B(t2)|Ψ0〉 = i〈Ψ0| {[HS , A]} (t1)B(t2)|Ψ0〉
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+

∫ t1

0

dτα∗(t1 − τ)〈Ψ0|
{

Vτ−t1L
†[A,L]

}

(t1)B(t2)|Ψ0〉

+

∫ t1

0

dτα(t1 − τ)〈Ψ0|
{

[L†, A]Vτ−t1L
}

(t1)B(t2)|ψ0〉

+

∫ t2

0

dτα(t1 − τ)〈Ψ0|
{

[L†, A]
}

(t1) {[B, Vτ−t2L]} (t2)|Ψ0〉 + O(g3). (12.34)

In the following figures we display several cases of MTCF for different values of the parameter F defined
in the last chapter. The parameters are ωS = 1, g = 0.1, and the band width B = 0.5. The initial state
is chosen as |ψ0〉 = ((1 + 2i)|1〉 + (1 + i)|2〉) /

√
7. The intermediate time of the correlation is settled as

t2 = 5.
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Fig. 12.11 The figure represents different values of the correlation Cxy = 〈Ψ0|σx(t1)σy(t2)|Ψ0〉. For values of F
such that the atomic rotating frequency stays within the band, the two time correlation Cxy tends to vanish in the long
time limit. In contrast, when F > 0.5 such correlation function remains always in the same value. Indeed, in the long
time limit, it corresponds to 〈σX〉asym〈σy(t2)〉 that does not decay to zero within the gap region.
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Fig. 12.12 The figure displays the correlation Cxz . In the long time limit (also asymptotic limit), if the rotating
frequency is within the band, i.e. F < 0.5, the correlation tends to vanish. If it is within the gap, i.e. F > 0.5, it
remains the same. Just as before, the asymptotic limit isCasym

xz ∼ 〈σX〉asym〈σz(t2)〉. There is a qualitative difference
of this curve with respect to Figure (12.11), specially for values of F within the gap: although 〈σx〉asym behaves the
same for different values of F , the mean value 〈σz(t2)〉 has different (non zero) values for each F . Hence, the curves
corresponding to Cxz change with different values of F .
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Fig. 12.13 The figure represent the correlation Czz = 〈Ψ0|σz(t1)σz(t2)|Ψ0〉. Again, the values in the long time
limit correspond to Casym

zz ∼ 〈σz〉asym〈σz(t2)〉. Notice that inside the band 〈σz〉asym = 1, while 〈σz(t2)〉 = 0.54
for F = 0, and 〈σz(t2)〉 = 0.51 for F = 0.4.



13
Conclusions and outlook of this

part

In this part of the thesis, we have applied some of the dynamical equations developed in Parts (II) and (III)
to study the dynamics of a two level atom in contact with the modified radiation field of a photonic band gap
material.

As already emphasized, one of the main goals of the study is the application of the non-Markovian
stochastic Schrödinger equation (12.1) to a physically realistic problem such as a two level system in contact
with the radiation field of a PC. This is not only interesting on its own, but also because the steps here followed
to apply stochastic equations for a two level atom (i.e. identification of Lindbland operators, generation of the
correlation function and noise synthesis), can also be applied to many other physical systems. Particularly,
they can be applied to many-level atoms in contact with the PBG radiation field, since the correlation function
would have the same structure for any two-level transition (see for example [46]). It is in those problems
where the numerical advantage of stochastic equations, in contrast with master equations, becomes evident
[38]. In addition to the numerical advantage for large systems, it is important to note that if eventually a
continuous measurement interpretation of non-Markovian stochastic equations is developed (analogous to
the one existing for Markovian equations, see for instance [52]), this scheme might contribute to have new
physical insights on the problem.

The conclusions of the work can be summarized as follows:
In Chapter (11), we characterized the radiation field with a periodic dispersion relation, instead of the

parabolic dispersion relation that is used in the literature. Thanks to that, first the corresponding correlation
function is non singular at the origin in contrast to the previous ones, describing more accurately the short
time behavior; and second, the EM field fluctuations which correspond to the noise variable that drives the
stochastic equations, can be appropriately defined.

In Chapter (12), we have shown the validity of the linear equation for the reduced propagator with zi+1 = 0
(considered as a stochastic equation), the non-convoluted master equation 1, and the new correlation function

1We note here that it was shown in Chapter (5) how the evolution equation of the reduced propagator provide an efficient tool to generate
master equations. Within the second order perturbative approximation, two equivalent master equations are obtained: a non-convoluted
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(11.13) to describe the dynamics of two level system in the PBG radiation field. In order to do that we have
studied the physical effects observed by M. Florescu and S. John in [42] with the convoluted master equation
and a radiation field characterized by a singular correlation function (11.10).

Some of the phenomena occurring in the atomic spontaneous emission were studied in Section (12.2).
Indeed, when the atomic frequency ωS is placed within the gap, we have observed asymptotic non-zero
population in the excited level, together with the oscillatory behavior which is produced by the atomic self-
dressing [117, 118]. For an atomic frequency placed inside the band, we have observed the non-exponential
decaying of the upper level population typical of a non-Markovian interaction. In this case, we have shown
that the non-convoluted master equation is more convenient than the convoluted one. While the convoluted
master equation presents negative values of ρs for ωS situated in the central zone of the band, the non-
convoluted master equation always preserves positivity. This can be due to the fact that the stochastic
equation gives rise to positive ρs by construction, and the non-convoluted master equation derived from it
preserves this property.

The stochastic wave function |ψt(z∗)〉 corresponds to a measurement performed over the bath at time
t that has had as a result the quantity zt. Its evolution corresponds to a set of possible outcomes once a
measurement has been performed in the environment [94]. In that sense, we have also made an attempt
to qualitatively explain the behavior of single trajectories. When the atomic frequency is placed within
the band, the coherences are rapidly destroyed, and the two terms of the stochastic equation, which reflect
a variation of the population due to the energy interchange with the bath, are also rapidly reduced. The
consequence is a large dissipation in the first time steps of each of the stochastic trajectories. Due to the
rapid decrease of fluctuations, a second effect is an improvement of the sampling within the band, which
means that lower number of trajectories is needed to compute the quantum mean values of system operators.
In contrast, the photon-atom bound state appearing when the atomic frequency is inside the gap, gives rise to
a dynamical equilibrium in which a non-zero steady state population is conserved in the upper level through
the continuous emission and re-absorption of photons from the atom to the environment. In consequence,
coherences are not destroyed, and for single stochastic trajectories the dissipation in energy is small, whereas
the fluctuations are large and remain non-damped throughout the trajectory. Such fluctuations, which might
physically occur through the continuous photon exchange between the atom and the environment, correspond
to a less efficient sampling in comparison with the band case.

In Section (12.3), was shown how including the effects of a driving laser, the averaged solutions of the
stochastic equation (12.30) and the master equation (12.32) describe an inversion of population under the
same conditions determined by Florescu and John [42].

Finally, in Section (12.4) we have shown some of the non-Markovian two-time correlations of the atom
in the PC radiation field. The calculus of two-time and four-time correlations is necessary to compute the
emission spectra and photon statistics of such a system. Those are problems that remain open for future
work.

master equation, equal to the one obtained in [35] by P. Gaspard and M. Nagaoka, and in [54] by Ting Yu et. al., and a convoluted
master equation which corresponds to the one used by M. Florescu and S. John in [42] for the two level atom inside the photonic crystal.
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Conclusions

Some of the main results of this thesis are now resumed. While detailed conclusions have been discussed at
the end of each part, the idea is to present here a global vision of the work.

We have studied and derived the necessary tools to describe a non-Markovian QOS linearly coupled to an
environment of harmonic oscillators. As an example, we apply the equations to an atom dipolarly coupled
to the radiation field within a PC.

In Part (1) the reduced propagator is introduced, an object that evolves the system state conditioned to a
certain initial and final state of the environment. The reduced propagator is the matrix element of the evolution
operator of the total system in the Bargmann coherent state basis for the environment. The reduced density
operator, and the MTCF of the system can be expressed as a Gaussian average of reduced propagators which
is performed over the different initial and final possible states. This average can be performed in two ways:
First, numerically, by considering a Montecarlo sampling of the sum, so that the reduced propagators become
stochastic propagators. Within this method, the reduced density operator and the MTCF are obtained by
evolving several stochastic trajectories and then performing a sum of them. Second, analytically, so evolution
equations for the density operator and the MTCF can be obtained. Concerning that issue, we have made an
extension of the Novikov theorem that allows performance of the analytical average over reduced propagators
with an initial state other than the vacuum.

In Part (II), particularly in Chapter (5), the sampling of several models of SSE is studied, which briefly
speaking is the number of stochastic trajectories needed to obtain the reduced density operator. Particularly,
we show that the non-linear type of SSEs, which are characterized by having a dynamical distribution for the
noise, present an improvement of the sampling only when the environmental temperature is high enough.
The reason is that it is in such condition where the environmental distribution, which coincides with the noise
distribution, evolves considerably with the interaction. Afterwards, the reduced propagator is used to derive
several models of master equations. We obtain a master equation suitable for arbitrary initial conditions for
environment and system, and not just initially decorrelated states. By using reduced propagators, we also
derive a master equation for finite temperature environments that is equal to the one obtained previously in
the literature with other methods.
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In Part (III) we derive a theory of non-Markovian MTCF. This part contains some of the main results of
this thesis. We start by discussing two of the possible applications that MTCF may have in quantum optics,
which are the calculus of the atomic emission spectra (related with a two-time correlation of field operators),
and the photon statistics (related with a time-ordered two-time correlation of field operators). To this end, the
relation between the correlation of field operators and the correlations of system operators is shown. Then,
we derive the evolution equation of non-Markovian MTCF by using two different methods: a first one based
on the use of reduced propagators, and a second one based on the use of Heisenberg equations. In Chapter
(8), it is shown that when no approximations are made, the evolution equations of MTCF are organized in
a hierarchy: the evolution of N -time correlations depends on N + 1-time correlations, and successively.
Although the hierarchy is not valid for computational means, it becomes useful once the dependency with
higher order correlations is eliminated. This can be done by assuming some approximations. Particularly, in
Chapter (9), a weak coupling approximation is used to obtain an evolucion equation of N -time correlations
that do not depend on higher order correlations.

The fact that non-Markovian MTCF obey a hierarchy structure already shows that the QRT does not apply
for this kind of interactions. The QRT states that in the Markovian case the evolution ofN -time correlations
is equal to the evolution of 1-time correlations, which is given by the master equation. Moreover, we find that
even in the weak coupling limit the QRT is not fulfilled. To be more specific, in the evolution equation ofN -
time correlations up to second order in the perturbation parameter, some new terms appear apart from the ones
of the evolution of 1-time correlations. A consequence of the latter is that for non-Markovian interactions
the master equations is no longer the only equation needed to describe all the dynamical quantities of a QOS.
To complete such description, and within the weak coupling limit, this equation may be complemented with
the equations we propose in this thesis.

Finally, Part (IV) deals with the problem of an atom in contact with the modified radiation field within
a PBG material. Along with its potential applications, this system is of interest because it presents some
interesting physical phenomena due to the highly non-Markovian interaction. Such interaction is charac-
terized by the environmental correlation function. We propose a new model of correlation function which
describes the short time behavior in a more accurate way than previously existing ones. The noise corre-
sponding to such correlation is generated in order to compute the system quantum mean values with SSE.
With this scheme, some of the physical effects already described in the literature with master equations are
reproduced: residual long time limit population in the excited level, existence of a photon atom bound state
and long time limit population inversion when the atom is also driven by a laser. This part ends with the
calculus of some two-time correlations for the system. Such quantities are needed to compute the atomic
emission spectra, which connects directly with some of the perspectives of this work. But this is explained
in some more detail in the next chapter.
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Perspectives

The last two parts of the thesis, concerning MTCF and its application to atoms in PBG materials, leaves
open the possibility of computing the emission spectra and photon statistics of these systems (always within
the weak coupling limit).

Concerning the emission spectra, it is obvious that it may present interesting features, and due to the
strongly non-Markovian character, a shape very different from the Lorentzian profile typical of Markovian
interactions. It may also be interesting to study how such non-Markovian character affects the intermittent
fluorescence of a three level atom immersed in a PBG material. The phenomena of intermittent fluorescence
has been treated by several authors for Markovian interactions [62, 147, 148, 149, 150], and is based on
an original idea of Dehmelt [145, 146] to observe single atomic transitions in an experiment. Suppose we
have a three level system which consists in two excited levels |1〉 and |2〉 coupled to a common level |0〉
with a strong and a weak transition respectively. The strong transition produces a fluorescence signal that is
detected. However, from time to time the electron is excited to the metastable level |2〉, and the fluorescence
signal is interrupted with a dark period. Since this weak transition occurs randomly in time, the atomic
fluorescence intensity has the form of a random telegraph signal [147]. In an experiment, the jump between
two levels (say |0 > to |2 >) can be indirectly through the appearance of a dark period in the detected signal.
However, the fingerprint of intermittent fluorescence can be observed in the photon statistics [67], and in
the emission spectra, that even in the Markov case is no longer a Lorentzian [67, 150]. As noted above, it
would certainly be an interesting issue to observe such spectra when the three level atom is placed within a
PBG, for instance by tuning the strong transition into the band, and the weak transition in the gap.

Concerning the photon statistics, particularly interesting would be the study of the photon bunching and
anti-bunching effect in this kind of systems, again due to their non-Markovian behavior.

We have formally derived the evolution equation of two-time correlations for systems in a thermal envi-
ronment. It may therefore be interesting to apply the equation to a particular QOS, and to compute quantities
such as its emission spectra, studying how this is affected by the temperature. Computing arbitrary thermal
N -time correlation functions is also possible, and does not present any qualitative difference with respect to
the calculus of two-time correlations. This is also left open for future work.
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It may be possible to consider a set of measurements over the non-Markovian system separated by a time
interval chosen as ∆t > τc, in order to allow a recovering of the environment between measurements. The
measurement operator acting at time t + ∆t can be chosen as a projector of |Ψt〉 = |ψt(z∗i+1)〉|zi+1〉 into
the environmental state zi, which would lead to a final state |Ψt+∆t〉 = 〈zi|UI(t+ ∆t, t)|zi+1〉|ψt(z∗i+1)〉.
Hence, the evolution produced with this kind of measurements may be described with the reduced propagators
G(z∗i zi+1|t+ ∆tt) = 〈zi|UI(t+ ∆t, t)|zi+1〉. An average of this kind of trajectories may produce discrete
points of the evolution of the reduced density matrix given by the master equation.

Finally, we believe that the set of evolution equations derived in this thesis may be used to compute
the dynamics of some other systems displaying non-Markovian character, provided that they are linearly
coupled to the environment. The possibility of applying other approximations to the evolution equation for
the reduced propagator as well as the hierarchy of MTCFs is also an interesting question and a possible
subject for further study.
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Appendices

We consider h̄ 6= 1 in all the appendices except in the first one, since it corresponds to Chapter (1) where
the model is presented.
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Appendix A
Relation between

gauge-dependent and
gauge-independent HI

In this appendix we first show how the Hamiltonian (1.17) is obtained from the Schrödinger equation of the
free electron by imposing the local gauge invariance, i.e. the invariance of the Schrödinger equation with
changes in the phase of the electronic wave function. Thereafter, is deduced the interaction Hamiltonian
between electron and field in its −r ·E(r, t) version, instead of the −p ·A(r, t) version, described by (1.21),
which is obtained by simplifying the interaction terms of (1.17).

A.1 GAUGE-INDEPENDENT HAMILTONIAN WITH HI ∼ −P · A(R, T )

The probability of finding an electron at position r and time t is the same even if an arbitrary phase ξ(r, t),
even locally dependent on space and time, is added to its wave function

ψ(r, t) → ψ(r, t)eiξ(r,t). (A.1)

However, the wave function (A.1) is no longer a solution of the Schrödinger equation of an electron in free
motion,

− 1

2m
52 ψ = i

∂ψ

∂t
. (A.2)
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194 RELATION BETWEEN GAUGE-DEPENDENT AND GAUGE-INDEPENDENT HI

In order to satisfy local phase invariance, the motion equation of the electronic wave function should be
modified with the addition of some terms

{

− 1

2m

[

5− i
e

m
A(r, t)

]2

+ eU(r, t)

}

ψ = i
∂ψ

∂t
. (A.3)

The new terms are the so-called gauge-dependent potentials A(r, t) and U(r, t), satisfiying

A(r, t) → A(r, t) +
1

e
5 ξ(r, t)

U(r, t) → U(r, t) − 1

e

∂ξ

∂t
(r, t). (A.4)

The Hamiltonian (A.3) is equal to (1.17) once it is considered the radiation Gauge, U(r, t) = 0 and
5A(r, t) = 0, and a binding potential V (r) is added to take into account the electrostatic potential that binds
the electron to the nucleus. In that way, the steps of Section (1.2) can be followed to obtain an interaction
Hamiltonian of the form HI ∼ −p · A(r, t).

A.2 GAUGE DEPENDENT HAMILTONIAN WITH HI ∼ −R · E(R, T )

With the electric dipole approximation, the vector potential in an electron placed in r + r0 (with r0 the
position of the atomic nucleus to which it is bounded), is given by (1.26) as

A(r + r0) ∼ A(r, t)eik·r0 , (A.5)

so that the Schrödinger equation reads as
{

− 1

2m

[

5− i
e

m
A(r0, t)

]2

+ V (r, t)

}

ψ = i
∂ψ

∂t
, (A.6)

where the radiation gauge and the binding electrostatic potential has been considered. A gauge transformation
to the electric field E can be made at this point, by defining the local phase as

ξ(r, t) = − e

m
A(t) · r, (A.7)

so that we have

ψ(r, t) = e[ieA(r0,t)·r]Ψ(r, t), (A.8)

which inserted in (A.6) gives rise to the following equation

[Hel − er · E(r0, t)] Ψ(r, t) = i
∂Ψ

∂t
. (A.9)

Here, we have defined Hel ≡ HS . The Hamiltonian HI = −D ·E(r0, t) should be represented in terms of
the quantized electron field Ψ(r, t) =

∑

j bjφj(r), with φj the eigenfunction of the electronic Hamiltonian
Hel corresponding to the eigenvalue Ej ,

HI =

∫

d3rΨ†(r) [−er · E(r0, t)] Ψ(r) = D · E(r0, t) (A.10)
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Here, we have defined the dipolar moment operator as

D =
∑

ij

b†jbkdjk, (A.11)

with djk = −e
∫

d3rφ∗j (r)rφk(r). The electric field is defined as

E(r0, t) =
∑

λ

ελaλAλ(r0)êλe
−iωλt +H.C., (A.12)

with ελ =
√

ωλ

2ε0
and Aλ(r0)êλ = Aλ(r0) are the modes in which the field is expanded. The amplitudes

Aλ(r0) are given by (1.26). Replacing the last expression in (A.10), the interaction Hamiltonian takes the
form

HI =
∑

i,j

b†jbk
∑

λ

gλ,j,k(aλ + a†λ), (A.13)

with

gλ,j,k = djk

√

h̄ωλ
2ε0

Aλ(r0)djk · êλ. (A.14)

For a two level atom, and within the rotating wave approximation (i.e. eliminating the terms in which an
electron is excited (desexcited) and a photon is created (annihilated) in the field simultaneously), as well as
the terms in which the dipolar coupling is forbidden (i.e. terms in which j = k), we have

HI =
∑

λ

(

σ21gλaλ + σ12g
∗
λa

†
λ

)

, (A.15)

with gλ = d12

√

h̄ωλ

2ε0
Aλ(r0)d̂12 · êλ, and σjk = b†jbk.



Appendix B
Coherent states of the radiation

field.

A derivation of the main properties of coherent and Bargmann coherent states is discussed in this Appendix.
We follow the original presentation offered by Glauber in [48]. Some alternative ones can be found in
[43, 51] or any other Quantum Optics textbook.

The radiation field is described as a sum of different harmonic oscillators λ, with Hamiltonian

H =
∑

λ

ωλa
†
λaλ, (B.1)

and eigenvalues ωλnλ, where nλ is an integer, and aλ and a†λ are the so-called annihilation and creation
operators of the field for reasons that will became clear in a while. In the former Hamiltonian we have chosen
the energy of the vacuum state as the energy origin 1. In the former Hamiltonian, the energy 1

2ωλ is the
ground state energy of the λ oscillator, also called the zero-point energy, and is often omitted for simplicity.

The state vector for the ground state of the oscillator, which we write as |0〉λ is defined by the condition

aλ|0〉 = 0. (B.2)

1In fact, the theory gives us that such energy is equal to the sum E0 =
∑

λ
1
2
ωλ, which in fact is infinite. By considering it as the

origin energy, it is possible to bypass infinite quantities and calculate accurately the physical effects which are actually observable. A
procedure that is known as renormalization [74].
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The state vector for excited state of the oscillator may be obtained by applying integral powers of the operator
a†λ to |0〉, for instance

|nλ〉 =
(a†λ)

nλ

(nλ!)1/2
|0〉; (nλ = 0, 1, 2 · · ·). (B.3)

The former basis is the number basis, which defines an environmental state with the number of photons nλ
in each mode λ. The way in which the operators aλ and a†λ act upon these states is the following

aλ|nλ〉 = n
1/2
λ |nλ − 1〉

a†λ|nλ〉 = (nλ + 1)1/2|nλ + 1〉
a†λaλ|nλ〉 = nλ|nλ〉, (B.4)

so that the action of aλ (a†λ) over the number state is to annihilate (create) a photon in the mode λ. The
electric field operator E(r, t) is separated into a positive frequency part and a negative frequency part,

E(r, t) = E(+)(r, t) + E(−)(r, t), (B.5)

where, as defined in Appendix (A),

E(+)(r, t) =
∑

λ

ελaλAλ(r)êλe
−iωλt, (B.6)

with ελ =
√

ωλ

2ε0υ
and Aλ(r)êλ = Aλ(r) are the modes in which the field is expanded, and E(−)(r, t) =

(

E(+)(r, t)
)†

. It is useful to search for a basis |αλ〉 such that

E(+)(r, t)||αλ〉 = E(r, t)||αλ〉, (B.7)

where the eigenvalue functions are

E(+)(r, t) =
∑

λ

ελαλAλ(r)êλe
−iωλt, (B.8)

so that each individual mode obeys the relation

aλ||αλ〉 = αλ||αλ〉. (B.9)

This basis is known as the coherent state basis. In the next sections we discuss its relation with the number
basis, as well as some of its properties. For simplicity, we may consider a single oscillator and drop the
index λ

a||α〉 = α||α〉. (B.10)

B.1 COHERENT STATES IN TERMS OF NUMBER STATES

Let us express the coherent state basis in terms of the complete orthonormal number basis |n〉,

||α〉 =
∑

n

|n〉〈n||α〉, (B.11)



PROPERTIES OF COHERENT STATES 199

where we have inserted the number state closure relation. The coefficients 〈n|α〉 of the expansion can be
calculated by using (B.4), and set the recurrence relations

√
n+ 1〈n+ 1||α〉 = α〈n||α〉, (B.12)

from which we find

〈n||α〉 =
αn

(n!)1/2
〈0||α〉. (B.13)

Inserting the last relation in (B.11) it follows

||α〉 = 〈0||α〉
∑

n

αn

(n!)1/2
|n〉. (B.14)

Imposing that the coherent state ||α〉 is normalized, so that 〈α||α〉 = 1, we find that

〈0||α〉 = e−
1
2 |α|

2

. (B.15)

Then, the coherent state of the oscillator take the form

||α〉 = e−
1
2 |α|

2 ∑

n

αn

(n!)1/2
|n〉. (B.16)

B.2 PROPERTIES OF COHERENT STATES

In this section we treat some of the properties of the coherent states, especially those that are useful for the
purpose of the present work.

