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Abstract

Abstract

Los virus son los sistemas biólogicos más simples de la naturaleza, y por ello fueron
los primeros en ser tratados matemáticamente. Es fundamental obtener la mayor
cantidad de información posible a través de todas las ramas de la ciencia para obtener
una imagen completa de sus caracteŕısticas, dadas las propiedades emergentes del
conocimiento. Es por ello que las propiedades f́ısicas son tan importantes como las
biológicas o las qúımicas. En este trabajo se introducen los principales modelos f́ısicos
(de autoensamblaje, cinética, elasticidad, etc.), con especial énfasis en las cápsides
icosaédricas debido a sus propiedades de simetŕıa. A continuación, se desarrolla
la base de un modelo coarse-grained de 60 unidades asimétricas que junto a las
propiedades del grupo de simetŕıa del icosaedro nos permite calcular el número de
modos normal de un virus icosaédrico sin hacer cálculos expĺıcitos. También se
obtiene información cualitativa del comportamiento de estos modos. Estos resultados
son después comparados con cálculos reales de los modos normales del virus del Zika
llevados a cabo por un grupo surcoreano [1] con buenos resultados.

Viruses are the simplest biological systems in nature, and because of that they
were the first to be treated mathematically. It is fundamental to obtain as much
information about them through all branches of science as possible to be able to get
a full picture of their characteristics, due to the emergent properties of knowledge.
Therefore, their physical properties are as important as their biological or chemical
ones. We introduce some of the main physical models (self-assembly, kinetics, elas-
ticity, etc.), with special emphasis on icosahedral capsids because of their symmetry
properties. We then develop the basis of a 60 asymmetric units coarse-grained model
that in conjunction with the symmetries of the icosahedral point group, allow us
to calculate the number of normal modes of an icosahedral virus without making
explicit calculations. We also gain some qualitative information about the behaviour
of the normal modes. These results are then compared with the actual calculations
of the normal modes of the Zika virus made by a South Corean reasearch group [1],
with good agreement.
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1 Introduction

1 Introduction

En esta sección se da una pequeña introducción a la bioloǵıa de los virus, con especial
énfasis en su ciclo vital y en cómo se clasifican de acuerdo a la forma de su cápside.
También se motiva el por qué de la investigación en ciencia básica de estos sistemas
biológicos.

Viruses are very fascinating biological objects. They were discovered in 1899 by
Martinus Beijenrinck and have been studied ever since because of their importance
and impact to mankind. As the primary source of many diseases, they are able to
cause grave alterations to our social structures, either by directly infecting people or
through damaging our crops and livestock. Hence, it is fundamental to understand
them as thoroughly as possible in order to protect our society. All these years
of research have granted us many technological advances, ranging from the well-
known vaccines, to the latest treatments such as virotherapy. This technique uses
genetically modified viruses to infect and destroy cancer cells but not healthy cells
[2].

Schematically, they are comprised of: 1) the genetic material, usually RNA (
although it can be DNA), 2) a protein coat, called the capsid, which acts as a
container for the genetic material, and sometimes 3) a lipid bilayer that covers
the capsid (envelope). Since they are constituted by only 2 or 3 parts, they may
seem simple, but actually a full description of their replication cycle and all their
characteristics can be quite complex. Also, they do not fulfil some of the basic
requirements to label them as living beings, such as lacking a cell structure, not
having a metabolism or needing a living cell to make more copies of themselves.
Thus, they are usually described as dwelling on the edge of life and death.

Figure 1: Schematic representation of the parts of a virus

These small structures can replicate themselves by using the metabolism and
the molecular machinery of a host cell. Basically, they use the diverse structures
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1 Introduction

of their capsid or lipid bilayer as a key to enter. Once inside, they release their
genetic material and use the molecular machinery to read through it, make copies
of the genetic material, and construct the different proteins encoded in it. Then,
in some viruses, the proteins are able to self-assemble into the capsid, around the
genetic material, forming the complete virus. Some other viruses, usually with more
complex forms, assemble a molecular motor that introduces the genetic material
into the empty capsid. Once the host cell is full of viruses, they escape by rupturing
the cell membrane, ready to infect new cells, repeating the cycle. Is in this release
process that some viruses acquire the lipid bilayer from the very membrane of the
host cell.

One way to classify them is through the shape of their capsid. According to this
classification, there are 3 main groups: icosahedral, helical or irregular. Most of
the known species of viruses fall along the first two categories, such as the human
rhinovirus (icosahedral) or the tobacco mosaic virus (helical). Irregular viruses are
usually more complex and interesting and can vary wildly in structure, as for example
the bacteriophage T4 or the variola virus.

Figure 2: Examples of helical, icosahedral and complex viruses [3]
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2 Structure of icosahedral capsids

En esta sección se describen las propiedades geométricas y de simetŕıa que poseen
las cápsides virales icosaédricas. En el ámbito geométrico, se explica cómo el modelo
de Kaspar y Klug es capaz de generar una cápside partiendo de una red hexagonal
bidimensional. En concreto, se demuestra que solo ciertas cápsides con distancias
concretas entre sus vértices son posibles. En el ámbito de la śımetria se describe
cómo partiendo de una unidad asimétrica (como por ejemplo una protéına) y tras
aplicar sobre ella los elementos del grupo puntual del icosaedro se obtiene la cápside
completa.

In this section we will focus on the structure of icosahedral viruses, since they
are simple enough to be described mathematically due to the symmetry properties
of the icosahedron. The fact that so many viruses have this shape can be argued
with ”economy” arguments. The size of the capsid puts a constraint in how much
genetic material it can contain. Thus, it is seen in nature that most viruses only
have the genetic information to build one or a few proteins. For this, the proteins
should have some kind of asymmetry in order to be able to form the entire structure
[4]. Since the number of ways to construct a solid with cubic point symmetry and
with asymmetric units (aus)are limited, it is not a surprise the icosahedral symmetry
appears in nature: the icosahedron is the platonic solid that maximises the volume
(genetic material) per unit surface (number of proteins it is made of) [5].

