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Resumen

En esta tesis estudiamos la propagación de ondas magneto-acústicas en manchas solares,
desde debajo de la fotosfera hasta la cromosfera. La motivación de este estudio va más
allá de la simple derivación de las propiedades de las oscilaciones, ya que las ondas pueden
ser usadas como herramienta de diagnóstico independiente para derivar la estructura de
atmósferas estelares, y además tienen un papel relevante en el balance energético de la
atmósfera del Sol y otras estrellas.

Como principal novedad, en esta tesis se estudian los diferentes modos de ondas en una
situación real, donde la configuración del campo magnético y la estratificación atmosférica
se parecen a las de manchas solares. Las propiedades de la atmósfera magnetizada de
las manchas solares cambian con la altura, pasando de estar dominada por el gas en la
fotosfera, y capas inferiores, a estar dominada por el campo en la alta cromosfera, por lo
que el parámetro β del plasma (el cociente de la presión gaseosa con la presión magnética)
vaŕıa de valores mucho mayores que la unidad a valores mucho más pequeños. La velocidad
de propagación de los modos magneto-acústicos depende de la velocidad del sonido y Alfvén,
ambas estratificadas con la altura. En la región donde estas dos velocidades caracteŕısticas
son similares se produce la transformación de modos, permitiendo la conversión de enerǵıa
acústica de la onda a magnética y viceversa.

La complejidad de la atmósfera solar hace que sea imposible resolver anaĺıticamente las
ecuaciones MHD en este caso realista, por lo que hemos abordado este problema mediante
simulaciones numéricas. Para este trabajo se ha desarrollado un código MHD paralelizado
no lineal en tres dimensiones, al cual le hemos realizado una serie de tests numéricos para
verificar su robustez. Las simulaciones excitadas con una fuerza armónica de periodo corto
muestran una gran variedad de modos de ondas y transformaciones en un rango de fre-
cuencias por encima de la frecuencia de corte, de tal forma que el modo lento acústico en
la región con bajo β puede propagarse hacia alturas cromosféricas y desarrollar choques,
mientras el modo rápido magnético en esa región es refractado hacia la fotosfera debido al
fuerte gradiente de la velocidad Alfvén. Hemos obtenido medidas cuantitativas del flujo de
enerǵıa de los diferentes modos de ondas después de la transformación de modos y se ha
identificado el modo Alfvén en las regiones con bajo β en aquellas simulaciones en las que la
fuerza excitadora está situada en regiones con una cierta inclinación de campo magnetico,
aunque la eficiencia de la transformación a este modo Alfvén es muy baja. Las simulaciones
numéricas obtenidas utilizando una fuerza excitadora con un espectro similar al solar, con
un pico central a la frecuencia correspondiente a los 5 minutos y excitando una banda ancha
de frecuencias, reproducen el cambio con la altura observado en el periodo, que vaŕıa de 5
minutos en la fotosfera a 3 minutos en la cromosfera. Estas simulaciones confirman que las
ondas acústicas con frecuencia inferior a la frecuencia de corte atmosférica (alrededor de
5.7 mHz) no se pueden propagar hacia arriba y forman ondas evanescentes, cuya amplitud
aumenta ligeramente con la altura. Por otro lado, la ondas acústicas con frecuencia por
encima del valor de corte se propagan hacia arriba y, debido al aumento de su amplitud
de acuerdo con la disminución de la densidad, dominan en las alturas cromosféricas, donde
encontramos un pico de potencia alrededor de 5.8 mHz correspondiente a las oscilaciones
de 3 minutos. De este modo, se puede decir que el mecanismo que produce el cambio de
la frecuencia con la altura es la propagación lineal de ondas en la banda de 3 minutos que
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son excitadas en la fotosfera y dominan sobre las ondas evanescentes con frecuencia por de-
bajo de la frecuencia de corte. Las simulaciones numéricas en las que la fuerza excitadora
está ubicada a distinta distancia radial desde el eje de la mancha muestran que la frecuen-
cia dominante en la cromosfera disminuye con la distancia radial, debido a la reducción
de la frecuencia de corte lejos del centro de la mancha. Estas simulaciones muestran que
las ondas en la banda de 5 minutos no pueden proporcionar enerǵıa a las capas altas de
la umbra debido a que forman ondas evanescentes, que no transportan enerǵıa, u ondas
rápidas magnéticas, que son refractadas hacia la fotosfera. Por el contrario, la enerǵıa de
las altas frecuencias de la fuerza excitadora puede llegar a capas más altas en forma de
ondas acústicas a lo largo de las ĺıneas campo magnético y formar choques, proporcionando
enerǵıa a la cromosfera.

La segunda parte de esta tesis se centra en un estudio observacional. Hemos analizado
espectros de intensidad de Ca ii H, incluyendo las ĺıneas superpuestas de Fe i, y espectros
polarimétricos de Si i λ 10827 y el multiplete de He i λ 10830. Las distintas ĺıneas espec-
trales tienen información complementaria sobre diferentes alturas de la atmósfera solar. La
región espectral de 10830 Å es especialmente interesante porque contiene la ĺınea fotosférica
de Si i y la cromosférica de He i. Mediante el uso de varias ĺıneas espectrales formadas a
profundidades intermedias entre el Si i y el He i hemos mejorado el muestreo de la propa-
gación de ondas a través de la atmósfera, cubriendo el vaćıo de información entre estas dos
capas. Del desplazamiento Doppler de estas ĺıneas obtuvimos las variaciones temporales
de la velocidad a lo largo de la ĺınea de visión. Tras calcular el espectro de diferencia de
fase y de amplificación entre diversos pares de ĺıneas, los resultados han sido ajustados a
un modelo de propagación vertical de ondas magneto-acústicas lentas en una atmósfera
estratificada con pérdidas radiativas de acuerdo con la ley de enfriamiento de Newton. El
modelo funciona para la atmósfera por debajo de la altura de formación del núcleo de la
ĺınea de Ca ii H, pero no puede reproducir el espectro de amplificación entre el núcleo de
Ca ii H y la ĺınea de He i. El acuerdo obtenido, con un modelo simple de propagación lineal,
en las regiones de la baja y media atmósfera, y el desacuerdo en las capas más altas, indican
que la transferencia de enerǵıa debida a la formación y disipación de choques ocurre a una
altura entre la altura de formación de las ĺıneas de Fe i y el núcleo de Ca ii H. Encon-
tramos propagación de ondas de alta frecuencia (por encima de la frecuencia de corte) a
lo largo de las ĺıneas de campo hacia capas más altas, correspondiente al modo acústico
lento. Las ondas con frecuencia inferior a la de corte forman ondas evanescentes y no se
pueden propagar hacia las capas más altas. El espectro de potencias a diferentes alturas
no se desplaza gradualmente desde la banda de 5 minutos en la fotosfera hasta frecuencias
más altas en capas superiores, hasta alcanzar la banda de 3 minutos en la cromosfera. En
su lugar, todas las ĺıneas fotosféricas (formadas a diferentes alturas) presentan su potencia
máxima a la misma frecuencia, y lo mismo ocurre para las dos ĺıneas cromosféricas. Por lo
tanto, el espectro de potencias muestra un comportamiento discontinuo con la altura, y la
frecuencia con máxima potencia cambia abruptamente de 3.5 mHz en la fotosfera a 6 mHz
en la cromosfera. Estos resultados están de acuerdo con los obtenidos con las simulaciones,
y confirman que el cambio en la frecuencia con la altura es debido al mayor incremento
de la amplitud de las ondas que se propagan en comparación con las ondas evanescentes.
También hemos podido inferir algunas propiedades de la atmósfera de la mancha solar
(temperatura y tiempo de relajación radiativo) mediante el análisis de la propagación de
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ondas y estimar la altura de formación de las ĺıneas espectrales usadas en este estudio. El
análisis muestra que las ondas primero alcanzan la altura de formación de la ĺınea de Si i,
luego las ĺıneas de Fe i procedentes de las alas de la ĺınea de Ca ii H, a continuación la altura
de formación del núcleo de la ĺınea de Ca ii H y finalmente la de la ĺınea de He i.

En la última parte de esta tesis, hemos intentado reproducir los resultados observa-
cionales a través de cálculos numéricos. Hemos construido un modelo tridimensional de
mancha solar basado en las observaciones, y hemos desarrollado simulaciones numéricas in-
troduciendo como elemento excitador en la fotosfera las fluctuaciones medidas con la ĺınea
de Si i. Los resultados son comparados con las oscillaciones obtenidas a diferentes alturas
con la ĺınea de He i, el núcleo de la ĺınea de Ca ii H y las ĺıneas de Fe i superpuestas en
las alas de la ĺınea de Ca ii H. Las simulaciones muestran un gran acuerdo con las obser-
vaciones. Reproducen los mapas de velocidades y los espectros de potencias a las alturas
de formación de las ĺıneas espectrales, aśı como los espectros de fase y amplificación entre
varios pares de ĺıneas. Los choques más fuertes están acompañados de un retraso de la señal
cromosférica observada respecto a la simulada a la altura correspondiente, debido a que los
choques desplazan la altura de formación de las ĺıneas cromosféricas hacia capas más altas.
Hemos demostrado que la propagación de ondas simulada tiene propiedades muy similares
a la observada, y esto nos ha permitido utilizar los cálculos numéricos para cuantificar la
contribución energética de las ondas acústicas al calentamiento cromosférico en manchas
solares. Nuestros resultados indican que la enerǵıa suministrada por estas ondas es muy
baja para compensar las pérdidas radiativas de la cromosfera. La enerǵıa contenida en
forma de potencia acústica a la altura de formación de la ĺınea de Si i ya es insuficiente para
calentar las capas superiores, mientras que la que alcanza la cromosfera es alrededor de 70
veces inferior a la cantidad de enerǵıa requerida.
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Abstract

In this thesis we investigate the propagation of magneto-acoustic waves from below the
photosphere to the chromosphere of sunspots. The motivation of this work extends beyond
the simple derivation of the properties of the oscillations, since waves can be used as an
independent diagnostic tool of the structure of stellar atmospheres, having a relevant role
in the energy balance of the upper atmosphere of the Sun and stars.

The novelty of the approach used in this thesis consists in the study of the different wave
modes in a realistic situation, where the magnetic field configuration and the atmospheric
stratification resembles that of solar sunspots. The magnetized atmosphere of sunspots
changes from being gas dominated at the photosphere and below to field dominated at
the high chromosphere, so the plasma β parameter (the ratio of the gas pressure to the
magnetic pressure) varies from values much higher than unity to values much lower than
unity. The velocity of propagation of the magneto-acoustic modes depends on the acoustic
and Alfvén speeds, both stratified with height. At the height where both characteristic
velocities are similar the mode transformation is produced, allowing for the wave energy
conversion from acoustic to magnetic and vice versa.

The complexity of the solar atmosphere makes it impossible to solve analytically the
MHD equations in this realistic case. For this reason, we have faced this problem using
numerical simulations. A parallel 3D nonlinear MHD code, which allows to excite a sunspot-
like flux tube and study its oscillations, has been developed. A set of numerical tests has
been developed to prove to robustness of the code. Simulations with a short period harmonic
driver show a rich variety of wave modes and transformations in a frequency range above
the cutoff frequency. The slow acoustic mode in the low-β region can propagate toward
chromospheric heights and develop into shocks, while the fast magnetic mode in that region
is refracted back toward the photosphere due to the strong gradient of the Alfvén speed.
We have obtained quantitative measures of the energy flux of the different wave modes after
the mode conversion and we have identified the Alfvén mode in the low-β regions, in those
simulations with the driver force located in regions with a certain inclination of the magnetic
field, although the efficience of the transformation to this Alfvén mode is very low. The
numerical simulations which have been performed with a driving force spectrum resembling
the solar one, with a central peak at the frequency corresponding to 5 minutes and exciting
a broad band of frequencies, reproduce the observed change in the period of the oscillations
with height in sunspots from 5 minutes at the photosphere to 3 minutes at the chromosphere.
The simulations show that the acoustic waves with frequency below the cutoff frequency
of the atmosphere (around 5.7 mHz) cannot propagate upward and they form evanescent
waves, whose amplitude slightly increases with height. On the other hand, those acoustic
waves with frequency above the cutoff value propagate upward and, due to the increase
of their amplitude according to the drop of the density, dominate at high chromospheric
heights, where we find a power peak around 5.8 mHz, corresponding to the 3 minute
oscillations. Therefore, the mechanism that produces the change in frequency with height is
the linear propagation of waves in the 3 min band which are excited at the photosphere and
dominate over the evanescent waves with frequencies below the cutoff frequency. Numerical
simulations with the driver located at different radial distances from the axis of the sunspot
show that the dominant wave frequency in the chromosphere decreases with the radial
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distance, due to the reduction of the cutoff frequency far form the axis. These simulations
show that waves in the band of the 5 min cannot supply energy to higher layers of the
umbra because these waves either form evanescent waves, which do not carry energy, or
fast magnetic waves, which are refracted back toward the photosphere. Instead, a part of
the high-frequency driver power can reach higher layers in form of acoustic field-aligned
waves that develop into shocks, providing energy to the chromosphere.

In the second, observational, part of this thesis work, we have analyzed co-spatial Ca ii H
intensity spectra, including its line blends, and polarimetric spectra of the Si i λ 10827 and
the He i λ 10830 multiplet. Different spectral lines contain complementary information
about different heights of the solar atmosphere. The spectral region of 10830 Å is very
interesting because it includes the photospheric Si i and the chromospheric He i lines. We
have improved the sampling of the wave propagation through the atmosphere by using
more spectral lines formed at intermediate depths between Si i and He i, covering the gap
between the layers where these two lines are formed. From the Doppler shifts of these lines
we retrieved the temporal variations of the velocity along the line-of-sight. We built the
phase difference and amplification spectra and fit them with a model of vertical propagation
of slow magneto-acoustic waves in a stratified atmosphere with radiative losses according to
Newton’s cooling law. The model works at layers below the formation height of the Ca ii H
core, but it cannot reproduce the amplification spectra between the Ca ii H core and the He i
lines. The agreement with a simple model of linear wave propagation in the lower and mid
parts of the atmosphere, and the disagreement in the very high layers, also indicates that
the energy transfer due to shock formation and dissipation occurs at some height between
the formation height of the Fe i lines and the Ca ii H core. We find upward propagation of
field aligned high-frequency waves above the cutoff, corresponding to a slow acoustic mode.
Waves with frequency below the cutoff value form evanescent waves and cannot propagate
to higher layers. The power spectra at different heights is not gradually shifted from the
5 minute band at the photosphere to higher frequencies at higher layers, until reach the
3 minute band at the chromosphere. Instead, all photospheric lines (formed at different
heights) peak at the same frequency, and the same happen to both chromospheric lines.
Thus, the power spectra shows a discontinuous behavior with height, and the frequency
with maximum power changes abruptly from 3.5 mHz at the photosphere to 6 mHz at the
chromosphere. These findings agree with those obtained from the simulations, and confirm
that the frequency change with height is due to the larger increase of the amplitude of
the propagating waves compared to the evanescent waves. We were also able to infer
the properties of the atmosphere (temperature and radiative relaxation time) from the
propagation of waves and estimate the formation height of the spectral lines used in this
study. The analysis shows that waves first reach the formation height of the Si i line, then
the Fe i lines from the wings of the Ca ii H line, then the formation height of the Ca ii H
core, and finally that of the He i line.

In the last part of this thesis, we have attempted to reproduce the observational sig-
natures discussed above through numerical simulations with our 3D MHD code. We have
constructed a sunspot model based on the properties of the observed one, and we have
developed numerical simulations introducing the fluctuations measured with the Si i line
as a driver at the photosphere. The results are compared with the oscillations obtained at
different heights from the He i line, the Ca ii H core and the Fe i blends at the wings of the
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Ca ii H line. The simulations show a remarkable agreement with the observations. They
reproduce the velocity maps and power spectra at the formation heights of the observed
lines, as well as the phase and amplification spectra between several pair of lines. We find
that the stronger shocks at the chromosphere are accompanied with a delay between the
observed signal and the simulated one at the corresponding height, since the shocks shift
the formation height of the chromospheric lines to higher layers. Since we have proven that
the simulated wave propagation has the properties of the observed one, we are able to use
the numerical calculations to quantify the energy contribution of the acoustic waves to the
chromospheric heating in sunspots. Our findings indicate that the energy supplied by these
waves is too low to balance the chromospheric radiative losses. The energy contained at the
formation height of the lowermost Si i line in the form of acoustic power is already insuffi-
cient to heat the higher layers, and the acoustic energy which reaches the chromosphere is
around 70 times lower than the required amount of energy.
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1
Introduction

The response of a medium to a small perturbation generates an oscillatory movement
when its restoring forces try to recover the initial equilibrium. In sunspots, the complex

structure of their atmosphere produces a rich variety of wave phenomena with different
temporal and spatial scales, for which still does not exist a clear theoretical picture. Wave
propagation is affected by the gradients of the thermodynamic magnitudes, as the density
or the temperature, while the presence of a magnetic field imposes a spatial order which
affects the oscillatory character of the atmosphere.

1.1 Sunspots

Sunspots are one of the most evident manifestation of the magnetic activity in the solar
atmosphere. They are observed as dark regions on the photosphere, composed by two
distinct parts: a central dark area, called umbra, which is surrounded by the penumbra,
formed by light and dark radial filaments. Sunspots are formed by strong concentrations
of magnetic flux. The magnetic field inhibits the convection and avoids the heating of the
photosphere in these regions, making them to be cooler than the quiet Sun regions around
them. The typical life time for most of the sunspots is around some weeks, but the larger
ones can last much longer. During this time they move across the surface of the Sun,
following the solar rotation. Figure 1.1 shows an image of the sunspot analyzed in this
thesis.

The central region, the umbra, is the darkest part of the sunspot. Its diameter is
typically between 10 and 20 Mm, about 40% of the total sunspot diameter. The continuum
intensity in visible light is around 15% of the photospheric value. The temperature of
the umbra is around 3700 K, and the magnetic field is between 2000 and 3000 G, being
mostly perpendicular to the surface inside the umbra and becomes slightly inclined near
the umbra/penumbra boundary. The darkness of the umbra is not uniform, and in high
resolution some bright umbral dots can be visible inside it. Their diameter is around 150 km
and their brightness is similar to the photospheric one. Other structures can appear inside
the umbra, like light bridges, which consist on a bright band that connects two boundaries
of the umbra.
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Figure 1.1: Map of the continuum intensity of the sunspot observed on August 28th 2007.

When the sunspot is completely developed, the penumbra appears around the umbra.
It is seen in continuum images as alternating light and dark radial filaments (Collados et al.
1988) which are 5 to 7 Mm long and 300 to 400 km in width. The penumbra exhibits an
intermediate brightness between the umbra and the quiet Sun photosphere. The continuum
intensity of the bright filaments is 95% of the surrounding photosphere, while for the dark
filaments is 60%. The strength of the magnetic field is stronger near the umbra, and
it decreases at the outer regions of the penumbra. The current accepted model of the
penumbral topology is formed by at least two different inclinations of the magnetic field lines
which coexist on a small scale. One of the main inclinations corresponds to a component
whose magnetic field is inclined abound 50 degrees with respect to the vertical to the solar
surface, with a strength around 2000 G. The other component is almost horizontal and
weaker (Lites et al. 1993). The Evershed flow (a stream of material emanating radially from
sunspots at velocities of up to 6 km s−1) is found to follow the more horizontal magnetic
field lines toward deeper layers at the middle penumbra and beyond (Westendorp Plaza
et al. 1997; Bellot Rubio et al. 2003).

1.2 Why study wave propagation in sunspots?

Sunspots can be considered as laboratories for studies of magnetized plasma in conditions
that are inaccessible on Earth. They give clues about the physics of energy propagation
(e.g., in the form of different oscillatory modes) in fluids permeated by strong magnetic
fields. The restoring forces associated with the magnetic field allow the generation of
new wave modes that are not present in quiet Sun, and they have a large enough spatial
coherence length to be observable. The study of waves in sunspots is interesting under
several points of view.

Firstly, the analysis of the oscillations measured with several spectral lines may be used
to infer the characteristics of the atmosphere which supports them. Spectral lines with
different formation heights provide a magnificent sample of the sunspot structure, spanning
from the photosphere to the chromosphere, and give information about the stratification
of its thermodynamic magnitudes. A slow wave propagating through a plasma dominated
by the magnetic field (where the magnetic pressure is much higher than the gas pressure)
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behaves in a similar way to an acoustic wave. Thus, the difference in the oscillatory signals
obtained at these two layers will depend on the geometrical distance between them, the
frequency of the wave, and the characteristic propagation speed of this wave. The latter
weakly depends on the temperature of the atmosphere, and the analysis of oscillations may
be used to retrieve the height difference between both layers.

Secondly, understanding wave propagation in the solar interior makes it possible to
infer the structure of the layers they propagate through. Global helioseismology interprets
the resonant modes of solar oscillations, and it has retrieved several important results
about solar interior. It is complemented by local helioseismology, which uses the full wave
field observed at some location of the surface as a probe to determine the properties of
solar interior and surface. Local helioseismology uses several different and complementary
techniques: ring diagram analysis (Hill 1988), which analyses frequencies of oscillations
in small regions on the Sun; and time-distance helioseismology (Duvall et al. 1993) and
helioseismic holography (Lindsey & Braun 1990), which derive the sub-surface properties
of the atmosphere from the evaluation of the time employed by the waves to travel though
the solar interior between two surface locations. One of the most important challenges of
local helioseismology is to obtain a complete understanding of how the magnetic fields affect
the travel times and the properties of wave propagation, and use them to determine the
atmosphere below magnetic structures, like sunspots. For a review in local helioseismology
see Gizon & Birch (2005).

Finally, sunspot waves should have its relevant role in the energy balance of the upper
solar atmosphere. Semi-empirical models of the solar atmosphere show an increase of the
temperature at the chromosphere (Figure 1.2). Acoustic waves have been early suggested as
a possible candidate to explain chromospheric heating (Biermann 1948; Schwarzschild 1948).
Sunspots are ideal systems to study the energy that is propagated upward in magnetized
atmospheres by means of magneto-acoustic waves, and the amount of energy that is supplied
at each layer.

1.3 Observations: historical approach and properties

Waves in sunspots are known since more than forty years ago, when Beckers & Tallant
(1969) detected what they called “Umbral Flashes”. Those observations showed periods
of 50 s, in which the brightness suddenly increased, followed by slow decreases and ac-
companied by Doppler shifts of 6 km s−1. Nowadays, it is known that these observations
correspond to chromospheric umbral oscillations. After this first detection, many studies
have been carried out in order to understand the physics of these waves from an observa-
tional as well as a theoretical point of view. Waves in sunspots are different from those
observed in quiet Sun due to the presence of magnetic field. They show a variety of be-
haviors depending on the height and region of the sunspot where they are observed. From
the Doppler shift, the oscillations of the line-of-sight velocity can be inferred, and they
are related to the fluctuations in the other thermodynamic magnitudes. These variations
are accompanied by oscillations in the intensity and also in the geometrical shift of the
layer where the spectral line and the continuum are formed. Taking into account all these
features, the analysis of spectral lines with different formation heights makes it possible to
study wave propagation.
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Figure 1.2: Average quiet Sun temperature. The approximate depths where various continua and spectral
lines originate are indicated. Extracted from Vernazza et al. (1981).
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Figure 1.3: Examples of mean power spectra of velocity oscillations measured in Ti i 6304 Å in a sunspot
umbra (left panel) and outside the sunspot (right panel). The power spectra A, B, and C refer to averages
in successively smaller areas. Extracted from Abdelatif et al. (1986).

Usually, waves in sunspots are classified as photospheric umbral oscillations, chromo-
spheric umbral oscillations and running penumbral waves (Lites 1992). However, all these
kind of waves seem to be different manifestations of the same global propagation of magneto-
acoustic waves (Maltby et al. 1999, 2001; Brynildsen et al. 2000, 2002; Rouppe van der Voort
et al. 2003; Centeno et al. 2006).

At the photosphere, in the umbra, the power spectra of the oscillations is quite similar
to the corresponding one of the quiet Sun, with a broad distribution of frequencies and a
clear peak at about 3 mHz, corresponding to a period of 5 minutes. Thomas et al. (1982)
found that the oscillations in the 5-minute band are composed by a set of individual modes
of different period, which they interpret as the response of the sunspot to the 5-minute
p-modes in the surrounding quiet Sun atmosphere. Abdelatif et al. (1986) obtained the
power spectra of velocity oscillations measured with the Ti i 6304 Å line in an umbra (left
panel) and a quiet Sun region around the sunspot (right panel), shown in Figure 1.3. In
both regions the power is concentrated in the 5 minute band (3.3 mHz), but the power is
significatively lower in the umbra of the sunspot. They concluded that the umbra acts as a
filter in transmitting selected frequencies in the power spectrum of 5-minute p-modes of the
surrounding quiet atmosphere. Several works have studied this reduction of the oscillations
(e.g. Brown et al. 1992; Kumar et al. 2000; Balthasar et al. 1996), and several mechanisms
have been proposed to explain this power suppression: reduction of wave excitation inside
sunspots (Goldreich & Keeley 1977; Goldreich & Kumar 1988, 1990), p-mode absorption
inside sunspots (Cally 1995), different heights of spectral line formation due to the Wilson
depression, and altering of p-mode eigenfunctions by the magnetic field (Hindman et al.
1997).

Kobanov (1990) studied the spatial characteristics of the oscillations in the sunspot
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umbra using Fe i λ 5434 Å and Fe i λ 5576 Å spectral lines and found that most of the
photospheric umbra is covered by coherent 5 minute oscillations. However, in a later work,
Kobanov & Makarchik (2004) detected, using observations in Fe i λ 6569.2 Å, that the
spatial coherence of the 5 minute oscillations at the umbra center is lower than 2”, and
they propagate completely across all the sunspot.

The finite spatial and temporal extent of the wavetrains inside the umbra produces a
smooth distribution of the power in the 5-minute band. There are not preferred frequencies
for the highest power peaks in the umbra or the penumbra, and the frequency where the
power is concentrated varies when the power spectra is calculated using different spatial
positions and time intervals, but always inside the 5-minute band. An example of this result
is the work by Balthasar & Wiehr (1984). They studied the umbral Doppler oscillations
free from scattered light coming from the non-magnetized quiet Sun atmosphere by using
the inversion point of the Stokes V profiles of magnetically sensitive lines and also analyzing
pure umbral lines as Zr i λ 6127.5 and Ti i λ 6359.9. The periods of the observed waves
showed significant variations from 5 minutes and changed with time.

Sunspot waves are usually studied by measuring the fluctuations of intensity and line-
of-sight velocity derived from Doppler shift. The development of accurate spectropolari-
metric techniques and sophisticated inversion methods also make it possible to measure
magnetic field oscillations. From full Stokes inversions of the line profiles of Fe i λ 6301.5
and Fe i λ 6302.5, Lites et al. (1998) found an upper limit of 4 G for the amplitude of 5
minute oscillations in magnetic field strength. Moreover, they considered that their mea-
surement could be overestimated due to instrumental and inversion cross talk between the
velocity and magnetic signals. From a theoretical model of sunspot umbra they deduced
that the maximum expected magnetic field variations are 0.5 G. Bellot Rubio et al. (2000)
detected magnetic field fluctuations with amplitudes around 7-11 G based on inversions of
the full Stokes vector of three Fe i lines at 15650 Å. From the analysis of the amplitude of
the oscillations and the phase shift between the oscillations in magnetic field strength and
line-of-sight velocity they suggest that the obtained magnetic field variations are caused by
changes in the opacity which move upward and downward the height where the spectral
lines are sensitive to the magnetic field. In a later work, Khomenko et al. (2003) inter-
preted magnetic field oscillations as due to fast and slow MHD modes. They developed a
mathematical formalism based on the analytical solution of the MHD equations to separate
intrinsic variations of magnetic field from those due to the shift of line forming region, and,
from the comparison of these theoretical results with the observations presented by Bellot
Rubio et al. (2000), they found that a part of the detected oscillations in magnetic field
strength is due to intrinsic magnetic field fluctuations caused by magnetoacoustic waves.

The chromosphere of sunspots is dominated by 3 minute oscillations. The power spectra
usually show sharp peaks around 5-6 mHz, with power gradually dropping to noise values
at 8–15 mHz. Several lines have been used to obtain the chromospheric power spectra. One
of the first studies is the work by Kneer et al. (1981), who analized the Ca ii H, Ca ii K,
Na i D1, and Na i D2 lines obtaining a 160 s period for velocity and intensity chromospheric
fluctuations. The oscillations in the Ca ii λ 8542 Å infrared triplet, measured by Lites et al.
(1982) and Lites (1984), show a sharp peak at a period of around 180 s in both the velocity
and intensity signals. Lites (1986) observed the Ca ii H and He i λ 10830 Å lines and he
retrieved the umbral power spectra of velocity and intensity oscillations shown in Figure 1.4.
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Figure 1.4: Mean power spectra of velocity (solid line) and intensity (dashed line) oscillations measured in
He i λ 10830 (top panel) and Ca ii H in a sunspot umbra. Extracted from Lites (1986).

The power has a prominent peak at 5.5 mHz, and it decreases for higher frequencies until it
reaches noise values at 10 mHz. This pair of chromospheric lines is specially interesting in
the context of this thesis, since an analysis of the oscillations measured with these two lines
will be presented in Chapter 6. Thomas et al. (1987) also observed them and they found a
similar result in the velocity power spectra, with multiple peaks in the 3-minute band and
a strong peak at 5.5 mHz, but covering a broad band of frequencies between 4.5 and 10
mHz. Lites (1984, 1986, 1988) and Lites & Thomas (1985) studied the properties of the
absortion neutral iron line at 5434.5 Å. Its velocity power spectrum shows two peaks, one in
the 3 mHz (5 minute) band and the other in the 5 mHz (3 minute) band, both with similar
power. This behavior was explained considering that the contribution function of this line
has significant contributions from two different heights, one of them in the photosphere
and the other in the chromosphere. The oscillations with 3-minute period come from the
higher layer, while probably, most of the contribution to the 5-minute signal comes from
the photosphere. Chromospheric umbral oscillations have amplitudes of several kilometers
per second, and the velocities measured in chromospheric umbrae show saw-tooth temporal
profiles, typical for shock waves (Lites 1986; Centeno et al. 2006).

There have been many attemps to explain the chromospheric 3 minute oscillations.
Thomas & Scheuer (1982) proposed a resonant cavity for fast magneto-acoustic waves at
photospheric and subphotospheric layers. Alternatively, Zhugzhda et al. (1983) presented
a model of a resonant chromospheric cavity for slow mode waves responsible for the mul-
tiple peaks in the oscillation power spectrum, including peaks in the 5 mHz band. In
Zhugzhda et al. (1985) they discussed the suitability of their model rather than the one
by Thomas & Scheuer (1982) to explain chromospheric umbral oscillations. Gurman &
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Leibacher (1984) also investigated a resonator for the slow mode waves at chromospheric
levels. Recently, Centeno et al. (2006) reproduced the phase spectra between chromospheric
and photospheric velocity oscillations with a model of linear vertical propagation of slow
magnetoacoustic waves in a stratified magnetized atmosphere that accounts for radiative
losses, finding a good agreement between the theoretically computed time delay and that
obtained from the cross-correlation of photospheric Si i λ 10827 and chromospheric He i
λ 10830 velocity maps, both filtered around the 6 mHz band. From these results they
concluded that the chromospheric 3 minute power comes directly from the photosphere by
means of linear wave propagation.

Several spectral lines, formed at different heights from the photosphere to the chromo-
sphere, can be used to sample the wave propagation properties. Simultaneous time-series
of suited spectral lines are a powerful tool for studying sunspot waves. This analysis gives
information about the properties of the different wave modes as they propagate along the
atmosphere, the cutoff frequency value, or the amplification and phase delay of the pertur-
bations in their propagation. Using phase difference spectra between the umbral oscillations
observed in the photospheric line Fe i λ 5233 Å and in Hα, Giovanelli et al. (1978) found
that the phase delay indicates upward wave propagation. Lites (1984) inferred that slow
mode waves propagate upward into the chromosphere in the frequency band around 6.5
mHz, based on the phase differences between the oscillations of Ca ii λ 8498, Ca ii λ 8542
and Fe i λ 5434. From the study of the Doppler shifts observed in the intensity profiles
of the He i λ 10830 multiplet, Lites (1986) presented evidence of shock wave formation at
the chromosphere. This line, together with the photospheric Si i λ 10827, was used by
Centeno et al. (2006) to study the propagation of waves between the photosphere and the
chromosphere by the analysis of the phase and amplification spectra. The study presented
in Chapter 6 of this thesis is an extention of that work, with more spectral lines formed at
intermediate heights between the layers where the Si i and the He i lines are formed.

In the sunspot penumbra, the most characteristic wave phenomenon is running penum-
bral waves. They are observed as velocity and intensity wavefronts moving out from the
inner to the outer edges of the penumbra. The first detection of these waves by Gio-
vanelli (1972) comes from observations in Hα, finding transverse waves that develop in the
outer umbra and propagate outwards with a velocity of 20 km s−1. He interpreted them as
Alfvén type waves. Just before, Zirin & Stein (1972) also observed running intensity waves
in sunspot penumbrae, what they called “running penumbral waves”, which appeared to
be connected with umbral flashes. From their observations of Hα intensity they inferred
for these waves a period of 5 minutes and a constant velocity around 10 km s−1, and con-
sidered that they were probably sound waves. Since these first observations, many new
works have claimed the detection of running penumbral waves. Figure 1.5(a) shows a ve-
locity map covering the umbra and penumbra of a sunspot. The region above the white
line corresponds to the umbra, while the region below is the penumbra. In the penumbra,
the wavefront increases its radial distance to the center of the sunspot with time. Panels
(b) and (c) show how the frequency of the oscillations change between these two regions
in the filtered maps in the ranges 2.5–3.5 minutes and 4.5–5.5, respectively. The umbra
is dominated by waves with 3-minute period, while in the penumbral region the 5-minute
waves are the most important. As the running penumbral waves move across the penum-
bra, their radial velocity is apparently reduced and their frequencies decrease from 4–5
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mHz near the umbral/penumbral boundary to around 0.7–1.5 mHz at the outer edge of
the penumbra (Bogdan & Judge 2006). Two most probable interpretations were brought
forward to explain these oscillatory disturbances: they are believed to be either propagat-
ing waves through the penumbra generated in the umbra or a visual pattern resulting from
the delayed wavefront arrival of field-aligned slow magnetoacoustic waves propagating up
from the photosphere. Rouppe van der Voort et al. (2003) presented a set of Ca ii H and
Ca ii K data obtained with the former Swedish Vacuum Solar Telescope (Scharmer et al.
1985), its successor the Swedish 1-m Solar Telescope (Scharmer et al. 2003), and the Dutch
Open Telescope (Hammerschlag & Bettonvil 1998), all of them operated on the island of La
Palma in the Spanish Observatorio del Roque de los Muchachos. They found that umbral
flashes and running penumbral waves are closely related oscillatory phenomena, and sug-
gested that they share a common source below the visible photosphere. This explanation
is also supported by Bogdan & Judge (2006). Tziotziou et al. (2006) performed simultane-
ous two-dimensional observations in Ca ii 8542 and Hα to analyze the Doppler velocity of
the oscillations and the relationship between umbral flashes and running penumbral waves.
However, their study was not able to support the preference of one of the proposed sce-
narios over the other. Bloomfield et al. (2007) analyzed one of the temporal series of Si i
and He i observations obtained by Centeno et al. (2006), but while the latter considered
vertical propagation along umbral field lines, they extended the analysis to waves traveling
along the penumbra. They concluded that running penumbral waves are a visible pattern
of low-β slow mode waves propagating and expanding their wavefront along the inclined
magnetic field lines in the penumbra.

1.4 Numerical simulations

The theoretical study of wave propagation in atmospheres permeated by a magnetic field
needs a very complex mathematical description. A full analysis of these processes should in-
clude magnetohydrodynamics and radiative transfer, considering non local thermodynamic
equilibrium situations. Although a lot of analytical work was done in simple atmospheres
(Ferraro & Plumpton 1958; Zhugzhda & Dzhalilov 1984a), those works were restricted to
very idealized cases. Thus, numerical simulations face the challenge of clarifying the the-
oretical scenario, although their development entails great conceptual and computational
deals.

The recent progress in observations and numerical simulations of sunspot waves is sum-
marized in Khomenko (2009). In most cases, two-dimensional (2D) situations were con-
sidered. Despite this limitation, several important aspects were learned from these mod-
els. One of the first numerical simulations of magnetoacoustic waves in a bidimensional
stratified atmosphere was done by Shibata (1983), who introduced a pressure pulse in uni-
formly magnetized atmosphere to excite slow and fast magnetoacoustic waves. Over the last
years, several attempts were done to perform numerical simulations of waves in non-trivial
magnetic field configurations. Cargill et al. (1997) obtained numerical solutions for the
propagation of Alfvénic wave pulses in two dimensional magnetic field geometries from the
photosphere to the corona. While Cargill et al. (1997) centered their study in Alfvénic solu-
tions, Rosenthal et al. (2002) and Bogdan et al. (2003) were interested in magnetoacoustic
waves. Similar calculations for conditions appropriate for sunspot rather than flux tubes
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Figure 1.5: Velocity map covering the umbra and penumbra measured with He i. Original map (a), filtered
in the range 2.5 − 3.5 minutes (b), and filtered in the range 4.5 − 5.5 (c). The white line marks the
umbra/penumbra boundary (umbra above the line and penumbra below it), while right-hand side panels
show rms velocities.

were carried by Khomenko & Collados (2006). In all these works waves were generated by a
photospheric piston introduced as a bottom boundary condition in the magnetic region, and
they propagate upward from the photosphere to the chromosphere. These authors found
that the fast magneto-acoustic mode in the magnetically dominated region (i.e., where the
sound speed cS is much lower than the Alfvén speed vA) is refracted down and it comes
back to the gas pressure dominated atmosphere due to the gradients of the Alfvén speed.
Khomenko & Collados (2006) have shown that this is a robust feature of the simulations
and happens for a wide frequency range and at different distances from the axis of the
magnetic structure. Earlier, Rosenthal et al. (2002) demonstrated that the inclination of
the magnetic field lines is important for the fast mode refraction, i.e., in those regions where
the inclination angle is large almost all of the fast mode wave energy is refracted back down.
Another important feature of all these simulations is the presence of mode transformation
at the layer where vA = cS . Around this layer, the phase speeds of all modes are similar
and different waves can interact (Bogdan et al. 2003; Cally 2006; Khomenko & Collados
2006). Several works by Cally have gone deeper into the issue of mode transformation.
According to Cally (2006), the direction and efficiency of the mode transformation depend
on the frequency of the wave and the angle between the wavevector and the magnetic field.
When this angle is small, the fast mode can be converted into the slow mode and vice versa.
During this transformation, the wave conserves its physical nature (magnetic or acoustic).
On the other hand, when this angle is arbitrary but different from zero, the fast (slow)
mode in the region below vA = cS can remain as a fast (slow) solution above this layer. In



1.4 Numerical simulations 11

this case, as the fast (slow) wave propagates through the transformation region it changes
its nature from acoustic (magnetic) to magnetic (acoustic). In the case of the fast-to-fast
mode transformation, Cally (2005) pointed out that it is more efficient with increasing angle
between the wave vector and the magnetic field and for lower wave frequencies.