B.2.1 Non-orthogonality

One property of the coherent states is that two such states are not, in general, orthogonal. Let us use
expression (B.16) and its complex conjugated, to find

〈α||β〉 = e−
1
2 |α|

2− 1
2 |β|

2 ∑

n,m

(α∗)nβm

(n!m!)1/2
〈n|m〉, (B.17)

which since the |n〉 are orthonormal, reduces to

〈α||β〉 = eα
∗β− 1

2 |α|
2− 1

2 |β|
2

. (B.18)

The absolute magnitude of the scalar product is given by

|〈α||β〉|2 = e−|α−β|2 , (B.19)

which shows that the coherent states tend to become approximately orthogonal for values of α and β which
are sufficiently different.
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B.2.2 Completeness

Orthogonality is a convenient property for a set of basis states but is not a necessary one. The essential
property of such a set is that it should be complete. We prove this property by showing that the unit operator
may be expressed as a sum or an integral, over the complex α plane, of projection operators of the form
||α〉〈α||. In order to describe such integrals, we introduce the differential element of area in the α plane

d2α = d(Reα)d(Imα). (B.20)

We can also write α = |α|eiθ, so that
∫

(α∗)nαme−|α|2d2α = πn!δnm. (B.21)

This expression, with the help of (B.16) brings the following relation,
∫

d2α||α〉〈α|| = π
∑

n

|n〉〈n|, (B.22)

which combined with the closure relation of the number states, brings the following resolution of the identity
in terms of coherent states

1

π

∫

d2α||α〉〈α|| = 1. (B.23)

B.2.3 Expansion of arbitrary states in terms of coherent states

As a consequence of the equation (B.23), any arbitrary state |f〉 may be expanded in terms of coherent states,

|f〉 =
1

π

∫

d2α||α〉f(α∗)e−
1
2 |α|

2

, (B.24)

where

f(α∗) = 〈α||f〉e− 1
2 |α|

2

(B.25)

is an analytic function of α∗. Then, the expansion (B.24) is unique. Let us show that by taking the scalar
product of both sides of such expansion with the coherent state 〈β||, and then using (B.18) to evaluate the
scalar product 〈β||α〉 to find

〈β||f〉 =
1

π
e−

1
2 |β|

2

∫

d2αf(α∗)eβ
∗α− 1

2 |α|
2

. (B.26)

The function f(α∗) may be expanded in a convergent power series,

f(α∗) =
∑

m

cm
(α∗)m

(m!)1/2
, (B.27)

which replaced in the integral appearing in (B.26), gives rise to the following result

1

π

∫

d2αf(α∗)eβ
∗α− 1

2 |α|
2

= f(β∗), (B.28)
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since the integral of each member of the series

1

π

∫

d2α(α∗)meβ
∗α− 1

2 |α|
2

= (β∗)m. (B.29)

Then, replacing (B.28) in (B.26) we find

f(β∗) = e
1
2 |β|

2〈β|f〉 (B.30)

which indicates the unique correspondence between the vectors |f〉 in the coefficients of their expansion
f(α∗) in coherent states. However, for functions of both α and α∗ the expansion is no longer unique. The
relation (B.28), as well as

1

π

∫

d2αf(α)eβα
∗− 1

2 |α|
2

= f(β), (B.31)

which is demostrated by the same means, is widely used along this thesis for the particular case of Bargmann
coherent states. We show in the next section their relation with coherent states, which makes valid all the
properties derived for them except for a constant factor.

B.3 BARGMANN STATES

The Bargmann coherent states are defined as [47, 48, 51]

|α〉 = e
1
2 |α|

2 ||α〉 =

∞
∑

n=0

αn

(n!)1/2
|n〉. (B.32)

In such case, the relation (B.30) is replaced by

f(β∗) = e
1
2 |β|

2〈β|f〉 = 〈β|f〉. (B.33)

As mentioned above, the rest of the relations and properties (non-orthogonality, overcompleteness, and
relations (B.28) and (B.31)) can be derived in the same way, just taking into account the factor e

1
2 |α|

2

. The
resolution of the idendity is then given by

1 =
1

π

∫

d2αe−|α|2 |α〉〈α| =

∫

dµ(α)|α〉〈α|, (B.34)

where we have defined the Gaussian measure as dµ(α) = e−|α|2

π .



Appendix C
Reduced density operator

The density operator of the total system conformed by the QOS and its environment, can be defined just as
ρtot = |Ψt〉〈Ψt|, where |Ψt〉 is the pure state in which the total system is known to be. The reduced density
matrix corresponding to the QOS is a statistical mixture, since it is expressed as

ρs(t) = TrB (ρtot(t)) =

∫

dµ(z)|ψt(z∗)〉〈ψt(z)| (C.1)

in a continuous basis, where the function dµ represents the weight of the particular state |ψt(z∗)〉 in the
mixture, and for a Bargmann coherent state basis is dµ(z) =

∏

λ d
2zλ exp (−|zλ|2). The environment may

also be expanded in a discrete basis, in which case the reduced density matrix is

ρs(t) =
∑

k

Pk|ψk,t〉〈ψk,t|. (C.2)

The reduced density matrix corresponds to a statistical mixture where the precise state of the system is not
known. Within a statistical mixture, the system might be with probabilities Pk in various states |ψk〉, which
do not need to be orthogonal with each other.

C.1 POPULATIONS AND COHERENCES

The diagonal elements of the reduced operator, defined in the energy basis of the system, correspond to
the populations appearing in the Pauli master equation described in Chapter (4). The off-diagonal terms, in
change, describe the coherent part of its dynamics. For instance, in a continuous basis for the environment,
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and choosing a discrete basis {|m〉} for the system, the populations are given by

ρmm =

∫

dµ(z)〈m|ψt(z∗)〉〈ψt(z)|m〉 =

∫

dµ(z)|Cm(z)|2, (C.3)

where |ψt(z∗)〉 =
∑

m Cm(z)|ψ0〉, and therefore |Cm(z)|2 is the probability that a measure over the system
|ψt(z∗)〉 results in |m〉.

The off-diagonal terms are, in the same basis

ρmp =

∫

dµ(z)〈m|ψt(z∗)〉〈ψt(z)|p〉 =

∫

dµ(z)Cm(z)C∗
p (z), (C.4)

where now the coefficients Cm(z)C∗
p (z) express the interference effects between the states |m〉 and |p〉 that

can appear when |ψt(z∗)〉 is a coherent superposition of such states. The element ρmp is the average over
such different crossing terms appearing in the statistical mixture. In contrast with the populations, ρmp can
be zero even if non of the products Cm(z)C∗

p (z) vanish. If ρnp = 0, it means that the sum over z has
canceled all the interference effects between |m〉 and |p〉. When ρnp 6= 0, one can speak about a certain
coherence existing between system eigenstates.

The properties of the reduced density operator are discussed in the next section, especially those such as
trace preserving and positivity.

C.2 PROPERTIES OF THE DENSITY OPERATOR

The first property is that its trace is preserved during time, Tr(ρs(t)) = 1. For instance, for an initial state
ρtot(0) = |Ψ0〉〈Ψ0|, with |Ψ0〉 = |ψ0〉|0〉, we have

Tr{ρs(t)} =
∑

m

〈m|ρs(t)|m〉 =

∫

dµ(z)
∑

m

〈m|ψt(z∗)〉〈ψt(z)|m〉

=

∫

dµ(z)〈ψt(z)|ψt(z∗)〉

=

∫

dµ(z)〈ψ0|〈0|U−1
I (t, 0)|z〉〈z|UI(t, 0)|0〉|ψ0〉

= 〈ψ0|ψ0〉〈0|0〉 = 1, (C.5)

since U−1
I (t, 0)UI(t, 0) = 1, and 〈Ψ0|Ψ0〉 = 1. If we have |Ψ0〉 =

∫

dµ(z0)|ψ0(z
∗
0)〉|z0〉 then

Tr{ρs(t)} =

∫

dµ(z0)

∫

dµ(z′0)〈ψ0|ψ0〉〈z0|z′0〉 = 1, (C.6)

where in the last expression we have used the property of scalar product of Bargmann states

〈α|β〉 = eα
∗β , (C.7)

and

1

π

∫

d2αf(α∗)eβ
∗α− 1

2 |α|
2

= f(β∗), (C.8)

with f(α∗) = 1.
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The second property is that ρs(t) is positive semidefinite for any given initial state.
Suppose first that the total system is initially in a pure state as defined in Section (2.2.2.1),

ρtot(t0) = |Ψ0〉〈Ψ0|, (C.9)

with

|Ψ0〉 =

∫

dµ(z0)|ψ0(z
∗
0)〉|z0〉, (C.10)

and |Ψ0(z
∗
0)〉 = 〈Ψ0|z0〉. Then, it was shown that the reduced density matrix is given as the mixture

ρs(t1t0|0) =

∫

dµ(z1)|ψt1,t0(z∗1)〉〈ψt1,t0(z1)| (C.11)

with |ψt1,t0(z∗1)〉 =
∫

dµ(z0)G(z∗1z0|t0t1)|ψ0(z
∗
0)〉. The former expression denotes clearly that ρs can be

represented in a diagonal basis where all the eigenvalues are positive, provided that the measure dµ(z1) is
positive definite. It can also be proven that, for any given function |f〉, we have

〈f |ρs(t1t0|0)|f〉 =

∫

dµ(z1)|〈f |ψt1,t0(z∗1)〉|2 ≥ 0. (C.12)

For an initial statistical mixture for the total state,

ρtot(t0) =

∫

dµ(z0)J (z0, z
∗
0)|Ψ0(z

∗
0)〉〈Ψ0(z0)|, (C.13)

where J (z0, z
∗
0) is the statistical probability for the member |Ψ0(z

∗
0)〉 of the statistical ensemble. As shown

in Section (2.2.2.2), the reduced density operator is also a mixture

ρs(t1, t0) =

∫

dµ(z1)

∫

dµ(z0)J (z0, z
∗
0)|ψt1t0(z∗1z0)〉〈ψt0t1(z∗0z1)|, (C.14)

where |ψt1t0(z∗1z0)〉 = G(z∗1z0|t1t0)|ψ0(z
∗
0)〉. Provided that the meassure dµ(z) is positive valued, the

former matrix is positive definite. Let us show that, for any given function |f〉,

〈f |ρs(t1, t0)|f〉 =

∫

dµ(z1)

∫

dµ(z0)J (z0, z
∗
0)

(

|〈f |ψt1t0(z∗1z0)〉|2
)

≥ 0. (C.15)



Appendix D
Validity of the Born approximation

In this appendix we show that the second order perturbative approximations is equivalent to assuming that
ρtot(t) = ρs(t) ⊗ ρB during the whole evolution. This means that the Born approximation is exact up to
second order in perturbation parameter.

Let us take equation (4.9),

dρ(t)

dt
= −

∫ t−t0

0

dτTrB{[VtHI , [Vt−τHI , ρtot(t− τ)]]}, (D.1)

which for t0 = 0 is also equal to

dρ(t)

dt
= −

∫ t

0

dτTrB{[VtHI , [VτHI , ρtot(τ)]]}, (D.2)

and let us replace the Hamiltonian (4.14), so that

dρs(t)

dt
= −

∑

γ,β

∫ t

0

dτTrB([VtSγVtBγ , [VτSβVτBβ , ρtot(τ)]]) =

−
∑

γ,β

{
∫ t

0

dτVtSγV−τSβTrB (ρtot(t)VτBγVtBβ) − VtSβTrB (ρtot(τ)VτBγVtBβ)VτSγ

+

∫ t

0

dτ
(

ρtot(τ)VtBβVτBγ
)

VtSβVτSγ − VτSγTrB
(

ρtot(t)VtBγVτBβ
)

VτSβ

}

. (D.3)

Notice that this equation differs from (4.16) mainly in the fact that it is an open equation forρs, and the correla-
tionsTrB (· · ·) cannot be treated in a simple way. Let us take for instance the last oneTrB (ρtot(t)Bγ(t)Bβ(τ)) ≡
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Cγ,β(t, τ), and express it in a Bargmann coherent state basis,

Cγ,β(t, τ) =

∫

dµ(z1)

∫

dµ(z1)

∫

dµ(z3)〈z1|z3〉Pτ (z∗3 , z1)〈z1|VtBγVτBβ |z2〉 =

=

∫

dµ(z1)

∫

dµ(z2)Pτ (z∗2 , z1)Dγ,β(z∗1 , z2) (D.4)

whereDγ,β(z∗1 , z2) = 〈z1|VtBγVτBβ |z2〉, Pτ (z∗2 , z1) = |ψτ (z2)〉〈ψτ (z1)|, and the property (see Appendix
(B) of coherent states),

1

π

∫

d2αf(α∗)eβ
∗α− 1

2 |α|
2

= f(β∗), (D.5)

where f(α∗) is any function of the Bargmann state |α〉, has been applied for going to the last line. The
perturbative expansion of Pτ (z∗2 , z1) is, up to second order in g,

Pτ (z∗2 , z1) =

{

1 +

∫ τ

0

dsz∗2,sVs−τL+

∫ τ

0

ds

∫ s

0

ds′z∗2,sz
∗
2,s′Vs−τLVs′−τL

−
∫ τ

0

ds

∫ s

0

ds′α(s− s′)Vs−τLVs′−τL

}

|ψ0
t 〉〈ψ0

t |
{

1 +

∫ τ

0

dsz1,sVs−τL
†

+

∫ τ

0

ds

∫ s

0

ds′z1,sz1,s′Vs′−τL
†Vs−τL

†

−
∫ τ

0

ds

∫ s

0

ds′α∗(s− s′)Vs′−τL
†Vs−τL

†
}

+ O(g3). (D.6)

We now shown that the approximation M1,2 [Pτ (z∗2 , z1)] = ρs(τ) is valid only up to order g2. In order to
express the matrix element Dγ,β(z

∗
1 , z2) = 〈z1|VtBγVτBβ |z2〉 of equation (D.4), we choose the operators

defined in (1.48) of Chapter (1) as

B1 =
1

2

∑

λ

gλ(aλ + a†λ) ; B2 =
i

2

∑

λ

gλ(aλ − a†λ). (D.7)

Chosing for instance γ = 1, and β = 2, then we have

D12(z
∗
1 , z2) =

i

4

∑

λλ′

gλgλ′

{

z2,λz2,λ′e−iωλteiωλ′τ + z∗1,λz2,λ′eiωλteiωλ′τ − z∗1,λz2,λ′e−iωλte−iωλ′τ

− δλλ′e−iωλte−iωλ′τ − z∗1,λz
∗
1,λ′eiωλte−iωλ′τ

}

. (D.8)

Equations (D.6) and (D.8), when inserted in (D.4) gives rise to

C1,2(t, τ) =
−i
4

{

α(t− τ)M1,2

[

P 0
τ (z∗2 , z1)

]

+

∫ τ

0

ds

∫ τ

0

ds′
(

α(τ − s)α∗(t− s′) − α∗(τ − s′)α(t− s)

)

Vs−τLM1,2

[

P 0
τ (z∗2 , z1)

]

Vs′−τL
†

− α(t− τ)

∫ τ

0

ds

∫ s

0

ds′
(

α(s− s′)Vs−τLVs′−τLM1,2

[

P 0
τ (z∗2 , z1)

]
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+ α∗(s− s′)M1,2

[

P 0
τ (z∗2 , z1)

]

Vs′−τL
†Vs−τL

†
)

+

∫ τ

0

ds

∫ s

0

ds′
(

α(t− s)α(τ − s′) + α(τ − s)α(t− s′)

+ γ(t+ τ − (s+ s′))

)

Vs−τLVs′−τLM1,2

[

P 0
τ (z∗2 , z1)

]

−
∫ τ

0

ds

∫ s

0

ds′
(

α∗(t− s)α∗(τ − s′) + α∗(τ − s)α∗(t− s′)

+ γ∗(t+ τ − (s+ s′))

)

M1,2

[

P 0
τ (z∗2 , z1)

]

Vs′−τL
†Vs−τL

†
}

+ O(g4) (D.9)

where α(t) =
∑

λ g
2
λ exp (−iωλt), and γ(t) =

∑

λ g
4
λe−iωλt. In the former equation, we have included

some of the terms of O(g4), but not all of them. To obtain a second order expression, only the first term
of (D.9) has to be taken. Since the correlation function appearing in such term is already of second order,
it is possible to replace M1,2

[

P 0
τ (z∗2 , z1)

]

= |ψ0〉〈ψ0| by ρs(t) or even ρs(τ), since such replacement
is correct up to zero order. However, such replacement is already not valid in the forth order terms we
display in the former expression. The next coefficients can be solved in the same way, showing that the Born
approximation emerges naturally from a second order expansion in the perturbative parameter.



Appendix E
Continuous measurement

interpretation of Markovian SSE

In order to obtain a trajectory of the system, i.e. a sequence of values of its state, it is necessary to
perform a continuous measurement. However, the special feature of quantum mechanical systems is that
they are disturbed by measurement. Particularly, the continuous observation of a system with von-Neumann
measurements (also called direct measurement), gives rise to the so-called Zeno effect, which consists in a
freezing of the system state [136]. For continuous monitoring of the system state, the proper measurements
are the so-called indirect measurements, which are based on coupling the system to an auxiliary system
in which the measurement is performed. The auxiliary system is often the environment itself (the radiation
field in quantum optics). Since the system is entangled with the environment, a projective measurement over
the environment results in a measurement of the system state 1.

1A clarification is here in order. When we say that the state of the quantum open system is measured, it is not the state of a single
system, but the state corresponding to collection of these equally prepared. Let us explain this in more detail. Before the measurement,
the system is represented by a reduced density matrix ρs, which describes a set of a large number of individual quantum systems,
where each system has been prepared in a state |ψt(z)〉. The reduced density matrix is a mixture of such states, each of them with a
particular weight dµ(z), that gives the probability in which such state appears in the mixture. For instance, when ρs is represented in
a coherent state basis, such weight is the Gaussian measure dµ(z) = d2z exp−|z|2/π, so that

ρs =

∫

dµ(z)|ψt(z)〉〈ψt(z)|. (E.1)

When a measurement with the result z ≡ zm is performed over the environment, a particular state |ψt(zm)〉 is selected from the
mixture. However, such state does not correspond to a single system, but rather to an ensemble of single systems equally prepared. In
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212 CONTINUOUS MEASUREMENT INTERPRETATION OF MARKOVIAN SSE

The theory of indirect measurements was developed in [53, 101, 102] and present some interesting
advantages with respect to direct measurements. First of all, as argued in [103], indirect measurements are
more realistic than direct ones in experimental situations. Indeed, the experimenter never makes a direct
measurement of the system of interest. Rather, the system of interest (the atom) interacts with its environment
(the continuum of electromagnetic modes), and the experimenter observes the radiated field. Second, indirect
measurements avoid the quantum Zeno paradox. This is true provided that the time difference between
different measurements, i.e. the time step of the evolution, is much smaller than the correlation time of the
environment. This is the case of Markovian interactions. If successive measurements are more frequent than
τC , then we enter in the regime of the quantum Zeno effect where the possibility of spontaneous emission
is significantly reduced [137]. This is one of the main reasons why it is not possible to identify the solution
of non-Markovian SSE as the output of a continuous measurement experiment. This problem is treated in
some more detail in next section.

The idea of considering individual solutions of a SSE as the results of a continuous measurement experi-
ment was proposed in 1993 by H. Carmichael [52, 53]. The stochastic variable that drives a SSE is related to
the result of the continuous measurement [94]. For that reason, and contrary to dynamical reduction models,
continuous measurement interpretation provides reasons to determine a particular SSE or unraveling, given
a certain measurement scheme 2 . According to Wiseman and Milburn [93, 103], The relevant model of SSE
for a given experimental situation depends on the method by which information is to be extracted from the
light leaving the system. The state of a quantum system is always conditioned on (and in fact can be identified
with) our knowledge of the system obtained from a measuring apparatus. In this context, depending on the
particular measuring device, different unravelings or stochastic trajectories are obtained.

E.1 INTERPRETATION OF NON-MARKOVIAN TRAJECTORIES

Although diffusive equations have been extended to treat non-Markovian interactions [35, 39, 40, 70, 95, 100],
until now there has not been a measuring interpretation to them. Indeed, the identification of a trajectory as
the result of a continuous measurement experiment relies in the fact that the state of the environment that is
measured at time t + ∆t is not affected by the previous measure perfomed at time t. Since the recovering
time for the measurement τc is finite for non-Markovian interaction, there is no interpretation of a trajectory
as a sequence of continuous measurements, in which ∆t → 0. As argued by Gambetta and Wiseman in
[94] all that we can say about non-Markovian SSE is that each member of the trajectory |ψt(z)〉 (provided
that it is normalized, i.e. it is the solution of a non-linear SSE), is the state of the system conditioned on a
measurement being performed at time t and yielding the result zt (that corresponds to a certain environmental
state given by {zλ}). However, the linking of states at earlier times to form a trajectory is a fiction, since
only in the Markovian limit a sequence of compatible measurements over the environment can be made. In
that sense, it would be interesting to derive the dynamical equation that of a non-Markovian system when it
is measured at time intervals ∆t > τc, in such a way that successive measurements do not affect each other.

other words, although the measurement can be performed over the environment of a single system (for instance an atom trapped in a
quantum cavity), its result can only have statistical meaning. For instance, for a two level system the measured state can be expanded
in the Hamiltonian basis as |ψt(zm)〉 = C1(zm)|1〉 +C2(zm)|2〉. The coefficient C1(zm) (C2(zm)) represents the probability of
finding a system in the lower (upper) state, when a set of direct measurements is performed over such system (equally prepared for
each measurement). In summary, an indirect measurement reduces the initial mixture to a particular state, but such particular state still
represents an ensemble of single systems.
2Since a quantum system is affected by the measurement, different measurement devices will give rise to different types of trajectories.
Obviously this is not the case of a classical system. Since they are not affected by the measurement, the experimental result is
independent of the measurement device, except for the accuracy achieved.
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We should also mention that although in the “orthodox” formulation of Quantum mechanics there is no
interpretation of non-Markovian trajectories, it has been recently proposed in [139] that such interpretation
exists within the hidden-variable formulation.

Finally, the idea in [81] of embedding the quantum open system in an auxiliary three level system, permits
the construction of Markovian quantum trajectories for the state vector |Φt〉 of the total system (system of
interest, auxiliary system and environment). The idea is that the quantum jumps occurring in the total system
may produce either the emission or an absorption of a virtual photon in the system of interest. The fact that
emission is virtual, permits the emitted photon to be reabsorbed again, since there is no detection process
that destroys it. The possibility of a revival, or a re-gaining of energy of the system is a basic non-Markovian
characteristic, instead of the typically exponential decaying process of Markovian interactions.



Appendix F
SSE from the Feshbach projector

operator technique.

In this appendix we discuss the derivation made by Gaspard and Nagaoka in [35] to derive the SSE (5.31).
Further details shall be found in their paper. The evolution equation of the total system wave function, which
depends on the coordinates of the system {xs} and the bath {xb}, reads as follows,

i
dΨt(xs, xb)

dt
= (HS +HB + g

∑

β

SβBβ)Ψt(xs, xb). (F.1)

The interaction term is of the form (1.13) of Chapter (1), i.e. a sum over system Sβ = S†
β and environment

Bβ = B†
β operators. These operators are chosen Hermitian without lost of generality, since as explained in

Section (1.2.2) of Chapter (1) any HI which is sum of system and environment operators can be expressed
as a sum of system and environment Hermitian operators.

Let us consider for the environment a complete and orthonormal basis in its Hilbert space HB

{χn(xb) = 〈xb|n〉}
〈m|n〉 = δmn,

∑

n

|n〉〈n| = Ib (F.2)

where χn(xb) are the basis functions and |n〉 are the corresponding kets. We can choose, for instance, the
environmental eigenfunctions

HBχn(xb) = enχn(xb), (F.3)
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where en are the corresponding eigenvalues. Let us note that here the environment is not necessarily a set
of harmonic oscillators. If that were the case, then the quantities en and χn(xb) could be considered its
frequencies and modes. In this basis, the total wave function Ψt(xs, xb) is represented in the following
manner

Ψt(xs, xb) =
∑

n

φn(xs, t)χn(xb), (F.4)

where {φn(xs, t)} is the set of coefficients of such linear expansion, and are given by

φn(xs, t) =

∫

χ∗
n(xb)Ψt(xs, xb). (F.5)

The χn(xb) functions only depend on the environmental degrees of freedom, so that the dependency of the
total wave function over the system degrees of freedom is entirely encoded in the coefficients φn(xs, t) of
the linear decomposition. These coefficients are therefore function of the coordinates xs and the time.

