

UNIVERSIDAD DE LA LAGUNA

FACULTAD DE QUÍMICA

DEPARTAMENTO DE QUÍMICA ANALÍTICA, NUTRICIÓN Y BROMATOLOGÍA

CONTAMINANTES ORGÁNICOS EN TRES ESPECIES DE PATELLA DE LA COSTA DE LA ISLA DE FUERTEVENTURA

MEMORIA PRESENTADA PARA OPTAR AL GRADO DE DOCTOR EN QUÍMICA

Ricardo J. Corbella Tena La Laguna, Febrero 1998

UNIVERSIDAD DE LA LAGUNA

FACULTAD DE QUÍMICA

DEPARTAMENTO DE QUÍMICA ANALÍTICA, NUTRICIÓN Y BROMATOLOGÍA

Tel: (922) 31 80 72 *Fax*: (922) 31 80 03

38071 – La Laguna

TERESA Mª BORGES MIQUEL, PROFESORA TITULAR Y DIRECTORA DEL DEPARTAMENTO DE QUÍMICA ANALÍTICA, NUTRICIÓN Y BROMATOLOGÍA DE LA UNIVERSIDAD DE LA LAGUNA,

INFORMA: Que la adjunta memoria titulada "Contaminantes orgánicos en tres especies de *Patella* de la costa de la isla de Fuerteventura" que presenta el Lcdo. D. Ricardo J. Corbella Tena para optar al grado de Doctor en Química por esta Universidad, ha sido realizada en los laboratorios de este Departamento bajo la dirección del Prof. Dr. D. Francisco J. García Montelongo, Catedrático de Química Analítica, y con esta fecha se autoriza su presentación.

Y para que conste, expido el presente en La Laguna a dieciseis de Febrero de mil novecientos noventa y ocho

Tel: (922) 31 80 72 *Fax*: (922) 31 80 03

UNIVERSIDAD DE LA LAGUNA

FACULTAD DE QUÍMICA

DEPARTAMENTO DE QUÍMICA ANALÍTICA, NUTRICIÓN Y BROMATOLOGÍA

38071 – La Laguna

FRANCISCO J. GARCÍA MONTELONGO, CATEDRÁTICO DE QUÍMICA ANALÍTICA DE LA UNIVERSIDAD DE LA LAGUNA,

CERTIFICA: Que la adjunta memoria titulada "Contaminantes orgánicos en tres especies de *Patella* de la costa de la isla de Fuerteventura" que presenta el Lcdo. D. Ricardo J. Corbella Tena para optar al grado de Doctor en Química por esta Universidad, ha sido realizada bajo mi dirección y con esta fecha autorizo su presentación.

Y para que conste, expido el presente en La Laguna a dieciocho de Febrero de mil novecientos noventa y ocho

Este trabajo ha sido realizado en los laboratorios del Departamento de Química Analítica, Nutrición y Bromatología de la Universidad de La Laguna, bajo la dirección del Prof. Dr. D. Francisco J. García Montelongo a quien deseo expresar mi más sincero agradecimiento por su constante ayuda y estímulo.

Quiero expresar mi agradecimiento a los compañeros del Departamento, muy especialmente a José Elías Conde González y Miguel Ángel Rodríguez Delgado por la inestimable ayuda que me han prestado durante el desarrollo de este trabajo.

Mi agradecimiento al Dr. D. Alberto Brito Hernández del Dpto. de Biología Animal (Biología Marina), por su ayuda en la caracterización de las diferentes especies de lapas estudiadas en el presente trabajo.

Asímismo, mi agradecimiento a la Dirección General de Universidades e Investigación de la Consejería de Educación Cultura y Deportes del Gobierno de Canarias por la Beca que he disfrutado durante la realización de este trabajo.

Igualmente quiero agradecer a la Comisión Interministerial de Ciencia y Tecnología la financiación de este trabajo dentro del Proyecto AMB 92-0515.

a mi Familia, a Isabel

Índice

Introd	lucci	ó n 1			
Capítu	ılo 1.	- Patella piperata51			
	Hidı	ocarburos Alifáticos			
	Hidı Bife	ocarburos Aromáticos Policíclicos64 nilos Policlorados72			
Capítu	ılo 2.	- Patella candei crenata89			
	Hidı	rocarburos Alifáticos 89			
	Hidi	rocarburos Aromáticos policíclicos			
	Rife	nilos Policiorados			
	Dife				
Capítu	ılo 3.	- Patella ulyssiponensis aspera119			
	Hidı	rocarburos Alifáticos			
	Hidi	ocarburos Aromáticos policíclicos			
	Bife	nilos Policlorados139			
Capítu	ılo 4.	- Análisis Multivariado151			
	I.	Aplicación de las Cartas de Control Multivariadas T ² 154			
	II.	Análisis de Componentes Principales, de Factores y de			
		Agrupamientos de las Bases de Datos159			
		II.1. Patella piperata160			
		II.1.1. Alcanos			
		II.1.2. Hidrocarburos Aromáticos Policíclicos164			
		II.1.3. Alcanos + Hidrocarburos Aromáticos Policíclicos .166			
		II.1.4. Bifenilos Policlorados176			
		II.2. <i>Patella candei crenata</i>			
		II.2.1. Alcano			
		II.2.2. Hidrocarburos Aromáticos Policíclicos			
		II.2.3. Alcanos + Hidrocarburos Aromáticos Policíclicos .185			
		II.2.4. Bifenilos Policlorados190			
		II.3. Patella ulyssiponensis aspera193			
		II.3.1. Alcanos			
		II.3.2. Hidrocarburos Aromáticos Policíclicos196			
II.3.3. Alcanos + Hidrocarburos Aromáticos Policíclicos.					
		II.3.4. Bifenilos Policlorados205			
	III	Análisis Multivariado Conjunto de las Bases de Datos de las			
		207			

IV Resumen Comparativo de las Tres Especies de	
Patella Estudiadas	215
Parte Experimental	223
Especies Estudiadas	
Muestreo	
Datos Biométricos	230
Determinaciones Analíticas	231
Tratamiento de la Muestra	231
Análisis Cromatográfico	234
Aparatos	247
Reactivos	
Conclusiones	249
Apéndice I	
Apéndice II	259
Apéndice III	271
Bibliografía	
Orden de Aparición en el Texto	
Orden Alfabético	

Introducción

Las modernas tecnologías y el desarrollo asociado de la industria química, tienen como consecuencia la producción y liberación de enormes cantidades de sustancias químicas fabricadas por el hombre de naturaleza muy diversa. La producción global de compuestos orgánicos, por ejemplo, se estima en unos 300 millones de toneladas/año. Cada año, además, se introducen en el mercado unos 2000 nuevos compuestos químicos, que deben añadirse a los que ya se han sintetizado o se encuentran en uso. Entre estos compuestos, existen sustancias orgánicas e inorgánicas de toxicidad y ecotoxicidad conocida, aunque existen muchas otras que ni siquiera han sido identificadas aún, como es el caso de innumerables metabolitos de pesticidas o de tensioactivos de origen antropogénico que se vierten al medio ambiente. La gran mayoría de estos compuestos contribuye a mejorar nuestro nivel de vida, aunque su presencia en el medioambiente puede provocar efectos adversos [1,2].

La contaminación puede definirse como una alteración negativa de la ecosfera inducida por el hombre. En cierto sentido, todos los organismos contaminan el medio que les rodea, al menos por excreción de sus propios productos de desecho, aunque rara vez se encuentran en una densidad suficiente como para poner en peligro la propia viabilidad de dichos organismos [3].

1

Todos los contaminantes alcanzan el medio marino por diversas vías, a través de los ríos o escorrentías de agua de lluvia, o bien por transporte atmosférico. La atmósfera es, en lo que se refiere al transporte global de contaminantes, un compartimento muy importante, siendo en algunos casos la mayor fuente de contaminantes traza en determinados ecosistemas. De cualquier forma, en la mayoría de los casos, el contaminante se introduce directamente en la superficie del mar o cerca de ella, en aquellos lugares donde tiene lugar la producción primaria y/o secundaria [3,4].

Existen tres métodos básicos que pueden usarse para cuantificar los contaminantes en los ecosistemas acuáticos. Estos métodos implican el estudio de los niveles del contaminante en el agua, en los sedimentos o en un miembro del biota. Los bajos niveles de los contaminantes en el agua de mar originan problemas de sensibilidad analítica y posibles problemas de contaminación de las muestras bien durante el muestreo, bien durante la aplicación de la metodología analítica correspondiente. Incluso, aún cuando las modernas tecnologías permiten resolver estos problemas, quedan por resolver dos más. El primero consiste en la enorme variación temporal de los niveles de contaminantes presentes en las aguas, niveles que dependen de factores tales como la estación del año, corrientes, condiciones meteorológicas, profundidad de muestreo, etc. El segundo problema, probablemente el más importante, aunque quizá al que menos atención se ha prestado, se origina por la propia disponibilidad biológica, o biodisponibilidad, del contaminante en el agua.

Con objeto de solucionar estos inconvenientes, se han desarrollado métodos alternativos de cuantificación. Así, la capacidad que tienen algunos organismos marinos de acumular y bioconcentrar o biomagnificar los contaminantes presentes en el medio, permite que sean usados como organismos denominados "centinelas" o "indicadores" [3]. Es por esto, que en los programas medioambientales de monitorización de ecosistemas acuáticos se llevan a cabo determinaciones de contaminantes en los sedimentos, materia particulada suspendida (SPM) y en organismos marinos, pues en estos tres compartimentos del medio ambiente, debido a sus propiedades para acumular los contaminantes de interés, se producen niveles de concentración lo suficientemente elevados como para permitir determinaciones analíticas precisas [5]. En el caso del biota, por ejemplo, los bifenilos policlorados (PCBs) e hidrocarburos aromáticos policíclicos (PAHs) se distribuyen rápidamente a través del torrente sanguíneo hacia los músculos, hígado y piel, para acabar acumulándose en el

tejido adiposo. Por tanto, cuanto mayor sea la proporción de tejido adiposo de un animal, mayor será la cantidad de PCBs y/o de PAHs acumulada [6].

Los peces, por ejemplo, captan normalmente las sustancias químicas hidrofóbicas a través del agua (bioacumulación); sin embargo, las sustancias extremadamente hidrofóbicas, tales como los PCBs y PAHs, también pueden captarse, y acumularse, a través de la cadena alimentaria (biomagnificación) [7,8]. La absorción de estas sustancias *vía* agua es de menor importancia debido a su baja solubilidad y a su alta adsorción por los organismos vivos, tales como el plancton, y las partículas sólidas presentes en la misma [7]. En el caso de los peces, la acumulación de PCBs se ha podido demostrar que se produce únicamente a través de la comida. Un ejemplo claro de biomagnificación es el que se presenta en los peces que, aunque capturados en aguas que contienen concentraciones de PCBs del orden de unas pocas ppb, pueden llegar a alcanzar concentraciones de los mismos, en los tejidos grasos, del orden de 100 ppm [8] multiplicándose, por tanto, la concentración por un factor de 10^4 , Fig. 1.

El análisis de este tipo de organismos ofrece enormes ventajas sobre los métodos clásicos de análisis de agua o de sedimentos aunque también presenta algunas desventajas, tales como la existencia de posibles interferencias originadas por parámetros extraños relacionados con la ingestión del contaminante por parte del biota. Dichos parámetros pueden depender tanto del organismo en cuestión (especie, grasa corporal, relación edad/tamaño/peso, sexo, ciclo sexual, dieta, crecimiento, almacenamiento y/o excreción) como del lugar de muestreo (salinidad, temperatura del agua y otros), e influyen de forma negativa en lo que se refiere al conocimiento de la presencia del contaminante en la zona de estudio. En el caso concreto de los peces, existen varios procesos que pueden hacer disminuir la concentración del contaminante en su organismo: la biotransformación, el crecimiento, la eliminación a través del agua y la transferencia de madres a hijos, entre otros. [7].

En la actualidad, la monitorización biológica o, lo que es lo mismo, el uso de organismos bioindicadores, vegetales o animales, para estudiar el contenido de contaminantes en los compartimentos ambientales es el método más ampliamente utilizado. El uso de bioindicadores puede llevarse a cabo de forma pasiva o activa. En el primer caso, el estudio se realiza en organismos que han captado los contaminantes en su hábitat natural. En el segundo caso, el organismo se "cultiva" en un ambiente artificial no contaminado y posteriormente se "trasplanta" y expone al medio en estudio durante un periodo de tiempo determinado antes de ser analizado en el laboratorio. La principal ventaja de la monitorización activa es que estos métodos se pueden estandarizar en gran medida, de tal forma que los factores temporales puedan ser reconocidos. Además es posible utilizar la monitorización activa en determinadas áreas industriales en las que los organismos usados en la monitorización pasiva pudieran no estar presentes [9].

Fig 1.- Distribución e intercambio de PCBs en los diferentes compartimentos medioambientales

Puesto que el contenido en contaminantes puede variar considerablemente con el tamaño de los organismos analizados, deben establecerse criterios de muestreo para los organismos bioindicadores. En este sentido, en lo que se refiere al análisis químico, el ICES (International Council for the Exploration of the Seas) recomienda recolectar, por ejemplo, en el caso de los mejillones ejemplares pequeños, de 2-3cm de longitud [10].

Centrándonos en el caso concreto de los organismos acuáticos, los diferentes procesos a

Fig 2.- Procesos de un contaminante en un organismo acuático

los

que se ve sometido el contaminante se resume en la Figura 2.

La selección de un organismo útil para los fines citados es la primera tarea que debe afrontarse. Los requisitos básicos fueron sugeridos por Butler *et al.* [11]:

- El organismo debe acumular el contaminante sin que muera por causa de los niveles de éste en el medio.
- 2. Debe ser sedentario, para que el área de estudio sea representativa.
- 3. Debe ser abundante en toda el área de estudio.
- 4. Debe vivir el tiempo suficiente para muestrear durante el tiempo requerido.
- 5. Debe tener una tamaño adecuado para que el tejido sea suficiente para ser analizado.
- 6. Debe ser fácil de muestrear y lo suficientemente resistente para sobrevivir en el laboratorio, permitiendo la defecación antes del análisis (si se desea) y los correspondientes estudios de acumulación en el laboratorio.

Haugh et al. [12] añade a los anteriores requisitos los siguientes:

7. El organismo debe tolerar aguas salobres, y

8. Debe existir una correlación simple entre el contenido del contaminante y la concentración media del mismo en el agua que rodea al individuo.

por último, Phillips [13,14] completa los ocho puntos anteriores añadiendo que:

9. Todos los organismos de una especie dada, usados en una observación, deben exhibir la misma correlación entre su contenido en el contaminante y la concentración media en el agua que los rodea, en todas las zonas estudiadas, bajo las mismas condiciones.

Así, si bien los mamíferos marinos habitan las zonas frías, templadas y tropicales de los mares y océanos, las especies individuales tienen sus propios hábitos alimentarios y migratorios, de tal forma que los contaminantes presentes en los tejidos de estos animales reflejarán el perfil medio de contaminación en su hábitat [1]. La concentración, por ejemplo, de PCBs en tejidos de mamíferos marinos varía notablemente cuando éstos proceden del océano abierto o de zonas costeras, aunque la variación en la composición es relativamente pequeña, por ello las elevadas concentraciones de contaminación se han relacionado en algunos casos con el descenso de las poblaciones marinas que habitan esos lugares [5,15,16].

Los compuestos extraños (xenobióticos) más lipofílicos sufren en los organismos reacciones de biotransformación, controladas por enzimas, cuyo propósito último es la eliminación de estos xenobióticos por el propio organismo, en un proceso de detoxificación [16,17].

La detoxificación se desarrolla en dos fases, durante la primera de las cuales, la polaridad de los xenobióticos aumenta y durante la segunda se produce la combinación, conjugación, del metabolito con un producto del metabolismo normal (producto endógeno) del organismo en cuestión y el nuevo producto conjugado se elimina normalmente con mayor facilidad. Sin embargo, el metabolismo no tiene por que conducir forzosamente a la detoxificación del xenobiótico; así, puede producirse la transformación de éste en uno o más productos igualmente tóxicos que no puedan ser conjugados y, por tanto, eliminados [17], Fig.3.

Los isoenzimas de la familia de los enzimas del grupo del citocromo P450, Tabla I, juegan una papel muy importante, no sólo, en el metabolismo de compuestos endógenos sino, también, de muchos xenobióticos. El citocromo P450 es uno de los constituyentes del sistema enzimático denominado MFO (*Mixed Function Oxidasa*, Oxidasa de Función Mixta). Se incluye el término P450 en esta denominación por el hecho de que la forma reducida del citocromo P450 enlazada al monóxido de carbono, presenta su máxima absorción a una longitud de onda de 450nm. Existen diversas isoenzimas del citocromo P450 en plantas, bacterias y animales, incluido el hombre, creyéndose que pueden existir más de cien isoenzimas en este grupo [17].

Nomenclatura	Inducido por/específico
P450I	Compuestos aromáticos policíclicos, TCDD, PCBs
P450II	Familia de los compuestos inducidos por el Fenobarbital
P450IIA	Específico para la testosterona hidroxilasa
P450IIB	Inducido por PB
P450IIC	Inducido por PB
P450IID	Específico para la debrisoquinona 4-hidroxilasa
P450IIE	Inducido por etanol

Tabla IIsoenzimas del Citocromo P450

Las células del organismo pueden incrementar la producción de citocromo P450 debido a la presencia de algunos xenobióticos denominados "inductores", xenobióticos que, como las PCDDs (Dibenzo dioxinas policloradas), PCDFs (Dibenzofuranos policlorados) y PCBs "dioxin like", actúan, al menos en parte, a través del receptor Ah que está presente en el citoplasma de la célula. Después de enlazarse a este receptor, el complejo formado penetra en el núcleo celular, donde induce la transcripción de ciertos genes. El incremento de esta transcripción genética induce a su vez la producción de diferentes proteínas, como es el caso del citocromo P450 [18]. Cada inductor presenta un impacto característico sobre la inducción de la cantidad total de citocromo P450 y sobre los niveles individuales de cada uno de los isoenzimas de dicho citocromo [17].

Fig 3.- Absorción y detoxificación de los xenobióticos en una célula

Los inductores se clasifican según los isoenzimas citocromo P450 que inducen. Para estudiar los aspectos toxicológicos de los PCBs, por ejemplo, hay dos grupos importantes de inductores; un representante típico del primer grupo es el fenobarbital (PB), y del segundo, el hidrocarburo aromático policíclico 3-metilcolantreno (3-MC), Fig. 4. Un agente químico que induce una gama de isoenzimas similares a las inducidas por el PB (o 3-MC) se clasifica como inductor tipo PB, o inductor tipo 3-MC en su caso [16,17].

La inducción de un citocromo determinado, provoca un aumento de la actividad de los complejos enzimáticos que están relacionados con dicho citocromo [17], como la "aril

hidrocarbon hidroxilasa" (AHH) y la "etoxiresorufin-*o*-dietilasa" (EROD). En concreto, los compuestos del tipo del PB inducen varios isoenzimas citocromo P450 (-b, -e y -a), que estimulan el metabolismo de gran variedad de compuestos. Los inductores del tipo del 3-MC potencian el metabolismo de un grupo más limitado de sustancias, inducen la formación del citocromo P450 (-c, -d y -a) e inducen la AHH, responsable del metabolismo de los hidrocarburos policíclicos aromáticos, y la EROD. Algunos PCBs presentan los dos tipos de actividad inductora [16,17].

La actividad del P450 puede evitar la intoxicación o, por el contrario, puede convertir compuestos extraños en compuestos más tóxicos que los originales o en intermediarios carcinogénicos [17].

La 2,3,7,8-tetraclorodibenzo-*p*-dioxina (2,3,7,8-TCDD), compuesto extremadamente tóxico y carcinogénico, es un inductor muy potente de la actividad de la AHH [17]. Por otra parte, los PCBs que presentan mayor toxicidad, inductores de la AHH y de la EROD, y que se enlazan con una elevada afinidad a los receptores citosólicos proteicos, son aproximadamente isoeléctricos con la 2,3,7,8-TCDD [19].

BIFENILOS POLICLORADOS

os Bifenilos Policlorados (PCBs) son un grupo importante de contaminantes del medio ambiente y al contrario que otros tipos de contaminantes, tales como los metales pesados, los compuestos organoclorados de síntesis, deberían estar totalmente ausentes del medio ambiente y por supuesto del medio marino, así que la mera existencia de este tipo de compuestos es una indicación de contaminación de origen antropogénico [3]. Sin embargo, esta premisa debe ser matizada pues Drechsel aisló del coral, hace cien años, el primer compuesto orgánico halogenado, la 3,5-diiodotirosina [20]. Desde entonces se han aislado hasta 1500 productos naturales halogenados. Algunos de los compuestos tóxicos organohalogenados de origen "exclusivamente" antropogénico también se forman en la naturaleza; en el caso concreto de los halometanos, la producción natural de los mismos es superior a la industrial; en el caso de las dioxinas y furanos policlorados, aunque se han intentado aislar en momias de 2800 años de antigüedad sin resultados satisfactorios, si se han conseguido aislar en muestras de suelo de 150 años de antigüedad, encontrándose concentraciones tres veces más bajas que los niveles existentes en la actualidad. Este hecho, sin embargo, no puede servir de excusa para seguir introduciendo residuos indeseables en el medio ambiente, aunque sí debe hacernos desistir de la intención de reducir los niveles de estos contaminantes a cero [21].

En la actualidad los PCBs suponen uno de los mayores problemas medioambientales y se está dedicando una atención cada vez mayor al estudio de las implicaciones que ocasiona la presencia de este tipo de compuestos no sólo por su incidencia sobre los ecosistemas sino, fundamentalmente, por su influencia en la salud humana como consecuencia de la ingestión de alimentos contaminados con ellos, como ocurrió en la ciudad japonesa de Yusho en 1968 donde un número elevado de personas resultaron afectadas por la ingestión de arroz contaminado por PCBs [22].

La síntesis de los PCBs fue descrita por primera vez por Schmidt y Schultz en el año 1881, aunque las aplicaciones industriales de tal descubrimiento no se desarrollaron totalmente hasta unos cincuenta años más tarde. La comercialización de los PCBs como productos químicos industriales, utilizados principalmente como aceites no inflamables, se inició en 1930 en Estados Unidos [23-25], calculándose que entre 1929 y 1977 se produjeron del orden de 6.10^8 kg de PCBs en dicho país [24], y unos $1,89.10^7$ kg hasta 1984 en Checoeslovaquia [17], siendo la producción mundial hasta 1980 de unos 2.10^9 kg [26]. La cantidad estimada de PCBs que en la actualidad se encuentra disponibles para ser utilizada y/o vertida al medio ambiente se estima en unos $7,8.10^8$ kg [17], es decir, aproximadamente la misma cantidad de PCBs producida en Estados Unidos hasta 1977.

El uso de los PCBs en la industria es realmente amplio pudiendo encontrarse como fluidos dieléctricos en transformadores y condensadores eléctricos, intercambiadores de calor, bombas de vacío, líquidos hidráulicos, aceites lubricantes, electroimanes, interruptores, reguladores de voltaje, aceites de inmersion usados en microscopía, hornos microondas y bombas de vacío. También se encuentran en adhesivos, papel de calco, plásticos, papel de envolver, tintas de impresión, pinturas, resinas, colorantes, cosméticos, neumáticos y sistemas de refrigeración; se utilizan, además, como plastificantes y estabilizantes de los pulverizadores de pesticidas, en agentes controladores del polvo, así como en la industria química en general [8,27-31]

Puesto que los metales pesados son también contaminantes del medio ambiente, la base metálica de los colorantes inorgánicos en productos químicos se ha sustituido por colorantes orgánicos sintéticos, habiéndose observado que un gran número de estos colorantes contienen pequeñas cantidades de PCBs. Uno de los usos de estos colorantes orgánicos sintéticos es en tintas de impresión, y es por ello por lo que los PCBs pueden encontrarse, también, en vidrio, metal, cerámica y artículos eléctricos y electrónicos [32].

A pesar de que los PCBs han dejado de fabricarse comercialmente desde hace muchos años, se siguen obteniendo como subproductos en la síntesis de disolventes clorados, clorobenceno, glicerol [32], colorantes azoicos, ftalocianinas, parafinas cloradas, resinas fenólicas, o como subproductos de combustión en incineradoras de desechos que contengan cloro [17].

Los PCBs comienzan a considerarse como contaminantes medioambientales a partir del año 1966, cuando Jensen [33] descubre su presencia en tejidos de pescado de diferentes partes de Suecia [24] y en aves cuya alimentación estaba constituida básicamente por pescado [34], pero es a partir de 1979 cuando su estudio en el medio ambiente se amplía

considerablemente. En un principio, el interés por su estudio se intensificó por el hecho de que sus productos comerciales pueden contener cantidades traza de dibenzofuranos clorados [35]; dado que el potencial tóxico de éstos es superior al de los PCBs, se pensó que eran los clorodibenzofuranos los que tenían una mayor influencia en la toxicidad de las mezclas comerciales de PCBs. Sin embargo, en la actualidad se sabe que algunos congéneres de PCBs son bastante tóxicos por sí mismos [37].

Actualmente casi todos los esfuerzos están siendo orientados a la determinación rutinaria de los niveles de PCBs, aunque también es importante obtener datos de los cambios producidos a largo plazo por su deposición en el medio ambiente. Con anterioridad a 1966 no se tienen datos en muestras medioambientales, aunque los datos de producción y uso indican que la mayor parte de los PCBs que existen actualmente en el medio ambiente pasaron a formar parte del mismo antes de aquella fecha. Los datos históricos sobre vertidos a la atmósfera se pueden reconstruir analizando depósitos inalterados de sedimentos, turba o núcleos de hielo, de edad conocida [36].

La determinación rutinaria de PCBs, en un elevado número de matrices, desde desechos químicos hasta productos alimenticios, ha sido incorporada en la legislación de la mayoría de los países [38] y, así, la Comunidad Europea ha dictado varias disposiciones para controlar la fabricación de PCBs y para fijar sus niveles aceptables tanto en emisiones gaseosas como en vertidos al medio ambiente [39]. En este sentido, los materiales que contienen PCBs se clasifican de acuerdo con la concentración de PCBs presente en los mismos [40]. Esta clasificación divide a los materiales que contienen PCBs en tres grupos: 1) PCB: \geq 500ppm, 2) PCB contaminado: 5-500ppm y 3) no-PCB: < 5ppm. Los PCBs se dividen a su vez en dos grupos: a) PCBs propiamente dichos y b) Artículos de PCBs, que se dividen en cuatro categorías: 1) Productos de PCBs, 2) Contenedores de PCBs, 3) contenedores de productos de PCBs, y 4) equipos de PCBs.

La versatilidad industrial de los PCBs está directamente relacionada con sus propiedades físicas y químicas, entre las que incluyen la resistencia a ácidos y bases, compatibilidad con materiales orgánicos, resistencia a la oxidación y a la reducción, excelentes propiedades como aislantes eléctricos, estabilidad térmica, elevada densidad y no inflamabilidad [8,23,25,29].

Un PCB es uno de los 209 compuestos de fórmula general $C_{12}H_xCl_y$, donde x=0-9 e y=10x. El término *congénere* se aplica a cualquiera de los 209 PCBs posibles y se denominan isómeros a aquellos PCBs que teniendo el mismo número de átomos de cloro, éstos se encuentran distribuidos en el esqueleto del bifenilo de forma diferente, como es el caso de los 46 posibles PCBs con cinco átomos de cloro (Ver Apéndice I para la nomenclatura). Cuando los PCBs se subdividen atendiendo al grado de cloración también es común emplear el término *homólogo* (ej. homólogo tetraclorobifenilo), Tabla II.

Fórmula	Nombre	nº de	Numeración	Peso Molecular	% Cl
Estructural	(-clorobifenilo)	Isómeros	IUPAC		
C12H9Cl	mono	3	1-3	188.65	18.79
$C_{12}H_8Cl_2$	di	12	4-15	233.10	31.77
$C_{12}H_7Cl_3$	tri	24	16-39	257.54	41.30
$C_{12}H_6Cl_4$	tetra	42	40-81	291.99	48.65
$C_{12}H_5Cl_5$	penta	46	82-127	326.43	54.30
$C_{12}H_4Cl_6$	hexa	42	128-169	360.88	58.93
$C_{12}H_3Cl_7$	hepta	24	170-193	395.32	62.77
$C_{12}H_2Cl_8$	octa	12	194-205	429.77	65.98
C12HCl9	nona	3	206-208	464.21	68.73
$C_{12}Cl_{10}$	deca	1	209	498.66	71.10

 Tabla II

 Algunos datos sobre los diez grupos de homólogos de PCBs

Las propiedades citadas con anterioridad se ven acentuadas con el incremento de la cloración. Sus puntos de fusión se encuentran comprendidos entre $34^{\circ}C$ y $198^{\circ}C$, y los puntos de ebullición se sitúan en torno a los $267^{\circ}C$ [8]. En relación con las propiedades cromatográficas, sus tiempos de retención en cromatografía gaseosa se incrementan con el número de átomos de cloro presentes en la molécula. Entre isómeros, los tiempos de retención son ligeramente dependientes del tipo de sustitución: aumenta con átomos de cloro situados en posiciones *meta* y *para*, y disminuyen cuando están situados en posiciones *orto*. Cuando la elución se realiza sobre algunas fases determinadas, el orden de elución también depende de la forma de las moléculas [41]. La solubilidad de los PCBs en agua disminuye al aumentar el nivel de cloración. La presión de vapor y la degradabilidad también disminuyen con el incremento en el contenido de cloro y, entre isómeros, la susceptibilidad a ser degradados depende de la distribución estructural de los átomos de cloro [31].

Los PCBs fueron fabricados y comercializados bajo diferentes nombres, Tabla III [8,17,23,26,42].

Nombre Comercial	Fabricante	País		
Aroclor	Monsanto Industrial Chemicals Co.	St. Louis, MO, USA		
Chlorextol	Allis Chalmers	USA		
Pyralene, Phenoclor	Prodelec	Francia		
Clophen	Bayer AG	Leverkusen, RFA		
Fenclor DK, Apirolio	Caffaro	Italia		
Sovol	Sovol	URSS		
Delor	Chemko	Strázske, Checoeslovaquia		
Kanechlor	Kanegafuchi Chemical Co.	Tokio, Japón		
Santotherm	-	Japón		

 Tabla III

 Algunas mezclas comerciales de PCBs

La síntesis se realiza por cloración del bifenilo fundido con cloro gaseoso, usando cloruro de hierro como catalizador [8]. Los productos se obtienen recogiendo fracciones de distintos puntos de ebullición durante la destilación de la mezcla de bifenilos policlorados [31]. En general, los productos comerciales se identifican de forma diferente según el fabricante. Así, por ejemplo, la casa Monsanto, los identifica con un número de cuatro dígitos, los dos primeros indican el tipo de compuesto (ej: 12, bifenilo), y los dos últimos indican el contenido en tanto por ciento en peso de cloro. El Aroclor 1016 es la excepción a esta regla, siendo similar al Aroclor 1242 en composición, con un contenido aproximado del 40% en cloro [24]. La marca comercial Delor define sus productos con un número de tres dígitos; los dos primeros indican el tipo de molécula, y el tercero el número medio de átomos de cloro en la molécula. Los Delor 103 y 106 se fabricaron en grandes cantidades [17].

El número de átomos de cloro contenidos en la mayoría de los componentes del Aroclor aumenta al aumentar el porcentaje en cloro. Las correspondencias entre las mezclas comerciales de Aroclor y Clophen se muestran en la Tabla IV [26].

			Nombre Comercial			
9	% Cloro	Cl/Mol	Bayer, FRG	Monsanto, USA		
	41	3.00	-	Aroclor 1016		
	42	3.10	Clophen A-30	Aroclor 1242		
	54	4.96	Clophen A-50	Aroclor 1254		
	60	6.30	Clophen A-60	Aroclor 1260		
	68	8.70	-	Aroclor 1268		

 Tabla IV

 Correspondencia entre los productos comerciales

 Aroclor y Clophen

La información de los últimos 25 años acerca de las formulaciones de PCBs se centra en las fabricadas en Estados Unidos y en Europa Occidental, y sólo se conoce información contradictoria sobre su producción en la desaparecida URSS donde las mezclas de PCBs llevan el nombre de Sovol, y donde las mezclas de Sovol y triclorobencenos se han producido bajo el nombre de Sovtol. Desde el punto de vista etimológico, Sovol (Sovtol) es la abreviación de *Soviet Oil*. El Sovol se sintetizó en la URSS en 1934, aunque la producción masiva comenzó a finales de los años treinta. La producción estimada de Sovol entre los años 1940 y 1990 fue de 10⁵Tm. Se usó, al igual que las formulaciones de Aroclor, tanto en sistemas de los denominados cerrados (transformadores, condensadores, etc.) como en abiertos (plastificadores, pinturas, etc.). Con el nombre de Sovtol se comercializaron entre los años 1940 y 1980 tres mezclas con diferente contenido en Sovol y Triclorobencenos (Sovtol-1, -2 y -10 con el 75%, 64% y 90% de Sovol y el 25%, 36% y 10% de triclorobenceno respectivamente) [43].

En teoría, como hemos visto anteriormente, el número total de posibles productos resultantes de la cloración del bifenilo es 209, aunque sólo 150 se han detectado en el medio ambiente [28,44]. Por otra parte, de los 209 congéneres sólo 125 se encuentran formando parte de los distintos tipos de Aroclor [45] puesto que algunas posiciones del bifenilo son más susceptibles de ser cloradas que otras. En el conjunto de las mezclas comerciales se han detectado 182 congéneres individuales [16], cuya pertenencia a los diferentes grupos de isómeros se representa en el gráfico de barras de la Figura 5 [16]. De estos 182 congéneres, sólo unos pocos son persistentes y tóxicos. Así, el tiempo de vida media en el medio ambiente de algunas clases de congéneres se muestra en la Tabla V [46].

 Tabla V

 Tiempo de vida media de los congéneres mono-, di-, tri-, tetra- y penta-clorados

Número de átomos de cloro	1	2	3	4	5
Tiempo de vida media (días)	3	160	580	1050	3400

La mayoría de los congéneres de PCBs son sólidos a temperatura ambiente, pero en cambio, las formulaciones de *Aroclor* son líquidos viscosos [31].

El contenido de congéneres de PCBs en muestras de diferentes zonas del medio ambiente y en diferentes sistemas biológicos, está determinado o influido por el hecho de que cada congénere difiere de los otros en propiedades tales como la solubilidad en agua, potencial estándar de oxidación, capacidad para sufrir transformaciones microbianas, distribución entre los diferentes compartimentos del medio ambiente y su acumulación, distribución y eliminación por los diferentes organismos [17].

Los PCBs se adsorben fuertemente sobre los sedimentos, arcillas y suelos, y son transportados por la lluvia, la erosión, la precipitación y el viento [31]. Los congéneres más solubles y volátiles son los que se transportan con preferencia [31], a veces, a grandes distancias, para depositarse posteriormente sobre zonas terrestres o marinas [36]. Por este motivo es posible encontrarlos repartidos en amplias áreas de todo el mundo [45,47,48], incluso en áreas remotas, como las regiones polares y otros muchos compartimentos del medio ambiente, donde los Aroclor u otras formulaciones comerciales nunca han sido usadas [7,36,43]. Los océanos son su principal destino final [49] aunque la presencia de PCBs en zonas terrestres se ha incrementado en los últimos años [34]. En la atmósfera, la distribución de congéneres de PCBs es similar a la que existe en el Aroclor 1242, en las aguas superficiales se aproxima a la del Aroclor 1254, en tanto que en el medio ambiente terrestre la composición es más rica en componentes más pesados, aproximándose a la del Aroclor 1260 [8].

Fig 5.- PCBs congéneres identificados en mezclas comerciales

Las investigaciones actuales se centran principalmente en los mecanismos de distribución [50], acumulación y eliminación de los PCBs en el medio ambiente [5]. En general, estos compuestos se concentran al pasar de un nivel de la cadena trófica al siguiente [51], por tanto, los organismos de la parte superior de la cadena trófica son en los que más altas concentraciones de PCBs se han encontrado [7]. Por otra parte, su naturaleza lipofílica hace que las concentraciones más elevadas se encuentren en los animales y tejidos con mayor contenido lipídico [52].

Los efectos de altas dosis de PCBs en animales se traducen en pérdida de peso corporal y lesiones y disfunciones en la piel, hígado, conducto biliar, tracto urinario, sistema endocrino y reproductivo y, además, provocan teratogénesis, carcinogénesis [16,17,53], mitocondrias atípicas y dilatación del retículo endoplasmático liso y rugoso [53].

La toxicidad de los PCBs es distinta para cada congénere y en especies diferentes los efectos producidos pueden ser muy diferentes. Así, en ratas, los Aroclor más tóxicos son el Aroclor 1254 (LD_{50} 1,295g/kg) y el Aroclor 1260 (LD_{50} 1,315g/kg), y los menos tóxicos el Aroclor 1248 (LD_{50} 11g/kg), el 1262 (LD_{50} 11,3g/kg) y el 1268 (LD_{50} 10,9g/kg) [17].

En seres humanos los efectos de altas dosis de PCBs se han estudiado en individuos expuestos a su acción debido a una intoxicación accidental o, bien, por motivos laborales.

Se han descrito dos intoxicaciones masivas provocadas por PCBs, el primero, ya comentado, denominado "Yusho", ocurrido en Japón en 1968, y el segundo, denominado "Yucheng" ocurrido en 1979 en Taiwan. Los efectos observados en humanos fueron daños hepáticos, lesiones en la piel, problemas respiratorios y oculares, síntomas neurológicos varios, daños en el sistema endocrino, inmunodeficiencia y problemas de reproducción [17].

Algunos de los 209 bifenilos policlorados son estereoquímicamente similares a la 2,3,7,8tetraclorodibenzo-p-dioxina (TCDD) planar, Fig. 6, y por este motivo presentan una actividad bioquímica y tóxica comparable a la de ésta [16,37,54].

Dibenzo-p-dioxinas Policloradas Dibenzofuranos **PCDDs**

Fig 6. Estructuras de las dibenzo-*p*-dioxinas y dibenzofuranos policlorados.

Fig 7.- Ejemplos de rotación libre e impedida alrededor del enlace bifenilo

La conformación no-planar es a la preferida de todos los PCBs, incluyendo los congéneres no-orto sustituidos. Cuando no existen átomos de cloro en posiciones orto, Fig. 7, el

 $Cl_{\mathcal{V}}$

PCDFs

impedimento estérico de rotación alrededor del enlace fenilo-fenilo es mínimo y los PCBs pueden adoptar la configuración plana con un requerimiento mínimo de energía [17,16]. La introducción de un átomo de cloro en una de las posiciones orto a este enlace incrementa considerablemente el requerimiento energético para la libre rotación alrededor de este enlace, requerimiento que incrementa al aumentar las sustituciones adicionales en las restantes posiciones orto. En este sentido, podemos observar dos ejemplos claros: por una parte el PCB-77 no posee ninguna sustitución en posiciones orto por lo que la libre rotación alrededor del enlace bifenilo le permite adoptar una conformación plana; por otra, el PCB-95 contiene tres átomos de cloro en posiciones orto por lo que se reduce la libre rotación y se limita a los dos grupos fenilos a permanecer en posiciones prácticamente perpendiculares entre sí. La posición de los átomos de cloro tiene mayor influencia que el número de sustituyentes, en especial cuando el número de átomos se encuentra entre tres y siete [16]. El efecto de las sustituciones de átomos de cloro en posiciones orto puede clasificarse en seis categorías, Figura 8. Los congéneres no-orto y mono-orto sustituidos pueden adoptar conformaciones planas puesto que los grupos fenilo poseen libre rotación. La rotación alrededor del enlace bifenilo disminuye en los congéneres di-orto sustituidos debido a los impedimentos estéricos. Es imposible que se alcance la planaridad debido a la fuerte repulsión que se produce entre los dos átomos de cloro o entre el átomo de cloro y de hidrógeno cuando el bifenilo tiende a adoptar dicha conformación. El número de conformaciones se limita aún más en los congéneres tri- y tetra-orto sustituidos. Los grupos fenilo en los congéneres tetra-orto sustituidos sólo pueden rotar como máximo 90° en cada dirección.

Los PCBs planares y algunos de sus congéneres mono- y di-*orto* sustituidos aparecen en muy bajas concentraciones en las mezclas comerciales de PCBs. Por este motivo, su presencia en el medio ambiente es relativamente baja comparada con la de los congéneres de PCBs más abundantes [16]. De cualquier forma, aunque los congéneres más tóxicos se encuentren en cantidades relativamente bajas en las mezclas comerciales, se encuentran en concentraciones elevadas en las cenizas de las plantas de incineración [55].

Fig 8.- Efecto de las sustituciones de átomos de cloro en posiciones orto

Los datos disponibles acerca de los PCBs individuales indican que las concentraciones de lo más activos desde el punto de vista bioquímico, se encuentran muchos órdenes de magnitud por encima de las TCDDs. Por esto, su importancia medioambiental en relación a su toxicidad potencial es mayor que la de éstas [16].

n [°] IUPAC	Tipo	Estructura	n [°] IUPAC	Tipo	Estructura
Tetraclorobi	fenilos		Hexaclorobi	fenilos	
77	́Р	3,3',4,4'	157	M	2,3,3',4,4',5'
81	Р	3,4,4',5	158	D	2,3,3',4,4',6
Pentaclorob	ifenilos		166	D	2,3,4,4',5,6
105	M	2,3,3',4,4'	167	М	2,3',4,4',5,5'
114	М	2,3,4,4',5	168	D	2,3',4,4',5',6
118	М	2,3',4,4',5	169	Р	3,3',4,4',5,5'
123	М	2',3,4,4',5	Heptaclorobifenilos		
126	Р	3,3',4,4',5	170	D	2,2',3,3',4,4',5
			180	D	2,2',3,4,4',5,5'
Hexaclorobi	fenilos		189	М	2,3,3',4,4',5,5'
128	D	2,2',3,3',4,4'	190	D	2,3,3',4,4',5,6
137	D	2,2',3,4,4',5	191	D	2,3,3',4,4',5',6
138	D	2,2',3,4,4',5'	Octaclorobifenilos		
153	D	2,2',4,4',5,5'	194	D	2,2',3,3',4,4',5,5'
156	М	2,3,3',4,4',5	205	D	2,3,3',4,4',5,5',6

 Tabla VI

 Congéneres PCB, planares (P), mono-orto (M) y di-orto (D) sustituidos
Los PCBs que están distribuidos en el medio ambiente pueden degradarse por tres procesos naturales: combustión, biodegradación y fotolísis. La combustión natural es un proceso poco corriente [17].

La fotodegradación solar es una de las rutas de eliminación más "económicas" y naturales de la contaminación medioambiental [56]. En el caso de los PCBs se produce por la decloración sucesiva del núcleo bifenilo [57,58]. La mayoría de los congéneres, desafortunadamente, no absorben radiación de longitudes de onda por encima de los 300nm y su fotolísis directa se produce, por lo general, con una eficiencia cuántica muy baja [56]. En el laboratorio se han usado sensibilizadores y otros aditivos tales como aminas, borohidruros, disoluciones alcohólicas alcalinas e hidroquinonas, para mejorar la fotodecloración. La fotodecloración, por ejemplo, del Kaneclor KC-300 a 298nm en una disolución alcalina de 2-propanol se produce con un rendimiento cuántico elevado (Φ =36). Una desventaja es que esta reacción no puede producirse con la misma eficiencia a longitudes de onda superiores, en particular, bajo la acción de la radiación solar [56].

En la actualidad, la tecnología más extendida para la destrucción de los PCBs es la incineración, aunque puede dar lugar a derivados oxigenados más tóxicos (dibenzofuranos y dioxinas cloradas, etc.) si no está suficientemente controlada [56].

Los procesos de biodegradación microbiana son los más importantes en lo que se refiere a la eliminación de los PCBs del medio ambiente. Muchos investigadores han demostrado que hay una gran variedad de factores que pueden afectar a este tipo de procesos, factores entre los que podemos destacar aquellos que dependen exclusivamente del congénere, como puede ser el grado de cloración o la solubilidad en agua y aquellos que dependen del medio, tales como el pH, temperatura, presencia de oxígeno, nutrientes disponibles, etc. [59]. Existen dos tipos básicos de degradación microbiana: a) degradación por bacterias anaerobias y b) degradación por bacterias aerobias [17,60]. En ambos casos, las bacterias pueden utilizar el bifenilo como única fuente de carbono y energía. La degradación aerobia afecta especialmente a los PCBs poco clorados, en concreto a congéneres con cinco o menos átomos de cloro y al menos dos átomos de carbono adyacentes no sustituidos. Las bacterias aerobias tienden a atacar los bifenilos menos clorados *via* procesos oxidativos. El mecanismo predominante de la biodegradación oxidativa consiste en un ataque inicial por la 2,3-dioxigenasa, seguido por la actuación de una segunda oxigenasa que provoca la

ruptura del anillo. Este mecanismo produce los ácidos clorobenzóicos correspondientes que son fácil y rápidamente hidrolizados por otras bacterias aerobias dando lugar a la producción de dióxido de carbono, agua, cloro y biomasa [61,62].

La degradación anaerobia se produce fundamentalmente en los sedimentos mediante una decloración reductiva de los PCBs de elevado contenido en cloro [17]. Este proceso elimina los átomos de cloro, pero deja el anillo de bifenilo intacto [62]. La decloración anaerobia elimina selectivamente los átomos de cloro situados en posiciones *meta* y *para*, afectando por tanto a los congéneres más tóxicos. Es una reacción en la que se transfieren dos electrones provocando la eliminación de cloro como ion cloro y su sustitución por un átomo de hidrógeno. El mecanismo exacto de la transferencia de electrones en los PCBs no se conoce con exactitud, aunque si se sabe que el átomo de hidrógeno que se incorpora al anillo bifenilo es un protón que proviene del agua [63]. Los congéneres menos clorados producidos por la degradación anaerobia pueden verse sometidos, posteriormente, a una degradación aerobia [17,64].

En el primer caso, los PCBs de mayor contenido en cloro se convertirían en los más abundantes, y en el segundo, lo harían los de menor contenido en cloro [17,65].

Sin embargo, aunque parece que la naturaleza pueda tener capacidad para eliminar los PCBs del medio ambiente, los procesos de biotransformación citados se producen bajo condiciones muy específicas [17].

Las especies hidroxiladas fueron los primeros metabolitos de PCBs en ser estudiados. En la actualidad se han aislado derivados *metilsulfonilo* (MeSO₂), en ratas tratadas con tri-, tetra-, penta- y hexaclorobifenilos, en personas expuestas accidentalmente a PCBs [66] y, en concentraciones relativamente elevadas, en nutrias y focas. En relación con lo anteriormente expuesto, cabe reseñar que estos metabolitos provocan graves efectos en ratones [67].

En la Tabla VII se muestran los datos de inducción del citocromo P450 para algunos PCBs y como puede observarse los no-*orto* PCBs presentan inducción tipo 3-MC pura de la subfamilia del P450IA.

Las dimensiones moleculares y la planaridad de la molécula de PCB parece ser importante para su interacción con el receptor de la TCDD. Estos requerimientos estructurales dependen en parte del número de átomos de cloro en posiciones *orto*, de la presencia de dos átomos de cloro en posiciones *para* y de, al menos, otros dos en posiciones *meta* en el esqueleto del bifenilo. Los PCBs coplanares no-*orto*-sustituidos, en especial el 3,3',4,4'-tetra-clorobifenilo (TeCB; PCB-77), el 3,3',4,4',5-pentaclorobifenilo (PeCB: PCB-126) y el 3,3',4,4',5,5'-hexaclorobifenilo (HeCB; PCB-169), con sustitución *para/meta*, son los congéneres bioquímicamente más activos y más tóxicos; producen síndromes tóxicos típicos de la 2,3,7,8-TCDD tales como lesiones hepáticas, inmunotoxicidad, inducción del sistema MFO y son inductores puros del tipo 3-metilcolantreno [16,17,37,68]. Los congéneres 77, 126 y 169 presentan los factores de toxicidad equivalente (TEF) a la 2,3,7,8-TCDD más elevados, como se observa en la Tabla VIII [69]. Los congéneres 37 y 81 aunque planares, son inductores menos potentes que los anteriores e inducen isoenzimas P450 típicas del PB y del 3-MC [17].

РСВ	CLB ¹	Inducción potencial del citocromo P450	РСВ	CLB	Inducción potencial del citocromo P450
Di- y tri-orto PCBs			Mono-orto PCBs		
52	В	Ninguna / débil	28	-	Ninguna
44	А	Ninguna / débil	70	-	Ninguna / débil
101	D	P450 IIB	105	В	P450 IA/IIB
128	В	P450 IA/IIB	114	С	P450 IA/IIB
138	D	P450 IA/IIB	118	D	P450 IA/IIB
149	-	Ninguna	156	А	P450 IA/IIB
153	CD	P450 IIB			
158	-	No hay datos	No-orto PCBs		
170	D	P450 IA/IIB	77	А	P450 IA
180	D	P450 IIB	126	-	P450 IA
194	D	No hay datos	169	-	P450 IA

 Tabla VII

 Inducción del Citocromo P-450 por algunos congéneres de PCB

¹ Mezclas de PCBs del Marine Analytical Chemistry Standards Program

Los PCBs *orto*-coplanares con un átomo de cloro en una posición *orto* (PCB-105, -114, -118, -123, -156, -157, -167 y -189), también son inductores de la actividad de la AHH; son inductores tipo PB y 3-MC y producen efectos tóxicos similares a los producidos por la 2,3,7,8-TCDD [17], presentando TEFs comprendidos entre 0.0001 y 0.00001 [69,70]. Resulta interesante el hecho de que los anillos aromáticos de las sustancias aromáticas cloradas más tóxicas sean rígidos y planos (dibenzodioxinas, dibenzofuranos y naftalenos) y, sin embargo, que los congéneres de PCBs más tóxicos sean flexibles y coplanares [55].

Fig 9.- Algunos PCBs no-orto-clorados

Tabla VIIIFactores de Toxicidad Equivalente (TEF) a la 2,3,7,8-TCDD ($\times 10^4$)

no-orto				mono-orto								_	di-orto		
77	126	169		105	114	118	123	156	157	167	189		170	180	
5	1000	100		1	5	1	1	5	5	0.1	1		1	0.1	

Recientemente se ha propuesto [44] una relación de 36 congéneres, agrupados en cinco categorías, que deben ser estudiados en base a su amenaza medioambiental:

1. Inductores del sistema MFO más potentes

77, 126, 169

2. Inductores menos potentes del sistema MFO, pero presentes en el medio ambiente en concentraciones relativamente elevadas

105, 118, 128, 138, 156, 170

- Inductores del sistema MFO relativamente débiles pero muy abundantes 87, 99, 101, 153, 180, 183, 194
- Inductores débiles o no inductores, presentes en el medio ambiente o en tejidos animales en altas concentraciones en relación a otros bifenilos clorados:

18, 44, 49, 52, 70, 74, 151, 177, 187, 201

Las concentraciones límite de PCBs establecidas se basan en el nivel total de PCBs o el nivel de congéneres individuales (28, 52, 101, 138, 153 y 180), elegidos para cubrir un amplio rango de cloración (desde uno a siete átomos de cloro) y, también, por su presencia relativamente elevada en las muestras [17]. Un ejemplo de estas concentraciones límite son las establecidas por Alemania en el año 1988; en leche y derivados lácteos, 40µg/kg de grasa para los congéneres 28, 52, 101 y 180 y 50µg/kg de grasa para los congéneres 138 y 153. En grasa de animales comestibles la concentración límite establecida es de 80µg/kg para el primer grupo y 100µg/kg para el segundo.

Los elementos básicos de las determinaciones de todos los PCBs y Aroclor, como en cualquier otro proceso analítico, son la toma de muestra, extracción, purificación, concentración, determinación y evaluación. La ejecución de este proceso depende principalmente de la naturaleza de la muestra y del nivel de PCBs esperado [17,31,71].

En tejidos de animales existen dos métodos generales para realizar la extracción: el primero consiste en una extracción Soxhlet con disolventes orgánicos (ciclohexano, diclorometano, etc.) después de haber homogeneizado y secado la muestra, y el segundo, en una saponificación y posterior extracción usando un hidrocarburo alifático ligero (ej, *n*-hexano) [17].

En el proceso de purificación (*clean-up*) se trata de eliminar todas aquellas sustancias que puedan interferir en la determinación de los PCBs. Por los general se utilizan métodos que son modificaciones de procedimientos aplicados en la determinación de pesticidas organoclorados (p. ej, DDT). La técnica más utilizada es la cromatografía de adsorción sólido-líquido y los adsorbentes más utilizados el Florisil, la sílice, la alúmina y el carbón activado [17].

Para la identificación y determinación cuantitativa es la cromatografía en fase gaseosa la técnica de elección. Los componentes de la muestra deben ser identificados y cuantificados una vez han abandonado la columna cromatográfica. Los detectores cromatográficos pueden proporcionar información sobre la estructura química de los componentes de la

muestra o pueden, únicamente, proporcionar información general sobre las características químicas de ésta. La mayoría de las determinaciones de PCBs y otros contaminantes medioambientales altamente halogenados se llevan a cabo por espectrometría de masas (MS) con ionización por impacto electrónico (EI) o con un detector de captura electrónica (ECD). El ECD responde a cualquier compuesto clorado o bromado pero no proporciona información adicional sobre la estructura del compuesto ni puede distinguir entre compuestos clorados o bromados y tampoco proporciona información acerca del número de átomos de cloro o bromo presentes en la molécula. Sin embargo, la sensibilidad del detector MS-EI es menor que la del ECD [68].

Aunque las mezclas de PCBs que se encuentran en la naturaleza se pueden separar por cromatografía de gases, utilizando una columna capilar y detección MS-EI, es posible identificar los componentes individuales por el contenido total de cloro, aunque no es posible realizar la identificación de determinados isómeros discretos, puesto que su espectro de masas es muy similar. La excepción a esta regla son aquellos isómeros que tienen tres átomos de cloro en posiciones *orto*, que producen picos más intensos de los correspondientes fragmentos iónicos [72].

La espectrometría de masas con ionización química negativa (NCI) es una técnica selectiva y sensible para determinar e identificar compuestos organoclorados. En este sentido, el límite de detección típico de esta técnica, utilizando el modo SIM (Monitorización Selectiva de Iones), se encuentra en torno a los 40-100fg. Esta técnica se ha usado en la mayoría de los casos para determinar pesticidas aromáticos clorados y dibenzo-*p*-dioxinas y sólo en unos pocos para la determinación de PCBs [68].

Por tanto, la cromatografía de gases asociada a un detector de captura electrónica (GC-ECD) o a un detector de conductividad electrolítica (GC-ELCD) son, en algunos casos, alternativas útiles a la cromatografía de gases/espectrometría de masas (GC/MS), cuando las concentraciones del analito están por debajo del límite de detección de esta última técnica, teniendo en cuenta que la gran desventaja de los sistemas con un sólo detector y una única columna, sin espectrometría de masas, es la imposibilidad que presentan para identificar los analitos en las muestras. Este hecho genera serias cuestiones sobre la validez de los datos aparecidos en la bibliografía. Debido a la complejidad de las matrices en algunas muestras, puede ocurrir que las identificaciones positivas falsas, como consecuencia de compuestos desconocidos interferentes, lleguen a ser muy importantes [73].

Para reducir la incidencia de estas identificaciones positivas falsas y mejorar la calidad de los datos, las identificaciones iniciales deben confirmarse. El tiempo de análisis adicional y el coste de estas comprobaciones han impedido a muchos laboratorios la realización del análisis confirmatorio, incluso, a pesar de estar recomendado. Una alternativa a la confirmación analítica por GC/MS es realizar la identificación inicial y la confirmación posterior usando un cromatógrafo de gases con detector no específico o semiespecífico, conectado a dos columnas con características de retención diferentes [73].

La determinación de PCBs se basó inicialmente en las mezclas comerciales (Aroclor, Fenoclor, Kaneclor, etc.), usando respuestas cromatográficas seleccionadas que se sumaban para obtener un valor total del contenido en PCBs [53]. El método se basa en la comparación del cromatograma de una mezcla estándar y de otro producido por la muestra para juzgar si la mezcla comercial y los componentes de la muestra son lo suficientemente similares [31]. Además del método visual, la caracterización del cromatograma de una muestra también es posible hacerla utilizando métodos quimiométricos, basados fundamentalmente en el *análisis de componentes principales*, como es el caso del método SIMCA (*Soft Independent Modeling by Class Analogy*) [74,75].

El procedimiento de medida más utilizado fue desarrollado en 1973 por Webb y McCall [31], y sólo puede realizarse con columnas rellenas y no con columnas capilares; el procedimiento Webb-McCall conlleva la medida de todos los picos cromatográficos de los componentes de la muestra correspondientes a un pico del Aroclor, aunque por lo general sólo se seleccionan unos pocos picos. De esta forma, se elige el Aroclor 1242 como estándar para muestras con una contribución relativamente elevada de componentes poco clorados (los tiempos de retención de estos picos son bajos), y el Aroclor 1254 o el 1260 para muestras con contribuciones mayores de componentes con alto contenido en cloro (los picos de estos componentes aparecen en la parte final del cromatograma). Los datos de concentración obtenidos por comparación entre las alturas (o áreas) de los picos en los cromatogramas de las muestras y en los productos comerciales se expresan en términos de lo que se denomina *equivalente de formulación técnica* [15,31]. En el caso de que la

mezcla comercial empleada para la caracterización de las muestras sea un Aroclor, los datos se expresan como *Aroclor x* (x = 1232, 1248, 1254, etc.).

El método cuantitativo de medir sólo determinados picos puede ser una fuente importante de variaciones en la concentración. Así, por ejemplo, si la altura del pico 1, Fig. 10-b, se compara con la del Aroclor, Fig. 10-a, la concentración de la muestra que se obtiene es dos veces mayor que la del estándar; en cambio, si se elige la altura del pico 2, la concentración que se obtiene es la mitad de la del estándar [31].

Fig 10.- Selección de picos cromatográficos en el análisis cuantitativo de PCBs.

Este método de cuantificación es poco exacto y cuando se utilizan columnas rellenas, la mayor parte de los picos de PCBs que se obtienen no están resueltos y se componen de más de un congénere y, más aún, éstos no tienen necesariamente el mismo número de átomos de cloro. Además, algunos picos en cromatogramas de formulaciones comerciales con diferente contenido total de cloro (por ejemplo: Aroclor 1254 y Aroclor 1260), con el mismo o prácticamente el mismo tiempo de retención, no están compuestos necesariamente de los mismos componentes individuales. La composición química de un mismo producto comercial es diferente en diferentes lotes [15,31]. Otra complicación añadida es que en cualquier pico esta composición puede ser diferente a la del pico correspondiente (con el mismo tiempo de retención) de la muestra. Este pico es el resultado de un complejo mecanismo que incluye en primer lugar la liberación de PCBs al

medio, y en segundo lugar, un conjunto de procesos físicos, químicos y biológicos de transporte, transformación y degradación en el medio ambiente, que tienen diferentes efectos en cada uno de los congéneres. Por tanto, la composición de las diferentes mezclas comerciales con diferente contenido total de cloro, difieren de las muestras medioambientales [15,41]. Por otro lado, la respuesta del detector de captura electrónica depende en gran medida del número de átomos de cloro así como de su posición relativa en la estructura molecular. La respuesta molecular se incrementa fuertemente con el número n de átomos de cloro para valores bajos de n, y en menor medida para valores más altos de n. Por tanto, una gran contribución de componentes con bajo grado de cloración en la muestra, puede ser entendida como el resultado de la baja intensidad de picos cromatográficos debidos a la existencia de PCBs con alto contenido en cloro [76].

Las mezclas comerciales son, por tanto, menos adecuadas como material de referencia que los congéneres individuales para analizar PCBs en el medio ambiente. En muchos casos, los datos de PCBs en muestras medioambientales se expresan como suma de un número de congéneres analizados, Σ PCB, o como PCBs *totales* si se pudieran analizar todos los PCBs [15], a pesar de que ninguna columna cromatográfica es capaz de separar adecuadamente todos y cada uno de los 209 PCBs como para producir picos discretos (para alcanzar la máxima resolución cromatográfica se han necesitado tiempos de análisis entre 140 y 200 minutos) [31].

La aproximación anterior, que no incluye datos acerca de la mezcla de PCBs, expresada como Σ PCB, es útil en ocasiones, pero sólo como un primer paso y para un número muy limitado de propósitos específicos.

Para expresar el contenido de PCBs de una muestra, en base a una determinada formulación comercial, también se suelen utilizar una serie de congéneres que representan diferentes grados de cloración dentro de éstas. Los congéneres 18, 87 y 180 se han usado para estimar la concentración de los Aroclor 1242, 1254 y 1260 respectivamente. Teniendo en cuenta que el congénere 18 representa el 9,38% del total de congéneres en el Aroclor 1242, la medida de la concentración de este PCB multiplicada por 100/9,38 dará como resultado el contenido aproximado de PCBs expresado como Aroclor 1242. Lo mismo ocurre con el PCB-87 y el PCB-180, que representan el 3,32% y el 6,5% en el Aroclor 1254 y 1260, respectivamente [77].

Otra posibilidad, utilizada en la determinación de PCBs, es la cloración total de todos los PCBs presentes en la muestra, obteniendo de esta forma un sólo pico [16,76]. Aunque la cuantificación es ahora sencilla, la interpretación del dato no es clara y, de hecho, la incertidumbre que se genera es todavía mayor. Esta técnica provoca la pérdida de toda la información sobre la contribución relativa de cada uno de los congéneres en la muestra. Puesto que los congéneres con grado de cloración bajo tienen una respuesta específica baja en el ECD, la contribución relativa de estos componentes al pico del decaclorobifenilo obtenido y, consecuentemente, al resultado cuantitativo, puede considerarse mayor que en la técnica de cuantificación basada en la formulaciones comerciales. Además, una dificultad añadida es que los congéneres con diferente grado de cloración, se percloran con un grado de eficiencia, también, diferente [76].

La posibilidad opuesta consiste en convertir todos los congéneres de PCBs en moléculas de bifenilo, es decir, producir la decloración total de los PCBs. Un posible reductor puede ser el hidrógeno, utilizando paladio como catalizador, o una disolución de borohidruro de aluminio y litio (LiAl(BH₄)₄) en éter dietílico. La detección se realiza por cromatografía gaseosa con detector de ionización de llama (FID) [17]. Los problemas de interpretación son similares a los ya descritos para el caso de la percloración.

Puesto que cada congénere posee unas propiedades químicas, físicas y biológicas características, su determinación individual es esencial para la interpretación de los datos experimentales, así como para estudios de procesos de transformación y transporte, efectos sobre el organismo, investigación de fuentes, vertederos, y potencial tóxicos de los residuos, puesto que, como hemos visto, las mezclas comerciales usadas como referencia no suministran tal información [15,78,79].

De cualquier forma, la determinación rigurosa de todos los PCBs contenidos en la muestra es extremadamente cara y requiere una gran cantidad de tiempo. Se emplea, para ello, una columna capilar, por lo general, de 25 a 60 metros de longitud y con un diámetro interno de 0,2 a 0,32mm. Sólo se determinan los congéneres separados correctamente, puesto que para algunos PCBs no se consiguen resolver los picos de forma adecuada. La temperatura del horno se programa, generalmente, a una velocidad extremadamente baja.

Un ejemplo de la falta de resolución de algunos de los congéneres de PCBs se produce con uno de los más importantes por su toxicidad, el PCB-77. Con la fase SE-54, que es la más usada en las columnas de cromatografía de gases para determinar este y otros PCBs, el PCB-77 coeluye con el PCB-110, que está presente en las formulaciones técnicas en cantidades elevadas; en el caso concreto del Aroclor 1254 la concentración del PCB-110 es de 58,5mg/g, mientras que la concentración del PCB-77 sólo alcanza los 0,2-2,5mg/g (PCB-110/PCB-77 \approx 20:1) [45].

La cromatografía de gases multidimensional es útil para separar congéneres de PCB que no pueden ser separados con una columna SE-54 u otra similar. La técnica consiste en conectar dos columnas capilares, de tal forma que la segunda columna sólo reciba pequeñas fracciones seleccionadas, eluídas de la primera. Esta técnica permite la completa separación de cada uno de los congéneres y, además, consigue un aumento de la sensibilidad [45,48].

Además de los problemas derivados de la coelución, los PCBs no-*orto* sustituídos no pueden determinarse simultáneamente con otros PCBs por cromatografía gaseosa utilizando una única columna con ECD o, incluso, por la ya citada cromatografía multidimensional (MDGC/ECD) debido a que es imposible determinar PCBs cuyas concentraciones difieren en más de 1000 unidades, en un sólo análisis cromatográfico.

Es por este motivo por el que se han desarrollado técnicas de pre-separación en las que los no-*orto* PCBs son separados de otros PCBs previamente al análisis cromatográfico [80]. En muestras biológicas, las concentraciones de los PCBs mono-*orto* sustituídos mayoritarios varían en gran medida. Por ejemplo, en la anguila holandesa, el PCB-118 se encuentra en concentraciones del orden de 100µg/kg (peso húmedo), mientras que los PCBs 105 y 156 se encuentran normalmente en concentraciones 10 veces más bajas.

Como ya hemos comentado, se supone que los no-*orto* PCBs -77, -126 y -169, junto con los mono-*orto* PCBs -105, -118 y -156 son los congéneres que contribuyen en mayor medida a la TEF en la mayoría de las muestras biológicas. Sin embargo, la información acerca de otros mono-*orto* PCBs (PCB-60, -74, -114, -123, -157, -167 y -189) que por lo general se encuentran en concentraciones muy bajas (aproximadamente entre el 0.5 y 5%

del PCB-118) es posible que no sea del todo precisa. Es por ello, por lo que no está claro en qué medida contribuyen estos PCBs a la TEF y cuál de ellos es más importante.

Se han descrito dos procesos para determinar estos mono-*orto* PCBs: 1) de forma similar a los no-*orto* PCBs por GC/ECD o GC/MS después de una pre-separación utilizando una columna de carbón activo o por cromatografía líquida, y 2) directamente por GC/ECD, GC/MS o MDGC sin pre-separación. Aunque las concentraciones de los mono-*orto* PCBs son más altas que las de los no-*orto* PCBs, son todavía extremadamente bajas comparadas con la de los componentes mayoritarios, por lo que la determinación directa en muestras medioambientales complejas es muy complicada.

Los resultados de recientes Ejercicios de Intercomparación indican que los coeficientes de variación en la determinación de los PCBs -105 y -156 por cromatografía gaseosa son distintos y más elevados (30-60%) que los correspondientes a los PCBs mayoritarios -101, -153, -180, etc. (10-20%) y que no disminuyen a pesar de que se utilicen columnas con diámetros internos menores [81].

En la actualidad, la cromatografía de gases con columnas capilares, es una técnica bien desarrollada debido a los avances en el control por microprocesadores, en las técnicas de inyección *splitless* y *on-column* fría y en la adquisición y procesamiento de datos por ordenador. Comercialmente se dispone de columnas capilares con varias fases estacionarias, que proporcionan eficiencias de 3000-5000 platos por metro. Todos estos avances han dado lugar al desarrollo de una serie de métodos adecuados para la interpretación de los datos [82].

Aunque, como hemos visto en los párrafos anteriores se han producido importantes mejoras en el análisis de PCBs, en lo que se refiere a estudios de monitorización aún se requieren algunas mejoras en cuanto a la determinación e identificación de los mono-*orto* y no-*orto* PCBs. Hay dos problemas asociados con la determinación de estos compuestos en biota en concentraciones inferiores a 0.1µg.kg⁻¹. En primer lugar, la cantidad de muestra debe incrementarse desde 1-5g a 10-50g, siempre teniendo en cuenta que esta masa depende de la concentración de analito presente en la muestra y el método final de análisis. En primer lugar, se plantean problemas en el caso de hígados de, por ejemplo, sólo 2g, o en lapas, que no sobrepasan en la mayoría de los casos los 5g de peso por ejemplar, cuando

se trata de relacionar la actividad biológica específica con la concentración del contaminante. En segundo lugar, la eliminación de todos los lípidos coextraíbles es esencial puesto que estos compuestos degradan las columnas cromatográficas, reducen la separación de PCBs similares e interfieren en la detección final si ésta se realiza con un detector de captura electrónica o un espectrómetro de masas [19].

La EPA (Environmental Protection Agency, USA) ha alentado en los últimos años la utilización de innovadoras tecnologías, tales como el inmunoensayo, con la finalidad de reducir los costes del análisis de residuos. Los métodos inmunológicos aportan a la química del medioambiente, con un coste aceptable, métodos efectivos, rápidos, sencillos y capaces de ser adaptados a análisis de campo y de laboratorio. Algunos métodos descritos para el análisis cuantitativo de PCBs en aguas y suelos, basados en técnicas de inmunoensayo, se realizan en menos de una hora y requieren una preparación de muestra simple [83].

HIDROCARBUROS

Cuando se habla de contaminación por hidrocarburos se evocan inmediatamente las imágenes trágicas asociadas con las "mareas negras": olas pesadas, negras, viscosas, que, con mayor o menor velocidad, depositan su contaminante carga sobre las costas, pájaros y otros animales acuáticos atrapados que se hunden y mueren, y, además, la arena que cada verano ennegrecen los pies de los bañistas y que recuerda que, incluso, en ausencia de espectaculares accidentes, los vertidos de hidrocarburos son cosa cotidiana.

En la Tabla IX se expone una estimación global en millones de toneladas en que se evaluaban, a comienzo de los años ochenta, los diferentes tipos de vertidos de hidrocarburos al mar.

Producción de crudo en el mar	0,06	
Refinerías costeras	0,06	
Desechos industriales	0,15	
Desechos municipales	0,30	
Arrastres urbanos	0,40	
Arrastres por los ríos	1,40	
Arrastres naturales	0,60	
Arrastres por la lluvia desde la atmósfera	0,60	
	Parcial	3,17
Transporte marítimo		
sentinas y combustibles	0,12	
cargas varias	0,61	
diques secos	0,25	
accidentes de buques-tanque	0,30	
accidentes de tanques en lastre	0,10	
accidentes en terminales de carga	0,001	
	Parcial	1,38
	Total	4,95

 Tabla IX

 Estimación del crudo que llega al mar en millones de toneladas (1978)

Haciendo un examen de la bibliografía al respecto, puede descubrirse que el problema se remonta al comienzo de nuestro siglo y que su importancia se ha visto acrecentada de forma espectacular paralelamente al incremento de su utilización como principal fuente de energía a nivel mundial. Pero, además, la bibliografía científica que trata de los problemas planteados por la contaminación por hidrocarburos derivados del petróleo es extraordinariamente abundante y puede decirse que sobrepasa con mucho unas 35.000 referencias, pero esta abundancia de información comporta un interés muy desigual. Se pueden explicar fácilmente las dificultades con que tropiezan los investigadores ya que se encuentran relacionadas con, fundamentalmente, cuanto factores:

- la naturaleza compleja de los productos petrolíferos, lo que impide unificar suficientemente el problema e impide concentrar todos los esfuerzos de investigación sobre los puntos más importantes,
- 2°) la existencia de hidrocarburos denominados "biogénicos" en contraposición con los denominados "fósiles" que, de hecho, deberían ser los únicos a considerar como contaminantes, pero la discriminación entre ambos grupos es, aún hoy día, bastante difícil.
- 3°) la necesidad de utilizar medios analíticos relativamente complejos (CG-FID, -ECD,-Masas) cuyo coste aún relativamente alto, impide que puedan ser utilizados por muchos laboratorios, y
- 4°) la dificultad de la experimentación, especialmente, para medir la toxicidad o acumulación de productos que son prácticamente insolubles y de los cuales una importante fracción es volátil.

Los productos petrolíferos pueden ser vertidos al mar de forma directa voluntaria o accidentalmente:

- por petroleros en actividades de carga y descarga,
- por otros barcos en la toma de combustible,
- por navíos que limpian bodegas y/o tanques o vierten aceites usados o aguas de sentinas,
- por accidentes de buques-tanque o de transporte en general, "mareas negras",
- en las explotaciones "off-shore" en que, además, pueden verterse al mar las aguas del yacimiento,
- por refinerías e industrias petroquímicas instaladas en zonas costeras,
- por los ríos que llevan al mar los hidrocarburos residuales de las actividades realizadas tierra a dentro,

- agua de lluvia que arrastra residuos del suelo, o volátiles y particulados de la atmósfera
- emisarios submarinos

Por otra parte, la quema en malas condiciones de cualquier tipo de combustible fósil (carbón, gas natural, derivados del petróleo, etc.) produce, como luego se verá, una gran cantidad de hidrocarburos aromáticos policíclicos al igual que cuando se queman en malas condiciones los residuos orgánicos de las actividades humanas.

Además, los afloramientos de hidrocarburos fósiles a partir de yacimientos submarinos son bastante conocidos en las costas de Louisiana, California, Texas, Alaska, Trinidad, México, Mar Caribe, Venezuela, Golfo Pérsico, etc., y contribuyen también a la contaminación del mar.

HIDROCABUROS AROMÁTICOS POLICÍCLICOS

Los Hidrocarburos Aromáticos Policíclicos (PAHs, utilizando el acrónimo inglés como es usual) constituyen un grupo de contaminantes que se encuentra ampliamente distribuido en la totalidad del medio ambiente. Son compuestos orgánicos que contienen únicamente carbono e hidrógeno y están formados por dos o más anillos aromáticos condensados en forma lineal (los anillos están situados en una misma línea recta), angular (los anillos están localizados en diferentes líneas rectas, formando un ángulo de 120° en todos los casos) o en conglomerado, Fig 11, cuyo representante más sencillo es el naftaleno. Sin embargo, debido a ciertos procesos que tienen lugar en el medio ambiente, pueden encontrarse diferentes derivados: nitro-, halo-, etc. La ubicuidad de los PAHs y su negativa influencia sobre la salud ha favorecido su estudio a nivel mundial [84] y su determinación es, por lo general, un requerimiento básico en estudios medioambientales. A pesar de que con cierta frecuencia aparecen estudios relativos a alquil- o nitro-PAHs, o relativos a otros PAHs que contienen heteroátomos,

los PAHs más abundantes y más comúnmente monitorizados son los 16 que se relacionan en el Método 610 de la *United States Environmental Protection Agency* (US EPA), Tabla X. Estos compuestos también se incluyen en la Lista de Sustancias Prioritarias de la *Canada Environmetal Protection Act* (CEPA) [85]. Muchos de los PAHs poseen propiedades carcinogénicas, mutagénicas y/o cocarcinogénicas [86],

Tabla X, por lo que son de una gran importancia en lo que se refiere al análisis medioambiental. Los PAHs de 4-7 anillos son los que presentan los mayores efectos mutagénicos y cancerígenos. Uno de los más potentes es el Benzo[a]pireno (BaP), Fig 12. Por los datos que se desprenden de ciertas investigaciones, el BaP representa entre el 9.6del efecto cancerígeno de los PAHs 31% determinados, y su presencia puede ser indicativa de la existencia de otros PAHs cancerígenos en las muestras. Además, se han encontrado relaciones cuantitativas entre las concentraciones de BaP y de otros PAHs, de tal forma que mediante la determinación de BaP podría predecirse la concentración de otros PAHs [87].

Los PAHs están presentes en la atmósfera, medio acuático, suelo, etc. Se encuentran como

Dibenzo[a,n]perileno

Fig11.- Disposiciones de los anillos aromáticos en los PAHs

componentes de los petróleos crudos y sus derivados manufacturados y, además, se producen durante los procesos de combustión de combustibles fósiles (carbón, gas natural, derivados del petróleo, etc.) y en general, en la combustión de cualquier tipo de materia orgánica a alta temperatura. Las condiciones óptimas para la pirosíntesis de PAHs se producen a temperaturas de combustión superiores a 500°C con mezclas ricas en combustible (elevada relación combustible/aire). Prácticamente todos los PAHs

Fig 12.- Benzo[*a*]pireno

	C				
nº	PAH	P.C. ¹	nº	PAH	P.C.
01	Naftaleno	-	09	Benzo[a]antraceno	+++
02	Acenaftileno		10	Criseno	+
03	Acenafteno	-	11	Benzo[b]fluoranteno	++
04	Fluoreno	-	12	Benzo[k]fluoranteno	-
05	Fenantreno	-	13	Benzo[a]pireno	+++
06	Antraceno	-	14	Indeno[1,2,3-cd]pireno	+
07	Fluoranteno	-	15	Benzo[ghi]perileno	-

16

Dibenzo[ah]antraceno

+++

 Tabla X

 Poder cancerígeno de los PAHs relacionados en el Método 610 EPA

¹ Poder Cancerígeno

Pireno

08

producidos por pirólisis en estas condiciones se encuentran asociados a las partículas que se producen simultáneamente, como es el caso de las cenizas, negro de humo, etc., si bien los de menos peso molecular tienen presiones de vapor lo suficientemente altas como para poder existir en fase vapor en concentraciones significativas.

Los PAHs pueden producirse también por biosíntesis. Organismos tales como bacterias, hongos y plantas superiores son capaces de sintetizar moléculas orgánicas que contienen anillos aromáticos fundidos con presencia incluso de átomos de oxígeno, azufre y nitrógeno. Por ejemplo, a partir de quinonas policíclicas se pueden producir las correspondientes hidroquinonas y, a partir de estas, los correspondientes PAHs en un ambiente reductor como pueden ser los sedimentos anaeróbicos, aguas estancadas, etc., y en este sentido frecuentemente se describe la presencia de perileno en sedimentos marinos y de agua dulce procedente, se supone, de la reducción de perileno-cetonas. Sin embargo, la biosíntesis no ha podido ser demostrada concluyentemente en el laboratorio.

Por su parte, el B*a*P se encuentra ampliamente distribuido, aunque no de forma uniforme, en el medio marino; puede ser sintetizado por la flora marina y por bacterias y, también, se ha encontrado en concentraciones significativas en cenizas volcánicas. Este es uno de los motivos por el que se hace difícil establecer el nivel de fondo de PAHs en organismos marinos.

Aunque algunos autores han sugerido que la mayoría de los PAHs en el medio marino proceden de fuentes endógenas, por biosíntesis principalmente, el hecho antes descrito de que ésta no se haya demostrado de forma concluyente en el laboratorio resta importancia a esta fuente. Además, de producirse, estaría circunscrita a los sedimentos anóxicos y los PAHs resultantes serían poco numerosos y poco móviles.

No puede olvidarse, por otra parte, que los hidrocarburos sintetizados por la materia viva pueden muchas veces desempeñar una función indispensable para la vida (búsqueda de alimento, defensa, reproducción, etc.) y que muy raramente son tóxicos para el organismo que los genera.

Entre los procesos que causan la deposición de los PAHs atmosféricos pueden incluirse el arrastre por la lluvia (deposición húmeda), deposición seca, deposición de la fase vapor sobre las superficies, etc., estimándose que los dos primeros son los mecanismos principales de deposición. Los tiempos de permanencia de los PAHs en la atmósfera dependerán de las velocidades de la fotodegradación y degradación química y de la velocidad de deposición. Se ha estimado que, en ausencia de lluvia, las partículas submicrométricas permanecen en suspensión en la atmósfera desde unos pocos días a varias semanas, en tanto que las partículas con diámetros en la gama 1-10mm se depositan en sólo unos pocos días. Por otra parte ha podido demostrarse el transporte a larga distancia de partículas conteniendo PAHs arrastradas por las masas de aire.

La inyección total anual de PAHs al medio marino a partir de las fuentes anteriormente señaladas se ha estimado en, aproximadamente, unas 230.000Tm y, en general, las escorrentías y las lluvias aparecen como las fuentes mayoritarias de PAHs de alto peso molecular en tanto que los derrames de crudo y derivados se presentan como la fuente principal del total de PAHs

Si las cantidades de PAHs que se calculan entran en el mar se distribuyeran al azar en los océanos mundiales y las aguas dulces sus concentraciones serían indetectables y no tendrían consecuencias. Sin embargo, su distribución no es al azar y la mayoría de ellos permanece relativamente cerca de las fuentes de inyección y su concentración disminuye de forma aproximadamente logarítmica con la distancia a la fuente; por tanto, los PAHs que entran en el medio acuático permanecen localizados fundamentalmente en rías, estuarios y aguas costeras.

Como los PAHs son poco sensibles a la fotooxidación son más persistentes en el agua que en el aire y cuando se incorporan a un sedimento anóxico pueden persistir por largo tiempo. El ciclo de los PAHs en el medio acuático es relativamente simple: al entrar procedente de las diferentes fuentes mencionadas, se adsorben rápidamente sobre las partículas orgánicas e inorgánicas y se depositan en grandes cantidades en los sedimentos. El lixiviado o la actividad biológica en los sedimentos puede devolver una parte de estos PAHs a la columna de agua. Por otra parte, los PAHs son acumulados fácilmente por el biota acuático, alcanzando niveles relativamente menores que en los sedimentos y mayores que en el agua. Las vías de eliminación incluyen la vaporización desde la superficie, fotooxidación, oxidación química, metabolismo microbiano y de organismos superiores, y la velocidad de cada uno de estos procesos dependerá de las propiedades físicas y químicas de cada PAH en particular. Por otra parte, como los PAHs son bastante lipofílicos tienden a ser bioacumulados al ascender en las cadenas tróficas.

Los PAHs pueden clasificarse, de forma general, en tres grupos fundamentales: pirolíticos, fósiles y diagenéticos. Son pirolíticos todos los PAHs "padre" (aquellos que no han sufrido reacciones de alquilación, etc.), con la excepción del fenantreno, antraceno y perileno. Estos tres compuestos no se incluyen en este grupo debido a su origen inespecífico, ya sea un origen pirolítico o fósil para los dos primeros y pirolítico o diagenético para el perileno. Aunque el pireno y el criseno tienen múltiples orígenes se incluyen por lo general dentro de los pirolíticos. Dentro de los PAHs de origen fósil se pueden incluir los alquil-PAHs, antraceno y fenantreno. El perileno, a pesar de originarse en procesos pirolíticos, puede considerarse de origen diagenético si su concentración en las muestras, en relación al resto de los PAHs, es elevada [88]. En general, los PAHs de cuatro y cinco anillos se producen principalmente por pirólisis de sustancias naturales, y por combustión del carbón, combustibles fósiles y sus productos en la industria [89].

Los compuestos más pesados se condensan rápidamente o se adsorben sobre los materiales particulados, los más volátiles permanecen durante mayor espacio de tiempo en la fase gaseosa y su distribución depende en gran medida de la temperatura. Es por esto por lo que la relación de concentración entre la fase gaseosa y el particulado decrece claramente durante los meses de invierno. Las pequeñas partículas permanecen durante períodos de tiempo más prolongados en la atmósfera depositándose, posteriormente, arrastrados por la lluvia por ejemplo, facilitando así los procesos de distribución global. Cuando se depositan sobre aguas superficiales, la fracción disuelta contamina el agua, mientras que los contaminantes hidrofóbicos penetran en los

sedimentos del fondo o se adsorben en la materia particulada en suspensión [90,91]. Este es el motivo por el que es poco probable que los PAHs se encuentren presentes en aguas subterráneas. Sin embargo, los PAHs se encuentran presentes, en gran medida, en zonas costeras como resultado de los vertidos accidentales o intencionados de crudos, además de las posibles fuentes ya citadas.

En el medio marino los PAHs están sujetos a toda una serie de transformaciones y degradaciones químicas a través de una gran variedad de procesos de entre los cuales los más importantes son la fotooxidación, la oxidación química, y las biotransformaciones producidas por bacterias, hongos y animales. Como quiera que la mayoría de los mecanismos de transformación oxidativa de PAHs necesitan de oxígeno, luz, o ambos, este tipo de compuestos son muy estables y persistentes una vez que se han incorporado a sedimentos profundos pobres en oxígeno.

Fotooxidación: Los PAHs pueden sufrir diferentes tipos de reacciones en estado fundamental tales como sustituciones electrofílicas y nucleofílicas, reacciones de 1,2- y 1,4-cicloadición, oxidación, reducción, hidrogenación, y reacciones de condensación intrae inter-moleculares. Estas reacciones se conocían de antiguo pero sólo recientemente ha podido demostrarse que tanto los PAHs como otros sistemas heteroaromáticos relacionados pueden sufrirlas.

Desde un punto de vista medioambiental las reacciones de los PAHs electrónicamente excitados, reacciones fotoquímicas, tienen un interés particular ya que su destino final en el medio ambiente está determinado en un alto grado por su comportamiento fotoquímico. Los PAHs tricíclicos y mayores, así como los sistemas heterocíclicos relacionados, presentan fuertes absorciones en el UV a $\lambda > 300$ nm, longitudes de ondas presentes en el espectro solar, y la mayoría de ellos pueden ser fácilmente fotooxidados.

La fotooxidación en disolución conlleva la transferencia de energía desde el estado triplete del sistema aromático al oxígeno, con formación de oxígeno en estado singlete que, a su vez, reacciona con el compuesto poliaromático dando lugar a su peróxido. En general, para que se forme un endoperóxido es necesaria una estructura del tipo 9,10-sustituidas del antraceno. La posterior fotólisis o pirólisis del PAH-endoperóxido origina toda una serie de productos via desalquilación y ruptura de anillos, etc. La fotólisis directa puede ocurrir,

también, en ausencia de oxígeno molecular pero en presencia de "quenchers" del estado triplete, por ejemplo, cloruro mercúrico.

Es de notar que las quinonas pueden formarse incluso cuando no pueden formarse los correspondientes endoperóxidos por razones estéricas.

Se ha especulado que la fotooxidación de los PAHs adsorbidos no transcurre via endoperóxidos aunque la oxidación transcurre con mucho mayor velocidad que en disolución.

La sensibilidad a la fotooxidación aumenta con el peso molecular y las moléculas lineales son mucho más sensibles que las angulares y las condensadas. Como la intensidad de la luz solar decrece rápidamente con la profundidad también la velocidad de la fotooxidación decrece. La adsorción sobre los sedimentos del fondo disminuye aún más la fotólisis especialmente para los de más alto peso molecular.

La situación es bastante diferente en la capa de crudo de un derrame sobre la superficie marina situación en la que la fotooxidación por acción de oxígeno singlete es el principal mecanismo de la fotodegradación.

Los acenos forman fotodímeros fácilmente por reacción entre una molécula del PAH excitada en su estado singlete con otra molécula en estado fundamental, reacción cuyo primer paso es la formación de un excímero.

Oxidación química: Dado que la cloración y la ozonación son dos procesos ampliamente utilizados en la destrucción de gérmenes patógenos en el agua potable y para destruir la materia orgánica en las aguas de desecho industriales, se han realizado muchos estudios sobre la acción de estos agentes sobre los PAHs.

En las condiciones que suelen existir en las plantas de tratamiento, el hipoclorito sódico es un oxidante efectivo para la mayoría de los PAHs, en la velocidad y extensión del proceso tienen una gran importancia la temperatura, la concentración de cloro libre y el pH [92-94].

Los PAHs tienden a sufrir reacciones de sustitución electrofílicas con los iones cloro para producir los correspondientes cloro-derivados. Como, en general, estos cloro derivados son altamente tóxicos y persistentes en el medio ambiente se hace necesario, en su caso, recurrir a procedimientos alternativos para purificar las aguas de desecho o el agua potable que puedan contener altos niveles de PAHs [95].

