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Introducción

En esta memoria analizamos la estructura del conjunto de soluciones po-

sitivas del problema

−∆u = λu − a(x)|u|pu en Ω , u|∂Ω = 0 , (0.1)

donde Ω es un dominio acotado de R
N , N ≥ 1, con frontera ∂Ω de clase C2,

λ ∈ R será considerado como un parámetro de continuación y p ∈ R , p > 0.

Suponemos que a �= 0 es una función medible acotada en Ω y escribimos

Ω± := {x ∈ Ω : a±(x) > 0 } ,

siendo a+ := max{a, 0} la parte positiva y a− := a+ − a la parte negativa

de a. Además supondremos que Ω+ y Ω− son conjuntos abiertos de clase

C2 y que a± están acotadas lejos de cero en subconjuntos compactos de

Ω±. Nótese que bajo estas suposiciones Ω+ y Ω− tienen un número finito

de componentes.

El problema (0.1) nos proporciona los estados de equilibrio del modelo

parabólico asociado



∂u
∂t − ∆u = λu − a(x)|u|pu , (x, t) ∈ Ω × (0,∞) ,

u(·, t)|∂Ω = 0 , t > 0 ,

u(·, 0) = u0 ≥ 0 , in Ω ,

(0.2)
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que es muy conocido en dinámica de poblaciones; cuando a > 0 está acotada

lejos de cero se trata de la ecuación loǵıstica parabólica ([Ok80], [Mu93]).

Aunque en bioloǵıa matemática se suele considerar el coeficiente a(x) no

negativo, la ecuación (0.2) admite un significado biológico aún en el caso

general cuando a(x) cambia de signo. En este caso u(·, t) es la densidad de

población en el tiempo t de una especie que habita la región Ω, λ es el ı́ndice

de crecimiento neto de la especie, u0 es la densidad de población inicial, y

el coeficiente a(x) mide el efecto de saturación en respuesta al estrés de la

población en Ω+, mientras que en Ω− mide el efecto de simbiosis debido a la

cooperación intraespećıfica entre los individuos de la especie. En la región

Ω0 := Ω \ (Ω+ ∪ Ω−) ,

los individuos de la especie están libres de cualquiera otros efectos mas que

la difusión y, por lo tanto, las componentes de Ω0 (tantas como haya en un

número finito) pueden considerarse como refugios.

Durante las últimas décadas los problemas de valores de contorno eĺıpticos

semilineales del mismo tipo que el problema (0.1) han despertado un gran

interés, sin embargo la mayoŕıa de los estudios realizados tratan del modelo

sublineal puro (Ω+ = Ω), o del modelo superlineal puro (Ω− = Ω). Nuestro

objetivo en la presente memoria es analizar no sólo estos casos especiales,

sino también el caso general cuando (0.1) es del tipo superlineal indefinido

(Ω+ �= ∅ , Ω− �= ∅).

Hemos dividido la memoria en tres caṕıtulos. En el Caṕıtulo I analizamos

el problema sublineal, en el Caṕıtulo II tratamos el problema superlineal in-

definido y, finalmente, en el Caṕıtulo III analizamos el problema superlineal

puro, aunque permitiendo que se anule el coeficiente de la no linealidad. A

continuación resumimos los contenidos y resultados de cada uno de estos

tres caṕıtulos.

En el Caṕıtulo I analizamos el problema sublineal general, es decir Ω− = ∅.

Sorprende que la situación general cuando la especie u está libre de efectos de
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saturación en algún subdominio de Ω (cuando Ω+ es un subdominio propio

de Ω y por lo tanto Ω0 �= ∅), no se haya estudiado hasta muy recientemente

(ver [BO86], [Ou92], [FKLM96], [GGLS98]).

En [BO86] se estableció, por medio de métodos variacionales, la existencia y

la unicidad de las soluciones positivas de (0.1). El correspondiente problema

de Neumann se estudió en [Ou92] usando métodos de continuación y se

obtuvieron los mismos resultados que en [BO86]. En [FKLM96], y por medio

de técnicas de comparación, se extendieron estos resultados a problemas no

necesariamente autoadjuntos con coeficientes suaves y bajo condiciones de

contorno más generales. Por último, en [GGLS98] se probó que en el caso en

que Ω0 es conexo y N ≥ 2, las soluciones positivas de (0.1) crecen a infinito

en la región donde el coeficiente a(x) se anula, esto es en Ω0, mientras que en

su soporte, Ω+, las soluciones positivas se estabilizan a la solución positiva

minimal de la ecuación original sujeta a condiciones de Dirichlet infinitas en

la frontera de Ω+.

En el análisis llevado a cabo en el Caṕıtulo I no es necesaria la imposición

de que Ω0 sea conexo y, junto al estudio de la existencia, comportamiento

puntual y cálculo numérico de las soluciones clásicas de (0.1), también es-

tudiamos una familia de soluciones no clásicas de (0.1) que no pertenecen

a ∪∞
p=1L

p
loc(Ω). Nuestras soluciones no clásicas, a las que llamamos me-

tasoluciones, pueden valer infinito en algunas de las regiones del dominio

soporte. Podemos pensar en las metasoluciones como una clase de extensión

por infinito a todo el dominio de una solución clásica grande (ver [MV97]),

pero contrariamente a lo que ocurre con estas soluciones grandes extendi-

das, las metasoluciones pueden anularse en algunas de las componentes de

la frontera del dominio mientras crecen a infinito en el resto.

Aunque el análisis de soluciones clásicas grandes ha atráıdo la atención de

investigadores durante los últimos años ([BM91], [Ve92], [MV97]), parece

que este es el primer trabajo donde se introduce el concepto de metasolución,

se analiza su existencia y se lleva a cabo su cálculo numericamente.
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Desde el punto de vista biológico, la importancia de las metasoluciones viene

del hecho de que nos proporcionan todos los posibles perfiles ĺımite de la

población en función del ı́ndice de crecimiento λ, cuando el tiempo crece a

infinito.

En lo que concierne al tratamiento numérico del problema, debemos apuntar

que nos hemos encontrado con serias dificultades para calcular las metaso-

luciones para algunos rangos de los parámetros envueltos en el problema;

principalmente estos problemas han surgido del hecho de tener que trabajar

con números muy grandes. En el Caṕıtulo I se detallan todos estos aspectos.

El Caṕıtulo II está dedicado al estudio del problema superlineal indefinido,

es decir, el problema general cuando Ω− �= ∅ and Ω+ �= ∅. Hemos enfocado

nuestra atención en analizar cómo cambia la dinámica de las soluciones del

problema (0.1) cuando vaŕıa el comportamiento nodal del coeficiente a(x).

También hemos analizado el comportamiento capa-pico de las soluciones

positivas de una versión uno-dimensional de (0.1) cuando el parámetro λ

decrece a −∞.

Entre las referencias clásicas que tratan del problema superlineal puro

(Ω− = Ω), podemos citar [AR73], [TU74], [BT77], [GS281], [FLN82],

[Ou91]. Para este problema los métodos variacionales han sido muy útiles

para probar la existencia de soluciones capa-pico de (0.1), pero desafor-

tunadamente para el problema superlineal indefinido general no existen re-

sultados de esta naturaleza. La dificultad principal, como ya se apuntó en

[BCN95], viene del hecho de que los métodos variacionales no se pueden

aplicar para tratar el caso cuando a(x) cambia de signo.

Relativamente pocas han sido las caracteŕısticas que se han establecido

para el problema superlineal indefinido general ([BCN95], [AT96], [Lo97],

[AL98]), y la mayoŕıa de ellas se han encontrado muy recientemente. En-

tre todos los resultados disponibles, en [AL98] se probó, por medio de las

teoŕıas de bifurcación global y de ı́ndice de punto fijo, que si la bifurcación

a soluciones positivas desde la solución trivial en λ = σΩ
1 es supercŕıtica y
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las soluciones de (0.1) poseen cotas a priori uniformes en L∞ para λ va-

riando en subintervalos compactos de R, entonces existe σΩ
1 < λ∗ < σ

Ω\Ω+
1

tal que (0.1) posee una solución positiva para cada λ ∈ (−∞, λ∗], y posee

como mı́nimo dos soluciones positivas para cada λ ∈ (σΩ
1 , λ∗). De aqúı en

adelante σΩ1
1 denota el autovalor principal de −∆ en Ω1 bajo condiciones

de contorno de Dirichlet homogéneas.

El teorema principal del Caṕıtulo II (teorema II.3.7) completa este resultado

probando que (0.1) posee una única solución positiva linealmente estable si,

y sólo si, λ ∈ (σΩ
1 , λ∗). Esta solución nos proporciona un atractor local para

el modelo parabólico asociado. La unicidad del estado estable es bastante

sorprendente ya que (0.1) posee, como mı́nimo, dos soluciones positivas para

cada λ ∈ (σΩ
1 , λ∗) y, además, nuestro estudio numérico sugiere que existen

ejemplos con tantas soluciones como queramos, aún en espacios de una di-

mensión, si elegimos un apropiado coeficiente a(x).

En efecto, el análisis numérico llevado a cabo sugiere que si N = 1, Ω−
tiene n componentes y a(x) tiene un único mı́nimo local en cada una de

estas componentes, entonces (0.1) posee 2n − 1 soluciones positivas para

cada λ < 0 acotado lejos de cero; n de estas soluciones tendrán un pico

localizado en cada uno de los mı́nimos de a(x), n(n−1)
2 soluciones exhibirán

dos picos, y en general,
(
n
j

)
, 1 ≤ j ≤ n, soluciones exhibirán j picos.

Desde el punto de vista biológico, si λ ≤ σΩ
1 entonces u = 0 es la única

solución no negativa estable de (0.1), pero como (0.1) posee una solución

positiva necesariamente inestable, la especie puede evitar la extinción si

la población inicial cae en la variedad estable de alguno de estos estados

de equilibrio positivos. En este caso, para evitar la extinción, la especie

debeŕıa concentrarse en las regiones donde la cooperación intraespećıfica

tiene lugar, es decir en Ω−, y, más especificamente, tal concentración debeŕıa

de ser mayor alrededor de los valores donde la simbiosis es más alta, es decir

alrededor de cada uno de los mı́nimos negativos de a(x).
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Nuestros cálculos numéricos sugieren también que la estructura del conjunto

de soluciones positivas de (0.1) se basa en gran medida en las propiedades de

simetŕıa del coeficiente a(x). De hecho mostramos que romper la simetŕıa de

a(x) se traduce en una pérdida de simetŕıa del diagrama de bifurcación de las

soluciones positivas del modelo. El diagrama global pasa de exhibir un tene-

dor global a exhibir un par de componentes globales. Una de ellas es la rama

que emana del estado trivial, y la otra es una componente global acotada

lejos del estado cero. También hemos analizado como cambian las soluciones

en esta última componente global cuando a(x) cambia, y mostramos como

en muchos ejemplos estas soluciones se aproximan a algunas metasoluciones

del problema para algunos valores cŕıticos del parámetro. Por lo tanto, las

metasoluciones no son una caracteŕıstica espećıfica del modelo sublineal, sino

que también surgen en problemas superlineales indefinidos. En el Caṕıtulo

II se completan los detalles.

El hecho de que el número de soluciones positivas de un problema subcŕıtico

superlineal puede sufrir cambios drásticos cuando vaŕıa la forma de Ω está

bien documentado en la literarura (ver [HV84], [Da88], [Da90], [Ce95]). De

hecho, romper la convexidad de Ω puede producir un número arbitraria-

mente grande de soluciones. Nuestro análisis muestra que el mismo efecto

surge cuando se vaŕıa el coeficiente del problema en lugar de la forma del

dominio, aún en los modelos más simples de una dimensión. Este es el

porqué de la importancia de la unicidad del estado estable. La unicidad

no depende ni de la geometŕıa del dominio ni del comportamiento nodal de

a(x); la unicidad de la solución positiva estable es una propiedad universal

de (0.1).

En el Caṕıtulo III abordamos el problema de la existencia de cotas a priori

para las soluciones positivas radialmente simétricas de (0.1) cuando N ≥ 3,

Ω es una bola de R
N y Ω+ = ∅. En este caso la bifurcación desde la solución

trivial es subcŕıtica. De hecho (0.1) no admite una solución positiva cuando

u = 0 es inestable (λ > σΩ
1 ). En [AL98] se probó la existencia de cotas a
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priori uniformes para las soluciones positivas radialmente simétricas de (0.1)

bajo la única suposición de que p + 1 < N+2
N−2 , si N ≥ 3, y supuesto que Ω−

es una bola. En este caṕıtulo analizamos numericamente si el exponente

cŕıtico es o no optimal en todas las situaciones. Nuestros cálculos numéricos

sugieren que, en el caso en que el coeficiente a(x) se anule en alguna región

de Ω, el exponente cŕıtico para la existencia de cotas a priori depende de la

estructura nodal de la función peso a(x) más que del crecimiento a infinito

de la no linealidad, es decir del tamaño de p. De hecho, si a(x) se anula

en alguna bola y vale una constante negativa en el resto, los resultados

numéricos que hemos obtenido indican que el modelo posee una solución

positiva radialmente simétrica para λ < 0 acotado lejos de cero, aún cuando

p + 1 sea igual al exponente cŕıtico, sugiriendo fuertemente que en este caso

las soluciones positivas radialmente simétricas del modelo debeŕıan tener

cotas a priori; mientras que si a(x) permanece negativo en alguna bola y

se anula en el resto, entonces se pierden las cotas a priori de las soluciones

positivas radialmente simétricas, y éstas crecen a infinito en algún λ∗ > 0.

Debemos apuntar que el análisis inclúıdo en este Caṕıtulo está actualmente

en progreso; en este Caṕıtulo III hemos querido mostrar la dirección en que

se encamina nuestra investigación futura.

Por último queremos hacer notar el hecho de que en esta memoria hemos

utilizado herramientas teóricas y numéricas. El análisis teórico ayuda al

estudio numérico, y el numérico confirma, completa e ilustra el análisis. El

numérico, además, nos ha proporcionado algunos resultados para los cuales

no hay conclusiones teóricas en la actualidad y que, por tanto, son problemas

que quedan abiertos.



Introduction

In this memoir we analyze the structure of the set of positive solutions of

−∆u = λu − a(x)|u|pu in Ω , u|∂Ω = 0 , (0.1)

where Ω is a bounded domain of R
N , N ≥ 1, whose boundary ∂Ω is of class

C2, λ ∈ R will be regarded as a continuation parameter and p ∈ R , p > 0.

We suppose that a �= 0 is a bounded measurable function on Ω and put

Ω± := {x ∈ Ω : a±(x) > 0 } ,

where a+ := max{a, 0} is the positive and a− := a+−a is the negative part

of a. In addition we assume that Ω+ and Ω− are open sets of class C2 and

that a± is bounded away from zero on compact subsets of Ω±. Note that

under these assumptions Ω+ and Ω− have only finitely many components.

Problem (0.1) provides us with the steady states of the associated parabolic

model




∂u
∂t − ∆u = λu − a(x)|u|pu , (x, t) ∈ Ω × (0,∞) ,

u(·, t)|∂Ω = 0 , t > 0 ,

u(·, 0) = u0 ≥ 0 , in Ω ,

(0.2)
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which is very well known in population dynamics; the parabolic logistic

equation when a > 0 is bounded away from zero, [Ok80], [Mu93]. Although

in mathematical biology the coefficient a(x) is usually taken to be non-

negative, (0.2) admits a biological meaning as well even in the general case

when a(x) changes of sign. Typically, u(·, t) is the density at time t of a

single species inhabiting Ω, λ is the net growth rate of the species, u0 is the

initial population density, and the coefficient a(x) measures the saturation

effect responses to the population stress in Ω+, while in Ω− it measures the

symbiosis effects due to the intraspecific cooperation among the individuals

of the species. In the region

Ω0 := Ω \ (Ω+ ∪ Ω−) ,

these individuals are free from other effects than diffusion and hence the

components of Ω0 (at most finitely many) can be though as refuges for the

species.

Semilinear elliptic boundary value problems of the same type as (0.1) have

attracted a great deal of interest during the last few decades, although most

of the published papers dealt, however, either with the pure sublinear model

(Ω+ = Ω) or with the pure superlinear one (Ω− = Ω), being our attempt in

this memoir to analyze not only these special cases but also the general case

when (0.1) is of superlinear indefinite type. The memoir is divided in three

chapters. In Chapter I we analyze the pure sublinear problem, in Chapter

II we treat the superlinear indefinite problem and finally in Chapter III we

shall be concerned with the pure superlinear problem where in addition the

damping coefficient in front of the nonlinearity is allowed to vanish. In the

sequel we shall shortly summaryze the containts and results in each of the

three chapters.

In Chapter I we analyze the general sublinear problem, Ω− = ∅. Quite

surprisingly the general situation when the species u is free from crowd-

ing effects on some subdomain of Ω (Ω+ is a proper subdomain of Ω and
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hence Ω0 �= ∅) has not been tackled until very recently (cf. [BO86], [Ou92],

[FKLM96], [GGLS98], and the references there in).

In [BO86] it was established the existence and the uniqueness of the positive

solution of (0.1) by means of variational methods. In [Ou92] the Neumann

problem was dealt with and the same results as in [BO86] were found; this

time using continuation methods. All these results were further extended in

[FKLM96] to not necessarily self-adjoint problems with smooth coefficients

under rather general boundary conditions by means of comparison techni-

ques. In [GGLS98] it was shown that in the case when Ω0 is connected and

N ≥ 2 the positive solutions of (0.1) grow to infinity in the region where the

coefficient a(x) vanishes, Ω0, while on its support, Ω+, the positive solutions

stabilize to the minimal positive solution of the original equation subject to

infinity Dirichlet conditions on the boundary of Ω+.

For the analysis carried out in Chapter I we do not need impossing that

Ω0 is connected and beside the existence, the point-wise behavior and the

numerical computation of the classical positive solutions of (0.1), we study a

family of non-classical solutions of (0.1) which do not belong to ∪∞
p=1L

p
loc(Ω).

Our non-classical solutions, called metasolutions here in, are allowed to be

infinity on some regions of the support domain. The metasolutions can be

thought as a sort of prolongation by infinity to the whole domain of a large

classical solution (cf. [MV97] and the references there in), but contrarily

to what happens with these extended large solutions, the metasolutions can

vanish on some of the components of the boundary of the domain while can

grow to infinity on the remaining ones.

Although the analysis of large classical solutions has attracted the attention

of many researchers during the last few years ([BM91], [Ve92], [MV97] and

the references there in), it seems to be that this is the first work where

the concept of metasolution has been introduced and the problem of their

existence and numerical computation has been addressed.

From the biological point of view, the relevance of the metasolutions comes
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from the fact that they provide us with all the possible limiting profiles of

the population as time grows to infinity accordingly to the size of the birth

rate λ.

As far to the numerics concerns we should point out that we have found

serious difficulties to compute the metasolutions for some ranges of the pa-

rameters involved in the setting of the problem, those difficulties mainly

coming from the fact that one has to deal with very high numbers in the

computations. We refer to Chapter I for further details.

Chapter II is devoted to the analysis of the superlinear indefinite problem,

i.e. the general problem when Ω− �= ∅ and Ω+ �= ∅. We mainly focus

our attention into the problem of analyzing how changes the dynamics of

the solutions of problem (0.1) as the nodal behavior of the coefficient a(x)

varies. Also, we analyze the spike layer behavior of all the positive solutions

of some one-dimensional versions of (0.1) as λ ↓ −∞.

Classical papers dealing with the pure superlinear problem, Ω− = Ω, are

[AR73], [TU74], [BT77], [GS281], [FLN82], [Ou91], and the references there

in. For the pure superlinear problem, variational methods have proven to be

very useful to show the existence of some spike layer solutions of (0.1), but

unfortunately no result of this nature is available for the general superlinear

indefinite problem. The main difficulty coming from the fact that the stan-

dard variational methods do not apply to treat the case when a(x) changes

of sign, as already pointed out in [BCN95].

Relatively few features has been established for the general superlinear indef-

inite problem (cf. [BCN95], [AT96], [Lo97], [AL98] and the references there

in), and most of them were found very recently. Among all the results avail-

able, in [AL98] it was shown, by means of global bifurcation and fixed point

index theory, that if Ω+ and Ω− are not empty, the bifurcation to positive

solutions from the trivial solution at λ = σΩ
1 is supercritical and in addition

the positive solutions of (0.1) possess uniform L∞ a priori bounds for λ

varying in compact subintervals of R, then there exists σΩ
1 < λ∗ < σ

Ω\Ω+
1
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such that (0.1) possesses a positive solution for each λ ∈ (−∞, λ∗], and it

possesses at least two positive solutions for each λ ∈ (σΩ
1 , λ∗). Hereafter

σΩ1
1 stands for the principal eigenvalue of −∆ in Ω1 under homogeneous

Dirichlet boundary conditions.

Our main analytical result in Chapter II completes that picture by showing

that (0.1) possesses a linearly stable positive solution if, and only if,

λ ∈ (σΩ
1 , λ∗), and that in this case the stable solution is unique and it

provides us with a local attractor for the associated parabolic model. The

uniqueness of the stable state is quite striking, since (0.1) possesses at least

two positive solutions for each λ ∈ (σΩ
1 , λ∗) and it looks like that there are

examples having as many solutions as we wish by chosing an appropiate

a(x), even in one-dimensional spaces.

Our numerical analysis in Chapter II suggest that if N = 1, Ω− has n compo-

nents, and a(x) has an unique local minimum on each of these components,

then (0.1) possesses 2n − 1 positive solutions for each λ < 0 bounded away

from zero; n solutions among them will have one single peak located on

each of the minima of a(x), n(n−1)
2 solutions will exhibit two peaks, and in

general
(
n
j

)
, 1 ≤ j ≤ n, solutions will exhibit j peaks.

From the biological point of view, if λ ≤ σΩ
1 then u = 0 is the unique stable

non-negative solution of (0.1), but since (0.1) possesses a positive solution

neccesarily unstable, the species can avoid extintion if the initial population

lies on the stable manifold of some of these positive steady states. In this

case, in order to avoid extintion the species should concentrate within the

regions where intraspecific cooperation takes place, i.e. in Ω−, and more

specifically such concentration should be more emphasized around the values

where the symbiosis rate is higher, i.e. around each of the negative minima

of a(x).

Our numerical computations in Chapter II also suggest that the structure

of the set of positive solutions of (0.1) is strongly based upon the symmetry

properties of the damping coefficient a(x). In fact we have shown that
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breaking down the symmetry of a(x) results into a lost of the symmetry

of the bifurcation diagram of positive solutions of the model. The global

diagram passes from exhibiting a global pitchfork to exhibiting a couple of

global components. One of them, the branch emanating from the trivial

state, and the other a global folding bounded away from the zero state. We

have also analyzed how change the solutions on the global folding as a(x)

changes and we have shown how in many instances these solutions approach

to some metasolutions of the problem at some critical value of the parameter.

So metasolutions are not an specific feature of the sublinear model but also

arise in superlinear indefinite problems. The reader should go to Chapter II

for further details and a more complete discussion.

The fact that the number of positive solutions of a superlinear subcriti-

cal problem can suffer drastical changes as the shape of Ω varies is well

documented in the literature (cf. [HV84], [Da88], [Da90], [Ce95], and the

references there in). In fact, breaking down the convexity of Ω can result

into an arbitrarily large number of solutions. Our analysis shows that the

same effect arises by varying the coefficients of the model, instead of the

shape of the domain, even in the simplest one-dimensional models. This

is why the uniqueness of the stable state is so relevant, since it does not

depend neither on the geometry of the domain nor on the nodal behavior of

a(x); the uniqueness of the stable positive solution is an universal property

of (0.1).