F.1 INTERPRETATION OF φN(XS, T )

The coefficients φn(xs, t) are not normalized: only the total wave function Ψt(xs, xb) is normalized. Nev-
ertheless, their norm can be considered as the probability for the environment to be observed in a certain
state χn(xb)

pn(t) =

∫

dxs|φn(xs, t)|2 = ‖φn(xs; t)‖2. (F.6)

In order to give a more complete interpretation, let us consider the quantum mean value of a system observable
A over a certain state of the total system,

〈Ψ|A|Ψ〉 =

∫

dxsdxbΨ
∗AsΨ

=
∑

mn

∫

dxsφ
∗
mAφn

∫

dxbχ
∗
nχm

=
∑

n

∫

dxsφ
∗
mAφn (F.7)

=
∑

n

〈φn|A|φn〉, (F.8)

where we have used the orthonormality relations (F.2) of the environmental functions. The quantum mean
value of an observable of the system can be expressed as a mean over a statistical mixture represented by a
reduced density matrix,

ρs =
∑

n

|φn〉〈φn|, (F.9)

which evolves through the temporal dependency of the coefficients φλ

〈xs|ρs(t)|x′s〉 =
∑

n

φn(xs; t)φn(xs; t). (F.10)
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These coefficients, once they are normalized as

φ̂n(xs; t) = φn(xs; t)/‖φn(xs; t)‖, (F.11)

can then be considered as a statistical set of wave functions of the system. In term of such functions, the
equation (F.9) can be expressed as

ρs =
∑

n

pn(t)|φ̂n〉〈φ̂n|. (F.12)

The statistical character of φ̂n(xs; t) appears through its dependency on the environmental state (of index
n). Then, the probability of each system wave function is given by the probability (F.6) of observing the
environment in the corresponding basis state χn(xb). Thus, the quantum system can no longer be described
through a single wave function, but through a collection of them. Because of the entanglement, the dynamics
of the system is conditioned on the dynamics of its environment.

F.2 EVOLUTION EQUATIONS FOR THE COEFFICIENTS {φN(XS, T )}

The next step is to find the evolution equation for the coefficients {φn(xs, t)}. This is done by inserting the
decomposition (F.4) in the Schrödinger equation (F.1). Taking the scalar product on both side of each of
the basis function χ(xb) and using their orthonormality relation, a set of coupled differential equations is
obtained,

i
dφm(xs, ; t)

dt
= HSφm(xs, ; t) + emφm(xs, ; t)

+ g
∑

β

∑

n

〈m|Bβ |n〉Sβφn(xs, ; t). (F.13)

This system of equations is not stochastic. However, the different coefficients φn(xs, t) behave in a random
way due to their mutual influence during the evolution through the matrix elements 〈m|Bβ |n〉, and also
because there is a large number of them. This occurs when the environment is a bath, i.e. a large system
with a large density of energy levels. Thus, since to each energy level there is a corresponding eigenfunction
of the basis in the expansion (F.4), there will be a large number of such coefficients φn(xs, t).

Equation (F.13) can be expressed in a simpler way in interaction image with respect to the environment
and the system

i
dϕm(xs, ; t)

dt
= g

∑

β

∑

n

〈m|VtBβ |n〉VtSβϕn(xs, ; t). (F.14)

F.3 EVOLUTION EQUATION FOR A SINGLE COEFFICIENT φL(XS, T ) : FESHBACH
PROJECTION OPERATOR METHOD

In order to obtain an evolution equation for a single coefficient of (F.13), the so-called Feshbach projection
operator method is used. Such method consists in decomposing the Schrödinger equation of the total system
in two equations, using the projectors P and Q that act over the total Hilbert space. These projectors have
the usual properties

P 2 = P = P †, Q2 = Q = Q†

QP = PQ = 0, P +Q = I (F.15)
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and in this case are chosen as

P = Is ⊗ |l〉〈l|, Q = Is
∑

n(6=l)
|n〉〈n|, (F.16)

where Is is the identity in the system basis. Their effect over the total wave function Ψ is the following,

(PΨ)(xs, xb) = φl(xs; t)χl(xb)

(QΨ)(xs, xb) =
∑

n(6=l)
φn(xs; t)χn(xb), (F.17)

and applied over the Schrödinger equation give rise to the following system of coupled equations

i
dPΨ

dt
= PHtotPΨ + PHtotQΨ,

i
dQΨ

dt
= QHtotQΨ +QHtotPΨ. (F.18)

The solution of the second non-homogeneous equation is obtained through the constant coefficient method,

QΨ(t) = e−iQHtotQtQΨ(0) − i

∫ t

0

dτeiQHtotQ(τ−t)QHtotPΨ(τ), (F.19)

where QΨ(0) is the initial condition for all the coefficients {φn(0)}n(6=l) since the initial condition φl(0) is
given by the first equation for PΨ. Replacing (F.19) in the first equation of (F.18) we get the evolution of
PΨ(t)

i
dPΨ(t)

dt
= PHtotPPΨ(t) + PHtotQe

−iQHtotQtQΨ(0)

− i

∫ t

0

dτPHtotQe
iQHtotQ(τ−t)QHtotPPΨ(τ) (F.20)

Following (F.17) the temporal dependency of PΨ is through the coefficients φl(xs; t), so that the former
equation can be in fact written as

i
dφl(xs; t)

dt
= PHtotPφl(xs; t)

+ PHtotQe
−iQHtotQt

∑

n(6=l)
φn(xs; t = 0)

χn(xb)

χl(xb)

− i

∫ t

0

dτPHtotQe
iQHtotQ(τ−t)QHtotPφl(xs; τ), (F.21)

where we have divided by χl(xb) on both sides of (F.20). This equation has three well differentiated terms.
The first of these represents the free evolution given by the Hamiltonian operator of the system HS . The
second depends on the initial conditionQΨ(0) of all the coefficients except PΨ. This term will be identified
later on with the stochastic forcing over the system due to the environmental fluctuations. The third term
corresponds to the damping of the coefficient or wave function PΨ (or φl) due to its coupling with the other
coefficients QΨ, which is produced through the interaction with the environment. Being an integral up to
the actual time t, this term is responsible for the non-Markovian character of the equation.
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Let us now rederive (F.20) but in total interaction image with respect to the environment and the system.
We retake equation (F.14) ant consider the two possible cases m = l and m 6= l to get the following set of
coupled differential equations,

i
ϕl(xs; t)

dt
= g

∑

β

VtSβBβl(t)
† · Φ

i
dΦ

dt
= gW(t) · Φ + g

∑

β

Bβl(t)VtSβϕl, (F.22)

where ϕl and Φ represent respectively PΨ and QΨ in total interaction image. The quantity Φ is a column
vector that gathers all the coefficients ϕn except ϕl,

Φ(xs; t) = {ϕn}n(6=l). (F.23)

In the equation (F.22) the following column vector and matrix has been defined

Bβl(t) = {〈m|VtBβ |l〉}m(6=l)

W(t) = [
∑

β

〈m|VtBβ |n〉Sβ ]m,n(6=l). (F.24)

Using the same procedure as the one used for the calculus of (F.20), we find the following evolution equation

i
ϕl(t)

dt
= g

∑

β

VtSβBβl(t)
† · U(t) · Φ(0)

− ig2

∫ t

0

dτ
∑

βγ

SβBβl(t)
† · U(t− τ) · Bγl(τ)VτSγϕl(τ), (F.25)

where an evolution operator U(t) has been included, that is the solution of the equation

i
dU(t)

dt
= gW(t) · U(t), (F.26)

with the initial condition U(0) = I. Equation (F.25) is equivalent to (F.20) in interaction image, and
therefore the interpretation of its terms is analogous: the first represents the forcing of the environment over
ϕl, that depends on the time and ends up by being random in the thermodynamic limit, when the number of
degrees of freedom of the environment is infinite, the second represents the system energy damping due to
the interaction with the environment.

F.4 PERTURBATIVE EXPANSION IN THE COUPLING PARAMETER G

We have just derived all the equations without making use of any approximation. However, in order to have
a solution of equation (F.26) that can be replaced in (F.25), we need to perform a weak coupling expansion of
the evolution operator. Particularly, to get a SSE such that its mean permit us getting a second order master
equation, we need to take an expansion of U(t) up to such order

U(t) = I − ig

∫ t

0

dt1W(t1) − g2

∫ t

0

∫ t

0

dt2W(t1) · W(t2) + O(g3). (F.27)
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Inserting this result in equation (F.25) and going also up to second order, we find

i
ϕl(t)

dt
= fl(t)

− ig2

∫ t

0

dτ
∑

βγ

VtSβ〈l|Bβl(t)Bγ(τ)|l〉VτSγϕl(τ) + O(g3), (F.28)

where the forcing term is given by

fl(t) = g
∑

β

∑

m(6=l)
VtSβ〈l|VtBβ |m〉ϕm(0)

− ig2

∫ t

0

dτ
∑

βγ

∑

m(6=l)
VtSβ〈l|Bβ(t)Bγ(τ)|m〉VτSγϕm(0) + O(g3) (F.29)

and we have assumed that 〈l|Bβ |l〉 = 0.

F.5 STATISTICAL TIPICALITY

In order to use the evolution equation (F.28) to derive a stochastic Schrödinger equation, it is necessary to
assume that the coefficient ϕl(t) represents statistically each of the coefficients ϕn(t) of the decomposition
(F.4) of the total wave function.

Thus, it is necessary to assume that all the coefficients evolve in a similar way, so that ϕl(t) is a typical
representative of the rest of the statistical ensemble. This hypothesis, known as statistical typicality, has
been justified for systems classically chaotic, but is not necessarily valid for all the environmental state basis
χl(xb) chosen. However, it is reasonable to suppose that for most of the environmental basis this hypothesis
is fulfilled, since it has its origins in the fact that the typical eigenfunctions of high quantum numbers are
statistically irregular. The states corresponding to a high quantum number in a system with a chaotic classical
analogue can be written as a superposition of plane waves, with randomly distributed amplitudes.

Thanks to statistical typicality, and following a conjecture of Berry [140], the quantum mean value of
an environmental operator C, over a typical eigenstate χl is equivalent to a quantum mean value over a
representative state of the microcanonical ensemble with the corresponding energy el. In addition, since on
the other hand the system is large, following Srednicki [141], it can also be supposed that such mean over the
state of the microcanonic ensemble is essentially equivalent to a mean over a typical state of the canonical
ensemble.

As a consequence, a quantum average over a typical environmental eigenstate χl is approximately equal
to a thermal mean at the environmental temperature,

〈l|C|l〉 ≈ trb
e−βHB

Zb
≡ trbρ

eq
b C, (F.30)

where as usual Zb = trbexp(−βHB). The temperature, given by β = (KBT )−1 1, should be fixed for a
given environmental eigenenergy el. The variation of environmental energy due to the interaction with the
system is negligible, since such variation is vary small in comparison with its energy el.

1Do not confuse β = (KBT )−1 with the index.
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Taking the relation (F.30), the damping term (F.28) can be written as

〈l|VtBβVτBγ |l〉 ≈ trb
e−γHB

Zb
≡ trbρ

eq
b VtBβVτBγ ≡ Cβγ(t− τ). (F.31)

Thanks to the statistical typicality, we have written the damping term in a form in which it is independent of
the particular choice of the coefficient |l〉, so that it only depends on a functionCβγ that are the environmental
correlation functions.

F.6 FORCING TERM AS A STOCHASTIC TERM

In order to find the typical behavior of the forcing term, it is necessary to perform a hypothesis about the
initial condition of the total wave function, since such initial condition is part of the term.

It is assumed that initially the total wave function is in a pure disentangled state, in such a way that it
is equivalent to a tensorial product of the initial state of the system ψ and the mixed canonical state of the
environment. Thus, the mean of the operator A over such state is

〈Ψ(0)|A|Ψ(0)〉 ≈ Tr[|ψ(0)〉〈ψ(0)| ⊗ e−βHB

Zb
A], (F.32)

which expanding Ψ in the environmental eigenfunctions reads as follows

〈Ψ(0)|A|Ψ(0)〉 ≈
∑

m

e−βem

Zb

∫

dxs

∫

dxbψ
∗(xs; 0)χ

∗
m(xb)Aχm(xb)ψ(xs; 0). (F.33)

Since the total wave function is expanded with (F.4) it can be assumed that the approximate equation (F.33)
can be obtained for an initial condition such that

Ψ(xs, xb; 0) ≈ ψ(xs; 0)
∑

m

√

e−βem

Zb
eiθmχm(xb), (F.34)

where {θm} are a set of independent random phases that are uniformly distributed in the interval [0, 2π].
Following (F.34) the initial condition of the coefficients of the decomposition of the total wave function Ψ
take the following form

φm(xs; 0) = ϕm(xs; 0) ≈ ψ(xs; 0)
∑

m

√

e−βHB

Zb
eiθm , (F.35)

which is equal to the initial condition in total interaction image. Having assumed an initial disentangled
pure state, all the initial coefficients (including ϕl) has been expressed in term of the same system initial
state ψ(0), which permits us stablishing the following relations between them

ϕm(xs; 0) ≈ ϕl(xs; 0)e
−β(em−el)/2ei(θm−θl). (F.36)

This relation is very important for establishing a stochastic differential equation that only depends on one
of the coefficients ϕl, since once it is replaced in (F.29), the forcing term becomes as follows

fl(t) ≈ g
∑

β

∑

m(6=l)
VtSβ〈l|VtBβ |m〉ϕl(0)
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e−β(em−el)/2ei(θm−θl) − ig2

∫ t

0

dτ
∑

βγ

∑

m(6=l)
VtSβ〈l|VtBβVτBγ |m〉

VτSγϕl(0)e
−β(em−el)/2ei(θm−θl) + O(g3) (F.37)

On the other hand, taking into account that the coefficient ϕl evolves slowly in interaction image when the
coupling is weak, we can solve perturbatively (F.28) up to order g

ϕl(t) ≈ ϕl(0) − ig

∫ t

0

dτ
∑

γ

∑

m

〈m|VτBγ |m〉VτSγϕl(0) + O(g3). (F.38)

This expression, replaced in (F.37) gives us

fl(t) ≈ g
∑

β

∑

m(6=l)
Sβ〈l|VtBβ |m〉

ϕl(t)e
−β(em−el)/2ei(θm−θl) + O(g3). (F.39)

The equation (F.39) can be expressed in a simpler way as,

fl(t) ≈ g
∑

β

ηβ(t)Sβϕl(t), (F.40)

where

ηβ(t) ≡
∑

m(6=l)
〈l|VtBβ |m〉e−β(em−el)/2ei(θm−θl) (F.41)

may be interpreted as the stochastic forcing that acts over the system due to its interaction with the envi-
ronment. Such noise is characterized by taking statistical averages over the random variables from which it
depends. We define the average over a certain function F as

F (θ) =
1

2π

∫ 2π

0

dθF (θ). (F.42)

The mean values of ηβ , following the definition of the random phases, are zero

ηβ(t) = 0, (F.43)

since for all m

eiθm = 0. (F.44)

For the same reason the following correlation functions are zero

ηβ(t)ηγ(s) = 0, (F.45)

since for every m and n

eiθm+θn = 0. (F.46)
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However, the correlation functions

η∗β(t)ηγ(τ) = eβel

∑

n

〈l|VτBγ |n〉e−βen〈n|VtBβ |l〉, (F.47)

are non zero, since

ei(θm−θn) = δmn (F.48)

Taking into account the definition of the canonical density operator representing an environment in thermal
equilibrium

ρeqB =
∑

n

e−βHB

Zb
|n〉〈n|, (F.49)

where Zb is the partition function defined before, the correlation (F.47) is

η∗β(t)ηγ(τ) =
Zb
e−βel

〈l|VτBγρeqB VtBβ |l〉. (F.50)

This correlation depends on a particular environmental eigenstateχl. Since a typical value has to be obtained
it is necessary to perform a thermal average over such states χl,

∑

l

e−βel

Zb
η∗β(t)ηγ(τ) = Trb[ρ

eq
B VtBβVτBγ ] = Cβγ(t− τ). (F.51)

The typical value of the noise correlations is equal to the correlation function appearing in (F.31).
On the other hand, when the environment is large enough, the noise defined in (F.41) is given by a sum

over a large number of oscillating complex term, that following the central limit theorem [142], gives rise to
random variables of Gaussian type. As a summary, the random variables appearing in (F.41) can be taken
as Gaussian noises characterized by the mean values (F.43) and the correlation functions (F.45) and (F.51).

F.7 THE STOCHASTIC SCHRÖDINGER EQUATION M.P.F.

Assuming all the approximations made above over the equation (F.28), the following stochastic differential
equation is obtained for a typical coefficient ϕl

i
ϕl(t)

dt
= g

∑

β

ηβ(t)Sβϕl(t)

− ig2

∫ t

0

dτ
∑

βγ

Cβγ(t− τ)VtSβVτSγϕl(τ) + θ(g3). (F.52)

The following step is to obtain an evolution from a general initial condition such that the reduced density
matrix is a statistical mixture

ρs(0) =
∑

k

|ψk(0)〉〈ψk(0)|, (F.53)
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defined in terms of the system wave functions, ψk, and its probabilities , {pk}, so that
∑

k pk = 1. In such
a case, we can consider the following statistical set of coefficients

ϕl(t) ≈ ψIk(xs; t)

√

e−βwl

Zb
eiθl (F.54)

where l is the index appering in (F.52), k specifies the member of the statistical mixture (F.53) and the
subindex I of the system wave function indicates the fact that it is interation image.

The equation (F.52) is not homogeneous in the coefficient ϕl, so that replacing in it the expression (F.54),
and eliminating the factor that multiplies ψIk on both sides, the following equation is obtained in the total
interaction image

i
dψIk(t)

dt
= g

∑

β

ηβ(t)SβψIk(t)

− ig2

∫ t

0

dτ
∑

βγ

ββγ(t− τ)VtSβVτSγψIk(τ) + O(g3). (F.55)

Going to partial interation image with respect to the environment (with ψ = ψk = e−iHStψIk) we have

i
dψ(t)

dt
= HSψ(t) + g

∑

β

ηβ(t)Sβψ(t)

− ig2

∫ t

0

dτ
∑

βγ

Cβγ(t− τ)VtSβVτSγψ(τ) + O(g3). (F.56)

In this equation, the Gaussian noises ηβ(t) satisfy

ηβ(t) = 0, ηβ(t)ηγ(τ) = 0,

η∗β(t)ηγ(τ) = Cβγ(t− τ) = C∗
γβ(τ − t). (F.57)



Appendix G
Environmental state space flow

The Husimi functionQt(z, z∗) defined in (5.43) [43, 53], corresponds to the diagonal elements of the density
matrix of the environment in the coherent state basis, which is given as

ρB(t) = TrS (|Ψt〉〈Ψt|)

=

∫

fµ(z)

∫

dµ(z′)〈ψt(z)|ψt(z∗
′

)〉|z〉〈z′|, (G.1)

so that

Qt(z, z
∗) =

∫

dµ(z)〈z|ρB(t)|z〉. (G.2)

The |z〉 are wave packets well localized in position q and momentum p around points in the phase space
given by z = (q + ip)/

√
2. Hence the Husimi function can be considered as a quantum distribution in the

phase space of the environmental degrees of freedom, that additionally have all the properties of a classical
distribution function.

A very important property of the Husimi function is that its evolution equation is closed. From (5.42), it
can be written as

∂tQt(z, z
∗) = Q0(z, z

∗)[(∂t〈ψt(z∗)|)|ψt(z∗)〉 + 〈ψt(z∗)|(∂t|ψt(z∗)〉)] (G.3)

that taking into account the linear SSE and its complex conjugate is,

∂tQt(z, z
∗) = −g

∑

λ

∂z∗
λ
[igλe

−iωλt〈L†〉tQt(z, z∗)] − c.c. (G.4)
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where 〈L†〉t = 〈ψt(z∗)|L†|ψt(z∗)〉/〈ψt(z∗)|ψt(z∗)〉 and c.c. means the complex conjugate. Since only
first order derivatives appear, the evolution is formally a Liouville equation, with a phase space flow given
by

∂tz
∗
λ = iggλe

−iωλt〈L†〉. (G.5)

which is equation (5.46).



Appendix H
The non-linear equations

H.1 NON LINEAR EQUATIONS FOR THE VACUUM REDUCED PROPAGATOR G(T0|Z∗0)

Linear equations present the problem of being rigid: no matter how the dynamics goes on, there will always
be a very high probability of obtaining in the sampling vectors z∗ = (z∗1 , z

∗
2 , · · · z∗λ · · ·) with |z| small. To

avoid such problem, it is necessary to generate a dynamical equation that takes into account the environmental
dynamics as a result of the interaction. This is done by generating a basis of time-dependent coherent states
|z∗(t)〉 distributed according to the Husimi function Qt(z0, z∗0). Such function is defined in (5.47) as,

Qt(z, z
∗) =

∫

d2z0
π

Q0(z0, z
∗
0)δ2(z∗ − z∗(t)), (H.1)

with the notation δ2(z∗ − z∗(t)) =
∏

λ δ(Re(z
∗
λ − z∗λ(t)))δ(Im(z∗λ − z∗λ(t))). When the flux (5.46) is

integrated, we obtain that the eigenvalues of the environmental modes, evolving in time with the interaction
have the form

z∗λ(t) ≡ z̃∗t = z∗λ(0) + g

∫ t

0

dτgλe
−iωλτ 〈L†〉, (H.2)

where z∗λ(0) ≡ z∗λ, equals to the eigenvalues distributed according with Q0(z
∗, z). In terms of (H.2),

the vector z∗(t) = (z∗1(t), z∗2(t), · · · z∗λ(t) · · ·). According to (H.1) and (H.2), one can either integrate the
solutions of the linear equation ψt(z∗)〉 by sampling the z∗ = (z∗1 , z

∗
2 · · · z∗λ · · ·) according to Qt(z, z∗), or

sample z = (z∗1 , z
∗
2 · · · z∗λ · · ·) over Q0(z, z

∗) and construct the new eigenvalues with (H.2). Obviously, the
last possibility is easier to compute, since it is possible to derive the corresponding noise (referred as shifted
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noise) of (5.49) by replacing (H.2) in (5.12),

z∗t (t) ≡ z̃∗t = z∗t + g

∫ t

0

dτα(t− τ)〈L†〉τ . (H.3)

H.1.1 Non-linear shifted equation.

Let us now derive the solutions |ψ(z̃∗t )〉 which depend on the shifted noise z̃∗t defined in (5.49). From (5.11),
we get

∂

∂t
|ψ(z∗(t))〉 =

∂

∂t
|ψt(z∗(t))〉|z∗t =z̃∗t

+
∑

λ

dz∗λ
dt

∂

∂z∗λ
|ψt(z∗t )〉|z∗t =z̃∗t

=
∂

∂t
|ψt(z∗(t))〉|z∗t =z̃∗t

+ i
∑

λ

ge−iωλt〈L†〉t
∂

∂z∗λ
|ψt(z∗(t))〉 (H.4)

where in the second line we have replaced the evolution equation (5.46) for the shifted state vectors z∗(t).
In the last term a derivative ∂/∂z∗λ appears, which can be treated with the functional chain rule as ∂

∂z∗
λ

=
∫

dτ
∂z∗τ
∂z∗

λ

δ
δz∗τ

. Thus, the SSE which evolves according to the shifted noise z̃∗t is

d

dt
|ψt(z∗(t))〉 = (−iHS + gLz̃∗t − g2L†Ō(t, z∗))|ψt(z∗(t))〉

+ g2〈L†〉tŌ(t, z∗)|ψt(z∗(t))〉
= (−iHS + gLz̃∗t − g2(L† − 〈L†〉)Ō(t, z̃∗))|ψt(z∗(t))〉. (H.5)

H.1.2 Non-linear normalized equation.