2.1 Caspar and Klug model for icosahedral capsids

The Caspar and Klug (CK) model is a way to construct an icosahedral capsid
from an hexagonal (or equivalently triangular) lattice [6]. Basically, we will con-
struct a bigger structure, the capsomer, which can be of 2 types: hexamers and
pentamers, which are comprised of 6 and 5, respectively, assymetric units. In the
hexagonal lattice, we need to replace 12 of the hexagons (hexamers) with 12 pen-
tagons (pentamers). Thus, we will form a closed 3-D surface from the 2-dimensional
lattice. Due to the Euler theorem for polyhedra, there are a limited number of ways
to construct a closed surface [7]. The way to choose this hexagons are given by the
triangulation numbers T , which also serve as a classification tool in the CK model.
This T numbers are actually the distance squared between adjacent vertices (the
pentamers). They are determined by 2 numbers (h, k) which describe the 2 degrees
of freedom of our hexagonal lattice.

In vector form, the vector that joins 2 of these pentamers is:

~CT = h~a1 + k ~a2.

Due to the geometrical properties of the lattice (~a1 · ~a2 = −1/2), we arrive at
the result that T is given by:

T = h2 + hk + k2.
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2 Structure of icosahedral capsids

Figure 3: Visualisation of the mapping between the hexagonal lattice and the closed surface. [8]

Thus, it is clear that we have some ‘magical’ allowed numbers T = 1, 3, 4, 7, 9...
that constrain the number of capsomers we need to use to construct our capsid
for a given T. Since every icosahedron has 20 faces (each of them will contain T
elementary faces of 3 asymmetric units each) the total number of asymmetric units
will be

Nau = 60T.

We can also calculate how many capsomers we will have for a given T number.
There will always be Npen = 12 pentamers, and a variable number of hexamers given
by Nhex = 10(T − 1). Thus, the total number of capsomers will be [5]:

Ncap = 10T + 2.

Also, it is worth noting that T can be degenerate with respect to (h, k). This
means that to describe a capsid unequivocally we need to use the (h, k) numbers,
since for a given T we can arrange the same number of capsomers in different ways.
When our capsid is different from the types (0, k), (h, 0) or (h, h) this degeneration
gives rise to different optic isomers, either levorotary or dextrorotary.

Figure 4: A: icosahedral capsids for different values of T . B: Representation of how to obtain a
pentamer from a hexamer by removing an asymmetric unit. [9]
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2.2 Symmetry properties of the icosahedron

A regular icosahedron is the platonic solid with more faces. It has 20 triangular
faces, 30 edges and 12 vertices. It also has 3 different types of symmetry axis, related
to these 3 elements. We have 2-fold axis in each of the edges, 3-fold axis in each
of the faces, and 5-fold axis in each of the vertices. Thus, the icosahedral rotation
group I, which contains all possible rotations that leave invariant the icosahedron,
has order 60.

The 60 elements that form I can be grouped in conjugacy classes, which are
disjoint subsets containing elements of the icosahedron group that are related by a
conjugacy relation. What this means is that each of the elements in a certain class
produce a different effect (since they are not the same element) but the effect is of
the same type. The conjugacy classes (described by the effects of the elements they
contain) are the following:

• the identity element (E).

• 12 rotations of 72o, order 5 (12C5).

• 12 rotations of 144o, order 5 (12C2
5).

• 20 rotations of 120o, order 3 (20C3).

• 15 rotations of 180o, order 5 (15C2).

These symmetry properties indicate why the number of asymmetric units of an
icosahedral capsid derived in the previous subsection has to be a multiple of 60
(60T ). If it was not a multiple of 60, the action of all the elements on a single
asymmetric unit (or on T aus, when we have more than 60) would not form the
capsid.

Thus, the icosahedron can be thought of as comprised of (at least) 60 asymmetric
units. If we applied the 60 elements of the group to a single au, we would obtain
the entire platonic solid. This asymmetric unit can be just a single protein, or a
combination of them. Also, this means that each of the 20 faces of the icoshaedron
contains 3 aus. The fact that the icosahedron is made of 60 asymmetric units
does not mean that all viruses with icosahedral symmetry are made of 60 aus (or a
multiple of 60): the icosahedral point group symmetry does not impose it. Several
studies, such as the ones made by Watson and Crick [10] show that there are viruses
with this symmetry that have a different number of subunits.

Figure 5: a) 2-fold b) 3-fold and c) 5-fold rotation axis of the icosahedron [11].
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3 Formation of the capsid: self-assembly

En esta sección se demuestra como el autoensamblaje de una cápside viral vaćıa
es posible y de hecho favorecido bajo determinadas circunstancias de equilibrio ter-
modinámico. Se obtiene una ley de acción de masas que predice que cuando la
concentración de unidades asimétricas supera un cierto valor cŕıtico, el autoensam-
blaje es favorecido. Además, se describe un posible modelo de cinética del ensamblaje
en el que las unidades asimétricas solo pueden unirse o separarse de los agregados
intermedios de una en una. Esto produce un comportamiento sigmoideo en el tiempo
de la concentración de cápsides completas, como se observa experimentalmente.

One of the most remarkable characteristics of the viral capsids is the fact that
they are able to self-assemble. This means that the proteins that are encoded in the
genetic material are able to join together spontaneously. In fact, this process can
be carried out in vitro, as several experiments show [12][13]. This happens because
within the physiochemical conditions of the host cell (or the test tube), this process
is favoured thermodynamically.

We will study the thermodynamics and the kynetics of the assembly for an empty
capsid, since for most viruses this is a usual first step in the building of the capsid.
As we said in the introduction, some viruses construct the capsid around the cargo,
whereas others use a molecular motor to introduce the cargo inside the capsid.