In Chapter III we address the problem of the existence of a priori bounds

for the radially symmetric positive solutions of (0.1) when N ≥ 3, Ω is a

ball of R
N , and Ω+ = ∅. Now, the bifurcation from the trivial solution is

subcritical. In fact, (0.1) does not admit a positive solution when u = 0 is

unstable (λ > σΩ
1 ). In [AL98] it was shown the existence of uniform a priori

bounds for the positive radially symmetric solutions of (0.1) under the sole

assumption that p + 1 < N+2
N−2 , if N ≥ 3, provided that Ω− is a ball, and

in Chapter III we have analyzed numerically if the critical exponent is or
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not optimal in all situations. Our numerical computations suggest that in

the case when the coefficient a(x) vanishes in some region of Ω, the critical

exponent for the existence of a priori bounds is strongly dependent on the

nodal structure of the weight function a(x) rather than on the growth at

infinity of the nonlinearity, i.e. the size of p. In fact, if a(x) vanishes on

some ball while it is kept as a negative constant on its complement then it

seems that the model possesses a radially symmetric positive solution for

λ < 0 bounded away from zero, even when p+ 1 equals critical exponent, so

strongly suggesting that in this case the radially symmetric positive solutions

of the model should have a priori bounds; while if a(x) remains negative on

any ball, then the a priori bounds of the positive radially symmetric solutions

are lost and the solutions grow to infinity at some λ∗ > 0. We should point

out that the research included in Chapter III is in progress at present and

it will completed in the near future. In some sense, in Chapter III we want

to show some of the future directions of our research.

Finally, we would like to emphasize that in this memoir we have used both

theoretical and numerical tools. The analysis aids the numerical study, and

the numerics confirm, complete and illustrate the analysis. The numerics

in addition provide us with some further results for which at first glance

analytical tools are not available at present.
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Chapter I

The Sublinear Problem

I.1. Introduction

In this Chapter we analyze the existence and point-wise behavior of the

positive solutions of

−∆u = λu− a(x)|u|pu in Ω , u|∂Ω = 0 , (1.1)

where Ω is a bounded domain of R
N , N ≥ 1, of class C2, λ ∈ R, p > 0, and

a �= 0 is a bounded measurable non-negative function in Ω satisfying the
following assumptions:

(H1) The set

Ω+ := {x ∈ Ω : a(x) > 0 }

is open and it possesses a finite number of components

Ω+,j , 1 ≤ j ≤ h ,

such that Ω+,i ∩ Ω+,j = ∅ if i �= j. Moreover, each of these compo-

nents is of class C3.
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(H2) a(x) is bounded away from zero on any compact subset of Ω+, and

if Γ+ and Γ are components of ∂Ω+ and ∂Ω, respectively, such that

Γ+ ∩ Γ �= ∅, then Γ+ = Γ and a(x) is bounded away from zero on

Γ+.

(H3) If Γ+ is a component of ∂Ω+ such that Γ+ ∩ ∂Ω = ∅, then

a(x) = o(dist (x,Γ+)) as dist (x,Γ+) ↓ 0 . (1.2)

(H4) The open set

Ω0 := Ω \ Ω+

possesses a finite number of components,

Ωi0,j , 1 ≤ i ≤ m , 1 ≤ j ≤ ni ,

such that Ω
i
0,j ∩ Ω

î
0,ĵ = ∅ if (i, j) �= (̂i, ĵ), and

σ
Ωi

0,j

1 = σ
Ωi

0,j+1
1 , 1 ≤ i ≤ m, 1 ≤ j ≤ ni − 1 , (1.3a)

σ
Ωi

0,1
1 < σ

Ωi+1
0,1

1 , 1 ≤ i ≤ m− 1 . (1.3b)

Hereafter, given a regular subdomain D of Ω and V ∈ L∞(D),

we denote by σD1 [−∆ + V ] the principal eigenvalue of −∆ + V in

D subject to homogeneous Dirichlet boundary conditions, and set

σD1 := σ
D
1 [−∆].

Nevertheless, in Section 4 it will be shown how condition (H3) is not ne-

cessary if either N = 1, or if N ≥ 2 and in addition (1.1) possesses radial
symmetry.

Problem (1.1) provides us with the steady states of a well known model in

population dynamics, the parabolic logistic equation, [Mu93], [Ok80]. Typi-

cally, u(·) is the density of a single species inhabiting Ω, λ is the net growth
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rate of the species, and the coefficient a(x) measures the saturation effect

responses to the population stress in Ω+. In the region Ω0 the individuals

of the population are free from other effects than diffusion and this is why

the components of Ω0 will be referred to as refuges. Given two arbitrary

refuges R1 and R2, it will be said that R1 is larger than R2 if σR1
1 < σR2

1 ,

independently of the relation between their Lebesgue measures.

In this work, beside the existence, the point-wise behavior and the numerical

computation of the positive classical solutions of (1.1), we study a family of

non-classical solutions of (1.1) that do not belong to ∪∞
p=1L

p
loc(Ω). These

solutions will be referred to as metasolutions. Setting

Ωk := Ω \
k⋃
i=1

ni⋃
j=1

Ω
i
0,j , 1 ≤ k ≤ m, (1.4)

a function u : Ω→ [0,∞] is said to be a metasolution of order k of (1.1)

supported in Ωk if the following conditions are satisfied:

(M1) u|Ωk
is a large classical solution of




−∆u = λu− a(x)up+1 in Ωk ,

u|∂Ω∩∂Ωk
= 0 , u|∂Ωk\∂Ω =∞ .

(1.5)

(M2) u =∞ in (Ω \ Ωk) ∪ (∂Ωk \ ∂Ω).
Although the analysis of large solutions has attracted the attention of many

researchers during the past few years (cf. [BM91], [Ve92], [MV97] and the

references there in), this seems to be the first work where metasolutions

have been introduced and the problem of their existence and numerical

computation has been addressed. It should be pointed out that if u is a

metasolution of order k supported in Ωk and in addition ∂Ω ∩ ∂Ωk = ∅,
then u|Ωk

provides us with a large solution of (1.1) in Ωk, in the sense

of [MV97]. However, from the definition itself it is rather clear that not
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all metasolutions provide us with large solutions, since a metasolution can

vanish on some of the components of the boundary while grows to infinity

on the remaining. Nevertheless, it should be pointed out that in the setting

of [MV97] and the references there in talking about metasolutions does not

make sense, since this concept actually relies on the existence of some refuge

and the models dealt with there in do not possess any.

As far as to the existence of classical solutions concerns, it is already known

that (1.1) possesses a strong solution if, and only if,

σΩ
1 < λ < σ

Ω1
0,1

1 . (1.6)

Moreover, it is unique, if it exists (cf. [BO86], [Ou92], [FKLM96], [GGLS98],

[AL98] and the references there in). Throughout this chapter it will be

denoted by θΩ[λ,a]. In this chapter, setting

λ1 := σ
Ω1

0,1
1 .

we show that the mapping λ→ θΩ[λ,a] is increasing and that

lim
λ↑λ1

θΩ[λ,a](x) =∞ for all x ∈
n1⋃
j=1

Ω
1
0,j , (1.7)

while

lim
λ↑σ

Ω1
0,1

1

θΩ[λ,a](x) := Ξ
Ω1
[λ1,a]

(x) ∈ R for all x ∈ Ω1 := Ω\
n1⋃
j=1

Ω
1
0,j . (1.8)

In fact, ΞΩ1
[λ1,a]

provides us with the minimal positive classical solution of




−∆u = λ1u− a(x)up+1 in Ω1 ,

u|∂Ω∩∂Ω1 = 0 , u|∂Ω1\∂Ω =∞ .

(1.9)
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This result was found in [GGLS98] for the case when Ω0 is connected but it

is new under our general framework. Using the concept of metasolution the

previous result shows that the [0,∞]-valued functionMΩ
[λ1,a]

defined by

MΩ
[λ1,a]

:=



ΞΩ1

[λ1,a]
in Ω1 ∪ (∂Ω1 ∩ ∂Ω) ,

∞ in (Ω \ Ω1) ∪ (∂Ω1 \ ∂Ω) ,
(1.10)

is a metasolution of order one of (1.1) supported in Ω1 for λ = λ1. More

generally, in this chapter the following result is obtained.

Theorem 1.1. Assume 1 ≤ k ≤ m and

σ
Ωk

0,1
1 ≤ λ < σ

Ωk+1
0,1

1 , (1.11)

where we take σ
Ωm+1

0,1
1 := ∞. Then, (1.1) possesses a metasolution of order

k supported in Ωk. Moreover, if 1 ≤ k ≤ m − 1 and (λn, un), n ≥ 1, is a
sequence of metasolutions of order k supported in Ωk with

σ
Ωk

0,1
1 ≤ λn < σ

Ωk+1
0,1

1 , lim
n→∞λn = σ

Ωk+1
0,1

1 ,

then there exists a subsequence (λn�
, un�

), � ≥ 1, such that the point-wise

limit

lim
�→∞

un�

provides us with a metasolution of order k + 1 supported in Ωk+1.

From the biological point of view, Theorem 1.1 is a crucial result, since

the metasolutions provide us with all the possible limiting profiles of the

population as time grows to infinity according to the size of the birth rate

λ. Adopting this point of view, the analytical results of this chapter read as

follows.

• If λ ≤ σΩ
1 , then Ω is unable to support the species u and the population

is driven to extinction.
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• If σΩ
1 < λ < σ

Ω1
0,1

1 , then the population stabilizes to the fixed profile

θΩ[λ,a] as time grows to infinity.

• If k ∈ {1, ...,m − 1} and σΩk
0,1

1 ≤ λ < σ
Ωk+1

0,1
1 , then the population

stabilizes to a metasolution of order k supported in Ωk. In particular, it

grows to infinity in all the refuges Ωi0,j , 1 ≤ i ≤ k, 1 ≤ j ≤ ni, while it

stabilizes to a bounded profile in Ωk.

• If λ ≥ σ
Ωm

0,1
1 , then the population stabilizes to a metasolution of order

m supported in Ωm. In particular, it grows to infinity in any refuge, while

it stabilizes to a bounded profile in Ωm.

As far as to the numerical computation of the positive classical solutions

concerns, path following coupled with pseudo-spectral methods have shown

to be very efficient and robust to compute global compact arcs of solutions

in many reaction diffusion equations and systems of interest in applications

(cf. [Ei86], [CHQZ88], [LDEM92], [GGLS98], and the references there in).

Nevertheless, however looking so simple as (1.1) does, computing its classical

positive solutions for λ < λ1, λ � λ1, is far from being an easy task. The

main difficulty coming from the fact that the curve of positive solutions

bifurcates from infinity at λ = λ1 with respect to any Lp-norm, 1 ≤ p ≤ ∞,
and therefore, in order to approximate that curve, a huge number of modes

should be considered in the discretizations of (1.1), which makes increasing

the computational cost. In fact, not only the positive solution θΩ[Ω,a] but also

its gradient diverges to infinity on ∪n1
j=1∂Ω

1
0,j as λ ↑ λ1 and therefore, the

number of modes should indeed grow to infinity (cf. [CHQZ88]). All the

practical difficulties that we have found to compute the classical solutions are

extremely magnified when we compute the metasolutions, since in this case

we should deal with the additional difficulty coming from the fact that the

large associated solutions take the value infinity on some of the components

of the boundary. In Sections 5, 6 we attack all these computational problems
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for a simple radially symmetric prototype of (1.1).

This chapter is distributed as follows. In Section 2 we characterize the

point-wise growth of the classical positive solutions of (1.1) as λ ↑ λ1. The

corresponding results are substantial extensions of those previously found in

[FKLM96] and [GGLS98]. Then, we obtain the existence of positive solu-

tions for a general class of non-homogeneous Dirichlet boundary conditions.

These results will be used in Section 3 to prove the existence of metasolu-

tions of any order. In Section 3 we introduce the concept of metasolution

and prove Theorem 1.1 above. In Section 4 we show that in order to get

the previous results condition (H3) is not necessary if either N = 1, or

N ≥ 2 and in addition (1.1) possesses radial symmetry. This result comple-
ments to those found in [LS98]. In Section 5 we use path-following coupled

with pseudo-spectral methods to compute the classical solutions of a ra-

dially symmetric problem. Finally, in Section 6 we attack the problem of

computing the metasolutions of the model analyzed in Section 5.

I.2. Classical solutions

In this section we characterize the existence and analyze the point-wise

growth of the classical positive solutions of

−∆u = λu− a(x)|u|pu in D , u|∂D = 0 , (2.1)

where D is a bounded domain of R
N , N ≥ 1, of class C2, λ ∈ R, p > 0,

and a �= 0 is a bounded measurable non-negative function in D satisfying

(H1-4). Throughout this section it will be convenient using the notations

D+ = Ω+, D+,j = Ω+,j , D0 = Ω0, and Di0,j = Ω
i
0,j .
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Definition 2.1. A function u : D → [0,∞) is said to be a classical positive
solution of (2.1) if u ∈ L∞(D) ∩W 1,p0(D) for some p0 > 1 and (2.1) is

satisfied in the weak sense.

Lemma 2.2. If u is a classical positive solution of (2.1), then u ∈W 2,p(D)∩
W 1,p

0 (D) for all p > 1 and hence, u ∈ C1,ν(D) for all 0 < ν < 1. Moreover,

u is a.e. in D twice classically differentiable. In other words, u is a strong

solution of (2.1).

Proof

The Lp-estimates of Agmon, Douglis and Nirenberg (cf. [GT83, Chapter IX]

show that u ∈W 2,p(D)∩W 1,p
0 (D) if p > 1. The remaining assertions follow

from the embedding W 2,p(D) ↪→ C2−N
p (D), p > N , and [St70, Theorem

VIII.1]. �

Remark 2.3. If u is a classical positive solution of (2.1), then the maximum

principle implies u(x) > 0 for all x ∈ D and ∂u
∂n(x) < 0 for all x ∈ ∂D, where

n is the outward unit normal to D at x, i.e. u lies in the interior of the cone

P of positive functions of C1
0(D).

In the sequel, given a function w ∈ L∞(D) we say that w > 0 if w ≥ 0 and
w �= 0. If w ∈ C1

0 (D), it will be said that w � 0 if w ∈ int P .
Theorem 2.4. Assume a(x) satisfies (H1− 4). Then, the following asser-
tions are true:

(i) The problem (2.1) possesses a classical positive solution if, and only

if,

σD1 < λ < σ
D1

0,1
1 . (2.2)

Moreover, it is unique if it exists.

(ii) Suppose (2.2) and let θD[λ,a] denote the unique classical positive solu-

tion of (2.1). Then,

lim
λ↓σD

1

‖θD[λ,a]‖L∞(D) = 0 , (2.3)
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and

lim
λ↑σ

D1
0,1

1

θD[λ,a] =∞ uniformly in

n1⋃
j=1

D
1
0,j \ ∂D . (2.4)

(iii) The mapping λ → θD[λ,a] is point-wise increasing and if we regard to

it as a mapping from (σD1 , σ
D1

0,1
1 ) into C1,ν(D), 0 < ν < 1, then it is

differentiable and
∂θD

[λ,a]
∂λ ∈W 2,p(D) ∩W 1,p

0 (D) for all p > 1.

(iv) The principal eigenvalue of the linearization at θD[λ,a] converges to

zero as λ ↑ σD
1
0,1

1 . In other words,

lim
λ↑σ

D1
0,1

1

σD1 [−∆+ (p+ 1)a(x)[θD[λ,a]]p − λ] = 0 .

Some preliminary versions of this result were given in [BO86] by means of

variational methods, and in [Ou92] by means of global continuation argu-

ments. In the special case when D0 is connected, (ii) and (iii) were found in

[GGLS98] and [FKLM96], this time using the method of sub and supersolu-

tions. Our proof uses some ideas and techniques introduced in [FKLM96],

[GGLS98] and [LS98].

Proof of Theorem 2.4

(i) Let u0 be a classical positive solution of (2.1). Then, u0|∂D = 0 and

(−∆+ a(x)up0)u0 = λu0 .

Hence, u0 is a positive eigenfunction associated with the eigenvalue λ of

the operator −∆+ aup0 under homogeneous Dirichlet boundary conditions.
Thus, by the uniqueness of the principal eigenvalue,

λ = σD1 [−∆+ a(x)up0] . (2.5)
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and hence, by the monotonicity of the principal eigenvalue with respect to

the potential,

λ > σD1 ,

since a > 0 and u0 � 0. Moreover, since a = 0 in D1
0,1, we find from (2.5)

and the monotonicity of the principal eigenvalue with respect to the domain

that

λ = σD1 [−∆+ a(x)up0] < σ
D1

0,1
1 .

Thus, (2.2) is necessary for the existence of a classical positive solution

of (2.1). To show the sufficiency of (2.2) we use the method of sub and

supersolutions. Assume (2.2) and let ϕ denote the principal eigenfunction

associated with σD1 . Then, it is easily seen that for ε > 0 small enough εϕ

is a positive subsolution of (2.1). To complete the proof of the existence it

remains to construct a supersolution u ≥ εϕ. For δ > 0 sufficiently small,

consider the δ-neighborhood of D0 in D

Dδ0 := {x ∈ D : dist (x,D0) < δ } .

Then,

Dδ0 =
m⋃
i=1

ni⋃
j=1

Di,δ0,j , (2.6)

where

Di,δ0,j := {x ∈ D : dist (x,Di0,j) < δ } .

Thanks to (H4), D
i
0,j ∩D

î
0,ĵ = ∅ if (i, j) �= (̂i, ĵ), and hence, δ > 0 can be

chosen sufficiently small so that

D
i,δ
0,j ∩D

î,δ

0,ĵ = ∅ if (i, j) �= (̂i, ĵ) . (2.7)

For each 1 ≤ i ≤ m and 1 ≤ j ≤ ni the component Di0,j is a proper

subdomain of D, since D+ �= ∅. Thus, ∂Di0,j ∩ D �= ∅ and hence, Di0,j is



I.2. Classical solutions 19

a proper subdomain of Di,δ/20,j and Di,δ/20,j is a proper subdomain of Di,δ0,j .

Therefore, by the monotonicity of the principal eigenvalue with respect to

the domain,

σ
Di,δ

0,j

1 < σ
D

i,δ/2
0,j

1 < σ
Di

0,j

1 , 1 ≤ i ≤ m, 1 ≤ j ≤ ni . (2.8)

Thanks to (H1-2), if Γ0 and Γ are components of ∂D0 and ∂D, respectively,

such that Γ0 ∩ Γ �= ∅, then Γ0 = Γ. Thus, it follows from (2.6) and (2.7)

that

∂Dδ0 \ ∂D ⊂ D+

and that each Di,δ0,j can be obtained from Di0,j through by an holomorphic

transformation, (cf. [LS98, Theorem 3.2]). Hence,

lim
δ↓0

σ
Di,δ

0,j

1 = σ
Di

0,j

1 1 ≤ i ≤ m, 1 ≤ j ≤ ni . (2.9)

Therefore, by (1.3), (2.2), (2.8) and (2.9), for each δ > 0 sufficiently small

we have

λ < σ
D1,δ

0,j

1 < σ
Di,δ

0,ĵ

1 , 1 ≤ j ≤ n1 , 2 ≤ i ≤ m, 1 ≤ ĵ ≤ ni . (2.10)

Now, for each 1 ≤ i ≤ m and 1 ≤ j ≤ ni, we denote by ϕ
i,δ
0,j � 0 the

principal eigenfunction associated with σ
Di,δ

0,j

1 , and consider the function

Φ(x) :=



ϕi,δ0,j(x) if x ∈ Di,δ/20,j for some 1 ≤ i ≤ m, 1 ≤ j ≤ ni ,

ψ(x) if x ∈ D \Dδ/20 ,

(2.11)

where ψ(x) is any regular extension of

m⋃
i=1

ni⋃
j=1

ϕi,δ0,j
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outside Dδ/20 which is positive and bounded away from zero in D \ Dδ/20 .

We claim that if κ > 1 is sufficiently large, then the function

u := κΦ

provides us with a supersolution of (2.1) satisfying u ≥ εϕ. Indeed, in the

set

D \Dδ/20 ⊂ D+

the function ψ is positive and bounded away from zero and, thanks to (H2),

a(x) is positive and bounded away from zero as well. Thus, if κ is sufficiently

large

−∆ψ ≥ λψ − a(x)κpψp+1 in D \Dδ/20 .

Moreover, thanks to (2.10), in each of the components of Dδ/20 , e.g. Di,δ/20,j ,

we have

−∆(κΦ) = κσD
i,δ
0,j

1 ϕi,δ0,j > λκϕ
i,δ
0,j − a(x)(κϕi,δ0,j)

p+1 ,

and therefore, kΦ provides us with a positive supersolution of (2.1). By

construction, on any component Γ of ∂D we have Φ = 0 and ∂Φ
∂n (x) < 0 for

all x ∈ Γ, where n is the outward unit normal, if Γ �∈ ∂D+, while Φ(x) > 0

for all x ∈ Γ if Γ ∈ ∂D+ ∩ ∂D. Therefore, κ can be chosen sufficiently large
so that κΦ > εϕ. This completes the proof of the existence of a classical

positive solution.

To show the uniqueness assume (2.2) and let u0, u1 be two positive solutions

of (2.1). Then,

(−∆+ a(x)u
p+1
0 − up+1

1

u0 − u1
− λ)(u0 − u1) = 0 . (2.12)

Moreover, since u0 �= u1 we have

up+1
0 − up+1

1

u0 − u1
> up0
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and hence, we find from (2.5) that

σD1 [−∆+ a(x)
up+1

0 − up+1
1

u0 − u1
− λ] > σD1 [−∆+ a(x)up0 − λ] = 0 .

Therefore, the strong maximum principle applied to (2.12) implies u0 = u1,

which is a contradiction. This completes the proof of Part (i).

Relation (2.3) in Part (ii) follows from the fact that λ = σD1 is a bifurcation

value to positive solutions of (2.1) from u = 0, [CR71], and the proof of Part

(iii) can be easily accomplished by using the strong maximum principle and

the implicit function theorem, as in [FKLM96] and [GGLS98]. So, we omit

the details.

We now show (2.4). Differentiating (2.1) with respect to λ gives

(−∆+ (p+ 1)a(x)[θD[λ,a]]p − λ)
dθD[λ,a]

dλ
= θD[λ,a] in D ,

and
dθD

[λ,a]
dλ = 0 on ∂D. Moreover, a = 0 in the open set

D1
0 :=

n1⋃
j=1

D1
0,j

and hence,

(−∆− λ)
dθD[λ,a]

dλ
= θD[λ,a] in D1

0 .

Now, pick

λ̂ ∈ (σD1 , σ
D1

0,1
1 )

and consider c > 0 such that for each 1 ≤ j ≤ n1,

θD
[λ̂,a]

> cϕ1
0,j in D1

0,j .
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Recall that ϕ1
0,j is the principal eigenfunction associated with σ

D1
0,j

1 . Then,

thanks to Part (iii), for each λ ∈ (λ̂, σD
1
0,1

1 ) we have

θD[λ,a] > θ
D
[λ̂,a]

> cϕ1
0,j in D1

0,j , 1 ≤ j ≤ n1 .

Moreover, for each λ ∈ (λ̂, σD
1
0,1

1 ) and 1 ≤ j ≤ n1 the operator −∆ − λ

satisfies the strong maximum principle in D1
0,j and hence,

dθD[λ,a]

dλ
> c (−∆− λ)−1ϕ1

0,j =
c

σ
D1

0,1
1 − λ

ϕ1
0,j in D1

0,j ,

since by assumption (H4) we have σ
D1

0,j

1 = σ
D1

0,1
1 for each 1 ≤ j ≤ n1.

Moreover, for each 1 ≤ j ≤ n1, the function ϕ1
0,j is bounded away from zero

on any compact subset of D1
0,j and hence,

lim
λ↑σ

D1
0,1

1

dθD[λ,a]

dλ
=∞ uniformly in compact subsets of D1

0 .

Therefore,

lim
λ↑σ

D1
0,1

1

θD[λ,a] =∞ uniformly in compact subsets of D1
0 .

To show that

lim
λ↑σ

D1
0,1

1

θD[λ,a](x) =∞ for all x ∈ ∂D1
0 \ ∂D , (2.13)

we consider δ > 0 sufficiently small, pick up λ satisfying

σ
D1,δ

0,j

1 < σ
D

1,δ/2
0,j

1 < λ < σ
D1

0,j

1 , 1 ≤ j ≤ n1 ,
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and introduce the function uδ ∈ C(D) defined by

uδ(x) =



C ϕ1,δ

0,j(x) if x ∈ D1,δ/2
0,j for some 1 ≤ j ≤ n1 ,

0 if x ∈ D \ ∪n1
j=1D

1,δ/2
0,j ,

(2.14)

where C > 0 is a positive constant. Then, the argument of the proof of

Theorem 4.3 in [LS98] can be easily adapted to show that under condition

(H3) there exists C = C(δ) > 0 such that uδ is a subsolution of (2.1) satis-

fying limδ↓0 uδ(x) =∞ for each x ∈ ∂D1
0 \ ∂D. From the strong maximum

principle it is easily seen that uδ ≤ θD[λ,a] and hence, (2.13) holds. The uni-

form divergence in ∂D1
0 follows from the point-wise monotonicity in λ as an

immediate consequence from Dini’s theorem.