Other works have studied wave propagation in magnetic structures corresponding to
flux tubes. Many of them use the assumption of “thin” flux tube, where the horizontal
dimensions of the structure are much smaller than the characteristic vertical scales of the
atmosphere (Hasan et al. 2003; Hasan & Ulmschneider 2004). These structures present
differents oscillatory modes, including kink, sausage and torsional modes (Spruit 1981).
The topology of the flux tube was improved, leaving the “thin” flux tube aproximation, in
Hasan et al. (2005) and Khomenko et al. (2008). In these simulations the slow magneto-
acoustic mode reaches the layer where vA = cS and its energy is transformed into a slow
acoustic mode in the high atmosphere where vA > cS . Then this slow acoustic mode
propagates vertically along the field lines and stepeens into shocks.

Several numerical codes have been developed by the solar physics community to study
the propagation of waves in the magnetized atmospheres. They adopt different strategies
for the numerical scheme, boundary conditions and wave driving, having their advantages
and disadvantages (Moradi et al. 2009a). In the nonlinear 2D codes used by Rosenthal
et al. (2002), Hasan et al. (2005) and Khomenko et al. (2008), the waves are driven in the
simulation domain as initial condition at the lower boundary.

The upper boundary typically represents a problem in the wave simulations, since waves
should not artificially be reflected there back into the physical domain. Rosenthal et al.
(2002) apply characteristic boundary conditions at the top boundary; Hasan et al. (2005)
use the open boundary concept; while Khomenko et al. (2008) introduced a special medium
at the top called Perfectly Matched Layer (PML) which absorbs with almost no reflections
the waves that reach the upper boundary. Rosenthal et al. (2002) and Hasan et al. (2005)
solve the complete MHD equations, while Khomenko et al. (2008) solve equations for per-
turbations with all nonlinear terms retained. This strategy gives them an advantage for
the precision of the numerical scheme and for the application of the boundary conditions.

3D MHD codes for wave simulations also start being available. Cameron et al. (2007)
presented the semi-spectral linear MHD code SLiM, developed for helioseismology pur-
poses. In this code, the horizontal derivatives are evaluated in Fourier space while the
vertical derivatives are calculated with a two-step Lax-Wendroff scheme and the upper
boundary is treated as a sponge layer. Figure 1.6 shows an example of the results obtained
with this code. It illustrates a comparison of the observed cross-covariance of a wavepacket
which traverses a sunspot with a numerical simulation whose set up was chosen to mimic
the observations. Most of the features of the wavepacket once it has passed through the
sunspot seem to be reproduced by the simulations, like the amplitudes, phase, and spatial
spectrum. The amplitude of the wave is clearly reduced in the proximity of the sunspot.
This absorption is caused by the partial conversion of these modes into slow magnetoa-
coustic waves which propagate downward along field lines inside the sunspot. The mode
transformation removes energy from the wave that reaches the sunspot, whose amplitude
is reduced in the region after the sunspot.

Another 3D linear MHD code for wave propagation has been developed by Parchevsky
& Kosovichev (2007). The authors use the realistic OPAL equation of state and PML layer
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Figure 1.6: Comparison of the simulated vertical velocity and the observed cross-covariance at different time
steps, increasing from top to bottom. In each panel the upper frame shows the observed cross-covariance
and the bottom frame the simulated wave packet. The black circles of radius R0 = 10 Mm indicates the
location of the sunspots. Extracted from Cameron et al. (2007).
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Figure 1.7: Snapshot of density (left), z-momentum (middle) and vertical magnetic field (right) perturbations
at two different time steps: t = 20 min (top) and t = 25 min (bottom). Each panel includes two pictures:
a horizontal cut at the photosphere (top) and a vertical vut (bottom). Extracted from Parchevsky et al.
(2010).

as the upper boundary condition. Figure 1.7 illustrates the wave propagation obtained
with this code in a sunspot model. It shows the perturbations of density, z-momentum
and vertical magnetic field at two different time steps: at t = 20 min in top panels and
t = 25 min in bottom panels. Each panel consists of a horizontal cut at photospheric level
(top) and a vertical cut through the center of the sunspot (bottom). The amplitude of the
wavefront is clearly anisotropic due to the non-uniform background model.

Numerically, the upper magnetized atmospheric layers represent an additional problem,
strongly limiting the time step of the simulations due to the high values of the Alfvén
speed. To overcome this problem, one of the strategies used is the Lorentz force controller.
This method consists in reducing the amplitude of the Lorentz force in the layers where
the Alfvén speed is large. This method is used by Hanasoge (2008) in his 3D linear code.
However, the influence of this artificial procedure on the simulated wave properties has not
been verified yet.
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Recently, Shelyag et al. (2008) presented a nonlinear 3D parallel code developed on the
base of the VAC code (Tóth 1996). In this code, they use the same philosophy as Khomenko
et al. (2008), solving nonlinear equations for perturbations. There are also codes aiming at
modeling waves in coronal loops and low−β enviroments. An example of such codes is the
one by Terradas et al. (2008). In this work the authors use the code to study numerically
the kink oscillation in a flux tube, and find that the shear motion associated to this wave
might be unstable and produce significant deformations of the tube boundary.

1.5 Objectives of this thesis

Despite the recent progress in the analysis of sunspot waves, to date no comprehensive
model is available due to the complicated mathematical description of the physical processes
playing a role in realistic magneto-atmospheres in three spatial dimensions. The aim of
this thesis is to advance our understanding of the wave phenomena in sunspots by means
of numerical simulations and spectropolarimetric observations.

The first objetive is the study of mode transformation and propagation of waves in
3D numerical simulations. Both simulations and analytical theory of the mode refraction,
transformation, etc., were developed mostly for waves with high-frequencies, i.e. above, or
just at, the cutoff frequency of the solar atmosphere. It is not clear what the response of
the magnetic atmospheres to oscillations with long periods, like 5 minute waves, will be.
This response can be studied with the help of simulations of waves with low frequencies in
stratified magnetic atmospheres. The presence of magnetic field generates new wave modes,
whose propagation properties are different from those of quiet Sun waves. We address the
problem of the identification of these modes and evaluate their contribution to the energy
transport to the upper atmosphere.

The second objective is the analysis of observations obtained with several spectral lines.
Many observational works have been limited to the study of oscillations at only two heights,
one photospheric and one chromospheric. It is thus interesting to perform a more detailed
sampling of the sunspot atmosphere, using more spectral lines which are formed at several
intermediate heights between these two regions. For this observational study we have a
double aim. On the one hand, we expect to analyze the properties of wave propagation,
including amplitude amplification, phase difference spectrum, and cutoff frequency. On the
other hand, we aim to characterize the sunspot atmosphere and retrieve an estimation of
the formation height of the spectral lines used in this work.

Our last objective is the development of numerical simulations of the real wave pat-
tern observed between the photosphere and the chromosphere. Most of the simulations
in realistic magnetized atmospheres with long periods, like those observed in the Sun, ad-
dress questions related with helioseismic wave propagation below sunspots. With our code
we have a different aim, i.e., study these waves in the upper layers of the photosphere
and chromosphere of the Sun. At these heights the simulations can be compared with di-
rect measures obtained from spectropolarimetric observations. Such numerical calculations
should account for several observed issues, like the change of wave frequency with height
or the formation of shocks at chromospheric layers. These simulations will also allow us
to evaluate the contribution of magnetoacoustic waves to the chromospheric heating. Un-
derstanding this phenomenon is one of the greatest challenges of modern solar physics. It
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is related to the presence of magnetic structures at the solar surface, and the propagation
of energy by waves is one of the mechanisms proposed to explain the high temperatures
prevailing in the upper layers of the solar atmosphere.

1.6 Organization

In the next chapter we introduce the theoretical basis needed to understant the bulk of
this work, which consists on the magnetohydrodynamic equations and the theory of wave
propagation and mode transformation.

In Chapter 3 we explain the main tool used in this thesis: the numerical code. This
chapter introduces the equations solved by the code and the employed numerical techniques,
including the spatial and temporal discretization, artificial diffusivity, boundary conditions
and parallelization. The robustness of the code is verified in Chapter 4, where we show the
results of several numerical tests.

Chapter 5 presents the analysis of a set of simulations where different drivers are intro-
duced in a magnetohydrostatic model spanning from the photosphere to the chromosphere
of a sunspot. The propagation of waves through this height range is studied from an observa-
tional point of view in Chapter 6. In Chapter 7 we combine the numerical and observational
work, and develop a simulation which reproduces the observed wave propagation.

Finally, we present a summary of the conclusions extracted from this thesis and the
future prospects in Chapter 8.



2
Theoretical concepts

The Sun is a huge sphere which maintains its cohesion thanks to its own gravity, and
where matter is in a plasma state. The study of this star needs the knowledge of the

physical laws that control its interior, that is, the plasma. A plasma is a highly ionized
fluid which macroscopically is neutral, with many free electrons and ions in order to com-
pensate the charge, and whose behavior is collective and is dominated by free electrons.
In plasmas, charge neutrality is not satisfied at spatial scales smaller than a Debye length
λD = (KTǫ0/(nee

2))1/2, where K is the Boltzmann constant, T is the temperature, ǫ0 is
the permittivity, ne is the electronic density, and e is the charge of the electron. It means
that the medium must be big enough, much bigger than a Debye length in order to be
considered as a plasma. In the solar atmosphere λD is of the order of 10−6 m and the
spatial scales are usually bigger than 105 m, so this condition is well satisfied.

This chapter deals with the basic physics of this study, which includes the magnetohy-
drodinamic theory (Section 2.1) and its aplication to linear and non-linear wave propagation
(Sections 2.2 and 2.3, respectively), as well as the mode transformation phenomenon (Sec-
tion 2.4).

2.1 Magnetohydrodynamic basic equations

The behavior of a plasma can be described by Maxwell’s equations and Ohm’s law together
with the equations for hydrodynamics, i.e., mass continuity, motion and energy equations.
This set is known as magnetohydrodynamic equations (MHD) and it allows us to study the
coupling between the magnetic field and the plasma fluid.

2.1.1 Electromagnetic equations

Maxwell’s equations

The Maxwell’s equations relate the electric and magnetic field to their sources, that is, the
charge density and current density. They can be written as

∇×B = µ0

(

j+ ǫ0
∂E

∂t

)

, (2.1)
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∇×E = −∂B

∂t
, (2.2)

∇ · E =
ρ∗

ǫ0
, (2.3)

∇ ·B = 0, (2.4)

where E is the electric field, B is the magnetic field, j is the current density, ρ∗ is the charge
density, µ0 is the magnetic permeability, and ǫ0 is the permittivity of free space. Equation
(2.1) can be simplified using the so-called MHD approximation, for which the following
hypothesis are applied:

(i) Electromagnetic variations are non relativistic. Considering L and T as the spatial
and temporal scales, respectively, in which a magnitude changes, the characteristic velocity
is

V =
L

T
(2.5)

and it has to satisfy

V ≪ c, (2.6)

where c is the speed of light.

(ii) From Equation (2.2), the order of magnitude of the spatial variations of the electric
field can be estimated as

E

L
∼ B

T
⇒ E ∼ B

L

T
. (2.7)

Thus, comparing the left hand side term of Equation (2.1) with the second term of the
right hand side (displacement current), the last one is much smaller than the first one:

|µ0ǫ0
∂E
∂t |

|∇ ×B| ∼
1
c2

E
T

B
L

=
L2/T 2

c2
=

V 2

c2
≪ 1 (2.8)

Neglecting the displacement current term, Equation (2.1) is simplified to

∇×B = µ0j. (2.9)

One of the consequences of this equation can be analyzed by the calculation of its diver-
gence, resulting in ∇j = 0. Physically, it means that charge accumulations are negligible.

Ohm’s law

According to Ohm’s law, the current density is proportional to the total electric field in
a frame of reference moving with the plasma. When the movement of this plasma is at
a non-relativistic speed and the medium is permeated by a magnetic field, the Ohm’s law
may be written as

j = σ(E+ v ×B)− σ

nee
(j×B), (2.10)
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where σ is the electric conductivity. The last term corresponds to the Hall term. It is
produced by the drifting of charged particles across the magnetic field. It vanishes when
the collisions dominate over the cyclotron frequency, since the electrons cannot complete
their spiral motion. In the following we will neglect this term. Applying the rotational to
both sides of Equation (2.10), and replacing j and ∇×E according to Equations (2.9) and
(2.2), respectively, we may retrieve the induction equation

∂B

∂t
= ∇× (v ×B)−∇× (η∇×B), (2.11)

where we have defined the magnetic diffusivity η = (µ0σ)
−1. In this equation, ∇×(v×B) is

called advective term, since its effect is to couple the magnetic field with the plasma motion,
while −∇× (η∇×B) is the difusive term, as it produces the elimination of magnetic field.
The magnetic Reynolds number estimates the relative importance between these two terms
in order of magnitude, and it is defined as

Rm =
|∇ × (v ×B)|
|∇ × (η∇×B)| ∼

|v||B|/L
η|B|/L2

= vL/η. (2.12)

The induction equation determines the behavior of the magnetic field once the velocity
of the plasma is known, and it depends on the value of Rm. When Rm is high, the diffusive
term is almost zero, while in those cases where Rm is very low the advective term is
negligible. In general, in astrophysics and in the Sun, Rm has very high values, so the
diffusion is usually negligible.

The limit Rm ≫ 1 corresponds to a perfectly conductive plasma. The reason of the high
values presented by Rm is the high electric conductivity σ, which implies a low magnetic
diffusivity, together with the large characteristic distances. The magnetic Reynolds number
at the photosphere has been estimated to be of the order of 103-106 (Stix 1989). Mathe-
matically, Rm → ∞ is equivalent to σ → ∞, and in this case the Ohm’s law is simplified
to

E+ v ×B = 0 (2.13)

in order to keep the current density with finite values.

In addition, the Alfvén’s theorem of flux-freezing states that in a perfectly conductive
plasma, magnetic field lines move together with the plasma, and the fluid motions are only
possible along field lines.

2.1.2 Plasma equations

The behavior of the magnetic field is described by the induction equation (Equation 2.11),
and its relation with the fluid comes from the presence of the velocity term in that equation.
The dynamics of the plasma depends on the equations of continuity, motion and energy,
which will be discussed in the next sections together with their coupling to the magnetic
field.
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Mass continuity

It represents mass conservation, and may be written as

∂ρ

∂t
+∇(ρv) = 0, (2.14)

where ρ is the mass density and v is the velocity. At a fixed location, the density increases
(∂ρ∂t > 0) if there exists a mass flux towards its surroundings, while it decreases in the
opposite case.

Equation of motion

It indicates the conservation of the momentum, and it is given by

∂ρv

∂t
+∇ · (ρvv) = ρg −∇p+ j×B+∇ · τ̄ , (2.15)

where p is gas pressure, g is the aceleration of gravity, and vv indicates the tensor product
of the velocity. The last term of the previous equation is the viscous force. In the case of
a compressible gas, the components of the viscous stress tensor τ̄ are

τij = µ
( ∂vi
∂xj

+
∂vj
∂xi

− 2

3
δij(∇ · v)

)

, i, j = 1, 2, 3 (2.16)

with µ being the dynamic viscosity. The Reynolds number Re evaluates the importance of
the viscosity, and it is obtained as the ratio in order of magnitude between the advective
and viscous terms of Equation (2.15). Defining the kinematic viscosity ν = µ

ρ , the Reynolds
number is given by

Re =
∇ · ρvv
∇ · τ̄ ∼ ρV 2/L

µV/L2
=

ρV L

µ
=

V L

ν
. (2.17)

At the photosphere, the Reynolds number has values of the order of Re ∼ 108, so the
effect of viscous forces is negligible. Although the Sun is a rotating system, the rotational
terms can be ignored for the calculation of the momentum balance. In the photosphere,
the centrifugal aceleration is about four orders of magnitude lower than the gravitational
aceleration, while the ratio of advective term of Equation (2.15) (∇·ρvv) to the momentum
due to the Coriolis force (2ρΩ × v), the so-called Rossby number, is around 102-103.

Energy equation

The conservation of energy is represented by

∂e

∂t
+∇ · [v(e + p+

B2

µ0
)− 1

µ0
B(v ·B)] =

=
1

µ0
∇ · (B× η(∇×B)) +∇ · (τ̄ · v) +∇ · (κ∇T ) + ρ(g · v) +Qrad. (2.18)

In this equation, e is the total energy density per volume unity, which is obtained as the
sum of the kinetic ekin = ρv2/2, magnetic emag = B2/(2µ0) and internal eint = p/(γ − 1)
energy densities.
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Looking to the left hand side of the equations, the term ∂e/∂t indicates the variation of
the energy at a fixed location, which depends on the rest of the terms. The term ∇· (ve) is
the convective transport of the energy, that is, the energy that a fluid element transports
from one location to another if it interchanges no heat or work with its surroundings, while
∇·(vp) is the compression-expansion work. The same reasoning may be applied to the other
two terms of the left hand side, which indicate the magnetic energy transport (|B|2/µ0)
and magnetic pressure work (−B(v ·B)/µ0).

Another set of terms which also affect the energy balance appears on the right hand
side of the equation. The first term shows the loss of magnetic energy due to the diffusion
of the magnetic field, while the second is the energy dissipated by the viscous forces. The
third term is the transport by thermal conduction, where T is the temperature and κ is
the thermal conductivity, and the fourth term is the work produced by the gravity. Finally,
Qrad is a source term produced by radiative transfer, which takes into account the heating
or cooling due to the interaction of the plasma with radiation.

The conservation of internal energy is expressed by

∂

∂t

( p

γ − 1

)

+ v∇ p

γ − 1
+

γ

γ − 1
p∇ · v = ρ∇ · (κ∇T ) + ρQrad + ρ

j2

σ
. (2.19)

This equation can be related with Equation (2.18) by means of the equations of conti-
nuity, motion and Ohm’s law.

Equation of state

In order to close the system of MHD equations, it is necessary to write an equation of state
which relates the thermodynamic variables of the fluid. For simplicity, the perfect gas law
can be taken, and it may be written in the form

p =
kB
m

ρT, (2.20)

where kB is the Boltzmann constant and m represents the mean particle mass. Usually,
instead of m the mean atomic weight µ̃ = m/mp is used, which is the mean particle mass
in units of proton mass mp. Equation (2.20) becomes

p =
R

µ̃
ρT, (2.21)

where R = kB/mp is the gas constant. A fully-ionized hidrogen plasma is composed by
the same number of protons and electrons. Since the mass of the electron is negligible in
comparison with the mass of the proton, in this plasma µ̃ = 0.5. In the solar atmosphere the
presence of other elements modifies µ̃, taking values around 0.6 except near the photosphere,
where hydrogen and helium are not fully ionized.

2.1.3 Assumptions

This section encompasses the set of assumptions that have been made in the derivation of
the magnetohydrodynamic equations written for an inertial frame, and are briefly stated in
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the following:

(1) The plasma is treated as a continuum, since the length scale of the variations greatly
exceeds the characteristic plasma length, i.e., the Debye length.

(2) The plasma is in thermodynamic equilibrium, i.e., it is dominated by collisions (with
velocity distribution functions close to Maxwellian).

(3) All the plasma properties, as the coefficients η and µ, are considered constant.

(4) The typical velocity of the studied phenomena is much lower than the speed of light,
so relativistic effects are neglected. This assumption allows us to neglect the displacement
current term (1c

∂E
∂t ) in the Maxwell’s Equation (2.1)

(5) The plasma is treated as a single fluid, without considering a “three-fluid” model
for electrons, protons and neutral atoms. Thus, a simple Ohm’s law is suitable, instead of
a generalized Ohm’s law that would be necessary if the plasma would not be dominated by
collisions.

2.2 Waves

Waves are generated due to the appearance of restoring forces when the fluid is slightly
perturbed from an equilibrium state. The Sun is a dynamic body where different movements
appears at a variety of scales, and they act as driver elements which allow for the creation
of several wave types in the solar atmosphere. Depending on the restoring force considered,
these waves will present different characteristics. Thus, magnetic tension generates Alfvén

waves, magnetic pressure produces compressional Alfvén waves, plasma pressure creates
acoustic waves and gravity force generates gravity waves. In the situation considered in
this thesis, all forces are present and have the same order of magnitude in a general case.

2.2.1 Basic equations

Simple wave modes will be considered in this section. To that aim the equations of continu-
ity, motion and energy, together with the induction equation and the Maxwell’s Equation
(2.4) will be considered. This set of equations may be written as:

∂ρ

∂t
+∇(ρv) = 0 (2.22)

∂ρv

∂t
+∇ · (ρvv) = ρg −∇p+

1

µ0
(∇×B)×B (2.23)

∂

∂t

( p

ργ

)

+ v · ∇
( p

ργ

)

= 0 (2.24)

∂B

∂t
= ∇× (v ×B) (2.25)
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∇ ·B = 0 (2.26)

As can be seen, the viscous term of the equation of motion has been neglected, as well
as the diffusive term in the induction equation, since the conditions of the solar atmosphere
impose a high Rm. The energy loss terms have been dropped from the energy Equation
(2.19), which yields Equation (2.24). It is valid for a plasma where the period of the wave is
much shorter than the characteristic time of the losses of energy due to heat flux, radiative
cooling or ohmic heating, and it indicates that the ratio p/ργ keeps constant for a fluid
element following the movement (adiabatic oscillations).

First, we present the equations for the equilibrium state, that is, with the temporal
derivatives and the velocity set to zero:

0 = ρ0g −∇p0 +
1

µ0
(∇×B0)×B0 (2.27)

∇ ·B0 = 0. (2.28)

Next, we introduce small departures from the equilibrium in ρ, p, B y v according to

ρ = ρ0 + ρ1 (2.29)

p = p0 + p1

B = B0 +B1

v = v0 + v1 = v1 = vxex + vyey + vzez

and linearize the Equations (2.22)-(2.26) by neglecting the products between the pertur-
bations (denoted by subindex 1). Taking into account the equations for the equilibrium
(Equations 2.27 and 2.28), for an isothermal atmosphere we obtain the system

∂ρ1
∂t

+ (v1 · ∇)ρ0 + ρ0(∇ · v1) = 0, (2.30)

ρ0
∂v1

∂t
= −∇p1 +

1

µ0
(∇×B1)×B0 − ρ1g, (2.31)

∂p1
∂t

+ (v1 · ∇)p0 − c2S

(∂ρ1
∂t

+ (v1 · ∇)ρ0

)

= 0, (2.32)

∂B1

∂t
= ∇× (v1 ×B0), (2.33)

∇ ·B1 = 0, (2.34)

where the speed of sound cS = (γ p0
ρ0
)1/2 has a constant value since the temperature is

constant. Setting the gravity in the direction −ẑ and after calculating the time derivative
of Equation (2.31), substituting ∂ρ1/∂t, ∂p1/∂t and ∂B1/∂t from Equations (2.30), (2.32),
and (2.33), a single equation for velocity perturbations is obtained:

∂2v1

∂t2
= c2S∇(∇ · v1)− (γ − 1)gẑ(∇ · v1)− g∇v1z + [∇× (∇× (v1 ×B0)]×

B0

µ0ρ0
. (2.35)
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2.2.2 Waves in an unstratified atmosphere

The characteristic length of a stratified atmosphere is given by the pressure scale height
H0 = c2S/(γg). If the wavelength of a perturbation is much smaller than the scale height,
gravity can be neglected in Equation (2.35). With this approximation, this is reduced to

∂2v1

∂t2
= c2S∇(∇ · v1) + [∇× (∇× (v1 ×B0)]×

B0

µ0ρ0
. (2.36)

In this limit we can consider for all the variables a solution of plane waves of the form

v1(r, t) = V ei(k·r−ωt). (2.37)

The period of the wave is 2π/ω, its wavelength is 2π/k, and its direction of propagation
is k̂. Applying solutions like Equation (2.37) is equivalent to replace ∂/∂t by −iω and ∇
by ik. Thus, Equation (2.36) becomes

ω2v1 = c2Sk(k · v1) +
[

k× (k× (v1 ×B0))
]

× B0

µ0ρ0
. (2.38)

It is convenient to define the Alfvén speed

vA =
B0

(µ0ρ0)1/2
. (2.39)

The values of the Alfvén speed are below 5 km s−1 in the photosphere, and reach around
1000 km s−1 in the chromosphere of sunspots. Introducing the definition of the Alfvén speed
in Equation (2.38), and after some vectorial calculations, we obtain

ω2v1 = (c2S + v2A)(k · v1)k+ (vAk)
[

(vA · k)v1 − (v1 · k)vA − (vA · v1)k
]

. (2.40)

Assuming an arbitrary direction of propagation, without loss of generality we can assign
the Z axis to the direction of the magnetic field and choose the orientation of the X and
Y axes in such a way that the propagation is confined to the plane XZ. The cartesian
components of Equation (2.40) are

[

ω2 − v2Ak
2 − c2Skx

]

v1x = c2Skxkzv1z (2.41)

ω2v1y = v2Ak
2
zv1y (2.42)

c2Skxkzv1x = (ω2 − c2Sk
2
z)v1z (2.43)

The set of Equations (2.41)–(2.43) is decoupled into two independent systems, which
give rise to three types of wave modes: fast and slow magneto-acoustic waves and the
Alfvén wave. Each of these modes is described by its own dispersion relation. Dispersion
relations ω = ω(k) give the frequency as a function of the wave number, and they allow for
the calculation of the phase velocity, vph = ω/k, and the group velocity, vg = ∂ω/∂k. The
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first one corresponds to the velocity propagation of a plane wave in the direction of k, while
the second one is the velocity of the energy propagation, whose magnitude and direction
generally do not coincide with those of vph. When vph depends on the wavelength the wave
is dispersive. If ω is proportional to k, the wave is non-dispersive (ω/k = constant). The
phase velocity and the group velocity of a non-dispersive wave coincide.

In the next sections we will discuss the solutions of the two independent system of the
set of Equations (2.41)–(2.43).

Alfvén wave

From Equation (2.42), taking into account that kz = k cos θB, where θB is the angle between
the magnetic field and the direction of propagation, we obtain the dispersion relation

ω = kvA cos θB = ±vAk (2.44)

for Alfvén waves.

• Phase and group velocities

Their phase velocity vph = vA cos θB varies with the direction of propagation, reaching
its maximum value along magnetic field and vanishing in the direction normal to it.
According to the definition of the group velocity, we obtain vg = ∂ω/∂k = ±vA.
It means that Alfvén waves transport energy in the direction of the magnetic field,
although the wave perturbation in velocity can propagate forming any angle θB with
B0, except θB = π/2.

• Oscillations in velocity and magnetic field

From Equation (2.42) we find that for v1y different from 0 there is a wave with
velocity oscillations in the direction ey, and according to the chosen system of reference
they are perpendicular to k and B0. From Equation (2.34) we obtain k · B1 = 0,
which implies that magnetic fields fluctuations are perpendicular to the direction of
propagation.

The introduction of the solution for plane waves in the induction equation for pertur-
bations (Equation 2.33) gives

−ωB1 = k× (v1 ×B0), (2.45)

or equivalently

−ωB1 = (k ·B0)v1 − (k · v1)B0. (2.46)

Since the velocity is perperdicular to the direction of propagation, i.e., k · v1 = 0,
Equations (2.44) and (2.46) lead to the equation

v1

vA
= −B1

B0
, (2.47)
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which means that the perturbations in velocity and magnetic field are parallel, both
perpendicular to the direction of propagation.

As stated before, B0 ·v1 = 0, and this expression together with Equation (2.47) results

B0 ·B1 = 0, (2.48)

indicating that the magnetic field perturbation is normal to B0.

• Oscillations in pressure and density

Equations (2.30) and (2.32) imply that, with ρ0 and p0 uniform, these waves do not
produce changes in pressure and density.

• Restoring force

In the case of Alfvén waves, the Lorentz force is the cause of the oscillation, and it
may be written as

j1 ×B0 = i(k×B1)×B0/µ0 = i(k ·B0)×B1/µ0 − i(B0 ·B1)× k/µ0. (2.49)

The first term of the right hand side of Equation (2.49) comes from magnetic tension
and the second is due to magnetic pressure. According to Equation (2.48), magnetic
pressure term vanishes, so the restoring force of Alfvén waves is magnetic tension.
In addition, following Equation (2.47), the ratio of the magnetic energy to the ki-

netic energy (
B2

1/(2µ0)

ρ0v21/2
) is unity, meaning that magnetic and kinetic energies are in

equipartition for Alfvén waves.

Magneto-acoustic waves

The system formed by Equations (2.41) and (2.43) can be combined in a single equation
which gives the dispersion relation

ω4 − ω2k2(c2S + v2A) + c2Sv
2
Ak

4 cos2 θB = 0 (2.50)

for magnetoacoustic waves. The phase velocity of these waves is

v2ph =
(ω

k

)2
=

1

2
(v2A + c2S)±

1

2

√

(v2A + c2S)
2 − 4v2Ac

2
S cos2 θB, (2.51)

where the positive sign corresponds to fast magnetoacoustic waves and the negative sign
to slow magnetoacoustic waves. Moreover, after applying the square root to the previous
expression, the two different signs of the solution indicate the opposite directions in which
the waves can propagate.

Phase velocity of magneto-acoustic waves depends on the direction of propagation given
by the angle between k and B0. For propagation along magnetic field (θB = 0) the ratio
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Figure 2.1: Variation of the phase velocity with the angle θB for magnetoacoustic and Alfvén waves. (a)
cS > vA; (b) cS < vA.

ω/k takes the value vA or cS for fast or slow mode. For propagation across magnetic field
(θB = π/2) the phase velocity of the fast wave is vph = (v2A + c2S)

1/2 and that of the slow
wave vanishes (see Figure 2.1).

When one of the characteristic speeds is much higher than the other, the dispersion
relation can be simplified to ω = kvfast for the fast mode and ω = kvslow cos θB =
vslowk ·B0/|B0| for the slow mode, where vfast is the largest velocity between vA and
cS , while vslow is the smallest. In the case of the fast mode, the direction of the phase and
group velocity is k and their magnitude is either cS or vA, and the energy is propagated
in the same direction of the wave. In the case of the slow mode, the energy is propagated
along magnetic field lines, according to the group velocity. When the sound and Alfvén
speeds are similar, the direction of the group velocity and phase velocity is different for fast
and slow modes, as can be retrieved from the derivation of vg from Equation (2.50). The
angle α between both directions depends on the local values of vA, cS and θB. Following
Khomenko & Collados (2006) it is given by

tanα =
c2Sv

2
A sin(2θB)

2vph(2v
2
ph − v2A − c2S)

, (2.52)

where vph is the phase velocity obtained from Equation (2.51).

In those regions where the sound speed is much higher than the Alfvén speed, the fast
wave propagates in all directions at the sound speed with longitudinal oscillations, while
the behavior of the slow wave is similar to a magnetic wave and it produces transversal
oscillations to the magnetic field and propagates along field lines. On the other hand, in
the region where the magnetic field dominates over pressure forces, the fast mode has a
magnetic nature, while the slow mode is acoustic-like and it mainly propagates along field
lines at the sound speed.
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2.2.3 Waves in a stratified atmosphere

In all the cases of MHD waves studied until this point we have considered that the gravity
is negligible, so we have presented waves in the limit where the wavelength is much lower
than the scale height. Zhugzhda & Dzhalilov (1984a) obtained an exact solution of the
equations for magneto-acoustic-gravity waves in a conductive isothermal atmosphere in the
presence of a uniform oblique magnetic field. According to their work, when the wave
propagation direction lies in the plane including the gravity and oblique magnetic field
vectors, the analytical solution can be expressed in terms of the Meijer functions. In
this section we analyze the effects of the introduction of the gravity in the equations in
an isothermal, plane-parallel atmosphere, which is vertically stratifed due to the gravity
and has a constant vertical magnetic field following the work by Ferraro & Plumpton
(1958). With this approximation, the introduction of a small perturbation which propagates
vertically in a linear regime produces the generation of two types of waves. One of them is an
acoustic wave with longitudinal oscillations. The other is an Alfvén wave with fluctuations
in the transversal velocity.

If the atmosphere is permeated with a constant magnetic field in the direction of the Z
axis, then B0 = (0, 0, B0), and Equation (2.35) becomes:

∂2v1

∂t2
= c2S∇(∇ · v1)− (γ − 1)gẑ(∇ · v1)− g∇v1z + v2A∇(∇ · v1)−

−ẑv2A
∂(∇ · v1)

∂z
− B0

µ0ρ0
[B0 × (∇× v1)]. (2.53)

This equation may be decomposed in its three Cartesian components

∂2v1x
∂t2

= (c2S + v2A)
∂(∇ · v1)

∂x
− g

∂v1z
∂x

+ v2A

(∂v1x
∂z

− ∂v1z
∂x

)

, (2.54)

∂2v1y
∂t2

= (c2S + v2A)
∂(∇ · v1)

∂y
− g

∂v1z
∂y

+ v2A

(∂v1y
∂z

− ∂v1z
∂y

)

, (2.55)

∂2v1z
∂t2

=
∂

∂z

[

c2S(∇ · v1)− gv1z

]

− (γ − 1)g(∇ · v1). (2.56)

Without loss of generality, we can choose the direction of the X and Y axes in order to
make v1 independent of y. Equation (2.55) is simplified to

∂2v1y
∂t2

= v2A

(∂v1y
∂z

)

. (2.57)

The set of equations needed in this study is formed by Equations (2.54), (2.56), and
(2.57), and they are clearly separated into two independent systems. Equation (2.57)
represents an Alfvén wave with fluctuations in the transversal velocity. The other two
equations correspond to an acoustic wave with both horizontal and vertical components of
the velocity perturbations. Considering a harmonic solution of the form

v1(x, z, t) = A(z)ei(kx+ωt), (2.58)
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where A = (Ax, Ay, Az), the above set of equations can be written as

[

v2A

( d2

dz2
− k2

)

− k2c2S + ω2
]

Ax = −ik
(

c2S
d

dz
− g

)

Az, (2.59)

(

c2S
d2

dz2
− γg

d

dz
+ ω2

)

Az = −ik
[

c2S
d

dz
− (γ − 1)g)

]

Ax, (2.60)

v2A
∂2Ay

∂z2
+ ω2Ay = 0. (2.61)

If k = 0 (vertical propagation), Equation (2.59) yields two solutions:

Ax = 0, (2.62)

v2A
∂2Ax

∂z2
+ ω2Ax = 0, (2.63)

while Equation (2.60) is reduced to

c2S
d2Az

dz2
− γg

dAz

dz
+ ω2Az = 0. (2.64)

Equations (2.61) and (2.63) represent an Alfvén wave, since when k = 0 both X and
Y axes are equivalent, and Equation (2.64) corresponds to an acoustic wave propagating
vertically upward, without fluctuations in the horizontal direction according to Equation
(2.62). In the following, we discuss both waves independently.

Acoustic wave

The amplitude Az of this wave is given by Equation (2.64). If we consider solutions of the
form

Az(z) = Dez/2H0eikzz, (2.65)

being H0 = c2S/(γg) the pressure scale height, Equation (2.64) gives the dispersion relation

kz =
1

cS

(

∓
√

ω2 − ω2
c

)

. (2.66)

In this expression, ωc = γg/(2cS) corresponds to the acoustic cutoff frequency of the
atmosphere. The posible solutions for the vertical displacement of the wave are given by

Az(z) = De[1/2H0∓(
√

ω2
c−ω2)/c]z (ω < ωc),

Az(z) = Dez/2H0e∓i[(
√

ω2−ω2
c )/c]z (ω > ωc). (2.67)

When ω < ωc, A(z) is a real exponential, so there is no wave propagation. In this case,
the perturbation has an evanescent behavior that produces a stationary wave. On the other
hand, when ω > ωc, the vertical wave number kz is real and the solution A(z) gives rise
to an exponential growth with height of the amplitude of the perturbation. The complex
exponential includes the oscillatory character of the wave.
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Alfvén wave

If we change the independent variable of Equation (2.61) from z to vA, it yields to

v2A
d2Ay(z)

dv2A
− vA

dAy(z)

dvA
+

4ω2H2
0

v2A
Ay(z) = 0. (2.68)

The form of the general solution of this equation is

Ay(z) = CJ0

(2ωH0

vA

)

+DY0

(2ωH0

vA

)

, (2.69)

where J0 and Y0 are the Bessel functions of order zero of first and second type, respec-
tively, and C and D are arbitrary constants. The transversal velocity and magnetic field
perturbation are given by

vy(z, t) = iωCJ0

(2ωH0

vA

)

eiωt + iωDY0

(2ωH0

vA

)

eiωt, (2.70)

By1(z, t) =
CωBz0

vA
J1

(2ωH0

vA

)

eiωt +
DωBz0

vA
Y1

(2ωH0

vA

)

eiωt, (2.71)

respectively, where J1 is the Bessel function of order one. In these solutions, the height
dependence is included in vA = vA(z).

2.3 Shock waves

In the previous sections we have considered the propagation of linear waves in some idealized
atmospheres. Since the numerical code includes the nonlinear terms, it is interesting to
address how these terms affect the wave propagation. Firstly, we will show an example of
a nonlinear acoustic oscillation.

Considering a one-dimensional flux with the movement in the direction x whithout
gravity, magnetic field and viscosity. Continuity and motion equations are written as

∂ρ

∂t
+

∂

∂x
(ρv) = 0, (2.72)

∂v

∂t
+ v

∂v

∂x
= −1

ρ

∂p

∂x
, (2.73)

respectively. We suppose an isothermal atmosphere. In general, we have two independent
thermodynamic variables, and taking them as ρ and T , since T is constant, we obtain from
the equation of state p = p(ρ, T ) = p(ρ). From the continuity equation (2.72) we retrieve

∂ρ

∂t
+

d(ρv)

dρ

∂ρ

∂x
= 0. (2.74)

Since ∂p/∂x = (dp/dv)(∂v/∂x), the motion equation (2.73) yields

∂v

∂t
+
(

v +
1

ρ

dp

dv

)∂v

∂x
= 0, (2.75)
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that is:

dv

dρ

∂ρ

∂t
+

(

v +
1

ρ

dp

dv

)dv

dρ

∂ρ

∂x
= 0, (2.76)

and

∂ρ

∂t
+

(

v +
1

ρ

dp

dv

)∂ρ

∂x
= 0. (2.77)

In general ρ = ρ(x, t), and taking infinitesimal differences

δρ =
∂ρ

∂x
δx+

∂ρ

∂t
δt. (2.78)

Considering changes at constant ρ, i.e., δρ = 0:

∂ρ

∂x
δx = −∂ρ

∂t
δt, (2.79)

resulting

∂ρ/∂t

∂ρ/∂x
= −

(∂x

∂t

)

ρ
, (2.80)

where the subindex ρ at the bracket indicates changes with constat ρ. Introducing this
relation into continuity (Equation 2.74) and motion (Equation 2.77) equations we find

(∂x

∂t

)

ρ
=

d(ρv)

dρ
= v + ρ

dv

dρ
, (2.81)

(∂x

∂t

)

ρ
= v +

1

ρ

dp

dv
, (2.82)

respectively. Equating both expresions we obtain

dv

dρ
=

1

ρ2
dp

dv
. (2.83)

In this case with constant temperature c2S = dp/dρ, and Equation (2.83) is equivalent
to

dv

dρ
=

c2S
ρ2

dρ

dv
, (2.84)

which leads to

dv

dρ
= ±cS

ρ
. (2.85)

From Equation (2.85), together with the isothermal relation c2S = dp/dρ and Equation
(2.81) we obtain

(∂x

∂t

)

ρ
= v ± cS . (2.86)
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Since once ρ is known v is determined, we can express any thermodynamic magnitude
as function of v instead of ρ, and Equation (2.86) results

(∂x

∂t

)

v
= v ± cS(v). (2.87)

Thus, the velocity of propagation of the wave u is written as

u = v ± cS(v). (2.88)

The two signs correspond to the waves that propagate in opposite directions. When
the wave has a finite non-infinitesimal amplitude and the nonlinear terms in the equations
become important, the velocity of propagation of the wave depends on the velocity of the
perturbation, opposite to the case of a linear acoustic wave where each part of the wave
moves with the same speed cS . In the latter, the wave profile maintains a fixed shape.
However, in the nonlinear case the crest of the sound wave moves faster than its leading
or trailing edge, producing a progressive steepening of the wavefront as the faster parts
catch the slower ones, and the wave forms a sawtooth profile. The large values of the
gradients of the velocity, density, pressure and temperature at the wavefronts produces
that the dissipative processes are no longer negligible. Thus, the profile of the shock is
determined by a balance between the steepening produced by the nonlinear terms and the
broadening generated by the dissipative terms. Since the shock travels faster than cS , the
information (which travels at cS relative to the equilibrium) cannot be propagated to the
medium ahead the shock wavefront. The dissipation inside the shock produces a conversion
of the energy carried by the wave into thermal energy by means of particle collisions and
also to compress and heat the gas.