3.1 Thermodynamics of the self-assembly for an empty cap-
sid

We will derive a typical law of mass action (LMA) for the concentrations of
intermediate capsids, comprised of n subunits [14]. Our system is a collection of
identical subunits that will assemble into a T = 1 capsid. We are going to assume
that the conditions for thermodynamic equilibrium are possible within the physio-
logical conditions of the host cell, as well as that there is only one possible structure
-intermediate- that has n subunits (in order to make the computation tractable).
Thus, a possible way of writing the free energy of a system of subunits, intermediates
and capsids in solution is:

F =
N∑
n=1

(kBTρn[ln(ρnv0)− 1] + ρnG
cap
n ) ,

where ρn is the density of intermediates with n subunits, v0 a standard volume and
Gcap
n is the energy of interaction for the respective n-intermediate. This interaction

energy depends on the geometry of the particular intermediate, the number of ways
the n-intermediate can be formed, as well as the temperature, the ionic strength
and the pH. A suitable model for this energy can be found in [15].

In order to obtain the equilibrium concentration we need to minimise the free
energy F with the constraint that the total concentration of subunits, ρT , remains
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3 Formation of the capsid: self-assembly

unchanged:
N∑
n=1

nρn = ρT .

If we minimise the free energy subject to the above-mentioned constraint we
obtain the desired LMA:

ρnv0 = e−β(G
cap
n −nµ), (1)

with

µ = kBT ln(ρ1v0), β =
1

kBT
.

To be able to solve equation (1) we need to use computational methods, due to
the constraint over the total concentration ρT . But it is observed that, at equilib-
rium, the intermediate state concentrations are negligible. Thus, the LMA can be
simplified by neglecting all concentrations but those of the free subunits and those
of the full capsids:

ρT = ρ1 +NρN . (2)

If we now call the fraction of subunits that form part of a capsid fc, by arranging
equations (1) and (2) we arrive at

fc
1− fc

= N(ρ1v0)
N−1e−βG

cap
N .

It is interesting to observe what happens in the limit N � 1. It can be shown
that:

f
1/N
c

1− fc
=
ρT
ρ∗
,

with

ρ∗v0 =

(
eβG

cap
N

N

) 1
N−1

≈ eβ
G
cap
N
N ,

where ρ∗ is the critical concentration of free subunits. And if we observe the
asymptotic behaviour for the ratio ρT/ρ

∗, we obtain the following equations:

fc =

(
ρT
ρ∗

)N
when

ρT
ρ∗
� 1, (3)

fc = 1− ρ∗

ρT
when

ρT
ρ∗
� 1. (4)

Thus, we have shown that under conditions of thermodynamical equilibrium,
the spontaneous formation of capsids is possible and in fact favoured when the total
concentration surpasses the critical one [14].
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3 Formation of the capsid: self-assembly

Figure 6: We can clearly see that when the total concentration is less than the critical concentration,
no capsid formation occurs. But as soon as we surpass the critical concentration, the fraction of
subunits that form part of a capsid quickly grows up to its maximum value NρN/ρT . This change
of behaviour is more drastic as the number of subunits that are needed to form the full capsid
increases, i.e. for large T . [This particular plot was made for N = 1000.]

3.2 Kinetics of the self-assembly for an empty capsid

There have been several experiments as well as computational calculations that
show that the kinetics of the self-assembly are sigmoidal with respect to time evolu-
tion [14]. This means that the self-assembly takes place very quickly after a certain
period of time has elapsed, which depends on certain parameters such as the con-
centration of subunits, the strength of the inter-subunit interactions, among other
physiochemical parameters [14].

In order to describe the assembly reactions that take place to form the entire
capsid starting from single subunits, we need to specify the intermediate steps that
conform it. As a first thought, one could think of the several paths this reactions
might take, such as adding subunits one at a time or forming first certain pieces
of the capsid that are later combined into the full structure. We know thanks to
simulations that the first idea is the predominant one, which could be a consequence
of the different probabilities all possible events have [5]. Here we will explain the
model developed in [5] which only allows the subunits to bind (or unbind) with just
a single subunit at every step of the reaction. These can be expressed symbolically
as:

cn(t)
βn(t)−−−−⇀↽−−−−
αn+1(t)

cn+1(t),

where the cn(t) show the number of aggregates formed of n subunits, while the βn(t)
and αn(t) are binding and unbinding rates, respectively. The dependence of these
two last sets of functions with n and time can be motivated by the results shown in
the previous subsection.

Thus, in general the time evolution of cn(t) will be given by the following master
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equation (the time dependence is assumed implicitly):

∂cn(t)

∂t
= Jn−1 − Jn, (5)

where
Jn = βncn − αn+1cn+1 (6)

is the current of aggregates growing from n to n+ 1.

In equation (5) we have all the possibilities in which the number of aggregates
made of n subunits may change. Obviously, we have N equations, one for every
possible aggregate (with the aggregate with N subunits being the full capsid). These
means we have a system of coupled equations which can be solved if one knows
the form of the binding and unbinding rates (see the Smoluchowski’s theory of
aggregation [16]). We also need to include the conditions βN = 0 and α1 = 0, since
a full capsid cannot grow any further, and a single subunit cannot lose another
subunit. If we found a solution for this set of equations, we would obtain the time-
dependant concentrations of all aggregates: free subunits, intermediates and full
capsids. This can be a very difficult task, specially for large N .

By the use of the adiabatic approximation, the set of N equations can be solved
in a more manageable way. In this approximation, it is assumed that the kinetic
reaction is sufficiently slow as to be characterised by a quasi-steady current J(c1(t))
(whose explicit form can be found in [5]). As explained in the previous subsection,
the total concentration of subunits (which is fixed) can be approximated by

c ≈ c1 +NcN .

If we assume that locally the reaction is in a steady-state for a given concentration
c1(t), then the rate of formation of full capsids will depend on cN only:

J(cN(t)) =
∂cN
∂t

. (7)

And by integrating that implicit equation we would obtain the time evolution of
the complete capsids’ concentration.