Por su parte el ozono reacciona fácilmente con los PAHs en disolución acuosa y entre los productos de reacción pueden encontrarse quinonas, aldehídos aromáticos, y ácidos carboxílicos [96,97]. En general, la ozonación es más efectiva que la cloración en eliminar los PAHs; sin embargo, como el ozono se volatiliza tan rápidamente es muy difícil mantener la alta concentración necesaria en un sistema de purificación.

Bacterias y hongos: Las bacterias y los hongos presentan una tremenda diversidad y adaptabilidad en su utilización de las más variadas moléculas orgánicas como fuentes de carbono. Algunos microorganismos son capaces de oxidar a determinadas moléculas orgánicas aromáticas hasta dióxido de carbono y agua utilizándolas como fuentes únicas de energía y de carbono para el crecimiento. Otros, en cambio, no son capaces de producir la oxidación completa de las molécula aromáticas pero si se encuentran en presencia de otros sustrato para su crecimiento sí son capaces de metabolizarlas parcialmente a toda una serie de derivados oxigenados en un proceso de "cooxidación" [98].

En este sentido, el descubrimiento de microorganismos con capacidad para degradar a los PAHs a compuestos menos tóxicos ha supuesto una gran ayuda para el desarrollo de procesos que puedan reparar las áreas afectadas por PAHs. La mayor parte de los estudios publicados en los últimos años están relacionados con la degradación microbiana de PAHs de bajo peso molecular (2-3 anillos aromáticos) que son relativamente menos persistentes y no tan genotóxicos como los de mayor peso molecular. La información relativa a estos últimos es mucho más escasa, a pesar de su elevada persistencia y de sus propiedades carcinogénicas y mutagénicas. Se han podido aislar bacterias que tienen como única fuente de carbono y energía a PAHs de elevado peso molecular. Este es el caso de la *Sphingomonas paucimobilis* que además de utilizar al fluoranteno como única fuente de carbono y energía, es capaz de degradar a numerosos otros PAHs [99].

Los PAHs son oxidados por las bacterias a dihidrodioles. Estos dihidrodioles puede seguir siendo oxidados a quinonas, catecoles y, eventualmente, a dióxido de carbono y agua. Un factor de gran importancia es que los microorganismos metabolizan a *cis*-dihidrodiol a través de un intermediario dioxoetano, en tanto que los mamíferos producen *trans*-dihidrodioles a través de un intermediario areno-óxido. Estos areno-óxidos, o sus inmediatos productos de oxidación, parecen ser los responsables de la carcinogenicidad y mutagenicidad de los PAHs con tales propiedades.

Los estudios realizados con las bacterias presentes en la columna de agua y en los sedimentos sobre su capacidad de degradación indican que los PAHs son degradados más rápidamente en condiciones aeróbicas y que la velocidad de degradación tiende a disminuir al aumentar el peso molecular. Por otra parte, las bacterias procedentes de áreas con contaminación congénita por crudo tienden a metabolizar más rápidamente los PAHs que los procedentes de zonas no contaminadas.

Los hongos, a diferencia de las bacterias, metabolizan a los PAHs mediante un sistema de oxigenasa de función mixta dependiente del citocromo P-450 relativamente parecido al que se encuentra en los microsomas del hígado de los mamíferos y, al igual que en éstos, el producto inicial de la acción fúngica es un *trans*-dihidrodiol producido mediante un intermediario areno-óxido [100].

Animales superiores: En los mamíferos, el sistema enzimático conocido como oxidasa de función múltiple dependiente del Citocromo P-450, o Oxigenasa de Función Múltiple (MFO), es el responsable de iniciar el metabolismo de diferentes compuestos orgánicos liposolubles incluyendo los xenobióticos entre los cuales podemos encontrar alcanos, PAHs, pesticidas, drogas, etc. Aunque el sistema MFO puede detoxificar de manera efectiva determinados xenobióticos (alcanos, PAHs, pesticidas, drogas, etc.) y compuestos endógenos (hormonas esteroidales, sales biliares, etc.), otros, tales como determinados alcanos y algunos PAHs, pueden ser transformados en intermediarios que resultan ser altamente tóxicos, mutagénicos o carcinógenos para el organismo metabolizador.

El metabolismo oxidativo de los PAHs en estos sistemas se realiza a través de intermediarios del tipo areno-óxidos altamente electrofílicos que pueden enlazarse covalentemente con macromoléculas celulares como DNA, RNA y proteínas. Hoy día se

piensa que la activación metabólica por el sistema MFO es un pre-requisito para el carácter mutágeno y carcinógeno de los PAHs [101].

Entre los invertebrados, y a pesar de que no todos los *phyla* han sido investigados, parece que la actividad del sistema MFO queda restringida a algunos miembros de los *phyla* Artropoda y Annelida. Así el sistema ha sido detectado en *Crassostrea virginica, Mytilus edulis, Mya arenaria, Littorina* sp., *Illex illecebrosus,* etc. [102,103] Igualmente la actividad del sistema MFO se ha detectado en el hepatopáncreas de diferentes especies de crustáceos marinos y de agua dulce.

También se han identificado otras numerosas enzimas que, como la epóxido hidratasa (asociada a la fracción microsomal) y la glutatión S-transferasa (presente en la fracción citoplasmática) de los sistemas hepáticos, intervienen en el metabolismo de los PAHs de invertebrados y peces: bivalvos, moluscos, crustáceos, elasmobranquios y teleósteos [104].

Entre los metabolitos producidos se encuentran mono- y di-hidrodioles, quinonas y ácidos, conjugados con sulfato, ácido glucorónico y glutationa.

En general, la exposición a PAHs o a mezclas complejas de hidrocarburos como puede ser el petróleo crudo y sus derivados, hace que se induzca el sistema MFO que rápidamente (1-10 días) alcanza niveles muy elevados, siendo el nivel como su desarrollo muy específicos tanto de la especie como del PAH concreto. Sin embargo el aumento de la actividad MFO no siempre va acompañada por un aumento significativo de la concentración de citocromo P-450 microsomal y, de forma general, un incremento grande de la actividad MFO suele ir acompañada de pequeños incrementos de la concentración de citocromo P-450 microsomal y de forma general, un incremento grande de la actividad MFO suele ir acompañada de pequeños incrementos de la concentración de citocromo P-450. Esto puede ser debido al hecho de que pueden haber seis o más citocromos P-450 involucrados y sólo uno ser el que específicamente se induce por cada inductor particular. En algunos casos se necesita la presencia de un mediador, como el 3-metilcolantreno, para que la inducción sea efectiva.

Así, por ejemplo, la inyección intraperitoneal de criseno y benzo[*a*]pireno induce la elevación de la actividad MFO del microsoma hepático de la trucha arco iris *Salmo gairdneri*) pero el naftaleno, fenantreno, pireno y fluoranteno son inefectivos [105].

La inducción de otros componentes del sistema MFO requiere la mediación del propio petróleo. Así, en el mújol (*Mugil cephalus*) expuesto a crudo Arabia se inducen los citocromos P-450 y b_5 hepáticos y las reductasas NADPH-citocromo c y NADPHdiclorofenol-indifenol, pero no se inducen las reductasas NADH-citocromo c y NADHcitocromo b_5 [106]

El estudio de los PAHs implica numerosas técnicas analíticas, como la cromatografía líquida de alta eficacia (HPLC) con detector UV y/o de fluorescencia, y la cromatografía de gases de alta resolución (HRGC). También se han empleado técnicas como la cromatografía con fluidos supercríticos, aunque su uso no ha sido tan extenso. Los PAHs también se han estudiado por HPLC con detector de fluorescencia, debido a sus fuertes propiedades fluorescentes nativas; además, la diferencia entre las longitudes de emisión y excitación óptimas hace que la detección programada por fluorescencia (PFD) pueda ser aprovechada de forma ventajosa para obtener el mejor conjunto de condiciones experimentales para su determinación. Las técnicas instrumentales GC-MS y HPLC-PFD son actualmente los métodos más eficaces en lo que se refiere al análisis de PAHs debido a sus sensibilidad y selectividad [84,107].

También se ha descrito el acoplamiento *on-line* de la cromatografía líquida a la cromatografía de gases, LC-GC, como una potente herramienta para la determinación de PAHs, y si a esto se añade la detección por espectrometría de masas de los eluatos resultantes, la técnica resulta ser 10-100 veces más sensible que la detección con FID (detector de ionización de llama) [108].

El análisis de PAHs en conjunción con otros contaminantes, como es el caso de los PCBs o PCDDs y PCDFs, requiere por lo general laboriosos procesos de *clean-up* que persiguen dos objetivos principales: eliminar la mayor parte de la materia co-extraída con los analitos de interés, y separar los contaminantes en grupos atendiendo a sus propiedades físicas y químicas. El *clean-up* de los extractos y el posterior análisis de los PAHs requiere procesos de extracción líquido-líquido y cromatografía en columna (alúmina, gel de sílice, Florisil, Sephadex LH-20, etc.).

Como ya se ha comentado, cuando se requiere también la determinación de isómeros específicos de PCBs requiere procedimientos más intensos de clean-up que incluyen la

cromatografía líquida con combinaciones de diferentes adsorbentes como la gel de sílice modificada, óxido de aluminio y carbón activo. En los últimos años, el HPLC se ha convertido en una útil herramienta de *clean-up* y separación de estos grupos de compuestos. Las principales ventajas de la HPLC son la mayor eficiencia, reproducibilidad y velocidad en comparación con la cromatografía en columnas clásicas. Otra razón importante es el menor consumo de disolventes, que además de ser una razón económica, reduce los riesgos de contaminación introducida por el disolvente y además minimiza la manipulación de la muestra por el operador [109,110].

HIDROCARBUROS ALIFÁTICOS

La determinación de hidrocarburos alifáticos en agua de mar, organismos y sedimentos, al igual que ocurre en el caso de los PAHs y PCBs, es de gran importancia si se quiere precisar el origen y el destino de este tipo de compuestos orgánicos tan ampliamente distribuidos en el medioambiente, y por supuesto es un punto de partida para entender y explicar sus efectos [111].

El estudio de los hidrocarburos alifáticos desde n-C₁₄ al n-C₃₀ se considera de gran interés en muchos casos con la finalidad de establecer tanto los niveles de estos compuestos como su origen biogénico o antropogénico [111].

Como ya se ha comentado con anterioridad, los hidrocarburos alifáticos tienen su origen en dos fuentes principales:

 Compuestos generados por procesos biogénicos que tienen su origen en la actividad vegetal, combustión de madera y aerosol oceánico, abarcando el rango comprendido entre el *n*-C₁₅ y el *n*-C₃₅, con un número impar de átomos de carbono, principalmente por encima del C₂₅. Los *n*-alcanos C₂₇, C₂₉, C₃₁ y C₃₃ se asocian preferentemente a las ceras vegetales. 2. Compuestos generados por fuentes antropogénicas, tales como combustibles fósiles y sus productos de combustión (humos de vehículos), predominando los hidrocarburos con bajo número de átomos de carbono, principalmente aquellos por debajo del n-C₂₁

Generalmente, los *n*-alcanos C_{15} y C_{17} se encuentran en concentraciones más elevadas que los restantes hidrocarburos de la serie del C_{14} al C_{32} en el fitoplancton y en las algas pelágicas y bentónicas. Por otra parte, el pristano, un isoprenoide derivado probablemente del fitol, se encuentra en algunas ocasiones, también en concentraciones elevadas, en el fitoplancton. [88,112]

Con la finalidad de ayudar a diferenciar entre el posible origen petrogénico o biogénico de los *n*-alcanos se han establecido un conjunto de índices o parámetros [113].

Se denomina Índice Preferente de Carbono (ICP) a la suma de las concentraciones de los alcanos pares en un determinado rango, dividido por la suma de alcanos impares en el mismo rango.

Algunos autores realizan un cálculo modificado del ICP tal y como se ha definido [113-117] utilizando expresiones del tipo [114],

$$ICP = 0.5 \left[\frac{C_{25}+C_{27}+C_{29}+C_{31}+C_{33}}{C_{26}+C_{28}+C_{30}+C_{32}+C_{34}} + \frac{C_{25}+C_{27}+C_{29}+C_{31}+C_{33}}{C_{24}+C_{26}+C_{28}+C_{30}+C_{32}} \right]$$

o del tipo [113],

$$ICP = \frac{2(C_{27} + C_{29})}{C_{26} + 2C_{28} + C_{30}}$$

Un ICP elevado (por ejemplo, mayor que 4) indica una incorporación mayor de constituyentes biológicos en la muestra. La adición de contaminantes reduce el ICP y, así, valores del ICP iguales o próximos a la unidad reflejan un presencia significativa de compuestos antropogénicos en la muestra [112], tal como ocurre en áreas próximas a puntos de vertidos urbanos [88].

El cálculo del porcentaje del alcano mayoritario (MH%) da una idea de la estructura de los perfiles cromatográficos de la muestra [115].

La relación Σn -Alk/C₁₆ es útil, al igual que los parámetros MH%, %C₂₂ y C₂₉/C₂₂, para discriminar entre las posibles fuentes de contaminación. Así, valores elevados en el caso de Σn -Alk/C₁₆ puede ser indicativo de muestras contaminadas por fuentes biogénicas y por el contrario, valores relativamente bajos pueden ser indicativos de una contaminación petrogénica [115].

Además, se han definido un conjunto de relaciones o índices que se resumen el la Tabla XI [113].

El área de la mezcla compleja no resuelta (UCM) que suele aparecer en los cromatogramas de gases de este tipo de compuestos es la envolvente de hidrocarburos no resueltos derivados de residuos de petróleo y por tanto es una indicación clara de contaminación por petróleo. También debe medirse la relación entre los hidrocarburos resueltos y no resueltos (U:R) [112].

Índice	Ecuación	Relaciona/denominación
PL-1	C ₁₅ +C ₁₇ +C ₁₉ +Pr	Alcanos producidos por el plancton
Terr	$C_{25}+C_{27}+C_{29}$	A. procedentes de plantas terrestres
PE-Lo	C ₁₆ +C ₁₈ +C ₂₀ +Fi	A. petrogénicos de cadena corta
PE-Hi	$C_{24}+C_{26}+C_{28}+C_{30}$	A. petrogénicos de cadena larga
CPI-Lo	$(C_{15}+C_{17}+C_{19}+C_{21})/(C_{14}+C_{16}+C_{18}+C_{20})$	Bajo Número de Preferencia de Carbono
CPI-Hi	$(C_{23}+C_{25}+C_{27}+C_{29})/(C_{22}+C_{24}+C_{26}+C_{28})$	Alto Número de Preferencia de Carbono

 Tabla XI

 Relación de índices más comunes utilizados en el estudio de alcanos

Además de la presencia de UCM, la existencia de la serie homóloga de *n*-alcanos junto con la presencia de miembros adyacentes de concentración similar de otra serie, la inexistencia de hidrocarburos insaturados y la relación unidad entre los isoprenoides pristano y fitano se consideran características de la composición del crudo [111]. Aunque una relación pristano/fitano próxima a la unidad indican un origen petrogénico, esta relación puede verse afectada por el pristano producido por el zooplancton [88]. Por

50

otro lado, las relaciones C_{17} /Pristano y C_{18} /Fitano, con valores inferiores a la unidad, pueden ser indicativas de la existencia de degradación microbiana de *n*-alcanos [112].

La biodegradación de *n*-alcanos se produce con mayor rapidez que la biodegradación de los alcanos cíclicos y ramificados que conforman la UCM. Por este motivo, en zonas contaminadas por hidrocarburos derivados del petróleo, los *n*-alcanos se degradarán con el tiempo mientras que los compuestos que conforman la UCM se acumularán.

Capítulo 1 *Patella piperata*

Hidrocarburos alifáticos

os valores de los parámetros estadísticos, incluyendo el valor de la mediana, de las concentraciones de *n*-alcanos en *Patella piperata* en las cuatro estaciones de muestreo y para el total de muestras analizadas, se presentan en la Tabla 1.1 y en la Fig. 1.1 se incluyen los diagramas de barras correspondientes a la distribución de valores medios de dichos hidrocarburos en las diferentes estaciones de muestreo. Además, en el Anexo III se incluyen los parámetros analíticos correspondientes a cada una de las muestras analizadas. Puesto que las concentraciones de hidrocarburos, por sí solas, no pueden utilizarse como una indicación de la contaminación marina, en la Tabla 1.2 se han incluido otros parámetros sugeridos como indicadores para estudios de la contaminación por hidrocarburos, de los cuales las relaciones pristano/n-C₁₇ (Pr/C17) y fitano/n-C18 (Fi/C18) se usan a menudo para indicar el grado de degradación microbiana, ya que los n-alcanos se metabolizan con mayor rapidez que las especies ramificadas, así como la relación pristano/fitano (Pr/Fi) y el Índice de Preferencia de Carbono (CPI). Un Índice de Preferencia de Carbonos >1 indica la presencia de ceras epicuticulares de plantas, mientras que los materiales petrogénicos (hidrocarburos fósiles) tienen un elevado contenido de hidrocarburos con número par de átomos de carbono [127].

La presencia de trazas de otros compuestos orgánicos tanto en los cromatogramas de la fracciones parafínicas como de PAHs aparece como una pequeña envolvente, la conocida Mezcla Compleja No Resuelta (Unresolved Complex Mixture, UCM), de hidrocarburos ramificados y cíclicos que se considera una consecuencia de la

exposición de los organismos al petróleo biodegradado y a sus derivados, junto con picos que corresponden a los hidrocarburos isoprenoides acíclicos pristano y fitano, Fig. 1.2.

Tal como puede verse en la Tabla 1.1 y Fig. 1.1, la serie homóloga de *n*-alcanos se extiende desde el n-C₁₀ al n-C₃₀, si bien los valores de las concentraciones de los hidrocarburos n-C₁₀ a n-C₁₃ no se han incluido en las tablas por razones obvias, y los perfiles correspondientes a cada muestra son muy parecidos entre sí en que están dominados por los alcanos de cadena larga, con unos niveles totales de *n*-alcanos (Σ Alc) que se encuentran en el rango de 1,31 a $28,37\mu$ g.g⁻¹, pudiéndose observar que las concentraciones medias de Σ Alc disminuyen de la Estación 4 (8,05 µg.g⁻¹) a la Estación 1 (6,54), Estación 2 (3,39) y Estación 3 (2,70), con algunas muestras en las que Σ Alc>10,0µg.g⁻¹, especialmente en las estaciones de muestreo 1 y 4. El gráfico "boxand-wiskers" de la Fig. 1.3 permite observar como el comportamiento de la estación 4 es muy uniforme y completamente diferenciado de las restantes estaciones de muestreo que parecen recibir mayor número de aportes puntuales de alcanos. Este hecho puede indicar que las estaciones de muestreo 2 y 3, han recibido aportes esporádicos de alcanos a lo largo del periodo de muestreo, mientras que la Estación 1 al norte y la Estación 4 en el sudeste de Fuerteventura, están sometidas a estos aportes casi continuamente durante el período de muestreo. Para la Estación 4 este hecho puede reflejar un mayor tráfico marino en el canal entre Fuerteventura y la costa noroccidental de Africa o la influencia, que parece menos probable, de las actividades portuarias en Puerto del Rosario. En el caso de la estación nº 1 ello puede indicar su proximidad al emisario submarino de la Caleta del Cotillo.

Como ya se ha indicado, el perfil de la serie homóloga de *n*-alcanos, n-C₁₀-C₃₀, es similar para todas las muestras y está dominado por los *n*-alcanos de cadena larga, Figs. 1.1 y 1.2. Sin embargo, como puede observarse en la Tabla 1.2, los hidrocarburos n-C₁₅ (24-56%, 16 muestras), n-C₁₇ (18-59%, 25 muestras), n-C₁₈ (31%, 1 muestra)

	C14	C15	C16	C17	C18	C19	C20	C21	C22	C23	C24	C25	C26	C27	C28	C29	C30	Pr	Fi
		Total (n=49)																	
Mínimo	2	95	36	370	0	10	0	11	0	9	0	0	0	0	0	45	0	0	0
Máximo	228	6154	369	5248	1233	146	97	191	94	434	782	2591	4732	5229	5014	4165	2836	116	307
Media	59	1069	96	1315	67	39	7	42	11	55	65	271	388	552	489	500	358	24	67
Mediana	46	746	76	1004	24	31	0	35	6	28	20	104	48	179	116	195	108	17	37
Desv. Est.	49	1032	65	960	188	30	16	32	17	72	146	483	897	1031	1012	874	626	23	84
		Estación 1 (n=14)																	
Mínimo	2	95	36	370	0	22	0	13	0	20	0	82	0	68	9	84	32	0	0
Máximo	138	2384	244	3136	1233	136	22	119	94	186	631	2071	3552	4394	4328	3998	2836	107	272
Media	47	775	75	1513	156	49	5	39	14	57	99	386	595	783	730	707	507	22	67
Mediana	42	539	68	1479	26	39	0	33	8	36	34	169	185	279	236	294	188	15	6
Desv. Est.	36	738	51	930	347	33	8	26	24	50	168	548	999	1217	1181	1054	766	26	99
									Estac	ión 2 (r	n=24)								
Mínimo	4	274	40	395	9	10	0	11	0	9	0	0	0	33	0	50	11	0	0
Máximo	203	2434	369	2209	72	68	46	191	41	434	265	1061	1954	2182	2400	2280	1872	48	307
Media	50	978	92	890	28	28	6	39	9	48	29	139	156	256	201	256	184	19	62
Mediana	41	838	76	836	21	22	0	32	6	23	14	89	37	113	85	147	88	15	46
Desv. Est.	40	537	65	445	18	18	10	36	10	86	55	208	398	435	483	441	370	15	70
									Esta	ción 3 (n=4)								
Mínimo	26	182	42	840	11	19	0	16	0	17	4	54	5	109	25	98	0	12	0
Máximo	228	918	225	1742	138	146	97	97	47	184	782	2591	4732	5229	5014	4165	2684	116	152
Media	89	565	97	1330	44	53	25	37	12	62	203	725	1213	1449	1350	1163	730	42	38
Mediana	51	581	60	1368	13	24	2	18	2	23	13	128	58	229	181	195	117	19	0
Desv. Est.	94	304	86	383	63	62	47	40	23	82	386	1245	2346	2522	2445	2002	1306	50	76
									Esta	ción 4 (n=7)								
Mínimo	35	635	81	822	30	38	0	31	0	23	0	14	0	0	0	45	0	11	0
Máximo	168	6154	257	5248	78	107	45	108	50	222	217	719	1411	2155	1871	1851	1404	61	305
Media	99	2282	154	2412	44	54	8	66	13	79	50	253	329	596	545	584	480	32	99
Mediana	85	1148	158	2662	35	48	0	62	5	74	13	132	95	332	317	354	281	26	118
Desv. Est.	54	2059	60	1609	19	24	17	24	19	70	79	257	511	740	692	651	505	20	112

 Tabla 1.1

 Resumen de los parámetros estadísticos (ng.g⁻¹ peso seco)

n -alcano

n -alcano

Fig. 1.1.- Perfiles de n-alcanos en P. piperata en las cuatro estaciones de muestreo

	Tabla 1.2	
Concentración de <i>n</i> -alcanos ($\mu g.g^{-1}$	peso seco) y parámetros geoquímicos en l	Patella piperata

Cod.	Σ <i>n</i> -Alc	MH	%MH	C29/C22	Σn -Alc/C ₁₆	CPI	CPI-Lo	CPI-Hi	Pr/C ₁₇	Fi/C ₁₈	Pr/Fi	PL-1%	Terr%	Pe-Lo%	Pe-Hi%
						Es	tación de	e Muestre	eo 1						
0211a	1.84	C17	36	14	28	6.0	11.3	2.5	0.024	28.23	0.06	61.7	18.9	4.2	10.8
0211b	14.33	C17	22	18	59	2.8	12.1	1.3	0.034	0.00	-	40.0	25.3	2.3	29.6
0311u	2.84	C17	61	20	75	7.2	33.8	1.9	0.006	4.10	0.15	65.6	17.6	1.9	12.9
0411u	1.95	C18	31	7	38	1.3	1.2	1.7	0.048	0.00	17.63	41.3	12.9	33.8	9.3
0511u	25.38	C27	17	121	338	1.6	20.6	1.2	0.002	0.29	0.42	12.4	41.2	0.6	44.7
0611u	6.11	C17	28	61	152	2.9	22.8	1.4	0.011	0.02	28.25	38.6	29.1	1.2	29.8
0711u	6.35	C17	41	119	77	4.5	21.4	1.5	0.002	0.16	1.90	53.3	20.2	1.6	22.5
0811u	2.92	C17	60	43	42	12.6	15.1	5.7	0.000	0.24	0.00	78.3	10.4	3.7	3.8
0911u	1.94	C17	44	-	31	13.2	12.8	16.3	0.015	-	-	74.9	12.9	3.2	4.3
1011u	4.19	C15	44	-	4/	16.9	15.1	42.1	0.009	9.45	0.05	/4.5 85 1	14.5	2.7	4.4
12110	5.08	C17	44	20	08 172	15.9	25.8	2.7	0.010	9.52	0.20 5.00	85.4 12.0	0.5	1.9	4.5
1211u 1311u	12.05	C17	19	144	87	1.2	1.1	1.2	0.033	0.00	5.90	12.9	37.4 27.8	2.4	37.4 28.8
1311u 1411u	3.12	C28	16	137	68	2.0	56	1.5	0.019	7.16	0 14	197	33.7	2.4	20.0 42.1
iiiu	5.12	020	10	157	00	1.0 Fa	taaión da	Muastre	0.000	/.10	0.11	17.7	55.7	2.1	12.1
0001	2.42	015	10	1.7	10	17.0		11.0	.0 2	0.00		71.0	0.2	2.4	2.0
0231a	3.42	CI5	48	15	49	17.0	20.0	11.2	0.005	0.00	-	71.2	8.3	2.4	3.8
02316	2.66	C15	26	-	38	3.4	10.0	1.5	0.038	3.58	0.25	46.0	24.2	3.4 1.4	23.5
02310	15.14	C17	18	5	114	1.5	3.7 7.0	1.2	0.121	4.52	0.10	0.0 70.2	42.0	1.4	49.4 6.1
0341a	1.05	C17	24	16	22	3.5	5.3	2.1	0.042	1.80	0.23	18.6	23.0	73	15.6
0341h	1.73	C15	36	38	34	65	14.4	17	0.003	2.78	0.13	40.0 68.6	12.5	3.6	12.9
0431u	2.91	C15	38	28	38	9.2	16.9	2.6	0.014	1.04	0.84	75.6	12.7	3.2	6.3
0441u	2.72	C15	28	6	32	3.6	7.4	1.7	0.068	0.00	-	50.6	21.2	5.3	18.1
0541u	7.29	C15	33	22	51	4.2	16.6	1.3	0.018	3.30	0.21	57.1	18.7	2.6	19.2
0631u	3.65	C17	26	33	49	5.0	15.0	2.2	0.012	2.62	0.19	50.6	26.4	2.7	18.3
0641u	1.47	C17	46	22	37	12.0	22.5	2.5	0.010	3.40	0.22	79.8	9.2	3.3	6.1
0731u	4.33	C17	31	88	36	4.9	14.1	1.4	0.000	0.12	0.00	61.8	16.0	3.2	16.5
0741a	2.15	C17	47	20	30	9.1	14.4	3.4	0.010	2.50	0.17	69.6	14.9	4.6	8.4
0741b	3.91	C15	43	39	46	7.4	16.7	1.9	0.005	2.76	0.10	69.5	13.0	2.8	12.0
0831u	4.82	C17	29	6	13	5.1	4.3	14.4	0.033	2.09	0.31	59.3	15.4	10.1	5.3
0841u	1.31	C17	38	26	15	3.9	4.8	1.8	0.025	0.00	-	64.7	9.2	9.3	7.7
0931u	2.96	CI5	41	9	29	11.0	10.0	28.3	0.038	2.90	0.31	78.4	9.9	5.2	0.5
1041u	5.41 1.70	C15	30 46	57	37 25	13.0	14.2	10.5	0.019	5.02	0.15	/9.1	9.0	3.3 2.5	4.5
1041u	3.75	C17	40 50	-	35 40	23.1	22.2	47.2	0.011	4.28	0.14	88.1	9.0 5.4	3.5 2.6	2.5
1241a	171	C15	36	16	24	51	74	19	0.008	2.06	0.97	68.1	11.2	2.0 6.2	10.2
1241b	2.38	C17	42	-	40	16.8	13.6	-	0.017	5.01	0.17	74.9	16.7	3.3	2.1
1341u	3.48	C15	35	117	65	7.1	33.6	1.6	0.003	0.00	_	69.0	15.3	1.9	13.0
1441u	1.74	C15	36	26	42	5.1	10.7	1.8	0.033	2.81	0.32	60.7	16.9	3.8	15.2
						Es	tación de	e Muestre	eo 3						
0771u	2.55	C17	33	84	50	3.6	9.3	2.0	0.022	13.53	0.12	41.7	29.9	2.5	23.2
0971u	3.27	C17	53	-	48	18.5	20.5	10.8	0.007	0.00	-	82.3	10.4	2.5	2.2
1271u	2.40	C17	52	-	57	11.4	22.6	2.6	0.016	0.00	-	80.5	10.9	2.5	4.5
1471u	28.37	C27	18	89	126	1.3	3.3	1.2	0.078	0.00	-	8.0	42.2	1.6	46.6
						Es	tación de	e Muestre	eo 4						
0251u	5.80	C17	46	31	35	5.6	16.4	1.3	0.007	3.74	0.15	66.7	12.9	3.4	15.0
0451u	11.59	C27	19	37	143	1.8	10.8	1.4	0.032	4.89	0.18	14.0	40.8	1.0	42.3
0851u	5.48	C17	18	-	29	3.3	4.8	2.4	0.048	4.81	0.16	36.3	30.3	4.6	23.7
0951u	12.99	C15	47	29	51	26.4	25.2	92.3	0.002	0.00	-	88.2	4.3	2.3	1.4
1151u	2.02	C17	49	-	23	9.3	8.8	-	0.048	0.00	-	85.8	2.9	6.1	0.0
1251u	7.57	C15	48	-	55	19.9	27.3	2.6	0.005	4.07	0.12	90.5	3.4	2.2	2.3
1351u	10.89	C17	28	40	69	4.1	14.7	1.3	0.020	0.00	-	54.6	18.6	2.6	22.0

Fig. 1.3.- Gráfico "box-and-wiskers" para el contenido total de n-alcanos en Patella piperata

n-C₂₇ (17-19%, 4 muestras) o *n*-C₂₈ (16-18%, 2 muestras) son los hidrocarburos mayoritarios en las muestras de *P. piperata* pero, incluso, aunque *n*-C₁₈, *n*-C₂₇ o *n*-C₂₈ puedan ser los hidrocarburos mayoritarios en algunas muestras, los alcanos *n*-C₁₅ y *n*-C₁₇ se encuentran normalmente en concentraciones muy elevadas en todas ellas. No obstante, el hecho de que muchos *n*-alcanos, especialmente los de cadena con número impar de átomos de carbono, sean biosintetizados en el entorno marino por el fitoplancton y las algas pelágicas y bentónicas así como la propia biosíntesis de dichos compuestos por parte de los organismos estudiados puede provocar fluctuaciones que pueden influir en la concentración de *n*-alcanos [131].

Dado que las concentraciones de hidrocarburos alifáticos por sí solos no suministran una información directa en lo que se refiere a la contaminación de los especímenes analizados, se han calculado como indicadores de dicha contaminación un gran número de parámetros que se muestran en la Tabla 1.2, de los cuales los más utilizados son las relaciones pristano/n-C₁₇ (Pr/C17) y fitano/n-C₁₈ (Fi/C18), como indicadores del grado de degradación microbiana debido a que los n-alcanos se metabolizan con mayor rapidez que los hidrocarburos ramificados, la relación pristano/fitano y el Índice de Preferencia de Carbono (CPI). Una preferencia por los hidrocarburos con número impar de átomos carbonos se toma como indicación de la presencia de ceras epicuticulares de plantas superiores mientras que el material petrogénico (hidrocarburos fósiles) suele presentar un predominio acusado de hidrocarburos con número par de átomos de carbono.

La utilización de las relaciones conocidas como "Índices Cromatográficos" o "Índices Geoquímicos", [pristano]/[fitano] (Pr/Fi), Pr/C17 y Fi/C18 para estudiar, no sólo, el origen de los hidrocarburos que contaminan los organismos sino, también, para el estudio de la biodegradación de los crudos [59,128] ha estado sometida a discusión en los últimos tiempos ya que los estudios realizados en ecosistemas tan dispares como La Antártida y el Golfo Pérsico han demostrado que las condiciones medioambientales, temperatura del agua del mar, salinidad, materia particulada presente, clorofila, etc., influyen sobre los valores de estos índices [17,129]. Sin embargo, siguen siendo de utilización general en los estudios de contaminación del ambiente por petróleo y derivados.

En la *P. piperata* se observa que la relación Pr/Fi se mantiene en torno a un valor medio de 0,28-0,29 en las estaciones de muestreo 1 y 2 en tanto que el valor medio desciende a 0,12-0,15 en las estaciones 3 y 4, lo que parece indicar que aquellas dos estaciones, situadas al noroeste de la isla, lejos de posibles focos de contaminación antropogénica (salvo la que pudiera ser arrastrada por la corriente desde el sur de Lanzarote), reciben unos contaminantes con menor cantidad de pristano, por tanto ligeramente menos biodegradados, que las estaciones 3, al sur del emisario submarino de La Caleta del Cotillo, y la 4, y que sólo esporádicamente se presentan inyecciones de materiales más frescos indicados por los valores de Pr/Fi > 1. Por su parte, la práctica uniformidad de los valores de las relaciones $Pr/C17 \ y \ Fi/C18 \ parece indicar que los aportes contaminantes no han sido biodegradados, salvo en aquellas muestras en que se observan altos valores de la relación <math>Pr/Fi \ y \ cero \ o \ muy \ bajos \ de la relación \ Fi/C18 \ que se presentan en las estaciones 1 y 2.$

Además, los hidrocarburos que se suponen producidos por el fitoplancton (PL-1= n-C₁₅ + n-C₁₇ + n-C₁₉) generalmente están presentes a niveles altos en la *P. piperata* y pueden representar hasta el 90% de los *n*-alcanos totales. Los *n*-alcanos característicos de las plantas terrestres (TERR= n-C₂₅ + n-C₂₇ + n-C₂₉) sólo suponen un 3-42% del total.

El indicador de contaminación por petróleo para los hidrocarburos de bajo rango (Pe-Lo = n-C₁₆ + n-C₁₈ + n-C₂₀ + fitano) está presente a niveles sustancialmente más bajos (0.6-10%) que el indicador de petróleo para los alcanos de cadenas más largas (Pe-Hi=n-C₂₄ + n-C₂₆ + n-C₂₈ + n-C₃₀, 4-47%), lo que puede indicar que el petróleo degradado es la principal fuente de contaminación petrogénica de estas muestras.

Una identificación más clara de la contaminación por petróleo de los lugares de muestreo, viene dada por la relación [130] entre los hidrocarburos terrestres y los hidrocarburos petrogénicos de alto peso molecular; pudiendo observarse que el índice TERR está altamente correlacionado ($r^2 = 0.9952$) con Pe-Hi, con una pendiente próxima a la unidad, Tabla. 1.3.

Estación	Total	1	2	3	4
Pendiente	0.8920	0.9058	0.8245	0.8900	0.9126
Ordenada	0.157	0.1273	0.1804	0.2261	0.1529
r^2	0.9952	0.9958	0.9879	0.9999	0.9795
n	49	14	24	4	7

 Tabla 1.3

 Correlación entre los hidrocarburos TERR y Pe-Hi en *P.piperata*.

La relación n-C₂₉/n-C₂₂ que indica la contribución relativa de los residuos de aceites dominados por el n-alcano C₂₂ con respecto a la distribución de n-alcanos, suele ser alta en zonas contaminadas. En este caso puede observarse que las variaciones de los valores calculados no permiten llevar a cabo una discriminación correcta a pesar de que algunos valores pudieran indicar la presencia de aportes esporádicos durante el período de estudio.

Otra evidencia de la posible contaminación por petróleo es el bajo valor y gran variabilidad (13-338) de la relación $\Sigma Alc/n-C_{16}$ en la mayor parte de las muestras aunque los valores medios no son significativamente diferentes entre las estaciones, y la presencia de fitano y $n-C_{16}$ en *P. piperata*, ya que ninguno de estos hidrocarburos se encuentra normalmente como biolípido.

Sin embargo, los valores del Índice de Preferencia de Carbono (CPI = $\Sigma Alc_{impar}/\Sigma Alc_{par}$), que se incluyen en la Tabla 1.2, es más relevante. Se puede observar que mientras CPI-Hi (n > 20) permanece más o menos constante y relativamente próximo a la unidad en las cuatro estaciones de muestreo, la variación temporal de CPI-Lo (n < 20) es mayor, con un valor medio total de 16.2 y valores medios no significativamente diferentes entre las estaciones de muestreo. Esto parece indicar una acumulación anormal de alcanos de cadena corta impar (n < 20), que podría estar generada por la acumulación de n-C₁₅ y n-C₁₇ en la mayor parte de las muestras analizadas, como ya se ha señalado anteriormente. No obstante, los índices de preferencia de carbono en ambas gamas cumplen la regla general de predominio de los hidrocarburos impares en los sistemas bióticos marinos [132].

Teniendo en cuenta la situación geográfica de las estaciones de muestreo y el hábitat de la *P. piperata* situado en la parte alta de la zona intermareal, se puede pensar que estas estaciones de muestreo presentan un nivel de contaminación petrogénica bajo y casi constante y que nuevos aportes petrogénicos de carácter esporádico llegan a ellas ya que tales variaciones no presentan características que puedan ser atribuidas a fenómenos estacionales.

Por otra parte, es posible comprobar que los valores de CPI-Lo son más elevados que los correspondientes a los crudos Irán (0.79-0.85) y Arabia (0.77-0.98), los cuales son los más comúnmente transportados cerca de las costas de las Islas Canarias.

En el caso del CPI-Hi el comportamiento es el opuesto al CPI-Lo. Este hecho puede ser explicado por la diferente selectividad de la membrana superficial de los especímenes biológicos, más favorable a los *n*-alcanos de menor peso molecular [133]. Sin embargo, estos valores también pueden ser explicados si la principal fuente de contaminación petrogénica fueran crudos degradados y/o sus derivados.

Todas las muestras muestran la presencia del alcano ramificado pristano, no así del fitano el cual, por otra parte, en caso de estar presente se encuentra en concentraciones muy inferiores. Algunos isoprenoides acíclicos tales como el norpristano, pristano y fitano se encuentran normalmente presentes en el medio ambiente marino como picos dobles resueltos en los cromatogramas realizados con columnas de baja polaridad debido a la presencia de los diasteroisómeros fósiles y biogénicos [134-136]. Estos dobletes no fueron observados con claridad en el pristano en las muestras de *P. piperata* analizadas por lo que se puede estimar la presencia únicamente de pristano petrogénico ya que la presencia en la biota de pristano biogénico es sumamente extraña. Por otra parte, las malas correlaciones entre las concentraciones de pristano y fitano en todas las estaciones salvo en la estación nº 4, Tabla 1.4, indicarían su diferente origen. Aún en la actualidad la presencia de pristano en los tejidos de las lapas, y de otros organismos marinos, no está clara y puede, en principio, ser atribuido a la actividad microbiana en las algas y partículas vegetales que les sirven de alimento [137] o por la degradación a pristano de la cadena lateral de fitilo en la molécula de clorofila en el tracto digestivo de la *P. piperata* y su acumulación subsecuente en su tejido lipídico.

 Tabla 1.4

 Correlación entre las concentraciones de pristano y fitano

Estación	Total	1	2	3	4
Pendiente	0.025	0.032	0.383	0.0927	0.9564
Ordenada	21.93	13.16	0.02	49.26	-2.11
r^2	0.0079	0.0988	0.3830	0.0927	0.9564
n	49	14	24	4	7

Se observa una falta de interrelación entre los valores de CPI, CPI-Lo, CPI-Hi, Pr/Fi, Pr/C17 y Fi/C18 calculados para la *P. piperata*, lo que es especialmente sorprendente para las relaciones Pr/Fi, Pr/C17 y Fi/C18, teniendo en cuenta que dichas relaciones se han sugerido como indicadores del grado de biodegradación de los productos petrolíferos, lo que sugiere que, en su caso, pueden existir diferencias sustanciales en las velocidades de biodegradación entre pristano y fitano [117].

Algunas de las conclusiones a que se han llegado anteriormente quedan confirmadas con los resultados obtenidos en el Análisis de Correlaciones llevado a cabo con las 19 variables analíticas y el total de *n*-alcanos (Σ Alc) cuyos coeficientes de correlación se encuentran agrupados en la Tabla 1.5 en la que, además, se señalan aquellos casos en que la significación de la correspondiente correlación es del orden de $P \ge 95\%$. En

ningún caso se han observado correlaciones entre las correspondientes concentraciones y las variables biométricas de los especímenes analizados.

En dicha tabla puede observarse que el fitano no se encuentra correlacionado con ninguno de los restantes hidrocarburos analizados, ni siquiera con el pristano, ni tampoco con Σ Alc. Ello pudiera confirmar lo expuesto anteriormente de que los crudos y/o derivados que llegan a las estaciones han sido "envejecidos" y/o biodegradados durante su permanencia en el mar.

Por otra parte puede observarse, también, un comportamiento claramente diferenciado entre los hidrocarburos alifáticos del n-C₁₄ al n-C₁₈ que presentan algunas correlaciones entre sí y, además, con el pristano y Σ Alc en los casos del n-C₁₄ y n-C₁₆ hecho que podría indicar su procedencia de un crudo "envejecido", por su correlación con n-C₂₀ n-C₂₃, y de entre los cuales sólo n-C₁₅ no se encuentra correlacionados con Σ Alc, lo que parece indicar un origen diferente para este hidrocarburo, posiblemente procedente de la alimentación de esta especie de lapa. Caso especial lo constituye el n-C₁₇ que si bien se encuentra correlacionado con Σ Alc no lo está con el pristano hecho que podría indicar un origen mixto para este alcano, alimenticio y petrogénico.

Los *n*-alcanos C_{20} al C_{30} se encuentran altamente correlacionados entre sí y con el pristano y, también, altamente correlacionados con Σ Alc pero no se encuentran correlacionados con el isoprenoide fitano. Ello indica, nuevamente, un origen común para este grupo de hidrocarburos y el pristano, posiblemente crudos "envejecidos".

Es decir, este comportamiento sólo cabría explicarlo si se supone que teniendo ambos grupos de hidrocarburos el mismo origen petrogénico dada su alta correlación con Σ Alc, cada uno de ellos haya sufrido diferentes procesos de "envejecimiento" en el medio ambiente y/o metabolización-acumulación en los propios especímenes de *P. piperata*. El menor coeficiente de correlación, 0.4812, que presenta *n*-C₁₇ con Σ Alc podría estar indicando no sólo su mayor aportación a este último parámetro sino, también, su doble procedencia, petrogénica y alimenticia.

Tabla 1.5Matriz de Correlaciones (n=49)

	C14	C15	C16	C17	C18	C19	C20	C21	C22	C23	C24	C25	C26	C27	C28	C29	C30	Pr	Fi	S Alc
C14	1.0000	0.4809	0.8646	0.3970	0.0124	0.5429	0.5925	0.7980	0.4069	0.3295	0.2665	0.3185	0.2644	0.2907	0.2735	0.2790	0.2889	0.6796	0.1312	0.4492
C15		1.0000	0.5282	0.7365	-0.0928	0.1043	-0.0420	0.3616	0.0845	0.3243	-0.1547	-0.1333	-0.1546	-0.1371	-0.1506	-0.1220	-0.0867	0.0763	-0.0303	0.2048
C16			1.0000	0.4954	-0.0065	0.4857	0.4679	0.9289	0.5478	0.3578	0.2238	0.2691	0.2205	0.2491	0.2388	0.2659	0.3021	0.5775	0.1532	0.4485
C17				1.0000	-0.0905	0.2431	0.0797	0.3953	0.2445	0.3112	0.1510	0.1674	0.1363	0.1545	0.1652	0.2022	0.2311	0.1176	-0.1831	0.4812
C18					1.0000	0.5711	0.1649	0.0282	0.0675	0.0750	0.2254	0.2586	0.2712	0.2803	0.2238	0.1571	0.1155	0.1263	-0.1348	0.2084
C19						1.0000	0.6544	0.5399	0.6188	0.3201	0.6585	0.7028	0.6845	0.6753	0.6772	0.6490	0.6355	0.7752	0.0003	0.7182
C20							1.0000	0.5092	0.4410	0.2737	0.6796	0.6977	0.6726	0.6402	0.6380	0.6137	0.5641	0.6050	-0.1588	0.6181
C21								1.0000	0.6415	0.3267	0.3036	0.3518	0.3041	0.3399	0.3322	0.3664	0.4109	0.6172	0.1850	0.4854
C22									1.0000	0.3664	0.5318	0.5370	0.5268	0.5333	0.5631	0.6000	0.6314	0.7122	-0.0576	0.5985
C23										1.0000	0.4065	0.4179	0.3964	0.4206	0.4037	0.4134	0.4215	0.2325	-0.1167	0.5168
C24											1.0000	0.9927	0.9922	0.9832	0.9836	0.9710	0.9342	0.4918	-0.0547	0.9155
C25												1.0000	0.9926	0.9889	0.9903	0.9780	0.9482	0.5210	-0.0146	0.9307
C26													1.0000	0.9880	0.9885	0.9732	0.9396	0.5080	-0.0370	0.9183
C27														1.0000	0.9889	0.9768	0.9500	0.4863	0.0137	0.9275
C28															1.0000	0.9936	0.9752	0.5185	0.0044	0.9301
C29																1.0000	0.9906	0.5174	0.0250	0.9356
C30																	1.0000	0.5241	0.0765	0.9287
Pr																		1.0000	0.0911	0.5310
Fi																			1.0000	-0.0327
S Alc																				1.0000

Hidrocarburos Aromáticos Policíclicos

Los parámetros estadísticos, incluidos valores medios y medianas, de las concentraciones de hidrocarburos aromáticos policíclicos (PAHs; ver los códigos en la página 237) se presentan en la Tabla 1.6 y en la Fig. 1.4 se encuentran los diagramas de distribución de los valores medios de tales concentraciones en las cuatro estaciones de muestreo. En el Anexo III se encuentran detallados los resultados concretos obtenidos en el análisis de cada una de las muestras analizadas.

En general se observa que los contenidos totales e individuales de los PAHs estudiados son francamente mucho más pequeños que los que se han obtenidos para los hidrocarburos alifáticos en las mismas muestras.

Los perfiles de distribución que se presentan en la Fig. 1.4 permiten observar, tal como cabía esperar, que tanto el contenido total, Σ PAH, como los contenidos de los hidrocarburos individuales varían tanto entre estaciones como entre las propias fechas de muestreo.

Las concentraciones totales de hidrocarburos aromáticos polinucleares (Σ PAH) varían en el rango 50-1.253ng.g⁻¹, con un valor medio de 244ng.g⁻¹, Tabla 1.6, no detectándose en ningún caso la serie completa de los dieciocho compuestos presentes en las mezclas de calibrado. Puede observarse en la Tabla 1.7 que tanto los contenidos medios como los de la mediana de Σ PAH se ordenan en la secuencia E4 >> E2 > E1 \approx E3, lo que

 Tabla 1.6

 Resumen de los parámetros estadísticos para PAHs en Patella piperata (ng/g peso seco)

	A1	A2	A3	A4	A5	A6	A7	A8	A9	A10	A11	A12	A13	A14	A15	A16	A17	A18
									Total	(n=49)								
Mínimo	0	0	0	0	0	0	0	0	0	0	0	0	0	2	3	0	0	0
Máximo	502	81	40	32	98	45	28	45	48	91	46	291	85	96	347	264	70	7
Media	91	7	3	4	9	9	4	3	6	8	3	23	13	17	40	14	9	1
Mediana	43	0	0	3	2	6	3	2	4	3	0	10	7	10	23	2	6	0
Desv. Est.	113	15	6	6	19	10	5	7	8	17	8	47	16	19	54	39	14	2
								Ε	stación	1 (n=1	14)							
Mínimo	0	0	0	0	0	0	0	0	0	0	0	2	0	3	5	0	0	0
Máximo	276	81	40	6	72	45	28	45	48	11	8	291	42	30	347	46	69	6
Media	60	6	4	2	7	6	4	5	7	4	1	28	10	11	45	9	9	1
Mediana	36	0	0	3	0	3	2	2	4	3	0	10	6	8	18	2	5	0
Desv. Est.	72	22	11	2	19	12	7	12	13	3	2	76	12	9	88	14	17	2
								Ε	stación	2 (n=2	24)							
Mínimo	0	0	0	0	0	0	0	0	0	0	0	0	0	2	9	0	0	0
Máximo	368	40	7	32	42	27	7	11	13	91	46	175	85	96	156	264	46	7
Media	69	4	1	5	10	9	4	3	4	14	6	22	15	20	34	19	9	1
Mediana	28	0	0	4	6	8	3	3	3	3	2	11	7	9	20	1	6	0
Desv. Est.	90	9	2	6	11	7	2	3	4	23	11	37	20	24	36	54	9	2
								I	Estació	n 3 (n=-	4)							
Mínimo	42	0	0	0	0	2	0	0	2	0	0	4	0	2	3	0	2	0
Máximo	105	8	17	5	0	5	5	2	10	5	0	25	9	18	52	11	9	1
Media	72	5	5	2	0	4	2	1	5	2	0	15	3	7	26	3	5	1
Mediana	70	6	1	1	0	4	2	0	4	1	0	16	2	4	24	2	4	1
Desv. Est.	27	4	8	2	0	1	2	1	4	2	0	11	4	8	23	5	4	1
								I	Estació	n 4 (n=	7)							
Mínimo	21	0	0	0	0	0	0	0	0	0	0	6	3	6	13	0	0	0
Máximo	502	44	6	24	98	44	11	3	25	5	7	33	27	49	99	58	70	2
Media	242	17	2	7	16	16	6	1	8	1	1	19	17	27	60	17	14	0
Mediana	223	12	3	6	0	15	6	0	5	0	0	13	22	26	65	4	7	0
Desv. Est.	170	14	2	8	37	14	5	1	8	2	3	12	10	14	27	26	25	1

Fig. 1.4.- Perfiles de PAHs en *P. piperata* en las cuatro estaciones de muestreo.

Total information of the section of the sectio	Código	Σ PAH	PAH-Lo	PAH-Hi	Fen/Ant	Flu/Pir	·%Naft		Σ ΡΑΗ	PAH-Lo	PAH-Hi	Fen/Ant	Flu/Pir	·%Naft
0211a 1024 23.8 65.2 1.2 - 1.3 Minimo 48.9 7.0 1.1 0.0 <th< td=""><td></td><td></td><td>Estació</td><td>n de Mue</td><td>streo 1</td><td></td><td></td><td></td><td></td><td></td><td>Total (n</td><td>=49)</td><td></td><td></td></th<>			Estació	n de Mue	streo 1						Total (n	=49)		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0211a	102.4	23.8	65.2	12	_	13.1	Mínimo	48.9	7.0	11.1	0.0	0.0	0.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0211h	1252.8	420.5	517.7	1.2	_	61	Máximo	1252.8	420 5	646.9	13.1	3.8	74.4
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0311u	67.5	14.4	24.2	0.0	0.8	30.1	Media	264.9	52.6	95 3	2.2	0.9	31.7
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0/110	101.0	38.3	38.0	2.0	0.0	14.2	Mediana	174.4	31.0	53.7	1.8	0.9	28.5
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	05110	208.7	38.5 /1 Q	53.7	2.0	3.8	14.2	Desy Est	262.1	75.6	116.1	$\frac{1.0}{2.0}$	0.8	20.5
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	0611u	161.6	33.6	30.0	23	0.8	47.0	Desv. Est.	202.1	75.0	110.1	2.0	0.7	21.1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0711	101.0	12.2	21.1	2.5	0.8	33.0				E1 (n-	11)		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	0/110	49.9	7 1	21.1 20.2	-	0.7	25.0				$L_1(n-$	14)		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	00110	40.9 50.6	7.1	20.2	1.0	$^{-}$	12.9	Mínimo	18.0	7.0	20.2	0.0	0.2	0.0
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1011	412.3	32.2	08.0	1.0	0.2	66.0	Mávimo	1252.8	420.5	5177	23	3.8	66.0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1111u	177.8	36.5	62.8	$\frac{1.4}{2.0}$	1.0	28.5	Media	221.0	50.0	86.1	13	1.0	31.0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1211u	180 /	16.0	53.2	2.0	1.0	20.J 50 7	Mediana	1/1.0	20.5	50.1	1.5	0.8	20.3
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1211u	156.8	12.3	142.3	-	0.8	0.0	Desy Est	311 /	107.0	128.6	0.8	1.0	20.6
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1/11u	125.3	12.5	142.5	0.5	0.8	17 A	Desv. Est.	511.4	107.0	128.0	0.8	1.0	20.0
Estación de Muestreo 2 Mínimo 69.0 11.3 0.0 <td>1411u</td> <td>125.5</td> <td>17.1</td> <td>40.8</td> <td>0.5</td> <td>0.9</td> <td>47.4</td> <td></td> <td></td> <td></td> <td>E2 (n-</td> <td>24)</td> <td></td> <td></td>	1411u	125.5	17.1	40.8	0.5	0.9	47.4				E2 (n-	24)		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			Estació	n do Muo	stren ?						$L_{2}(n-$	27)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			LSIUCIO	n uc muc	5002			Mínimo	69.0	113	16.5	0.0	0.0	0.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0231a	357.2	131.3	217.1	24	11	0.0	Máximo	1220.7	360.4	646.9	42	1.9	74.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0231h	60 1	24.4	16.5	2.4	0.5	1/1 0	Media	247.8	58 1	07.5	2.2	0.8	25.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0231c	371.8	24.4 56.7	150.6	2.7	0.5	$\frac{14.9}{44.2}$	Mediana	173.0	34.3	51.6	2.2	0.0	17.1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0331	154.3	31.9	45.2	17	1 9	11.8	Desy Est	237.2	71.1	130.2	1.0	0.5	20.1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0/310	174.5	102.8		2.5	0.2	10.0	Desv. Est.	231.2	/ 1.1	150.2	1.0	0.0	20.1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	04310	100 /	52.3	83.2	2.5	0.2	10.9				F3 (n-	-1)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0731	1413	36.8	56.4	1.8	1.0	30.8				$L_{J}(n -$			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	08311	1220.7	360.0	6/6 Q	3.8	0.1	11.2	Mínimo	01.0	10.0	11.1	11	0.8	21.8
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	00311	1220.7	56.5	15 7	1.2	0.1	74.4	Mávimo	221.5	10.0	06.2	1.1	1.8	68.3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0341a	202.3	56.5	91.8	1.2	0.1	13.6	Media	155.1	77.2	70.2 44 5	1.0	1.0	51.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0341h	171.5	27.8	137.1	1.7	0.5	0.0	Mediana	153.0	27.2	35.3	1.4	1.3	56.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	04410	191 2	27.0 83.5	37.6	2.5	0.5	20.3	Desy Est	617	17.0	39.3	0.3	0.7	21.6
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0541u	300.4	30.1	225.3	3.1	0.1	96	Desv. Est.	01.7	17.0	57.5	0.5	0.7	21.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0641u	104 5	24.0	46.8	19	13	17.1				F4 (n-	-7)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0741a	72.3	17.2	33.7	1.)	1.5	88				$L \neq (n -$	-/)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0741h	169.0	21.9	77 5	15	1.2	35.1	Mínimo	98 5	195	26.2	13	0.9	217
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	08411	117.9	18.7	31.1	1.8	-	42.9	Máximo	787.8	95.2	173.5	13.1	0.9	63.7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0941u	321.9	63.6	80.2	2.1	0.1	47.0	Media	4723	51.4	134.9	3.9	0.9	45.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1041u	300.2	26.2	64.0	2.6	1.0	66.6	Mediana	462.2	56.3	154.2	15	0.9	48.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1141u	69.0	14.9	27.5	1.0	1.2	17.1	Desv Est	241.6	27.5	50.0	51	0.0	14.8
1241b 386.1 58.7 101.6 4.0 0.6 53.3 1341u 85.0 15.4 26.8 4.2 1.2 15.0 1441u 120.3 11.3 41.0 0.0 - 19.7 Estación de Muestreo 3 0771u 221.5 39.4 53.5 1.1 - 47.5 0971u 91.0 15.4 11.1 1.8 0.8 66.4 1271u 115.8 10.0 17.0 1.4 - 68.3 1471u 192.0 44.1 96.2 - 1.8 21.8 Estación de Muestreo 4 0251u 98.5 29.4 26.2 1.4 - 21.7 0451u 426.7 95.2 161.6 2.2 - 35.7 0851u 462.2 56.3 159.1 1.5 - 48.2 0951u 567.2 26.1 154.2 - - 58.3 1151u 787.8 69.2 173.5 1.3 0.9 53.2	1241a	153.8	72.5	30.3	27	0.0	25.9	Desv. Est.	241.0	21.5	50.0	5.1	0.0	14.0
1341u 85.0 15.4 26.8 4.2 1.2 15.0 1441u 120.3 11.3 41.0 0.0 - 19.7 Estación de Muestreo 3 0771u 221.5 39.4 53.5 1.1 - 47.5 0971u 91.0 15.4 11.1 1.8 0.8 66.4 1271u 115.8 10.0 17.0 1.4 - 68.3 1471u 192.0 44.1 96.2 - 1.8 21.8 Estación de Muestreo 4 0251u 98.5 29.4 26.2 1.4 - 21.7 0451u 426.7 95.2 161.6 2.2 - 35.7 0851u 462.2 56.3 159.1 1.5 - 48.2 0951u 567.2 26.1 154.2 - - 58.3 1151u 78.78 69.2 173.5 1.3 0.9 63.7 1251u 705.1 63.9 134.8 13.1 0.9 53.2	1241b	386.1	58.7	101.6	4.0	0.6	53.3							
1441u 120.3 11.3 41.0 0.0 - 19.7 Estación de Muestreo 3 $0771u$ 221.5 39.4 53.5 1.1 - 47.5 $0971u$ 91.0 15.4 11.1 1.8 0.8 66.4 $1271u$ 115.8 10.0 17.0 1.4 - 68.3 $1471u$ 192.0 44.1 96.2 - 1.8 21.8 Estación de Muestreo 4 0251u 98.5 29.4 26.2 1.4 - 21.7 $0451u$ 426.7 95.2 161.6 2.2 - 35.7 $0851u$ 462.2 56.3 159.1 1.5 - 48.2 $0951u$ 567.2 26.1 154.2 - - 58.3 $1151u$ 787.8 69.2 173.5 1.3 0.9 63.7 $1251u$ 705.1 63.9 134.8 a a a a a	1341u	85.0	15.4	26.8	4.2	1.2	15.0							
Estación de Muestreo 3 0771u 221.5 39.4 53.5 1.1 $ 47.5$ 0971u 91.0 15.4 11.1 1.8 0.8 66.4 1271u 115.8 10.0 17.0 1.4 $ 68.3$ 1471u 192.0 44.1 96.2 $ 1.8$ 21.8 Estación de Muestreo 4 0251u 98.5 29.4 26.2 1.4 $ 21.7$ 0451u 426.7 95.2 161.6 2.2 $ 35.7$ 0851u 462.2 56.3 159.1 1.5 $ 48.2$ 0951u 567.2 26.1 154.2 $ 58.3$ 1151u 78.8 69.2 173.5 1.3 0.9 63.7 1251u 705.1 63.9 134.8 13.1 0.9 53.2 1251u 705.1 63.9 134.8 $a_{2.7}$ $a_{2.7}$ $a_{2.7}$	1441u	120.3	11.3	41.0	0.0	-	19.7							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			Estació	n de Mue	streo 3									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$														
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0771u	221.5	39.4	53.5	1.1	-	47.5							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0971u	91.0	15.4	11.1	1.8	0.8	66.4							
1471u 192.0 44.1 96.2 - 1.8 21.8 Estación de Muestreo 4 0251u 98.5 29.4 26.2 1.4 - 21.7 0451u 426.7 95.2 161.6 2.2 - 35.7 0851u 462.2 56.3 159.1 1.5 - 48.2 0951u 567.2 26.1 154.2 - - 58.3 1151u 787.8 69.2 173.5 1.3 0.9 63.7 1251u 705.1 63.9 134.8 13.1 0.9 53.2 1351u 258.6 19.5 134.8 - - 35.7	1271u	115.8	10.0	17.0	1.4	-	68.3							
Estación de Muestreo 4 0251u 98.5 29.4 26.2 1.4 - 21.7 0451u 426.7 95.2 161.6 2.2 - 35.7 0851u 462.2 56.3 159.1 1.5 - 48.2 0951u 567.2 26.1 154.2 - - 58.3 1151u 787.8 69.2 173.5 1.3 0.9 63.7 1251u 705.1 63.9 134.8 13.1 0.9 53.2 1351u 258.6 19.5 134.8 - - 35.7	1471u	192.0	44.1	96.2	-	1.8	21.8							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			Estació	n de Mue	streo 4									
0251u 26.5 27.4 20.2 1.4 $ 21.7$ $0451u$ 426.7 95.2 161.6 2.2 $ 35.7$ $0851u$ 462.2 56.3 159.1 1.5 $ 48.2$ $0951u$ 567.2 26.1 154.2 $ 58.3$ $1151u$ 787.8 69.2 173.5 1.3 0.9 63.7 $1251u$ 705.1 63.9 134.8 13.1 0.9 53.2 $1251u$ 258.6 19.5 134.8 $ 35.7$	0251.	08 5	20.4	26.2	1 /		217							
0851u 462.2 56.3 159.1 1.5 - 48.2 0951u 567.2 26.1 154.2 - - 58.3 1151u 787.8 69.2 173.5 1.3 0.9 63.7 1251u 705.1 63.9 134.8 13.1 0.9 53.2 1351u 258.6 19.5 134.8 - - 35.7	04511	4267	27. 4 95.2	161.6	2.4	-	21.7 35 7							
0051u 60.2 26.1 157.1 1.5 - 40.2 0951u 567.2 26.1 154.2 - - 58.3 1151u 787.8 69.2 173.5 1.3 0.9 63.7 1251u 705.1 63.9 134.8 13.1 0.9 53.2 1351u 258.6 19.5 134.8 - - 35.7	08511	462.7	56 3	159.1	15	-	<u>48</u> 2							
0.51u 507.2 20.1 134.2 - - 50.3 1151u 787.8 69.2 173.5 1.3 0.9 63.7 1251u 705.1 63.9 134.8 13.1 0.9 53.2 1351u 258.6 19.5 134.8 - - 35.7	00510	567.2	26.1	15/17	1.5	-	+0.∠ 58 3							
1251u 705.1 63.9 134.8 13.1 0.9 53.2 1251u 258.6 19.5 134.8	1151u	787 8	20.1 60 2	173.5	13	0.0	58.5 63.7							
1251u - 7051i - 050 - 1510 - 151i - 050 - 5552	12510	705.1	63.9	134.8	131	0.9	53.7							
1, 1, 1, 1, 1, 1, 2, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	13510	258.6	19.5	134.8	-	-	35.7							

Tabla 1.7Parámetros calculados para la Patella piperata

podría estar indicando una posible mayor influencia del tráfico en el canal Fuerteventura-Noroeste de Africa sobre la estación 4 situada al S-SE de la isla. Por el contrario, resulta extraño que la estación 2 presente mayores contenidos de PAHs que las estaciones 1 y 3, a pesar de encontrarse situada al norte de las mismas, al contrario de lo que veremos en el capítulo 3 que ocurre con la *Patella ulyssiponensis*, y que solo cabrá explicar, en principio, por la diferente disposición de sus respectivos hábitats en la línea costera ya que el escaso número de muestras que se pudieron obtener de *P. piperata* en esta estación no permiten mayores comentarios.

Los hechos anteriores quedan perfectamente visualizados en el gráfico "box-andwiskers" de la Fig. 1.5 en el que, eliminando la estación 3 por su pequeño número de muestras, puede observarse un comportamiento muy similar en las estaciones 1 y 2, con inyecciones puntuales, "anómalos" de posible origen petrogénico, comportamiento que es muy diferente del que presenta la estación 4 que es más uniforme a lo largo del período de muestreo.

Fig. 1.5. Gráfico "box-and-wiskers" para los contenidos totales de hidrocarburos aromáticos policíclicos en *P. piperata* en las diferentes estaciones de muestreo

Es de destacar el hecho de que en prácticamente todas las muestras se detectan cantidades elevadas de naftaleno que puede llegar a representar el 67% de Σ PAH, Fig. 1.4, con un valor medio del 31.7%, Tabla 1.7. El contenido medio de naftaleno es máximo en la estación 3, 51.0%, seguido de la estación 4, 45.2%, siendo muy similares

los valores medios en las estaciones 1 y 2, 31.0 y 25%, respectivamente. Esta misma secuencia se observa en los correspondientes valores de las medianas.

Tal como puede verse en la Tabla 1.6, aunque los especímenes de *P. piperata* contienen una gran variedad de PAHs, los que presentan 4,5 y 6 anillos en su estructura, es decir los que presentan valores del coeficiente de partición octanol-agua $logK_{ow} \ge 4.5$, pueden llegar a representar del orden del 36% del total, como valor medio. También Bjorseth *et al.* [151] encontraron que los mejillones contenían concentraciones más altas de los PAHs de 4 y 5 anillos.

Si se toma $logK_{ow} = 4.5$ como valor límite arbitrario del coeficiente de partición octanol-agua para este tipo de compuestos, la Tabla 1.7 permite observar que, de forma general, el contenido en PAHs con 1, 2 y 3 anillos (PAH-Lo = A6 + A7 + A9 + A10 + A11 + A12) es casi siempre menor que el contenido en hidrocarburos policíclicos con 4 y más anillos (PAH-Hi = A13 +...+ A18).

A continuación se muestra una lista ordenada de los PAHs acumulados mayoritariamente por la *Patella piperata* en las estaciones de muestreo 1, 2 y 3: naftaleno >> benzo[*a*]pireno > criseno > benzo[*e*]pireno > benzo[*b*]fluoranteno; en tanto que para la estación 4: naftaleno >> benzo[*a*]pireno > benzo[*e*]pireno > criseno > benzo[*b*]fluoranteno. En comparación, Pruell *et al.* [138] encontraron en mejillones procedentes de ensayos controlados (*Mytilus edulis*, 20 días expuestos): criseno > benzo[*b*]fluoranteno > fluoranteno > benzo[*e*]pireno > benzo[*a*]antraceno, mientras que Obana *et al.* [139] para almejas en ensayos de laboratorio (*Tapes japonica*, 7días) encontraron: pireno > benzo[*e*]pireno > benzo[*b*]fluoranteno.

Las relaciones de isómeros fenantreno/antraceno (Fen/Ant) y fluoranteno/pireno (Fluo/Pir) han sido propuestas como una forma de discriminar entre la procedencia petrógénica o antropogénica (pirogénesis) de los PAHs. Así, cuando Fen/Ant < 10 y Flu/Pir >1 la contaminación es debida a PAHs de procedencia antropogénica (combustión) [29,44,140,141]. Los valores que han sido calculados para estas relaciones y que se presentan en la Tabla 1.7 indican que la relación Fen/Ant se mantiene siempre muy por debajo del valor 10, con un valor medio de 1.8 y rango de 1.3 en la estación 1

a 3.9 en la estación 4, en tanto que la relación Fluo/Pir oscila entre 0.0 y 0.9, con un único caso en que alcanza el valor 3.8 en la estación 1. Todo ello parece indicar que los hidrocarburos aromáticos policíclicos presentes en las muestras de *P. piperata* analizadas son predominantemente de procedencia petrogénica si bien no puede descartarse una cierta componente antropogénica-pirogénica en los mismos.

La alta concentración de naftaleno y su buena correlación con la mayor parte de los PAHs estudiados en las muestras, Tabla 1.8, podría explicarse pensando que el naftaleno es el último producto del metabolismo de los PAHs más pesados como ha sido establecido por Cajaraville *et al.* [142] para el burgado *Littorina littorea*.

Además, el naftaleno (r=0.5992), junto con el benzo[*e*]pireno (r=0.3273) y el benzo[*a*]pireno (r=0.8264), PAHs conocidos por sus propiedades carcinogénicas, muestran concentraciones elevadas correlacionadas significativamente (p<0.05) con Σ PAHs. Esta observación sugiere que la concentración total de PAHs en *P. piperata* puede estimarse con exactitud razonable a partir de la concentración de uno de estos tres compuestos. Esta observación es similar a la realizada por Lamparcyk *et al.* [117] para la relación entre benzo[*a*]pireno y Σ PAHs en las aguas y sedimentos del Mar Báltico.

Por otra parte, las concentraciones de la mayor parte de los PAHs estudiados están interrelacionadas significativamente, Tabla 1.8. Como ejemplo, las concentraciones de benzo[*a*]pireno y benzo[*e*]pireno muestran una interrelación (r=0.5079) altamente significativa (P=0.0000). Este hecho podría explicarse por el origen común, petrogénico o pirogénico, de esos hidrocarburos poliaromáticos.

	A1	A2	A3	A4	A5	A6	A7	A8	A9	A10	A11	A12	A13	A14	A15	A16	A17	A18	S PAH
A1	1.0000	0.2620	0.0185	0.2663	0.2450	0.3834	0.1944	-0.0628	0.0302	0.0560	-0.0403	0.0661	0.1358	0.2709	0.1882	0.1880	0.0074	0.2041	0.5992
A2		1.0000	0.6916	-0.0798	0.4867	0.5707	0.6573	0.6383	0.6859	-0.0913	0.0078	0.5896	0.2703	-0.0459	0.6473	0.1217	0.4419	-0.1246	0.5788
A3			1.0000	-0.1696	0.4259	0.4432	0.6462	0.7566	0.6598	-0.1066	0.0535	0.6951	0.1647	-0.1221	0.6967	0.0601	0.4604	-0.0797	0.4647
A4				1.0000	0.1218	0.3111	0.1820	-0.0164	0.0126	0.5624	0.4997	0.2761	0.4090	0.5886	0.2404	0.6369	0.2899	-0.1446	0.4824
A5					1.0000	0.7540	0.4737	0.4643	0.3716	0.1401	0.1662	0.5064	0.3000	0.2238	0.5416	0.2567	0.3803	-0.1171	0.5882
A6						1.0000	0.6792	0.4607	0.5785	0.2183	0.2361	0.6199	0.4669	0.3537	0.6858	0.3442	0.6350	0.0126	0.7643
A7							1.0000	0.6642	0.6682	0.0837	0.1373	0.7324	0.2820	0.0806	0.7097	0.2751	0.6546	-0.0681	0.6435
A8								1.0000	0.7731	0.1044	0.1898	0.8037	0.2967	-0.0144	0.7397	0.1857	0.5569	-0.1178	0.5236
A9									1.0000	0.0328	0.2082	0.7500	0.3957	0.0681	0.7291	0.2079	0.7756	-0.0664	0.5757
A10										1.0000	0.5506	0.2966	0.3821	0.3620	0.1124	0.6333	0.1798	-0.1175	0.3651
A11											1.0000	0.5806	0.6958	0.6692	0.3992	0.6601	0.4383	-0.0213	0.4994
A12												1.0000	0.6192	0.3944	0.9136	0.5517	0.7419	-0.0559	0.7977
A13													1.0000	0.6993	0.6157	0.7366	0.5143	-0.0553	0.6877
A14														1.0000	0.5079	0.5799	0.3260	0.0423	0.5993
A15															1.0000	0.4236	0.6992	-0.0430	0.8264
A16																1.0000	0.3975	-0.0633	0.6593
A17																	1.0000	-0.0700	0.6196
A18																		1.0000	0.0280
S PAH																		2.00000	1.0000
~ 1/III																			1.0000

Tabla 1.8Matriz de correlaciones (n=49) de PAHs en P. piperata

Bifenilos Policlorados

Los parámetros estadísticos, incluidos valores medios y medianas, de las La regulación medioambiental de las concentraciones de los bifenilos policlorados (PCBs) difiere ampliamente dependiendo del país en cuestión. La Unión Europea ha dictado en los últimos años diversas Directivas, cada vez más restrictivas, con la finalidad de catalogar las matrices que contienen PCBs en función de su contenido global. Así, mientras que la Directiva Comunitaria 769/76 de julio de 1976 consideraba como PCB toda matriz cuyo contenido total fuera superior a 1000ppm (1g.kg⁻¹), la Propuesta 299/05 de 1991 situaba el contenido límite en 20ppm. En la actualidad se pretende establecer límites aún más restrictivos en campos más específicos, tales como el propuesto por la *Organización Mundial de la Salud* en el año 1987, de 5ppm para el pescado y sus derivados.

De cualquier forma, debe tenerse en cuenta que las diferentes normativas hacen referencia al contenido total de PCBs, sin considerar las diferencias significativas existentes en sus actividades biológicas y en la potencialidad tóxica de cada uno de los congéneres individuales. Una excepción a este tratamiento global de los PCBs son los procedimientos reguladores adoptados por Alemania y Holanda que proponen el seguimiento de los siete congéneres de PCBs ya citados en la Introducción como indicadores de contaminación por este tipo de sustancias [42].

Teniendo en cuenta tales consideraciones, en ningún caso el estudio que aquí se presenta tiene como objetivo clasificar las muestras analizadas atendiendo a los límites

de concentración antes expuestos ni a ningún otro, dada la relativa escasa presencia de PCBs en dichas muestras. Por el contrario, uno de los principales objetivos de nuestro estudio va a consistir en el seguimiento de la presencia relativa de cada uno de los congéneres analizados y su importancia medioambiental.

Como ya se ha comentado, de los 209 posibles congéneres de PCBs se escogieron para ser analizados, en primer lugar, los seis congéneres cuyo estudio recomienda el *International Council for the Exploration of the Sea* (ICES) y posteriormente, con la finalidad de realizar un análisis mucho más exhaustivo y preciso, se eligieron 45 congéneres más lo que hace un total de 51 congéneres individuales, Tabla 1.8, contenidos todos ellos en las cuatro mezclas suministradas por el *National Research Council of Canada* e incluidas en el *Marine Analytical Chemistry Standars Program* y denominadas CLB-1 A, B, C y D, respectivamente. Este número de congéneres supone un 24.4% del total de PCBs estructuralmente posibles, aunque teniendo en cuenta que sólo han sido identificados 150 de ellos en el medio ambiente, la proporción de PCBs aquí analizados asciende al 34% de estos. Debe tenerse en cuenta que, en el caso de estar presentes, muchos de estos congéneres se encuentran en los organismos marinos en concentraciones tan bajas que su identificación y/o cuantificación es, en la mayoría de los casos, impracticable.

Aunque se han incluido en el estudio cromatográfico la totalidad de los congéneres contenidos en las mezclas de identificación citadas, se han excluido de este comentario descriptivo, así como del posterior estudio estadístico y multivariante, todos aquellos congéneres en los que el número de identificaciones positivas ha sido inferior al 5% (≈9 muestras) (Tabla 1.9) con respecto al conjunto de las muestras analizadas.

		ani	illo			ani	illo			ani	illo
	PCB	А	B (')		PCB	А	B (')	_	PCB	А	B (')
				-				_			
	15	4	4	⇒	121	246	35		183	2346	245
⇒	18	25	2		128	234	234	⇒	185	23456	25
⇒	31	25	4	⇒	129	2345	23	⇒	187	2356	245
	40	23	23	⇒	137	2345	24		189	2345	345
⇒	44	25	23	⇒	138	245	234		191	2346	345
	49	25	24		141	2345	25		194	2345	2345
⇒	52	25	25	⇒	143	2345	26		195	23456	234
⇒	54	26	26		151	2356	25		196	2346	2345
	60	234	4	⇒	153	245	245	⇒	199	23456	236
	77	34	34	⇒	154	246	245		201	2356	2345
	86	2345	2		156	2345	34		202	2356	2356
⇒	87	234	25	⇒	159	2345	35		203	23456	245
⇒	101	245	25	⇒	170	2345	234		205	23456	345
	103	246	25		171	2346	234		206	23456	2345
	105	234	34		173	23456	23		207	23456	2346
	114	2345	4	⇒	180	2345	245		208	23456	2356
⇔	118	245	34	⇒	182	2345	246		209	23456	23456

 Tabla 1.9

 Estructura de los PCBs analizados e identificados en proporción superior al 5% (⇒)

Si atendemos a las recomendaciones orientadas al análisis de únicamente 36 congéneres específicos, Tabla 1.10, agrupados atendiendo a su relevancia medioambiental, las mezclas de PCBs que se han utilizado en este estudio han permitido realizar el seguimiento de un total de 22 (61%) de estos congéneres.

CRUPO I:	PCRs inductores más potentes del sistema MFO
(3)	-// -126 -169
GRUPO II:	PCBs inductores menos potentes del sistema MFO, pero presentes en el medio
	ambiente en concentraciones relativamente elevadas
(6)	-105 -118 -128 -138 -156 -170
GRUPO III:	PCBs inductores relativamente débiles del sistema MFO, pero muy abundantes
(7)	-87 -99 -101 -153 -180 -183 -194
GRUPO IV:	PCBs inductores débiles o no inductores del sistema MFO, presentes en el
	medio ambiente o en tejidos animales en altas concertaciones con relación a
	otros bifenilos policlorados
(10)	-18 -44 -49 -52 -70 -74 -151 -177 -187 -201
GRUPO V:	PCBs inductores menos potentes del sistema MFO presentes en muy bajas
	concentraciones
(10)	-37 -81 -114 -119 -123 -157 -158 -167 -168 -189

 Tabla 1.10

 Clasificación de los 36 congéneres propuestos para estudio atendiendo a su importancia medioambiental

A pesar de no haber realizado el estudio sobre la totalidad de los 36 congéneres propuestos, es importante el hecho de disponer de congéneres en cada uno de los grupos en cuestión, Tabla 1.11, de tal forma que la interpretación de los datos obtenidos pueda ser contrastada con la suministrada por las fuentes bibliográficas disponibles.

			1 1	
Grupo I	Grupo II	Grupo III	Grupo IV	Grupo V
[77]	[105]	87	18	114
	118	101	44	189
	[128]	153	[49]	
	138	180	52	
	[156]	[183]	[151]	
	170	[194]	187	
			[201]	

 Tabla 1.11

 Relación de PCBs estudiados, agrupados atendiendo a la clasificación propuesta

[] No presentes o con identificaciones positivas menores del 5%

De la tabla anterior se desprende que la identificación de los congéneres estudiados está de acuerdo con lo propuesto según aquella clasificación, es decir, se han detectado en mayor proporción los congéneres englobados en los Grupos II, III y IV además de resultar de gran interés medioambiental el que el PCB-77, siendo uno de los que inducen con mayor potencia el sistema MFO (Grupo I, -77, -126 y -169), no haya sido detectado en concentraciones superiores a los límites de detección propuestos, en ninguna de las muestras analizadas.

Algunos autores [143,144] han realizado estudios acerca de la coelución de determinados congéneres en columnas no polares del tipo DB-5; tal es el caso de los congéneres que aparecen en la Tabla 1.12, en la que aparecen reflejados en letra negrita aquellos congéneres objeto de estudio. Como se puede observar, estos 13 congéneres pueden plantear serias dificultades en lo que se refiere a su identificación-cuantificación. Además, de éstos, 4 pares de los congéneres estudiados coeluyen en 4 de los grupos citados.

010	.pos c	e cong	,enere:	que et	Jeruyer		i u i i i i u	o no po	luies
А	В	С	D	Е	F	G	Н	Ι	J
28	47	77	90	105	118	126	128	138	182
31	49	110	101	132	149	129	167	158	187
	52			153				160	
	73							163	
								164	
								186	

 Tabla 1.12

 Grupos de congéneres que coeluyen en columnas no polares

Si atendemos a las datos correspondientes a los tiempos de retención relativos al PCB-209 (RRT), Tabla 1.13, se observa que, coincidiendo con lo expuesto anteriormente, la cuantificación del PCB-187 (RRT= 0.698) puede verse afectada por el PCB-182 (RRT= 0.697) y *viceversa*. Lo mismo ocurre con los pares de congéneres 49/52 y 105/153, aunque en este caso, sólo se ha identificado uno de los congéneres que conforma cada par, PCB-52 y PCB-153, respectivamente, hecho que se ha confirmado por cromatografía de gases-espectrometría de masas.

Tabla 1.13Tiempos de retención relativos al PCB-209 de congéneres
de los grupos A, B, E y J

PCB	RRT	PCB	RRT	PCB	RRT	PCB	RRT
18	0.424	49	0.505	105	0.661	182	0.697
28	0.424	52	0.501	153	0.658	187	0.698

También es bien conocida la trascendencia medioambiental y las implicaciones ecotoxicológicas de la coelución de los ya citados congéneres -132 y -153 [144]. La presencia relativa de dichos congéneres en la mayoría de los Aroclores es de 30:70 favorable al congénere -153. Esta proporción es cada vez más favorable al congénere - 153 a medida que se asciende en la cadena trófica, de tal forma que la relación 30:70 se mantiene en sedimentos y agua y pasa a ser 25:75, 10:90, 5:95 y 1:99 en invertebrados, peces, aves piscíboras, y focas respectivamete; en ballenas la relación encontrada es de 15:85. Este hecho es de especial importancia teniendo en cuenta que la importancia toxicológica de PCB-153 es muy superior a la correspondiente al PCB-132. Sólo en unos pocos estudios que hacen uso de la cromatografía multidimensional se hace

referencia a la separación de tales congéneres, aunque algunos autores consideran que esta metodología no es útil en análisis de rutina [145]. Además de la cromatatografía multidimensional se puede recurrir al uso de columnas más polares aunque con el riesgo de la coelución de otros y con otros congéneres [144].

En otro estudio [28] se hace referencia a la coelución de los grupos de congéneres ya citados además de los congéneres -92/-60/-56, -81/-**87**, -123/-149, -171/-156/-202, -173/-157 y -128/-167. En este conjunto, con la única excepción del congénere -87, no se plantea inconveniente alguno bien por no estar incluidos en nuestro estudio o bien por no haber sido identificados en las muestras aquí analizadas.

Teniendo en cuenta lo expresado anteriormente, en términos generales se puede decir que en todas las muestras han sido detectados congéneres mono-, di-, tri-, y tetra-*orto* clorados en el conjunto de las muestras analizadas de *Patella piperata*. De los mono*orto*-clorados son los congéneres -31 (PCB-2,4',5), -118 (PCB-2,3',4,4',5) y -159 (PCB-2,3,3',4,5,5') los únicos identificados. A pesar de la posibilidad de adoptar una disposición planar debido al único átomo de cloro situado en una de las posiciones *orto* del anillo del bifenilo, la cloración de una única posición *para* en el caso de los congéneres -31 y -159 le resta importancia a su posible interacción con los receptores celulares. Es el congénere -118 el que, además de poseer sólo un átomo de cloro en una posición *orto*, posee las dos posiciones *para* también cloradas y además dos átomos más de cloro en las posiciones *meta*, Tabla 1.14.

 Tabla 1.14

 Estructuras de los PCBs mono-orto-clorados identificados

Del conjunto de los congéneres di-*orto*-clorados detectados [12] destacan los congéneres -137, -138, -153, -170, y -180 que teniendo las dos posiciones *para* cloradas poseen al menos dos átomos de cloro en posiciones *meta*, Tabla 1.15.

GRUPO II		GRUPO III		SIN CLASIFICAR					
	38		-153		137				
	70		-180						

 Tabla 1.15

 Estructuras de alguno de los PCBs di-orto-clorados estudiados

Como puede observarse en la Tabla 1.15 anterior, el congénere -137 además de no quedar encuadrado en ninguno de los grupos ya expuestos, presenta los dos átomos de cloro que posee en posiciones *meta* en el mismo anillo del bifenilo.

De los PCBs mono-*orto*- y di-*orto*-clorados identificados en las muestras, Tablas 1.15 y 1.16, son los congéneres -138, -170, y -118 los que presentan factores tóxicos equivalentes (TEFs) relativos a la 2,3,7,8-tetraclorodibenzo-*p*-dioxina más elevados según datos de Smith *et al.* [146]. En la Fig. 1.7 se presentan los perfiles medios de los congéneres individuales analizados en las diferentes estaciones de muestreo.

En líneas generales se observa que en las Estaciones de Muestreo 1, 2 y 3, Tabla 1.17, existe una presencia mayoritaria de congéneres tri- y hexa-clorados; le siguen en importancia los congéneres tetra- > penta- > hepta- > octa-clorados, Figs.1.7 y 1.8. En la Estación 4 el comportamiento se invierte en el caso de los congéneres con menor grado de cloración, es decir, es el conjunto de congéneres hepta- y octa-clorados el minoritario, como en el resto de las estaciones, seguidos por los congéneres tetra- < tri- < penta- en proporciones similares, siendo ahora los congéneres hexa-clorados los mayoritarios.