2.4 Mode transformation

In the atmosphere of a sunspot, the Alfvén velocity increases very fast, starting from a
region where it is lower than the sound speed and reaching several orders of magnitude
larger values in higher layers. In this way, an upward propagating wave which travels from
the photosphere to the chromosphere will reach a layer where both characteristic velocities
are equal, vA = cS . Around this height, different wave modes can interact, producing wave
transformation (see, for example, Zhugzhda & Dzhalilov 1982, 1984b; Bogdan et al. 2002,
2003; Rosenthal et al. 2002; Cally 2005, 2006; Khomenko & Collados 2006).

The phase velocity, vph, is a continuous function which depends on the spatial coor-
dinates, and this fact must remain after wave transformation. As the wave reaches the
transformation layer vA ≃ cS , the phase velocity of both modes becomes similar, and
the energy may be transferred among the different modes of the dispersion relation. The
direction and efficiency of the transformation depends on, among other parameters, the
frequency of the wave and the angle between the wave vector and the magnetic field.

When the angle θB between the wave vector k and the magnetic field B0 is small in the
region where vA ≃ cS , the fast mode may be transformed partially in the slow mode and vice
versa. In this transformation, the wave keeps its physical nature (magnetic of acoustic).
In the case of high frequencies (above the cutoff frequency) in a vertical magnetic field,
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according to (Cally 2006) the coefficient of the transformation from the fast to the slow
mode is aproximately given by

C = exp
[

− kπsin2θB
|(d/ds)(c2S/v2A)|

]

, (2.89)

where s is the distance along the direction defined by the vector k. This coefficient must be
evaluated at the point where vA = cS . As this expression shows, the fast-to-slow conversion
is complete for the wave with k in the direction of B0. When the angle between these two
vectors is different from zero, the energy fraction which is transformed from the fast to the
slow mode is reduced as the angle θB increases. Moreover, the value of C depends on the
frequency by means of the wave number k, in such a way that for higher frequencies the
set of angles θB for which the conversion is effective is reduced.

If the angle between the wave vector k and the magnetic field B0 is arbitrary but
different from zero, the fast solution below the region vA ≃ cS may follow its upward
propagation as a fast solution above it, but its nature changes from acoustic (vA < cS) to
magnetic (vA > cS). The same happens to the slow wave, which keeps as a slow solution but
changes from magnetic to acoustic. According to Cally (2005), the fast-to-fast coefficient
of conversion increases with the angle θB and with the increase of the frequency of the
wave, ω. For waves with k along magnetic field (θB = 0), the conversion coefficient is zero
independently of the frequency, and there is no conversion of energy between the acoustic
and magnetic modes.

Only few studies have analyzed the transformation to an Alfvén mode, since most of the
models have been two dimensional. In three dimensions the Alfvén wave may couple to the
magnetoacoustic modes, and there may appear mode conversion among these modes. One
of the pioneering works on this subject is the one presented by Cally & Goossens (2008).
They find that energy transformation from magnetoacoustic waves to Alfvén waves can be
important for magnetic field inclinations of 30o − 40o from the vertical, with the direction
of propagation of the waves forming an angle of 60o − 80o with the plane which contains
the magnetic field lines. This conversion to Alfvén wave occurs over a wide height range of
several hundreds of kilometers, different from the fast/slow transformation that is confined
to a layer near the height where the sound speed and the Alfvén speed are similar. For
these angles, the efficiency of the conversion from fast (acoustic) mode to an Alfvén mode
is almost two times larger than the slow mode for 5 mHz waves.



3
The MHD code

This chapter describes the development of the numerical MHD code. The code calculates
the response of magnetic structures in equilibrium to an arbitrary perturbation. It

solves the three dimensional nonlinear MHD equations for perturbations. It is an extension
to three dimensions of the code described in Khomenko & Collados (2006), and it was
parallelized to perform simulations in large 3D domains. It is written in Fortran 90.

The organization of the chapter is as follows: the first section presents the MHD equa-
tions which are solved by the code; Sections 3.2 and 3.3 explain the numerical procedures
of the spatial and temporal derivatives, respectively; in Section 3.4 we discuss the artificial
difusivity introduced in the code; Section 3.5 sets the criteria to estimate the time step
for each iteration; Section 3.6 accounts for the filtering which is applied to the variables;
Section 3.7 presents the Perfect Matched Layer boundary conditions; and the last section
briefly explains the parallelization.

3.1 MHD equations

In Section 2.1 we have discussed the MHD equations which must be solved by the code.
Written in conservative form, these equations are:

∂ρ

∂t
+∇(ρv) = 0 , (3.1)

∂(ρv)

∂t
+∇ ·

[

ρvv +
(

p+
B2

2µ0

)

I− BB

µ0

]

= ρg + S(t) , (3.2)

∂e

∂t
+∇ ·

[

v
(

e+ p+
B2

2µ0

)

− 1

µ0
B(v ·B)

]

= ρ(g · v) +Qrad , (3.3)

∂B

∂t
= ∇× (v ×B) , (3.4)

where I is the identity tensor, ρ is the density, v is the velocity, p is the gas pressure, B
is the magnetic field, g is the gravitational acceleration and e is the total energy per unit
volume,

e =
1

2
ρv2 +

p

γ − 1
+

B2

2µ0
. (3.5)
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The dot ‘·’ represents the scalar product of vectors, while the notation ‘BB’ stands
for the tensor product. The energy losses Qrad are approximated by the Newton law of
cooling. We neglect the viscous force, the thermal conduction and the terms describing the
diffusion of the magnetic field. However, artificial equivalents of some of these terms are
introduced later for the issue of numerical stability of the simulations. The term S(t) in
Equation 3.2 represents a time-dependent external force, to account for the driver exciting
the perturbation.

For numerical reasons, the MHD equations should be expressed in conservative form,
written schematically as

∂u

∂t
+

∂F(u)

∂x
+

∂G(u)

∂y
+

∂K(u)

∂z
= H(u), (3.6)

where u is the considered variable, F(u), G(u) and K(u) are the fluxes of this variable in
the directions x, y, or z, respectively, and H(u) represents sink or source terms. The set
of Equations (3.1)-(3.4) is written in this way to show a conservation law, meaning that
the variations of a magnitude (mass, energy or momentum) in a spatial element depend on
the amount of that magnitude which enters or goes out through the boundaries and the
amount of it which is destroyed or created. A numerical scheme written following Equation
(3.6) is called conservative.

We assume that magnetohydrostatic equilibrium holds. In an equilibrium state, where
temporal derivatives and velocities are zero, and in the absence of external forces (S = 0),
the previous equations reduce to the equations of the force balance for a gravitationally
stratified magnetized plasma:

∇ ·
[(

p0 +
B0

2

2µ0

)

I− B0B0

µ0

]

= ρ0g . (3.7)

The code solves the system of non-linear equations for perturbations. Considering
departures from the equilibrium state induced by an external force S, variables ρ, p and B

can be expressed as the sum of the background value (subindex 0) and the perturbation
(subindex 1):

ρ = ρ0 + ρ1 , (3.8)

p = p0 + p1 , (3.9)

and
B = B0 +B1 , (3.10)

while the velocity only corresponds to a perturbed value v = v1. The non-linear equations
for perturbations are obtained by introducing expressions (3.8–3.10) into Equations (3.1–
3.4) and subtracting the equation of the magnetohydrostatic equilibrium (Equation 3.7).
The equations include first-order terms as well as higher orders (products of perturbed
variables). The following system of MHD equations for perturbations of density, pressure,
magnetic field and velocities is obtained in conservative form:

∂ρ1
∂t

+∇
[

(ρ0 + ρ1)v1

]

= 0 , (3.11)
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∂[(ρ0 + ρ1)v1]

∂t
+∇ ·

[

(ρ0 + ρ1)v1v1 +
(

p1 +
B2

1

2µ0
+

B1 ·B0

µ0

)

I−

− 1

µ0
(B0B1 +B1B0 +B1B1)

]

= ρ1g +
(∂[(ρ0 + ρ1)v1]

∂t

)

diff
+ S(t) , (3.12)

∂e1
∂t

+∇ ·
[

v1

(

(e0 + e1) + (p0 + p1) +
|B0 +B1|2

2µ0

)

−

− 1

µ0
(B0 +B1)

(

v1 · (B0 +B1)
)]

= (ρ0 + ρ1)(g · v1) +Qrad +
(∂e1
∂t

)

diff
, (3.13)

∂B1

∂t
= ∇× [v1 × (B0 +B1)] +

(∂B1

∂t

)

diff
, (3.14)

Artificial diffusion terms have been added to Equations (3.12–3.14) compared to Equa-
tions (3.2–3.4). The diffusivity terms in Equations (3.12–3.14) have their physical coun-
terparts (see Equations 2.15, 2.18, and 2.11, respectively) and are needed for reasons of
stability of the simulations (see Section 3.4). A similar strategy is applied in the MURAM
code (Vögler et al. 2005).

Taking into account the non-linear terms, the code can reproduce the phenomena which
depend on them, as for example the development of shocks. The use of equations for
perturbations instead of complete equations has two big advantages for wave simulations.
Firstly, the terms describing the static model and those for perturbations can vary by
orders of magnitude. Thus, by excluding equilibrium terms we avoid important numerical
precision problems. Secondly, the boundary conditions are easier to implement on equations
for perturbations (see Section 3.7).

The code has to deal with variables which present high constrast in their values, with
differences of several orders of magnitude. For example, in the same region the temperature
may reach thousands of kelvin while the density may be around 10−8 g cm−3. Numerically,
it may be problematic, so we have used dimensionless variables, taking as a reference their
value at some location or using a characteristic magnitude of the atmosphere. In the
following expressions, the symbols with a hat ( ˆ ) represent the adimensional variables,
which are related with the original as

ρ = ρ∗ρ̂ (3.15)

p = p∗p̂

v = c∗v̂

~B = B∗B̂

x = 2H∗x̂
∂

∂x
=

1

2H∗

∂

∂x̂

t =
t̂

ωc

∂

∂t
= ωc

∂

∂t̂
.
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In these relations, the asterisks indicate the equilibrium values of the variables at a

fixed position of the computatial domain. The parameter c∗ =
√

γ p∗
ρ∗

is the sound speed,

ωc = γg/2c∗ is the cutoff frequency of the plasma, and H∗ = c2∗/(2g) is the pressure scale
height.

This procedure has been performed with all the equations, and finally we have obtained
a set of equations in a suitable form to be solved numerically. The next sections show briefly
the process carried out with each of them.

3.1.1 Mass continuity

Starting with the continuity equation (Equation 3.11), if we express it in terms of the three
spatial coordinates, the equation results

∂ρ1
∂t

+
∂

∂x
[(ρ0 + ρ1)vx] +

∂

∂y
[(ρ0 + ρ1)vy] +

∂

∂z
[(ρ0 + ρ1)vz] = 0 . (3.16)

3.1.2 Equation of motion

According to the vector nature of Equation (3.12), we can extract three different scalar
equations from it, one for each component. The last terms on the right hand side of each
equation represent the diffusivity terms. They will be explained in Section 3.4. Assuming
the external force has only a vertical component, the scalar equations are

∂

∂t
[(ρ0 + ρ1)vx]+

+
∂

∂x

{

(ρ0 + ρ1)v
2
x + p1 +

1

µ0
[By0By1 +Bz0Bz1 −Bx0Bx1 +

1

2
(B2

y1 +B2
z1 −B2

x1)]
}

+

+
∂

∂y

{

(ρ0 + ρ1)vxvy −
1

µ0
[Bx1By0 +Bx0By1 +Bx1By1)]

}

+

+
∂

∂z

{

(ρ0 + ρ1)vxvz −
1

µ0
[Bx1Bz0 +Bx0Bz1 +Bx1Bz1)]

}

=
(∂(ρ0 + ρ1)vx

∂t

)

diff
(3.17)

∂

∂t
[(ρ0 + ρ1)vy]+

+
∂

∂x

{

(ρ0 + ρ1)vyvx −
1

µ0
[By1Bx0 +By0Bx1 +By1Bx1]

}

+

+
∂

∂y

{

(ρ0 + ρ1)v
2
y + p1 +

1

µ0
[Bx0Bx1 +Bz0Bz1 −By0By1 +

1

2
(B2

x1 +B2
z1 −B2

y1]
}

+

+
∂

∂z

{

(ρ0 + ρ1)vyvz −
1

µ0
[By1Bz0 +By0Bz1 +By1Bz1]

}

=
(∂(ρ0 + ρ1)vy

∂t

)

diff
(3.18)
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∂

∂t
[(ρ0 + ρ1)vz]+

+
∂

∂x

{

(ρ0 + ρ1)vzvx −
1

µ0
[Bz1Bx0 +Bz0Bx1 +Bz1Bx1]

}

+

+
∂

∂y

{

(ρ0 + ρ1)vzvy −
1

µ0
[Bz1By0 +Bz0By1 +Bz1By1]

}

+

+
∂

∂z

{

(ρ0 + ρ1)v
2
z + p1 +

1

µ0
[Bx0Bx1 +By0By1 −Bz0Bz1 +

1

2
(B2

x1 +B2
y1 −B2

z1]
}

=

= −ρ1g + Sz(t) +
(∂(ρ0 + ρ1)vz

∂t

)

diff
. (3.19)

3.1.3 Induction equation

In the case of the induction equation, the high values of the characteristic length of the
solar atmosphere give a very high Reynolds number Rm, of the order of 103-106 at the
photosphere, which allows to neglect the diffusive term. In this limit of high conductivity,
only the advection term is important. However, as we will see later, we keep a diffusive
term for numerical stability reasons. Thus, the induction equation solved by the code is
given by Equation (3.14). Again, we can retrieve one equation for each coordinate:

∂Bx1

∂t
+

∂

∂y
[vy(Bx0 +Bx1)− vx(By0 +By1)]

+
∂

∂z
[vz(Bx0 +Bx1)− vx(Bz0 +Bz1)] =

(∂Bx1

∂t

)

diff
(3.20)

∂By1

∂t
+

∂

∂z
[vz(By0 +By1)− vy(Bz0 +Bz1)]

+
∂

∂x
[vx(By0 +By1)− vy(Bx0 +Bx1)] =

(∂By1

∂t

)

diff
(3.21)

∂Bz1

∂t
+

∂

∂x
[vx(Bz0 +Bz1)− vz(Bx0 +Bx1)]

+
∂

∂y
[vy(Bz0 +Bz1)− vz(By0 +By1)] =

(∂Bz1

∂t

)

diff
(3.22)

3.1.4 Energy equation

After expanding the divergence in terms of spatial derivatives, the perturbed energy equa-
tion (Equation 3.13) can be written as
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∂e1
∂t

+
∂

∂x

{

vx

(

(e0 + e1) + (p0 + p1) +
(B0 +B1)

2

2µ0

)

− 1

µ0
(Bx0 +Bx1)

(

v1 · (B0 +B1)
)}

+

+
∂

∂y

{

vy

(

(e0 + e1) + (p0 + p1) +
(B0 +B1)

2

2µ0

)

− 1

µ0
(By0 +By1)

(

v1 · (B0 +B1)
)}

+

+
∂

∂z

{

vy

(

(e0 + e1) + (p0 + p1) +
(B0 +B1)

2

2µ0

)

− 1

µ0
(Bz0 +Bz1)

(

v1 · (B0 +B1)
)}

=

=− (ρ0 + ρ1)gv1z +Qrad +
(∂e1
∂t

)

diff
. (3.23)

In high layers, where the magnetic pressure is much larger than the gas pressure, Equa-
tion (3.23) is numerically problematic, as recovering the thermal energy (p) from the total
energy (e) leads to numerical errors. We have used Equation (2.19) for the balance of
internal energy, instead, written as

∂

∂t

( p

γ − 1

)

+ v∇ p

γ − 1
+

γ

γ − 1
p∇ · v = ρQrad +

(∂p1
∂t

)

diff
, (3.24)

or equivalently introducing the perturbed variables

∂p1
∂t

+
∂

∂x

[

γ(p0 + p1)vx

]

+
∂

∂y

[

γ(p0 + p1)vy

]

+
∂

∂z

[

γ(p0 + p1)vz

]

−

−(γ − 1)
[

vx
∂(p0 + p1)

∂x
+ vy

∂(p0 + p1)

∂y
+ vz

∂(p0 + p1)

∂z

]

=

= (ρ0 + ρ1)Qrad +
(∂p1
∂t

)

diff
. (3.25)

The radiative losses are implemented following Newton’s cooling law

Qrad = −cv
T1

τR
, (3.26)

where T1 is the perturbation in the temperature, τR is the radiative relaxation time, and cv is
the specific heat at constant volume. This expression is valid for optically thin disturbances,
for which the wavelength is much smaller than the photon mean free path. The study of
propagation of acoustic waves in a radiating fluid using Newton’s cooling law predicts an
adiabatic propagation for high frequency waves or long damping times, while in the case
of low frequencies or short radiative relaxation time acoustic waves propagate isothermally.
However, at a low enough frequency the wavelength of the fluctuations is so long than it
becomes optically thick, and the Newtonian cooling approximation no longer applies.

We have considered the equation of state of an ideal gas to link the thermodynamic
variables.

3.2 Spatial discretization

The computational domain is discretized using a three-dimensional Cartesian grid with
constant spatial step in each dimension. The spatial derivatives are approximated by a
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centered, fourth order accurate, explicit finite differences scheme using five grid points
(Vögler et al. 2005). Considering i as an index which covers one of the spatial directions,
the expression of the first derivative of a magnitude u is

(∂u

∂x

)

i
=

1

12∆x
(−ui+2 + 8ui+1 − 8ui−1 + ui−2), (3.27)

All the equations of Section (3.1) are written in conservative form following Equation
(3.6). The MHD code calculates the fluxes which appear in Equations (3.16), (3.17), (3.18),
(3.19), (3.20), (3.21), (3.22), and (3.25), and calculates their derivatives in the corresponding
coordinate following Equation (3.27).

3.3 Temporal discretization

The solution is advanced in time by an explicit fourth-order Runge-Kutta. The fourth
order differences give an accurate solution, since they have been widely tested in previous
numerical codes (Vögler et al. 2005; Khomenko & Collados 2006). The vector u0 describes
the state of the system at time t0 and, according to the equations of Section (3.1), it will
have the form and dependences

u0 =
(

ρ1, (ρ0 + ρ1)v,B1, e
)

(x, y, z, t0). (3.28)

The system of differential equations may be written as

∂u

∂t
= R(u), (3.29)

where R(u) = −∂F(u)/∂x − ∂G(u)/∂y − ∂K(u)/∂z +H(u) represents the set of spatial
derivatives of the fluxes and the source terms of the equations. The next time step is
calculated by means of four steps

u1/4 = u0 +
∆t

4
R(u0)

u1/3 = u0 +
∆t

3
R(u1/4)

u1/2 = u0 +
∆t

2
R(u1/3)

u1 = u0 +∆tR(u1/2) (3.30)

where u1 corresponds to the numerical solution for the time step t1 = t0 +∆t.

3.4 Artificial diffusivity

The general equations of momentum and energy take into account the diffusivity caused
by the viscous forces. However, in the conditions of the solar atmosphere, the Reynolds
number has a very high value due to the low viscosity, making the characteristic lenghts,
in which the diffusivity acts, too small to be resolved by current computers. Variations of
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these small scales can grow exponentially in time in numerical simulations, and must be
damped for the numerical stability of the code.

To damp high-frequency numerical noise on sub grid scales, we replace the physical diffu-
sive terms in the equations of momentum and energy by artificial equivalents. In the induc-
tion equation we also replace the magnetic diffusion term by an artificial value. In general,
we use a philosophy similar to Stein & Nordlund (1998), Caunt & Korpi (2001) and Vögler
et al. (2005). Each physical quantity has its own diffusivity coefficient (scalar/vectorial for
scalar/vectorial quantities), which is formed by a shock resolving term, a hyperdiffusivity
part, and a constant contribution

νl(u) = νshkl (u) + νhypl (u) + ν0l , (3.31)

where u is the corresponding quantity and l is one of the spatial coordinates. The shock
resolving term takes high values in those regions where there are strong gradients with
sudden variations in the velocity between nearby points. Thus, νshk is selected to be
proportional to the absolute value of the divergence of the velocity only in those locations
where there are converging flows, being zero in the rest of the domain:

νshkl = cshk · (∆xl)
2 · |∇ · v| ∇ · v < 0

νshkl = 0 ∇ · v ≥ 0 (3.32)

The parameter cshk is a scaling factor of order unity, and ∆xl is the spatial step of the
grid in the direction l. We have applied this shock diffusivity in the momentum, energy,
and induction equations.

The hyperdiffusivity part is needed to eliminate the noise that can appear due to fluc-
tuations at unresolved scales. With this aim, the νhyp coefficient is defined in such a way
that it detects fluctuations at small scales and takes significant values only in those regions
where the numerical noise must be disipated.

The hyperdifusive coefficient acquires different values depending on the physical mag-
nitude u and the coordinate l according to

νhypl (u) = chyp · ctot ·∆xl ·
max3∆

3
l u

max3∆1
l u

, (3.33)

where chyp is a scaling factor and ctot takes at each point the value extracted from the
equation

ctot = v + cS + vA. (3.34)

The expressions ∆3
l u and ∆1

l u represent the third and first absolute differences of u,
and they are calculated as

(∆3
l u)i+1/2 = |3(ui+1 − ui)− (ui+2 − ui−1)| (3.35)

(∆1
l u)i+1/2 = |ui+1 − ui|. (3.36)



3.4 Artificial diffusivity 43

The max3 indicates that a maximum over three adjacent i points is taken in the l
direction.

The last constant contribution to artificial diffusivity coeficient νl, ν
0
l , is introduced in

the following way

ν0l = (cS + vA)∆xlF (x, y, z). (3.37)

It is constant at every grid point of the domain along all the time of the simulation.
The function F (x, y, z) gives the spatial form of the constant contribution.

Once the coefficients νl of the artificial diffusivity are obtained, they need to be intro-
duced into the MHD equations of Section 3.1. In the case of the motion equation, the term
of artificial diffusivity which must be added to Equations (3.17), (3.18), and (3.19) is similar
to the one which represents the viscous forces in Equation (2.16), that is

(∂(ρv1)

∂t

)

diff
= ∇ · τ̄ , (3.38)

but in this case the components of the tensor τ̄ for the artificial diffusivity correspond to

τkl =
1

2
ρ
(

νk(vl)
∂vl
∂xk

+ νl(vk)
∂vk
∂xl

)

. (3.39)

In the previous expression, k and l represent again the three coordinates x, y and z, and
they complete the nine components of the tensor τ̄ . In the induction equation (Equations
3.20, 3.21, and 3.22) the variation of the magnetic field due to the diffusivity is

(∂B1

∂t

)

diff
= −∇× ε, (3.40)

The vector ε is defined as

ε =







νy(Bz)
∂Bz
∂y − νz(By)

∂By

∂z

νz(Bx)
∂Bx
∂z − νx(Bz)

∂Bz
∂x

νx(By)
∂By

∂x − νy(Bx)
∂Bx
∂y






.

Finally, the diffusivity term of the internal energy equation (Equation 3.25) takes the
form

(∂p1
∂t

)

diff
=

∑

l

∂

∂xl

(

νl(p)
∂p

∂xl

)

. (3.42)

or

(∂e1
∂t

)

diff
=

∑

l

∂

∂xl

(

νl(p)
∂e1
∂xl

)

. (3.43)

if the complete energy equation (Equation 3.23) is used.
All the second derivatives that appear in the diffusive terms are discretized by means

of second order central differences. In the case of the terms of the form ∂
∂x

(

ν ∂u
∂x

)

, at every

grid cell i they are calculated as
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∂

∂x

(

ν
∂u

∂x

)

i
=

1

∆x

(

νi+1/2 ·
ui+1 − ui

∆x
− νi−1/2 ·

ui − ui−1

∆x

)

. (3.44)

In the case of terms with cross derivatives of the form ∂
∂y

(

ν ∂u
∂x

)

, the values of the

hyperdiffusivity are interpolated from the interfaces to the center of the grid points, and
the inner part is obtained as

(

ν
∂u

∂x

)

i
=

(νi+1/2 + νi−1/2

2

)

·
(ui+1 − ui−1

2∆x

)

. (3.45)

Finally, we apply again a second order center derivative in the other coordinate, indi-
cated by the subindex j:

∂

∂y

(

ν
∂u

∂x

)

i
=

[(νi+1/2,j+1 + νi−1/2,j+1

2

)

·
(ui+1,j+1 − ui−1,j+1

2∆x

)

−
(νi+1/2,j−1 + νi−1/2,j−1

2

)

·
(ui+1,j−1 − ui−1,j−1

2∆x

)] 1

2∆y
(3.46)

3.5 Time step

The determination of the maximum time step that may be advanced at each time interval
is a key issue. Usually, this limit is imposed by the CFL criterion, which establishes that a
convergent scheme needs the dependence domain of the differential equation to be inside the
dependence domain of the numerical scheme. According to this, the mesh width must be
larger than the distance traveled by the information in a single time step due to mass flow,
waves or diffusion transport. The term “dependence domain” means the region from which
the solution depends on for obtaining the next time steps, and the numerical dependence
domain is the set of grid points that are used for its calculation. The time step must be
chosen to be smaller than the advective time step and the time step imposed by the diffusion
terms

∆t = min(∆tadv,∆tdiff). (3.47)

In this expression, ∆tv is the time step imposed by characteristic speeds. Since it is not
possible to define a strict convergence criterion for a non-linear system of equations, the
analysis of the linear equations gives a modified CFL criterion approximately valid for MHD
equations,

∆tadv =
[ cadv
1/∆x2 + 1/∆y2 + 1/∆z2

]1/2 1

vmax
, (3.48)

where vmax is the maximum value of the sound and Alfvén speed. The time step imposed
by the diffusion ∆tdiff corresponds to the minimum of the diffusion time across the three
dimensions,

∆tdiff = cdiff min
(∆x2

νx
,
∆y2

νy
,
∆z2

νz

)

, (3.49)
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where the constant coefficients cadv and cdiff are taken to be below one to ensure the stability
of the solution. The diffusion coefficients νx,y,z are those defined in Section (3.4).

3.6 Filtering

In the particular case of wave simulations, a high diffusion is not desirable since it modifies
the wave amplitudes. At the same time, a low diffusion cannot always prevent the develop-
ment of high frequency noise. For that reason we perform an additional filtering of small
wavelengths. Following Parchevsky & Kosovichev (2007), we use a sixth-order digital filter
to eliminate unresolved short-wave components

ufilt = u(x)−D(x) = u(x)−
3

∑

m=−3

dmu(x+m∆x), (3.50)

where u is a variable before filtering, ufilt is after filtering, and D(x) is the damping funtion.
The filter can be applied in the three spatial coordinates independently. In the frequency
domain, the response function G(k) of the filter relates the Fourier Transform of the original
function ũ with the filtered ũfilt according to ũfilt(k) = G(k)ũ(k). The coefficients dm have
been chosen as

G(k∆x) = 1−
3

∑

m=−3

dmeimk∆x = 1− sin6
(k∆x

2

)

, (3.51)

and they are symmetric, taking the values:

d0 =
5

16
, d1 = d−1 = −15

64
, d2 = d−2 =

3

32
, d3 = d−3 = − 1

64
. (3.52)

3.7 Boundary conditions

Boundary conditions are an important issue for wave simulations. One usually wants to
prevent spurious wave reflections at the boundaries. Two strategies commonly applied are
based on characteristic boundary conditions or sponge layers. Calculating characteristic
conditions (Rosenthal et al. 2002), apart from tricky, gives good results in simple magnetic
field configurations, when the wave propagation directions are easily predictable. For more
complex magnetic field configurations the calculation of the characteristic directions is not
an easy task. The other alternative, the sponge layer, consists in locating an absorbing
layer at the boundary to dissipate the wave energy and prevent it from coming back to the
physical domain. This strategy is implemented in the code SLiM (Cameron et al. 2007).
Absorbing layers give good results only when the absorption is gradual and need a large
amount of grid points. Thus, numerically they are very costly. In our code we used, though,
another alternative, the Perfectly Matched Layer (Berenger 1994).

The Perfect Matched Layer (PML) is designed to absorb waves without reflections.
This method was first introduced by Berenger (1994) to absorb electromagnetic waves in
numerical solutions of Maxwell equations. Later, it has been applied to Euler equations
(Hu 1996) and to simulations of acoustic waves in a strongly stratified solar convection
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zone (Parchevsky & Kosovichev 2007). In our code, we extend the method to the full
set of the MHD equations. The PML layer for MHD equations was applied previously
by Parchevsky & Kosovichev (2009), though its stability is not discussed. According to
Hesthaven (1998), the application of a filter allows the scheme to improve stability, and
we have verified empirically that our PML scheme, together with the high frequency filter,
allows us to delay the effects of possible instabilities the necessary time to complete long
enough simulations. The PML layer is introduced in the boundaries of the computational
domain, and in this region the MHD equations are modified in order to add a term that
damps the perturbations that reach the boundary.

The expressions of the fluxes F(u), G(u), and K(u) and the term H(u) can be found in
the system of MHD equations (Section 3.1). Inside the PML, variables u are split into three
components in such a way that u = u1+u2+u3 and also H(u) = H1(u)+H2(u)+H3(u).
The system of MHD equations is split into a set of three coupled, one dimensional equations:

∂u1

∂t
+

∂F(u)

∂x
+ σx(x)u1 = H1(u), (3.53)

∂u2

∂t
+

∂G(u)

∂y
+ σy(y)u2 = H2(u), (3.54)

∂u3

∂t
+

∂K(u)

∂z
+ σz(z)u3 = H3(u). (3.55)

These split Equations (3.53)–(3.55) are solved independently in the PML, in contrast
to the unsplit forms (Equation 3.6) which are solved in the physical domain. When the
damping coeficients σ are zero, the equations in the PML layer are the same of the rest of
the domain, so PML equations include the general equations as a particular case.

To understand the effects of the absortion terms of Equations (3.53)–(3.55) in the solu-
tion of the system of MHD equations, we consider a linear one-dimensional case, with no
magnetic field and no diffusion, in a homogeneous atmosphere in equilibrium. Note that
as we only study one dimension, there is no need to split the density variable into several
components. With these simplifications, the linearized equations of continuity (Equation
3.16) and motion (Equation 3.17) for the PML media are:

∂ρ1
∂t

+
∂

∂x
(ρ0vx) + σxρ1 = 0 (3.56)

∂

∂t
(ρ0vx) +

∂p1
∂x

+ σxρ0vx = 0. (3.57)

Assuming the propagation of plane damped waves, the velocity and the perturbation in
pressure and density take the form

[v1, p1, ρ1] = [V, P,R]eiω(t−αx), (3.58)

where ω is the frequency of the wave, and α is a complex constant. Introducing this type
of solutions into Equations (3.56) and (3.57), we retrieve the expresions

R− αV ρ0 −
iσx
ω

R = 0, (3.59)
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ρ0V − Pα− iσxρ0
ω

V = 0. (3.60)

From the continuity and internal energy equations, the following relation between the
perturbations of the density and pressure is obtained

p1
p0

= γ
ρ1
ρ0

. (3.61)

The combination of Equations (3.59), (3.60) and (3.61), after introducing the definition
of the sound speed cS = (γp0/ρ0)

1/2, yields the following expression for α:

α =
1

cS

(

1− iσx
ω

)

(3.62)

Finally, with the resulting α, we obtain from Equation (3.58) that all the magnitudes
have the form

φ1 = φ0e
iω(t−x/cS )e−σxx/cS . (3.63)

This equation shows that the perturbation keeps the behavior of a plane wave propa-
gating with frequency ω and wavenumber k = ω/cS , but its amplitude is modulated by an
exponentially decreasing factor along the direction x. This example illustrates the desired
action of the PML in our code.

The coefficients σx(x)/σy(y)/σz(z) only depend on x/y/z coordinate and are non-zero
in the x/y/z PML faces, respectively. Thus, at the six faces of the computational domain
the damping coefficients (σx, σy, σz) are chosen in such a way that those which are far from
their corresponding boundaries are zero. For example, in the top and bottom boundaries,
the coefficients are (0, 0, σz), absorbing the waves which move toward out of the domain. In
the twelve edges, one of the damping coefficients σ is set to zero, while the two that have a
value different from zero at the adjacent sides keep their value, for example (σx, 0, σz). In
the case of the eight corners, all the σ components are different from zero.

Theoretically, a PML with constant absorption coefficient produces no reflections for
plane waves incident on a flat interface for any angle of incidence and any frequency. How-
ever, due to the finite difference implementation of the PML equations in numerical calcu-
lations, reflections may appear when σ has a steep gradient (Berenger 1996). To solve this
problem it is necessary to include smooth variations in the absorption coefficients from small
values at the interface between the PML medium and the physical domain to large values
at the outer boundary. Following Hu (2001), good results are obtained with absorption
coefficients of the form

σx =
a

∆x

(x− xPML

xPML

)2
, (3.64)

σy =
b

∆y

(y − yPML

yPML

)2
, (3.65)

σz =
c

∆z

(z − zPML

zPML

)2
, (3.66)



48 The MHD code 3.8

where ∆x, ∆y and ∆z are the discretization steps, a, b and c are constants controlling the
damping amplitude, and xPML, yPML and zPML are the thickness of the PML domain in
each spatial direction. In a typical calculation we need PML to be of 10–15 grid points.
The coefficients a, b and c depend on each particular simulation and must be proportional
to the wave speed at the boundaries. We locate PMLs at all boundaries of our simulation
domain. The results presented in Khomenko et al. (2008) show that this strategy gives
good results even for strong shocks.

For some simulations it is interesting to use other boundary conditions. The code can
also account for periodic and closed boundary conditions. The design of the code allows
us to choose the appropriate condition for a specific numerical simulation. According to
the numerical scheme introduced for the calculation of the spatial derivatives (Equation
3.27), the two cells next to the limit of the computational domain have to be filled by the
boundary conditions. The closed boundaries are implemented as

u1 = u3, (3.67)

u2 = u3,

un−1 = un−2,

un = un−2,

where u is a certain magnitude, i is an index which covers one of the spatial dimensions,
and n is the number of cells in that dimension. When the simulation uses PML layers,
closed boundaries are set at the limits of the computational domain.

The form of periodic boundary conditions is

u1 = un−3, (3.68)

u2 = un−2,

un−1 = u3,

un = u4.

In all the numerical simulations of wave propagation we have used PML layers in order
to avoid interferences between the different modes which could appear from the boundaries.

3.8 Parallelization

Parallelization has been done with MPI following a distributed memory concept in which
all data used by a processor are situated on the memory partition accessible to it. Data
are split in a certain number of processors by means of a domain decomposition scheme.
The full numerical domain is divided into a set of three dimensional subdomains, with
communication between processors occurring only at their common data boundaries. For
this purpose, each domain includes three layers of “ghost” cells at each boundary. The 5-
point stencil of the fourth-order scheme needs two cells outside the subdomain, while for the
filtering it is necessary to include one more “ghost” layer. The boundaries of the subdomains
which are neighbors of other subdomains receive directly the required information and store
it in the “ghost” layers, while when the boundary of the subdomain coincides with the global
boundary, the “ghost” layers are settled with the values imposed by the boundary condition.



4
Tests on numerical performance

In this section we describe the results of standard numerical tests that have been performed
to verify the code performance and prove its robustness.

4.1 1D Riemann shock tube test

The Riemann shock tube test (Sod 1978; Caunt & Korpi 2001) has been simulated in order
to test the behavior of the hydrodynamical part of the code, including discontinuities in
the properties of the fluid. This allows us to analyze how the artificial viscosity copes
with shock capturing. To that aim, we have taken a 1D physical domain (with unity size,
for simplicity) whose initial state includes a discontinuity at x = 0.5. On one side of the
discontinuity we have density ρ1 = 1 and pressure p1 = 1, while on the other side ρ1 = 0.125
and p1 = 0.1. The ratio of specific heats is γ = 1.4 and the initial velocity as well as the
magnetic field are set to zero. The problem has been simulated with a resolution of 256
grid points and closed boundaries.

Figure 4.1 shows the density, velocity, internal energy density per unit mass and pressure
at time t=0.2 for the simulation compared to the analytical solution. From left to right
the plot shows a rarefaction wave (from x = 0.25 to x = 0.5), a contact discontinuity (at
x = 0.68) and a shock front (x = 0.85). The position of all of them matches precisely with
the analytical solution and the magnitudes of the fluid properties are correct. The contact
discontinuity for the energy was inevitably smoothed, as shown in the plot at the botton
left where a region around it is amplified, but still 93% of the amplitude of the discontinuity
is covered with 10 grid points. Moreover, the shock front is resolved with three grid points,
which proves the good performance of the code in shock capturing.

4.2 1.5D Brio and Wu shock tube

To test the formation of MHD shock waves we use the MHD analog of the Sod shock tube
problem described by Brio & Wu (1988), which has been widely used in previous works
(Stone & Norman 1992; Caunt & Korpi 2001; Shelyag et al. 2008). We can compare our
results with those given in the literature, since no known analytical solution exists for the
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Figure 4.1: Standard Riemann shock tube problem at t = 0.2. Crosses represent the numerical solution,
while lines represent the analytic solution with an exact nonlinear Riemann solver. The inner plot on the
left bottom pannel helps to visualize better the discontinuity at x = 0.68.

evolution of this problem. In this 2D test the fluid is initialized in a physical domain from
x = 0 to x = 1 and with a discontinuity in density, pressure, and magnetic field normal
to the direction of motion located at x = 0.5. Parameters at the left-hand side from the
discontinuity are ρ1 = 1, p1 = 1, and By1 =

√
µ0, and at the right hand side are ρ2 = 0.1,

p2 = 0.1 and By2 = −√
µ0. All the domain is permeated with a constant magnetic field

along the direction of motion Bx = 0.75
√
µ0 and the adiabatic index γ is set to 2. In this

case, the resolution is 800 grid points in the direction of the shock wave propagation, similar
to the other published works. All the boundaries are closed.

The density, velocity in the x direction, pressure, and magnetic field in the y-direction
are shown in Figure 4.2. This MHD Riemann problem produces a complex solution with
several components: the waves moving to the left are a fast rarefaction wave and a slow
compound wave (consisting of a slow rarefaction together with a slow shock), and the waves
moving to the right include a contact discontinuity, a slow shock, and a fast rarefaction wave.
Comparison of our results with other works show that the waves have propagated with the
correct velocities and have similar magnitudes, indicating that they are in good agreement
with the other solutions. The slow shock is resolved again with only three grid points.