Figure 7: Plot obtained by [5] after solving the set of master equations with the help of the adiabatic
approximation for the case N = 72. We can clearly see the sigmoidal behaviour explained at the
beginning of the subsection. Also, it is worth noticing that it takes a considerable amount of time
to approach the maximum concentration of complete capsids (≈ 1 hour).
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4 Physical properties of the capsid

En esta sección se proponen sendos modelos que describan las propiedades mecánicas
y electrostáticas de una cápside viral. En relación con las propiedades mecánicas,
se utiliza la teoŕıa de láminas (TST) para obtener de forma teórica los perfiles
de indentación que pueden ser obtenidos mediante las técnicas de microscoṕıa de
fuerza atómica. Con respecto a las propiedades electrostáticas, se calcula la enerǵıa
propia de atracción y se compara con los valores experimentales de la enerǵıa de
repulsión, mostrando el delicado equilibrio electrostático en la cápside de estabili-
dad/inestabilidad.

Since the capsid is the main tool (usually the only one) that a virus uses to
interact with their surroundings, it is natural to think that the physical properties
of the capsid play a key role on its functionality, such as its stability against exterior
forces. We need to take into account that viral capsids need to be stable enough
to protect and carry the genetic material around but unstable enough to be able to
release it at the appropriate time and place. Therefore it is critical to understand
their physical properties to gain more insight into the aforementioned characteristics.
In particular, we will describe some of the discoveries regarding the indentations
produced by force probes on viral capsids as well as the electrostatic self-energy
related to the self-assembly.

4.1 Mechanical properties of the capsid

A useful way of measuring the stability and resistance of a capsid against external
forces is to simply “poke it”. With this simple method of applying forces onto a
capsid and measuring how much it deforms, if it recovers its original form or if
it breaks, we can gain some understanding on the mechanical properties of these
structures and how they resist external “threats”. Numerous experiments have
been conducted on this track, and specially significant are the ones performed with
an atomic force microscope (AFM), whose techniques are summarised in [17].

We can relate the applied force with the corresponding change in the capsid,
obtaining a so-called force-deformation curve (FDC). As said before, the different
reactions of the structure after the force is removed reveal the regimes of reversible
and irreversible deformation. This transition between reversible and irreversible de-
formation occurs when the force probe moves the viral structure away from the state
of minimum energy (maximum stability). Therefore, if we modelled the deformation
free energy of the capsid and knew the applied force, we could compute the defor-
mation profile of the structure, which can be compared with experimental measures
(FDC) [17].

In various fields of engineering it is of great importance to know the effects of
external forces or pressures on thin-walled or shell-like materials, such as airplanes,
gas tanks, etc. For that matter they use the ”thin-shell theory” (TST), which can
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4 Physical properties of the capsid

be applied to viral capsids as well. We can model the capsid as a thin spherical
shell of radius R and uniform thickness. Even though we have assumed in previous
sections that the viruses are empty for several calculations, in this model we need
to include the osmotic pressure exerted by the genetic material, since it can be as
high as 50 atm [18]. Since we want to compare this with FDC, we will try to express
the free energy of deformation in terms of the radial indentation profile ζ(r), which
is the radial displacement of the sphere in terms of a 2D coordinate system on the
surface of the sphere. When taking the limit for small ζ(r), the TST gives us the
following expression for the free energy [17]:

∆F =

∫
dS

[
1

2
κ(∆ζ)2 +

1

2
τ(∇ζ)2 +

1

2
Y

(
2ζ

R

)2
]
. (8)

The first term of this expression is the bending energy of the shell (notice how
∆ζ represents the curvature and that κ has units of energy), the second term is the
work done by the probe against the osmotic pressure (τ is a surface tension), and the
third term measures the stretching of the thin layer (Y is the 2D Young modulus)
[17]. By computing the functional derivative of the free energy with respect to the
radial displacement and setting it equal to the probe force per unit area, we can
obtain the indentation profile. In fact, for the ideal case of a punctual force, the
equation

δ∆F

δζ(r)
= fδ(r)

can be solved analytically. One obtains that the force creates a crater with a radius
of order

√
Rlb (where lb =

√
k/Y is a characteristic length scale) and when the force

applied is small, it has a linear response, which means it acts like a spring [17].

For larger forces, equation (8) cannot be used, Instead, one has to solve a group
of daunting equations known as the Föppl von Kármán equations. Even computa-
tionally they are rather difficult to solve, so its better to minimise the elastic energy
by methods such as the finite-element modelling (FME) [17].
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4 Physical properties of the capsid

Figure 8: a) scheme of how the AFM creates the indentation (or breaks) the capsid. Notice the
abrupt change in response after the linear regime is no longer valid. b) On the left, Triatoma
virus before and after irreversible deformation. Even individual pentamers can be seen after the
mechanical failure; on the right, indentation profiles for the top of the capsid (top) and the pentamer
(bottom) [19].

4.2 Electrostatic properties of the capsid

We know that capsids interact electrostatically, since that is the way some viruses
attach to different surfaces, such as enteric viruses on lettuce [20]. Viral capsids are
formed by proteins, which through their charge distributions acquire the secondary
(and upper) structures. In fact, the interactions between the charges in the proteins
that conform the capsid and the charges in the genetic material (which are arranged
in a complementary fashion) increase the electrostatic interaction, decreasing the
energy and facilitating the assembly [21]. This creates, in general, a layered distri-
bution of charge.