Part (iv) follows readily from the following estimate

0 = σD1 [−∆+a(x)[θD[λ,a]]p−λ] < σD1 [−∆+(p+1)a(x)[θD[λ,a]]p−λ] < σ
D1

0,1
1 −λ .

This completes the proof. �

The following result will be crucial in the next section to show the stabiliza-

tion in D \D1
0 of the positive solutions, as λ ↑ σD

1
0,1

1 .

Theorem 2.5. Assume that a(x) satisfies (H1−4) and that there are q ≥ 1
components Γ+,j , 1 ≤ j ≤ q, of ∂D such that a(x) is positive and bounded

away from zero on each Γ+,j . Given q arbitrary positive constants αj > 0,

1 ≤ j ≤ q, consider the boundary value problem




−∆u = λu− a(x)|u|pu in D ,

u|Γ+,j = αj > 0 , 1 ≤ j ≤ q ,

u|∂D\∪q
j=1Γ+,j

= 0 .

(2.15)

Then, the following assertions are true:

(i) If (2.15) possesses a classical positive solution, then λ < σ
D1

0,1
1 .

Moreover, under condition (2.2) it possesses a unique classical pos-
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itive solution which will be denoted by ΘD[λ,a,Γ+,α], where Γ+ =

(Γ+,1, ...,Γ+,q) and α = (α1, ..., αq).

(ii) The map (σD1 , σ
D1

0,1
1 ) → C(D), λ → ΘD[λ,a,Γ+,α] is point-wise in-

creasing, as well as the map (0,∞)q → C(D), α = (α1, ..., αq) →
ΘD[λ,a,Γ+,α]. Moreover,

lim
λ↑σ

D1
0,1

1

ΘD[λ,a,Γ+,α] =∞ uniformly in

n1⋃
j=1

D
1
0,j \ ∂D . (2.16)

Proof

(i) Assume that (2.15) possesses a positive solution, say u0. Then,

(−∆+ a(x)up0 − λ)u0 = 0 in D ,

and u|∂D > 0. Thus, u0 a is positive strict supersolution of −∆+a(x)up0−λ
in D under homogeneous Dirichlet boundary conditions and hence, it follows

from the characterization of the strong maximum principle found in [LM94]

(cf. [Lo96] and [AL98] as well) that

σD1 [−∆+ a(x)up0 − λ] > 0 . (2.17)

Therefore,

λ < σD1 [−∆+ a(x)up0] < σ
D1

0,1
1 ,

since a = 0 in D1
0,1. To show that under condition (2.2) the problem (2.15)

possesses a unique positive solution we use the method of sub and super-

solutions as in the proof of Theorem 2.4. Assume (2.2). As in the proof

of Theorem 2.4, εϕ > 0 provides us with a positive subsolution if ε > 0 is

sufficiently small. We now show that the function u = κΦ, where Φ is given

by (2.11) and κ is sufficiently large, provides us with a positive supersolu-

tion such that u > εϕ. It suffices to check that if κ is sufficiently large, then
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κψ|Γ+,j > αj for each 1 ≤ j ≤ q. This is true, since Γ+,j ⊂ D \Dδ/20 and

by construction ψ is positive and bounded away from zero in D \Dδ/20 . The

uniqueness of the positive solution follows from (2.17) adapting the corres-

ponding argument of the proof of Theorem 2.4. This completes the proof of

Part (i).

(ii) Let λ1, λ2 ∈ (σD1 , σ
D1

0,1
1 ) such that λ1 < λ2. Then, setting

Θi := ΘD[λi,a,Γ+,α] , i = 1 , 2 ,

we find from their definition that

(−∆+ a(x)Θ
p+1
2 −Θp+1

1

Θ2 −Θ1
− λ1)(Θ2 −Θ1) > 0 in D (2.18)

and that Θ2 −Θ1 = 0 on ∂D. Moreover,

Θp+1
2 −Θp+1

1

Θ2 −Θ1
≥ Θp1

and hence, using (2.17) gives

σD1 [−∆+ a(x)
Θp+1

2 −Θp+1
1

Θ2 −Θ1
− λ1] ≥ σD1 [−∆+ a(x)Θp1 − λ1] > 0 .

Thus, the operator

−∆+ a(x)Θ
p+1
2 −Θp+1

1

Θ2 −Θ1
− λ1

under homogeneous Dirichlet boundary conditions in D satisfies the strong

maximum principle and therefore, it follows from (2.18) that

Θ2 −Θ1 � 0 .

This completes the proof of the monotonicity in λ. This argument can be

easily adapted to get the monotonicity in α.
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Relation (2.16) follows easily from Theorem 2.4 taking into account that

ΘD[λ,a,Γ+,α] � θD[λ,a] .

This completes the proof. �

I.3. Stabilization and metasolutions

Thanks to Theorem 2.4, the problem (1.1) possesses a classical positive

solution if, and only if,

σΩ
1 < λ < λ1 := σ

Ω1
0,1

1 . (3.1)

Moreover, it is unique if it exists, and if we denote it by θΩ[λ,a], then

lim
λ↑λ1

θΩ[λ,a] =∞ uniformly in Ω
1
0 \ ∂Ω , (3.2)

where

Ω1
0 :=

n1⋃
j=1

Ω1
0,j . (3.3)

The following result shows the stabilization of θΩ[λ,a] in Ω \ Ω1
0 as λ ↑ λ1

providing us with a substantial generalization of Theorem 6.1 in [GGLS98],

where the special case when Ω \ Ω+ is connected (n1 = m = 1) was dealt

with.
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Theorem 3.1. Assume that a(x) satisfies (H1 − 4). Then, the following

assertions are true:

(i) Set

Ω1 := Ω \ Ω1
0 . (3.4)

Then, for each x ∈ Ω1 the point-wise limit

ΞΩ1
[λ1,a]

(x) := lim
λ↑λ1

θΩ[λ,a](x) <∞ (3.5)

is well defined.

(ii) For all p > 1 and ν ∈ (0, 1) the function ΞΩ1
[λ1,a]

defined by (3.5)

satisfies

ΞΩ1
[λ1,a]

∈W 2,p
�oc (Ω1) ∩ C1,ν(Ω1)

and it provides us with a weak positive solution of

−∆u = λ1u− a(x)up+1 in Ω1 .

Moreover,

lim
λ↑λ1

‖θΩ[λ,a] − ΞΩ1
[λ1,a]

‖C1,ν(Ω1) = 0 . (3.6)

(iii) The following relations hold

ΞΩ1
[λ1,a]

|∂Ω∩∂Ω1 = 0 , lim
dist (x,∂Ω1\∂Ω)↓0

ΞΩ1
[λ1,a]

(x) =∞ , (3.7)

and therefore, ΞΩ1
[λ1,a]

defines a weak positive solution of




−∆u = λ1u− a(x)up+1 in Ω1 ,

u|∂Ω∩∂Ω1 = 0 , u|∂Ω1\∂Ω =∞ .

(3.8)

In fact, ΞΩ1
[λ1,a]

provides us with the minimal positive solution of

(3.8).
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Proof

(i) For each δ > 0 sufficiently small we consider the δ-neighborhoods

Ω1,δ
0 :=

n1⋃
j=1

Ω1,δ
0,j , Ω1,δ

0,j := {x ∈ Ω : d(x,Ω1
0,j) < δ } , 1 ≤ j ≤ n1 .

As in the proof of Theorem 2.4 we have that Ω
1,δ
0,j∩Ω

1,δ

0,ĵ = ∅ if j �= ĵ and that
Ω1

0,j is a proper subdomain of Ω
1,δ
0,j for each 1 ≤ j ≤ n1. Moreover, if Γδ is

any component of ∂Ω1,δ
0,j with Γ

δ∩Ω �= ∅, then Γδ ⊂ Ω+. By our assumptions

on a(x), the remaining components of Ω1,δ
0,j must be components of ∂Ω.

The proof of Part (i) will follow from Theorem 2.5 applied in the domain D

defined by

D := Ω \ Ω1,δ
0 ⊂ Ω1 = Ω \ Ω1

0 .

It is straightforward to see that D satisfies all the requirements of Section 2.

By construction, the components of D where a(x) vanishes which provide

us with the lowest principal eigenvalue are Ω2
0,j , 1 ≤ j ≤ n2. Hence,

D1
0,1 = Ω

2
0,1 .

Let Γ+,j , 1 ≤ j ≤ q, denote the components of ∂D in Ω+. Fix

x0 ∈
q⋃
j=1

Γ+,j

and consider a ball B centered at x0 such that B ⊂ Ω+. Pick up λ ∈
(σΩ

1 , λ1). Then,

−∆θΩ[λ,a] = λθΩ[λ,a] − a(θΩ[λ,a])p+1 < λ1θ
Ω
[λ,a] − (inf

B
a)(θΩ[λ,a])

p+1 ,

and therefore, a rather standard comparison together with the strong max-

imum principle imply

θΩ[λ,a] < Ψ
B
[λ1,inf

B
a] in B , (3.9)
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where ΨB[λ1,inf
B
a] is the unique positive solution of




−∆ψ = λ1ψ − (infB a)ψp+1 in B ,

ψ|∂B =∞ ,

(3.10)

whose existence and uniqueness is guaranteed by [MV97, Corollary 2.3].

Note that infB a > 0, since B ⊂ Ω+. This shows that the family of positive

solutions θΩ[λ,a], σ
Ω
1 < λ < λ1, is uniformly bounded above in a neighborhood

of each point x0 ∈ ∪qj=1Γ+,j . Therefore, by a rather standard compactness

argument, there exists α > 0 such that

θΩ[λ,a] ≤ α in
q⋃
j=1

Γ+,j for all λ ∈ (σΩ
1 , λ1) . (3.11)

Now, we set

λ2 := σ
Ω2

0,1
1 > λ1 = σ

Ω1
0,1

1

and for each λ ∈ (σΩ
1 , λ2) consider the boundary value problem




−∆u = λu− aup+1 in D ,

u|∂D∩Ω+ = α , u|∂D∩∂Ω = 0 ,
(3.12)

where α > 0 is any bound satisfying (3.11). Thanks to Theorem 2.5, (3.12)

possesses a unique positive solution, denoted by ΘD[λ,a,∂D\∂Ω,α]. Moreover,

by (3.11) for each λ ∈ (σΩ
1 , λ1) the function θΩ[λ,a] is a positive subsolution

of (3.12) in D. Thus, the maximum principle implies

θΩ[λ,a] ≤ ΘD[λ,a,∂D\∂Ω,α] in D , ∀ λ ∈ (σΩ
1 , λ1) . (3.13)

Therefore,

lim
λ↑λ1

θΩ[λ,a] ≤ ΘD[λ1,a,∂D\∂Ω,α] in D .
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Since this estimate is valid for all δ > 0 sufficiently small, the proof of Part

(i) is completed.

(ii) Let O1 ⊂ O two open subsets of Ω1 such that O1 ⊂ O and O ⊂ Ω1.

If in the proof of Part (i) δ > 0 is taken to be sufficiently small, then O ⊂ D

and hence, (3.13) gives

θΩ[λ,a] ≤ ΘD[λ1,a,∂D\∂Ω,α] in O (3.14)

for all λ ∈ (σΩ
1 , λ1). By the Lp-estimates of Agmon, Douglis & Nirenberg,

for each p > 1 there exists a constant C1 = C(p,O1) such that

‖θΩ[λ,a]‖W 2,p(O1) ≤ C1 λ ∈ (σΩ
1 , λ1) .

Thus, thanks to Morrey’s embedding theorem, for each ν ∈ (0, 1) there

exists a constant C2 = C(ν,O1) such that

‖θΩ[λ,a]‖C1,ν(O1) ≤ C2 λ ∈ (σΩ
1 , λ1) .

Now, a rather standard compactness argument together with the uniqueness

of the point-wise limit (3.5) shows that

lim
λ↑λ1

‖θΩ[λ,a] − ΞΩ1
[λ1,a]

‖C1,ν(O1) = 0 ,

and therefore,

lim
λ↑λ1

‖θΩ[λ,a] − ΞΩ1
[λ1,a]

‖C1,ν(Ω1) = 0 .

In particular, ΞΩ1
[λ1,a]

is a weak solution of

−∆u = λ1u− a(x)up+1 in Ω1 .

This completes the proof of Part (ii). Part (iii) follows straight away from

(3.2) and Parts (i), (ii). �

Based on Theorem 3.1 we introduce the following concepts.
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Definition 3.2. Let Ω1 be a subdomain of class C2 of Ω such that if Γ is

a component of ∂Ω1, then either Γ ⊂ Ω or Γ is a component of ∂Ω. Assume

that u ∈ W 2,p(Ω1) for all p > 1. It is said that u is a large classical

solution of 


−∆u = λu− aup+1 in Ω1 ,

u|∂Ω1∩∂Ω = 0 , u|∂Ω1\∂Ω =∞ ,

(3.15)

if it solves the differential equation, it satisfies u = 0 on ∂Ω1 ∩ ∂Ω and

lim
dist (x,∂Ω1\∂Ω)↓0

u(x) =∞ .

Definition 3.3. A function u : Ω → [0,∞] is said to be a metasolution

of order k of (1.1) if the following conditions are satisfied:

(i) There exists a subdomain Ωk ⊂ Ω such that u|Ωk
is a large classical

solution of




−∆u = λu− a(x)up+1 in Ωk ,

u|∂Ω∩∂Ωk
= 0 , u|∂Ωk\∂Ω =∞ .

(3.16)

(ii) u =∞ in (Ω \ Ωk) ∪ (∂Ωk \ ∂Ω).
(iii) Ω\Ωk has a finite number of components Ωi0,j , 1 ≤ i ≤ k, 1 ≤ j ≤ ni,

such that

σ
Ωi

0,1
1 = · · · = σΩi

0,ni
1 1 ≤ i ≤ k ,

σ
Ω1

0,1
1 < σ

Ω2
0,1

1 < · · · < σΩk
0,1

1 .

More precisely, under the previous conditions it will be said that u is a

metasolution of order k supported in Ωk.

Using these concepts, the following result is an immediate consequence from

Theorem 3.1.
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Corollary 3.4. Assume that a(x) satisfies (H1 − 4). Then, the function

MΩ
[λ1,a]

defined by

MΩ
[λ1,a]

:=



ΞΩ1

[λ1,a]
in Ω1 ∪ (∂Ω1 ∩ ∂Ω) ,

∞ in (Ω \ Ω1) ∪ (∂Ω1 ∩ Ω) ,
(3.17)

is a metasolution of order one of (1.1) for λ = λ1(= σ
Ω1

0,1
1 ) (recall that Ω1

was defined in (3.4)).

The following result provides us with a sufficient condition for the existence

of metasolutions of arbitrary order k ≤ m, where m is the integer arising in

the statement of (H4).

Theorem 3.5. Assume that a(x) satisfies (H1− 4), fix k ∈ {1, ...,m} and

set

Ωk := Ω \
k⋃
i=1

ni⋃
j=1

Ω
i
0,j . (3.18)

Then, for each λ satisfying

σ
Ωk

0,1
1 ≤ λ < σ

Ωk+1
0,1

1 (3.19)

the problem (1.1) possesses a metasolution of order k supported in Ωk. If

k = m, then (3.19) should read as

σ
Ωm

0,1
1 ≤ λ .

The proof of this result will be based upon Corollary 3.4 and the following

lemma.

Lemma 3.6. Let D be a domain of class C2, consider λ > σD1 and pick up

a finite number of components Γj , 1 ≤ j ≤ q, of ∂D. Then, there exists a

subdomain D̂ of D such that

λ = σD̂1 (3.20)
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and each Γj , 1 ≤ j ≤ q, is a component of ∂D̂.

Proof

We can make a hole in D in such a way that the remaining portion of

D has an arbitrarily small Lebesgue measure and hence, thanks to Faber-

Krahn inequality, an arbitrarily large principal eigenvalue, [Lo96]. Since the

principal eigenvalue varies continuously with the support domain and we are

assuming that λ > σD1 , the hole can be taken so that the remaining portion

of D, say D̂, satisfy (3.20). This completes the proof, since the components

of ∂D̂ are the components of ∂D plus the boundary of the hole. �

Proof of Theorem 3.5

Assume

σ
Ωk

0,1
1 < λ < σ

Ωk+1
0,1

1 . (3.21)

Then, thanks to Lemma 3.6 for each 1 ≤ i ≤ k and 1 ≤ j ≤ ni there exists

a subdomain Ω̂i0,j of Ω
i
0,j such that

λ = σ
Ω̂i

0,j

1

and any component of ∂Ωk ∩ ∂Ωi0,j is a component of ∂Ω̂i0,j as well. Now,
consider the new domain

Ω̂ := Ωk ∪
k⋃
i=1

ni⋃
j=1

[Ω̂i0,j ∪ (∂Ωk ∩ ∂Ωi0,j)] . (3.22)

By construction, a(x) satisfies the same requirements with respect to Ω̂ as it

satisfies with respect to Ω, but now its corresponding Ω1
0,j components are

given by the Ω̂i0,j ’s. Applying Theorem 3.1 and Corollary 3.4 to the problem

in Ω̂ completes the proof if (3.21) holds. If, instead of (3.21), the following

holds

λ = σ
Ωk

0,1
1
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then, the same argument works out. Now we only have to enshort the Ωi0,j ’s

with i < k. This completes the proof. �

The following result ascertains the point-wise behavior of the metasolutions

of order k supported in Ωk as λ ↑ σΩk+1
0,1

1 . They stabilize in Ω+ while they

grow to infinity in ∪nk+1
j=1 Ω

k+1
0,j \ ∂Ω. This shows that the metasolutions of

order m − 1 are point-wise convergent to some metasolution of order m as

λ ↑ σΩm
0,1

1 . If k ≤ m−2 we can not be sure of the validity of the corresponding
result since we were not able to show that these metasolutions stabilize in

∪mi=k+2 ∪ni
j=1 Ω

i
0,j . The main difficulty coming from the fact that we do not

know whether or not the metasolutions are unique. Anyway, we conjecture

that this is the case.

Theorem 3.7. Assume 1 ≤ k ≤ m− 1 and consider a sequence

λn ∈ (σΩk
0,1

1 , σ
Ωk+1

0,1
1 ) , n ≥ 1 ,

such that

lim
n→∞λn = σ

Ωk+1
0,1

1 .

For each n ≥ 1, let un be a metasolution of order k of (1.1) corresponding

with λ = λn supported in the Ωk defined by (3.18), whose existence is

guaranteed by Theorem 3.5. Then,

lim
n→∞un(x) =∞ for all x ∈

nk+1⋃
j=1

Ω
k+1
0,j \ ∂Ω . (3.23)

Moreover, if O+ is any open subset of Ω+ satisfying O+ ⊂ Ω+, then un|O+
,

n ≥ 1, are uniformly bounded in L∞ and hence, there exists a subsequence

of (λn, un), n ≥ 1, relabeled again by n, and a weak solution of

−∆u = σΩk+1
0,1

1 u− a(x)up+1 in Ω+ ,
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w ∈W 2,p
�oc (Ω+) ∩ C1,ν(Ω+), p > 1, 0 < ν < 1, such that

lim
n→∞ ‖un − w‖C1,ν(Ω+) = 0

for each ν ∈ (0, 1). Therefore, w defines a metasolution of order m of (1.1)

supported in Ω+ if k = m− 1.

Proof

By definition, for each n ≥ 1 the function un|Ωk
is a large classical solution

of 


−∆u = λnu− a(x)up+1 in Ωk ,

u|∂Ω∩∂Ωk
= 0 , u|∂Ωk\∂Ω =∞ ,

and in particular, un|Ωk
is a positive strict supersolution of




−∆u = λnu− a(x)up+1 in Ωk ,

u|∂Ωk
= 0 .

(3.24)

Thus,

un|Ωk
≥ θΩk

[λn,a]
, (3.25)

where θΩk

[λn,a]
� 0 is the unique positive solution of (3.24), whose existence

and uniqueness is guaranteed by Theorem 2.4(i). Thanks to Theorem 2.4(ii),

we have

lim
n→∞ θΩk

[λn,a]
(x) =∞ for all x ∈

nk+1⋃
j=1

Ω
k+1
0,j \ ∂Ωk . (3.26)

Moreover, un =∞ in (Ω \ Ωk) ∪ (∂Ωk \ ∂Ω), since we are assuming that it
is a metasolution supported in Ωk. Thus, (3.25) and (3.26) show (3.23).

Now, let O+ be an open subset of Ω+ satisfying O+ ⊂ Ω+. If δ > 0 is

sufficiently small and Oδ+ stands for the δ-neighborhood of O+ we have that
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O+ ⊂ Oδ+ and that O
δ
+ ⊂ Ω+. Then, for each n ≥ 1 the function un|Oδ

+

provides us with a subsolution of the problem




−∆ψ = σΩk+1
0,1

1 ψ − (min
O

δ
+
a)ψp+1 in Oδ+ ,

ψ|∂Oδ
+
=∞ ,

(3.27)

and therefore,

un|Oδ
+
≤ Ψ n ≥ 1 , (3.28)

where Ψ is the unique positive solution of (3.27), whose existence and

uniqueness is guaranteed by [MV97, Corollary 2.3]. By (3.28), there ex-

ists a constant C > 0 such that

‖un‖L∞(O+) ≤ C n ≥ 1 .

The compactness argument of the proof of Theorem 3.1(i) completes the

proof. �

I.4. Two cases where condition (H3) is not needed

In this section we shall show that if N = 1 or N ≥ 2 and (1.1) possesses
radial symmetry, then condition (H3) is not necessary for the validity of the

results in Sections 2, 3. It suffices to show the validity of relation (2.13) in

the statement of Theorem 2.4, as this was the only property for which (H3)

was needed.
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Theorem 4.1. Assume N = 1, Ω = (α, β), α < β, and (H1), (H2), (H4)

hold. Pick j ∈ {1, ..., n1} and let αj , βj ∈ [α, β], αj < βj , such that

Ω1
0,j = (αj , βj). Then, either αj > α, or βj < β. Moreover, if αj > α, then

lim
λ↑σ

Ω1
0,1

1

θΩ[λ,a](αj) =∞ ,

and if βj < β, then

lim
λ↑σ

Ω1
0,1

1

θΩ[λ,a](βj) =∞ ,

where θΩ[λ,a] is the unique strong positive solution of (1.1).

Proof

The positive solutions of (1.1) provide us with positive supersolutions of

−∆u = λu− ‖a‖L∞(Ω) χΩ+ u
p+1 in Ω , u|∂Ω = 0 , (4.1)

and hence, the strong maximum principle implies

θΩ[λ,a] ≥ θΩ[λ,‖a‖L∞(Ω) χΩ+ ] := uλ . (4.2)

By the assumptions, Ω1
0,j is a proper subdomain of Ω and hence, either

α < αj , or β > βj . Assume β > βj . Then, there exists cj > βj such that

(βj , cj) ⊂ Ω+. Thanks to (4.2) it suffices to show that

lim
λ↑σ

Ω1
0,1

1

uλ(βj) =∞ .

In (αj , βj) we have a = 0 and hence,

−u′′λ = λuλ .

Multiplying this equation by u′λ and integrating it follows that

(u′λ(x))
2 + λu2

λ(x) = (u
′
λ(βj))

2 + λu2
λ(βj) for all x ∈ (αj , βj) . (4.3)
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On the other hand, by the proof of Theorem 2.4 we already know that uλ
grows to infinity uniformly on any compact subset of (αj , βj). Thus, we find

from (4.3) that

lim
λ↑σ

Ω1
0,1

1

[(u′λ(βj))
2 + λu2

λ(βj)] =∞ . (4.4)

Now, in the interval (βj , cj) the following holds

−u′′λ = λuλ − Aup+1
λ , A := ‖a‖L∞(Ω) ,

and hence, multiplying this relation by u′λ and integrating gives

(u′λ(x))
2

2
+
λ

2
u2
λ(x)−

A

p+ 2
up+2
λ (x) =

(u′λ(βj))
2

2
+
λ

2
u2
λ(βj)−

A

p+ 2
up+2
λ (βj)

(4.5)

for each x ∈ (βj , cj). By the proof of Theorem 2.4 we already now that

the solutions uλ approach in C1+ν to a strong solution on any compact

subinterval of (βj, cj) as λ ↑ σΩ1
0,1

1 . In particular, the left hand side of (4.5)

has a finite limit as λ ↑ σΩ1
0,1

1 and hence, also does it the right hand side.