Thanks to the new time-dependent statistical distribution, we can define the reduced density matrix in terms
of normalized wave functions, |ψ̃t〉, as

ρs(t) =

∫

d2zQt(z, z
∗)
|ψt(z∗)〉〈ψt(z∗)|
〈ψt(z∗)|ψt(z∗)〉

=

∫

d2zQt(z, z
∗)|ψ̃t(z∗)〉〈ψ̃t(z∗)| (H.6)

where |ψ̃t(z∗)〉 = |ψt(z∗)〉/
√

〈ψt(z∗)|ψt(z∗)〉. The evolution equation for these normalized wave functions
can be calculated by following an analogous procedure as the former one. That is

d

dt
|ψ̃t(z∗(t))〉 =

1
√

〈ψt(z∗)|ψt(z∗)〉
d

dt
|ψ(z∗(t))t〉

+ (
d

dt

1
√

〈ψt(z∗)|ψt(z∗)〉
)|ψ(z∗(t))t〉, (H.7)

which eliminating certain time-dependent global phases, give rise to the following equation for |ψ̃t(z∗(t))〉,
d

dt
|ψ̃t(z∗(t))〉 = −iH|ψ̃t(z∗(t))〉 + g(L− 〈L†〉)z̃t|ψ̃t(z∗(t))〉

− g2[(L† − 〈L†〉t)Ō(t, z∗(t)) − 〈(L† − 〈L†〉t)Ō(t, z∗(t))]|ψ̃t(z∗(t))〉, (H.8)

with 〈L〉t = 〈ψ̃t(z∗(t))|L|ψ̃t(z∗(t))〉.
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H.2 THE NON-LINEAR EQUATION FOR THE REDUCED PROPAGATOR G(T, T0|Z
∗Z0)

As mentioned earlier, stochastic linear equations are good enough for describing the dynamics of an open
system coupled to an environment of oscillators at low temperatures [1]. However, at high temperatures the
solutions of the linear equation may lose their norm and therefore statistical relevance. This is due to the
fact that, within this regime, the state distribution of the environment is changing quite dramatically because
of the interaction with the system. As noted in [40], the solution is to change such distribution to a time-
dependent one through a Girsanov transformation. Following their procedure, we define the time-dependent
distribution as,

Qt1,t0(z0, z
∗
0 ; z1, z

∗
1) =

e−|z|2

π
〈z1|Trsys

[

UI(t1, t0)|ψ0〉|z0〉〈z′0|〈ψ0|U−1
I (t1, t0)

]

|z1〉

=
e−|z1|2

π
〈ψ0|G−1(t0t1|z′∗0 z)G(t, t0|z∗z0)|ψ0〉

=
e−|z|2+z∗1z0+z′∗0 z

π
〈ψ0|G̃−1(t0t1|z′∗0 z1)G̃(t1, t0|z∗1z0)|ψ0〉, (H.9)

where G(t1, t0|z∗1z0) = ez
∗
1z0G̃(t1, t0|z∗1z0). With this distribution the density matrix is defined as,

ρt =

∫

d2z1
e−|z1|2

π
G(tt0|z∗1z0)|ψ0〉〈ψ0|G−1(t0t1|z′∗0 z1)

=

∫

d2z1Qt1,t0(z0, z
∗
0 ; z1, z

∗
1)

{

G(t1t0|z∗1z0)|ψ0〉〈ψ0|G−1(t0t1|z′∗0 z1)
〈ψ0|G̃−1(t0t1|z′∗0 z1)G̃(t1t0|z∗1z0)|ψ0〉

}

. (H.10)

The evolution equation for the distribution Qt1,t0(z1, z
∗) is, using the definition of such function and the

dissipative version of equation (7.50), the following,

∂Qt1,t0(z0, z
∗
0 ; z1, z

∗
1)

∂t1
=

∑

λ

∂

∂z1,λ

{

igλe
iωλt1〈L〉t1t0Qt1,t0(z0, z∗0 ; z1, z

∗
1)
}

− c.c., (H.11)

where 〈L〉t1t0 =
〈ψ0|G̃−1(t1t0|z′∗0 ,z1)LG̃(t1t0|z∗1z0)|ψ0〉
〈ψ0|G̃−1(t0t1|z∗0z1)G̃(t1t0|z∗1z0)|ψ0〉

. This evolution equation is formally a Liouville equa-
tion with the phase space flow,

ż∗1,λ = igλe
iωλt1〈L〉t1t0 . (H.12)

The next steps to arrive to a non-linear equaiton with time-dependent distribution are again analogous to
those described in [40, 41]. First, a Girsanov transformation has to be performed, so that the time dependency
of Qt1,t0(z0, z

∗
0 ; z1, z

∗
1) is translated into the noise, which now has this form,

z̃1,t = z1,t +

∫ t1

t0

dτα(t1 − τ)〈L†〉τt0 . (H.13)

This expression has been obtained considering that the coherent state eigenvalues that enters in the sum
z1,t = i

∑

λ gλz1,λ exp (−iωλt1) are, according to (H.12), z∗λ(t1) = z∗1,λ + igλ
∫ t1
t0
dτe−iωλτ 〈L〉τt0 . With

this transformation, the density matrix can be calculated as

ρt1 =

∫

d2z1
e−|z1|2

π

G̃(t1t0|z∗(t1)z0)|ψ0〉〈ψ0|G̃−1(t0t1|z′∗0 z(t1))
〈ψ0|G̃−1(t0t1|z′∗0 z(t1))G̃(t1t0|z∗(t1)z0)|ψ0〉

(H.14)
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The evolution equation for the double propagator G(t|z∗(t)z0), that depends on the shifted noise, is derived
as follows,

d

dt1
G̃(t1t0|z∗1z0) =

∑

λ

∂G̃(t1t0|z∗1z0)
∂z∗1,λ

∂z∗1,λ
∂t1

+
∂G̃(t1t0|z∗1z0)

∂t1

=

{

−iHS + Lz̃∗t1 − L†z0,t1 −
(

L† − 〈L〉t1t0
)

∫ t1

t0

dτα(t1 − τ)
δ

δz∗τ

}

G̃(t1t0|z∗1z0).

(H.15)

The main point to be noticed in this equation is the fact that only the noise corresponding to the final state
of the bath is shifted (in this case z1,t), while the initial one (in this case z0,t1) remains the same.



Appendix I
Novikov property

To calculate multiple time correlation functions from (7.45), or their evolution equations, it is necessary to
perform averages over the environmental coordinates. The main type of average we are going to deal with
is that of the product of a Gaussian noise zi,ti with any functional Ŵ[ti, ti+1]. From the Novikov theorem,
this is equal to

Mi

[

zi,tiŴ[ti, ti+1]
]

=

∫ t

0

dτMi

[

zi,tz
∗
i,τ

]

Mi

[(

δŴ[ti, ti+1]

δz∗i,τ

)]

(I.1)

where we have settled
∫

dµ(zi)F = Mi [F ], as defined in (2.47). For expression (I.1) to be held, it
is necessary that the noise zi,ti is a Gaussian noise of zero mean, and the functional Ŵ[ti, ti+1] is such

that ∂Ŵ[ti+1,ti+1]
∂zi

= 0. This is what we find in single evolution equations, where Ŵ[ti, ti+1] = 〈ψ0 |
G†(0zi|titi+1)AiG(z∗i 0|0ti) | ψ0〉. However, in the calculus of evolution equations of multiple-time corre-
lation functions (for instance equations in (8.18) and (8.23)), we will often find terms such that the functional
is

W[ti, ti+1] = 〈ψ0 | G†(0zi|titi+1)AiG(z∗i zi+1|titi+1)Ai+1G(z∗i+1zi+2|ti+1ti+2) · · ·
· · ·G(z∗NzN+1|t1t0) | ψ0〉 (I.2)

Notice that, to simplify the notation, we have only denoted explicitly the time dependency on the domain
in which the functional depends on the noise zi,ti that appears in the property (I.1), i.e. W[ti, ti+1]. The
functional (I.2) is such that ∂W[ti+1, ti+1]/∂zi = zi+1, since the initial condition of the propagator is
G(z∗i zi+1|ti+1ti+1) = exp (z∗i zi+1). However, let us now consider that such propagator can be separated
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in two parts, such that

G(z∗i zi+1|titi+1) = G(z∗i zi+1|ti+1ti+1)Ĝ(z∗i zi+1|titi+1), (I.3)

where G(z∗i zi+1|ti+1ti+1) = exp(z∗i zi+1). Now, the propagator Ĝ(z∗i zi+1|titi+1) has initial condition
I ,and its only dependence on the environmental coordinates is through the noises z∗i,ti and zi+1,ti+1

. Within
that notation, we set the functional (I.2) as W[ti, ti+1] = exp(z∗i zi+1)Ŵ [ti, ti+1]. Let us now prove that,
for such functional

Mi [zi,tiW[ti, ti+1]] = zi+1,tiMi [W[ti, ti+1]]

+

∫ ti

ti+1

dτMi

[

zi,tz
∗
i,τ

]

Mi

[(

δW[ti, ti+1]

δz∗i,τ

)]

. (I.4)

Let us start from the last term of the right hand side,
∫ ti

ti+1

dτMi

[

zi,tz
∗
i,τ

]

Mi

[(

δW[ti, ti+1]

δz∗i,τ

)]

=

∫

d2zi

∫ t

0

dτQ(z∗i , zi+1)α(ti − τ)

(

δŴ[ti, ti+1][z
∗
i,ti
, zi+1,ti+1

]

δz∗i,τ

)

(I.5)

where in the second line we have included the initial condition of (I.3), which is included in W[ti, ti+1], in
the function Q(z∗i , zi+1) = exp(−z∗i zi) exp(z∗i zi+1). The average Mi

[

zi,tz
∗
i,τ

]

= α(ti − τ). From the
functional chain rule, we know that

∂

∂z∗τ
=

∫

dτ
∂z∗τ
∂z∗λ

δ

δz∗τ
=

∫

dτ(−igλeiωλτ )
δ

δz∗τ
(I.6)

where the second line has been obtained by using (7.47). Replacing the last expression in (I.5), we obtain
the following expression

∫

d2ziQ(z∗i , zi+1)

∫ t

0

dτα(ti − τ)

(

δW[ti, ti+1]

δz∗i,τ

)

=

∫

d2ziQ(z∗i , zi+1)
∑

λ

igλe
−iωλti

∂

∂z∗i,λ
Ŵ[ti, ti+1]. (I.7)

Integrating by parts the last expression, we find that (I.5) is equal to
∫ ti

ti+1

dτMi

[

zi,tz
∗
i,τ

]

Mi

[(

δW[ti, ti+1]

δz∗i,τ

)]

=

∫

d2ziQ(z∗i , zi+1)Ŵ[ti, ti+1]{−zi,ti + zi+1,ti}

= Mi [zi,tiW[ti, ti+1]] − zi+1,tiMi [W[ti, ti+1]] , (I.8)

that brings the desired expression (I.4). The same procedure can be used to demonstrate that

Mi

[

z∗i,tiW[ti, ti+1]
]

=

∫ ti

ti+1

dτMi

[

z∗i,tizi,τ
]

Mi

[(

δW[ti, ti+1]

δzi,τ

)]

. (I.9)



Appendix J
Novikov property up to second

order in perturbation parameter

There is an alternative possibility to the Novikov theorem (5.79), which consists in replacing the reduced
propagators by their first order expansion

G(z∗1z0|t0) =

(

1 +

∫ t

0

dτz∗1,τVτ−tL−
∫ t

0

dτz0τVτ−tL
†
)

G(0)(z∗10z0|t0);

G†(z∗0z1|0t) = G†,(0)(z∗00z1|0t)
(

1 −
∫ t

0

dτz∗0,τVτ−tL+

∫ t

0

dτz1,τVτ−tL
†
)

+ O(g2), (J.1)

where G(0)(z∗10z0|t0) = exp (−iHSt) exp (z∗1z0), and G†,(0)(z∗00z1|0t) = exp (iHSt) exp (z∗0z1), and
then performing the Gaussian integrals over the variables z1. For instance, let us show that with the term

M1

[

z1,tG(z∗1z0|t0)|ψ0〉〈ψ0|G†(z∗0z1|t0)L†] (J.2)

on equation (5.77). Replacing (J.1) in the last expression, we get

M1

[

z1,tG(z∗1z0|t0)|ψ0〉〈ψ0|G†(z∗0z1|t0)L†]

=

∫

dµ(z1)z1,tL

(

1 +

∫ t

0

dτz∗1,τVτ−tL−
∫ t

0

dτz0τVτ−tL
†
)

e−iHStez
∗
1z0 |ψ0〉

〈ψ0|ez
∗
0z1

(

1 −
∫ t

0

dτz∗0,τVτ−tL+

∫ t

0

dτz1,τVτ−tL
†
)

eiHStez
∗
0z1 + O(g2). (J.3)
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In order to perform the average over z1 it is necessary to take into account that z1,t = i
∑ν
λ=1 gλz1,λ exp (−iωλt),

so that the average M1 in fact represents a set of multi-dimensional integrals over each harmonic oscillator.
For instance,

M1

[

z1,te
z∗1z0ez

∗
0z1
]

= i
ν
∑

λ=1

gλe
−iωλt

(
∫

dµ(z1,1)e
z∗1,1z0,1ez

∗
0,1z1,1 · · ·

∫

dµ(zλ)z1,λe
z∗1,λz0,λez

∗
0,λz1,λ · · ·

∫

dµ(z1,ν)e
z∗1,νz0,νez

∗
0,νz1,ν

)

. (J.4)

Taking into account this, and the following results for Gaussian integrals,
∫

dµ(z1,λ)z1,λe
z∗1,λz0,λez

∗
0,λz1,λ = z0,λe

z∗0,λz0,λ ,

∫

dµ(z∗1,λ)z
∗
1,λe

z∗1,λz0,λez
∗
0,λz1,λ = z∗0,λe

z∗0,λz0,λ ,

∫

dµ(z∗1,λ)z
∗
1,λz1,λe

z∗1,λz0,λez
∗
0,λz1,λ = (1 + z∗0,λz0,λ)e

z∗0,λz0,λ , (J.5)

we get for (J.3),

M1

[

z1,tG(z∗1z0|t0)|ψ0〉〈ψ0|G†(z∗0z1|t0)L†]

= Lz0,tρ
(1)
s (z∗0z0|t) + L

∫ t

0

dτα(t− τ)Vτ−tLρ
(0)
s (z∗0z0|t). (J.6)

In the former expression, we have specified explicitly the perturbative order of the density operator in each
term, where

ρ(1)
s (z∗0z0|t) = ez

∗
0,λz0,λ

(

e−iHSt|ψ0〉〈ψ0|eiHSt +

∫ t

0

dτz∗0,τ [Vτ−tL, e
−iHSt|ψ0〉〈ψ0|eiHSt]

+

∫ t

0

dτz0,τ [e
−iHSt|ψ0〉〈ψ0|eiHSt, Vτ−tL

†]

)

, (J.7)

is the first order expansion, and ρ(0)
s (z∗0z0|t) = e−iHSt|ψ0〉〈ψ0|eiHSt exp (z∗0,λz0,λ) is the zero order. This

is done in order to make it easier for the reader to identifiy the terms with the results of the averages appearing
in (J.3). However, since the whole expression (J.6) is of order g2, we shall simplify the notation by just
writing ρs(z∗0z0|t) in every term. Evidently, it shall be understood that the equation is valid up to second
order. The average of the term z∗1,t of (5.77) is made in an analogous way.



Appendix K
Derivation of the relation (8.15)

The functional derivative can be expressed in a more convenient way as follows. Let us take the equation
(2.36)

∂G(z∗i zi+1|titi+1)

∂ti
=

(

− iHS − iL
∑

λ

gλe
iωλtiz∗i,λ

)

G(z∗i zi+1|titi+1)

−iL†
∑

λ

gλe
−iωλti〈zi|aλUI(ti, ti+1)|zi+1〉, (K.1)

considering now that the term 〈zi|aλUI(ti, ti+1)|zi+1〉 can also be expressed as ∂
∂z∗

i,λ

〈zi|UI(ti, ti+1)|zi+1〉 =

∂
∂z∗

i,λ

G(z∗i zi+1|titi+1). Considering again the separation (I.3) of the propagator, we can perform the partial
derivative over the coordinate z∗i,λ as follows,

∂

∂z∗i,λ
G(z∗i zi+1|titi+1) =

(

∂G(z∗i zi+1|ti+1ti+1)

∂z∗i,λ

)

Ĝ(z∗i zi+1|titi+1)

+G(z∗i zi+1|ti+1ti+1)

(

∂Ĝ(z∗i zi+1|titi+1)

∂z∗i,λ

)

. (K.2)

The first derivative appearing in the last expression is equal to zi+1,λ, while the second can be solved using
the chain rule,

∂Ĝ(z∗i zi+1|ti,βti+1)

∂z∗i,λ
=

∑

β

∂Ĝ(z∗i zi+1|ti,βti+1)

∂z∗i,ti,β

∂z∗i,ti,β

∂z∗i,λ

235



236 DERIVATION OF THE RELATION (8.15)

= lim
ε→0

ε

(

1

ε

∂Ĝ(z∗i zi+1|ti,βti+1)

∂z∗i,ti,β

)

∂z∗i,ti,β

∂z∗i,λ

=

∫ ti

ti+1

dτ
δĜ(z∗i zi+1|ti,βti+1)

δz∗i,τ
(−igλeiωλτ ), (K.3)

where we have discretized the time ti in intervals ε, in such a way that ti,β = ε+ ti,β−1 = t0 + (β − 1)ε.
Thus, the function zi,ti is approximated by a vector of values zi,ti,β

= {· · · zi,ti,β−1
, zi,ti,β

· · ·}. In the last
line of (K.3), we have solved the partial derivative of z∗i,ti,β

using (7.47), and we have passed to the continuum

limit, ε → 0, considering that in such limit, 1
ε
∂Ĝ(z∗i zi+1|ti,βti+1)

∂z∗
i,ti,β

→ δĜ(z∗i zi+1|ti,βti+1)
δz∗

i,τ

1. Replacing this

results in (K.2) we get the following expression for the partial derivative,

∂

∂z∗i,λ
G(z∗i zi+1|titi+1) = zi+1,λG(z∗i zi+1|titi+1) − igλ

∫ ti

ti+1

dτ
δG(z∗i zi+1|titi+1)

δz∗i,τ
eiωλτ . (K.4)

Since
∂

∂z∗i,λ
G(z∗i zi+1|titi+1) = 〈zi|UI(ti, ti+1)aλ(ti, ti+1)|zi+1〉 (K.5)

we can compare equation (K.4) with the expression that is obtained by replacing the analytical solution of
aλ(ti, ti+1) (2.38) in the right hand side of (K.5). Thus, it is found that

∂

∂z∗i,λ
G(z∗i zi+1|titi+1) = 〈zi|UI(ti, ti+1)aλ(ti, ti+1)|zi+1〉 =

= zi+1,λG(z∗i zi+1|titi+1) − igλ

∫ ti

ti−1

dτ〈zi|UI(ti, ti+1)L(τ, ti+1)|zi+1〉eiωλτ .

(K.6)

Thus, we conclude that the functional derivative can be expressed as

δG(z∗i zi+1|titi+1)

δz∗i,τ
= 〈zi|UI(ti, ti+1)L(τ, ti+1)|zi+1〉, (K.7)

which is the relation (8.15).

1The functional derivative
δĜ(z∗

i
zi+1|ti,βti+1)

δz∗
i,τ

, is respect to continuous variables, in this case δz∗i,τ . The partial derivative

∂Ĝ(z∗
i

zi+1|ti,βti+1)

∂z∗
i,ti,β

is respect to discrete variables, in this case z∗i,ti,β
.



Appendix L
Thermal MTCF

As described in Section (2.2) of Chapter (2), MTCF can also be computed for initial states in which the
environment is different from the vacuum. Suppose that we have an initially decorrelated state and a thermal
mixture for the environment. Then, according to (2.19), we have

ρtot(0) = |ψ0〉〈ψ0| ⊗
∫

d2z0P (z0, z
∗
0)|z0〉〈z0|, (L.1)

where P (z0, z
∗
0) is the coherent state P distribution [43, 53], which is this case is chosen as the one

corresponding to a thermal reservoir (eqn. (5.84)) of Chapter (5),

P (z0, z
∗
0) =

∏

λ

1

πN(ωλ)
e−|z0|2N(ωλ). (L.2)

According to (2.20), the MTCF for such an initial state is

CTA(t|ρtot(0)) =

∫

d2z0P (z0, z
∗
0)e−|z0|2〈ψ0|〈z0|A1(t1) · · ·AN (tN )〉|z0〉|ψ0〉, (L.3)

where the superindex T denotes the fact that it is a thermal MTCF. To compute the evolution equation of
CT

A
(t|ρtot(0)), we consider the general equation (8.37) obtained in Section (8.3),

dA(t)

dt1
= i[HS(t1), A1(t1)]Ã

(2)(̃t(2))

− ν†(t1)[L(t1), A(t1)]Ã
(2)(̃t(2)) + [L†(t1), A(t1)]Ã

(2)(̃t(2))ν(t1)

+

∫ t1

0

dτα∗(t1 − τ)L†(τ)[A1(t1), L(t1)]Ã
(2)(̃t(2))
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+

N−1
∑

i=0

∫ ti+1

ti+2

dτα(t1 − τ)[L†(t1), A1(t1)]PiLL(τ)Ã(2)(̃t(2)). (L.4)

Then, from (L.3), we have that

dCT
A

(t|ρtot(0))
dt1

=

∫

d2z0P (z0, z
∗
0)e−|z0|2

〈ψ0|〈z0|
(

i[HS(t1), A1(t1)]Ã
(2)(̃t(2))

− ν†(t1)[L(t1), A(t1)]Ã
(2)(̃t(2)) + [L†(t1), A(t1)]Ã

(2)(̃t(2))ν(t1)

+

∫ t1

0

dτα∗(t1 − τ)L†(τ)[A1(t1), L(t1)]Ã
(2)(̃t(2))

+

N−1
∑

i=0

∫ ti+1

ti+2

dτα(t1 − τ)[L†(t1), A1(t1)]PiLL(τ)Ã(2)(̃t(2))

)

|z0〉|ψ0〉. (L.5)

In order to simplify the the calculus, let us particularize for two-time correlations,

dCTAB(t|ρtot(0))
dt1

=
d〈A(t1)B(t2)〉T

dt1
= i〈{[HS , A]}(t1)B(t2)〉T

+

∫ t1

0

dτα∗(t− τ)〈
{

Vτ−t1L
†[A,L]

}

(t1)B(t2)〉T

+

∫ t1

t2

dτα(t− τ)〈
{

[L†, A]Vτ−t1L
}

(t1)B(t2)〉T

+

∫ t2

0

dτα(t− τ)〈
{

[L†, A]
}

(t1) {BVτ−t2} (t2)〉T

+

∫

d2z0P (z0, z
∗
0)e−|z0|2z0,t1〈ψ0|〈z0|[L†(t1), A(t1)]B(t2)|z0〉|ψ0〉

+

∫

d2z0P (z0, z
∗
0)e−|z0|2z∗0,t1〈ψ0|〈z0|[A(t1), L(t1)]B(t2)|z0〉|ψ0〉. (L.6)

However, the procedure followed here is valid for general N -time correlations. In order to perform the
average over the last two terms we follow a procedure similar to that explained in Section (5.2.1.2), to
compute the thermal master equation. First of all, we express them in terms of reduced propagators by
inserting the Bargmann closure relation twice. Second, we insert a perturbative expansion of the reduced
propagators up to first order in g, since the noise is already of first order. Third, we compute the Gaussian
integrals. The average over the term in z0,t1 is then

∫

d2z0P (z0, z
∗
0)e−|z0|2z0,t1〈ψ0|〈z0|{[L†, A]}(t1)B(t2)|z0〉|ψ0〉

=

∫ t1

0

dτα+∗(t1 − τ)〈
{

Vτ−t1L[A,L†]
}

(t1)B(t2)〉T

+

∫ t1

t2

dτα+∗(t1 − τ)〈
{

[L†, A]Vτ−t1L
}

(t1)B(t2)〉T

+

∫ t2

0

dτα+∗(t1 − τ)〈
{

[L†, A]
}

(t1) {BVτ−t2L} (t2)〉T , (L.7)
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and the average over the term in z∗0,t1 is
∫

d2z0P (z0, z
∗
0)e−|z0|2z∗0,t1〈ψ0|〈z0|[A(t1), L(t1)]B(t2)|z0〉|ψ0〉

=

∫ t1

0

dτα+(t1 − τ)〈
{

Vτ−t1L
†[A,L]

}

(t1)B(t2)〉T

+

∫ t1

t2

dτα+(t1 − τ)〈
{

[L,A]Vτ−t1L
†} (t1)B(t2)〉T

∫ t2

0

dτα+(t1 − τ)〈{[L,A]} (t1)
{

BVτ−t2L
†} (t2)〉T , (L.8)

where we consider the correlation defined as in (4.21),

α+(t− τ) =
∑

λ

g2
λN(ωλ)e

iωλ(t−τ). (L.9)

Inserting (L.7) and (L.8) in (L.6), we get the evolution equation for thermal two-time correlation functions.
As in Section(5.2.1.2) this equation can be simplified by considering a new correlation function which is
defined as in (4.20),

α−(t− τ) =
∑

λ

g2
λ(N(ωλ) + 1)e−iωλ(t−τ) = α+∗(t− τ) + α(t− τ). (L.10)

In terms of α+(t− τ) and α−(t− τ), the thermal two-time correlations evolve as follows

d〈A(t1)B(t2)〉T
dt1

= i〈{[HS , A]}(t1)B(t2)〉T +

+

∫ t1

0

dτα−∗(t− τ)〈
{

Vτ−t1L
†[A,L]

}

(t1)B(t2)〉T

+

∫ t1

t2

dτα−(t− τ)〈
{

[L†, A]Vτ−t1L
}

(t1)B(t2)〉T

+

∫ t2

0

dτα−(t− τ)〈
{

[L†, A]
}

(t1) {BVτ−t2} (t2)〉T

+

∫ t1

0

dτα+∗(t1 − τ)〈
{

Vτ−t1L[A,L†]
}

(t1)B(t2)〉T

+

∫ t1

t2

dτα+(t1 − τ)〈
{

[L,A]Vτ−t1L
†} (t1)B(t2)〉T

+

∫ t2

0

dτα+(t1 − τ)〈{[L,A]} (t1)
{

BVτ−t2L
†} (t2)〉T . (L.11)

In the case B = 1, the former equation becomes the thermal evolution equation for the expectation value of
A. It is easy to verify that such an evolution coincides with the one given by the thermal master equation
(5.88).