	18	31	44	52	54	87	101	118	121	129	137	138	143	153	154	159	170	180	182	185	187	199
											Total (n=51)										
Mínimo Máximo Media Mediana Desv. Est.	0 7780 860 390 1397	0 2522 443 169 607	0 2306 400 266 434	$ \begin{array}{c} 0 \\ 2375 \\ 126 \\ 0 \\ 435 \end{array} $	0 2284 169 0 412	0 2754 106 0 400	0 3347 157 77 469	0 387 78 61 90	0 5231 132 0 741	0 1103 181 112 219 <i>Es</i>	21 1620 222 140 263 stación 58	$ \begin{array}{c} 0 \\ 780 \\ 76 \\ 60 \\ 117 \\ 1 (n=1) \\ 0 \end{array} $	$ \begin{array}{c} 0 \\ 472 \\ 14 \\ 0 \\ 67 \\ 4) \\ 0 \end{array} $	0 4191 328 106 700	0 1393 110 0 223	0 252 13 0 48	0 564 35 0 82	0 1058 59 35 150	0 859 48 0 131	0 134 9 0 28	$ \begin{array}{c} 0 \\ 268 \\ 10 \\ 0 \\ 40 \\ 0 \end{array} $	0 407 13 0 59
Máximo Media Mediana Desv. Est.	4672 1008 440 1445	1400 413 187 520	1532 369 168 426	224 29 0 65	992 264 119 321	274 23 0 73	470 143 121 143	291 87 80 84	5231 382 0 1396	414 143 113 121	1620 280 139 406	247 103 95 70	42 6 0 14	592 184 112 185	323 82 0 126	234 17 0 63	53 17 0 21	228 46 33 66	165 26 0 47	89 6 0 24	58 6 0 17	30 2 0 8
										Es	stación	2 (n=2	4)									
Mínimo Máximo Media Mediana Desv. Est.	0 3968 601 337 884	0 2522 477 141 684	0 2306 368 186 512	0 2375 228 0 620	0 2284 105 0 466	0 627 74 0 174	0 303 75 56 88	0 387 61 36 89	0 25 2 0 6	0 776 163 91 215	21 592 159 123 138	0 780 73 36 156	0 472 22 0 96	0 4191 383 94 916	0 393 64 0 99	0 252 13 0 52	0 564 47 16 115	0 1058 78 31 212	0 859 67 5 183	0 134 13 0 35	0 74 3 0 15	0 407 22 0 85
										Ε	stación	3 (n=0	5)									
Mínimo Máximo Media Mediana Desv. Est.	352 7780 2060 1011 2833	0 1706 376 64 672	46 764 333 237 312	0 172 53 0 82	0 1342 398 202 534	0 57 9 0 23	0 155 31 0 62	0 255 108 72 116	0 888 217 16 361	0 1103 252 105 424	27 666 246 160 235	0 131 50 49 50	0 0 0 0 0	0 208 83 49 93	0 390 69 0 157	0 30 5 0 12	0 63 20 0 31	0 56 35 42 22	0 48 10 0 19	0 37 6 0 15	0 268 57 10 106	0 47 8 0 19
										Ε	stación	4 (n=2	7)									
Mínimo Máximo Media Mediana	0 830 428 420 288	0 1490 442 336 550	478 728 633 686	0 215 31 0 81	0 0 0 0	0 2754 466 136	0 3347 572 186	0 242 93 71	0 37 5 0	83 504 259 232	78 854 297 177 266	0 135 53 0 67	0 83 12 0 32	0 2018 640 403 744	0 1393 354 192	0 62 13 0 24	0 116 40 41 45	0 128 40 38 47	0 210 59 38 72	0 0 0 0	0 0 0 0	0 50 7 0

Tabla 1.16Resumen de parámetros estadísticos $(ng.kg^{-1} peso seco)$ para PCBs en P. piperata

Fig. 1.7.- Perfiles de concentración de los congéneres de PCBs detectados en P. piperata

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Cont	enido to	tal (<i>ng.k</i>	(xg^{-l}) , isómer	o mayorit	ario (P	CB M) y prese	encia re	elativa	de PC	Bs en F	P. piper	ata
Código Σ PCBA PCB M mono- di- ti- tera- penta- hexa hepta- ceta- Estación de Muestreo I Calla 1929 31 205 38.6 0.0 0.0 13.5 57.6 64.3 16.5 0.0 0.0 0311u 3247 44 33.6 2.7 85.5 98.0 91.7 13.6 12.8 27.4 8.3 0.0 0.0 21.2 28.0 11.9 31.7 7.2 0.0 0.0 12.3 18.6 61.4 0.0 0.0 0.2 18.6 61.4 0.0 0.0 0.0 18.7 3.1 0.0 0.0 0.0 12.7 7.4 0.0 0.0 12.7 7.7 3.7 0.0 0.0 12.6 1.4 0.0 0.0 12.6 1.4 0.0 0.0 12.6 1.4 0.0 0.0 12.0 2.8 0.0 3.3 1.7 1.8 6.8		% Isómeros de PCBs												
BISING PROPERTY OPENAL BISING PROPERTY OPENAL OPENAL OPENAL OPENAL OPENAL OPENAL OPENAL OPENAL OPENAL OPENAL OPENAL OPENAL OPENAL OPENAL OPENAL OPENAL OPENAL OPENAL OPENAL OPENAL OPENAL OPENAL OPENAL OPENAL OPENAL OPENAL OPENAL OPENAL OPENAL OPENAL OPENAL OPENAL OPENAL OPENAL OPENAL OPENAL OPENAL OPENAL OPENAL OPENAL OPENAL OPENAL OPENAL OPENAL OPENAL OPENAL OPENAL	Código	Σ PCBs	PCB M	% PCB M	mono-	di-	tri-	tetra-	tri-	tetra-	penta-	hexa-	hepta-	octa-
0211a 1929 31 29.5 38.9 40.3 0.0 20.8 29.5 30.6 15.2 22.8 2.0 0.0 0211b 8347 44 33.6 2.7 86.5 9.8 0.9 1.7 33.6 12.8 87.4 8.3 0.9 0411b 5345 18 27.2 31.2 63.2 1.1 4.4 53.0 15.6 14.2 13.7 7.2 0.0 0511b 5471 44 28.0 4.2 88.8 7.0 0.0 12.2 28.0 19.3 3.7 7.2 0.0 0.0 20.3 18.6 61.0 0.0 0.0 0.0 10.1 10.9 9.3 15.7 64.2 9.7 7.3 0.0 0.0 27.9 28.5 0.0 1.4 0.0 0.0 1.4 9.7 9.7 0.0 0.2 1.8 0.0 0.0 0.0 1.4 0.0 0.0 1.4 0.0 0.0 1.4 0.0 0.0 1.4 0.0 0.0 1.4 0.0 <					Est	ación d	e Mues	treo 1						
0211b 8136 18 64.3 13.5 86.5 0.0 0.1 13.5 5.7 64.3 16.2 0.0 0.0 0411u 5345 18 27.2 31.2 63.2 1.1 4.4 53.0 15.6 14.2 13.7 7.2 0.0 0511u 5471 44 28.0 4.2 88.8 7.0 0.0 21.2 28.0 1.5 5.7 5.4 5.9 3.0 0.0 0.0 8.8 7.5 64.5 9.3 0.0 0.0 0.0 8.8 7.5 64.5 9.3 0.0 0.0 8.8 7.5 64.4 9.3 0.0 0.0 2.7 2.5 0.4 0.0<	0211a	1929	31	29.5	38.9	40.3	0.0	20.8	29.5	30.6	15.2	22.8	2.0	0.0
0311u 3247 44 33.6 2.7 86.5 9.8 9 17.1 33.6 12.8 27.4 13.7 34 0.0 0611u 5471 44 28.0 4.2 88.8 7.0 0.0 21.2 28.0 11.9 31.7 7.4 0.0 0611u 3277 18.3 33.4 21.7 64.2 0.9 13.2 52.3 18.8 61.0 0.0 0.0 0711u 377 137 36.2 18.6 81.4 0.0 0.0 0.0 2.3 18.6 61.0 0.0 0.0 0911u 5093 18.6 61.4 4.8 7.5 7.1 1.5 66.6 18.2 0.0 <	0211b	8136	18	64.3	13.5	86.5	0.0	0.0	13.5	5.7	64.3	16.5	0.0	0.0
0411u 5345 18 27.2 31.2 63.2 1.1 4.4 53.0 15.6 14.2 13.7 7.2 0.0 0611u 3257 18 33.4 21.7 64.2 0.9 13.2 52.3 19.8 9.0 15.7 7.2 0.0 0711u 379 137 36.2 18.6 81.4 0.0 0.0 0.8 15.5 64.5 9.3 0.0 0911u 5963 18 62.4 4.8 75.4 2.5 17.4 65.6 18.0 11.1 2.2.6 1.4 0.0 111u 2057 54 28.9 9.3 45.7 16.1 28.9 2.5.2 1.1 1.4 0.0 0.0 0.0 1.1 2.2.6 1.4 0.0 0.0 1.1 2.6.6 7.4 0.0 0.0 1.1 0.6.6 7.7 7.0 7.4 8.3 8.1.5 3.3.0 21.5 1.5. 6.6.6 7	0311u	3247	44	33.6	2.7	86.5	9.8	0.9	17.1	33.6	12.8	27.4	8.3	0.9
0511u 557 18 33.4 21.7 64.2 98.8 7.0 0.0 21.2 28.0 11.7 7.2 0.0 0711u 379 137 36.2 18.6 81.4 0.0 0.0 20.3 18.6 61.0 0.0 0.0 0811u 1469 137 34.7 86 88.2 3.00 0.0 8.8 17.5 64.5 9.3 0.0 011u 2965 31 46.9 60.5 23.2 2.7 13.5 46.9 18.0 11.1 22.6 1.4 0.0 0.0 27.9 28.5 0.0 43.6 0.0 0.0 131u 3990 137 40.6 1.4 97.9 7.0 0.0 38.4 9.6 1.0 0.0 0.0 0231a 1225 18 7.7 7 7.4 3.8 1.5 3.0 21.5 1.5 7.6 7.4 0.0 0231a	0411u	5345	18	27.2	31.2	63.2	1.1	4.4	53.0	15.6	14.2	13.7	3.4	0.0
0611u 3257 18 33.4 21.7 64.2 0.9 13.2 52.3 19.8 9.0 15.7 3.1 0.0 0.0 0811u 1469 137 34.7 8.6 81.4 0.0 0.0 0.0 8.8 17.5 64.5 9.3 0.0 0.0 18.6 61.4 0.0 0.0 0.0 8.8 17.5 64.5 9.3 0.0 0.0 18.6 61.4 0.0 0.0 0.0 18.6 61.4 0.0 <td>0511u</td> <td>5471</td> <td>44</td> <td>28.0</td> <td>4.2</td> <td>88.8</td> <td>7.0</td> <td>0.0</td> <td>21.2</td> <td>28.0</td> <td>11.9</td> <td>31.7</td> <td>7.2</td> <td>0.0</td>	0511u	5471	44	28.0	4.2	88.8	7.0	0.0	21.2	28.0	11.9	31.7	7.2	0.0
0/11u 3/9 13/ 36.2 18.6 81.4 0.0 0.0 20.3 18.6 10.0 0.0 00 0911u 1693 18 62.4 4.8 75.4 2.5 17.4 65.6 19.2 3.9 7.7 3.7 0.0 011u 2986 31 46.9 80.5 12.2 7.1 5.4 49.8 10.0 0.0 27.9 28.5 0.0 43.6 0.0 0.0 111u 2900 137 40.6 1.4 97.0 7.0 38.4 9.6 4.0 46.5 1.4 0.0 121u 4900 131u 3900 137 40.6 1.4 97.0 7.0 38.4 9.6 4.0 4.5 0.0 0231b 1215 18 7.7 7.9 7.48 3.8 13.5 33.0 2.15 11.5 2.66 7.4 0.0 0231b 521 31 34.7	0611u	3257	18	33.4	21.7	64.2	0.9	13.2	52.3	19.8	9.0	15.7	3.1	0.0
0811a 1699 137 34.7 8.6 88.2 3.3 0.0 0.0 8.8 17.5 6.4 9.5 0.0 0011u 2986 31 46.9 60.5 23.2 2.7 13.5 46.9 18.0 11.1 2.26 1.4 0.0 0.0 1111u 2057 54 28.9 1.6 1.8 1.6 7.7 3.7 0.0 0.0 1211u 428 44 28.5 27.9 7.1 16.1 28.9 7.7 3.8 0.0 38.4 9.6 4.0 46.5 1.4 0.0 1411u 6516 18 7.7 7.9 74.8 3.8 1.5.5 33.0 21.5 11.5 26.6 7.4 0.0 0231a 1225 18 27.7 7.9 74.8 3.8 1.5 3.0 21.5 3.1.8 3.3 3.1 0.0 0.0 0.0 0.0 0.0 0.0	0711u	379	137	36.2	18.6	81.4	0.0	0.0	0.0	20.3	18.6	61.0	0.0	0.0
0911u 2693 18 62.4 4.8 75.4 2.5 17.4 65.6 19.2 3.9 7.7 5.7 10.0 1111u 2057 54 28.9 9.3 45.7 16.1 28.9 25.2 41.1 6.7 27.0 0.0 0.0 1211u 428 44 28.5 27.9 72.1 0.0 0.0 27.9 28.5 0.0 43.6 0.0 0.0 1411u 6516 18 71.7 0.8 83.8 5.5 9.9 71.7 14.3 0.0 44.5 1.4 0.0 0231a 1225 18 27.7 7.9 74.8 3.8 1.5 33.0 21.5 11.5 2.6.6 7.4 0.0 0231a 15311 153 2.7.4 17.0 60.4 7.0 15.7 19.1 39.4 3.4 3.3.3 4.1 0.8 0331u 1531 15.7 19.1 39.	0811u	1469	137	34.7	8.6	88.2	3.3	0.0	0.0	8.8	17.5	64.5	9.3	0.0
	0911u	5693 2086	18	62.4	4.8	75.4	2.5	17.4	65.6	19.2	3.9	1.1	3.7	0.0
1111u 2037 5.4 2.5 7.9 72.1 0.0 0.0 27.9 72.1 0.0 0.0 1311u 3990 137 40.6 1.4 97.9 0.7 0.0 38.4 9.6 4.0 46.5 1.4 0.0 1411u 6516 18 71.7 0.8 83.8 5.5 9.9 71.7 14.3 0.8 13.2 0.0 0.0 0231a 1225 18 27.7 7.9 74.8 3.8 13.5 33.0 21.5 11.5 2.66 7.4 0.0 0231c 15136 44 15.2 10.4 80.4 6.4 2.7 17.6 2.88 6.7 27.1 17.1 2.7 031u 15311 153 27.4 17.0 60.4 7.0 15.7 19.1 39.4 3.4 3.3 4.1 0.8 0431u 2822 31 47.7 50.2 48.6 1.2 0.0 60.2 3.4 3.4 0.0 0.0 0.0 0.0 0.0<	1011u 1111u	2980	51	40.9	00.5	23.2 45.7	2.7 16.1	13.5	40.9	18.0	11.1 67	22.0	1.4	0.0
1211u 3990 137 40.6 1.4 97.9 0.7 0.0 38.4 9.6 4.0 4.0 0.0 0.0 1411u 6516 18 71.7 0.8 83.8 5.5 9.9 71.7 14.3 0.8 13.2 0.0 0.0 Exactión de Muestreo 2 0231a 1225 18 7.7 7.9 74.8 3.8 13.5 33.0 21.5 11.5 2.6.6 7.4 0.0 0231a 15136 44 15.2 10.4 80.4 6.4 2.7 17.6 28.8 6.7 27.1 17.1 2.7 031u 1531 153 27.4 7.0 0.6 4.6 8.9 6.4 15.4 4.8 0.0 031u 869 44 30.0 0.0 100.0 0.0 10.6 19.6 12.5 7.8 4.5 1.4 0.0 031u 4565 31 36.9 38.0 57.8 4.3 0.0 11.4 9.0 1.0 0.0 <td< td=""><td>1111u 1211u</td><td>42037</td><td>54 44</td><td>28.9</td><td>9.5 27.0</td><td>43.7</td><td>10.1</td><td>28.9</td><td>23.2</td><td>41.1</td><td>0.7</td><td>27.0 42.6</td><td>0.0</td><td>0.0</td></td<>	1111u 1211u	42037	54 44	28.9	9.5 27.0	43.7	10.1	28.9	23.2	41.1	0.7	27.0 42.6	0.0	0.0
1311u 6516 18 71.7 0.8 83.8 5.5 9.9 71.7 14.3 0.8 1.3.2 0.0 0.0 Estación de Muestreo 2 0231a 1225 18 27.7 7.9 74.8 3.8 1.5.5 33.0 21.5 11.5 26.6 7.4 0.0 0231a 15136 44 15.2 10.4 80.4 6.4 2.7 17.6 28.8 6.7 27.1 17.1 2.7 031u 15311 153 27.4 17.0 60.4 7.0 15.7 19.1 39.4 4.33.3 4.1 0.8 0431u 2805 31 47.7 50.2 4.86 1.2 0.0 64.6 8.9 6.4 15.4 4.8 0.0 0731u 869 44 30.0 0.0 10.0 0.0 0.0 12.0 34.9 3.4 0.0 0341a 540 153 34.1 3.6 9.4.6 1.7 0.0 14.9 10.0 0.0 0.0 17.5 </td <td>1211u 1211u</td> <td>420</td> <td>44 127</td> <td>28.5</td> <td>27.9</td> <td>72.1</td> <td>0.0</td> <td>0.0</td> <td>27.9</td> <td>20.3</td> <td>0.0</td> <td>45.0</td> <td>0.0</td> <td>0.0</td>	1211u 1211u	420	44 127	28.5	27.9	72.1	0.0	0.0	27.9	20.3	0.0	45.0	0.0	0.0
Image: Second S	1511u 1411u	5990	15/	40.0	1.4	97.9	0.7	0.0	50.4 71.7	9.0	4.0	40.5	1.4	0.0
Distribute of the second of the sec	1411u	0310	18	/1./	0.8	05.0 Ganión d	3.3 • M uor	9.9	/1./	14.5	0.8	15.2	0.0	0.0
0231a 1225 18 27.7 7.9 74.8 3.8 13.5 33.0 21.5 11.5 26.6 7.4 0.0 0231b 15136 44 15.2 10.4 80.4 6.4 2.7 17.6 28.8 6.7 27.1 17.1 2.7 0331u 15311 153 27.4 17.0 60.4 7.0 15.7 19.1 39.4 3.4 3.3 4.1 0.8 0431u 2822 31 41.7 43.2 52.1 4.7 0.0 54.4 2.8 13.1 26.0 3.7 0.0 0731u 869 44 30.0 0.0 100.0 0.0 12.0 34.9 3.4 0.0 0831u 456 31 36.9 98.0 0.7 12.8 0.0 0.0 28.2 0.0 0.0 0341b 540 153 33.7 0.0 100.0 0.0 13.8 3.3 17.0 5.0 0.0 0341b 540 13 31.3 31.6	Estación de Muestreo 2													
0231c 15136 44 15.0 43.0 2.1 0.0 34.4 7.2 20.5 30.8 7.0 0.0 0231c 15136 44 15.2 10.4 80.4 6.4 2.7 17.6 28.8 6.7 27.1 17.1 2.7 0331u 15311 153 27.4 17.0 60.4 7.0 15.7 19.1 39.4 3.4 33.3 4.1 0.8 0631u 3005 31 41.7 50.2 48.6 1.2 0.0 64.6 8.9 6.4 15.4 4.8 0.0 0.0 12.0 34.9 3.4 0.0 0.0 0.0 12.0 34.9 3.4 0.0 0.0 0.0 12.0 34.9 3.4 0.0 0.0 0.0 22.5 7.8 4.1 0.0 0.3 96.1 0.6 0.0 0.0 22.5 7.8 4.1 0.0 0.441u 3053 31 38.1 38.1 58.0 3.9 0.0 56.0 18.8 3.3 1.1 0.0 0.0 </td <td>0231a</td> <td>1225</td> <td>18</td> <td>27.7</td> <td>7.9</td> <td>74.8</td> <td>3.8</td> <td>13.5</td> <td>33.0</td> <td>21.5</td> <td>11.5</td> <td>26.6</td> <td>7.4</td> <td>0.0</td>	0231a	1225	18	27.7	7.9	74.8	3.8	13.5	33.0	21.5	11.5	26.6	7.4	0.0
0231u 15136 44 15.2 10.4 80.4 6.4 2.7 17.6 2.88 6.7 27.1 17.1 2.7 0331u 12511 153 27.4 17.0 60.4 7.0 15.7 19.1 39.4 33.4 33.3 41.0 0.8 0431u 2822 31 47.7 50.2 48.6 1.2 0.0 64.6 8.9 6.4 15.4 4.8 0.0 0731u 869 44 30.0 0.0 100.0 0.0 0.0 19.6 30.0 12.0 34.9 3.4 0.0 0831u 4565 31 36.9 38.0 57.8 4.3 0.0 71.8 0.0 0.0 22.5 7.8 4.7 4.1 0.0 0341a 2303 31 38.1 38.1 58.0 3.9 0.0 56.0 18.8 3.3 17.0 5.0 0.0 0541u 2305 31 31.0 35.1 64.0 0.0 4.2 4.5 13.3 2.9.9 <	02316	921	31	34.4	55.0	43.0	2.1	0.0	34.4	7.2	20.5	30.8	7.0	0.0
0331u 15311 1531 17.0 60.4 7.0 15.7 19.1 39.4 5.4 33.5 4.1 0.8 0431u 2822 31 47.7 50.2 48.6 1.2 0.0 64.6 8.9 6.4 15.4 4.8 0.0 0631u 3005 31 41.7 43.2 52.1 4.7 0.0 54.4 2.8 13.1 26.0 3.7 0.0 0731u 869 44 30.0 0.0 100.0 0.0 19.6 0.0 2.8. 0.0 0.0 20.0 0.0 0.0 19.9 2.2.5 7.8 45.7 4.1 0.0 0341b 540 153 33.7 0.0 100.0 0.0 19.9 2.2.5 7.8 45.7 4.1 0.0 0341b 540 153 33.7 0.0 100.0 0.0 17.2 18.9 0.0 6.0 3.3 17.0 5.0 0.0 0441u 3053 31 31.0 35.1 62.4 2.4 <td< td=""><td>0231c</td><td>15136</td><td>44</td><td>15.2</td><td>10.4</td><td>80.4</td><td>6.4</td><td>2.7</td><td>17.6</td><td>28.8</td><td>6.7</td><td>27.1</td><td>17.1</td><td>2.7</td></td<>	0231c	15136	44	15.2	10.4	80.4	6.4	2.7	17.6	28.8	6.7	27.1	17.1	2.7
0431u 2822 31 41.7 50.2 48.6 1.2 0.0 64.6 89 6.4 15.4 4.8 0.0 0631u 3005 31 41.7 43.2 52.1 4.7 0.0 54.4 2.8 13.1 26.0 3.7 0.0 0731u 869 44 30.0 0.0 100.0 0.0 0.0 19.6 30.0 12.0 34.9 3.4 0.0 0931u 5672 18 70.0 3.3 96.1 0.6 0.0 70.0 3.8 3.1 18.9 0.0 60.2 3.8 0.0 0341a 2932 153 34.1 3.6 94.6 1.7 0.0 19.9 22.5 7.8 45.7 4.1 0.0 0341a 2932 153 31.1 31.0 35.1 62.4 2.4 0.0 43.2 4.5 13.3 29.5 9.4 0.0 0441u 1806 87 3.6 9.9 89.2 0.9 0.0 28.4 1.5 1.3.7 </td <td>0331u</td> <td>15311</td> <td>153</td> <td>27.4</td> <td>17.0</td> <td>60.4</td> <td>7.0</td> <td>15.7</td> <td>19.1</td> <td>39.4</td> <td>3.4</td> <td>33.3</td> <td>4.1</td> <td>0.8</td>	0331u	15311	153	27.4	17.0	60.4	7.0	15.7	19.1	39.4	3.4	33.3	4.1	0.8
	0431u	2822	31	47.7	50.2	48.6	1.2	0.0	64.6	8.9	6.4	15.4	4.8	0.0
	0631u	3005	31	41.7	43.2	52.1	4.7	0.0	54.4	2.8	13.1	26.0	3.7	0.0
0831u 4565 51 50.9 58.0 57.8 4.3 0.0 71.8 0.0 28.2 0.0 0.0 0931u 2572 153 34.1 3.6 94.6 1.7 0.0 19.9 22.5 7.8 45.7 4.1 0.0 0341a 2932 153 34.1 3.6 94.6 1.7 0.0 19.9 22.5 7.8 45.7 4.1 0.0 0341a 2032 153 34.1 36.6 9.9 89.0 0.0 18.8 3.3 17.0 5.0 0.0 0441u 2053 31 31.0 35.1 62.4 2.4 0.0 43.2 4.5 13.3 29.5 9.4 0.0 0541u 1806 87 33.6 9.9 89.2 0.9 0.0 28.4 21.5 37.1 12.1 0.9 0.0 0741b 2250 44 37.6 7.6 86.7 5.6 0.0 15.1 48.9 7.9 1.9 61.0 0.0 0.45.5 1	0/31u	869	44	30.0	0.0	100.0	0.0	0.0	19.6	30.0	12.0	34.9	3.4	0.0
0931u 50/2 18 70.0 5.3 96.1 0.0 70.0 5.8 18.9 4.1 0.0 0341a 2932 153 33.7 0.0 100.0 0.0 0.0 17.2 18.9 0.0 60.2 3.8 0.0 0441u 3053 31 38.1 38.1 58.0 3.9 0.0 50.0 18.8 3.3 17.0 5.0 0.0 0541u 2305 31 31.0 35.1 62.4 2.4 0.0 43.2 4.5 13.3 29.5 9.4 0.0 0641u 1806 87 33.6 9.9 89.2 0.9 0.0 28.4 21.5 37.1 12.1 0.9 0.0 0741a 1479 44 28.5 0.0 82.1 17.9 0.0 0.0 28.5 17.5 43.0 10.9 0.0 0741a 1822 44 36.7 7.6 0.0 0.0 14.4 37.5 6.7.5 0.0 0.0 17.4 87.5 4.1 0	0831u	4565	31 10	36.9	38.0	57.8	4.3	0.0	/1.8	0.0	0.0	28.2	0.0	0.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0931u	2022	18	70.0	3.3	90.1	0.0	0.0	/0.0	3.8	3.3 7.0	18.9	4.1	0.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0341a	2932	153	34.1	3.0	94.6	1./	0.0	19.9	22.5	/.8	45.7	4.1	0.0
0541u 2305 31 36.1 36.1 36.0 3.5 0.0 43.2 4.5 13.3 1.0 0.0 0641u 1806 87 33.6 9.9 89.2 0.9 0.0 28.4 21.5 37.1 12.1 0.9 0.0 0741a 1479 44 28.5 0.0 82.1 17.9 0.0 0.0 28.5 17.5 43.0 10.9 0.0 0741b 2250 44 37.6 7.6 86.7 5.6 0.0 11.4 37.5 6.1 37.5 5.0 0.0 0841u 1942 244 26.0 0.0 89.4 10.6 0.0 11.4 37.5 6.1 37.5 5.0 0.0 0941u 1388 154 28.3 19.4 52.3 28.3 0.0 40.2 5.2 6.0 48.5 0.0 0.0 1041u 56 18 24.7 32.1 67.8 0.0 0.0 32.2 44.1 0.0 22.6 2.5 0.0	03410 0441u	540 3053	155	33./ 38.1	0.0 38 1	58.0	0.0	0.0	17.2	18.9	0.0	00.2 17.0	3.8 5.0	0.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	04410 05/11	2305	31	31.0	35.1	50.0 62.4	2.7	0.0	13.2	10.0	13.3	20.5	9.0	0.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.0410	1806	87	33.6	00	80.2	0.9	0.0		21.5	37.1	12.1	0.4	0.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0041u 0741a	1479	44	28.5	0.0	82.1	17.9	0.0	20.4	21.5	17.5	43.0	10.9	0.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0741a 0741b	2250	44	20.5	0.0 7.6	86.7	56	0.0	15.1	20.J	79	21.9	6.1	0.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	07410 0841u	1942	44	26.0	0.0	89.4	10.6	0.0	11 4	37.5	61	37.5	75	0.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0941u	1388	154	28.3	19.4	52.3	28.3	0.0	40.2	52	6.0	48.5	0.0	0.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1041u	546	18	20.5	32.1	67.9	0.0	0.0	45.5	10.9	20.3	23.4	0.0	0.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1141u	1088	18	52.4	8.0	92.0	0.0	0.0	60.4	14.5	0.0	22.6	2.5	0.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1241a	980	44	44 1	32.2	67.8	0.0	0.0	32.2	44 1	0.0	20.0	37	0.0
1341u 1154 44 23.1 1.8 83.5 8.3 6.4 19.2 29.5 14.6 33.2 3.5 0.0 1441u 3045 18 66.1 9.6 82.7 7.6 0.0 66.1 5.2 3.7 24.2 0.7 0.0 Estación de Muestreo 3 0771u 3432 18 36.7 19.6 79.0 1.4 0.0 49.0 15.9 11.7 18.8 4.5 0.0 0871u 4429 31 38.5 39.8 43.5 1.2 15.6 54.3 19.5 11.2 10.2 3.7 1.1 0971u 844 18 41.7 13.9 83.6 2.4 0.0 41.7 11.7 10.3 29.8 6.5 0.0 1271u 1594 18 47.9 8.0 64.3 2.4 25.4 55.9 28.2 3.9 10.2 1.8 0.0 1471u 10589 18 73.5 2.4 91.4 6.2 0.0 73.5 6.1	1241b	351	31	62.2	62.2	37.8	0.0	0.0	62.2	0.0	0.0	33.2	4.6	0.0
1441u 3045 18 66.1 9.6 82.7 7.6 0.0 66.1 5.2 3.7 24.2 0.7 0.0 Estación de Muestreo 3 0771u 3432 18 36.7 19.6 79.0 1.4 0.0 49.0 15.9 11.7 18.8 4.5 0.0 0871u 4429 31 38.5 39.8 43.5 1.2 15.6 54.3 19.5 11.2 10.2 3.7 1.1 0971u 844 18 41.7 13.9 83.6 2.4 0.0 41.7 11.7 10.3 29.8 6.5 0.0 1271u 1594 18 47.9 8.0 64.3 2.4 25.4 55.9 28.2 3.9 10.2 1.8 0.0 1471u 10589 18 73.5 2.4 91.4 6.2 0.0 73.5 6.1 10.8 7.1 2.5 0.0 1471u 10589 18 73.5 2.4 91.4 6.2 0.0 14.3.3 7.5	1341u	1154	44	23.1	1.8	83.5	8.3	6.4	19.2	29.5	14.6	33.2	3.5	0.0
Estación de Muestreo 3 0771u 3432 18 36.7 19.6 79.0 1.4 0.0 49.0 15.9 11.7 18.8 4.5 0.0 0871u 4429 31 38.5 39.8 43.5 1.2 15.6 54.3 19.5 11.2 10.2 3.7 1.1 0971u 844 18 41.7 13.9 83.6 2.4 0.0 41.7 11.7 10.3 29.8 6.5 0.0 1271u 1594 18 47.9 8.0 64.3 2.4 25.4 55.9 28.2 3.9 10.2 1.8 0.0 1471u 5669 18 26.6 0.0 75.7 0.6 23.7 26.6 37.1 0.0 34.6 1.6 0.0 1471u 10589 18 73.5 2.4 91.4 6.2 0.0 73.5 6.1 10.8 7.1 2.5 0.0 0451u 5	1441u	3045	18	66.1	9.6	82.7	7.6	0.0	66.1	5.2	3.7	24.2	0.7	0.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					Est	ación d	e Mues	treo 3						
0771u 342 13 36.7 12.0 10.0 12.0 12.0 12.0 10.0 12.0 10.0 12.0 10.0 12.0 10.0 12.0 10.0 12.0 10.0 12.0 10.0 <	0771	2/27	18	367	10.6	70.0	1 /	0.0	10.0	15.0	117	18 9	15	0.0
0071u 844 18 41.7 13.9 83.6 2.4 0.0 41.7 11.7 10.3 29.8 6.5 0.0 1271u 1594 18 47.9 8.0 64.3 2.4 25.4 55.9 28.2 3.9 10.2 1.8 0.0 1471u 5669 18 26.6 0.0 75.7 0.6 23.7 26.6 37.1 0.0 34.6 1.6 0.0 1471u 10589 18 73.5 2.4 91.4 6.2 0.0 73.5 6.1 10.8 7.1 2.5 0.0 1471u 10589 18 73.5 2.4 91.4 6.2 0.0 73.5 6.1 10.8 7.1 2.5 0.0 Estación de Muestreo 4 0251u 6775 153 29.8 13.0 64.4 22.6 0.0 19.4 13.3 7.5 57.4 2.4 0.0 0451u 5593 31 26.7 30.9 64.2 5.0 0.0 41.5 <td< td=""><td>08711</td><td><u>14</u>32</td><td>31</td><td>30.7</td><td>30.8</td><td>19.0 43.5</td><td>1.4</td><td>15.6</td><td>+9.0 54 3</td><td>10.9</td><td>11.7</td><td>10.0</td><td>4.5 3 7</td><td>1.1</td></td<>	08711	<u>14</u> 32	31	30.7	30.8	19.0 43.5	1.4	15.6	+9.0 54 3	10.9	11.7	10.0	4.5 3 7	1.1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	00711	844	18	38.5 41.7	13.0	83.6	1.2	0.0	J4.J 41.7	11.5	10.3	20.8	6.5	0.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1271u	1594	18	41.7	8.0	64 3	2.4	25.4	55.9	28.2	3.9	10.2	1.8	0.0
1471u 10589 18 73.5 2.4 91.4 6.2 0.0 73.5 6.1 10.8 7.1 2.5 0.0 Identified and the state of the st	1271u 1471u	5669	18	26.6	0.0	75.7	0.6	23.7	26.6	37.1	0.0	34.6	1.0	0.0
Initial Initial <t< td=""><td>1471u</td><td>10589</td><td>18</td><td>20.0 73.5</td><td>24</td><td>91.4</td><td>6.2</td><td>0.0</td><td>20.0 73.5</td><td>61</td><td>10.8</td><td>71</td><td>2.5</td><td>0.0</td></t<>	1471u	10589	18	20.0 73.5	24	91.4	6.2	0.0	20.0 73.5	61	10.8	71	2.5	0.0
0251u 6775 153 29.8 13.0 64.4 22.6 0.0 19.4 13.3 7.5 57.4 2.4 0.0 0451u 5593 31 26.7 30.9 64.2 5.0 0.0 41.5 13.0 10.2 29.5 5.7 0.0 0851u 2570 44 28.1 13.1 78.8 8.2 0.0 29.4 28.1 5.3 29.0 8.2 0.0 0951u 4471 87 61.6 0.0 100.0 0.0 0.0 15.5 61.6 22.9 0.0 0.0 1151u 2963 153 43.9 3.3 87.9 7.2 1.7 12.5 16.1 2.2 64.4 3.0 1.7 1251u 2449 31 19.9 22.9 67.8 9.3 0.0 26.3 19.6 13.4 36.0 4.7 0.0	14710	10507	10	15.5	Z.¬	ación d	0.2 • Mues	treo 1	15.5	0.1	10.0	/.1	2.0	0.0
0251u 0775 155 29.8 15.0 64.4 22.6 0.0 19.4 13.5 7.5 57.4 2.4 0.0 0451u 5593 31 26.7 30.9 64.2 5.0 0.0 41.5 13.0 10.2 29.5 5.7 0.0 0851u 2570 44 28.1 13.1 78.8 8.2 0.0 29.4 28.1 5.3 29.0 8.2 0.0 0951u 4471 87 61.6 0.0 100.0 0.0 0.0 15.5 61.6 22.9 0.0 0.0 1151u 2963 153 43.9 3.3 87.9 7.2 1.7 12.5 16.1 2.2 64.4 3.0 1.7 1251u 2449 31 19.9 22.9 67.8 9.3 0.0 26.3 19.6 13.4 36.0 4.7 0.0	0251	(775	152	20.9	12.0	<i>CA</i> A		0.0	10.4	12.2	75	E77 A	2.4	0.0
0431u 5395 51 26.7 50.9 64.2 5.0 0.0 41.5 13.0 10.2 29.5 5.7 0.0 0851u 2570 44 28.1 13.1 78.8 8.2 0.0 29.4 28.1 5.3 29.0 8.2 0.0 0951u 4471 87 61.6 0.0 100.0 0.0 0.0 15.5 61.6 22.9 0.0 0.0 1151u 2963 153 43.9 3.3 87.9 7.2 1.7 12.5 16.1 2.2 64.4 3.0 1.7 1251u 2449 31 19.9 22.9 67.8 9.3 0.0 26.3 19.6 13.4 36.0 4.7 0.0	0251u	0//3	155	29.8 26.7	13.0	04.4	22.6	0.0	19.4	13.5	/.5	5/.4	2.4 5 7	0.0
0051u 2570 44 26.1 15.1 76.8 8.2 0.0 29.4 28.1 5.5 29.0 8.2 0.0 0951u 4471 87 61.6 0.0 100.0 0.0 0.0 15.5 61.6 22.9 0.0 0.0 1151u 2963 153 43.9 3.3 87.9 7.2 1.7 12.5 16.1 2.2 64.4 3.0 1.7 1251u 2449 31 19.9 22.9 67.8 9.3 0.0 26.3 19.6 13.4 36.0 4.7 0.0	0451u 0851	2273 2570	31 44	20.7 28.1	50.9 12-1	04.2 79 9	5.U 8 1	0.0	41.5 20.4	13.0	10.2	29.5	5.1	0.0
1151u 2963 153 43.9 3.3 87.9 7.2 1.7 12.5 16.1 2.2 64.4 3.0 1.7 1251u 2449 31 19.9 22.9 67.8 9.3 0.0 26.3 19.6 13.4 36.0 4.7 0.0	00510	2370 1171	44 97	∠0.1 61.6	13.1	100.0	0.2	0.0	29.4 0.0	∠0.1 15 5	5.5 61.6	29.0 22.0	0.2	0.0
1151u 2505 155 45.9 5.5 67.9 7.2 1.7 12.5 10.1 2.2 64.4 5.0 1.7 1251u 2449 31 19.9 22.9 67.8 9.3 0.0 26.3 19.6 13.4 36.0 4.7 0.0	1151.	44/1 2062	0/	42.0	0.0	100.0 87.0	0.0	0.0	125	15.5	01.0	22.9 61 1	3.0	0.0
$1251\mathbf{u} 2\mathbf{\tau} 51 17.7 22.7 01.0 7.3 0.0 20.3 17.0 15.4 30.0 4.7 0.0$	1251u	2903 2440	31	43.9	3.3 22 0	01.9 67.8	1.2 0.3	1./	12.3	10.1	2.2 13 /	04.4 36.0	5.0 4 7	1./
1351n 6299 101 531 38 879 82 00 108 102 570 207 13 00	1251u 1351u	2449 6299	101	53.1	22.9	87.9	2.5 8.2	0.0	20.5 10.8	10.2	13.4 57.0	20.7	+./ 13	0.0

Tabla 1.17	
ontenido total $(ng.kg^{-1})$, isómero mayoritario (PCB M) y presencia relativa de PCBs en P. pipero	ata

Siempre teniendo en cuenta que no se ha realizado el análisis de la totalidad de los congéneres posibles, la presencia relativa de éstos en las muestras analizadas parece estar en concordancia con la presencia relativa de los mismos en las diferentes mezclas comerciales (véase la Fig. 3 de la Introducción), en las que son los congéneres tetra-, penta- y hexa-clorados los mayoritarios. Por el contrario, no se traduce de igual manera la elevada presencia relativa de los congéneres tri-clorados.

Fig 1.8.- Presencia relativa de grupos de PCBs en P. piperata

La presencia mayoritaria de los congéneres tetra-, penta- y hexa-clorados así como la menor presencia relativa de los congéneres más clorados se reproduce en otros organismos como es el caso del bivalvo *Corbicula fluminea*, y los peces *Oligosarcus jenynsi, Prochilodus platensis* y el *Pimelodus albicans* estudiados en el Rio de La Plata, Argentina [147]

Aunque la enorme diferencia existente entre los datos bibliográficos acerca del Tiempo de Vida Media (t_{/2}) de los diferentes congéneres [46] no permite hacer un uso riguroso de este parámetro a la hora de interpretar la mayor o menor presencia en nuestras muestras de unos congéneres con respecto a otros, bien es cierto que todas las investigaciones constatan el hecho de que son los congéneres con un menor número de átomos de cloro en su estructura los que poseen tiempos de vida media más bajos. Parece que este hecho puede dificultar en gran medida la explicación de la presencia relativamente mayoritaria de éstos en el conjunto de las muestras recolectadas, sin embargo, aunque bajos con relación a otros congéneres, los tiempos de vida media que se manejan para los homólogos tri-clorados son de aproximadamente 600 días [46], lo cual pudiera permitir su introducción en la cadena trófica y, consiguientemente su bioacumulación y/o biomagnificación.

Además del t_{2} , el Factor de Bioacumulación (BAF) es un parámetro extremadamente importante a la hora de interpretar la presencia relativa de los congéneres en el biota. El estudio citado con anterioridad [147] apunta a la mayor tendencia en la bioacumulación de los congéneres di-, tri- tetra- y penta-clorados.

Los congéneres menos clorados son los más solubles en agua [148] además de ser captados con mayor facilidad por las algas y también por algunas plantas terrestres [42]. En las muestras analizadas, son los congéneres -18, y -31, los que presentan las concentraciones medias globales más elevadas, 860 y 443ng.kg⁻¹, respectivamente, Tabla 1.16. Este es un comportamiento que puede hacerse extensivo al total de las estaciones de muestreo con las excepción de la estación 4 en el que la tendencia general parece alterarse y son los congéneres con mayor grado de cloración los presentes en proporciones superiores al resto.

Atendiendo a los congéneres individuales, es claro el predominio de los congéneres -18, -31 y -44 en las Estaciones 1, 2 y 3, Tabla 1.16. En la Estación 3 el PCB-18 alcanza con un 46% la máxima proporción, aunque la presencia relativa del conjunto de los tres congéneres citados se mantiene prácticamente constante. Este hecho vuelve a estar de acuerdo con los estudios a los que ya nos hemos referido así como a los realizados en aguas del Canal de la Mancha [149] en el que se aprecia un predominio de los congéneres 18+28 (\approx 25%) en clara concordancia con los datos aquí obtenidos en la Estación 1. Además cabe destacar una presencia relativa similar en lo que se refiere al PCB-31 (\approx 8%) y una baja contribución de los congéneres -153 y -118. Al igual que lo que se manifiesta en el citado estudio, en las Estaciones 1 y 2, con algunas excepciones, existe una tendencia que apunta a la disminución en la contribución relativa con respecto al total de los congéneres a medida que aumenta el número de átomos de cloro en su estructura. Sin embargo, en peces como el salmonete (*Mullus barbatus*) y la trucha (*Salmo trutta*) procedentes del Mar Mediterráneo y de lagos pirenaicos, respectivamente, son los congéneres -153 y -138 los mayoritarios en todos los casos [159]. En la Estación de Muestreo 4 sólo el congénere -153 lo es, y en la Estación 2 no siendo mayoritarios son de una importancia similar al resto de congéneres.

Observando la Fig.1.7 parece que nos encontramos con tres perfiles de distribución diferentes. Por una parte, la Estación 1 y la situada más al sur, Estación 3, presentan un predominio claro de uno de los congéneres con respecto al resto, en concreto del PCB-18. Un segundo perfil es el que presenta la Estación 2, en la cual parece que los congéneres más clorados adquieren mayor relevancia, destacando el PCB-153 con una presencia relativa de \approx 13%. El tercero se corresponde a la Estación 4 en el que, en el conjunto de las muestras analizadas, existe un grupo de congéneres mayoritarios, que sin embargo no se encuentran en proporciones superiores al 16% tal como es el caso de los congéneres -18, -31, -44, -87, -101, -129, -137, -153 y -154, claramente diferenciados del resto que se encuentran en todos los casos en proporciones inferiores al 2%.

Otras características estructurales de los PCBs que incrementan su bioconcentración es, por una parte, la planaridad de la molécula, determinada en todos los casos por el número de átomos de cloro en posiciones *orto* del anillo bifenilo y, por otra, la ausencia de hidrógenos vecinales [147] como es el caso de los congéneres -128, -153, -167, -170 y -180. En lo que se refiere al estudio de los congéneres según el grado de cloración de las posiciones *orto* del anillo bifenilo, el perfil de distribución es prácticamente el mismo en las cuatro Estaciones de Muestreo, Tabla 1.17. Haciendo uso de los valores medios del conjunto de las estaciones, los congéneres di-*orto*-clorados son los

mayoritarios (74%), seguidos por los mono-*orto*-clorados (16%) y finalmente por los congéneres tri- y tetra-*orto*-clorados (5%).

En la Tabla 1.18 se muestra un resumen de los parámetros estadísticos referidos al total de PCBs (Σ PCBs) en cada una de las Estaciones de Muestreo teniendo en cuenta la totalidad de las muestras analizadas.

	n	Máximo	Mínimo	Media	Mediana	Desv. Est.
Total	51	15311	351	3587	2932	3244
E1	14	8136	379	3636	3252	2336
E2	24	15311	351	3099	1874	3951
E3	6	10589	844	4426	3930	3503
E4	7	6775	2449	4446	4471	1820

 $\label{eq:table_$

Observando los datos anteriores parece claro que es la Estación 2 la que soporta los niveles más elevados de PCBs con un total de $15.3ng.g^{-1}$, seguida de las estaciones 3 > 1 > 4. Sin embargo, atendiendo a los valores medios parecen existir unos niveles más o menos similares en todas las estaciones de muestreo con un nivel promedio máximo de $4.4ng.g^{-1}$, correspondiente a la Estación 4, y mínimo, $3.1ng.g^{-1}$, en la Estación 2, si bien es cierto que no existen diferencias considerables. Atendiendo a los valores de las medianas, salvo en el caso de las Estación 2, se observan valores que apuntan a una distribución aparentemente homogénea.

El gráfico "box-and-wiskers", Fig. 1.9, realizado con las concentraciones totales de PCBs en las diferentes muestras de cada una de las estaciones de muestreo, confirma lo anteriormente expuesto sobre las diferencias de la estación de muestreo nº 2, al norte de la isla, con respecto a las otras tres estaciones más próximas a núcleos de población. Sin embargo, parece como si la estación E4 estuviera sometida a un casi constante nivel de contaminación por este tipo de compuestos.

Fig. 1.9.- Gráfico "box-and-wiskers" para la concentración total de PCBs en P. piperata.

En la Tabla 1.19 se presenta la matriz de correlaciones existentes entre los diferentes congéneres analizados. Como puede verse todos los congéneres se encuentran bien correlacionados con Σ PCB salvo los congéneres 87 (22'345'), 101 (22'455'), 154 (22'44'56') y 159 (22'33'455'), por lo que en principio podría explicarse esa falta de interrelación en alguna diferencia metabólica entre éstos y los restantes originada por la presencia de átomos de cloro en las posiciones 4 y 5/5' del anillo del bifenilo. Sin embargo, existen otros congéneres bien correlacionados con Σ PCB que también presentan este tipo de sustituciones.

Por otra parte, aunque en principio podrían explicarse desde un punto de vista metabólico (\rightarrow) las correlaciones que se presentan entre algunos pares de congéneres, por ejemplo,

PCB-187 (22'34'55'6)
$$\rightarrow$$
 (cc = 0.6563) \rightarrow PCB-18 (22'5)

0,

$$PCB-153 (22'44'55') \rightarrow (0,4898) \qquad (0,5223) PCB-52 (22'55') (0,3830) PCB-54 (22'66') (0,2995) PCB138 (22'344'5') PCB-185 (22'34'55'6) \rightarrow (0,3620) (0,4687) PCB-143 (22'3456') (0,317) PCB-199 (22'33'4566')$$

no pueden, sin embargo, explicarse desde el mismo punto de vista la existencia de otras correlaciones significativas (\rightarrow) .

Tampoco puede explicarse la existencia o no de correlaciones por la abundancia relativa de cada uno de los congéneres en las mezclas comerciales ni por su solubilidad estimada en agua.

Quizás, únicamente, pudiera encontrarse alguna relación en función de la permeabilidad de las membranas celulares para cada uno de los diferentes congéneres.

Tabla 1.19Matriz de Correlaciones (n=51) de PCBs en P. piperata

	18	31	44	52	54	87	101	118	121	129	137	138	143	153	154	159	170	180	182	185	187	199	S PCB
18	1.0000	-0.1063	0.0843	-0.0084	0.1352	-0.0950	-0.0453	0.3495	0.0301	0.2053	0.1169	0.0213	-0.0222	-0.0572	0.1672	0.0236	0.0888	0.0473	0.0116	0.1809	0.6563	0.0363	0.4748
31		1.0000	0.1915	0.5223	0.3830	-0.0387	-0.0078	0.2201	0.1531	0.1149	0.0006	0.2965	0.4687	0.4898	0.0245	0.1376	0.2596	0.2553	0.3261	0.3620	-0.0296	0.3170	0.4983
44			1.0000	0.6664	0.1632	0.2977	0.1337	0.3245	0.0285	0.4501	0.2833	0.6265	0.3130	0.6006	0.1772	-0.1288	0.5900	0.7530	0.7963	0.5354	0.0461	0.6976	0.7094
52				1.0000	0.5113	0.1176	0.0006	0.3450	-0.0492	0.2037	0.0866	0.5142	0.7226	0.8409	-0.0041	-0.0812	0.5659	0.6928	0.8172	0.8294	-0.0275	0.8039	0.7300
54					1.0000	-0.0621	-0.0150	-0.0410	-0.0574	0.1988	-0.0177	-0.1114	0.7314	0.5174	-0.0534	-0.0198	-0.1140	0.0158	0.1599	0.6515	-0.0302	0.1527	0.4662
87						1.0000	-0.0574	-0.0559	-0.0466	0.0612	0.3587	0.1082	0.0089	0.0616	-0.0290	-0.0642	0.1300	0.1596	0.1740	0.0879	-0.0629	0.1723	0.1709
101							1.0000	0.3043	-0.0587	0.1859	-0.0379	-0.0425	0.0373	0.0268	0.2925	-0.0365	0.0789	-0.0321	-0.0298	-0.0297	-0.0391	-0.0428	0.1593
118								1.0000	-0.0786	0.2114	0.0568	0.5525	-0.0167	0.2116	0.1024	0.0661	0.6278	0.4940	0.4104	0.3109	0.2983	0.4654	0.4852
121									1.0000	0.0279	0.0958	0.1317	-0.0365	0.0201	-0.0430	-0.0463	-0.0669	-0.0650	-0.0646	-0.0561	0.1297	-0.0296	0.2510
129										1.0000	0.2803	0.3186	-0.0426	0.1375	0.0030	-0.0459	0.4316	0.4084	0.3485	0.3098	-0.1328	0.3502	0.4506
137											1.0000	0.1561	-0.0605	0.0432	-0.0747	-0.0752	0.1408	0.2051	0.1875	0.0983	0.0581	0.1729	0.2927
138												1.0000	-0.0898	0.2972	-0.0033	-0.0529	0.8666	0.8998	0.7802	0.4252	-0.0498	0.7885	0.4996
143													1.0000	0.8213	0.1715	-0.0060	-0.0715	0.0672	0.3022	0.6209	-0.0512	0.2318	0.5283
153														1.0000	0.2924	-0.0664	0.2890	0.4568	0.6203	0.6992	-0.0988	0.5571	0.6914
154															1.0000	0.0531	-0.0232	-0.0399	-0.0296	-0.1019	0.1333	-0.0623	0.2508
159																1.0000	-0.0033	-0.0809	-0.0837	-0.0857	-0.0626	-0.0497	-0.0332
170																	1.0000	0.9083	0.8131	0.5012	-0.0618	0.8679	0.5071
180																		1.0000	0.9283	0.5971	-0.0531	0.9399	0.5784
182																			1.0000	0.7073	-0.0921	0.9331	0.6455
185																				1.0000	-0.0779	0.6901	0.7021
187																					1.0000	-0.0337	0.2834
199																						1.0000	0.6294
S PCE																							1.0000

Capítulo 2 *Patella candei crenata*
Hidrocarburos alifáticos

Los valores de los parámetros estadísticos, entre los que se incluye el valor de la mediana, de las concentraciones de *n*-alcanos en los especímenes de *Patella candei crenata* analizados, procedentes de las cuatro estaciones de muestreo y para el total de muestras analizadas, se presentan en la Tabla 2.1 y en la Fig. 2.1 se incluyen los diagramas de barras correspondientes a la distribución de valores medios de dichos hidrocarburos en las diferentes estaciones de muestreo. Además, en el Anexo III se incluyen los parámetros analíticos correspondientes a cada una de las muestras analizadas.

Hemos de hacer constar que en este caso de la *Patella candei crenata* la obtención de muestras en las estaciones 2 y 3 fue bastante dificultosa por lo que en ellas sólo pudieron obtenerse 3 y 4 muestras, respectivamente, a lo largo del período de nuestro estudio. Los datos correspondientes se incluyen en las tablas pero sólo deberán ser tomados a título indicativo y nunca como una base sólida para realizar deducciones.

Dado que, como ya se ha dicho en el capítulo anterior, las concentraciones de hidrocarburos, por sí solas, no pueden utilizarse como una indicación de la contaminación marina, en la Tabla 2.2 se han incluido otros parámetros que han sido introducidos por diferentes investigadores como indicadores para estudios de la contaminación por hidrocarburos.

La presencia de trazas de impurezas en los cromatogramas de las fracciones parafínicas, al igual que ocurre en los de las fracciones de PAHs, aparece como una pequeña envolvente, la conocida Mezcla Compleja No Resuelta (UCM), de hidrocarburos ramificados y cíclicos que, como se ha visto, se considera una consecuencia de la exposición de los organismos al petróleo biodegradado y a sus derivados, junto con picos que corresponden a los hidrocarburos isoprenoides acíclicos pristano y fitano, Fig. 2.2.

Tal como puede verse en la Tabla 2.1 y Fig. 2.2, la serie homóloga de *n*-alcanos se extiende desde el *n*-C₁₀ al *n*-C₃₀, si bien los valores de las concentraciones de los hidrocarburos *n*-C₁₀ a *n*-C₁₃ tampoco en este caso se han incluido en las tablas por razones obvias, y los perfiles correspondientes a cada muestra son muy parecidos entre sí en que están dominados por los alcanos de cadena larga, de forma similar a lo que veremos en el Capítulo 3 que ocurre con la *Patella ulyssiponensis*, con unos niveles totales de *n*-alcanos (Σ Alc) que se encuentran en el rango de 2.75 a 18.87µg.g⁻¹, pudiéndose observar que las concentraciones medias de Σ Alc disminuyen de la Estación 4 (8.08µg.g¹) a la Estación 1 (6.18), con algunas muestras en las que Σ Alc>10.0µg.g¹, especialmente en la estación de muestreo 4. El gráfico "box-andwiskers" de la Fig. 2.3 permite observar como el comportamiento de los especímenes procedentes de las cuatro estaciones es muy uniforme y completamente diferenciado del comportamiento observado en la otras dos especies de *Patella* estudiadas en los otros capítulos de esta Memoria.

Como ya se ha indicado, el perfil de la serie homóloga de *n*-alcanos, C_{10} - C_{30} , es similar para todas las muestras y está dominado por los *n*-alcanos de cadena larga, Figs. 2.1 y 2.2. Sin embargo, como puede observarse en dichas figuras y en la Tabla 2.2, los hidrocarburos *n*- C_{15} (23-53%, 7 muestras), *n*- C_{17} (22-72%, 24 muestras) o *n*- C_{28} (15%, 2 muestras) son los hidrocarburos mayoritarios en las muestras de *P. candei crenata*. pero, incluso, aunque el *n*- C_{28} pueda ser el hidrocarburo mayoritario en algunas muestras, los alcanos *n*- C_{17} y *n*- C_{15} se encuentran normalmente en concentraciones muy elevadas en todas ellas. No obstante, hemos de recordar que el hecho de que muchos *n*alcanos, especialmente los de cadena con número impar de átomos de carbono, sean

	C14	C15	C16	C17	C18	C19	C20	C21	C22	C23	C24	C25	C26	C27	C28	C29	C30	Pr	Fi
									То	tal (n=	36)								
Mínimo	20	592	54	958	8	6	0	8	0	9	0	11	0	0	0	47	0	0	0
Máximo	151	4049	257	7107	224	276	181	339	185	275	343	1295	2566	2738	2770	2407	1912	121	394
Media	60	1821	125	2843	43	52	16	67	19	55	71	245	362	526	471	474	284	23	72
Mediana	53	1708	111	2261	27	34	1	51	8	37	31	140	180	293	259	293	116	12	53
Desv. Est.	33	869	50	1564	48	62	41	67	41	59	94	271	528	566	599	529	429	30	77
									Estac	ión 1 (r	ı=14)								
Mínimo	20	653	54	1523	8	9	0	10	0	17	0	17	0	0	0	47	0	0	0
Máximo	69	2634	154	5751	104	91	22	153	24	81	112	366	618	1261	717	707	603	28	394
Media	46	1444	101	2969	39	41	5	51	7	38	37	152	198	376	276	295	111	12	78
Mediana	48	1279	102	2485	29	41	1	44	6	32	22	126	117	282	239	245	77	12	20
Desv. Est.	15	594	31	1400	28	24	7	37	7	20	38	110	216	342	255	223	155	8	112
									Esta	ción 2 ((n=3)								
Mínimo	28	1080	105	1646	16	12	0	16	8	24	41	172	297	729	351	358	155	5	14
Máximo	149	1794	248	2948	224	276	181	339	184	262	285	1295	2566	2738	2770	2407	1912	117	79
Media	100	1426	183	2267	114	146	72	153	72	139	202	645	1154	1418	1300	1255	1001	74	40
Mediana	122	1403	195	2206	103	151	36	103	24	132	281	468	599	786	779	1000	936	101	26
Desv. Est.	63	358	72	653	104	132	96	167	97	119	140	582	1232	1144	1291	1048	881	61	35
									Esta	ción 3 ((n=4)								
Mínimo	32	840	72	1046	13	13	6	27	3	19	11	73	13	68	13	74	7	10	47
Máximo	99	2735	173	1921	41	50	31	68	24	105	162	571	1070	1138	1093	837	, 491	28	115
Media	54	1618	101	1624	26	31	19	46	13	55	63	282	359	491	484	431	236	20	77
Mediana	42	1448	81	1764	25	31	20	44	12	47	39	202	177	379	416	407	223	21	74
Desv. Est.	30	900	48	403	12	16	13	19	9	37	68	235	481	479	479	352	202	8	35
									Fstac	-ión 4 (1	n = 12			,				-	
Mínimo	21	502	71	059	11	6	0	o	D	14	12)	11	0	20	0	50	0	4	0
Minimo	21	392	/1	958		0	0	8 107	0	16	0	11	0	29 2004	0	39	0	4	0
Maximo	93	4049	180	/10/	64	100	23	10/	21	96	343	979	1/19	2004	2207	2113	1580	49	16/
Media	65 72	2366	130	3054	28 25	30 21	4	60 50	10	41	60 20	220	321	483	443	465	293	18	/4
Deau Est	15	2392	148	2422	23 19	31 20	U o	29 20	9	34 22	29 06	271	106	241 551	1/3	205 596	120	11	51 57
Desv. Est.	24	1048	41	1909	10	∠0	0	32	0	22	90	2/1	202	331	040	200	444	13	31

 Tabla 2.1

 Resumen de los parámetros estadísticos (ng.g¹ peso seco)

n -alcano

 $C14\ C15\ C16\ C17\ C18\ C19\ C20\ C21\ C22\ C23\ C24\ C25\ C26\ C27\ C28\ C29\ C30$

n -alcano

Fig 2.1.- Perfiles de n-alcanos en P. candei crenata en las cuatro estaciones de muestreo

Cod.	Σn -Alc	MH	%MH	C ₂₉ /C ₂₂	Σn-Alc/C ₁₆	CPI	CPI-Lo	CPI-Hi	Pr/C ₁₇	Fi/C ₁₈	Pr/Fi	PL-1%	Terr%	Pe-Lo%	Pe-Hi%
						Es	tación de	Muestre	eo 1						
0113u	7.40	C17	29	115	75	3.6	23.8	1.3	0.000	2.48	0.00	50.9	24.5	1.5	20.9
0213u	8.56	C17	50	27	60	9.1	29.6	1.4	0.002	5.39	0.06	78.7	8.7	2.0	8.4
0313u	5.52	C17	35	26	50	6.9	18.2	2.3	0.006	0.00	-	65.2	19.7	2.5	10.1
0413u	7.24	C17	22	29	69	3.3	13.6	1.8	0.010	0.31	1.98	36.6	31.9	1.8	26.7
0613u	3.40	C17	47	80	62	7.5	27.0	1.4	0.008	0.54	2.74	73.8	12.0	1.8	10.9
0713u	5.71	C17	52	52	72	8.0	26.6	1.3	0.001	1.94	0.03	76.7	9.9	2.4	9.6
0813u	9.36	C17	61	59	66	13.9	35.0	2.2	0.001	0.25	0.56	82.6	9.1	1.8	4.6
0913u	2.75	C17	55	-	39	12.5	12.5	12.5	0.006	0.00	-	88.7	3.0	6.4	0.4
1013u	7.96	C17	58	-	67	31.3	35.0	10.3	0.003	0.00	-	91.5	4.4	1.8	0.9
1113u	6.51	C17	72	13	42	24.0	23.8	31.5	0.001	2.49	0.07	90.9	2.4	2.9	0.0
1213u	3.92	C17	43	-	57	5.6	16.3	1.9	0.017	16.84	0.07	61.1	19.4	2.6	14.6
1313u	4.98	C17	52	19	63	8.6	17.6	2.0	0.006	0.00	-	76.4	11.4	3.7	6.4
1413a	4.16	C17	57	12	53	16.1	22.5	3.8	0.008	2.26	0.22	86.3	7.2	3.1	1.9
1413b	9.11	C17	42	43	82	4.7	25.8	1.2	0.007	4.50	0.14	62.8	16.7	1.9	16.9
						Es	tación de	Muestre	202						
1343u	18.87	C28	15	99	97	1.8	8.8	1.2	0.046	0.77	1.27	22.5	34.1	1.8	39.9
0133u	5.10	C17	32	46	48	4.8	18.4	1.9	0.003	0.86	0.33	53.8	25.8	2.4	16.6
0333u	10.98	C17	27	5	44	2.8	6.4	1.3	0.040	0.12	4.54	43.2	20.0	5.9	23.6
						Es	tación de	Muestre	eo 3						
0773u	5.80	C17	28	53	66	3.9	11.8	1.9	0.006	2.08	0.22	43.3	26.5	2.1	23.3
1273u	4.31	C15	45	27	60	25.5	31.6	6.4	0.009	7.70	0.17	89.8	5.0	2.1	1.0
1473a	5.16	C15	53	9	71	7.3	21.6	1.3	0.024	1.76	0.52	74.5	10.0	2.5	11.2
1473b	8.46	C17	23	63	49	2.1	10.5	1.1	0.014	2.84	0.24	34.7	30.1	2.9	30.7
						Es	tación de	Muestre	204						
0353u	2.57	C17	37	13	36	5.8	9.7	2.3	0.006	3.00	0.13	60.9	15.3	3.5	11.9
0453a	13.52	C17	53	67	78	8.6	39.0	1.5	0.001	3.35	0.08	74.6	12.4	1.5	10.1
0453b	14.38	C28	15	100	185	1.9	25.7	1.2	0.005	2.66	0.29	21.8	35.4	0.6	40.7
0553u	8.79	C17	43	30	51	8.6	26.3	1.3	0.001	3.98	0.04	78.2	8.8	2.3	9.2
0653a	7.62	C15	53	13	43	13.9	23.8	1.8	0.010	3.61	0.22	87.0	4.9	2.7	3.7
0653b	8.08	C15	23	537	90	2.7	27.3	1.2	0.003	2.51	0.15	41.0	27.1	1.2	30.0
0753u	6.57	C15	42	34	57	10.7	34.1	1.3	0.002	3.77	0.12	82.7	7.5	1.9	6.9
0853u	3.25	C17	53	16	18	9.0	8.9	10.0	0.008	7.47	0.08	76.6	9.4	6.4	3.0
1053u	9.42	C17	68	-	60	33.2	32.2	-	0.003	0.00	-	93.3	2.7	1.9	0.0
1153u	5.29	C15	46	7	48	21.4	21.5	19.5	0.011	6.30	0.16	90.7	2.0	2.6	0.0
1253u	8.66	C17	50	35	62	24.0	24.5	20.4	0.010	0.89	0.77	84.7	9.5	2.6	1.7
1353u	8.86	C15	38	31	57	4.6	16.1	1.4	0.027	0.31	2.55	59.1	17.3	2.7	18.8

 Tabla 2.2

 Concentración total de n-alcanos (µg.g⁻¹ peso seco) y parámetros geoquímicos en Patella candei crenata

biosintetizados en el entorno marino por el fitoplancton y las algas pelágicas y bentónicas así como la propia biosíntesis de dichos compuestos por parte de los organismos estudiados puede provocar fluctuaciones que pueden influir en la concentración de *n*-alcanos [131,132].

Dado que, como hemos visto con anterioridad, las concentraciones de hidrocarburos alifáticos por sí solas no suministran una información directa en lo que se refiere a la contaminación de los especímenes analizados, se han calculado como indicadores de dicha contaminación un cierto número de parámetros que se muestran en la Tabla 2.2, aunque su utilidad haya estado sometida a discusión en los últimos tiempos. Sin

embargo, siguen siendo de utilización general en los estudios de contaminación del ambiente por petróleo y derivados.

Fig. 2.2.- Cromatograma representativo de la fracción de n-alcanos

Fig. 2.3.- Gráfico "box-and-wiskers" para el contenido total de n-alcanos en Patella candei crenata.

En el caso de la *P. candei crenata* se observa que la relación Pr/Fi se mantiene en torno a un valor medio de 0.41-0.59 en las estaciones de muestreo 1 y 4, que reciben unos contaminantes con mayor cantidad de fitano, por tanto ligeramente menos biodegradados, y que sólo esporádicamente se presentan inyecciones de materiales más Además, los hidrocarburos que se suponen producidos por el fitoplancton (PL-1= n-C₁₅ + n-C₁₇ + n-C₁₉) generalmente están presentes a niveles altos en la *P. candei crenata* y pueden representar hasta el 91% de los *n*-alcanos totales. Pero, al contrario de lo que hemos visto que ocurría en las dos especies anteriormente estudiadas, los *n*-alcanos característicos de las plantas terrestres (TERR= n-C₂₅ + n-C₂₇ + n-C₂₉) pueden llegar a suponer el 12.9% del total como valor medio (2.0-35.4%). Este hecho podría explicarse teniendo en cuenta que el hábitat de la *P. candei crenata* se encuentra sobre las rocas de la zona media intermareal, rocas recubiertas todo lo más por pequeñas algas filamentosas, por lo que entre dichas algas pueden quedar retenidos los residuos de las plantas terrestres que puedan llegar al mar por efecto de su propia acción erosiva sobre la costa o, menos probable, por las pequeñas escorrentías que se producen como resultado de las escasas lluvias locales.

El indicador de contaminación por petróleo para los hidrocarburos de bajo rango (Pe-Lo= n-C₁₆ + n-C₁₈ + n-C₂₀ + fitano) está presente a niveles sustancialmente más bajos (0.6-5.9%) que el indicador de petróleo para los alcanos de cadenas más largas (Pe-Hi= n-C₂₄ + n-C₂₆ + n-C₂₈ + n-C₃₀, 0-40.7%), lo que puede indicar que petróleos degradados son la principal fuente de contaminación petrogénica de estas muestras.

Una identificación más clara de la contaminación por petróleo de los lugares de muestreo, viene dada por la relación [130] entre los hidrocarburos terrestres y los hidrocarburos petrogénicos de alto peso molecular; pudiendo observarse que el índice TERR está altamente correlacionado ($r^2 = 0.8271$) con Pe-Hi, con una pendiente próxima a la unidad, Tabla. 2.3. Este hecho contrasta con lo expuesto anteriormente sobre la posible procedencia de los hidrocarburos TERR, ya que a la vista de estos resultados puede suponerse que al alimentarse los especímenes analizados pudieran

ingerir, o quedar atrapados en el manto, los hidrocarburos que pudieran depositarse sobre las algas que constituyen su principal fuente de alimentación.

La relación n-C₂₉/n-C₂₂ que indica la contribución relativa de los residuos de aceites dominados por el n-alcano C₂₂ con respecto a la distribución de n-alcanos, suele ser alta en zonas contaminadas. En este caso puede observarse que las variaciones de los valores calculados no permiten llevar a cabo una discriminación correcta a pesar de que algunos valores pudieran indicar la presencia de aportes esporádicos durante el período de estudio.

Estación	Total	1	2	3	4
Pendiente	0.8271	1.0212	0.7862	0.9502	0.8281
Ordenada	0.2630	0.1889	0.4422	0.1191	0.2430
r^2	0.9799	0.9350	0.9913	0.9866	0.9816
n	33	14	3	4	12

 Tabla. 2.3

 Correlación entre los hidrocarburos TERR y Pe-Hi

Otra evidencia de la posible contaminación por petróleo es el bajo valor y gran variabilidad [18-185] de la relación $\Sigma Alc/n-C_{16}$ en la mayor parte de las muestras aunque los valores medios no son significativamente diferentes entre las estaciones, y la presencia de fitano y $n-C_{16}$ en la *P. candei crenata*, ya que ninguno de estos hidrocarburos se encuentra normalmente como biolípido.

Sin embargo, el Índice de Preferencia de Carbono (CPI = $\Sigma Alc_{impar}/\Sigma Alc_{par}$), cuyos valores se incluyen en la Tabla 2.3, es más relevante en este sentido. Se puede observar que mientras CPI-Lo (n < 20) permanece más o menos constante y relativamente próximo a 2.5 las cuatro estaciones de muestreo, la variación temporal de CPI-Hi (n > 20) es mayor, con un valor medio total de 12.6 (0.0-40.7) y valores medios no significativamente diferentes entre las estaciones de muestreo 1 y 4. Esto parece indicar una acumulación anormal de alcanos de cadena corta impar (n < 20), que podría estar generada por la acumulación de $n-C_{15}$ y $n-C_{17}$ en la mayor parte de las muestras

analizadas, como ya se ha señalado anteriormente. No obstante, los índices de preferencia de carbono en ambas gamas cumplen también en este caso lo ya indicado del predominio de los hidrocarburos impares en los sistemas bióticos marinos [132].

Teniendo en cuenta la situación geográfica de las estaciones de muestreo y el hábitat de la *P. candei crenata* situado en la parte media de la zona intermareal, se puede pensar que estas estaciones de muestreo presentan un nivel de contaminación petrogénica bajo y casi constante y que nuevos aportes petrogénicos de carácter esporádico llegan a ellas ya que tales variaciones no presentan características que puedan ser atribuidas a fenómenos estacionales.

Por otra parte, es posible comprobar que los valores de CPI-Lo son más elevados que los correspondientes a los crudos Irán (0.79-0.85) y Arabia (0.77-0.98), los cuales son los más comúnmente transportados cerca de las costas de las Islas Canarias. En el caso del CPI-Hi el comportamiento es el opuesto al CPI-Lo. Este hecho puede ser explicado por la diferente selectividad de la membrana superficial de los especímenes biológicos, más favorable a los *n*-alcanos de menor peso molecular [133]. Sin embargo, estos valores también pueden ser explicados si la principal fuente de contaminación petrogénica fueran crudos degradados y/o sus derivados.

Todas las muestras muestran la presencia del alcano ramificado pristano, no así del fitano el cual, por otra parte, en caso de estar presente se encuentra en concentraciones muy inferiores. Los dobletes que, en algunos casos, suelen presentarse como picos dobles resueltos en los cromatogramas realizados con columnas de baja polaridad, sobre cuales ya se ha comentado en el capítulo anterior, no fueron observados con claridad ni en el caso del pristano ni en el fitano, en las muestras de *P. candei crenata* analizadas por lo que se puede estimar la presencia únicamente de pristano y fitano petrogénicos ya que la presencia en el biota de pristano y fitano biogénicos es sumamente extraña. Por otra parte, la falta de correlación entre las concentraciones de pristano y fitano en todas las estaciones, Tabla 2.4, podría indicar una diferencia en las velocidades de metabolismo de ambos isoprenoides o su diferente velocidad de degradación en el medio ambiente.

Se observa, igualmente, una falta de interrelación entre los valores de CPI, CPI-Lo, CPI-Hi, Pr/Fi, Pr/C17 y Fi/C18 determinados en *P. candei crenata*, lo que es especialmente sorprendente para las relaciones Pr/Fi, Pr/C_{17} y Fi/C_{18} , si se tiene en cuenta que dichas relaciones se han sugerido como indicadores del grado de biodegradación de los productos petrolíferos, lo que sugiere que también en esta especie pueden existir diferencias sustanciales en las velocidades de biodegradación y/o envejecimiento entre pristano y fitano [117].

Algunas de las conclusiones a que se han llegado anteriormente quedan confirmadas con los resultados obtenidos en el Análisis de Correlaciones llevado a cabo con las 19 variables analíticas y el total de *n*-alcanos (Σ Alc) cuyos coeficientes de correlación se encuentran agrupados en la Tabla 2.4 en la que, además, se señalan aquellos casos en que la significación de la correspondiente correlación es del orden de $p \ge 95\%$. En ningún caso se han observado correlaciones entre las correspondientes concentraciones y las variables biométricas de los especímenes analizados.

En dicha tabla puede observarse que el fitano no se encuentra correlacionado con ninguno de los restantes hidrocarburos analizados, ni siquiera con el pristano, ni tampoco con Σ Alc. Ello pudiera confirmar lo expuesto anteriormente de que los crudos y/o derivados que llegan a las estaciones han sido envejecidos y/o biodegradados durante su permanencia en el mar.

Por otra parte puede observarse, también, un comportamiento claramente diferenciado entre los hidrocarburos alifáticos del n-C₁₄ al n-C₂₀ que presentan algunas correlaciones entre sí y con el pristano, salvo en el caso de los n-alcanos C₁₅ y C₁₇ lo que pudiera confirmar su procedencia biogénica (alimentación), y Σ Alc excepto en los casos del n-C₁₈ y n-C₂₀, hecho que podría indicar su procedencia de un crudo "envejecido", por su correlación con nC₂₀ - n-C₂₄.

Los *n*-alcanos del C_{23} al C_{30} se encuentran altamente correlacionados entre sí y con el pristano y, también, altamente correlacionados con Σ Alc pero no se encuentran

correlacionados con el isoprenoide fitano. Ello indica, nuevamente, un origen común para este grupo de hidrocarburos y el pristano, posiblemente crudos "envejecidos".

Es decir, este comportamiento sólo cabría explicarlo si se supone que teniendo ambos grupos de hidrocarburos el mismo origen petrogénico dada su alta correlación con Σ Alc, cada uno de ellos haya sufrido un proceso de "envejecimiento" en el medio ambiente y/o metabolización-acumulación en los propios especímenes de *P. candei crenata*. Los buenos coeficientes de correlación, 0.3679 y 0.4056, que presentan *n*-C₁₅ y *n*-C₁₇ con Σ Alc podrían estar indicando no sólo su mayor aportación a este último parámetro sino, también, su doble procedencia, petrogénica y alimenticia.

	C14	C15	C16	C17	C18	C19	C20	C21	C22	C23	C24	C25	C26	C27	C28	C29	C30	Pr	Fi	S Alc
C14	1.0000	0.1454	0.6294	0.1383	0.4322	0.6095	0.4646	0.6439	0.4568	0.6421	0.2842	0.3536	0.2936	0.3273	0.3074	0.3485	0.4645	0.7084	-0.0047	0.4599
C15		1.0000	0.3638	0.4097	-0.0663	0.0205	-0.0521	-0.0880	-0.0478	-0.0811	-0.0799	-0.0779	-0.0746	-0.1203	-0.0774	-0.0686	-0.0687	0.0901	-0.0432	0.3679
C16			1.0000	0.4478	0.4835	0.5833	0.5183	0.6035	0.5231	0.5252	0.3234	0.2675	0.2433	0.2120	0.2132	0.2645	0.2669	0.5793	0.0374	0.5676
C17				1.0000	0.0501	0.1172	-0.0274	0.2153	-0.0298	-0.0082	-0.1791	-0.1853	-0.1748	-0.1858	-0.1971	-0.1271	-0.2149	-0.0469	0.0009	0.4056
C18					1.0000	0.8953	0.8394	0.6963	0.7915	0.7009	0.3781	0.2312	0.1855	0.1572	0.1769	0.2348	0.3310	0.7901	-0.1233	0.2688
C19						1.0000	0.8791	0.7464	0.8271	0.7973	0.4467	0.3183	0.2751	0.2889	0.2638	0.3254	0.4261	0.9085	-0.0535	0.4128
C20							1.0000	0.8098	0.9584	0.8234	0.4990	0.2757	0.2123	0.1880	0.2184	0.2866	0.3665	0.8233	-0.0631	0.2786
C21								1.0000	0.8441	0.8028	0.4229	0.2233	0.1607	0.1494	0.1776	0.2663	0.3353	0.6687	-0.0309	0.3423
C22									1.0000	0.8674	0.5477	0.2752	0.2033	0.1973	0.2224	0.3067	0.4008	0.7376	-0.1230	0.2878
C23										1.0000	0.7092	0.5607	0.4665	0.4737	0.4992	0.5719	0.6512	0.7749	-0.0498	0.5227
C 24											1.0000	0.9069	0.8804	0.8419	0.8925	0.9144	0.8952	0.5253	-0.1130	0.7292
C25												1.0000	0.9791	0.9542	0.9927	0.9850	0.9432	0.4822	-0.0564	0.7870
C26													1.0000	0.9549	0.9842	0.9649	0.9070	0.4419	-0.0551	0.7789
C 27														1.0000	0.9598	0.9535	0.9066	0.4236	-0.1394	0.7531
C28															1.0000	0.9870	0.9401	0.4329	-0.0550	0.7786
C29																1.0000	0.9585	0.4720	-0.0750	0.8166
C30																	1.0000	0.5757	-0.1135	0.7547
Pr																		1.0000	0.0474	0.4871
Fi																			1.0000	-0.0900
Alc																				1.0000

Tabla 2.4Matriz de Correlaciones (n=34)

Hidrocarburos Aromáticos Policíclicos

Los parámetros estadísticos, incluidos valores medios y medianas, de las concentraciones de hidrocarburos aromáticos policíclicos (PAHs) se presentan en la Tabla 2.5 y en la Fig. 2.4 se encuentran los diagramas de distribución de los valores medios de tales concentraciones en las cuatro estaciones de muestreo. En el Anexo III se encuentran detallados los resultados concretos obtenidos en el análisis de cada una de las muestras analizadas.

En general se observa que los contenidos totales e individuales de los PAHs estudiados son francamente mucho más pequeños que los que se han obtenidos para los hidrocarburos alifáticos en las mismas muestras.

Los perfiles de distribución que se presentan en la Fig. 2.4 y los datos de la Tabla 2.5 permiten observar, tal como cabría esperar, que tanto el contenido total, Σ PAH, como los contenidos de los hidrocarburos individuales varían tanto entre estaciones como entre las propias fechas de muestreo.

Las concentraciones totales de hidrocarburos aromáticos polinucleares varían en el rango 45-629 ng.g⁻¹, con un valor medio de 267 ng.g⁻¹, Tabla 2.6, no detectándose en ningún caso la serie completa de los dieciocho compuestos presentes en las mezclas de

	A1	A2	A3	A4	A5	A6	A7	A8	A9	A10	A11	A12	A13	A14	A15	A16	A17	A18
									Total	(n=33)								
Mínimo	0	0	0	0	0	0	0	0	0	0	0	3	0	0	2	0	0	0
Máximo	482	28	10	14	31	27	13	18	25	26	27	191	189	70	109	217	20	9
Media	103	3	1	4	4	8	4	2	4	5	4	23	21	16	33	28	3	1
Mediana	33	0	0	3	0	7	4	2	3	3	2	8	11	11	26	4	2	0
Desv. Est.	141	8	3	4	7	7	3	3	5	6	6	37	34	17	26	46	4	2
								Ε	stación	1 (n=1	4)							
Mínimo	9	0	0	0	0	0	0	0	0	0	0	3	1	1	5	0	0	0
Máximo	482	26	4	14	17	20	7	18	15	8	8	191	189	45	79	91	7	4
Media	104	4	1	4	3	7	3	3	4	3	2	27	24	13	29	20	2	1
Mediana	30	0	0	3	0	7	4	1	3	2	1	8	9	7	21	6	2	0
Desv. Est.	160	8	1	4	5	5	2	5	4	3	3	51	49	14	23	29	2	1
								E	Estación	1 2 (n=.	3)							
Mínimo	26	0	0	0	0	0	0	0	0	0	0	4	0	1	5	0	0	0
Máximo	206	0	0	8	0	27	13	5	25	26	27	39	18	14	57	57	2	1
Media	88	0	0	3	0	11	8	2	9	9	9	23	8	7	30	20	1	0
Mediana	33	0	0	3	0	6	12	2	3	2	0	27	5	5	29	2	0	0
Desv. Est.	102	0	0	4	0	14	7	3	13	15	15	18	9	7	26	32	1	0
								E	Estaciór	n 3 (n=-	4)							
Mínimo	0	0	0	0	0	0	0	0	0	0	0	4	0	4	11	0	0	0
Máximo	70	Õ	6	Ő	8	5	6	4	5	17	6	20	17	30	48	93	4	Õ
Media	46	Õ	2	Ő	2	2	2	1	3	7	3	9	9	14	32	25	2	Õ
Mediana	57	ŏ	1	Ő	1	1	1	1	3	6	3	6	11	12	35	3	2	Ő
Desv. Est.	32	Ő	3	Ő	4	2	3	2	2	7	2	8	7	11	17	46	$\overline{2}$	Ő
								Ε	stación	4 (n=1	2)							
Mínimo	0	0	0	0	0	0	0	0	0	0	0	3	5	0	2	0	0	0
Máximo	388	28	10	12	31	21	6	5	7	16	17	105	74	70	109	217	20	9
Media	125	4	2	5	8	9	4	2	3	4	5	23	25	22	38	41	4	2
Mediana	53	0	0	5	4	8	4	2	3	3	3	11	20	15	25	14	3	0
Desv. Est.	152	10	4	4	10	6	2	1	2	5	6	29	21	22	33	64	6	3

Tabla 2.5Resumen de parámetros estadísticos (ng.g⁻¹ peso seco)

Fig 2.4.- Perfiles de PAHs en P. candei crenata en las cuatro estaciones de muestreo

			Parám	etros ca	alculado	s para la	a Patella ca	ndei cre	enata (ng	$g.g^{-1}$)			
Código	Σ PAH	PAH-Lo	PAH-Hi	Fen/Ant	Flu/Pir	% Naft		Σ PAH	PAH-Lo	PAH-Hi	Fen/An	t Flu/Pir	% Naft
		Estació	n de Mue	streo 1						Total (r	1=33)		
0113u	239	10.7	207.6	0.0	0.0	4	Mínimo	45	0.0	14.0	0.0	0.0	0
0213u	232	49.2	103.4	-	1.2	28	Máximo	629	109.2	521.6	1.7	1.9	87
0313u	78	19.5	19.4	0.9	0.0	28	Media	267	26.4	124.2	0.5	0.5	33
0413u	171	36.3	87.5	0.9	-	18	Mediana	230	24.3	83.2	0.5	0.3	28
0613u	69	26.1	19.5	0.0	0.3	21	Desv. Est.	191	23.1	124.6	0.6	0.6	26
0713u	117	7.0	52.4	0.0	0.0	45							
0813u	66	11.7	42.6	0.0	1.1	18				E1 (n	=14)		
0913u	80	20.0	30.1	0.0	-	27					,		
1013u	553	24.3	34.6	0.0	1.5	87	Mínimo	66	5.2	19.4	0.0	0.0	4
1113u	586	30.2	290.4	0.7	0.0	38	Máximo	586	49.2	521.6	1.2	1.5	87
1213u	583	31.9	86.8	1.0	0.7	75	Media	254	22.1	115.8	0.4	0.5	32
1313u	74	5.2	42.8	0.0	0.0	35	Mediana	151	22.2	67.8	0.0	0.1	27
1413a	131	11.1	83.2	1.1	0.7	24	Desv. Est.	219	12.4	139.7	0.5	0.6	24
1413b	583	25.2	521.6	1.2	0.0	5	20011200		12.11	10,11	0.0	0.0	- ·
11100	000	2012	02110	1.2	0.0	U				E2 (n	=3)		
	Estación de Muestreo 2										6,		
		25141010					Mínimo	56	0.0	14.0	0.0	0.2	12
01330	56	13.0	14.0	0.0	0.5	46	Máximo	350	109.2	131.6	0.0	0.5	59
03331	281	109.2	119.1	0.0	0.2	12	Media	229	40.7	88.2	0.0	0.4	39
1343u	350	0.0	131.6	-	-	59	Mediana	281	13.0	119.1	0.0	0.1	46
15154	550	0.0	101.0			57	Desv Est	154	59.6	64.6	0.0	0.1	24
		Estació	n de Mue	streo 3			D051. L50.	101	57.0	01.0	0.0	0.2	2.
		25141010								E3 (n	=4)		
0773u	69	0.0	21.5	-	-	69				(-/		
12730	144	13.2	57.7	0.8	0.0	48	Mínimo	69	0.0	21.5	0.0	0.0	0
1473a	198	17.9	101.7	0.0	1.9	33	Máximo	230	43.4	186.6	1.5	1.9	69
1473h	230	13.1	186.6	1.5	0.3	0	Media	160	18.6	01.0	0.8	0.7	38
14750	250	-13.4	100.0	1.5	0.5	0	Mediana	171	15.6	79.7	0.8	0.7	41
		Estació	n de Mue	stren 4			Desv Est	70	18.1	71.2	0.8	1.0	29
		Lineto	<i>i uc muc</i>	50100 4			Desv. Est.	70	10.1	/1.2	0.0	1.0	2)
035311	265	24.5	206.5	0.7	0.2	5				E4 (n.	=12)		
0453a	629	78.2	469.7	15	0.0	11				21 (11	-12)		
0453h	344	36.0	245.4	0.3	1.1	8	Mínimo	45	0.0	35.1	0.0	0.0	0
05530	343	60.9	257.3	0.9	1.0	3	Máximo	629	78.2	469 7	17	1.8	85
0653a	155	26.8	55 7	0.0	0.0	37	Media	327	30.6	153.6	0.7	0.6	32
0653h	45	0.0	35.3	-	-	0	Mediana	343	26.2	86.5	0.7	0.5	27
07530	74	17.1	35.1	0.0	07	22	Desv Fet	188	20.2	134.9	0.7	0.5	30
08530	476	36.5	258.3	13	0.7	35	Desv. Lot.	100	44.5	154.7	0.7	0.0	50
10531	430	13.0	50.2	0.0	0.0	85							
11530	430	25.6	104.7	0.0	0.5	70							
12530	507	12 5	56.0	17	1.9	76							
1252u	161	45.5	50.9 68 0	1./	1.0	21							
15550	101	4.0	00.2	-	0.0	51							

Tabla 2.6

calibrado. Puede observarse en la Tabla 2.6 que tanto los contenidos medios como los de la mediana de Σ PAH son similares en las estaciones E1 y E1. Los hechos anteriores quedan perfectamente visualizados en el gráfico "box-and-wiskers" de la Fig. 2.5 en el que, eliminando la estación 3 por su pequeño número de muestras, puede observarse un comportamiento muy similar en las estaciones 1 y 4, comportamiento que es muy diferente del que presenta la estación 2 y que es relativamente más uniforme a lo largo del período de muestreo.

Fig. 2.5.- Gráfico "box-and-wiskers" para los contenidos en hidrocarburos aromáticos policíclicos en *P. candei crenata* en las diferentes estaciones de muestreo

Es de destacar el hecho de que en, prácticamente, todas las muestras se detectan cantidades elevadas de naftaleno que puede llegar a representar el 87% de Σ PAH, Tabla 2.4, con un valor medio del 31.7%, Tabla 2.6. El contenido medio de naftaleno es muy similar en las cuatro estaciones de muestreo. Sin embargo, los respectivos valores de las medianas se ordenan en la secuencia $E2 \approx E3 > E1 \approx E4$.

Tal como puede verse en la Tabla 2.6, aunque los especímenes de *P. candei crenata* contienen una gran variedad de PAHs, los que presentan 4, 5 y 6 anillos en su estructura, es decir los que presentan valores del coeficiente de partición octanol-agua $logK_{ow} \ge 4.5$ [150], pueden llegar a representar del orden de 46.5% del total, como valor medio

Si se toma $logK_{ow} = 4.5$ como valor límite arbitrario del coeficiente de partición octanol-agua para este tipo de compuestos, la Tabla 2.7 permite observar que, de forma general, el contenido en PAHs con 1, 2 y 3 anillos (PAH-Lo = A6+A7+A9+A10+A11 + A12) es casi siempre menor que el contenido en hidrocarburos policíclicos con 4 y más anillos (PAH-Hi = A13+....+A18). También Bjorseth *et al.* [151] encontraron que los mejillones contenían concentraciones más altas de los PAHs de 4 y 5 anillos.