4.3 2D Ország-Tang vortex

The next test is the Orszag-Tang vortex, which was originally studied by Orszag & Tang
(1979) and has been used to probe several codes (Ryu et al. 1995; Dai & Woodward 1998;
Londrillo & Del Zanna 2000; Shelyag et al. 2008). This problem allows us to demonstrate
the robustness of the numerical scheme used in our code solving the two-dimensional in-
teraction of nonlinear shock waves and also to compare qualitatively the code with other
codes. The initial conditions for density and gas pressure are constant, with ρ = 25/(36π)
and p = 5/(12π), the magnetic field Bx = − sin(2πy) and By = sin(4πx) and the initial
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Figure 4.2: Numerical solution of the Brio & Wu problem at t = 0.11 (see Section 4.2).

velocity vx = − sin(2πy) and vy = sin(2πx). Therefore, the initial flow is a velocity vortex
superimposed to a magnetic vortex, with a common X-point, but with different structure.
The initial Mach number is M0 = 1 and the adiabatic index is set to γ = 5/3. In our
simulation for this problem we have chosen a unit size in horizontal and vertical dimensions
and the resolution of the simulation box is set to 512 × 512 grid points. Figure 4.3 presents
the density at time t = 0.5, showing precise agreement with the other published works.

4.4 3D Acoustic wave

Since our code is oriented to the simulations of waves, it is necessary to test how well it
can approximate the known analytical solutions for different types of waves in a stratified
atmosphere, their propagation speeds, amplitudes and shock development. The analytical
solution of a linear acoustic wave propagating in an isothermal atmosphere with vertical
stratification due to gravity and permeated with a constant vertical magnetic field is known
from Ferraro & Plumpton (1958), see Section (2.2.3). The vertical velocity for a wave with
frequency ω, above the cutoff frequency ωc = γg/(2cs), is as follows:

vz(z, t) = Dez/2H0 sin
[

(
√

ω2 − ω2
c

)

/csz + ωt
]

, (4.1)

where H0 = c2s/(γg) is the pressure scale height and cs is the sound speed. This analytical
solution, with a period of 15 s and starting amplitude of 10 m s−1, has been introduced
as a bottom boundary condition without variations in the horizontal directions and its
evolution in time has been calculated with the numerical code. The physical domain is set
to 1000 km in the vertical direction with a resolution of 200 grid points, using 20 of them as
PML domain at the top. In both horizontal dimensions the computational domain consists
of seven grid points, covering 35 km, and periodic boundary conditions were used in these
directions. In Figure 4.4, we show the comparison between the numerical and the analytical
linear solution for the vertical velocity after 197 s of simulations. The numerical solution
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Figure 4.3: Mass density at t = 0.5 of the Ország-Tang vortex simulation

matches the exact solution in the computational domain, while it is damped effectively by
the PML layer. It is important to note that the amplitude and propagation speeds are
both described correctly by the numerical solution and that the numerical diffusion does
not affect the amplitude increase with height.

The dashed line represents the difference between both solutions, which also increases
with height. The main contribution to this difference comes from the nonlinear terms
that are taken into account in the numerical calculation, while the analytical solution is
restricted to the linear case. This was verified since a bottom boundary with half initial
amplitude produces a reduction of the difference by exactly a factor 4, and the wavelength
of the difference is half of the corresponding to the wave. Also, it is important to note that
no spurious reflections are present and that the PML boundary works well.

4.5 3D Alfvén wave

As a next step, the response of the numerical scheme to the propagation of an Alfvén wave
in an isothermal, stratified atmosphere with a vertical magnetic field is analyzed. The
analytical solution was developed by Ferraro & Plumpton (1958) (see Section 2.2.3), and,
according to Khomenko et al. (2003), the solution for the horizontal velocity can be written
as

vy(z, t) = iξ0ω
√

J2
0 + Y 2

0 exp
[

i
(

ωt+ arctang
Y0

J0

)]

(4.2)

where J0 and Y0 are Bessel functions. The same atmosphere as in the previous section was
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Figure 4.4: Vertical velocity profile of vertically propagating acoustic waves in an isothermal, stratified
atmosphere with the vertical constant magnetic field at t = 197 s. Solid line: exact solution; diamonds:
numerical solution. The dashed line is the difference between both solutions. The vertical dashed line
indicates the location of the PML interface.

used in this test, but now the bottom layers were excited with the solution of an Alfvén wave
of period 10 s and an amplitude of 10 m s−1 as a boundary condition. This driver generates
the propagation of Alfvén waves toward higher layers of the atmosphere. The horizontal
velocity of both the numerical and exact solutions for time t = 115 s is shown in Figure
5.27, demonstrating a very good match. The dashed line shows the difference between the
numerical and the analytical solution. In this case, the nonlinearities are not so important
since the amplitude is lower than the one of the acoustic wave, and the discrepancy between
both solution is due to the reflection produced at the top boundary. The PML layer results
more problematic for transversal waves which oscillate parallel to the interface between the
PML media and the physical domain, and they give rise to reflections of 5%-6% of the
velocity.

4.6 3D Strong blast wave

Our last test consists of the explosion of a spherical high gas pressure region in a magnetized,
initially static 3D medium. It has been commonly used for code validation (see, for example
Balsara & Spicer 1999; Londrillo & Del Zanna 2000), and the setup consists of a cubic
domain with 256 grid points in the three spatial dimensions spanning from 0 to 1. The
initial density, ρ0, is set to unity in all the domain, while the initial pressure is set to
unity all over except a spheric hot gas region located at the center of the domain of radius
r0 = 0.125, which is a hundred times overpressured (p1 = 100). A constant magnetic field
with a strength of B0x = 10

√
µ0 is initialized along the x−direction.

In Figure 4.6, we show a cut of the density in the plane x-y at z = 0.5 and t = 0.02.
The system shows the axial symmetry imposed by the magnetic field. We can identify the
different wave modes present in the simulations. The outermost wave corresponds to the
fast magnetoacoustic mode, and inside this region there are two wave fronts propagating
along the magnetic field, which is a slow magnetoacoustic shock. This test verifies that our
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Figure 4.5: Horizontal velocity profile of Alfvén waves in an isothermal, stratified atmosphere with a vertical
constant magnetic field at t = 115 s. Solid line: exact solution; diamonds: numerical solution. The dashed
line is the difference between both solutions. The vertical dashed line indicates the position of the PML
interface.

code can handle the 3D propagation of highly nonlinear waves at the correct propagation
speed, resolving the shocks thanks to the hyperdiffusive terms.

Figure 4.6: Numerical solution of the 3D strong blast wave density at the plane x-y and z = 0.5 at t=0.02.
From left to right and from top to bottom: mass density, pressure, velocity squared, and magnetic pressure.



5
Mode transformation in 3D numerical

simulations

The objetive of this chapter is to investigate the response of magnetic atmospheres
in equilibrium to an arbitrary perturbation propagating in the form of waves. We

address the problem in three dimensions and discuss the propagation and transformation
of the waves in a wide range of periods, from about 1 to 5 min, in the upper layers of
sunspots.

We perform several simulations where the static structure in equilibrium is perturbed,
and it generates a set of wave modes. We have identified the presence of different magneto-
acoustic and Alfvén modes, and analyzed their propagation between the photosphere and
the chromosphere, including their energy contribution. At the height where the sound and
Alfvén speeds are similar different wave modes can interact, and wave transformation takes
place. Our aim is to perform simulations realistic enough to imitate the wave excitation in
sunspots, reproduce the change of wave frequency with height and the formation of shocks
at chromospheric layers, and to be at the level of allowing the comparison with photospheric
and chromospheric observations by spectral synthesis.

Most of the works on the simulations of wave propagation in the upper layers of sunspots,
as well as the analytical theories of mode transformation, were developed for high-frequency
waves with frequencies above, or just at, the cutoff frequency. There is another class of sim-
ulations where the problem of helioseismic wave propagation below sunspots is addressed
and waves with realistic solar frequencies in the 3-5 mHz range are considered (Cally &
Bogdan 1997; Parchevsky & Kosovichev 2009; Hanasoge 2008; Cameron et al. 2008; Moradi
et al. 2009b; Khomenko et al. 2009). In the latter works most attention has been paid to
the wave propagation in sub-surface layers, rather than in upper photospheric and chromo-
spheric layers. Thus, there is gap between these two kind of models. With the development
of our code we pretend to cover this gap and study waves with 3–5 mHz frequency above
the photosphere.

The organization of the chapter is as follows. Section 5.1 describes the configuration
of the simulations. In Section 5.2 the description of the magneto-static sunspot model
in equilibrium is included and in Section 5.3 we explain the projection of the vectorial
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Table 5.1: Summary of the simulation runs

Section Driving [xsrc, zsrc] Rsrc Duration Domain Figures
(Mm) (Mm) (s)

5.4.1 50 s, harmonic [0,-0.5] 0.15 904 Small 5.2–5.7
5.4.2 50 s, harmonic [-3,-0.5] 0.15 1023 Small 5.8–5.13
5.4.3 180 s, harmonic [0,-0.5] 0.15 930 Small 5.14–5.16
5.4.4 300 s, wavelet [0,-0.5] 0.9 1511 Small 5.17–5.19
5.4.4 300 s, harmonic [0,-0.5] 0.9 1212 Small −
5.4.5 300 s, wavelet [-5,-1] 2.25 1682 Large 5.20, 5.21, 5.23, 5.24
5.4.5 300 s, wavelet [-10,-1] 2.25 1636 Large 5.22, 5.23, 5.25
5.4.5 300 s, wavelet [-15,-1] 2.25 1636 Large 5.23, 5.26

quantities and the calculation of the energy fluxes developed to identify the wave modes.
The simulations are analized in Section 5.4 and the results are discussed in Section 5.5.

5.1 Set up of the simulations

Below in this section we discuss several simulations of the propagation and transformation
of MHD waves in a magnetostatic sunspot model, excited by pulses with different periods
and locations. To facilitate the reading of this section, Table 1 summarizes the simulation
runs. It gives the number of the subsection where the results are presented, the proper-
ties of the driver, its location, horizontal source size, the duration of the simulations, the
computational domain used (defined in Section 5.2), and the numbers of the corresponding
figures. In all cases, to identify the different wave modes in three spatial dimensions we
use projections of the velocity into three characteristic directions. To quantify the mode
transformation we calculate the acoustic and magnetic energy fluxes (see Section 5.3).

We use a vertical force S(t) in the momentum equation (Equation 3.2) to perturb a
magnetostatic sunspot atmosphere in equilibrium and study the waves generated by this
perturbation. We have performed several numerical simulations, all of them with the source
situated at ysrc = 0 Mm and below the photosphere, but with differences in the period, the
horizontal x location of the source relative to the axis of the sunspot, the depth, as well as
the horizontal size of the source Rsrc.

In the simulations described in Sections 5.4.1, 5.4.2, and 5.4.3 the temporal behavior of
the driver is harmonic and is described by the expression

Sz(r, t) = AP (r) sin
2πt

τ
(5.1)

In this equation, A is the amplitude of the source, P (r) =
[

1− (r/Rsrc)
2
]2

describes the

source shape, Rsrc is the source radius, r =
√

(x− xsrc)2 + (y − ysrc)2 + (z − zsrc)2 is the
distance from the source center, and τ is the period of the harmonic source. P (r) is zero if
r > Rsrc. The x and y components of S, Sx(r, t) and Sy(r, t), are set to zero.

In the simulations described in Sections 5.4.4 and 5.4.5, the behavior of the driver is
not harmonic in time, but rather has the shape of a Ricker wavelet:
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Figure 5.1: Topology of the sunspot model. Top: Magnetic field strength; bottom: Temperature. White
thin lines are magnetic field lines. White thick lines with labels are the contours of c2S/v

2
A.

Sz(r, t) = AP (r)
(

1− 2τ20
)

e−τ20 , (5.2)

where τ0 = ω0t/2 − π. Such driver produces a spectrum of waves with a central frequency
ω0 (Parchevsky & Kosovichev 2009). We set ω0 = 3.33 mHz, so the spectrum of our driver
resembles a solar one and covers a broad range of frequencies.

These latter runs are particularly interesting, as they allow us to study the behavior
of a realistic spectrum of solar waves in the upper layers (photosphere and chromosphere)
of a sunspot model, including the propagation of individual wave modes and wave energy
fluxes. As far as we are aware of, no such investigation has been performed as of today.

5.2 Magnetostatic sunspot model

We use a magnetostatic (MHS) model atmosphere in equilibrium representative of a sunspot,
adopted from Khomenko & Collados (2008). This MHS model is a thick flux tube with
distributed currents, it is azimuthally symmetric and has no twist. The variations of field
strength and gas pressure are continuous across the spot. At 40 Mm far from the sunspot
axis the model merges smoothly into a quiet Sun atmosphere taken from the model S
(Christensen-Dalsgaard et al. 1996) in the deep sub-photosphere layers and continuing as
a VAL-C model (Vernazza et al. 1981) in the photospheric and chromospheric layers. The
sunspot axis in the atmospheric layers is given by the semi-empirical model of Avrett (1981).

In this set of simulations we have used two different computational domains. In both
the optical depth τ5000 = 1 at the photospheric quiet Sun atmosphere was chosen as the zero
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level of the coordinate z. In the first set of simulations, the dimensions of the computational
domain (denoted as “Small” in Table 5.1) are 2.5 Mm in the vertical direction and 15 Mm
in each horizontal direction with a grid step size of ∆z = 25 km and ∆x = ∆y = 75 km.
The bottom level is 1.25 Mm below z=0 Mm. The top level is 1.25 Mm above this height.
A PML layer of 10 grid points was used at both bottom and top boundaries. With this, the
physical domain occupies from z = −1 Mm to z = 1 Mm. The axis of the sunspot is placed
at the center of the simulation domain. The magnetic field at the axis is about 900 G at
z = 0 Mm. For the second set of simulations we used the same magneto-static model, but
the computational domain is larger, covering 60 Mm in both horizontal directions (named
“Large” in Table 5.1). It spans from z = −2.5 to z = 1 Mm (excluding PML layer). These
simulations have a coarser resolution of ∆z = 50 km and ∆x = ∆y = 150 km.

5.3 Identification of the wave modes in simulations

In the case of a real atmosphere, the division into pure wave modes is not so simple as in the
idealized case described in Section 2.2.2, as often no clear distinction between the modes
can be done neither physically nor mathematically. Even in the simple case discussed
in Section 2.2.2, the governing partial differential equation factors into a single second-
order wave equation for the Alfvén mode and a fourth-order wave equation for the coupled
fast-slow modes, so the idea that there are three distinct modes may not always be correct.
However, the simplicity of this picture makes it attractive and we will discuss the properties
of the waves in realistic atmospheres in terms of the three modes.

To help the identification of the wave modes in simulations, we use the mode properties
described in Section 2.2.2. We project the vectorial quantities (velocity and magnetic field
perturbations) into the directions aligned/normal to the equilibrium magnetic field B0.

At each location of the computational domain, we calculated the projections of the v1

and B1 into the following Cartesian directions:

êlong = [cos φ sin θ, sinφ sin θ, cos θ], (5.3)

êperp = [− cosφ sin2 θ sinφ, 1− sin2 θ sin2 φ,− cos θ sin θ sinφ], (5.4)

êtrans = [− cos θ, 0, cosφ sin θ], (5.5)

where θ is the magnetic field inclination from the vertical and φ is the field azimuth,
measured from the XZ plane. The direction of êlong is along the magnetic field B0. The
direction of êperp is normal to the field and was chosen following Cally & Goossens (2008)
as the asymptotic polarization direction of the Alfvén mode in the low-β regime. The last
component êtrans = êlong × êperp is set in the direction normal to the other two.

We expect that in a region where cS > vA, the slow magneto-acoustic mode will be
identified in êtrans projection of the velocity vector, while the fast magneto-acoustic mode
will be equally visible in all velocity components as it propagates isotropically. In a region
where cS < vA, the slow magneto-acoustic mode will be identified projected into the êlong
direction, the Alfvén mode projected into the êperp direction and the fast magneto-acoustic
mode in the direction normal to these two.
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Figure 5.2: Variations of the velocity in the direction êlong (a), êtrans (b), and êperp (c), all of them scaled
with factor

√
ρ0 of the unperturbed density; the magnetic field in the direction êtrans (d), and pressure (e)

at an elapsed time t = 820 s after the beginning of the simulations for the 50 s harmonic force located at
x = 0 km, y = 0 km and z = −500 km. All panels show the plane y = 0 km, except panel (c), which
shows y = 400 km. Black inclined lines are magnetic field lines. Green lines are contours of constant v2A/c

2
S .

The image color coding is such that blue colors represent lower values and red colors are higher values with
respect to the mean. Scaling in panels (a), (b), and (c) is the same. Panel (a) shows contours of equal
longitudinal velocity and panel (d) shows contours of equal p1/p0.
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Figure 5.3: Time evolution of
√
ρ0vlong (left) and

√
ρ0vtrans (right) for the simulation with 50 s harmonic

driver. Time increases from bottom to top, with an elapsed time between panels of a period (τ ). The image
color coding is such that black represents negative values and white represents positive values. Horizontal
lines are contours of constant v2A/c

2
S .

To quantify the amount of energy contained in different wave modes and to develop
a measure of the mode transformation, suitable in the case of complex magnetic field
configurations like the one considered here, we found it useful to calculate the wave energy
fluxes (Bray & Loughhead 1974). The acoustic energy flux is given by the expression:

Fac = p1v1, (5.6)

and the magnetic energy flux is given by

Fmag = B1 × (v1 ×B0)/µ0. (5.7)

The acoustic energy flux contains the energy of the wave with acoustic nature, which
corresponds to the fast mode in the region where vA < cS and to the slow mode in the
region where vA > cS . In this region, the magnetic flux includes the fast and the Alfvén
modes. Since, as we will see in the next section, in the region above the layer where
vA = cS the fast mode is refracted down toward the photosphere, the magnetic energy
which propagates upward along field lines must correspond to the Alfvén wave, making
possible the identification of this mode.
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5.4 Numerical simulations

5.4.1 Case of 50 s harmonic force located at the axis

Figure 5.2 presents a two-dimensional snapshot of some variables and Figure 5.3 gives
the temporal evolution of the projected velocities in the simulation run with a harmonic
50 s force located at the sunspot axis (Equation 5.1 with τ = 50 s). Panels (a)–(c) in
Figure 5.2 show the longitudinal, transversal, and perpendicular velocities scaled with a
factor

√
ρ0. These magnitudes provide the square root of the kinetic energy associated

with the waves. Some perturbations at high layers have so low amplitude that makes them
indistinguishable in this representation. To make them visible, we have plotted additional
contours of constant velocity. In the case of the pressure (Figure 5.2(e)), its drop with
height makes the absolute value of the perturbations at the lower layers much higher than
at the upper layers. In this case, the contours represent the ratio of constant p1/p0.

Propagation below the surface

The vertical force acts in a region where c2S/v
2
A ≈ 9.1 and it generates mainly an acoustic

fast mode, whose oscillations can be seen in the longitudinal velocity and pressure snapshots
in Figure 5.2. This vertical impulse produces initially a deficit in density and pressure at
the place where the source is located and, because of that, horizontal motions also appear,
creating a magnetic slow mode seen in the transversal velocity and magnetic field snapshots
in Figure 5.2.

At a photospheric level, the longitudinal velocity has an amplitude of about 200 m s−1,
the amplitude of transversal velocity is 50 m s−1 and the transversal magnetic field oscillates
with a maximum deviation from the equilibrium value of 4 G.

The temporal evolution given in Figure 5.3 shows the fast mode (acoustic in nature)
propagating in the deep layers upward to the region where vA ≈ cS . It appears as a
perturbation in the longitudinal velocity (panels (c) and (d)). Variations in longitudinal
velocity are accompanied by acoustic variations of pressure and density (not shown in the
figure). The slow mode (of magnetic nature) is visible in the transverse velocity variations
(panels g–h). In this region vA < cS , so the acoustic perturbation reaches the surface v2A =
c2S earlier than the magnetic perturbation. In these deep layers, the acoustic oscillations
have a wavelength larger than the magnetic ones. As the fast (acoustic) wave propagates in
the region vA < cS , its energy is distributed in the three spatial dimensions and it decreases
away from the source as 1/r2. Once it reaches the vA > cS region, the energy redistribution
in horizontal directions is not so important because it is channeled along the field lines and
is only affected by the density falloff.

Three-dimensional mode transformation

When the waves reach the v2A = c2S layer from below, several mode transformations take
place in the simulation.

First of all, the fast acoustic mode moves from a region where vA < cS to another where
vA > cS keeping its acoustic nature but changing from the fast mode to the slow mode. This
transformation can be seen in the snapshots of longitudinal velocity and relative pressure in
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Figure 5.4: Vertical velocity in the units of local sound speed at the axis of the sunspot at several heights
in the simulations with 50 s harmonic force. From bottom to top: z = 0 km, z = 250 km, z = 500 km and
z = 750 km. The average speed of sound from 0 to 750 km of height is 7.9 km s−1.

Figure 5.2 (panels (a) and (e)) as the wavefronts above the layer v2A = c2S . The atmosphere
above v2A = c2S is dominated by the magnetic field and this slow acoustic mode propagates
upward along field lines (Figures 5.3(a)–5.3(c)). The amplitude of this wave increases
according to the density drop and it develops into shocks above z = 500 km. Figure 5.4
shows that the oscillations in the vertical velocity develop a clear saw-tooth shape with
sudden decreases of the velocity followed by slower increases. They present peak-to-peak
variations of almost 8 km s−1 and their period is 50 s, the same period imposed by the
excitation pulse.

The second mode transformation is the acoustic fast mode which is transmitted as
a magnetic fast mode in the region vA > cS , where the magnetic field dominates. The
evolution of this magnetic mode in the first 200 s of the simulation is clearly seen in Figure
5.3 (panels (e)–(g)) in the transversal velocity as the wave which moves away from the axis
of the sunspot just above the surface v2A = c2S . This mode is also visible in the transversal
magnetic field variations (Figure 5.2(d)). Due to the large horizontal variations of vA (large
at the axis and decreasing outwards) the fast magnetic mode refracts and reflects back to
the sub-photosphere, showing a behavior similar to the two-dimensional case considered by
Khomenko & Collados (2006).

When the reflected magnetic fast wave reaches again the v2A = c2S layer, it suffers two
new transformations: a fast-to-slow transformation, resulting in a magnetic wave in the
vA < cS region; and a fast-to-fast transmission, which produces a new acoustic wave below
vA = cS . First, we discuss the slow magnetic wave. In Figure 5.2 (panels (b)–(d)), it
is clearly visible in the transversal and perpendicular velocities and the magnetic field
variations, at horizontal locations inside a radius of 1.5 Mm around the axis and at heights
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Figure 5.5: Acoustic (top) and magnetic (bottom) flux for the simulation with a 50 s harmonic driver located
at the axis of the sunspot averaged over the stationary stage of the simulations. The horizontal white line is
the height where sound speed and Alfvén speed are equal. Vertical lines are magnetic field lines. The axis
is not to scale.

between z = −1 Mm and z = 0 Mm. Observing the temporal evolution at the beginning
of the simulation one can see that in Figure 5.3(g) the fast magnetic wave above v2A = c2S
has been refracted down and it is located between the two horizontal lines which indicate
surfaces of constant v2A/c

2
S , but it has not arrived to the lower one, so the new transformation

has not been produced. In the next time step (Figure 5.3(f)), the wave has already been
transformed in a slow magnetic mode in the region below v2A = c2S . The wavelength of this
slow mode decreases as the wave propagates to deeper layers because of the drop of the
Alfvén speed, which falls from 15 km s−1 at z = 0 Mm to 2 km s−1 at z = −1 Mm. Due
to the higher density at the deeper layers the amplitude of this wave also decreases as it
propagates down.

On the other hand, after the downward fast-to-fast transmission has occurred from the
refracted fast wave, another fast acoustic wave appears in the region vA < cS . It is visible
in longitudinal velocity in Figure 5.2(a) and in pressure in Figure 5.2(d) below the layer
v2A = c2S . The presence of this new acoustic mode can be checked comparing Figures 5.3(c)
and 5.3(b). In the latter one, there is a new wave situated at both sides of the axis of the
sunspot at a radial distance between 0.5 and 1.5 Mm which can be seen in longitudinal
velocity. This mode appears after the reflected fast mode in the region vA > cS reaches
the surface v2A = c2S . It propagates faster than the slow magnetic wave mentioned before,
with a speed close to the sound speed, and its wavelength is larger than that of the slow
mode. It keeps the direction of the incidence of the fast magnetic wave in the layer where
v2A = c2S , so it propagates down with some inclination with respect to the vertical, moving
away from the axis.

In order to investigate the presence of the Alfvén mode in this simulation (either before
of after the transformations) we have plotted in Figure 5.2(c) the velocity component in
the direction êperp. As expected, this velocity component has a node in the plane y = 0
Mm. Thus, we present in Figure 5.2(c) a vertical cut out of this plane, at 0.4 Mm from the
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Figure 5.6: Sound speed profile (solid line) at the axis of the sunspot. Diamonds represent the phase velocity
of the slow acoustic mode measured from the simulations with 50 s harmonic force.

center of the computational domain. In this projection, the Alfvén wave, if present, should
appear as velocity oscillation above v2A = c2S layer. The inspection of Figure 5.2(c) shows
that there are no oscillations in the magnetically dominated layers that can be identified
as an Alfvén mode. Our conclusion is that when the wave driving occurs at the axis of the
sunspot, no conversion to Alfvén waves happens.

Propagation in the upper atmosphere

Velocity contours in Figure 5.2(a) show the presence of some waves at a radial distance
between ±1.5 and ±6 Mm near the top of the computational domain. These waves are spe-
cially tricky. From the first look at the figures and from the time evolution of the snapshots
one may have an impression (from the inclination of the wavefront) that they propagate
across field lines, opposite to the normal behavior of a slow acoustic wave. However, we
verified that their propagation speed is equal to cS , indicating their acoustic nature. The
analysis of their wavenumbers indicates that the direction of propagation of these waves
is close to the inclination of the magnetic field lines. Thus, we came to the conclusion
that these waves are slow acoustic waves created from the continuous transformation of the
fast acoustic mode which moves away from the driver across the field lines below v2A = c2S
(visible in Figure 5.2(b) in transversal velocity and in Figure 5.2(e) in pressure variations
from a radial distance of ±2 Mm to ±6 Mm) when it reaches this layer. As the wavefront
closer to the axis of the sunspot gets to the surface v2A = c2S earlier, the slow acoustic wave
that it produces has the wavefront inclined in the direction to the axis. Due to this fact, it
looks like its propagation is across the field lines. This hypothesis also explains the nodes
located at a radial distance of ±1.5 and ±3 Mm.
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Acoustic and magnetic wave energy fluxes

Figure 5.5 shows the acoustic and magnetic fluxes averaged over the stationary stage of
the simulations. Around 95% of the flux at the location of the driver is acoustic flux and
it corresponds to the fast mode. At the center of the sunspot, where the magnetic field
is almost vertical, the fast to slow transformation is very effective and the region above
the layer v2A = c2S at the axis is dominated by the slow acoustic mode. When the angle
between the direction of propagation of the wave and the magnetic field is different from
zero, the fast-to-fast transmission is produced and it forms the two lobes which are visible
in the magnetic flux just above the layer v2A = c2S . The magnetic flux reaches a height of 0.5
Mm before the fast waves are refracted back toward the photosphere. In the low-β region,
the fast magnetic mode has an important contribution from z = 0 Mm to z = 0.5 Mm
for radial distances below 2 Mm, except at the axis of the sunspot. The transformation
of the refracted fast magnetic wave when it comes back toward the photosphere generates
acoustic as well as magnetic flux in the high-β region, corresponding to the new fast and
slow modes, respectively, which propagate downward. As expected, we do not find any
propagating magnetic flux along the field lines that may be associated with an Alfvén
mode.

Saw-tooth wave formation

Figure 5.4 displays the evolution in time of the longitudinal velocity at the center of the
sunspot at different heights, starting from the photospheric level z = 0 km until 750 km
above the photosphere. Velocity is shown in units of the local sound speed (Mach number),
and positive velocities indicate downflows while negative velocities are upflows. During
the first five minutes after the start of the simulation the amplitudes of the consecutive
wavefronts are quite different because at the beginning of the calculations the atmosphere
is in an equilibrium state. Multiple wave transformations happen at the beginning of the
simulations. Once this initial time has passed, the wave at the axis reaches a stationary
state and at z=0 km it has a sinusoidal behavior. As the wave propagates upward, its
amplitude increases. Note that velocities are much larger at higher layers, since the plotted
velocities are normalized to the local sound speed, which changes with height according
to Figure 5.6. When the amplitude approaches the sound speed, the nonlinear terms in
the equations become important and the oscillation pattern acquires a saw-tooth shape
that indicates the presence of weak shock wave trains. At z = 0 km the oscillation spends
the same time in increasing the velocity from the minimum to the maximum and in the
following decrease of the velocity, including more or less three time steps in each slope. At
250 km, the increase spends about four time steps, while the decrease occurs in only two or
three. Finally, the two top heights (500 and 750 km) have a clear saw-tooth pattern with
slow increases of the velocity followed by sudden drops. This oscillatory pattern shows that,
thanks to the diffusivity terms, the code can manage high amplitudes and non-linearities.

Slow acoustic mode phase velocities

The phase velocity of a linear high-frequency slow mode wave in a magnetically dominated
region is equal to cS . In our simulation, a slow acoustic wave appears above the v2A = c2S
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Figure 5.7: Amplitude of the slow acoustic mode vertical velocity (solid line) in the simulations with 50 s
harmonic force. Dashed line gives the analytical curve for an acoustic-gravity wave with 50 s period (Mihalas
& Mihalas 1984).

layer produced after the mode transformation. This wave allows us to check whether or not
the velocity of waves involved in the simulations in this complex sunspot model corresponds
to that expected from theoretical considerations.

Figure 5.6 presents the results of this test. The solid line in Figure 5.6 shows the
stratification of the sound speed with height at the sunspot axis and diamonds indicate the
phase velocity of the slow mode wave measured at each grid point from the simulations.
Note that diamonds are only plotted at heights above z = −200 km, after the mode
transformation has been completed. The velocity of the slow wave matches well the local
sound speed at heights from z = −200 km to z = 700 km. Higher than z = 700 km the wave
starts to propagate faster than cS , since the velocity amplitude of the wave approaches the
sound speed and non-linearities start playing an important role.

Slow acoustic mode amplitudes

As the slow acoustic wave propagates up in the atmosphere of the sunspot the amplitude
of the velocity oscillations increases due to the density drop. The kinetic energy of this
wave is proportional to ρv2 and must be conserved. Thus, a decrease of the density must
be accompanied with an increase of the velocity. The atmosphere of the sunspot is very
complex and it includes vertical and horizontal gradients in all the magnitudes. Because of
that there is no analytical expression for the variation of the amplitudes of the waves with
height. However, we can compare the particular case of the wavefront of the slow acoustic
mode wave which propagates along the axis of the sunspot with a case of a linear acoustic
wave which propagates upward in a gravitationally stratified atmosphere permeated by a
magnetic field parallel to the direction of gravity (see Section 2.2.3). In this theoretical
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Figure 5.8: Variations of
√
ρvz at an elapsed time t = 820 s after the beginning of the simulations for the 50

s harmonic force at 3 Mm from the axis of the sunspot. Gray inclined lines are magnetic field lines. Blue
colors represent upward movement while orange/red colors represent downward movement.

case, the amplitude of the wave is given by

A(z) = A0 exp

(
∫ z

z0

dz

2H0

)

, (5.8)

In Figure 5.7, we show the amplitude of the vertical velocity at each grid point at the
axis of the sunspot (solid line) for the stationary stage of the simulations. The force is
located at z = −500 km and the amplitude of the wave decreases until it reaches z = −200
km. This initial decrease is due to the part of the energy of the source that goes into other
wave types because of the mode transformations. More or less at this layer the wave is
transformed into a slow acoustic mode as it propagates up while its amplitude increases.
When the wave reaches the height z = 850 km its amplitude drops very fast as a consequence
of the large diffusivity that was imposed at high layers in order to stabilize the numerical
simulation. In this figure, the expected amplitude according to Equation (5.8) (dashed line)
is also overplotted, starting from the height where the wave has already been transformed
into a slow acoustic mode in the region vA > cS . From z = −200 km to z = 700 km the
numerical amplitude agrees with the analytical one, while from z = 700 km to z = 850 km
the numerical amplitude is lower than the analytical one. This happens because the wave
develops into weak shocks and the linear approximation for the amplitude increase is no
longer valid. Note that the amplitudes of the oscillations (Figure 5.7) as well as the phase
velocity (Figure 5.6) show discrepancies with the linear theory at the same heights.

5.4.2 Case of 50 s harmonic force located off the axis

Figure 5.8 gives a 3D view of the vertical velocity in the simulation run with 50 s harmonic
force located at x = −3 Mm off the sunspot axis. This figure clearly shows the asymmetry
of the wavefront with respect to the axis. In the lower part of the domain, the fast (acoustic)
waves can be appreciated propagating in circles away from the source with a visibly lower
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Figure 5.9: Variations of the velocity in the directions êlong (a), êtrans (b), and êperp (c), all of them scaled
with factor

√
ρ0 of the unperturbed density, at z = 300 km and at an elapsed time t = 820 s after the

beginning of the simulations for the 50 s harmonic force located at x = −3 Mm , y = 0 Mm and z = −0.5
Mm. The image color coding is such that blue colors represent lower values and red colors are higher values
with respect to the mean. All images have the same scale. Concentric dashed lines are contours of an equal
magnetic field.

amplitude toward the axis. In the upper part of the domain, slow (acoustic) waves are the
dominating ones, propagating along the inclined magnetic field lines.

Three-dimensional mode transformation

Figure 5.9 presents the projected velocities in the three characteristic directions at the
horizontal cut of the simulation domain taken in the middle photosphere at z = 300 km.
Figure 5.10 shows the snapshots of some variables in the vertical cut through the domain.
Both figures correspond to the same time moment of the simulations at t = 820 s. These
simulations have many features in common with the previously considered case of the
driving force located at the sunspot axis. A set of fast (acoustic) and slow (magnetic)
modes is generated below the layer v2A = c2S , propagating upward and suffering several
transformation after reaching this height. Similar to the previous case, slow (acoustic) and
fast (magnetic) modes are produced after the mode transformation in the magnetically
dominated upper atmosphere. The conversion to slow and fast modes in the low-β region
only presents slight changes in comparison with the simulation with the driver placed at the
axis. One of these changes is the presence of an asymmetry with respect to the axis. For
example, Figure 5.10(a) and contours of Figure 5.10(e) show that the slow acoustic mode
is channeled along the field lines and its wavefronts are clearly inclined in that direction in
the region above the green lines at a radial distance of −3 Mm.

There are two different fast to fast transmissions. Most of the energy of the vertical
driver goes to the mode with kx ≈ 0 and when it is transmitted as a fast magnetic wave in
the region above v2A = c2S the horizontal gradients of the Alfvén speed incline the wavefront
away from the axis and it is reflected downward, like in the case of the 50 s harmonic
at the axis. This is the case of the wave situated at a radial distance between −4.5 and
−3.3 Mm between the two contours of equal ratio c2S/v

2
A in Figures 5.11(e) and 5.11(g).
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Figure 5.10: Variations of the velocity in the directions êlong (a), êtrans (b), and êperp (c), all of them scaled
with factor

√
ρ0 of the unperturbed density; the magnetic field in the direction êtrans (d) and pressure (e)

at an elapsed time t = 820 s after the beginning of the simulations for the 50 s harmonic force located at
x = −3 Mm off the sunspot axis. The format of the figure is the same as Figure 5.2.
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Figure 5.11: Time evolution of
√
ρ0vlong (left) and

√
ρ0vtrans (right) for the simulation with 50 s harmonic

driver at 3 Mm from the axis of the sunspot. The time increases from bottom to top. The format of the
panels is the same as Figure 5.3.

The other transmission is experienced by the components of the pulse with kx > 0 and is
visible in Figures 5.11(e) and 5.11(g) at a radial distance between −3 and −1.5 Mm. They
propagate to the right with respect to the pulse location in the vA > cS region (i.e., toward
the axis), so the wavefront is inclined to the right. After the fast to fast transmission,
the vertical gradients of the Alfvén speed make the left part of the wavefront propagate
faster than the right part, and it refracts toward the sunspot axis. The transformation
of the downward propagating refracted fast (magnetic) mode into the slow (magnetic)
mode below the surface (Figure 5.10, panels (b)–(d)) also presents an asymmetry. Due to
the particular combination of the field inclination and the direction of propagation of the
refracted fast mode, this transformation is much more efficient on the right from the source
in the direction toward the axis (locations between x = −3 and −1 Mm at z ≈ −0.5 Mm).

The most important changes are present in the velocity component in the direction êperp
(Figure 5.9(c)). At a height of z = 300 km, this component shows variations that do not
correspond to the fast (magnetic) mode. The latter has been already reflected down. As
demonstrated by the analysis of the magnetic energy flux below, the variations observed in
the snapshot of êperp at heights above z ≈ 300 km at locations between x = −4 to −2 Mm
and y = −1 to 1 Mm correspond to the Alfvén wave.

The contours of velocity in Figures 5.10(a)–(b) show at a radial distance between −6
and −4.5 Mm the slow wave that is created from the transformation of the fast waves
below v2A = c2S which propagate with an important horizontal component, as we proposed
in Section 5.4.1. However, at the same heights, but at the right hand side of the driver this
wave is much weaker (in Figure 5.10(a) only a small component is seen at a radial distance of
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−1 Mm at the top of the domain). The efficiency of the fast to slow transformation is higher
for the waves which propagate along the magnetic field at the layer where v2A = c2S (Cally
2006). Near the center of the sunspot the angle between the almost vertical field lines and
the almost horizontal propagation of waves is big, and the efficiency of the transformation
is very low, which agrees with the results of the simulation. This feature is also very clear
in the 3D plot in Figure 5.8 and it verifies the hypothesis for the origin of these waves
proposed in Section 5.4.1.

Acoustic and magnetic wave energy fluxes

The acoustic and magnetic fluxes are shown in Figure 5.12. These fluxes, in general, show
a pattern similar to the case of driving at the axis, but some important asymmetry is also
present. The acoustic flux of the slow mode in the low-β region is oriented in the direction of
the field lines and it is slightly lower than in the previous simulation due to the larger angle
between the direction of propagation of the fast mode before reaching the layer v2A = c2S
and the magnetic field (ϕ). An important fraction of the magnetic flux appears in the lobe
located at v2A = c2S line in the direction toward the axis of the sunspot present due to more
efficient fast-to-fast mode transmission with increasing ϕ (Cally 2005). Compared with
Figure 5.5 there is also more magnetic flux present in the upper part of the atmosphere
above v2A = c2S , apparently directed along the magnetic field lines. It is not clear, however,
whether this flux corresponds to fast, not yet completely reflected wave, or to the Alfvén
wave. To clarify this issue we have calculated the magnetic flux following Equation (5.7), but
using only the projections of the velocity and magnetic field perturbations in the direction
êperp. We expect that this quantity (longitudinal, by definition, as expected for Alfvén
waves) may give us indications about presence of the propagating Alfvén waves.

Figure 5.13 illustrates the result. The top panel corresponds to a vertical cut in the plane
y = −0.4 Mm, normalized at every height to its maximum value at this height. The bottom
panel is a horizontal cut in the plane z = 0.9 Mm. The white colors (positive flux) mean
upward energy propagation, while the black colors (negative flux) mean downward energy
propagation. Indeed these plots reveal the energy flux associated with the Alfvén wave,
which clearly propagates upward along the field lines. The Alfvén mode has a node at the
plane y = 0 Mm, where the driver was located, so conversion to this mode is only produced
when the wavevector forms a certain angle with the magnetic field (different from zero). This
result is in qualitative agreement with the recent investigation of the conversion to Alfvén
waves by Cally & Goossens (2008). However, even at the location where the contribution
of the Alfvén wave energy flux to the total energy flux is maximum, its flux is still around
20 times lower than the acoustic flux at this location. So it means that in the sunspot
magnetic field configuration and for the driver location considered here, the transformation
from the fast (acoustic) to Alfvén wave is much less effective than the transformation to
the slow (acoustic) wave in the magnetically dominated upper atmosphere.