Therefore, thanks to (4.4),

lim
λ↑σ

Ω1
0,1

1

uλ(βj) =∞ .

If α < αj , the previous argument can be easily adapted to show that

lim
λ↑σ

Ω1
0,1

1

uλ(αj) =∞ .

This completes the proof. �

In the remaining of this section we assume that N ≥ 2, that Ω = BR,

the ball of radius R > 0 centered at the origin, and that a(x) is radially

symmetric. Then,

a(x) = ρ(r) , r = |x| ,
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for some bounded function ρ : [0, R] → R+. Throughout the rest of this

chapter given 0 < α < β ≤ R, A(α,β) stands for the annulus

A(α,β) := {x ∈ R
N : α < |x| < β } .

Note that in the proof of Theorem 2.4 all the sub and supersolutions used

to show the existence of the classical positive solution can be chosen to be

radially symmetric. Therefore, the positive solution of (1.1) must be radially

symmetric, since it is unique and the method of sub and supersolutions can

be used on the corresponding spaces of radially symmetric functions.

Theorem 4.2. Assume we are working under the previous assumptions

and (H1), (H2), (H4) hold. Then, for any j ∈ {1, ..., n1} we have

lim
λ↑σ

Ω1
0,1

1

θΩ[λ,a](x) =∞ for all x ∈ ∂Ω1
0,j ∩ Ω . (4.6)

Proof

The comparison argument in the beginning of the proof of Theorem 4.1

shows that we are done if we prove the result for the case when

a(x) = AχΩ+ , A := ‖a‖L∞(Ω) . (4.7)

So, we can assume that (4.7) is satisfied. In the sequel, we use the notation

ϕλ(r) := θΩ[λ,a](x) , σΩ
1 < λ < σ

Ω1
0,1

1 , r = |x| . (4.8)

We have to distinguish between several different situations according to the

structure and location of Ω1
0,j . Assume that Ω

1
0,j = Bα for some α ∈ (0, R).

Then, there exists c ∈ (α,R] such that A(α,c) ⊂ Ω+. For each r ∈ (0, α) we
have

−ϕ′′
λ(r)−

N − 1
r

ϕ′
λ(r) = λϕλ(r)
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and hence,

−(rN−1ϕ′
λ(r))

′ = λ rN−1ϕλ(r) . (4.9)

Now, integrating (4.9) in (0, α) gives

−αN−1ϕ′
λ(α) = λ

∫ α

0

rN−1ϕλ(r) dr . (4.10)

Moreover, since

lim
λ↑σ

Ω1
0,1

1

ϕλ =∞

uniformly in any compact subinterval of (0, α), we find from (4.10) that

lim
λ↑σ

Ω1
0,1

1

ϕ′
λ(α) = −∞ . (4.11)

On the other hand, for each r ∈ (α, c) we have

−(rN−1ϕ′
λ(r))

′ = λ rN−1ϕλ(r)− ArN−1ϕp+1
λ (r) , (4.12)

and hence,

−rN−1ϕ′
λ(r) + α

N−1ϕ′
λ(α) = λ

∫ r

α

sN−1ϕλ(s) ds−A
∫ r

α

sN−1ϕp+1
λ (s) ds .

(4.13)

By the proof of Theorem 2.4, for any compact subinterval J of (α, c) and

any ν ∈ (0, 1) the function ϕλ converges in C1+ν(J) as λ ↑ σΩ1
0,1

1 to a strong

solution. In particular, for each r ∈ (α, c)

lim
λ↑σ

Ω1
0,1

1

rN−1ϕ′
λ(r) ∈ R .

Thus, (4.11) and (4.13) imply

lim
λ↑σ

Ω1
0,1

1

[
λ

∫ r

α

sN−1ϕλ(s) ds−A
∫ r

α

sN−1ϕp+1
λ (s) ds

]
= −∞ .
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Thanks to the mean integral value theorem, for each λ there exists sλ ∈
(α, r) such that

∫ r

α

sN−1ϕλ(s)[λ− Aϕpλ(s)] ds = (r − α)sN−1
λ ϕλ(sλ)[λ− Aϕpλ(sλ)] .

Hence,

lim
λ↑σ

Ω1
0,1

1

(r − α)sN−1
λ ϕλ(sλ)[λ− Aϕpλ(sλ)] = −∞ .

Thus,

lim
λ↑σ

Ω1
0,1

1

ϕλ(sλ) =∞ ,

and therefore,

lim
λ↑σ

Ω1
0,1

1

sλ = α , lim
λ↑σ

Ω1
0,1

1

ϕλ(α) =∞ .

This completes the proof of (4.6).

Now, assume that

Ω1
0,j = A(α,β) , for some 0 < α < β ≤ R .

Then, there exists c ∈ (0, α) such that A(c,α) ⊂ Ω+. For each r ∈ (α, β) we
have

ϕ′
λ(r)ϕ

′′
λ(r) + λϕ

′
λ(r)ϕλ(r) = −N − 1

r
(ϕ′
λ(r))

2 ≤ 0

and hence,
d

dr
[(ϕ′

λ(r))
2 + λϕ2

λ(r)] ≤ 0 .

Thus,

(ϕ′
λ(α))

2 + λϕ2
λ(α) ≥ (ϕ′

λ(r))
2 + λϕ2

λ(r) ≥ ϕ2
λ(r) . (4.14)
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Moreover, lim
λ↑σ

Ω1
0,1

1

ϕλ = ∞ uniformly on any compact subinterval of

(α, β) and therefore, (4.14) implies

lim
λ↑σ

Ω1
0,1

1

[(ϕ′
λ(α))

2 + λϕ2
λ(α)] =∞ . (4.15)

On the other hand, for each r ∈ (c, α) we have

ϕ′
λ(r)ϕ

′′
λ(r) + λϕ

′
λ(r)ϕλ(r)− Aϕ′

λ(r)ϕ
p+1
λ (r) = −N − 1

r
(ϕ′
λ(r))

2 ≤ 0

and hence,

d

dr
[
(ϕ′
λ(r))

2

2
+
λ

2
ϕ2
λ(r)−

A

p+ 2
ϕp+2
λ (r)] ≤ 0 . (4.16)

Thus,

(ϕ′
λ(r))

2

2
+
λ

2
ϕ2
λ(r)−

A

p+ 2
ϕp+2
λ (r) ≥ (ϕ′

λ(α))
2

2
+
λ

2
ϕ2
λ(α)−

A

p+ 2
ϕp+2
λ (α) .

(4.17)

The left hand side of (4.17) is bounded above, since ϕλ approaches in C1+ν

to a positive solution of the equation as λ ↑ σΩ1
0,1

1 . Hence, the right hand

side of (4.17) is bounded above and therefore, we find from (4.15) that

lim
λ↑σ

Ω1
0,1

1

ϕλ(α) =∞ . (4.18)

This completes the proof if β = R. It remains to show that

lim
λ↑σ

Ω1
0,1

1

ϕλ(β) =∞ (4.19)

if β < R. Assume β < R. Then, there exists d > β such that A(β,d) ⊂ Ω+.

To show (4.19) we argue by contradiction assuming that

lim
λ↑σ

Ω1
0,1

1

ϕλ(β) := ϕ1(β) ∈ R+ . (4.20)
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Note that the limit exists since λ → ϕλ(β) is increasing. Now, given η > 0

sufficiently small consider the family of values {ϕ′
λ(β)}, λ ∈ [σΩ1

0,1
1 −η, σΩ1

0,1
1 ).

If this family is bounded, then there exists a sequence λn, n ≥ 1, such that

lim
n→∞λn = σ

Ω1
0,1

1

and

lim
n→∞ϕ′

λn
(β) := ϕ′

1(β) ∈ R . (4.21)

For each n ≥ 1 the couple (ϕλn , ϕ
′
λn
) provides us with a solution in (α, β) of

a linear first order system with analytic coefficients in [α, β] and therefore,

thanks to (4.20) and (4.21), we find from the theorem of continuous depen-

dence with respect to the initial values and parameters that ϕλn(α), n ≥ 1,
is bounded. This contradicts (4.18) and shows that the family {ϕ′

λ(β)} is
unbounded. By Theorem 2.4, there exists a sequence λn, n ≥ 1, such that
λn ↑ σΩ1

0,1
1 as n→ ∞ and either

lim
n→∞ϕ′

λn
(β) =∞ , (4.22)

or

lim
n→∞ϕ′

λn
(β) = −∞ . (4.23)

Assume that condition (4.22) is satisfied. Then, for each n ≥ 1 and r ∈ (α, β)
we have that

ϕ′
λn
(r) > 0 . (4.24)

Indeed, If (4.24) fails for some n ≥ 1, then there exists r0 ∈ (α, β) such that
ϕ′
λn
(r0) = 0 and ϕ′

λn
(r) > 0 for all r ∈ (r0, β]. Moreover,

−ϕ′′
λn
(r0) = λnϕλn(r0) > 0
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and hence at r = r0 the function ϕλn exhibites a local maximum, which

contradicts the fact that ϕ′
λn
(r) > 0 for all r ∈ (r0, β]. Thus, condition

(4.24) holds and hence, for each n ≥ 1 we have that

ϕλn(α) ≤ ϕλn(β) .

So, thanks to (4.18) we find that

lim
n→∞ϕλn(β) =∞ ,

which contradicts (4.20). Therefore, condition (4.23) holds.

Now, for each r ∈ (β, d) and n ≥ 1 we have

−rN−1ϕ′
λn
(r) + βN−1ϕ′

λn
(β) =

∫ r

β

sN−1ϕλn(s)[λn −Aϕpλn
(s)] ds (4.25)

and therefore, using (4.23) it follows from (4.25) that

lim
n→∞ϕλn(β) =∞ .

This contradicts (4.20) as well. Therefore,

lim
λ↑σ

Ω1
0,1

1

ϕλ(β) =∞ .

This completes the proof. �
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I.5. Numerical computation of classical solutions

In this section we compute the curve of classical positive solutions of a

two-dimensional radially symmetric prototype model of (1.1). Namely, we

take N = 2, Ω = B0.5 the ball of radius 0.5 centered at the origin, p = 4

and

a(x) = ρ(r) , r = |x| ,
where ρ : [0, 0.5]→ [0,∞) is given by

ρ(r) :=




− sin(5π(r + 0.5)) , r ∈ (0.1, 0.3) ,

0 , r ∈ [0, 0.1] ∪ [0.3, 0.5] ,
(5.1)

Figure 5.1 shows a plot of a(x).

Figure 5.1: Plot of a(x).
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Note that we have represented the half of its graphic. So, the diameter slice

provides us with the profile of ρ(x). The corresponding model fits into the

abstract setting of Section 4 with

Ω+ = A(0.1,0.3) , Ω0 = B0.1 ∪A(0.3,0.5) .

In Table 5.2 we are giving the theoretical and numerical values of the prin-

cipal eigenvalues of −∆ in some of the relevant subdomains of Ω. Namely,
Ω itself, and each of the components of Ω0. The theoretical values are cal-

culated from the estimate 2.4048 for the first zero of the Bessel function

J0. The numerical values are the unique values of λ for which bifurcation

to positive solutions from u = 0 occurs. These values have been com-

puted by means of the pseudo-spectral method described bellow using 125

modes. Note that the principal eigenfunctions associated with each of these

subdomains are radially symmetric and hence we are actually dealing with

one-dimensional linear eigenvalue problems. Also, note that the numerical

principal eigenvalue might provide us with a sharper estimate to the

theoretical bifurcation value than the one obtained from a bad approxima-

tion to the first zero of J0.

Subdomain Theoretical σ1 Computed σ1

B0.5 23.132252 23.131769
B0.1 578.306304 578.294226
A(0.3,0.5) 245.138590

Table 5.2: Principal eigenvalues of some relevant subdomains.

Thanks to the values given in Table 5.2, we have

Ω1
0,1 = A(0.3,0.5) , Ω2

0,1 = B0.1 ,

since σ
A(0.3,0.5)
1 < σB0.1

1 .
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By the comments before the statement of Theorem 4.2,

θΩ[λ,a](x) = uλ(r) , r = |x| , (5.2)

where uλ(r) is the unique positive solution of the one-dimensional problem




−u′′(r)− 1
r u

′(r) = λu(r)− ρ(r)u5 , r ∈ (0, 0.5) ,

u′(0) = 0 , u(0.5) = 0 .
(5.3)

These solutions are the restriction to [0, 0.5] of the positive solutions of




−u′′(r)− 1
r u

′(r) = λu(r)− ρ̂(r)u5 , r ∈ (−0.5, 0.5) ,

u(−0.5) = 0 , u(0.5) = 0 ,
(5.4)

where ρ̂(r) = ρ(−r) for each r ∈ [−0.5, 0], and ρ̂(r) = ρ(r) if r ∈ [0, 0.5].
Instead of (5.4) we will consider its phase translation to the interval [0.1]




−u′′(x)− 1
x−0.5 u

′(x) = λu(x)− ρ̂(x− 0.5)u5 , x ∈ (0, 1) ,

u(0) = 0 , u(1) = 0 .
(5.5)

To compute the bifurcation diagram of positive solutions of (5.5) we use

spectral collocation methods coupled with path-following techniques. This

gives high accuracy with low computational work. In the numerical compu-

tations we have used trigonometric modes and the collocation points have

been taken to be equidistant, with the number of modes equal to the number

of collocation points. Let M denote the number modes and

xi =
i

1 +M
, 1 ≤ i ≤M ,

the collocation points. Then, the solutions u(x) of (5.5) are approximated

by

uM (x) =
M∑
j=1

cj sin(jπx) ,
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being C = (c1, ...., cM )T (T =transposition) a solution of

BC −EDC = λJC − A(JC)5 (5.6)

where 


J = (sin(jπxi))1≤i,j≤M ,

B = ((jπ)2 sin(jπxi))1≤i,j≤M ,

A = diag (ρ̂(xi − 0.5))1≤i≤M ,

E = diag (ej)1≤j≤M ,

D = (dij)1≤i,j≤M ,

ej =




1
xj−0.5 , if xj �= 0.5 ,

1 , if xj = 0.5 ,

and

dij =



jπ cos(jπxi) , 1 ≤ j ≤M , if xi �= 0.5 ,

−(jπ)2 sin(jπ/2) , 1 ≤ j ≤M , if xi = 0.5 .

Making these choices preserves the zero solution of (1.1), although the bifur-

cation values to positive solutions for the continuous and the discrete models

will not be equal, since we are working with trigonometric series instead of

with Fourier series of Bessel functions.

It is well known that the set of positive solutions of both the discrete and

the continuous counterparts of the model have the same structure around

any regular or simple bifurcation point (cf. [RBR80], [RBR181], [RBR281]).

In fact, this is true for a wider class of models than (1.1), although thanks to

the special structure of (1.1) it can be shown that not only the local but also

the global structure of the set of positive solutions is preserved. Actually, the

set of positive solutions of the discrete model approaches the set of positive

solutions of its continuous counterpart as the number of modes grows to
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infinity. Being outside the scope of this memoir, this global convergence

analysis will appear elsewhere.

By the continuity of the coefficient a(x), any solution of (5.5) is of class C2

and hence its jth Fourier coefficient, denoted by ûj , decays as O(j−2) when

j ↑ ∞ (cf. [CHQZ88, pp. 35]). Thus,

max
0≤x≤1

|
M+1∑
j=1

ûj sin(jπx)−
M∑
j=1

ûj sin(jπx)| = O(M−2) as M ↑ ∞ .

Thanks to this feature we have adopted the following criterion to choose the

number of modes in our computations

|ck| ≤ 1
2
10−4 , M − 10 ≤ k ≤M . (5.7)

By the radial symmetry of the problem c2� = 0 for all � ∈ N. Therefore,

(5.7) will be satisfied for any even k.

To compute the global curve of classical positive solutions of (5.5), whose

existence is guaranteed from Theorem 2.4, as well as the principal eigen-

values of the linearizations around each of those solutions, we have used

standard path-following techniques as in [DK81], [Ei86], [LEDM92] and the

references there in, where we send for further details.

Figure 5.3 shows the numerical bifurcation diagram of positive solutions that

we have obtained. In Figure 5.3 we have represented the L2-norm of each

non-negative solution versus the parameter λ, λ ∈ (0.0, 250.0). Continuous
lines are filled in by stable solutions and dashed lines by unstable solutions.

Each of the points on these curves represents a non-negative solution of

(1.1). The diagram shows two curves, one of them filled in by positive

solutions which are linearly asymptotically stable, and the other is the trivial

branch (λ, u) = (λ, 0). The solution u = 0 is stable until the bifurcation

value λ = 23.131769 where it becomes unstable for any further value of the

parameter.
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Figure 5.3: Bifurcation diagram of classical positive solutions.

Table 5.4 shows the number of modes needed to reach the convergence cri-

terion (5.7). If λ ∈ (203.799461, σA(0.3,0.5)
1 ), then (5.7) can not be attained

with 475 modes, and we could not increase the number of modes to reach

(5.7) since our computer does not have enough memory to do it.

Interval of λ Number of modes
(23.131769, 71.283046) 65
[71.283046, 101.229218) 95
[101.229218, 126.233139) 125
[126.233139, 151.061935) 185
[151.061935, 179.621582) 245
[179.621582, 191.845247) 335
[191.845247, 203.799461) 475

Table 5.4: The number of modes needed to reach (5.7).
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In fact, using 475 modes our computer spend around 20 minutes to calculate

each of the positive solutions in the bifurcation diagram. Therefore, to

compute the curve of positive solutions for further values of λ we must forget

about the criterion (5.7). If λ ∈ [203.799461, 238.043512], then, instead of
(5.7), the following weaker criterion was reached

|ck| ≤ 1
2
10−1 , M − 10 ≤ k ≤M . (5.8)

If λ ∈ (238.043512, 240.988748), then the solutions do not satisfy (5.8) ei-
ther. Actually, the slope of the curve of positive solutions becomes very

large as λ ↑ 240.988748, making a very hard task following the curve for
further values of λ, since very small changes in λ provoc drastical variations

of the length of arc along the curve. In fact, the length of the arc of curve

corresponding to the interval λ ∈ (240.239243, 240.335274) is 500, while its
own length is 0.096031. The L∞-norm of the positive solution grew from

7887.99 up to 8674.60. Also, note that even using a larger number of modes,

we will never reach the exact value σ
A(0.3,0.5)
1 � 245.138590 where bifurca-

tion from infinity occurs, since discretizing the model slightly enlarges each

of the components of Ω0. In fact, A(0.3,0.5) becomes into A(0.298319,0.5) and

since

σ
A(0.298319,0.5)
1 � 241.035767 ,

the numerical value where the bifurcation from infinity occurs will be

241.035767 which is smaller than the theoretical one, 245.138590.

Figure 5.5 shows the profiles of some of the positive solutions that we have

computed. All of them satisfy the convergence criterion (5.7). Note how

these solutions grow in Ω
1
0,1 = A(0.3,0.5), while they stabilize in Ω \ Ω1

0,1,

as λ increases. As λ moves away from the bifurcation value 23.131769, the

principal eigenvalue of the linearization around the positive solution grows

from zero up to reach its maximum value at a critical λ, where it becomes
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decreasing for any further value of λ up to approach the critical value where

the bifurcation from infinity takes place, where it converges to zero.

Figure 5.5. Profiles of the classical positive solutions.



I.5. Numerical computation of classical solutions 53

In Table 5.6 we have collected some representative values of λ together

with the L∞-norms of the corresponding positive solutions and the prin-

cipal eigenvalues of their linearizations (p.e.l). For further values of λ the

determinant of the linearization at the discrete positive solution becomes

oscillating and so we stop the continuation here in. In fact the numerical so-

lutions ontained for further values of λ become negative around the interior

relative minima and therefore, they are not admissible.

Value of λ p.e.l. ‖θΩ[λ,a]‖∞
221.654455 12.68 184.65
229.914607 7.92 418.90
233.646062 5.60 732.53
237.357723 3.13 1753.84
239.509913 1.59 4505.86
240.988748 0.45 22598.95

Table 5.6: The principal eigenvalue of the linearization.

Actually, we should have stopped the continuation at the value λ =

237.357723, since for greater values of λ the solutions become decreasing

around their interior relative minima in strong contradiction with the mono-

tonicity given by Theorem 2.4.

To complete this section, it should be pointed out that our numerical com-

putations strongly suggest that the absolute value of infinitely many of the

odd Fourier coefficients will grow to infinity as λ ↑ σA(0.3,0.5)
1 making im-

possible the global approximation to the whole curve of positive solutions

of (1.1) with finitely many modes.
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I.6. Numerical computation of metasolutions

In this section we compute the curve of minimal radially symmetric meta-

solutions of order 1 of the model analyzed in Section 5. In the proof of Theo-

rem 3.5 the metasolutions of order one were constructed as point-wise limits

of radially symmetric classical solutions. Therefore, in our present setting

Theorem 3.5 actually shows the existence of radially symmetric metasolu-

tions up to order two. We will denote to the minimal metasolution of order

one by uλ. According to Theorem 3.5 they exist if

σ
A(0.3,0.5)
1 � 245.138590 ≤ λ < σB0.1

1 � 578.306304 .

These metasolutions are given by the solutions of the problem




−u′′(x)− 1
xu

′(x) = λu− a(x)u5 in B0.3 ,

u(0.3) =∞ , u′(0) = 0 .
(6.1)

It should be pointed out that we do not know if any metasolution of the

problem should be radially symmetric or not and that even the uniqueness

of the positive solution of (6.1) is an open problem. The main difficulty

coming from the fact that the uniqueness results of [MV97] do not apply to

our models, since the coefficient a(x) is not bounded away from zero. As a

result of our numerical analysis in this section the uniqueness of the radially

symmetric metasolution of order one will become clear.

The minimal metasolution corresponding with the value λ = σ
A(0.298319,0.5)
1

for the pure espectral discretization of the continuous model can be taken

to be as the last classical solution computed in Section 5. In general, this

solution will not be infinity on the boundary of the disk B0.3, but sufficiently

large, say α. Then, a possible strategy to approach the metasolutions of
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order one would be to compute the unique positive solution of



−u′′(x)− 1
xu

′(x) = λu− a(x)u5 in B0.3 ,

u(0.3) = α , u′(0) = 0 .
(6.2)

for λ ∈ (σB0.3
1 , σB0.1

1 ), whose existence is guaranteed by Theorem 3.1. Solv-

ing (6.2) is substantially more involved than computing the classical solu-

tions for the original problem since now in order to adjust the boundary

condition we will have to take a large number of modes from the very be-

ginning, because α is assumed to be very large, and actually the number

of modes should be further increased to compute the solutions of (6.2) for

values of λ close to σB0.1
1 . The main trouble from this method comes from

the fact that since we are changing the boundary condition it might happen

the solutions of (6.1) and (6.2) are far away. Thus, this strategy does not

look the best possible.

By the one-dimensional nature of (6.1) to compute its solutions we use the

explicit fourth order Runge Kutta method (ERK) described in [Is96, pp.

41]. Writing down the equation as a first order system in the unknowns

(u, u′) we should find out the value of u0 := uλ(0) for which the solution

subject to the initial conditions

uλ(0) = u0 , u′λ(0) = 0 ,

satisfies

lim
x↑0.3

uλ(x) =∞ . (6.3)

To compute u0 we propose an initial interval [uI , uF ], pick u1
0 ∈ [uI , uF ]

and use the (ERK) method with M1 nodes to compute the solution of the

system with the initial conditions (u1
0, 0), say u

M1
λ . Then, using a bisection

procedure we change the u1
0 according to the following criterion: If

duM1
λ

dλ
(0.3) < 1010 ,
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then we increment u1
0, while if there exists x1 ∈ (0, 0.3) for which

lim
x↑x1

uM1
λ (x) =∞ ,

then we decrement u1
0. The process is stopped when

duM1
λ

dλ
(0.3) > 1010 .