A continuación se muestra una lista ordenada de los PAHs acumulados mayoritariamente por la Patella candei crenata en las estación de muestreo 1, naftaleno >> benzo[a]pireno \approx criseno > benzo[b]fluoranteno > perileno >> benzo[e]pireno; mientras que para la estación 4: naftaleno >> perileno > benzo[a]pireno > benzo[b]fluoranteno > criseno \approx benzo[e]pireno. En comparación, Pruell et al. [138] encontraron mejillones expuestos (Mytilus edulis, 20d): en criseno > benzo[b]fluoranteno > fluoranteno > benzo[e]pireno > benzo[a]antraceno, mientras que Obana *et al.* [139] para almejas expuestas (*Tapes japonica*, 7d) encontraron: pireno >benzo[*e*]pireno > benzo[*b*]fluoranteno > benzo[*a*]antraceno.

Los valores calculados para las relaciones de isómeros fenantreno/antraceno (Fen/Ant) y fluoranteno/pireno (Fluo/Pir) y que se presentan en la Tabla 2.6 indican que la relación Fen/Ant se mantiene siempre muy por debajo del valor 10, con un valor medio de 0.5 y rango de 0.0 a 1.7 (estación 4), en tanto que la relación Fluo/Pir oscila entre 0.0 y 1.9. Todo ello parece indicar que los hidrocarburos aromáticos policíclicos presentes en las muestras de *P. candei crenata* analizadas son predominantemente de procedencia petrogénica si bien no puede descartarse una cierta componente antropogénica-pirogénica en los mismos.

La alta concentración de naftaleno y su buena correlación con la mayor parte de los PAHs estudiados en las muestras, Tabla 2.8, podría explicarse pensando que el naftaleno es el último producto del metabolismo de los mayores PAHs como establecieron Cajaraville *et al.* [142] para el burgado *Littorina littorea*.

Además, el naftaleno (r = 0.6848), junto con el benzo[*e*]pireno (r = 0.4656) y el benzo[*a*]pireno (r = 0.5279), PAHs conocidos por sus propiedades carcinogénicas, muestran concentraciones elevadas correlacionadas significativamente (p < 0.05) con

Tabla 2.7
Matriz de Correlaciones (n=33)

	A1	A2	A3	A4	A5	A6	A7	A8	A9	A10	A11	A12	A13	A14	A15	A16	A17	A18	S PAH
A1	1.0000	0.1274	0.1276	0.0558	0.1104	0.0337	0.0563	0.1235	-0.0824	-0.0073	-0.1213	-0.1084	-0.0902	-0.1135	-0.1017	-0.0184	0.0070	0.3302	0.6848
A2		1.0000	0.2966	-0.0709	-0.0664	-0.1003	0.0636	0.1006	0.1125	-0.1160	0.2186	0.0861	0.2062	0.1022	0.1544	0.2180	-0.0561	-0.0952	0.2740
A3			1.0000	-0.1078	0.3972	0.0240	0.0719	-0.0661	-0.0586	0.0746	-0.0645	-0.0793	0.0557	0.3682	0.2684	0.1882	-0.0996	-0.1456	0.2374
A4				1.0000	0.3580	0.5438	0.1949	0.0747	0.3219	0.1355	0.1810	0.0237	-0.0420	0.0504	0.0373	0.1293	0.4039	0.3087	0.1612
A5					1.0000	0.5338	0.0811	-0.1094	-0.0571	0.3241	0.0705	0.1722	0.2903	0.5776	0.5183	0.6510	0.0953	0.0016	0.5229
A6						1.0000	0.4087	-0.0310	0.4076	0.4684	0.6200	0.1110	0.1254	0.3222	0.4059	0.2350	0.0756	-0.0305	0.3217
A7							1.0000	-0.1472	0.2396	0.2473	0.3462	0.2326	0.1241	0.1909	0.2603	0.1220	-0.1703	-0.0433	0.2492
A8								1.0000	0.5008	0.2914	0.2657	-0.1292	-0.0429	-0.0865	-0.0006	-0.1667	0.0275	0.0606	0.0557
A9									1.0000	0.6797	0.6555	0.0822	0.0611	-0.0206	0.2489	0.0517	0.0871	0.0509	0.1140
A10										1.0000	0.5459	0.2824	0.2324	0.2478	0.4705	0.3688	-0.0378	-0.0820	0.3649
A11											1.0000	0.0550	0.1178	0.2713	0.4799	0.0859	0.0990	-0.0965	0.1629
A12												1.0000	0.8695	0.3521	0.4128	0.2601	-0.0350	-0.1121	0.4459
A13													1.0000	0.3786	0.4566	0.3510	0.0119	-0.0582	0.4988
A14														1.0000	0.9039	0.5649	0.2927	-0.0158	0.4656
A15															1.0000	0.5642	0.2709	-0.0034	0.5279
A16																1.0000	0.2632	0.0304	0.5336
A17																	1.0000	0.7333	0.1676
A18																		1.0000	0.2380
S PAH																			1.0000

 Σ PAHs. Esta observación sugiere que la concentración total de PAHs en *P. candei crenata* puede estimarse con exactitud razonable a partir de la concentración de uno de estos tres compuestos. Esta observación es similar a la de Lamparcyk *et al.* [117] para la relación entre benzo[*a*]pireno y Σ PAHs en las aguas y sedimentos del Mar Báltico y similar, también, a las encontradas en las otras dos especies de *Patella* estudiadas.

Por otra parte, las concentraciones de la mayor parte de los PAHs estudiados están interrelacionadas significativamente, Tabla 2.8. Como ejemplo, las concentraciones de benzo[*a*]pireno y benzo[*e*]pireno muestran una interrelación (r = 0.9039) altamente significativa (p = 0.0000). Este hecho podría explicarse por el origen común, petrogénico o pirogénico, de esos hidrocarburos poliaromáticos.

Bifenilos Policlorados

Como ya se ha dicho en el capítulo anterior la regulación medio ambiental de los PCBs difiere ampliamente dependiendo del país en cuestión. La Unión Europea ha dictado en los últimos años diversas Directivas, cada vez más restrictivas, con la finalidad de catalogar las matrices que contienen PCBs en función de su contenido global. Así, mientras que la Directiva Comunitaria 769/76 de julio de 1976 consideraba PCB toda matriz cuyo contenido total fuera superior a 1000ppm (1g.kg¹), la Propuesta 299/05 de 1991 situaba el contenido límite en 20ppm. En la actualidad se pretende establecer límites aún más restrictivos en campos más específicos, tales como el propuesto por la *Organización Mundial de la Salud* en el año 1987, de 5ppm para el pescado y sus derivados. De cualquier forma, debe tenerse en cuenta que las diferentes normativas hacen referencia al contenido total de PCBs, sin considerar las diferencias significativas en las actividades biológicas y en la potencialidad tóxica de cada uno de los congéneres individuales.

Teniendo en cuenta tales consideraciones, el estudio que se presenta tampoco, en ningún caso, tiene como objetivo clasificar las muestras analizadas atendiendo a los límites expuestos ni a ningún otro, dada la relativa escasa presencia de PCBs en dichas muestras. Por el contrario, tal como ya se ha dicho, uno de los principales objetivos de nuestro estudio va a consistir en el seguimiento de la presencia relativa de cada uno de los congéneres analizados y su importancia medioambiental.

	18	31	44	52	54	87	101	118	121	129	137	138	143	153	154	159	170	180	182	185	187	199
											Total (n=32)										
Mínimo	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Máximo	18033	3703	765	660	1307	399	702	1135	161	1348	4186	204	513	26756	1105	100	224	388	136	65	92	50
Media	1315	506	244	63	157	47	123	130	15	197	256	44	26	933	105	11	35	52	27	5	4	2
Mediana	477	157	217	0	0	0	33	64	0	98	99	0	0	84	0	0	29	26	0	0	0	0
Desv. Est.	3355	835	200	141	318	87	176	212	34	299	719	57	95	4639	221	26	48	77	40	14	17	10
										Es	stación	1 (n=1	3)									
Mínimo	0	0	0	0	0	0	0	0	0	0	28	0	0	0	0	0	0	0	0	0	0	0
Máximo	1397	1971	735	431	898	399	406	1135	42	462	4186	204	513	516	363	100	113	193	116	65	92	50
Media	597	347	241	86	179	66	94	172	8	132	409	54	39	116	66	20	25	42	20	9	7	4
Mediana	477	157	173	0	0	0	71	67	0	92	90	41	0	84	0	0	0	22	0	0	0	0
Desv. Est.	509	536	207	131	296	120	122	304	15	146	1136	62	142	142	119	35	35	56	39	20	25	14
										Ε	stación	2 (n=3	3)									
Mínimo	188	0	91	0	0	0	0	0	0	149	100	0	0	0	0	0	0	0	0	0	0	0
Máximo	18033	3703	765	660	0	190	413	350	64	1083	259	143	157	26756	0	73	122	388	0	30	27	0
Media	6383	1540	522	220	0	63	138	229	21	493	183	66	52	8937	0	24	57	129	0	10	9	0
Mediana	929	917	711	0	0	0	0	338	0	248	192	54	0	55	0	0	47	0	0	0	0	0
Desv. Est.	10096	1929	374	381	0	110	238	199	37	513	80	72	91	15432	0	42	62	224	0	17	16	0
										Ε	stación	3 (n=4	4)									
Mínimo	0	0	73	0	0	0	0	0	0	0	36	0	0	0	42	0	0	0	0	0	0	0
Máximo	8753	476	260	0	418	139	446	259	72	1348	835	0	35	119	355	9	224	29	41	0	0	0
Media	2865	147	176	0	206	40	134	93	18	386	286	0	9	85	203	2	67	13	10	0	0	0
Mediana	1353	56	186	0	204	11	46	55	0	99	137	0	0	111	207	0	21	12	0	0	0	0
Desv. Est.	3991	225	81	0	238	67	209	115	36	643	369	0	17	57	145	4	107	15	20	0	0	0
										Es	stación	4 (n=1	2)									
Mínimo	0	0	59	0	0	0	0	0	0	26	56	0	0	0	0	0	0	22	0	0	0	0
Máximo	907	2825	439	105	1307	119	702	333	161	650	216	173	153	764	1105	26	87	182	136	Õ	õ	26
Media	419	581	220	25	169	28	157	82	21	148	119	46	13	176	150	2	33	60	50	Õ	õ	2
Mediana	387	386	220	0	0	0	55	55	0	90	112	30	0	88	19	0	36	40	34	õ	õ	0
Desv. Est	270	793	115	45	415	44	219	99	48	166	47	56	44	242	330	7	29	48	43	Õ	Õ	8

Tabla 2.8Resumen de parámetros estadísticos (ng.kg⁻¹ peso seco)

Fig. 2.6.- Perfiles de PCBs en Patella candei crenata en las cuatro estaciones de muestreo

				,,) 011			r-soon					
				% PC	CBs –or	to-clora	ados		%	Isómere	os de P	CBs	
Código	Σ PCBs	PCB M	% PCB M	mono-	di-	tri-	tetra-	tri-	tetra-	penta-	hexa-	hepta-	octa-
				Est	ación d	e Mues	treo 1						
0113u	949	31	45.2	71.8	20.6	7.5	0.0	45.2	0.0	26.6	23.0	5.2	0.0
0213u	3122	18	40.8	3.5	93.5	2.9	0.0	40.8	17.5	12.3	23.9	5.6	0.0
0313u	6865	137	61.0	6.8	87.4	5.0	0.7	16.2	7.6	4.5	66.4	4.5	0.7
0413u	6200	31	31.8	34.6	63.8	1.6	0.0	52.6	9.7	11.5	21.2	5.0	0.0
0713u	624	54	24.8	28.9	43.9	2.4	24.8	21.6	24.8	21.8	25.9	6.0	0.0
0813u	2704	31	18.6	27.4	41.7	14.8	16.1	18.6	27.6	14.7	33.1	6.0	0.0
0913u	876	18	54.5	17.9	82.1	0.0	0.0	72.4	16.3	0.0	11.3	0.0	0.0
1013u	2545	31	28.1	30.8	68.4	0.8	0.0	37.7	9.1	24.3	25.1	3.7	0.0
1113u	1386	18	23.8	7.2	92.8	0.0	0.0	23.8	21.3	18.7	36.3	0.0	0.0
1213u	4703	18	29.7	31.2	44.1	5.7	19.1	34.9	23.7	27.3	12.1	2.0	0.0
1313u	1546	18	39.1	9.3	90.7	0.0	0.0	46.1	32.8	0.0	19.6	1.5	0.0
1413a	1457	18	64.3	1.7	83.0	2.1	13.2	64.3	23.3	4.0	6.2	2.3	0.0
1413b	2576	44	28.5	0.0	55.1	19.9	25.0	13.6	53.5	0.0	30.5	2.5	0.0
				Est	ación d	e Mues	treo 2						
0133u	2172	31	42.2	58.3	39.0	2.6	0.0	50.8	4.2	19.1	21.1	4.8	0.0
0333u	52889	153	50.6	7.6	92.1	0.3	0.0	41.1	2.6	1.8	53.6	1.0	0.0
1343u	2174	18	42.7	3.3	96.7	0.0	0.0	42.7	35.2	0.0	22.1	0.0	0.0
				Est	ación d	e Mues	treo 3						
077311	3535	129	38.1	20.8	75.7	3.5	0.0	13.5	7.4	23.9	49.0	6.3	0.0
1273u	2982	18	59.1	2.5	72.6	10.9	14.0	59.1	16.5	6.4	18.0	0.0	0.0
1473a	1337	18	70.5	0.0	93.8	6.2	0.0	70.5	11.6	0.0	12.7	5.2	0.0
1473b	11111	18	78.8	1.4	91.7	3.2	3.7	79.8	5.6	0.9	13.1	0.6	0.0
				Est	ación d	e Mues	treo 4						
03531	782	153	22.9	0.0	864	13.6	0.0	0.0	22.8	0.0	51.8	25.5	0.0
0353u 0453a	963	18	32.1	0.0	96.8	32	0.0	32.1	23.1	19.3	18.1	73	0.0
0453b	2183	31	36.9	39.8	56.1	4.1	0.0	49.9	16.0	15.4	14.2	4.5	0.0
05530	1870	18	20.1	11.1	82.3	6.7	0.0	25.7	12.1	25.6	20.2	16.4	0.0
0653a	6336	31	44.6	49.8	41.3	8.8	0.0	52.7	3.2	13.1	26.7	4.3	0.0
0653b	596	18	18.3	0.0	82.8	17.2	0.0	18.3	17.2	0.0	54.9	9.6	0.0
0753u	2821	54	46.3	23.1	27.2	2.4	47.3	27.8	48.4	10.7	7.8	4.4	0.9
0853u	2505	18	36.2	28.8	71.2	0.0	0.0	59.7	17.5	5.3	13.3	4.2	0.0
1053u	2630	54	27.6	26.9	44.2	1.3	27.6	49.9	31.0	0.0	14.2	5.0	0.0
1153u	1496	18	38.3	11.9	88.1	0.0	0.0	45.5	21.2	8.6	21.0	3.7	0.0
1253u	4150	31	24.8	26.9	71.9	1.1	0.0	43.6	8.3	19.0	26.0	3.0	0.0
1353u	3699	154	29.9	10.0	52.3	37.7	0.0	15.8	11.2	7.4	60.7	4.9	0.0

Tabla 2.10 Contenido total $(ng.kg^{-1})$, isómero mayoritario (PCB M) y presencia relativa de PCBs

Aunque se han incluido en el estudio cromatográfico la totalidad de los congéneres contenidos en las mezclas de identificación ya citadas en el Capítulo 1, se han excluido de este comentario descriptivo, así como del posterior estudio estadístico y multivariante, todos aquellos congéneres en los que el número de identificaciones positivas ha sido inferior al 5% (≈9 muestras), Tabla 2.9, con respecto al conjunto de las muestras analizadas.

Teniendo en cuenta lo expresado anteriormente, en términos generales se puede decir que han sido detectados congéneres mono-, di-, tri-, y tetra-*orto* clorados en el conjunto de las muestras analizadas de *Patella candei crenata*. De los mono-*orto*-clorados son los congéneres -31 (PCB-2,4',5), -118 (PCB-2,3',4,4',5) y -159 (PCB-2,3,3',4,5,5') los únicos identificados. A pesar de la posibilidad de adoptar una disposición planar debido al único átomo de cloro situado en una de las posiciones *orto* del anillo del bifenilo, la cloración de una única posición *para* en el caso de los congéneres -31 y -159 le resta importancia a la posible interacción con los receptores celulares. Es el congénere -118 el que, además de poseer sólo un átomo de cloro en una posición *orto*, posee las dos posiciones *para* también cloradas y además dos átomos más de cloro en las posiciones *meta*.

Del conjunto de los congéneres di-*orto*-clorados detectados [12] destacan los congéneres -137, -138, -153, -170, y -180 que teniendo las dos posiciones *para* cloradas poseen al menos dos átomos de cloro en posiciones *meta*.

De los PCBs mono-*orto*- y di-*orto*-clorados identificados en las muestras son los congéneres -138, -170, y -118 los que presentan factores tóxicos equivalentes (TEFs) relativos a la 2,3,7,8-tetraclorodibenzo-*p*-dioxina más elevados según datos de Smith *et al.* [146]. En la Fig. 2.6 se presentan los perfiles de los congéneres individuales analizados en las diferentes estaciones de muestreo.

En líneas generales se observa que en las Estaciones de Muestreo 1, 2 y 3, Tabla 2.9, existe una presencia mayoritaria de congéneres tri- y hexa-clorados; le siguen en importacia los congéneres tetra- > penta- > hepta- > octa-clorados, Fig.2.7. En la Estación 4 el comportamiento se invierte en el caso de los congéneres con menor grado de cloración, es decir, es el conjunto de congéneres hepta- y octa-clorados el minoritario, como en el resto de las estaciones, seguidos por los congéneres tetra- < tri- < penta- en proporciones similares, siendo ahora los congéneres hexa-clorados los mayoritarios.

La presencia mayoritaria de los congéneres tetra-, penta- y hexa-clorados así como la menor presencia relativa de los congéneres más clorados se reproduce también en otros organismos como es el caso del bivalvo *Corbicula fluminea*, y los peces *Oligosarcus*

jenynsi, Prochilodus platensis y Pimelodus albicans estudiados en el Rio de La Plata, Argentina [147].

Fig.2.7.- Distribución de los congéneres de PCB atendiendo al grado de cloración

Aunque la enorme diferencia existente entre los datos bibliográficos acerca del Tiempo de Vida Media ($t_{1/2}$) de los diferentes congéneres [46] no permite hacer un uso riguroso de este parámetro a la hora de interpretar la mayor o menor presencia en nuestras muestras de unos congéneres con respecto a otros, bien es cierto que todas las investigaciones constatan el hecho de que son los congéneres con un menor número de átomos de cloro en su estructura los que poseen tiempos de vida media más bajos. Parece que este hecho puede dificultar en gran medida la explicación de la presencia relativamente mayoritaria de éstos en el conjunto de las muestras recolectadas, sin embargo, aunque bajos con relación a otros congéneres, los tiempos de vida media que se manejan para los homólogos tri-clorados son de aproximadamente 600 días [46], lo

cual pudiera permitir su introducción en la cadena trófica y, consiguientemente su bioacumulación y/o biomagnificación.

Otra característica estructural de los PCBs que incrementa su bioconcentración es por una parte la planaridad de la molécula determinada en todos los casos por el número de átomos de cloro en posiciones *orto* del anillo bifenilo y por otra la ausencia de hidrógenos vecinales [7] como es el caso de los congéneres 128, 153, 167, 170 y 180. En lo que se refiere al estudio de los congéneres según el grado de cloración de las posiciones *orto* del anillo bifenilo, el perfil de distribución es prácticamente el mismo en las cuatro Estaciones de Muestreo, Tabla 2.10. Haciendo uso de los valores medios del conjunto de las estaciones, los congéneres di-*orto*-clorados son los mayoritarios (74%), seguidos por los mono-*orto*-clorados (16%) y finalmente por los congéneres tri- y tetra-*orto*-clorados (5%).

 $\begin{tabular}{ll} \begin{tabular}{ll} Tabla 2.11 \\ \end{tabular} Resumen estadístico del Σ PCBs (ng.kg^{-1}) \end{tabular} \end{tabular}$

n	Máximo	Mínimo	Media	Mediana	Desv. Est.
32	52889	596	4431	2525	9116
13	6865	624	2735	2545	2023
3	52889	2172	19078	2174	29281
4	11111	1337	4741	3258	4348
12	6336	596	2502	2344	1636
	n 32 13 3 4 12	n Máximo 32 52889 13 6865 3 52889 4 11111 12 6336	nMáximoMínimo325288959613686562435288921724111111337126336596	nMáximoMínimoMedia325288959644311368656242735352889217219078411111133747411263365962502	nMáximoMínimoMediaMediana32528895964431252513686562427352545352889217219078217441111113374741325812633659625022344

En la Tabla 2.11 se muestra un resumen de los parámetros estadísticos referidos al total de PCBs (Σ PCBs) en cada una de las Estaciones de Muestreo teniendo en cuenta la totalidad de las muestras analizadas.

Observando los datos anteriores parece claro que es la Estación 2 la que soporta los niveles más elevados de PCBs con un total de 52.9ng.g⁻¹, seguida de las estaciones $3 > 1 \approx 4$. Atendiendo a los valores medios, salvo en el caso de la estación 2, parecen existir unos niveles más o menos similares en todas las estaciones de muestreo. En el caso de los valores calculados de las medianas, se observan valores que apuntan a una distribución aparentemente homogénea.

Los hechos anteriores quedan mejor visualizados en el gráfico "box-and-whiskers" de la Fig. 2.8 que muestra la gran similitud en el comportamiento de los especímenes de *P*. *candei crenata* recolectados en las diferentes estaciones de muestreo.

Fig.2.8.- Gráfico "box-and-whiskers" para SPCBs en Patella candei crenata

Al examinar los resultados del estudio de correlaciones entre los congéneres analizados que se presenta en la Tabla 2.12 puede observarse que sólo diez de los congéneres se encuentran significativamente correlacionados con Σ PCB siendo doce congéneres (54.6%) los que no lo están. Recordemos que en el caso de la *P. piperata* del capítulo anterior sólo cinco de los congéneres (22.7%) no se encontraban correlacionados. Comparando ambos casos se observa que, además de los PCB-87, -121, -152 y -154 no correlacionados en aquel caso, ahora se añaden los PCB-54, -118, -137, -143, -182, -185, -187 y -199. El PCB-101 se encuentra correlacionado con Σ PCB en *P. candei crenata* pero no en la *P. piperata*.

También se observa que en este caso ha disminuido el número de correlaciones significativas entre pares de congéneres y que salvo algunos pocos casos no hay semejanzas entre las dos especies.

Estos hechos pueden ser el reflejo no sólo de las diferencias metabólicas entre ambas especies sino, también, de la diferente posición de sus respectivos hábitats en la zona intermareal.

Tabla 2.12Matriz de Correlaciones (n=32)

	18	31	44	52	54	87	101	118	121	129	137	138	143	153	154	159	170	180	182	185	187	199	S PCB
18	1.0000	0.5922	0.4022	0.6771	-0.0056	0.2120	0.2534	0.1645	-0.1010	0.4577	0.0671	0.2541	0.1965	0.8942	0.0128	-0.0745	0.2858	0.6856	-0.1586	-0.0699	-0.0197	-0.0504	0.9489
31		1.0000	0.1915	0.6986	-0.0936	0.3615	0.6046	0.3030	0.0049	0.5353	-0.0435	0.7408	0.0694	0.7043	0.0499	-0.1980	0.5956	0.6473	0.1397	-0.0167	-0.0794	-0.0382	0.7401
44			1.0000	0.3021	-0.1220	0.1038	0.1229	0.0228	-0.1596	0.3036	0.0833	0.1417	0.5672	0.4223	0.0318	0.2303	0.1053	0.3753	-0.0583	-0.1607	0.2216	-0.0473	0.4398
52				1.0000	-0.1743	0.3212	0.4044	0.1435	-0.0558	0.4721	0.2254	0.6125	0.1155	0.7641	-0.1041	-0.0731	0.3716	0.7450	0.1272	-0.0631	-0.1007	0.1622	0.7859
54					1.0000	-0.1843	-0.1018	0.2493	0.1605	-0.1908	-0.0798	0.0018	0.2165	-0.0959	0.0495	0.1465	0.0537	-0.1683	-0.1734	0.3569	-0.1114	0.2242	-0.0377
87						1.0000	0.2687	0.1220	0.0107	0.4836	-0.1155	0.2566	0.0141	0.3068	0.0490	0.1685	0.3788	0.2515	0.1029	-0.0429	-0.1207	-0.1313	0.3038
101							1.0000	0.1811	-0.1219	0.6574	-0.0078	0.5643	-0.0732	0.3114	-0.0358	-0.2296	0.5670	0.4156	0.2495	-0.1198	0.1109	0.0143	0.3725
118								1.0000	0.0777	0.2036	0.0691	0.3470	-0.0422	0.1825	0.2372	0.3302	0.2804	0.1349	-0.0070	0.8135	0.0384	0.0311	0.2483
121									1.0000	-0.1247	-0.1162	0.0099	-0.1008	-0.0855	-0.0558	0.1149	-0.0212	-0.2175	-0.1349	0.1232	-0.0004	0.0281	-0.0945
129										1.0000	-0.0631	0.2568	0.0949	0.5360	-0.0707	-0.0791	0.8262	0.3544	-0.0827	-0.0854	-0.0331	-0.1290	0.5612
137											1.0000	0.1800	-0.0500	-0.0200	0.1501	-0.0858	-0.1042	0.3351	0.3793	-0.0736	-0.0146	0.8581	0.0998
138												1.0000	0.0012	0.3381	0.3061	-0.1172	0.3636	0.5037	0.4171	0.1100	0.2009	0.1823	0.4173
143													1.0000	0.2493	0.1315	-0.1153	0.0561	0.1567	-0.0228	-0.0934	-0.0615	-0.0669	0.2413
153														1.0000	-0.0637	-0.0809	0.3344	0.7877	-0.1015	-0.0638	-0.0345	-0.0486	0.9717
154															1.0000	-0.0285	-0.0039	0.0188	0.4466	0.1191	-0.1078	0.0642	0.0221
159																1.0000	-0.1776	-0.2364	-0.2980	0.4485	-0.0954	-0.1038	-0.0864
170																	1.0000	0.2331	-0.0735	0.0450	-0.1141	-0.0820	0.3935
180																		1.0000	0.3891	-0.1638	0.0366	0.2761	0.8031
182																			1.0000	-0.2337	-0.1540	0.3644	-0.0515
185																				1.0000	0.0369	-0.0814	-0.0411
187																					1.0000	-0.0536	-0.0349
199																						1.0000	0.0322
S PCB																							1.0000

Capítulo 3 Patella ulyssiponensis aspera

Hidrocarburos alifáticos

os valores de los parámetros estadísticos más usuales para las concentraciones de los alcanos en los especímenes de Patella ulyssiponensis aspera analizados se muestran en la Tabla 3.1 tanto para el conjunto de las muestras como para los procedentes de cada una de las estaciones individualmente, y en la Fig. 3.1 se presentan los diagramas de barras correspondientes a las distribuciones de los valores medios de dichos hidrocarburos en las estaciones de muestreo. Además, en el Anexo III se incluyen los correspondientes parámetros analíticos para cada una de las muestras analizadas. Al igual que a lo largo de este trabajo hemos decidido introducir en las tablas el valor de la mediana ya que, como es obvio, valores puntuales extremadamente altos de las concentraciones de algunos hidrocarburos en alguna de las muestras pueden traducirse en incrementos desproporcionados de los valores medios que podrían, en su caso, llevar a una mala interpretación de los resultados. Este hecho puede verse claramente, por ejemplo, en el caso de los alcanos $n-C_{26}$ y $n-C_{30}$ para los que los valores medios son 271 y 195 μ g.g⁻¹, en tanto que las correspondientes medianas son de 98 y 55 $\mu g.g^{-1}$. Otro aspecto que es necesario resaltar también en este sentido, es el de los altos valores que, de forma general, presentan las correspondientes desviaciones estándar para prácticamente todos los hidrocarburos analizados.

Los cromatogramas de gas de las fracciones parafínicas muestran en muchos casos, al igual que ocurría para los especímenes analizados en los dos capítulos anteriores, la envolvente conocida como *Unresolved Complex Mixture* (UCM) o Mezcla Compleja

No Resuelta debida principalmente a hidrocarburos cíclicos o ramificados, cuya presencia se considera originada por la exposición de los organismos a petróleos crudos biodegradados/envejecidos y sus derivados, además de estar presentes los isoprenoides acíclicos pristano y fitano, Fig. 3.2.

La Tabla 3.1 y Fig. 3.1, muestran que la serie homóloga de *n*-alcanos se extiende desde el *n*-C₁₀ al *n*-C₃₀, si bien los valores de las concentraciones de los hidrocarburos *n*-C₁₀ a *n*-C₁₃ no se han incluido en las tablas por razones obvias, y los perfiles correspondientes a cada muestra son muy parecidos entre sí en que están dominados por los alcanos de cadena corta, con un contenido total de *n*-alcanos (Σ Alc) que oscila entre 1.87 y 14.9 µg.g⁻¹, Tabla 3.2. Los valores medios de Σ Alc en las cuatro estaciones de muestreo son muy similares en todas ellas (≈ 4.7 µg.g⁻¹) con algunas muestras en las que Σ Alc > 9.0µg.g⁻¹, especialmente en la estación nº 4. Lo anteriormente expuesto queda mejor reflejado en el correspondiente gráfico "box-and-wiskers" que se presenta en la Fig. 3.3, en el que además puede detectarse la presencia de "datos anómalos" en las estaciones 1, 2 y 3 que contrastan con los relativamente pequeños rangos de Σ Alc, que también son muy uniformes en las diferentes estaciones de muestreo, en tanto que en la estación 4 no aparecen tales anómalos pero el rango de valores de Σ Alc es mucho más amplio.

Este hecho puede estar indicando que las estaciones de muestreo 1, 2 y 3 han recibido inyecciones esporádicas de *n*-alcanos durante el período de muestreo en tanto que la estación 4, hacia el sudeste de la isla, ha estado casi siempre sometida a este tipo de inyecciones durante dicho tiempo, lo cual puede estar reflejando el tráfico marino más intenso en el canal entre Fuerteventura y la costa nororiental de Africa o, menos probable, la influencia del cercano aeropuerto o las actividades portuarias en Puerto del Rosario.

También puede verse en dichas Tabla y Figura que los perfiles de *n*-alcanos en los tejidos de la *P. ulyssiponensis* están dominados por la presencia de dos hidrocarburos. El hidrocarburo mayoritario es el n-C₁₇, con un nivel de concentración relativo al total de *n*-alcanos del 17-75%, seguido del n-C₁₅ con un porcentaje del 1-38% del total, Tabla 3.2. Este hecho sugiere una mayor tendencia a la acumulación de estos dos

	C14	C15	C16	C17	C18	C10	C20	C21	C^{22}	C22	C24	C25	C26	C27	C^{29}	C20	C20	Dr	E
	C14	CIS	C10	CI/	C10	C19	C20	C21	C22	C25	C24	C25	C20	C27	C20	C29	C30	ГI	Г
		<i>I otal (n=34)</i>																	
Mínimo	2	37	38	489	6	5	0	0	0	9	0	0	0	19	0	39	0	0	0
Máximo	189	4436	308	8128	77	99	73	529	70	318	498	1022	1838	2619	2819	2858	2468	71	266
Media	52	1205	119	3062	26	34	6	117	9	39	54	179	271	468	371	367	195	18	62
Mediana	42	1019	110	2534	23	31	0	59	7	27	22	101	98	210	186	165	55	14	61
Desv. Est.	36	866	60	1880	16	20	11	131	11	44	87	214	406	589	515	481	403	15	58
									Estac	ión 1 (i	n=18)								
Mínimo	15	374	40	1022	6	5	0	0	0	11	0	48	0	19	0	68	0	2	5
Máximo	189	2337	270	7233	77	99	73	522	70	94	145	501	877	1054	1004	844	150	58	221
Media	50	1093	117	3170	26	35	8	135	10	32	35	135	157	317	265	255	46	18	74
Mediana	41	933	116	2949	22	28	1	120	7	22	22	101	80	248	193	214	29	16	61
Desv. Est.	39	595	54	1735	18	24	17	136	16	21	40	113	211	299	245	198	52	13	59
		Estación 2 (n=17)																	
Mínimo	17	546	44	939	8	10	0	0	0	9	0	4	0	37	0	46	0	5	4
Máximo	183	2246	308	8128	67	96	12	529	30	74	257	1022	1689	2581	1922	1592	1328	58	266
Media	53	1085	114	2644	24	30	2	142	8	34	48	195	278	570	378	363	225	18	76
Mediana	41	1069	102	2315	22	28	0	80	5	26	18	90	89	169	186	153	51	12	70
Desv. Est.	39	471	64	1699	15	19	4	158	8	19	77	276	480	775	539	446	351	14	70
									Esta	ción 3 ((n=7)								
Mínimo	20	234	38	489	13	20	0	22	4	21	9	0	20	49	35	61	0	10	0
Máximo	75	3160	146	4299	50	58	16	140	15	40	498	484	916	960	871	610	302	31	31
Media	42	1114	88	2270	27	35	9	59	8	31	118	197	394	394	387	306	122	18	13
Mediana	41	667	90	2338	23	34	9	40	8	33	53	223	424	431	423	290	89	15	11
Desv. Est.	20	1033	40	1397	12	14	5	44	3	8	173	166	312	315	298	214	120	8	12
									Estac	ión 4 (i	n=12)								
Mínimo	2	37	53	1053	12	14	0	13	0	16	0	2	0	43	0	39	0	0	10
Máximo	121	4436	266	8026	74	76	21	315	31	318	266	934	1838	2619	2819	2858	2468	71	189
Media	61	1596	146	3954	30	38	6	90	12	63	53	213	359	592	512	577	419	24	104
Mediana	55	993	164	3767	25	34	0	36	11	33	26	134	84	387	127	181	122	26	131
Desv. Est.	34	1397	67	2359	18	20	9	111	11	86	77	266	545	730	822	817	705	19	60

 Tabla 3.1

 Resumen de los parámetros estadísticos (ng.g⁻¹ peso seco)

C14 C15 C16 C17 C18 C19 C20 C21 C22 C23 C24 C25 C26 C27 C28 C29 C30 *n*-alcano

n -alcano

Fig. 3.1.- Perfiles de n-alcanos en Patella ulyssiponensis en las cuatro estaciones de muestreo
-

Co	ncentrac	ion de	<i>n</i> -alcan	$\log (\mu g.g p)$	eso se	<i>eco</i>) y pa	arametro	os geo	quimico	os en <i>F</i>	² atella i	ilyssipo	onensis as	spera
Cod.	Σn_{-Alc}	%C17	C29/C22	$\Sigma n_{-Alc/Cl6}$	CPI	CPI-Lo	CPI-Hi	Pr/C17	Fi/C18	Pr/Fi	PL-1%	Terr%	Pe-Lo%	Pe-Hi%
						Estación	ı de Mues	treo 1						
0112a	2.89	37	369	73	3.8	26.3	1.3	0.002	4.67	0.09	50.0	22.1	1.6	21.0
0112b	12.03	44	52	78	4.2	28.2	1.2	0.004	0.47	1.49	60.1	19.5	1.6	18.0
0212a	5.85	53	13	43	13.2	23.5	3.0	0.005	0.00	-	79.0	10.2	2.7	3.5
0212b	5.21	54	13	44	15.0	25.8	2.0	0.003	3.02	0.13	78.0	5.3	2.7	2.8
0212c	6.66	46	-	48	8.6	22.2	3.0	0.004	3.37	0.13	62.4	21.6	2.4	7.7
0312a	6.44	56	5	56	5.0	14.5	1.1	0.008	0.07	5.40	66.8	12.0	4.1	12.8
0312b	5.75	48	27	56	5.1	17.3	1.5	0.005	2.35	0.24	62.6	18.7	2.4	13.3
0612u	5.55	40	76	76	4.1	27.1	1.4	0.008	3.81	0.33	53.9	23.7	1.5	19.9
0712u	10.32	70	28	55	24.8	37.9	2.0	0.001	2.79	0.07	93.1	2.6	2.1	1.4
0812a	9.74	60	21	36	6.6	13.9	1.5	0.010	2.83	0.29	75.6	10.7	3.5	7.9
0812b	6.15	75	-	47	16.4	26.8	2.2	0.002	2.99	0.15	89.1	5.0	2.5	2.4
1012u	6.76	65	-	49	23.3	27.5	6.8	0.004	5.88	0.12	87.1	5.2	2.3	1.3
1112u	5.93	54	7	50	25.5	25.9	17.8	0.010	15.56	0.14	93.3	2.3	2.2	0.0
1212a	4.79	47	27	43	6.5	18.1	1.5	0.008	0.82	0.90	69.4	13.5	3.1	10.4
1212b	2.23	46	31	35	8.1	16.2	1.9	0.012	3.19	0.25	72.0	10.8	3.8	6.0
1312u	2.46	58	35	55	9.3	28.0	1.5	0.005	9.68	0.10	75.1	9.6	2.2	6.7
1412a	3.27	50	14	40	7.4	15.0	1.6	0.018	1.97	0.41	73.4	10.0	3.9	6.9
1412b	3.95	39	69	53	5.0	16.9	1.5	0.014	2.10	0.36	56.9	18.2	3.0	14.3
						Estación	ı de Mues	treo 2						
0132u	3 22	45	36	62	77	27.4	14	0.004	0.00	-	66.8	119	19	11.5
0332a	5 34	46	22	41	7.6	16.8	2.2	0.001	0.00	-	70.3	14.5	3 1	10.3
0332h	3.98	58	9	37	16.8	19.8	4.0	0.007	3.66	0.18	86.0	38	3 3	13
03320	7.02	55	18	44	11.2	23.1	1.6	0.003	2 47	0.10	77.6	67	27	5.9
04320	7.52	26	37	44	41	13.3	1.0	0.005	0.00	-	43.0	25.5	2.7	20.0
0532u	11.00	26	96	108	2.5	26.2	1.2	0.003	0.00	-	37.0	29.1	1.1	31.3
0632u	13.85	17	53	198	2.1	29.0	1.3	0.003	3.45	0.21	21.5	37.5	0.6	37.5
0732a	7.39	26	-	76	3.0	17.3	1.5	0.008	4.70	0.14	35.5	30.4	1.6	28.2
0732b	4.82	60	19	38	8.2	17.5	1.6	0.008	0.09	5.11	78.7	9.0	3.8	7.2
0832u	14.90	55	83	48	11.2	18.8	4.5	0.007	3.75	0.22	70.7	18.8	2.5	6.5
0932u	3.46	56	-	23	12.1	11.6	-	0.012	2.59	0.27	88.5	3.8	5.2	0.1
1042u	4.38	63	16	46	25.1	26.1	13.4	0.004	3.36	0.18	89.3	4.0	2.6	0.2
1142u	7.23	64	8	51	28.5	28.8	19.8	0.005	3.79	0.21	91.9	2.0	2.3	0.1
1242u	2.03	56	-	31	17.7	16.7	-	0.005	0.00	-	89.3	4.3	3.8	0.1
1342u	3.29	48	71	71	6.0	31.1	1.2	0.003	0.00	0.18	70.7	13.9	1.8	12.6
1442a	3.33	49	23	49	17.6	24.4	3.5	0.006	2.39	0.26	86.2	5.8	2.7	1.9
1442b	2.45	38	51	55	5.2	19.1	1.5	0.011	0.55	1.56	64.0	16.7	2.5	14.3
						Estación	ı de Mues	treo 3						
1172u	4.85	49	7	54	3.5	19.1	0.2	0.009	8.49	0.10	74.7	2.3	2.4	18.1
1272a	1.87	26	20	41	3.6	9.4	1.4	0.053	2.25	0.50	52.5	20.4	4.1	19.7
1272b	9.85	44	70	68	7.7	32.3	1.3	0.002	2.60	0.17	76.2	11.2	1.8	9.4
1372u	6.18	62	15	86	24.7	32.9	4.8	0.004	3.55	0.08	90.0	4.9	2.1	1.6
1472a	4.12	34	66	108	2.9	25.0	1.1	0.007	0.15	5.04	45.7	23.7	1.4	26.0
1472b	6.43	36	33	68	3.0	16.1	1.0	0.013	3.16	0.25	48.1	21.1	2.3	25.2
1472u	5.91	19	67	45	1.7	7.7	1.1	0.011	0.00	-	23.8	34.8	2.8	37.2
						Estación	ı de Mues	treo 4						
0352u	6.33	17	82	120	2.2	10.8	1.5	0.011	0.55	1.20	21.6	32.9	1.1	38.2
0452u	11.42	32	70	73	3.5	19.8	1.3	0.009	3.63	0.22	48.6	23.6	1.7	24.6
0552a	19.75	22	99	91	2.3	15.7	1.3	0.016	0.00	-	27.7	32.5	1.6	37.4
0552b	10.72	51	35	56	9.6	28.7	1.9	0.004	0.81	0.99	76.1	12.5	2.0	8.6
0652u	7.01	37	-	65	3.6	19.5	1.3	0.013	4.90	0.27	52.0	21.8	1.9	23.1
0752u	11.61	69	34	66	19.7	43.0	1.6	0.001	5.47	0.07	88.2	4.1	1.7	3.6
0852u	3.58	45	-	21	9.5	7.1	45.3	0.019	6.70	0.16	61.1	24.9	5.6	4.4
1052u	3.00	75	5	57	10.6	26.5	0.9	0.000	0.33	0.00	77.3	3.4	3.2	5.3
1152u	2.27	59	-	27	14.0	13.3	-	0.022	10.24	0.22	88.9	3.8	4.2	0.0
1252a	13.50	57	8	51	27.0	27.2	20.9	0.004	2.40	0.21	90.9	2.4	2.5	0.6
1252b	10.25	53	5	57	24.5	32.8	4.6	0.001	2.68	0.12	90.0	5.0	2.0	1.2
135211	5 21	75	12	54	31.0	34.0	10.2	0.002	1 08	0.14	03.0	25	2.2	03

Tabla 3.2 Concentración de *n*-alcanos (ue, e^{-l} peso seco) y parámetros geoquímicos en *Patella ulvssiponensis aspera*

hidrocarburos impares por parte de esta especia de lapa. Sin embargo, el hecho de que muchos n-alcanos, especialmente los de cadena con número impar de átomos de carbono, sean biosintetizados en el medio ambiente marino por el fitoplancton y las

algas pelágicas y bentónicas, las fluctuaciones en este tipo de aporte o en la propia biosíntesis de tales compuestos por el organismo en estudio puede influir en la concentración de *n*-alcanos [131,132,152].

Fig. 3.2.- Cromatograma representativo de la fracción de alcanos en Patella ulyssiponensis aspera

Dado que las concentraciones de hidrocarburos alifáticos por sí solo no suministran una información directa en lo que se refiere a la contaminación de los especímenes analizados, se han calculado como indicadores de dicha contaminación un gran número de parámetros que se muestran en la Tabla 3.2.

En la *P. ulyssiponensis* se observa que la relación Pr/Fi se mantiene en valores relativamente uniformes en las cuatro estaciones de muestreo, con valores medios del orden de 0.20, lo que parece indicar una contaminación muy uniforme y por el mismo tipo de contaminante en todas ellas y que sólo esporádicamente se presentan inyecciones de materiales más frescos indicados por los valores de Pr/Fi > 1. Por su parte, la práctica uniformidad de los valores de las relaciones Pr/C17 y Fi/C18 parece indicar que los aportes contaminantes no han sido biodegradados.

Fig. 3.3.- Gráfico "box-and-wiskers" para Σ Alc en las cuatro estaciones de muestreo

Además, los hidrocarburos que se estima son producidos por el fitoplancton (PL-1 = n- $C_{15} + n$ - $C_{17} + n$ - C_{19}) se encuentran presentes en niveles elevados en los especímenes de *P. ulyssiponensis* pudiendo alcanzar niveles de hasta el 94% con respecto al total de *n*-alcanos. Los *n*-alcanos que se estima proceden de las plantas terrestres (TERR = n- C_{25} + n- C_{27} + n- C_{29}) sólo llegan a suponer el 2-37% del total.

El indicador de contaminación por petróleo para hidrocarburos de cadena corta (Pe-Lo = n-C₁₆ + n-C₁₈ + n-C₂₀ + fitano) presenta valores ligeramente más bajos (0.6-5.2%) que el indicador para alcanos de cadena larga (Pe-Hi = n-C₂₄ + n-C₂₆ + n-C₂₈ + n-C₃₀), que supone un 0-38% con un valor medio de 7.0 lo cual sugiere que la principal fuente de contaminación petrogénica tiene su origen en un petróleo que ha sufrido algún tipo de degradación no biológica.

La relación entre los componentes terrígenos (TERR) y los componentes petrogénicos de elevado peso molecular (Pe-Hi) en las muestras analizadas, es indicativa de una identificación clara de contaminación petrogénica en los puntos de muestreo [130], tal como puede verse en la Tabla. 3.3, el índice TERR está fuertemente correlacionado con el índice PE-Hi ($r^2 = 0.9268$) con una pendiente muy próxima a la unidad.

Estación	Total	1	2	3	4
Pendiente	0.8840	1.0098	0.9690	0.8578	0.8304
Ordenada	0.2270	0.1987	0.2280	0.0212	0.2674
r^2	0.9268	0.8644	0.9097	0.7920	0.9837
n	54	18	17	7	12

 Tabla 3.3

 Correlaciones [Terr] vs [Pe-Hi] en P. ulyssiponensis aspera

La relación n-C₂₉/n-C₂₂ se ha calculado para establecer la contribución relativa de los residuos de aceites dominados por n-C₂₂ con respecto a la distribución total de n-alcanos. Esta relación es baja en lugares contaminados, sin embargo, las variaciones que presentan las muestras analizadas por nosotros no ayudan a realizar una discriminación correcta a pesar de que estas variaciones puedan indicar la presencia de aportes esporádicos durante el período de muestreo, Tabla 3.2.

La relación $\Sigma Alc/n$ -C₁₆ presenta una gran variabilidad, 21-120, en las muestras analizadas aunque los valores medios no son significativamente diferentes entre las estaciones, Tabla 3.2. Las relaciones más elevadas indican la presencia de hidrocarburos biogénicos. Sin embargo, una mayor evidencia de una posible contaminación petrogénica viene indicada por la baja relación $\Sigma Alc/n$ -C₁₆ en la generalidad de las muestras analizadas y la presencia de fitano y *n*-C₁₆ en las muestras de lapas puesto que ninguno de estos compuestos se encuentran como biolípidos en muestras que no han sido contaminadas por residuos de petróleo y sus derivados [132].

Sin embargo, los valores del Índice de Preferencia de Carbono (CPI= $\Sigma Alc_{impar}/\Sigma Alc_{par}$) que se incluyen en la Tabla 3.2 son más relevantes en este sentido. Así, puede observarse que mientras el CPIHi (n > 20) permanece más o menos constante y próximo a la unidad en las cuatro estaciones de muestreo, las variaciones temporales de CPI-Lo (n < 20) son mucho más amplias y presentan valores mucho mayores que la unidad en las cuatro estaciones de muestreo lo cual parece ser debido a una acumulación anormal de alcanos impares con número inferior a 20 átomos de carbono. Sin embargo, los índices de preferencia de carbono en los rangos C₁₄-C₂₀ y C₂₁-C₃₀ cumplen la regla general de predominancia de hidrocarburos impares en los sistemas bióticos marinos [132].

Teniendo en cuenta la situación geográfica de las zonas de muestreo en estudio, puede suponerse la presencia de un nivel casi constante de contaminación petrogénica y la existencia de nuevos aportes petrogénicos desde el exterior ya que aquellos incrementos no son estacionales

Por otra parte, se ha podido comprobar también en este caso que los valores de CPI-Lo son más elevados que los correspondientes a los crudos Irán (0.79-0.85) y Arabia (0.77-0.98), los cuales son los más comúnmente transportados cerca de las costas de las Islas Canarias. En el caso del CPI-Hi el comportamiento es el opuesto al CPI-Lo. Este hecho puede ser explicado por la diferente selectividad de la membrana superficial de los especímenes biológicos, más favorable a los *n*-alcanos de menor peso molecular [133]. Sin embargo, estos valores también pueden ser explicados si la principal fuente de contaminación petrogénica fueran crudos degradados y/o sus derivados.

Todas las muestras muestran la presencia del alcano ramificado fitano, no así del pristano, el cual, por otra parte, en caso de estar presente se encuentra en concentraciones muy inferiores. Tampoco en el caso de la P. ulyssiponensis ha podido ponerse de manifiesto la presencia, como picos dobles resueltos en los cromatogramas realizados en la columna de baja polaridad utilizada, de los diasteroisómeros fósiles y biogénicos de los isoprenoides acíclicos del pristano y fitano [134-136]. Estos dobletes no fueron observados con claridad en el pristano en las muestras de P. ulyssiponensis analizadas por lo que se puede estimar la presencia únicamente de pristano petrogénico ya que la presencia en la biota de pristano biogénico es sumamente extraña. Sin embargo, a pesar de las correlaciones relativamente elevadas entre el pristano y el fitano en las estaciones 2 ($r^2 = 0.7385$) y 4 ($r^2 = 0.3513$) lo cual indicaría su común origen fósil, los bajos coeficientes de correlación que se calculan para las estaciones 1 ($r^2 = 0.3028$) v 3 ($r^2 = 0.0752$) puede indicar la presencia de pristano biogénico tal como ha sido descrito por Blumer et al. [137,153] para el zooplancton. Aún en la actualidad la presencia de pristano en los tejidos de las lapas no está claro y puede, en principio, ser atribuido a la actividad microbiana en las algas y partículas vegetales que les sirven de

Algunas de las conclusiones a que se han llegado anteriormente quedan confirmadas con los resultados obtenidos en el Análisis de Correlaciones llevado a cabo con las 19 variables analíticas y el total de *n*-alcanos (Σ Alc) cuyos coeficientes de correlación se encuentran agrupados en la Tabla 3.4 en la que, además, se señalan aquellos casos en que la significación de la correspondiente correlación es del orden de $P \ge 95\%$. En ningún caso se han observado correlaciones entre las correspondientes concentraciones y las variables biométricas de los especímenes analizados.

En dicha tabla 3.4 puede observarse un comportamiento claramente diferenciado entre los hidrocarburos alifáticos del n-C₁₄ al n-C₁₉ altamente correlacionados entre sí y con pristano y fitano, con coeficientes de correlación que oscilan entre 0.31 y 0.83 y que, además, se encuentran altamente correlacionados con Σ Alc, y los n-alcanos C₂₂ al C₃₀ también altamente correlacionados entre sí pero y con Σ Alc pero que no se encuentran correlacionados con aquellos dos isoprenoides. De este comportamiento se apartan n-C₂₀ y n-C₂₁ que no se encuentran correlacionados con los restantes hidrocarburos determinados, salvo el n-C₂₀ con el n-C₂₂, ni tampoco con Σ Alc ni con los isoprenoides.

Este comportamiento sólo cabría explicarlo si se supone que teniendo ambos grupos de hidrocarburos, incluyendo pristano y fitano, el mismo origen petrogénico dada su alta correlación con Σ Alc, cada uno de ellos haya sufrido un proceso de "envejecimiento" diferente en el medio ambiente y/o metabolización-acumulación en los propios especímenes de *P. ulyssiponensis*. El mayor coeficiente de correlación, 0.7935, que presenta *n*-C₁₇ con Σ Alc podría estar indicando no sólo su mayor aportación a este último parámetro sino, también, su doble procedencia, petrogénica y alimenticia.

Este comportamiento es muy diferente que el encontrado, no sólo, en los especímenes de *P. piperata* y *P. candei crenata*, sino, también con el encontrado para especímenes de *P. ulyssiponensis* procedente de la costa de la isla de Tenerife [154].

	C14	C15	C16	C17	C18	C19	C20	C21	C22	C23	C24	C25	C26	C27	C28	C29	C30	Pr	Fi	S Alc
C14	1.0000	0.4842	0.8318	0.5679	0.6388	0.6783	-0.1324	-0.0716	0.1551	0.1724	-0.0262	0.0097	-0.1516	0.2124	0.0262	0.0736	0.0406	0.7042	0.7110	0.5175
C15		1.0000	0.6820	0.7868	0.3122	0.3974	-0.0701	0.0650	0.1658	-0.1151	-0.1226	-0.0965	-0.1818	-0.0618	-0.1724	-0.0886	-0.1450	0.1391	0.2734	0.6606
C16			1.0000	0.8156	0.6505	0.6310	-0.0482	0.0795	0.1958	0.0112	-0.1145	0.0262	-0.1393	0.2118	-0.0017	0.0458	-0.0290	0.6011	0.6122	0.7058
C17				1.0000	0.5018	0.5501	0.0011	0.0070	0.2033	-0.0505	-0.0975	0.0053	-0.1433	0.0877	-0.0448	-0.0079	-0.0805	0.3046	0.4922	0.7935
C18					1.0000	0.8763	0.4995	-0.0166	0.5476	0.1974	0.0249	0.0509	-0.0909	0.1368	0.0558	0.0765	0.0139	0.7845	0.3557	0.4358
C19						1.0000	0.4851	-0.0498	0.5728	0.1355	0.0151	0.0740	-0.0952	0.1137	0.0451	0.0517	0.0046	0.6854	0.4288	0.4767
C20							1.0000	-0.0388	0.7102	0.1460	0.0693	0.0214	0.0119	-0.1134	-0.0094	-0.0320	-0.0876	0.1654	-0.2566	-0.0335
C21								1.0000	0.0882	-0.0966	-0.0409	0.0329	0.0308	0.1139	0.0175	0.0403	0.1145	-0.0954	0.0222	0.0972
C22									1.0000	0.2949	0.2973	0.3592	0.2832	0.2025	0.3004	0.3139	0.2840	0.2610	-0.1624	0.3650
C23										1.0000	0.1746	0.3124	0.3076	0.2819	0.3979	0.4507	0.5065	0.1841	-0.0906	0.1873
C24											1.0000	0.5166	0.6242	0.3998	0.5455	0.4963	0.4567	-0.0839	-0.1523	0.2465
C 25												1.0000	0.9566	0.8433	0.9759	0.9443	0.8627	0.1597	-0.1023	0.5696
C26													1.0000	0.7704	0.9540	0.9258	0.8469	0.0044	-0.2349	0.4425
C 27														1.0000	0.8487	0.8408	0.8193	0.3042	0.1408	0.5978
C28															1.0000	0.9766	0.8930	0.2068	-0.0750	0.5290
C29																1.0000	0.9259	0.2258	-0.0197	0.5703
C30																	1.0000	0.1586	-0.0065	0.4855
Pr																		1.0000	0.4742	0.3533
Fi																			1.0000	0.3524
6 Alc																				1.0000

Tabla 3.4Matriz de Correlaciones (n=51)

Hidrocarburos Aromáticos Policíclicos

Los valores medios de las concentraciones de hidrocarburos aromáticos policíclicos (PAHs) se encuentran agrupados en la Tabla 3.5 y en la Fig. 3.4 se encuentran los diagramas de distribución de los valores medios de tales concentraciones en cada una de las estaciones de muestreo. En el Anexo III se encuentran detallados los resultados obtenidos en cada una de las muestras analizadas.

De forma general se observa que los contenidos de PAHs son francamente más pequeños cuando se comparan con los correspondientes a los hidrocarburos alifáticos en las mismas muestras.

Los perfiles de distribución de los PAHs indican, como cabría esperar, que el contenido total (Σ PAH) varía tanto entre las estaciones como entre las propias fechas de muestreo en una gama de 19-1.076 ng.g⁻¹ y un valor medio de 225 ng.g⁻¹, no detectándose en todos los casos la serie completa de los dieciocho compuestos presentes en las mezclas de calibración, siendo de destacar el hecho de que en prácticamente todas las muestras se detectan cantidades muy elevadas de naftaleno que pueden llegar a ser del orden del 76% de Σ PAH (0-76%) con un valor medio de 28%.

Por otra parte, si por las razones expuestas con anterioridad, comparamos los valores de las medianas correspondientes a las cuatro estaciones de muestreo, Tabla 3.5 y Fig. 3.4, puede observarse que el valor más alto lo presentan las muestras recolectadas en la

	A1	A2	A3	A4	A5	A6	A7	A8	A9	A10	A11	A12	A13	A14	A15	A16	A17	A18
									Total	(n=52)								
Mínimo	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0
Máximo	453	60	21	39	39	50	23	42	86	202	56	317	92	54	78	248	28	452
Media	73	6	2	5	7	9	4	4	7	11	5	16	10	10	25	14	4	10
Mediana	29	0	0	3	2	8	4	3	4	4	2	6	6	8	22	2	2	0
Desv. Est.	111	12	4	8	11	9	4	8	13	28	11	44	14	11	19	37	5	63
								Ε	stación	1 (n=1	8)							
Mínimo	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1	0	0	0
Máximo	434	46	7	17	9	21	13	6	27	30	56	317	92	54	71	248	9	452
Media	58	6	1	3	2	7	4	2	6	6	7	28	14	11	25	20	2	26
Mediana	25	0	0	3	0	8	4	2	3	3	1	4	7	9	21	1	2	0
Desv. Est.	113	12	2	4	3	5	3	2	7	8	15	74	22	13	20	58	2	106
								Ε	stación	2 (n=1	6)							
Mínimo	0	0	0	0	0	0	0	0	0	0	0	0	1	0	2	0	0	0
Máximo	282	42	11	30	38	22	23	13	86	15	46	35	33	41	68	43	12	7
Media	56	6	2	5	6	9	5	3	9	5	7	10	11	12	26	8	3	1
Mediana	34	0	0	4	4	8	3	3	2	3	2	6	6	8	26	3	2	0
Desv. Est.	79	12	4	7	10	7	6	3	21	5	12	9	10	12	18	11	4	2
								I	Estación	n 3 (n=0	5)							
Mínimo	18	0	0	0	0	0	0	0	1	6	0	2	4	3	9	2	1	0
Máximo	453	13	14	4	6	9	4	2	9	37	4	33	26	29	78	98	8	2
Media	103	5	3	1	1	2	2	1	5	17	2	10	10	13	35	28	2	1
Mediana	36	5	1	0	0	1	2	1	5	9	2	7	8	11	32	17	1	0
Desv. Est.	172	5	5	2	2	4	2	1	3	14	1	11	8	9	23	36	3	1
								Ε	stación	4 (n=1	2)							
Mínimo	12	0	0	0	0	0	0	0	3	0	0	2	1	0	7	0	0	0
Máximo	428	60	21	39	39	50	12	42	28	202	6	38	17	18	70	38	28	13
Media	104	8	4	10	17	17	5	11	8	22	2	12	6	6	21	7	7	2
Mediana	97	0	0	7	15	15	5	4	5	3	2	11	5	3	15	0	3	0
Desv. Est.	116	17	6	13	15	13	4	15	7	57	2	10	4	6	18	12	9	4

Tabla 3.5Resumen de parámetros estadísticos (ng.g⁻¹ peso seco)

Fig. 3.4.- Perfiles de PAHs en Patella ulyssiponensis en las cuatro estaciones de muestreo

Código	ΣPAH	PAH-Lo	PAH-Hi	Fen/Ant	Flu/Pir	% Naft		Σ PAH	PAH-Lo	PAH-Hi	Fen/Ant	Flu/Pir	% Naft
		Estación	ı de Mues	streo 1						Total (n	=52)		
0112a	48	7.7	21.2	1.5	-	15	Mínimo	19	5.2	1.4	0.0	0.0	0
0112b	159	91.3	28.8	1.8	-	13	Máximo	1076	406.5	868.8	4.3	4.0	76
0212a	103	21.7	64.3	2.1	1.6	9	Media	225	53.3	73.8	1.9	0.9	28
0212b	1007	118.0	868.8	2.5	0.3	1	Mediana	155	30.8	51.8	1.9	0.5	23
0212c	120	26.1	54.6	1.7	2.1	29	Desv. Est.	219	65.8	120.4	1.1	0.9	20
0312a	118	60.6	19.1	1.9	0.4	11							
0312b	191	22.8	78.0	2.4	-	9				E1 (n=	18)		
0612u	156	85.8	18.3	1.6	0.9	18							
0712u	109	26.5	39.7	1.6	0.9	25	Mínimo	19	5.2	1.4	0.0	0.2	0
0812a	32	20.9	10.8	-	-	0	Máximo	1076	406.5	868.8	2.6	4.0	66
0812b	81	29.8	9.0	2.6	0.5	48	Media	227	57.3	96.8	1.6	1.1	25
1012u	425	34.0	100.9	1.4	0.2	66	Mediana	119	26.1	47.2	1.7	0.9	21
1112u	1076	406.5	188.5	1.6	4.0	40	Desv. Est.	309	92.7	197.9	0.8	1.0	19
1212a	65	13.9	18.5	-	0.4	50							
1212b	19	5.2	1.4	-	-	52				E2(n=	16)		
1312u	118	26.2	58.0	2.1	0.2	23							
1412a	135	22.3	70.6	0.0	1.4	23	Mínimo	61	8.0	11.9	0.0	0.0	0
1412b	128	11.5	92.2	0.0	1.0	18	Máximo	400	108.8	160.1	4.2	3.6	71
							Media	184	44.7	60.5	1.8	1.0	26
		Estación	ı de Mues	streo 2			Mediana	141	31.5	60.4	1.8	0.6	23
							Desv. Est.	102	32.2	42.6	1.1	1.1	22
0132u	152	38.4	81.4	1.9	0.3	9					~.		
0332a	298	93.9	72.3	1.7	1.9	23				E3 (n=	=6)		
0332b	81	28.5	33.4	1.9	1.1	4					0.0		-
0332c	279	99.5	135.4	-	0.4	4	Minimo	93	14.0	29.3	0.0	0.2	7
0432u	115	31.4	37.6	20	-	40	Máximo	598	82.3	150.7	2.3	0.6	76
0532u	270	24.6	61.4 1.0.1	2.0	0.0	5	Media	244	38.8	90.2	0.9	0.3	31
0632u	270	/8.8	160.1	1.5	0.2	20	Mediana	189	27.4	91.8	0.8	0.3	26
0732a	124	27.0	59.4 22.7	1.9	-	30	Desv. Est.	180	27.5	50.1	1.0	0.2	25
0/320	129	52.7	22.1	1.8	3.0	23				EA(m-	72)		
0032u	160	21.6	25.5	1.0	-	15				E4(n=	12)		
1042m	241	10 2	100.4	1.0	1.0	43	Minima	60	12.6	15 /	1.4	0.1	14
1042u 1142u	400	10.2 31.8	62.5	1.3	0.0	02	Mínimo	8/3	263.7	13.4	1.4	0.1	14 62
1242u	108	28.6	15.8	12	0.1	37	Media	269	68.4	52.0	28	0.8	33
1242u 1342u	61	13.0	26.0	23	0.1	20	Mediana	207	44 1	12.0	2.0	0.0	28
1342u 1442a	120	8.0	63.2	0.0	-	33	Desv Est	204	70.9	33.2	0.9	0.4	18
1442u	120		03.2	0.0		55	Desv. Est.	204	10.9	55.2	0.9	0.0	10
		Estación	ı de Mues	streo 3									
1172u	598	30.3	91.7	2.3	0.6	76							
1272a	154	82.3	29.3	0.5	0.2	22							
1372u	197	18.6	139.6	-	0.4	12							
1472a	93	14.0	37.8	0.0	0.2	42							
1472b	180	24.5	91.9	-	0.4	29							
1472u	240	62.9	150.7	1.0	0.2	1							
		Estación	ı de Mues	streo 4									
0352u	155	41.7	15.5	4.3	2.6	14							
0452u	287	73.1	42.1	3.2	0.4	30							
0552a	409	115.0	116.3	4.1	-	26							
0552b	128	44.1	15.4	1.4	1.4	18							
0652u	284	60.1	28.0	3.5	-	43							
0752u	197	61.9	97.1	-	0.3	14							
0852u	210	34.0	26.6	2.7	1.0	52							
1052u	68	17.2	33.9	-	1.7	17							
1152u	843	263.7	49.0	2.3	0.1	51							
1252a	234	40.5	66.2	1.5	0.4	48							
1252b	295	29.8	20.0	3.6	-	62							
1352u	117	12.6	77.7	2.5	-	16							

 Tabla 3.6

 Parámetros calculados para la Patella ulyssiponensis

estación nº 4 seguida de la estación nº 3, nº 1 y nº 2. Si recordamos que la estación nº 4 se encuentra al S-SE de Fuerteventura, ello confirmaría la anterior deducción de la posible influencia del mayor tráfico marítimo en el canal Fuerteventura-Noroeste de Africa y/o del aeropuerto vecino. De igual forma la relativamente mayor contaminación de las muestras de la estación nº 3 estaría explicada por su posición al sur del emisario submarino de La Caleta del Cotillo. En el caso de las dos muestras más altamente contaminadas por PAHs en la estación 1 (0212b \equiv 1.007ng.g⁻¹, 1112 \equiv 1.076 ng.g⁻¹), valores que discrepan de los restantes determinados en las muestras procedentes de dicha estación, sólo cabría la explicación de que pudieran proceder de inyecciones puntuales ¿antropogénicas? ya que no coinciden en lo referente a mayores concentraciones de *n*-alcanos, Tabla 3.2.

Fig. 3.5.- Gráfico "box-and-wiskers" para ΣPAH en las cuatro estaciones de muestreo

El gráfico "box-and-wiskers" de la Fig. 3.5 señala la presencia de datos "anómalos", con respecto al comportamiento general, en las estaciones 1, 3 y 4 y un comportamiento claramente diferenciado de los especímenes recolectados en la estación nº 4, hechos que confirmarían lo anteriormente expuesto sobre la posible contaminación petrogénica de las estaciones de muestreo.

Tal como puede verse en la Tabla 3.5 aunque los especímenes de P. ulyssiponensis

contienen una amplia variedad de PAHs, aquellos con 4, 5 y 6 anillos (logK_{ow} \geq 4.50, [155]) pueden llegar a ser del orden del 86% del total como valor medio. Si tomamos logK_{ow} = 4.50 como límite arbitrario del coeficiente de partición octanol-agua para este tipo de compuestos, la Tabla 3.6 permite observar que, en general, el contenido de PAHs con 1, 2 y tres anillos (PAH-Lo = A6+A7+A9+A10+A11+A12) es casi siempre menor, del orden de 1/3, que el contenido en hidrocarburos con 4 y más anillos (PAH-Hi = A13+....+A18)

En el caso de la *P. ulyssiponensis* la Tabla 3.6 permite observar que, de forma general, la relación Fen/Ant se mantiene siempre muy por debajo del valor 10, con un valor medio 1.9, en tanto que la relación Flu/Pir siempre es menor que la unidad. Ello parece indicar que los hidrocarburo aromáticos policíclicos presentes en las muestras analizadas son predominantemente de procedencia petrógénica si bien no puede descartarse una cierta componente antropogénica (pirogénica) en los mismos.

Al estudiar los resultados del Análisis de Correlaciones llevado a cabo sobre las 18 variables analíticas y Σ PAH que se presentan en la Tabla 3.7 puede observarse que, en primer lugar, el contenido en naftaleno de las muestras se encuentra correlacionado con un alto nivel de confianza con las concentraciones de 4,5-metilenofenantreno, pireno, criseno, y benzo[*b*]fluoranteno, lo que podría estar indicando su relación metabólica con ellos. Por otra parte, es de destacar que las concentraciones de los PAHs con tres anillos bencénicos, acenaftileno, acenafteno, fluoreno, fenantreno y antraceno, se encuentran significativamente correlacionados entre sí. Igualmente los PAHs de mayor peso molecular con 4 o más anillos en sus moléculas también se encuentran significativamente correlacionados entre sí. Grimalt y Albaigés [156] en sus estudios sobre la contaminación del Mar Mediterráneo por hidrocarburos aromáticos policíclicos, indican que su principal fuente es el transporte asociados a partículas atmosféricas y que son los hidrocarburos con menor peso molecular los presentes en dichas partículas. Por ello cabría explicar aquellos dos grupos de PAHs intercorrelacionados como de origen pirolítico a los componentes del primer grupo y de origen petrogénico a los del segundo.

También aquí se encuentra un comportamiento claramente diferenciado con respecto de los especímenes de *P. ulyssiponensis* procedentes de las costas de la isla de Tenerife [154].

Tabla 3.7Matriz de Correlaciones (n=52)

	A1	A2	A3	A4	A5	A6	A7	A8	A9	A10	A11	A12	A13	A14	A15	A16	A17	A18	S PAH
	1 0005			0.005		0.4.55	0.0==-	0.05	0.4.50	0.1075	0.0.		0.40.4		0.010-	0.077	0.1.40-	0.050	
Al	1.0000	0.3383	-0.0434	0.0876	0.1111	0.1578	0.0779	0.3749	0.1583	0.4278	0.0799	0.4232	0.4064	-0.0114	0.2127	-0.0535	0.1605	-0.0724	0.7298
A2		1.0000	-0.0103	0.0413	-0.0697	0.0308	0.3392	0.4025	0.6169	0.5825	0.1320	0.1822	0.1944	-0.0784	-0.0523	-0.0312	0.1789	-0.0655	0.3884
A3			1.0000	-0.0799	0.2787	0.3131	0.0110	0.0679	-0.0395	-0.0879	-0.0868	0.0803	0.0708	0.0822	0.3558	-0.0638	0.2992	-0.0788	0.0354
A4				1.0000	0.5157	0.3994	0.2884	0.1340	0.0482	-0.1015	0.0570	0.0629	-0.0073	-0.1394	-0.0928	-0.0540	0.0280	-0.0095	0.1137
A5					1.0000	0.6973	0.3403	0.1875	0.0179	-0.1236	-0.0401	0.0584	-0.0952	-0.1567	-0.0283	-0.1355	0.1913	-0.0486	0.1152
A6						1.0000	0.4308	0.2073	0.0572	0.0386	-0.0040	0.1148	-0.0066	-0.0541	0.1417	-0.1200	0.4699	0.0222	0.2331
A7							1.0000	0.2648	0.7466	0.0285	-0.0387	0.1076	0.0284	-0.1663	-0.0272	-0.0754	0.1810	-0.0092	0.1805
A8								1.0000	0.3522	0.6348	-0.0223	0.0241	0.0272	-0.2021	-0.1576	-0.0954	0.2367	-0.0170	0.3488
A9									1.0000	0.2223	0.0175	0.2172	0.1290	-0.2009	-0.0784	-0.0570	0.2092	-0.0537	0.2503
A10										1.0000	0.0091	-0.0079	0.0732	-0.1018	-0.1026	-0.0094	0.2708	0.0044	0.4027
A11											1.0000	0.4990	0.7533	0.7552	0.5400	0.5790	0.1179	0.6421	0.6170
A12												1.0000	0.8370	0.1450	0.3197	0.0628	0.1911	0.0654	0.6027
A13													1.0000	0.5721	0.6053	0.2872	0.1947	0.3061	0.7270
A14														1.0000	0.8070	0.5472	0.2230	0.5830	0.4306
A15															1.0000	0.3748	0.3903	0.3424	0.5188
A16																1.0000	-0.0973	0.8887	0.4879
A17																	1.0000	0.0059	0.2996
A18																		1.0000	0.5136
S PAH																			1.0000

Bifenilos Policlorados

Los resultados del estudio de los contenidos en bifenilos policlorados (PCBs) de las muestras analizadas de la especie *P. ulyssiponensis*, Tabla 3.8, no difieren en gran medida de los descritos para los especímenes de *P. pipereta*, como queda también visualizado en la Fig. 3.6 en la que se presentan los perfiles de concentración medias en las diferentes estaciones de muestreo.

Los PCBs identificados en las muestras se han agrupado, en primer lugar, atendiendo a su grado de cloración, Tabla 3.9. Los valores medios para cada estación se presentan en la Fig. 3.7, en la que se observa una tendencia similar a la ya descrita para la *P. piperata*, en las estaciones de muestreo nº 1 y 2, en las que el grupo de congéneres triclorados representa el grupo mayoritario, en concentraciones mucho mayores que los hexa- > penta- > tetra- > hepta- > octa-clorados. Sin embargo, en la estación de muestreo nº 3, la proporción de congéneres tetra-clorados aumenta hasta equipararse a la de los hexa-, perdiendo importancia éstos y los congéneres penta-clorados, siendo por tanto los tri-clorados los mayoritarios >> tetra- \approx hexa- > penta- > tetra- > tetra- > hepta- > octa-. En la Estación 4 son los congéneres hexa-clorados los mayoritarios > tri- > penta- > tetra- > hepta- > octa-. En la Lotalidad de las Estaciones de Muestreo; sin embargo, en algunas muestras la importancia relativa de congéneres hepta-clorados aumenta hasta alcanzar valores del 21.9, 17.3 y 22.0% en las Estaciones 1, 2 y 4 respectivamente. Del mismo modo, a pesar de la presencia mayoritaria de los congéneres tri-clorados en las Estaciones 1, 2 y

	18	31	44	52	54	87	101	118	121	129	137	138	143	153	154	159	170	180	182	185	187	199
											Total (n=54)										
Mínimo Máximo Media Mediana Desv. Est.	0 20422 1258 442 2906	0 5335 548 198 941	0 624 139 106 121	0 344 59 0 95	0 2384 226 0 392	0 1285 81 0 229	0 1209 107 66 192	0 6975 239 38 968	0 1323 184 151 210	0 1447 145 84 228	0 26418 803 119 3691	0 193 50 38 51	0 772 24 0 112	0 4956 203 57 672	0 964 122 27 181	0 348 10 0 48	0 313 48 27 67	0 316 44 17 65	$ \begin{array}{c} 0 \\ 230 \\ 24 \\ 0 \\ 43 \end{array} $	0 320 15 0 49	0 115 7 0 21	0 152 10 0 29
										E	stacion	I (n=1)	8)									
Mínimo Máximo Media Mediana Desv. Est.	0 20422 1722 403 4732	0 789 247 241 253	0 624 137 92 147	0 223 22 0 61	0 758 143 0 250	0 684 47 0 160	0 240 67 66 65	0 6975 493 49 1641	0 351 119 102 100	0 436 94 48 115	18 7440 593 113 1721	0 193 44 36 52	0 50 3 0 12	0 486 95 53 117	0 386 97 28 127	0 20 1 0 5	0 192 34 0 53	0 316 47 20 80	0 230 31 12 56	0 320 23 0 76	0 38 5 0 11	0 152 17 0 39
										Ε	stación	2 (n=1	7)									
Mínimo Máximo Media Mediana Desv. Est.	0 4228 914 357 1119	0 5335 877 383 1353	0 247 89 79 75	0 316 92 58 116	0 2384 242 0 579	0 773 108 27 219	0 709 116 75 181	0 642 90 33 169	0 685 206 165 178	0 1447 193 83 340	0 218 119 108 70	0 138 45 39 42	0 772 59 0 192	0 4956 398 77 1179	0 515 133 19 177	0 74 7 0 19	0 199 56 29 69	0 199 48 24 60	0 94 12 0 25	0 96 13 0 29	0 86 9 0 23	0 121 7 0 29
										I	Estación	3 (n=2)	7)									
Mínimo Máximo Media Mediana Desv. Est.	281 6292 1813 1072 2164	0 102 33 0 43	76 261 172 151 69	0 160 35 0 64	0 874 296 331 327	0 161 47 0 70	0 197 56 48 71	0 54 13 0 23	0 314 146 173 112	0 270 95 49 94	59 160 89 68 39	0 77 19 0 29	0 185 26 0 70	0 391 64 0 146	0 964 253 216 335	0 32 6 0 12	0 60 28 30 25	0 14 4 0 7	0 26 4 0 10	0 10 1 0 4	0 115 20 0 43	0 28 6 0 11
										Ε	stación	4 (n=1	2)									
Mínimo Máximo Media Mediana	0 2682 726 444	0 2973 835 540	0 430 191 162	0 344 81 35	0 664 288 296	0 1285 113 0	0 1209 183 96	0 1329 202 69	0 1323 274 174	0 816 183 134	57 26418 2505 271	0 181 84 76	0 68 6 0	0 543 169 119	0 304 67 0	0 348 30 0	0 313 68 41	0 164 56 41	0 145 43 33	0 116 14 0	0 24 2 0	0 71 6 0
Desv. Est.	820	964	139	107	280	369	333	374	354	215	7536	60	20	179	100	100	94	61	47	34	7	21

Tabla 3.8Resumen de parámetros estadísticos (ng.kg⁻¹ peso seco)

Fig. 3.6.- Perfiles de PCBs en Patella ulyssiponensis en las cuatro estaciones de muestreo

Tabla 3.	.9 Conte	nido tota	l (ng.kg ⁻¹), is	ómero may	oritario	O (PCB	M) y pre	esencia	relativa	ı de PCE	Bs		
				% PC	CBs -or	to-clora	ados		%	Isómer	os de P	CBs	
Código	Σ PCBs	PCB M	% PCB M	mono-	di-	tri-	tetra-	tri-	tetra-	penta-	hexa-	hepta-	octa-
				Esta	ición d	e Mues	treo 1						
0112a	561	31	32.1	32.1	54.5	13.4	0.0	45.8	4.4	15.4	28.8	5.7	0.0
0112b	1539	31	22.3	22.3	65.4	2.4	9.9	39.5	4.5	12.1	12.0	21.9	9.9
0212a	1537	31	26.7	32.3	57.8	9.8	0.0	37.7	5.7	28.8	25.7	2.0	0.0
0212b	1123	31	30.7	36.8	57.4	1.7	4.0	30.7	0.0	28.5	25.1	11.7	4.0
0212c	1797	31	43.9	51.4	46.4	2.1	0.0	43.9	7.2	13.9	24.4	10.5	0.0
0312a	24102	18	84.7	2.7	95.7	1.4	0.3	86.9	1.3	1.1	7.7	2.7	0.3
0312b	2432	31	20.8	22.8	71.3	4.3	1.6	38.4	11.1	11.4	22.6	15.0	1.6
0612u	3096	118	38.6	56.9	40.3	2.9	0.0	44.3	2.2	42.1	8.5	2.9	0.0
0712u	1112	18	34.0	0.0	72.3	0.0	27.7	34.0	35.5	8.6	20.0	1.9	0.0
0812a	2424	18	26.6	17.1	70.0	12.9	0.0	43.8	13.4	9.9	32.9	0.0	0.0
0812b	8968	118	77.8	81.1	14.9	4.0	0.0	5.1	1.2	81.1	8.1	4.5	0.0
1012u	2402	54	31.6	2.8	48.7	16.9	31.6	15.0	31.6	22.4	27.8	3.3	0.0
1112u	2495	54	29.5	3.5	52.8	14.1	29.5	25.8	37.5	10.5	22.9	3.4	0.0
1212a	2647	18	43.3	0.0	80.6	10.3	9.0	43.3	17.3	10.4	29.0	0.0	0.0
12126	1873	18	55.1	2.7	78.0	0.0	19.3	55.1	22.6	13.4	8.3	0.7	0.0
1312u	1808	18	30.8 50.8	0.8	86.0	3.7	9.5	30.8	13.8	7.9 5 0	40.2	1.3	0.0
1412a	12455	10/	39.0 20.6	0.4	99.4 75.0	10.2	0.0	20.5	3.0 10.2	3.0 12.0	24.2	0.5	0.0
14120	1100	10	50.0	4.0	/3.0	19.5	1.0	50.0	16.5	15.0	54.5	2.2	1.0
				Esta	ición d	e Mues	treo 2						
0132u	1474	18	18.4	16.8	75.8	2.2	5.2	35.2	9.2	26.5	21.5	7.6	0.0
0332a	8723	153	56.8	12.9	84.0	3.1	0.0	16.0	3.6	13.7	63.7	3.0	0.0
0332b	891	153	36.7	21.6	76.1	2.4	0.0	21.6	0.0	25.6	47.7	5.1	0.0
0332c	3163	101	22.4	15.4	69.9	7.8	6.8	20.6	15.6	36.0	18.7	9.2	0.0
0432u	8703	31	31.9	39.3	49.7	4.7	6.3	49.2	11.7	11.3	22.3	5.5	0.0
0532u	1510	87	51.2	6.6	92.6	0.8	0.0	12.1	4.0	70.1	9.1	4.7	0.0
0632u	2820	54 21	46.4	11.0	30.4 45.2	5.5 6.2	46.4	19.8	50.5 15.5	14.0	13.1	2.5	0.0
0732a	2029 1226	31 19	55.5 46.5	27.0	43.5	0.5	9.5	30.3 72.5	15.5	5.5 0.1	20.1	2.4	0.0
07520	4250	10 31	40.5	41.2	75.0 46.5	0.0	0.0	60.0	2.5	9.1 7.6	14.2	0.8	0.0
0932u	2465	31	43.5	46.7	-0.5 53 3	0.0	0.0	51.5	8.8	22.3	17.4	0.0	0.0
1042u	2057	18	13.3	99	73.1	11.1	59	23.3	6.8	16.7	30.0	17.3	5.9
1142u	2558	18	73.1	8.7	86.6	4.7	0.0	78.9	2.1	0.0	18.1	1.0	0.0
1242u	931	31	41.1	44.7	44.4	0.0	10.9	49.9	17.7	16.8	15.6	0.0	0.0
1342u	2733	18	82.9	1.1	97.9	1.0	0.0	84.0	5.2	5.0	5.3	0.5	0.0
1442a	2212	18	34.1	0.8	71.6	27.6	0.0	34.1	6.0	9.1	45.4	5.4	0.0
1442b	676	18	46.1	0.0	94.0	6.0	0.0	46.1	7.8	24.4	15.7	6.0	0.0
				Esta	ición d	e Mues	treo 3						
1172u	4122	154	23.4	33	477	27.9	21.2	10.5	28.0	12.6	47 5	14	0.0
1272a	1583	18	28.7	0.0	77.3	0.0	22.7	28.7	35.1	26.4	8.0	0.0	1.8
1272b	2163	18	67.6	0.6	85.7	13.7	0.0	67.6	7.0	1.7	23.7	0.0	0.0
1372u	4362	18	64.1	2.6	80.8	5.5	11.0	65.5	17.0	3.1	13.1	1.3	0.0
1472a	718	18	39.1	0.0	90.3	7.4	2.3	39.1	10.5	21.3	16.8	10.0	2.3
1472b	2549	18	42.0	0.0	70.8	14.0	15.1	42.0	24.3	12.3	14.5	6.9	0.0
1472u	7107	18	88.5	1.5	98.0	0.5	0.0	89.5	3.2	3.6	3.1	0.6	0.0
				Esta	ición d	e Mues	treo 4						
0352u	757	121	16.8	0.0	95.2	4.8	0.0	0.0	7.7	16.8	53.4	22.0	0.0
0452u	7390	18	18.6	16.7	71.7	4.7	6.9	31.9	16.5	30.1	16.8	4.7	0.0
0552a	7087	31	24.7	43.4	53.4	3.2	0.0	46.1	2.9	21.9	19.2	9.9	0.0
0552b	6363	31	22.5	24.1	64.4	1.2	10.3	40.9	14.9	9.4	29.4	5.3	0.0
0652u	6454	31	46.1	46.1	45.6	0.0	8.4	56.7	14.5	20.5	8.3	0.0	0.0
0752u	5275	31	33.0	35.1	51.1	6.6	7.2	38.1	10.1	25.0	24.9	2.0	0.0
0852u	2186	54	22.5	0.0	74.3	0.0	25.7	18.1	30.6	6.6	30.1	11.3	3.3
1052u	27452	137	96.2	0.4	98.9	0.8	0.0	0.2	2.0	0.7	96.8	0.2	0.0
1152u	5611	18	47.8	18.5	68.6	1.1	11.8	60.8	17.3	12.7	7.2	2.0	0.0
1252a	1715	137	31.5	20.3	74.0	5.7	0.0	0.0	10.1	19.1	70.9	0.0	0.0
1252b	1500	137	31.4	24.3	74.1	1.6	0.0	31.4	7.5	17.4	40.6	3.0	0.0
1352u	1689	18	29.1	16.7	61.4	9.4	12.5	29.1	20.4	27.2	19.3	4.0	0.0

abla 3.9 Contenido total (ng.kg	(ξ^{-1}) , isómero mayoritario	(PCB M) y present	cia relativa de PCBs

3 existen muestras en las que la presencia relativa de tales congéneres desciende hasta el 5.1, 12.1 y 10.5%, respectivamente. Es común a la totalidad de las muestras analizadas la escasa presencia de congéneres octa-clorados, no superando en ninguno de los casos el 10%.

Fig. 3.7.- Distribución de los congéneres de PCB atendiendo al grado de cloración

En lo referente al estudio de los congéneres en función del grado de sustitución en posiciones *orto* del anillo bifenilo, Tabla 3.9, se observan dos tendencias claramente diferenciadas. Por una parte, las Estaciones 1, 2 y 4 presentan un contenido medio elevado de congéneres di-*orto*-clorados (\approx 80%) >> mono- > tri- \approx tetra- y, por otra, se observa en la Estación 3 que la presencia de congéneres mono-*orto*-clorados es baja (<3.3%) o nula en el conjunto de las muestras analizadas aumentando, en cambio, la proporción de congéneres di-*orto*-clorados y manteniéndose prácticamente constantes las proporciones relativas de los tri- y tetra-*orto*-clorados.

Este hecho también se ve reflejado en cierta medida en lo que se refiere a la presencia relativa del congénere mayoritario. En la Estación3, con la única excepción del congénere 154 que aparece como mayoritario en una de las muestras, es el congénere di-*orto*-clorado 18 el mayoritario en las restantes, con una concentración media del 55%, y una gama de valores entre 18.6 y 88.5%.

En el resto de las Estaciones de Muestreo se alternan principalmente como congéneres mayoritarios, no debe olvidarse el PCB-18, que aparece en la totalidad de las estaciones, el congénere 31 (mono-*orto*-clorado), el 54 (tetra-*orto*-) en la Estación 1, el 153 (di-*orto*-) en la Estación 2, y el 137 (di-*orto*-) en la Estación 4.

Cabe destacar que de los 5 congéneres tri-*orto*-clorados estudiados sólo el 154 aparece como mayoritario en la Estación 3 en la que, además, la proporción de congéneres tetra-*orto*-clorados es ligeramente superior que en el resto de las estaciones.

El estudio de los congéneres mayoritarios puede, en algunos casos, ofrecer una idea equivocada de la distribución relativa de los congéneres en cada una de las Estaciones. Es el caso, por ejemplo, de la Estación 1, en la que el PCB-31 aparece como mayoritario en un 33.3% de las muestras, segundo congénere en importancia después del 18 (38.8% de las muestras) y, sin embargo, es el cuarto congénere en importancia si atendemos a su presencia relativa en el conjunto de las muestras.

En general, el congénere 18 es el mayoritario en las Estaciones 1, 2 y 3, con una presencia máxima en la Estación 3 (\approx 56%). Le siguen en importancia el PCB-137, mayoritario en la Estación 4 (\approx 41%) y el PCB-31 que no siendo mayoritario es el segundo congénere más representativo de la Estación 2 (\approx 23%).