5.4.3 Case of 180 s harmonic force located at the axis

This simulation corresponds to the source placed at the same position as in Section 5.4.1,
that is, at the axis of the sunspot 500 km below the photosphere, but in this case with a
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Figure 5.12: Average acoustic (top) and magnetic (bottom) flux for the 3D simulation with a 50 s harmonic
driver located at 3 Mm from the axis of the sunspot averaged over the stationary stage of the simulations.
The format is the same as Figure 5.5.

Figure 5.13: Magnetic flux of the Alfvén mode. Top: vertical cut in the plane y = −0.4 Mm, normalized at
every height. Vertical white lines are magnetic field lines and the horizontal white line is the layer where
c2S = v2A. Bottom: horizontal cut in the plane z = 0.9 Mm. Thin dashed lines are contours of equal magnetic
field. In both panels, thick dashed lines mark the location of the other plot.
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period of 180 s and Rsrc = 540 km. A larger source size is needed because the wavelength
of this longer period waves is larger, and in this way we can compare the results with the
simulation of Section 5.4.1. The snapshots of several variables and the temporal evolution
of the velocities are plotted in Figures 5.14 and 5.15, respectively. This simulation shows
many features which also appeared in the 50 s harmonic case, since the response of the
magnetic atmosphere is quite similar at both frequencies because they are above the cutoff
frequency, with differences in the wavelengths and periods of the wave modes involved.

Three-dimensional mode transformation

The vertical force introduced below the photosphere generates an acoustic fast mode and a
magnetic slow mode. The first one can be seen in the longitudinal velocity, as field aligned
oscillations of the wavefront propagating upwards, together with fluctuations in density
and pressure. At photospheric levels, the longitudinal velocity oscillates with an amplitude
of almost 400 m s−1. Figure 5.14(b) shows the magnetic slow mode oscillations in the
transversal velocity with an amplitude of 90 m s−1 at z = −250 km (between a radial
distance of −1 and 1 Mm just below the green line v2A = c2S). This mode is also present
in the transversal magnetic field in Figure 5.14(c) with a maximum displacement from the
equilibrium state of 8 G.

The acoustic fast wave propagates with sound speed, and on its way to the chromosphere
it reaches a height where the sound speed and Alfvén speed are similar. The fast mode is
transformed into a slow acoustic mode in the region above v2A = c2S . The slow mode is visible
in 5.14(a) in the longitudinal velocity around the axis above the surface v2A = c2S and it is
channeled along the field lines higher up to the chromosphere. Its amplitude increases with
height from the layer where it is formed at z = −100 km to z = 1000 km in accordance with
the density falloff and it develops into saw-tooth waves with amplitudes of 5 km s−1. This
acoustic slow wave does not produce fluctuations in magnetic field, but it is accompanied
by density and pressure oscillations whose relative amplitudes (i.e., normalized to the local
density/pressure) increase with height (see the contours in Figure 5.14(d)), as expected for
an acoustic wave.

The acoustic fast mode reaching the layer v2A = c2S is also transformed in a fast magnetic
mode in the region where vA > cS . This mode is evident in the transversal velocity
and magnetic field variations in Figures 5.14(b) and 5.14(c), respectively, and, as in the
simulation of the 50 s harmonic source, it is reflected back to the photosphere. When
this fast magnetic wave comes back to the photospheric height where v2A = c2S , it is again
transformed into a slow magnetic wave (visible in the region between ±1 and ±6 Mm below
the layer v2A = c2S in Figures 5.14(b) and 5.14(c)) that propagates downward at slow speed
(see the temporal evolution of the transversal velocity in Figure 5.15). Due to the small
value of the Alfvén speed the wavelength of this wave becomes smaller and its amplitude
decreases as the density increases. After the reflected fast magnetic wave comes back to
vA ≈ cS a part of its energy is also transmitted as fast wave, that is, below vA ≈ cS there
is a new fast acoustic wave (see Figures 5.15(a)–(e) between a radial distance of 1 and 2
Mm) similar to the one mentioned in the simulation of the 50 s harmonic source.
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Figure 5.14: Variations of the velocity in the directions êlong (a), êtrans (b), and êperp (c), all of them scaled
with factor

√
ρ0 of the unperturbed density; the magnetic field in the direction êtrans (d) and pressure (e)

at an elapsed time t = 820 s after the beginning of the simulations for the 180 s harmonic force located at
x = 0 km, y = 0 km and z = −500 km. The format of the figure is the same as Figure 5.2.
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Figure 5.15: Time evolution of
√
ρ0vlong (left) and

√
ρ0vtrans (right) for the simulation with 180 s harmonic

driver at the axis of the sunspot. Time increases from bottom to top. The format of the panels is the same
as Figure 5.3.
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Figure 5.16: Acoustic (top) and magnetic (bottom) flux for the simulation with a 3 min harmonic driver
located at the axis of the sunspot averaged over the stationary stage of the simulations. The format is the
same as Figure 5.5.

Acoustic and magnetic wave energy fluxes

The fluxes are presented in Figure 5.16. It is very similar to Figure 5.5, except for the
much larger wavelength of the fluctuations, in agreement with the larger temporal period of
waves. The average acoustic flux shows that at the axis of the sunspot the fast to slow mode
transformation is also effective for waves with 180 s period. After the transformation, slow
(acoustic) waves propagate acoustic energy upward. The fast mode visible in the magnetic
flux above the v2A = c2S also has longer wavelengths than in the 50 s harmonic simulation.
The magnetic flux vanishes at the axis of the sunspot at high layers. Due to the reflection
of the fast (magnetic) wave, there is no magnetic flux above the certain height, also away
from the axis. In this simulation we find no traces of the Alfvén mode.

5.4.4 Case of 300 s wavelet force located at the axis

Figure 5.17 shows vertical snapshots of several variables after 820 s of the simulation with
the driver emitting a spectrum of waves with a central frequency at 3.33 mHz given by
Equation (5.2).

According to the stratification of the atmosphere, at the axis of the sunspot at z = −700
km the cutoff frequency is νc = 3.3 mHz. It increases with height reaching a maximum at
the height of z = 0 km, where its value is νc = 5.8 mHz. It means that 5 minute acoustic
waves cannot propagate upward above z = 0 Mm, since they are evanescent in the vertical
direction, and can only propagate horizontally. Therefore, the cutoff frequency is a critical
value for the wave propagation in this case, and the behavior of waves below and above the
cutoff layer is expected to be completely different.

The source located at z = −500 km drives waves with frequencies below as well as above
νc, but most of its energy goes to the band around 3.33 mHz. This generates a fast acoustic
wave with an amplitude below 100 m s−1 and 5 minute period, which can propagate upward
only until the height z = 0 Mm. Waves with this frequency are evanescent at higher layers
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Figure 5.17: Variations of the velocity in the directions êlong (a), êtrans (b), and êperp (c), all of them scaled
with factor

√
ρ0 of the unperturbed density; the magnetic field in the direction êtrans (d), and pressure (e)

at an elapsed time t=820 s after the beginning of the simulations for the 300 s wavelet force located at x = 0
km, y = 0 km and z = −500 km. The format of the figure is the same as Figure 5.2. Violet lines represent
contours of equal cutoff frequency. The inner one is νc = 5.6 mHz and the outer one is νc = 4 mHz.

and their vertical wavelength occupies the whole upper part of the simulated atmosphere.
The amplitude of their longitudinal velocity slightly increases with height.

Three-dimensional mode transformation

Part of the energy of the driver which reaches the surface v2A = c2S is transformed into a
fast wave above this height. Due to its magnetic nature it becomes unaffected by the cutoff
frequency. As in the previous simulations, the transversal velocity in Figure 5.17(b) and
the transversal magnetic field in Figure 5.17(d) show that the fast magnetic wave in the
region vA > cS is reflected because of the gradients in the Alfvén speed. Once the wave
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Figure 5.18: Power spectra at different heights at the axis of the sunspot for the simulations with 300 s
wavelet force, normalized to the maximum power at the highest height. From bottom to top: z = −250 km,
z = 0 km, z = 250 km, z = 500 km and z = 750 km.

comes back to the sub-photospheric layers below v2A = c2S , it keeps its magnetic nature and
propagates downward in a form of a slow wave with decreasing wavelength due to the drop
of the Alfvén speed, but keeping its 5 minute period.

The maximum cutoff frequency at the axis in this sunspot model is νc = 5.8 mHz, so
waves with higher frequencies can still propagate upward through the atmosphere. The fast
acoustic modes generated by the driver with frequencies higher than νc are transformed
into propagating slow acoustic modes in the region above v2A = c2S . The contours in Figure
5.17(a) represent constant longitudinal velocity. At a height around z = 900 km, the
longitudinal velocity has maximum power at 3 minute period, which corresponds to the
frequency above νc receiving more energy from the driver.

Frequency change with height

The increase of the amplitude of 3 minute waves according to the drop of the density
(compared to much weaker increase of the amplitude of the evanescent 5 minute waves)
leads to the power spectrum at chromospheric heights dominated by 3 minute waves. There,
their amplitudes reach almost 400 m s−1 . They do not develop into a saw-tooth waves
because at the photosphere the driver generates low power at this frequency band and their
amplitude increase is not enough to produce significant non-linearities.

Figure 5.18 shows the power spectra at different heights, from z = −250 to z = 750
km. At z = 750 km it shows a clear peak at ν = 5.9 mHz, corresponding to a period of
170 s. At the lower layers, a peak below 4 mHz dominates. One can see in this figure how
the amplitude of the low-frequency peak increases with height. However, this increase is
weaker than that of the peak at high-frequency around ν ≈ 6 mHz. Due to this behavior,
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Figure 5.19: Acoustic (top) and magnetic (bottom) flux for the simulation with a 5 min wavelet driver
located at the axis of the sunspot averaged over the stationary stage of the simulations. The format is the
same as Figure 5.5. Violet lines represent contours of equal cutoff frequency. The inner one is νc = 5.6 mHz
and the outer one is νc = 4 mHz.

the high layers are dominated by oscillations with period around 3 minutes.

A simulation with a 300 s harmonic driver was also performed. In this case high layers
develop evanescent 5 minutes period waves, but there is no trace of 3 minute oscillations at
the chromosphere, so power in this frequency band cannot be produced if these frequencies
are not excited by the driver. Thus, we can conclude that the mechanism that produces the
change in frequency of oscillations in the umbra from the photosphere to the chromosphere
is the linear propagation of waves with 3 minute power which come directly from the
photosphere and dominate over the evanescent long period waves. This conclusion goes
in line with the results of the observational study of sunspot waves simultaneously at the
photosphere and the chromosphere by Centeno et al. (2006).

Acoustic and magnetic wave energy fluxes

The magnitudes
√
ρ0vlong,

√
ρ0vtran and

√
ρ0vperp plotted in Figure 5.17 (panels a–c), re-

spectively, show that most of the kinetic energy remains in the photosphere and below.
Most of the energy introduced by the driver goes into the waves in the 5 minute band.
Propagating to higher layers, they form evanescent waves or are transformed into fast mag-
netic mode waves. The first ones do not carry energy, while the second ones are reflected
back to the photosphere. Thus, waves in the 5 minute band cannot supply energy to the
chromosphere, if the driving force is located at the sunspot center.

This case differs from the simulations with shorter periods described in Sections. 5.4.1,
5.4.2 and 5.4.3, where the slow acoustic wave transports to the high layers part of the energy
injected by the driver (or, in the case of 50 s off-axis driver, a smaller part of the energy
is also transported upward in the form of the Alfvén wave). In the simulation with the 5
minute wavelet force located at the axis, waves with frequencies higher than νc represent a
small fraction of the energy introduced by the driver.

The acoustic flux in Figure 5.19 shows that most of the energy keeps below the layer
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c2S = v2A. The wavelet mainly drives 5 minute power in a fast acoustic mode, and since it
is evanescent, it does not propagate energy upward and this 5 minute power is distributed
horizontally. Only waves with frequency higher than the cutoff frequency are transformed
into slow acoustic modes in the low-β region and carry energy to the chromosphere. They
correspond to the low acoustic flux which appears at the center of the sunspot between
z = 0 Mm and z = 1 Mm. The high-β region contains the energy of the slow magnetic
modes generated from the secondary transformation of the reflected fast magnetic modes.
In the magnetic flux, the energy of these slow modes appears in red for radial distances
below 6 Mm. Note that, interestingly, the maximum of this energy is not located just at the
c2S = v2A line it was in the case of 50 s simulations, but it located below this line. This new
location follows the line of constant νc = 4 mHz meaning that the cutoff effects also influence
the penetration of the magnetic energy into the higher layers. The fast mode waves in the
high-β region contribute to the high acoustic flux there. Like in all the simulations with
the driver located at the center of the sunspot, magnetic flux along field lines is negligible,
and there is no conversion to Alfvén waves.

Propagation in the upper atmosphere

Contours in Figure 5.17(a) in the region above v2A = c2S (upper part of the domain) far from
the axis of the sunspot show longitudinal waves with 5 minute period which apparently
move across field lines at the sound speed. Similar to Section 5.4.1, we tried to analyze
their wavenumber and phase velocity behavior with height. However, the wavelength of
these waves in the upper layers is comparable to the size of our simulation domain in the
vertical direction (∼ 1 Mm above v2A = c2S). Because of that, we cannot be completely sure
if these waves propagate along or across the field lines.

Another difficulty to understand the behavior of these waves lies in the fact that their
frequency is below the cutoff frequency νc of the atmosphere. In principle, the cutoff
frequency in the magnetically dominated atmosphere is lowered for the acoustic wave prop-
agating along inclined field lines. We calculated the cutoff frequency taking into account
the effect of the field inclination. We found this inclination to be insufficient to reduce the
cutoff frequency enough to allow for the propagation of the 5-minute waves. Simulations
in a larger spatial domain (both in the horizontal and vertical directions) will be needed in
the future to clarify the nature of these waves.

5.4.5 Case of 300 s wavelet force located off the axis

Figures 5.20 and 5.21 show the longitudinal and transversal components of the velocity,
respectively, of the simulation with the driver located at 5 Mm from the axis of the sunspot.
Similar to the simulations presented in previous sections, the driver mainly excites a fast
acoustic mode below the cS = vA layer. When it reaches this layer it is transformed into a
slow acoustic mode (visible in blue in high layers at x = −5 Mm in the longitudinal velocity,
Figure 5.20), which propagates upwards to the chromosphere; and a fast magnetic mode
(visible in the transversal velocity, Figure 5.21), which is reflected back to the photosphere
due to the gradients of the Alfvén speed. When the later fast mode reaches the cS = vA
layer, it is transformed again into a fast acoustic mode and a slow magnetic mode in the
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Figure 5.20: Variations of longitudinal velocity scaled by a factor ρ1/2 at an elapsed time t = 820 s after
the beginning of the simulations with the driver force at 5 Mm from the axis of the sunspot. Gray inclined
lines are magnetic field lines.

Figure 5.21: Variations of transversal velocity scaled by a factor ρ1/2 at an elapsed time t = 820 s after the
beginning of the simulations with the driver force at 5 Mm from the axis of the sunspot. Gray inclined lines
are magnetic field lines.

high-β region. The new fast acoustic and slow magnetic modes in the high-β region appear
in Figures 5.20 and 5.21, respectively, as concentric rings around and below z = 0 Mm.
There is also conversion to the Alfvén mode, although it is not visible in these figures. We
will discuss it in Section 5.4.5.

Frequency change with height

Figure 5.22 shows the power spectra of the longitudinal velocity at two different heights at
the location of the driver for the simulation with X0 = 10 Mm. The blue line corresponds
to the photospheric height z = −1 Mm, where the driver was imposed, while the red line is
the power spectra at z = 1 Mm, i.e., at the chromosphere. The photospheric power spectra
peaks at 3.3 mHz (5 min) and it has a secondary peak around 5.4 mHz. The maximum
contribution to the power at the chromosphere is at 5.3 mHz (3 min), so the simulation
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Figure 5.22: Normalized power spectra of the longitudinal velocity at the photosphere (blue line) and the
chromosphere (red line) at the location of the driver for the simulation with X0 = 10 Mm. Asterisks mark
the measured values. The vertical dashed line marks the maximum value of the cutoff frequency at this
position.

reflects the observed change of frequency with height. Note that interestingly the frequency
of the power peak in the chromosphere is lower than the one obtained from Figure 5.18 (see
discussion to Figure 5.23 below).

The power spectra at the chromosphere in Figure 5.22 shows some secondary peaks,
which correspond to the harmonics of the 3 minute signal, due to the importance of the
non-linearities at these high layers, where the longitudinal velocity reaches an amplitude of
4.5 km s−1. Waves with frequecies below the cutoff (dashed vertical line) form evanescent
waves, which can not propagate energy upwards, while waves with frequencies above the
cutoff (as the secondary peak of the photospheric power spectra) do propagate energy
upwards. Their amplitude increases according to the drop of the density.

Figure 5.23 shows the frequency of the dominant power peak at all atmospheric heights
at the location of the driver for the three simulations with a wavelet driver out of the
axis. At photospheric deeper layers the dominant frequency is around 3.3 mHz (5 min) for
all simulations, increasing abruptly around z = 0 Mm (depending on the case), when the
power at frequencies above the cutoff becomes more important than the evanescent 3 mHz
oscillations. At the chromosphere, in the case of the simulation with the driver at 5 Mm
from the axis of the sunspot (red line), the frequency of the maximum power peak is around
5.5 mHz, while it decreases to 5.2 mHz for the driver located at 10 Mm (green line), and 5
mHz for the driver at 15 Mm (blue line). The frequency of the peak at the chromosphere
decreases with the radial distance, since the cutoff frequency is higher near the center of
the sunspot.
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Figure 5.23: Height variation of the dominant frequency of oscillations for the 3 simulations with the driver
located at 5 (red line), 10 (green line) and 15 (blue line) Mm of the sunspot axis. The spectra are taken at
the location of the driver of the corresponding simulation.

Acoustic and magnetic wave energy fluxes

Figures 5.24, 5.25, and 5.26 present the acoustic (top panels) and magnetic (bottom panels)
energy fluxes obtained from Eqs. 5.6 and 5.7. They clearly show that most of the energy
introduced by the driver keeps below the layer cS = vA (white horizontal line), since the low
frequency (3.3 mHz band) slow acoustic mode can only propagate horizontally, and the fast
magnetic mode above this layer returns toward the photosphere and generates new acoustic
and magnetic flux after its transformation. Only the slow acoustic mode with frequencies
above the cutoff frequency that propagates upward along field lines, visible in top panel of
Figures 5.24 − 5.26 at a radial distance around the location of the driver and z between
0.5 and 1 Mm, supplies energy to the chromosphere, since the energy of the Alfvén mode
is negligible, as we will show later. Most of the magnetic flux above the layer cS = vA
corresponds to the fast magnetic waves which are being reflected.

The Alfvén mode is visible in Figure 5.27. It shows the longitudinal magnetic energy
flux calculated from Equation 5.7 when v and B1 are projections along the polarization
direction of the Alfvén wave (Equation 5.4), for the driver located at 5 Mm from the axis of
the sunspot. The top panel is a cut in the plane x−z at y = −1.3 Mm, and it is normalized
to its maximum at every height. The bottom panel is a horizontal cut in the plane x− y at
z = 0.5 Mm. The Alfvén direction projections from Cally & Goossens (2008) are valid only
in asymptotic case β ≪ 1. It means that in the top panel we can only indentify the Alfvén
mode energy flux in the layers above the line c2s = v2A, and the flux below this height is
not meaningful. The Alfvén wave propagates upward along field lines. The transformation
from the fast acoustic mode to the Alfvén wave does not take place in the plane y = 0 Mm,
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Figure 5.24: Acoustic (top) and magnetic (bottom) flux for the simulation with X0 = 5 Mm averaged over
the stationary stage of the simulations in logaritmic scale. Horizontal white line is the height where sound
velocity and Alfvén velocity are equal.

Figure 5.25: Acoustic (top) and magnetic (bottom) flux for the simulation with X0 = 10 Mm averaged over
the stationary stage of the simulations in logaritmic scale. Horizontal white line is the height where sound
velocity and Alfvén velocity are equal.
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Figure 5.26: Acoustic (top) and magnetic (bottom) flux for the simulation with X0 = 15 Mm averaged over
the stationary stage of the simulations in logaritmic scale. Horizontal white line is the height where sound
velocity and Alfvén velocity are equal.

where the driver is located, but out of this plane there is energy flux in the Alfvén mode, as
can be seen in the bottom panel. However, for the inclination of the magnetic field and the
direction of propagation of the wave in these simulations, the trasformation to the Alfvén
mode is very ineffective, and the magnetic flux of this wave at the height z = 0.5 Mm and
at y = −1.3 Mm is around 20 times lower than the acoustic flux of the slow mode at the
same position. However, it is 40 times lower than the maximum of the acoustic flux at this
height (which corresponds to y = 0 Mm).

5.5 Discussion and conclusions

In this chapter, we have addressed the problem of the 3D wave propagation and mode
transformation of the MHD waves in the upper atmosphere (photosphere and chromosphere)
of a sunspot model, by means of numerical simulations.

We have presented the analysis of several simulations where the sunspot atmosphere
was perturbed by different pulses, varying their location and temporal behavior. The
simulations of short period waves in the 3D sunspot model clearly show several phenomena
that are predicted by wave theory. We confirmed that our code correctly describes the
propagation of slow and fast modes, both in regions dominated by the magnetic field and
the gas pressure.

The conversion between fast and slow magneto-acoustic waves happens in 3D in a
qualitatively similar way as in two dimensions. Waves with frequencies down to the cutoff
frequency behave in the same way. The driver located in the gas pressure dominated region
generates mostly the fast acoustic mode. The fast mode which propagates upwards is
transformed at the height where the Alfvén and sound velocities are similar. After this
mode conversion, a slow acoustic mode propagates upwards along the field lines in the
region vA > cS . The fast magnetic mode undergoes refraction due to the gradients of the
Alfvén velocity and it is reflected back to the photosphere. When it reaches again the
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Figure 5.27: Longitudinal magnetic flux of the Alfvén mode at t = 330 s for the simulation with the driver
located at 5 Mm from the axis of the sunspot. Top: Vertical cut in the plane y = −1.3 Mm, normalized
at every height. Vertical white lines are magnetic field lines and horizontal white line is the layer where
c2S = v2A. Bottom: Horizontal cut in the plane z = 0.5 Mm. Thin dashed lines are contours of equal magnetic
field, with its value indicated in Gauss. In both panels, black dashed lines mark the location of the other
plot.

surface vA = cS , it is transformed into new fast acoustic and slow magnetic modes in the
region vA < cS .

High-frequency field-aligned propagating acoustic waves are constantly produced in the
upper magnetically dominated atmosphere at locations away from the source. These waves
appear due to the continuous transformation from the fast (acoustic) waves moving hori-
zontally, across the field lines, away from the source in the gas pressure dominated region.
On their way, the fast waves constantly touch the cS = vA layer producing slow (acoustic)
waves in the upper atmosphere in the horizontal locations far from the source. We observe
this behavior in all simulations with different driving frequencies and source position.

The 3D simulations allow us to identify an Alfvén mode. This mode appears only in the
simulations with the source located away from the sunspot axis. It is produced after the
transformation from the fast (acoustic) mode. Its conversion rate is low compared to the
fast to slow transformation, and the eventual energy of the Alfvén wave in the magnetically
dominated region is much lower than that of the slow mode. In the simulations with the
driver located at the axis of the sunspot, where the angle between the direction of the
upward propagating wave and the magnetic field is zero, we find no indications of the
transformation to the Alfvén mode.

From the study of the wave energy fluxes we have found that in the case of waves with
frequency above the cutoff the wave energy can reach the upper atmosphere as slow acoustic
field aligned propagating waves. On the other hand, the fast magnetic waves are reflected,
and there is no magnetic flux corresponding to them above a certain height in the middle
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chromosphere. When the driver is located out of the axis, some small part of the energy
can also propagate upward in the form of an Alfvén wave.

A realistic driver mainly excites waves in the 5 minute band, whose frequency is below
the cutoff. In this case, most of the energy is confined to the region below the height
where the sound and Alfvén velocity are similar. The energy of the fast magnetic modes
in the upper layers is reflected, while the evanescent acoustic slow modes do not propagate
any energy at these frequencies. The comparison between the magnetic fluxes at high and
low frequencies shows that the magnetic flux reaches smaller heights for the low-frequency
waves.

The sunspot model used in this work has a maximum cutoff frequency at νc = 5.8
mHz, and waves with frequencies below this value cannot propagate to the chromosphere
and become evanescent waves. We have shown that high-frequency waves are able to
propagate upward along field lines. Due to their amplitude increase with height (caused
by the density falloff) the 3-minute waves (ν ≈ 5.9 mHz) dominate the power spectrum in
the chromosphere. This behavior, obtained in the simulations, is similar to the observed
one. These simulations also show that the dominant wave frequency in the chromosphere
decreases with the radial distance, due to the reduction of the cutoff frequency far from the
axis.

One of the questions that arises from these results is the evaluation of the validity of
the decomposition performed to separate the fast mode from the Alfvén mode in the low-β
plasma. The decoupling following Cally & Goossens (2008) is valid for an idealized case
when considering a uniform magnetic field, for a plane wave with a constant wavenumber
perpendicular to gravity, and it is obtained asymptotically in the limit of infinite Alfvén
speed. Although the realistic atmosphere used in our calculations does not fulfill these re-
strictions, a coherent picture is retrieved from the magnetic flux of the velocity and magnetic
field components in the direction given by Equation 5.4, showing upward propagation along
magnetic field lines. The result that naturally emerges from this decomposition justifies
the application of the method.

Another issue that complicates the decoupling of both magnetic modes is the excitation
of small horizontal wavenumbers due to the limited horizontal extent of the driver. The fast
mode is refracted due to the rapid increase of the Alfvén speed with height, but the altitude
at which it happens depends on the wavenumber, being higher for lower wavenumbers.
Since most of the power excited by our driver lies in the range of wavenumbers below
∼ 1/Rscr, some of the fast mode waves might still be partially refracted in the limited 1
Mm atmosphere above the cS = vA surface. The magnetic flux of these waves may reach
high layers, complicating the separation of the fast and Alfvén modes. In this scenario, we
would expect a continuous transition between the upward longitudinal magnetic flux and
the refracted one at different heights where all these waves are being refracted. However,
the magnetic flux of the Alfvén wave that we retrieve is clearly delimited along magnetic
field lines, confirming that this flux mostly corresponds to the Alfvén mode.

The most important achievement reached by the development of our numerical code is
the possibility to investigate the 3D mode transformation in realistic conditions imitating a
sunspot atmosphere. This, together with the possibility to study long-period waves in the
layers where they are observed, gives an opportunity for the direct comparison between our
numerical simulations and solar spectropolarimetric observations. Simulations of sunspot
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high layers represent a hard challenge due to the exponential increase of the Alfvén speed
with height. Our sunspot model presents an Alfvén speed of almost 1000 km s−1 close to
the upper boundary of the domain, limiting the time step and making the calculations very
expensive. Despite this, our code manages to describe the waves well, including the correct
performance of the boundary PML layer. Note that other works on waves in non-trivial
magnetic configurations have been restricted either to two-dimensional high-frequency cases
(Cargill et al. 1997; Rosenthal et al. 2002; Hasan et al. 2003; Bogdan et al. 2003; Khomenko
& Collados 2006) or to the study of helioseismic waves, where the problem of high Alfvén
speed is avoided (Cally & Bogdan 1997; Parchevsky & Kosovichev 2009; Hanasoge 2008;
Cameron et al. 2008; Moradi et al. 2009b; Khomenko et al. 2009).

The strategy applied in our code allows the direct comparison with observations by
means of spectral synthesis. The simulations presented in this chapter reproduce the fre-
quency change with height, actually observed in the sunspot atmospheres (Centeno et al.
2006). In Chapter 7 we will perform a more detailed comparison with solar data, by excit-
ing a MHS sunspot model with velocities obtained from spectropolarimetric observations,
and by comparison of the simulated wave parameters in the photosphere and chromosphere
with those obtained from simultaneous observations in different spectral lines.

Perhaps the most interesting simulations considered in this chapter are the ones with
the source exciting a spectrum of waves close to the solar one. These cases have a special
relevance because theoretical models of wave transformation, existing as of today, are best
valid in the high-frequency limit and do not address the behavior of waves at frequencies
below the cutoff frequency (Schunker & Cally 2006). Our initial results show that almost no
energy of the 5 minute waves propagates into the higher layers, at least in the situation of the
sunspot model and location of the sources considered in these simulations. In particular,
an interesting question is under which conditions 5 minute Alfvén waves can be excited
by the mode transformation. These waves can still propagate some energy into the upper
atmosphere of solar active regions, and thus understanding the conditions of transformation
to these waves and their energetics in sunspots is important. The number of works in
the literature with numerical calculations including the transformation to Alfvén waves is
scarce. The most relevant study is the one by Cally & Goossens (2008), who find that the
transformation to an Alfvén mode is effective at certain angles of inclination and azimuth
of the magnetic field. Our code will give us a possibility in the future to perform a more
detailed study of the transformation to Alfvén waves under realistic conditions.



6
Multi-layer observations of waves

Simultaneous observations in different spectral lines give us information about different
heights in the solar atmosphere. It is thus interesting to perform a detailed sampling of

the sunspot atmosphere, using a set of spectral lines formed between the photosphere and
the chromosphere. One of the pionering papers of this subject is the work by Kneer et al.
(1981). On the one hand, observationally detected spatial wave patterns in sunspots are
rather complex (Bogdan & Judge 2006), and several studies have pointed out the presence
of fine structure in chromospheric umbral oscillations (Socas-Navarro et al. 2001, 2009;
Centeno et al. 2005). On the other hand, recent numerical simulations of waves in sunspots
also suggest a complex picture of the fast and slow magneto-acoustic waves propagating
simultaneously in the same layers but in different directions and with different phase speeds
(Khomenko & Collados 2009, Chapter 5 of this thesis). This requires a more refined multi-
layer study of sunspot waves. Studies of this kind often represent an observational challenge
since several spectral lines have to be detected simultaneously not only in intensity but
also in polarized light. In this chapter, we report on such multi-line spectropolarimetric
observations. Our aim is to cover the gap between the photospheric and chromospheric
signals and analyze sunspot oscillations at the formation heights of several spectral lines.
Apart from information about waves, we also aim to estimate the structure of the sunspot
atmosphere and the formation heights of the spectral lines used in this study: Ca ii H line,
several Fe i blends in the wing of this line and the infrared lines of Si i at λ 10827 Å and
He i at λ 10830 Å. The works by Lites (1986) and Centeno et al. (2006), for example, have
used these spectral lines.

The structure of this chapter is the following. In Section 6.1 the observations and data
reduction are explained. Section 6.2 describes the analysis of the velocity oscillations at
several heights. The results are discussed in Section 6.3, which also presents our conclusions.

6.1 Observation and data reduction

The observations analyzed in this work were obtained on 2007 August 28 with two different
instruments, the POlarimetric LIttrow Spectrograph (POLIS, Beck et al. 2005b) and the
Tenerife Infrared Polarimeter II (TIP-II, Collados et al. 2007), attached to the German
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Figure 6.1: Temporal evolution of the IR continuum along the slit. Vertical lines mark the position of quiet
Sun-penumbra and penumbra-umbra boundaries. Time increases from bottom to top.

Vacuum Tower Telescope at the Observatorio del Teide in Tenerife. Simultaneous and co-
spatial scans of a sunspot located near the center of the Sun (µ = 0.96) were taken with
both instruments. The slit was placed over the center of the sunspot. The observations
were obtained with real-time seeing correction by the Kiepenheuer-Institute adaptive optics
system (von der Luehe et al. 2003).

The spectra of the blue channel of POLIS include Ca ii H λ 3968 Å intensity profiles
and some photospheric line blends in the wings of Ca ii H, covering a spectral range from
3964.9 Å to 3971.3 Å with a spectral sampling of 20 mÅ pixel−1 and a spatial sampling
of 0′′29 per pixel. The Ca spectra were reduced for the flatfield (Beck et al. 2005a,b), and
were also corrected for the transmission curve of the order-selecting interference filter in
front of the camera. For the wavelength calibration, the line-core positions of the iron lines
at 3965.45, 3966.07, 3966.63, 3967.42 and 3969.26 Å in an average quiet Sun region were
determined by a second order polynomial fit. We then determined the wavelength scale
that matched best all the position values.

TIP-II yielded the four Stokes parameters IQUV in a spectral range from 10822.7 Å
to 10833.7 Å with a spectral sampling of 11 mÅ pixel−1 and a spatial sampling of 0′′18
per pixel. This spectral region contains information about two different heights of the
solar atmosphere due to the presence of two spectral lines. The Si i line at 10827.09 Å is
formed at photospheric heights, whereas the He i λ 10830 triplet, which includes a weak
blue component at 10829.09 Å and two blended red components at 10830.25 and 10830.34
Å, forms in the chromosphere (Centeno et al. 2008). In this case, the wavelength calibration
was done using the Si i and He i lines as references.

The full data set consists of three temporal series; each of them lasting about one hour.
Three scan steps with 0′′5 step width were taken for the two first series, while in the last
series only two spatial positions were used. The cadence was different for all series. Table
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Figure 6.2: Temporal evolution of the spectra obtained at one position in the umbral region of series #2.
Left : Si i and He i intensity; center : Si i and He i Stokes V ; right : Ca ii H intensity. The horizontal axis
represents wavelength, with the origin at the position of the Si i λ 10827 Å rest wavelength in (a) and (b) and
at the position of the Ca ii H λ 3968 Å rest wavelength in (c). The vertical axis represents time, increasing
from bottom to top.

6.1 shows the time step between two spectra taken at the same spatial position, the time
when the observation were obtained and the number of repetitions of each series.

Table 6.1: Summary of observations:

Series No tstart (UT) tend (UT) ∆t (s) N spectra

Series 1 07:55:02 08:54:48 21 170
Series 2 09:01:02 10:15:25 18 250
Series 3 10:43:34 11:58:43 7.5 600

Due to the differential refraction in the earth atmosphere (e.g., Filippenko 1982), the
spectra of POLIS and TIP-II are not fully co-spatial. The spatial displacement of the two
wavelengths (3968 Å, 10830 Å) perpendicular to the slit depends on the date and time
of the observations, the slit orientation, and the location of the first coelostat mirror (see
Appendix A of Beck et al. 2008). On the first day of the observation campaign, we took a set
of large-area scans at different times for an accurate determination of the displacement. The
solid line in Figure 6.3 shows the theoretically predicted spatial displacement perpendicular
to the slit due to differential refraction, while the asterisks are the measured displacements;
the match between both is remarkable. To guarantee an overlap between the observations
in the two wavelengths, we thus positioned the scan mirror inside of POLIS at the beginning
of each observation such that it compensated the spatial displacement for about the middle
of the observation. Moreover, small repeated scans of 2-3 slit spatial positions, separated
by 0′′5, were taken in order to sample a wider region of the Sun and prevent possible errors
between the theoretical differential refraction and the actual one.

Figure 6.1 shows the temporal evolution of the intensity in a wavelength from the IR
continuum. The regions of quiet Sun, penumbra, and umbra of the sunspot are well defined.
The vertical lines in the figure indicate the boundaries between these areas. The temporal
evolution of the Stokes I and Stokes V spectra for the TIP data and the intensity around
the Ca ii H core in the POLIS data are plotted in Figure 6.2 at a fixed position inside the
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Figure 6.3: Temporal variation of the theoretical spatial displacement perpendicular to the slit due to
differential refraction (Solid line). Asterisks mark the values measured at the telescope.

umbra. The Stokes I and V profiles from TIP contain the Si i line at ∆λ =0 Å (the rest
wavelength of the silicon line was determined from the quiet Sun region and was set as
the origin) and the He i line at ∆λ =3.25 Å. The helium line profile shows periodic shifts
with large displacements to the blue and the red. The core of the Ca ii H line shows a
strong emission peak inside the umbra. The Doppler shift of this emission peak develops a
saw-tooth pattern, similar to the He i line (see also Rouppe van der Voort et al. 2003).

6.2 Data analysis and results

We focus our analysis on the line-of-sight (LOS) velocities. For all the spectral lines except
for Ca ii H, Doppler velocities were inferred by measuring the position of the intensity
minimum. The wavelengths close to the core of the line were fitted with a second order
polynomial. The location of the minimum of the parabola was taken as the line-core
position. This procedure was performed to obtain the Doppler shifts of Si i, He i, and the
Fe i lines at 3965.45, 3966.07, 3966.63, 3967.42 and 3969.26 Å. In the case of the TIP data,
the Doppler shift of the Stokes V zero crossing, where the polarization signal intersects the
zero level, was derived as well. The Doppler shifts from the intensity and Stokes V profiles
are very similar due to the large magnetic filling factor in the sunspot umbra.

The behavior of the Ca ii H core is different. It exhibits a prominent peak at the
center of the line in highly magnetized regions (top line of Figure 6.4), while in a field-free
atmosphere the center of the line has a minimum between two lobes at both sides with their
corresponding maxima (bottom line of Figure 6.4) (see also, e.g., Liu & Smith 1972). In
the umbra, the Doppler shift was retrieved from the spectral displacement of the maximum
of the core emission. In the low magnetized region it was obtained from the shift of the
central minimum. All in all, we have obtained maps of the LOS velocity at each spatial
point covered by the slit at the formation heights of the eight spectral lines, except for He i,
whose line depth in the non-magnetized regions is too small to determine its location.
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Figure 6.4: Averaged intensity profile of the Ca ii H line at different locations. From bottom to top: quiet
Sun, penumbra, and umbra. The intensity scale is different for all of them. The profiles have been displaced
from each other. The Fe i lines analyzed in this work are marked.

We have selected the scan steps which give the best alignment of the data from both
instruments to obtain a better correction of the differential refraction. The use of different
steps introduces a systematic delay between the oscillatory signals from POLIS and TIP-II,
since the same spatial location is observed with a time lag. However, in the case of the data
from series 3, the theoretical correction of the differential refraction worked perfectly and
the optimal alignment was found using the simultaneous scan steps. This data set has been
chosen to calculate the phase difference spectra, as shown in Section 6.2.3. An additional
finer alignment along the slit between TIP and POLIS was done by cross-correlation of the
velocity maps of two spectral lines formed at similar heights, using the line pair Ca ii H
and He i for the chromosphere, and Si i and Fe i λ 3969.26 Å for the photosphere. Finally,
we resampled all velocity maps with the sampling of the POLIS Ca ii H data, i.e., 0′′29 per
pixel.

6.2.1 LOS velocity

Figure 6.5 shows an example of the temporal evolution of the LOS velocities in the sunspot
region obtained from the Doppler shift of several spectral lines. Negative velocities (appear-
ing as black shaded regions) indicate upflows, where matter is approaching the observer,
while white regions are downflows. Figures 6.5(a-d) reveal a similar pattern since all these
lines are formed at photospheric heights. The velocity maps of the Fe i line blends of Ca ii H
have lower quality than the Si i maps, especially inside the umbra, due to the coarser spec-
tral sampling and the small line depth of the lines.