This procedure provides us with a relatively good approximation of u0. To

refine it we repeat he process but this time using a higher number of nodes,

say M2, up to reach the criterion

uM2
λ (0.3) ≥ uM1

λ (0.3) . (6.4)

If
|uM1
λ (0)− uM2

λ (0)|
uM1
λ (0)

< 0.5× 10−5 (6.5)

then we stop the process and propose

uλ(0) := uM2
λ (0) .

If condition (6.5) fails, then we repeat the process increasing the number

of nodes up to reach (6.5). As far as to the choice of the interval [uI , uF ]

concerns, we proceed as follows. As uI we propose the uλ−∆λ(0) computed

at the previous λ, λ −∆λ. At σA(0.3,0.5)
1 +∆λ, we take uI = uλ̂(0), where

λ̂ stands for the last value of λ for which we have computed the classical

solution. These choices are based on the fact that the minimal solutions of

(6.1) are increasing with λ. This can be easily accomplished from Theorem

2.5 by passing to the limit as α ↑ ∞. As to uF concerns, it can be taken
as large as wished. A relevant feature is the fact that the previous iterative

scheme always converged, strongly suggesting the uniqueness of the positive
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solution of (6.1). Note that if (6.1) would possess two solutions, say u1

and u2, with u1(0) < u2(0) then for any u0 ∈ (u1(0), u2(0)) the solution

of the Cauchy problem associated with the underlying system provides us

with a solution of (6.1). Otherwise, we would contradict the uniqueness

obtained from Theorem 3.1. Therefore, if uniqueness does not occur, then

there is a continuum of values of u0 for which the corresponding solutions

are metasolutions.

An important feature is the fact that as larger is taken the initial value of

u as sooner is going to blow up the solution of the Cauchy problem for the

associated system. Conversely, if u0 stands for the initial value of uλ and

u(0) > u0, then as closer u(0) and u0 are as closer will be the blow up time

of the solution with initial data (u(0), 0) to 0.3. If u(0) < u0 is sufficiently

close to u0, then u(x) is globally defined in [0, 0.3]. If u(0) � 0, u(0) > 0,
then the solution will become negative and after some time will blow up

to −∞. All these features strongly suggest the uniqueness of the positive
solution of (6.1).

Instead of five significative digits, we could have taken a higher number of

them, but five are sufficient for our purposes here in. In fact, it should be

remarked that if uM1
λ (0.3) in the test (6.4) is huge and we increase drastically

the number of nodes, then the number of significative digits grows.

To compute the metasolution for values of λ close to σB0.1
1 the number of

nodes in the scheme above should be taken sufficiently large so that the step

in the (ERK) be smaller than the jump to infinity of the metasolution.

Table 6.1 shows the values of u(0), M , u(0.3) and u′(0.3) for the corres-

ponding values of λ in the first column of the table. In all cases, small

variations in u(0) provoke drastical changes in u(0.3) and u′(0.3). Precisely,

if u(0) is smaller than the real value of the metasolution, then the computed

solution is finite at 0.3, while if u(0) is greater than the initial value of the

computed metasolution, then the solution u(x) blows up to ∞ before 0.3.

According to Lemma 3.6, this means that we have computed the metaso-
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lution of another problem corresponding with a larger Ω2
0,1 than B0.1. In

Figure 6.2 we have represented the plots of the metasolutions that we have

computed for each of the first four values of λ in the first column of Table

6.1.

λ M u(0) u(0.3) u′(0.3)
300.0 601 32.627686 0.67× 1044 0.41× 10132
300.0 6001 32.627656 0.43× 1057 0.40× 10172
450.0 600 172.746567 0.10× 108 0.65× 1011
450.0 6001 172.746426 0.67× 1015 0.97× 1037
500.0 601 449.299480 0.15× 1046 0.60× 10136
500.0 6001 449.295567 0.14× 1083 0.42× 10251
525.0 601 920.604016 0.49× 1046 0.25× 10138
525.0 6001 920.555679 0.14× 10132 Infinity
550.0 601 2912.833978 0.15× 1052 0.24× 10155
550.0 6001 2909.932954 0.44× 10164 Infinity
550.0 10001 2909.929864 0.13× 10172 Infinity

Table 6.1: (ERK) results.

According to Theorems 3.5, 3.7 the metasolutions of order 1 supported in

B0.3 are point-wise increasing with λ in B0.3, and they do it faster in B0.1,

where a(x) vanish, than in A(0.1,0.3), where a(x) is positive. Note that

each of these metasolutions takes the value ∞ on ∂B0.3. Moreover, as

λ ↑ σB0.1
1 , the corresponding metasolutions entirely blow up in B0.1, while

they stabilize in A(0.1,0.3).

As already predicted by Theorem 3.7, along some subsequence the point-wise

limit of these metasolutions as λ ↑ σB0.1
1 provides us with a metasolution of

order 2 supported in A(0.1,0.3). Note that in the model we are dealing with

the highest order of the metasolutions is m = 2, and hence, Theorem 3.5

guarantees the existence of a metasolution of order 2 supported in A(0.1,0.3)

for each λ ≥ σB0.1
1 .
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Figure 6.2: Metasolutions of order 1.

Computing the metasolutions of order one for values of λ < σB0.1
1 sufficiently

close to σB0.1
1 is a very difficult task, mainly due to the highest number of

digits needed to get their initial values. The following numerical experiment



60 Chapter I: The Sublinear Problem

illustrates that fact. Taking λ = 575, M = 50001 and

u(0) = 129396.909009847150 (6.6)

the (ERK) gives the following value

u(0.3) = 17.34 ,

while if we take

u(0) = 129396.909009847877 , (6.7)

then the (ERK) scheme gives

u(0.295524) =∞ .

Therefore, a change in the 16th digit provoke s a drastical change in the

value of u(0.3). Although these features tell us that the value of the minimal

metasolution at 0, u0, should lye between the values (6.6) and (6.7), it is

rather clear that we will never be able to reach it, since 16 significative digits

is the limit of the precision of our computer. Increasing the number of nodes

will not overcome this trouble. Computing the metasolutions of order two is

a much harder task and we think that some new idea, or scheme, is needed to

compute these metasolutions. At present we do not know how to overcome

all these difficulties and so, we stop our analysis here.

In Figure 6.3 we have represented the value at 0.2 of the classical solutions

and the metasolutions of order one that we have computed versus the pa-

rameter λ. The continuous line stands for the curve of classical positive

solutions. The dashed line represents the metasolutions of order one. Note

that 0.2 is the middel point of the support of the coefficient ρ(r). In general,

it does not equal the point where the interior minima of these solutions is

taken, but it is very close to it in most cases. Classical solutions have been

represented up to the value λ = 237.3577, and the metasolutions have been

represented from λ = 250.0 up to λ = 570.0.
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Based on this diagram, it seems that the set of classical and non-classical

solutions of our model possesses the structure of a continuous curve con-

necting (λ, u) = (σΩ
1 , 0) with (λ, u) = (∞,∞), although at present it is not

clear what are the functional spaces where these models should be analyzed

mathematically.

Figure 6.3: Global bifurcation diagram.
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The Superlinear Indefinite Problem

II.1. Introduction

In this Chapter we analyze the structure of the set of positive solutions

of

−∆u = λu− a(x)|u|pu in Ω , u|∂Ω = 0 , (1.1)

where Ω is a bounded domain of R
N , N ≥ 1, of class C2, λ ∈ R is regarded

as a continuation parameter and p ∈ (0,∞). We suppose that a �= 0 is a

bounded measurable function on Ω and put

Ω± := {x ∈ Ω : a±(x) > 0 } ,

where a+ := max{a, 0} is the positive, and a− := a+ − a is the negative

part of a. In addition we assume that Ω+ and Ω− are open sets of class C2

and that a± is bounded away from zero on compact subsets of Ω±. Note

that Ω+ and Ω− have only finitely many components.
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Problem (1.1) provides us with the steady states of the parabolic model




∂u
∂t −∆u = λu− a(x)|u|pu (x, t) ∈ Ω× (0,∞) ,

u(·, t)|∂Ω = 0 t > 0 ,

u(·, 0) = u0 ≥ 0 in Ω ,

(1.2)

Although in mathematical biology the coefficient a(x) is usually taken to be

non-negative, (1.2) has a biological meaning even in the general case case

when a(x) changes of sign. Typically, u(·, t) is the density at time t of a

single species inhabiting Ω, λ is the net growth rate of the species, u0 is the

initial population density, and the coefficient a(x) measures the saturation

effect responses to the population stress in Ω+ (cf. I.1), while in Ω− it

measures the symbiosis effects due to the intraspecific cooperation. In the

region

Ω0 := Ω \ (Ω+ ∪ Ω−) ,

the individuals of the species are free from other effects than diffusion and

hence the components of Ω0 (at most finitely many) can be though as

refuges.

Recent references about the existence, stability and multiplicity of pos-

itive solutions for (1.1) are [BO86], [Ou91], [Ou92], [BCN94], [BCN95],

[FKLM96], [AT96], [Lo97], [AL98], [LS98], [GGLS98], and the references

there in, where we send for further information. In Section 2 we collect

some of the results obtained in these references, mostly those needed for the

mathematical analysis carried out in Section 3, where it will be shown that

(1.2) possesses a stable positive steady-state if, and only if,

∫
Ω

aΦp+2 > 0 , (1.3)

and that (1.1) does not admit a stable positive solution if λ ≤ σΩ
1 . Hereafter,

Φ > 0 stands for the principal eigenfunction associated to σΩ
1 , the principal
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eigenvalue of −∆ in Ω under homogeneous Dirichlet boundary conditions.

This result is easily obtained if a ≤ 0, but it is far from easy in the general

case when a(x) changes of sign. From the biological point of view, it means

that if either λ ≤ 0, or λ > 0 but the habitat is not sufficiently large so that

λ > σΩ
1 , then the species u does not have enough room to avoid extinction.

The main result of Section 3 is the following.

Theorem 1.1. Assume Ω+, Ω− �= ∅, (1.3), and that the positive solutions

of (1.1) possess uniform L∞ a priori bounds for λ in compact subintervals

of R. Then, there exists

σΩ
1 < λ∗ < σ

Ω\Ω+
1

such that the set of λ’s for which (1.1) possesses a positive solution is

(−∞, λ∗]. Moreover, for each λ ∈ (σΩ
1 , λ

∗], (1.1) possesses a unique linearly

stable positive solution. Furthermore, if λ ∈ (σΩ
1 , λ

∗), then this solution

is linearly asymptotically stable and (1.1) possesses at least two positive

solutions.

The uniqueness of the stable positive solutions is quite striking, since (1.1)

possesses at least two positive solutions for each λ ∈ (σΩ
1 , λ

∗). In fact,

it will become clear later how playing around with the shape of Ω and

the nodal behavior of a(x) the problem (1.1) might have as many positive

solutions as we wish. The relevance of Theorem 1.1 comes from the fact

that the uniqueness of the stable positive solution is an universal property

independent of the shape of Ω and the nodal behavior of a(x).

It follows from Theorem 1.1 that if λ ≤ σΩ
1 , then u = 0 is the unique stable

non-negative solution of (1.1). Therefore, the species might be driven to

extinction, although since Theorem 1.1 provides us with a positive solution,

necessarily unstable, the species can avoid extinction if the initial popula-

tion lies on the stable manifold of some of these positive states. When this

last phenomenology occurs, a very natural question arises. How does dis-

tribute the species in Ω as λ ↓ −∞?. From the biological point of view, it is
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quite clear that in order to avoid extinction the species should concentrate

in the regions where intraspecific cooperation takes place, and within these

regions such concentration should be more emphasized around the values

where the symbiosis rate is higher. This strongly suggests that the positive

solutions of (1.1) should exhibit a spike layer behavior as λ ↓ −∞ around the

negative local minima of a(x), exhibiting a single or multiple peak profile

accordingly with the nodal behavior of a(x), and the number of components

of Ω−. In the very special case when Ω− = Ω variational methods have

proven to be useful to show the existence of some spike layer solutions of

(1.1), but unfortunately no result is available for superlinear indefinite prob-

lems. The main difficulty coming from the fact that the standard variational

methods can not be applied to treat the case when a(x) changes of sign, as

already pointed out in [BCN95] (cf. [NW95], [DF97], [DF98], [Li97], and

the references there in).

To gain insight into this and some related problems, in Sections 4-8 we use

spectral methods with collocation coupled with path following techniques to

compute the set of positive solutions of (1.1) for some special one dimensional

prototype models. The numerics is of interest on its own right, since in the

case when Ω− = ∅ and Ω0 �= ∅ the population might exhibit entire blow

up in some of the components of the refuge Ω0. In fact, the set of positive

solutions of (1.1) bifurcates from infinity at the value λ = σΩ0
1 (cf. Theorem

2.4 in Section 2). Although Theorem 2.6 of Section 2 shows that this can not

occur if a(x) changes of sign, since a priori bounds for the positive solutions

of (1.1) in one space dimension are available, one can easily imagine that

(1.1) might exhibit arbitrarily large positive solutions by chosing Ω−, or

‖a−‖∞, sufficiently small.

Our numerical computations strongly suggest that if N = 1, Ω− has n com-

ponents, and a(x) has a unique local minimum on each of these components,
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then (1.1) possesses
n∑
j=1

(
n

j

)
= 2n − 1 (1.4)

positive solutions for each λ < 0 sufficiently small. Among them, n solutions

will have one single peak on each of the minima of a−, n(n− 1)/2 solutions

will have two peaks, and in general
(
n

j

)
solutions will exhibit j peaks.

As far as to the structure of the set of positive solutions of (1.1) concerns,

the numerics shows that it is strongly based upon the symmetry properties

of a(x). More precisely, if we take Ω = (0, 1), a > 0 in (1/3, 2/3), a < 0 in

(0, 1/3) ∪ (2/3, 1), and a(x) is symmetric, then the set of positive solutions

consists of a unique global component emanating from u = 0 at λ = π2

and exhibiting a subcritical pitchfork bifurcation at a certain value λ = λc

in such a way that (1.1) possesses three positive solutions for each λ < λc,

one of them with two peaks on each of the negative minima of a(x) and the

remaining two with a single peak on each of the negative minima of a. It

turns out that breaking the symmetry of the coefficient a(x) results into an

imperfect bifurcation at λ = λc and therefore the structure of the solution

set of (1.1) suffers a drastical change. Now, the solution set possesses two

global components. One of them is the component bifurcating from u = 0 at

λ = π2, denoted by C+, and the other is a global folding bounded away

from C+, referred to as F+. The separation between these two components

is as much emphasized as much separated from its original profile is a(x).

Nevertheless, however the number of components varied as a result of the

symmetry breaking, the number of positive solutions as well as their profiles

did not change for λ < λc sufficiently negative.

A really striking feature is the divergence to infinity of F+ as we make

a− converge to zero in some of the components of Ω−, e.g. (0, 1/3). In

this case, keeping fixed a(x) in (1/3, 1], the component C+ converges to

the corresponding component of the problem with Ω0 = (0, 1/3), while the
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solutions of F+ grow up to infinity in (0, 1/3]. Beside supporting the validity

of formula (1.4), these computational experiments confirm the robustness of

our numerical schemes and suggest that in order to realize the dynamics of

(1.2) the functional spaces where these superlinear indefinite problems are

studied should be up-dated to include solutions whose value is infinity in

some of the components of Ω0.

The fact that the number of positive solutions in superlinear subcritical

problems can suffer drastical changes as the shape of Ω changes is well doc-

umented in the literature, [HV84], [Da88], [Da90],[Ce95]. In fact, breaking

down the convexity of Ω can result into an arbitrarily large number of solu-

tions. Our work shows that the same effect arises by varying the coefficients

of the model, instead of the shape of the domain, even in the simplest one

dimensional models.

One can easily imagine that varying coefficients in higher dimensional prob-

lems the complexity of the bifurcation diagrams will increase as much as we

wish, since we can play around not only with the shape of Ω but also with

the nodal behavior of a(x). Now, it becomes clear why Theorem 1.1 is so

relevant. As already commented above, the uniqueness of the stable state

does not depend on the geometry of the domain, it is a universal property.

We have already sketched most of the contain of Sections 2, 3. Beside

the uniqueness of the stable positive solution, when it exists, in Section 3

we shall obtain some general multiplicity results by using the fixed point

index in cones. In Section 4 we introduce the numerical schemes used in

the remaining sections. In Section 5 we analyze a pure sublinear model,

in Section 6 we analyze an asymmetric superlinear indefinite problem, in

Section 7 we analyze a symmetric superlinear indefinite problem, and in

Section 8 we analyze the symmetry breaking we were talking before by

adding a parameter to the coefficient a(x) of the model treated in Section

7 and studying how vary the corresponding bifurcation diagrams as the

parameter varies up to provide us with the asymmetric model of Section 6.
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II.2. On the existence of positive solutions

Since λ is regarded as a continuation parameter, the positive solutions

of (1.1) will be though as couples (λ, u). Any weak solution of (1.1) lies in

W 2
p (Ω) for all p > N , and hence in C2−N/p(Ω). In particular, any weak

solution is a.e. in Ω twice classically differentiable (e.g. [St70, Theorem

VIII.1). In other words, any weak solution is strong (e.g. [GT83, Chapter

9]). By the strong maximum principle any strong non-negative solution of

(1.1) u �= 0 satisfies u(x) > 0 for all x ∈ Ω and ∂u
∂n(x) < 0 for all x ∈ ∂Ω, that

is, it lies in the interior of the cone P of positive functions of U := C1
0(Ω).

It is well known that λ = σΩ
1 is the unique bifurcation value of (1.1) to

positive solutions from the trivial state u = 0. Moreover, as a consequence

from the main theorem of [CR71] a curve of positive solutions emanates

from (λ, u) = (λ, 0) at λ = σΩ
1 . More precisely, if Φ stands for the principal

eigenfunction associated with σΩ
1 , normalized so that

∫
Ω

Φ2 = 1 ,

then the following result is satisfied.

Proposition 2.1. There exist s0 > 0 and two unique mappings of class C1

µ : (−s0, s0) → R , v : (−s0, s0) → U ,

such that µ(0) = 0, v(0) = 0, and for each s ∈ (−s0, s0)
∫
Ω v(s)Φ = 0 and

the couple

(λ(s), u(s)) := (σΩ
1 + µ(s), s(Φ + v(s))) (2.1)

is a solution of (1.1). Moreover, if s0 is sufficiently small, then these are the

unique non-trivial solutions of (1.1) in a neighborhood of (λ, u) = (σΩ
1 , 0) ∈

R × U . Furthermore,

lim
s→0

µ(s)
|s|p =

∫
Ω

aΦp+2 . (2.2)
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Proof

It suffices to check (2.2). The remaining assertions are easily obtained from

the main theorem of [CR71]. Substituting (2.1) into (1.1), dividing by s,

using the definition of Φ and rearranging terms gives

(−∆− σΩ
1 )v(s) = µ(s)(Φ + v(s))− |s|pa(Φ + v(s))p+1 ,

for each s ∈ (−s0, s0). Now, multiplying this equation by Φ, integrating

over Ω and applying the formula of integration by parts yields

µ(s)
∫
Ω

Φ(Φ + v(s)) = |s|p
∫
Ω

aΦ(Φ + v(s))p+1 s ∈ (−s0, s0) .

Dividing this relation by |s|p and passing to the limit as s → 0 gives (2.2).

This completes the proof. �

Since v(0) = 0 and Φ ∈ int P , the couple (λ(s), u(s)) = (σΩ
1 + µ(s), s(Φ +

v(s))) provides us with a positive solution of (1.1) for each s ∈ (0, s0), if

s0 > 0 is sufficiently small. Therefore, setting

D :=
∫
Ω

aΦp+2 (2.3)

the bifurcation to positive solutions is supercritical if D > 0 (i.e. λ(s) > σΩ
1 ),

while it is subcritical if D < 0 (i.e. λ(s) < σΩ
1 ).

By the global bifurcation theorems of [Ra71] and [Da74] the component

(maximal closed and connected set) of positive solutions of (1.1) emanating

from u = 0 at λ = σΩ
1 is unbounded in R×U . Let C+ denote it. The behavior

of C+ is based upon the nodal behavior of a(x) as well as on the nature of

the local bifurcation to positive solutions from u = 0, as the following result

illustrates.

Proposition 2.2. If (1.1) possesses a positive solution (λ, u) with λ ≥ σΩ
1 ,

then

D :=
∫
Ω

aΦp+2 > 0 . (2.4)
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In particular, if D ≤ 0, then (1.1) does not admit a positive solution for

λ ≥ σΩ
1 and hence, C+ ⊂ (−∞, σΩ

1 )× U .

The proof is based on the following lemma, whose proof can be found in

[BCN95] and [Lo97].

Lemma 2.3. Let p > N and u, v ∈ W 2
p (Ω) two arbitrary functions such

that u = v = 0 on ∂Ω and v
u ∈ C1(Ω) ∩ C(Ω). Then, for any function

f : [0,∞) → R of class C1 the following Picone’s identity holds

∫
Ω

f(
v

u
)(−v∆u+ u∆v) = −

∫
Ω

f ′(
v

u
)u2|∇v

u
|2 . (2.5)

Proof of Proposition 2.2

Let (λ, u) be a positive solution of (1.1). Then, since Φ, u ∈ int P , we have
Φ
u ∈ C1(Ω) and

(
Φ
u

)p+1

(−Φ∆u+ u∆Φ) =
(
Φ
u

)p+2

u2(λ− σΩ
1 )− a(x)Φp+2 . (2.6)

On the other hand, (2.5) gives

∫
Ω

(
Φ
u
)p+1(−Φ∆u+ u∆Φ) < 0 ,

since u can not be a multiple of Φ, unless a = 0, and f(t) = tp+1 is increasing.

Therefore, we find from (2.6) that

(λ− σΩ
1 )

∫
Ω

(
Φ
u

)p+2

u2 <

∫
Ω

aΦp+2 .

This completes the proof. �

The next result provides us with the structure of C+ when a(x) is non-

negative (see Theorem I.2.4 in Chapter I). Note that in this case D > 0 and

hence, C+ emanates supercritically from u = 0.
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Theorem 2.4. Assume a ≥ 0, a �= 0. Then, (1.1) possesses a positive

solution if, and only if, σΩ
1 < λ < σΩ0

1 , where Ω0 := Ω \ Ω+ and σΩ0
1 =

min1≤j≤n0 σ
Ωj

0
1 , being Ωj0, 1 ≤ j ≤ n0, the components of Ω0. Moreover,

the positive solution is unique if it exists, and if we denote it by θλ, then

the map (σΩ
1 , σ

Ω0
1 ) → C(Ω), λ → θλ, is C1, increasing, limλ↓σΩ

1
‖θλ‖U =

0 and lim
λ↑σΩ0

1
θλ = ∞ uniformly on any compact subset of each of the

components Ωj0 of Ω0 for which σΩ0
1 = σ

Ωj
0

1 .

Furthermore, if u0 ≥ 0, u �= 0, and we denote by u(x, t;u0) the unique

solution of the evolutionary model (1.2), then limt↑∞ ‖u(·, t;u0)‖U = 0

if λ ≤ σΩ
1 , and limt↑∞ ‖u(·, t;u0) − θλ‖U = 0 if σΩ

1 < λ < σ
Ωj

0
1 , while

limt↑∞ ‖u(·, t;u0)‖C(Ω) = ∞ if λ ≥ σΩ0
1 .

As an immediate consequence it follows from this result that the set of

positive solutions of (1.1) consists of C+, which is a C1-curve emanating

supercritically from u = 0 at λ = σΩ
1 and growing up to infinity at λ = σΩ0

1 .

In particular, L∞ a priori bounds for the positive solutions are not available,

since these solutions bifurcate from infinity at λ = σΩ0
1 . Figure 5.1 in Section

5 shows a typical bifurcation diagram under the assumptions of Theorem

2.4.

As far as concerns to the limiting profile of the positive solutions of (1.1) in

Ω+ as λ ↑ σΩ0
1 [−∆], the following result is known (cf. [GGLS98, Theorem

6.4] and [LS98, Theorem 4.3]).

Theorem 2.5. Under the same assumptions of Theorem 2.4, suppose in

addition that Ω0 is connected and that a ∈ C1(Ω). Then, lim
λ↑σΩ0

1
θλ(x) =

θ∞(x) for each x ∈ Ω+, where θ∞ is the minimal positive solution of

−∆u = λu− a(x)|u|pu in Ω+ , u|∂Ω+ = ∞ , (2.7)

Problems of the same type as (2.7) has been dealt with in [MV97] and the

references there in, where the uniqueness of the positive solution of (2.7) was
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shown to occur when a is a positive constant. The problem of the uniqueness

of the positive solution for (2.7) in our general setting seems to be open.