En el caso la *P. ulyssiponensis* no puede hablarse de un perfil que se reproduzca en el conjunto de las Estaciones ni de una tendencia clara en cada una de ellas, Fig. 3.6. Si parece claro que el par PCB-18 + PCB-31 representa en las Estaciones 1, 2 y 3 la presencia relativa máxima (>40%) aunque en la Estación 4, sólo representa el 25% del total. Además, en todas las estaciones y a partir del congénere 154 se produce una

cloración.

En la Fig.3.8 se han agrupado los congéneres identificados atendiendo a los *Grupos de Actividad* mencionados con anterioridad y se ha representado el contenido relativo frente al total de congéneres identificados. Como ya hemos comentado no han sido identificados congéneres del *Grupo I* ni del *Grupo V* en nuestras muestras de *P*. *ulyssiponensis* Son los congéneres del *Grupo IV* los que predominan sobre el resto, debido principalmente a la importancia del PCB-18, con una presencia relativa máxima del 64% en la estación nº 3. Los congéneres del *Grupo III*, con la excepción de la estación nº 1, son los que siguen en importancia, y el *Grupo II* es el minoritario salvo en la estación nº 1.

Fig. 3.8.- Contenido medio de PCBs por Grupos de Actividad en las estaciones de muestreo

Los congéneres "clasificados" representan el 66, 52, 71 y 31% del total en las estaciones nº 1, 2, 3 y 4, respectivamente. Además, la distribución según *Grupos* parece estar de acuerdo con las características de cada uno de ellos, es decir, el *Grupo IV*, mayoritario, representa a aquellos PCBs inductores débiles o no inductores "presentes en altas

concentraciones con relación a otros PCBs"; el *GrupoIII*, inductores débiles aunque "muy abundantes" y el *Grupo II*, inductores débiles del sistema MFO aunque "presentes en concentraciones relativamente elevadas".

Centrando la atención en los congéneres del *Grupo II* se observa que el congénere mayoritario es por lo general el PCB-118 > -138 \approx -170. Un comportamiento similar se aprecia en lenguados, *Pleuronectes amaricanus*, recolectados en New Bedford Harbor, USA [157]. Sin embargo, en ese mismo estudio, los especímenes de lenguados recolectados en Fox Island y Gaspee Point muestran un claro predominio del congénere -138 sobre el -118, al igual que en el estudio realizado por Daelemans *et al.* en focas, *Phoca hispida*, de Svalvard [158] y Sánchez *et al.* [159] en truchas, *Salmo trutta*, y salmonetes, *Mullus barbatus*, en el que además el congénere -170 se encuentra en proporciones menores que los anteriores. Parece interesante el hecho de encontrar un predominio claro del congénere 118 sobre el -138 en muestras procedentes de deposiciones atmosféricas del norte de Italia [160].

Los congéneres del *Grupo III* no tienen un comportamiento uniforme. En general el congénere 153 es mayoritario, aspecto que queda reflejado en otros estudios [157-159], y también se aprecia que el PCB-180 se encuentra en una proporción inferior al -87 y al -101. En esta ocasión no existe una tendencia clara en estudios de las mismas características.

En lo referente a las relaciones entre los congéneres 44, 52, 54, 87 y 101 parece existir una clara concordancia con la solubilidad en agua de cada uno de ellos. Haciendo uso de los datos de solubilidad estimada, Fig. 3.9 calculados por Abramowitz *et al.* [148] se observa que la mayor proporción de los congéneres 44 y 54 sobre los correspondientes 52, 87 y 101 en casi todas las estaciones coincide con la mayor solubilidad en agua de los primeros. El PCB-54 que también se encuentra en proporciones superiores al congénere 44 en todas las estaciones también presenta una solubilidad superior a éste, y los congéneres 87 y 101, que se encuentran en proporciones similares, también presentan valores de solubilidad en agua equivalentes, Fig. 3.9-A. Con la única excepción de la Estación 1, los datos de solubilidad concuerdan de nuevo con las proporciones relativas de los congéneres 118, 121 y 129, Fig. 3.9-B. En este caso, el más soluble (PCB-121) es el mayoritario, seguido en importancia del 129 y del 118 que siendo el menos soluble también es el que se encuentra en menor proporción. El congénere 137, ligeramente más soluble que el 138 se encuentra en todas las Estaciones en proporciones mucho más elevadas que éste, Fig. 3.9.-C. Es en el caso del grupo de congéneres 143, 153 y 154 en el que la tendencia observada se invierte siendo los menos solubles los que se encuentra en mayores proporciones, 153 > 154 > 143, Fig. 3.9-D, con la excepción de la Estación 3.

Fig. 3.9.- Variación de la solubilidad estimada con el grado de cloración de los PCBs.

En la Fig 3.9 se observan dos grupos de congéneres que se han denominado I (PCB-18 \rightarrow -101) y II (PCB-118 \rightarrow PCB-199) con solubilidades superiores e inferiores a 10^{-7.5}, respectivamente; en las Estaciones 1, 2 y 3, el grupo I es mayoritario (58-76%) mientras que en la Estación 4 sólo constituyen el 39% del total.

En términos absolutos, es el PCB-137 el que alcanza unos niveles medios más elevados, con 2505ng.kg⁻¹ (Estación 4), seguido del PCB-18 (Estación 3) y PCB-31 (Estación 2) con niveles medios máximos de 1813ng.kg⁻¹ y 877ng.kg⁻¹ respectivamente, Tabla 3.8.

También en términos absolutos, Tabla 3.10, los niveles totales más elevados de PCBs se encuentran en las estaciones 4 y 1. En términos relativos la estación 4 sigue siendo la

que contiene la carga más elevada de PCBs seguida por $E1 \approx E2 > E3$. Atendiendo a los valores de las desviaciones estándar se observa que los contenidos globales de las muestras están sometidos a una gran variabilidad, sobre todo en el caso de la estación nº4.

	n	Mínimo	Máximo	Media	Mediana	Desv. Est.
Total	54	561	27452	4346	2448	5172
E1	18	561	24102	4081	2138	5817
E2	17	676	13850	3833	2558	3525
E3	7	718	7107	3229	2549	2150
E4	12	757	27452	6123	5443	7156

Tabla 3.10 Resumen estadístico del Σ PCBs $(ng.kg^{-1})$

En la Tabla 3.11 se presentan los resultados del estudio de correlaciones llevado a cabo con las concentraciones de los veintidós PCBs en estudio y el total de PCBs (Σ PCB) en las cincuenta y cuatro muestras analizadas. Las correlaciones señaladas aunque presentan un alto índice de significación ($P \ge 95\%$) parecen ser totalmente aleatorias y, quizás, pudieran explicarse bien en función del metabolismo de estos compuestos por parte de la *P. ulyssiponensis*, bien en función de su presencia en las mezclas comerciales originales o de la posición de su hábitat en el ecosistema costero. Es de resaltar que sólo nueve de los PCBs estudiados (-18, -31, -44, -52, -137, -138, -143, -180 y -182) se correlacionan con Σ PCB. Posiblemente al llevar a cabo el estudio de Componentes Principales, de Factores y de Agrupamientos puedan explicarse tales correlaciones.

Tabla 3.11Matriz de Correlaciones (n=54)

	18	31	44	52	54	87	101	118	121	129	137	138	143	153	154	159	170	180	182	185	187	199	S PCB
10	1 0000	0 1175	0 1224	0.2(10	0.0570	0.0220	0.0745	0.0227	0.0746	0 1 4 2 1	0.0000	0.2207	0 1044	0.0225	0.0172	0.0(52	0.1420	0.5200	0.5914	0.0476	0.0750	0.1400	0.5075
18	1.0000	0.11/5	0.1334	0.2619	-0.0578	0.0320	-0.0745	-0.0337	-0.0746	0.1431	-0.0096	0.3297	0.1044	0.0225	0.01/3	-0.0653	0.1420	0.5209	0.5814	-0.04/6	-0.0750	0.1499	0.5975
31		1.0000	0.2434	0.4705	0.1/35	0.0036	0.1532	0.06/4	0.5466	0.49/1	-0.0/8/	0.2558	0.6590	0.1209	0.18/1	-0.1044	0.4792	0.3248	0.0636	0.0685	-0.1404	-0.10/6	0.3302
44			1.0000	0.0507	0.0657	0.3200	-0.0479	-0.0168	0.2166	0.1361	0.4757	-0.1368	0.0982	-0.1541	0.1610	0.0006	-0.0239	-0.1058	0.0778	-0.0171	0.0570	-0.1965	0.4965
52				1.0000	0.2572	0.4307	0.2109	-0.0472	0.2140	0.3106	0.0840	0.4815	0.4866	0.4510	0.2088	-0.0951	0.4314	0.6155	0.4246	-0.0591	-0.1277	0.0633	0.4688
54					1.0000	0.0211	0.2272	-0.0791	0.2615	0.1197	-0.0988	0.1014	0.1009	-0.0235	0.3774	-0.0793	0.0758	-0.0020	-0.0173	-0.0634	0.0223	-0.1317	0.0332
87						1.0000	0.0383	-0.0397	0.1176	-0.0051	0.0778	0.1304	0.0402	0.3270	0.0001	-0.0636	0.0338	0.2013	0.2608	-0.0630	-0.0581	-0.0847	0.1820
101							1.0000	-0.0175	-0.0720	0.0670	-0.0105	0.4396	-0.0426	0.1469	0.1776	0.0222	-0.0195	0.2298	0.2454	-0.0457	-0.0844	-0.0673	0.0666
118								1.0000	0.0148	0.0955	-0.0297	0.1392	0.0002	-0.0008	-0.0985	-0.0512	0.1360	-0.0154	0.1086	0.9348	-0.0811	-0.0787	0.1624
121									1.0000	-0.0247	-0.1328	0.0357	0.3310	0.1015	0.0445	-0.0289	0.0797	-0.0430	-0.0539	-0.0212	0.0189	-0.0886	0.0577
129										1.0000	-0.0984	0.1613	0.0331	-0.0034	0.1707	-0.0349	0.5775	0.4884	0.1305	0.2323	-0.1025	-0.0778	0.2054
137											1.0000	-0.1438	0.0455	-0.0455	-0.0616	-0.0231	-0.1146	-0.0843	0.1116	-0.0485	-0.0288	-0.0571	0.6758
138												1.0000	0.1604	0.2826	0.0123	0.0343	0.5604	0.7291	0.7201	0.1430	-0.1020	0.2679	0.2751
143													1.0000	0.2716	0.3976	-0.0252	0.2958	0.0885	-0.0532	-0.0675	-0.0771	-0.0767	0.3203
153														1.0000	-0.0207	-0.0399	0.0954	0.3180	0.1584	-0.0169	-0.0953	-0.0421	0.1722
154															1.0000	0.0607	0.0772	-0.0794	-0.0923	-0.0292	0.0067	-0.1490	0.0732
159																1.0000	-0.1221	-0.1374	-0.1133	-0.0514	-0.0679	-0.0732	-0.0936
170																	1.0000	0.6628	0.3225	0.2286	0.0947	0.4563	0.2083
180																		1.0000	0.7237	0.0320	-0.0616	0.3668	0.4105
182																			1.0000	0.0882	-0.1969	0.1541	0.5157
185																				1.0000	-0.0781	-0.0763	0.1337
187																					1.0000	0.2218	-0.1243
199																						1.0000	-0.0102
S PCB																							1.0000

Capítulo 4 Análisis Estadístico

De los resultados estadísticos que se han expuesto en los capítulos anteriores sobre las concentraciones de hidrocarburos alifáticos, hidrocarburos aromáticos policíclicos y bifenilos policlorados determinadas en las tres especies de *Patella* estudiadas en esta Memoria, con objeto de establecer su posible utilización como organismos bioindicadores de la contaminación ambiental por esos tres grupos de contaminantes, parece desprenderse una cierta similitud de respuesta en el caso de las *Patella ulyssiponensis* y *Patella cadei crenata*, comportamiento bastante diferenciado del que presentan los ejemplares de *Patella piperata*. Esta diferencia de comportamiento la hemos achacado, en primera aproximación, a la diferente posición intermareal, más baja en las dos primeras especies y más alta en el caso de la *Patella piperata*.

No obstante, tanto los datos estadísticos expuestos en dichos capítulos como las matrices completas de datos experimentales originales que se presentan en el Apéndice III, no permiten, por simple inspección visual de las variables cuantificadas, establecer de forma inequívoca si las especies objeto de estudio se comportan de forma similar o no dadas las pequeñas diferencias entre las respectivas concentraciones determinadas y el relativamente gran número de muestras y variables, ni tampoco permiten establecer la capacidad de estas tras especies endémicas de *Patella* para discriminar entre los posibles orígenes de la contaminación, antropogénica, petrogénica y/o biogénica, y como consecuencia proponer su selección para que sean consideradas como posibles organismos centinela de la contaminación del medio marino costero en estas Islas.

Tal como se ha llevado a cabo en la presente Memoria, de forma general, al estudiar el Medio Ambiente, se suelen cuantificar un gran número de variables con objeto de llegar a caracterizar al máximo el sistema en estudio, aún corriendo el riesgo de que algunas de estas variables puedan estar altamente correlacionadas. Sin embargo, en muchos casos en el pasado, estos largos y costosos estudios utilizando organismos bioindicadores no han permitido establecer de forma clara las relaciones causa-efecto y, en muchas ocasiones, sólamente han puesto de manifiesto la existencia de "puntos calientes" de contaminación que eran ya perfectamente conocidos, o que podrían haberse detectado por simple inspección local.

Por ello es necesario, tal como establecen Champ *et al.* [161] y Spellenberg [162], integrar la investigación y la monitorización para, por una parte, maximizar los beneficios que puedan obtenerse de este tipo de estudios y, por otra, adquirir los datos críticos necesarios para identificar las pautas y respuestas ecológicas con objeto de establecer las relaciones causales. Una vez que el "qué" y el "cuánto" han obtenido respuesta y se alcanza un conocimiento de la variabilidad "normal" de las especies estudiadas, es cuando surge el "por qué" y el "cómo", preguntas que en muchas ocasiones no fueron uno de los objetivos de los programas de investigación-monitorización en el pasado.

Por otra parte, no puede olvidarse que las correlaciones directas causa-efecto se han establecido la mayoría de las veces en base a tediosos y caros experimentos de laboratorio, experimentos que no siempre pueden reproducir con exactitud los procesos medioambientales.

Una vez que se ha reconocido este dilema, los investigadores del medio ambiente han comenzado a desarrollar programas de monitorización en los que se refuerza el valor de la información experimental resultante de la monitorización medioambiental, mediante diseño y tratamiento estadístico y una práctica rigurosa de las metodologías analíticas incluyendo el aseguramiento de la calidad y la toma de medidas de control de la calidad [163,164]. Sin embargo, estas nuevas estrategias también siguen basándose en la existencia de grandes bases de datos procedentes del ecosistema en estudio para poder

obtener respuestas significativas al "qué", "cuándo", "por qué" y "cómo" monitorizar.

Por todo ello es necesario disponer, como mínimo, de organismos candidatos para ser utilizados como bioindicadores y poder establecer criterios e, incluso, estándares medioambientales. Desafortunadamente, las especies más utilizadas en programas de monitorización, mejillones (*Mytilus* sp) y ostras (*Crassostrea* sp), no se encuentran presentes en muchas zonas costeras en las que es necesario establecer programas de seguimiento de la contaminación y consecuentemente es necesario buscar otras especies presentes en el área costera en cuestión que puedan ser utilizadas como organismos centinela.

Debe tenerse en cuenta, además, que los resultados de un programa de monitorización pueden verse profundamente afectados por la posición vertical en la costa del organismo utilizado, ya sea en la zona intermareal o en la sublitoral, y por su taxonomía, factores que pueden impedir la realización de comparaciones entre ecosistemas. Por ello sería necesario buscar especies endémicas, bien definidas desde el punto de vista taxonómico, lo más sedentarias posibles y que presenten sus hábitats en los diferentes estratos costeros, incluso aunque el estado de mezcla del mar pudiera parecer perfecto [3,165].

Con las finalidades expuestas, en los últimos años, se ha comenzado a introducir con gran éxito en los estudios del Medio Ambiente, la utilización de las técnicas de análisis matemático por computador, Métodos Quimiométricos, muy especialmente los Métodos de Análisis Multivariante que permiten realizar la comparación de datos experimentales procedentes de diferentes estaciones de muestreo o de diferentes ecosistemas con el objetivo de explicar, no sólo, las posibles fuentes de contaminación sino, también, establecer las similitudes o diferencias en el comportamiento de él o de los organismos utilizados como bioindicadores.

Así, por ejemplo, Duwer *et al.* [166] y Clark y Jurs [167] han utilizado los métodos de "Reconocimiento de Pautas" (Pattern Recognition) para estudiar los datos obtenidos a partir del análisis de crudos y derivados y Conde *et al.* [168] aplican los métodos de

Análisis de Componentes Principales y de Análisis de Factores y de Agrupamientos a la identificación de residuos petrolíferos, "tar balls", que aparecen frecuentemente en las playas de las Islas Canarias. Por otra parte, el conjunto de técnicas del Análisis Multivariante ha sido aplicado con gran éxito en numerosos estudios medio-ambientales llevados a cabo en especies marinas tanto sobre contaminantes inorgánicos como con contaminantes orgánicos.

Uno de los primeros pasos que deben darse antes de llevar a la práctica la aplicación de los métodos de Análisis Multivariante, es el de detectar los posibles "datos anómalos" que puedan existir en la base de datos experimentales. Para el establecimiento de forma definitiva de la calidad de "dato anómalo" deben utilizarse pruebas univariadas y multivariadas de forma complementaria. De entre las pruebas univariadas la prueba denominada "box-and-whiskers", ya utilizada en los capítulos anteriores, suele ser de utilización general, aunque sus resultados son laboriosos de interpretar al ser necesario el aplicarla a todas y cada una de las variables implicadas, y de entre las pruebas multivariadas en esta Memoria se ha optado por utilizar las Cartas de Control Multivariante tipo T^2 .

I APLICACIÓN DE LAS CARTAS DE CONTROL MULTIVARIADAS T²

La aplicación de métodos de estudio univariante, tipo "box-and-whiskers", a las matrices de datos experimentales presenta problemas debido, no sólo, a la dificultad que implica el interpretar conjuntamente los resultados obtenidos para cada una de las variables experimentales determinadas sino, también, por la intercorrelaciones que pudieran existir entre las propias variables.

Tanto Fischer *et al.* [169] como Smith *et al.* [170] proponen la utilización de las Cartas de Control T^2 de Hotelling con objeto de detectar la presencia de "datos anómalos" en las bases de datos, cartas cuya utilización se basa en el cálculo de la correspondiente T^2 de Hotelling presuponiendo que los datos proceden de una matriz de datos

Fig. 4.1.- Prueba T² de Hotelling para la base de datos de *Patella piperata*

Fig. 4.2.- Prueba T² de Hotelling para la base de datos de *Patella candei crenata*

Fig. 4.3.- Prueba T² de Hotelling para la base de datos de *Patella ulyssiponensis*

experimentales que presentan una distribución multivariada normal. En esencia en dicho cálculo se transforma las variables correlacionadas en otras nuevas variables que son independientes y sobre las cuales se realiza una estadística simple. El resultado se traduce en una tabla de datos que indica sobre qué variable o variables se presenta la consideración de anómalo y en una gráfica en la que se presentan las observaciones multivariadas (cada una de las muestras) en una carta de control con un límite superior definido por la T^2 de Hotteling. Los datos (muestras) que superan este valor se consideran como "anómalos".

Las matrices de datos sobre las que se ha trabajado, para cada una de las tres especies en estudio, son: *n*-alcanos, hidrocarburos aromáticos policíclicos y bifenilos policlorados, comprendiendo cada una de ellas todas las variables determinadas en cada caso, habiéndose eliminado de las mismas todas aquellos parámetros obtenidos por combinación lineal de las variables experimentales.

Como puede observarse en las Figs. 4.1, 4.2 y 4.3 en ningún caso se detecta la presencia de datos a los que estadísticamente se pudiera calificar de anómalos en ninguna de las bases de datos experimentales.

En este momento podría plantearse el interrogante de cómo es que no aparezcan resultados anómalos en ninguna de las bases de datos, es decir, de datos que parezcan no seguir las pautas de comportamiento generales de cada una de ellas, más aún cuando ya se ha visto que, por ejemplo, al aplicar la prueba del "box-and-whiskers" a los contenidos totales de *n*-alcanos (Σ Alc), de hidrocarburos aromáticos policíclicos (Σ PAH) y de bifenilos policlorados (Σ PCB) aparecían datos que estadísticamente eran considerados como anómalos, es decir, datos que no seguían las pautas generales de comportamiento de las respectivas bases de datos. No debe olvidarse que la prueba del "box-and-whiskers" como prueba univariada debería haberse aplicado a todas y cada una de las variables analíticas individuales trabajo que, como ya se ha mencionado más arriba, sería arduo y extraordinariamente complicado.

II ANÁLISIS DE COMPONENTES PRINCIPALES, DE FACTORES Y DE AGRUPAMIENTOS DE LAS BASES DE DATOS

Tal como ha quedado expuesto al inicio de esta memoria uno de los objetivos de este trabajo es el de intentar encontrar las posibles relaciones que pudieran existir entre la contaminación de las especies aquí estudiadas y características propias de dichas especies, tales como hábitat (especialmente posición en el ecosistema costero), capacidad metabólica, alimentación, etc.

Sin embargo, tal como se ha expuesto con anterioridad, el gran número de variables experimentales con que se trabaja en los estudios ambientales, y este trabajo no es una excepción, no permiten por simple inspección visual de dichas variables establecer de forma inequívoca si las especies objeto de estudio se comportan de forma similar o no, aunque ya en los respectivos capítulos se han podido establecer algunas diferencias entre ellas, dadas las pequeñas diferencias entre las respectivas concentraciones y el relativamente gran número de muestras y variables, ni tampoco permiten establecer la capacidad de estas tres especies endémicas de *Patella* para discriminar entre los posibles orígenes de la contaminación, antropogénica, petrogénica y/o biogénica y, como consecuencia, proponer su selección para que sean consideradas como posibles organismos centinela de la contaminación del medio marino costero en estas Islas.

Por lo tanto, es necesario llevar a cabo una selección de las variables para establecer cuáles pueden suministrar la máxima información sobre cada uno de los sistemas y, consecuentemente, es necesario disponer de algún criterio en base al que llevar a cabo tal selección sin que se pierda apreciablemente la información contenida en el global de las correspondientes matrices de datos. Con este fin, se han aplicado el Análisis de Componentes Principales (ACP), el Análisis de Factores (AF) y el Análisis de Agrupamientos, *clusters* (AA) que permiten establecer las similitudes en las tendencias de comportamiento en un conjunto de variables. Dichos análisis se han llevado a cabo utilizando los programas "Statistica" [171] y Statgraphic Plus V.3 [172].

El Análisis de Agrupamientos se ha llevado a cabo tomando como medida de proximidad las distancias euclideas y como criterio para agrupar los objetos (muestras) el del "vecino más próximo" [173], que incluye la evaluación continua de la significación de los grupos formados, calculando la distancia de Mahalanobis entre grupos y la estadística F de las muestras agrupadas. Usando otras medidas de similitud o estrategias de agrupamientos [174] se obtuvieron resultados similares.

Tal como se llevó a cabo con la aplicación de las Cartas de Control Multivariado T^2 , de las matrices de datos se eliminaron todas aquellas variables no experimentales que se habían obtenido por combinación de variables experimentales (IPCs, C17/Pr, etc.) manteniéndose únicamente, en su caso, los totales de *n*-alcanos (Σ Alc), de hidrocarburos aromáticos policíclicos (Σ PAH), total de PAHs menos naftaleno (Σ PAH1) y de bifenilos policlorados (Σ PCB)

II.1.- Patella piperata

II.1.1- Alcanos

De la matriz de datos para el contenido en *n*-alcanos de la *P. piperata*, en la cual se han eliminado las variables n-C₁₈ y fitano ya que en muchas muestras ha sido imposible cuantificarlos por separado dada la superposición de sus respectivos picos cromatográficos, se pueden extraer tres componentes principales (CP) significativos, con valores propios \geq 1, Tabla 4.1. El CP-1 explica el 56,45% de la varianza total del sistema, en tanto que el CP-2 explica el 19,64% y el tercer componente sólo explica el 8,31% de dicha varianza total.

En la Tabla 4.2 en la que se presenta la distribución de los pesos estadísticos de las variables sobre los diferentes factores (F) tras una rotación varimax normalizada, los mayores pesos estadísticos sobre el F-1 se corresponden con los hidrocarburos alifáticos más pesados, del n-C₂₄ al n-C₃₀, en tanto que sobre el F-2 ejercen un mayor peso estadístico los hidrocarburos más ligeros n-C₁₄, n-C₁₆, n-C₂₁ y pristano (Pr) seguidos de

n-C₁₉, n-C₂₀, n-C₂₁ y n-C₂₂. Sobre el F-3 aparecen los hidrocarburos n-C₁₅ y n-C₁₇, a los que anteriormente se ha atribuido un origen alimenticio.

Factor	Valor Propio	% Varianza	% V. Acum.
1	9.596	56.449	56.449
2	3.338	19.638	76.086
3	1.412	8.306	84.392
4	0.691	4.063	88.456
5	0.659	3.878	92.334
6	0.492	2.897	95.230
7	0.263	1.549	96.780
8	0.212	1.249	98.029
9	0.162	0.953	98.982
10	0.065	0.384	99.366
11	0.055	0.323	99.689
12	0.035	0.203	99.892
13	0.010	0.057	99.949
14	0.004	0.026	99.976
15	0.002	0.010	99.986
16	0.001	0.008	99.994
17	0.001	0.006	100.000

 Tabla 4.1

 Valores Propios extraídos de la matriz de datos de hidrocarburos alifáticos en P. piperata

Estos hechos parecen indicar que la contaminación de esta especie de *Patella* es de origen petrogénico pero en este caso originada por un crudo degradado en el que la fracción ligera, hasta el n-C₂₂, ha sufrido un proceso de degradación bien diferenciado del de la fracción pesada, n-C₂₄-n-C₃₀. El n-C₂₃ parece marcar una frontera entre ambos comportamientos degradativos. Por otra parte, el hecho de que el pristano aparezca asociado al F-2 junto a los hidrocarburos alifáticos más ligeros indica para el mismo una procedencia también petrogénica y no metabólica ni alimentaria ya que no aparece asociado al n-C₁₇ como en su caso cabría esperar.

Seleccionando las variables que presentan mayores pesos estadísticos sobre cada uno de los componentes principales, es decir, n-C₁₄, n-C₁₇ y n-C₂₈, en la Fig. 4.4 se encuentra la representación gráfica del "biplot", en la que se representan simultáneamente las variables seleccionadas y las muestras objeto de estudio, en el plano definido por los componentes CP-1 y CP-2. Como puede observarse el mayor conjunto de muestras se

Variable	Factor 1	Factor 2	Factor 3
C14	0.083	0.852	0.331
C15	-0.236	0.237	0.867
C16	0.049	0.836	0.448
C17	0.101	0.156	0.871
C19	0.577	0.620	0.044
C20	0.552	0.598	-0.096
C21	0.148	0.851	0.309
C22	0.464	0.606	0.097
C23	0.411	0.127	0.543
C24	0.971	0.187	0.022
C25	0.964	0.235	0.036
C26	0.972	0.195	0.009
C27	0.967	0.198	0.045
C28	0.975	0.202	0.032
C29	0.964	0.209	0.071
C30	0.935	0.228	0.108
PR	0.366	0.818	-0.087
Var. Expl.	7.759	4.327	2.261
Prp.Totl	0.456	0.255	0.133

Tabla 4.2Matriz de Factores de alcanos en P. piperata

Fig. 4.4.- "Biplot" a partir de la base de datos de alcanos en *P. piperata*.

encuentra dispuesto en torno al origen de coordenadas (variables seleccionadas) del sistema con otra serie demuestras dispersas en el espacio así definido.

Estos hechos permiten deducir que la contaminación de esta especie de lapas, además de estar producida por crudos degradados, es muy uniforme apreciándose la aparición de inyecciones puntuales de contaminantes del mismo tipo petrogénico.

A estas mismas conclusiones puede llegarse, aunque de forma más nítida, tras examinar los resultados obtenidos en el Análisis de Agrupamientos que se presentan en la Fig. 4.5, en la cual puede observarse un agrupamiento mayoritario que incluye el 75,5% de las muestras y otros dos agrupamientos minoritarios con 3 (6,1%) y 2 (4,1%) de las muestras, respectivamente. Además, aparecen siete muestras más (14.3%) no incluidas en ningún agrupamiento.

Fig. 4.5.- Análisis de agrupamientos a partir de la matriz de datos de alcanos en P. piperata

II.1.2.- Hidrocarburos aromáticos policíclicos

El Análisis de Componentes Principales de la matriz de datos correspondiente a las concentraciones de los dieciocho hidrocarburos aromáticos policíclicos determinados en las muestras, conduce a la extracción de cuatro CP con valores propios superiores a la unidad, el primero de los cuales explica el 42,69% de la varianza del sistema en tanto que los tres restantes explican el 19,29%, 8,39% y 6,14% de la misma, respectivamente. Es decir, entre estos cuatro CP explican un total del 76,5% de la varianza total del sistema, Tabla 4.3.

Factor	Valor Propio	% Varianza	% V. Acum.
1	7.684	42.686	42.686
2	3.472	19.288	61.975
3	1.509	8.385	70.360
4	1.105	6.139	76.499
5	0.777	4.317	80.816
6	0.683	3.792	84.608
7	0.644	3.578	88.187
8	0.463	2.574	90.760
9	0.341	1.894	92.654
10	0.279	1.550	94.204
11	0.243	1.349	95.553
12	0.236	1.313	96.866
13	0.203	1.130	97.996
14	0.150	0.831	98.827
15	0.094	0.522	99.349
16	0.069	0.386	99.735
17	0.043	0.238	99.973
18	0.005	0.027	100.000

 Tabla 4.3

 Valores Propios extraídos de la matriz de datos de PAHs en P. piperata

En la correspondiente matriz de factores tras una rotación varimax normalizada, Tabla 4.4, se encuentra que el naftaleno (variable A1) está altamente correlacionado con el factor F-3, en tanto que el benzo[*ghi*]perileno (variable A18) lo está con el factor F-4. Los restantes PAHs se distribuyen sobre los factores F-1 y F-2 sin que su distribución pueda achacarse a fenómenos estructurales y/o propiedades químicas o químico-físicas de los mismos.

Variable	Factor 1	Factor 2	Factor 3	Factor 4
A1	-0.009	0.096	0.855	0.211
A2	0.791	-0.128	0.304	-0.074
A3	0.865	-0.160	-0.002	-0.028
A4	-0.080	0.750	0.295	-0.233
A5	0.529	0.133	0.523	-0.205
A6	0.628	0.278	0.583	-0.026
A7	0.800	0.087	0.269	-0.091
A8	0.887	0.037	-0.097	-0.108
A9	0.888	0.088	-0.035	0.036
A10	-0.047	0.704	0.038	-0.335
A11	0.183	0.857	-0.197	0.079
A12	0.852	0.464	-0.006	0.027
A13	0.364	0.771	0.035	0.133
A14	0.028	0.819	0.210	0.232
A15	0.842	0.367	0.163	0.118
A16	0.175	0.841	0.115	-0.085
A17	0.726	0.393	-0.014	0.033
A18	-0.086	-0.047	0.110	0.879
Expl.Var	6.439	4.433	1.745	1.154
Prp.Totl	0.358	0.246	0.097	0.064

Tabla 4.4Matriz de Factores de PAHs en P. piperata

Fig. 4.6.- "Biplot" a partir de la matriz de PAHs en *P. piperata*.

Fig. 4.7.- Análisis de agrupamientos a partir de la matriz de datos de PAHs.

Tanto el biplot, Fig. 4.6, como el análisis de agrupamientos, Fig. 4.7, permiten alcanzar las mismas conclusiones que en apartado anterior.

II.1.3.- Alcanos + hidrocarburos aromáticos policíclicos

En una tercera etapa del análisis multivariante de los datos se han unificado las bases de datos correspondientes a concentraciones de alcanos y de hidrocarburos aromáticos policíclicos con objeto de establecer las posibles influencias mutuas.

En un primer paso a la base de datos de alcanos se añadieron sólamente los datos experimentales correspondientes al total de PAHs de las correspondientes muestras (Σ PAH).

En estas condiciones de los resultados que se presentan en la Tabla 4.5 pueden extraerse tres componentes principales que explican un 83,1% de la varianza total de

este nuevo sistema pudiéndose ver que el PC-1 por sí solo explica el 53,9% de dicha varianza.

Factor	Valor Propio	% Varianza	% V. Acum.
1	9.709	53.942	53.942
2	3.821	21.228	75.169
3	1.429	7.939	83.108
4	0.840	4.667	87.775
5	0.659	3.663	91.439
6	0.502	2.791	94.230
7	0.326	1.812	96.042
8	0.213	1.186	97.228
9	0.181	1.007	98.235
10	0.146	0.811	99.046
11	0.065	0.363	99.408
12	0.055	0.303	99.711
13	0.034	0.189	99.900
14	0.010	0.053	99.954
15	0.004	0.025	99.978
16	0.002	0.010	99.988
17	0.001	0.006	99.995
18	0.001	0.005	100.000

 Tabla 4.5

 Valores Propios extraídos de la matriz de datos de hidrocarburos alifáticos y ΣΡΑΗ en *P. piperata*

En la matriz de factores tras una rotación varimax normalizada, Tabla. 4,6, puede observarse como los *n*-alcanos más pesados, del C₂₄ al C₃₀, siguen manteniéndose como un grupo compacto con altos pesos estadísticos sobre el F-1 y que, igualmente, los *n*-alcanos a los que se ha atribuido un origen alimenticio, C₁₅ y C₁₇ siguen apareciendo asociados al F-3 y, sorprendentemente, el Σ PAH queda asociado y con alto peso estadístico al F-2, factor al que también se asocian los *n*-alcanos más ligeros y el pristano. Este hecho puede observarse con mayor claridad en la Fig. 4.8 en la que se representan los pesos estadísticos de las variables sobre los dos primeros factores. Esta asociación parece estar indicando como si los hidrocarburos aromáticos policíclicos fueran ingeridos por los especímenes de *P. piperata* analizados asociados a la fracción ligera de los derivados petrolíferos contaminantes.

Tanto la distribución de muestras sobre las variables en el correspondiente "biplot", Fig. 4.9, como el resultado del estudio de agrupamientos, Fig. 4.10, presentan muy grandes similitudes entre sí y con los resultados obtenidos en los aspectos anteriormente estudiados.

Variable	Factor 1	Factor 2	Factor 3
C14	0.142	0.840	0.275
C15	-0.230	0.301	0.844
C16	0.096	0.857	0.388
C17	0.104	0.191	0.861
C19	0.620	0.570	0.013
C20	0.613	0.496	-0.121
C21	0.193	0.870	0.248
C22	0.485	0.621	0.055
C23	0.399	0.164	0.536
C24	0.982	0.122	0.031
C25	0.979	0.170	0.041
C26	0.983	0.131	0.017
C27	0.976	0.143	0.052
C28	0.984	0.144	0.039
C29	0.970	0.162	0.076
C30	0.940	0.192	0.110
PR	0.419	0.784	-0.140
ΣΡΑΗ	-0.076	0.772	0.285
Expl.Var	8.102	4.685	2.173
Prp.Totl	0.450	0.260	0.121

Tabla 4.6.Matriz de factores en la matriz de datos $[alcanos + \Sigma PAH]$

Fig. 4.8.- Distribución de los pesos estadísticos de las diferentes variables (alcanos + Σ PAH) sobre los dos primeros factores, en *P. piperata*.

Fig. 4.9.- "Biplot" a partir de la matriz de datos [alcanos + ΣPAH] en *P. piperata*.

Fig. 4.10.- Análisis de agrupamientos a partir de la matriz de datos [alcanos + ΣPAH] en *P. piperata*.

En segundo lugar y ya que, como se ha dicho en el Capítulo I, el naftaleno presente en las muestras pudiera ser el último paso del metabolismo de los PAHs superiores, en la base de datos de alcanos se introdujeron los valores correspondientes a la concentración de naftaleno (variable A1) y el total de PAHs menos naftaleno (variable Σ PAH1) y se procedió a su análisis estadístico.

De los resultados que se presentan en la Tabla 4.7 pueden extraerse cuatro componentes principales que explican el 85,4% de la varianza total del sistema explicando el PC-1 el 51,3% de la varianza por sí solo y el 20,6% el PC-2.

Factor	Valor Propio	% Varianza	% V. Acum.
1	9.741	51.268	51.268
2	3.916	20.613	71.881
3	1.528	8.041	79.922
4	1.044	5.496	85.418
5	0.782	4.118	89.535
6	0.654	3.441	92.977
7	0.504	2.652	95.629
8	0.214	1.128	96.757
9	0.189	0.996	97.753
10	0.162	0.854	98.607
11	0.106	0.557	99.164
12	0.059	0.312	99.476
13	0.050	0.263	99.739
14	0.032	0.168	99.907
15	0.010	0.050	99.957
16	0.004	0.023	99.981
17	0.002	0.009	99.989
18	0.001	0.006	99.995
19	0.001	0.005	100.000

Tabla 4.7Extracción de componentes principales a partir de lamatriz de datos [alcanos + naftaleno (A1) + Σ PAH1]

En la correspondiente matriz de factores tras una rotación varimax normalizada, Tabla 4.8, se encuentra que, como en todos los casos anteriores, el F-1 viene asociado a la presencia de los *n*-alcanos pesados, C_{24} a C_{30} , los *n*-alcanos ligeros junto con el pristano y Σ PAH1 se encuentran asociados al F-2 en tanto que los *n*-alcanos de procedencia atribuida a la alimentación, C_{15} y C_{17} , siguen asociados al F-3, y ahora la concentración de naftaleno aparece asociada al cuarto factor con un alto peso estadístico.

	Factor 1	Factor 2	Factor 3	Factor 4
C14	0.185	0.765	0.204	0.459
C15	-0.210	0.256	0.794	0.349
C16	0.111	0.842	0.359	0.208
C17	0.112	0.168	0.823	0.214
C19	0.644	0.525	-0.011	0.201
C20	0.639	0.458	-0.181	0.203
C21	0.204	0.861	0.241	0.137
C22	0.449	0.707	0.133	-0.380
C23	0.371	0.211	0.590	-0.212
C24	0.983	0.112	0.037	-0.031
C25	0.984	0.153	0.043	0.007
C26	0.987	0.116	0.023	-0.012
C27	0.979	0.126	0.062	-0.006
C28	0.984	0.135	0.053	-0.040
C29	0.967	0.159	0.098	-0.065
C30	0.933	0.196	0.140	-0.094
PR	0.438	0.757	-0.146	0.137
A1	-0.045	0.135	0.263	0.733
ΣΡΑΗ1	-0.061	0.854	0.256	-0.219
Expl.Var	8.143	4.626	2.130	1.330
Prp.Totl	0.429	0.243	0.112	0.070

Tabla 4.8Matriz de Factores a partir de la matriz de datos $[alcanos + naftaleno (A1) + \Sigma PAH1]$

Fig. 4.11.- Distribución de las variables [alcanos + Σ PAH1 + naftaleno (A1)] sobre los dos primeros factores.

Esta distribución de las variables sobre los factores, que puede verse más claramente en la Fig. 4.11, confirma lo anteriormente deducido y, además que el naftaleno tiene una procedencia completamente diferente de la de los restantes hidrocarburos policíclicos, confirmando, lo ya establecido de su posible procedencia metabólica.

Utilizando las cuatro variables seleccionadas a partir del análisis de factores en base a sus mayores pesos estadísticos sobre los mismos, se realizaron los correspondientes "biplot", Fig.4.12, y análisis de agrupamientos, Fig. 4.13, que, una vez más, confirman las conclusiones obtenidas en los estudios anteriores.

Fig. 4.12.- Biplot para la matriz de datos [alcanos + Σ PAH1 + naftaleno (A1)].

Como último paso de este estudio se unieron las bases de datos correspondientes a las concentraciones individuales tanto de alcanos como de hidrocarburos aromáticos policíclicos. De la base conjunta se pueden extraer seis componentes principales con valores propios superiores a la unidad, Tabla 4.9, que explican el 83,1% de la varianza

total del sistema, explicando los tres primeros componentes principales por sí solos el 67,3% de dicha varianza.

Fig.4. 13.- Análisis de Agrupamientos a partir de las variables seleccionadas en la matriz de datos [alcanos + Σ PAH1 + naftaleno (A1)].

En la matriz de factores tras una rotación varimax, Tabla 4.10 puede observarse con toda claridad como los PAHs A1,A2, A7, A8, A9, A12, A15 y A16 permanecen ligados al F-2, tal como había ocurrido con anterioridad en el análisis realizado en el apartado II.1.2), a los que se une ahora la variable n-C₂₂. Igualmente los PAHs A4, A10, A11, A13, A14 y A16 aparecen juntos, tal como en aquel caso, asociados al F-3 junto con el n-C₂₁. Los n-alcanos pesados, del C₂₄ al C₃₀, siguen apareciendo como un bloque compacto sobre el F-1 junto a las variables n-C₁₉ y n-C₂₀.

Sobre el F-3 se encuentran los dos hidrocarburos alifáticos a los que hemos supuesto una fuente alimenticia, n-C₁₅ n-C₁₇, en tanto que sobre el F-6 se encuentra el naftaleno (A1). Sobre el factor F-5 no se detecta una presencia destacada de ninguna variable salvo, quizás, el n-C₂₃.

Factor	Valor Propio	% Varianza	% V. Acum.
1	12.317	35.191	35.191
2	7.149	20.426	55.617
3	4.083	11.666	67.283
4	2.470	7.058	74.342
5	1.646	4.704	79.046
6	1.413	4.036	83.082
7	0.984	2.810	85.892
8	0.802	2.292	88.184
9	0.734	2.096	90.280
10	0.578	1.651	91.931
11	0.480	1.372	93.304
12	0.456	1.304	94.607
13	0.330	0.944	95.551
14	0.277	0.792	96.343
15	0.242	0.692	97.035
16	0.182	0.520	97.554
17	0.168	0.479	98.034
18	0.139	0.398	98.431
19	0.111	0.317	98.748
20	0.110	0.313	99.061
21	0.082	0.235	99.296
22	0.063	0.181	99.477
23	0.051	0.145	99.622
24	0.035	0.101	99.723
25	0.027	0.076	99.799
26	0.021	0.060	99.859
27	0.018	0.052	99.912
28	0.014	0.040	99.952
29	0.007	0.021	99.973
30	0.004	0.011	99.983
31	0.003	0.008	99.991
32	0.002	0.005	99.997
33	0.001	0.002	99.998
34	0.000	0.001	100.000
35	0.000	0.000	100.000

Tabla 4.9Extracción de componentes principales a partir de la
matriz de datos [alcanos + PAHs]

Del gráfico "biplot", Fig. 4.14, y del análisis de agrupamientos, Fig. 4.15, se pueden obtener conclusiones en todo similares a las ya comentadas en los análisis anteriores.

Kennicutt *et al.* [175] obtuvieron resultados similares al estudiar la contaminación en los sedimentos de la Bahía Casco, Maine (USA).

Fig. 4.14.- "Biplot" obtenido a partir de la matriz de datos [alcanos + PAHs] en *P. piperata*.

Fig. 4.15.- Análisis de agrupamientos a partir de la matriz de datos [alcanos + PAHs] en P. piperata.

	Factor 1	Factor 2	Factor 3	Factor 4	Factor 5	Factor 6
C14	0.320	0.182	0.656	0.502	-0.195	0.073
C15	-0.158	0.141	0.142	0.897	0.123	0.074
C16	0.252	0.340	0.716	0.475	-0.007	0.004
C17	0.143	0.175	-0.040	0.854	0.088	-0.092
C19	0.726	0.250	0.209	0.213	-0.214	0.011
C20	0.714	-0.140	0.485	0.052	-0.162	-0.230
C21	0.349	0.366	0.729	0.310	-0.005	0.025
C22	0.542	0.732	0.229	0.005	0.057	-0.179
C23	0.399	0.104	0.112	0.352	0.657	-0.074
C24	0.981	0.009	-0.023	-0.007	0.048	-0.043
C25	0.991	0.012	0.015	0.017	0.044	-0.008
C26	0.987	0.023	-0.036	-0.014	0.040	0.007
C27	0.981	0.034	-0.010	0.001	0.072	0.026
C28	0.988	0.071	-0.048	-0.006	0.053	0.018
C29	0.975	0.116	-0.037	0.004	0.087	0.038
C30	0.948	0.173	-0.030	0.021	0.114	0.068
PR	0.557	0.497	0.333	0.102	-0.346	0.041
A1	-0.027	0.053	0.196	0.416	-0.145	0.701
A2	0.017	0.757	-0.064	0.501	-0.093	-0.006
A3	-0.015	0.831	-0.185	0.207	-0.012	-0.130
A4	-0.026	-0.010	0.828	0.019	0.017	0.091
A5	-0.137	0.601	0.173	0.189	-0.101	0.196
A6	0.007	0.715	0.305	0.129	-0.041	0.393
A7	-0.076	0.877	0.141	-0.054	-0.156	0.106
A8	0.093	0.864	-0.033	0.028	0.084	-0.208
A9	0.421	0.833	0.006	0.055	0.157	-0.057
A10	-0.115	0.044	0.757	-0.194	-0.035	-0.162
A11	-0.111	0.180	0.637	-0.120	0.637	-0.083
A12	0.081	0.843	0.377	0.031	0.253	-0.060
A13	0.001	0.354	0.601	0.095	0.500	0.067
A14	0.046	0.033	0.697	0.140	0.478	0.294
A15	0.148	0.820	0.310	0.215	0.207	0.096
A16	-0.073	0.220	0.844	0.012	0.151	-0.019
A17	0.195	0.735	0.282	-0.118	0.286	0.015
A18	0.037	-0.054	-0.119	-0.224	0.067	0.699
Expl.Var	9.153	7.744	5.733	3.011	1.923	1.515
Prp.Totl	0.262	0.221	0.164	0.086	0.055	0.043

 Tabla 4.10

 Matriz de factores a partir de la base de datos [alcanos + PAHs] en *P. piperata*

II.1.4.- Bifenilos policlorados

De la matriz de datos para el contenido en bifenilos policlorados de la *P. piperata*, en la cual se han eliminado las variables con menos de un 5% de datos positivos, se pueden extraer ocho componentes principales (CP) significativos, con valores propios \geq 1, Tabla 4.11. El CP-1 por sí solo explica el 34,2% de la varianza total del sistema, en

tanto que el CP-2 ya sólo explica el 13,3% y el tercer componente desciende hasta sólo el 8,9% de dicha varianza total.

Factor	Valor Propio	% Varianza	% V. Acum.
1	7.529	34.221	34.221
2	2.929	13.313	47.534
3	1.961	8.912	56.446
4	1.524	6.926	63.372
5	1.404	6.383	69.755
6	1.161	5.278	75.033
7	1.114	5.065	80.098
8	1.035	4.706	84.804
9	0.793	3.604	88.408
10	0.583	2.650	91.058
11	0.539	2.452	93.510
12	0.405	1.842	95.352
13	0.270	1.228	96.580
14	0.232	1.056	97.636
15	0.186	0.845	98.480
16	0.093	0.422	98.902
17	0.076	0.347	99.249
18	0.064	0.292	99.541
19	0.045	0.206	99.747
20	0.027	0.124	99.871
21	0.017	0.079	99.950
22	0.011	0.050	100.000

Tabla 4.11Extracción de componentes principales de la matriz
de PCBs en P. piperata

En la Tabla 4.12 en la que se presenta la distribución de los pesos estadísticos de las variables sobre los diferentes factores (F) tras una rotación varimax normalizada, los mayores pesos estadísticos sobre el F-1 se corresponden con los congéneres PCB-139, - 170, -180, -182 y 199, en tanto que sobre el F-2 ejercen un mayor peso estadístico los congéneres PCB-52, -54, -143, 153 y -185. Sobre los restantes factores sólamente aparecen uno o dos congéneres.

Se ha intentado relacionar las estructuras de los congéneres que, con mayores pesos estadísticos, aparecen en cada uno de los factores pero aunque de los datos que se exponen en la Tabla 4.13 parecen existir ciertas similitudes, por ejemplo sobre el F-1

aparecen congéneres con las posiciones 22'-3-4 cloradas aunque también aparecen congéneres con este mismo tipo de cloración en los factores, F-4, F-7 y F-8.

	Factor 1	Factor 2	Factor 3	Factor 4	Factor 5	Factor 6	Factor 7	Factor 8
P_018	0.027	0.036	0.913	0.009	-0.004	0.191	0.062	-0.022
P_031	0.261	0.521	-0.101	-0.132	0.021	0.000	-0.402	-0.380
P_044	0.682	0.318	0.040	0.361	0.243	0.129	-0.041	0.167
P_052	0.635	0.734	-0.023	0.046	0.000	-0.047	0.007	0.036
P_054	-0.126	0.866	0.084	-0.067	-0.156	0.269	0.064	-0.004
P_087	0.117	-0.007	-0.108	0.817	0.016	-0.103	0.112	0.015
P_101	-0.001	-0.037	-0.094	-0.173	0.716	0.438	0.076	0.062
P_118	0.612	-0.035	0.409	-0.217	0.257	0.162	0.063	-0.185
P_121	-0.033	-0.035	0.059	0.023	-0.042	0.024	-0.932	0.072
P_129	0.316	0.071	0.022	0.152	0.029	0.823	-0.039	0.014
P_137	0.106	-0.028	0.130	0.731	-0.084	0.316	-0.157	0.001
P_138	0.928	-0.061	-0.014	0.022	-0.017	0.038	-0.187	-0.024
P_143	-0.016	0.955	-0.039	0.007	0.141	-0.121	0.005	-0.005
P_153	0.388	0.811	-0.084	0.077	0.251	-0.123	-0.077	0.040
P_154	-0.029	0.085	0.150	0.067	0.834	-0.169	-0.005	-0.054
P_159	-0.055	-0.028	-0.007	-0.005	0.010	-0.019	0.065	-0.938
P_170	0.949	-0.045	0.014	-0.001	0.009	0.168	0.045	-0.077
P_180	0.965	0.116	-0.010	0.110	-0.050	0.083	0.034	0.045
P_182	0.891	0.335	-0.056	0.138	-0.033	0.028	0.041	0.065
P_185	0.510	0.724	0.082	0.014	-0.170	0.189	0.109	0.068
P_187	-0.024	-0.048	0.885	0.004	0.074	-0.196	-0.128	0.063
P_199	0.911	0.281	-0.004	0.096	-0.084	0.038	0.025	0.017
Expl.Var	6.185	3.986	1.885	1.508	1.496	1.305	1.168	1.124
Prp.Totl	0.281	0.181	0.086	0.069	0.068	0.059	0.053	0.051

 Tabla 4.12

 Matriz de Factores de la base de datos PCBs en P. piperata

Tabla 4.13

F-1	F-2	F-3	F-4	F-5	F-6	F-7	F-8
22'3 44' 5' 22'33'44' 22'3 44'55'	22' 46' 22' 66' 22' 3 4 5 6'	22' 5 22' 3 4'55'6	22'3 4 5' 22'3 4 4'5	22' 4 55' 22' 4 4'5 6'	2 3'4 5'6	22'33'4 5	2 33'4 55'
22'3 4 4'5 6' 22'3 3' 4 5 66'	22' 44'55' 22' 3 4 55'6						

Del biplot que se presenta en la Fig. 4.17, realizado con las variables que mayores pesos presentan sobre cada uno de los factores, puede deducirse que la contaminación de los especímenes de *P. piperata* por congéneres de PCBs es muy uniforme observándose, al tiempo, que existen inyecciones puntuales de este tipo de contaminantes.

Fig. 4.16.- Distribución de pesos estadísticos de las variables PCBs sobre los dos primeros factores

Fig. 4.17.- Biplot para la matriz de datos PCBs en P. piperata

A las mismas conclusiones puede llegarse a partir del estudio de los resultados del análisis de agrupamientos que se presenta en la Fig. 4.18, en los que se encuentra que el 80,4% de las muestras quedan incluidos en el agrupamiento mayoritario y las 10 muestras restantes (19,6%) no pertenecen a ningún agrupamiento definido.

Fig. 4.18.- Análisis de agrupamientos a partir de la base de datos de PCBs en P. piperata

II.2.- Patella candei crenata

II.2.1.- Alcanos

De la matriz de datos para el contenido en *n*-alcanos de la *P. candei crenata*, en la cual se han eliminado, como en el caso anterior, las variables $n-C_{18}$ y fitano ya que en muchas muestras ha sido imposible cuantificarlos por separado dada la superposición de sus respectivos picos cromatográficos, se pueden extraer tres componentes principales (CP) significativos, con valores propios mayores que la unidad, Tabla 4.14 El CP-1 explica el 52.8% de la varianza total del sistema, en tanto que el CP-2 explica el 22.9% y el tercer componente sólo explica el 9.6% de dicha varianza total.

Factor	Valor Propio	% Varianza	% V. Acum.
1	9.102	53.541	53.541
2	3.813	22.428	75.969
3	1.688	9.928	85.896
4	0.712	4.187	90.083
5	0.658	3.873	93.956
6	0.358	2.103	96.059
7	0.301	1.768	97.827
8	0.121	0.713	98.540
9	0.070	0.409	98.950
10	0.057	0.335	99.285
11	0.049	0.291	99.576
12	0.028	0.162	99.738
13	0.021	0.122	99.859
14	0.013	0.076	99.935
15	0.006	0.037	99.973
16	0.003	0.016	99.988

 Tabla 4.14

 Extracción de componentes principales en la matriz de datos de hidrocarburos alifáticos en *P. candei crenata*

En la Tabla 4.15 en la que se presenta la distribución de los pesos estadísticos de las variables sobre los diferentes factores (F) tras una rotación varimax normalizada, los mayores pesos estadísticos sobre el F-1, al igual que ocurría con la especie de *Patella* estudiada anteriormente, se deben a los hidrocarburos alifáticos más pesados, del n-C₂₄ al n-C₃₀, en tanto que sobre el F-2 ejercen un mayor peso estadístico los hidrocarburos más ligeros, n-C₁₈ a n-C₂₃, y el pristano (Pr) en tanto que sobre el F-3 aparecen los hidrocarburos n-C₁₅ y n-C₁₇, a los que anteriormente se ha atribuido un origen alimenticio. Esta circunstancia asemeja el comportamiento de la *P. candei crenata* al de la *P. piperata* y lo va a diferenciar del de la *P. ulyssiponensis*.

Estos hechos parecen indicar que la contaminación de esta especie de *Patella* es también de origen petrogénico y originada por un crudo degradado en el que la fracción ligera, hasta el n-C₂₄, ha sufrido un proceso de degradación bien diferenciado del de la fracción pesada, n-C₂₄-n-C₃₀. Por otra parte, el hecho de que el pristano aparezca asociado al F-2 junto a los hidrocarburos alifáticos más ligeros indica para el mismo, al igual que en el caso de la *P. piperata*, una procedencia petrogénica y no metabólica ni alimentaria ya que no aparece asociado al n-C₁₇ como en su caso cabría esperar. Estos hechos pueden observarse más claramente en la representación gráfica de los pesos

estadísticos de las variables sobre los dos primeros factores tal como se presenta en la Fig. 4.19.

	Factor 1	Factor 2	Factor 3
C14	0.267	0.625	-0.355
C15	-0.047	-0.054	-0.795
C16	0.174	0.593	-0.636
C17	-0.176	0.047	-0.795
C19	0.175	0.905	-0.092
C20	0.100	0.950	0.088
C21	0.075	0.898	-0.095
C22	0.111	0.942	0.090
C23	0.413	0.849	0.023
C24	0.849	0.404	0.095
C25	0.976	0.188	0.021
C26	0.977	0.117	0.008
C27	0.964	0.112	0.037
C28	0.988	0.125	0.032
C29	0.972	0.198	0.002
C30	0.917	0.315	0.051
PR	0.352	0.825	-0.099
Expl.Var	6.807	5.942	1.854
Prp.Totl	0.400	0.350	0.109

 Tabla 4.15

 Matriz de factores a partir de la base de datos de alcanos en P. candei crenata.

Fig. 4.19.- Pesos estadísticos de las variables "alcanos" en *P. candei crenata*, sobre los dos primeros factores.

Fig. 4.20.- "Biplot" obtenido a partir de la base de datos de alcanos en P. candei crenata.

Fig. 4.21.- Análisis de agrupamientos en la matriz de datos de alcanos de P. candei crenata.

El correspondiente biplot, Fig. 4.20, indica que la contaminación de esta especie es relativamente constante con inyecciones puntuales del mismo tipo de materiales, hecho que queda también confirmado por el resultado del Análisis de Agrupamientos, Fig. 4.21.

II.2.2.- Hidrocarburos aromáticos policíclicos

El Análisis de Componentes Principales de la matriz de datos correspondiente a las concentraciones de los dieciocho hidrocarburos aromáticos policíclicos determinados en las muestras, conduce a la extracción de siete CP con valores propios superiores a la unidad que explican en total el 75,5% de la varianza del sistema. El primero de los CP explica el 25,7% de la varianza total del sistema, los dos restantes explican el 14,1% y 12,1% de la misma, respectivamente, y los cuatro últimos entre el 8,7 y el. 5,9% de dicha varianza, Tabla 4.16.

Factor	Valor Propio	% Varianza	% V. Acum.
1	4.618	25.654	25.654
2	2.533	14.074	39.728
3	2.170	12.058	51.786
4	1.568	8.709	60.495
5	1.483	8.237	68.732
6	1.214	6.745	75.477
7	1.062	5.902	81.379
8	0.835	4.640	86.019
9	0.654	3.636	89.655
10	0.607	3.374	93.029
11	0.474	2.634	95.663
12	0.277	1.541	97.204
13	0.163	0.904	98.108
14	0.132	0.734	98.842
15	0.099	0.551	99.393
16	0.050	0.280	99.673
17	0.045	0.252	99.926
18	0.013	0.074	100.000

 Tabla 4.16

 Extracción de componentes principales de la matriz de datos de PAHs en *P. candei crenata*

	Factor 1	Factor 2	Factor 3	Factor 4	Factor 5	Factor 6
A1	-0.110	-0.128	0.242	-0.103	0.263	0.737
A2	0.131	0.196	-0.123	0.188	-0.238	0.672
A3	0.564	-0.081	-0.285	-0.232	-0.059	0.480
A4	0.060	0.150	0.498	-0.093	0.614	-0.070
A5	0.780	-0.101	0.058	-0.024	0.398	0.035
A6	0.335	0.359	0.023	-0.032	0.758	-0.138
A7	0.037	0.143	-0.205	0.242	0.656	0.147
A8	-0.169	0.681	0.132	-0.129	-0.250	0.210
A9	-0.058	0.894	0.076	0.046	0.202	0.006
A10	0.294	0.673	-0.089	0.150	0.287	-0.090
A11	0.178	0.797	-0.065	0.051	0.260	-0.059
A12	0.158	0.013	-0.049	0.938	0.109	-0.050
A13	0.280	0.044	-0.019	0.884	-0.002	0.066
A14	0.876	0.082	0.053	0.222	-0.004	-0.049
A15	0.800	0.333	0.044	0.319	0.041	-0.037
A16	0.739	0.005	0.131	0.214	0.086	0.052
A17	0.261	0.071	0.888	-0.018	-0.114	-0.121
A18	-0.061	-0.050	0.897	-0.027	0.038	0.159
Expl.Var	3.351	2.722	2.102	2.071	1.959	1.381
Prp.Totl	0.186	0.151	0.117	0.115	0.109	0.077

 Tabla 4.17

 Pesos estadísticos de los diferentes PAHs sobre los factores en P. candei crenata

En la correspondiente matriz de factores tras una rotación varimax normalizada, Tabla 4.17, se encuentra que el naftaleno (variable A1) está altamente correlacionado con el factor F-6, en tanto que el fenantreno lo está con el factor F-5. Los restantes PAHs se distribuyen sobre los factores F-1 y F-4 sin que su distribución pueda achacarse a fenómenos estructurales y/o propiedades químicas o químico-físicas de los mismos.

No se ha considerado necesario incluir las gráficas resultantes del "biplot" ni del análisis de agrupamientos ya que suministran una información en todo similar a la alcanzada en el apartado anterior.

II.2.3.- Alcanos + hidrocarburos aromáticos policíclicos

Como para la especie anterior, en una tercera etapa del análisis multivariante de los datos se han unificado las bases de datos experimentales correspondientes a las concentraciones de alcanos y de hidrocarburos aromáticos policíclicos con objeto de establecer las posibles influencias mutuas.

En un primer paso de este análisis a la base de datos de alcanos se añadieron sólamente

Factor	Valor Propio	% Varianza	% V. Acum.
1	9.117	50.651	50.651
2	3.875	21.526	72.177
3	1.947	10.817	82.994
4	0.926	5.144	88.138
5	0.694	3.855	91.993
6	0.448	2.491	94.484
7	0.345	1.918	96.402
8	0.292	1.620	98.022
9	0.112	0.622	98.644
10	0.069	0.385	99.028
11	0.057	0.315	99.343
12	0.048	0.264	99.607
13	0.028	0.153	99.760
14	0.020	0.112	99.872
15	0.013	0.072	99.944
16	0.006	0.035	99.979
17	0.002	0.012	99.991
18	0.002	0.009	100.000

 Tabla 4.18

 Valores propios extraídos de la matriz de datos

 [alcanos + ΣΡΑΗ] en P. candei crenata

los datos experimentales correspondientes al total de hidrocarburos aromáticos policíclicos (Σ PAH) de las correspondientes muestras.

De los resultados que se presentan en la Tabla 4.18 pueden extraerse cuatro componentes principales que explican un 88,1% de la varianza total de este nuevo sistema pudiéndose ver que el PC-1 por sí solo explica el 50,7% de dicha varianza.

En la matriz de factores tras una rotación varimax normalizada, Tabla. 4.19, puede observarse como los *n*-alcanos más pesados, del C_{24} al C_{30} siguen manteniéndose, al igual que en las dos especies anteriores, como un grupo compacto con altos pesos estadísticos sobre el F-1 y que, de los *n*-alcanos a los que se ha atribuido un origen alimenticio sólo el *n*- C_{17} aparece asociado al F-3 y, sorprendentemente, el Σ PAH queda asociado y con alto peso estadístico a este mismo factor. Este hecho pudiera ser sorprendente en un principio pero ha de considerarse que este tipo de *Patella* tiene su hábitat en medio del bosque de algas de las que se alimenta por lo cual puede ingerir

	Factor 1	Factor 2	Factor 3	Factor 4
C14	0.265	0.611	0.381	-0.150
C15	-0.068	-0.019	0.107	-0.945
C16	0.164	0.593	0.409	-0.469
C17	-0.186	0.029	0.701	-0.427
C19	0.176	0.905	0.077	-0.068
C20	0.103	0.956	-0.100	0.025
C21	0.079	0.879	0.289	0.114
C22	0.113	0.949	-0.108	0.032
C23	0.415	0.846	0.036	0.059
C24	0.851	0.407	-0.087	0.033
C25	0.976	0.186	-0.009	0.002
C26	0.978	0.114	0.014	-0.002
C27	0.965	0.108	0.004	0.037
C28	0.988	0.123	-0.008	0.014
C29	0.973	0.193	0.039	0.012
C30	0.918	0.313	-0.021	0.026
PR	0.352	0.828	0.035	-0.129
ΣΡΑΗ	0.020	0.084	0.906	0.041
Expl.Var	6.824	5.918	1.759	1.363
Prp.Totl	0.379	0.329	0.098	0.076

 Tabla 4.19

 Matriz de factores a partir de la matriz de datos
 [alcanos + ΣΡΑΗ] en P. candei crenata

Tabla 4.20
Valores propios extraídos de la matriz [alcanos +
Σ PAH1 + naftaleno (A1)] en <i>P. candei crenata</i>

Factor	Valor Propio	% Varianza	% V. Acum.
1	9.168	48.252	48.252
2	3.890	20.475	68.727
3	1.921	10.108	78.836
4	1.316	6.927	85.763
5	0.901	4.743	90.505
6	0.501	2.636	93.141
7	0.430	2.262	95.403
8	0.329	1.730	97.133
9	0.204	1.075	98.208
10	0.102	0.535	98.744
11	0.069	0.362	99.106
12	0.057	0.298	99.404
13	0.047	0.248	99.652
14	0.028	0.145	99.797
15	0.018	0.093	99.889
16	0.012	0.062	99.951
17	0.006	0.029	99.980
18	0.002	0.011	99.992
19	0.002	0.008	100.000

Variable	Factor 1	Factor 2	Factor 3	Factor 4
C14	0.281	0.601	-0.215	0.506
C15	-0.058	-0.058	-0.585	0.332
C16	0.174	0.580	-0.616	0.137
C17	-0.182	0.027	-0.835	0.141
C19	0.183	0.899	-0.042	0.188
C20	0.105	0.956	0.047	-0.098
C21	0.083	0.890	-0.220	-0.086
C22	0.114	0.951	0.017	-0.193
C23	0.418	0.846	0.000	0.000
C24	0.848	0.406	0.008	-0.216
C25	0.977	0.181	0.008	-0.026
C26	0.978	0.109	-0.016	-0.034
C27	0.966	0.103	0.043	0.025
C28	0.988	0.119	0.009	-0.041
C29	0.973	0.190	-0.041	-0.059
C30	0.920	0.308	0.064	0.050
PR	0.362	0.815	0.012	0.313
A1	-0.146	0.019	-0.198	0.798
ΣΡΑΗ1	0.185	0.118	-0.667	-0.462
Expl.Var	6.905	5.880	2.010	1.500
Prp.Totl	0.363	0.309	0.106	0.079

Tabla 4.21Matriz de factores a partir de la base de datos[alcanos + PAHs] en P. candei crenata

simultáneamente los PAHs depositados sobre las algas que les sirven de alimento. Sin embargo el n-C₁₅ se encuentra asociado él solo al F-4 lo que sugiere una fuente de ingestión distinta de la del n-C₁₇ ¿diferente tipo de alga?. Los n-alcanos más ligeros, C₁₉ a C₂₃, junto con el pristano aparecen asociados al F-2 lo que indica para este último una procedencia petrogénica y no metabólica.

Seguidamente se procedió a incorporar a la base de datos de alcanos los correspondientes valores de las concentraciones de naftaleno, variable A1, y del total de PAHs menos naftaleno, variable Σ PAH1. De los resultados que se presentan en la Tabla 4.20 pueden extraerse cuatro componentes principales con valores propios superiores a la unidad que explican el 85.8% de la varianza total del sistema, con el PC-1 explicando por sí solo el 48.3% de la misma.

Como se observa en la Tabla 4.21, los factores F-1 y F-2 mantienen asociadas a las mismas variables que en el caso anterior, Tabla 4.14, al igual que el F-3, aunque la

Factor	Valor Propio	% Varianza	% V. Acum.
1	10.139	28.969	28.969
2	5.275	15.071	44.040
3	4.006	11.446	55.487
4	2.297	6.563	62.050
5	2.081	5.947	67.997
6	1.602	4.577	72.574
7	1.433	4.095	76.669
8	1.175	3.356	80.025
9	1.126	3.216	83.241
10	0.992	2.833	86.075
11	0.875	2.499	88.574
12	0.704	2.010	90.584
13	0.579	1.654	92.238
14	0.443	1.267	93.505
15	0.351	1.003	94.508
16	0.245	0.701	95.209
17	0.228	0.651	95.860
18	0.195	0.557	96.417
19	0.173	0.494	96.911
20	0.134	0.384	97.295
21	0.116	0.330	97.625
22	0.086	0.244	97.869
23	0.083	0.236	98.105
24	0.072	0.206	98.311
25	0.067	0.192	98.503
26	0.065	0.186	98.689
27	0.060	0.172	98.862
28	0.057	0.163	99.025
29	0.052	0.149	99.174
30	0.050	0.143	99.317
31	0.049	0.139	99.455
32	0.048	0.136	99.592
33	0.048	0.136	99.728
34	0.048	0.136	99.864
35	0.048	0.136	100.000

Tabla 4.22Extracción de componentes principales a partir de la
base de datos [alcanos + PAHs]

asociación de Σ PAH1 no es demasiado significativa estadísticamente hablando; igualmente sobre este factor aparece asociada poco nítidamente la variable *n*-C₁₅, pero, ahora, sobre el F-4 aparece estadísticamente muy bien definida la variable "naftaleno" (A1) a la que puede atribuirse un origen bien diferenciado de los restantes hidrocarburos policíclicos.

Variable	Factor 1	Factor 2	Factor 3	Factor 4	Factor 5	Factor 6	Factor 7	Factor 8	Factor 9
C14	0.520	0.308	-0.007	0.204	-0.046	-0.192	0.552	0.208	-0.090
C15	0.019	-0.086	-0.044	0.824	-0.153	0.013	0.075	0.053	0.084
C16	0.579	0.191	0.255	0.466	0.041	0.095	0.203	-0.060	-0.165
C17	0.026	-0.158	0.297	0.588	0.176	0.164	0.303	-0.395	-0.163
C19	0.837	0.206	-0.032	0.035	-0.028	0.207	0.251	0.062	-0.097
C20	0.924	0.130	-0.089	-0.031	0.031	0.141	-0.042	0.036	-0.024
C21	0.845	0.131	0.073	0.060	0.153	-0.154	0.112	-0.011	0.059
C22	0.940	0.145	0.000	-0.047	-0.010	0.047	-0.142	0.017	-0.020
C23	0.802	0.451	-0.037	-0.057	-0.005	0.005	0.073	-0.094	-0.061
C24	0.401	0.842	0.007	-0.037	0.044	0.021	-0.199	-0.108	0.074
C25	0.137	0.960	-0.013	0.003	0.053	0.076	-0.016	0.022	0.015
C26	0.073	0.957	-0.006	0.015	0.100	0.042	-0.018	0.043	-0.031
C27	0.047	0.941	0.071	-0.073	-0.001	0.104	0.057	0.100	-0.021
C28	0.077	0.966	-0.019	-0.008	0.084	0.061	-0.021	0.051	0.044
C29	0.152	0.952	0.047	0.003	0.081	0.067	-0.017	0.032	0.053
C30	0.264	0.908	-0.026	-0.040	-0.027	0.028	0.040	0.094	0.118
PR	0.756	0.368	-0.119	0.057	-0.060	0.158	0.315	0.181	0.015
A1	-0.001	-0.143	0.052	0.063	-0.062	-0.101	0.855	-0.107	0.120
A2	-0.031	0.222	-0.010	-0.002	0.121	-0.015	0.039	-0.180	0.870
A3	0.006	-0.136	0.202	0.487	-0.066	0.233	0.132	0.265	0.580
A4	0.253	-0.175	0.501	-0.276	-0.197	-0.460	0.037	0.135	-0.013
A5	-0.051	-0.029	0.897	0.170	0.111	0.054	0.118	0.086	0.003
A6	0.526	-0.086	0.643	0.066	-0.064	-0.060	-0.116	0.075	-0.109
A7	0.528	0.365	0.114	0.065	0.065	-0.038	0.072	0.456	0.090
A8	0.199	-0.099	-0.089	0.003	-0.110	-0.046	0.065	-0.777	0.115
A9	0.799	-0.109	0.050	-0.072	0.030	-0.139	-0.119	-0.378	0.132
A10	0.654	-0.052	0.370	-0.008	0.245	0.108	-0.082	-0.273	-0.058
A11	0.679	0.130	0.177	0.208	-0.013	-0.124	-0.347	-0.291	0.120
A12	0.118	0.098	0.083	-0.056	0.910	0.027	-0.006	0.119	-0.049
A13	0.020	0.095	0.145	0.028	0.878	0.024	-0.035	-0.006	0.117
A14	-0.053	0.035	0.509	0.596	0.375	-0.174	-0.244	0.058	0.099
A15	0.233	0.060	0.453	0.529	0.466	-0.180	-0.218	-0.061	0.098
A16	-0.083	0.241	0.715	0.062	0.321	-0.109	0.034	-0.067	0.142
A17	-0.102	-0.140	0.141	0.085	0.042	-0.892	-0.099	-0.067	-0.032
A18	-0.068	-0.125	-0.049	-0.081	-0.026	-0.847	0.238	0.002	-0.020
Expl.Var	7.541	7.112	2.923	2.366	2.335	2.137	1.797	1.578	1.346
Prp.Totl	0.215	0.203	0.084	0.068	0.067	0.061	0.051	0.045	0.038

 Tabla 4.23

 Matriz de factores a partir de la base de datos [alcanos + PAHs]

II.2.4.- Bifenilos policlorados

De la matriz de datos para el contenido en PCBs de la *P. candei crenata* en la que, al igual que en el caso anterior, se han eliminado las variables con menos de un 5% de datos positivos y la variable Σ PCB, se pueden extraer ocho componentes principales

base de datos de PCBs en P. candei crenata									
	Factor	Valor Propio	% Varianza	% V. Acum.					
	1	5.841	26.548	26.548					
	2	2.702	12.283	38.831					
	3	2.390	10.864	49.695					
	4	1.937	8.805	58.500					
	5	1.420	6.455	64.955					
	6	1.303	5.921	70.876					
	7	1.238	5.629	76.505					
	8	1.131	5.141	81.646					
	9	0.972	4.417	86.063					
	10	0.681	3.096	89.160					
	11	0.564	2.565	91.725					
	12	0.523	2.377	94.102					
	13	0.431	1.958	96.060					
	14	0.244	1.110	97.170					
	15	0.218	0.990	98.161					
	16	0.132	0.600	98.761					
	17	0.097	0.439	99.200					
	18	0.084	0.383	99.583					
	19	0.053	0.242	99.824					
	20	0.028	0.125	99.950					
	21	0.008	0.036	99.986					
	22	0.003	0.014	100.000					

 Tabla 4.24

 Extracción de componentes principales a partir de la base de datos de PCBs en *P. candei crenata*

(CP) significativos, con valores propios ≥ 1 que explican en conjunto el 81,7% de la varianza total del sistema, Tabla 4.24. El CP-1 por sí solo explica el 26,6% de la varianza total, en tanto que el CP-2 ya sólo explica el 12,3% y el tercer componente principal desciende hasta el 8,9% de dicha varianza total.

En la Tabla 4.25 en la que se presenta la distribución de los pesos estadísticos de los congéneres sobre los diferentes factores tras una rotación varimax normalizada, los mayores pesos estadísticos sobre el F-1 se corresponden con los congéneres PCB-18, -31, -52, -153 y -180, en tanto que sobre el F-2 ejercen un mayor peso estadístico los congéneres PCB-101, -129 y -170. Sobre los restantes factores sólamente aparecen uno, dos o tres congéneres.

Se ha intentado relacionar las estructuras de los congéneres que, con mayores pesos estadísticos, aparecen en cada uno de los factores pero aunque de los datos que se

exponen en la Tabla 4.25 parecen existir ciertas similitudes, no pueden deducirse pautas concluyentes.

	Factor 1	Factor 2	Factor 3	Factor 4	Factor 5	Factor 6	Factor 7	Factor 8
P_018	0.867	0.099	0.023	0.050	-0.130	0.196	-0.058	0.051
P_031	0.737	0.500	0.013	0.103	0.234	-0.123	-0.018	-0.033
P_044	0.338	0.029	0.098	-0.001	-0.066	0.822	0.087	-0.168
P_052	0.848	0.251	0.014	-0.180	0.021	0.005	0.127	0.049
P_054	-0.095	0.000	0.257	-0.082	-0.039	-0.030	-0.826	0.114
P_087	0.225	0.418	0.192	0.148	0.103	0.063	0.439	0.357
P_101	0.251	0.777	-0.100	-0.049	0.165	-0.050	0.096	-0.243
P_118	0.159	0.241	0.814	-0.046	0.214	-0.084	-0.191	-0.106
P_121	0.046	-0.120	0.138	0.124	-0.096	-0.450	-0.241	0.047
P_129	0.311	0.838	0.031	0.066	-0.152	0.221	0.152	0.096
P_137	0.091	-0.077	0.006	-0.933	0.122	0.083	0.070	-0.015
P_138	0.479	0.372	0.148	-0.123	0.556	-0.133	0.001	-0.320
P_143	0.164	-0.037	-0.126	0.140	0.119	0.738	-0.438	0.111
P_153	0.924	0.168	0.017	0.087	-0.102	0.182	0.007	0.056
P_154	-0.064	-0.067	0.166	0.024	0.813	0.173	-0.074	0.122
P_159	-0.101	-0.195	0.771	0.038	-0.226	0.148	0.226	0.193
P_170	0.191	0.897	0.047	0.076	-0.031	0.022	-0.131	0.120
P_180	0.822	0.146	-0.114	-0.290	0.194	0.145	0.124	-0.076
P_182	0.019	0.035	-0.236	-0.365	0.782	-0.045	0.201	0.063
P_185	-0.057	-0.011	0.857	0.066	0.047	-0.181	-0.264	-0.093
P_187	-0.035	-0.016	0.043	0.042	-0.093	0.115	0.090	-0.916
P_199	0.045	-0.035	-0.038	-0.945	0.079	-0.064	-0.169	0.031
Expl.Var	4.226	2.923	2.274	2.135	1.921	1.722	1.461	1.300
Prp.Totl	0.192	0.133	0.103	0.097	0.087	0.078	0.066	0.059

Tabla 4.25Matriz de factores de PCBs en P. candei crenata.

Del biplot y del análisis de agrupamientos, de los que no se ha considerado necesario presentar las correspondientes figuras, realizado con las variables que mayores pesos presentan sobre cada uno de los factores, puede deducirse que la contaminación de los especímenes de *P. candei crenata* por congéneres de PCBs es muy uniforme observándose, al tiempo, que existen inyecciones puntuales de este tipo de contaminantes.
II.3.- Patella ulyssiponensis

II.3.1.- Alcanos

De la matriz de datos para el contenido en *n*-alcanos de la *P. ulyssiponensis* en la cual, como en los casos anteriores, se han eliminado las variables n-C₁₈ y fitano ya que en muchas muestras ha sido imposible cuantificarlos por separado se pueden extraer cuatro componentes principales (CP) significativos, con valores propios \geq 1, Tabla 4.26. El CP-1 explica el 40,9% de la varianza total del sistema, en tanto que el CP-2 explica el 22,6% y el tercer y cuarto componentes explican el 10,5% y 6,9%, respectivamente, de dicha varianza total.

En la Tabla 4.27 en la que se presenta la distribución de los pesos estadísticos de las variables sobre los diferentes factores (F) tras una rotación varimax normalizada, los mayores pesos estadísticos sobre el F-1 se corresponden con los hidrocarburos alifáticos más pesados, del n-C₂₄ al n-C₃₀, en tanto que sobre el F-2 ejercen un mayor peso estadístico los hidrocarburos más ligeros, del n-C₁₄ al n-C₁₇, pudiendo incluirse en este grupo también el n-C₁₉. Sobre el F-3 nos encontramos con los alcanos n-C₂₀ y n-C₂₂, en tanto que sobre el F-4 aparece únicamente el n-C₂₁.

Si comparamos con los resultados obtenidos en los casos anteriores de las *P. piperata* y *P. candei crenata* puede verse como aquí no se produce la separación de los alcanos n- C_{15} y n- C_{17} a los que se había atribuido una procedencia alimenticia. Pero, al igual que ocurre en aquellos casos, los hidrocarburos alifáticos pesados del n- C_{24} al n- C_{30} siguen apareciendo en bloque asociados al F-1.

Al igual que en los casos de las *P. piperata* y *P. candei crenata* estos hechos parecen indicar que también la contaminación de esta tercera especie de *Patella* endémica es de origen petrogénico originada por crudos degradados en los que la fracción ligera, hasta el n-C₂₂, ha sufrido un proceso de degradación bien diferenciado del de la fracción pesada, n-C₂₄-n-C₃₀. Los hidrocarburos del n-C₁₉ al n-C₂₃ parecen marcar una frontera entre ambos comportamientos degradativos. Por otra parte, el pristano aparece

Factor	Valor Propio	% Varianza	% V. Acum.
1	6.952	40.896	40.896
2	3.842	22.599	63.495
3	1.786	10.506	74.001
4	1.177	6.923	80.924
5	0.897	5.275	86.198
6	0.708	4.167	90.365
7	0.593	3.491	93.856
8	0.269	1.581	95.437
9	0.234	1.377	96.814
10	0.149	0.876	97.690
11	0.137	0.803	98.493
12	0.111	0.650	99.143
13	0.077	0.456	99.599
14	0.041	0.241	99.841
15	0.015	0.090	99.931
16	0.009	0.052	99.983
17	0.003	0.017	100.000

 Tabla 4.26

 Extracción de componentes principales de la matriz de datos de alcanos de *P. ulyssiponensis*

 Tabla 4.27

 Matriz de factores de alcanos en P. ulyssiponensis

Variable	Factor 1	Factor 2	Factor 3	Factor 4
C14	-0.040	0.842	-0.048	0.309
C15	-0.126	0.796	-0.029	-0.289
C16	0.129	0.949	0.037	0.042
C17	0.004	0.872	0.067	-0.166
C19	0.135	0.684	0.585	0.233
C20	0.010	-0.084	0.951	0.039
C21	0.037	0.040	0.061	-0.769
C22	0.326	0.200	0.846	-0.085
C23	0.455	-0.002	0.251	0.405
C24	0.660	-0.089	0.161	-0.052
C25	0.957	0.053	0.094	-0.002
C26	0.969	-0.097	0.076	-0.030
C27	0.908	0.194	-0.030	0.044
C28	0.981	0.039	0.092	0.097
C29	0.967	0.087	0.091	0.104
C30	0.933	0.049	0.087	0.107
Pristano	0.388	0.562	0.237	0.478
Expl.Var	6.400	3.904	2.160	1.293
Prp.Totl	0.376	0.230	0.127	0.076

mayoritariamente, pero no de forma estadísticamente significativa, asociado al F-2 junto a los hidrocarburos alifáticos más ligeros, incluido el n-C₁₇, lo que parece indicar para el mismo un origen petrogénico y no metabólico.

Fig. 4.22.- "Biplot" obtenido a partir de la base de datos de alcanos en P. ulyssiponensis.

Fig. 4.23.- Resultado del análisis de agrupamientos a partir de la base de datos alcanos

Tomando las variables con mayores pesos estadísticos sobre cada uno de los factores, es decir, n-C₂₈ (F-1), n-C₁₆ (F-2), n-C₂₀ (F-3) y n-C₂₁ (F-4), se ha realizado el biplot que se presenta en la Fig. 4.22 y el análisis de agrupamientos de la Fig. 4.23, de los cuales puede concluirse que la contaminación de la *P. ulyssiponensis* es también muy uniforme presentándose inyecciones puntuales de mayores concentraciones de contaminantes.

II.3.2.- Hidrocarburos aromáticos policíclicos

El Análisis de Componentes Principales de la matriz de datos correspondiente a las concentraciones de los dieciocho hidrocarburos aromáticos policíclicos determinados en las muestras, conduce a la extracción de seis CP con valores propios superiores a la unidad, el primero de los cuales explica el 23,4% de la varianza del sistema en tanto que el segundo y tercero explican el 19,4% y 12,9%, respectivamente. Los tres restantes CP explican entre el 9,3 y el 7,1% de la varianza total. Es decir, entre estos seis CP explican un total del 80,2% de la varianza total del sistema, Tabla 4.28.

Factor	Valor Propio	% Varianza	% V. Acum.
1	4.211	23.396	23.396
2	3.496	19.421	42.817
3	2.322	12.902	55.719
4	1.673	9.296	65.015
5	1.451	8.061	73.076
6	1.273	7.073	80.149
7	0.742	4.123	84.273
8	0.599	3.326	87.599
9	0.577	3.203	90.802
10	0.465	2.583	93.385
11	0.391	2.174	95.559
12	0.271	1.507	97.066
13	0.179	0.996	98.062
14	0.120	0.664	98.726
15	0.089	0.493	99.219
16	0.067	0.373	99.592
17	0.051	0.283	99.875
18	0.023	0.125	100.000

Tabla 4.28Extracción de componentes principales de la base de
datos PAHs de P. ulyssiponensis.

En la correspondiente matriz de factores tras una rotación varimax normalizada, Tabla 4.29, se encuentra que el naftaleno (variable A1) está sólo poco correlacionada con el factor 2 y 3, en tanto que el benzo[*ghi*]perileno lo está con el factor F-4. Los restantes PAHs se distribuyen sobre los factores F-1 a F-6 sin que su distribución pueda achacarse a fenómenos estructurales y/o propiedades químicas o químico-físicas de los mismos.

Variable	Factor 1	Factor 2	Factor 3	Factor 4	Factor 5	Factor 6
A1	-0.121	0.569	0.578	0.141	-0.069	0.000
A2	-0.020	0.176	0.580	-0.133	0.565	-0.005
A3	-0.096	-0.021	-0.085	0.085	-0.035	0.772
A4	0.006	0.088	-0.004	0.790	0.074	-0.228
A5	-0.087	-0.028	-0.012	0.869	0.031	0.210
A6	-0.020	-0.008	0.104	0.760	0.110	0.454
A7	-0.022	-0.009	0.009	0.373	0.850	0.073
A8	-0.042	-0.051	0.794	0.205	0.191	0.054
A9	-0.065	0.105	0.204	-0.039	0.934	0.002
A10	0.013	-0.018	0.926	-0.140	0.059	0.031
A11	0.750	0.533	-0.009	0.006	0.029	0.009
A12	0.023	0.906	-0.008	0.076	0.144	0.045
A13	0.363	0.886	0.046	-0.076	0.064	0.129
A14	0.753	0.295	-0.140	-0.180	-0.162	0.338
A15	0.488	0.442	-0.129	-0.083	-0.091	0.601
A16	0.907	-0.017	-0.010	-0.055	-0.016	-0.107
A17	0.040	0.111	0.275	0.129	0.146	0.725
A18	0.940	-0.032	0.020	0.059	-0.002	-0.062
Expl.Var	3.247	2.564	2.334	2.278	2.061	1.943
Prp.Totl	0.180	0.142	0.130	0.127	0.114	0.108

 Tabla 4.29

 Matriz de factores para la base de datos PAHs en P. ulyssiponensis

Tanto el biplot como el análisis de agrupamientos permiten alcanzar las mismas conclusiones que en apartado anterior.

II.3.3.- Alcanos + hidrocarburos aromáticos policíclicos

Al igual que se ha hecho en los casos anteriores, en una tercera etapa del análisis multivariante de los datos se han unificado las bases de datos experimentales correspondientes a las concentraciones de alcanos y de hidrocarburos aromáticos policíclicos con objeto de detectar las posibles influencias mutuas.