Note that when L = L† the former equation becomes equal to (9.20) but with α(t− τ) = αT (t− τ) =

α+(t− τ) + α−(t− τ) =
∑

λ g
2
λ

[

coth
(

ωλβ
2

)

cos (ωλ(t− τ)) − i sin (ωλ(t− τ))
]

given by (5.25).



Appendix M
Measurement-like MTCF

Multiple-time correlation functions may correspond to direct measurement when they have the following
form 1

CA′,A(t′, t|Ψ0) = 〈Ψ0|A′
N (t′N ) · · ·A′

2(t
′
2)A1(t1) · · ·AN (tN )|Ψ0〉, (M.1)

where the time ordering is such that

t′N ≤ t′N−1 ≤ · · · ≤ t′2 ≤ t1

tN ≤ tN−1 ≤ · · · ≤ t2 ≤ t1. (M.2)

Let us show that by considering a sequence of measurements on a well defined initial quantum state of
the system |Ψ0〉 = |ψ0〉|0〉. The state vector of the system after having measured q − 1 times with results
ã1, ã2, · · · ãq−1, the system state vector is

|Ψã1,ã2,···ãq−1
(tq−1)〉 (M.3)

During the time between succesive measurements, the system will evolve unitarily as

|Ψã1,ã2,···ãq−1
(tq)〉 = U(tq, tq−1)|Ψã1,ã2,···ãq−1

(tq−1)〉 (M.4)

1The definition of the measurement-like form of correlation function presented in this section has been taken from the book [51], where
it is also shown how its evolution equation for the Markovian case and in the weak coupling limit obeys the same structure as the
Quantum Regression Theorem. The derivation of a non-Markovian evolution equation, both in its exact (open) form and in the weak
coupling limit is a result of this thesis.

241
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The measurements, performed at times tq, q = 1, 2, 3 · · · ,, with tq > tq−1, are represented by the measuring
operator γ̃ãq

, where ãq is the result of the measurement. Thus, performing the measurement at time tq over
the former vector, we get

|Ψã1,ã2,···ãq
(tq)〉 =

γ̃ãq
|Ψã1,ã2,···ãq−1

(tq)〉
√

P (ãq|ã1, ã2 · · · ãq−1)

=

∏q
r=1 γãr

U(tr, tr−1)|Ψ0〉
√

P (ã1, · · · , ãq)
, (M.5)

where P (ã1, · · · , ãq) =
∏q
r=1 P (ãr|ã1, · · · , ãr−1) is the joint probability. This can be written as,

P (ã1, · · · , ãq) = 〈Ψ0|
[

q
∏

r=1

γ̃ãr
U(tr, tr−1)

]† q
∏

r=1

γ̃ãr
U(tr, tr−1)|Ψ0〉

= 〈Ψ0|γ̃†ã1
(t1) · · · γ̃†ãq

(tq)γ̃ãq
(tq) · · · γ̃ã1

(t1)|Ψ0〉, (M.6)

with γ̃ãq
(tq) = U†(tq, tq−1)γ̃ãq

U(tq, tq−1). The joint probability can also correspond to the multiple time
correlation of any arbitrary operation θ(ã, t),

P (ã1, · · · , ãq) = 〈Ψ0|θ†ã1
(t1) · · · θ†ãq

(tq)θãq
(tq) · · · θã1

(t1)|Ψ0〉. (M.7)

Let us now recall the polarization identity,

A†MB =
1

4

{

(A+B)†M(A+B) − (A−B)†M(A−B)

−i(A+ iB)†M(A+ iB) + i(A− iB)†M(A− iB)
}

(M.8)

which for M = 1 relates an arbitrary combination of operators in the left hand side, with a sum of different
probabilities which as we have shown, can indeed be measured. Thus, any arbitrary correlation of the form
(M.1) can be expressed as corresponding to a sum of measurable objects, provided that the time ordering is
respected.

In order to obtain the evolution equation for these kind of measurement-like correlations, we use the
Heisenberg method explained in section (8.2) of Chapter (9).

M.1 THREE TIME CORRELATION FUNCTION

We start by deriving the evolution equation of a measurement-like three time correlation function. In order
to do that, let us consider the following equation,

dB′(t′2)A(t1)B(t2)

dt1
= iB′(t′2)U−1(t1)[Htot, A]U(t1)B(t2) =

= iB′(t′2)[HS(t1), A(t1)]B(t2) + i
∑

λ

gλ

(

B′(t′2)a
†
λ(t1)[L(t1), A(t1)]B(t2)

+ B′(t′2)[L
†(t1), A(t1)]aλ(t1)B(t2)

)

. (M.9)

This equation becomes a three-time correlation when making an average over the initial total state vector
|Ψ0〉. When t′2 = t2 then it is a two-time correlation function. In order to eliminate the dependency on the
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environmental operator once the average over the total system initial state is performed, it is now necessary
to make the following steps:

• Move the annihilation operator to the right hand side of the expression, considering once again ex-
pression (8.31)

aλ(t1)B(t2) = U−1(t2)aλ(t1, t2)BU(t2)

= U−1(t2)e
−iωλ(t1−t2)aλ(0)BU(t2) − igλ

∫ t1

t2

dτe−iωλ(t1−τ)L(τ)B(t2)

= e−iωλt1B(t2)a(0) − igλ

∫ t2

0

dτe−iωλ(t1−τ)B(t)L(τ)

− igλ

∫ t1

t2

dτe−iωλ(t1−τ)L(τ)B(t2), (M.10)

where we have used the solution (8.25) and

aλ(t1, t2) = e−iωλ(t1−t2)a(0) − igλ

∫ t1

t2

dτe−iωλ(t1−τ)L(τ, t2), (M.11)

and the fact that [B, a(0)] = 0.

• Move the creation operator to the left hand side, so that following an analogous procedure we get

B′(t′2)a
†
λ(t1) = a†(0)B′(t′2)e

iωλt1 + igλ

∫ t′2

0

dτeiωλ(t1−τ)L†(τ)B′(t′2)

+ igλ

∫ t1

t′2

dτeiωλ(t1−τ)B′(t′2)L
†)(τ). (M.12)

Replacing (M.10) and (M.12) in (M.9), we obtain the following

dB′(t′2)A(t1)B(t2)

dt1
= iB′(t′2)[HS(t1), A(t1)]B(t2) − ν†(t1)B

′(t′2)[L(t1), A(t1)]B(t2)

−
∫ t′2

0

dτα∗(t1 − τ)L†(τ)B′(t′2)[L(t1), A(t1)]B(t2)

−
∫ t1

t′2

dτα(t1 − τ)B′(t′2)L
†(τ)[L(t1), A(t1)]B(t2)

+ B′(t′2)[L
†(t1), A(t1)]B(t2)ν(t1) +

∫ t2

0

dτα(t1 − τ)[L†(t1), A(t1)]B(t2)L(τ)

+

∫ t1

t2

dτα(t1 − τ)[L†(t1), A(t1)]L(τ)B(t2) (M.13)

The evolution of the quantum mean value 〈B′(t′2)A(t1)B(t2)〉 is again obtained by applying the total initial
state on both sides of the former expression. When such initial state is | ψ0〉 | 0〉, the terms which depend
on ν(t1) and ν†(t1) vanishes, and the final expression reads as follows,

d〈Ψ0|B′(t′2)A(t1)B(t2)|Ψ0〉
dt1

= i〈Ψ0|B′(t′2)[HS(t1), A(t1)]B(t2)|Ψ0〉
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−
∫ t′2

0

dτα∗(t1 − τ)〈Ψ0|L†(τ)B′(t′2)[L(t1), A(t1)]B(t2)|Ψ0〉

−
∫ t1

t′2

dτα(t1 − τ)〈Ψ0|B′(t′2)L
†(τ)[L(t1), A(t1)]B(t2)|Ψ0〉

+

∫ t2

0

dτα(t1 − τ)〈Ψ0|B′(t′2)[L
†(t1), A(t1)]B(t2)L(τ)|Ψ0〉

+

∫ t1

t2

dτα(t1 − τ)〈Ψ0|B′(t′2)[L
†(t1), A(t1)]L(τ)B(t2)|Ψ0〉. (M.14)

M.2 FOUR-TIME CORRELATION FUNCTION

In order to derive the evolution equation of four measurement-like four-time correlations, we start from

dC ′(t′3)B
′(t′2)A(t1)B(t2)C(t3)

dt1
= iC ′(t′3)B

′(t′2)U−1(t1)[Htot, A]U(t1)B(t2)C(t3)

= iC ′(t′3)B
′(t′2)[HS(t1), A(t1)]B(t2)C(t3)

+ i
∑

λ

gλ

(

C ′(t′3)B
′(t′2)a

†
λ(t1)[L(t1), A(t1)]B(t2)C(t3)

+ C ′(t′3)B
′(t′2)[L

†(t1), A(t1)]aλ(t1)B(t2)C(t3)

)

. (M.15)

Again, we use the two-step method which consists in:

• Moving the annihilation operator aλ(t1) to the right hand side of the equation (M.15). Carrying on
operations analogous to those explained in the former section, we have

aλ(t1)B(t2)C(t3) = U−1(t2)e
−iωλ(t1−t2)aλ(0)BU(t2)C(t3)

− igλ

∫ t1

t2

dτe−iωλ(t1−τ)L(τ)B(t2)C(t3)

= e−iωλ(t1−t2)B(t2)U−1(t3)a(t2, t3)CU(t3) − igλ

∫ t1

t2

dτe−iωλ(t1−τ)L(τ)B(t2)C(t3)

= B(t2)C(t3)a(0)e
−iωλt1 − igλ

∫ t1

t2

dτe−iωλ(t1−τ)L(τ)B(t2)C(t3)

− igλ

∫ t2

t3

dτ)e−iωλ(t1−τ)B(t2)L(τ)C(t3)

− igλ

∫ t3

0

dτ)e−iωλ(t1−τ)B(t2)C(t3)L(τ). (M.16)

• Moving the creation operator a†λ(t1) to the left hand side of equation (M.15). After several operations
of the usual type, one obtains

C ′(t′3)B
′(t′2)a

†
λ(t1) = a†(0)C ′(t′3)B

′(t′2)e
iωλt1
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+ iqλ

∫ t1

t′2

dτeiωλ(t1−τ)C ′(t′3)B
′(t′2)L

†(τ)

+ igλ

∫ t′2

t′3

dτeiωλ(t1−τ)C ′(t′3)L
†B′(t′2)

+ igλ

∫ t′3

0

dτeiωλ(t1−τ)L†(τ)C ′(t′3)B
′(t′2). (M.17)

Inserting the last expressions in (M.15), we get the following equation,

dC ′(t′3)B
′(t′2)A(t1)B(t2)C(t3)

dt1
= iC ′(t′3)B

′(t′2)[HS(t1), A(t1)]B(t2)C(t3)

− ν†(t1)C
′(t′3)B

′(t′2)[L(t1), A(t1)]B(t2)C(t3)

−
∫ t1

t′2

dτα∗(t1 − τ)C ′(t′3)B
′(t′2)L

†(τ)[L(t1), A(t1)]B(t2)C(t3)

−
∫ t′2

t′3

dτα∗(t1 − τ)C ′(t′3)L
†(τ)B′(t′2)[L(t1), A(t1)]B(t2)C(t2)

−
∫ t′3

0

dτα∗(t1 − τ)L†(τ)C ′(t′3)B
′(t′2)[L(t1), A(t1)]B(t2)C(t2)

+ C ′(t′3)B
′(t′2)[L

†(t1), A(t1)]B(t2)C(t3)ν(t1)

+

∫ t1

t2

dτα(t1 − τ)[L†(t1), A(t1)]L(τ)B(t2)C(t3)

+

∫ t2

t3

dτα(t1 − τ)[L†(t1), A(t1)]B(t2)L(τ)C(t3)

+

∫ t3

0

dτα(t1 − τ)[L†(t1), A(t1)]B(t2)C(t3)L(τ) (M.18)

Once the initial values for the total wave vector are applied on both sides, and provided that the bath initial
state is | 0〉, the former equation has the following form

d〈Ψ0|C ′(t′3)B
′(t′2)A(t1)B(t2)C(t3)|Ψ0〉

dt1
=

= i〈Ψ0|C ′(t′3)B
′(t′2)[HS(t1), A(t1)]B(t2)C(t3)|Ψ0〉

−
∫ t1

t′2

dτα∗(t1 − τ)〈Ψ0|C ′(t′3)B
′(t′2)L

†(τ)[L(t1), A(t1)]B(t2)C(t3)|Ψ0〉

−
∫ t′2

t′3

dτα∗(t1 − τ)〈Ψ0|C ′(t′3)L
†(τ)B′(t′2)[L(t1), A(t1)]B(t2)C(t3)|Ψ0〉

−
∫ t′3

0

dτα∗(t1 − τ)〈Ψ0|L†(τ)C ′(t′3)B
′(t′2)[L(t1), A(t1)]B(t2)C(t3)|Ψ0〉

+

∫ t1

t2

dτα(t1 − τ)〈Ψ0|C ′(t′3)B
′(t′2)[L

†(t1), A(t1)]L(τ)B(t2)C(t3)|Ψ0〉

+

∫ t2

t3

dτα(t1 − τ)Ψ0|C ′(t′3)B
′(t′2)[L

†(t1), A(t1)]B(t2)L(τ)C(t3)|Ψ0〉
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+

∫ t3

0

dτα(t1 − τ)Ψ0|C ′(t′3)B
′(t′2)[L

†(t1), A(t1)]B(t2)C(t3)L(τ)|Ψ0〉 (M.19)

M.3 GENERALIZATION TO A 2N + 1-TIME CORRELATION FUNCTION

Let us now present the evolution equation for of a general measurement-like N-time correlation function
defined in (M.1) as

CA′,A(t′, t|Ψ0) = 〈Ψ0|A′
N (t′N ) · · ·A′

2(t
′
2)A1(t1) · · ·AN (tN )|Ψ0〉, (M.20)

where the time ordering is such that

t′N ≤ t′N−1 ≤ · · · ≤ t′2 ≤ t1

tN ≤ tN−1 ≤ · · · ≤ t2 ≤ t1 (M.21)

In order to write the general equation, we use the superoperator PR, which translate L(τ) inside the string
Ã(2)(̃t(2)) in the right direction according to (8.39), and define also an analogous superoperator PR which

acts over Ã′(2)
(t̃′

(2)
) as follows

Ã′(2)
(t̃′

(2)
)L†(τ)P0

L = Ã′(2)
(t̃′

(2)
)L†(τ)

Ã′(2)
(t̃′

(2)
)L†(τ)P1

L = Ã′(3)
(t̃′

(3)
)L†(τ)A′

2(t
′
2)

Ã′(2)
(t̃′

(2)
)L†(τ)P1

L = Ã′(4)
(t̃′

(4)
)L†(τ)A′

3(t
′
3)A

′
2(t

′
2)

· · ·
Ã′(2)

(t̃′
(2)

)L†(τ)PN−1
L = L†(τ)Ã′(2)

(t̃′
(2)

). (M.22)

Here we have defined the string of operatorsA′
N (t′N ) · · ·A′

2(t
′
2) = Ã′(2)

(t̃′
(2)

), where t̃′
(2)

= {t′N · · · t′2},
and in a similar way to (8.36) we set

Ã′(n)
(t̃′

(n)
) = A′

N (t′N ) · · ·A′
n(t

′
n), (M.23)

with t̃′
(n)

= {t′N · · · t′n}.
Within that notation, the evolution for 2N-time measurement-like correlation functions reads as follows

dCA,A′(t, t′|Ψ0)

dt1
= 〈Ψ0 | Ã′(2)

(t̃′
(2)

)[HS(t1), A1(t1)]Ã
(2)(̃t(2)) | Ψ0〉

+

N−1
∑

i=0

∫ ti+1

ti+2

dτα∗(t1 − τ)〈Ψ0 | Ã′(2)
(t̃′

(2)
)L†(τ)PiL[A1(t1), L(t1)]Ã

(2)(̃t(2)) | Ψ0〉

+

N−1
∑

i=0

∫ ti+1

ti+2

dτα(t1 − τ)〈Ψ0 | Ã′(2)
(t̃′

(2)
)[L†(t1), A1(t1)]

×PiRL(τ)Ã(2)(̃t(2)) | Ψ0〉 (M.24)

M.3.1 Generalization to a second order perturbative 2N + 1-time correlation function

In order to obtain a closed equation for measurement-like N-time correlation functions, it is often necessary
to consider some approximation. Particularly, within the weak coupling limit, it is possible to obtain a
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general evolution equation up to second order in the perturbation parameter g. In that case, we use the
superoperator PR that acts over the string {Vτ−t1L}(t1){A2(t2) · · ·AN (tN )} as described in (9.22),

P0
R{Vτ−t1L}(t1)Â(2)(̂t(2)) = {Vτ−t1L}(t1)Â(2)(̂t(2))

P1
R{Vτ−t1L}(t1)Â(2)(̂t(2)) = A2(t2){Vτ−t2L}(t2)Â(3)(̂t(3)),

P2
R{Vτ−t1L}(t1)Â(2)(̂t(2)) = A2(t2)A3(t3){Vτ−t3L}(t3)Â(4)(̂t(4)),

· · ·
PN−1
R {Vτ−t1L}(t1)Â(2)(̂t(2)) = Â(2)(̂t(2)){Vτ−tNL}(tN ), (M.25)

and define a new superoperator PL that acts over the string {Vτ−t1L}(t1){A2(t2) · · ·AN (tN )} as,
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L = Â′(3)
(t̂′

(3)
){Vτ−t′2L

†}(t′2)A′
2(t

′
2)

Â′(2)
(t̂′

(2)
){Vτ−t1L†}(t1)P2

L = Â′(4)
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Thus, the perturbative 2N − 1-time correlation reads as follows,

dCA(t|Ψ0)

dt1
= 〈Ψ0 | Ã′(2)

(t̃′
(2)

)[HS(t1), A1(t1)]Ã
(2)(̃t(2)) | Ψ0〉

+

N−1
∑

i=0

∫ ti+1

ti+2

dτα∗(t1 − τ)〈Ψ0 | Ã′(2)
(t̃′

(2)
){Vτ−t1L†}(t1)PiL[A1(t1), L(t1)]Ã
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+
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(M.27)



Appendix N
Accuracy of the environmental

correlation function at short time

In section (11.3), we have stressed the advantage of the new correlation function we introduce, namely
a more accurate description of the short time behavior. This might help to give a better description of
non-Markovian effects in the atomic dynamics within this range. We also note that the derivation of such
correlation function does not rely on the the stationary phase approximation. In the integral (11.12), the
reason why the prefactor |êkσ(R)·ûd|2

w(k) can be considered constant is that it changes very slowly with the
wave vector k, no matter how large is τ in the phase iω(k)τ . This can be easily verified numerically by
comparing the integral (11.12),

α(τ) = γ(
a

2π
)
∑

σ

∫

1BZ

dk
|êkσ(R) · ûd|2

w(k)
e−iω(k)τ , (N.1)

with

α(τ) =
∑

σ

|êk0σ(R) · ûd|2
w(k0)

γ(
a

2π
)

∫

1BZ

dke−iω(k)τ , (N.2)

for the one-dimensional case, in which ω(k) = A+B cos(ka). Here k0 is a constant that has been chosen
in such a way that both correlation functions are equal at τ = 0

∫ π/a

−π/a
dk

1

ω(k)
=

1

ω(k0)

∫ π/a

−π/a
dk (N.3)
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The factor |êkσ(R) · ûd|2 has been considered a constant, since it corresponds to a number from zero to one
that does not affect the result dramatically (see Fig. (N.1)).

0 10 20 30 40 50
τ

−1

−0.5

0

0.5

1

α(
τ)

Without approx.
With approx.

Fig. N.1 We compare numerically the integral (N.1) (solid line) with (N.2) (dashed line). Apart from some small
deviations, it is shown that the approximation (N.2) is an accurate one even at short times.

Concerning the dispersion relation, a rigorous derivation or the model we propose is out of the scope of the
thesis. However, we have introduced in the text some references about methods to derive dispersion relation
for radiation field within PBG structures. Most of these methods are similar to those used for studying the
band structure for electrons in solids, a fact that we believe justifies the use of a tight-binding approximation
in our model. Although this model is rather simple and has been obtained for a simple cubic lattice, it
contains all the essential features of the EM field in a photonic band gap material (see [120] for an example
of band structure corresponding to the parameters used in the thesis). As a simple model, it might not be
accurate enough to compute very precise quantities or the dynamic of systems within other photonic crystal
structures. Although it would then be necessary to have more accurate dispersion relations, this would not
change the methodology we have developed to obtain the correlation function, the corresponding noise, and
to compute the dynamical equations.