In the most general case when a(x) changes of sign, the structure of C+

might change drastically. In this case the existence of L∞ a priori bounds

for the positive solutions of (1.1) depends on how large is the exponent p,

and it looks like it also depends on how fast a−(x) decays to zero on ∂Ω−.

More precisely, the following result was found in [AL98] (cf. Theorem 4.3

and Theorem 5.2 there in).

Theorem 2.6. Assume that a(x) changes of sign and that some of the

following three conditions is satisfied:

(C1) N = 1 , 2.

(C2) N ≥ 3 and there exist α− : Ω− → R, continuous and bounded away

from zero in a neighborhood of ∂Ω−, and a constant γ ≥ 0 such that

a−(x) = α−(x)[dist (x, ∂Ω−)]γ x ∈ Ω− , (2.8)

and p+ 1 < min { (N + 1 + γ)/(N − 1) , (N + 2)/(N − 2) }.
(C3) N ≥ 3, Ω− ⊂ Ω, Ω+ ∩ Ω− = ∅, and p+ 1 < N/(N − 2).

Then, any set of positive solutions of (1.1) S with ΛS := {λ ∈ R : (λ, u) ∈
S } bounded is bounded in R × U .

Combining Proposition 2.2 here in with Theorem 3.3, Theorem 7.1 and

Theorem 7.4 of [AL98], the following result is easily obtained.

Theorem 2.7. Assume that a(x) changes of sign and that if S is any set

of positive solutions of (1.1) with ΛS := {λ ∈ R : (λ, u) ∈ S } bounded,

then S is bounded in R × U . Let Λ denote the set of λ’s for which (1.1)

possesses a positive solution. Then, Λ = (−∞, σΩ
1 ) if D ≤ 0, and there exists

σΩ
1 < λ∗ < σ

Ω\Ω+
1 such that Λ = (−∞, λ∗] if D > 0. Moreover, in this case

(1.1) possesses two positive solutions (at least) for each λ ∈ (σΩ
1 , λ

∗).

As an immediate consequence from this result, the component C+ possesses

a positive solution for each λ ∈ (−∞, σΩ
1 ). As suggested by the numerical
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computations carried out in the next sections, C+ might be constituted by

one or several branches depending on the nodal behavior of a(x), in strong

contrast with the situation described by Theorem 2.4. In fact, the set of

positive solutions of (1.1) might possess two, or more, components as the

numerical computations of Section 8 show.

II.3 Abstract multiplicity results
The existence and the uniqueness of the stable
positive solution

Given a positive solution (λ0, u0) of (1.1) its stability as an steady-state

of (1.2) is given by the spectrum of the linearization

L(λ0,u0) := −∆+ (p+ 1)a(x)up0 − λ0 (3.1)

under homogeneous Dirichlet boundary conditions. In fact, if (λ0, u0) is

hyperbolic, then the dimension of its unstable manifold is the sum of the

algebraic multiplicities of all the negative eigenvalues of L(λ0,u0) (finitely

many). If σΩ
1 [L(λ0,u0)] > 0, then (λ0, u0) is exponentially asymptotically

stable, while it is unstable if σΩ
1 [L(λ0,u0)] < 0. It will be said that (λ0, u0)

is neutrally stable if σΩ
1 [L(λ0,u0)] = 0.

The following results provide us with the structure of the solution set of

(1.1) around any asymptotically, or neutrally, stable positive solution.

Lemma 3.1. Let (λ0, u0) be a positive solution of (1.1) satisfying

σΩ
1 [L(λ0,u0)] > 0 . (3.2)

Then, there exist ε > 0 and an analytic mapping u : (λ0 − ε, λ0 + ε) → U

such that u(λ0) = u0 and (λ, u(λ)) is a positive solution of (1.1) for each
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λ ∈ (λ0 − ε, λ0 + ε). Moreover, the map (λ0 − ε, λ0 + ε) → C(Ω), λ→ u(λ),

is increasing and there exists a neighborhood N of (λ0, u0) in R × U such

that if (λ, u) ∈ N is a solution of (1.1), then (λ, u) = (λ, u(λ)) for some

λ ∈ (λ0 − ε, λ0 + ε).

Proof

The solutions of (1.1) are the zeros of the operator H : R × U → U defined

by

H(λ, u) = u− (−∆)−1[λu− a|u|pu] . (3.3)

Since u0 ∈ int P , for any u ∈ U = C1
0 (Ω) with ‖u‖U � 0 we have

|u0 + u|p(u0 + u) = up+1
0 (1 +

u

u0
)p+1 .

Moreover, u/u0 � 0 in C(Ω). Hence, H(λ, u) is real analytic in both argu-

ments at (λ0, u0).

We are assuming that H(λ0, u0) = 0, and (3.2) implies that DuH(λ0, u0) is

an isomorphism. Thus, the local existence and uniqueness of the solution

curve passing through by (λ0, u0) follows from the implicit function theorem.

Moreover, by implicit differentiation

L(λ,u(λ))u
′(λ) = u(λ) > 0

and hence, we find from the strong maximum principle that u′(λ) > 0.

Note that (3.2) implies that σΩ
1 [L(λ,u(λ))] > 0 for λ � λ0, since the prin-

cipal eigenvalue varies continuously with the potential. This completes the

proof. �

Proposition 3.2. Let (λ0, u0) be a positive solution of (1.1) such that

σΩ
1 [L(λ0,u0)] = 0 . (3.4)

Let ψ0 > 0 denote the principal eigenfunction associated with σΩ
1 [L(λ0,u0)].

Then, there exist ε > 0 and a real analytic mapping (λ, u) : (−ε, ε) → R×U
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such that (λ(0), u(0)) = (λ0, u0) and (λ(s), u(s)) is a positive solution of

(1.1) for each s ∈ (−ε, ε). Moreover,

u(s) = u0 + sψ0 + v(s) , λ(s) = λ0 + s2λ2 +O(s3) , (3.5)

where v(s) = O(s2) as s→ 0,
∫
Ω
v(s)ψ0 = 0 for each s ∈ (−ε, ε), and

λ2 =
p(p+ 1)

2

∫
Ω au

p−1
0 ψ3

0∫
Ω u0ψ0

< 0 . (3.6)

Furthermore, there exists a neighborhood N of (λ0, u0) in R × U such that

if (λ, u) ∈ N is a solution of (1.1), then (λ, u) = (λ(s), u(s)) for some

s ∈ (−ε, ε). Also,

sign λ′(s) = sign σΩ
1 [L(λ(s),u(s))] . (3.7)

Summarizing, the set of solutions of (1.1) around (λ0, u0) possesses the

structure of a quadratic subcritical turning point. Moreover, the solutions

on the upper half branch are linearly unstable, while the solutions on the

lower one are exponentially asymptotically stable.

The existence and the uniqueness of the curve (λ(s), u(s)) as well as the

relation (3.7) were shown in [Am76, Proposition 20.8]. They follow by ap-

plying the implicit function theorem to a certain operator related to (3.3)

through by a Lyapunov-Schmidt decomposition of U . It remains to prove

the validity of the expansion of λ(s) in (3.5), as well as the relation (3.6)

and the last assertion in the statement.

Proof

For each s ∈ (−ε, ε) we have

−∆u(s) = λ(s)u(s)− aup+1
0 [1 + s

ψ0

u0
+
v(s)
u0

]p+1 . (3.8)
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Differentiating (3.8) with respect to s at s = 0 and rearranging terms gives

0 = L(λ0,u0)ψ0 = λ′(0)u0 (3.9)

and hence, λ′(0) = 0. Now, differentiating twice with respect to s the

relation (3.8), particularizing the resulting equation at s = 0 and rearranging

terms gives

L(λ0,u0)v
′′(0) = λ′′(0)u0 − p(p+ 1)aup−1

0 ψ2
0 . (3.10)

Note that for any p > 0 the function up−1
0 ψ2

0 = up0ψ0
ψ0
u0

is well defined, since

ψ0, u0 ∈ int P . Multiplying (3.10) by ψ0, integrating over Ω and applying

the formula of integration by parts we find that

λ′′(0) = p(p+ 1)

∫
Ω au

p−1
0 ψ3

0∫
Ω u0ψ0

.

Thus, to complete the proof of (3.6) it remains to show that

∫
Ω

aup−1
0 ψ3

0 < 0 . (3.11)

Thanks to Lemma 2.3 we obtain

∫
Ω

(
ψ0

u0

)2

(−ψ0∆u0 + u0∆ψ0) = −2
∫
Ω

ψ0u0|∇ψ0

u0
|2 < 0 , (3.12)

since ψ0 can not be a multiple of u0. Moreover,

−ψ0∆u0 + u0∆ψ0 = paup+1
0 ψ0 ,

and hence, (3.11) follows from (3.12).

Finally, using (3.7) it is easily seen that σΩ
1 [L(λ(s),u(s))] > 0 if s < 0, while

σΩ
1 [L(λ(s),u(s))] < 0 if s > 0. This completes the proof. �
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Corollary 3.3.

Let (λ0, u0) be a positive solution of (1.1) with σΩ
1 [L(λ0,u0)] = 0. Then,

there exists ε > 0 such that for each λ ∈ (λ0 − ε, λ0) the problem (1.1)

possesses two positive solutions, one of them, say (λ, u), satisfying

σΩ
1 [L(λ,u)] > 0. Moreover, (1.1) does not admit a positive solution if λ > λ0,

|λ− λ0|+ ‖u− u0‖ < ε.

The following result shows that u = 0 is the unique non-negative stable

solution of (1.1) for λ ≤ σΩ
1 .

Theorem 3.4. Let (λ0, u0) be a positive solution of (1.1) with λ0 ≤ σΩ
1 .

Then, σΩ
1 [L(λ0,u0)] < 0.

Proof

If a ≤ 0, a �= 0, then the proof is very easy. Indeed, by the monotonicity of

the principal eigenvalue with respect to the potential and the Krein-Rutman

theorem we have

σΩ
1 [−∆+ (p+ 1)aup0 − λ0] < σΩ

1 [−∆+ aup0 − λ0] = 0 ,

since (−∆ + aup0 − λ0)u0 = 0. The proof in the general case when a(x)

changes of sign is far from elementary and it will follow by contradiction.

Assume that (1.1) possesses a positive solution (λ0, u0) such that λ0 ≤ σΩ
1

and σΩ
1 [L(λ0,u0)] ≥ 0. Then, thanks to Corollary 3.3, (1.1) possesses a

positive solution (λ1, u1) satisfying λ1 ≤ σΩ
1 and σΩ

1 [L(λ1,u1)] > 0. By

Lemma 3.1, through by (λ1, u1) passes a regular curve (λ, u(λ)) of positive

solutions of (1.1) such that σΩ
1 [L(λ,u(λ))] > 0, λ � λ1. By global con-

tinuation to the left of λ1, some of the following complementary options

occurs: Either (i) u(λ) > 0 and σΩ
1 [L(λ,u(λ))] > 0 for each λ < λ1, or

(ii) there exists λb < λ1 such that u(λ) > 0 and σΩ
1 [L(λ,u(λ))] > 0 for

each λ ∈ (λb, λ1), while u(λb) = 0, or (iii) there exists λt < λ1 such that

u(λ) > 0 and σΩ
1 [L(λ,u(λ))] > 0 for each λ ∈ (λt, λ1), while u(λt) > 0 and

σΩ
1 [L(λt,u(λt))] = 0.
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The option (ii) is excluded, since λb < λ1 ≤ σΩ
1 and λ = σΩ

1 is the unique

bifurcation value to positive solutions from u = 0. By Corollary 3.3, the

option (iii) can not occur either. Therefore, the option (i) occurs. Note

that Lemma 3.1 implies u(λ) < u(λ1) = u1 for each λ < λ1. Now, given

λ < min{0, λ1}, let xλ ∈ Ω denote a point where

u(λ)(xλ) = ‖u(λ)‖L∞(Ω) .

Then, since −∆u(λ)(xλ) ≥ 0, we find from (1.1) that

λ− a(xλ)[u(λ)(xλ)]p ≥ 0 .

Therefore, a(xλ) < 0 and limλ↓−∞ u(λ)(xλ) = ∞. This contradicts u(λ) <

u1 and completes the proof. �

Corollary 3.5. If D =
∫
Ω
aΦp+2 ≤ 0, then any positive solution of (1.1) is

linearly unstable.

Proof

Assume D ≤ 0. By Proposition 2.2, (1.1) does not admit a positive solution

if λ ≥ σΩ
1 . Theorem 3.4 completes the proof. �

Theorem 3.6. The problem (1.1) possesses a stable positive solution if,

and only if, D > 0.

Proof

By Corollary 3.5, D > 0 if (1.1) possesses a stable positive solution. Assume

D > 0. Then, the component C+ of the set of positive solutions emanates

from u = 0 towards the right of σΩ
1 . Moreover, thanks to Proposition 2.1,

in a neighborhood of (λ, u) = (σΩ
1 , 0) it entirely consists of the regular curve

(λ(s), u(s)), s > 0, defined in (2.1). It follows from (2.2) that λ′(s) > 0 if

s � 0. Hence, differentiating (1.1) with respect to s gives

L(λ(s),u(s))u
′(s) = λ′(s)u(s) > 0 .
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Multiplying this relation by the principal eigenfunction of L(λ(s),u(s)), which

will be denoted by Φs, integrating over Ω and applying the formula of inte-

gration by parts we find that

σΩ
1 [L(λ(s),u(s))]

∫
Ω

Φsu′(s) = λ′(s)
∫
Ω

Φsu(s) > 0 .

Therefore,

σΩ
1 [L(λ(s),u(s))] > 0 ,

since u′(s) = Φ + O(s) > 0. This shows that in a neighborhood of the bi-

furcation point the component C+ entirely consists of asymptotically stable

solutions and completes the proof. �

The following result shows that the value λ∗ arosen in the statement of

Theorem 2.7 equals the λ-coordinate of the first turning point, necessarily

subcritical, along the component C+. It also shows the uniqueness of the

stable solution for each λ ∈ (σΩ
1 [−∆], λ∗].

Theorem 3.7. Assume that a(x) changes of sign, that D > 0 and that if

S is any set of positive solutions of (1.1) with ΛS := {λ ∈ R : (λ, u) ∈ S }
bounded, then S is bounded in R×U . Thanks to Theorem 2.7, there exists

λ∗ > σΩ
1 such that the set of λ’s for which (1.1) possesses a positive solution

is (−∞, λ∗].

Then, there exists a real analytic map

u : (σΩ
1 [−∆], λ∗] → C(Ω) , λ→ u(λ) ,

such that for each λ ∈ (σΩ
1 [−∆], λ∗] the couple (λ, u(λ)) is a positive solution

of (1.1) satisfying σΩ
1 [L(λ,u(λ))] > 0 if λ < λ∗, σΩ

1 [L(λ∗,u(λ∗))] = 0, and

limλ↓σΩ
1
u(λ) = 0. Moreover, the mapping λ→ u(λ) is increasing and these

are the unique positive solutions of (1.1) which are not linearly unstable.
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Proof

By the proof of Theorem 3.6, (1.1) possesses a positive solution (λ0, u0)

with λ0 ∈ (σΩ
1 , λ

∗) and σΩ
1 [L(λ0,u0)] > 0. Thanks to Lemma 3.1, through by

(λ0, u0) passes a real analytic curve (λ, u(λ)) of positive solutions of (1.1)

satisfying σΩ
1 [L(λ,u(λ))] > 0, λ � λ0. By Lemma 3.1, Corollary 3.3 and

Theorem 3.4 it is easily seen how this local curve can be prolongated to the

left of λ0 up to reach the value λ = σΩ
1 where it degenerates to u = 0. Note

that σΩ
1 [L(λ,u(λ))] > 0 for each λ ∈ (σΩ

1 , λ0]. Similarly, it can be prolongated

to the right of λ0 up to reach a value λt ≤ λ∗ where σΩ
1 [L(λt,u(λt))] = 0,

while σΩ
1 [L(λ,u(λ))] > 0 for each λ ∈ [λ0, λt). By Proposition 3.2, (λt, u(λt))

is a quadratic subcritical turning point.

Thanks to the local uniqueness guaranteed by Propositions 2.1, 3.2 and

using the nondegeneration of the positive solutions on the compact arcs

(λ, u(λ)), σΩ
1 + ε ≤ λ ≤ λt − ε, ε > 0, ε � 0, it is easily seen that there

exists δ > 0 such that the open δ-neighborhood in R×U of the set (λ, u(λ)),

σΩ
1 ≤ λ ≤ λt, denoted by Nδ, does not contain any positive solution of (1.1)

on its boundary. Note that the arcs (λ, u(λ)), σΩ
1 + ε ≤ λ ≤ λt − ε, are

compact since the positive solutions of (1.1) are fixed points of a compact

operator. We have just isolated the curve of stable positive solutions that

we have constructed above.

Assume λt < λ∗ and pick λ1 ∈ (λt, λ∗). Then, by [Am76, Proposition 20.3]

the minimal positive solution (λ1, u1) of (1.1) is well defined. Moreover,

thanks to [Am76, Proposition 20.4], σΩ
1 [L(λ1,u1)] ≥ 0. By construction,

(λ1, u1) ∈ R × U \ N̄δ. Now, combining Lemma 3.1 and Proposition 3.2

together with a global continuation argument to the left of λ1, it is easily

seen that (1.1) must have a positive solution linearly asymptotically stable

for λ = σΩ
1 , since the curve through by (λ1, u1) lies within R × U \ N̄δ and

hence, it can not degenerate to u = 0. The existence of a stable positive

solution for λ = σΩ
1 contradicts to Theorem 3.4. This contradiction shows

that λt = λ∗.
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The fact that (1.1) does not admit a stable positive solution in R × U \ N̄δ

follows by contradiction with the same continuation argument that we have

just used to show that λt = λ∗.

It remains to show the monotonicity of λ→ u(λ). Differentiating (1.1) with

respect to λ gives

L(λ,u(λ))u
′(λ) = u(λ) > 0

and since L(λ,u(λ)) satisfies the strong maximum principle we find from this

relation that u′(λ) > 0. This completes the proof. �

In the rest of this section we give some multiplicity results by means of

the fixed point index in positive cones. We will assume that Ω− �= ∅, to
avoid the situation described by Theorem 2.4, and that any set of positive

solutions S of (1.1) with ΛS := {λ ∈ R : (λ, u) ∈ S } bounded is bounded

in R × U .

Let β > σ
Ω\Ω+
1 and α < σΩ

1 be and consider the interval Λb := [α, β].

Thanks to Theorem 2.7, (1.1) does not admit a positive solution if λ ≥ β.

Moreover, we are assuming that the set of positive solutions of (1.1) in Λb
is bounded in R × U . Thus, there exists M > 0 such that

aup < λ+M

for any positive solution (λ, u) of (1.1) with λ ∈ Λb.

Let e denote the unique positive solution of

(−∆+M)e = 1 in Ω , e|∂Ω = 0 .

By the strong maximum principle, e ∈ int P . Let Ce(Ω) denote the ordered

Banach space consisting of all functions u ∈ C(Ω) for which there exists a

constant γ > 0 such that −γe ≤ u ≤ γe endowed with the norm

‖u‖e := inf {γ > 0 : −γe ≤ u ≤ γe }
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and ordered by the cone of positive functions, Pe. Then, the operators

Kλ : Ce(Ω) → Ce(Ω) defined by

Kλu := (−∆+M)−1[(λ+M)u− a(x)|u|pu] , λ ∈ Λb , (3.13)

are compact and strongly order preserving in the sense of [Am76]. Moreover,

the solutions of (1.1) are the fixed points of Kλ. Let B1 denote the unit ball

in Ce(Ω) and for any ρ > 0 set Pρ := ρB1 ∩ Pe. Since we have uniform a

priori bounds for the positive solutions of (1.1) in Λb, the fixed point index

of Kλ in Pρ, denoted by ind (Kλ, Pρ), makes sense if ρ is sufficiently large.

Moreover, the following result is satisfied.

Proposition 3.8. If λ �= σΩ
1 , then u = 0 is an isolated fixed point of Kλ in

Pe such that

ind (Kλ, 0) = 1 if λ < σΩ
1 , (3.14)

and

ind (Kλ, 0) = 0 if λ > σΩ
1 . (3.15)

Moreover, for all λ ∈ Λb
ind (Kλ, Pρ) = 0 . (3.16)

Proof

If λ �= σΩ
1 , then the operator I −DuKλ(0) is invertible on Pe, i.e. 1 is not

an eigenvalue to a positive eigenfunction of DuKλ(0). Indeed, since

DuKλ(0)Φ = (−∆+M)−1[(λ+M)Φ] =
λ+M

σΩ
1 [−∆] +M

Φ ,

we find that spr DuKλ(0) > 1 if λ > σΩ
1 , while spr DuKλ(0) < 1 if λ < σΩ

1 .

Thus, Lemma 13.1 of [Am76] completes the proof of (3.14) and (3.15). The

relation (3.16) follows from the homotopy invariance of the index using in

addition the fact that u = 0 is the unique non-negative solution of (1.1) for

λ = β. This completes the proof. �
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Theorem 3.9. (i) If λ < σΩ
1 , then (1.1) possesses a positive solution. If in

addition we assume (1.1) to have a finite number of non-degenerate positive

solutions, say u1,...,uN , then N = 2k + 1 for some k ≥ 0, and exactly k + 1

among them have index −1, while the remaining k have index 1.

(ii) If D > 0, then (1.1) possesses two positive solutions (at least) for each

λ ∈ (σΩ
1 , λ

∗). Moreover, if we assume (1.1) to have a finite number of non-

degenerate positive solutions, say u1,...,uN , then N = 2k for some k ≥ 1,

and exactly k among them have index −1, while the remaining k have index

1.

Proof

(i) Without lost of generality we can assume that α has been chosen so that

α < λ. It follows from (3.14) and (3.16), using the additivity of the fixed

point index, that

ind (Kλ, Pρ \ P̄δ) = −1 , (3.17)

provided δ > 0 is sufficiently small. Therefore, (1.1) possesses another

solution in Pρ \ P̄δ, necessarily positive.

Now, assume that (1.1) possesses N ≥ 1 nondegenerate positive solutions,

uj , 1 ≤ j ≤ N . Then, each of them is isolated and Leray-Schauder formula

implies

ind (Kλ, uj) = (−1)nj , 1 ≤ j ≤ N ,

where nj is the sum of the algebraic multiplicities of all the eigenvalues

greater than one of DuKλ(uj). In particular, each of these indices equals 1

or −1. Moreover, it follows from (3.17) that

N∑
j=1

(−1)nj = −1 .

This completes the proof of Part (i).
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(ii) Assume D > 0 and pick λ ∈ (σΩ
1 , λ

∗). Then, thanks to Theorem

3.7 the problem (1.1) possesses a unique positive solution (λ, u) such that

σΩ
1 [L(λ,u)] > 0. By Leray Schauder formula,

ind (Kλ, u) = 1 ,

and hence, it follows from the additivity of the fixed point index that

ind (Kλ, Pρ \ (u+ δB̄1)) = −1 , (3.18)

provided δ > 0 is sufficiently small. Since u = 0 is an isolated solution of

(1.1) with index zero, once again the additivity of the fixed point together

with (3.18) imply the existence of a further positive solution. The last

assertion of Part (ii) follows adapting the corresponding argument of the

proof of Part (i). �

Remark 3.10. In the proof of Theorem 3.9, each nj equals the dimension

of the unstable manifold of the corresponding uj . Therefore, the index is

one if, and only if, the dimension of the unstable manifold is odd.

Note that Theorem 3.9 provides us with the multiplicity result of Theorem

2.7 by using an striking argument substantially simpler than the one given

in [AL98, Theorem 7.4]. This is so because as a result of Theorem 3.7 the

minimal solution always has index one, except at the value λ∗ where it has

index zero. This is not necessarily true under the general assumptions of

[Am76].
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II.4. Pseudo-spectral methods coupled with path
following

In the remaining of this Chapter we solve a representative class of one

dimensional prototype models of (1.1) by using spectral collocation methods

coupled with path-following techniques. This gives high accuracy with low

computational work. In all our numerical computations we have used trigo-

nometric modes and the collocation points have been taken to be equidistant,

with the number of modes equal to the number of collocation points. Let

N denote the number modes and

xi =
i

1 +N
, 1 ≤ i ≤ N ,

the collocation points. Then, the solutions u(x) of (1.1) are approximated

by

uN (x) =
N∑
j=1

cj sin(jπx) , (4.1)

being C = (c1, ...., cN )T a solution of

BC = λJC −A(x)(JC)r+1 (4.2)

where

J = (sin(jπxi))1≤i,j≤N , B = ((jπ)2 sin(jπxi))1≤i,j≤N ,

A(x) = diag (a(xi))1≤i≤N .