En un primer paso a la base de datos de alcanos se añadieron sólamente los datos

Factor	Valor Propio	% Varianza	% V. Acum.
1	6.952	38.624	38.624
2	3.854	21.409	60.033
3	1.812	10.068	70.101
4	1.280	7.114	77.215
5	1.005	5.581	82.796
6	0.886	4.925	87.721
7	0.698	3.879	91.600
8	0.518	2.878	94.478
9	0.268	1.490	95.968
10	0.214	1.190	97.158
11	0.141	0.783	97.941
12	0.129	0.719	98.660
13	0.106	0.589	99.248
14	0.068	0.380	99.629
15	0.040	0.223	99.851
16	0.015	0.085	99.936
17	0.008	0.047	99.984
18	0.003	0.016	100.000

Tabla 4.30Extracción de componentes principales a partir de labase de datos [alcanos + Σ PAHs] en *P. ulyssiponensis*

experimentales correspondientes al total de PAHs (Σ PAH) de las correspondientes muestras.

En estas condiciones, de los resultados que se presentan en la Tabla 4.30 pueden extraerse cinco componentes principales que explican un 82,8% de la varianza total de este nuevo sistema pudiéndose ver que el PC-1 por sí solo explica el 38,6% de dicha varianza.

En la matriz de factores tras una rotación varimax normalizada, Tabla. 4.31, puede observarse como los *n*-alcanos más pesados, del C_{24} al C_{30} , siguen aquí también manteniéndose como un grupo compacto con altos pesos estadísticos sobre el F-1 y que, igualmente, los *n*-alcanos más ligeros, incluidos aquellos a los que se había atribuido un origen alimenticio, C_{15} y C_{17} , continúan apareciendo asociados al F-2. Es decir, en general, los cuatro primeros factores responden a la misma distribución ya observada

cuando se operaba sobre la matriz de datos de alcanos únicamente, Tabla 4.27, pero, ahora, y sorprendentemente, la variable Σ PAH añadida queda asociada y con alto peso estadístico al F-5.

Variable	Factor 1	Factor 2	Factor 3	Factor 4	Factor 5
C14	-0.030	0.848	-0.051	0.296	0.083
C15	-0.133	0.780	-0.029	-0.251	0.191
C16	0.137	0.951	0.032	-0.001	-0.048
C17	0.004	0.864	0.064	-0.170	-0.020
C19	0.141	0.694	0.580	0.206	0.049
C20	0.007	-0.075	0.950	0.022	-0.127
C21	0.026	0.025	0.058	-0.822	0.036
C22	0.319	0.196	0.849	-0.074	0.075
C23	0.461	0.006	0.255	0.404	0.039
C24	0.647	-0.110	0.175	0.047	0.380
C25	0.956	0.047	0.099	-0.024	-0.042
C26	0.965	-0.106	0.082	-0.032	0.030
C27	0.913	0.193	-0.029	-0.008	-0.110
C28	0.983	0.037	0.095	0.067	-0.040
C29	0.970	0.086	0.094	0.072	-0.020
C30	0.936	0.049	0.089	0.074	0.019
Pristano	0.407	0.583	0.230	0.385	-0.230
ΣΡΑΗ	-0.013	0.111	-0.065	-0.044	0.927
Expl.Var	6.421	3.931	2.168	1.237	1.147
Prp.Totl	0.357	0.218	0.120	0.069	0.064

Tabla 4. 31Matriz de factores para la base de datos [alcanos + Σ PAH] en *P. ulyssiponensis*

Los resultados anteriores parecen indicar que los PAHs que aparecen en los tejidos de la *P. ulyssiponensis* tuvieran una vía de ingestión diferente de la que presentaba la *P. piperata* o que el mecanismo de acumulación/metabolismo de aquella sea diferente del de ésta.

Tanto la distribución de muestras sobre las variables en el correspondiente "biplot" como el resultado del estudio de agrupamientos presentan muy grandes similitudes entre sí y con los resultados obtenidos en los apartados anteriores.

En segundo lugar y dado que el naftaleno presente en las muestras pudiera ser el último paso del metabolismo de los PAHs superiores, en la base de datos de alcanos se introdujeron los valores correspondientes a la concentración de naftaleno (variable A1) y el total de PAHs menos naftaleno (variable Σ PAH1) y se procedió a su análisis estadístico.

Factor	Valor Propio	% Varianza	% V. Acum.
1	6.976	36.717	36.717
2	3.872	20.377	57.093
3	1.844	9.703	66.796
4	1.437	7.562	74.358
5	1.284	6.757	81.114
6	0.958	5.044	86.158
7	0.704	3.705	89.863
8	0.602	3.169	93.032
9	0.379	1.996	95.029
10	0.260	1.368	96.397
11	0.202	1.061	97.458
12	0.137	0.723	98.181
13	0.127	0.669	98.850
14	0.097	0.510	99.359
15	0.057	0.301	99.660
16	0.039	0.205	99.866
17	0.015	0.081	99.947
18	0.007	0.038	99.985
19	0.003	0.015	100.000

Tabla 4.32 Extracción de componentes principales en la base de datos [alcanos + ΣPAH1 + naftaleno (A1)]

De los resultados que se presentan en la Tabla 4.32 pueden extraerse cinco componentes principales que explican el 81,1% de la varianza total del sistema explicando el PC-1 el 36,7% de la varianza por sí solo y el 20,4% el PC-2.

En la correspondiente matriz de factores tras una rotación varimax normalizada, Tabla 4.33, se encuentra que, como en todos los casos anteriores, el F-1 lleva asociados a los *n*-alcanos pesados, C_{24} a C_{30} ; los *n*-alcanos ligeros, C_{14} a C_{19} , se encuentran asociados al F-2, en tanto que los *n*-alcanos C_{20} y C_{22} siguen asociados al F-3. En cambio, ahora, la concentración de naftaleno aparece asociada al cuarto factor con un alto peso estadístico y la suma del total de los restantes PAHs (Σ PAH1) aparece distribuida entre los factores F-4 y F-5.

Variable	Factor 1	Factor 2	Factor 3	Factor 4	Factor 5
C14	-0.009	0.860	-0.042	0.106	0.197
C15	-0.149	0.767	-0.040	0.182	-0.202
C16	0.137	0.950	0.028	-0.056	-0.040
C17	-0.008	0.855	0.054	-0.031	-0.124
C19	0.159	0.701	0.585	0.089	0.126
C20	0.014	-0.074	0.949	-0.116	0.034
C21	-0.027	-0.003	0.036	-0.150	-0.862
C22	0.320	0.192	0.842	0.040	-0.114
C23	0.491	0.025	0.265	-0.001	0.227
C24	0.651	-0.115	0.168	0.423	0.073
C25	0.953	0.043	0.088	-0.065	-0.053
C26	0.961	-0.111	0.071	0.019	-0.048
C27	0.909	0.191	-0.038	-0.133	-0.053
C28	0.986	0.037	0.088	-0.051	0.011
C29	0.973	0.086	0.087	-0.029	0.007
C30	0.940	0.050	0.083	0.008	-0.012
Pristano	0.431	0.600	0.239	-0.192	0.276
A1	-0.142	0.107	-0.075	0.912	0.109
ΣΡΑΗ1	0.104	0.074	-0.027	0.528	-0.572
Expl.Var	6.511	3.948	2.159	1.444	1.349
Prp.Totl	0.343	0.208	0.114	0.076	0.071

Tabla 4.33Matriz de factores para la base de datos[alcanos + Σ PAH1 + naftaleno (A1)] en P. ulyssiponensis

Como puede observarse, se reproduce prácticamente la misma asociación de variables y factores ya descrita en la Tablas 4.29 y 4.31 aunque en el presente caso parte del peso estadístico de la variable Σ PAH1 se encuentre asociada en parte con el naftalemo (F-4) y parte con el *n*-C₂₁ sobre el factor F-5. Esto podría estar indicando una procedencia mixta para los diferentes hidrocarburos aromáticos policíclicos, metabólica y petrogénica.

Las conclusiones que pueden extraerse del estudio de los correspondientes "biplot" y análisis de agrupamientos son en todo similares a las ya comentadas en los apartados anteriores.

Como último paso de este estudio se unieron las bases de datos correspondientes a las concentraciones individuales de alcanos y de hidrocarburos aromáticos policíclicos. De la base conjunta se pueden extraer nueve componentes principales con valores propios superiores a la unidad, Tabla 4.34, que explican el 82,1% de la varianza total del

sistema, explicando los tres primeros componentes principales por sí solos el 50,6% de dicha varianza.

Factor	Valor Propio	% Varianza	% V. Acum.
1	8.455	24.159	24.159
2	4.898	13.993	38.152
3	4.359	12.454	50.605
4	2.898	8.281	58.886
5	2.313	6.608	65.494
6	1.756	5.018	70.511
7	1.613	4.609	75.120
8	1.431	4.089	79.209
9	1.029	2.939	82.149
10	0.936	2.675	84.823
11	0.890	2.542	87.365
12	0.785	2.242	89.607
13	0.648	1.852	91.459
14	0.585	1.671	93.130
15	0.494	1.410	94.540
16	0.336	0.959	95.499
17	0.295	0.843	96.343
18	0.262	0.749	97.091
19	0.221	0.631	97.723
20	0.138	0.395	98.118
21	0.117	0.334	98.452
22	0.106	0.302	98.755
23	0.100	0.285	99.039
24	0.085	0.243	99.282
25	0.058	0.167	99.449
26	0.045	0.129	99.578
27	0.041	0.117	99.695
28	0.033	0.093	99.789
29	0.030	0.086	99.874
30	0.018	0.052	99.926
31	0.009	0.027	99.953
32	0.008	0.021	99.975
33	0.004	0.011	99.986
34	0.004	0.011	99.997
35	0.001	0.003	100.000

Tabla 4.34Extracción de componentes principales en la base de
datos [alcanos + PAHs] de *P. ulyssiponensis.*

En la matriz de factores tras una rotación varimax, Tabla 4.35 puede observarse con toda claridad como permanecen ligados al F-1, como en todos los casos anteriores, los *n*-alcanos pesados, C_{24} a C_{30} , los *n*-alcanos ligeros, C_{14} a C_{19} , se encuentran asociados al F-2, en tanto que los *n*-alcanos C_{20} y C_{22} se encuentran ahora asociados al F-8 y de forma similar los diferentes PAHs se encuentran asociados de igual forma a los otros

factores. Ahora, tampoco, la concentración de naftaleno aparece asociada de forma estadísticamente significativa a un factor determinado.

Variable	Factor 1	Factor 2	Factor 3	Factor 4	Factor 5	Factor 6	Factor 7	Factor 8	Factor 9
C14	-0.066	0.720	0.075	0.035	0.422	0.142	0.001	0.065	-0.124
C15	-0.119	0.840	-0.006	0.191	-0.131	0.108	-0.069	-0.050	-0.079
C16	0.115	0.904	-0.030	-0.099	0.254	0.119	0.023	0.054	0.007
C17	0.028	0.908	0.001	-0.004	0.031	-0.052	-0.008	0.015	0.050
C19	0.159	0.640	0.095	0.067	0.302	-0.121	-0.109	0.581	0.132
C20	0.036	-0.049	0.052	-0.086	-0.034	-0.147	0.027	0.902	0.063
C21	0.051	0.115	-0.663	-0.037	-0.244	-0.279	0.103	-0.015	-0.166
C22	0.342	0.223	-0.055	0.039	-0.081	0.057	-0.049	0.834	-0.126
C23	0.364	-0.086	0.062	-0.055	0.159	0.410	0.047	0.375	0.266
C24	0.709	-0.071	0.047	0.126	-0.134	0.046	-0.074	0.168	-0.326
C25	0.950	0.030	-0.008	-0.014	0.049	0.025	0.058	0.101	0.002
C26	0.962	-0.101	0.002	0.003	-0.056	0.077	0.018	0.080	0.008
C27	0.899	0.126	-0.015	-0.083	0.321	0.004	0.077	-0.038	-0.014
C28	0.962	0.007	0.012	-0.036	0.089	0.096	0.046	0.101	0.133
C29	0.938	0.059	0.014	-0.034	0.070	0.183	0.013	0.099	0.198
C30	0.905	0.029	-0.019	-0.003	0.064	0.206	-0.019	0.079	0.276
Pristano	0.354	0.468	0.096	-0.184	0.442	0.200	0.145	0.273	0.231
A1	-0.112	0.115	0.144	0.565	-0.072	0.141	-0.560	-0.071	-0.136
A2	-0.054	-0.031	0.025	0.196	0.582	-0.068	-0.574	0.153	-0.014
A3	0.479	-0.091	0.115	0.142	-0.086	0.074	0.021	0.069	0.678
A4	-0.007	0.087	0.035	0.060	0.056	0.763	0.008	-0.092	-0.272
A5	0.272	0.066	0.103	0.002	0.021	0.850	-0.006	-0.026	0.185
A6	0.480	0.182	-0.009	0.014	0.010	0.659	-0.174	-0.062	0.218
A7	0.278	0.233	0.059	0.018	0.731	0.277	-0.074	-0.161	-0.071
A8	0.033	0.170	0.069	-0.047	0.125	0.175	-0.805	-0.033	0.004
A9	0.058	0.279	0.083	0.120	0.854	-0.075	-0.236	-0.003	0.002
A10	-0.060	-0.174	0.006	-0.023	0.128	-0.116	-0.903	0.051	0.014
A11	-0.014	-0.017	-0.767	0.510	0.044	0.039	-0.004	0.009	-0.073
A12	-0.029	0.052	-0.033	0.892	0.152	0.090	0.020	0.035	0.074
A13	-0.004	-0.026	-0.370	0.889	0.072	-0.065	-0.057	-0.071	0.030
A14	0.219	0.004	-0.778	0.327	-0.225	-0.217	0.070	-0.108	0.005
A15	0.363	0.110	-0.515	0.512	-0.190	-0.153	0.043	-0.057	0.240
A16	-0.127	-0.114	-0.862	-0.005	0.069	0.024	0.028	0.035	0.007
A17	0.511	0.218	-0.080	0.162	-0.051	-0.026	-0.405	-0.147	0.355
A18	-0.105	-0.040	-0.912	-0.031	0.049	0.117	-0.020	-0.014	0.042
Expl.Var	7.305	3.941	3.717	2.766	2.561	2.462	2.446	2.266	1.289
Prp.Totl	0.209	0.113	0.106	0.079	0.073	0.070	0.070	0.065	0.037

Tabla 4.35Matriz de factores en la base de datos [alcanos + PAHs].

Es de destacar que sobre el factor F-9 no aparece ninguna variable con peso estadísticamente significativo. Ello nos llevó a forzar el análisis tomando únicamente ocho factores ya que el noveno factor sólo explica 2,9% de la varianza total del sistema,

y ahora en la Tabla 4.36 puede observarse una distribución de variables totalmente similar a la anteriormente expuesta.

Del gráfico "biplot" y del análisis de agrupamientos se pueden obtener conclusiones en todo similares a las ya comentadas en los análisis anteriores por lo que no se han incluido las gráficas respectivas.

 Tabla 4.36

 Matriz sobre ocho factores en la base de datos [alcanos + PAHs] en P. ulyssiponensis

Variable	Factor 1	Factor 2	Factor 3	Factor 4	Factor 5	Factor 6	Factor 7	Factor 8
C14	-0.098	0.718	-0.071	0.029	0.425	0.002	0.146	0.069
C15	-0.128	0.841	0.013	0.185	-0.128	0.075	0.110	-0.049
C16	0.102	0.902	0.031	-0.100	0.261	-0.024	0.124	0.059
C17	0.030	0.907	-0.001	-0.001	0.036	0.007	-0.045	0.019
C19	0.176	0.637	-0.101	0.077	0.302	0.107	-0.120	0.584
C20	0.052	-0.052	-0.056	-0.078	-0.040	-0.029	-0.154	0.902
C21	0.012	0.120	0.675	-0.056	-0.231	-0.104	-0.282	-0.022
C22	0.321	0.228	0.068	0.016	-0.072	0.048	0.038	0.826
C23	0.413	-0.092	-0.074	-0.039	0.156	-0.053	0.408	0.381
C24	0.644	-0.056	-0.013	0.069	-0.107	0.072	0.014	0.147
C25	0.932	0.039	0.025	-0.047	0.076	-0.068	0.004	0.088
C26	0.949	-0.092	0.016	-0.030	-0.029	-0.028	0.054	0.066
C27	0.869	0.133	0.030	-0.113	0.349	-0.087	-0.012	-0.047
C28	0.968	0.013	-0.002	-0.056	0.113	-0.057	0.079	0.094
C29	0.959	0.064	-0.009	-0.047	0.091	-0.024	0.169	0.093
C30	0.942	0.031	0.019	-0.009	0.082	0.007	0.196	0.077
Pristano	0.379	0.462	-0.108	-0.168	0.445	-0.152	0.205	0.282
A1	-0.116	0.118	-0.133	0.547	-0.074	0.569	0.133	-0.077
A2	-0.058	-0.035	-0.028	0.196	0.579	0.575	-0.067	0.156
A3	0.605	-0.099	-0.145	0.188	-0.093	-0.031	0.084	0.079
A4	-0.048	0.090	-0.022	0.036	0.058	-0.002	0.754	-0.093
A5	0.315	0.061	-0.111	0.011	0.017	0.004	0.850	-0.019
A6	0.523	0.179	0.003	0.016	0.015	0.169	0.656	-0.057
A7	0.246	0.232	-0.055	0.006	0.741	0.073	0.276	-0.159
A8	0.041	0.168	-0.069	-0.054	0.127	0.805	0.174	-0.031
A9	0.040	0.275	-0.087	0.122	0.857	0.235	-0.069	0.002
A10	-0.049	-0.176	-0.009	-0.027	0.126	0.902	-0.118	0.052
A11	-0.025	-0.017	0.772	0.501	0.047	0.009	0.039	0.008
A12	-0.002	0.051	0.033	0.897	0.144	-0.011	0.090	0.034
A13	0.012	-0.025	0.374	0.886	0.070	0.065	-0.066	-0.074
A14	0.215	0.007	0.785	0.316	-0.213	-0.071	-0.220	-0.114
A15	0.407	0.110	0.513	0.517	-0.182	-0.045	-0.153	-0.059
A16	-0.131	-0.120	0.857	0.000	0.068	-0.028	0.032	0.041
A17	0.573	0.216	0.072	0.172	-0.042	0.398	-0.024	-0.144
A18	-0.102	-0.046	0.905	-0.024	0.049	0.020	0.126	-0.006
Expl.Var	7.565	3.928	3.741	2.748	2.592	2.458	2.434	2.257
Prp.Totl	0.216	0.112	0.107	0.079	0.074	0.070	0.070	0.064

II.3.4.- Bifenilos policlorados

De la matriz de datos para el contenido en PCBs de la *P. ulyssiponensis* en la que, al igual que en los casos anteriores, se han eliminado las variables con menos de un 5% de datos positivos y la variable Σ PCB, se pueden extraer nueve componentes principales (CP) significativos, con valores propios ≥ 1 que explican en conjunto el 78,3% de la varianza total del sistema, Tabla 4.37. El CP-1 explica el 20,7% de la varianza total, en tanto que el CP-2 explica sólo el 11,6% y el noveno componente principal desciende hasta el 4,7% de la misma.

Factor	Valor Propio	% Varianza	% V. Acum.
1	4.5440	20.6544	20.6544
2	2.5443	11.5650	32.2194
3	2.1185	9.6296	41.8490
4	1.7749	8.0675	49.9165
5	1.5887	7.2216	57.1381
6	1.4086	6.4026	63.5408
7	1.1886	5.4029	68.9437
8	1.0314	4.6882	73.6318
9	1.0278	4.6719	78.3038
10	0.9610	4.3682	82.6719
11	0.9137	4.1532	86.8251
12	0.7081	3.2185	90.0436
13	0.5982	2.7192	92.7628
14	0.4256	1.9344	94.6972
15	0.3708	1.6856	96.3828
16	0.3146	1.4299	97.8127
17	0.1493	0.6786	98.4914
18	0.1096	0.4980	98.9894
19	0.0731	0.3321	99.3215
20	0.0602	0.2735	99.5950
21	0.0539	0.2451	99.8401
22	0.0352	0.1599	100.0000

 Tabla 4.37

 Extracción de componentes principales a partir de la base de datos de PCBs en P. ulyssiponensis

En la Tabla 4.38 en la que se presenta la distribución de los pesos estadísticos de los congéneres sobre los diferentes factores tras una rotación varimax normalizada, los mayores pesos estadísticos sobre el F-1 se corresponden con los congéneres PCB-018, - 138, -180 y -182, en tanto que sobre el F-2 ejercen un mayor peso estadístico los

congéneres PCB-031, -121 y -143. Sobre los restantes factores sólamente aparecen uno, dos o ningún (F9) congéneres.

Tampoco en este caso se han podido relacionar las estructuras de los congéneres que, con mayores pesos estadísticos aparecen sobre cada uno de los factores.

Variable	Factor 1	Factor 2	Factor 3	Factor 4	Factor 5	Factor 6	Factor 7	Factor 8	Factor 9
P_018	0.777	0.116	0.136	0.041	-0.205	0.125	-0.161	0.092	0.032
P_031	0.129	0.768	-0.054	0.449	0.051	0.016	0.112	0.115	0.056
P_044	0.009	0.190	0.009	0.067	-0.086	0.859	0.070	0.086	0.162
P_052	0.394	0.380	0.088	0.296	0.579	0.090	0.214	-0.026	0.009
P_054	-0.039	0.206	0.076	0.034	-0.077	-0.038	0.750	0.011	0.285
P_087	0.084	-0.026	0.058	-0.018	0.677	0.352	0.026	0.087	0.304
P_101	0.233	-0.184	-0.032	-0.020	0.222	-0.096	0.699	0.084	-0.143
P_118	0.035	0.033	-0.974	-0.004	-0.016	-0.003	-0.053	0.049	0.020
P_121	-0.048	0.751	-0.028	-0.174	0.035	-0.027	0.079	0.042	0.371
P_129	0.096	0.041	-0.089	0.941	-0.038	0.022	0.092	0.137	0.076
P_137	0.026	-0.109	0.002	-0.082	0.092	0.790	-0.091	-0.042	-0.178
P_138	0.751	0.083	-0.188	0.102	0.279	-0.209	0.277	-0.177	-0.118
P_143	0.019	0.829	0.038	0.084	0.205	0.073	0.038	-0.040	-0.307
P_153	0.077	0.152	0.001	-0.025	0.816	-0.180	-0.038	0.056	-0.077
P_154	-0.121	0.290	0.089	0.176	-0.095	0.156	0.602	-0.003	-0.299
P_159	-0.053	-0.021	0.031	-0.087	-0.060	0.005	0.025	0.106	-0.684
P_170	0.338	0.260	-0.176	0.662	0.113	-0.102	-0.005	-0.464	0.009
P_180	0.758	0.015	0.032	0.469	0.304	-0.130	0.008	-0.172	0.074
P_182	0.902	-0.103	-0.100	0.022	0.176	0.116	0.070	0.045	0.098
P_185	0.007	-0.021	-0.964	0.151	-0.047	-0.011	-0.032	0.038	0.024
P_187	-0.223	-0.042	0.050	-0.072	-0.089	0.108	0.084	-0.739	0.176
P_199	0.311	-0.068	0.078	0.036	-0.037	-0.175	-0.198	-0.750	-0.036
Expl.Var	3.089	2.327	2.023	1.966	1.858	1.710	1.662	1.473	1.119
Prp.Totl	0.140	0.106	0.092	0.089	0.084	0.078	0.076	0.067	0.051

Tabla 4.38Matriz de factores de PCBs en P. ulyssiponensis.

Del biplot y del análisis de agrupamientos, de los que no se ha considerado necesario presentar las correspondientes figuras, realizado con las variables que mayores pesos presentan sobre cada uno de los factores, puede deducirse que la contaminación de los especímenes de *P. ulyssiponensis* por congéneres de PCBs, al igual que en los dos casos anteriores, es muy uniforme observándose, al tiempo, que existen inyecciones puntuales de este tipo de contaminantes.

III. ANÁLISIS MULTIVARIADO CONJUNTO DE LAS BASES DE DATOS DE LAS TRES ESPECIES

A unque los datos sobre los contenidos de *n*-alcanos, hidrocarburos aromáticos policíclicos y bifenilos policlorados que se han expuesto en los Capítulos I a III al estudiar dichos contenidos en las tres especies endémicas de *Patella* objeto de este estudio, así como lo anteriormente expuesto en los apartados precedentes de este mismo capítulo, dan a entender que la contaminación de las tres especies en las cuatro estaciones de muestreo es muy similar se ha tratado de establecer si las técnicas quimiométricas pueden ser capaces de diferenciar, no sólo, entre las cuatro zonas de muestreo sino, también, si es posible diferenciar entre las propias tres especies.

Por ello, en primer lugar, se han unificado las tres bases de datos correspondientes a los contenidos de alcanos de las tres especies. Tal como puede verse en la Tabla 4.41 de dicha base de datos conjunta pueden extraerse 4 componentes principales que explican el 83,4% de la varianza total del nuevo sistema. En la Tabla 4.42 en la que se presenta la correspondiente matriz de factores se observa que el grupo de hidrocarburos alifáticos del *n*-C₂₄ al *n*-C₃₀ sigue manteniéndose como un bloque compacto sobre el factor F1, tal como hemos visto que ocurre al estudiar cada especie por separado. Sobre el segundo factor se encuentra los *n*-alcanos ligeros C₁₉, C₂₀, C₂₂ y el pristano a los que hemos supuesto una procedencia petrogénica, en tanto que sobre el F3 se encuentra los *n*-alcanos de procedencia alimenticia, C₁₅, C₁₆ y C₁₇. Sobre el cuarto factor aparece el *n*-C₂₁ para el que se ha supuesto ser la frontera en la degradación entre la fracción ligera y pesada de los crudos y sus derivados.

De los correspondientes "biplot" Fig. 4.24, y análisis de agrupamientos, Fig. 4.25, se deduce que la contaminación de las tres especies en cuestión por n-alcanos es muy uniforme en las cuatro estaciones de muestreo ya que no se detecta ninguna diferenciación ni por especie ni por estación de muestreo y que esporádicamente se presentan inyecciones de contaminantes petrogénicos que originan mayores niveles de n- alcanos en las muestras.

datos co	onjunta de alcar	nos de las tres	especies
Factor	Valor Propio	% Varianza	% V. Acum.
1	8.270	48.646	48.646
2	3.197	18.805	67.451
3	1.696	9.978	77.429
4	1.014	5.964	83.393
5	0.746	4.391	87.784
6	0.664	3.906	91.690
7	0.361	2.125	93.815
8	0.300	1.762	95.577
9	0.255	1.502	97.079
10	0.152	0.897	97.976
11	0.111	0.655	98.631
12	0.104	0.612	99.243
13	0.067	0.394	99.636
14	0.041	0.239	99.876
15	0.009	0.054	99.930
16	0.009	0.051	99.981
17	0.003	0.019	100.000

 Tabla 4.39

 Extracción de componentes principales de la base de datos conjunta de alcanos de las tres especies

 Tabla 4.40

 Matriz de factores a partir de la base de datos conjunta de alcanos

Variable	Factor 1	Factor 2	Factor 3	Factor 4
C14	0.122	0.492	0.659	-0.184
C15	-0.128	0.004	0.828	-0.046
C16	0.117	0.386	0.827	0.093
C17	0.001	-0.075	0.821	0.263
C19	0.256	0.843	0.227	0.047
C20	0.182	0.867	-0.055	0.179
C21	0.011	0.155	0.131	0.916
C22	0.216	0.843	0.036	0.232
C23	0.381	0.475	0.111	-0.110
C24	0.879	0.259	-0.047	0.054
C25	0.960	0.225	0.016	-0.009
C26	0.968	0.181	-0.030	0.008
C27	0.955	0.166	0.067	0.022
C28	0.976	0.193	0.007	-0.004
C29	0.965	0.214	0.035	0.002
C30	0.921	0.262	0.013	-0.011
Pristano	0.321	0.788	0.224	-0.120
Expl.Var	6.716	3.769	2.622	1.070
Prp.Totl	0.395	0.222	0.154	0.063

Fig. 4.24.- Biplot obtenido a partir de la base de datos conjunta para alcanos en las tres especies

Si se unifican las bases de datos correspondientes a alcanos, naftaleno y total de PAHs menos naftaleno, se pueden extraer cinco componentes principales que explican el 82.5% de la varianza total del sistema, pudiéndose ver como el primer componente principal explica el 43,8% de la varianza por sí solo, Tabla 4.41. La correspondiente matriz de factores, Tabla 4.42, confirma los resultados obtenidos en el análisis anterior y lo ya comentado en los análisis de las especies individualmente: el naftaleno aparece solo sobre uno de los factores, F4, y los restantes hidrocarburos aromáticos policíclicos aparecen asociados al n-C₂₁ sobre el quinto factor.

Los resultados del biplot y del análisis de agrupamientos no hacen más que confirmar las conclusiones anteriormente reseñadas.

Fig 4.25.- Resultado del análisis de agrupamientos a partir de la base de datos conjunta de alcanos.

base de datos conjunta [alcanos + naftaleno + Σ PAH1]									
Factor	Valor Propio	% Varianza	% V. Acum.						
1	8.323	43.807	43.807						
2	3.397	17.879	61.686						
3	1.747	9.196	70.881						
4	1.170	6.157	77.038						
5	1.032	5.433	82.471						
6	0.786	4.136	86.607						
7	0.711	3.744	90.351						
8	0.548	2.887	93.237						
9	0.348	1.831	95.068						
10	0.295	1.551	96.620						
11	0.179	0.941	97.561						
12	0.136	0.718	98.279						
13	0.111	0.585	98.864						
14	0.102	0.534	99.398						
15	0.057	0.298	99.697						
16	0.037	0.196	99.893						
17	0.009	0.047	99.939						
18	0.009	0.045	99.984						
19	0.003	0.016	100.000						

Tabla 4.41

Extracción de componentes principales a partir de la

Tabla 4.42 Matriz de factores a partir de la base de datos conjunta $[alcanos + naftaleno + \Sigma PAH1]$

Variable	Factor 1	Easter 2	Eastor 3	Factor 4	Factor 5
	0.142	0.462	0.519	0.145	0.457
C14	0.142	0.462	0.518	0.145	-0.457
C15	-0.123	0.025	0.805	0.019	-0.223
C16	0.127	0.382	0.764	0.280	-0.157
C17	-0.007	-0.018	0.904	0.035	0.126
C19	0.269	0.857	0.218	-0.014	-0.093
C20	0.189	0.890	-0.013	0.007	0.169
C21	-0.011	0.144	0.178	0.705	0.385
C22	0.223	0.837	0.035	0.255	0.136
C23	0.396	0.434	0.025	0.159	-0.151
C24	0.880	0.251	-0.036	0.003	0.025
C25	0.963	0.213	0.011	0.003	0.015
C26	0.970	0.169	-0.029	0.002	0.026
C27	0.957	0.154	0.063	0.024	0.023
C28	0.979	0.179	0.002	0.016	0.021
C29	0.968	0.195	0.022	0.051	0.000
C30	0.926	0.235	-0.019	0.084	-0.047
Pristano	0.340	0.768	0.137	0.070	-0.237
A1	-0.071	-0.013	0.145	0.013	-0.804
ΣΡΑΗ1	0.078	0.122	0.089	0.816	-0.351
Expl.Var	6.807	3.685	2.452	1.370	1.355
Prp.Totl	0.358	0.194	0.129	0.072	0.071

La unificación de las restantes bases de datos: Aromáticos, alcanos + Σ PAH, alcanos + PAHs, conducen en todos los casos a las mismas conclusiones y en ningún caso se observa diferenciación por especie ni por estación de muestreo

La unificación de las bases de datos correspondientes a las concentraciones de bifenilos policlorados conduce a la extracción de nueve componentes principales, Tabla 4.43, que explican sólo el 75,7% de la varianza del sistema con el primer componente principal explicando por sí solo el 25,5% de la misma. La matriz de factores correspondiente, Tabla 4.44, no señala similitudes entre los congéneres asociados a cada factor. Los correspondientes biplot y análisis de agrupamientos, Fig. 4.26 y 4.27, indican que también en el caso de los bifenilos policlorados la contaminación de estas tres especies de *Patella* es muy uniforme entre especies y entre las diferentes estaciones de muestreo.

Factor	Valor Propio	% Varianza	% V. Acum.
1	5.601	25.460	25.460
2	2.055	9.339	34.799
3	1.803	8.194	42.993
4	1.530	6.956	49.948
5	1.259	5.725	55.673
6	1.194	5.429	61.101
7	1.146	5.207	66.309
8	1.058	4.809	71.117
9	1.000	4.547	75.664
10	0.933	4.239	79.904
11	0.833	3.787	83.691
12	0.759	3.450	87.141
13	0.673	3.060	90.200
14	0.580	2.636	92.836
15	0.416	1.893	94.729
16	0.366	1.663	96.392
17	0.283	1.288	97.680
18	0.173	0.785	98.464
19	0.116	0.528	98.992
20	0.094	0.425	99.417
21	0.076	0.346	99.764
22	0.052	0.236	100.000

Tabla 4.43Extracción de componentes principales a partir de la
base de datos conjunta de PCBs

Variable	Factor 1	Factor 2	Factor 3	Factor 4	Factor 5	Factor 6	Factor 7	Factor 8	Factor 9
P_018	0.082	0.827	-0.012	-0.010	-0.035	-0.250	-0.018	0.067	-0.009
P_031	0.197	0.465	0.071	0.395	0.156	0.288	-0.111	-0.463	0.009
P_044	0.668	0.086	-0.017	0.148	0.203	-0.125	0.378	0.014	-0.007
P_052	0.737	0.152	0.067	0.489	-0.061	0.032	0.110	0.070	0.044
P_054	0.028	-0.081	0.065	0.750	0.024	0.007	-0.175	0.093	0.131
P_087	0.174	0.005	-0.044	-0.058	0.018	0.186	0.644	-0.065	0.099
P_101	0.032	0.037	-0.013	-0.060	0.795	0.104	-0.023	0.079	0.131
P_118	-0.012	0.033	0.966	-0.058	0.020	-0.002	0.008	-0.038	-0.012
P_121	-0.017	-0.072	-0.011	0.019	-0.088	-0.146	0.026	-0.888	0.025
P_129	0.280	0.472	0.123	-0.092	0.365	0.353	-0.108	-0.134	0.139
P_137	-0.049	0.012	0.032	-0.009	-0.035	-0.076	0.693	0.046	-0.026
P_138	0.850	0.071	0.066	-0.109	0.091	0.019	-0.037	-0.203	-0.055
P_143	0.046	0.201	-0.008	0.779	0.061	0.049	0.118	-0.171	-0.088
P_153	0.118	0.837	-0.012	0.130	-0.003	0.072	0.090	0.021	0.001
P_154	-0.017	-0.047	-0.029	0.295	0.663	-0.268	0.040	-0.018	-0.252
P_159	-0.041	-0.017	-0.008	-0.057	-0.014	0.086	-0.064	0.026	-0.935
P_170	0.750	0.183	0.164	-0.074	0.150	0.195	-0.171	-0.164	0.062
P_180	0.916	0.287	0.021	-0.039	-0.003	0.054	0.024	0.028	0.049
P_182	0.917	-0.032	0.067	0.101	-0.019	0.018	0.134	0.100	0.022
P_185	0.252	-0.024	0.922	0.154	-0.047	0.032	-0.015	0.040	0.028
P_187	0.005	0.086	-0.007	-0.078	0.039	-0.850	-0.082	-0.129	0.102
P_199	0.899	-0.069	0.022	0.048	-0.137	-0.061	-0.024	0.066	0.021
Expl.Var	5.002	2.045	1.855	1.773	1.344	1.216	1.191	1.186	1.034
Prp.Totl	0.227	0.093	0.084	0.081	0.061	0.055	0.054	0.054	0.047

 Tabla 4.44

 Matriz de Factores a partir de la base de datos conjunta de PCBs

Fig. 4.26.- Biplot obtenido a partir de la base de datos conjunta para PCBs en las tres especies

Fig 4.27.- Resultado del análisis de agrupamientos a partir de la base de datos conjunta de PCBs.

IV. RESUMEN COMPARATIVO DE LAS TRES ESPECIES DE Patella ESTUDIADAS

A unque en los capítulos I a III y en lo anteriormente expuesto en este mismo capítulo ya se han hecho comentarios comparativos parciales entre las tres especies estudiadas, nos ha parecido conveniente llevar a cabo ahora un estudio comparativo más profundo de las mismas en lo relativo a sus posibles fuentes de contaminación y posibles similitudes y/o diferencias metabólicas tomando como punto de partida, por una parte, los datos experimentales ya expuestos y, por otra, los resultados de los diferentes análisis estadísticos llevado a cabo sobre los mismos.

En primer lugar, es de destacar que la contaminación de fondo, cualquiera que sea su origen, de estas especies endémicas canarias de *Patella* es muy baja por lo que su utilización como alimento no representa ningún peligro para la salud humana. Además, esta contaminación es mucho menor que la que ha sido observada para algunas de estas especies recolectadas en otras islas del Archipiélago Canario (Tenerife, La Gomera) [154].

Cabe suponer, por otra parte, que el pristano encontrado en las tres especies sea de procedencia petrogénica y no biogénica, ya que es patente su asociación con los hidrocarburos más ligeros presentes en las mismas, hecho que viene refrendado por su no asociación con el n-C₁₇, hidrocarburo al que se le ha supuesto una procedencia alimenticia.

Otro hecho a subrayar es el de la aparente escasa presencia de fitano en las muestras analizadas. Sin embargo ha de recordarse que en la mayoría de las muestras ha sido imposible cuantificar por separado el n-C₁₈ y el fitano dado que las mucho mayores cantidades presentes de aquel hacen muy difícil, cuando no imposible, la cuantificación del pico cromatográfico adyacente originado por el fitano, (CH₃-CH(CH₃)-(CH₂)-(CH₂)₃-CH(CH₃)-(CH₂)-

Tanto al pristano como al fitano, fundamentalmente en los sedimentos marinos, se les ha supuesto una procedencia petrogénica como consecuencia de la degradación hidrolítica de la cadena lateral de la clorofila <u>a</u> a fitol en los primeros estadios de la diagénesis, fitol que en condiciones anóxicas, reductoras, puede llegar a transformarse en fitano en tanto que en condiciones óxicas, oxidantes, puede convertirse en pristano a través de un ácido dicarboxílico intermediario [176]. Sin embargo, la utilización de la relación Pristano/Fitano y, por ende, de las relaciones C17/Pristano y C18/Fitano, como indicador paloambiental propuesta por estos y otros autores, ha sido puesta en duda especialmente cuando aquella relación es muy próxima a la unidad [177-179]. Un metabolismo similar a partir de las clorofilas en el tracto digestivo de muchos organismos marinos, procedencia biogénica, ha sido propuesto por diferentes autores para el pristano y fitano encontrado en los mismos. Sin embargo, la mayoría de los investigadores se inclinan por suponer que estos dos isoprenoides cuando se encuentran presentes como componentes de las fracciones lipídicas de los organismos marinos, tienen una procedencia petrogénica a partir de los crudos y derivados contaminantes y no biogénica ya que no se ha podido demostrar que la vía metabólica se verifique en realidad en dichos organismos.

También los tocoferoles han sido propuestos como posibles precursores para el pristano a través de la formación de prist-1-eno durante la degradación térmica de aquellos por lo que pristano y fitano pueden ser originados a partir de diferentes precursores.

Si se comparan las tres especies en lo que se refiere a su respuesta a los hidrocarburos alifáticos en función de los respectivos resultados del Análisis de Factores, Tabla 4.45, se observa que frente a la contaminación por *n*-alcanos las tres especies son similares en cuanto agrupan sobre el factor F1 los *n*-alcanos superiores, del C₂₄ al C₃₀, en tanto que sobre el factor F2 se encuentran los alcanos ligeros, n < 20, y el pristano. Además, puede diferenciarse netamente el comportamiento de *P. piperata* y *P. candei crenata* que separan sobre el F3 a los *n*-alcanos C₁₅ y C₁₇ a los que se han considerado como procecentes de las algas que les sirven de alimento, del de la *P. ulyssiponensis* que sobre el F2 agrupa a los *n*-alcanos C₁₄ al C₁₇ más el pristano mientras que sobre el F3 aparecen el *n*-C₂₀ y *n*-C₂₂ a los que cabría en esta especie suponer también una

procedencia alimenticia dada la coincidencia en el factor, en tanto que al n-C₂₁ que aparece sobre el F4 no cabe suponerle, en principio, más que un diferente proceso de "envejecimiento" respecto de los alcanos lineales más ligeros y más pesados de los crudos/derivados que contaminan la zona.

Tabla 4.45
Comparación de los resultados del Análisis de Factores de los
contenidos de alcanos de las tres especies.

Especie	F1	F2	F3	F4
P. piperata	C_{24} - C_{30}	C ₁₄ ,C ₁₆ ,C ₂₁ ,Pr	C_{15}, C_{17}	
P. candei crenata	C_{24} - C_{30}	C19,C20,C23,Pr	C ₁₅ ,C ₁₇	
P. ulyssiponensis	C_{24} - C_{30}	C_{14} - C_{17} ,Pr	C_{20}, C_{22}	C ₂₁

Las diferencias existentes entre los alcanos de procedencia alimenticia que es común a las dos primeras especies de lapas y la *P. ulyssiponensis* podría venir condicionada por las diferentes especies de algas que les sirven de alimento, lo cual no es difícil de aceptar si se recuerda que esta última presenta su hábitat en el manto de algas que le sirve de alimento y refugio en la zona baja intermareal, hábitat bien diferenciado de los correspondientes a las otras dos especies que son más altos y con un recubrimiento de algas diferente.

Valores relativamente altos de los contenidos de n-C₁₅ y n-C₁₇ se encuentran descritos en la bibliografía para algas, bacterias, biota y plancton [111,181-183], por lo que siendo éste un comportamiento constante en los especímenes de *P. piperata* y *P. candei crenata* en todas las estaciones de muestreo no cabe duda el achacar su presencia a la alimentación.

Por tanto, a la vista de los resultados obtenidos en los Análisis de Componentes Principales, de Factores y de Agrupamientos, es posible establecer, sin lugar a dudas, que la principal fuente de contaminación de estas especies se encuentra en crudos petrolíferos y/o derivados que han sido degradados (envejecidos) durante su permanencia en el mar, tal como queda demostrado por la constante asociación de los *n*alcanos del C_{24} al C_{30} y del pristano con uno de los factores y la mayor o menor dispersión de los alcanos más ligeros sobre los factores restantes; crudos/derivados que no pueden asociarse a aquellos que mayoritariamente son transportados en el espacio marítimo del Archipiélago. Por ello, cabría suponer que proceden de otras latitudes y que han sido arrastrados hacia estos ecosistemas costeros bajo la acción conjunta de las corrientes marinas, principalmente la Corriente de Canarias, y los vientos, fundamentalmente el sistema de los Vientos Alisios.

Si nos atenemos a los resultados del análisis de factores realizados sobre las bases de datos de hidrocarburos aromáticos policíclicos, Tabla 4.46, se observa que vuelven a aparecer similitudes de comportamiento entre *P. piperata* y *P. candei crenata* en cuanto al naftaleno (A1) que aparece en ambos casos como única variable asociada a un único factor, F3 y F6, respectivamente, en tanto que en la *P. ulyssiponensis* dicha variable aparece distribuida entre los factores F2 (peso estadístico 0,5695) y F3 (0,5784). Ello podría estar señalando, no sólo, que en aquellas especies el naftaleno tiene una procedencia totalmente diferente (¿metabólica?) del resto de los PAHs sino, también, que en esta última especie dicho hidrocarburo pueda tener una doble procedencia, metabólica y petrogénica.

 Tabla 4.46

 Comparación de los resultados del análisis de factores de las bases de datos de PAHs en las tres especies

Especie	F1	F2	F3	F4	F5	F6
P. piperata	2,3,7,8,9,12,15,17	4,10,11,13,14,16	A1	18		
P. candei crenata	5,14,15,16	9,11	17,18	12,13	6	A1
P. ulyssiponensis	11,14,16,18	12,13, A1	8,9,10, A1	4,5,6	7,9	3

Sin embargo, cuando se comparan los resultados del análisis de factores de las respectivas bases de datos [alcanos + Σ PAH1 + naftaleno(A1)], Tabla 4.47, los hechos anteriormente expuestos parecen clarificarse ya que en las tres especies el naftaleno aparece bien diferenciado sobre el factor F4 y también se ve que el pristano sigue asociado a la fracción ligera de alcanos (procedencia petrogénica).

También en este caso el comportamiento de la *P. ulyssiponensis* queda bien diferenciado de las otras dos especies en cuanto que el total de los restantes PAHs

(Σ PAH1) aparece distribuido sobre el F4, aparentemente asociado, por tanto, al naftaleno, y sobre el F5, parcialmente asociado al *n*-C₂₁. Probablemente pueda suponerse una doble procedencia, metabólica/petrogénica, para este conjunto de PAHs, en esta especie de lapa.

 Tabla 4.47

 Comparación de los resultados del análisis de factores de la base de datos [alcanos + ΣΡΑΗ1 + naftaleno] en las tres especies

Especie	F1	F2	F3	F4	F5
P. piperata	C_{24} - C_{30}	$C_{14}, C_{16}, C_{21}, C_{30}, \mathbf{Pr}, \mathbf{S}$ PAH1	C ₁₅ , C ₁₇	A1	
P. candei	C ₂₄ -C ₃₀	C ₁₉ -C ₂₃ , Pr	$C_{15}, C_{17}, \mathbf{S}$ PAH1	A1	
P. ulyssip.	C ₂₄ -C ₃₀	C_{14} - C_{19} , Pr	C_{20}, C_{22}	A1 , S PAH1	C ₂₁ , S PAH1

Igualmente puede ponerse de manifiesto el diferente comportamiento de la *P. piperata* y *P. candei crenata* frente a Σ PAH1 que, en la primera de ellas, aparece asociado al F2 junto con los alcanos ligeros y el pristano, razón por la que puede suponerse para estos hidrocarburos policíclicos que sean ingeridos disueltos en dicha fracción ligera del crudo/derivados contaminantes. En cambio, para la segunda de las especies aparece asociado a los hidrocarburos *n*-C₁₅ y *n*-C₁₇ de supuesto origen en las algas que le sirven de alimento por lo que no es arriesgado suponer que estos PAHs, diferentes del naftaleno, sean ingeridos conjuntamente con ellas o que queden adheridos al manto de esta especie de lapa durante su ramoneo entre/sobre las mismas.

No obstante lo expuesto en el párrafo anterior, no puede descartarse las relativamente frecuentes, mayoritariamente en las costas noreste y sureste de la isla de Fuerteventura, inyecciones de contaminación petrogénica originadas por el mayor tráfico marítimo en el canal entre esta isla y la costa noroccidental de Africa, las actividades portuarias en Puerto del Rosario y también, probablemente, la contaminación antropogénica originada por las actividades aeroportuarias en el vecino aeropuerto insular.

En resumen, entre las tres especies de *Patella* estudiadas en esta Memoria existen manifiestas similitudes de tipo metabólico entre las cuales cabe destacar la anormal acumulación de naftaleno, al cual puede achacarse el ser el último eslabón de la cadena metabólica de los hidrocarburos aromáticos policíclicos superiores y no tener su procedencia en los materiales petrogénicos ingeridos por las mismas dada su asociación con un factor bien diferenciado del resto de los hidrocarburos aromáticos policíclicos. Además, es constante la asociación con un único factor de los *n*-alcanos C_{15} y C_{17} , a los cuales puede suponerse un origen en las algas pelágicas y bentónicas que les sirven de alimento, resultado bien diferenciado del comportamiento de los restantes alcanos ligeros.

A diferencias y similitudes metabólicas entre estas especies puede achacarse, igualmente, la no correlación entre algunos de los congéneres policloro-bifenilos acumulados con el total de PCBs (Σ PCB). Al estudiar estas <u>no</u> correlaciones se observan las similitudes que se exponen a continuación,

P. piperata		87	101		121					154	159					
P. candei	54	87		118	121		137	143		154	159		182	185	187	199
P. ulyssiponensis	54	87	101	118	121	129			153	154	159	170		185	187	199

es decir, existen cuatro congéneres de PCBs (87, 121, 154 y 159) acumulados **comunes a las tres especies** que en ningún caso se correlacionan con las respectivas Σ PCB, ¿similitudes metabólicas entre las tres especies?. Además los congéneres PCB-54, -118, -85, -187 y -199 sólo son comunes a *P. candei crenata* y *P. ulyssiponensis*, lo que puede estar marcando no sólo el mismo nivel de sus hábitats en la zona intermareal sino, también, similitudes metabólicas y únicamente el congénere PCB-101 es común a las especies *P. piperata* y *P. ulyssiponensis*, lo que puede achacarse a una similitud metabólica entre ambas especies ya que sus respectivos hábitats se encuentran muy bien diferenciados en la zona intermareal.

Parte Experimental

a mayoría de los moluscos gasterópodos intermareales que viven en las costas ⊿rocosas, se alimentan de las algas que crecen sobre la superficie de las rocas. Es por esto por lo que deben desplazarse para encontrar nuevas zonas donde alimentarse después de haber agotado las zonas inmediatamente adyacentes. En comparación con la mayoría de los gasterópodos, el pie de la lapa es muy poco flexible. A pesar de ello, se han registrado velocidades de desplazamiento relativamente elevadas en algunas de las Patella sp.; por ejemplo, la P. oculus alcanza los 3.72mm/s, y la P. granatina unos 3.64mm/s, lo que supone que estas dos especies de lapas superan la velocidad de desplazamiento del 94% de las 148 especies de gasterópodos estudiados por Miller [118,119]. Algunas especies de lapas se mueven sobre la superficie de las rocas, casi exclusivamente, cuando se encuentran sumergidas, y no disponen de un refugio permanente. La velocidad de desplazamiento pueden alcanzar los $0.5-1.0 \text{m} \cdot \text{h}^{-1}$ y en muchos casos son aleatorios. Otras especies, por el contrario, regresan a una zona específica cuando no están activas, y sus movimientos se realizan en un radio que permite el regreso a su punto de fijación dentro de los períodos de actividad, siendo estos los definidos por los períodos de emersión, inmersión y los períodos en los que se encuentran salpicadas o humedecidas por las olas [120].

Atendiendo a lo anteriormente expuesto, puede decirse que existen lapas "no migratorias" y "migratorias". Las primeras permanecen en la parte baja de la costa, en colonias densamente pobladas y rara vez se trasladan lejos del punto de asentamiento. Las de mayor tamaño suelen ocupar grietas fijas, rodeadas por algas específicas que forman un "jardín" que es defendido territorialmente frente a otras lapas [121]. Se

caracterizan por un lento crecimiento y por una producción de gametos pequeña, lo cual implica un consumo de alimentos inferior al caso de las migratorias. Se han observado desplazamientos para alimentarse entre 15 y 27cm. Las lapas "migratorias" se caracterizan por una elevada velocidad de crecimiento y de reproducción. Es de suponer que estas últimas necesitan un elevado consumo de comida, y en consecuencia una elevada mobilidad para alimentarse, que en algunos casos puede llegar a alcanzar los 150cm [121].

Los estudios realizados sobre la *P. vulgata* en las costas de África del Sur, indican que desovan por lo general a finales de otoño; además se observa que existe una clara tendencia anual en el período de desarrollo, en el comienzo del desove, y en la duración del desove y/o períodos de reabsorción [122]. Por otra parte, es bien conocido el fenómeno de cambio de sexo en las lapas.

Las lapas, como ya se ha comentado, se alimentan de algas y sirven, a su vez, de alimento a una gran variedad de estrellas de mar, aves, caracoles de mar (buccino), cangrejos de mar e incluso rayas.

En lo que se refiere a la edad de las lapas, el método más preciso para su estimación consiste en estudiar las líneas de crecimiento sobre la sección vertical de la concha. Este método es en algunos casos impracticable por múltiples motivos y se recurre a métodos alternativos que relacionan el tamaño con la edad; estos métodos no deben utilizarse sin el conocimiento preciso del hábitat y de la velocidad de crecimiento en el mismo y, con todo, existen hábitats en los que se produce un crecimiento que por lento o variable produce un solapamiento entre los tamaños de especímenes de diferente edad. En la Fig. P.1 se muestran tres curvas longitud-edad para la *Patella vulgata* en tres hábitats diferentes. Algunos especímenes pueden sobrevivir hasta 15, e incluso, 17 años [122].

Fig P.1.- Crecimiento medio de la Patella vulgata en diferentes medios

Especies Estudiadas

En Canarias existen tres especies endémicas de lapa (Mollusca: Gastropoda: Prosobranchia: Archeogastropoda: Patellidae). Son herbívoros micrófagos que se alimentan preferentemente del tapiz algal que recubre las rocas y que habitan en la franja mesolitoral o intermareal, sometida al flujo de mareas y en la que pueden encuentranse un gran número de comunidades que dependerán del sustrato, exposición al oleaje, inclinación, etc. En esta franja viven especies muy adaptadas a los cambios ambientales ya que, en algunos casos, tendrán que soportar la desecación, o aquellas que viven en los charcos, soportar fuertes cambios de salinidad, temperatura o pH. Como veremos a continuación también se localizan algunas especies de lapa en la franja infralitoral, aunque en ningún caso han sido recolectadas.

La *Patella piperata* Gould, de concha cónica, coloración amarilla, blanquecina o incluso negra, con la superficie externa adornada por un número elevado de costillas y pie de color naranja es una especie característica del horizonte superior de la zona mesolitoral que se encuentra preferentemente sobre superficies rocosas verticales y suelen estar

recubiertas del crustáceo cirrípedo *Chthamalus stellatus*, y puesto que se localizan en zonas sometidas a una alta desecación carecen de recubrimiento algal.

La *Patella ulyssiponensis aspera* Roding es frecuente en las zonas mesolitorales o infralitorales someras de todas las islas y se identifica por la concha de forma poligonal aplanada con numerosas costillas muy finas y rugosas. Al igual que la *P. piperata*, el color del pie es naranja. Se encuentra por lo general cubierta de algas.

La *Patella candei* d'Orbigny posee dos subespecies, la *Patella candei candei* d'Orbigny, abundante sólo en las zonas mesolitorales de Fuerteventura, con la concha cónica muy alta, las costillas poco marcadas y el pie de color grisáceo y la *Patella candei crenata* Gmelin, frecuente en las zonas mesolitorales e infralitorales de todas las islas, de concha oval o redondeada, deprimida y con el pie de color gris oscuro.

En nuestro programa de muestreo sólo se incluyeron las especies *P. piperata, P. ulyssiponensis aspera y P. candei crenata*, excluyéndose del mismo la *P. candei candei* debido a localización exclusiva en la actualidad en la isla de Fuerteventura, a su escasez relativa en las costas de dicha isla [123] y por ser una especie protegida.

Muestreo

Las muestras se recolectaron en varios puntos de la costa de la isla de Fuerteventura, aunque por razones varias (meteorológicas, escasez de muestras, etc.), sólo en cuatro, Fig. P.3, se ha recolectado un número de muestras significativo, tres situadas en el norte de la isla, Estaciones 1, 2 y 3, y una al sur, Estación 4. La existencia de tres estaciones de muestreo en el norte de la isla facilita la interpretación de los datos obtenidos debido a la existencia de un pequeño nucleo de población situado en la Caleta del Cotillo, Estación 1.

Fig P.2.- Situación de las Islas Canarias y Estaciones de Muestreo

En la Fig. 3 se muestra un dibujo tridimensional de la isla de Fuerteventura en el que se aprecia con mayor claridad la morfología costera y en el que también se encuentran señaladas las estaciones de muestreo.

Fig P.3.- Detalle de la localización de las Estaciones de Muestreo

Los muestreos se realizaron desde finales de 1991 hasta principios del año 1995, en casi todos los casos bimensualmente, en los días de menor altura de mareas y en las horas de bajamar, datos que se recogieron en los Anuarios de Mareas de los años correspondientes, tal como se indica en la Fig. P.4.

Fig P.4.- Muestreos realizados
Como se aprecia en la Fig. P.4, la programación inicial se pudo llevar a buen término en todos los casos, salvo en el muestreo programado para el mes de noviembre de 1993 que debido a causas meteorológicas hubo de suspenderse. Estas mismas causas provocaron el aplazamiento del siguiente muestreo hasta principios del mes de febrero de 1994. En total se realizaron 14 muestreos cuyas fechas exactas se detallan en la Tabla P.1, recolectandose un total de 2155 especímenes que originaron a su vez 147 muestras compuestas útiles. Las muestras compuestas contienen por término medio un total de 6 especímenes.

Muestreo	Fecha	Muestreo	Fecha
01	17-dic-91	08	30-abr-93
02	28-ene-92	09	28-jul-93
03	01-abr-92	10	21-feb-94
04	26-may-92	11	20-abr-94
05	03-sep-92	12	20-jun-94
06	19-nov-92	13	13-sep-94
07	17-feb-93	14	26-ene-95

Tabla P.1Fecha de los muestreos realizados

Datos Biométricos

Una vez realizado el muestreo, los especímenes se conservan y transportan en nevera junto con un número suficiente de acumuladores de frío de tal forma que

Fig P.5.- Parámetros Biométricos

permanezcan sin alterarse hasta que se llega al laboratorio. Una vez en el laboratorio se clasifican atendiendo a la especie y a grupos de homogeneos tamaños si existe esta posibilidad, lo que genera grupos de unos seis especímenes como mínimo por término medio, número suficiente para proporcionar una muestra compuesta estadísticamente significativa además de facilitar el estudio de contaminantes que se encuentren en concentraciones relativamente bajas. Posteriormente se miden los parámetros biométricos: longitud máxima (L) y anc

Fig P.6.- Representación Ancho vs Largo de las muestras estudiadas

máximo (A), Fig. P.5, se envuelven en papel de aluminio, previamente lavado con n-hexano purificado, se etiquetan convenientemente y se almacenan en un congelador a -20°C hasta el momento del análisis.

La relación L/A se mantiene prácticamente constante para el conjunto de las 147 muestras recolectadas en el total de los muestreos realizados, como puede apreciarse en la Fig. P.6.

Determinaciones Analíticas

Tratamiento de la muestra

a metodología empleada para la determinación de los analitos de interés está basada en los procedimientos desarrolados por Law [124] y Fossato [125].

Los especímenes que constituyen la muestra compuesta, aún congelados, se separan de la concha (que se reúnen y pesan) y se introducen en un balón de vidrio de 250ml previamente tarado. Se calcula el peso fresco, se liofilizan durante un período de tiempo que puede oscilar entre 8 y 12h y se determina el peso seco. La representación gráfica peso seco *versus* peso húmedo para las muestras analizadas se muestra en la Fig. P.7. A continuación se añaden 100ml de una disolución al 12% de hidróxido potásico en etanol y se calienta a una temperatura controlada y a reflujo hasta que se consigue la disgregación casi total de la muestra, lo que supone por lo general unas 8 horas. Posteriormente se añaden 50ml de una disolución saturada de cloruro sódico, para evitar la formación de emulsiones en los procesos de extracción líquido-líquido que siguen a este tratamiento. El precipitado que se produce se elimina por centrifugación a 2500rpm. Dicho precipitado se resuspende en etanol y se centrifuga de nuevo. Los respectivos sobrenadantes se reunen y se introducen en un embudo de decantación de

250ml, realizando la extracción con tres porciones de *n*-hexano de 50ml. Los 150ml de hexano resultantes de la extracción se lavan con tres porciones de 50ml de una disolución de ácido clorhídrico al 10% y posteriormente se añaden porciones de 50ml de agua, previamente extraída con *n*-hexano, hasta conseguir la neutralidad de la fase acuosa. La fase orgánica final se seca sobre sulfato sódico anhidro y se concentra en rotavapor hasta obtener un volumen de 1-2ml.

Fig P.7.- Representación Peso Seco vs Peso Húmedo de las muestras analizadas.

El siguiente proceso consiste en la purificación extractos y la separación de los grupos de contaminantes de interés por cromatografía líquida en columna. Para ello se ha seguido el procedimiento descrito por Astorga *et al.* que consiste en el fraccionamiento de los estractos utilizando una columna de 5g de Florisil[®] activado a 400°C durante 4 horas. Utilizando como eluyente 40ml de *n*-hexano se obtienen en una misma fracción los hidrocarburos alifáticos y los bifenilos policlorados con excepción de los no *orto*-sustituídos. En una segunda fracción, empleando como eluyente 50ml de hexano:diclorometano (50:50), se obtienen los hidrocarburos aromáticos policíclicos y los bifenilos policlorados no *orto*-sustituídos.

Puesto que la velocidad de elución es un factor determinante en la cromatografía líquida en columna tanto para la reproducibilidad como para la recuperación, se realizó un estudio a diferentes velocidades observándose que las recuperaciones máximas se obtenían siempre con flujos inferiores a 1ml/min por lo que se determinó fijar el flujo de elución a 0.5ml/min.

Análisis Cromatográfico

El análisis de los analitos estudiados se realiza en todos los casos por cromatografía gaseosa con columna capilar, utilizando el detector de ionización de llama (FID) para la determinación de alcanos e hidrocarburos aromáticos policíclicos y el detector de captura electrónica (ECD) para la determinación de bifenilos policlorados.

Fig P.8.- Programas de temperatura

La columna capilar SPB-5[®], con fase estacionaria de baja polaridad, fue la empleada para la determinación de los tres grupos de contaminantes. El modo de inyección utilizado ha sido "con/sin división de flujo" (split/splitless), en el que previamente se han optimizado los tiempos de apertura de la válvula de división de flujo con la finalidad de obtener las mejores condiciones experimentales. La programación de temperatura de la columna se optimizó con el objeto de alcanzar las mejores separaciones con tiempos de análisis no excesivamente elevados, Fig. P.8. En la Tabla P.2 se presentan las condiciones cromatográficas la utilizadas en determinación de los tres grupos de contaminantes.

Tabla P.2

Resumen de los Parámetros Cromatográficos utilizados

	H. Alifáticos	PAHs	PCBs		
Detector	FID	FID	ECD		
Flujo de Gases	-				
Gas Portador (He)	26 cm/s (1.3 ml/min)	26 cm/s (1.3 ml/min)	26 cm/s (1.3 ml/min)		
Gas Auxiliar (N ₂)	35.7 ml/min	35.7 ml/min	35.7 ml/min		
Aire	284 ml/min	284 ml/min	-		
Hidrógeno	30 ml/min	30 ml/min	-		
Split-vent	80 ml/min	80 ml/min	80 ml/min		
Temperaturas (°C)	-				
Detector	320	320	280		
Inyector	250	250	250		
Columna:					
T. inicial	60	90	100		
tiempo	3 min	2 min	0 min		
rampa	8 °C/min	8 °C/min	8 °C/min		
T. final	280	280	250		
Tiempo de Análisis	40 min	40 min	30 min		
Split/Splitless (min)	-				
	0.00 $(1)^*$	0.00 (1)	0.00 (1)		
	0.01 (-1)	0.01 (-1)	0.01 (-1)		
	2.00 (1)	2.00 (1)	1.00 (1)		

* 1: abierto, -1: cerrado

En las condiciones de trabajo expuestas se realizó el calibrado del cromatógrafo de gases. De la recta de calibrado "y=mx+b", siendo "y" la señal expresada como unidades de área (UA) y "x" la concentración, se obtienen los factores de respuesta y los límites de detección, calculados como " $3*S_{xy}/m$ ", donde " S_{xy} " es el error estándar de la estimación y "m" es la pendiente de la recta de calibrado [126].

En el caso los hidrocarburos alifáticos se analizó la serie comprendida entre once y treinta átomos de carbono incluyendo el isoprenoide pristano. La cuantificación del fitano se realizó suponeniendo un factor de respuesta igual al del pristano. Los hidrocarburos alifáticos C_{11} , C_{12} y C_{13} , aunque se cuantificaron en la mayoría de las

muestras analizadas no se incluyeron en las tablas finales de datos ni en el análisis multivariante debido principalmente al escaso porcentaje de recuperación.

Se analizaron un total de 18 PAHs, que se relacionan en la tabla P.4.

Compuesto	Patrón ²	m	b	r^2	LDD ³
	µg/ml				µg/ml
C11	5.17	8159	3.8	0.9997	0.157
C12	5.16	8406	-97.2	0.9996	0.172
C13	4.97	8359	129.1	0.9996	0.159
C14	5.36	8241	70.8	0.9997	0.145
C15	5.54	8254	108.7	0.9997	0.150
C16	4.36	8237	-9.5	0.9998	0.095
C17	7.32	8129	-10.0	0.9999	0.127
C18	5.38	8423	-74.4	0.9998	0.130
C19	5.12	8573	-141.8	0.9998	0.133
C20	5.16	8470	-114.4	0.9998	0.114
C21	4.87	8745	-177.9	0.9997	0.150
C22	5.17	8897	-85.6	0.9998	0.132
C23	5.42	8615	-158.5	0.9996	0.178
C24	5.57	8634	-145.5	0.9996	0.182
C25	5.61	8522	-389.8	0.9999	0.097
C26	5.12	8761	-590.1	0.9994	0.204
C27	4.89	8326	19.6	0.9997	0.153
C28	5.16	8460	-184.4	0.9999	0.101
C29	5.07	8534	-122.2	0.9998	0.117
C30	5.11	8350	172.6	0.9994	0.214
Pristano	5.24	8098	24.8	0.9998	0.114

Tabla P.3 Rectas de calibrado¹ de los alcanos

 $y = \mathbf{m} \cdot \mathbf{x} + \mathbf{b}$, y = área, x = concentraciónPatrón más concentrado

³ Límite de detección

Es en el análisis de PCBs en el que se analizaron un grupo más numeroso de compuestos. Como ya hemos comentado con anterioridad, los PCBs son un conjunto de 209 congéneres que pueden analizarse atendiendo bien a las mezclas comerciales que supuestamente originaron la contaminación estudiada o bien seleccionando una serie de congéneres atendiendo a su importancia medioambiental. En este sentido el contenido en PCBs detectado en las muestras estudiadas hace que la cuantificaciíón de PCBs atendiendo a mezclas comerciales genere resultados de difícil y probablemente errónea interpretación. Es por este motivo por el que se escogieron para ser analizados, en primer lugar, los siete congéres cuyo estudio recomienda el ICES y posteriormente, con la finalidad de realizar un análisis mucho más exhaustivo y preciso, se escogieran los 51 congéneres individuales contenidos en cuatro mezclas contenidas suministradas por el *National Research Council of Canada* incluídas en el *Marine Analytical Chemistry Standars Program* denominadas CLB-1 A, B, C y D respectivamente.

	Compuesto	Patrón	m	b	r ²	LDD
		µg/ml				µg/ml
A1	Naftaleno	6.18	7788	244	0.9995	0.221
A2	Azuleno	5.32	8112	-233	0.9998	0.130
A3	Acenaftileno	5.29	8296	76	0.9995	0.171
A4	Acenafteno	5.41	9680	21	0.9997	0.158
A5	Fluoreno	5.55	8619	121	0.9997	0.159
A6	Fenantreno	5.39	8856	0	0.9998	0.134
A7	Antraceno	5.88	8775	-52	0.9998	0.141
A8	4,5-metilenofenantreno	6.14	9072	33	0.9998	0.138
A9	Fluoranteno	5.64	9144	-26	0.9998	0.120
A10	Pireno	5.77	9359	43	0.9998	0.134
A11	Benz[a]antraceno	6.57	9093	-215	1.0000	0.068
A12	Criseno	5.32	8901	-127	1.0000	0.051
A13	Benzo[b]fluoranteno	5.19	10203	-160	1.0000	0.050
A14	Benzo[e]pireno	4.96	10032	-137	1.0000	0.035
A15	Benzo[a]pireno	5.23	9677	-420	1.0000	0.046
A16	Perileno	6.75	10253	-550	1.0000	0.052
A17	Dibenz[ah]antraceno	5.21	9650	-1035	0.9996	0.161
A18	Benzo[ghi]perileno	5.51	10358	-636	0.9999	0.080

Tabla P.4
Rectas de Calibrado de los PAHs

PCB	Patrón	m	b	r ²	LDD	RRT ¹	РСВ	Patrón	m	b	r ²	LDD RRT
	ng/ml				ng/ml			ng/ml				ng/ml
015	306.8	73	8625	1.0000	1.363	0.425	154	24.8	1244	1649	0.9990	0.737 0.616
018	47.2	534	142	0.9989	1.519	0.424	156	6	4334	-3286	0.9986	0.212 0.729
031	26.4	954	469	0.9989	0.838	0.467	159	4.8	4136	1011	0.9991	0.140 0.696
040	16	1770	-459	0.9985	0.591	0.540	170	12	1227	7957	0.9997	0.188 0.781
044	23.6	1211	-295	0.9979	1.030	0.521	171	20.8	1401	21612	0.9978	0.934 0.729
049	30.4	878	780	0.9992	0.800	0.505	173	9.2	3920	-30	0.9997	0.146 0.735
052	60.8	657	785	0.9978	2.683	0.501	180	11.2	1471	6110	0.9998	0.157 0.747
054	66.4	430	482	0.9993	1.616	0.455	182	15.2	2464	1122	0.9996	0.289 0.697
060	15.6	2218	1341	0.9991	0.438	0.576	183	26.4	950	26893	0.9990	0.791 0.702
077	22	663	396	0.9987	0.749	0.614	185	14	2065	19238	0.9996	0.272 0.712
086	11.6	2194	-273	0.9980	0.493	0.602	187	12.8	1257	8459	0.9997	0.206 0.698
087	15.2	1980	170	0.9990	0.465	0.606	189	18.8	1427	14513	0.9991	0.546 0.816
101	35.6	627	4777	0.9996	0.673	0.582	191	20	1739	19089	0.9999	0.154 0.754
103	43.2	679	5200	0.9993	1.062	0.540	194	9.6	1731	5449	0.9994	0.219 0.869
105	16	2326	-1550	0.9980	0.678	0.661	195	10.4	1856	6302	0.9999	0.084 0.839
114	25.2	803	25709	0.9981	1.031	0.648	196	13.2	1185	9162	0.9998	0.183 0.799
118	15.6	748	5228	0.9998	0.185	0.638	199	14.4	1240	9778	0.9997	0.247 0.792
121	19.6	1291	-696	0.9986	0.705	0.563	201	28	1109	20117	0.9990	0.848 0.736
128	19.6	2203	-3085	0.9980	0.840	0.707	202	14.4	2723	2718	0.9993	0.363 0.728
129	33.2	992	21395	0.9994	0.765	0.690	203	20.4	1958	18456	0.9998	0.260 0.798
137	29.6	968	25704	0.9994	0.687	0.675	205	12.8	3492	-5669	0.9991	0.364 0.878
138	16.8	925	2938	0.9998	0.218	0.683	206	26.8	1595	16019	0.9992	0.716 0.936
141	11.2	1405	2517	0.9992	0.292	0.670	207	15.2	3374	-2594	0.9992	0.406 0.849
143	22.8	1604	2079	0.9997	0.362	0.645	208	9.6	5528	-9137	0.9994	0.223 0.837
151	20	867	3760	0.9994	0.446	0.627	209	6.8	3558	-1721	0.9998	0.100 1.000
153	13.2	1103	3561	0.9997	0.202	0.658						

 Tabla P.5

 Rectas de calibrado de los PCBs y tiempos de retención relativos al PCB-209 (RRT)

¹ RRT: Tiempo de Retención Relativo

A continuación se representan, Figs. P.9, P.10 y P.11 los factores de respuesta (unidades de área/cantidad inyectada) para cada uno de los grupos de contaminantes estudiados.

En las Figs. P.12, P.13, P.14, P.15, P.16, P.17 y P.18 se representan los cromatogramas de las mezclas de analitos empleados para la determinación y cuantificación de *n*-alcanos, PAHs y PCBs.

Fig P.9.- Factores de respuesta de los alcanos estudiados

Fig P.10.- Factores de Respuesta de los PAHs estudiados

Fig P.11.- Factores de Respuesta de los PCBs estudiados

Fig. P.12.- Cromatograma correspondiente al estándar de *n*-alcanos

Fig. P.13.- Cromatograma correspondiente al estándar de PAHs

Fig. P.14.-Cromatograma correspondiente al estándar CLB-A de PCBs

Fig. P.15.-Cromatograma correspondiente al estándar CLB-B de PCBs

Fig. P.16.-Cromatograma correspondiente al estándar CLB-C de PCBs

Fig. P.17.-Cromatograma correspondiente al estándar CLB-D de PCBs

Fig. P.18.- Cromatograma correspondiente al estándar ICES de PCBs + PCB-77 + PCB-209

Aparatos

1) Cromatógrafo de Gases

Se han utilizado dos equipos de cromatografía gaseosa: un equipo Varian 3300 actualizado a 3400 y un equipo Varian 3400, controlados por una estación de adquisición de datos Varian Work Station Rev-A2 trabajando en entorno Windows 3.1 e instalada en un ordenador personal 386 compatible equipado con un coprocesador matemático. La configuración de los dos equipos es la siguiente:

- a) Inyector automático "Varian 8200 Autosampler"
- b) Detector de captura electrónica (ECD)
- c) Detector de ionización de llama (FID)
- d) Columna capilar de sílice fundida Supelco SPBTM-5 de 30m de longitud,
 0.32mm de diámetro interno y 0.25µm de espesor de película.
- e) Inyector Split/splitless 1075
- 2) Liofilizador TELSTAR S.A. Cryodos
- 3) Rotavapor EYELA (N-1).
- Sistema de purificación de agua previamente destilada "Milli-Q[®] Standard System", Millipore.
- 5) Campana de flujo laminar Gelaire[®]
- 6) Centrifugadora Selecta
- 7) Mantas calefactoras Selecta

REACTIVOS

- KOHMerck *p.a*.
- EtOH.....Etanol Absoluto Merck p.a.
- EtOH.....Etanol Absoluto Panreac purísimo
- *n*-hexanoMerck *p.a*.
- *n*-hexanoAldrich, destilado, tratado con sulfúrico concentrado y redestilado en columna de rectificación.
- NaCl.....Merck p.a.
- CH₂Cl₂.....Merck *p.a*.
- HCl.....Panreac purísimo
- H₂O.....Milli-Q extraída con *n*-hexano.
- Florisil[®]......Merck, 0.150-0.250mm (60-100 Mesh ASTM).

El material de vidrio se lava con agua y detergente, y se mantiene en mezcla crómica durante 48-72 horas, se enjuaga con agua Milli- $Q^{(R)}$ y se seca en estufa a 125°C. Antes de ser utilizado se enjuaga con dos o tres porciones de *n*-hexano.

Conclusiones

Continuando con los estudios que sobre la contaminación del medio ambiente costero de las Islas Canarias se desarrollan en nuestro Departamento, a lo largo de los años 1993 a 1997 se ha realizado el estudio de los contenidos de una serie de hidrocarburos alifáticos, hidrocarburos aromáticos policíclicos y bifenilos policlorados en tres diferentes especies de "lapas" endémicas de las Islas Canarias: *Patella piperata, Patella candei crenata y Patella ulyssiponensis* del cual se concluye que:

- 1°.- Se pone a punto una metodología analítica/matemática para la cuantificación de los contenidos en los diferentes congéneres de bifenilos policlorados en las muestras en estudio.
- 2º.- En base al comportamiento no bimodal de los datos correspondientes a la fracción alifática que presentan las tres especies se establece el hecho de estar sometidas a una única fuente de contaminación.
- 3°.- La presencia de la denominada Mezcla Compleja No Resuelta en los cromatogramas de las fracciones de hidrocarburos alifáticos y aromáticos indica la exposición de las especies estudiadas a crudos de petróleo y/o sus derivados.
- 4º.- En el caso de las especies *Patella piperata y P. candei crenata* se observa la presencia de elevadas concentraciones de los hidrocarburos n-C₁₅ y n-C₁₇, presencia que se achaca a las algas que les sirven de alimento. Lo mismo ocurre con los n-alcanos C₂₀ y C₂₂ en el caso de la *P. ulyssiponensis*. En cualquier caso

los niveles de concentración de los hidrocarburos alifáticos son muy uniformes en las tres especies en las diferentes estaciones de muestreo.

- 5º.- En ninguna de las especies en estudio se detecta la serie completa de hidrocarburos aromáticos a cuantificar, lo que se explica en función de sus capacidades acumulativa y metabólica. Las concentraciones de los aromáticos son mucho más bajas que las de los hidrocarburos alifáticos y al igual que ocurre con estos dichas concentraciones son relativamente uniformes en las tres especies en las cuatro estaciones de muestreo.
- 6°.- El estudio de los perfiles de distribución de los hidrocarburos estudiados en las tres especies de *Patella* permite definir los niveles de contaminación de fondo por hidrocarburos derivados del petróleo.
- 7°.- Entre los hidrocarburos aromáticos policíclicos destaca la presencia generalizada en todas las especies de naftaleno y se sugiere que este acúmulo preferencial se debe a ser el naftaleno uno de los últimos estadios del metabolismo de los hidrocarburos aromáticos policíclicos superiores.
- 8°.- En lo que respecta a los bifenilos policlorados (PCBs) puede concluirse que sus niveles de concentración en estas especies son muy bajos, muchos más bajos que los correspondientes a los otros dos grupos de contaminantes estudiados, y sus perfiles no pueden asociarse de forma definitiva con ninguna de las mezclas que en su momento fueron comercializadas.
- 9°.- Las concentraciones de PCBs determinadas en el músculo comestible de las tres especies de "lapas" no presentan ningún peligro higiénico-sanitario ya que en todas las muestras analizadas han sido muy inferiores al máximo permitido por la legislación vigente.
- 10°.- El Análisis de Correlaciones pone de manifiesto las diferentes pautas acumulativas de las tres especies de *Patella*. En ningún caso se han podido establecer relaciones estadísticas entre los contenidos de hidrocarburos y

congéneres de bifenilos policlorados individuales, totales y sus relaciones, con las variables biométricas de los especímenes analizados.

- 11°.- En lo que respecta a los bifenilos policlorados la no existencia de correlaciones entre algunos congéneres y el total de PCBs en las muestras permite poner de manifiesto la presencia de congéneres acumulados que son comunes a dos o tres de las especies estudiadas
- 12°.- La utilización de las Cartas de Control Multivariadas tipo T² que tienen en cuenta todas las variables en cada grupo de contaminantes, ha permitido establecer la no presencia de datos anómalos en las diferentes bases de datos.
- 13°.- La aplicación de las Técnicas de Análisis Multivariante: Análisis de Componentes Principales y Análisis de Factores, pone de manifiesto las diferencias en la capacidad de respuesta de las tres especies de *Patella* frente a los diferentes grupos de contaminantes estudiados y la más que notoria influencia de la posición vertical intermareal de sus respectivos hábitats en el litoral. Al mismo tiempo permite seleccionar aquellas variables que mejor caracterizan a las diferentes especies conservando el máximo de información sobre las mismas.
- 14º.- La utilización de los gráficos "biplot" y del Análisis de Agrupamientos, utilizando las variables seleccionadas en función de los resultados obtenidos en los Análisis de Componentes Principales y de Factores permite establecer, de forma general, la presencia de unos niveles de contaminación de fondo muy uniformes para las tres especies sobre los cuales se superponen inyecciones puntuales de contaminantes de los mismos tipos.
- 15°.- La aplicación de los Métodos de Análisis Multivariante a las bases de datos conjuntas de las tres especies no permite diferenciar entre las mismas ni entre las estaciones de muestreo, lo que pone de manifiesto la relativamente gran uniformidad de la contaminación petrogénica y antropogénica del litoral costero de la isla de Fuerteventura.

16°.- Cualquiera de las tres especies de *Patella* estudiadas en esta Memoria es un buen candidato para ser utilizada como "organismo centinela" de la contaminación por hidrocarburos alifáticos y aromáticos policíclicos así como de bifenilos policlorados en las costas de las Islas Canarias.

Apéndice I

La nomenclatura de los PCBs se basa en la posición y el grado de sustitución sobre la destructura de la molécula de bifenilo, como se muestra en la Fig. A1.1. Ballschmiter y Zell [26] idearon un sistema que asigna a cada compuesto un número entre 1 y 209. Este sistema ha sido adoptado por la Unión Internacional de Química Pura y Aplicada (International Union of Pure and Applied Chemistry, IUPAC) por lo que a este número también se le denomina *número IUPAC* [31]. Las directrices que rigen el citado sistema para describir y ordenar los Bifenilos Policlorados se resumen a continuación [184].

Fig A1.1.-Estructura y posiciones de sustitución del bifenilo

El bifenilo se numera de tal forma que los átomos de carbono que constituyen el puente entre los dos anillos se denominan 1 y 1'; los cinco átomos de carbono restantes de cada anillo (con y sin ') se numeran consecutivamente de 2 a 6 (o 2' a 6'). Las posiciones 2 a 6 en el anillo **A** y la 2' a 6' en el **B** son las que pueden ser cloradas. Por tanto, dependiendo del grado de cloración, un PCB puede tener entre uno y diez átomos de cloro, generándose a su vez diez grupos de isómeros. El orden para citar los localizadores se resume de la siguiente manera: Valor

		Valor	de los	localiza	dores o	del bife	nilo		
Localizador	2	2'	3	3'	4	4'	5	5'	6

4

2

3

Tabla A1.1

5

7

6

8

9

1. Los localizadores sin ' se consideran de orden inferior que los correction '. Por ejemplo, 2 es más bajo que 2' que a su vez es más	
con '. Por ejemplo, 2 es más bajo que 2' que a su vez es más	spondientes
	bajo que el
localizador 3. Esto implica que la nomenclatura 2'-monoclorobife	enilo no es
consistente con las reglas IUPAC. Las siguientes sustituciones de do	s átomos de
cloro se ordenan, según lo expuesto anteriormente, como 2,2'- ; 2,3-	2,3'-; 3,3'

- es de - . De acuerdo con esta regla podemos asignar un valor o puntuación a cada uno de los localizadores, Tabla A1.1.
- 2. Los sustituyentes deben tener localizadores tan bajos como sea posible, ignorando los localizadores con '. En este sentido, en lo que se refiere a la nomenclatura, se asume la libre rotación alrededor del enlace bifenilo. Por ejemplo, el 6,5'- y el 6,3'-diclorobifenilo deberían denominarse en ambos casos 2,3'-diclorobifenilo.
- 3. Debe usarse el mínimo número de localizadores con ¿. Esto implica que en el caso de un PCB con diferente número de átomos de cloro sobre los dos anillos, el anillo que tenga el menor número de átomos de cloro se define como anillo '.
- 4. Cuando el número de sustituyentes sobre los dos anillos es el mismo, el anillo cuya suma de localizadores sea menor recibirá los números sin '.
- 5. Si el localizador con y sin ' está sustituido (n y n'), el localizador sin ' se cita primero (4,4'- y no 4´,4-diclorobifenil).
- 6. Cuando se ordenan todos los posibles congéneres de PCB (asignando números del 1 al 209) todos los neloro congéneres tienen un orden inferior que aquellos congéneres con un número de sustituyentes superior a n.

6'

10

Casi toda la numeración de los congéneres de PCBs dada por Ballschmiter y Zell está de acuerdo con la IUPAC salvo en algunas excepciones, Tabla A1.2. El problema surge en el caso de los octaclorocongéneres [185].

1	199, 200 y 201									
Ballschmiter y Zell	Sustituciones	Valor IUPAC								
199	2,2',3,3',4,5,6,6'-	41								
200	2,2',3,3',4,5',6,6'-	42								
201	2,2',3,3',4',5,5',6-	40								

 Tabla A1.2

 Valor IUPAC de los congéneres Ballschmiter y Zell

Esta discrepancia debe haberse producido por dos hechos:

- Ballschmiter y Zell probablemente no calcularon correctamente el valor IUPAC de su congénere 201, que es el de menor valor.
- 2. El patrón de sustitución para este congénere entra en conflicto con la regla nº4 (el anillo con el valor más alto debe recibir la notación con <u>'</u>). El congénere debería haber sido nombrado como 2,2',3,3',4,5,5',6'-, es decir, la <u>'</u> ha pasado del 4 al 6, lo cual no afecta a la valoración IUPAC global. Por tanto, en el caso de estos congéneres la nomenclatura correcta es la que se expone en la Tabla A1.3.

Numeración B. v Z.	Sustituciones B. v Z.	Sustituciones IUPAC	Valor IUPAC	Numeración IUPAC
D : j D :	D . j L .	lerne		Ierne
199	2,2',3,3',4,5,6,6'-	2,2',3,3',4,5,6,6'-	41	200
200	2,2',3,3',4,5',6,6'-	2,2',3,3',4,5',6,6'-	42	201
201	2,2',3,3',4',5,5',6-	2,2',3,3',4,5,5',6'-	40	199

Tabla A1.3Nomenclatura correcta de los congéneres 199, 200 y 201

En la Tabla A1.4 se presenta una llave para averiguar el número IUPAC de cada uno de los congéneres de PCB atendiendo a las sustituciones del bifenilo.

Además, en la Tabla A1.5 se relacionan los números IUPAC de cada uno de los 209 congéneres de PCBs con las correspondientes sustituciones de átomos de cloro en el anillo bifenilo.