The velocity field at chromospheric heights is given in Figure 6.5e (Ca ii H) and 6.5f
(He i). Both figures show a similar wave pattern and similar amplitudes, but, as a more
detailed analysis will reveal, the velocity oscillations of the He i line are slightly retarded
relative to those in Ca. The wave pattern measured at chromospheric heights in the umbral
region has a smaller spatial coherence than that observed in the photosphere. It also differs
in its larger peak-to-peak variations of about 8 km s−1 and its period of about three minutes.
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Figure 6.5: Velocity maps in the sunspot during series #2 for the different spectral lines. The horizontal axis
represents the position along the slit and the vertical axis represents time. Black color indicates negative
velocities (upflow), white color positive velocities (downflow). Top row, left to right: Si i λ 10827 (a), Fe i λ
3966.1 (b), Fe i λ 3966.6 (c). Bottom row, left to right: Fe i λ 3969.3 (d), Ca ii H 3968.5 (e), He i λ 10830
(f). Vertical solid lines represents the limits of the umbra. The vertical dashed line denotes the location of
the velocity shown in Figure 6.7. The white rectangle in (f) marks an area of running penumbral waves.

In the region of the penumbra, which can be seen in Figure 6.5f at a position between
19′′ and 23′′ and between 34′′ and 39′′, there is also a characteristic pattern of alternating
positive and negative velocities, but with lower amplitudes than the waves in the umbra and
with longer periods, corresponding to running penumbral waves (see, e.g., Giovanelli 1972;
Zirin & Stein 1972; Bloomfield et al. 2007). They start at the inner penumbra, and their
wave front is delayed in the regions of the outer penumbra, so their propagation through
the penumbra appears as a slope in the diagram. An example of such a slope can be seen
in an area between 19′′ and 23′′ during the first 22 minutes (white rectangle). This slope
is smaller near the outer penumbra, indicating a decrease of the propagation speed as the
disturbance travels from the inner to the outer penumbral boundary. The estimation of the
velocity for the Ca ii H line core (Figure 6.5e) in the penumbral region is poorer due to the
change of the shape of the line that does not have a prominent emission peak any more
(see middle curve in Figure 6.4).

The left panels of Figure 6.6 show the histograms of the LOS velocities in the umbra of
the sunspot obtained from all the spectral lines used in this study. We fitted a Gaussian
to the distributions to estimate the root-mean-square (rms) velocity value. The histograms
are sorted from bottom to top with increasing rms velocity, with Si i having the smallest and
He i the largest rms velocity. The Fe i lines at 3966.0 and 3966.6 Å have an identical rms
velocity value, indicating that they are formed at close heights. This is also suggested by
their nearly identical line depth (see Figure 6.4). From these histograms and the variation
of the rms velocities, we obtain the first estimate of the relative formation height of the
spectral lines since we expect a monotonic increase of the rms velocity with height, according



6.2 Data analysis and results 95

to the density drop.

For comparison, the right panels of Figure 6.6 show the histograms of LOS velocities for
the same lines in a region of the quiet Sun. The He i histogram is not shown because the
He i absorption in quiet Sun is too low to retrieve a velocity. The quiet Sun histograms also
show the increase of the rms velocity with increasing formation height, although the order of
the rms velocity slightly differs from the one obtained in the sunspot, since all the Fe i lines
form in a thin layer. As the oscillatory power in sunspots is suppressed (see, for example,
Hindman et al. 1997), the rms velocities in the quiet Sun are larger. Another possible
source of the broadening of the quiet Sun velocity histogram can come from the granulation
velocities not present inside the umbra. We did not remove the granular component from
the velocity variations in the quiet Sun and it can contribute to some extent to the overall
rms velocity variations (see, e.g. Kostyk & Khomenko 2002).

Figure 6.7 shows an example of the temporal evolution of the LOS velocity obtained
from the chromospheric He i line and the Ca ii H line core, the four photospheric Fe i lines,
and the photospheric Si i line at one location inside the umbra of the sunspot, indicated
in all panels of Figure 6.5 with a vertical dashed line at x = 28′′. The plots are sorted
from bottom to top with increasing formation height, as retrieved from Figure 6.6. A
comparison between the bottom and top panels (which show the Si i and He i velocities,
respectively) reveals the differences in period and amplitude of the waves at photospheric
and chromospheric heights. Between these two layers, the rest of the spectral lines sample
different heights of the atmosphere. At photospheric heights (panels c-g), the pattern of
waves is similar and the signals of the lines with higher formation heights are slightly delayed
(see e.g. the peak at t = 49 min marked with a dashed line). We can see that higher layers
have larger amplitudes (note that the top two panels have a different scale for the velocity).
The temporal evolution of the LOS velocity of the two chromospheric lines (panels a-b) is
almost identical, but the amplitudes are higher in the case of the He i line. For instance
from minute 10 to 25, it is clearly seen that the oscillations measured with the He i line and
Ca ii H core have a saw-tooth profile that indicates the presence of a shock wave train, with
a slow increase of the velocity followed by a sudden decrease. There is a phase difference of
about 20 s between the Ca ii H line core and the He i line velocities, in the sense that the
oscillatory signal reaches the formation height of the Ca ii H line core 20 s before that of
the He i line.

Table 6.2: Rms velocities in ms−1 in the sunspot and the quiet Sun, and their ratio (3rd column).

Line Umbra QS Ratio QS/umbra

Si i 90 250 2.80
Fe i 3965.4 170 256 1.51
Fe i 3966.1 174 275 1.58
Fe i 3966.6 180 273 1.52
Fe i 3969.3 201 306 1.53
Ca ii H 510 659 1.29
He i 726 – –

Table 6.2 lists the rms velocities in the quiet Sun (except He i) and in the sunspot
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Figure 6.6: Histograms of LOS velocity measured with several spectral lines. The left column corresponds
to the umbra, the right column to the quiet Sun. From bottom to top: Si i, Fe i λ 3965.4, Fe i λ 3966.1, Fe i
λ 3966.6, Fe i λ 3969.3, Ca ii H and He i. Solid lines represent the Gaussian fit; its width is indicated in each
plot.
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Figure 6.7: Velocity at a fixed position in the umbra for different spectral lines, sorted by formation height:
He i λ 10830 (a), Ca ii H 3968.5 (b), Fe i λ 3969.3 (c), Fe i λ 3966.6 (d), Fe i λ 3966.1 (e),Fe i λ 3965.4 (f),
Si i λ 10827.1 (g). The vertical dashed line at t = 49 min marks a prominent velocity peak. The dotted
lines are drawn at fixed times for comparison purposes.
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for all the spectral lines, together with the ratios between the quiet Sun and the sunspot
velocities. The relative increase of the rms velocity of the quiet Sun to the rms velocity
of the sunspot decreases with the height in the atmosphere, from 2.80 at the photospheric
height of the formation of Si i to 1.29 at the chromospheric height of the formation of
Ca ii H line core. The rate of the increase of the rms velocity in the sunspot is faster, and
the difference between velocities from lines formed at higher layers is smaller. The growth
of the amplitude of the oscillations with height is scaled with the pressure scale height,
H0 = RT/µg, where T is the temperature, R is the gas constant, g is the gravity and µ is
the mean weight of the atoms. In the umbra the temperature is lower and H0 is smaller
than in the quiet Sun atmosphere, so the amplitude of umbral oscillations rises faster.

6.2.2 Power Spectra

Figure 6.8 shows the normalized average power spectra of LOS velocity of the two chromo-
spheric (He i and Ca ii H) and two of the photospheric (Si i and Fe i λ 3969.3) lines inside
the umbra of the sunspot. We chose this iron line because it has better signal to noise
and its formation height is distant from the layer where Si i is formed. In the photosphere
(bottom panel), the power is concentrated between 2 and 4 mHz, corresponding to the 5
minute band, with a maximum peak at 3.5 mHz. Both spectral lines peak at the same
frequency, although the power of the Fe i line is slightly higher. The increase of the power
at frequencies above 4.5 mHz is more important than the one for frequencies below this
value.

The velocity power spectra of both chromospheric lines (top panel) have a broad dis-
tribution of frequencies, with the largest power being in the band from 5 to 10 mHz. The
chromospheric power spectrum has a maximum at 6.2 mHz and several secondary peaks
around it (see for comparison Lites 1986). These frequency peaks correspond to the chro-
mospheric 3 minutes oscillations. At the highest peak of the power spectra, both Ca ii H
and He i have almost the same power, but for those frequencies with lower power, the power
of the He i is increased comparing to the Ca ii H. Note that at the heights sampled by our
spectral lines we do not find a continuous transition from the peak at 3.5 mHz to the one at
6.2 mHz, but rather a discontinuous behavior between the photospheric and chromospheric
power spectra. However, the prominent secondary peak around 5.5 mHz in the power spec-
tra of the Fe i line is much more obvious than the corresponding in the Si i power spectra,
which could indicate some transition towards higher frequencies in the power spectra as the
waves propagate upward from the formation height of the Si i line to the Fe i lines.

6.2.3 Phase spectra

A phase diagram gives the phase difference (∆φ) between two signals. In our study, we use
∆φ to measure the time delay between the oscillatory velocity signals from two spectral
lines and assume that the difference between them is mainly due to the difference of the
formation height of the two lines. In the following, we show the phase difference spectra
between different combinations of pairs of spectral lines used in this work. To obtain the
phase spectra, we treated each spatial point separately and calculated the Fourier-transform
of the temporal evolution of the respective velocities. We derived the phases, and from them
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Figure 6.8: Average umbral power spectra of the LOS velocities. Top: chromospheric lines, He i (solid line)
and Ca ii H (dashed line), both are normalized to the maximum power of the He i line; bottom: photospheric
lines, Si i line (solid line) and Fe i 3969.3 Å (dashed line), both are normalized to the maximum power of
the Fe i line.

the phase difference of the two signals as a function of the frequency. There is a 2π ambiguity
in the computation of the phase value, so all phase differences have been projected in the
range ±π. Then we calculated histograms of the relative occurrence of a given value of the
phase differences at each frequency taking into account all the corresponding spatial points
(see also Krijger et al. 2001, and references therein). We obtained the data displayed in
Figures 6.9–6.15.

In addition to the phase difference spectra, we calculated the coherence spectra. They
provide an estimate of the statistical validity of the phase and power spectra. Considering n
pairs of signals xk(t) and yk(t), whose Fourier transforms are X̄k(ω) and Ȳk(ω), respectively,
the coherence is defined as

Pxy(ω) =

∣

∣

∣

∑n
k |X̄k(ω)||Ȳk(ω)|ei∆φk(ω)

∣

∣

∣

∑n
k

√

|X̄k(ω)|2|Ȳk(ω)|2
(6.1)

where ∆φk(ω) = φxk(ω)− φyk(ω). In our case, the sub-index k covers the spatial position.
The coherence evaluates statistically for every frequency ω the relation of the ∆φk(ω) for
the n k-signals. It takes the value 1 when ∆φk(ω) is the same for all the k. If the phase
difference of the different k is arbitrary, the coherence takes very low values. We selected
a confidence limit at 0.7, and for frequencies with coherence above this value we consider
the phase spectra to be reliable.

We also analyzed the increase of the amplitude of the oscillations. We calculated the
amplification spectra as the ratio between the power at two layers, both of them averaged
all over the umbra:

Axy =

∑n
k |Ȳk(ω)|2

∑n
k |X̄k(ω)|2

. (6.2)
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Theoretical model

Following Centeno et al. (2006), the observations were compared with a model of linear ver-
tical propagation of slow magneto-acoustic wave in an isothermal atmosphere that includes
radiative losses described by Newton’s cooling law (Mihalas & Mihalas 1984). Assuming
that the amplitude of the vertical velocity changes with height by

V (z) = V0e
z/(2H0)eikzz, (6.3)

the dispersion relation for such waves is

k2z =
ω2 − ω̂2

ac

ĉ2
, (6.4)

where

ω̂ac = ĉ/2H0, ĉ
2 = γ̂gH0, γ̂ =

1− γiωτR
1− iωτR

, (6.5)

and τR is the radiative cooling time for an optically thin perturbation (Spiegel 1957):

τR = ρcv/(16χσRT
3). (6.6)

The phase difference between oscillations at two heights is calculated as the difference
of the imaginary part of the argument of the complex exponential in Equation 6.3, that is,
∆φ = kR∆z, where ∆z is the geometric distance between the two heights and kR is the
real part of kz. The amplification spectrum is given by the ratio between the amplitude at
the two layers and is obtained as A = e2(1/(2H0)−kI)∆z, with kI being the imaginary part of
kz.

This model allows us to fit the phase and amplification spectra with three free parame-
ters: the temperature of the atmosphere, T , the difference in height between two lines, ∆z,
and the typical time scale in which the temperature fluctuations are damped radiatively, τR.
These free parameters are manually tuned to match the effective cut-off frequency and the
slope (including its variations) of the phase difference spectra in the regime of propagating
waves above the cut-off frequency.

Si i-He i phase spectra

Figure 6.9 shows the phase difference between the velocity signals measured in the photo-
spheric Si i line and the chromospheric He i line. The phase difference is zero for frequencies
below 4 mHz. At these frequencies the coherence is high, except in the range between 1 and
2.5 mHz, and the atmosphere oscillates as a whole, i.e., the waves are stationary. From 4
mHz to 7 mHz, the phase difference increases linearly with the frequency and the coherence
is (more or less) above the confidence limit. It indicates that waves at these frequencies
propagate from the photospheric layer, where the Si i line forms, to the chromospheric layer,
where He i forms. The phase difference spectra for higher frequencies are very noisy, and
no meaningful conclusions are possible.

We fit both the phase difference and the amplification spectra simultaneously. The
parameters of the fit are listed in Table 6.3. The bottom panel of Figure 6.9 shows the
ratio of chromospheric to photospheric power as a function of frequency. The solid red line
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Figure 6.9: Top: Phase spectra between the LOS velocities of the Si i and the He i lines. The color code
shows the relative occurrence of a given phase shift. The red line represents the best fit from the theoretical
model. Middle: Coherence spectra. The horizontal dashed line at 0.7 marks the confidence limit. Bottom:
Amplification spectra. The red line represents the best fit from the theoretical model.

in the phase diagram in Figure 6.9 represents the phase difference according to the model
presented in Section 6.2.3, calculated with the parameters that best fit the observations.
The theoretical amplification spectra matches rather well the observational one, with an
order of magnitude agreement in the amplification factor.

Si i-Ca ii H phase spectra

Figure 6.10 shows the phase, coherence and amplification spectra between the velocity
measured with the Si i line and the core of Ca ii H line. Frequencies below 1 mHz have a
very low coherence, so these values are not reliable. Surprisingly, frequencies in the range
between 1 and 2.5 mHz present an anomalous behavior, with a phase difference around
2.5 rad and a high amplification, while their coherence is remarkably high. The long
period of waves with these frequencies hinders their analysis, so further observations with
longer temporal series are required to study this behavior. The rest of the phase spectra is
similar to the one between Si i and He i, with zero phase difference between 2.5 and 4 mHz,
indicating stationary waves, and an almost linear increase of the phase difference between
4 and 7 mHz, corresponding to upwards propagating waves. In all this frequency range, the
coherence is high. However, in this case the slope of the increase of the phase difference is
smaller than in the previous one, and the amplification also has lower values. It means that
the phase delay between the velocities at the formation height of these two lines is smaller
than the delay between Si i and He i and the amplitude of the waves at the formation height
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Table 6.3: Best-fit parameters of the theoretical model

Line pair T (K) ∆z (km) τR (s)

Si-He 4500 900 45
Si-Ca 4000 650 45

Fe 3969.3-He 4000 450 45
Fe 3969.3-Si 4000 -280 30

Fe 3969.3-Si (quiet sun) 4500 -200 30
Fe 3965.4-Fe 3969.3 3500 30 45
Fe 3966.0-Fe 3969.3 3500 20 45
Fe 3965.4-Fe 3966.0 3500 10 45

Ca-He 6000 100 15

of He i is larger than that of waves at the layer where Ca ii H forms. Both the phase and
amplification spectra locate the formation height of the Ca ii H core below the He i line.

The parameters retrieved from the fit of the phase and amplification spectra to the
theoretical model are listed in Table 6.3. Comparing the ones retrieved for the line pair
Si i-He i with the pair Si i-Ca ii H, the Ca ii H core formation height in the umbra is around
250 km below the He i line. The temperature obtained for the phase difference between Si i
and Ca ii H is smaller by 500 K; waves traveling from the formation height of Ca ii H core
to that of He i pass presumably through a region where the temperature is increasing.

Fe i-Fe i phase spectra

To study the properties of oscillations at photospheric heights, phase diagrams between
pairs of the photospheric lines were calculated. We can assume that the Fe i lines in the
Ca ii H wing form at three different heights according to their line depth (Figure 3) and to
the width of the velocity histograms (Figure 6.6). We take the lines Fe i λ 3965.4, Fe i λ
3966.0 and Fe i λ 3969.3 as representative of these heights, since Fe i λ 3966.6 and Fe i λ
3967.4 seem to form at a similar height as Fe i λ 3966.0. As an example, Figure 6.11 shows
the phase spectra, coherence and amplification spectra obtained between between Fe i λ
3966.0 and Fe i λ 3969.3. The phase spectrum shows that the phase difference is almost
zero for all the frequencies that can be trusted according to the coherence spectra (from 0
to 10 mHz). We conclude that we can not retrieve the phase shift between the Fe i lines
reliably, as the geometrical difference in their heights of the formation is too small. However,
the amplification spectra reflects some increase of the amplitude with height. We managed
to fit both the phase and the amplification spectra with the wave model described in the
previous section. These fits yield, indeed, a small geometrical height difference between the
Fe i lines. The temperature and the cooling time obtained from the fit are identical for all
pairs of iron lines (Table 6.3).

Fe i-Si i phase spectra

The phase difference spectrum between the Fe i λ 3969.3 line and the Si i λ 10827 line is
shown in the top panel of Figure 6.12. For frequencies below 2 mHz, the phase spectrum
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Figure 6.10: Phase, coherence and amplification spectra between Si i and Ca ii H. The format of the figure
is the same as Figure 6.9.

Figure 6.11: Phase, coherence and amplification spectra between Fe i λ 3966.0 and Fe i λ 3969.3. The format
of the figure is the same as Figure 6.9.
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Figure 6.12: Phase, coherence and amplification spectra between Fe i 3969.3 and Si i. The format of the
figure is the same as Figure 6.9.

is very noisy and has no coherence (see middle panel), indicating that waves at the heights
of formation of these two lines are not related. At frequencies in the band of 2.5− 4 mHz,
some oscillatory power is present, the coherence is high and the phase difference is close to
zero, so these waves are evanescent. The phase difference spectrum for high frequencies in
the range from 4 to 9 mHz shows a decreasing tendency, indicating that the waves reach the
formation height of the Si i line before the Fe i line. This phase spectrum was also fitted with
the wave propagation model. The solid red line in top and bottom panels of Figure 6.12
shows the result of this fit. The amplification spectrum is not reliable at frequencies below
3 mHz due to the low coherence, but above this value the agreement of the theoretical and
observational spectra is good, indicating that the amplitude of the oscillations measured in
Si i is about twice lower than the amplitude measured in the Fe i 3969.3 line.

As a summary of the propagation at photospheric heights, we conclude that all observed
photospheric spectral lines (five Fe i lines and the Si i line) fluctuate with a dominant period
of 5 minutes. While all the Fe i lines have similar velocity amplitudes, with a maximum
peak-to-peak amplitude of around 800 m s−1, the velocity amplitude measured in Si i is
clearly smaller (maximum peak-to-peak amplitude around 400 m s−1). According to the
phase diagram between the Fe i lines (Figure 6.11) and the amplification and phase diagram
between a Fe i line and Si i (Figure 6.12), we conclude that waves with frequencies above
4 mHz propagate upwards at photospheric heights. They first reach the height where Si i
is formed. As they propagate upward, their amplitudes increase due to the density fall-off.
Then the waves reach the formation height of all the Fe i spectral lines, that all come from
a thin layer and for this reason all show similar amplitudes.
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Figure 6.13: Phase, coherence and amplification spectra between Fe i λ 3969.3 and He i. The format of the
figure is the same as Figure 6.9.

Fe i-He i phase spectra

According to the results extracted from the velocity statistics and the phase spectra pre-
sented before, the Fe i lines form at some height between the formation height of the Si i line
and the chromospheric He i line and the Ca ii H core. This means that they give information
about a high photospheric layer, located at an intermediate height in the propagation of
the waves from the photosphere to the chromosphere. Figure 6.13 shows the analysis of the
phase differences and amplification between the velocity signal measured at the formation
height of the Fe i λ 3969.3 line and the He i line. The phase spectrum is similar to the
other two between photospheric and chromospheric lines (Si i-He i and Si i-Ca ii H). For
frequencies between 2 and 4 mHz, the phase difference is about zero, and it increases with
the frequency between 4 and 7 mHz, but the slope is smaller than for Si i-He i. In the range
between 2 and 7 mHz, the coherence is significant. The amplification spectrum also shows
a lower amplification, compared to the Si i-He i case. The temperature, height difference
and radiative damping time retrieved from the fit are listed in Table 6.3.

Ca ii H -He i phase spectra

At chromospheric heights, we have the Doppler velocities obtained from the cores of the
Ca ii H line and the He i λ 10830 line. The top panel of Figure 6.14 shows the phase
difference diagram between them. At frequencies between 1-2 mHz, the coherence (middle
panel of Figure 6.14) is low and the phase spectrum is noisy. The coherence spectrum shows
that the phase spectrum is reliable between 2 and 12 mHz. In the frequency band between
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2 and 4 mHz, the phase difference is about 0, indicating that there is no propagation and
the waves are evanescent. From ν=4 mHz to ν=11 mHz, the phase difference increases,
starting from ∆φ = 0 and showing a small positive slope. It means that as waves propagate
upwards, they reach the Ca ii H core formation height just before the He i one. The same
conclusion was obtained previously from comparing the temporal variations of the Ca ii H
core and He i velocities presented in Figure 6.7(a–b), where the oscillatory signal of He i is
delayed by 20 s with respect to the Ca ii H one.

The differences in the amplitudes between Ca ii H core and He i velocities are in line
with their phase spectra (top panel in Figure 6.14), since the amplitude of the He i velocity
is bigger than the Ca ii H. A more detailed inspection of the amplification spectra between
both chromospheric lines (bottom panel of Figure 6.14) reveals that the oscillatory signal
is amplified between 2 and 4 mHz, but there is no amplification for frequencies in the
range from 4.5 to 10 mHz (the ratio between the amplitudes is around unity). Waves in
the 2–4 mHz frequency range are evanescent, and the increase of their amplitude from the
photosphere to the chromosphere is not so high, keeping them in a linear regime. At the
high layers, their amplitude still increases due to the drop of the density with height. On
the other hand, waves with frequencies between 4 and 10 mHz propagate upwards to the
chromosphere and develop into shocks (top panels of Figure 6.7). In this non-linear regime,
their amplitudes do not increase with height, explaining the observational amplification
spectrum around unity for frequencies in the range 4-10 mHz. The model of linear wave
propagation in an isothermal stratified atmosphere predicts a higher amplification. In
the case of waves with frequencies above 10 mHz, they do propagate upwards, but their
amplitude at the photosphere is so low that they do not reach a non-linear regime and their
amplitude still increases with height at chromospheric layers. All in all, the model is not
suitable for the description of waves at heights of Ca ii H core and He i formation where the
non-linearities start to become important.

It is expected that the propagation of non-linear waves happens at a higher speed
compared to the linear case. This would decrease the phase difference between two layers.
Therefore, we can expect that the height difference between the formation layers of Ca ii H
and He i lines presented in Table 6.3 is underestimated by our linear model; the value of
about 100 km is the lower limit of this difference. One of the issues that arises from this
fact is the evaluation of the height range where the linear model of wave propagation is
valid. It is clear that it fails between the formation height of the Ca ii H core and the He i
line due to the non-linearities. However, in previous sections we have applied successfully
this model to the propagation between the photospheric Si i line and the chromospheric
Ca ii H core and He i line, and between one of the Fe i lines and the He i line. It means
that in most of their way from the photosphere to the chromosphere, the linear regime is a
good approximation for these waves. At some layer between the formation height of the Fe i
3969.3 and the He i lines the wave propagation departs from the linear regime (cf. Carlsson
& Stein 1997).

Fe i-Si i phase spectra in quiet Sun

We calculated the phase difference spectra for a region of quiet Sun around the sunspot as
well. In this region, the Stokes parameters QUV are below the level of noise, so we suppose
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Figure 6.14: Phase, coherence and amplification spectra between Ca ii H and He i. The format of the figure
is the same as Figure 6.9.

there is no significant magnetic field. Figure 6.15 (top) shows the phase spectrum between
the photospheric Fe i λ 3969.3 and Si i λ 10827 lines in the quiet Sun. The coherence
spectrum shows high values for frequencies below 9 mHz. For frequencies below 2 mHz,
the phase diagram is very noisy due to the low oscillatory power of the two velocity signals,
and we do not find any clear relation between them. In the spectral range from 2 mHz to 4
mHz, the phase difference takes a constant value around zero, while for frequencies above 4
mHz, ∆φ decreases with increasing frequency. However, the low power at the photosphere
at frequencies between 6 and 8 mHz (Figure 6.8) results in a noisy phase spectrum in this
band.

Comparing the phase difference diagrams between the same two lines inside the umbra
of the sunspot (top panel in Figure 6.12) and in the quiet Sun, we find that in quiet Sun
the negative slope of the phase difference is less steep. We also fitted the quiet Sun phase
difference and amplification spectra with our wave propagation model. Inside the umbra
of the sunspot, the magnetic field imposes wave propagation along field lines, and thus
the hypothesis of vertical propagation is justified. However, in the quiet Sun waves can
propagate in different directions and this approximation may not be true. Still, we were
able to find a fit matching reasonably the phase spectrum. We retrieve a formation height
difference of 200 km, lower than in the umbra, and a higher temperature of 4500 K. For a
comparison between the parameters in the quiet Sun and the umbra see Table 6.3.

The bottom panel of Figure 6.15 shows the amplification spectrum for this case. For
frequencies in the band of 2-7 mHz, the theoretical amplification matches the observational
one.
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Figure 6.15: Phase, coherence and amplification spectra between Fe i λ 3969.3 and Si i in a quiet Sun region.
The format of the figure is the same as Figure 6.9.

6.2.4 Comparison of the parameters of the fit with a model of sunspot

From the fit to the phase and amplitude spectra of all the pairs of lines we obtain the
temperature, the difference between the formation heights of two lines, and the cooling time
that best match the observational data. Obviously, our model is simplified and has several
important limitations. It only describes linear wave propagation in an isothermal stratified
atmosphere, not taking into account a realistic temperature stratification of the sunspot
atmosphere. In a real sunspot, the temperature varies with height, so the temperature that
we obtain from the fit represents a mean value between two heights of formation. In the
case of spectral lines formed at a similar height (i.e., the Fe i lines), the temperature that
we find should be close to the real temperature in the layer. However, when the formation
height difference (∆z) obtained from the fit is larger (i.e., Si i-He i), we can not assign the
temperature to a certain height. The presence of shocks in the temporal evolution of the
He i and Ca ii H velocities (Figure 6.7), together with the difficulties of the model to fit the
amplification spectra between Ca ii H and He i (Figure 6.14), show that the propagation at
these heights is non-linear. Thus our determination of the height difference between these
two layers must be somewhat affected by the deviations from the linear regime.

Despite these limitations, we plotted the deduced temperature values over the temper-
ature stratification of the sunspot model M of Maltby et al. (1986) (Figure 6.16). The
symbols in this figure mark the values retrieved from the fit to our observations. From the
fit, we obtain the relative difference between the formation heights of spectral lines, not the
absolute values. As reference point, we set the height of the Si i line to z=308 km, as given
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Figure 6.16: Temperature stratification in the sunspot model M of Maltby et al. (1986). Asterisks represent
our best-fit values to the phase difference and amplification spectra of the line pairs. Diamonds mark an
alternative estimate of the formation height of the Ca ii H core and the He i line.

by Bard & Carlsson (2008) for the sunspot atmosphere model of Maltby et al. (1986). The
formation heights of the other lines then follow from their relative distance to the Si i line
(Table 6.3). Table 6.4 lists the resulting height values and the corresponding temperature.

In the case of the Fe i lines, we obtained from the low phase difference (top panel of
Figure 6.11) that the distances between them are very small, but the amplification spectra
(bottom panel of Figure 6.11) or the histograms of velocities (Figure 6.6) show a certain
increase of the amplitude with height. This amplification in spite of the small geometrical
distance indicates a low pressure scale height H0 and consequently a low temperature T .
The height of the Fe i line close to the temperature minimum agrees with the results from
the fit of the model to the phase and amplification spectra.

In the case of the chromospheric signals (Ca ii H core and He i line), we assign to both
formation heights the temperature retrieved from the fit of the phase spectra between
Ca ii H and He i velocities. According to the geometrical differences of Table 6.3, there is
an uncertainty in the formation height of these two lines. On the one hand, we have set
them from their ∆z with respect to the Si i line, locating the formation height of the Ca ii H
core at 958 km and the formation height of the He i line at 1208 km. On the other hand,
we have obtained an alternative height for the Ca ii H core by considering its ∆z to the
He i line, and subtracting it from the previous estimate of the He i formation height. In
the same way, we have located the formation height of the He i line taking into account the
geometrical differences between the pairs Si i-Fe i λ 3969.3 and Fe i λ 3969.3-He i. Thus, we
retrieved a range of heights for both chromospheric lines, as it is shown in Table 6.4. The
height ranges we find are comparable to previous works (e.g., Lites et al. 1993; Carlsson &
Stein 1997; Centeno et al. 2009; Beck et al. 2009), even if some of these articles deal with
the quiet Sun solely.
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Table 6.4: Formation heights and temperature for the spectral lines

Spectral line z [km] T[k]

Si i 308 4000
Fe i 3965.4 558 3500
Fe i 3966.0 568 3500
Fe i 3969.3 588 3500
Ca ii H 958-1108 6000
He i 1038-1208 6000

6.3 Discussion and conclusions

In this chapter, we have presented an analysis of the LOS velocities obtained from at set
of spectropolarimetric data in the near-IR spectral region around 10830 Å and the optical
region around 3969 Å in a sunspot atmosphere and its vicinity. From these two spectral
ranges, we retrieve on the one hand the Doppler velocities of the photospheric Si i λ 10827
and the chromospheric He i λ 10830 line. On the other hand, we also sample several layers
between these two heights, using the Doppler shifts of the chromospheric Ca ii H line core
and the photospheric Fe i lines from the wings of the Ca ii H line.

The histograms of LOS velocities show that the width of the velocity distribution in-
creases with height, both in the sunspot and the quiet Sun atmosphere. Quiet Sun rms
velocities are larger than those in the sunspot due to the higher power of oscillations in
the quiet Sun. The growth of the amplitude of the oscillations with height is scaled by the
pressure scale height H0. It is smaller in the umbra than in the quiet Sun atmosphere, so
the amplitude of umbral oscillations rises faster. This yields the fact that the ratio of the
quiet Sun and umbral rms velocities of the same lines decreases with the formation height
of the lines.

The phase difference spectra of LOS velocities between several pairs of lines show upward
propagating waves for frequencies higher than 4 mHz. The power at lower frequencies does
not propagate up, since waves with these frequencies are evanescent. The slope of the phase
spectra, together with the histograms of LOS velocity, allows us to sort all the spectral lines
used in this work by their formation height.

Phase and amplification spectra were fitted to a model of linear wave propagation in a
stratified atmosphere with radiative losses following the Newton cooling law. The model
works reasonably well in layers below the formation height of the Ca ii H line core, where
waves propagate in a linear regime, while it fails in the fit of the amplification spectrum
between the He i velocity and the Ca ii H line core velocity, due to the importance of
nonlinearities at these chromospheric heights.

From the fit to the model, we retrieved the temperature, the difference in geometrical
height between the formation heights of both spectral lines, and the radiative relaxation
time. Setting the height of the lowermost forming line (Si i) to agree with Bard & Carlsson
(2008), the formation height of all the lines in sunspots was inferred. The Fe i lines from
the wings of the Ca ii H line are formed about 250 km above the photospheric Si i line.
The relative position of the lines is well determined by the observations, since the rms
velocities (Figure 6.6), the power spectra (Figure 6.8), and the phase and amplification
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spectra (Figure 6.12) all indicate that the Fe i lines are formed in the upper photosphere
above the Si i line. The temperatures obtained for the spectral lines then show a good
agreement with the temperature stratification of the Maltby et al. (1986) sunspot model
M, and the formation heights are coherent with previous estimates. It must, however,
be taken into account that the estimate of the formation height from response functions in
Bard & Carlsson (2008) was performed for a static atmosphere and has a strong dependence
on the model atmosphere employed.

Most of the power of the photospheric lines is concentrated in a prominent peak at
3.5 mHz, in the 5 minute band. From a comparison between the power spectra of the Si i
and one of the Fe i lines, it is interesting to note that the power peak is exactly at the
same position, although the iron line forms at around 200 km above the silicon one. The
same behavior was found for the chromospheric He i line and the Ca ii H line core, which
peak at around 6 mHz, corresponding to the 3 minute band. The maximum of the power
spectra is not shifted gradually from 3.5 mHz at the photosphere to higher frequencies at
larger heights, but the photospheric and chromospheric group of lines show a discontinuous
behavior. The analysis of the simulations presented in the previous chapter also shows
that the transition between 3 and 5 mHz waves is clearly discountinuous and occurs in a
few kilometers (Figure 5.23). This observational result shows a perfect agreement with the
simulations presented in Chapter 5. Waves at frequencies above the cut-off increase their
amplitude with height faster than evanescent waves below the cut-off, resulting in larger
power of 3-minute waves at chromospheric heights. Yet, as follows from Figure 6.8b, the
LOS velocity power at frequencies above 4 mHz measured from of the Fe i line is higher than
the one from the Si i line; it means that already in the upper photosphere the high-frequency
power becomes important. This finding suggests that high-frequency waves prominent in
the chromosphere have to be generated in the photosphere or below and their dominance
at the chromospheric height is the result of their large amplitude increase. These results
are consistent with those obtained from observations by Socas-Navarro et al. (2001) and
Centeno et al. (2006), and from numerical simulations in Chapter 5 of this thesis.

From the compatibility between our observations and a simple wave model, we conclude
that we observe a continuous field-aligned propagation of slow magneto-acoustic waves in
the upper atmosphere of the sunspot. These waves first reach the formation height of Si i,
then the formation height of the Fe i lines from the Ca ii H line wing located in the upper
photosphere, then the formation height of the Ca ii H line core and finally that of the He i
line. The propagation becomes non-linear at heights between the formation of Fe i lines
and Ca ii H line core.
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Simulating wave propagation in realistic sunspot atmospheres with the properties of ob-
served oscillations is a challenge. There are several issues which hinder their calculation.

In a typical sunspot, the Alfvén speed at the chromosfere is about 1000 km s−1, limiting
the time step and making the calculations very expensive. This high characteristic velocity,
together with the strong shocks and nonlinearities, also makes difficult the stability of the
top boundary but, thanks to the PML, our code is able to manage these hard conditions
without reflections and develop long enough simulations. Many wave periods are needed
for a correct analysis of the wave propagation. It makes the time length of the simulation
critical due to the long 3 and 5 minute periods observed in sunspot atmospheres. Our code
has proven its capability to study long period waves in the atmospheric layers where they
are observed. In this chapter we present the results from simulations which reproduce the
wave pattern analysed in Chapter 6. We have constructed a MHS sunspot model based on
the observational data presented in Chapter 6 and have introduced an observed velocity in
the photosphere as a driver. The aim of this Chapter is to perform a direct comparison
between simulations and observations of all available lines.

In Section 7.1 we show the methods developed to construct a MHS model representative
of that sunspot and discuss its properties. Section 7.2 presents several alternatives which
have been tested to introduce the photospheric observed velocity as a driver. Section 7.3
summarizes the set up of the simulations performed, while Section 7.4 includes the first tests
that we have developed to reproduce the observations. Finally, in Section 7.5 we analyze
the simulation that best matches the observations and in Section 7.6 we discuss the results.

7.1 MHS model of the sunspot

The MHS model is constructed following the method of Khomenko & Collados (2008). They
developed a technique to calculate a thick sunspot structure in magnetostatic equilibrium
with distributed currents, i.e., showing a continous variations of field strength and gas pres-
sure across the spot, from sub-photospheric to chromospheric layers. In current-distributed
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models, the field falls off from its value at the magnetized atmosphere at the axis of the
sunspot to almost zero at the nonmagnetic atmosphere located at large radial distances.
These models are constructed by combining the advantages of two different methods: in
the first, the magnetic topology is set and the thermodynamic variables are forced to match
with this structure (Schlüter & Temesváry 1958; Low 1975, 1980), constructing the so-called
“self-similar” models; in the second type of models, the pressure distribution is prescribed
as boundary condition at the axis of the sunspot and in the distant quiet Sun atmosphere
and at the rest of the model the pressure and magnetic field are iteratively changed until
the system reaches an equilibrium state (Pizzo 1986).

Khomenko & Collados (2008) identified several advantages in a method that uses both
approaches. In photospheric layers they take the Pizzo (1986) solution, since the pressure
distributions at the magnetized atmosphere and at the quiet Sun atmosphere which are
needed for the boundaries can be retrieved from observations. In the case of deeper levels,
the method of Pizzo (1986) is very sensitive to the pressure distribution at the sunspot axis,
but there are almost no suitable models for deep subphotospheric layers. For this reason,
the procedure proposed by Low (1980) works better at these heights where the gas pressure
dominates over the magnetic pressure, although it has problems at the photosphere, where
the method often leads to negative pressures, and it does not produce models at high layers
with the high magnetic field strength representative of sunspots. The method proposed by
Khomenko & Collados (2008) joins smoothly the subphotospheric deep layers obtained from
the Low approach with the photospheric model retrieved from the Pizzo solution, avoiding
the problems related with both methods and taking the advantages of both approaches.