The easiest way to model the interaction self-energy of the capsid is to calculate
that of a uniformly charged, permeable and infinitely thin spherical shell of radius R
(surface charge density σ). One approach to computing this is by treating the ions
as an ideal gas, which adjust to the external potential and contribute to it via their
charge density. This approach is called the Poisson-Boltzmann (PB) approach, and
gives us a non-linear differential equation for the potential φ. We can obtain the PB
equation by minimising the appropriate free energy, which is [22]:

FPB[φ(r),∇φ(r), ci(r)] =

∫
fPB(φ(r),∇φ(r), ci(r))d3r,

with

fPB(φ(r),∇φ(r), ci(r)) = −1

2
εε0∇φ(r)2 +

∑
i=±

eic
i(r)φ(r) + e0ρp(r)φ(r)+

+
∑
i=±

kBT [ci(r)lnci(r)− ci(r)− (ci0lnc
i
0 − ci0)].
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4 Physical properties of the capsid

For the above equation, e0is the charge of the electron, e0ρp(r) represents the
charge density of the capsid, ci are the concentrations of the salt ions (with ci0
being their bulk concentrations) and εε0 is the permittivity of water. And after a
minimisation with respect to the three functions of the FPB functional, we arrive at
the PB equation [21]:

−εε0∇2φ(r) = e0ρp(r) +
∑
i=±

eic
i
0e
−βeiφ(r),

where β−1 = kBT .

If the expression on the exponential is sufficiently small (small potentials in the
solution) and we have a symmetric system (c+0 = c−0 ), the PB equation can be
linearised, which gives the Debye-Hückel equation for the potential [21]:

−∇2φ(r) = κ2φ(r) +
e0ρp(r)

εε0
+ ..., (9)

where κ2 = β
(∑

i=± e
2
i c
i
0

)
/εε0 its the square of the screening length. This equation

can be solved with several techniques, such as the Green’s method. Basically we
obtain a Coulomb-screened potential, which we can integrate over the two surfaces
of the thin shell to obtain the self-energy of the capsid [21]:

FDH =
1

2

σ2

4πεε0

∫
dS1

∫
dS2

e−κ|r1−r2|

|r1 − r2|
,

where the factor of 1/2 eliminates double counting of pair interactions. Given
the conditions of the physiological solution where capsids lie inside living beings and
the typical radius for a virus, we see that κR >> 1, which helps us to simplify the
integral. This condition implies that the range of integration is effectively cut on
the scale of κ−1, which separates the two integrals and gives the following result for
the self-energy [21]

FDH =
πσ2R2

εε0κ
. (10)

This energy is the energy required to bring infinitesimal charges from the infinite
to the solution to form the capsid [21]. We can estimate this value given the typical
size of a virus, the usual physiological conditions and the the aminoacid content,
which gives us the charge density [23], and we get a value of FDH ≈ 104kBT .
Now we can compare this attractive energy of interaction with the corresponding
repulsion energy, which has been measured for the hepatitis B virus with a value
of ≈ 1.5 · 103kBT [24]. Thus, we see the delicate equilibrium between stability and
instability, which is necessary for the capsid to release the genetic material at the
appropriate place.
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5 The computational approach: 2 different mod-

els of interaction

En esta sección se describen las dos técnicas principales usadas en simulaciones
moleculares por ordenador, los modelos all-atom y los modelos coarse-grained. Den-
tro de cada modelo se contraponen sus puntos fuertes a sus puntos débiles y se
pone en valor la utilidad de cada uno. Además, se comenta la posibilidad de poder
combinar ambos métodos en uno solo para intentar compensar mutuamente sus de-
bilidades.

Up to this point we have used continuous models to describe some of the physical
properties of the capsid. But since matter is discrete, to model reality in a continuous
manner is actually an approximation. Therefore, if we want to increase the accuracy
of the description of our system we inevitably need to take the discrete nature of
reality we into account.

Thus, we need to introduce how the different parts (atoms, molecules, or other
subunits) interact between them, and the way to do that is through the use of inter-
molecular potentials. These are very varied and they choice of using ones instead of
others depends on many variables such as the scale of the interactions, their strength,
etc. For example, we could model the intermolecular interactions in a capsid with
the famous Lennard-Jones potential, or with a simple spring like interaction.

In theory, if we wanted to study the interactions between a finite number of
subuits we would construct the corresponding set of equations taking into account
the relevant interactions for our model and solve it, either with pen and paper or,
for a large number of atoms, with the help of a computer. Here, we will describe two
different approaches to tackle this mathematical problem computationally: all-atom
and coarse-grained simulations.

5.1 All-atom models

The approach all-atom models take is to attempt to simulate all the atoms
(sometimes reducing the radicals of a molecule) that conform the system and all
their mutual interactions. Therefore, the results obtained through this method are
in principle exact up to the approximations one may introduce in the interaction
potentials of the system. The problem we encounter is that for a sufficiently large
number of atoms, we can run into problems even with the help of a computer, since
it can need an incredible amount of time to perform the calculation.

Let’s check the magnitude of the problem if we tried to model an empty capsid.
Proteins are constituted, roughly, by 6000 atoms [25]. This means that a virus is
constituted by approximately 60 · 6000 = 3.6 · 105 atoms (T1 virus with 1 protein
per asymmetric unit). And this rapidly increases the amount of time the computer
takes to compute every step of the simulation. To put into perspective the scales
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of computing time we are dealing with, the current record for the longest all-atom
simulation of an empty capsid (an HIV-1 capsid) simulated 64,423,983 atoms for
only (or as long as) 1.2 µs [26]. Even with a supercomputer, it could only calculate
8 ns of the simulation per day, which means it took about 150 days of computations
to obtain the entire sequence [26]. Also, it requires huge amounts of memory power:
every 8 ns weighed 315 gigabytes! [26].

Thus, it seems like all-atom models can only be applied making a balance between
the size of the system and the computational resources one has access to. But this
could change soon once quantum computers increase in computational power and
efficiency, making all-atom models more broadly usable.

5.2 Coarse-grained models

Coarse-grained (CG) models attempt to simplify the all-atom approaches in order
to make them more manageable computationally. Instead of taking into account all
possible interactions between all the atoms that conform the system, coarse-grained
models split the system into groups of atoms or molecules and treats each of them
as single particles, thus reducing the complexity of the problem. Instead of particles
one could also use rigid solids. This gives us freedom of choice to choose the scale
of the simulations, as well as how many degrees of freedom we want to take into
account. With a less complex problem, we can achieve longer simulations with
shorter times of calculation. Usually, the model is considered coarse-grained when
one considers as subunits of the system at least the individual proteins.