 Tabla A1.4

 Llave para transformar los nombres químicos en numeración IUPAC

ß																				
0			_																	
2	1	4																		
3	2	6	11																	
4	3	8	13	15																
23	5	16	20	22	40															
24	7	17	25	28	42	47														
25	9	18	26	31	44	49	52		_											
26	10	19	27	32	46	51	53	54												
34	12	33	35	37	56	66	70	71	77		_									
35	14	34	36	39	58	68	72	73	79	80										
234	21	41	55	60	82	85	87	89	105	108	128									
235	23	43	57	63	83	90	92	94	107	111	130	133								
236	24	45	59	64	84	91	95	96	110	113	132	135	136							
245	29	48	67	74	97	99	101	102	118	120	138	146	149	153						
246	30	50	69	75	98	100	103	104	119	121	140	148	150	154	155					
345	38	76	78	81	122	123	124	125	126	127	157	162	164	167	168	169				
2345	61	86	106	114	129	137	141	143	156	159	170	172	174	180	182	189	194			
2346	62	88	109	115	131	139	144	145	158	161	171	175	176	183	184	191	196	197		_
2356	65	93	112	117	134	147	151	152	163	165	177	178	179	187	188	193	199	201	202	
23456	116	142	160	166	173	181	185	186	190	192	195	198	200	203	204	205	206	207	208	209
Þ	0	2	3	4	23	24	25	26	34	35	234	235	236	245	246	345	2345	2346	2356	23456

М	lono-CB	t	tetra-CB	Į	enta-CB		hexa-CB
1	2	51	22:46	107	0221415	162	22214156
1	2	51	22 40	107	23345	163	233430
2	3	52	22 33	100	23343	104	233450
5	4	55	22.50	109	255 40	105	255 55 0
	D' CD	54	22.00	110	25540	100	5044 50
	DI-CB		2334	111	233 55	16/	23'44'55'
	221	56	233'4'	112	233'56	168	23'44'5'6
4	22	5/	2335	113	233'5'6	169	33'44'55'
5	23	58	233.5	114	2344 5		
6	23	59	2336	115	2344.6	F.	lepta-CB
7	24	60	2344'	116	23456	170	0010014415
8	24	61	2345	11/	234 30	170	22 33 44 5
9	25	62	2346	118	23'44'5	1/1	22'33'44'5
10	26	63	2345	119	23'44'6	172	22'33'455'
11	33	64	2346	120	23'455	1/3	22/33/456
12	34	65	2356	121	23 45 6	1/4	22'33'456
13	34	66	23'44'	122	2'33'45	175	22'33'45'6
14	35	6/	23:45	123	23445	1/6	22'33'466'
15	44'	68	23'45'	124	2'3455'	177	22'33'4'56
		69	23'46	125	2'3456'	178	22'33'55'6
	Tri-CB	70	23'4'5	126	33'455'	179	22'33'566'
		71	23'4'6			180	22'344'55'
16	22'3	72	23'55'	<u> </u>	exa-CB	181	22'344'56
17	22'4	73	23'5'6			182	22'344'56'
18	22'5	74	244'5	127	22'33'44'	183	22'344'5'6
19	22'6	75	244'6	128	22'33'44'	184	22'344'66'
20	233'	76	2'345	129	22'33'45	185	22'3455'6
21	234	77	33'44'	130	22'33'45'	186	22'34566'
22	234'	78	33'45	131	22'33'46	187	22'34'55'6
23	235	79	33'45'	132	22'33'46'	188	22'34'566'
24	236	80	33'55'	133	22'33'55'	189	233'44'55'
25	23'4	81	344'5	134	22'33'56	190	233'44'56
26	23'5			135	22'33'56'	191	233'44'5'6
27	23'6	Pe	enta-CB	136	22'33'66'	192	233'455'6
28	244'			137	22'344'5	193	233'4'55'6
29	245	82	22'33'4	138	22'344'5'		
30	246	83	22'33'5	139	22'344'6	(Octa-CB
31	24'5	84	22'33'6	140	22'344'6'		
32	24'6	85	22'344'	141	22'3455'	194	22'33'44'55'
33	2'34	86	22'345	142	22'3456	195	22'33'44'56
34	235	87	22'345'	143	22'3456'	196	22'33'44'5'6
35	33'4	88	22'346	144	22'345'6	197	22'33'44'66'
36	33'5	89	22'346'	145	22'3466'	198	22'33'455'6
37	344'	90	22'34'5	146	22'34'55'	199	22'33'455'6'
38	345	91	22'34'6	147	22'34'56	200	22'33'4566'
39	34'5	92	22'355'	148	22'34'56'	201	22'33'45'66'
		93	22'356	149	22'34'5'6	202	22'33'55'66'
Т	etra-CB	94	22'356'	150	22'34'66'	203	22'344'55'6
		95	22'35'6	151	22'355'6	204	22'344'566'
40	22'33'	96	22'366'	152	22'3566'	205	233'44'55'6
41	22'34	97	22'3'45	153	22'44'55'		
42	22'34'	98	22'3'46	154	22'44'56'	Ν	Jona-CB
43	22'35	99	22'44'5	155	22'44'66'		
44	22'35'	100	22'44'6	156	233'44'5	206	22'33'44'55'6
45	22'36	101	22'455'	157	233'44'5'	207	22'33'44'566'
46	22'36'	102	22'456'	158	233'44'6	208	22'33'455'66'
47	22'44'	103	22'45'6	159	233'455'		
48	22'45	104	22'466'	160	233'456	Ι	Deca-CB
49	22'45'	105	233'44'	161	233'45'6		
50	22'46	106	233'45	162	233'4'55'	209	22'33'44'55'66'

 Tabla A1.5

 Numeración sistemática de los 209 bifenilos policlorados

Apéndice II
a precisión en la determinación de los PCBs es imprescindible para evaluar la ✓ contaminación Desafortunadamente, por este tipo de compuestos. la determinación rigurosa de todos los componentes es, como ya hemos comentado con anterioridad, extremadamente costosa y requiere una gran cantidad de tiempo. La aproximación más común en la identificación de PCBs es comparar el perfil cromatográfico correspondiente a la muestra, con los perfiles de mezclas comerciales tales como Aroclor o Clophen entre otras. Por lo general, esta comparación se lleva a cabo de forma visual después de analizar numerosos cromatogramas de estas mezclas comerciales y depende exclusivamente de la decisión de un analista experimentado. El contenido en PCBs de las muestras se expresa frecuentemente en función de estas mezclas comerciales. [76,186].

Sin embargo, la complejidad de algunas muestras requiere métodos que proporcionen la posibilidad de la determinación de congéneres individuales en las mismas. Los métodos quimiométricos representan una alternativa a la identificación y cuantificación de cada uno de los congéneres de PCBs en este tipo de muestras complejas [41,75]. Estos métodos se pueden usar para caracterizar y clasificar las muestras de composición desconocida como resultado de una mezcla de Aroclores. Muchos autores han demostrado que los mínimos cuadrados y los mínimos cuadrados parciales [187,188] son una herramienta útil para determinar la composición de mezclas de Aroclor en muestras de mezclas comerciales de Aroclor.

En este Apéndice se propone un método para analizar cualitativa y cuantitativamente los constituyentes de una mezcla compleja de Aroclores mediante un análisis de los datos cromatográficos. El método se basa en la reconstrucción de los datos cromatográficos en una función gasussiana, continua en el tiempo y la posterior aplicación de la regresión lineal múltiple por mínimos cuadrados a las funciones así obtenidas. Los resultados que se han obtenido se comparan con aquellos obtenidos cuando la regresión lineal múltiple se aplica directamente a los datos cromatográficos discretos.

PARTE EXPERIMENTAL

Análisis por Cromatografía de Gases

E¹ análisis se ha realizado con un cromatógrafo de gases Varian 3400 (Varian Instruments Co., Palo Alto, CA) equipado con un muestreador automático Varian-8200 y un detector de captura electrónica (ECD). Se utilizó una columna cromatográfica capilar de sílice fundida Supelco (Bellfonte PA. U.S.A.) SPB-5 (5% difenil-, 94% dimetil-, 1%vinil-polisiloxano) de 15m de longitud, 0.32m de diámetro interno y 0.25µm de espesor de película). Como gas portador se usó helio con un flujo de 1.26ml min⁻¹. El control cromatográfico se llevó a cabo con la estación de datos Varian Star Work Station Rev-A2. Las condiciones cromatográficas fueron las mismas para el análisis de todas las muestras: temperatura del detector e inyector 300°C y 250°C respectivamente; la temperatura inicial de la columna fue de 90°C (1min.) y se incrementó con una rampa de 6°C/min hasta alcanzar 280°C. El gas portador usado fue helio con un flujo de 1.26ml min⁻¹.

Reactivos y muestras

S e utilizaron disoluciones estándar de cuatro Aroclores, 1242, 1248, 1254 y 1260 proporcionadas por Supelco en ampollas conteniendo 200μg m⁻¹ de PCBs en metanol. Las ampollas se diluyeron en *n*-hexano hasta alcanzar una concentración final de 4μg m⁻¹. Los análisis de los estándares y de las muestras se realizaron por triplicado. En la Tabla AII.1 se muestran los tiempos de retención y las áreas de pico para cada uno de los cuatro estándares usados.

Se prepararon mezclas binarias, ternarias y cuaternarias de los diferentes Aroclores con concentraciones situadas entre $0.4 \text{ y } 2.0 \mu \text{g m} \Gamma^1$.

Análisis de Datos

Los informes cromatográficos que aporta la Varian Star Work Station fueron tratados por un programa informático escrito en BASIC con la finalidad de obtener un función G(t) para cada conjunto de datos. Aunque los cálculos básicos pueden realizarse con este mismo programa, el estudio final del análisis de regresión lineal múltiple basado en el método de los mínimos cuadrados fue realizado con el paquete estadístico Statgraphics V5.0.

Metódo A: Los datos de los tiempos de retención relativos para cada uno de los picos cromatográficos identificados y sus correspondientes áreas de pico y anchos de pico a media altura, Tabla AII.1, se usaron para construir una curva Gaussiana múltiple como función del tiempo, para cada uno de los estándares de Aroclor y las muestras desconocidas de acuerdo con la siguiente función:

Fig AII.1.- Cromatogramas de los cuatro estándares de Aroclor empleados en el estudio

$$G(t') = \sum_{i=1}^{N} a_i e^{-[(t'-t_i')/w_i]^2}$$
(1)

donde, N= número de picos, t'= tiempo de retención relativo, t'_i = tiempo de retención relativo para cada uno de los *i*-picos, a_i =área de pico y w_i = ancho de pico a media altura para cada *i*-pico. Como puede verse, la variable tiempo (t) del cromatograma original se sustituye en la ecuación (1) por el tiempo de retención relativo (t') calculado usando el decaclorobifenil (DCB) como patrón de referencia, de tal forma que la función Gaussiana generada existe entre t'=0 y t'=1, donde t'=1 corresponde al tiempo de retención del DCB. La aproximación a funciones Gaussianas se calcula a partir de los datos cromatográficos tabulados de cada uno de los picos cromatográficos identificados. La curva reconstruida se realiza con 500 puntos, número que proporciona a nuestro parecer una densidad suficiente para describir correctamente el cromatograma.

La cuantificación se realiza mediante una regresión lineal múltiple por mínimos cuadrados asumiendo que el detector opera en un rango lineal. La determinación por mínimos cuadrados de cada una de las muestras desconocidas se realiza convirtiendo los datos del cromatograma reconstruido en un vector. El resultado es una matriz (X),

$$\boldsymbol{X} = \begin{bmatrix} 1 & x_{11} & \dots & x_{i1} \\ 1 & x_{12} & \dots & x_{i2} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_{1j} & \dots & x_{ij} \end{bmatrix}$$
(2)

donde "*i*" se refiere al índice del Aroclor.y "*j*" a cada uno de los puntos discretos elegidos (1-500).

La matriz de datos X puede correlacionarse con una matriz de una variable externa (Y) o muestra desconocida de acuerdo con la siguiente ecuación,

$$Y = XB + R$$

donde B es la matriz de parámetros y R es la matriz de los residuales.

La matriz de los parámetros estimados \mathbf{B} se obtiene,

$$\vec{B} = (X'X)^{-1}(X'Y)$$

donde la prima ($\hat{}$) y el superíndice ($\hat{}$) indican la matriz traspuesta e inversa respectivamente. Las respuestas estimadas de los datos originales se calcula como sigue,

$$\vec{Y} = X\vec{B}$$

donde Y^{2} es la matriz de las respuestas estimadas. Finalmente la incertidumbre en la medida de la respuesta se puede expresar como,

$$R = Y - Y$$

Método B: después de seleccionar sólo 63 de los picos, presentes o no, en los cromatogramas de cada uno de los estándares de Aroclor, Tabla AII.1, estos picos fueron identificados en las muestras y la cuantificación se llevó a cabo usando el método de la regresión múltiple por mínimos cuadrados al igual que en el caso anterior, donde ahora j se refiere a cada pico seleccionado.

Resultados y Discusión

Los cromatogramas de los cuatro estándares de Aroclor se muestran en la Fig.AII.1. Como puede observarse hay diferencias significativas en sus perfiles cromatográficos a medida que el porcentaje en cloro aumenta. Por lo general, las muestras desconocidas son mezclas de Aroclor que posiblemente podrían descomponerse en las señales relativas a cada uno de los Aroclores individuales. Esto se puede realizar haciendo uso de una gran

		A124	-2	A124	8	A125	4	A126	0			A124	2	A124	8	A125	4	A126	i0
n°	RRT	А	W	А	W	А	W	А	W	n°	RRT	А	W	А	W	А	W	А	W
										-									
01	0.370	4689	3.9							33	0.666	9688	3.6	18101	3.6	72338	3.5	5878	3.4
02	0.384	4883	3.8							34	0.671	5388	3.7	13359	3.8	21550	4.2		
03	0.390	28035	3.8							35	0.674							10045	3.4
04	0.414	2255	3.4							36	0.677	14469	3.6	31844	3.7	140195	3.5	19444	3.7
05	0.442	50705	6.0	21493	5.4					37	0.689	4070	3.5	9009	3.7	18851	5.0	44482	3.4
06	0.455	5665	4.1							38	0.697			1371	3.7	20886	3.9	27845	3.5
07	0.464	34885	3.6	15015	3.7					39	0.706	12342	3.6	32338	3.8	186989	4.1	93442	3.6
08	0.489	6431	6.1							40	0.717			1703	3.1				
09	0.496	107271	4.3	80294	4.3					41	0.725					18286	3.5	21448	3.4
10	0.508	44881	4.0	23451	5.1					42	0.733	12272	4.0	32350	4.1	106850	5.8	189935	3.8
11	0.517	31856	3.9	18065	4.3					43	0.745			3078	4.2	39458	3.7	90778	5.1
12	0.523	7959	4.7	8320	4.1					44	0.755					13045	4.8	16231	3.8
13	0.532	1651	3.1	2703	4.1					45	0.760	3295	4.0	9952	3.9	198137	3.8	182283	3.8
14	0.539	17829	3.3	28797	3.4	29658	3.4	1160	3.3	46	0.771							27486	3.7
15	0.543					9764	4.2			47	0.780			2948	3.2	17638	3.5	118301	3.4
16	0.547	19430	6.6	30803	6.4					48	0.785			1744	3.2	10026	3.6	66428	3.5
17	0.562	27535	3.8	41147	3.5	19450	3.4			49	0.789					48419	3.9	19230	8.2
18	0.565			25704	5.2					50	0.796							22357	3.7
19	0.569	4534	6.4							51	0.804			2765	3.4	15266	3.6	94879	3.5
20	0.575	43910	3.6	64578	3.7	7397	3.6			52	0.809			1648	3.4	9129	3.8	57370	3.5
21	0.584	8713	3.7	11903	3.7					53	0.814			2446	4.2	38321	3.8	53867	3.9
22	0.597	1383	3.4	2044	3.3					54	0.822					8949	6.0	12288	7.5
23	0.601	17860	3.6	33243	3.5	5345	3.8			55	0.827					4451	4.9	24742	3.6
24	0.606	31831	3.6	54559	3.6	27844	3.7			56	0.834	990	2.8	12996	3.5	47216	3.6	306749	3.5
25	0.610	48806	4.7	73702	4.9	71448	3.7	19674	3.4	57	0.864			7425	3.6	31160	3.6	145978	3.7
26	0.618			7424	5.3	10704	4.0			58	0.874			2039	3.1	5692	3.3	62392	3.5
27	0.628	43212	3.6	70262	3.7					59	0.879			3225	3.7	6326	3.7	75557	3.9
28	0.631							2814	3.1	60	0.894							3903	3.4
29	0.638	9457	3.9	18136	3.8	88691	3.4	29034	3.3	61	0.909			1970	3.2	2983	3.5	35656	3.4
30	0.643	5637	3.9	12937	3.7	35770	3.5			62	0.931			4951	3.5	6218	3.3	75080	3.4
31	0.655			1140	2.9	4790	3.5			63	0.969	1624	3.2	2153	3.3	2816	3.2	22870	3.3
32	0.661	4710	3.7	9211	3.6	28026	3.5			64	1.000	121607	3.4	104194	3.5	111997	3.5	151507	3.4

 TablaAII.1

 Datos de los picos cromatográficos seleccionados de las mezclas de Aroclor estudiadas

variedad de técnicas matemáticas dependiendo de la naturaleza de los datos experimentales.

Se han desarrollado dos métodos para identificar y cuantificar diferentes mezclas de Aroclor. En el primer método, los datos de los tiempos de retención relativos, las áreas y los anchos a media altura de los picos cromatográficos se usaron para construir una función continua en el tiempo de acuerdo con la ecuación 1 para los diferentes Aroclores, y en el segundo método se aplica directamente la regresión lineal múltiple usando el método de los mínimos cuadrados.

La Figura AII.1a muestra los cromatogramas originales para los cuatro estándares de Aroclor. La Fig. AII.1b muestra los cromatogramas reconstruidos para los cuatro estándares de Aroclor de acuerdo con el Método A.. Los datos de cada informe cromatográfico se usaron para reconstruir vectores cromatográficos discretos en el tiempo de dimensión 500, correspondientes a 500 puntos espaciados 0.0013 unidades referidas a tiempos de retención relativo o 0.035min si hacemos referencia a tiempos de retención absolutos, abarcando 0.63 unidades o 17.3min de intervalo respectivamente, Fig AII.1b. De estos vectores, y aquellos correspondientes a las muestras, la composición de cada una de las muestras se calculó por regresión múltiple por mínimos cuadrados asumiendo que el detector opera en el rango lineal. En la Tabla AII.2 las composiciones calculadas se comparan con la composición de las mezclas de Aroclor, y puede observarse que los resultados obtenidos por el método A son mucho mejores, excepto para la muestra 2, con diferencias máximas entre las cantidades conocidas y calculadas de 5.68% (diferencia media= 1.60%).

Las Fig.AII.2 y AII.3 muestran los cromatogramas reconstruidos para dos mezclas de Aroclores (X e Y), los cromatogramas que mejor se ajustan y los residuales correspondientes. Los residuales son pequeños, en la mayoría de los casos, indicando que el cromatograma ajustado se ajusta correctamente al cromatograma reconstruido.

La Tabla AII.2 también muestra los resultados obtenidos por el método B que aplica el método de los mínimos cuadrados directamente a los datos experimentales

correspondientes a los 63 picos discretos seleccionados pudiendo observarse que las máximas diferencias entre los datos calculados

Fig AII.2.- Cromatograma reconstruido para una mezcla (X) de Aroclores

Fig AII.3.- Cromatograma reconstruido para una mezcla (Y) de Aroclores

							Cor	mposición calc	ulada (% en pe	eso)		
	Composició	n de las mezcl	las de Aroclor	(% en peso)		Méto	do A			Méte	odo B	
Muestra	A1242	A1248	A1254	A1260	A1242	A1248	A1254	A1260	A1242	A1248	A1254	A1260
1	50.00	50.00	-	-	50.24	48.58	0.37	0.82	45.84	53.08	0.27	0.81
2	50.00	-	50.00	-	44.41	6.99	47.69	0.91	48.93	0.40	50.66	0.00
3	50.00	-	-	50.00	46.62	1.91	1.65	49.82	45.36	3.63	0.00	51.01
4	-	50.00	50.00	-	0.00	50.77	47.95	1.28	4.94	45.35	49.71	0.00
5	-	50.00	-	50.00	0.00	49.90	2.26	47.84	0.00	49.46	0.61	49.93
6	-	-	50.00	50.00	1.52	0.00	49.54	48.94	0.00	6.29	44.61	49.10
7	33.33	33.33	33.33	-	32.27	32.76	34.48	0.49	43.48	17.84	36.77	1.92
8	33.33	33.33	-	33.33	27.65	35.50	2.45	34.40	28.23	36.23	0.23	35.32
9	33.33	-	33.33	33.33	29.95	0.00	36.09	33.96	23.19	8.84	32.18	35.80
10	-	33.33	33.33	33.33	2.54	29.75	33.99	33.72	0.00	36.48	28.71	34.81
11	25.00	25.00	25.00	25.00	23.65	24.09	26.04	26.22	19.94	29.70	22.88	27.48

 Tabla AII.2

 Resultados obtenidos aplicando los métodos A y B

 Tabla AII.3

 Composiciónes calculadas (% en peso) para diferentes mezclas binarias de Aroclor 1254 y Aroclor 1260

	Compo	sición ¹		Méto	odo A			Méte	odo B	
Muestra	A1254	A1260	A1242	A1248	A1254	A1260	A1242	A1248	A1254	A1260
1	50.00	50.00	1.09	0.00	48.44	50.46	0.00	9.23	40.52	50.25
2	33.33	66.67	0.17	0.72	32.58	66.52	0.00	7.00	28.63	64.38
3	25.00	75.00	0.45	0.22	23.06	76.27	0.00	5.19	21.02	73.79
4	16.67	83.33	2.05	0.88	19.16	77.91	0.00	4.34	17.52	78.14
5	83.33	16.67	0.00	2.82	79.05	18.14	0.00	6.15	75.93	17.92
6	66.67	33.33	0.76	0.00	64.56	34.68	0.00	11.81	54.18	34.02

¹ El Aroclor 1242 y el 1248 no se incluyeron en las mezclas

y conocidos alcanzan un 15.49% (diferencias medias= 2.97%), mucho más elevados que aquellas diferencias producidas por el método A.

Con la finalidad de establecer el grado de error cuando se realiza la determinación en mezclas con relaciones variadas, se realizaron estudios con mezclas de Aroclor 1254 y Aroclor 1260, seleccionados por ser los estándares más usados en estudios relativos al medio ambiente. Los resultados se muestran en la Tabla AII.3, en la que puede observarse que los errores obtenidos aplicando el método A (Gaussianas) son mucho más bajos que los obtenidos aplicando el método B (mínimos cuadrados directos). Así que, para el método A, las máximas diferencias entre las cantidades conocidas y calculadas se encontraron para las relaciones más elevadas, 1:5 y 5:1 Aroclor 1254:1260, con errores del 5.4% (Aroclor 1260) y 4.3% (Aroclor 1254) respectivamente. Para las relaciones más bajas 1:1, 1:2, 2:1 y 1:3 los errores máximos fueron del 2.1%. Cuando se realizan los cálculos aplicando el método B, usando las mismas mezclas de Aroclor, se observa que para las relaciones más altas, 1:5 y 5:1, los errores alcanzan el 5.2% (Aroclor 1260) y el 7.4% (Aroclor 1254) respectivamente. Sin embargo, para las relaciones más bajas, en concreto para la relación 2:1, las diferencias máximas son del 12.5% (Aroclor 1254).

En la Tabla AII.3 puede observarse que los errores en la cuantificación del Aroclor 1248 (que no se encuentra presente en las mezclas) usando el método B son considerablemente más altos que cuando se aplica el método A. Así que, el error máximo usando el método A es del 2.8% mientras que usando el método B se producen errores del 11.8%.

CONCLUSIONES

S e ha realizado un estudio comparativo para identificar y cuantificar mezclas de Aroclor usando dos métodos: A) transformando los datos cromatográficos a funciones Gaussianas y aplicando posteriormente el método de los mínimos cuadrados, B) aplicando directamente los mínimos cuadrados a los datos cromatográficos, y se ha observado que el primero es un método que resultados más precisos y exactos que el segundo. Además, el

método A es más simple, permitiendo seleccionar el número de variables que queramos, se consigue eliminar el ruido cromatográfico y además se invierte muchísimo menos tiempo (5-10 minutos) que en el método B (horas). Además, el método de las Gaussianas produce errores más pequeños aún cuando un de los Aroclores se encuentre en gran exceso en la mezcla con respecto a otros.

Apéndice III

 Tabla AIII.1

 Concentración de *n*-alcanos en Patella piperata (ng.g⁻¹ peso seco)

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Código	C14	C15	C16	C17	C18	C19	C 20	C 21	C 22	C 23	C 24	C25	C 26	CZ	C28	C29	C30	Pr	Fi
0211b 254. 411.7 66.8 666.2 96.6 41.1 mid 187.7 64.5 31.8 100.7 32.0 150.0 77.1 97.0 54.5 16.3 107.2 mid 107.2 mid 107.2 mid 107.2 mid 107.2 mid 107.2 mid 107.2 1	-																			
1211a 25.4 411.7 06.8 066.2 9.0 41.1 mu 28.4 1.1 99.2 150.0 17.1 97.9 38.3 16.5 2210 0211a 32.2 284.3 223.3 315.5 91.2 16.5 107.4 18.5 73.1 0211a 32.2 1647.0 70.1 71.6 mu 12.7 71.6 60.7 12.4 17.6 12.8 118.7 82.4 110.7 18.4 16.6 23.3 14.8 16.6 110.7 18.4 16.6 22.5 88.9 72.2 40.7 17.4 18.5 73.1 18.7 73.1 18.7 73.1 18.7 73.4 18.5 73.7 17.4 18.3 11.6 16.4 16.4 16.6 18.4 10.6 12.4 18.7 18.7 18.7 18.7 18.7 18.7 18.7 18.7 18.7 18.7 18.7 18.7 18.7 18.7 18.7 18.7	0011	25.4	411.7	66.0		0.6		nd	20.4		26.5	01.0	100 5	26.2	150.0	1	07.0		160	070.0
Open to 157.8 228.43 3135.6 91.2 105.1 104 118.7 94.3 142.8 107.1 73.6 91.0 91.8 53.5 1663.4 1401.4 107.2 17.7 0211 33.2 1667.0 70.1 77.2 13.7 11.6 47.4 71.6 71.7 71.6 71.7 7	0211a	25.4	411./	66.8	666.2	9.6	41.1	111	28.4	7.1	36.5	31.8	100.7	36.2	150.0	//.1	97.9	54.5	16.3	272.0
model model <th< td=""><td>0211b</td><td>137.8</td><td>2384.3</td><td>243.9</td><td>3135.6</td><td>91.2</td><td>105.1</td><td>na</td><td>118.7</td><td>94.3</td><td>146.8</td><td>163.1</td><td>628.9</td><td>1090.3</td><td>1338.0</td><td>1585.5</td><td>1663.4</td><td>1401.4</td><td>107.2</td><td>na</td></th<>	0211b	137.8	2384.3	243.9	3135.6	91.2	105.1	na	118.7	94.3	146.8	163.1	628.9	1090.3	1338.0	1585.5	1663.4	1401.4	107.2	na
10231a 38.2 1647.0 70.1 77.2 1.3 71.1 6.0 434.2 12.4 76.5 22.8 11.8 22.5 8.8.9 72.2 4.0 <i>nd</i> 0731b 34.1 6669 70.3 409.0 20.4 18.4 14.6 26.5 23.4 49.5 11.8 73.1 <	02211	32.6	901.9	93.1	1014.2	24.9	20.1	nd	20.6	52	21.9	30.5	117 3	164.2	518 5	200.2	209.2	94 5	13.6	83.8
1211 34.1 696.9 70.3 490.9 20.4 19.8 md 38.0 md 78.0 100.1 101.1 28.0 28.7 38.7 38.0 md 78.0 100.1 101.1 101.0 28.0 101.0 101.1 101.0 101.1 101.0	0231a	38.2	1647.0	70.1	772.2	13.7	11.6	nd	12.0	6.0	434.2	12.4	76.5	22.8	119.8	22.9	88.9	72.2	4.0	nd
19 73.6 115.6 39.60 67.9 68.3 nd 70.1 19.7 78.4 96.6 103.2 218.4 16.6 26.6 35.4 20.2 16.6 35.4 20.8 16.6 35.4 20.8 16.6 35.4 20.2 16.6 35.4 20.6 16.6 35.4 20.6 16.6 35.4 20.6 16.6 35.4 20.6 16.6 35.4 10.1 17.4 17.8 17.6 17.8 17.6 17.8 17.6 17.8 17.6 17.8 17.6 17.8 17.6 17.8 17.6 17.6 17.6 17.6 17.6 17.6 17.7 17.6 17.7 17.6 17.7 17.6 17.7 17.6 17.7 17.6 17.7 17.6 17.7 17.6 17.7 17.6 17.7 17.6 17.7 17.6 17.7 17.6 17.7 17.6 17.7 17.6 17.7 17.6 17.7 17.6 17.7 <td< td=""><td>0231b</td><td>34.1</td><td>696.9</td><td>70.3</td><td>490.9</td><td>20.4</td><td>19.8</td><td>nd</td><td>38.0</td><td>nd</td><td>23.3</td><td>34.0</td><td>135.9</td><td>193.7</td><td>264.6</td><td>206.3</td><td>243.4</td><td>192.5</td><td>18.5</td><td>73.1</td></td<>	0231b	34.1	696.9	70.3	490.9	20.4	19.8	nd	38.0	nd	23.3	34.0	135.9	193.7	264.6	206.3	243.4	192.5	18.5	73.1
1251 14.3 1148 16.4 26.6 nd 20.8 11.5 29.5 36.4 12.0 21.6 35.1 28.0 21.6 35.1 28.6 12.0 11.6 116.7 116.1 <th< td=""><td>0231c</td><td>31.9</td><td>273.6</td><td>115.6</td><td>395.0</td><td>67.9</td><td>68 3</td><td>nd</td><td>70.1</td><td>197</td><td>78.4</td><td>265.0</td><td>1061 4</td><td>1954 3</td><td>2181.6</td><td>2400.0</td><td>2280.4</td><td>1872.3</td><td>47 8</td><td>307.0</td></th<>	0231c	31.9	273.6	115.6	395.0	67.9	68 3	nd	70.1	197	78.4	265.0	1061 4	1954 3	2181.6	2400.0	2280.4	1872.3	47 8	307.0
03110 19.9 94.7 38.2 17.37 15.4 22.9 nd 20.9 9.8 33.3 26.8 101.6 116.7 180.1 128.1 200.1 96.6 63.3 03411a 39.1 465.5 84.4 41.3 5.8 11.4 nd 36.2 9.6 30.4 30.4 13.6 13.6 13.6 82.6 82.7 84.8 13.8 0411u 20.5 25.25 25.0 10.6 46.5 96.6 40.0 67.1 88.7 41.2 13.8 17.7 041u 20.6 78.3 81.8 41.4 nd 16.2 11.9 76.6 27.1 71.6 87.5 84.2 31.5 22.5 1.3 041u 42.6 74.4 87.7 54.18 43.4 48.3 15.5 47.5 32.0 45.0 45.0 45.0 45.0 45.0 45.0 46.0 48.1 10.4 14.0 14.0 15.5 14.0 15.5 14.0 15.5 15.0 14.0 17.7 17.6	0251u	41.3	1148.4	164.6	2661.9	31.6	43.6	nd	52.8	11.5	29.5	36.4	132.3	234.8	260.2	316.6	354.3	280.5	17.4	118.3
RN31 89.9 86.80 17.27 90.07 45.4 45.7 14.1 md 56.2 96.3 30.4 23.3 12.6 53.1 18.6 13.6 12.6 82.2 15.0 0341a 30.1 255.5 50.5 552.2 11.5 12.3 nd 13.6 2.4 9.4 11.6 55.8 40.0 67.1 81.6 92.6 82.7 84.1 13.6 2.4 9.4 11.6 55.8 40.0 67.1 81.6 92.6 82.7 41.4 17.0 11.4 11.7 71.6 71.1 67.6 14.0 92.6 14.0 14.0 2.5 13.8 0441u 35.0 73.33 81.1 84.0 57.5 32.0 45.0 18.6 14.0 2.5 14.7 14.6 12.7 14.1 14.7 13.1 18.0 14.1 14.5 14.5 14.0 14.5 14.5 14.5 14.5 14.5 14.5 14.5 <td>0311u</td> <td>1.9</td> <td>94.7</td> <td>38.2</td> <td>1737.9</td> <td>15.4</td> <td>22.9</td> <td>nd</td> <td>20.9</td> <td>9.8</td> <td>33.3</td> <td>26.8</td> <td>120.4</td> <td>116.7</td> <td>180.1</td> <td>128.1</td> <td>200.1</td> <td>96.1</td> <td>9.6</td> <td>63.3</td>	0311u	1.9	94.7	38.2	1737.9	15.4	22.9	nd	20.9	9.8	33.3	26.8	120.4	116.7	180.1	128.1	200.1	96.1	9.6	63.3
0341a 39.1 46.55 84.4 41.12 58.7 rdd 36.2 9.6 30.4 90.1 126.4 53.1 18.6.3 13.8.1 15.2 68.2 25.9 110.6 0411a 20.5 55.2 50.6 465.9 606.4 10.4 16.2 11.9 27.6 27.2 98.5 39.6 67.8 82.7 84.2 31.5 22.5 13.4 0411a 26.6 78.8 87.7 84.4 83.7 54.8 83.7 14.9 17.0 13.7 14.6 10.4 14.9 17.0 13.6 14.0 15.8 141.0 215.1 187.0 51.8 187.0 187.0 187.0 187.0 187.0 187.0 187.0 156.0 14.9 17.7 172.0 180.9 199.9 326.3 548.6 78.0 73.0 172.0 17.0 18.4 13.0 14.1 19.4 14.0 11.9 13.1 19.6 13.0 34.2 <td< td=""><td>03310</td><td>89.2</td><td>865.9</td><td>122.2</td><td>900.7</td><td>454</td><td>45.2</td><td>10.4</td><td>567</td><td>21.3</td><td>40.5</td><td>23.4</td><td>101.6</td><td>21.4</td><td>68 5</td><td>103.6</td><td>103.2</td><td>107</td><td>38.2</td><td>15</td></td<>	03310	89.2	865.9	122.2	900.7	454	45.2	10.4	567	21.3	40.5	23.4	101.6	21.4	68 5	103.6	103.2	107	38.2	15
0341b 21.0 6155 50.5 552.2 11.5 12.3 nd 13.6 21.4 9.4 11.6 55.8 40.0 67.1 81.6 92.6 88.7 4.1 31.8 0411u 30.5 255.2 51.6 71.7 nd 11.1 73 71.6 71.1 88.6 34.0 93.4 89.7 91.4 90.5 14.9 17.7 0441u 26.7 78.8 85.7 84.1 80.0 62.2 49.8 10.10 217.1 78.6 141.0 21.5 47.6 78.7 31.1 84.0 27.8 21.5 34.7 62.1 34.7 62.1 34.7 71.4 14.7 71.7 71.6 71.7 78.6 54.6 730.6 851.1 140.0 26.0 14.5 130.7 60.11 29.9 14.0 22.6 47.6 28.7 34.3 65.7 130.7 14.1 19.4 130.3 14.7 130.7 12.7 <	0341a	39.1	465.5	84.4	413.2	58.7	44.1	nd	36.2	9.6	30.4	30.3	126.4	53.1	186.3	138.1	152.6	82.2	25.9	110.6
OH11 205 253.2 50.6 645.9 606.4 170 171 714 11.1 73.6 72.2 98.5 30.6 67.8 82.7 84.2 31.5 22.5 1.3 OH41 42.6 784.8 85.7 541.8 43.4 43.3 15.5 47.5 32.0 45.0 46.0 185.9 14.1.6 200.4 185.1 140.0 26.0 145.7 0511 90.1 77.4 75.7 901.0 47.1 185.7 14.16 200.4 486.4 383.9 29.3 137.5 0611 24.6 164.7 14.6 15.6 76.7 76.7 17.7 766.7 66.7 486.7 468.4 38.9 29.3 137.5 0611 25.7 758.2 24.0 14.0 98.6 67.8 70.1 28.7 71.4 11.4 13.0 34.2 64.9 34.6 69.3 14.9 0711 52.7 758.2	0341b	21.0	615.5	50.5	552.2	11.5	12.3	nd	13.6	2.4	9.4	11.6	55.8	40.0	67.1	81.6	92.6	88.7	4.1	31.8
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0411u	20.5	253.2	50.6	465.9	606.4	61.4	nd	16.2	11.9	27.6	27.2	98.5	39.6	67.8	82.7	84.2	31.5	22.5	1.3
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	04310	36.8	1094.1	75.9	1074.4	17.0	13.7	nd	14.1	7 3	21.6	21.1	68.6	34.0	98.4	89.2	201.6	39.5	14.9	17.7
	04411	42.6	748.4	85.7	541.8	43.4	48.3	15.5	47.5	32.0	45.0	46.0	185.9	141.6	200.4	148 7	190.4	157.0	36.8	nd
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	04510	35.0	723.3	81.1	821.6	20.8	48.1	8.0	62.2	19.8	101.0	217.1	718.6	1/11.0	2155.1	1870.6	1851.1	1404.0	26.0	145.7
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	05110	0.0	157.4	75.2	2031.0	48.0	57.8	22.1	547	33.1	185.7	631.2	2070.6	2551.5	1303.6	1327.0	2008 1	2836.3	50	14.1
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	05410	65.6	2/33.8	142.6	1647.2	41.6	51.2	3.4	60.8	21.0	58.9	00.0	322.6	176.6	569.0	486.4	168 /	338.0	20.3	137.5
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	06110	28.0	600.7	40.2	1603.6	34.3	40.5	nd	12.0	10.0	41.0	08.7	326.3	5/8 6	780.8	6827	664.7	400.8	18.3	06
Institution Jong Jong <td>06211</td> <td>26.9</td> <td>009.7</td> <td>74.0</td> <td>054.6</td> <td>22.4</td> <td>40.5</td> <td>nd</td> <td>25.6</td> <td>76</td> <td>25.1</td> <td>20.7</td> <td>122.0</td> <td>172.7</td> <td>505.6</td> <td>222.0</td> <td>2497</td> <td>221.4</td> <td>11.0</td> <td>61.2</td>	06211	26.9	009.7	74.0	054.6	22.4	40.5	nd	25.6	76	25.1	20.7	122.0	172.7	505.6	222.0	2497	221.4	11.0	61.2
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	06410	26	470.6	20.6	674.0	0.4	12.0	nd	15.6	20	07	0.2	26.9	11.6	22.0	24.0	64.0	24.6	60	21.0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0711.	5.0	4/9.0	29.0	2500.5	9.4	21.0	2.0	52.7	2.9	0.1	9.2	240.5	252.0	449.9	54.2	590.9	54.0	4.5	24
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	07110	59.5	1214.4	02.0	2390.5	14.0	51.0	5.8 nd	32.1	4.9	42.0	40.8	127.0	252.9	448.8	269.8	2074.0	207.1	4.5 nd	2.4
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0741-	× ור < 2	452.2	70.6	1010.0	201	22.0	F 1	24.0	60	165	1/2	055	214 7	280.1	267.4 55.7	125 0	07.4	0.0	50.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0741a	0.5	452.5	/0.0	1010.8	25.7	22.8	5.1	34.9	0.9	10.5	0.7	83.5	21.1	98.0	33.7	155.9	87.4	9.8	39.5
$ \begin{array}{c} 07/1u & 51.2 & 182.1 & 51.4 & 839.5 & 11.2 & 24.7 & nd & 15.7 & 3.1 & 19.8 & 18.7 & 179.0 & 98.0 & 326.3 & 279.1 & 258.4 & 195.8 & 18.8 & 18.1 & 51.5 \\ 081u & 46.3 & 571.4 & 69.5 & 1418.3 & 72.0 & 58.5 & 46.4 & 191.3 & 41.4 & 87.5 & 16.1 & 212.5 & nd & 289.6 & nd & 239.8 & 239.0 & 46.3 & 150.5 \\ 0841u & 59.0 & 316.0 & 87.9 & 499.8 & 26.2 & 17.3 & 7.9 & 42.0 & 3.2 & 27.6 & nd & nd & 77.7 & 35.3 & 3.0 & 84.3 & 19.8 & 12.4 & nd \\ 0851u & 168.5 & 80.9 & 180.9 & 96.0 & 63.5 & 48.0 & nd & 70.6 & nd & 73.7 & 12.6 & 268.4 & 43.6 & 80.0 1 & 66.5 & 59.1 & 15.1 & 47.8 & 30.5 \\ 0911u & 52.2 & 557.0 & 62.4 & 851.0 & nd & 33.8 & nd & 24.2 & nd & 27.2 & 6.8 & 86.8 & 1.8 & 68.8 & 8.5 & 95.8 & 66.2 & 13.0 & nd \\ 0931u & 78.3 & 1218.7 & 101.2 & 1009.1 & 42.7 & 56.0 & 9.2 & 39.9 & 9.8 & 85.8 & 3.6 & 99.1 & nd & 100.5 & nd & 91.5 & 116.8 & 14.6 & 94.7 \\ 0951u & 162.2 & 6154.1 & 256.6 & 5248.2 & 40.5 & 42.9 & nd & 108.2 & 4.6 & 222.2 & 3.9 & 101.5 & nd & 130.5 & nd & 131.3 & 177.4 & 11.3 & nd \\ 0971u & 50.0 & 917.7 & 68.4 & 1263.9 & 23.7 & 21.7 & nd & 43.4 & nd & 36.0 & nd & 112.1 & nd & 263.4 & 15.3 & 232.3 & 168.2 & 11.8 & 223.4 \\ 1041u & 97.3 & 1823.4 & 88.4 & 1263.9 & 23.7 & 21.7 & nd & 43.4 & nd & 36.0 & nd & 112.1 & nd & 263.4 & 15.3 & 232.3 & 168.2 & 11.8 & 223.4 \\ 1041u & 37.7 & 2029.2 & 75.1 & 2226.6 & 15.5 & nd & 37.6 & nd & 107 & nd & 77.7 & nd & 95.8 & nd & 49.8 & 40.4 & 6.4 & 46.6 & 6.11411 & 37.7 & 2029.2 & 75.1 & 2226.6 & 15.5 & 19.8 & 38.9 & 8.1 & 84.6 & 243.1 & 98.54 & 1847.1 & 2342.8 & 1757.6 & 1175.7 & 652.3 & 26.9 & 46 & 1241a & 50.6 & 621.6 & 72.2 & 489.5 & 21.6 & 13.2 & 12.8 & nd & 27.7 & 13.8 & 57.1 & nd & 68.9 & nd & 76.6 & 140.0 & 71.0 & 43.2 & 48.6 & 142.1 & 125.7 & 636.1 & 42.7 & 17.1 & nd & 18.9 & nd & 180.6 & 24.3 & 198.54 & 1847.1 & 2342.8 & 1757.6 & 1175.7 & 652.3 & 26.9 & 46 & 1241a & 50.6 & 621.6 & 72.2 & 489.5 & 21.6 & 13.2 & 12.8 & 42.4 & 7.0 & 11.4 & nd & 66.8 & 85.1 & 74.9 & 17.2 & 110.6 & 71.0 & 43.2 & 44.5 & 1241a & 50.6 & 621.6 & 72.2 & 489.5 & 21.6 & 13.2 & 12.8 & 42.4 & 7.0 & 11.4 &$	07416	55.1	10/9.0	85.1	1012.5	17.2	15.9	8.9	30.4	5.8	22.0	16.2	106.5	41.0	1/4.6	212.2	226.7	197.8	4.9	47.5
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0771u	51.2	182.1	51.4	839.5	11.2	24.7	na	15.7	3.1	19.8	18.7	179.0	98.0	326.3	279.1	258.4	195.8	18.8	151.5
0831u 203.1 1534.1 369.5 141.8.3 72.0 58.5 46.4 191.3 71.4 18.7 16.1 212.5 nd 289.6 nd 239.8 239.0 46.3 190.5 0841u 59.0 316.0 87.9 499.8 262 17.3 7.9 42.0 3.2 27.6 nd nd 77.7 35.3 3.0 84.3 19.8 12.4 nd 0851u 168.7 57.0 62.4 851.0 nd 33.8 nd 24.2 nd 27.2 6.8 86.8 1.8 68.8 8.5 95.8 66.2 13.0 nd 0931u 78.3 1218.7 101.2 1009.1 42.7 56.0 9.2 39.9 9.8 85.8 3.6 99.1 nd 100.5 nd 131.3 17.4 11.3 nd 0951u 162.2 6154.1 256.6 5248.2 40.5 42.9 nd 108.2 14.6 23.7 7.7 8.5 3131.9 25.0 131.5 37.8 <t< td=""><td>08110</td><td>463</td><td>521.4</td><td>69 5</td><td>1745.2</td><td>29.8</td><td>22.2</td><td>79</td><td>35.5</td><td>2.8</td><td>27.2</td><td>96</td><td>98.6</td><td>18.1</td><td>86.1</td><td>27 3</td><td>1195</td><td>55.9</td><td>na</td><td>72</td></t<>	08110	463	521.4	69 5	1745.2	29.8	22.2	79	35.5	2.8	27.2	96	98.6	18.1	86.1	27 3	1195	55.9	na	72
0841u 59.0 316.0 87.9 49.8 26.2 17.3 7.9 42.0 3.2 27.6 nd 77.7 35.3 3.0 84.3 19.8 12.4 nd 0851u 158.5 8909 180.9 985.0 63.5 48.0 nd 79.6 nd 77.7 12.6 75.8 4.43.6 800.1 663.2 59.1 58.1 47.8 30.5 59.1 58.1 47.8 30.5 64.8 85.8 3.6 99.1 nd 103.5 nd 91.5 12.6 38.6 12.2 90.9 9.8 85.8 3.6 99.1 nd 103.5 nd 91.5 12.6 38.6 12.3.9 nd 103.5 nd 101.5 142.0 116.8 146.6 94.7 10.10 103.5 nd 131.3 177.4 11.3 nd 11.8 123.9 04.1 131.3 177.4 11.3 nd 101.9 142.0 116.8 146.6 94.7 12.1 nd 103.5 nd 131.3 177.4 11.3 <td< td=""><td>0831u</td><td>203.1</td><td>1334.1</td><td>369.5</td><td>1418.3</td><td>72.0</td><td>58.5</td><td>46.4</td><td>191.3</td><td>41.4</td><td>87.5</td><td>16.1</td><td>212,5</td><td>na</td><td>289.6</td><td>na</td><td>239.8</td><td>239.0</td><td>46.3</td><td>150,5</td></td<>	0831u	203.1	1334.1	369.5	1418.3	72.0	58.5	46.4	191.3	41.4	87.5	16.1	212,5	na	289.6	na	239.8	239.0	46.3	150,5
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0841u	59.0	316.0	87.9	499.8	26.2	17.3	7.9	42.0	3.2	27.6	na	na	77.7	35.3	3.0	84.3	19.8	12.4	na
0911u 52.2 557.0 62.4 851.0 nd 33.8 nd 24.2 nd 27.2 6.8 86.8 1.8 68.8 85.5 95.8 66.2 13.0 nd 0931u 78.3 1218.7 101.2 1009.1 42.7 56.0 9.2 39.9 9.8 85.8 3.6 99.1 nd 100.5 nd 101.5 nd 101.5 nd 101.5 nd 131.3 177.4 11.3 146.6 94.7 0951u 162.2 6154.1 256.6 5248.2 40.5 42.9 nd 108.2 4.6 222.2 3.9 101.5 nd 331.6 nd 131.3 177.4 11.3 nd 0971u 50.0 917.7 68.4 1741.7 13.3 18.8 nd 20.2 nd 16.3 331.6 nd 131.3 177.4 11.3 nd 101 nd 101.7 nd 77.7 nd 26.4 15.5 104.6 46.6 46.2 46.6 46.4 46.6	08511	168 5	899 9	189.2	995 N	63 5	48.0	nd	79 K	nd	737	12.6	268.4	43.6	800-1	663.2	591 1	581.1	47 8	305,5
0931u 78.3 1218.7 101.2 1009.1 42.7 56.0 9.2 39.9 9.8 85.8 3.6 99.1 nd 103.5 nd 91.5 12.6 38.6 123.9 0941u 81.0 1894.6 92.2 76.0 18.9 77.8 nd 34.2 2.5 73.4 72 84.2 nd 100.5 2.4.2 142.0 116.8 14.6 94.7 0951u 50.0 917.7 68.4 1741.7 13.3 18.8 nd 20.2 nd 26.3 3.7 77.8 5.3 131.9 25.0 131.5 37.8 11.7 nd 1011u 97.3 1823.4 88.4 1263.9 23.7 21.7 nd 43.4 nd 36.0 nd 112.1 nd 263.4 15.3 232.3 168.2 11.8 23.4 166.2 11.8 23.4 166.2 18.2 23.4 16.6 11.1 nd 27.7 nd 40.0 5.7 19.6 24.7 82.1 36.5 90.4 5	0911u	52.2	557.0	62.4	851.0	na	33.8	na	24.2	na	27.2	6.8	86.8	1.8	68.8	8.5	95.8	66.2	13.0	na
0941n 810 1894 6 927 764.0 18.9 77 8 nd 102 1065 24.2 142.0 116.8 14.6 94.7 0951u 162.2 6154.1 256.6 524.8.2 40.5 42.9 nd 108.2 4.6 222.2 3.9 101.5 nd 331.6 nd 131.3 177.4 11.3 nd 0971u 50.0 917.7 68.4 1741.7 13.3 18.8 nd 20.2 nd 36.0 nd 111.9 25.0 131.3 177.4 11.3 nd 1011u 97.3 1823.4 88.4 1263.9 23.7 21.7 nd 43.4 nd 36.0 nd 112.1 nd 263.4 15.3 232.3 168.2 11.8 223.4 1111u 73.7 818.6 51.5 609.9 10.9 14.7 nd 36.0 nd 10.7 nd 77.7 nd 65.8 nd 04.8 14.6 106.8 36.3 185.3 1111u 73.7 <t< td=""><td>0931u</td><td>78.3</td><td>1218.7</td><td>101.2</td><td>1009.1</td><td>42.7</td><td>56.0</td><td>9.2</td><td>39.9</td><td>9.8</td><td>85.8</td><td>3.6</td><td>99.1</td><td>nd</td><td>103.5</td><td>nd</td><td>91.5</td><td>12.6</td><td>38.6</td><td>123.9</td></t<>	0931u	78.3	1218.7	101.2	1009.1	42.7	56.0	9.2	39.9	9.8	85.8	3.6	99.1	nd	103.5	nd	91.5	12.6	38.6	123.9
0951u 162.2 6154.1 256.6 5248.2 40.5 42.9 nd 108.2 4.6 222.2 3.9 101.5 nd 331.6 nd 131.3 177.4 11.3 nd 0971u 50.0 917.7 68.4 1741.7 13.3 18.8 nd 20.2 nd 26.3 3.7 77.8 5.3 131.9 25.0 131.5 37.8 11.7 nd 101u 97.3 1823.4 8.4 1263.9 23.7 21.7 nd 43.4 nd 36.0 nd 112.1 nd 263.4 15.3 232.3 168.2 11.8 223.4 1041n 34.7 818.6 51.5 609.9 10.9 14.7 nd 07.6 nd 10.7 nd 25.9 13.5 17.8 82.1 36.5 90.4 58.6 146.0 106.8 36.3 185.3 111u 73.7 78.8 63.4 87.9 99.87 35.0 51.5 nd 53.6 nd 57.7 nd 14.1 nd<	094111	81.0	1894 6	92.2	764 0	189	27.8	nd	34.2	2.5	23.4	7 2	84.2	nd	100 5	24.2	142.0	116.8	14 6	94 7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0951u	162.2	6154.1	256.6	5248.2	40.5	42.9	nd	108.2	4.6	222.2	3.9	101.5	nd	331.6	nd	131.3	177.4	11.3	nd
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0971u	50.0	917.7	68.4	1741.7	13.3	18.8	nd	20.2	nd	26.3	3.7	77.8	5.3	131.9	25.0	131.5	37.8	11.7	nd
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1011u	97.3	1823.4	88.4	1263.9	23.7	21.7	nd	43.4	nd	36.0	nd	112.1	nd	263.4	15.3	232.3	168.2	11.8	223.4
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	10411	34 7	818.6	51 5	609.9	10.9	147	nd	27.6	nd	107	nd	27.2	nd	95.8	nd	49 8	40 4	64	46.6
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1111u	73.7	2029.2	75.1	2226.6	19.5	43.0	nd	40.0	5.7	19.6	24.7	82.1	36.5	90.4	58.6	146.0	106.8	36.3	185.3
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1141u	51.4	1057.5	76.8	2208.7	20.6	22.8	nd	24.7	5.1	38.5	nd	57.1	nd	68.9	nd	76.1	42.7	17.1	nd
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	11510	73 8	635.4	87 9	998.2	35.0	515	nd	53.6	nd	25.7	nd	14 1	nd	nd	nd	45 2	nd	48 0	nd
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1211u	46.7	573.8	69.4	818.2	1232.6	135.5	19.8	38.9	8.1	84.6	243.1	985.4	1847.1	2342.8	1757.6	1175.7	652.3	26.9	4.6
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1241a	50.6	621.6	72.2	489.5	21.6	13.2	12.8	42.4	7.0	11.4	nd	6.6	85.1	74.9	17.2	110.6	71.0	43.2	44.5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1241h	519	742.8	594	998.0	199	24 5	nd	24.5	nd	12.6	nd	594	nd	148.8	nd	189 5	49.0	17.0	997
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1251u	84.5	3652.4	137.3	3142.6	29.9	38.0	nd	30.6	nd	23.4	1.9	66.5	94.7	72.6	10.4	117.2	67.4	14.4	121.6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1271u	25.7	636.1	42.1	1253.4	12.6	22.8	5.0	16.2	nd	16.5	7.1	53.7	17.6	109.1	83.9	97.9	nd	19.6	nd
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	13110	23.6	432.5	36.0	685.8	29.2	36.8	11.2	29.6	87	59 3	46.6	2177	300.3	294.9	344.4	356.4	208.5	13.0	nd
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1341u	5.9	1219.3	53.2	1166.6	9.3	13.7	3.3	10.8	2.2	10.9	16.4	93.3	152.6	177.7	173.7	261.7	110.0	3.0	nd
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1351u	124.7	2762.0	157.8	3016.0	78.1	107.4	45.1	72.5	24.7	74.3	77.3	472.9	518.5	554.9	954.1	999.1	849.2	60.5	nd
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	14110	38.1	249.5	50.2	370.0	23.7	31.8	9.0	25.5	3.4	25.0	36.7	228.8	485 1	452.5	530.0	471.2	388.3	23.4	169.9
1471n 2284 5260 2246 14836 137.8 145.9 96.5 96.5 46.6 183.8 782.0 2590.7 4731.9 522.9 150137 4164 7 2684 1164 nd	14/10	33.4	616.0	41.0	403.3	14.7	20.8	10.0	23.5	17	12.2	8 1	62.0	24.6	106.9	132.2	123.8	98.6	13.4	/13
- 17/10 Webby Jebby Webby Theory LUCO 17/17 Alex Alex 10/17 Jebby 10/17 HUB 11/19 10/17 HUB 11/19 10/17 HUB 11/19	14710	2284	526.0	224.6	1483.6	137.8	145.9	96.5	96.5	46.6	183.8	782.0	2590.7	4731.9	5229 1	5013 7	4164.7	2684 5	1164	nd

 Tabla AIII.2

 Concentración de PAHs en Patella piperata (ng.g⁻¹ peso seco)

Código	Al	A2	A3	A4	A5	A6	A7	A8	A9	A10	A11	A12	A13	A14	A15	A16	A17	A18
			,	,	,				,	,	,							,
0211a	13.4	nd	nd	nd	nd	7.2	6.3	nd	nd	nd	nd	10.3	6.5	8.8	15.8	28.5	5.7	nd
0211b	76.4	81.2	40.3	nd	72.1	45.0	27.8	44.8	48.4	nd	8.0	291.3	42.3	13.4	347.1	46.3	68.6	nd
0231a	nd	nd	2.5	2.1	1.6	3.6	1.5	2.7	3.0	2.9	35.9	84.5	37.4	68.8	93.6	nd	17.2	nd
0231b	10.3	nd	nd	2.0	12.9	8.5	3.2	3.0	2.9	6.1	nd	3.7	1.2	5.0	8.9	nd	1.3	nd
0231c	164.5	nd	nd	nd	nd	26.0	nd	nd	11.9	nd	nd	18.8	24.3	33.6	71.6	nd	15.2	5.8
0251u	21.4	11.6	2.7	45	nd	84	58	2.8	88	nd	nd	64	34	63	134	nd	31	nd
0311u	20.3	nd	nd	2.5	nd	nd	2.2	6.1	2.2	2.9	2.5	4.5	1.9	5.9	12.8	nd	3.5	nd
0331u	18.2	40.1	nd	5.0	13.9	12.2	7.2	nd	8.2	4.3	nd	nd	1.9	6.2	18.2	12.4	6.5	nd
0341a	27.6	nd	nd	nd	26.5	13.3	7.1	nd	3.7	nd	nd	32.4	10.1	17.5	34.3	20.1	9.8	nd
0341b	nd	nd	nd	3.5	nd	4.6	3.3	3.1	1.6	3.1	1.6	13.7	51.4	15.4	25.6	44.7	nd	nd
0411u	14.5	nd	nd	2.7	5.2	6.9	3.4	2.2	4.2	10.8	nd	13.0	3.5	6.7	19.9	nd	6.9	1.9
0431u	19.1	12.9	2.3	3.0	nd	8.6	3.4	8.2	9.4	38.0	11.7	31.7	13.1	1.8	9.2	nd	2.1	nd
0441u	38.9	nd	3.3	4.6	18.5	14.8	5.9	5.0	2.9	45.6	nd	14.4	1.1	4.5	16.3	3.0	12.6	nd
04511	152.4	10.5	nd	71	nd	23.1	10.5	nd	24 7	nd	68	30.1	23.9	178	44 2	56	70.0	nd
0511u	98.0	nd	nd	5.5	nd	nd	nd	9.5	21.2	5.6	nd	15.2	7.8	13.8	23.0	nd	9.2	nd
0541u	28.8	nd	nd	6.7	6.4	11.8	3.9	2.9	3.2	3.5	nd	7.8	30.4	65.8	94.4	20.2	14.5	nd
0611u	79.9	4.1	5.6	2.7	2.6	4.8	2.0	2.1	6.0	7.3	1.4	12.0	8.2	3.6	15.7	3.0	0.5	nd
0631u	19.9	22.2	3.0	3.8	10.7	12.4	5.8	4.3	12.8	nd	7.6	13.6	34.8	7.9	31.9	nd	8.7	nd
0641u	17.8	nd	4.3	4.3	2.2	4.8	2.5	5.1	3.0	2.3	3.6	7.8	4.8	8.5	22.4	6.6	4.6	nd
0711u	16.6	nd	3.0	4.3	nd	4.9	1.5	5.2	11.5	nd	2.0	0.9						
07311	43 5	nd	nd	47	nd	91	51	nd	4 0	39	36	11.2	74	169	26.1	nd	60	nd
0741a	6.4	nd	nd	4.2	nd	nd	nd	10.7	5.5	3.8	nd	8.0	2.5	6.7	13.4	1.6	9.5	nd
0741b	59.3	nd	nd	3.2	7.1	4.8	3.2	nd	2.6	2.2	2.1	6.9	10.4	10.0	12.0	45.1	nd	nd
0771u	105.2	6.3	17.2	nd	nd	5.2	4.5	nd	5.2	nd	nd	24.4	nd	3.8	37.8	2.2	8.6	1.1
0811u	12.7	nd	nd	3.6	5.3	4.1	nd	nd	nd	nd	nd	3.0	1.1	4.8	8.3	nd	6.1	nd
0831u	137.2	nd	nd	31.9	36.6	27.3	7.3	7.7	13.2	91.2	46.1	175.4	84.8	96.2	155.9	264.1	45.9	nd
0841u	50.5	nd	nd	12.2	5.3	8.8	5.0	nd	nd	nd	nd	4.9	nd	5.4	10.8	nd	14.9	nd
0851u	222.7	nd	nd	24.2	nd	15.1	9.8	nd	nd	nd	nd	31.4	3.1	48.5	99.0	nd	8.4	nd
09111	6.5	nd	14	0.6	23	0.8	0.8	33	0.5	2.6	03	2.0	17.8	2.9	77	nd	11	nd
0931u	367.9	7.5	nd	9.1	nd	7.8	6.4	7.5	3.6	24.0	nd	14.7	5.2	6.6	13.3	20.6	nd	nd
0941u	151.3	10.2	nd	4.1	8.7	6.7	3.2	3.8	2.5	40.1	1.4	9.9	5.7	30.4	35.1	5.8	3.2	nd
0951u	330.5	44.2	6.1	6.2	nd	8.2	nd	nd	4.7	nd	nd	13.2	26.5	18.6	52.3	49.4	7.4	nd
0971u	60.4	nd	nd	2.0	nd	2.9	1.6	2.1	1.7	2.1	nd	7.1	3.3	1.6	3.5	nd	1.7	1.0
1011u	276.0	nd	nd	5.2	nd	6.3	4.6	nd	3.6	4.5	2.2	10.9	12.8	29.8	41.5	9.1	2.1	3.7
1041u	200.1	nd	2.6	1.7	3.8	3.5	1.4	1.7	2.3	2.3	1.8	14.9	6.8	12.9	38.7	0.7	4.9	nd
1111n	50.8	2.7	14.1	3.6	6.0	60	3.0	14	61	63	2.4	12.6	62	10.7	39.8	34	2.8	nd
1141u	11.8	nd	5.0	2.3	3.2	1.9	1.8	4.3	2.1	1.8	1.7	5.6	2.2	5.1	12.2	nd	4.4	3.7
1151u	501.7	20.3	3.6	3.3	16.3	15.5	11.5	nd	4.3	4.9	nd	33.0	22.0	26.4	65.2	58.1	nd	1.7
1211u	113.1	nd	nd	2.9	nd	nd	nd	4.1	4.3	nd	2.4	9.4	5.2	18.4	26.6	nd	3.1	nd
1241a	39.9	nd	nd	6.4	4.7	9.6	3.6	nd	2.1	47.3	2.3	7.6	8.3	7.6	10.3	nd	4.2	nd
1241b	205.9	4.0	nd	5.3	9.4	7.2	1.8	1.3	1.9	3.0	11.0	33.8	16.5	30.1	42.4	nd	5.2	7.4
1251u	375.4	21.2	2.8	6.4	98.1	44.2	3.4	2.5	3.8	4.1	nd	8.5	20.0	37.7	70.4	nd	6.7	nd
1271u	79.1	8.3	1.4	nd	nd	2.2	1.6	nd	2.5	nd	nd	3.7	1.5	3.3	9.8	0.8	1.5	nd
13110	nd	nd	nd	09	nd	nd	nd	12	1.8	2.1	07	7.8	28.0	27.9	61.5	13.9	10.9	nd
1341u	12.8	nd	6.9	4.4	15.6	3.1	0.7	3.1	2.4	2.0	2.7	4.6	3.4	3.8	13.9	2.5	3.2	nd
1351u	92.3	11.9	nd	nd	nd	nd	nd	nd	9.2	nd	nd	10.3	22.5	34.9	73.8	3.5	nd	nd
14110	59.3	nd	nd	nd	nd	2.7	5.5	2.0	3.6	3.8	nd	1.6	nd	6.0	5.4	21.6	7.3	6.5
1441u	23.7	nd	nd	1.2	41.8	nd	2.5	1.3	2.2	nd	1.3	5.3	2.3	12.7	15.5	nd	10.5	nd
1471u	41.9	5.0	nd	4.7	nd	4.6	nd	nd	9.7	5.2	nd	24.7	9.1	17.9	51.9	10.5	6.8	nd

 Tabla AIII.3

 Concentración de PCBs en Patella piperata (ng.kg⁻¹ peso seco)

0211a nd 569 188 nd nd <t< th=""><th>Código</th><th>18</th><th>31</th><th>44</th><th>52</th><th>54</th><th>87</th><th>101</th><th>118</th><th>121</th><th>129</th><th>137</th><th>138</th><th>143</th><th>153</th><th>154</th><th>159</th><th>170</th><th>180</th><th>182</th><th>185</th><th>187</th><th>199</th></t<>	Código	18	31	44	52	54	87	101	118	121	129	137	138	143	153	154	159	170	180	182	185	187	199
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0211a	nd	569	188	nd	400	nd	111	181	nd	77	156	122	nd	83	nd	nd	nd	38	nd	nd	nd	nd
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0211b	nd	1007	461	nd	nd	nd	nd	nd	5230	257	380	108	nd	509	nd	nd	nd	nd	nd	nd	nd	nd
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	02319	330	64	97	nd	165	nd	109	32	nd	20	216	nd	nd	80	nd	nd	nd	44	46	nd	nd	nd
1016 1103 2306 2956 nd nd 714 710 nd 1935 nd nd 710 nd 1935 nd 1130 114 nd 114 nd 114 nd 114 nd 1135 83 1135 83 1135 83 1135 83 1135 83 1135 83 1135 83 1135 83 1135 83 1135 83 1135 83 1135 83 1135 83 1135 1135 1136 113 1135 1135 1136 113 1135 1135 1135 113 113 1135 1135 1135 1136 113 1135 1135 1136 113 1135 1135 1135 1136 1136 1136 1136 1136 1136 1136 1136 1136 1136 1136 1136 1136 1136 1136 1136 1136 1136 1136	0231h	nd	317	66	nd	nd	nd	nd	180	nd	112	80	30	nd	43	nd	nd	45	nd	nd	10	nd	nd
102510 536 7779 688 718 716 135 83 2017 1303 nd 42 127 nd	02210	1465	1102	2206	2056	nd	676	nd	207	nd	742	501	770	nd	1025	nd	nd	4J 562	1059	050	114	nd	407
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	02510	536	770	685	215	nd	223	186	100	nd	83	176	135	83	2017	1303	nd	42	62	54	nd	nd	nd
103 1400 252 1371 2375 2284 138 302 79 nd 187 180 nd nd 110 nd	02111	553	nd	1001	nd	nd	nd	222	200	03	160	140	05	nd	2017	2/3	nd	45	147	75	nd	nd	30
$ \begin{array}{c} 0.0311}{0} & 9.2 \\ 0.0311 & $	03310	400	2522	1371	2375	2284	138	302	70	nd	150	164	nd	471	/100	110	nd	nd	147	3/1	134	nd	116
03110 022 nd 01 nd nd <th< td=""><td>0341a</td><td>582</td><td>nd</td><td>/13</td><td>2375</td><td>nd</td><td>nd</td><td>122</td><td>106</td><td>nd</td><td>187</td><td>150</td><td>nd</td><td>nd</td><td>1000</td><td>nd</td><td>nd</td><td>nd</td><td>70</td><td>50</td><td>nd</td><td>nd</td><td>nd</td></th<>	0341a	582	nd	/13	2375	nd	nd	122	106	nd	187	150	nd	nd	1000	nd	nd	nd	70	50	nd	nd	nd
	03/11	02	nd	101	nd	nd	nd	nd	nd	nd	87	55	nd	nd	181	nd	nd	nd	20	nd	nd	nd	nd
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0/110	1455	1377	374	224	237	nd	470	201	nd	110	106	203	nd	305	nd	nd	53	68	nd	nd	57	nd
Obtain 0451in543 543165 143141 171231 	04310	475	1346	154	95	nd	nd	111	60	nd	60	174	02	nd	106	nd	nd	51	50	33	nd	nd	nd
Institu Provide Ind Ind <th< td=""><td>04411</td><td>5/8</td><td>1161</td><td>341</td><td>221</td><td>nd</td><td>nd</td><td>00</td><td>nd</td><td>nd</td><td>57</td><td>00</td><td>80</td><td>nd</td><td>200</td><td>80</td><td>nd</td><td>41</td><td>71</td><td>39</td><td>nd</td><td>nd</td><td>nd</td></th<>	04411	5/8	1161	341	221	nd	nd	00	nd	nd	57	00	80	nd	200	80	nd	41	71	39	nd	nd	nd
	04410	920 920	1400	707	nd	nd	140	240	172	nd	201	414	122	nd	457	100	62	115	120	50	nd	nd	nd
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	05110	027	231	1532	nd	nd	273	370	nd	nd	414	264	247	nd	592	215	nd	nd	227	165	nd	nd	nd
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	05410	281	714	104	nd	nd	nd	210	05	nd	04	204	124	nd	225	nd	nd	66	04	55	nd	nd	nd
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	06110	1088	615	132	82	430	nd	202	90	nd	244	67	05	nd	105	nd	nd	31	30	nd	nd	20	nd
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0621	202	1252	94	nd	430 nd	75	202	47	nd	141	204	70	nd	242	112	nd	24	19	26	nd	nd	nd
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	06410	222	170	297	nd	nd	607	63	nd	nd	nd	110	22	nd	67	nd	nd	nd	nd	15	nd	nd	nd
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	07111	nd	nd	207	nd	nd	nd	nd	70	nd	42	127	51	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	07311	170	nd	261	nd	nd	nd	104	nd	nd	210	03	nd	nd	nd	nd	nd	nd	20	nd	nd	nd	nd
$ \begin{array}{c} 0711h \\ 0721h \\ 0721h \\ 0720 \\ 1112 \\ 1257 \\ 1224 \\ 374 \\ 172 \\ $	07410	nd	nd	421	nd	nd	142	117	nd	nd	146	126	60	nd	122	170	nd	12	29	05	nd	nd	nd
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	07411	220	111	421	256	nd	142	nd	60	nd	140	120	02	nd	122 50	1/9	nd	45	32	27	nd	nd	nd
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	07710	1257	424	274	172	nd	nd	154	247	nd	122	175	120	nd	207	nd	nd	55	51	47	nd	nd	nd
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0//10	1237 nd	424 nd	120	172 nd	nd	nd	121	125	nd	152	500	102	nd	207	nd	nd	20	40	47	nd	nd	nd
Obsin 1057 1065 na	0921.	1501	1695	nd	nd	nd	nd	nd	nd	nd	569	477	nd	nd	nd	105	17	nd	nd	nd	nd	nd	nd
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	08.510	222	1085 nd	505	222	nd	nd	110	nd	nd	208	4//	05	nd	24	195	4 / nd	nd	71	nd	nd	72	nd
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0251.	420	226	700	nd	nd	126	nd	nd	nd	225	210	nd	nd	102	nd	nd	nd	nd	200	nd	nd	nd
INIM FUN FUN <td>00510</td> <td>420</td> <td>1706</td> <td>722</td> <td>144</td> <td>642</td> <td>150</td> <td>nd</td> <td>50</td> <td>202</td> <td>109</td> <td>210</td> <td>65</td> <td>nd</td> <td>198</td> <td>nd</td> <td>nd</td> <td>~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~</td> <td>50</td> <td>209 nd</td> <td>nd</td> <td>£ 1</td> <td>46</td>	00510	420	1706	722	144	642	150	nd	50	202	109	210	65	nd	198	nd	nd	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	50	209 nd	nd	£ 1	46
0911u 3532 181 99 nd	00111	2552	1.01	00	nd	001	12	07	0	nd	nd	145	01 01	nd	210	nd	nd	22	40	50	20	nd	nd
09310 3967 na	09110	2067	101 nd	214	nd	991 nd	45 nd	nd	190	nd	776	140	102	nd	210	nd	nd	125	49	nd	20	nd	nd
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	09510	3907	1.0	214	nd	nd	nd	nd	189	nd	//0	115	105	nd	78	202	16	155 nd	01 nd	nd	52 nd	nd	nd
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0051	nd	nd	(02	nd	nd	2754	nd	nd	nd	170	n/ 051	49 nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
$ \begin{array}{c} (b) n & (x_1) & na & (y_1) & (x_1) & (y_1) & ($	09510	251	nd	092	nd	nd	2754 nd	nd	07	nd	170 nd	854	<i>c</i> 0	nd	50	nd	20	nd	24	nd	nd	20	nd
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	10111	nd	1400	122	nd	404	nd	160	172	nd	124	120	106	nd	nd	01	10	12	nd	nd	nd	nd	nd
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10110	125	1400	132	nd	404 nd	nd	100	(2)	nd	124	120	100 nd	nd	50	o1 nd	235 nd	42 nd	nd	nd	nd	nd	nd
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11111	226	101	147	102	505	nd	120	nd	nd	106	57	60	41	nd	200	nd	nd	nd	nd	nd	nd	nd
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1111u 1141	520	07	147	102 nd	595 nd	nd	150 nd	nd	nd	100 51	70	22	41 nd	00	209 nd	nd	27	nd	nd	nd	nd	nd
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11510	370	nd	478	nd	nd	nd	nd	66	nd	222	160	nd	nd	1301	174	30	nd	52	37	nd	nd	50
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1211	nd	110	121	nd	nd	nd	nd	nd	nd	nd	109	nd	nd	65	nd	nd	nd	nd	nd	nd	nd	nd
1241a nd	12110	nd	215	121	nd	nd	nd	nd	nd	nd	65	121	nd	nd	05 nd	nd	nd	26	nd	nd	nd	nd	nd
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12419	nd	210	nd	nd	nd	nd	nd	nd	nd	42	40	25	nd	nd	nd	nd	nd	16	nd	nd	nd	nd
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12410	150	400	490	nd	nd	nd	210	71	27	42	49	104	nd	402	102	nd	41	27	25	nd	nd	nd
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12710	762	127	45	nd	404	nd	20	nd	21	70	26	21	nd	nd	26	nd	nd	16	11	nd	nd	nd
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12/10 1211:	1522	nd	202	nd	404 nd	nd	29	54	22	70	1620	40	nd	110	20 nd	nd	nd	27	20	nd	nd	nd
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	13/10	222	nd	266	nd	74	61	77	12	16	nd	41	83	21	174	44	7	0	10	0	10	nd	nd
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1341u 1251	691	nd	200	nd	nd	nd	2216	241	nd	502	41	o5 nd	nd	1/4	44 519	'nd	9 02	nd	nd	nd	nd	nd
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	14110	4672	nd	287	nd	6/3	nd	nd	51	nd	202	00	37	37	72	222	nd	nd	nd	nd	nd	nd	nd
14411 2015 156 156 16 16 16 16 25 42 57 16 52 155 200 252 22 16 16 16 16 16 16 16 16 16 16 16 16 16	1411u 1441s	2012	nd	159	nd	045 nd	nd	45	40	25	42	57	nd	27	152	200	252	22	nd	nd	nd	nd	nd
יום אין אין אין אין אין אין איז איז איז איז איז אווי אווי איז אווי אווי	1441u 1471a	2013	nd	138	nd	1241	nd	45 nd	40 nd	25 nd	42	51	nd	54 nd	100	200 nd	232 nd	22 nd	56	nd	26	nd	nd
17/111 77/9 114 5/11 114 114 114 114 115 887 114 366 114 114 114 114 114 114 114 114 114 1	14710	7770	nd	6/1	nd	nd	nd	nd	255	887	nd	366	nd	nd	nd	300	nd	nd	nd	nd	nd	268	nd

 Tabla AIII.4

 Concentración de n-alcanos en Patella candei crenata (ng.g⁻¹ peso seco)

Código	C ₁₄	C ₁₅	C ₁₆	C ₁₇	C ₁₈	C ₁₉	C ₂₀	C ₂₁	C ₂₂	C ₂₃	C ₂₄	C ₂₅	C ₂₆	C ₂₇	C ₂₈	C ₂₉	C ₃₀	Pr	Fi
0113u	47.1	1597.1	99.2	2163.4	12.9	9.4	2.2	67.0	5.6	37.3	112.3	366.5	617.9	800.6	704.7	647.8	109.4	nd	31.8
0133u	28.5	1080.0	105.2	1646.1	16.3	12.2	nd	16.4	7.8	23.6	41.1	172.0	296.9	786.3	351.3	357.8	154.5	4.6	14.0
0213u	55.2	2410.6	142.4	4271.7	31.3	44.0	nd	47.9	10.0	79.3	92.0	205.4	239.1	274.3	267.3	268.2	122.8	10.5	168.6
0223u	35.6	2679.5	160.8	4085.9	17.7	23.0	nd	35.8	1.3	8.9	13.4	47.6	46.0	90.9	70.2	151.0	nd	1.5	68.6
0313u	60.9	1621.5	110.2	1947.1	24.0	20.3	4.2	31.9	12.2	37.5	30.0	124.7	198.5	643.0	251.2	322.3	80.2	12.4	nd
0323u	150.8	1495.6	257.3	5157.9	195.0	272.1	174.5	271.2	184.6	275.4	307.9	522.9	725.1	764.7	969.8	1084.9	734.8	120.8	56.6
0333u	122.1	1402.5	247.6	2947.7	224.2	276.2	180.7	339.1	183.9	262.2	281.3	468.1	598.6	729.2	779.1	999.9	935.8	117.3	25.8
0353u	82.1	592.2	71.3	957.9	15.1	8.6	3.8	106.3	9.7	23.4	18.0	55.7	51.5	210.2	105.7	127.4	131.7	5.8	45.4
0413u	68.5	946.3	104.7	1605.9	25.5	79.5	nd	63.8	24.5	81.0	97.8	342.4	513.2	1261.3	717.1	706.5	603.0	15.6	7.9
0453a	53.3	2931.5	174.4	7107.4	32.6	32.5	nd	81.2	11.5	45.4	68.5	300.9	452.7	609.1	594.2	768.9	251.7	9.3	109.1
0453b	35.6	1412.8	77.8	1708.3	10.9	6.1	nd	64.7	21.2	95.8	343.4	978.6	1718.8	2003.8	2207.3	2113.1	1579.5	8.3	29.0
0553u	58.0	3077.7	173.9	3756.9	27.1	34.8	3.7	39.0	11.0	27.8	45.0	167.3	275.0	272.8	302.3	329.1	185.1	4.5	107.9
0613u	30.1	893.6	54.5	1586.7	8.3	17.5	nd	9.8	2.0	20.6	23.8	97.2	134.2	150.4	137.2	161.3	74.3	12.4	4.5
0653a	69.3	4048.7	176.1	2528.3	33.2	29.3	nd	38.0	11.0	32.6	26.8	118.0	42.8	115.1	148.8	137.8	67.0	25.8	119.8
0653b	21.0	1865.9	89.8	1434.8	10.7	8.0	nd	8.4	1.5	30.1	118.9	407.3	796.2	948.9	982.6	831.6	521.5	4.0	26.8
0683u	47.1	1999.4	103.7	1596.4	11.4	16.4	nd	26.3	8.2	39.8	133.2	413.7	736.9	816.5	900.9	656.9	462.2	9.3	67.8
0713u	26.8	1368.3	78.9	2988.5	60.0	20.4	nd	28.1	4.3	24.1	29.8	127.7	198.8	213.6	225.8	222.2	96.2	3.3	116.2
0753u	33.4	2773.8	114.4	2642.5	11.8	15.4	nd	12.8	6.2	16.4	31.2	107.0	160.6	174.0	196.7	213.9	63.2	5.6	44.6
0773u	98.7	840.1	88.4	1649.5	22.4	13.4	9.0	68.4	11.5	105.1	35.6	373.9	203.6	559.0	622.5	606.3	491.0	10.3	46.5
0813u	52.1	1955.5	141.3	5751.5	23.1	25.1	6.7	87.6	6.4	32.1	20.3	151.5	100.8	321.5	273.7	379.2	36.0	3.2	5.8
0853u	76.8	715.4	185.6	1736.8	21.4	24.8	nd	52.5	7.7	27.7	nd	66.9	nd	117.5	25.7	120.7	72.2	13.2	160.2
0913u	20.3	873.1	70.9	1522.7	104.3	38.5	nd	12.2	nd	17.5	4.6	35.8	3.5	nd	nd	47.2	3.8	9.3	nd
1013u	62.5	2633.7	119.0	4588.7	26.5	47.0	nd	24.1	nd	40.1	nd	67.0	8.2	176.8	29.5	104.8	31.5	11.6	nd
1053u	93.1	2340.4	158.0	6374.1	24.3	59.5	nd	83.0	nd	35.9	nd	10.9	nd	176.2	nd	66.6	nd	19.1	nd
1113u	63.5	1189.5	153.5	4695.7	37.5	25.1	nd	153.0	5.8	26.5	nd	16.7	nd	63.1	nd	77.3	nd	6.1	93.2
1153u	89.7	2409.6	110.8	2315.5	26.5	42.6	nd	106.8	9.0	70.2	nd	18.1	nd	28.7	nd	58.7	nd	26.2	166.9
1213u	46.3	652.6	68.1	1666.2	23.4	45.3	9.6	39.2	nd	32.8	13.8	152.9	86.5	289.0	327.4	318.4	144.8	28.3	393.8
1253u	77.3	2896.5	138.7	4296.9	63.9	99.8	20.5	51.3	5.6	37.3	nd	84.6	nd	546.0	36.8	196.2	108.9	43.6	56.9
1273u	32.2	1957.2	71.6	1878.5	12.8	22.2	6.4	32.7	2.7	38.1	10.9	73.0	12.8	67.6	13.3	73.6	7.1	16.4	98.7
1313u	35.3	1117.1	79.1	2583.9	93.4	90.6	10.7	50.1	8.6	29.0	15.6	109.9	76.7	298.0	194.4	159.3	31.0	15.5	nd
1343u	149.0	1794.4	195.2	2206.1	102.9	151.0	36.4	102.5	24.4	131.8	284.9	1294.5	2565.9	2738.3	2770.4	2406.6	1912.4	100.7	79.3
1353u	86.3	3332.0	156.7	1789.8	62.1	65.7	22.6	76.8	19.6	51.3	68.0	327.5	351.2	592.0	712.8	610.5	537.8	48.9	19.2
1413a	29.9	1140.1	79.0	2386.9	39.1	46.1	11.8	25.1	6.9	16.9	10.3	51.1	15.4	167.2	50.8	81.9	2.8	19.5	88.6
1413b	49.3	1821.4	111.4	3806.2	40.2	63.2	22.1	70.6	14.5	52.1	60.9	282.5	575.0	608.4	688.3	626.6	215.1	25.2	180.7
1473a	46.4	2735.1	72.8	1045.7	27.8	39.5	31.0	27.4	23.8	19.4	41.6	110.5	149.7	199.2	208.6	208.2	178.0	25.6	48.8
1473b	38.1	938.4	172.8	1920.6	40.7	49.6	30.7	54.9	13.3	56.7	162.3	571.2	1069.9	1137.8	1093.1	836.8	268.1	27.8	115.4

Tabla AIII.5	
Concentración de PAHs en <i>Patella candei crenata (ng.g⁻¹ peso seco)</i>)

Código	A1	A2	A3	A4	A5	A6	A7	A8	A9	A10	A11	A12	A13	A14	A15	A16	A17	A18
0113u	8.8	nd	2.6	3.5	nd	6.7	3.9	nd	2.3	1.7	nd	73.2	28.4	44.5	55.9	nd	5.5	1.6
0133u	26.0	nd	nd	2.6	nd	6.2	nd	1.8	3.4	1.6	nd	4.1	nd	1.0	5.0	1.9	2.1	0.6
0213u	65.1	8.5	nd	4.6	nd	nd	nd	18.4	15.3	8.4	7.1	10.5	20.4	15.7	42.0	10.8	4.1	1.2
0313u	22.2	nd	nd	13.7	7.1	8.0	3.4	nd	4.4	nd	nd	5.0	1.4	4.1	7.2	nd	1.7	nd
0333u	32.7	nd	nd	7.9	nd	27.2	11.7	5.0	24.5	25.9	26.5	39.2	18.1	4.9	56.9	nd	nd	nd
0353u	12.6	nd	nd	12.1	4.7	6.5	2.2	1.5	7.1	2.1	2.6	16.1	27.2	13.8	26.3	103.3	19.9	7.5
0413u	31.3	nd	nd	9.6	16.8	19.6	6.4	nd	nd	nd	nd	16.9	10.8	7.6	21.9	30.4	nd	nd
0453a	66.4	nd	5.9	5.0	31.3	20.7	4.2	nd	4.8	15.7	5.7	23.5	46.1	70.2	108.7	217.0	4.3	nd
0453b	26.4	27.9	nd	4.7	2.9	10.2	3.2	3.2	2.8	2.3	14.5	48.0	73.6	20.1	44.6	55.8	3.5	nd
0553u	10.0	nd	2.6	4.4	16.7	18.6	5.9	2.5	2.5	3.8	16.7	34.6	39.3	63.0	94.1	18.1	8.3	2.3
0613u	14.3	nd	nd	3.4	nd	13.0	5.3	1.8	6.6	2.9	1.9	6.0	3.1	1.4	5.1	3.9	nd	nd
0653a	57.2	nd	nd	9.5	nd	14.5	5.8	nd	5.4	nd	6.9	6.1	6.7	16.0	24.0	nd	2.8	nd
0653b	nd	nd	nd	nd	nd	nd	5.9	nd	nd	nd	nd	10.1	12.4	nd	2.1	10.7	nd	3.9
0713u	52.9	nd	nd	2.2	nd	2.5	1.2	nd	1.6	1.3	1.5	4.5	5.2	5.7	17.3	14.8	4.9	1.3
0753u	16.4	nd	nd	3.1	nd	5.0	2.1	1.7	2.4	3.3	4.7	3.4	5.4	8.1	13.3	2.5	2.3	nd
0773u	47.8	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	7.2	nd	3.8	10.5	nd	nd	nd
0813u	12.1	nd	nd	nd	nd	5.1	nd	3.4	3.2	nd	nd	8.8	3.4	7.7	19.9	nd	2.9	nd
0853u	166.1	nd	nd	10.0	10.6	7.9	4.5	2.1	3.6	12.4	nd	105.5	31.1	23.9	36.5	58.9	2.4	nd
0913u	21.2	nd	nd	3.8	nd	8.3	4.7	6.0	nd	3.8	1.9	4.9	7.3	5.0	8.5	2.9	1.5	nd
1013u	481.6	1.9	nd	3.5	nd	11.4	3.7	2.9	1.9	4.1	4.0	8.3	4.7	3.6	11.2	nd	6.9	3.7
1053u	366.4	nd	nd	nd	nd	6.7	nd	2.6	nd	nd	3.8	7.0	8.1	10.9	24.1	nd	nd	nd
1113u	224.7	26.0	3.7	4.1	5.8	8.9	6.9	nd	5.3	2.2	7.9	41.6	36.2	37.7	79.5	91.0	4.5	nd
1153u	346.8	nd	nd	7.8	5.0	8.1	3.5	2.3	5.0	5.3	nd	11.4	11.0	17.6	54.5	nd	10.2	8.6
1213u	438.2	14.2	nd	4.0	6.5	6.5	4.4	4.4	6.4	6.0	2.1	3.1	12.2	4.5	8.7	58.3	nd	3.1
1253u	387.8	nd	9.3	6.6	19.5	11.1	2.5	4.5	2.5	5.8	nd	5.3	32.1	4.8	10.8	3.9	nd	0.9
1273u	69.7	nd	2.0	nd	1.1	1.4	1.3	nd	3.7	3.7	3.4	3.6	8.2	10.5	27.4	4.3	3.6	nd
1313u	25.6	nd	nd	nd	nd	2.5	nd	nd	1.7	nd	1.1	3.0	3.5	4.0	27.7	2.7	1.9	nd
1343u	205.5	nd	nd	nd	nd	nd	13.2	nd	nd	nd	nd	27.0	4.5	13.9	29.5	56.7	nd	nd
1353u	49.8	24.6	9.8	nd	nd	nd	3.9	nd	4.6	nd	nd	8.0	5.9	11.7	20.8	21.8	nd	nd
1413a	31.3	1.1	0.7	0.6	1.9	1.7	2.6	1.5	2.0	2.8	1.3	6.9	12.0	16.7	38.7	8.2	0.7	nd
1413b	28.8	2.8	nd	nd	6.9	5.8	4.9	nd	4.3	8.3	nd	190.6	188.8	24.3	59.3	58.6	nd	nd
1473a	65.8	nd	5.8	nd	nd	1.5	6.4	3.8	2.0	8.9	1.7	3.9	16.7	29.6	48.3	2.0	1.3	nd
1473b	nd	nd	nd	nd	8.3	5.5	nd	1.5	5.2	17.2	5.6	20.4	13.0	13.6	43.4	93.1	3.1	nd