Concerning the physical consequences of the dispersion relation we propose, it describes correctly the
fluctuations of the EM field, which in our formalism are described by the quantity zt. This description is
not possible with a parabolic dispersion relation, since such a dispersion relation does not describe correctly
the behavior in the center of the band. In addition, the dispersion relations that has been obtained both
experimentally [120] and theoretically [118], are periodic functions, and not parabolic functions.



Appendix O
Photonic density of states (DOS)

in the vacuum and in a PBG

As discussed in Chapter (1), the photonic DOS of a radiation field placed

∑

k

→
∫

dωD(ω). (O.1)

When the dispersion relation of the radiation field only depends on the modulus of the wave vector, the
former integral in k can be solved in spherical coordinates,

∫ 2π

0

dψ

∫ π

0

dθ sin θ

(

2υ

(2π)3

)
∫ ∞

0

dkd2 =

∫

dωD(ω). (O.2)

This is the case of the vacuum, where the dispersion relation ω = ck, so that dk = dω/c. Replacing in the
last integral, we have

D(ω) =
ω2υ

c32π2
. (O.3)

In an anisotropic PC, the dispersion relation is the same as for a one dimensional PBG, namely ω =
A+B cos(ka) (see Section (11.3.2) for a derivation), so that

k =
1

a
arcos(

ω −A

B
). (O.4)
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Then to transform the integral in k to an integral in ω, we need the following

dk =

∣

∣

∣

∣

∣

∣

−1

aB

√

s−
(

ω−A
B

)2

∣

∣

∣

∣

∣

∣

dω, (O.5)

which replaced in (O.2) together with (O.4) gives rise to the following photonic DOS

D(ω) =
1

π2

1

aB

√

s−
(

ω−A
B

)2
arcos(

ω −A

B
). (O.6)

Figure (O.1) represents the former expression compared to (O.3) (where we have chosen c = 1 and υ = 1).
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Fig. O.1 Photonic DOS of an anisotropic PC (O.6), compared to that of the vacuum (O.3). It is clearly observed how
the last one only takes non-zero values within the band, which goes from ωc = A−B to ω′

c = A+B.



Appendix P
Numerical synthesis of the driving

noise

There are several numerical methods in literature to generate a complex coloured Gaussian noise character-
ized by,

M[zt] = 0,M[ztzτ ] = 0 (P.1)
M[ztz

∗
τ ] = α(t− τ),

In particular, it can be synthesized [35] with the help of two independent real Gaussian noises ξ ′ and ξ′′ such
that

zt =

∫ ∞

−∞
dτR(τ)

ξ′(t− τ) + iξ′′(t− τ)√
2

, (P.2)

satisfying the properties

M[ξ′(t)] = M[ξ′(t)] = 0,M[ξ′(t)ξ′′(0)] = 0 (P.3)
M[ξ′(t)ξ′(0)] = M[ξ′′(t)ξ′′(0)] = δ(t).

The function R(τ) that appears in the integral is known as the response function of the bath, and can be
defined in terms of the correlation function as

α(t) =

∫ ∞

−∞
dτR∗(t+ τ)R(τ). (P.4)
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In accordance with the former relation, the response function can be numerically calculated by performing
the inverse Fourier transform of the power spectrum of the noise G(ω),

R(t) =

∫ ∞

−∞

dt

2π
G(ω)eiωt. (P.5)

with,

|G(ω)|2 =

∫ ∞

−∞

dt

2π
α(t)e−iωt. (P.6)

When calculating the function G(ω) from (P.6), a complex phase θ appears, sinceGω) =
√

|G(ω)|2eiθ. For
simplicity, such phase can be chosen equal to zero.



Appendix Q
Density matrix in Pauli

representation

In the Pauli representation, the density matrix becomes,

ρ =
1

2
Trρ · I + a · σ, (Q.1)

with a = (ax, ay, az) and ai = 1
2Tr(ρσi); i = x, y, z. The matrices σx,y,z are the usual Pauli matrices and

Trρ = 1. In terms of 〈σij〉, i = 1, 2; j = 1, 2, ax = 2<〈σ12〉, ay = 2=〈σ12〉 and az = −σ3. From this
relations and equation (Q.1), we finally obtain,

ρ11(t) =
1

2
+ az =

1

2
+

〈σ11〉 − 〈σ22〉
2

ρ22(t) =
1

2
− az =

1

2
− 〈σ11〉 − 〈σ22〉

2
ρ12(t) = ax − iay = 〈σ21〉
ρ21(t) = ax + iay = 〈σ12〉. (Q.2)

Therefore, ρ3 = ρ22 − ρ11 = σ22 − σ11 = σ3.
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18
Resumen de la tesis en español

18.1 INTRODUCCIÓN

En fı́sica, un sistema aislado es un objeto ideal, ya que procede de considerar como aproximación que sus
interacciones con el medio son despreciables y no alteran significativamente la dinámica. No obstante, en
muchas ocasiones, la interacción con el medio no sólo no se puede despreciar, sino que ademas es responsable
de fenómenos fı́sicos importantes. En tal caso, el sistema debe considerarse abierto.

Para describir la interacción, una posibilidad es integrar los grados de libertad del sistema total, compuesto
por el sistema y su entorno1. No obstante, dado que el número de grados de libertad del entorno es por
lo general muy grande, la integración de todos ellos puede llegar a ser una tarea muy pesada e incluso
imposible. Sin embargo, no toda ésta información es necesaria para describir la dinámica del sistema
abierto. En promedio, solo dos cantidades del medio actúan sobre dicha dinámica: sus fluctuaciones en el
vacı́o, que pueden ser consideradas como un ruido, y la función de correlación de dichas fluctuaciones o
función de correlación del entorno. El ruido describe el efecto aleatorio sobre el sistema de los múltiples
grados de libertad del medio, mientras que la función de correlación describe la disipación o perdida de
energı́a del sistema hacia dicho entorno. El tiempo de decaimiento de la función de correlación, también
llamado tiempo de memoria es el empleado por el medio en recuperarse de la interacción con el sistema.

Un sistema abierto clásico se describe en términos de la densidad de probabilidad de sus coordenadas, o
bien en término de dichas coordenadas. En el primer caso, la ecuación de movimiento es del tipo Chapman-
Kolmogorov, que incorpora términos de tipo disipativo en los que interviene la función de correlación. La
ecuación que rige la dinámica de las coordenadas del sistema es una ecuación del tipo Langevin, en la que
aparte de los términos disipativos, intervienen términos de tipo estocástico en los que queda reflejada la
acción aleatoria del baño. El promedio de las distintas trajectorias estocásticas generadas por la ecuación
de Langevin da lugar a la función densidad de probabilidad obtenida por la ecuación de tipo Chapman-

1Habitualmente y para simplificar denominaremos ”sistema” al sistema abierto, y “sistema total” o “global” al que está compuesto
por el sistema abierto y su entorno.
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Kolmogorov. Al añadir términos disipativos y fluctuantes, la dinámica ya no es reversible como lo es la
dinámica de un sistema aislado.

El estudio de un sistema cuántico abierto supone adoptar un esquema de cuantización alternativo al del
caso aislado, ya que este se basaba en la existencia de una función Lagrangiana o Hamiltoniana para el
sistema. El esquema más comúnmente empleado consiste en suponer que el sistema total, compuesto por
sistema y entorno, es conservativo y por tanto obedece las reglas de cuantización habituales. El estado de un
sistema cuántico abierto no solo dependerá de los grados de libertad internos del mismo, sino también del
estado en el que se encuentre el baño con el que interacciona. Se dice entonces que el estado cuántico del
sistema está enmarañado con el entorno. En este ámbito, la fricción o disipación constituye una transferencia
de energı́a desde el sistema ’pequeño’ al entorno ’grande’. La energı́a, una vez transferida, se disipa en el
entorno y no es devuelta al sistema en un tiempo fı́sico relevante.

El estado de un sistema cuántico abierto es descrito por el operador densidad reducido del sistema, el
cual se obtiene del operador densidad total a través de una traza parcial de los grados de libertad del entorno
o baño, ρs = TrB(ρtot(t)). Este operador representa en general un estado mixto incluso aunque el estado
total ρtot(t), constituı́do por el sistema y el entorno, sea puro. El operador densidad fue introducido por
Landau en el contexto de mecánica estadı́stica [16], y por von-Neumann [15] para sistemas cuánticos fuera
del equilibrio. La diagonal de este operador señala la probabilidad de cada estado del sistema cuántico en
la base en la que el operador ha sido expresado. Por su parte, los elementos fuera de la diagonal señalan
las coherencias, o interacciones entre los distintos estados del sistema. Las coherencias son propias de los
sistemas cuánticos, y generalmente van desapareciendo a causa de la interacción, siguiendo un proceso que
se conoce como decoherencia. Dicho proceso explica porqué los estados entrelazados caracterı́sticos de un
sistema cuántico no aparecen en el mundo macroscópico. El operador densidad reducido puede ser calculado
a través de su ecuación dinámica, conocida como ecuación maestra, o realizando un promedio sobre los
distintos estados de la mezcla estadı́stica. Estos estados son soluciones de una ecuación estocástica de
Schrödinger (SSE).

Un ejemplo de sistema cuántico abierto encontrado en óptica cuántica es un átomo en contacto con el
campo electromagnético circundante. La interacción, que da lugar a un intercambio de energı́a entre el átomo
y el campo, produce en la mayor parte de los casos a una relajación del átomo a su estado fundamental,
acompañada de una pérdida irreversible de su energı́a hacia el entorno. Cuando el operador densidad reducido
está expresado en la base de estados propios del átomo, su diagonal indica la probabilidad de cada uno de
los niveles de energı́a atómicos. Por su parte, los elementos fuera de la diagonal nos dan información acerca
de las coherencias, que señalan en este caso la interación existente entre los distintos niveles de energı́a.

Si se promedia el estado del sistema total en los grados de libertad del baño, el estado resultante ya no
evoluciona unitariamente, y dicha evolución deja de ser periódica, debido a la pérdida de energı́a o disipación
que se produce en su interacción con el medio. Esto explica porque los sistemas cuánticos, que en estado
de aislamiento son reversibles (en un tiempo de recurrecia finito vuelven a recuperar el estado inicial),
presentan en la práctica una evolución disipativa y por tanto irreversible, al estar en la realidad sometidos a
interacciones con el medio.

La dinámica de relajación atómica depende en gran parte de las fronteras y condiciones espaciales en las
que está inmerso el campo electromagnético con el que interacciona. Este es un resultado conocido desde
los trabajos de Purcell [10], más tarde ampliados por Kleppner [11], quienes observaron que el ritmo de
relajación de un átomo de dos niveles emplazado en una cavidad puede ser aumentado con respecto a aquel
del vacı́o cuando la longitud de ondas del fotón emitido es comparable a las dimensiones de la cavidad, e
inhibida cuando no es ası́. La emisión puede ser modificada en gran medida también cuando el átomo es
acoplado a un campo de radiación en un cristal en el que el ı́ndice de refracción es espacialmente periódico.
Estos materiales, sugeridos inicialmente por Yablonovitch [12] y John [13], se conocen comúmente como
materiales de banda fotónica (MBF) o cristales fotónicos (CF).
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En este punto surge la pregunta de cual es el mecanismo fı́sico a través del cuál se modifica la dinámica
del átomo cuando este está emplazado en un entorno estructurado. Dicha dinámica depende de la densidad
de modos del campo entorno a la frecuencia de emisión, o densidad fotónica de estados (DFE), y esta
función es la que se modifica cuando el campo está immerso en un entorno estructurado, ya sea una cavidad
cuántica, una guı́a de ondas, o un material de banda fotónica.

En el campo libre, la densidad fotónica de estados en una función que crece con ω2, y que varı́a en un
rango de frecuencias mayor que el ritmo de emisión espontánea. En estas condiciones, el fotón emitido es
absorbido instantáneamente por el campo, lo que da lugar a un tiempo de memoria nulo. De este modo, la
función de correlación que aparece en los términos disipativos de las ecuaciones dinámicas del átomo es
una función delta, y el átomo decae exponencialmente hacia el estado fundamental, siguiendo un proceso
descrito por la teorı́a de Wigner-Weisskopf [14]. Este tipo de interacción, que se conoce como Markoviana,
puede también darse en una cavidad, pero, nuevamente, solo cuando la densidad de estados fotónica del
campo, que en dicho entorno tiene la forma de una Lorentziana, varı́a suavemente en torno a la frecuencia de
emisión del átomo. En las cavidades cuánticas, el ritmo de emisión espontánea aumenta cuando la frecuencia
de emisión atómica se sitúa en la frecuencia del máximo de la Lorentziana o frecuencia de resonancia, y
disminuye cuando se sitúa lejana a dicha frecuencia.

En algunos entornos estructurados, la densidad fotónica de estados presenta saltos discontinuos o com-
portamiento singular en un rango de frecuencias comparable con el ritmo de emisión espontánea. Esto ocurre
por ejemplo en un CF. En éstos materiales, la periodicidad en el ı́ndice de refracción produce una reflexión
de la luz hacia fuera del material para ciertas frecuencias que están relacionadas con dicha periodicidad.
Dado que estos modos están ausentes del cristal, la densidad fotónica de estados es cero en las frecuencias
correspondientes, por lo que se forma un gap. Los valores de frecuencia en los que la densidad fotónica de
estados es no nula son conocidos como bandas. En los bordes de la banda, la densidad fotónica presenta una
discontinuidad en la que pasa a tener un valor cero en el gap a tener un valor no nulo dentro de la banda. En
dichas discontinuidades la velocidad de grupo de la luz tiende a cero, por lo que se produce una localización
de los fotones. Cuando el átomo emite un fotón en dicha región, tiende a congelarse o localizarse en torno al
mismo, lo que propicia que pueda ser reabsorbido por el átomo. El tiempo en el que el entorno se recupera
de la interacción, o tiempo de memoria del campo, ya no es cero como en el caso Markoviano, sino que
posee un valor finito que es caracterı́stico de las interacciones no-Markovianas. En dichas interacciones,
el decaimiento atómico ya no es exponencial, y puede además presentar oscilaciones debido al intercambio
de energı́a entre los grados de libertad atómicos y fotónicos. Este tipo de comportamiento oscilatorio puede
encontrarse también en una cavidad, cuando el rango de variación de la densidad fotónica de estados es
comparable al ritmo de emisión espontánea.

En general, las ecuaciones maestras y las ecuaciones estocásticas de Schrödinger pueden ser tanto Marko-
vianas como no-Markovianas, dependiendo de si la función de correlación que aparece en el término disipa-
tivo es una función delta o no, y, en el caso de EES, si el ruido es Gaussiano blanco o coloreado. No obstante,
aunque el conocimiento del operador densidad reducido del sistema permite el cálculo de los valores medios
de los operadores del sistema, la dinámica del mismo no se describe solo por tales cantidades. Para completar
la descripción es preciso conocer las funciones de correlación multitemporales (FCM) de operadores del
sistema. Por ejemplo, en óptica cuántica ciertas funciones de correlación a dos tiempos son necesarias para
el cálculo del espectro de emisión de un átomo, o para describir la probabilidad condicionada de emisión de
fotones.

Las funciones de correlación multitemporales son descritas en el caso Markoviano a través del denominado
teorema de regresión cuántico (TRC), que fue descubierto por Onsager (especialmente para el caso de
fluctuaciones en torno al equilibrio) [17], y por Lax (para el caso más general de sistemas fuera del equilibrio)
[18, 19]. Dicho teorema señala que la evolución de correlaciones a dos tiempos puede ser computada con
una ecuación maestra para la matriz densidad reducida del sistema. Este resultado, puede generalizarse para
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funciones de correlación de N -tiempos, dado que éstas también obedecen la misma ecuación de evolución
que los promedios cuánticos. El espectro atómico de emisión, que es la transformada de Fourier de una
función de correlación a dos tiempos de los operadores de acoplamiento del sistema, es una Lorentziana,
como corresponde a la transformada de Fourier de un decaimiento exponencial.

Para el caso no-Markoviano el espectro de emisión ya no es tan solo la transformada de Fourier de la
función a dos tiempos de los operadores de acoplamiento, pero aún depende de tal correlación. No obstante,
las funciones de correlación a dos tiempos, y en general las de N -tiempos, ya no pueden ser expresadas a
través del teorema de regresión cuántico. Es preciso generar una teorı́a alternativa que describa funciones
de correlación multitemporales no-Markovianas.

El objetivo de esta tesis es estudiar y desarrollar las ecuaciones dinámicas de un sistema cuántico
abierto linearmente acoplado a un entorno de osciladores armónicos. Esto incluye las ecuaciones nece-
sarias para evaluar sus valores medios, que son principalmente la ecuación maestra y la ecuación estocástica
de Schrödinger, ası́ como las ecuaciones que permiten el cómputo de funciones de correlación multitempo-
rales. Todas ellas se derivan en particular para sistemas con interacción no-Markoviana, como es un átomo
en contacto con el campo de radiación modificado en un cristal fotónico.

El trabajo se organiza en cuatro partes,

• En la Parte (I) se define el problema, presentando el tipo de sistemas estudiados, ası́ como el objeto
básico empleado para describir su dinámica. Esto se hace a lo largo de dos capı́tulos:

– En el Capı́tulo (1), se presenta el modelo general de Hamiltoniano estudiado en esta tesis,
cuyo término de interacción representa un acoplamiento lineal entre operadores del sistema y
el entorno. En particular, se muestra cómo el Hamiltoniano de interacción de un átomo con el
campo de radiación obedece a esta forma lineal cuando se aplican las aproximaciones dipolar y
de onda rotante al modelo general de Hamiltoniano de un campo bosónico en contacto con un
campo fermiónico.

– En el Capı́tulo (2), derivamos el denominado propagador reducido, un objeto que evoluciona la
función de ondas del sistema condicionada a un determinado estado inicial y final para el entorno,
y obtenemos también su ecuación dinámica. El propagador reducido resulta ser la herramienta
esencial para el cálculo de todas las ecuaciones dinámicas del sistema, ya sean valores medios
cuánticos o funciones de correlación multitemporales.

• La Parte (II) se dedica al estudio de los valores medios cuánticos de sistemas abiertos no-Markovianos.
Se compone de los siguientes capı́tulos:

– En el Capı́tulo (4) se presenta una breve introducción de las diferentes derivaciones de ecuaciones
maestras y EES que existen en la literatura, tanto para interacciones Markovianas como no-
Markovianas, con el objeto de contextualizar aquellas que en particular se tratan en este trabajo.

– En el Capı́tulo (5) nos centramos ya en el estudio de sistemas cuánticos abiertos con interacción
no-Markoviana, y lo hacemos a lo largo de dos Secciones. En la Sección (5.1) estudiamos la
eficiencia de algunas de las EESs existentes en la literatura, lo que es conocido como problema
de sampleo. Ciertas EESs dan lugar a un conjunto de vectores de onda que tienen un peso
más significativo que las soluciones de otras en el sampleo estocástico del operador densidad
reducido. Mostramos para el modelo spin-boson que dicha mejora depende de las condiciones
fı́sicas del sistema total, particularmente de la temperatura del entorno. En la Sección (5.2),
se discute el problema de generar ecuaciones maestras a partir de la ecuación de evolución del
operador densidad reducido. Por un lado, cuando el estado inicial del entorno es el vacı́o, el
propagador reducido da lugar a las ecuaciones de Schrödinger que habitualmente se encuentran
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en la literatura, las cuales, tras hacer un promedio sobre los diferentes estados del entorno,
reproducen el resultado de la ecuación maestra. Mientras que este caso ya ha sido tratado
anteriormente en la literatura, nuestra aportación consiste en considerar un propagador reducido
cuyo estado inicial es distinto del vacı́o, obteniendose una ecuación maestra para estados iniciales
generales, y no necesariamente de decorrelación entre sistema y entorno. La derivación de
tal ecuación maestra requiere de una generalización del Teorema de Novikov, que también es
desarrollada en este trabajo.

• La Parte (III) contiene el mayor número de resultados de ésta tesis. En ella se deriva una teorı́a
para FCM no-Markovianas, ası́ como las ecuaciones de Heisenberg de movimiento de operadores del
sistema.

Comenzamos mostrando la utilidad de dichas FCM en el contexto de óptica cuántica, donde se emplean
para el cálculo de cantidades tales como el espectro de emisión o la estadı́stica de fotones emitidos
por un átomo. A continuación, la discusión se divide en dos capı́tulos:

– En el Capı́tulo (8) se muestra que las FCM no-Markovianas obedecen una estructura jerárquica
cuando no se establece ninguna aproximación. Para ser más exactos, se encuentra que las
funciones de correlación de un tiempo (o valores medios cuánticos), dependen de funciones de
correlación a dos tiempos, mientras que las correlaciones a dos tiempos dependen de funciones de
correlación a tres tiempos. La estructura jerárquica se extiende hasta funciones de correlación
de órdenes superiores, de modo que, en general, las funciones de correlación de N -tiempos
dependen de funciones de correlación de N + 1-tiempos. Aunque este es un resultado formal
que no puede ser empleado a efectos computacionales, su derivación resulta ser una forma
sistemática de obtener las ecuaciones para funciones de correlación generales a N -tiempos.
Dichas ecuaciones pueden llegar a ser últiles desde el punto de vista práctico una vez rota la
dependencia con correlaciones de orden superior.

– En el Capı́tulo (9) se asume la aproximación de acoplamiento débil para romper la jerarquı́a y
derivar ecuaciones para funciones de correlación a N -tiempos, siempre hasta segundo orden en
el parámetro perturbativo. Esto nos permite mostrar que el TCR no se aplica para interacciones
de tipo no-Markoviano.

• En la Parte (IV), se aplican algunas de las ecuaciones presentadas a lo largo de este trabajo a un sistema
de dos niveles immerso en un campo de radiación en un material de banda fotónica. La discusión se
divide nuevamente en dos capı́tulos:

– En el Capı́tulo (11) se presenta un modelo apropiado para el problema. Mientras que el Hamil-
toniano corresponde a un átomo de dos niveles dipolarmente acoplado al campo de radiación,
y por tanto tiene la misma forma que el Hamiltoniano general presentado en el Capı́tulo (1),
presentamos aquı́ nuevas aportaciones en la caracterización de la función de correlación. Para
tal fin, proponemos un nuevo modelo de relación de dispersión del campo que sigue la estructura
periódica propia de un campo de radiación en un CF. Una vez calculada la función de correlación,
es posible obtener el ruido correspondiente.

– Ambas cantidades (función de correlación y ruido) se emplean en el Capı́tulo (12) para evaluar
valores medios de algunos operadores del sistema a través de la EES. En primer lugar, mostramos
que el esquema estocástico es equivalente a la ecuación maestra tradicionalmente empleada para
tratar este tipo de sistemas. En segundo lugar, mostramos que la función de correlación que
proponemos da lugar a los fenómenos fı́sicos previamente estudiados en la literatura. Finalmente
calculamos algunas FCM del sistema.
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• En la Parte (V) se establecen algunas conclusiones y se definen perspectivas para trabajos futuros.

Al final de la tesis se incluyen una serie de apéndices, que aunque no son necesarios para seguir el trabajo,
completan algunos de los cálculos y conceptos descritos.

18.2 RESUMEN DE LA PARTE I

18.2.1 Capı́tulo 1: Sistemas cuánticos abiertos no-Markovianos.

En este capı́tulo se presentan los modelos generales de Hamiltoniano que describen los sistemas tratados
en la tesis. Se trata en particular de sistemas cuánticos abiertos en los que la interacción con los grados
de libertad del entorno, que además se supone descrito a través de un conjunto de osciladores armónicos,
es de tipo lineal. Se explican además en qué tipo de sistemas aparece interación de tipo no-Markoviano,
efectuándo una descripción cualitativa de la misma basada en la densidad de estados fotónica.