Obviously, how we group the atoms or the molecules can change drastically the
behaviour of the system in comparison to the all-atom prediction. This can happen
either by making a poor choice of the elements that conform each group, or by
putting too many atoms (or molecules) in each group. A poor choice of any (or
both) could lead to unrealistic movements in the system and/or to eliminate the
finer details of the simulation. Therefore, one has to make a balance between the
computational power available and the details and realism one wants to obtain.

This model is broadly used across all kinds of molecular dynamics simulations:
from single proteins to viral capsids as well as all types of biomolecules [27]. It
is a consequence of its scalability and lesser requirements of computational power,
which compensate the lack of precision when compared with all-atom simulations.
It is also very interesting to compare how both techniques can be combined, using
the all-atom model for certain parts of a molecule and the coarse-grained for others,
increasing the details of the simulation without a lot of computational cost [27].
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6 The 60 asymmetric units model (AUM-60)

En esta sección se construye un pequeño modelo coarse-grained de una cápside vi-
ral formada por 60 unidades asimétricas, las cuales son modeladas como sólidos
ŕıgidos. Por un lado, se construye una matriz de contactos que servirá para calcular
la matriz del potencial necesaria para calcular ciertos parámetros f́ısicos como las
frecuencias de oscilación. Por otro, se utilizan las técnicas de teoŕıa de grupos para
calcular cuantos modos normales posee la cápside sin calcularlos expĺıcitamente y se
describen de forma cualitativa sus posibles simetŕıas.

After developing a model of interaction, we basically have solved all of our prob-
lems, since from that we can calculate almost all of the physical properties of interest,
such as the equilibrium configurations [28], the kinetics [29]... and in particular the
normal modes and its associated frequencies. Thus, it is of great importance to
introduce as much detail as possible into the model while keeping it simple enough
so it remains tractable.

We have seen that even though the coarse-grained model is not the most precise
method of simulating a molecule computationally, it is the best when we take into
account the computational cost versus the detail we obtain. And we can enrich and
simplify our model further with the use of symmetry arguments, which will allow
us to obtain information about the normal modes without making explicit calcu-
lations. Because of their usefulness, CG models that rely on symmetry properties
have already been developed, using as a basic unit trimers and pentamers [30].

In this chapter we will take a step further from those models and lay the basis to
simulate an empty viral T1 capsid comprised of 60 asymmetric units using a coarse-
grained with symmetry arguments model. Instead of considering each au as point
particles as it is usually done, we will model them as rigid bodies, thus increasing
the number of degrees of freedom of the system and the fineness of the model (3
rotations and 3 translations).

6.1 The construction of the contact matrix

To be able to simulate any molecule we need to know how the different atoms (or
the asymmetric units, in our capsid) interact. We will make the approximation that
each asymmetric unit only interacts with their near-neighbours, which leaves us with
5 interactions per au. Moreover, the fact that each au is, by nature, asymmetric,
means that these 5 interactions will all be different, but a certain level of symmetry
remains thanks to the icosahedral shape. If we use as a reference an asymmetric unit
with its short base up, interactions that involve right-top sides have been labelled
as “Type 1”, interactions left-bottom as “Type 2” and interactions bottom-bottom
as “Type 3”. Types 1 and 2 are asymmetric, since the aus involved have different
effective shapes.
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Figure 9: The three different types of interaction in our model (types 3, 1 and 2 from left to right).
Notice the asymmetry of types 1 and 2.

In order to construct a matrix that contains all the information regarding which
units interacts with which, we need to number each asymmetric unit in the capsid.
This is in principle a free-to-choose task, since there is no immediate way to do it
(this is worth investigating further!). I chose the numeration provided by my tutor
to be able to compare results easily. Not having an ubiquitous way to number the
capsid means the ways of coding the contacts between aus are limited. I found that
using the property that the contact matrix is symmetric and that the numbers of
the aus follow certain simple recurring relations for the different interactions works
best for simplifying the code. Of course, the recurrence relations are dependent on
the choice of the numeration. The resulting matrix as well as the numeration used
are available in the appendix.

The contact matrix has a size of 60×60. But this is not the size of the matrix that
contains the interactions. The matrix we developed only connects the appropriate
asymmetric units. Since we are modelling the aus as rigid bodies, in the actual
potential matrix we need to include the 6 coordinates of each au. Thus, every
element of the contact matrix is in fact a 6 × 6 matrix, making the real size of the
matrix that contains the interactions 360 × 360. Once we describe the potential,
we can calculate physical properties of the capsid such as its normal modes and
their associated frequencies. There is, in principle, a maximum number of normal
modes given by the amount of degrees of freedom of the system. Dealing with 60
aus, we have 6(Nau− 1) = 354 possible normal modes (eliminating translations and
rotations of the capsid as a whole). But the fact that the system is invariant under
the action of the elements of I means the actual number of normal modes is less
(and even more the number of different frequencies!).

6.2 Group theory: reducing the complexity

The problem of calculating the normal modes (in the linear regime) of a phys-
ical system is often reduced to finding the eigenvalues (the frequencies) and the
eigenvectors (normal modes) of a certain matrix H that depends on the kinetic
and potential energy of the system. Basically, we construct the Hamiltonian of the
system and then Taylor-expand the potential around the equilibrium configuration
so that the corresponding equations of motion have harmonic-type solutions. This
gives us the small oscillations of the system around such equilibrium configuration.
This seemingly simple problem can be easily solved with pen and paper for systems
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with a small number of elements, or with computational methods when this num-
ber increases. But if the system is too big, this last method start to cost a lot of
computational time. Therefore, one is compelled to look for other restrictions that
can be imposed on the system, trying to reduce the complexity of the matrix.