For this choice the zero solution of (1.1) as well as the first N bifurcation val-

ues from it are preserved. In fact, for regular, turning and simple bifurcation

points from the trivial solution the local topological structure of the solu-

tion set is known to be coincident for both the discrete and the continuous
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counterparts of the model (cf. [RBR80], [RBR181], [RBR281]). Therefore,

also is preserved the global structure of any compact component of the so-

lution set of (1.1) filled in by regular, turning and bifurcation points, since

in one space dimension any bifurcation point is simple. Furthermore, as the

number of modes increases the approximated compact component converge

to the corresponding continuous one (cf. [LEDM92] and the references there

in).

If the coefficient a(x) is continuous, then any solution of (1.1) is of class C2

and hence its jth Fourier coefficient, say ûj , decays as O(j−2) if j ↑ ∞ (cf.

[CHQZ88, pp. 35]) and hence,

max
0≤x≤1

|
N+1∑
j=1

ûj sin(jπx)−
N∑
j=1

ûj sin(jπx)| = O(N−2) as N ↑ ∞ .

Due to these features we have used the following criteria to choose the

number of modes in our computations

|cN | ≤ 1
2
10−4 .

To compute the global solution curves of (4.1) as well as the dimension of the

unstable manifolds of their solutions we have used standard path-following

techniques as in [DK81], [Ei86], [LEDM92] and the references there in, where

we send for further details.
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II.5. A pure sublinear problem

In this section we consider (1.1) with

Ω = (0, 1) , p = 4 , a(x) = max{0,− sin(3πx)} . (5.1)

Note that a(x) = 0 if, and only if, x ∈ [0, 1/3]∪ [2/3, 1] and that a(x) > 0 if

x ∈ (1/3, 2/3). To short notations we shall denote

Ij = ((j − 1)/3 , j/3) , 1 ≤ j ≤ 3 . (5.2)

For this choice (1.1) becomes a pure sublinear problem with a vanishing

coefficient a(x) and hence it fits into the framework of Theorem 2.4. Now,

we have Ω+ = I2 and Ω0 = I1 ∪ I3. Thus, σΩ
1 = π2 and σΩ0

1 = (3π)2 �
88.8264. As in the remaining sections, to solve this example we have coupled

a pure spectral method with collocation and a path continuation solver as

already commented in Section 4. Figure 5.1 shows the bifurcation diagram

of positive solutions that we have obtained. In the bifurcation diagram

we have represented the L2-norm of the non-negative solutions versus the

parameter λ and we have divided it into two pieces, those on the first column,

each of them corresponding to a different range of values of λ, from the

top to the bottom (0, 60) and (0, 90), respectively. In the second picture

we did not represented the solution u = 0. Continuous lines are filled in

by stable solutions and dashed lines by unstable solutions, each point on

these curves representing a non-negative solution of (1.1). The first diagram

represents to the trivial state u = 0 together with the curve of positive

solutions emanating from it at π2, where it loses stability becoming unstable.

Since this bifurcation is supercritical, by the exchange stability principle the

positive solutions are stable for λ � π2. Theorem 2.4 shows that in fact

any positive solution is linearly asymptotically stable, and this agrees with

our numerical computations. Each of the pictures on the second column of
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Figure 5.1 shows the profiles of some of the solutions along the corresponding

piece of the diagram on its left.

Figure 5.1: Bifurcation diagram and profiles of its solutions.

The picture on the first row shows the positive solutions for each of the

following values: λ = 9.8697, almost zero in the diagram, since this value

is very close to the bifurcation value, and λ = 31.1351, 41.9317, 53.1735,
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58.1769. The second picture on the second column shows the profiles of the

positive solutions for λ = 83.1139, 85.0022, 85.6685, 86.2134, 86.5453. Note

that the solutions grow as λ increases in complete agreement with Theorem

2.4 and Theorem 2.5.

To carry out the numerical computations we have used 62 modes to complete

the calculation of the solutions up to λ = 31.1351, 143 modes up to λ =

80.0872, and for larger values of lambda 242 modes in order to increase the

accuracy near the bifurcation point from infinity. A lower number of modes

makes impossible the calculation of the positive solutions for values of λ close

to σΩ0
1 = (3π)2. In few moments it will become clear why. The numerical

Jacobian of the linearization of the discrete approximation of (1.1) at the

computed solution increases along the curve up to the value λ = 85.6685,

where it becomes decreasing up to λ = 86.5453. From this value the path

following solver gives slow convergence and a higher number of modes should

be taken if we would want to compute the solutions for values of λ closer

to (3π)2, but this is outside the scope of this work. Therefore, we stop the

computations here and propose the following numerical value for the point

where bifurcation from infinity occurs

numerical σΩ0
1 � 86.5453 .

At first glance this value is far away from the value given by Theorem 2.4,

σΩ0
1 � 88.8264. Fortunately, this difference can be explained from the fact

that in the numerical calculations we are reducing the support of a(x) to

the interval (1/3+1/243, 2/3−1/243), because 1/3+1/243 and 2/3−1/243

are the first collocation points after 1/3 and before 2/3, respectively, and

therefore the numerical σΩ0
1 should approximate to the value

(π/(1/3 + 1/243))2 � 86.6732 ,

rather than to 88.8264. Of course, 86.5453 is a quite good approximation

of 86.6732. This explains as well why a high number of modes might be
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necessary to get a reasonable approximation when spatially varying coeffi-

cients arise in the formulation of the model, in strong contrast with the case

of constant coefficients where in general a low number of modes are sufficient

to get good numerical approximations even when dealing with systems (cf.

[LEDM92] and the references there in).

We point out that the numerical positive solution grows to infinity in Ω0

while it stabilizes in Ω+, the support of a(x), as λ approaches 86.5453. Thus,

it exhibits the same limiting behavior described in Theorems 2.4, 2.5.

II.6. A superlinear indefinite problem

In this section we consider (1.1) with

Ω = (0, 1) , p = 4 , a(x) =




0 , x ∈ Ī1 ,

− sin(3πx) , x ∈ Ī2 ,

−1
2 sin(3πx) , x ∈ Ī3 ,

(6.1)

where Ij , 1 ≤ j ≤ 3, are the intervals defined in (5.2). In this example

Ω0 = I1, Ω+ = I2 and Ω− = I3. So, we are working under the assumptions

of Theorem 2.6 and hence, uniform a priori bounds for λ in compact intervals

of R are available. Thus, the conclusions of Theorem 2.7 hold. Moreover,

σΩ
1 = π2, σΩ\Ω+

1 = (3π)2 and
∫ 1

0
a(x) sin6(πx) dx � 0.1781 > 0. Therefore,

the conclusions of Theorem 3.7 are satisfied. Figure 6.1 shows the bifurcation

diagram that we have computed (left column) as well as the profiles of some

of the positive solutions along it (right column). In the bifurcation diagram

continuous lines are filled in by stable solutions and dashed lines by unstable

ones.
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The first picture on the first column shows the bifurcation diagram for λ ∈
(0, 20) and the second one for λ ∈ (−1000, 100). The numerical results agree

with the predictions make by Theorem 3.7.

Figure 6.1. Bifurcation diagram and profile of its solutions.

The continuum C+ of positive solutions introduced in Section 2 emanates

supercritically from u = 0 at λ = π2 and exhibits the subcritical turning
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point at the value λ∗ = 17.4790 where it turns backwards. By Theorem

3.7, the problem does not admit a positive solution if λ > λ∗. The whole

curve consists of two arcs, one of them joining the bifurcation point with

the turning point, refereed to as the lower branch, and its complement, re-

ferred to as the upper branch. Along the lower branch the solutions are

linearly asymptotically stable, becoming unstable at the turning point. The

solutions on the upper branch have one dimensional unstable manifold in

the whole interval where we have computed them (−1000, 17.4790). There-

fore, the numerical results fully agree with fixed point index calculations of

Section 3.

In the first picture of the second column we have represented the positive

solutions along the lower branch corresponding with the values λ = 9.8697,

10.1817, 10.8567, 12.0639, 15.7601 and 17.4789. Note that the solution

corresponding with λ = 9.8697 is very small, since this value of λ is close to

π2, the bifurcation value. These solutions increase with λ, as predicted by

Theorem 3.7. This monotonicity illustrates how the model exhibits a typical

sublinear behavior along the lower branch. This behavior is rather natural,

since for small positive solutions a+(x) is the dominant part of a(x). Indeed,

it is sufficiently large so that C+ bifurcates supercritically from u = 0. At

the turning point the principal eigenvalue of the positive solution vanishes

becoming negative along the upper branch, while the remaining eigenvalues

of the linearization are positive. In the second picture of the second column

we have represented the positive solutions along the upper branch corres-

ponding with the values λ = 17.4774, 0.0, −200.0, −500.0, −1000.0. Along

the upper branch the point-wise monotonicity of the solutions along the

lower one is lost. Now, the solutions exhibit a single peak around the mini-

mum of a(x), this peak being as much emphasized as smaller is λ. Roughly

speaking, this spike layer behavior is due to the fact that for large solu-

tions (in L∞-norm) a−(x) is the dominant part of a(x), instead of a+(x).

This shows how the model exhibits a genuine superlinear behavior along the
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upper branch.

Our numerical results predict the existence of a unique positive solution

for each λ < π2. Although this uniqueness agrees with Theorem 3.9, the

existence of some further solution can not be excluded. In fact, it might

happen the solution set to have more than one component, as the example

analyzed in Section 8 shows. Nevertheless, we believe that C+ is the unique

component of the set of positive solutions of the present example, and that

none secondary bifurcation can occur along it.

II.7. A symmetric superlinear indefinite problem

In this section we make the choice

Ω = (0, 1) , p = 4 , a(x) =




−1
2 sin(3πx) , x ∈ Ī1 ∪ Ī3 ,

− sin(3πx) , x ∈ Ī2 ,

(7.1)

where Ij , 1 ≤ j ≤ 3, are the intervals defined in (5.2). In this exam-

ple Ω0 = ∅, Ω+ = I2 and Ω− = I1 ∪ I3. So, as for the choice (6.1), we

are working under the assumptions of Theorem 2.6 and hence, uniform a

priori bounds for λ in compact intervals of R are available. Thus, the con-

clusions of Theorem 2.7 hold. Moreover, σΩ
1 = π2, σΩ\Ω+

1 = (3π)2 and∫ 1

0
a(x) sin6(πx) dx � 0.1727 > 0. Therefore, the conclusions of Theorem

3.7 are satisfied. Figure 7.1 shows the bifurcation diagram that we have com-

puted as well as the profiles of some of the positive solutions along it. In

the bifurcation diagram continuous lines are filled in by stable solutions and

dashed lines by unstable ones. The first picture on the first row shows the

bifurcation diagram for λ ∈ (0, 20) and the second one for λ ∈ (−1000, 100).
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Note that specific features shown in the first figure are obviously lost in the

second one, since we are using another magnification scale.

Figure 7.1. Bifurcation diagram and profile of its solutions.

As in Section 6, the numerical results agree with the predictions make by

Theorem 3.7. The continuum C+ emanates supercritically from u = 0 at
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λ = π2 and exhibits the subcritical turning point at the value λ∗ = 17.1615

where it turns backwards. By Theorem 3.7, the problem does not admit

a positive solution if λ > λ∗. As in the example considered in Section 6,

the solutions along the continuum C+ are linearly asymptotically stable and

increase with λ up to reach the turning point where they become unstable,

but now a new feature arises. Namely, the unstable manifolds on the upper

branch are one-dimensional from λ∗ = 17.1615 up to λb := 17.1142 where

they become two-dimensional. So, a secondary bifurcation occurs along the

upper branch of C+. As a result of the symmetry of a(x) the secondary

bifurcation is one-sided, and it turns out to be subcritical. Each of the

solutions on the secondary branches possesses a one-dimensional unstable

manifold. We have computed the solutions on each of the three branches, the

primary and the secondary ones, up to the value λ = −1000, although the

bifurcation diagram in the first row of Figure 7.1 only shows two branches,

the primary and one of the secondaries. This trouble coming from the

fact that the solutions on any of the secondary branches can be obtained

by reflection around 0.5 from the corresponding solutions along the other

secondary branch, since a(x) is symmetric, and hence the ‖ · ‖2-norm is

not able to distinguish between them. Our computations show that the

secondary branches are bounded away from the primary one, since for the

range of λ’s for which we have computed them the principal eigenvalue of the

discrete linearizations stayed negative and bounded away from zero while

their second eigenvalues always stayed positive and bounded away from zero

and the Jacobians of such linearizations grew when λ decreased from 17.1142

up to −1000. We should point out that all these features are completely

consistent with the multiplicity results of Section 3. In the second row

of Figure 7.1 the first figure shows the plots of the solutions on the lower

branch of C+ (those emanating supercritically from (λ, u) = (λ, 0) at λ =

π2) corresponding with the values λ = 9.8697, 10.1620, 12.0291, 15.2227,

17.1614, 17.1137, and the second figure shows the plots of the solutions on
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the upper half of the primary branch corresponding with λ = 17.1137, 0.0,

−200.0, −500.0, −1000.0. It is rather clear how the last ones exhibit a

two-peak layer behavior as λ ↓ −∞ with the peaks located around each of

the minima of a(x). Far away from these minima, the solutions converge to

zero as λ ↓ −∞. The third row shows the plots of the solutions on each of

the two secondary branches corresponding with the values λ = 17.1101, 0.0,

−200.0, −500.0, −1000.0. Each of the plots in the left side figure can be

obtained by reflection from the corresponding one in the right side figure,

as pointed out above. These solutions exhibit a single peak behavior as

λ ↓ −∞. Accordingly with the secondary branch where the solution lies,

the peak choses the minimum of a(x) where it is localized.

In strong contrast with the case when a(x) is a negative constant and N = 1,

where elementary phase portrait techniques apply to show that (1.1) pos-

sesses a unique positive solution for each λ < π2, our numerical computa-

tions show that there exists λb ∈ R such that for each λ ∈ (−∞, λb) the

problem (1.1), (7.1) possesses three positive solutions (at least). Two of

them with a single peak on each of the minima of a(x) and the third one

with two peaks, each of them on each of these minima. Further numerical

computations strongly suggest that one can have as many positive solutions

as wanted by chosing a sufficiently wavy a(x). Therefore, varying coeffi-

cients in semilinear reaction diffusion equations might provide us with very

complex bifurcation diagrams even in one spatial dimension. Our analysis

suggests that varying coefficients is sort of equivalent to varying domains in

higher dimensional reaction diffusion equations (cf. [HV83], [Da88], [Da90],

[Ce95], and the references there in). In higher dimensional superlinear prob-

lems, it is well known that breaking down the convexity of the domain can

result into multiple positive solutions even for autonomous kinetics. More

precisely, joining up two balls of the same radius by a thin narrow strep

originates into the superlinear N -dimensional model with a(x) < 0 constant

the same effect as the coefficient a(x) given by (7.1) does in one space di-
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mension. At the end of the day, the width of the connecting strep can be

regarded as a one-dimensional parameter.

One can easily imagine that varying coefficients in higher dimensional prob-

lems the complexity of the bifurcation diagrams will increase as much as

we wish, since one can play around not only with the shape of the support

domain but also with the nodal behavior of a(x). Now, it becomes clear why

Theorem 3.9 is so relevant, as the uniqueness of the stable state does not

depend on the geometry of the domain nor on the nodal behavior of a(x)

but it is a universal property. Note that for each λ ∈ (π2, λb) our example

possesses four positive solutions. since π2 < λb = 17.1142.

II.8. Symmetry breaking towards imperfect bi-
furcation

In this section we make the choice

Ω = (0, 1) , p = 4 , a(x) =




−ε sin(3πx) , x ∈ Ī1 ,

− sin(3πx) , x ∈ Ī2 ,

−1
2 sin(3πx) , x ∈ Ī3 ,

(8.1)

where Ij , 1 ≤ j ≤ 3, are the intervals defined in (5.2), and ε ∈ [0, 1
2 ] is as

a real parameter. This family of problems provides us with an homotopy

between the problems dealt with in Section 6 and Section 7. If ε = 0.5,

then (8.1) becomes (7.1), while it gives (6.1) if ε = 0. Our main goal in

this section is analyzing how change the global bifurcation diagrams as the

parameter ε varies from 0.5 to 0. If ε ∈ (0, 0.5), then Ω0 = ∅, Ω+ = I2 and
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Ω− = I1 ∪ I3. So, as in the previous sections, we have the conclusions of

Theorem 2.6 and Theorem 3.7.

Our numerical computations show that an imperfect bifurcation arises as a

consequence from the symmetry breaking of the coefficient a(x). Indeed, if

ε = 0.499995, then the global bifurcation diagram that we computed looks

like the one already analyzed in Section 7 for ε = 0.5, being the same the

profile of the solutions on each of its branches, while for ε = 0.49995 the

diagram exhibits an imperfect bifurcation at the old pitchfork bifurcation.

To detect it the continuation step must be taken sufficiently small and the

number of modes sufficiently large. Otherwise, the numerical scheme will

provide us with the same diagram obtained for ε = 0.5. The imperfect

bifurcation arises at the first value of the parameter 0.49995 ≤ ε ≤ 0.5 where

the one-sided bifurcation on the primary branch is lost. For ε = 0.49995

the computations show that the component C+ is a regular curve possessing

a subcritical turning point at λ = 17.1617 as the unique relevant feature.

Figure 8.1 shows a plot of C+ for ε = 0.49995,

Figure 8.1. C+ for ε = 0.49995, and the profile of some solutions along it.

as well as the profiles of the solutions corresponding with λ = 17.1617, 0.0,

−200.0, −500.0, −1000.0. An important feature is the spike layer behavior
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of the solutions along C+ as λ ↓ −∞. These solutions possess a unique

peak around 5/6, which is the point where the absolute minimum of a(x) is

reached. For ε = 0.5 and ε = 0.499995, the pitchfork bifurcation occurs at

λ = 17.1142 and λ = 17.1136, respectively. So, it did not move away to −∞
and since all the solutions along the secondary branches are non-degenerate

the implicit function theorem strongly suggests that even for ε = 0.49995

the model should have at least three solutions for a certain interval of λ’s

to the left of λ = 17.1136. To compute the two solutions outside C+ we

proceeded by taking ε = 0.5, picking up λ = 17.0087, which is sufficiently far

away from the bifurcation value, and then using ε as the main continuation

parameter, instead of λ, in order to compute the perturbation of the unique

solution with two peaks. Note that the solution having the single peak

around 5/6 perturbs into a solution lying in C+ for ε = 0.49995. Once

calculated the solution with the two peaks corresponding with λ = 17.0087

and ε = 0.49995, ε is kept fixed and λ is again used as the main continuation

parameter to compute the whole component of solutions passing though by

it.

Figure 8.2. Bifurcation diagram for ε = 0.49995.

Figure 8.2 shows a magnified piece of the up-dated bifurcation diagram
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for ε = 0.49995. It illustrates the imperfect bifurcation originated by the

lost symmetry of a(x). To magnify the difference between the branches,

we have represented the L2-norm of the solutions versus the parameter,

since the L∞ norms of the solutions along them are very similar. The

bifurcation diagram exhibits two components. Namely, C+, and a global

subcritical folding, referred to as F+, with the turning point located

at λ = 17.1117. The solutions on the upper half-branch of F+ have two

dimensional unstable manifolds and exhibit two peaks, each of them around

each of local minima of a(x), while the solutions on its lower half-branch

have one-dimensional unstable manifolds and possess one peak around 1/6,

which is a local minimum of a(x).

In Figure 8.3 we have represented the profiles of the solutions along the upper

half-branch of F+ corresponding with λ = 17.0974, 0.0, −200.0, −500.0,

−1000.0, and the solutions on the lower half-branch corresponding with the

same values of λ.

Figure 8.3. The profiles of the solutions along F+.

The Jacobians of the linearizations along F+ always increased as long as λ

decreased, strongly suggesting that the bifurcation diagram shown in Fig-
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ure 8.2 will be the right one even far away from the turning point. As in

Section 7, we expect the model to have exactly three positive solutions for

λ bellow the λ-coordinate of the turning point of F+. This agrees with the

multiplicity results of Section 3.

Imperfect bifurcation phenomena are very well documented in the literature,

[GS85], [Ke87],[Lo88]. Our example illustrates why singularity theory has

proven so useful in the analysis of nonlinear problems, because from merely

local information one can make predictions about the global behavior of the

several components of the solution set.

For ε < 0.49995 the bifurcation diagram shown in Figure 8.2 is persistent,

although as smaller is taken ε as larger is the separation between C+ and

F+. Moreover, as ε ↓ 0 the primary components C+ approach to the primary

component already computed in Section 6 for the case ε = 0, in the sense

that the positive solutions along C+ are point-wise convergent as ε ↓ 0 to

the corresponding positive solutions of the model with ε = 0.

Figure 8.4 illustrates this fact. The first plot of the first row shows the

profiles of the solutions of C+ obtained for λ = 11.9667 and each of the

values ε = 0.5, 0.5 × 10−7. The limiting profile of these solutions as ε ↓ 0

is almost the same as the profile obtained in Section 6 for λ = 12.0060, the

one on the right side picture. The first plot of the second row shows the

profiles of the solutions of C+ obtained for λ = 17.1101 and each of the

values ε = 0.5, 0.4581, 0.4016, 0.2872, 0.1137, 0.0250. As for the previous

choice of λ, the limiting profile of these solutions as ε ↓ 0 is almost the

same as the profile obtained in Section 6 for λ = 17.0854, represented on

the right side figure. Note that the convergence in the first case is faster

than the convergence in the second one. As far as to the solutions in F+

concerns, the numerics show how they grow to infinity all over (0, 1/3) as

ε ↓ 0, while they stabilize to a bounded profile in (1/3, 1). In particular, the

whole component grows to infinity as the parameter ε ↓ 0 in any Lp-norm,

1 ≤ p ≤ ∞.
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Figure 8.4. The stabilization of the solutions along the primary branches.

In the first row of Figure 8.5 we have represented the plots of the solutions

in the upper half-branch of F+ corresponding with λ = 11.8941 and each

of the following values of ε: ε = 0.5, 0.1247, 0.1, 0.001, 0.12 × 10−3 (left

side figure), and ε = 0.11 × 10−4, 0.1 × 10−5, 0.51 × 10−6, 0.20 × 10−6,
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0.11× 10−6 (right side figure).

Figure 8.5. Limiting profiles of the solutions on the folding component.

In the second row of Figure 8.5 we have represented the plots of the solutions

in the lower half-branch of F+ corresponding with λ = 11.9364 and each of

the following values of ε: ε = 0.5, 0.1275, 0.01, 0.0017, 0.16×10−3 (left side

figure), and 0.12× 10−4, 0.15× 10−5, 0.43× 10−6, 0.19× 10−6, 0.11× 10−6
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(right side figure).

The solutions on the lower half-branch of F+ stabilize to zero in (1/3, 1),

while the solutions on the upper half-branch stabilize to a positive solution

of the boundary value problem

−θ′′ = λθ − a(x)θ5 , x ∈ (1/3, 1) , θ(1/3) = ∞ , θ(1) = 0 . (8.2)

Beside showing that the a priori bounds of the positive solutions are lost as

ε ↓ 0, these computations illustrate how the choice of the functional space

is pivotal for the multiplicity results. If we restrict ourselves to consider

classical solutions, then for each λ < π2 and ε ∈ (0, 0.5] the problem (1.1)

with the choice (8.1) possesses three classical solutions, two of them with one

peak around each of the two local minima of a(x) and the remaining one with

two peaks around each of these minima, while the problem with ε = 0 only

possesses one solution with one peak around the absolute minimum of a(x).