La dinámica de un sistema cuántico abierto se describe habitualmente considerando que éste es parte de
un sistema total mayor, el cuál está aislado erspecto al resto del mundo. El Hamiltoniano del sistema total
se denota comoHtot = HS +HB +HI , dondeHS es el Hamiltoniano del sistema cuántico abierto (a partir
de ahora referido tan solo como sistema), HB el Hamiltoniano de su entorno, y HI es el Hamiltoniano de
interacción entre sistema y entorno.

Cuando el entorno es grande, su escala de evolución temporal es en general pequeña en comparación
con las escalas de tiempo relevantes del sistema. La escala de tiempo del entorno se caracteriza por el
tiempo de correlación τc, que es el empleado por el mismo en recobrarse de la interación con el átomo.
Del mismo modo, la escala de evolución del sistema es caracterizada por el tiempo TA que es el que tarda
en relajar al equilibrio una vez que es puesto en contacto con el entorno. Existen ciertas situaciones en
las que la separación de las escalas temporales es tan grande que τc es prácticamente cero en comparación
con TA. Este tipo de interacciones, que pueden ser tratadas con la denominada aproximación Markoviana,
dan lugar a una dinámica del sistema que es local en el tiempo, es decir, que no depende de la historia de
la evolución. En otras situaciones el tiempo de correlación del entorno es del orden de TA, lo que podrı́a
influı́r significativamente en la dinámica del sistema haciendose necesario un tratamiento no-Markoviano
de la interacción. Las interacciones no-Markovianas se dan en múltiples contextos, entre los que podemos
destacar los siguientes,

• En fı́sica del estado sólido los efectos no-Markovianos son especialmente visibles a bajas temperaturas.
Uno de los modelos más comúnmente empleados es el de Caldeira and Legget [20, 22], que describe
un oscilador armónico linealmente acoplado a través de su coordenada de desplazamiento q a un
entorno o baño, el cual es descrito a su vez por un conjunto de osciladores armónicos. En muchos
sistemas fı́sicos y quı́micos, la coordenada generalizada q viene asociada a un potencial efectivo que
tiene dos mı́nimos bien diferenciados y situados en la misma energı́a. En tal caso, ya que dicho
sistema solo consta de dos estados estables, el espacio de Hilbert del sistema se reduce a un espacio
bidimensional. Esta situación, que es descrita por el denominado modelo spin-boson, se encuentra
en numerosos ejemplos, como en el movimiento de defectos en una red cristalina, en el tuneleo de
partı́culas ligeras en metales, y en ciertos tipos de reacciones quı́micas que incorporan procesos de
transferencia electrónica (ver or ejemplo [22] ası́ como sus referencias).

• En óptica cuántica numerosos efectos no Markovianos están presentes en los procesos de emisión y
absorción de la luz, en particular cuando el campo de radiación se encuentra en un entorno estructurado.
Entre dichos entornos estructurados destacan en especial las cavidades cuánticas [23, 24, 25, 26], y
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los materiales de banda fotónica (MBF), que presentan una periodicidad en el ı́ndice de refracción
[27, 28].

• Los efectos no Markovianos surgen igualmente en la dinámica de los condensados Bose-Einstein
(CBE). En éstos sistemas, los átomos se encuentran atrapados en su estado fundamental, de donde
son extraı́dos a través de una doble transición laser a un estado final excitado, generandose de este
modo un láser atómico. Como ejemplo particular de comportamiento no-Markoviano, el número de
ocupación de los átomos en el estado fundamental presenta una serie de oscilaciones que pueden ser
interpretadas como un sı́ntoma de interferencia cuántica, y que está en clara diferencia con la Regla
de Oro de Fermi que predice decaimiento exponencial [30, 31, 32].

A lo largo de la tesis se estudian principalmente dos tipos de sistemas: (a) El modelo spin-boson válido
para interacciones de un sistema de dos niveles con cualquier reserva bosónica (ya sea de fotones o de
fonones) bajo ciertas condiciones fenomenológicas. (b) Un átomo acoplado a un campo de radiación con
interacción dipolar.

Dado que las ecuaciones dinámicas que aquı́ tratamos son válidas para un modelo general de Hamiltoniano
de interacción lineal sistema-entorno, la metodologı́a podrı́a ser aplicada a otros problemas, tales como la
dinámica de condensados de Bose-Einstein.

El capı́tulo comienza presentando el modelo de Caldeira y Legget, ası́ como el modelo Spin-Bosón al
cuál se reduce bajo ciertas condiciones [20, 22, 33, 34]. En este esquema, el Hamiltoniano de interacciónHI

es proporcional a SB, donde B es un operador que pertenece al espacio de Hilbert del entorno, y S = q es
el operador de acoplamiento del sistema. El operador de acoplamiento del entorno B ∝ ∑λ gλF(aλ, a

†
λ),

donde gλ son las constantes de acoplamiento del sistema con cada uno de los osciladores armónicos λ que
describen el entorno, y F(aλ, a

†
λ) es una función determinada de los operadores de creación y de destrucción

a†λ y aλ.
El Hamiltoniano lineal de interacción propuesto en el modelo de Caldeira-Legget puede ser generalizado

y expresado como una suma sobre muchos operadores de acoplamiento de baño y sistema, es decir i.e.
HI =

∑

β SβBβ . Particularmente, el Hamiltoniano de interacción entre un campo bosónico y un campo
fermiónico posee dicha forma. Un ejemplo de este tipo de sistemas es un átomo (cuyos electrones forman el
campo fermiónico), en contacto con el campo de radiación (el cual es bosónico). Del mismo modo que en el
modelo de Caldeira-Legget, se encuentra que los operadoresBβ poseen la formaBβ ∝∑λ gλ,βFβ(aλ, a

†
λ).

No obstante, en contraste con el modelo anterior, en este sistema se conocen las dependencias exactas de
los operadores de acoplamiento gλ,β .

Se introduce a continuación una nueva notación, que consiste en expresar el Hamiltoniano de interacción
en término de los denominados operadores de Lindblad {Lλ}, que son combinaciones de los operadores de
acoplamiento del sistema {Sβ}. El Hamiltoniano del sistema total en su forma Lindblad se emplea como
modelo general a partir del cual se desarrollan la mayor parte de las ecuaciones empleadas en ésta tesis en la
descripción de la dinámica de un sistema cuántico abierto. Existen dos razones fundamentales para el uso de
la forma Lindblad: la primera es que cuando la interacción es Markoviana da lugar a una ecuación maestra
que preserva la positividad del operador densidad reducida, y la segunda es que es uno de los Hamiltonianos
más comunmente empleados para el estudio de sistemas cuánticos abiertos.

Como ya se ha mencionado anteriormente, una cantidad fundamental para caracterizar la influencia del
entorno en el sistema es la función de correlación del mismo, α(t), ya que aparece en todas las ecuaciones
dinámicas del sistema, y además determina el tiempo de memoria o tiempo de correlación del entorno tras
la interacción τc. La función de correlación es proporcional a la suma del cuadrado de las constantes de
acoplamiento del sistema con cada oscilador armónico, α(t) ∝

∑

λ g
2
λP(t, ωλ), donde P(t, ωλ) es una

determinada función que no depende del modelo en cuestión.
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En el continuo, esta suma se transforma en una integral cuyo kernel es la llamada función densidad
espectral, J(ω), de tal modo que α(t) =

∫

dωJ(ω)P(t, ω). Dado que P(t, ω) tiene la misma forma para
cualquier sistema, la función densidad espectral contiene la misma información que la función de correlación,
caracterizando de forma equivalente la interacción del entorno sobre el sistema.

Tratamos en la Sección (1.3) algunos aspectos concernientes a la función de correlación y a la densidad
espectral, en especial las caracterı́sticas que determinan que la interacción sea Markoviana o no-Markoviana.
Existen dos métodos distintos para derivar la función de correlación.

El primero, es conocido como microscópico ya que se basa en el conocimiento de la forma de las con-
stantes de acoplamiento. En este capı́tulo se ilustra el método empleando las constantes de acoplamiento
que caracterizan la interacción de un sistema de dos niveles con el campo electromagnético en el vacı́o,
para derivar una función de correlación tı́picamente Markoviana. Se encuentra que en dicha interacción,
la función J(ω) varı́a suavemente en frecuencias en comparación con el ritmo de emisión espontánea del
átomo Γ, de modo que puede ser considerada aproximadamente constante. En los siguientes capı́tulos se
hacen derivaciones más complicadas de funciones de correlación correspondientes a átomos en entornos es-
tructurados. Como ya se ha mencionado en la introducción, estos sistemas son tı́picamente no-Markovianos,
por lo que la densidad espectral varı́a en un rango de frecuencias comparable con Γ y no debe ser aproximada
como constante.

El segundo método es empleado cuando no se conoce la forma exacta de las constantes de acoplamiento,
tal y como ocurre en el modelo de Caldeira y Legget. La función espectral se ha de construı́r ahora acorde
con diversos argumentos de tipo fenomenológico. Se presenta en este capı́tulo la derivación empleada para
el cálculo de la J(ω) empleada en el modelo spin-boson que será integrado posteriormente.

18.2.2 Capı́tulo 2: El operador reducido del sistema

Presentamos el propagador reducido del sistema, que es la herramienta básica con la que se van a derivar gran
parte de las ecuaciones dinámicas de esta tesis. El propagador reducido es la representación del operador
de evolución unitario del sistema total en la base de estados coherentes Bargmann del baño. Se trata de un
objeto que propaga temporalmente el estado cuántico del sistema dados un determinado estado inicial y final
del entorno. La ecuación de evolución del propagador, que constituye uno de los resultados de esta tesis,
depende de dos funciones temporales zi,t y zi+1,t que dependen de los números cuánticos que determinan
respectivamente dichos estados inicial y final del entorno.

Por tratarse de una interacción de tipo Markoviano, la ecuación de evolución del propagador del sistema,
ecuación (2.40), es abierta. Ello significa que no depende únicamente del propagador que se está evolu-
cionando, sino de un objeto que pertenece al espacio de Hilbert del sistema total. Si queremos expresar la
ecuación en espacio de Hilbert del sistema, es preciso introducir una relación de cierre del baño en dicho ob-
jeto, que queda transformado en una suma sobre las trajectorias de otros propagadores. Esta nueva manera de
espresar la ecuación muestra que, cuando no se establece ninguna aproximación, la dinámica del propagador
reducido del sistema estaá enmarañada con el resto de los propagadores. Dado que dicho enmarañamiento
solo existe a lo largo de un tiempo τc, es propio tan solo de interacciones de tipo no-Markoviano. Al ser
abierta, la ecuación (2.40) es difı́cil de manejar desde el punto de vista computacional, y solo nos servirá de
base para, en el Capı́tulo (8), derivar la jerarquı́a de ecuaciones que obedecen las funciones de correlación.

El empleo para fines prácticos de la ecuación del propagador requiere transformar la anterior ecuación en
una ecuación cerrada, que perteneciendo al espacio de Hilbert del sistema sólo dependa del propagador que
se está evolucionando. La manera de obtener dicha ecuación es aplicando alguna hipótesis o aproximación
sobre el sistema. En todas las hipótesis coincide el hecho de que el objeto o elemento de matriz que hace
abierta la ecuación es expresado en términos de un determinado operador O multiplicado por el propagador
que se está evolucionando. Destacamos la hipótesis de consistencia o expansión, la hipótesis perturbativa, y
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la aproximación que consiste en considerar que en el problema que se trata la interacción es casi Markoviana.
A lo largo de la tesis, empleamos fundamentalmente la aproximación perturbativa, que consiste en asumir que
la energı́a de la interacción, expresada a través de su Hamiltoniano, es pequeña en magnitud en comparación
con la energı́a del sistema libre. En esta aproximación el operadorO se calcula a través de una serie de Taylor
sobre un parámetro perturbativo g. Dicho parámetro, también conocido como constante de acoplamiento,
regula la diferencia en magnitud entre el Hamiltoniano de interacción y el Hamiltoniano libre. Mostramos
igualmente como el parámetro g está relacionado también con τc.

El propagador reducido del sistema es fundamental para la obtención de las cantidades que describen
su dinámica, ya sean valores medios o funciones de correlación múltiples. No obstante, como ya se ha
mencionado, es condición indispensable para ello el poder efectuar el promedio sobre los distintos estados
iniciales y finales posibles del entorno. A lo largo de esta tesis vamos a emplear dos tipos de promedio:

• De tipo estocástico. Consiste en considerar dicho promedio como un muestreo de tipo Montecarlo, en
el cual se sortean estados aleatorios del entorno acorde con su distribución. La ecuación del propagador
pasa a ser una ecuación estocástica de Schrödinger. La consideración del propagador como estocástico
ya fue efectuada en [41], pero entonces solo existı́a la ecuación dinámica para un entorno inicialmente
en el vacı́o.

• De tipo analı́tico. Consiste en efectuar la suma sobre estados del baño analı́ticamente, acorde con el
denominado Teorema de Novikov. Constituye un resultado de esta tesis la extensión de dicho teorema
necesaria para tratar promedios con propagadores en los que el estado inicial del baño no es el vacı́o.

En las Partes (II) y (III) se emplea la ecuación cerrada (2.52) para derivar la ecuación maestra, ası́ como
las ecuaciones de funciones de correlación múltiples hasta segundo orden en el parámetro perturbativo.
Cuando considera el vacı́o como el estado inicial del entorno, por lo que zi+1,t = 0, la integración de
la ecuación de evolución del propagador da lugar el operador densidad reducido con condición inicial
ρs(0) = TrS (ρtot(0)) = TrS (|ψ0〉〈ψ0| ⊗ |0〉〈0|), una vez que el promedio sobre el estado final del
entorno zi se ha efectuado. Como hemos dicho, este procedimiento ya ha sido descrito anteriormente en la
literatura [54, 55, 6]. Para un estado inicial del entorno distinto del vacı́o, zi+1 6= 0, el propagador reducido
puede ser empleado para calcular una nueva ecuación maestra adecuada para condiciones iniciales generales
de sistema y entorno, ası́ como funciones de correlación múltiples.

18.3 RESUMEN DE LA PARTE II: VALORES MEDIOS CUÁNTICOS.

18.3.1 Capı́tulo 4: Introducción

Tradicionalmente, la investigación de sistemas cuánticos abiertos quedaba centrada en el problema de deter-
minar la evolución del operador densidad reducido a través de unas ecuaciones de evolución ρ̇s denominadas
ecuaciones maestras, pues el conocimiento de ρs en cada instante, permite calcular el promedio de cualquier
observable A del sistema a través de la expresión tı́pica

〈A(t)〉 = Trs{ρs(t)A}. (18.1)

Estas ecuaciones maestras son el equivalente cuántico a las ecuaciones de evolución de la distribución de
probabilidad clásica que ya hemos mencionado en la introducción.

En años recientes, se ha desarrollado un método distinto para el estudio de sistemas cuánticos abiertos, que
consiste en resolver la dinámica del sistema a través de soluciones |ψt(z∗)〉 de una ecuación de Schrödinger
que ahora es estocástica debido a la interacción con el medio. El carácter estocástico de |ψt(z∗)〉 se imprime
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a través de la dependencia con un cierto ruido z∗t que caracteriza el efecto del medio sobre el sistema. Más
adelante trataremos de dar una explicación más concreta de la procedencia de esta variable y de su conexión
con el estado del medio. En ocasiones adoptaremos la terminologı́a comúnmente empleada de referirnos a
las soluciones |ψt(z∗)〉 como trayectorias cuánticas [52].

Las ecuaciones estocásticas de Schrödinger tienen como propiedad el que un promedio en la variable
z∗ al conjunto estadı́stico de sus soluciones a un tiempo t, |ψt(z∗)〉, definiendo este promedio como M [|
ψt(z

∗)〉〈ψt(z) |] da lugar a la matriz densidad reducida a dicho tiempo:

ρs = M [| ψt(z∗)〉〈ψt(z) |]. (18.2)

Esta relación a menudo se dice que representa un revelado de la dinámica del operador densidad reducido,
y como veremos más adelante, entraña también un desenmarañamiento efectivo de la dinámica sistema-
entorno.

El esquema estocástico presenta diversas ventajas respecto al tradicional representado por las ecuaciones
maestras.

• En las ecuaciones maestras, la tarea consiste en determinar la dinámica del operador densidad reducido
ρs, que es una matriz N ×N , siendo N la dimensión del espacio de Hilbert del sistema abierto. En
general estas ecuaciones solo pueden ser determinadas de forma aproximada, o empleando modelos
simples para el sistema y su entorno. Incluso cuando es posible derivar una evolución cerrada para ρs,
si queremos calcular la evolución de sistemas cuánticos con un número de dimensiones grande, nos
encontraremos con problemas numéricos importantes a la hora de manejar matrices cada vez mayores.

El esquema estocástico supone resolver en cada trayectoria una solución |ψt(z∗)〉 de dimensión N,
por lo que un aumento de grados de libertad no resulta tan grave como en el caso de las ecuaciones
maestras.

No obstante, como veremos más adelante, dada una determinada dimensión N, el metodo de las
ecuaciones estocásticas solo resulta eficaz numericamente si el conjunto de trayectorias que se escogen
para efectuar el promedio (18.2) es estadı́sticamente significativo. Como veremos más adelante, la
estadadı́stica escogida para las trayectorias dará lugar a distintos tipos de ecuaciones estocásticas de
Schrödinger, y el objetivo principal de este trabajo será justificar en que condiciones son más eficaces
unas ecuaciones u otras.

• Aparte de las ventajas numéricas, las ecuaciones estocásticas de Schrödinger presentan otras propiedades
importantes. Principalmente, proporcionan mayor información de la dinámica del sistema cuántico
abierto que las ecuaciones maestras, en las que los grados de libertad del entorno son eliminados
mediante una traza y, por tanto, permanecen sin ser observados. En las ecuaciones estocásticas, la
dinámica de los grados de libertad del baño son una parte explı́cita de la descripción. En concreto,
los vectores de estado del sistema dependen del estado del baño, por lo que se dice que la ecuación
estocástica describe en realidad una dinámica condicionada.

Podemos distinguir dos tipos básicos de esquema estocástico para la evolución de la función de ondas
en imagen de Schrödinger: En el primero la evolución de dicha función es determinista hasta que se ve
interrumpida por procesos de salto estocásticos que la proyectan instantáneamente a un estado cuántico. En
el segundo esquema la evolución es gobernada a través de una variable estocástica continua2, que actúa en
cada momento infinitesimal de la dinámica del sistema.

2La variable estocástica, se denomina en este caso proceso Wiener [51]
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Al primero de los esquemas estocásticos descritos pertenece el denominado método de saltos cuánticos.
Éste corresponde a una dinámica del sistema condicionada por una sucesión continua de medidas del número
de fotones del entorno. Debido a que sistema y entorno están entrelazados, una medida sobre el segundo
afecta a la dinámica del primero. Ası́, en el caso de un átomo inmerso en un campo de radiación, podemos
saber si se encuentra en el estado excitado o en el fundamental en función de si hemos medido o no un
fotón en el baño. Debido a que el resultado de esta medida es estocástico, si repetimos el procedimiento
sucesivas veces (ya sea desde una misma condición inicial o desde un conjunto de ellas), obtendremos
un conjunto estadı́stico de trayectorias. El promedio sobre el mismo nos permite obtener el resultado
tradicionalmente obtenido por la ecuación maestra para el operador densidad reducido del sistema, esto
es, un decaimiento exponencial de la probabilidad de ocupación del estado excitado. Este esquema tiene
como principal inconveniente el que sólo es aplicable a sistemas cuya interacción con el baño es de tipo
Markoviano, es decir, aquellos en los que la escala temporal de relajación del entorno es mucho menor que
la del sistema.

Al segundo esquema de proceso estocástico, que da lugar a una ecuación de Schrödinger continua y
difusiva, corresponde el llamado método de difusión del estado cuántico (QSD), propuesto por Gisin [83]
y más tarde desarrollado también por Percival [88], y que permite, a diferencia de los saltos cuánticos, generar
ecuaciones estocásticas aptas para el caso en el que la interacción con el baño sea tipo no-Markoviano. En
el caso Markoviano en el que es posible establecer medidas continuas sobre el entorno sin alterarlo, las
trayectorias difusivas corresponden al resultado de experimentos de detección homidı́nica y heterodı́nica
[93, 94].

Es de señalar que las ecuaciones estocásticas de Schrödinger difusivas, pasando a imagen de Heisenberg,
dan lugar a ecuaciones estocásticas de evolución de operadores. Calculando por ejemplo la ecuación de
evolución del operador posición de una partı́cula cuántica sometida a movimiento Browniano, obtendremos
el equivalente cuántico de la ecuación de Langevin.

En este estudio se emplearán ecuaciones estocásticas de Schrödinger obtenidas en el marco del método
de difusión del estado cuántico y se aplicarán al caso más general no-Markoviano.

18.3.2 Capı́tulo 5: Valores medios cuánticos de un sistema con interacción
no-Markoviana

En el anterior capı́tulo se discutieron las distintas derivaciones de ESS que aparecen en la literatura, tanto para
interacciones Markovianas como no Markovianas, ası́ como la interpretación de las primeras en términos
de medida continua. En este capı́tulo se particulariza a las ESS no-Markovianas derivadas por el método de
proyección de Feshbach [1, 37], ası́ como las derivadas a través de los propagadores reducidos cuando éstos
son considerados como estocásticos [3, 4, 41].

La motivación del capı́tulo es doble: Primero, estudiar y comparar las distintas ESS existentes en la
literatura, con el objeto de probar su equivalencia con la ecuación maestra, ası́ como su eficiencia. Tal
eficiencia tiene que ver con el número de trajectorias necesarias para, a través del promedio estocástico,
obtener el operador densidad reducido, ası́ como con el tiempo empleado en la integración de cada una de
las mismas. Segundo, emplear el propagador reducido para derivar ecuaciones maestras correspondientes a
distintas condiciones iniciales.

Acorde con estas dos metas, el capı́tulo se divide en dos Secciones
En la Sección (5.1), se estudia la evaluación de promedios cuánticos a través de un sampleo numérico

de las distintas trajectorias estocásticas. Pese a no existir por el momento ninguna interpretación de las
EES no-Markovianas en término de experimentos de medida continua, su utilidad no solo está relacionada
con dicha interpretación. Incluso no dando ninguna interpretación fı́sica al estado que se evoluciona, la
formulación de trajectorias estocásticas constituye una herramienta eficiente desde el punto de vista numérico
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en comparación con las ecuaciones maestras. Dicha eficiencia depende de dos factores principales: 1) que
el número de grados de libertad del sistema sea grande, y 2) que el muestreo de la EES sea bueno, de
forma que solo sea necesario un número pequeño de trajectorias estocásticas para efectuar los promedios.
El primer factor es intrı́nseco al sistema particular que se estudie, mientras que el segundo depende del
modelo de ecuación estocástica elegido. En esta primera Sección tratamos de responder a la pregunta de
cual es el modelo de ecuación que mejora el muestreo, y cuándo dicha mejora es suficientemente significativa
como para decidirse por tal modelo. Estudiando en particular un modelo spin-boson, encontramos que la
temperatura del medio es un factor fundamental que considerar a la hora de seleccionar el modelo adecuado
de EES, ya que dicha temperatura altera de manera significativa la distribución de estados del sistema y, por
tanto, la estadı́stica del ruido.

En la Sección (5.2), nos centramos en el uso de los propagadores reducidos para calcular valores medios
a través de la ecuación maestra del operador densidad reducido. Tal y como fue introducido en el Capı́tulo
(2), cuando el promedio de los propagadores reducidos no se hace mediante el método estocástico sino
analı́ticamente, dichos propagadores pueden ser empleados para derivar ecuaciones maestras. Señalamos a
continuación dichas condiciones iniciales, ası́ como las correspondientes ecuaciones,

• El sistema y el entorno están inicialmente decorrelacionados, de modo que

ρtot(t0) = ρs(t0) ⊗ ρB(t0). (18.3)

Se consideran aquı́ dos casos para la matriz densidad del baño, ρB correspondiente al estado del
vacı́o, y ρB correspondiente a un estado termal. La ecuación maestra correspondiente al primer caso
ya habı́a sido obtenida en la literatura mediante el promedio analı́tico de propagadores reducidos. Sin
embargo, la segunda ecuación no habı́a sido obtenida mediante dichos propagadores, sino a través de
un procedimiento distinto [54]. La razón es que cuando el baño es térmico se precisa el propagador
reducido en el que el estado inicial no es el vacı́o, objeto que como hemos dicho es introducido por
vez primera en este trabajo.