The methods developed in group theory can help us decrease the complexity
of the problem by transforming the matrix H into another that is block-diagonal,
where one can obtain the eigenvalues and eigenvectors in a much simple manner.
One only has to perform a similarity transformation upon H with a certain matrix
that is determined by the symmetry of the system and the choice of coordinates
for the normal modes [31]. This is called to reduce the representation. Basically,
we express our matrix as the direct sum of a certain combination of the irreducible
representations (irrep) of the symmetry group. And even without making explicit
calculations, we can still gain some insight into the behaviour of the system.

As proof of this, we will show how many normal modes there are, if their asso-
ciated frequencies are degenerate or not, and gain certain insight on how the capsid
vibrates. Group theory tells us that a certain irreducible representation appears
in our reducible representation a specific number of times (we ignore the complex
conjugation since the icosahedron point group is real) [32]:

n(α) =
1

g

∑
G

χred(G)χ(α)(G). (11)

Here α denotes the irreducible representation, g is the order (number of ele-
ments) of the symmetry group, and χ(G) represents the character of correspondent
representation (the sum is carried out over all the elements of the group). Thanks to
a character table, readily available in the literature, we can obtain easily the values
of the characters. We obtain that our reducible representation can be expressed as

S = 6A⊕ 16T1 ⊕ 18T2 ⊕ 24G⊕ 30H, (12)

where the irreducible representations associated with translations and rotations of
the capsid as a whole have already been removed.

Since the matrix S is block diagonal (whose blocks are given by equation (12))
we can diagonalise each block individually. For every irreducible representation
of dimension f , we have an f -degenerate frequency [33]. The normal modes that
belong to the same irreducible representation are the equal, albeit rotated [31]. This
means that an empty viral capsid comprised of 60 aus has 94 different frequencies
and normal modes, which is a great reduction from the 354 that we had at the
beginning (we have only taken into account distinct normal modes, because if they
belong to the same irrep they are related through linear transformations: thus we
have one frequency per irrep).

Also, by noticing which type of functions are invariant under each irreducible rep-
resentation we can gain some understanding on the behaviour of the normal modes
[34]. In fact, since only symmetric functions of the form f(x2 +y2 +z2) are invariant
under the A irrep, we are able to assure that the 6 normal modes associated with A
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are completely symmetric. When these symmetric modes involve translation coordi-
nates, they are called respiration or breathing modes. Also, symmetric oscillations
mean that almost all of the aus of the capsid are moving. For the rest of irreducible
representations, we only have degenerate asymmetric motions [31]. Visualisations
of some of these normal modes both symmetrical and asymmetrical (although for a
different model) can be found in [30].

We also need to take into account that the greater the granularity in the CG
model (the bigger the basic unit), the lower the frequencies, as they are inversely
proportional to the mass. This gives us the intuition that the more symmetric a
movement is, a bigger number of basic units are involved in the oscillation, and thus
the frequencies are lower, since there is more mass involved in the movement. This
is worth investigating further.

I E 12C5 12C2
5 20C3 15C2

A +1 +1 +1 +1 +1
T1 +3 -2cos (4π/5) -2cos (2π/5) 0 -1
T2 +3 -2cos (2π/5) -2cos (4π/5) 0 -1
G +4 -1 -1 +1 0
H +5 0 0 -1 1

Table 1: Character table of the icosahedron point group
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7 Application of the AUM-60 to a real virus

En esta sección comparamos las predicciones de nuestro modelo de 60 unidades
asimétricas con los hallazgos de un grupo surcoreano en el virus del Zika, y compro-
bamos como únicamente con el uso de las propiedades de simetŕıa se pueden predecir
de forma cualitativa el número de modos normales completamente simétricos.

Even though the Zika virus has been relatively unknown for the public since
its discovery in 1947, it has gained recent popularity due to the epidemic that
affected Central America, the Caribbean and South America between 2015-2016. In
particular, it was particularly well-know for its association with a huge increase in
the cases of microcephaly in new-born children whose mothers were infected by the
virus. This has motivated the latest research on the virus, specially directed towards
a vaccine or a treatment. The knowledge acquired regarding the biological process
of infection, among other processes, has been limited so far [1]. There is no vaccine
or treatment available at the moment.

Thanks to cryo-electron microscopy, it has been revealed that the Zika virus
capsid possesses an icosahedral symmetry [1]. The capsid under study has as unit
structure a dimer which is formed by 2 heterodimers and each dimer is connected to
the lipid membrane of the virus [1]. Since there are 90 dimers, in principle we would
not be able to apply our model (made for 60 au), but every trio of heterodimers
acts de facto as an assymetric unit. Therefore, we have 60 aus and our model is
applicable.

A research group in South Korea has made explicit calculations of 6 lowest nor-
mal modes of the capsid. They treated each heterodimer as a single particle, but
simulated the shell with a very complete method that even includes the thermody-
namical properties of the simulation box (like pressure, temperature...), as well as
other molecules, such as water [1]. As a potential, they used a simple spring-like
interaction with a cut-off distance to suppress long-range (and thus weak).

Despite the fact that the South Korean group did not model the heterodimers
as rigid bodies, their findings about the symmetries of the lowest frequencies are
in good agreement with the predictions of the AUM-60. They found that the 6
lowest frequencies have fully symmetric movements around the symmetry vertices,
although only 5 of them present breathing movements [1]. This is in agreement
with the predictions of the AUM-60, which predict 6 fully symmetric modes. Modes
A and C have breathing movements about the 3-fold vertices, with the C mode
movement originated by torsion of certain parts of the heterodimers [1]. Modes B
and E also have breathing movements, but around the 5 fold vertices: they only
differ in the narrowness of the oscillation [1]. Mode D its similar to A, B and E, but
around the 2-fold vertices [1]. Finally, mode F is purely torsional, around the 5-fold
vertices [1].