In particular, the folding component bifurcates subcritically from infinity

at ε = 0. Things become much more suggestive if we consider functional

spaces including functions which are allowed to be infinity on sets of positive

measure, as for instance I1, the intervals where a(x) vanishes for ε = 0, i.e.

if we enlarge R with the infinity point. If we proceed in this way, then (1.1)

possesses three solutions for ε = 0 as well. Namely, one on the primary

branch, which exhibits a single peak around the value where the absolute

minimum of a(x) is taken (5/6), and two non-classical solutions, say u1 and

u2, which are defined by

u1(x) =
{∞ , x ∈ (0, 1

3 ] ,
0 , x ∈ (1

3 , 1] ,
u2(x) =

{ ∞ , x ∈ (0, 1
3 ] ,

θ(x) , x ∈ (1
3 , 1] ,

where θ(x) is the minimal positive solution of (8.2). If, instead of repre-

senting the bifurcation diagrams with the Lp-norm of the solutions versus

λ, we represent the minus derivative at 1 of the solutions versus λ, for

instance, then the bifurcation diagrams of (1.1) with the choice (8.1) will
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approach as ε ↓ 0 to the bifurcation diagram of (1.1) with the choice (8.1)

and ε = 0. Obviously, this diagram will contain one more component than

the one computed in Section 6, where only classical solutions were consid-

ered. In particular, structural stability results are strongly based upon the

choice of the functional spaces. The implicit function theorem never fails if

one choses the right functional space (cf. [BV97]).
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The Critical Superlinear Problem
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The Critical Superlinear Problem

III.1. Introduction

In this chapter we address the problem of the existence of a priori bounds

for the radially symmetric positive solutions of

−∆u = λu− a(x)|u|pu in Ω , u|∂Ω = 0 , (1.1)

where Ω = BR is the ball of center 0 and radius R of R
N , N ≥ 3 , λ ∈ R,

p > 0 and a(x) is a bounded measurable and radially symmetric non-positive

function in Ω such that

Ω− := {x ∈ Ω : a(x) < 0}

is open and it possesses a finite number of components, which are annular

regions plus eventually some ball centered at the origin. The existence of a

priori bounds for the positive solutions is strongly based on the growth of

the nonlinearity at infinity, i.e. the size of p. In fact, if p + 1 < N+2
N−2 then

the results of Chapter II and the references there in show the existence of

a priori bounds uniform on compact subintervals of λ, while things change
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drastically if p + 1 ≥ N+2
N−2 , even in the case when a is a negative constant.

Assume that this is the case. Then, the following identity by Pohozaev

([Po65]) is satisfied by any classical positive solution of (1.1)

N

∫
Ω

∫ u(x)

0

(λs− asp+1) ds dx+
2−N

2

∫
Ω

u(x)(λu(x)− aup+1(x)) dx

=
1
2

∫
∂Ω

(
∂u

∂n

)2

< x, n > dσ .

Thus,

λ

∫
Ω

u2(x) dx−
(
2−N

2
+

N

p+ 2

)
a

∫
Ω

up+2(x) dx > 0 ,

and therefore, when λ ≤ 0 the problem (1.1) does not admit a classical

positive solution if
2−N

2
+

N

p+ 2
≤ 0 ,

which is equivalent to

p+ 1 ≥ N + 2
N − 2

.

Therefore, the global continuum of positive solutions emanating from

(λ, u) = (λ, 0) at the principal eigenvalue λ = σΩ
1 [−∆] blows up at some

λ = λ∗ ∈ [0, σΩ
1 [−∆]], in the sense that there exists a sequence of positive

solutions (λn, un) with λn → λ∗ such that ||un||∞ → ∞ as n → ∞. Indeed,

if u is a positive solution of (1.1), then

λ = σΩ
1 [−∆+ aup] < σΩ

1 [−∆]

and hence, if a is assumed to be a negative constant, then a necessary

condition so that (1.1) admits a positive solution is λ ∈ (0, σΩ
1 [−∆]).

To gain insight into the problem of the search for a priori bounds, in this

chapter we compute the curve of classical positive solutions of a three-

dimensional radially symmetric prototype model of (1.1). Througout this
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chapter we assume that N = 3, Ω = B0.5 is the ball of radius 0.5 centered

at the origin, r = |x| and u(r) is a radially symmetric positive solution of

(1.1). With these assumptions problem (1.1) becomes into,




−u′′(r)− 2
r u

′(r) = λu(r)− a(r)up+1 , r ∈ (0, 0.5) ,

u′(0) = 0 , u(0.5) = 0 .
(1.2)

Note that the solutions of (1.2) are the restrictions to [0, 0.5] of the positive

solutions of




−u′′(r)− 2
r u

′(r) = λu(r)− â(r)up+1 , r ∈ (−0.5, 0.5) ,

u(−0.5) = 0 , u(0.5) = 0 ,
(1.3)

where â(r) = a(−r) for each r ∈ [−0.5, 0], and â(r) = a(r) if r ∈ [0, 0.5].

As in Section I.5, instead of (1.3) we will consider its phase translation to

the interval [0.1]




−u′′(x)− 2
x−0.5 u

′(x) = λu(x)− â(x− 0.5)up+1 , x ∈ (0, 1) ,

u(0) = 0 , u(1) = 0 .
(1.4)

To compute the bifurcation diagram of positive solutions of (1.4) we use

the same spectral collocation methods coupled with path-following techni-

ques introduced in the previous chapters. So, we use trigonometric modes

and equidistant collocation points with the number of modes equal to the

number of collocation points. Let M denote the number of modes and

xi = i
1+M , 1 ≤ i ≤ M , the collocation points. Then, the solutions u(x) of

(1.4) are approximated by

uM (x) =
M∑

j=1

cj sin(jπx) ,
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being C = (c1, ...., cM )T (T =transposition) a solution of

BC − EDC = λJC − A(JC)p+1 (1.5)

where 


J = (sin(jπxi))1≤i,j≤M ,

B = ((jπ)2 sin(jπxi))1≤i,j≤M ,

A = diag (â(xi − 0.5))1≤i≤M ,

E = diag (ej)1≤j≤M ,

D = (dij)1≤i,j≤M ,

ej =




2
xj−0.5 , if xj 
= 0.5 ,

2 , if xj = 0.5 ,

and

dij =




jπ cos(jπxi) , 1 ≤ j ≤ M , if xi 
= 0.5 ,

−(jπ)2 sin(jπ/2) , 1 ≤ j ≤ M , if xi = 0.5 .

Making these choices, the zero solution of (1.2) is preserved, although the

bifurcation values to positive solutions for the continuous and the corres-

ponding discrete models will not be equal, since we are working with trigo-

nometric series instead of with Fourier series of Bessel functions (see Section

I.5). The criterion to choose the number of modes in our computations is

the same that in Section I.5. Namely,

|ck| ≤ 1
2
10−4 , M − 10 ≤ k ≤ M . (1.6)

Since the problem (1.3) is an extension of the problem (1.2), we can obtain

positive solutions of (1.3) that are not radially symmetric and which are

not solutions of the problem (1.1). In this work we are only interested on
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the radially symmetric positive solutions of (1.1) and, hence, c2� = 0 for all

! ∈ N and (1.6) will be satisfied for any even k.

All our numerical computations have been carried out by taking a(r) = −1.0

in Ω− for all our choices of Ω−, and p + 1 = 5, which is the critical

exponent for N = 3. Also we have solved the problem (1.3), for each

choice of Ω−, with p + 1 = 4, bellow the critical exponent, to make the

comparison between both cases. In Section 2 we solve and discuss the

problem taking a(r) = −1.0 in a ball centered at the origin with radius

ρ, 0 < ρ ≤ 0.5; namely, Ω− = Ω = B0.5 and Ω− = B1/6. In Section 3,

we choose a(r) = −1.0 in an annulus centered at the origin with interior

radius ρ, 0 < ρ < 0.5 and exterior radius 0.5, Ω− = A(ρ,0.5). A really

striking feauture is the fact that if a(r) vanishes on some small ball Bε

while it is kept as a negative constant on its complement then our numerical

calculations show that the model possesses a positive solution for a range of

values λ < 0 bounded away from zero when p+1 = 5, the critical exponent,

so suggesting that in this case the radially symmetric positive solutions of

the model should have a priori bounds. While if a(r) remains negative on

any ball Bρ, 0 < ρ ≤ 0.5, then the positive solutions grow to infinity at

some 0 < λ∗ < σΩ
1 [−∆], as it was predicted by Pohozaev’s identity.

III.2. Case Ω− = Bρ , 0 < ρ ≤ 0.5

In this section we solve the problem,




−u′′(r)− 2
r u

′(r) = λu(r)− χ
Bρ

up+1 , r ∈ (−0.5, 0.5) ,

u(−0.5) = 0 , u(0.5) = 0 .
(2.1)
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where χC , C ⊂ (−0.5, 0.5), is defined by

χC =




−1.0 , if r ∈ C ,

0.0 , if r ∈ (−0.5, 0.5) \ C .

(2.2)

and Bρ = (−ρ, ρ). The values of p+1 will be 4, bellow of critical exponent,

and p+ 1 = 5, the critical exponent.

The theoretical and numerical values of the principal eigenvalue of −∆ in

B0.5 ⊂ R
3 under Dirichlet boundary conditions are given in the following

table.

Theoretical σ1 Computed σ1

39.478418 39.477579

The theoretical value is calculated from the estimate 3.14159265 for the first

zero of the Bessel function J1/2. The numerical value is the unique value of λ

for which bifurcation to positive solutions from u = 0 occurs. This value has

been computed by means of the pseudo-spectral method described in Section

III.1 using 201 modes. Note that the principal eigenfunction associated

with B0.5 is radially symmetric and therefore, we are actually dealing with

one-dimensional linear eigenvalue problems.

At this point one should make some comments. If an even number of collo-

cation points are used, then we can not save the zero singularity and in fact

the numerical program give us a first bifurcation point from trivial branch at

a value of λ which is not the first zero of J1/2. At this value the zero solution

becomes unstable, with one-dimensional unstable manifold, until the second

bifurcation point, which correspond just with first zero of J1/2, where the

unstable manifold becomes two-dimensional. Table 2.1 shows some of the

computed values of the parameter λ where bifurcation from u = 0 occurs
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when we use an even number of collocation points.

λ Number of modes
10.385976 124
10.186491 200
10.079563 300
10.026552 400
9.994900 500
9.958875 700

Table 2.1 First bifurcation point with an even number of points.

Note that the values of λ in Table 2.1 seem to stabilize to some value, but the

convergence is very slow, in strong contrast with the values found from the

first zero of J1/2 which are always very close to the theoretical one. These

features can be explained from the fact that the linearization at u = 0, which

is given by




−u′′(r)− 2
r u

′(r) = λu(r) , r ∈ B0.5 ⊂ R
3 ,

u = 0 , in ∂B0.5 .

(2.3)

posseses two independent solutions defined by

x−1/2J1/2 = A
sinx

x
, x−1/2J−1/2 = A

cosx

x
, A =

√
2/π , x = r

√
λ .

The function x−1/2J−1/2 has a singularity at 0 and its first zero is located

at x = π
2 . The principal eigenvalue of problem (2.3) associated with the first

zero of J−1/2 will be λ = [ (π/2)
(1/2) ]

2 � 9.869604. Hence, the values at Table 2.1

are a not very good approximation to this principal eigenvalue. Clairly we

would need a much larger number of modes to obtain a good aproximation.

While the function J1/2 is a regular solution with its first zero located at x =

π, and hence, the principal eigenvalue of (2.3) is λ = [ π
(1/2) ]

2 � 39.478418.
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To obtain this principal eigenvalue we have to save the singularity 0, and

this is why we will work with an odd number of collocation points.

First, we have solved equation (2.1) making the choice ρ = 0.5. In this case

(2.1) becomes into,




−u′′(r)− 2
r u

′(r) = λu(r) + up+1 , r ∈ (−0.5, 0.5) ,

u(−0.5) = 0 , u(0.5) = 0 ,
(2.4)

Figure 2.2 shows the bifurcation diagram that we have found and some of

the profiles of the radially symmetric positive solutions for several values of

λ, in the special case when p+1 = 4. The first plot of Figure 2.2 represents

the L∞-norm of each of the computed non-negative solutions versus the

parameter λ, λ ∈ (−100.0, 50.). Continuous lines are filled in by stable

solutions and dashed lines by unstable solutions. Each of the points on

these curves represents a radially symmetric non-negative solution of (2.4).

Figure 2.2: Bifurcation diagram and solution profiles in case p+1=4.

The diagram shows two curves, one of them filled in by positive solutions

which are unstable, and the other is the trivial branch (λ, u) = (λ, 0). The

solution u = 0 is stable until the bifurcation value λ = 39.477579 where
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it becomes unstable for any further value of the parameter. The branch

of positive solutions emanates subcritically from the trivial branch at the

bifurcation value being the unstable manifold of the positive solutions on this

branch one-dimensional until the value λ = 39.389274 where it becomes two-

dimensional; at this value of λ there exists a subcritical secondary bifurcation

to a new branch of positive solutions which is not included in the plot;

positive solutions along this branch are not radially symmetric and we shall

not focus our attention on them here in. Observe that there exist positive

solutions for values of λ ≤ 0 and that p+1 = 4 is bellow of critical exponent.

So that the positive solutions satisfy the convergence criterion (1.6) we have

needed 125 modes for λ ∈ (−36.249395, 39.472111] and 201 modes for λ ∈
[−95.230062,−36.249395]. The second plot in Figure 2.2 shows the profiles

of the positive solutions for the values of the parameter λ = 39.472111,

20.225725, 0.329421 and −95.230062; the profiles of the solutions exhibit a

single peak around 0, this peak being as much emphasized as smaller is λ,

and converge to 0 in the rest of the domain. The results completely agree

with the analytical mathematical results of Chapter II.

Now we take p + 1 = 5. Then, the situation is completely different. Figure

2.3 shows the bifurcation diagram that we have obtained in this case and

some of the profiles of the corresponding radially symmetric solutions. As

above, in the first plot of Figure 2.3 we have represented the L∞-norm of

each of the non-negative solutions versus the parameter λ, λ ∈ (10.0, 50.0).

The diagram shows two curves, one of them filled in by the radially symme-

tric positive solutions which are unstable, and the other is the trivial branch

(λ, u) = (λ, 0). The solution u = 0 is stable until the bifurcation value

λ = 39.477579 where it becomes unstable. The branch of positive solutions

emanates subcritically from the trivial branch at λ = 39.77579 with one-

dimensional unstable manifold until the value λ = 39.410638, where they

become two-dimensional; at λ = 39.410638 there exists a secondary bifur-

cation to positive solutions not radially symmetric which were not plotted
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here. The results look like before, but now a new feature arises. The maxi-

mum of each of the positive solutions, located at the center of the domain,

grows as λ decreases approaching a positive value of λ, λ∗ � 10.407598.

Figure 2.3: Bifurcation diagram and solution profiles in case p+1=5.

To calculate the positive solutions as λ approaches λ∗ we needed increas-

ing the number of modes drastically to reach the convergence criterion (1.6).

Table (2.4) shows the number of modes needed to reach it.

Interval of λ’s Number of modes
(13.228650, 39.474591] 125
(11.346510, 13.228650] 201
[10.407598, 11.346510] 501

Table 2.4: The number of modes needed to reach (1.6).

We are close to reach the limit of alowable memory of our computer and so

we must stop our calculations here in. In the second picture of Figure 2.3

we have plotted the solution profiles corresponding with the values of the

parameter λ = 39.472611, 20.615684, 12.297267 and 10.407598. As in the

case p+1 = 4, the solutions exhibit a one-pike layer behavior with the peak
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located around 0 and converge to 0 in the rest, but this time this behavior

happens for 0 < λ∗ ≤ λ. So, as it was predicted by the theoretical results,

the a priori bounds are lost.

The situation is quite similar if we take 0 < ρ < 0.5. Indeed, if we consider

(2.1) with ρ = 1/6, then, we are concerned with the problem




−u′′(r)− 2
r u

′(r) = λu(r)− χB1/6u
p+1 , r ∈ (−0.5, 0.5) ,

u(−0.5) = 0 , u(0.5) = 0 ,
(2.5)

If p+ 1 = 4, we have a priori bounds and the results that we have obtained

are rather similar to the ones found in the previous case, so we solve (2.5)

taking p + 1 = 5. Figure 2.5 shows the bifurcation diagram that we have

obtained and some of the profiles of the corresponding radially symmetric

solutions.

Figure 2.5: Bifurcation diagram and solution profiles for (2.5), p+1=5.

In the first plot of Figure 2.5 we have represented the L∞-norm of each of

the non-negative solutions versus the parameter λ, λ ∈ (10.0, 50.0). The di-

agram that we have obtained looks like the one found for problem (2.4). We
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have two curves, one of them filled in by radially symmetric positive solu-

tions which are unstable, and the other is the trivial branch (λ, u) = (λ, 0).

The solution u = 0 is stable until the bifurcation value λ = 39.477579

where it becomes unstable. The branch of positive solutions emanates sub-

critically from the trivial branch at λ = 39.477579 with one-dimensional

unstable manifold until the value λ = 39.423582 where they become two-

dimensional; at λ = 39.410638 there exists a secondary bifurcation to non

radially symmetric positive solutions not radially symmetric which were not

plotted. The maximum of each of the positive solutions, also located at

the center of the domain, grows as λ decreases to a certain positive value

of λ that we have denoted by λ∗; this time we have used a larger number

of modes in order to give a better aproximation for λ∗. Table (2.6) shows

the number of modes needed to calculate the radially symmetric solutions

of problem (2.5) inppossing the convergence criterion (1.6).

Interval of λ Number of modes
(12.827966, 39.473845] 201
(10.751210, 12.827966] 401
[10.364946, 10.751210] 701

Table 2.6: The number of modes needed to reach (1.6).

We have calculated some additional solutions using 701 modes until the

value λ = 10.155838 under the weaker convergence criterion

|ck| ≤ 1
2
10−3 , M − 10 ≤ k ≤ M .

So, the numerical value proposed for λ∗ is 10.155838. In the second picture of

Figure 2.5 we have plotted the profiles of the radially symmetric solutions

corresponding with the values λ = 39.471180, 19.221888, 12.361597 and

10.155838.

Observe that the last value of λ for which we have calculated a solution

satisfying the criterion (1.6) is λ = 10.407598 for problem (2.4) when we use
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501 modes, and λ = 10.364946 for problem (2.5) using 701 modes. These

values are close to the values λ = 9.994900 and λ = 9.958875 of the Table 2.1

corresponding to the approximation of the principal eigenvalue σB0.5
1 [−∆]

using 500 and 700 collocations points, respectively. These numerical results

strongly suggest that the value of the parameter where the solutions blow-

up to ∞ is the value λ = 9.869604 corresponding to the first zero of the

Bessel function J−1/2, independently on the size of the ball Bρ where a(r) is

negative, although any theoretical result does not exist about this. We have

tried to continue the branch bifurcating from trivial branch at λ = 9.869604,

but we could not. This analysis is in progress.

III.3. Case Ω− = A(ρ,0.5) , 0 < ρ < 0.5

In this section we solve the problem,




−u′′(r)− 2
r u

′(r) = λu(r)− χA(ρ,0.5)
up+1 , r ∈ (−0.5, 0.5) ,

u(−0.5) = 0 , u(0.5) = 0 .
(3.1)

where, A(ρ,0.5) = (−0.5,−ρ) ∪ (ρ, 0.5) is an annulus centered at the origin

with interior radius equal to ρ and exterior radius 0.5; χA(ρ,0.5) is given by

(2.2).

The theoretical and numerical values of the principal eigenvalue of −∆ in

B0.5 of R
3 under Dirichlet boundary conditions are the same as in Section

2:

Theoretical σ1 Computed σ1

39.478418 39.477579
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The same comments of Section 2 about the even number of collocation

points are valid as well in our current situation. So, we will work with an

odd number of collocation points.

We have solved equation (3.1) taking ρ = 1/6. In this case problem (3.1)

becomes into,




−u′′(r)− 2
r u

′(r) = λu(r)− χA(1/6,0.5)u
p+1 , r ∈ (−0.5, 0.5) ,

u(−0.5) = 0 , u(0.5) = 0 ,
(3.2)

Firstly we have solved the equation (3.2) taking p+1 = 4. Figure 3.1 shows

the bifurcation diagram and some of the profiles of the radially symmetric

solutions that we have computed. As in Section 2 the diagram shows two

curves, one of them filled in by radially symmetric positive solutions which

are unstable, and the other is the trivial branch (λ, u) = (λ, 0). The solution

u = 0 is stable until the bifurcation value λ = 39.477579 where it becomes

unstable.

Figure 3.1: Bifurcation diagram and solution profiles for (3.2), p+1=4.

The branch of positive solutions emanates subcritically from the trivial

branch at λ = 39.77579 with one-dimensional unstable manifold until the
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value λ = 39.390170 where it becomes two-dimensional; at λ = 39.390170

there exists a secondary bifurcation to non radially symmetric positive so-

lutions which were not plotted. The number of modes that we have needed

to reach the convergence criterion (1.6) is given in Table 3.2.

Interval of λ Number of modes
(8.009557, 39.473384] 125
(−60.020510, 8.009557] 201
[−255.012323,−60.020510] 301

Table 3.2: The number of modes needed to reach (1.6) with p+1=4.

Observe that, as predicted, there exist positive solutions for negative values

of λ bounded away from zero, since p+1 = 4 is bellow of critical exponent.

The second plot of the Figure 3.1 shows the profiles of the positive solutions

for the values of the parameter λ = 39.473384, 19.993987, 0.93 × 10−5,

−100.017817 and −255.012323. The profiles of the solutions grow until λ

approaches zero. At λ = 0.93× 10−5 the profile of solution seems constant

in the interval (-1/6,1/6). As λ decreases from 0, the profiles of the solutions

exhibit a two-peaks layer behavior with the peaks located around −1/6 and

1/6. These results completely agree with the theoretical results of Chapter

II.

Now, we solve (3.2) taking p+ 1 = 5. Quite surprisingly the results do not

substantially differ from the ones found for the previous case. Contrarily to

our hopes, the a priori bounds were not lost. Figure 3.3 shows the bifurcation

diagram that we have obtained and some profiles of the radially symmetric

solutions. As above, the first plot of Figure 3.3 representes the bifurcation

diagram with λ ∈ (−270.0, 50.0). We have used in Figure 3.1 and Figure

3.3 the same scales. We have found the secondary subcritical bifurcation to

non radially symmetric positive solutions at λ = 39.411358.
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Figure 3.3: Bifurcation diagram and solution profiles for (3.2), p+1=5.

The number of modes that we needed to reach the convergence criterion

(1.6) is given in Table 3.4.

Interval of λ Number of modes
(16.318628, 39.473844] 125
(−70.026805, 16.318628] 201
[−255.024261,−70.026805] 301

Table 3.4: The number of modes needed to reach (1.6) with p+1=5.

We could have follow working with 301 modes, but we stop here the calcula-

tions in order to have the same range of values of λ than the case p+1 = 4.

Observe that even in the critical case p+1 = 5 the model posseses a positive

solution for a range of negative values of λ bounded away from zero, strongly

suggesting the existence of a priori bounds for the radially symmetric pos-

itive solutions. So it looks like that in the case when a(r) vanishes the

existence of a priori bounds will be strongly based on the nodal structure of

the weight function a(r) rather on the growth at infinity of the nonlinearity
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(size of p). The second plot in Figure 3.3 shows the profiles of some of the

positive solutions for the values of λ = 39.473844, 20.316726, 0.17 × 10−4,

−100.026176 and −255.024261. As above, the profiles of the solutions grow

until λ approaches the value 0; at λ = 0.17×10−4 the profile of the solution

seems to be constant in the interval (-1/6,1/6) and, as λ decreases becom-

ing negative, the profiles of the solutions exhibit a two-peaks layer behavior

with the peaks located around −1/6 and 1/6. Not only the a priori bounds

are not lost, but the profiles of the solutions corresponding with p + 1 = 5

grow even more slowly than in case p+ 1 = 4.

We have solved the equation (3.1) taking different values of ρ and the be-

havior of the profiles of the solutions were the same. It looks like the same

behavior occurs when a(r) vanishes on some ball centered at the origin, even

in the case when p+1 > 5 is bounded away from the critical exponent 5, but

this analysis is at present in progress and it will be completed and included

elewhere.
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[Lo88] J López-Gómez, Estabilidad y bifurcación estática. Aplicaciones y
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