• El sistema y el entorno están inicialmente correlacionados,

ρtot(t0) = ρs(t0) ⊗ ρB(t0) + ρcorrel(t0), (18.4)

donde el último término ρcorrel corresponde a una cierta correlación inicial. En estas circunstancias
es de nuevo precisa la utilización de un propagador reducido en el que el estado inicial el baño no sea
el vacı́o. Gracias al mismo, y a través de un promedio analı́tico, derivamos la ecuación maestra que
evoluciona el operador densidad reducido.

18.4 RESUMEN DE LA PARTE III: FUNCIONES DE CORRELACIÓN MULTITEMPORALES

18.4.1 Capı́tulo 7: Introducción y motivación

Hay situaciones en las que los valores medios de los observables del sistema no son suficientes para describir
las caracterı́sticas esenciales de su comportamiento fı́sico. Podemos encontrar ejemplos de ésto en fı́sica
estadı́stica y en espectroscopı́a, campos en los que se estudia la respuesta del sistema a un campo magnético
externo.

En este capı́tulo motivamos el uso de las funciones de correlación múltiples en el campo de la óptica
cuántica, y lo hacemos con dos ejemplos diferentes. En primer lugar, las correlaciones a dos tiempos del
campo electromagnético emitido por el átomo son necesarias para el estudio de sus propiedades espec-
troscópicas. Mostrando cuál es la relación de dicha correlación con la correlación de operadores del sistema
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para el caso no-Markoviano, vemos que el espectro puede ser calculado a través de dichas correlaciones.
En segundo lugar, las funciones de correlación a dos tiempos del número de fotones emitidos permiten
la descripción de un efecto púramente mecano cuántico, que es el denominado anti-bunching fotónico.
Dichas correlaciones pueden ser expresadas en función de una correlación a cuatro tiempos de operadores
del sistema, lo que muestra nuevamente la utilidad de una teorı́a para el cálculo de funciones de correlación
múltiples.

18.4.2 Capı́tulo 8: Jerarquı́a de FCM non-Markovianas

Se deriva en este capı́tulo la jerarquı́a de ecuaciones que obedecen formalmente las funciones de correlación
múltiples no-Markovianas cuando no se establece ninguna aproximación. Se emplean dos métodos distintos
en el desarrollo de dichas ecuaciones: el primero, descrito en la Sección (8.1), está basado en utilizar
propagadores reducidos del sistema, mientras que el segundo, explicado en la Sección (8.2), está basado en
el uso de las ecuaciones de Heisenberg de operadores del sistema.

La estrutura jerárquica consiste en lo siguiente: la ecuación de evolución para funciones de correlación
de un tiempo (es decir, promedios cuánticos), depende de funciones de correlación a dos tiempos. Y más
aún, la ecuación de evolución de dos tiempos depende de funciones de correlación de tres tiempos. Lo
mismo ocurre con la ecuación de evolución de correlaciones a tres tiempos, que depende de funciones de
correlación a cuatro tiempos. En resumen, la evolución de funciones de correlación no-Markovianas de
N -tiempos de operadores del sistema depende de funciones de correlación de N + 1-tiempos cuando no se
ha efectuado ninguna aproximación.

La jerarquı́a solo ocurre en interacciones de tipo no-Markoviano, puesto que desaparece cuando la función
de correlación del baño, α(t), es proporcional a una delta, como es propio de un baño Markoviano. Un
uso práctico de las ecuaciones de evolución de funciones de correlación multitemporales pasa por romper la
jerarquı́a y eliminar la dependencia con funciones de correlación de orden superior mediante el uso de alguna
hipótesis. Esta idea es llevada a cabo en el siguiente capı́tulo, en el cual se considera una aproximación de
acoplamiento débil hasta segundo orden en el parámetro de acoplamiento.

18.4.3 Capı́tulo 9: FCM no-Markovianas hasta segundo orden en el parámetro
perturbativo

Se presentan en este capı́tulo tres métodos distintos para derivar las funciones de correlación multitemporales
hasta segundo orden en el parámetro perturbativo.

El primero, descrito en la Sección (9.1), es esencialmente numérico, y consiste en hacer el promedio
al conjunto de distintas trajectorias estocásticas. Estas trajectorias se obtienen empleando la ecuación a
segundo orden del propagador reducido (7.50), en la cual O(zi+1z

∗
i , t, τ) = Vt−τL.

Los otros dos métodos consisten en derivar el conjunto de ecuaciones diferenciales que obedecen las
FCM: En la Sección (9.2.1) se obtiene dicho conjunto haciendo una expansión perturbativa del propagador
reducido, y luego realizando el promedio analı́tico sobre las variables medioambientales zi+1 y zi. En
la Sección (9.2.2), se presenta un tercer método consistente en aplicar la hipótesis perturbativa a segundo
orden a la jerarquı́a de ecuaciones de evolución derivada en el anterior capı́tulo. Como ya hemos notado,
para utilizar la jerarquı́a de ecuaciones computacionalmente, y no solo como una derivación formal, debe
romperse la dependencia con correlaciones de órdenes superiores. En este capı́tulo hacemos esto empleando
una hipótesis perturbativa a segundo orden diréctamente en la correlación a tiempoN que queremos calcular,
de modo que desaparece su dependencia con correlaciones a tiempo N + 1.
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18.5 PARTE IV: DINÁMICA DE UN SISTEMA DE DOS NIVELES EN UN MATERIAL DE
BANDA FOTÓNICA

18.5.1 Capı́tulo 11: El modelo

Cuando la luz penetra en un medio con diferente ı́ndice de refracción, puede ser reflejada y refractada.
Mientras que la luz reflejada regresa a través del medio incidente, la luz refractada penetra a través del nuevo
medio y sufre un cambio de velocidad, el cuál a su vez es responsable de una variación en su dirección de
propagación. La luz que atraviesa un medio homogéneo en el que no hay variación del ı́ndice de refracción
no será ni reflejada ni refractada en ninguna dirección.

Supongamos ahora que construı́mos un material en el que el ı́ndice de refracción varı́a solo en una
dirección. En ese caso, solo la luz que se propaga en esa dirección será reflejada y refractada. Considerando
además que el cambio en el ı́ndice de refracción es periódico, el proceso de reflexión se repetirá cada vez
que la luz sufre un nuevo cambio en el ı́ndice de refracción. Este tipo de materiales puede ser construı́do
alternando capas de alto ı́ndice de refracción y de anchura a con capas de bajo ı́ndice y anchura b. Gracias a
la periodicidad, los rayos de luz son reflejados de forma coherente, produciéndose entre ellos fenómenos de
interferencia. Un máximo en la reflexión se forma cuando los rayos reflejados interfieren constructivamente,
lo que ocurre cuando se verifica la condición de Braag [110].

Para aquellos rayos que penetran perpendicularmente a las capas (esto es, en la dirección de cambio del
ı́ndice de refracción), la condición de Braag está dada por

2a = λ0, (18.5)

donde λ0 es la longitud de onda del vacı́o. Los rayos de luz que penetran perpendicularmente a las capas, y
cuya longitud de onda esté dada por la relación anterior, son reflejados y no aparecen en el cristal fotónico.
Esto da lugar a la formación de un gap en la densidad de estados fotónica correspondiente a las frecuencias
de los modos reflejados.

Siguiendo un procedimiento análogo al anteriormente descrito, es posible fabricar un gap 3D generando
una estrutura dieléctrica perióndica en las tres dimensiones. De este modo, la luz que incide en el material
con una frecuencia relacionada con la periodicidad de la red es reflejada fuera del cristal independientemente
del ángulo de incidencia.

Este tipo de cristales son conocidos como materiales de banda fotónica (también cristales fotónicos), y
fueron inicialmente propuestos por John y Yablonovitch [12, 13, 111] como medios para localizar y atrapar
la luz en un material [13], y para producir la completa inhibición de la emisión espontánea a lo largo de un
amplio rango de frecuencias [12].

Otra forma de entender la estructura de bandas de un cristal fotónico es considerandolos como el análogo
óptico de los cristales semiconductores para electrones. En lugar de una red de átomos periódicamente
ordenada que refleja a los electrones modificando su relación energı́a momento, un material fotónico está
compuesto de una red periódica en el ı́ndice de refracción. En cristales semiconductures, los autovectores
del electrón en presencia de la red periódica difieren de aquellos propios del vacı́o, de modo que para ciertos
autovalores no existe un autovector correspondiente. Del mismo modo, en un cristal fotónico existen ciertos
valores de frecuencia para los que no hay un vector de ondas o modo del campo correspondiente. De esta
forma, la relación entre ambas magnitudes, también conocida como relación de dispersión, presenta una
estructura especial en la que las bandas de frecuencias permitidas (para las que si existen modos del campo),
están separadas por bandas de valores de frecuencia prohibidos o gaps.

Como ya se ha mencionado, la densidad de estados del campo de radiación presenta regiones de frecuencia
en las que es cero, correspondientes a los gap, separadas por zonas donde es no nula, correspondientes a
las bandas, en las que puede llegar a tener valores incluso más altos que en el vacı́o. Además, la densidad
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de estados fotónicos varı́a rápidamente en el borde del la banda que limita con el gap, lo que implica que
el tiempo de correlación de las fluctuaciones del vacı́o no es despreciable en comparación con la escala de
evolución temporal del sistema. Este factor hace inapropiada la aproximación Markoviana habitualmente
empleada en óptica cuántica. La dinámica de un átomo excitado con frecuencia de resonancia cercana al
eje del gap presenta algunas caracterı́sticas particulares, que incluyen la inhibición de la emisión espontánea
[112], una fuerte localización de la luz [13], la formación de estados enlazados átomo-fotón [113] y la
inversión atómica en el estado estacionario [114].

Los materiales de banda fotónica han atraido una atención considerable tanto entre cientı́ficos como entre
ingenieros, debido a sus muchas posibilidades y aplicaciones. En este trabajo, nos ocupamos en particular
de dar una descripción teórica de algunos de los aspectos de la dinámica de un átomo de dos niveles en tal
tipo de materiales, incluyendo alguno de los efectos arriba mencionados. Para ello aplicaremos algunas de
las ecuaciones dinámicas desarrolladas en las Partes (II) y (III) a tal sistema.

Comenzamos generando un modelo para describir el sistema. En el Capı́tulo (1) ya fueron obtenidos el
Hamiltoniano de un átomo de dos niveles en contacto con un campo de radiación, ası́ como las dependencias
de las constantes de acoplamiento gλ. También se mostró que la función de correlación del entorno α(t− τ)
puede ser construı́da con el conocimiento de tales constantes y de las frecuencias del correspondiente
oscilador armónico ωλ. Entre otros factores, las gλ dependen de la relación de dispersión del campo. En
este capı́tulo se propone un modelo particular para la relación de dispersión del campo en un material de
banda fotónica, y se sigue el modelo de derivación microscópica propuesto en la Sección (1.3.1.1) para
generar la función α(t − τ) caracterı́stica de tal tipo de campo. Tal y como se ve a lo largo de la tesis,
dicha función es básica, ya que forma parte de todas las ecuaciones dinámicas que evolucionan tanto valores
medios como funciones de correlación multitemporales de un sistema cuántico abierto. En la literatura
han sido propuestas anteriormente algunas funciones de correlación del entorno [42]. No obstante, todas
ellas presentan el problema de ser singulares en el origen, lo que las hace inapropiadas para generar el
ruido zt tal que el promedio de su autocorrelación, M[ztz

∗
τ ] = α(t − τ). La función de correlación que

nosotros proponemos captura gran parte de los aspectos fı́sicamente relevantes de las ya existentes, y además
describe con mayor precisión que éstas el comportamiento a tiempos cortos. Por esta razón, no presenta una
singularidad en el origen, siendo entonces apta para la generación del ruido que nos permite el empleo de
un esquema estocático.

18.5.2 Capı́tulo 12: Promedios cuánticos y fluctuaciones.

Estudiamos ahora la dinámica de los valores medios, emplando una ecuación de Schrödinger estocástica.
Con el objeto de verificar la validez de la formulación estocástica, estudiamos algunos de los fenómenos
fı́sicos que ocurren en un átomo dentro de un material de banda fotónica, como por ejemplo la aparición de
población residual en el estado excitado a tiempos largos, el estado enlazado átomo-fotón, y la inversión de
población que ocurre cuando además se le aplica al átomo un campo láser externo [6, 42].

Además de la ecuación estocástica, estudiamos las dos ecuaciones maestras perturbativas hasta segundo
orden que fueron presentadas en el Capı́tulo (5): la ecuación convolucionada y la ecuación no convolucionada.
Mostramos que ésta última, que además es la que se ha empleado en estudios previos, no preserva la
positividad para determinados valores de los parámetros empleados, mientras que la no convolucionada
preserva por construcción la positividad.

Finalmente, estudiamos algunas fluctuaciones del átomo de dos niveles. Tal y como se trató en el
Capı́tulo (III), estos resultados podrı́an servir como punto de partida para el cálculo del espectro de emisión
de dicho átomo. Del mismo modo, se podrı́an calcular funciones de correlación a cuatro tiempos, con
el objeto de observar efectos como el anti-bunching fotónico. Como hemos mencionado anteriormente,
estos dos fenómenos (espectro de emisión y anti-bunching) han sido ampliamente estudiados para el caso
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Markoviano, pero no para interacciones no-Markovianas. Nuestro trabajo, por tanto, resulta un punto de
partida prometedor para futuras investigaciones.

La formulación que presentamos en esta parte de la tesis para describir átomos en materiales de banda
fotónica puede ser extendida para el estudio de sistemas más complejos, como por ejemplo átomos de más
de dos niveles inmersos en estruturas fotónicas más complejas. Una formulación estocástica como la que
hemos empleado resulta especialmente interesante para tratar átomos de más de dos niveles, puesto que
como se ha explicado anteriormente la mejora computacional de dicha formulación respecto a la ecuación
maestra resulta especialmente significativa cuando aumentan los grados de libertad del sistema en cuestión.

18.6 CONCLUSIONES

Hemos estudiado y derivado las herramientas necesarias para describir un sistema abierto no-Markoviano
acoplado linealmente a un entorno de osciladores armónicos. Como ejemplo, hemos aplicado las ecuaciones
a un átomo acoplado dipolarmente al campo de radiación existente en un CF. Recogemos aquı́ algunos de
los resultados y conclusiones principales de esta tesis, tratando de dar una visión global del trabajo.

• Comenzamos introduciendo el propagador reducido, que evoluciona el estado del sistema condi-
cionado a un estado inicial y final del entorno. El propagador reducido es el elemento de matriz
del operador de evolución del sistema total en la base de estados coherentes Bargmann del entorno.
Tanto el operador densidad reducido, como las FCM del sistema pueden ser expresados como un
promedio Gaussiano de propagadores reducidos, que es realizado sobre los estados inicial y final del
entorno. El promedio se puede efectuar de dos maneras: Primero, numéricamente, considerando un
muestreo Montecarlo de la suma, de modo que los propagadores reducidos se convierten en propa-
gadores estocásticos. Con este método el operador densidad reducido y las FCM se obtienen evolu-
cionando diversas trajectorias estocásticas, y luego efectuando una suma sobre las mismas. Segundo,
analı́ticamente, lo que permite la obtención de las ecuaciones de evolución del operador densidad
reducido y de las FCM.

• Hemos estudiado el muestreo de distintos modelos de EES para obtener el operador densidad reducido.
Mostramos en particular que las ecuaciones EES de tipo no lineal, que se caracterizan por tener una
distribución dinámica para el ruido, presentan una mejora en el muestreo sólo cuando la temperatura
ambiental es lo suficientemente alta. La razón de ello es que es en dichas condiciones cuando la
función de distribución de los estados del entorno, que coincide con la función de distribución del
ruido, evoluciona considerablemente debido a la interacción.

• A continuación, se ha empleado el propagador reducido para derivar distintas ecuaciones maestras a
través de un promedio analı́tico. El resultado novedoso de esta tesis es el desarrollo de una extensión
del teorema de Novikov para realizar tal promedio con propagadores en los que la condición inicial del
entorno no es el vacı́o. Gracias a ello se ha derivado una nueva ecuación maestra que, en contraposición
a las ya existentes, es apta para la descripción de problemas en los que el medio y el sistema cuántico
no están inicialmente decorrelacionados.

• Hemos elaborado una teorı́a de funciones de correlación multitemporales no-Markovianas. Al ser
éste uno de los resultados principales de la tesis, especificaremos más detalladamente los logros
concernientes al mismo.

– Comenzamos motivando el problema con la presentación de dos posibles aplicaciones de las
FCM en óptica cuántica: el cálculo del espectro de emisión atómico (relacionado con una
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función de correlación a dos tiempos de operadores del entorno), y el cálculo de la estadı́stica
de fotones (relacionado con una función de correlación a dos tiempos de los operadores del
entorno, pero temporalmente ordenada). Señalamos la relación entre funciones de correlación
de los operadores del entorno con funciones de correlación de los operadores del sistema para
el caso no-Markoviano. Tal derivación solo existı́a, en nuestro conocimiento, para el caso
Markoviano.

– Derivamos la ecuación de evolución de las FCM empleando dos métodos: un primero basado
en el uso de propagadores reducidos, y un segundo basado en en el uso de las ecuaciones de
Heisenberg. Se muestra entonces que cuando no se emplea ninguna aproximación, las ecuaciones
de evolución de las FCM se encuentran organizadas en una jerarquı́a, de modo que la evolución de
funciones de correlación deN tiempos depende de funciones deN+1 tiempos. La jerarquı́a solo
tiene uso formal, pues para ser empleada computacionalmente ha de romperse dicha dependencia.

– Rompemos la jerarquı́a mediante el uso de una aproximación perturbativa hasta segundo orden
en el parámetro de acoplamiento, obteniendo ecuaciones para funciones de correlación de N
tiempos.

– El hecho de que las funciones de correlación temporales no-Markovianas obedezcan a una
estructura jerárquica cuando no hay aproximación, muestra ya que el teorema de regresión
cuántico no es un resultado exacto para tal tipo de interacciones. No obstante, al derivar el
conjunto de ecuaciones para FCM hasta segundo orden perturbativo, comprobamos que tampoco
con dicha aproximación se cumple el teorema de regresión. Además, podemos expresar las
ecuaciones de modo que queden explı́citos los términos que hacen que dicho teorema no se
cumpla, mostrandose ası́ que, para el caso Markoviano, dichos términos desaparecen.

– La teorı́a y procedimientos formulados se extienden en un Apéndice a funciones de correlación
con ordenación temporal, las cuales son necesarias por ejemplo para el cómputo de estadı́stica
de fotones. Dichas funciones corresponden además a experimentos de medida continua sobre
el sistema. En general, la teorı́a puede apliarse para cualquier ordenación temporal de los
operadores que se correlacionan.

– Ası́mismo, también la ampliamos para entornos con temperatura T 6= 0, en especial el caso de
funciones de correlación a dos tiempos. Esto nos permitirı́a calcular los efectos de la temperatura
en el espectro.

• Finalmente nos centramos en un problema particular, que es el de un átomo en contacto con el campo
de radiación existente en un material de banda fotónica. Aparte de sus aplicaciones potenciales, este
sistema es de amplio interés en sı́ mismo ya que por su carácter no-Markoviano presenta fenómenos
fı́sicos de gran interés. Desgranamos a continuación algunos de los resultados más importantes
obtenidos en esta Parte,

– Proponemos un nuevo modelo de función de correlación que describe el comportamiento a
tiempos cortos de un modo más preciso que los modelos ya existentes. Con dicha función de
correlación generamos el ruido correspondiente, que nos va a permitir emplear EES para el
cálculo de los valores medios del sistema.

– Con el esquema estocático, estudiamos algunos de los fenómenos fı́sicos que han sido tratados
en la literatura a través del uso de ecuaciones maestras: población residual del nivel excitado
en el equilibrio, existencia de un estado enlazado átomo-fotón, e inversión de población en el
equilibrio cuando el átomo es además sintonizado a un láser externo.
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– Calculamos algunas funciones de correlación a dos tiempos de operadores del sistema. Dichas
funciones son necesarias para computar el espectro de emisión atómico, lo cual conecta directa-
mente con algunas de las perspectivas que el presente trabajo deja abiertas. Esto se explica con
más detalle en la siguiente Sección.

18.7 PERSPECTIVAS

Las últimas dos Partes de esta tesis, concernientes a FCM y a sus aplicación a sistemas en contacto
con materiales de banda fotónica, dejan abierta la posibilidad de computar el espectro de emisión y la
estadı́stica de fotones de dichos sistemas, siempre en el lı́mite de acoplamiento débil.

Resulta especialmente interesante el estudio del espectro de emisión de un átomo con interacción de
tipo no Markoviano, ya que éste ha de presentar una forma muy distinta del perfil Lorentziano tı́pico
de interacciones Markovianas. Puede ser también interesante a la hora de estudiar cómo dicho carácter
Markoviano afecta al espectro de fluorescencia intermitente de un átomo de tres niveles immerso en
un material de banda fotónica. Por otro lado, en el estudio de la estadı́stica de fotones, resulta de
particular interés determinar si también en el caso no-Markoviano existe el efecto de anti-buching que
ha sido ampliamente estudiado en la literatura en sistemas Markovianos.

Dado que hemos derivado formalmente la ecuación de evolución de funciones de correlación a dos
tiempos para sistemas en un entorno térmico, serı́a igualmente interesante aplicar dichas ecuaciones a
un sistema cuántico abierto en particular. Resultarı́a de especial interés el cómputo de cantidades tales
como el espectro de emisión, estudiando como éste se ve afectado por la temperatura. También serı́a
posible derivar las ecuaciones que obedecen las funciones de correlación a N tiempos, ya que dicho
cálculo no presenta ninguna diferencia cualitativa respecto al cálculo de la ecuación de funciones de
correlación a dos tiempos.

Ası́mismo, aún no ha quedado aún resuelto en la literatura el problema de la interpretación de las
trajectorias no-Markovianas como resultantes de un experimento de medida. En dichas medidas el
estado del sistema se conoce indirectamente a través de medir el estado del entorno. El problema que
presenta el caso no-Markoviano, es que al monitorizar el entorno, éste sufre una alteración de la que
no se recupera instantáneamente, como ocurre en el caso Markoviano, lo cual afecta a las siguientes
medidas. El tiempo durante el cuál el entorno se ve afectado por la interacción, en este caso con el
aparato de medida, no es otro que el tiempo de memoria o tiempo de correlación. Nuestra propuesta
supone considerar un conjunto de medidas sobre el sistema no-Markoviano separadas por un intervalo
de tiempo escogido como ∆t > τc, lo cual permite que el entorno se recupere entre ellas. Suponiendo
que el estado del entorno haya sido medido sobre una base de estados Bargmann, podemos expresar
el estado después de la misma en función del propagador reducido del sistema que va desde el estado
del baño medido, zi+1, hasta el estado al que es projectado después, zi. Resulta de especial interés en
este esquema el conocimiento de la ecuación de evolución de propagadores que no partan del vacı́o,
sino de un determinado estado zi+1, ecuación que ha sido propuesta por primera vez a lo largo de esta
tesis.

Finalmente, las ecuaciones de evolución derivadas en esta tesis podrı́an ser utilizadas para calcular
la dinámica de muchos otros sistemas en los que existe interacción de tipo no-Markoviano, siempre
y cuando éstos esten linealmente acoplados con su entorno. Queda abierta también la posibilidad
de aplicar otras aproximaciones a la ecuación de evolución del propagador reducido, ası́ como a la
jerarquı́a de FCM.
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