Código	18	31	44	52	54	87	101	118	121	129	137	138	143	153	154	159	170	180	182	185	187	199
0113u	nd	429.2	nd	nd	nd	nd	nd	252.4	nd	78.4	88.0	nd	nd	nd	51.3	nd	29.2	nd	nd	20.3	nd	nd
0133u	187.6	916.6	90.8	nd	nd	nd	nd	350.4	64.4	248.4	99.9	54.4	nd	55.1	nd	nd	47.3	nd	nd	30.0	27.5	nd
0213u	1272.4	nd	545.0	nd	nd	nd	272.3	110.2	nd	125.2	242.4	106.4	nd	272.2	nd	nd	nd	83.8	nd	nd	91.6	nd
0313u	863.7	250.1	281.3	237.8	nd	nd	91.8	219.9	nd	47.6	4186.3	98.5	nd	nd	228.7	nd	nd	192.7	116.0	nd	nd	50.1
0333u	18033.0	3703.1	711.0	659.6	nd	190.5	413.0	337.8	nd	1082.6	191.8	142.7	157.2	26756.1	nd	nd	122.3	388.1	nd	nd	nd	nd
0353u	nd	nd	178.0	nd	nd	nd	nd	nd	nd	97.5	86.8	nd	nd	178.7	41.8	nd	27.2	107.5	64.2	nd	nd	nd
0413u	1290.1	1971.4	172.9	430.7	nd	129.8	406.3	176.6	nd	462.1	129.7	204.4	nd	516.3	nd	nd	112.8	99.2	98.1	nd	nd	nd
0453a	309.6	nd	222.9	nd	nd	nd	186.2	nd	nd	81.5	92.8	nd	nd	nd	nd	nd	nd	39.1	31.1	nd	nd	nd
0453b	284.6	804.5	243.2	105.1	nd	nd	110.4	63.7	161.1	55.0	83.5	73.9	nd	42.9	55.6	nd	40.2	25.5	33.6	nd	nd	nd
0553u	375.8	105.1	225.3	nd	nd	118.9	258.2	101.6	nd	70.4	85.6	nd	nd	221.6	nd	nd	nd	182.2	125.0	nd	nd	nd
0653a	513.2	2824.8	204.1	nd	nd	82.1	414.5	333.4	nd	127.8	143.5	173.4	nd	763.9	485.7	nd	86.7	108.8	74.0	nd	nd	nd
0653b	109.3	nd	102.5	nd	nd	nd	nd	nd	nd	69.5	78.3	nd	nd	100.1	79.0	nd	nd	33.6	23.7	nd	nd	nd
0713u	nd	134.6	nd	nd	154.8	nd	90.5	45.5	nd	15.7	33.4	28.5	nd	83.7	nd	nd	nd	22.2	15.0	nd	nd	nd
0753u	166.4	616.7	58.9	nd	1307.2	nd	212.3	34.6	54.7	26.3	56.0	61.9	nd	38.8	37.3	nd	56.0	36.2	31.4	nd	nd	26.1
0773u	nd	475.8	259.8	nd	nd	139.0	445.5	259.5	nd	1347.5	146.0	nd	nd	112.7	124.3	nd	224.4	nd	nd	nd	nd	nd
0813u	nd	502.5	162.5	149.6	435.3	71.0	125.4	200.5	nd	100.6	154.3	106.3	nd	133.9	362.6	37.2	64.1	59.9	nd	37.9	nd	nd
0853u	907.5	586.9	438.5	nd	nd	nd	nd	133.6	nd	200.5	132.2	nd	nd	nd	nd	nd	61.3	44.0	nd	nd	nd	nd
0913u	477.1	157.1	142.4	nd	nd	nd	nd	nd	nd	nd	99.3	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
1013u	244.2	716.3	162.2	68.3	nd	398.6	128.1	67.3	25.6	379.6	54.6	54.1	nd	151.0	nd	nd	54.3	19.6	21.3	nd	nd	nd
1053u	604.3	707.5	88.9	nd	725.7	nd	nd	nd	nd	167.9	144.9	60.0	nd	nd	nd	nd	54.9	40.4	35.3	nd	nd	nd
1113u	329.1	nd	295.1	nd	nd	217.2	nd	nd	41.6	260.2	40.3	nd	nd	101.8	nd	100.2	nd	nd	nd	nd	nd	nd
1153u	573.1	106.9	217.4	99.7	nd	44.9	nd	45.3	38.8	81.4	131.7	nd	nd	75.9	nd	25.6	32.5	22.2	nd	nd	nd	nd
1213u	1397.1	245.6	216.5	nd	897.5	43.0	71.0	1134.5	33.8	91.6	75.1	59.2	nd	56.3	202.1	85.3	29.5	nd	nd	65.0	nd	nd
1253u	780.7	1030.2	247.8	95.2	nd	nd	702.2	87.6	nd	650.4	215.7	82.3	nd	132.2	nd	nd	39.9	38.2	47.6	nd	nd	nd
1273u	1763.7	nd	73.1	nd	417.7	21.6	31.6	67.2	71.9	56.5	36.1	nd	34.6	109.9	289.5	8.8	nd	nd	nd	nd	nd	nd
1313u	604.6	108.6	331.3	175.0	nd	nd	nd	nd	nd	37.1	90.0	40.8	nd	99.4	nd	35.9	nd	23.2	nd	nd	nd	nd
1343u	928.6	nd	764.5	nd	nd	nd	nd	nd	nd	149.1	258.6	nd	nd	nd	nd	72.6	nd	nd	nd	nd	nd	nd
1353u	399.2	184.4	413.5	nd	nd	86.0	nd	186.3	nd	143.1	182.8	100.8	152.7	562.4	1104.7	nd	nd	47.4	135.7	nd	nd	nd
1413a	936.0	nd	87.4	58.8	192.6	nd	33.2	24.4	nd	nd	27.7	nd	nd	44.5	18.7	nd	nd	21.4	11.9	nd	nd	nd
1413b	350.0	nd	735.0	nd	643.1	nd	nd	nd	nd	120.3	98.5	nd	512.8	53.0	nd	nd	37.4	25.8	nd	nd	nd	nd
1473a	943.2	nd	154.8	nd	nd	nd	nd	nd	nd	nd	127.1	nd	nd	nd	42.4	nd	nd	28.9	40.6	nd	nd	nd
1473b	8753.4	112.2	216.8	nd	408.0	nd	60.2	43.7	nd	141.7	834.7	nd	nd	118.8	355.3	nd	42.3	23.3	nd	nd	nd	nd

 Tabla AIII.6

 Concentración de PCBs en Patella candei crenata (ng.kg⁻¹ peso seco)

 Tabla AIII.7

 Concentración de n-alcanos en Patella ulyssiponensis aspera (ng.g⁻¹ peso seco)

Código	C14	C15	C16	C17	C18	C19	C20	C21	C2	C23	C24	C25	C26	C27	C28	C29	C30	Pr	Fi
01129	14.6	373 7	30.7	1066.6	5.8	5 5	nd	132.0	0.7	10.0	31.0	118.2	2147	247.2	271.1	273.1	88.8	25	28.5
0112a	57.8	1820.8	154.0	53/1 3	31.4	30.7	12.1	nd	16.4	18.5	1/15 1	500.6	877.1	007 1	1003.6	8/30	136.0	2.5	15.6
01320	26.5	696.5	51.5	1/30 /	81	97	nd	216.0	4.6	10.5	17.5	50 7	107.6	158.3	1/13 7	164.4	102.4	5.2	nd
02120	17.4	1500.6	125.5	2085.2	22.1	22.6	nd	205.0	4.0 8.0	10.0	20.4	67.0	41.0	410.0	126.0	118.0	102.4	15.9	nd
02124	47.4	1222.4	110.0	2016.0	10.5	16.0	nd	203.0	0.9	20.0	20.4	54.1	41.0	410.9	74.0	102.6	0.2	15.6	50.1
02126	39.3	1222.4	119.8	2816.8	18.5	10.8	na	521.9	7.9 nd	20.9	22.5	54.1	45.5	120.5	74.0	103.6	8.5	/.5	59.1
02120	39.9	1048.0	137.0	2575.2	24.9	18.8	72.2	339.0	70.1	21.7	125.5	124.4	219.5	248.6	230.1	201.9	25.1	11.4	88.8
0312a	37.0	292.9	114.4	3575.2	/0.8	98.7	13.2	107.0	/0.1	95.7	125.5	190.2	232.9	248.0	323.8	279.9	139.0	29.2	5.4
03126	/1.5	832.3	103.0	2/31.6	25.1	21.6	10.9	60.8	14.0	38.5	58.1	1/5.0	278.9	518.9	3/0.1	3/8.8	60.0	14.7	62.3
0332a	58.6	1219.0	129.8	2466.3	33.9	31.7	na	20.5	11.8	46.1	25.3	140.9	88.9	3/3.9	254.8	258.4	180.2	35.3	na 047
03320	50.5	1008.8	108.5	2315.2	21.9	24.3	na	107.1	5.4	17.7	9.5	38.0	9.4	1(1.2	18.0	202.0	14.1	15.1	84.7
03520	62.9	1508.8	159.0	3891.7	30.7	33.3	22	412.0	12.5	20.1	20.4	83.7	/1.1	101.2	208.7	222.7	111.5	11.0	80.2
03520	33.1 75.4	284.8	52.8	1055.4	10.0	14.4	2.5	19.2	11.5	518.1	82.0	315.5	017.9	820.9	899.3	941.1	814.4	11./	9.8
04520	/5.4	1222.0	1/3.3	1950.5	33.9	38.0	na	529.5	17.5	/4.1	12.4	205.8	455.8	1015.9	5/1.1	044.7	415.2	29.4	154 1
04520	84.1	1840.8	102.0	2000.7	40.2	42.0	na	47.1	17.8	48.8	118.5	440.8	838.3	1003.8	1090.3	1249.4	/04.0	34.0	154.1
05520	30.8	1004.2	102.0	2900.7	18.2	30.8	20.0	24.2	12.2	128.0	223.5	/00.4	1200.2	1331.9	1344.2	1107.8	0/4.2	9.5	пи
0552a	33.5	2596.6	218.1	4320.1	74.4	/0.4	20.9	34.2	29.0	128.9	200.0	954.5	1838.1	2019.2	2819.2	2857.9	2408.3	/1.4	22.7
05520	05.0	2380.0	190.5	2214.4	27.5	22.1	na	13.1	11.4	23.5	44.2	104.9	2/4.1	575.2	5/9.1	401.7	219.0	23.5	23.7
06120	24.4	739.1	/3.4	2214.4	12.5	20.2	na	202 (0.8	34.0	02.4	1022.2	38/./	2591.1	1021.0	510.0	1208.4	10.7	50.2
06520	51.8	091.2	09.9	2388.0	24.5	21.8	na	302.0	30.1	48.2	230.5	1022.3	1088.9	2381.1	1921.9	1591.8	1328.4	8.5	40.1
06520	54.7	981.5	107.1	2001.1	24.5	31.0	nu	19.4	<i>nu</i>	41.1	0/.1	280.8	505.6	5/4.4	009.2	000.3	379.8	34.0	127.2
0712u	42.5	2336.8	188.8	7232.9	23.1	34.0	na	27.3	3.9	20.0	14.0	57.2	23.0	108.4	104.4	107.7	na	4.6	68.0
0732a	45.0	637.8	96.8	1943.6	23.1	24.9	na	251.7	na	40.0	99.4	351.3	636.1	1120.3	827.8	115.1	519.1	16.0	114.9
07326	32.0	840.8	128.4	2893.2	43.8	37.2	12.3	8.5	8.2	38.7	27.8	104.7	128.6	175.5	139.3	153.2	50.9	22.5	4.4
0752u	41.1	2167.7	176.9	8026.1	25.0	36.2	na	221.1	5.8	22.3	26.0	114.5	94.9	157.6	186.6	199.6	105.2	9.8	144.8
0812a	189.4	1385.9	269.7	5831.2	66.6	89.1	na	na	20.7	74.6	32.7	278.7	103.4	332.8	595.8	430.2	41.2	58.4	199.4
08126	50.8	830.2	132.0	4624.0	18.3	17.4	2.8	na	na	20.2	7.2	66.6	27.4	109.3	114.3	131.0	na 242 5	4.6	68.0
0832u	182.9	2246.2	308.3	8127.7	67.1	95.6	na	37.4	6.3	55.3	14.0	257.6	29.5	2019.4	585.7	522.0	342.5	58.5	265.7
0852u	108.3	513.1	1/2.5	1014.4	26.6	28.7	na	38.4	na	27.1	na	27.0	na	/05.2	20.3	160.2	138.7	30.6	188.8
0932u	82.4	1059.4	148.6	1949.6	32.0	31.1	na	105.5	na	21.9	na	4.2	na	60.1	na	69.0	4.9	23.4	87.5
1012u	61.8	1442.1	137.9	4384.4	20.8	39.8	na	195.5	<i>na</i>	31.6	na	61.1	na	125.0	56.6	166.3	32.5	15.6	129.6
1042u	41.5	1123.9	95.5	2754.0	16.8	24.5	177	116.7	4./	19.5	na	39.2	72.0	56.8	9.6	11.5	<i>na</i>	4.6	68.0
1052u	2.2	37.5	52.9	2262.1	25.1	21.5	1/./	2/3./	10.7	39.6	8.5 nd	3.9	/5.8	49.2	67.9	50.4	8.1 nd	na	(8.0
1112u	82.4	2251.7	118.3	3195.9	13.4	47.9	na	40.1	9.4	31.1	na	48.8	na	18.8	na	68.1	10	4.6	68.0
1142u	69.2 54.9	1944.4	140.9	4037.1	20.5	37.2	na	195.0	8.5	21.7	na	11.9	na	02.4	na	07.0	4.8	21.9	105.5
1152u	54.8 75.2	004.7	83.7	1339.7	12.5	44.0	na	19.2	<i>nu</i>	24.9	107.9	2.5	251.2	45.8	127.9	39.1	na	4.0	68.0
11/2u	15.5	1191.5	89.9	2319.2	25.7	33.8	nu	40.4	8.2	24.7	497.8	100 =	251.5	48.0	127.8	60.9	nu	4.0	68.0
1212a	41.3	1034.5	111.3	2241.4	21.8	33.8	14.8	110.0	9.6	30.8	24.9	132.5	111.4	252.3	299.9	260.9	61.5	17.1	19.0
12126	21.2	549.4	63.8	1021.8	14.7	22.4	1.2	134.2	5.4	15.6	11.1	48.1	30.1	88.2	93.2	105.4	14	4.6	68.0
1242u	30.5	663.5	65.9	1137.0	12.1	10.0	na	3.8	na 17.0	21.9	na	5.4	na	36.7	na	46.1	1.4	6.2	124.4
1252a	120.9	4435.6	266.3	1131.3	52.9	/4.6	21.4	315.5	17.8	45.4	na 25.2	/5.4	na (1 7	102.6	na	148.1	87.5	28.3	134.4
12526	82.0	3/30./	1/8.9	5455.0	21.7	44.7	na	63.1	30.6	22.1	25.3	152.6	61.7	199.5	102 4	162.3	35.4	7.2	61.3
1272a	21.1	440.1	45.5	488.8	21.9	21.2	9.7	27.6	/.8	25.0	17.4	/8.0	/8.5	144.9	182.4	157.9	89.1	26.1	10.7
12/20	55.9	3160.2	145.8	4298.6	23.2	34.5	8.8	55.1	6.4	32.6	46.6	222.9	424.4	431.0	422.9	445.5	51.1	10.7	15.5
1312u	16.0	398.9	44.8	1428.9	6.8	1/.1	2.9	129.5	2.2	15.0	12.9	59.4	56.6	103.0	96.7	/4.2	25.1	4.6	68.0
1342u	16.8	135.1	46.2	1569.5	1.1	14.4	4.1	6.2	2.0	15.5	22.2	97.9	180.3	220.9	185.6	139.3	25.1	5.0	28.1
1352u	30.3	955.7	96.5	3899.0	11.6	25.6	5.8	20.3	3.9	15.7	3.6	57.1	20.4	43.0	6.7	48.5	5.5	8.4	60.9
15/2u 1412c	40.7	10/1.5	/1.0	3823.7	49.6	48.7	/.1	22.0	5.9	30.9	9.1	05.8	20.4	150.6	55.2 150 /	89.6	51.8	15.5	10.3
1412a	39.7	685.4	82.6	1655./	35.2	40.5	10.2	149.2	8.0	23.0	1/.4	84.1	44.8	124.6	150.4	11/.1	13.5	30.1	13.2
1412b	29.6	624.8 1200.0	15.2	1558.5	27.0	39.8	15.5	268.1	4.4	19.9	20.6	158.1	158.4	276.9	337.0	305.4	68.5	22.1	01.2
1442a	29.7	1200.9	68.6	1057.8	14.8	22.0	1.5	80.2	5.1	8.6	0.0	38.0	18.9	84.0	29.0	12.5	9.5	9.6	51.4
1442b	21.5	603.0	44.2	939.5	11.5	16.0	5.5	5.1	2.9	41.5	17.9	90.0	100.8	168.9	186.8	150.4	45.1	10.5	0.0
14/2a	20.4	432.9	38.1	1418.3	12.7	20.5	/.8	98.9	4.4	21.1	53.0	254.2	456.8	452.2	427.9	290.0	131.0	10.5	30.5
1472b	51.9	666.7	95.0	2337.7	35.9	58.0	15.6	139.8	15.0	39.3	63.9	298.3	611.9	567.5	639.7	491.6	302.2	30.5	nd
1472u	21.4	233.6	130.2	1142.4	21.0	20.0	13.1	29.8	9.2	39.7	140.6	483.9	915.5	960.2	871.2	610.0	269.3	12.7	nd

Código	A1	A2	A3	A4	A5	A6	A7	A8	A9	A10	A11	A12	A13	A14	A15	A16	A17	A18
0110	7.0	0.6	nd	17	1.2	2.2	1.5	0.6	1.0	nd	0.7	2.0	2.2	5 4	7.0	nd	2.4	2.4
0112a	1.2	8.6	nu	1.7	1.5	2.5	1.5	0.6	1.2	nd	0.7	2.0	3.2	5.4	7.8	nu	2.4	2.4
0112b	21.2	2.9	3.6	3.7	3.9	7.7	4.3	3.4	7.8	па	2.1	69.4	7.5	1.4	14.9	4.3	0.8	na
0212a	9.1	na	na	4.8	na	9.1	4.3	2.6	3.5	2.1	па	2.6	9.2	13.2	33.9	1.9	6.1	na
0212h	9.2	na	na	48	33	10.7	43	2.6	2.2	69	56.4	37.6	40.9	54 3	71.0	247 6	3.0	452.0
0212c	34.1	na	na	4.7	na	7.9	4.6	na	5.4	2.6	na	5.5	12.0	15.3	21.4	na	3.0	3.0
0312a	13.0	16.1	nd	5.2	nd	6.2	3.3	4.1	12.4	29.9	5.3	3.5	2.1	4.4	11.5	nd	1.0	nd
0312h	175	45 5	73	17.0	34	88	36	nd	39	nd	2.4	41	64	10.4	264	32.9	18	nd
0612u	28.6	10.6	nd	2.9	6.1	21.2	13.4	3.6	16.5	17.7	1.4	15.4	8.7	3.7	5.3	nd	0.6	nd
0712u	27.1	nd	nd	36	93	10.5	66	2.9	2.5	2.8	nd	4.0	50	75	19.8	37	2.4	13
0812a	nd	nd	nd	nd	nd	9.4	nd	nd	nd	nd	nd	11.5	5.0	nd	5.8	nd	nd	nd
0812h	38.4	nd	nd	nd	nd	11.2	43	34	4 5	84	nd	14	2.0	33	1.0	15	1.2	nd
1012u	282.6	2.2	nd	3.3	nd	5.0	3.6	2.1	3.1	13.7	3.6	5.1	14.0	18.7	55.9	nd	6.7	5.6
1112n	433 7	22.4	36	75	78	11.2	71	58	27.2	69	36.9	317.2	91.8	15.6	60.2	12.0	88	nd
1212a	32.4	nd	nd	nd	nd	nd	nd	nd	3.1	7.7	nd	3.1	1.3	nd	15.5	nd	1.7	nd
1212h	97	nd	2.3	nd	nd	nd	nd	nd	2.5	nd	nd	2.7	04	nd	1.0	nd	nd	nd
1312u	27.6	0.9	1.5	nd	1.7	5.1	2.4	1.7	1.7	8.5	7.5	1.0	13.5	13.8	30.1	nd	0.2	0.4
1412a	31.3	2.1	4.6	nd	nd	nd	6.3	3.8	4.5	3.3	2.5	5.8	4.7	10.8	33.9	20.0	1.2	nd
1412h	22.5	nd	nd	nd	nd	nd	3.0	13	18	17	14	3.6	16.0	17 5	27.1	27.7	3.8	nd
0132u	14.2	11.4	1.0	2.3	1.0	3.5	1.9	2.2	1.6	6.2	13.8	11.4	17.3	21.9	24.8	16.2	1.1	nd
0332a	68.5	14.8	nd	29.8	12.0	18.2	10.7	64	21.2	10.9	10.9	22.0	16.6	3.9	31.0	12.7	81	nd
0332h	2.8	nd	nd	51	79	10.3	54	31	2.8	2.5	2.0	56	63	68	174	nd	3.0	nd
0332c	12.1	21.3	nd	59	4.8	9.0	nd	nd	3.0	67	45.6	35.3	30.3	37.5	50.3	13.2	4.0	nd
043211	45.6	nd	nd	nd	nd	22.0	nd	nd	nd	nd	nd	93	27	77	27.2	nd	nd	nd
05320	37	nd	10.5	12	26	5.4	27	4.1	nd	9.4	2.0	5.0	63	11.7	28.9	nd	0.8	4.6
063211	13.1	nd	23	39	83	80	61	33	3.0	14.0	26.6	21.2	32.8	40.9	67.6	nd	12.0	6.8
07320	37.5	nd	nd	nd	nd	18.0	0.5	nd	nd	nd	nd	nd	0.8	12.5	33.6	nd	3.5	nd
0732h	20.0	nd	nd	73	14.2	17.2	97	25	83	23	1.8	13.4	32	2.2	15.1	nd	22	nd
08320	nd	12.4	nd	nd	nd	nd	22.5	12.0	86.3	nd	nd	nd	2.0	nd	80	74	5.2	nd
00220	72.7	42.4 nd	nd	4.0	20.2	11.1	6.2	2.1	4.4	20	2.2	1.9	2.0	2.2	7.2	1.1	nd	nd
10420	212.5	2.1	2.4	22	nd	4.0	22	25	20	24	0.0	27	66	20	427	42.1	nd	nd
1042u	212.5	2.1 nd	2.4	2.5	0.1	7.0	2.5	5.5	2.0	2.4	4.9	10.4	10.0	0.0	42.7	45.1	2.0	nd
12420	40.1	nd	0.4	4.4	5.4	62	15	12	10	147	1 2	2.1	20	16	4.0	40	1.4	1 1
1242u	40.1	nd	9.4	4.4 nd	5.4 nd	0.2	1.5	4.5	1.0	14.7 nd	1.2	5.1	2.0	7.5	4.0	4.0	1.4	1.1 nd
14420	20.4	60	nd	nd	nd	nd	16	22	1.0	nd	1.0	26	62	12.2	22.0	10.5	17	0.4
1442a	39.4	10.9	nd	1.2	5.0	0.1	1.0	2.5 nd	1.0	0.0	1.0 nd	3.0	0.5	12.5	25.0	19.5	1.7	0.4 nd
1072-	227	225	nd	nd	nd	91	2.0	nd	רר	24.0	2 6	22 6	27	22	18.1	12.2	10	nd
1272a	33.7	8.9 nd	12.7	nd	nd	1.0 nd	2.9 nd	1.0	0.7	54.9	3.0	52.0	3.7	3.3	9.4	12.2	0.8	2.1
1472-	20.2	nd	nd	nd	nd	nd	20	10	10	×4	2.0	22	52	0.1	20.9	10	14	nd
1472a	59.2	7.0	20	nd	nd	nd	2.0 nd	1.8 nd	1.0	5.7	5.0	2.5	5.5	8.1	20.8	1.0	2.1	nd
1472n	17.9	10	2.9	1.1	2.2	27	27	1.5	4 1	26.0	2.1	0.4	0.1	0.2	12.1	11 1	10	17
1472u	17.7	1.8	2.4	1.1	2.2	2.7	2.7	1.5	8.8	30.8	2.5	9.4	8.1	9.3	32.2	98.2 nd	1.2	1./
0352u	21.6	16.5	6.8	10.7	39.2	21.1	4.9	3.1	5.1	2.0	2.2	6.4	0.6	1.7	10.9	<i>nu</i>	2.2	nu
04520	86.5	na	85	137	25.1	21.6	6.8	37 8	83	19.1	49	12.4	61	70	21.7	na	61	13
0552a	106.9	7.6	21.4	па	36.6	50.3	12.3	4.7	14.8	па	па	37.6	9.4	13.8	69.9	<i>na</i>	23.3	na
0552h	22.9	na	na	29.3	79	12.0	88	83	8 1	59	34	59	2.6	14	8.2	na	32	na
0652u	122.7	na	na	39.0	33.7	27.6	7.9	na	7.3	na	na	17.4	3.9	3.7	17.0	na	3.4	na
075211	267	nd	nd	33	52	179	nd	2.9	57	18.1	39	163	41	17 8	34.6	nd	28.2	12.5
0852u	108.8	na	na	14.9	25.9	16.4	6.1	na	4.4	4.4	na	2.8	1.6	3.1	12.4	7.5	2.0	na
105211	11.8	nd	nd	nd	nd	nd	nd	5.2	4 1	2.4	nd	10.7	39	0.9	10.2	159	2.9	nd
1152u	428.5	59.8	na	na	na	14.1	6.0	41.6	27.6	201.8	3.4	10.9	17.1	na	8.1	na	13.4	10.4
1252a	112.9	81	nd	nd	4 2	57	39	2.1	2.7	70	58	153	76	12.4	27.4	18.8	nd	nd
1252b	183.4	nd	nd	13.9	21.7	14.2	3.9	25.7	4.3	nd	1.5	5.9	5.3	1.7	6.8	2.9	1.1	2.1
1352u	18.1	nd	6.2	nd	nd	3.5	1.4	2.0	4.0	nd	1.6	2.1	5.5	5.7	28.6	37.9	nd	nd

 Tabla AIII.8

 Concentración de PAHs en Patella ulyssiponenis aspera (ng.g⁻¹ peso seco)

 Tabla AIII.9

 Concentración de PCBs en Patella ulyssiponensis aspera (ng.kg 1 peso seco)

Código	18	31	44	52	54	87	101	118	121	129	137	138	143	153	154	159	170	180	182	185	187	199
0112a	76.5	180.2	24.6	nd	nd	nd	20.9	nd	65.4	29.1	28.8	21.5	nd	18.9	62.9	nd	nd	19.9	12.1	nd	nd	nd
0112b	265.9	342.5	69.9	nd	nd	nd	45.9	nd	140.5	nd	54.4	79.0	nd	51.2	nd	nd	192.1	108.3	37.3	nd	nd	152.3
0132u	270.9	247.8	nd	57.9	77.0	27.1	231.0	nd	132.5	41.4	207.7	38.5	nd	30.0	nd	nd	29.4	50.9	32.2	nd	nd	nd
0212a	170.4	410.0	88.0	nd	nd	nd	239.9	87.1	115.3	40.9	91.7	80.0	nd	31.8	151.3	nd	nd	31.0	nd	nd	nd	nd
0212b	nd	344.3	nd	nd	nd	nd	70.5	68.8	180.6	31.1	117.3	49.0	nd	84.0	nd	nd	70.1	42.2	19.5	nd	nd	45.3
0212c	nd	789.1	129.7	nd	nd	nd	114.8	135.4	nd	273.8	105.9	59.3	nd	nd	nd	nd	81.5	69.7	nd	nd	37.9	nd
0312a	20421.9	533.6	95.6	223.0	nd	66.3	88.1	119.8	nd	264.9	810.6	193.1	nd	486.3	97.8	nd	95.3	315.6	229.7	nd	nd	60.3
0312b	428.8	505.6	119.1	149.9	nd	49.8	177.2	49.3	nd	95.8	95.5	118.1	nd	240.7	nd	nd	91.1	167.6	85.6	19.7	nd	38.4
0332a	356.9	1036.2	nd	316.3	nd	569.7	181.3	86.9	355.9	76.4	183.5	110.4	233.3	4956.1	nd	nd	69.5	149.8	41.2	nd	nd	nd
0332b	nd	192.1	nd	nd	nd	nd	88.2	nd	140.4	nd	59.1	39.5	nd	326.7	nd	nd	nd	24.2	21.1	nd	nd	nd
0332c	229.6	422.1	78.8	197.4	215.8	77.8	708.7	65.7	285.8	101.8	108.4	138.0	nd	89.7	153.4	nd	75.6	120.5	93.6	nd	nd	nd
0352u	nd	nd	58.3	nd	nd	nd	nd	nd	127.4	127.3	119.9	65.2	nd	92.0	nd	nd	51.8	78.3	36.7	nd	nd	nd
0432u	1501.1	2778.0	178.1	292.3	549.1	143.1	196.9	641.7	nd	1447.2	nd	nd	nd	165.4	332.4	nd	199.2	199.3	nd	79.4	nd	nd
0452u	1377.7	977.6	365.1	343.8	509.0	1284.5	219.5	257.1	466.0	147.3	320.3	142.9	nd	427.7	204.3	nd	80.6	121.5	145.3	nd	nd	nd
0532u	182.6	nd	60.3	nd	nd	772.7	nd	100.0	185.5	83.5	54.0	nd	nd	nd	nd	nd	35.8	23.6	nd	12.1	nd	nd
0552a	1516.9	1749.1	203.6	nd	nd	nd	nd	1328.8	223.6	816.0	209.1	180.7	nd	154.9	nd	nd	313.2	164.0	111.1	116.2	nd	nd
0552b	1173.8	1430.1	144.4	147.5	658.0	nd	177.4	100.3	320.8	316.5	1064.2	152.7	nd	339.8	nd	nd	119.5	141.7	75.8	nd	nd	nd
0612u	808.3	564.9	68.1	nd	nd	nd	nd	1195.9	107.7	47.0	127.2	37.8	nd	50.6	nd	nd	nd	nd	19.7	69.2	nd	nd
0632u	466.8	552.3	92.9	117.4	2383.7	53.6	301.9	44.5	320.9	71.8	66.7	76.3	nd	219.2	240.4	nd	40.0	42.5	nd	20.5	23.2	nd
0652u	685.2	2973.2	393.6	nd	540.8	nd	nd	nd	1322.5	140.7	397.8	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
0712u	378.1	nd	86.6	nd	307.7	nd	nd	nd	95.8	42.2	81.9	nd	nd	98.4	nd	nd	nd	21.5	nd	nd	nd	nd
0732a	583.6	1355.8	229.5	nd	364.8	nd	nd	136.1	nd	354.9	191.9	nd	nd	289.2	242.0	nd	90.8	nd	nd	nd	nd	nd
0732b	1969.3	1144.7	104.0	nd	nd	nd	74.9	nd	311.2	336.8	143.7	48.3	nd	70.9	nd	nd	nd	31.9	nd	nd	nd	nd
0752u	267.0	1742.5	152.3	nd	380.0	nd	1208.6	108.4	nd	191.7	141.4	132.8	nd	543.2	304.2	nd	nd	60.6	42.4	nd	nd	nd
0812a	645.6	415.6	325.4	nd	nd	nd	nd	nd	239.1	nd	344.4	nd	nd	141.6	312.1	nd						
0812b	151.6	301.6	106.1	nd	nd	nd	91.4	6975.3	206.0	73.0	394.0	73.8	nd	188.2	nd	nd	49.3	nd	37.7	319.8	nd	nd
0832u	4228.1	5335.3	247.1	310.0	429.6	nd	nd	372.0	684.8	238.5	217.8	92.7	771.5	146.7	505.9	nd	197.2	72.7	nd	nd	nd	nd
0852u	396.5	nd	nd	177.1	491.6	nd	nd	nd	144.5	143.5	221.7	103.4	nd	188.7	nd	nd	165.8	82.4	nd	nd	nd	71.3
0932u	198.3	1071.1	105.9	110.8	nd	nd	79.0	54.6	416.7	147.0	180.7	nd	nd	76.6	nd	24.1	nd	nd	nd	nd	nd	nd
1012u	359.5	nd	nd	nd	758.3	48.9	90.1	48.2	350.7	84.0	124.1	nd	nd	54.7	385.5	19.6	28.4	28.8	21.1	nd	nd	nd
1042u	274.4	204.5	78.0	62.9	nd	32.2	110.5	nd	200.3	151.1	217.9	92.3	nd	28.4	127.4	nd	164.0	92.3	nd	13.6	86.3	121.1
1052u	nd	68.0	429.9	125.8	nd	45.9	119.3	38.3	nd	nd	26418.1	nd	68.0	nd	79.0	nd	nd	nd	59.2	nd	nd	nd
1112u	642.7	nd	198.4	nd	736.1	nd	90.4	88.5	83.5	96.2	107.7	49.7	50.0	49.3	219.0	nd	nd	nd	83.8	nd	nd	nd
1142u	1868.8	149.0	53.0	nd	nd	nd	nd	nd	nd	98.6	89.6	30.8	nd	49.3	119.8	73.7	25.4	nd	nd	nd	nd	nd
1152u	2681.8	728.3	200.2	105.2	664.1	nd	179.2	308.6	227.3	84.4	94.3	78.6	nd	146.1	nd	nd	50.3	nd	29.7	33.1	nd	nd
1172u	330.9	102.5	118.3	160.1	874.0	131.4	197.0	nd	191.5	148.7	160.5	77.1	184.5	390.7	963.6	31.8	59.5	nd	nd	nd	nd	nd
1212a	1146.7	nd	219.5	nd	239.3	nd	nd	nd	275.2	435.8	56.7	nd	nd	nd	273.9	nd						
1212b	1031.6	nd	61.1	nd	362.1	nd	51.9	49.7	149.7	48.2	17.8	33.2	nd	55.8	nd	nd	nd	12.2	nd	nd	nd	nd
1242u	81.5	383.0	nd	63.1	101.6	nd	nd	33.2	123.4	16.1	70.0	19.3	nd	39.7	nd							
1252a	nd	nd	172.5	nd	nd	nd	166.0	nd	160.8	108.8	539.4	72.4	nd	48.8	98.4	347.5	nd	nd	nd	nd	nd	nd
1252b	119.7	351.7	42.9	69.4	nd	nd	73.4	nd	188.2	84.2	471.3	40.8	nd	nd	nd	12.8	nd	21.9	nd	nd	23.7	nd
1272a	454.8	nd	137.2	87.7	331.4	160.8	64.2	nd	193.0	47.7	78.4	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	27.8
1272b	1462.7	nd	150.8	nd	nd	36.8	nd	nd	nd	48.6	66.3	29.5	nd	58.0	297.0	13.0	nd	nd	nd	nd	nd	nd
1312u	665.3	nd	50.8	27.3	171.9	nd	66.4	14.2	62.2	20.5	554.4	nd	nd	95.4	55.9	nd	nd	12.0	11.6	nd	nd	nd
1342u	2264.5	31.1	102.3	40.0	nd	114.7	nd	nd	21.0	14.7	61.4	17.2	nd	32.1	19.0	nd	nd	6.9	8.0	nd	nd	nd
1352u	491.9	nd	133.2	nd	211.7	27.5	48.6	281.6	101.7	30.8	56.8	33.2	nd	83.0	122.3	nd	31.1	nd	19.8	16.2	nd	nd
1372u	2797.2	61.7	260.8	nd	480.9	nd	82.5	53.8	nd	269.5	58.6	26.0	nd	nd	215.9	nd	15.5	13.8	26.2	nd	nd	nd
1412a	3465.6	53.2	623.8	nd	nd	684.5	nd	nd	37.4	53.0	7439.6	nd	nd	36.1	nd	nd	nd	20.5	nd	nd	19.2	nd
1412b	338.6	nd	202.3	nd	nd	nd	65.6	44.2	33.8	48.0	117.5	nd	nd	24.2	189.7	nd	nd	nd	nd	nd	24.1	18.1
1442a	753.4	nd	133.1	nd	nd	43.0	nd	nd	158.7	68.5	124.2	39.0	nd	241.4	515.0	17.0	23.2	nd	nd	95.5	nd	nd
1442b	311.5	nd	53.0	nd	nd	nd	nd	nd	164.8	34.9	46.5	24.6	nd	nd	nd	nd	nd	nd	nd	nd	40.2	nd
1472a	280.9	nd	75.5	nd	nd	nd	nd	nd	152.6	26.0	68.3	nd	nd	nd	26.1	nd	31.0	13.9	nd	nd	27.1	16.3
1472b	1071.8	nd	233.6	nd	385.6	nd	nd	nd	313.9	nd	126.3	nd	nd	nd	242.8	nd	60.3	nd	nd	nd	114.6	nd
1472u	6292.4	68.3	224.5	nd	nd	nd	48.3	37.7	173.2	127.8	66.3	nd	nd	nd	28.4	nd	30.5	nd	nd	9.8	nd	nd

Bibliografía

Orden de Aparición en el Texto:

- 1 Tanabe S. y Tatsukawa R., in *Organic Contaminants In The Environment*, Jones K.C. (ed.), Elsevier, Amsterdam, pp.285-288, 1991.
- 2 Schladot J.D., Stoeppler M. y Schwuger M.J., Sci. Tot. Environ., **139**, 27-36 (1993).
- 3 Phillips D.J.H., *Quantitative Aquatic Biological Indicators*, Applied Pu. Ltd., Londres, 1980.
- 4 Murray M.W. y Andren A.W., *Atmos. Environ.*, **26A**, 1097-1101 (1992).
- 5 Hermans J.H., Smedes F., Hofstraat J.W. y Cofino W.P., *Environ. Sci. Technol.*, **26**, 2028-2035, (1992).
- 6 Erikson, M.D., Anaylitical Chemistry of PCBs, Butterworth Publishers, London, p508, 1986.
- 7 Sijm D.T.H.M., Geinen W. y Opperhuizen A., *Environ. Sci. Technol.*, **26**, 2162-2174 (1992).
- 8 Pal D., Weber J.N. y Overcash M.R., Residue Rev., 74, 45 98 (1979).
- 9 Franzaring J., Bierl R. y Ruthsatz B., *Chemosphere*, **25**, 827-834 (1992).
- 10 Granby K. y Spliid N.H., Mar. Pollut. Bull., 30, 74-82 (1995).
- 11 Butler P.A., Andrén L., Bonde G.J., Jernelöv A. y Reish D.J., Monitoring Organisms. in, *FAO Technical Conference on Marine Pollution and its Effects on Living Resources and Fishing*, Rome, 1970, Suppl. 1. Report of the Seminar on Methods of Detection, 1971.
- 12 Haugh A., Melson S. y Omang S., Environ. Pollut., 7, 179-92 (1974).
- 13 Phillips D.J.H., Mar. Biol., 38, 71-80.
- 14 Phillips D.J.H., *Environ. Pollut.*, **13**, 281-317.
- 15 Duinker J.C., Knap A.H., Binkley K.C., Van Dam G.H., Darrel-Rew A. y Hillebrand M.T.J., *Mar. Pollut. Bull.*, **19**, 74-79 (1988).
- De Voogt P., Wells D.E., Reutergårdh L. y Brinkman U.A.Th., Intern. J. Environ. Anal. Chem., 40, 1-46 (1990).
- 17 Lang V., J. Chromatogr, **595**, 1-43 (1992).
- 18 Mäkelä M. y Pyy L., J. Chromatogr., 699, 49-57 (1995).
- 19 Wells D.E. y Echarri I., Anal. Chim. Acta, 286, 431-449 (1994).
- 20 Gribble G.W., J. Natural Products, 55, 1353 (1992).
- 21 Hoekstra E.J. y De Leer W.B., Chem. Brit., **31**, 127-131 (1995).
- 22 González M.J., Rev. Agroquím. Tecnol. Aliment., 25, 507-520 (1985).
- 23 Cairns T. y Siegmund E.G., Anal. Chem., 53, 1183-93 (1981).
- 24 Alford-Stevens A.L., Buddes W.L. y Bellar T.A., Anal. Chem., 57, 2452-2457 (1985).
- 25 Robbat A. Jr., Xyrafas G. y Marshall D., Anal. Chem., 60, 982-985 (1988).
- 26 Ballschmiter K. y Zell M., Fresenius' Z. Anal. Chem., 302, 20-31 (1980).
- 27 Al-Haddad A., Creaser C.S. y Homer R.B., *Analyst*, **114**, 1125-1127 (1989).
- 28 Larsen B., Bøwadt S. y Facchetti S., Intern. J. Environ. Anal. Chem., 47, 147-166 (1991).
- 29 Mullin M.D. y Pochini C.M., McCrindle S., Romkes M., Safe S.H. y Safe L.M., *Environ. Sci. Technol.*, **18**, 468-476 (1984).
- 30 Sutcliffe C.R., Gladney E.S., Seitz D.M. y Brooks G.H., Anal. Chem., 61, 2682-2686 (1989).
- 31 Alford-Stevens A.L., *Environ. Sci. Technol.*, **20**, 1194-1199 (1986).
- 32 Rastogi S.C., Bull. Environ. Contam. Toxicol., 48, 567-571 (1992).
- 33 Jensen S., New Sci., **32**, 612 (1966).
- 34 Strek H.J. y Weber J.B., *Environ. Pollut.*, **28**, 291-312 (1982).
- 35 Mudroch A., Onuska F.I. y Kalas L., Chemosphere, 18, 2141-2154 (1989).
- 36 Sanders G., Jones K.C., Hamilton-Taylor J. y Dörr H., *Environ. Sci. Technol.*, **26**, 1815-1821 (1992).
- 37 Kannan N., Tanabe S., Wakimoto T. y Tatsukawa R., J. Assoc. Off. Anal. Chem., 70, 451-454 (1987).
- 38 Bøwadt S. y Larsen B., J. High Resolut. Chromatogr., 15, 350-351 (1992).
- 39 Lindsey A.S. y Wagstaffe P.J., *Analyst*, **114**, 553-557 (1989)
- 40 Guidelines for Polychlorinated Biphenyls. An Lawrence Livermore National Laboratory (LLNL) Environmental Guidelines Document Guidelines for Polychlorinated Biphenyls...., http://WWW.llnl.gov/es_and_h/guidelines/pcb/ pcb.html (1996).
- 41 Hasan M.N. y Jurs P.C., Anal. Chem., 60, 978-982 (1988).
- 42 Facchetti S., Mass Spectrom. Rev., 12, 173-203 (1993).
- 43 Ivanov V. y Sandell E., *Environ. Sci. Technol.*, **26**, 2012-2017 (1992).
- 44 Larsen B., Bøwadt S. y Tilio R., Intern. J. Environ. Anal. Chem., 47, 47-68 (1991).
- 45 Dunn III W.J., Anal. Chem., 56, 1308-1313 (1984).

- 46 Fuoco R. y Colombini M.P., *Microchem. J.*, **51**, 106-121 (1995)
- 47 Risebrough R.W., Rieche P., Peakall D.B., Herman S.G. y Kirven M.N., *Nature*, **220**, 1098-1102 (1968).
- 48 Duinker J.C., Schultz D.E. y Petrick G., *Anal. Chem.*, **60**, 478-482 (1988).
- 49 Kelly A.G., Cruz I. y Wells D.E., Anal. Chim. Acta, **276**, 3-13 (1993).
- 50 Ballschmiter K., Ang. Chem., **31**, 487-515 (1992).
- 51 Zabik M.E., Harte J.B., Zabik M.J. y Dickmann G., *J. Agric. Food Chem.*, **40**, 1197-1203 (1992).
- 52 Law R.J., Allchin C.R. y Dixon A.G., Mar. Pollut. Bull., 22, 492-493 (1991).
- 53 Wells D.E., de Boer J., Tuinstra L.G.M.T., Reutergårdh L. y Griepink B., *Fresenius' Z. Anal. Chem.*, **332**, 591-597 (1988).
- 54 Haiber G. y Schöler H.F., *Chemosphere*, **28**, 1913-1919 (1994).
- 55 Supelco, Inc., Bellefonte, PA USA 16823-0048. Presented at the Pittsburgh Conference, New Orleans, Louisiana. (1995).
- 56 Hawari J., Demeter A. y Samson R., *Environ. Sci. Technol.*, 26, 2022-2027 (1992).
- 57 Lépine F., Milot S. y Vincent N., Bull. Environ. Contam. Toxicol., 48, 152-157 (1992).
- 58 Lépine F., Milot S. y Brochu F., Bull. Environ. Contam. Toxicol., 49, 514-519 (1992).
- 59 Waid J.S. 1986. PCBs and the Environment Volume II. CRC Press, Inc., Florida. 191 pp.
- 60 May H.D., Boyle A.W., Price II W.A. y Blake C.K., *App. Environ. Microbiol.*, **58**, 4051-4054 (1992).
- 61 Abramowiez D.A., Scient. Technol. Issues, 146, 42-46. (1994).
- 62 Harkness M.R., McDermott J.B., Abramowicz D.A., Salvo J.J., Flanagan W.P., Stephens M.L., Mondello F.J., May R.J., Lobos J.H., Caroll K.M., Brennan M.J., Bracco A.A., Fish K.M., Warner G.L., Wilson P.R., Dietrich D.K., Lin D.T., Morgan C.B. y Gately W.L., *Science*, 259, 503-507 (1993).
- 63 Nies L. y Vogel T.M., Appl. Environ. Microbiol., 2771-2774 (1991).
- 64 Van Dort H.M. y Bedard D.L., *Appl. Environ. Microbiol.*, **57**, 1576-1578 (1991).
- 65 Quensen III J.F., Tiedje J.M. y Boyd S.A., *Science*, **242**, 752-754 (1988).
- 66 Kiyohara C., Omura M., Hirohata T. y Masuda Y., *Bull. Environ. Contam. Toxicol.*, **48**, 877-883 (1992).
- 67 Häggberg L. y de Voogt P., *Chemosphere*, **27**, 271-278 (1993).
- 68 Bagheri H., Leonards P.E.G., Ghijsen R.T. y Brinkman U.A.Th, *Intern.J. Environ. Anal. Chem.*, **50**, 257-268 (1993).
- 69 García A.L., De Boer A.C. y De Jong A.P.J.M., *Environ. Sci. Technol*, **30**, 1032-1037 (1996).
- 70 Kocan A., Petrík J., Chovanková J. y Drobná B., J. Chromatog. A., 665, 139-153 (1994).
- 71 Pavoni B. y Sfriso A., Intern. J. Environ. Anal. Chem., 44, 11 20 (1990).
- 72 Harrison A.G., Onuska F.I. y Tsang C.W., Anal. Chem., 53, 1183-1186 (1981).
- 73 Durell G.S. y Sauer T.C., Anal. Chem., 62, 1867-1871 (1990).
- 74 Onusa F.I., Mudroch A. y Davies S., J. High Resolut. Chromatogr. & Chromatogr. Commun., 8, 747-754 (1985).
- 75 Stalling D.L., Schwartz, Dun III W.J. y Wold S., Anal. Chem., 59, 1853-1859 (1987).
- Duinker J.C., Hillebrand M.T.J., Palmork K.H. y Wilhelmsen S., *Bull. Envirom. Contam. Toxicol.*, 25, 956-964 (1980).
- 77 Spies R.B., Stegeman J.J., Rice D.W., Woodin Jr.B., Thomas P., Hose J.E., Cross J.N. y Prieto M.. in *Biomarkers of Environmental Contamination*, McCarthy J.F., y Shugart L.R. (eds.), Lewis Pu., USA, 1990, p. 87-122.
- 78 Duinker J.C., Schulz D.E. y Petrick G., *Chemosphere*, **23**, 1009-1028 (1991).
- 79 Hong C-S., Calambokidis J., Busj B., Steiger G.H. y Shaw S., *Environ. Sci. Technol.*, 30, 837-844 (1996).
- 80 Zebühr Y., Näf C., Bandh C., Broman D., Ishaq R. y Pettersen H., Chemosphere, 27, 1211-1219 (1993).
- 81 de Boer J., Dao Q.T., Wester P.G., Bøwadt S. y Brinkman U.A..Th., *Anal. Chim. Acta*, **300**, 155-165 (1995).
- 82 Draper W.M., Wijekoon D. y Stephens R.D., Chemosphere, 22, 147-163 (1991).
- 83 Lawruk T.S., Lachman C.E., Jourdan S.W., Fleeker J.R., Hayes M.C., Herzog DP y Rubio FM, *Environ. Sci. Technol.*, **30**, 695-700 (1996).
- 84 Marriot P.J., Carpenter P.D., Brady P.H., McCormick M.J., Griffiths A.J., Hatvani T.S.G. y Rasdell S.G., *J. Liquid. Chromatogr.*, **16**, 3229-3247 (1993).
- 85 Lee H-B, Peart T.E., Hong-You R.L. y Gere D.R., J. Chromatogr., 653, 83-91 (1993).
- 86 Canton L. y Grimalt J.O., J. Chromatogr., 607, 279-286 (1992).

- 87 Shchekaturina T.L., Khesina A.L., Mironov O.G. y Krivosheeva L.G., *Mar. Pollut. Bull.*, **30**, 38-40 (1995).
- 88 Tolosa I., Bayona J.M. y Albaigés J., *Environ. Sci. Technol.*, **30**, 2495-2503 (1996).
- 89 Fossato V.U., Nasci C., Dolci F., *Marine Environ. Res.*, **2**, 47-53 (1979).
- 90 Kiss G., Varga-Puchony Z. y Hlavay J., J. Chromatogr. A, 725, 261-272 (1996).
- 91 Gremm T.J. y Frimmel F.H., *Chromatographia*, **38**, 781-788 (1994).
- 92 Harrison R.M., Perry R. y Wellings R.A., *Water Res.*, 9, 331-346 (1975)
- 93 *ibidem, Environ.Sci.Technol.*, **10**, 1151-1156 (1976)
- 94 *ibidem, Environ.Sci.Technol.*, **10**, 1156-1160 (1976)
- 95 Green N.F. y Neff J.M., Arch. Hyg., **150**, 513-528 (1966)
- 96 Radding S.B., Mill T., Gould C.W., Liu D.H., Johnson H.L., Bomberger D.C. y Fojo C.V., EPA-560/5-75-009, 1976
- 97 Meineke Y. y Klamberg H., Fresenius'Z. Anal. Chem., 293, 201-204 (1978)
- 98 Gibson D.T., in Fate and Effects of Petroleum Hydrocarbons in Marine Organisms and Ecosystem, D.A. Wolfe (ed.), pp36-46, NY, Pergamon Press, 1977.
- 99 Ye D., Siddiqi M.A., Maccubbin A.E., Kumar S., Sikka H.C., *Environ. Sci. Technol.*, **30**, 136-142 (1996).
- 100 Cerniglia C.E., Dodge R.H. y Gibso D.T., Bot. Mar., 23, 121-124 (1980)
- 101 Jerina D.M., Yagi H., Lehr R.E., Thakker D.R., Schafer-Ridder M., Karle J.M., Levin W., Wood A.W., Chang R.L. y Conney A.H., in Polycyclic Hydrocarbons and Cancer, Gelboin H.V. (ed.), Academic, NY, 1978
- 102 Anderson R.S., EPA Ecol. Res. Ser, EPA-600/3-78-009, 1978
- 103 Stegeman J.J., Rapp. PV Reun. Cons.Int. Explor.Mer., 179, 33-38 (1980)
- 104 James M.O., Bowen E.R., Dansette P.M. y Bend J.R., Chem. Biol. Interact., 25, 321-
- 105 Pedersen M.G., Herschberger W.K., Zachariah P.K. y Juchau M.R., J. Fish. Res. Board Can., 33, 666-675 (1976)
- 106 Chambers J.E., Toxicol. Lett., 4, 227-230 (1979).
- 107 Escrivá C., Viana E., Moltó J.C., Picó Y. y Mañes J., J. Chromatogr., 676, 375-388 (1994).
- 108 Östman C. y Nilsson U., J. High Res. Chromatogr., 15, 745-750 (1992).
- 109 Anderson J.T. y Weis U., J. Chromatogr., 659, 151-161 (1994).
- 110 Bandh C., Ishaq R., Broman D., Näf C., Rönquist-Nii Y. y Zebühr Y., *Environ. Sci. Technol.*, **30**, 214-219 (1996).
- 111 Serrazanetti G.P., Conte L.S., Carpené E., Bergami C. y Fonda-Umani S., Chemosphere, 23, 925-938 (1991).
- 112 Méndez J., Anal. Chim. Acta, 283, 528-537 (1993).
- 113 Snedaker S.C., Glynn P.W., Rumbold D.G. y Corcoran E.F., Mar. Pollut. Bull., 30, 83-89 (1995).
- 114 Aboul-Kassim T.A.T. y Simoneit B.R.T., *Mar. Pollut. Bull.*, **30**, 63-73 (1995).
- 115 PelletierÉ., Ouellet S. y Pâquet M., *Mar. Pollut. Bull.*, **22**, 273-281 (1991).
- 116 Lipiatou E. y Saliot A., Mar. Pollut. Bull., 22, 297-304 (1991).
- 117 Lamparczyk H., Ochocka R.J., Gryzbowski J., Halkiewicz J. y Radecki A., *Mar. Pollut. Bull.*, **19**, 222-226 (1988).
- 118 Miller S.L., J. Exp. Mar. Biol. Ecol., 14, 99-156 (1974).
- 119 Branch G.M. y Marsh A.C., J. Exp. Mar. Biol. Ecol., 34, 111-130 (1978).
- 120 Little C. y Willians G.A., Morritt D., Perrins J.M., Stirling P., J. Exp. Mar. Biol. Ecol., **120**, 1-21 (1988).
- 121 Branch G.M., J. Anim. Ecol., 44, 575-600 (1975).
- 122 Lewis J.R. y Bowman R.S., J. Exp. Mar. Biol. Ecol., 17, 165-203 (1975).
- 123 Sánchez J.M.P. y Batet E.M., *Invertebrados Marinos de Canarias. Ediciones del Cabildo Insular de Gran Canaria*, Las Palmas de Gran Canaria, p.170, 1991.
- 124 Law R.J., Fileman T.W. y Portman J.E., *Aquatic Environment Protection: Analytical Methods n°2: Methods of Analysis of Hydrocarbons in Marine and other Samples,* Ministry of Agriculture, Fisheries and Food, Directorate of Fisheries Research. Lowestaf, 1988.
- 125 Fossato V.U., in *Metodologie Analitique per lo studio de ella Analitá dell'Ambiente Marino*, Capelli R. y col. (eds.), Conziglio Nazionale delle Ricerche, Genova, pp141-164, 1983.
- 126 Miller J.C., Miller J.N., Estadística para Química Analítica, 2ªed., Addison-Wesley Iberoamericana, Wilmington, Delaware, E.U.A. (1993).
- 127 Eichmann R., Neuling P., Ketseridis G., Hahn R., Jaenicki R. y Junge C., Atmos. Environ., 13, 587-599 (1969).
- 128 Safe S. (ed.), Environment Toxin Series I: PCBs: Mammalian and Environment Toxicology, Springer Verlag, Berlin, 1987.

- 129 Kimbourg R.D. y Jensen A.A. (eds.), *Halogenated Biphenyls, Terphenyls, Naphthalenes, Dibenzodioxins and Related Products,* Elsevier, Amsterdam, 2nd ed., 1989.
- 130 Kennicutt M.C., Sericano J.L., Wade T.L., Alcazar F. y Brooks J.M., Deep. Sea Res., 34, 403-424 (1987).
- 131 UNEP, *Determination of petroleum hydrocarbons in sediments*, Manual and Guides No. 20, Prepared by K.A. Burns, International Atomic Energy Agency, Mónaco, 1991.
- 132 National Academy of Science, *Oil in the Sea; Inputs, Fates and Effects,* National Academy of Science Press, Washington, 1985.
- 133 Stegeman J.J. y Teal J.M., Mar. Biol., 22, 37-44 (1973).
- 134 Gassman G., Mar. Pollut. Bull., 12, 78-84 (1981).
- 135 Gassman G., Mar. Pollut. Bull., 13, 309-315 (1982).
- 136 Gassman G. y Pocklington R., Environ. Sci. Technol., 18, 869-872 (1984).
- 137 Blumer M., Mulin M.M., y Thomas D.W., Science, 140-174 (1963).
- 138 Pruell R.J., Lake J.L., Davis W.R. y Quinn J.G., *Mar. Biol.*, **91**, 487-507 (1986).
- 139 Obana H., Hori S., Nakamura A y Kashimoto T., *Water Res.*, **17**, 1183-1187 (1983).
- 140 Porte C., Barceló D. y Albaigés J., J. Chromatogr., 442, 386-391 (1988).
- 141 Pastor M.D., Sánchez J., Barceló D. y Albaigés J., J. Chromatogr., 629, 329-337 (1993).
- 142 Cajaraville M.P., Recio A., Sáez V. y Marigómez J.A., *Tops. Mar. Biol. Scient. Mar.*, **53**, 745-748 (1989).
- 143 Storr-Hansen E., Intern. J. Environ. Anal. Chem., 43, 253-266 (1991).
- 144 Niimi A.J., Lee H.B. y Muir D.C.G., Chemosphere, **32**, 627-638 (1996).
- 145 Duinker J.C., Schulz D.E. y Petrick G., Anal. Chem., 69, 478-482 (1988).
- 146 Smith L., Schwartz T.R. y Feltz K., *Chemosphere*, **21**, 1063 (1990).
- 147 Colombo J.C., Khalil M.F., Arnac M., Horth A.C. y Catoggio J.A., *Environ. Sci. Technol.*, 24, 498-504 (1990).
- 148 Abramowitz R. y Yalkowsky S.H., Chemosphere, 21, 1221-1229 (1990).
- 149 Schulz-Bull D.E., Petrick G. y Duinker J.C., Mar. Chem., 36, 365-384 (1991).
- 150 Mason R.P., Mar. Pollut. Bull., 18, 528-533 (1987).
- 151 Bjorseth B. (ed.), *Handbook of Polycyclic Aromatic Hydrocarbons*, Marcel Dekker INC., NY, 1983.
- 152 Farrington J.W. and Meyers P.A., in *Environmental Chemistry Vol 1*, Englinton G. (ed.), The Royal Chemical Society, London, 1975.
- 153 Blumer M., Science, **156**, 390-391 (1967).
- 154 Peña E., Tesis de Doctorado, Universidad de La Laguna, 1996.
- 155 Hansch, C. y Leo, A., Substituent Constants for Correlation Analysis in Chemistry and Biology, Wiley, New York, 1979.
- 156 Grimalt, J. y Albaigés, J. Naturwissenschaften, 75, 39-42 (1988)
- 157 Elskus A.A., Stegeman J.J., Gooch J.W., Black D.E. y Pruell R.J., *Environ. Sci. Technol.*, 28, 401-407 (1994).
- 158 Daelemans F.F., Mehlum F., Lydersen C. y Schepens P.J.C., Chemosphere, 27, 429-437 (1993).
- 159 Sánchez J., Solé M. y Albaigés J., Intern. J. Environ. Anal. Chem., 50, 269-284 (1993).
- 160 Galassi S., Gosso E. y Tartari G., Chemosphere, 27, 2287-2293 (1993).
- 161 Champ M.A., Wolfe, D.A., Flemer D.A. y Mearns A.J., *Estuaries*, 10, 181-275 (1987)
- 162 Spellenberg I.F., *Monitoring Ecological Change*, Cambridge Univ. Press, NY, 1991.
- 163 NOAA.- Technical Memorandum NOAA OMA 38, 1987
- 164 Wade T.L., Atlas E.L., Broks J.M., Kennicutt M.C., Fox R.G., Sericano J., García-Romero B., De Freitas D., *Estuaries*, 11, 171-179 (1988).
- 165 Werner A.M., in *Marine Organisms as Indicators*, Soule D.M. y Kleppel G.S. (eds.), Springer-Verlag, NY, pp199-208, 1988.
- 166 Duewer D.L., Kowalski B.R., Schatz L.Z., Anal. Chem., 47, 1573-1583 (1975).
- 167 Clark H.A. y Jurs P.C., Anal. Chem., 51, 616-623 (1979).
- 168 Conde J.E., Peña E.M. y García Montelongo F., Intern. J. Environ. Anal. Chem., 62, 77-84 (1996).
- 169 Fisher M.T., Lee J. y Mara K., Analyst, 3, 1225-1229 (1986).
- 170 Smith S.J., Caudill S.P., Pirkle J.L. y Ashley D.L., Anal. Chem, 61, 1419-1425 (1991).
- 171 Statgraphics[®] V5. STSC, Inc., Rockville, Maryly, USA.
- 172 Statistica for Windows, Release 4.0-a, Statsoft, Inc. 1993.
- 173 Willett P., *Similarity and Clustering in Chemical Information System*, Research Studies Press, NY, 1987.
- 174 Massart D.L., Vandeginste B.G.M., Deming S.M., Michotte Y. y Kaufman, in *Chemometrics: a Textbook*, Elsevier, Amsterdam, 1983.

- 175 Kennicutt M.C., Wade T.L., Presley B.J., Requejo A.G., brooks J.M., y Denoux G.J., *Environ. Sci. Technol.* 28, 1-15, (1994).
- 176 Didyk B.M., Simoneit B.R.T., Brassell S.C. y Eglinton G., Nature, 272, 216-222 (1978).
- 177 ten Haven H.L., de Leeuw J.W., Rullkötter J. y Sinninghe-Damsté J.S., *Nature*, **330**, 641-643 (1987).
- 178 Powell T.G., *Nature*, **333**, 604 (1988).
- 179 ten Haven H.L. y Rullkötter J., *Nature*, **333**, 604 (1988).
- 180 Goossens H., de Leeuw J.W., Schenk P.A. y Brassell S.C., Nature, 312, 440-442 (1984).
- 181 Bufford M.D., Hawthorne S.B. y Miller D.J., Anal. Chem., 65, 1497-1505 (1993).
- 182 Youngblood W.W. y Blumer M., Mar. Biol., 21, 163-172 (1973).
- 183 Youngblood W.W., Blumer M., Guillard R.L. y Fiore F., Mar. Biol., 18, 190-201 (1971).
- 184 Hutzinger O., Safe S. y Zitko V., The Chemistry of PCBs, CRC Press, Cleveland, Ohio, 1974.
- 185 National Research Council of Canada, Institute for Marine Biosciences, Marine Analytical Chemistry Standards Program (1991).
- 186 Newton D.A. y Laski R.R., J. Chromatogr. Sci., 21, 161-165 (1983).
- 187 Spencer J.L., Hendricks J.P. y Kerr D., J. Chromatogr., 654, 143-149 (1993).
- 188 Dunn W.J., Stalling D.L., Schwartz T.R., Hogan J.W., Petty J.D., Johansson E. y Wold S., *Anal. Chem.*, **56**, 1308-1313 (1984).

Orden Alfabético:

- 114 Aboul-Kassim T.A.T. y Simoneit B.R.T., Mar. Pollut. Bull., 30, 63-73 (1995).
- 61 Abramowiez D.A., Scient. Technol. Issues, 146, 42-46. (1994).
- 148 Abramowitz R. y Yalkowsky S.H., Chemosphere, 21, 1221-1229 (1990).
- 24 Alford-Stevens A.L., Buddes W.L. y Bellar T.A., Anal. Chem., 57, 2452-2457 (1985).
- 31 Alford-Stevens A.L., Environ. Sci. Technol., 20, 1194-1199 (1986).
- 27 Al-Haddad A., Creaser C.S. y Homer R.B., Analyst, 114, 1125-1127 (1989).
- 109 Anderson J.T. y Weis U., J. Chromatogr., 659, 151-161 (1994).
- 102 Anderson R.S., EPA Ecol. Res. Ser, EPA-600/3-78-009, 1978
- 68 Bagheri H., Leonards P.E.G., Ghijsen R.T. y Brinkman U.A.Th, Intern.J. Environ. Anal. Chem., 50, 257-268 (1993).
- 26 Ballschmiter K. y Zell M., Fresenius' Z. Anal. Chem., 302, 20-31 (1980).
- 50 Ballschmiter K., Ang. Chem., **31**, 487-515 (1992).
- 110 Bandh C., Ishaq R., Broman D., Näf C., Rönquist-Nii Y. y Zebühr Y., *Environ. Sci. Technol.*, **30**, 214-219 (1996).
- 151 Bjorseth B. (ed.), *Handbook of Polycyclic Aromatic Hydrocarbons*, Marcel Dekker INC., NY, 1983.
- 137 Blumer M., Mulin M.M., y Thomas D.W., Science, 140-174 (1963).
- 153 Blumer M., Science, 156, 390-391 (1967).
- 38 Bøwadt S. y Larsen B., J. High Resolut. Chromatogr., 15, 350-351 (1992).
- 119 Branch G.M. y Marsh A.C., J. Exp. Mar. Biol. Ecol., 34, 111-130 (1978).
- 121 Branch G.M., J. Anim. Ecol., 44, 575-600 (1975).
- 181 Bufford M.D., Hawthorne S.B. y Miller D.J., Anal. Chem., 65, 1497-1505 (1993).
- Butler P.A., Andrén L., Bonde G.J., Jernelöv A. y Reish D.J., Monitoring Organisms. in, FAO Technical Conference on Marine Pollution and its Effects on Living Resources and Fishing, Rome, 1970, Suppl. 1. Report of the Seminar on Methods of Detection, 1971.
- 23 Cairns T. y Siegmund E.G., Anal. Chem., 53, 1183-93 (1981).
- 142 Cajaraville M.P., Recio A., Sáez V. y Marigómez J.A., Tops. Mar. Biol. Scient. Mar., 53, 745-748 (1989).
- 86 Canton L. y Grimalt J.O., J. Chromatogr., 607, 279-286 (1992).
- 100 Cerniglia C.E., Dodge R.H. y Gibso D.T., Bot. Mar., 23, 121-124 (1980)
- 106 Chambers J.E., Toxicol. Lett., 4, 227-230 (1979).
- 161 Champ M.A., Wolfe, D.A., Flemer D.A. y Mearns A.J., Estuaries, 10, 181-275 (1987)
- 167 Clark H.A. y Jurs P.C., Anal. Chem., 51, 616-623 (1979).
- 147 Colombo J.C., Khalil M.F., Arnac M., Horth A.C. y Catoggio J.A., *Environ. Sci. Technol.*, 24, 498-504 (1990).
- 168 Conde J.E., Peña E.M. y García Montelongo F., Intern. J. Environ. Anal. Chem., 62, 77-84 (1996).
- 158 Daelemans F.F., Mehlum F., Lydersen C. y Schepens P.J.C., Chemosphere, 27, 429-437 (1993).
- 81 de Boer J., Dao Q.T., Wester P.G., Bøwadt S. y Brinkman U.A..Th., Anal. Chim. Acta, 300, 155-165 (1995).
- 16 De Voogt P., Wells D.E., Reutergårdh L. y Brinkman U.A.Th., Intern. J. Environ. Anal. Chem., 40, 1-46 (1990).
- 176 Didyk B.M., Simoneit B.R.T., Brassell S.C. y Eglinton G., Nature, 272, 216-222 (1978).
- 82 Draper W.M., Wijekoon D. y Stephens R.D., *Chemosphere*, **22**, 147-163 (1991).
- 166 Duewer D.L., Kowalski B.R., Schatz L.Z., Anal. Chem., 47, 1573-1583 (1975).
- 76 Duinker J.C., Hillebrand M.T.J., Palmork K.H. y Wilhelmsen S., Bull. Envirom. Contam. Toxicol., 25, 956-964 (1980).
- 15 Duinker J.C., Knap A.H., Binkley K.C., Van Dam G.H., Darrel-Rew A. y Hillebrand M.T.J., *Mar. Pollut. Bull.*, **19**, 74-79 (1988).
- 48 Duinker J.C., Schultz D.E. y Petrick G., Anal. Chem., 60, 478-482 (1988).
- 145 Duinker J.C., Schulz D.E. y Petrick G., Anal. Chem., 69, 478-482 (1988).
- 78 Duinker J.C., Schulz D.E. y Petrick G., Chemosphere, 23, 1009-1028 (1991).
- 45 Dunn III W.J., Anal. Chem., 56, 1308-1313 (1984).
- 188 Dunn W.J., Stalling D.L., Schwartz T.R., Hogan J.W., Petty J.D., Johansson E. y Wold S., Anal. Chem., 56, 1308-1313 (1984).

- 73 Durell G.S. y Sauer T.C., Anal. Chem., 62, 1867-1871 (1990).
- 127 Eichmann R., Neuling P., Ketseridis G., Hahn R., Jaenicki R. y Junge C., *Atmos. Environ.*, **13**, 587-599 (1969).
- 157 Elskus A.A., Stegeman J.J., Gooch J.W., Black D.E. y Pruell R.J., *Environ. Sci. Technol.*, 28, 401-407 (1994).
- 6 Erikson, M.D., Anaylitical Chemistry of PCBs, Butterworth Publishers, London, p508, 1986.
- 107 Escrivá C., Viana E., Moltó J.C., Picó Y. y Mañes J., J. Chromatogr., 676, 375-388 (1994).
- 42 Facchetti S., Mass Spectrom. Rev., 12, 173-203 (1993).
- 152 Farrington J.W. and Meyers P.A., in *Environmental Chemistry Vol 1*, Englinton G. (ed.), The Royal Chemical Society, London, 1975.
- 169 Fisher M.T., Lee J. y Mara K., Analyst, 3, 1225-1229 (1986).
- 125 Fossato V.U., in *Metodologie Analitique per lo studio de ella Analitá dell'Ambiente Marino*, Capelli R. y col. (eds.), Conziglio Nazionale delle Ricerche, Genova, pp141-164, 1983.
- 89 Fossato V.U., Nasci C., Dolci F., Marine Environ. Res., 2, 47-53 (1979).
- 9 Franzaring J., Bierl R. y Ruthsatz B., Chemosphere, 25, 827-834 (1992).
- 46 Fuoco R. y Colombini M.P., Microchem. J., 51, 106-121 (1995)
- 160 Galassi S., Gosso E. y Tartari G., Chemosphere, 27, 2287-2293 (1993).
- 69 García A.L., De Boer A.C. y De Jong A.P.J.M., Environ. Sci. Technol, 30, 1032-1037 (1996).
- 136 Gassman G. y Pocklington R., Environ. Sci. Technol., 18, 869-872 (1984).
- 134 Gassman G., Mar. Pollut. Bull., 12, 78-84 (1981).
- 135 Gassman G., Mar. Pollut. Bull., 13, 309-315 (1982).
- 98 Gibson D.T., in Fate and Effects of Petroleum Hydrocarbons in Marine Organisms and Ecosystem, D.A. Wolfe (ed.), pp36-46, NY, Pergamon Press, 1977.
- 22 González M.J., Rev. Agroquím. Tecnol. Aliment., 25, 507-520 (1985).
- 180 Goossens H., de Leeuw J.W., Schenk P.A. y Brassell S.C., *Nature*, **312**, 440-442 (1984).
- 10 Granby K. y Spliid N.H., Mar. Pollut. Bull., 30, 74-82 (1995).
- 95 Green N.F. y Neff J.M., Arch. Hyg., 150, 513-528 (1966)
- 91 Gremm T.J. y Frimmel F.H., Chromatographia, 38, 781-788 (1994).
- 20 Gribble G.W., J. Natural Products, 55, 1353 (1992).
- 156 Grimalt, J. y Albaigés, J. Naturwissenschaften, 75, 39-42 (1988)
- 40 Guidelines for Polychlorinated Biphenyls. An Lawrence Livermore National Laboratory (LLNL) Environmental Guidelines Document Guidelines for Polychlorinated Biphenyls, http:// WWW.llnl.gov/es_and_h/guidelines/pcb/ pcb.html (1996).
- 67 Häggberg L. y de Voogt P., Chemosphere, 27, 271-278 (1993).
- 54 Haiber G. y Schöler H.F., Chemosphere, 28, 1913-1919 (1994).
- 155 Hansch, C. y Leo, A., Substituent Constants for Correlation Analysis in Chemistry and Biology, Wiley, New York, 1979.
- 62 Harkness M.R., McDermott J.B., Abramowicz D.A., Salvo J.J., Flanagan W.P., Stephens M.L., Mondello F.J., May R.J., Lobos J.H., Caroll K.M., Brennan M.J., Bracco A.A., Fish K.M., Warner G.L., Wilson P.R., Dietrich D.K., Lin D.T., Morgan C.B. y Gately W.L., *Science*, 259, 503-507 (1993).
- 72 Harrison A.G., Onuska F.I. y Tsang C.W., Anal. Chem., 53, 1183-1186 (1981).
- 92 Harrison R.M., Perry R. y Wellings R.A., Water Res., 9, 331-346 (1975)
- 41 Hasan M.N. y Jurs P.C., Anal. Chem., 60, 978-982 (1988).
- 12 Haugh A., Melson S. y Omang S., Environ. Pollut., 7, 179-92 (1974).
- 56 Hawari J., Demeter A. y Samson R., Environ. Sci. Technol., 26, 2022-2027 (1992).
- 5 Hermans J.H., Smedes F., Hofstraat J.W. y Cofino W.P., *Environ. Sci. Technol.*, **26**, 2028-2035, (1992).
- 21 Hoekstra E.J. y De Leer W.B., Chem. Brit., 31, 127-131 (1995).
- 79 Hong C-S., Calambokidis J., Busj B., Steiger G.H. y Shaw S., *Environ. Sci. Technol.*, **30**, 837-844 (1996).
- 184 Hutzinger O., Safe S. y Zitko V., The Chemistry of PCBs, CRC Press, Cleveland, Ohio, 1974.
- 93 Gremm T.J. y Frimmel F.H., Environ. Sci. Technol., 10, 1151-1156 (1976)
- 94 Gremm T.J. y Frimmel F.H., Environ.Sci.Technol., 10, 1156-1160 (1976)
- 43 Ivanov V. y Sandell E., Environ. Sci. Technol., 26, 2012-2017 (1992).
- 104 James M.O., Bowen E.R., Dansette P.M. y Bend J.R., Chem. Biol. Interact., 25, 321-
- 33 Jensen S., New Sci., 32, 612 (1966).
- 101 Jerina D.M., Yagi H., Lehr R.E., Thakker D.R., Schafer-Ridder M., Karle J.M., Levin W., Wood A.W., Chang R.L. y Conney A.H., in Polycyclic Hydrocarbons and Cancer, Gelboin H.V. (ed.), Academic, NY, 1978

- 37 Kannan N., Tanabe S., Wakimoto T. y Tatsukawa R., J. Assoc. Off. Anal. Chem., 70, 451-454 (1987).
- 49 Kelly A.G., Cruz I. y Wells D.E., Anal. Chim. Acta, 276, 3-13 (1993).
- 130 Kennicutt M.C., Sericano J.L., Wade T.L., Alcazar F. y Brooks J.M., Deep. Sea Res., 34, 403-424 (1987).
- 175 Kennicutt M.C., Wade T.L., Presley B.J., Requejo A.G., brooks J.M., y Denoux G.J., *Environ. Sci. Technol.* 28, 1-15, (1994).
- 129 Kimbourg R.D. y Jensen A.A. (eds.), *Halogenated Biphenyls, Terphenyls, Naphthalenes, Dibenzodioxins and Related Products*, Elsevier, Amsterdam, 2nd ed., 1989.
- 90 Kiss G., Varga-Puchony Z. y Hlavay J., J. Chromatogr. A, 725, 261-272 (1996).
- 66 Kiyohara C., Omura M., Hirohata T. y Masuda Y., Bull. Environ. Contam. Toxicol., 48, 877-883 (1992).
- 70 Kocan A., Petrík J., Chovanková J. y Drobná B., J. Chromatog. A., 665, 139-153 (1994).
- 117 Lamparczyk H., Ochocka R.J., Gryzbowski J., Halkiewicz J. y Radecki A., *Mar. Pollut. Bull.*, **19**, 222-226 (1988).
- 17 Lang V., J. Chromatogr, 595, 1-43 (1992).
- 28 Larsen B., Bøwadt S. y Facchetti S., Intern. J. Environ. Anal. Chem., 47, 147-166 (1991).
- 44 Larsen B., Bøwadt S. y Tilio R., Intern. J. Environ. Anal. Chem., 47, 47-68 (1991).
- 52 Law R.J., Allchin C.R. y Dixon A.G., *Mar. Pollut. Bull.*, **22**, 492-493 (1991).
- 124 Law R.J., Fileman T.W. y Portman J.E., *Aquatic Environment Protection: Analytical Methods* n°2: *Methods of Analysis of Hydrocarbons in Marine and other Samples*, Ministry of Agriculture, Fisheries and Food, Directorate of Fisheries Research. Lowestaf, 1988.
- 83 Lawruk T.S., Lachman C.E., Jourdan S.W., Fleeker J.R., Hayes M.C., Herzog DP y Rubio FM, *Environ. Sci. Technol.*, **30**, 695-700 (1996).
- 85 Lee H-B, Peart T.E., Hong-You R.L. y Gere D.R., J. Chromatogr., 653, 83-91 (1993).
- 58 Lépine F., Milot S. y Brochu F., Bull. Environ. Contam. Toxicol., 49, 514-519 (1992).
- 57 Lépine F., Milot S. y Vincent N., Bull. Environ. Contam. Toxicol., 48, 152-157 (1992).
- 122 Lewis J.R. y Bowman R.S., J. Exp. Mar. Biol. Ecol., 17, 165-203 (1975).
- 39 Lindsey A.S. y Wagstaffe P.J., *Analyst*, **114**, 553-557 (1989)
- 116 Lipiatou E. y Saliot A., Mar. Pollut. Bull., 22, 297-304 (1991).
- 120 Little C. y Willians G.A., Morritt D., Perrins J.M., Stirling P., J. Exp. Mar. Biol. Ecol., 120, 1-21 (1988).
- 18 Mäkelä M. y Pyy L., J. Chromatogr., 699, 49-57 (1995).
- 84 Marriot P.J., Carpenter P.D., Brady P.H., McCormick M.J., Griffiths A.J., Hatvani T.S.G. y Rasdell S.G., *J. Liquid. Chromatogr.*, **16**, 3229-3247 (1993).
- 150 Mason R.P., Mar. Pollut. Bull., 18, 528-533 (1987).
- 174 Massart D.L., Vandeginste B.G.M., Deming S.M., Michotte Y. y Kaufman, in *Chemometrics: a Textbook*, Elsevier, Amsterdam, 1983.
- 60 May H.D., Boyle A.W., Price II W.A. y Blake C.K., App. Environ. Microbiol., 58, 4051-4054 (1992).
- 97 Meineke Y. y Klamberg H., Fresenius'Z. Anal. Chem., 293, 201-204 (1978)
- 112 Méndez J., Anal. Chim. Acta, 283, 528-537 (1993).
- 126 Miller J.C., Miller J.N., Estadística para Química Analítica, 2ªed., Addison-Wesley Iberoamericana, Wilmington, Delaware, E.U.A. (1993).
- 118 Miller S.L., J. Exp. Mar. Biol. Ecol., 14, 99-156 (1974).
- 35 Mudroch A., Onuska F.I. y Kalas L., Chemosphere, 18, 2141-2154 (1989).
- 29 Mullin M.D. y Pochini C.M., McCrindle S., Romkes M., Safe S.H. y Safe L.M., *Environ. Sci. Technol.*, 18, 468-476 (1984).
- 4 Murray M.W. y Andren A.W., Atmos. Environ., 26A, 1097-1101 (1992).
- 132 National Academy of Science, *Oil in the Sea; Inputs, Fates and Effects,* National Academy of Science Press, Washington, 1985.
- 185 National Research Council of Canada, Institute for Marine Biosciences, Marine Analytical Chemistry Standards Program (1991).
- 186 Newton D.A. y Laski R.R., J. Chromatogr. Sci., 21, 161-165 (1983).
- 63 Nies L. y Vogel T.M., Appl. Environ. Microbiol., 2771-2774 (1991).
- 144 Niimi A.J., Lee H.B. y Muir D.C.G., *Chemosphere*, **32**, 627-638 (1996).
- 163 NOAA.- Technical Memorandum NOAA OMA 38, 1987
- 139 Obana H., Hori S., Nakamura A y Kashimoto T., Water Res., 17, 1183-1187 (1983).
- 74 Onusa F.I., Mudroch A. y Davies S., J. High Resolut. Chromatogr. & Chromatogr. Commun., 8, 747-754 (1985).

- 108 Östman C. y Nilsson U., J. High Res. Chromatogr., 15, 745-750 (1992).
- 8 Pal D., Weber J.N. y Overcash M.R., *Residue Rev.*, 74, 45 98 (1979).
- 141 Pastor M.D., Sánchez J., Barceló D. y Albaigés J., J. Chromatogr., 629, 329-337 (1993).
- 71 Pavoni B. y Sfriso A., Intern. J. Environ. Anal. Chem., 44, 11 20 (1990).
- 105 Pedersen M.G., Herschberger W.K., Zachariah P.K. y Juchau M.R., J. Fish. Res. Board Can., 33, 666-675 (1976)
- 115 PelletierÉ., Ouellet S. y Pâquet M., Mar. Pollut. Bull., 22, 273-281 (1991).
- 154 Peña E., Tesis de Doctorado, Universidad de La Laguna, 1996.
- 14 Phillips D.J.H., Environ. Pollut., 13, 281-317.
- 13 Phillips D.J.H., Mar. Biol., 38, 71-80.
- 3 Phillips D.J.H., Quantitative Aquatic Biological Indicators, Applied Pu. Ltd., Londres, 1980.
- 140 Porte C., Barceló D. y Albaigés J., J. Chromatogr., 442, 386-391 (1988).
- 178 Powell T.G., Nature, 333, 604 (1988).
- 138 Pruell R.J., Lake J.L., Davis W.R. y Quinn J.G., Mar. Biol., 91, 487-507 (1986).
- 65 Quensen III J.F., Tiedje J.M. y Boyd S.A., Science, 242, 752-754 (1988).
- 96 Radding S.B., Mill T., Gould C.W., Liu D.H., Johnson H.L., Bomberger D.C. y Fojo C.V., EPA-560/5-75-009, 1976
- 32 Rastogi S.C., Bull. Environ. Contam. Toxicol., 48, 567-571 (1992).
- 47 Risebrough R.W., Rieche P., Peakall D.B., Herman S.G. y Kirven M.N., *Nature*, **220**, 1098-1102 (1968).
- 25 Robbat A. Jr., Xyrafas G. y Marshall D., Anal. Chem., 60, 982-985 (1988).
- 128 Safe S. (ed.), *Environment Toxin Series I: PCBs: Mammalian and Environment Toxicology*, Springer Verlag, Berlin, 1987.
- 159 Sánchez J., Solé M. y Albaigés J., Intern. J. Environ. Anal. Chem., 50, 269-284 (1993).
- 123 Sánchez J.M.P. y Batet E.M., *Invertebrados Marinos de Canarias. Ediciones del Cabildo Insular de Gran Canaria*, Las Palmas de Gran Canaria, p.170, 1991.
- 36 Sanders G., Jones K.C., Hamilton-Taylor J. y Dörr H., Environ. Sci. Technol., 26, 1815-1821 (1992).
- 2 Schladot J.D., Stoeppler M. y Schwuger M.J., Sci. Tot. Environ., 139, 27-36 (1993).
- 149 Schulz-Bull D.E., Petrick G. y Duinker J.C., Mar. Chem., 36, 365-384 (1991).
- 111 Serrazanetti G.P., Conte L.S., Carpené E., Bergami C. y Fonda-Umani S., Chemosphere, 23, 925-938 (1991).
- 87 Shchekaturina T.L., Khesina A.L., Mironov O.G. y Krivosheeva L.G., *Mar. Pollut. Bull.*, **30**, 38-40 (1995).
- 7 Sijm D.T.H.M., Geinen W. y Opperhuizen A., Environ. Sci. Technol., 26, 2162-2174 (1992).
- 146 Smith L., Schwartz T.R. y Feltz K., Chemosphere, 21, 1063 (1990).
- 170 Smith S.J., Caudill S.P., Pirkle J.L. y Ashley D.L., Anal. Chem., 61, 1419-1425 (1991).
- 113 Snedaker S.C., Glynn P.W., Rumbold D.G. y Corcoran E.F., Mar. Pollut. Bull., 30, 83-89 (1995).
- 162 Spellenberg I.F., Monitoring Ecological Change, Cambridge Univ. Press, NY, 1991.
- 187 Spencer J.L., Hendricks J.P. y Kerr D., J. Chromatogr., 654, 143-149 (1993).
- 77 Spies R.B., Stegeman J.J., Rice D.W., Woodin Jr.B., Thomas P., Hose J.E., Cross J.N. y Prieto M. in *Biomarkers of Environmental Contamination*, McCarthy J.F., y Shugart L.R. (eds.), Lewis Pu., USA, 1990, p. 87-122.
- 75 Stalling D.L., Schwartz, Dun III W.J. y Wold S., Anal. Chem., 59, 1853-1859 (1987).
- 171 Statgraphics[®] V5. STSC, Inc., Rockville, Maryly, USA.
- 172 Statistica for Windows, Release 4.0-a, Statsoft, Inc. 1993.
- 133 Stegeman J.J. y Teal J.M., Mar. Biol., 22, 37-44 (1973).
- 103 Stegeman J.J., Rapp. PV Reun. Cons.Int. Explor.Mer., 179, 33-38 (1980)
- 143 Storr-Hansen E., Intern. J. Environ. Anal. Chem., 43, 253-266 (1991).
- 34 Strek H.J. y Weber J.B., Environ. Pollut., 28, 291-312 (1982).
- 55 Supelco, Inc., Bellefonte, PA USA 16823-0048. Presented at the Pittsburgh Conference, New Orleans, Louisiana. (1995).
- 30 Sutcliffe C.R., Gladney E.S., Seitz D.M. y Brooks G.H., Anal. Chem., 61, 2682-2686 (1989).
- 1 Tanabe S. y Tatsukawa R., in *Organic Contaminants In The Environment*, Jones K.C. (ed.), Elsevier, Amsterdam, pp.285-288, 1991.
- 179 ten Haven H.L. y Rullkötter J., Nature, 333, 604 (1988).
- 177 ten Haven H.L., de Leeuw J.W., Rullkötter J. y Sinninghe-Damsté J.S., *Nature*, **330**, 641-643 (1987).
- 88 Tolosa I., Bayona J.M. y Albaigés J., Environ. Sci. Technol., 30, 2495-2503 (1996).
- 131 UNEP, Determination of petroleum hydrocarbons in sediments, Manual and Guides No. 20,

Prepared by K.A. Burns, International Atomic Energy Agency, Mónaco, 1991.

- 64 Van Dort H.M. y Bedard D.L., Appl. Environ. Microbiol., 57, 1576-1578 (1991).
- 164 Wade T.L., Atlas E.L., Broks J.M., Kennicutt M.C., Fox R.G., Sericano J., García-Romero B., De Freitas D., *Estuaries*, **11**, 171-179 (1988).
- 59 Waid J.S. 1986. PCBs and the Environment Volume II. CRC Press, Inc., Florida. 191 pp.
- 19 Wells D.E. y Echarri I., Anal. Chim. Acta, 286, 431-449 (1994).
- 53 Wells D.E., de Boer J., Tuinstra L.G.M.T., Reutergårdh L. y Griepink B., Fresenius' Z. Anal. Chem., 332, 591-597 (1988).
- 165 Werner A.M., in *Marine Organisms as Indicators*, Soule D.M. y Kleppel G.S. (eds.), Springer-Verlag, NY, pp199-208, 1988.
- 173 Willett P., Similarity and Clustering in Chemical Information System, Research Studies Press, NY, 1987.
- 99 Ye D., Siddiqi M.A., Maccubbin A.E., Kumar S., Sikka H.C., *Environ. Sci. Technol.*, **30**, 136-142 (1996).
- 182 Youngblood W.W. y Blumer M., Mar. Biol., 21, 163-172 (1973).
- 183 Youngblood W.W., Blumer M., Guillard R.L. y Fiore F., Mar. Biol., 18, 190-201 (1971).
- 51 Zabik M.E., Harte J.B., Zabik M.J. y Dickmann G., J. Agric. Food Chem., 40, 1197-1203 (1992).
- 80 Zebühr Y., Näf C., Bandh C., Broman D., Ishaq R. y Pettersen H., *Chemosphere*, 27, 1211-1219 (1993).