7.1.1 Method

In the case of a magnetohydrostatic (MHS) atmosphere, velocities are zero and the temporal
derivatives are also zero, so the full set of MHD equations (Equations 2.22 - 2.25) is reduced
to an equilibrium force balance equation

−∇P0 + ρ0g +
1

µ0
(∇×B0)×B0 = 0. (7.1)

This equation represents the different forces that play a role in the atmosphere. From
left to right, it includes the pressure gradient, the force per unit volume produced by the
gravitatory field, and the magnetic pressure and magnetic stress. The system of equations
required to solve the MHS atmosphere is completed by means of the Maxwell equation
(Equation 2.26), that is, with divergence-free condition for the magnetic field:

∇B0 = 0. (7.2)

The equations are solved in cylindrical coordinates (r, φ, z) and with axial symmetry,
so none of the variables have dependence on φ. This allows us to write the magnetic field
in terms of the field line constant u:

B =
(

− 1

r

∂u

∂z
,
G(u)

r
,
1

r

∂u

∂r

)

, (7.3)

where the component G(u) represents the twist of the field. As in this model the field
is untwisted, the azimuthal component Bφ is zero and it is equivalent to set G(u) = 0.
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Following Low (1980), the field-line constant u can be expressed as a function of a variable
ϕ:

u(r, z) = u(ϕ) (7.4)

ϕ = r2F (z) (7.5)

F (z) = (z2 + a2)−1 (7.6)

where a is a constant parameter. Introducing Equations (7.4)–(7.6) into Equation (7.3),
the magnetic field vector can be expressed as a function of ϕ

B =
(

− r
dF (z)

dz

du

dϕ
, 0, 2F (z)

du

dϕ

)

. (7.7)

The form of the derivative du/dϕ is imposed by the force balance equation and it yields
the expression

du

dϕ
= BL

0 h
2 exp(−ηϕ), (7.8)

where the parameter BL
0 controls the magnetic field strength, h is a suitable length scale,

and η is a constant parameter. From Equations (7.8) and (7.7) we can retrieve the horizontal
and vertical components of the magnetic field vector in Low’s model, which are written as

Br(r, z) = 2BL
0

(z − zd)rh
2

[(z − zd)2 + a2]2
exp

[ −ηr2

(z − zd)2 + a2

]

, (7.9)

Bz(r, z) = 2BL
0

h2

(z − zd)2 + a2
exp

[ −ηr2

(z − zd)2 + a2

]

. (7.10)

The parameter zd corresponds to the height where the magnetic field is vertical, and it is
taken as a reference height. Equation (7.10) is similar to the one used in Pizzo (1986) as a
boundary condition at the bottom boundary of the domain,

Bz(r, z0) = BP
0 exp(−r2/r2e), (7.11)

where BP
0 is the field strength at the axis of the model at z = z0 and re is a convenient

scaling for the magnetic field variations with the radius. From a comparison of these two
expressions we can see that both models can be joined at an arbitrary height z = z0, and
the parameters of the models should be related as

BP
0 = BL

0

2h2

(z0 − zd)2 + a2
, (7.12)

r2e = [(z0 − zd)
2 + a2]/η. (7.13)

The model was constructed following the steps described in Khomenko & Collados
(2008): (1) Generation of a self-similar solution in deep subphotospheric layers; (2) genera-
tion of a potencial solution in the overlying atmosphere; (3) generation of a magnetostatic
solution in the high layers following the strategy described by Pizzo (1986); and (4) concate-
nating both solutions. The method was modified in order to create an atmosphere which
resembles the sunspot from our observations. The following procedures were performed
with this aim:
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Obtaining the pressure distribution at the boundaries and estimation of Wilson

depression

For the construction of a magnetostatic solution at the photosphere and higher layers
it is necessary to introduce the pressure distributions along the axis of the sunspot and
in the field-free quiet atmosphere as boundary conditions. In both cases the pressure
stratification of the surrounding quiet photosphere was retrieved from the inversion of the
Stokes parameters measured for the Si i λ 10827 line. Stokes profiles were averaged over
all the time steps and several spatial positions from one of the temporal series. In the
case of the sunspot axis atmosphere, the average includes 1 arcsec around the center of
the umbra, while for the quiet Sun atmosphere a region was selected at 30 Mm from the
axis of the sunspot. The inversion of the silicon line of these two averaged Stokes vectors
was carried out using SIR (Ruiz Cobo & del Toro Iniesta 1992). Figure 7.1 shows the four
Stokes parameters for the sunspot axis observations (black solid line) and the synthetic
profiles obtained from the inversion (red dashed line). In this inversion we have performed
three cycles, with a variable number of nodes in several parameters. In the temperature,
we have used 2 nodes in the first cycle, 3 nodes for the second and 5 nodes for the last
cycle. In the parameters defining the magnetic field, including its strength and orientation,
we have chosen one node for the first cycle and 2 nodes for the rest of the cycles, while for
the LOS velocity we have forced SIR to use just one node for all the cycles.

Figure 7.1: Stokes parameters IQUV for the Si i 10827 Å line for the averaged atmosphere at the axis of the
sunspot. Black solid line: observed profiles; red dashed line: synthetic profiles retrieved from the inversion.
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Figure 7.2: Stratification of the temperature (a), magnetic field (b), gas pressure (c), and density (d) in the
atmosphere of the quiet Sun (solid line) and sunspot (dashed line) retrieved from the inversion. The height
z = 0 km is set at the height where logτ5000 = 1 for each model, so the Wilson depression is not taken into
account and they correspond to a different geometrical height. The sunspot stratification should be shifted
downward 350 km.

Once the stratification of temperature, magnetic field strength and direction, gas pres-
sure and density is retrieved from the inversion for the axis of the sunspot and the quiet Sun
(Figure 7.2), it is posible to calculate approximately the Wilson depression of the observed
sunspot. In a simple model of thin flux tube we can define a region inside the tube with
vertical magnetic field and a region outside with no magnetic field. A condition for the
lateral force balance imposes that at a fixed height z0 the pressure inside the flux tube,
including the gas pressure (P sp

g ) and the magnetic pressure (P sp
m = B2/(2µ0)), must be

equal to the gas pressure outside (P ph
g ),

P sp
g +B2/(2µ0) = P ph

g . (7.14)

From the inversion we obtain the stratification of all the variables with height, but in
both atmospheres the height z = 0 km is located at the height where the continuum optical
depth at 5000 Å (τ5000) is unity and they correspond to different geometrical heights due
to the Wilson depression. We set the height z = 0 km for the quiet Sun and derive the
Wilson depression ∆z from Equation (7.15). Taking into account all the possible values of
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the Wilson depression, the magnetic field can be calculated as a function of the height z
and ∆z:

B(z,∆z) =

√

2µ0

[

Pg(z)ph − Pg(z +∆z)sp
]

. (7.15)

The formation height of silicon core is around the optical depth logτ5000 = −1.8 and
it was chosen as the height z for reference. We look for the appropiate value of ∆z which
according to Equation (7.15) gives a magnetic field strength equal to the one infered from
the inversion at the formation height of the Si i line at the sunspot axis. The obtained
Wilson depression was ∆z = 350 km.

From the inversion of the Si i Stokes profiles we can retrieve the stratification of mag-
netic field and thermodynamic variables up to a height of almost 800 km in the atmosphere
of the observed sunspot and its surroundings. Since the method needs the distribution of
gas pressure deeper in the atmosphere as well as at higher chromospheric layers, we have
smoothly joined our estimation of the photospheric variables with other models from the
literature. As field-free atmosphere we used model S of Christensen-Dalsgaard et al. (1996)
at deeper layers and the VAL-C model of the solar chromosphere (Vernazza et al. 1981).
For the axis of the sunspot we use the Avrett (1981) model in the upper layers, while the
deep layers were extracted from a model by Kosovichev et al. (2000) obtained from helio-
seismic inversions of the phase speed in sunspots. The resulting sunspot atmosphere was
shifted down 350 km in the vertical direction in order to account for the Wilson depression
measured before.

Obtaining the parameters which chraracterize the magnetic structure

The magnetic field vector in the Low’s model that we use for the deep layers is calculated
from Equations (7.9) and (7.10). It depends on several parameters. The lower boundary is
taken at height zd, where Br(r, zd) = 0 at all radial distances. It was set to zd = −10 Mm,
with the origin for the z-axis at the base of the photosphere. The parameters η, a and BL

0

can be chosen freely, and in this case we have estimated those which closely resemble the
parameters of the observed sunspot. According to Equation (7.11), the vertical magnetic
field at the bottom boundary of the Pizzo’s model has a horizontal gaussian profile. At
each spatial position from one of the series of our observations we have averaged the Stokes
parameters of the Si i 10827 for all the time steps, and we have inverted the resulting
Stokes vectors with SIR. Asterisks in Figure 7.3 represent the magnetic field obtained from
the inversion at the formation height of the silicon line, and the red line corresponds to a
gaussian fit. From this fit we can retrieve the parameters BP

0 and re from Equation (7.11),
with z0 being the formation height of Si i. In our sunspot we obtain BP

0 = 2040 G and
re = 4.65 Mm. The selected height of the Si i line was chosen at the same optical depth
for all the spatial positions. Due to the Wilson depresion, it corresponds to a different
geometrical height for each spatial point. However, we have not taken into account this
effect.

Equations (7.12) and (7.13) relate BP
0 and re with the required parameters to contruct

the Low’s model at deep layers. The parameter h was set with the length scale at z = zd,
so we have three unknown parameters (BL

0 , η and a) and only two equations. We introduce
a fixed BL

0 and retrieve η and a from the system of two equations. An appropiate value of
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Figure 7.3: Vertical magnetic field at the formation height of the Si i 10827 Å line for all the spatial positions.
The red line indicates the result of a gaussian fit.

BL
0 was selected with the criterion that after all the process to construct the sunspot the

Alfvén and sound velocities at the axis of the model should match those obtained from the
inversion. The top and middle panel of Figure 7.4 show the comparison between both sound
and Alfvén velocities, showing a perfect match. The bottom panel of the figure includes
the comparison of the pressure scale heights, which also show an exceptional agreement.
The parameters η and a account for the topology of the magnetic field, while BL

0 indicates
its strength. Since it is easier to verify if the resulting strength is correct (it is measured
directly), we find that it is preferable to impose the value of BL

0 rather than the value of
the other parameters η and a. Once we have obtained a suitable model, the parameters
that better resemble the observed sunspot are BL

0 = 32000 G, η = 4.38 and a = 3.74 Mm.

7.1.2 Properties of the MHS model of the observed sunspot

Figures 7.5 and 7.6 show distributions of some variables in the complete sunspot model.
Most of the magnetic field is concentrated around the axis of the model, inside a radius
of 10 Mm, and it is weaker at farther distances from the center. The squared ratio of the
sound velocity to the Alfvén velocity at the axis is unity just below the height z = 0 km,
and the height of the contour c2S/v

2
A = 1 increases with the distance to the axis. This layer
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Figure 7.4: Comparison between the computed model of sunspot (black solid line) and the inversion (red
dashed line) at the axis of the sunspot for a range of heights around the photosphere. From top to bottom:
Sound velocity, Alfvén velocity and pressure scale height.

is very important for the analysis of the wave modes involved in the atmosphere, since
the mode transformation is produced at the height where both characteristic velocities are
similar. The orientation of the magnetic field lines changes very fast from being vertical at
the axis to almost horizontal at radial distances larger than 15 Mm below z = 0 km. Above
this layer the magnetic field lines spread increasing their inclination with the distance to
the axis.

The properties of the model are shown in more detail in Figure 7.7, where the dis-
tribution with radius at several heights (left panels) and the stratification with height at
different distances from the axis of the sunspot (right panels) are plotted. At the axis of
the sunspot the magnetic field drops from 4 kG at z = −10 Mm to 1.1 kG at z = 1 Mm. It
is vertical at r = 0 Mm and its inclination at photospheric layers increases with the radius,
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Figure 7.5: Topology of the obtained sunspot model. Top: Magnetic field strength; bottom: Temperature.
White thin lines are magnetic field lines. White thick lines with labels are the contours of c2S/v

2
A.

being horizontal at the rightmost point of the domain. The gas pressure has a deficit at the
magnetized regions around the center of the sunspot. Below z = 0 km this deficit decreases
with depth, as can be seen from the radial distribution of gas pressure at z = −1 Mm, and
it almost disappears at about −2 Mm depth, according to the assumption of self-similarity
of the MHS solution at larger depths. The gas pressure changes by 12 orders of magnitude
from its value at the bottom boundary at z = −10 Mm to z = 2 Mm. The squared ratio
between the sound speed and the Alfvén speed also gives the ratio of the gas pressure to
the magnetic pressure. It has very strong variations, from 105 at z = −10 Mm to 10−7 at
z = 2 Mm.

Comparing the magnetic field and the thermodynamic variables of the obtained model
at the axis of the sunspot with the values infered from the inversion, we find that the model
has lower values in all these variables. This happens because the density and gas pressure
obtained from the inversion are too high for the model of deeper layer introduced and, in
order to produce a magnetostatic solution, the density and gas pressure is decreased after
the iterative process. According to the drop of the gas pressure in the quiet sun atmosphere,
the magnetic pressure also has to be reduced and the final magnetic field is lower than the
infered from the observations. Another cause of this difference could be the limitation in
the estimation of the radial variation of the magnetic field at a fixed height in Figure 7.3,
since we did not account for the variation of the formation height of the Si i line produced
by the Wilson depresion. However, as it is shown in Figure 7.4, the Alfvén and sound
velocities that characterize the velocity of propagation of waves and the scale length in
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Figure 7.6: Topology of the obtained model of sunspot. Top: acoustic speed; bottom: log of the Alfvén
speed. Thin white lines are magnetic filed lines. Thick white lines with labels are the contours of c2S/v

2
A.

which the amplification of the amplitude is produced are very similar in the model and the
observations, so we expect that our model is suitable to study the propagation of waves in
the atmosphere of the observed sunspot.

7.2 Introduction of the driver

With regard to the reproduction of the real wave pattern by means of numerical calculations,
one of the key aspects is the introduction of some observed velocity as a driver. We have
chosen the velocity measured with the Si i line as the driver of the simulation, since it is
the line which is formed deeper of the set of lines that we have observed. At the formation
height of Si i, the numerical simulation should have a vertical velocity as close as possible to
the measured LOS velocity. The photospheric oscillations are dominated by waves in the 5
minute band and, thus, the power at this band excited in the simulation must resemble the
observed one. However, it is even more critical to introduce correctly the power at higher
frequencies. Frequencies above the cutoff propagate upward and dominate the higher layers.
The wave pattern at the chromosphere will depend on the power introduced by the driver
at those high frequencies and on their phase shift.

Several strategies may be developed to use the oscillations of the silicon line as a driver:
on the one hand, it is posible to set the observed oscillations as a boundary condition in a
computational domain where the bottom boundary coincides with the formation height of
the Si i; on the other hand, we may calculate the force which corresponds to the velocity
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Figure 7.7: Distribution with radial distance (left panels) and with depth (right panels) of the magnetic
field strength, pressure, ratio c2s/v

2
A, and the magnetic field inclination for the obtained sunspot model. The

radial pressure distributions are normalized to their values at the right boundary.

measured and introduce it directly in the motion equation. In the case of the first approach,
several problems arise. It is not valid just to set the vertical velocity, since it is necessary to
impose at the bottom boundary the fluctuations of all the variables self-consistently. From
the inversion of the Stokes profiles we can retrieve the variations of all these magnitudes,
but it is difficult to obtain reliable values with a good spatial and time resolution related to
a single layer in geometrical height, not optical depth (see Rodŕıguez Hidalgo et al. 2001).
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Another option is to calculate the polarization relations of all the variables which agree
with the vertical velocity measured from the Doppler shift, but it is a tough work in such a
realistic case. For these reasons, we found more convenient to introduce the retrieved force
as a source function Sz(t) in the MHD equations, although the calculation of this force is
not obvious.

7.2.1 Force driver

Our first attempt for deriving the force from the velocity measured with the Si i line con-
sisted on a simple calculation of its derivative, obtaining the force Sz(x, y, z, t) as

Sz(x, y, z, t) = ρ0(x, y, z)
∂vobs(x, t)

∂t
P (x, y, z), (7.16)

where ρ0 is the mass density of the MHS model, and vobs is the observed velocity. In the
case of vobs, we only have its dependence with the x coordinate, that we consider along the
slit, so we suppose that it is constant with y and z. The function P (x, y, z) indicates the
region where the driver is introduced, and its value is unity at the formation height of the
Si i line (z = zSi) and at a selected y = y0 for a wide range of x. It decreases smoothly in all
directions, dropping to zero at a certain distance Rsrc. In this manner, the driver only acts
in a narrow layer around the formation height of the silicon line for an elongated region in
the x direction. Once the initial numerical simulation was performed, we found that the
power spectra of the vertical velocity at the height where the driver was introduced did not
match the observed one, from which the source force was retrieved. The power at the high
frequencies of the simulated velocity was too high in comparison with the original velocity.
This gave us clues that the velocity generated by a force in a stratified atmosphere might
have some dependence on the frequency.

7.2.2 Analytical relation between the velocity and a source force

As a next step, we investigated analytically the dependence between the source properties
and the velocity produced by a perturbation. The set of MHD equations for perturbations
(Equations 2.30–2.34) is the adequate system (simplified enough) to study this problem,
where the fluctuations in all the variables are produced by a force S(x, y, z, t) which is
introduced at the right hand side of the motion equation (Equation 2.31). Our aim is to
obtain a relation between the source force S(x, y, z, t) and the velocity v1. For simplicity,
we consider a one dimensional atmosphere, and the equations are reduced to

∂ρ1
∂t

+ v1z
dρ0
dz

+ ρ0
∂v1z
∂z

= 0, (7.17)

ρ0
∂v1z
∂t

= −∂p1
∂z

− ρ1g + S(z, t), (7.18)

∂p1
∂t

+ v1z
dp0
dz

− c2s

(∂ρ1
∂t

+ v1z
dρ0
dz

)

= 0. (7.19)

∂B1z

∂t
= 0. (7.20)
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∂B1z

∂z
= 0. (7.21)

In the 1D case, Equations (7.20) and (7.21) show that the magnetic field is constant in
time and space, so B(z, t) = B0(z), where B0(z) is the initial magnetic field. The rest of
the equations have no dependence on the magnetic field. If we suppose that the atmosphere
is vertically stratified by gravity, from the equation of hydrostatic equilibrium (Equation
2.27), and taking into account that the sound speed is c2s = γp0/ρ0 and the pressure scale
height is H0 = c2s/(γg), it is easy to see that in the 1D case the density and pressure in
equilibrium vary with height as

ρ0(z) = ρ0(z = 0)e
−

z
H0 , (7.22)

p0(z) = p0(z = 0)e
−

z
H0 . (7.23)

Thus, the spatial vertical derivatives may be replaced according to

dρ0
dz

= − 1

H0
ρ0, (7.24)

and the same applies to the pressure. In this way, for an isothermal atmosphere stratified
by gravity permeated by a vertical magnetic field, Equations (7.17-7.19) may be written as

∂ρ1
∂t

− v1z
ρ0
H0

+ ρ0
∂v1z
∂z

= 0, (7.25)

ρ0
∂v1z
∂t

= −∂p1
∂z

− ρ1g + S(z, t), (7.26)

∂p1
∂t

− v1z
p0
H0

− c2s

(∂ρ1
∂t

− v1z
ρ0
H0

)

= 0. (7.27)

The next step is to seek for monochromatic plane-wave solutions in the form given by
Equation (2.37), which gives

∂v1z
∂t

= −iωv1z, (7.28)

∂v1z
∂z

= ikv1z, (7.29)

and in an equivalent way for the perturbations in the pressure and density. The system of
Equations (7.25)–(7.27) reduces to:

−iωρ1 − v1z
ρ0
H0

+ ikρ0v1z = 0, (7.30)

−iωρ0v1z = −ikp1 − ρ1g + S(z, t), (7.31)

−iωp1 − v1z
p0
H0

− c2s

(

− iωρ1 − v1z
ρ0
H0

)

= 0. (7.32)

From Equation (7.30) we easily retrieve the following relation between the fluctuation
in the velocity and the density:

ρ1 = v1z
ρ0
ω

(

k +
i

H0

)

. (7.33)
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Introducing Equation (7.33) in Equation (7.32), we find that the perturbation of the
pressure depends on the velocity as

p1 = v1z
p0
ω

(

γk +
i

H0

)

, (7.34)

and finally, from Equations (7.31), (7.33), and (7.34), after some trivial calculations, we
obtain that the velocity is related to the driving force as

v1z = −i
S(z, t)

ρ0

ωH0

k2γH2
0g + g − ω2H0

. (7.35)

Taking into account the dispersion relation of the acoustic waves in a stratified atmo-
sphere (Section 2.2.3):

k =

√

ω2 − ω2
c

c2s
, (7.36)

where ωc = cs/(2H0) is the cutoff frequency of the atmosphere, we may replace the wavevec-
tor k of Equation (7.35), obtaining the expression

v1z(z, t) = −i
S(z, t)

ρ0

ωH0

g − ω2
cH0

, (7.37)

which shows that the velocity depends linearly on the frequency of the source force. Accord-
ing to this equation, if two harmonic forces of the same module |S(z, t)| but with different
frecuency ω are applied to the atmosphere, the one with higher frequency produces higher
velocity amplitudes. This fact agrees with the results of the simulations obtained by intro-
ducing the force driver calculated from Equation (7.16).

All in all, since we attempt to find the proper force which reproduces the Doppler
velocity measured with the Si i line, we may retrieve it from Equation (7.37). Considering
zSi the formation height of the silicon line, the force which generates the observed velocity
vω,obs at this height at every position of the slit x is given by

Sω(x, zSi, t) = i
vω,obs(x, zSi, t)

ω
ρ0

( g

H0
− ω2

c

)

(7.38)

for each frequency ω. The velocity vobs contains variations in a wide range of frequencies,
with a prominent peak at ν = 3.3 mHz. The total force S(zSi, t) will be the sum of Equation
(7.38) over all frequencies ωi which can be sampled from the observational temporal series,
that is

S(x, zSi, t) = i
∑

ωj

vωj ,obs(x, zSi, t)

ωj
ρ0

( g

H0
− ω2

c

)

. (7.39)

Considering that the temporal series is sampled with n time steps with an interval ∆t, for
an even n the sampled frequencies are given by
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, (7.40)

while for an odd n
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ωj =
−(n− 1)/2
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, ...,
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1

n∆t
, ...,
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n∆t
. (7.41)

The highest frequency corresponds to the Nyquist critical frequency 1/(2∆t).
The force S(x, zSi, t) was evaluated by separating each of these frequencies of the veloc-

ities and summing all of them following Equation (7.39). The complex i of Equation (7.39)
introduces a delay of π/2 in the resulting force. The force includes a broad spectrum of
frequencies, and a delay of π/2 in their phase produces a different time delay for each of
them, depending on their period.

Thus, to that aim, we have calculated the Fourier Transform of the temporal series of
the velocity and added the π/2 phase in the transformed domain. If F (s) is the Fourier
Transform of a real function f(t), F (s) is hermitic and it satisfies the following condition:

F (−s) = F ∗(s), (7.42)

where F ∗(s) indicates the conjugate complex of F (s). According to this, if we add a π/2
phase to the positive frequencies of the Fourier Transform, in the case of the negative
frequencies we have to substract the π/2 phase to produce the same effect. Once this
procedure is completed, the force S(x, zSi, t) is ready to be introduced in the simulations.

The spatial distribution of the force is given by the same function P (x, y, z) described
at the beginning of Section (7.2.1). We set the force S(x, zSi, t) for all the heights inside a
layer of a chosen thickness in the y and z directions, but smoothly modulated to be zero
after a few grid points, and covering the slit of the observations in the x direction.

We have performed several numerical simulations using the above method to calculate
the driver, showing no completely satisfactory results. In the simulations we carried out,
the power in the vertical velocity in the 5 minute band at the height where the driver
was located matched the observed one, but at high frequencies the power was lower than
required. As the power was low at high frequencies, the oscillations that we simulate at
the photosphere reproduced the wave pattern of the Si i observations more or less well.
However, is it not the case for oscillations measured in other lines formed higher up. The
match of the power in the band between 5 and 8 mHz is critical to reproduce the oscillations
in higher layers, since they propagate upward and their amplitude increases with height.
Another problem is the phase delay. According to Equation (7.39) the response of the
velocity to the force must be delayed ∆φ = π/2 with respect to the force. In simulations,
however, we find that it was the case only for frequencies below 4 mHz. Due to some reason,
this delay decreases linearly until reaching ∆φ = 0 at 6 mHz. Thus, with this driver we
have not been able to reproduce the observations. We concluded that we need a higher
power at frequencies above 5 mHz and these high frequency waves must be in phase with
the force that generates them.

7.2.3 Empirical relation between the velocity and a source force

Since the previous attempts to obtain a force driver which generates the correct observed
velocity pattern were not entirely succesful, we replaced the source force of Equation (7.38)
by a new one of the form:

Sω(x, zSi, t) = vω,obs(x, t)
1

A(ω)
∆(ω), (7.43)
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Figure 7.8: Variation of the amplitude of the velocity with the frequency of the force driver, normalized to
the maximum value.

where the functions A(ω) and ∆(ω) include the dependence of the force amplitude and
phase delay with frequency, respectively. The A(ω) dependence was evaluated by analyzing
numerically the response of the atmosphere to a force driver with a certain period. We
have carried out a set of simulations using a harmonic driver located at the photosphere
with different periods, but all of them with the same force amplitude. The amplitude of
the velocity retrieved after reaching the stationary regime of the simulations is chosen as
the response of the atmosphere to a harmonic wave. Figure 7.8 shows the values obtained
for all the simulations performed, normalized to the maximum amplitude. The amplitude
increases almost linearly from the lower frequency to a frequency around 5.2 mHz, and for
higher frequencies it decreases as the inverse of the frequency. Its maximum is located at a
frequency close to the local cutoff frequency. The particular form of this dependence varies
with the parameters of the sunspot atmosphere, and it critically depends on the location
of the driver. We found that a change in the height of the driver shifts the frequency of
the maximum response. At those frequencies for which the response of the velocity to the
force is very efficient (for example, at 5.3 mHz) the factor which multiplies the velocity
to obtain the force from Equation (7.43) must be lower than for those frequencies with a
poorer response (for example, at 3 mHz). For this reason A(ω) appears dividing v1z in
Equation (7.43).

Note that the analytical relation obtained in the previous section reproduces the linear
behavior of the response at low frequencies. As mentioned previously, in this frequency
range Equation (7.37) is a good aproximation of the dependence between velocity amplitude
and frequency.

We have carried out a simulation using Equation (7.43) to introduce the observed driver
in the simulations, including the expression of A(ω) from Figure 7.8 but ignoring the phase
dependence ∆(ω). The analysis of the phase difference between the observed velocity and
the obtained in this simulation at the height where the driver was introduced shows the
same phase delay infered in the previous section, that is, ∆φ = π/2 for frequencies below 4
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mHz and ∆φ = 0 for frequencies higher than 6 mHz, with a linear variation between 4 and
6 mHz. The function ∆(ω) has been constructed in order to characterize this behavior. As
the velocity at low frequencies needs a quarter of a period to account for the variations of
the force, at these frequencies ∆(ω) shift the source driver backwards. From 4 to 6 mHz,
the shift of the phase decreases from π/2 to zero. This simulation has also been used to
correct A(ω), comparing the power spectra of the Si i observed velocity and the simulated
one with the better frequency sample that it produces (only 17 frequencies were used in
the previous estimation of A(ω)).

7.3 Set up of the simulations

We have introduced the driver from Section 7.2.3 as a force perturbation in the MHS model
of the observed sunspot obtained in Section 7.1. The height where the optical depth at
5000 Å is unity in the quiet Sun atmosphere was chosen as z = 0 Mm. According to Bard &
Carlsson (2008), in a model of sunspot the Si i line forms at a geometrical height of 308 km
above the height where τ5000 = 1, which corresponds to z = −42 km for the adopted Wilson
depression of 350 km. We have to take into account that we need at least 0.9− 1 Mm of
atmosphere above the location of the driver to reproduce the travel of the wave from the Si i
line to the He i line, according to the geometrical height difference between these two layers
(see Table 6.4). In those high layers, the Alfvén speed of the MHS sunspot model takes very
high values, which produces a extremely small time step. In order to save computational
time and avoid problems with the top PML boundary, we have located the driver slightly
deeper, at z = −100 km.

In order to compare the numerical simulation with the observational data, we have
assigned a fixed z to the formation height of each spectral line, and we have assumed that
the vertical velocity at that location corresponds to the velocity measured from the Doppler
shift of the line. Following the heights retrieved from Table 6.4 and taking into account
that the velocity obtained from the observations of the Si i line was imposed as a driver at
zSi = −100 km, the layers of the computational domain selected as representative of the
rest of the spectral lines are zFe = 175 km, zCa = 600 km and zHe = 725 km for the Fe i λ
3969.3 line, Ca ii H core, and He i line, respectively.

The details of the configuration are shown in Table 7.1, including the section where the
simulation is discussed, the radiative relaxation time, the length of the driver, the duration
of the simulation, the size of the computational domain, the frequencies drived by the source
force, and the numbers of the corresponding figures.

The size of the x and y directions of the computational domain are different, and we have
used different boxes in these simulations. The big computational domain covers 14.8× 8.4
Mm in the horizontal directions, while the small one covers 8.4 × 5.2 Mm. Both domains
have horizontal spatial steps of ∆x = ∆y = 100 km. There are also some differences in the
vertical direction. For the two first simulations the computational domain spans from z =
−0.6 Mm to z = 0.8 Mm, excluding the PML layer, with a spatial step of ∆z = 25 km. The
last run extends 200 km higher. The radiative transfer is implemented following Newton’s
cooling law. In Sections 7.4.1 and 7.4.2 we discuss the limitations of the runs without
radiative transfer and with constant relaxation time, respectively. Section 7.5 describes the
analysis of the run with the radiative relaxation time as given by Spiegel (1957).



130 Combination of observations and simulations 7.4

Table 7.1: Summary of the simulation runs

Section τR Driver Duration Domain Frequency Figures
length (Mm) (s) (Mm) (mHz)

7.4.1 ∞ 10 4465 14.8 × 8.4× 1.4 1.5–8 7.9–7.10
7.4.2 45 s 4 3916 8.4× 5.2× 1.4 1.5–8 7.11–7.12
7.5 Spiegel 4 4465 14.8 × 8.4× 1.6 1.5–20 7.14–7.26

7.4 Simulation of the observed wave propagation

We have performed three numerical simulations. These simulations differ in some aspects.
First, we vary the horizontal length of the driver in x direction. We chose either only an
umbral region of the observed sunspot (X=4 Mm) or include also part of the penumbra
(X=10 Mm). The parameters of the MHS model of sunspot vary slowly, and this model
cannot account for a realistic penumbra. The simulations of Sections 7.4.1 and 7.5 cover
the whole umbra, but the simulation of Section 7.4.2 only includes 4 Mm of the umbra.
The second different parameter between the runs is the radiative relaxation time. As
described in Section 3.1.4 our code has the posibility to account for radiative losses due
to the coupling between the plasma and radiation following the simple Newton cooling
law, valid for optically thin media. The run with relaxation time according to Spiegel
formula shows more promising results, and for this reason we have introduced a driver with
a broader range of frequencies and we have spanned the computational domain 200 km
higher, in order to avoid possible problems with the top boundary.

7.4.1 Run with no energy exchange

The parameter Qrad from the energy equation (Equation 3.25) is set to zero. Since no
radiative losses are taken into account, the propagation of waves is adiabatic. Figures
7.9 and 7.10 show a comparison between the observations and the numerical simulations.
Figure 7.9 represents the phase and amplification spectra between two photospheric lines,
the Si i and the Fe i lines, while Figure 7.10 presents the results obtained between the Si i
and the He i lines. In the top panels of these figures, the background color indicates the
relative occurence of a given phase shift in the observational data (same as in Section 6.2.3),
and the green crosses correspond to the phase shift at every spatial position in the umbra,
obtained from the simulations. The solid lines of the bottom panels show the amplification
spectra of the observed data, while the dashed lines represent the values retrieved from the
simulation. From the comparison of the data presented in Figure 7.9, we find that in the
numerical simulation the phase shift is zero for frequencies below 6 mHz, and it increases
rapidly in such a way that at 7 mHz it matches the observational data and the model. In the
range between 4.5 and 6 mHz the behavior of the simulation differs from the observations,
since the phase difference increases more slowly for observations. The amplification spectra
of both observations and simulations are similar for frequencies below 6 mHz, but they
greatly differ at higher frequencies. The simulation presents a much higher amplification
between 6 and 7 mHz.

The phase and amplification spectra between the photospheric Si i line and the chromo-
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Figure 7.9: Top: Phase spectra between the observed LOS velocity of the Si i and the Fe i λ 3969.3 lines.
The color code shows the relative occurence of a given phase shift. The green crosses are the results of the
simulation with no radiative transfer for all the spatial points. The white line represents the best fit from
the theoretical model used in Chapter 6. Bottom: Amplification spectra for the observation (black solid
line), the simulations (black dashed line) and the model (red line).

Figure 7.10: Top: Phase spectra between the LOS velocity of the Si i and the He i lines and comparison
with the simulation without radiative transfer. Bottom: Amplification spectra. The format is the same as
Figure 7.9.
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spheric He i line also show some critical differences between simulations and observations.
The phase shift of the simulation is lower than that of the observation, while the am-
plification at frequencies higher than 5.5 mHz is larger in the simulation. Note that the
amplification spectra is plotted in a logarimic scale, so the differences are significant.

The discrepancies between these simulations and the observations clearly point out that
some important ingredient is missing in the simulations. A good candidate to improve the
simulations can be the introduction of radiative energy losses. Several arguments point
in that direction. First, in the simulation, the oscillations at heights above the formation
height of the Si i have amplitudes much higher than the observed ones. The radiative losses
should produce some damping of the waves, especially at high frequencies. Secondly, the
cutoff of the simulation is located at 6 mHz (see Figure 7.9), which is higher than the
one inferred from the observations (around 4.5 mHz). When the radiative timescale τR is
small enough, the cutoff frequency is expected to decrease, compared to the adiabatic case.
Finally, the inclusion of radiative losses also produces an increase of the phase difference
compared to adiabatic case (see Figure 7 from Centeno et al. 2006).

7.4.2 Run with constant relaxation time

We implemented the energy exchange with a simple Newton’s cooling law and assumed a
constant cooling time. Taking into account the value retrieved from the fit of the observed
phase spectra to the model (Table 6.3) obtained between the deeper (Si i) and the higher
(He i) lines in Chapter 6, we have selected τR = 45 s.

Now the phase and amplification spectra between the photospheric Si i and Fe i λ 3969.3
lines agree much better with the observations (Figure 7.11). The cutoff of the simulated
phase spectra is shifted toward lower frequencies, and the phase shift shows a better quali-
tative match with the observations for frequencies below 7 mHz. The amplification is much
lower than in the previous adiabatic simulation, and it also fits well to the observations for
all frequencies.

Figure 7.12 shows the comparison between observations and simulation for the Si i and
He i lines. Again, the agreement in the phase spectra is remarkable, although for frequencies
higher than 5 mHz the amplification of the simulation is much lower than the observed one.

These results suggest that, while the energy exchange is fundamental for a proper re-
production of the observations, a constant and short cooling time as τR = 45 s produces
too large energy losses, and the amplitude of waves at high chromospheric layers has been
damped too much. At the same time, between the formation height of the photospheric
Si i and Fe i lines the imposed cooling time looks reasonable, as it allows to reproduce the
phase and amplification spectra between these layers.

In order to obtain a better agreement between the observations and the simulations
we need a variable τR, with relatively low values at the low photosphere but increasing
with height toward the chromosphere. It means that the cooling time must increase at
layers above the formation height of the Fe i lines, producing an almost adiabatic upward
propagation. Note that this conclusion, obtained from the comparison of the observations
with the numerical simulations, was previously reached independently in Chapter 6 from the
observational analysis fitting a simple wave model (see Table 6.3). From these fits we have
found that τR at the photosphere is around 30 s, and at the chromosphere its value is 15 s.
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Figure 7.11: Top: Phase spectra between the LOS velocity of the Si i and the Fe i λ 3969.3 lines and
comparison with the simulations with constant relaxation time. Bottom: Amplification spectra. The format
is the same as in Figure 7.9.

Figure 7.12: Top: Phase spectra between the LOS velocity of the Si i and the He i lines and comparison with
the simulations with constant relaxation time s. Bottom: Amplification spectra. The format is the same as
in Figure 7.9.
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Figure 7.13: Variation of the radiative relaxation time with height according to Spiegel (1957), modified
above z = 500 km.

In the case of pairs of lines with one of them formed at the photosphere and the other at
the chromosphere, we have obtained a higher value of 45 s. Taking into account that these
τR are estimated for an isothermal atmosphere, and thus constant τR, the retrieved values
should indicate an average through the atmosphere between the two formation heights of
the corresponding lines. Since both the photosphere (30 s) and the chromosphere (15 s) has
lower values than the average of all the travel (45 s), the τR at these intermediate layers
must be higher than the obtained τR = 45 s, i.e., there must be a local maximum of τR at
intermediate heights.

7.5 Run with relaxation time according to Spiegel formula

In this section we compare the results of the simulation with the observed wave propagation
using the radiative damping time following Spiegel (1957), which is given by

τR =
ρcv

16χσRT 3
, (7.44)

where cv is the specific heat at constant volume, χ is the mean absortion coefficient, and
σR is the Stefan-Boltzmann constant. This expression is valid at photospheric heights,
but not in the chromosphere as it was derived by Spiegel in the approximation of local
thermodynamic equilibrium. As the values of τR given by the Spiegel formula are not
certain at chromospheric heights, we took the freedom to modify them above z = 500 km,
in order to mimic the low τR = 10 s obtained for chromospheric lines in Chapter 6 from
observations. Figure 7.13 shows the variation of the cooling time applied in our simulations
with height at the axis of the sunspot.

7.5.1 Oscillatory signal at the height of the driver

Figure 7.14 shows a comparison between the LOS velocity map of the umbra observed
with the Si i line (top panel) and the vertical velocity of the simulation at the height
where the driver was introduced (middle panel). Negative velocities (appearing as black
shaded regions) indicate upflows, where the matter moves toward the observer, while white
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Figure 7.14: Velocity maps of the Si i line. Top: Observational, measured from the Doppler shift of the Si i
line; middle: numerical, vertical velocity at the formation height of the Si iline; bottom: comparison of the
observational (red line) and numerical (blue line) velocity at x=1.1 Mm.

regions are downflows. Both wave patterns are almost identical, with an amplitude below
0.3 km s−1. The bottom panel shows the time evolution of the velocity at a certain location
inside the umbra, confirming once again that the simulation fits well the observations.

To perform a more detailed comparison between the velocities at the height of the driver,
we show in Figure 7.15 a spectral analysis of the simulation and the observation. Top panel
illustrates the power spectra of the observed velocity (red dashed line) and vertical velocity
at the height of the driver (blue solid line). The ratio between the amplitudes of both
velocities (simulated/observed) is given in the middle panel. In all the frequency range the
ratio is around unity, indicating a good match between the driver and the real oscillation.
The power peak at 3 mHz is a bit lower in the simulation. For frequencies above 7 mHz,
where the power is very low, the ratio departs slightly from unity, but it varies between 0.7
and 1.3. Bottom panel of Figure 7.15 shows the phase difference between the measured and
simulated velocity. At each frequency we have calculated histograms of the phase difference
in all the spatial points inside the umbra. The color scale of the panel indicate the relative
occurrence of a given phase shift, spanning from black (low) to red (high). Negative phase
difference means that the simulated velocity lags the observed one. Both oscillatory signals
are in phase for all frequencies.
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Figure 7.15: Top: Power spectra of the Si i velocity (red dashed line) and the simulated velocity at the height
where the driver is introduced (blue solid line); middle: ratio of the simulated amplitude to the observed
one; bottom: differences in phase.

7.5.2 Simulated velocity at the formation heights of the other spectral lines

Now we can compare the observed velocities obtained from different spectral lines in Chapter
6 with the simulated ones at heights defined in Section 7.3.

The Fe i lines are formed about 280 km above the Si i line, where the driver is introduced.
Figure 7.16 shows the velocity map observed with the Fe i λ 3969.3 line and the simulated
one at the corresponding height. The Doppler velocity map retrieved from the Fe i line is
quite poor, especially in this region of the umbra where the intensity is lower. However,
the strongest wavefronts, with an amplitude of almost 0.5 km s−1, can be recognized and
compared with the simulated wave pattern, showing a good agreement. For example, the
wavefronts around t = 20 min or the ones between t = 47 and t = 55 min can be clearly
identified in the simulation, with a similar amplitude (bottom panel of Figure 7.16).

The power spectrum of the simulation at the formation height of the Fe i λ 3969.3 line
is given in Figure 7.17. The power peak at 3 mHz is stronger in the observations, while
the power peak at 6 mHz is more significant in the simulations. At frequencies above 8
mHz the observational power spectra shows higher power. But we suspect that this high
fequency power corresponds to the noise present in the velocity signal of the Fe i lines. The
problems of the simulation to reproduce the power spectra at this height in the 3 and 5
minute bands could indicate a deficiency in the MHS umbral model to mimic the observed
one.

Figure 7.18 illustrates the observational and numerical velocity maps in the case of the
LOS velocity measured with the Ca ii H core. The Ca ii H core is formed in the chromo-
sphere, so these waves have propagated upward about 700 km from the formation height
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Figure 7.16: Velocity maps of the Fe i λ 3969.3 line. Top: Observational, measured from the Doppler shift of
the Fe i line; middle: numerical, vertical velocity at the formation height of the Fe i line; bottom: comparison
of the observational (red line) and numerical (blue line) velocity at x=1.1 Mm.

Figure 7.17: Power spectra of the observed Fe i λ 3969.3 velocity (red dashed line) and the simulated velocity
at its corresponding height (blue solid line), averaged over the umbra.
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of the Si i line in order to reach this layer. Note that in the simulated velocity map (middle
panel) the velocity signal is almost zero during the first 2 minutes, due to the time spent
by the slow waves to cover the distance between the driver and this height travelling at the
sound speed. During this travel the period of the waves is reduced to around 3 minutes and
their amplitude increases, reaching peak-to-peak values of almost 8 km s−1. The bottom
panel of Figure 7.18 shows that the oscillations develop into shocks. This behavior is well
reproduced by the numerical simulation. The simulated velocity map reproduces reasonably
well the observed oscillatory pattern. Only in the temporal lapse between t = 27 and t = 40
min the simulated pattern differs significantly from the observations. Most of the observed
wavefronts can be identified in the simulation, although their spatial coverage of the umbra
can be slightly different. For example, in the observations at t = 50 min a wavefront shaded
in white covers from the limit of the plotted velocity map at x = 2 Mm to around x = 0
Mm, while in the simulations it extends from x = 2 Mm to almost x = 1 Mm. These little
differences may be due to the limitations in the configuration of the numerical simulation:
on the one hand, the MHS atmosphere is an axisimetric model, which is obviously not the
case of the real sunspot. Thus, the distance travelled by the waves along field lines may be
different, producing a phase lag. On the other hand, we have only introduced the driver in
a region of the umbra along the slit of the observations, so we have ignored the driving of
waves in the rest of the (non observed) umbra.

During the first 20 minute of the simulation there is some phase shift with respect to
the observation, and the amplitude of the simulation is lower. Note that this time lag is
evident in the wavefronts with the largest amplitude, where the nonlinearities are clear. It
will be discussed in Section 7.6.

The highest spectral line observed is the He i line, which is formed around 100 km above
the Ca ii H core. The comparison between the Doppler velocity of this line and the vertical
velocity of the simulation at the corresponding height is given in Figure 7.19. Like in the
case of the Ca ii H, most of the wavefronts of the observation can be clearly identified in
the simulation, except in the temporal range between t = 27 and t = 40 min. The match
between the observed and simulated amplitudes is also remarkable. Both maps seem to be
almost in phase. There is some phase delay which coincides with the strongest shocks, but
it is smaller than the one obtained for the Ca ii H core.

Only those waves with frequecy above the cutoff can reach the chromosphere. The
increase of the amplitude of these waves with height is higher than the one corresponding
to the evanescent low frequency waves, and the power spectra at the chromosphere is
dominated by a peak at 6 mHz. For example, in the case of the power spectra of the
He i line (Figure 7.20), both the observations and simulation have their power concentrated
around this frequency. The observational power has three power peaks in the 3 minute
band, located at 5.5, 6 and 7 mHz. The simulated power is concentrated at a single peak
between the two highest peaks of the observations. The simulated peak at 5.5 mHz is lower
than the observed one. The simulations also reproduce the power peaks at 7.7 mHz and
9 mHz, and the low power at frequencies below 5 mHz. At frequencies above 13 mHz the
simulated power is higher than the observational one.
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Figure 7.18: Velocity maps of the Ca ii H core. Top: Observational, measured from the Doppler shift of
the Ca ii H line; middle: numerical, vertical velocity at the formation height of the Ca ii H line; bottom:
comparison of the observational (red line) and numerical (blue line) velocity at x=0.9 Mm.

7.5.3 Propagation from the photosphere to the chromosphere

Figure 7.21 shows the spectra between the photospheric Si i line and the chromospheric He i
line. From 0 to 7 mHz, where the coherence of the observations is high, the simulated phase
difference precisely matches the observed one, with a null phase difference for frequencies
below 4 mHz and an almost linear increase between 4 and 7 mHz. At higher frequencies the
coherence of the observed phase difference is lower, but the simulated one keeps its linear
increase. With regards to the amplification spectra, for frequencies above 1.5 mHz the
simulated spectra reproduces properly the observed one. The smallest frequencies show a
high numerical amplification, which is due to the difficulties of the PML to damp these long
period waves. The thickness of the PML layer should be proportional to the wavelength
of the wave that must be absorbed, and the employed PML is obviously not optimized for
such a long period waves.

A similar result is found between the velocity obtained with the Si i and the Ca ii H
core (Figure 7.22), since the last one is formed just around 100 km below the He i line.
The simulated phase difference is zero for frequencies below 4 mHz, and it increases at
higher frequencies. It matches the observed phase shift between 2.5 and 9 mHz. At higher
frequencies the observed phase difference is noisier, while in the frequency range between 1
and 2.5 mHz it takes a value of π or −π. In the analysis of the observations we expressed our
doubts about the reliability of this phase shift, so we are not surprised that the simulation
does not reproduce it.
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Figure 7.19: Velocity maps of the He i line. Top: Observational, measured from the Doppler shift of the
He i line; middle: numerical, vertical velocity at the formation height of the He i line; bottom: comparison
of the observational (red line) and numerical (blue line) velocity at x=0.9 Mm.

Figure 7.20: Power spectra of the observed He i velocity (red dashed line) and the simulated velocity at its
corresponding height (blue solid line).
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Figure 7.21: Top: Phase difference spectra between Si i and He i velocities in the umbra. Bottom: Amplifi-
cation spectra. The format is the same as in Figure 7.9.

Figure 7.22: Top: Phase difference spectra between Si i and Ca ii H velocities in the umbra. Bottom:
Amplification spectra. The format is the same as in Figure 7.9.
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Figure 7.23: Top: Phase difference spectra between Si i and Fe i λ 3969.3 velocities in the umbra. Bottom:
Amplification spectra. The format is the same as in Figure 7.9.

Figure 7.23 shows the phase and amplification spectra between two photospheric lines,
the Si i and the Fe i λ 3969.3 lines. The observed phase difference has high coherence between
2 and 8 mHz, and in this frequency range the simulated phase delay fits the observational
one reasonably well, showing a ∆φ = 0 for frequencies below 4 mHz and a slow increase
for higher frequencies. For frequencies below 2 mHz and above 8 mHz the observed phase
difference spreads out and has lower coherence. The behavior of the simulated amplification
spectra is similar to the observed one between 0 and 8 mHz, but the numerical amplification
is significatively larger at the peak around 6.5 mHz. Note also that around 3.5 mHz the
observed amplification shows a peak, not reproduced in simulations. This was also seen
in the power spectra in Figure 7.17. At higher frequencies, the observed amplification has
some high peaks, but they are not trustable due to the poor quality of the Fe i velocity
map.

The spectra between Fe i λ 3969.3 and He i shown in Figure 7.24 are similar to the ones
from Figures 7.21 and 7.22, since all of them correspond to pairs of lines including one
photospheric and one chromospheric line. The numerical phase and amplification spectra
match the observational ones in the frequency range between 2 and 8.5 mHz. Out of this
range the observational phase spectra is very noisy and has a lower coherence, meaning
that these phase shifts are not reliable. At frequencies above 8 mHz the observational
amplification seems to decrease, but this tendency is not reproduced by the simulated one.

7.5.4 Energy balance

The driver is located just above the layer where the Alfvén speed is equal to the sound
speed. At this height the c2s/v

2
A parameter is 0.8. Since our driver is a vertical force, it

mainly generates oscillations in the vertical velocity. Inside the umbra the magnetic field
is vertical, and most of the energy introduced by the vertical force has an acoustic nature,
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Figure 7.24: Top: Phase difference spectra between Fe i λ 3969.3 and He i velocities in the umbra. Bottom:
Amplification spectra. The format is the same as Figure 7.9.

which corresponds to a slow mode in this low-β region. Because of the vertical thickness
of the driver, some part also acts at cS = vA or below, and it produces some fast acoustic
waves in the region just below the layer cS = vA. These waves are partially transformed
into a fast magnetic mode above the height where cS = vA, which is reflected towards
deeper layers due to the gradients of the Alfvén speed. The energy of this mode is very
low. However, it must be taken into account that in this simulation we are introducing the
observed velocity at the formation height of the Si i line and, thus, the wave pattern below
this layer is not reliable. In the real sunspot, waves propagate from deeper layers and in
their upward propagation they reach the layer where cS = vA. Some significative part of
the energy of these waves is transformed into fast magnetic waves at this height, and the
contribution of the fast modes in the low-β region must be higher than the one estimated
in this simulation.

The slow acoustic mode generated directly by the driver propagates upwards along the
field lines. According to Figure 7.15, at z = −100 km most of its power is concentrated in
the 5 minute band, with a frequency between 3 and 4 mHz. At this layer the cutoff frequency
is νc = 4.7 mHz, and it increases with height until it reaches νc = 6 mHz at z = 200 km. It
means that the oscillations in the 5 minute band introduced by the driver cannot propagate
upwards, and they form evanescent waves which do not supply energy to the higher layers.
Only those waves with frequency above the cutoff can propagate to the chromosphere. As it
was pointed before, the behavior of the simulation between the formation height of the Si i
and the Fe i lines is different from the observations. In the observational data, waves with
frequency below 5 mHz can propagate upward and they have more power at the formation
height of the Fe i line. Although in the real sunspot there are some propagation of low
frequency energy at the photospheric layers, this difference does not affect the balance of
energy at the higher layers, since in both, the simulations and the observations, only the
waves with frequency above 6 mHz reach the chromosphere (Figure 7.20).

During the travel of high frequency waves to high layers their amplitude increases due to
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Figure 7.25: Average acoustic energy flux inside the umbra in the simulation.

the drop of the density and they develop into shocks with peak-to-peak amplitudes around
8 km s−1 at the formation height of the Ca ii H core and the He i line. These waves supply
energy to the chromosphere, but, is this acoustic energy enough to balance the radiative
losses of the chromosphere? According to Withbroe & Noyes (1977), the radiative energy
losses in the chromosphere of active regions amount to 2× 107 erg cm−2 s−1, and these
losses should be balanced by some energy source. Figure 7.25 illustrates the variation
of the acoustic flux with height, which was calculated following Equation (5.6) and was
averaged in time for all points inside the umbra at the stationary stage of simulations. At
the position of the driver it reaches 106 erg cm−2 s−1 and then decreases with height. It
shows a steep decrease at z = 200 km, where the cutoff frequency reaches its maximum
value. The acoustic flux presents important variations with time. For example, Figure 7.26
shows the temporal evolution of the acoustic flux inside the umbra at the formation height of
the He i line. Positive values (shaded in white) represent upward flux. The wavefronts of the
slow acoustic waves in the 6 mHz band are accompanied by acoustic energy which reaches
almost 5× 106 erg cm−2 s−1 for the strongest shocks. The average value of the acoustic
flux at this height is 3× 105 erg cm−2 s−1, which is two orders of magnitude below the
required value to balance the radiative losses. Only at the moments when shocks reach the
chromosphere the energy supplied by the slow acoustic waves is close to the chromospheric
radiative losses, being half of its value.

7.6 Discussion and conclusions

We have presented numerical simulations which closely reproduce the real wave propagation
observed in the umbra of a sunspot on 2007 August 28. The analysis of these observations
was done in Chapter 6. As is proved in Chapter 5, our code is able to manage the propaga-
tion of waves with long realistic periods, even in the hard conditions imposed by the high
Alfvén speed at the sunspot chromosphere.

The similarity between the simulations and the observations is achieved in two steps.
Firstly, we have contructed a MHS model of a sunspot with the properties of the observed
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Figure 7.26: Acoustic energy flux map. Positive values (white) indicate upward flux.

one. We have followed the methods described in Khomenko & Collados (2008), but intro-
duced some modifications in order to take into account some of the atmospheric properties
of the sunspot retrieved from the inversion of the Si i line. This static model is perturbed
by a force which drives a vertical velocity similar to the LOS velocity measured from the
Doppler shift of the Si i line. This force is imposed around the estimated formation height
of the photospheric Si i line. We have discussed several methods to infer the force driver
which best matches the observed velocity.

Once the observed velocity is introduced in the MHS atmosphere, it mainly drives slow
acoustic waves in the low-β region. Most of their power is concentrated in the 5 minute band,
with frequencies between 3 and 4 mHz, and they form standing waves due to the higher
cutoff frequency of the atmosphere. The driver also generates high frequencies waves, which
propagate upward to the chromosphere. In their travel through the sunspot atmosphere,
they reach the formation height of several observed spectral lines. The simulated velocity
maps and power spectra at their corresponding formation heights reproduce reasonably
well those obtained for the chromospheric Ca ii H core and He i line. In the case of the
Fe i λ 3969.3 line, the comparison is hindered due to the poor quatility of the observed
velocity map, but it presents some differences in the power spectra. The fact that the
simulated power spectra has lower power than the observational one for frequencies below 5
mHz, while the opposite is valid for frequencies above it, indicates that the real stratification
of the sunspot may produce a lower cutoff frequency than the one corresponding to the MHS
model at these photospheric layers. However, since the power at the chromospheric lines
peaks at 6 mHz, we expect that the maximum value that the cutoff frequency reaches in
the real sunspot agrees with the 6 mHz obtained for the MHS model.

The comparison between the simulated and observed velocity maps at chromospheric
heights reveals some phase delay at the strongest wavefronts, in the sense that the observed
wavefronts lag the simulated ones. In the case of the Ca ii H core the phase lag is 0.4π,
but the delay between the observed and simulated He i velocities is smaller. These delay,
together with the higher amplitude of the observed strongest shocks, indicates that in the
dynamical sunspot chromosphere the nonlinear waves shift the formation height of spectral
lines to higher layers, specially the Ca ii H core. In the analysis of these simulations,
we have chosen a certain height representative of the layer from which the information
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about the velocity measured with the observed line comes. Obviously, this procedure is a
simplification, since the contribution function from every spectral line spans over a thick
layer. The height that we are considering corresponds to the average height derived in
Chapter 6. This approximation seems to be good for the photospheric lines, but not for
the highly nonlinear chromospheric region.

Our simulations reproduce the phase and amplification spectra between several pairs
of lines with a remarkable match. For those spectra between a photospheric and a chro-
mospheric signal, the phase difference shows stationary waves with ∆φ = 0 below 4 mHz,
and at higher frequencies they progressively develop propagating waves, whose ∆φ increases
with the frequency. This empirical cutoff is assigned from the estimation of the frequency at
which the phase difference starts to depart from ∆φ = 0. In the solar atmosphere, the cutoff
is a local parameter which depends on the temperature and is stratificated with height. In
our MHS model its maximum value is 6 mHz, and only waves with frequencies above this
value can propagate all over the atmosphere. However, in most of the atmosphere the local
cutoff is below 6 mHz, and for this reason the phase difference spectra show propagation
for frequencies in the range between 4 and 6 mHz.

The only strong discrepancy is found in the amplification spectra at frequencies above
8 mHz (Figures 7.22 and 7.24). The amplification is cleary higher in the simulation than
in the observations, and the observed power spectra of the chromospheric lines show lower
power than the simulated equivalent (Figure 7.20). There are several causes that could
account for this discrepancy. The comparison of the power spectra of the velocity retrieved
from the Si i line and the one obtained in the simulation at its formation height (middle
panel of Figure 7.15) shows some slight differences which are specially significant above 8
mHz. Since the amplitude of the waves increases exponentially with height, these small
discrepancies could be the origin of the larger ones that appear at greater heights. For
example, Figure 7.15 shows that the simulation has an excess of power at the height of
the driver at 13 mHz and 17 mHz, and these frequencies also present higher power than
the observations at the chromosphere (Figure 7.20). However, some frequencies where the
power of the photospheric velocity in the simulation is not higher than the power of the
Si i line also present a significative difference at higher layers. It is possible that all the
power generated by the driver (which match the power obtained in the observations) does
not correspond to real photospheric oscillations, but it is introduced by some observational
limitations. In this case, the simulation would propagate upward some oscillatory power
which is not present in the Sun, and although it vanishes at deep layers, its contribution in
the chromosphere is important. Another possible cause of the different power of the high
frequency waves at the chromosphere is the simple energy exchange implemented in this
simulation. A more realistic method could produce a stronger radiative damping of the
high frequency waves.

The analysis of the energy flux carried by magnetoacoustic waves to high layers reveals
that it is not enough to heat the chromosphere. The energy supplied by slow acoustic waves
is 70 times lower than the amount required to balance the radiative losses. Moreover, the
simulation overestimates the power of the waves with frequencies between 8 and 20 mHz
at the chromosphere, and the contribution of waves to chromospheric heating in sunspot
could be even lower. In this simulation we have rejected the waves with frequencies above
20 mHz. According to Fossum & Carlsson (2005) and Carlsson et al. (2007) their power can
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be assumed to be negligible for chromospheric heating, but Wedemeyer-Böhm et al. (2007)
and Kalkofen (2007) have pointed out that this question depends on the spatial resolution
of the data used.

Previous works have found that the acoustic wave energy is too low, by a factor of at
least ten, to balance the radiative losses in the non-magnetic solar chromosphere (Fossum
& Carlsson 2005; Carlsson et al. 2007). The fraction of the required energy supplied by
acoustic waves in the magnetized atmosphere of a sunspot seems to be even lower. The
chromospheric energy losses in active regions are 5 times higher than in quiet Sun. Not
only the acoustic wave flux is unable to balance this extra needed energy, but also the
energy supplied by these waves in the sunspot atmosphere is scarcer. At the photosphere,
the surface amplitude of solar p-modes in magnetic regions are reduced below those in
magnetically quiet regions in the 5 minute band (Woods & Cram 1981). Brown et al. (1992)
showed that the suppression is frequency dependent, peaking at 4 mHz. The reduction of
the amplitude occurs for frequencies below 5 mHz, while the amplitude of waves above
5.5 mHz is enhanced. Since the waves that propagate energy to higher layers are those
above the cutoff frequency, the reduction of p-modes in regions of magnetic activity does
not explain the lower efficience of acoustic energy propagation in sunspots. In Chapter 5,
we have found that the fast magnetic mode in the low-β region is reflected back toward
the photosphere and it is unable to supply energy to higher layers. This result agrees
with previous numerical calculations (Khomenko & Collados 2006). According to Cally
(2005), the fast-to-fast conversion is more efficient for higher frequencies and, thus, waves
with frequencies above the cutoff are significantly transformed into fast magnetic waves
above the height where vA = cS and cannot carry energy to the chromosphere. The LOS
velocity oscillations measured with the Si i line correspond to the slow acoustic waves in
the low-β region, after the transformation of the upward propagating waves. Their power
has already been reduced by the transformation to the fast magnetic mode. Figure 7.25
shows that at the formation height of the Si i line the average acoustic energy flux is around
106 erg cm−2 s−1, so even at this photospheric height the energy contained in form of
acoustic flux is too low to supply the amount required by the chromospheric radiative
losses. This case differs from the quiet Sun, where the acoustic wave energy is found to
be enough to maintain the temperature stratification until a height of 500 km (Beck et al.
2009).
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Conclusions and future prospects

In this thesis we have investigated the propagation of waves in sunspots using observations
and numerical simulations. From the analysis of this data set we retrieve a coherent

picture of the oscillations between the photosphere and the chromosphere of sunspots, and
we are able to evaluate the different wave modes involved and their energy contribution,
model and reproduce numerically several observed features, and infer the properties of the
sunspot atmosphere. The conclusions are summarized in the next section, while in Section
8.2 we briefly present the future steps which could be performed as a continuation of this
work.

8.1 Conclusions

Mode transformation in 3D numerical simulations

We have performed a set of numerical simulations with several drivers, which differ in
their location and temporal behavior. Our main findings can be summarized as follows:

• The driver located in the gas pressure dominated region generates mostly a fast acous-
tic mode. This mode, propagating to the upper layers, is transformed at the height
where cS = vA. After the transformation, a slow acoustic mode propagates upward
along the field lines in the magnetically dominated atmosphere. The fast magnetic
mode undergoes refraction and it is reflected back to the sub-photosphere. When it
reaches again the surface cS = vA, new transformations take place producing other
fast acoustic and slow magnetic modes in the region vA < cS .

• We have been able to identify an Alfvén mode. This mode appears only in the
simulations with the source located away from the sunspot axis. The transformation
efficiency from the fast to the Alfvén mode is much lower than that from the fast to
the slow mode.

• The analysis of the wave energy fluxes suggests that in the high-frequency cases (above
the cutoff) the wave energy can reach the upper atmosphere most efficiently in the
form of slow (acoustic) field aligned propagating waves. After some height in the
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middle photosphere there is no magnetic flux corresponding to the fast (magnetic)
waves as their energy is reflected. If the driver is located away from the axis, some
small part of the energy also can propagate upward in the form of an Alfvén wave.

• Both magnetic and acoustic energy of the low-frequency waves (smaller than the
cutoff) remain almost completely below the level cS = vA and do not reach upper
layers. This happens because the energy of the fast magnetic modes in the upper
layers is reflected, and the evanescent acoustic slow modes do not propagate any
energy at these frequencies.

• Simulations with a driver which excites a spectrum of waves reproduce the observed
change of the dominant frequency of oscillations with height from the photosphere to
the chromosphere. Waves with frequency below the cutoff value are evanescent in the
atmosphere, while at higher frequencies the waves can propagate upward along the
field lines. Due to the larger amplitude increase with height of the propagating waves
compared to the evanescent waves, the 3 minute waves dominate the power spectrum
in the chromosphere.

• The dominant wave frequency in the chromosphere decreases with the radial distance,
due to the reduction of the cutoff frequency far from the axis.

Multi-layer observations of waves

We have presented an analysis of the LOS velocities obtained from at set of spectropo-
larimetric data in the near-IR spectral region around 10830 Å and the optical region around
3969 Å in a sunspot atmosphere and its vicinity. We have extracted the following conclu-
sions:

• The phase difference spectra of LOS velocities between several pairs of lines show
upward propagating waves for frequencies higher than 4 mHz. The power at lower
frequencies does not propagate up, since waves with these frequencies are evanescent.
The slope of the phase spectra, together with the histograms of LOS velocity, allows
us to sort all the spectral lines used in this work by their formation height.

• Phase and amplification spectra were fitted to a model of linear wave propagation
in a stratified atmosphere with radiative losses following the Newton cooling law.
The model works reasonably well at layers below the formation height of the Ca ii H
line core, where waves propagate in a linear regime, while it fails in the fit of the
amplification spectrum between the He i velocity and the Ca ii H line core velocity
due to the importance of nonlinearities at these chromospheric heights.

• From the fit to the model we retrieved the temperature, the difference in geometrical
height between the formation heights of pairs of spectral lines, and the radiative
relaxation time. The obtained values agree with previous estimations of the formation
heights and with the stratification of a standard model of sunspot.

• The maximum of the power spectra is not gradually shifted from 3.5 mHz at the
photosphere to higher frequencies at larger heights, but the photospheric and chro-
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mospheric group of lines show a discontinuous behavior. This phenomenon is also
shown by the numerical simulations.

• High-frequency waves prominent in the chromosphere have to be generated in the
photosphere or below and their dominance at the chromospheric height is the result
of their large amplitude increase, since the increase of their amplitude with height is
faster than the one of evanescent waves below the cutoff.

• We observe a continuous field-aligned propagation of slow magneto-acoustic waves in
the upper atmosphere of sunspot. These waves first reach the formation height of
Si i, then the formation height of the Fe i lines from the Ca ii H line wing located in
the upper photosphere, then the formation height of the Ca ii H line core, and finally
that of the He i line. The propagation becomes non-linear at heights between the
formation of Fe i lines and Ca ii H line core.

Combination of observations and simulations

We have performed numerical simulations based on the observations analyzed in Chapter
6. These are the main achievements extracted from its study:

• We have constructed a magnetohydrostatic model which resembles in its properties the
observed sunspot umbra. The analysis of wave propagation shows that the synthetic
model accounts for the observed wave amplification, cutoff frequency, and velocity
of propagation, although the stratification of the photospheric layers is not exactly
corresponding to the observed sunspot.

• The simulation reproduces reasonably well the oscillations measured at different at-
mospheric heights, spanning from the photosphere to the chromosphere, where the
observed wave pattern was obtained from the simultaneous observations in several
spectral lines.

• The strongest shock waves shift the average response height to velocity perturbations
of the chromospheric lines toward higher layers, specially the one of the Ca ii H core.

• We identify high frequency propagating waves. The phase and amplification spectra
obtained from the numerical simulation match with the observed one, and indicate
that only waves with frequency above a 6 mHz can propagate upward through all the
umbral atmosphere, while waves with frequency between 4 and 6 mHz can propagate
at certain heights.

• The acoustic energy flux supplied by the slow mode high frequency waves is 70 times
lower than the amount required to balance the chromospheric radiative losses in an
active region. In sunspots the contribution of acoustic waves to the chromospheric
heating is even lower than in quiet Sun regions.

8.2 Future prospects

The results presented in this thesis shed light upon the issue of wave propagation in realistic
magnetized atmospheres with the observed periods, and allow us for the first time to perform
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a direct comparison with observations. Future steps to go beyond these results can be
divided in two different kinds. Firstly, we aim to improve the numerical code introducing
the following modifications:

• Include a more detailed physical description in the solution of the equations. The
code uses as equation of state a simple ideal gas equation, and the energy exchange
is implemented with the approximation of Newton’s cooling law. Both approaches
seem to be a poor simplification of the physics of stellar atmospheres, specially at the
chromosphere. At this height, the effects of partial ionization should be taken into
account by the introduction of a pretabulated equation of state. The energy exchange
should also be improved by including realistic opacities from several atomic species.

• The top boundary condition is a hard challenge for wave propagation simulations,
and the extremely high Alfvén speed at the chromosphere of active regions hinders
the obtaining of stable and long enough simulations. The PML boundary has proven
to be a good solution, but for the study of some cases we need to reach a better
performance.

Secondly, we have the subsequent scientific objetives:

• We plan to develop new simulations with different driving conditions and exciting
other magnetic structures. In the present work we have obtained a very inefficient
conversion from slow to Alfvén modes. According to Cally & Goossens (2008), at some
inclination angles the transformation into the Alfvén wave is even more important
than the fast-to-slow transformation. With the configuration of the simulations that
we have studied, the energy transported by the Alfvén mode is negligible. However,
in magnetic field structures with different topology, or using different drivers, new
Alfvén like modes can appear, such as kink and sausage modes in flux tubes.

• The study of velocity oscillations measured at the photosphere and the chromosphere
for structures with different size and magnetic fluxes (large spots, small spots, pores
and facuale) performed by Centeno et al. (2009) has revealed an intrinsic difference
between all these features. These results were obtained only for two reference spectral
lines, the Si i and the He i lines in the 10830 Å spectral region, which does not allow
them to trace continuously the properties of waves with height. We aim to repeat
the same kind of observations, including the Ca ii H line (and its accompanying Fe i
lines) with POLIS. However, the low solar activity during the period of this thesis
has prevented us from obtaining such observations until present.

• The code is also suitable for local helioseismic purposes. The intepretation of the full
wave field observed around active regions is one of the greatest challenges for local
helioseismology. Numerical modeling is the ideal tool to complement the observations
obtained with new observing facilities, like the Helioseismic and Magnetic Imager
(HMI) instrument which was launched recently on-board Solar Dynamics Observatory
(SDO).
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Conclusiones y perspectivas futuras

En esta tesis hemos investigado la propagación de ondas en manchas solares utilizando
observaciones y simulaciones numéricas. Del análisis de este conjunto de datos hemos

obtenido una escena coherente de las oscilaciones entre la fotosfera y la cromosfera de man-
chas solares, y hemos podido evaluar los diferentes modos de onda involucrados, modelar
y reproducir numéricamente varios rasgos observacionales e inferir las propiedades de la
atmósfera de la mancha. La siguiente sección resume las conclusiones, mientras que en la
Sección 9.2 presentamos brevemente futuros pasos que se podŕıan realizar como continua-
ción de este trabajo.

9.1 Conclusiones

Transformación de modos en simulaciones numéricas en 3D

Hemos realizado un conjunto de simulaciones numéricas con varias fuerzas excitadoras,
que se diferencian en su posición y comportamiento temporal. Nuestros principales hallaz-
gos pueden ser resumidos como se muestra a continuación:

• La fuerza excitadora situada en la región dominada por la presión del gas genera
principalmente un modo acústico rápido. Este modo, que se propaga hacia capas
superiores, se transforma a la altura donde la velocidad del sonido (cS) y la velocidad
Alfvén (vA) son iguales. Después de la transformación, un modo acústico lento se
propaga hacia arriba a lo largo de las ĺıneas de campo en la región de la atmósfera
dominada por el campo magnético. El modo magnético rápido es refractado y se dirige
nuevamente hacia la fotosfera. Cuando alcanza otra vez la superficie cS = vA aparecen
nuevas transformaciones, produciendo otros modos acústico rápido y magnético lento
en la región vA < cS .

• Hemos podido indentificar el modo Alfvén. Este modo aparece sólo en las simulaciones
con la fuente situada fuera del eje de la mancha. La eficiencia de la transformación
del modo rápido al Alfvén es mucho más baja que la del modo rápido al lento.

• El análisis del flujo de enerǵıa sugiere que en los casos de ondas con frecuencias altas
(por encima de la frecuencia de corte) la enerǵıa de la onda puede alcanzar la parte alta
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de la atmósfera más eficientemente en forma de ondas acústicas lentas propagándose
a lo largo de las ĺıneas de campo. Por encima de una cierta altura en la fotosfera
media no hay flujo magnético correspondiente a las ondas magnéticas rápidas, debido
a que su enerǵıa es reflejada. Si la fuerza excitadora está situada fuera del eje, una
pequeña parte de la enerǵıa se puede propagar hacia arriba en forma de onda Alfvén.

• Tanto la enerǵıa magnética como la acústica de la ondas con baja frecuencia (más
baja que la frecuencia de corte) se quedan casi completamente por debajo de la altura
donde cS = vA y no alcanzan capas superiores. Esto sucede debido a que la enerǵıa
del modo magnético rápido en las capas superiores es reflejado, mientras que el modo
acústico lento es evanescente y no propaga enerǵıa a estas frecuencias.

• Las simulaciones en las que actúa como fuerza excitadora un espectro de ondas con
diferentes frecuencias reproducen el cambio observado con la altura en la frecuencia
dominante de las oscilaciones. Las ondas cuya frecuencia es inferior a la frecuencia
de corte son evanescentes, mientras que las frecuencias más altas se pueden propagar
hacia arriba a lo largo de las ĺıneas de campo. Debido al mayor incremento de la
amplitud con la altura de las ondas que se propagan en comparación con las ondas
evanescentes, las ondas de 3 minutos de periodo dominan el espectro de potencias en
la cromosfera.

• La frecuencia dominante en la cromosfera disminuye con la distancia radial, debido a
la reducción del valor de la frecuencia de corte lejos del eje de la mancha.

Observaciones de ondas en diferentes alturas

Hemos presentado un análisis de la velocidad en la ĺıneas de visión de un conjunto de
datos espectropolarimétricos en la región del infrarrojo cercano en torno a 10830 Å y en la
región visible alrededor de 3969 Å en la atmosfera de una mancha solar y sus alrededores.
Hemos extráıdo las siguientes conclusiones:

• El espectro de diferencia de fase de la velocidad en la ĺınea de visión entre varios pares
de ĺıneas muestra propagación de ondas hacia arriba para frecuencias superiores a 4
mHz. La potencia a frecuencias más bajas no se propaga hacia arriba, ya que las
ondas con estas frecuencias son evanescentes. La pendiente del espectro de diferencia
de fase, junto con los histogramas de velocidad en la ĺıneas de visión, nos permite
ordenar según su altura de formación todas las ĺıneas spectrales utilizadas en este
trabajo.

• Los espectros de diferencia de fase y de amplificación fueron ajustados con un modelo
de propagación lineal de ondas en una atmósfera estratificada con pérdidas radiativas
siguiendo la ley de enfriamiento de Newton. El modelo funciona razonablemente
bien en capas por debajo de la altura de formación del núcleo de la ĺınea de Ca ii H,
mientras falla en el ajuste del espectro de amplificación entre las velocidades medidas
con el He i y el núcleo de la ĺınea de Ca ii H debido a la importancia de las no
linealidades a estas alturas cromosféricas.



9.1 Conclusiones 155

• Del ajuste al modelo obtenemos la temperatura, la diferencia en altura geométrica
entre la altura de formación de ambas ĺınas espectrales y el tiempo de relajación
radiativo. Los valores obtenidos muestran un buen acuerdo con estimaciones previas
de las alturas de formación y con la estratificación de un modelo estándar de mancha
solar.

• El máximo del espectro de potencias no se desplaza gradualmente de 3.5 mHz en
la fotosfera hacia frecuencias más altas en alturas superiores, sino que los conjuntos
de ĺıneas fotosféricas y cromosféricas muestran un comportamiento discontinuo. Las
simulaciones numéricas también muestran este fenómeno.

• Las ondas de alta frecuencia que dominan en las capas cromosféricas deben ser gene-
radas en la fotosfera o a mayor profundidad, y su importancia en la cromosfera es el
resultado de su gran incremento de amplitud, dado que el aumento de su amplitud
con la altura es más rápido que el correspondiente a ondas evanescentes con frecuencia
inferior a la de corte.

• Observamos una propagación continua de ondas magneto-acústicas lentas en la at-
mósfera de la mancha solar. Estas ondas primero alcanzan la altura de formación del
Si i, luego la de las ĺıneas de Fe i de las alas de la ĺıneas de Ca ii H que se forman en la
alta fotosfera, a continuación la altura de formación del núcleo de la ĺıneas de Ca ii H
y finalmente la de He i. La propagación se vuelve no lineal a una cierta altura entre
la formación de las ĺıneas de Fe i y el núcleo de la ĺınea de Ca ii H.

Combinación de las observaciones y las simulaciones

Hemos realizado simulaciones numéricas basadas en las observaciones analizadas en el
Caṕıtulo 6. Estos son los principales logros extráıdos de su estudio:

• Hemos construido un modelo magnetohidrostático con las propiedades de la umbra de
la mancha observada. El análisis de la propagación de ondas muestra que el modelo
sintético da cuenta de la amplificación de la onda, la frecuencia de corte y la velocidad
de propagación, aunque la estratificación de las capas fotosféricas no es exactamente
la que corresponde a la mancha solar observada.

• La simulación reproduce razonablemente bien las oscilaciones medidas a diferentes
alturas atmosféricas, desde la fotosfera hasta la cromosfera, donde el patrón de on-
das observado fue obtenido a partir de la observación simultánea de varias ĺıneas
espectrales.

• Las ondas de choque más fuertes desplazan la altura de repuesta promedio a perturba-
ciones en la velocidad de las ĺıneas cromosféricas hacia capas más altas, especialmente
en el caso del núcleo de la ĺınea de Ca ii H.

• Identificamos propagación de ondas de alta frecuencia. Los espectros de fase y de
amplificación obtenidos a partir de la simulación numérica se ajustan a los observados,
e indican que sólo las ondas con frequencia superior a 6 mHz pueden propagarse hacia
arriba a través de toda la atmósfera de la umbra, mientras las ondas con frecuencia
entre 4 y 6 mHz se pueden propagar a determinadas alturas.
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• El flujo de enerǵıa acústico suministrado por las ondas de alta frecuencia correspon-
dientes al modo lento es 70 veces inferior a la cantidad necesaria para compensar
las pérdidas radiativas de la cromosfera en regiones activas. En manchas solares la
contribución de las ondas acústicas al calentamiento cromosférico es incluso inferior
a la de regiones de Sol en calma.

9.2 Perspectivas futuras

Los resultados presentados en esta tesis ayudan a esclarecer el estudio de la propagacion
de ondas en atmósferas magnetizadas realistas con los periodos observados, y nos permiten
realizar una comparación directa con observaciones. Los futuros pasos para profundizar en
este temar se pueden dividir en dos tipos. En primer lugar, pretendemos mejorar el códico
numérico introduciendo las siguientes modificaciones:

• Incluir una descripción f́ısica más detallada en la resolución de las equaciones. El
código utiliza como ecuación de estado la ley de los gases ideales, y el intercambio de
enerǵıa está implementado con la aproximación de la ley de enfriamiento de Newton.
Ambos son una simplificación pobre de la f́ısica de atmósferas estelares, especialmente
en la cromosfera. A esta altura, los efectos de la ionización parcial deben ser tenidos
en cuenta mediante la introducción de una ecuación de estado pretabulada. El inter-
cambio de enerǵıa también debe ser mejorado incluyendo las opacidades realistas de
varias especies atómicas.

• La condición de contorno superior es un reto duro para las simulaciones de propagación
de ondas, y la extremadamente alta velocidad Alfvén en la cromosfera de regiones
activas dificulta la obtención de simulaciones estables y suficientemente largas. La
capa PML ha demostrado ser una buena solución, pero para el estudio de algunos
casos necesitamos alcanzar un mejor rendimiento.

En segundo lugar, tenemos los siguientes objetivos cient́ıficos:

• Planeamos obtener nuevas simulaciones con diferentes condiciones de excitación y en
otras estructuras magnéticas. En este trabajo hemos obtenido una conversión muy
ineficiente entre los modos lento y Alfvén. De acuerdo con Cally & Goossens (2008),
a determinados ángulos de inclinación la transformación al modo Alfvén es incluso
más importante que la transformación de rápido a lento. Con la configuración de
las simulaciones que hemos estudiado, la enerǵıa transportada por el modo Alfvén
es despreciable. Sin embargo, en estructuras magnéticas con diferente topoloǵıa, o
utilizando diferentes perturbaciones excitadoras, aparecen nuevos modos Alfvén, como
los modos “kink” y “salchicha” en tubos de flujo.

• El estudio de las oscilaciones de velocidad medidas en la fotosfera y la cromos-
fera para estructuras con diferente tamaño y flujos magnéticos (manchas grandes
y pequeñas, poros y fáculas) realizado por Centeno et al. (2009) ha revelado una
diferencia intŕınseca entre todas estas estructuras. Estos resultados fueron obtenidos
únicamente para dos ĺıneas espectrales de referencia, las ĺıneas de Si i y He i de la región
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espectral de 10830 Å, lo que no les permite trazar continuamente las propiedades de las
ondas con la altura. Pretendemos repetir el mismo tipo de observaciones, incluyendo
la ĺınea de Ca ii H (y las ĺıneas de Fe i que la acompañan) medida con POLIS. Sin
embargo, la baja acividad solar existente durante el periodo de esta tesis ha evitado
que obtengamos estas observaciones.

• El código también puede ser utilizado para estudios de helioseismoloǵıa local. La
interpretación del campo de ondas observado alrededor de regiones activas es uno
de los grandes retos de la helioseismoloǵıa local. El modelado numérico es la her-
ramienta ideal para complementar las observaciones obtenidas con nuevas facilidades
observacionales, como el instrumento Helioseismic and Magnetic Imager (HMI) que
fue lanzado recientemente a bordo de Solar Dynamics Observatory (SDO).
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inmensidad del espacio y el tiempo, mi alegŕıa es haber compartido un lugar y una época
contigo”. Espero que esta época continúe.
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