About the interpretation of the simulation results of the South Korean group, it
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is merely qualitative since they only show a certain number of arrows in each mode
which is substantially less than the 60 arrows our model would produce. Therefore,
the movements shown are an average over the real movements that our 60 aus model
could obtain. It would be interesting, through the adequate choice of force constants,
to reproduce their results with our model.

Figure 10: The 6 fully symmetric modes of the Zika virus that belong to the A irreducible repre-
sentation [1].
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8 Conclusions

En este apartado condensamos las conclusiones y resultados a los que hemos lle-
gado utilizando el modelo de 60 unidades asimétricas para capsides icosaédricas y
proponemos varias ĺıneas de trabajo futuro.

In this project we have shown how important is the application of physical theo-
ries to better understand biological objects such as viruses. We have seen how these
two branches of science, biology and physics, can be intertwined to offer a better
and deeper description of reality and actually complement each other.

But the main work has been to develop the basis of a coarse-grained model that
uses 60 asymmetric units and symmetry arguments for the description of icosahedral
capsids of T1 viruses. First we have created a contact matrix for the asymmetric
units under the restriction that only the contact-neighbours interact with each other.
Then we calculated how many normal modes and associated frequencies a 60 aus
capsid has to have due to the symmetry properties of the icosahedral point group.
In particular, we proved that there are 94 different frequencies and normal modes,
and that 6 of those frequencies belong to fully symmetric oscillations. In fact, we
compared our results to the explicit calculations of a south corean research group
that computed the 6 lowest normal modes of the Zika virus, since it presents an
icosahedral symmetric capsid that can be described with 60 asymmetric units [1].
The south corean group, without making symmetry arguments, obtained 6 fully
symmetric modes that correspond to the ones our model predicted.

From here, we propose the following paths to continue this work:

• Investigate the possible relation between the symmetry of a normal mode and
its frequency. Since in general symmetric modes involve the movement of more
asymmetric units than other modes, and the frequency is inversely proportional to
the square root of the mass, it is intuitive to think that a symmetric mode would
have a lower frequency than other modes. In particular, fully symmetric modes
involving translations (breathing modes) should have lower frequencies than fully
symmetric rotational modes.

• Develop a better code to construct the contact matrix and try to find an optimal
way of numerating the capsid (if it exists).

• Complete the AUM-60 model by proposing an interaction potential and construct-
ing (with the help of the contact matrix developed in this project) a potential
matrix for the capsid, and to compute explicitly the normal modes and its fre-
quencies, as well as other parameters of interest such as the critical concentration
for optimal self-assembly, etc.

• Make a fit using the force constants (free parameters) of the completed AUM-60
model to reproduce the results of the south corean group [1].
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Appendix: the contact matrix of the AUM-60

Due to the size of the matrix (60x60) and thanks to its symmetry only the non-
zero elements above the diagonal are shown. To obtain the non-zero elements below
the diagonal, just swap i←→ j and a←→ b.

ai,j Int. Type

a1,2 1a
a1,3 1b
a1,4 2a
a1,13 2b
a1,15 3
a2,3 1a
a2,15 2a
a2,32 3
a2,33 2b
a3,4 3
a3,5 2b
a3,32 2a
a4,5 1a
a4,6 1b
a4,7 2a
a5,6 1a
a5,35 3
a5,36 2b
a6,7 3
a6,8 2b
a6,35 2a
a7,8 1a
a7,9 1b
a7,10 2a
a8,9 1a
a8,37 3
a8,38 2b
a9,10 3
a9,11 2b
a9,38 2a
a10,11 1a
a10,12 1b
a10,13 2a
a11,12 1a
a11,41 3
a11,42 2b
a12,13 3
a12,14 2b

ai,j Int. Type

a12,41 2a
a13,14 1a
a13,15 1b
a14,15 1a
a14,44 3
a14,45 2b
a15,44 2a
a16,17 1a
a16,18 1b
a16,19 2a
a16,28 3
a16,39 2b
a17,18 1a
a17,30 2a
a17,47 3
a17,48 2b
a18,19 3
a18,20 2b
a18,46 2a
a19,20 1a
a19,21 1b
a19,22 2a
a20,21 1a
a20,50 3
a20,51 2b
a21,22 3
a21,23 2b
a21,50 2a
a22,23 1a
a22,24 1b
a22,25 2a
a23,24 1a
a23,53 3
a23,54 2b
a24,25 3
a24,26 2b
a24,53 2a
a25,26 1a

ai,j Int. Type

a25,27 1b
a25,28 2a
a26,27 1a
a26,56 3
a26,57 2b
a27,28 3
a27,29 2b
a27,56 2a
a28,29 1a
a28,30 1b
a29,30 1a
a29,59 3
a29,60 2b
a30,59 2a
a31,32 1a
a31,33 1b
a31,55 3
a31,56 2b
a31,60 2a
a32,33 1a
a32,55 2a
a33,58 2b
a33,60 3
a34,35 1a
a34,36 1b
a34,52 3
a34,53 2b
a34,57 2a
a35,36 1a
a35,52 2a
a36,55 2b
a36,57 3
a37,38 1a
a37,39 1b
a37,43 3
a37,44 2b
a37,48 2a
a38,39 1a

ai,j Int. Type

a38,49 2a
a39,52 2b
a39,54 3
a40,41 1a
a40,42 1b
a40,46 3
a40,47 2b
a40,51 2a
a41,42 1a
a41,46 2a
a42,49 2b
a42,51 3
a43,44 1a
a43,45 1b
a43,48 2a
a43,58 3
a43,59 2b
a44,45 1a
a44,58 2a
a45,46 2b
a45,49 3
a46,47 1a
a46,48 1b
a47,48 1a
a49,50 1a
a49,51 1b
a50,51 1a
a52,53 1a
a52,54 1b
a53,54 1a
a55,56 1a
a55,57 1b
a56,57 1a
a58,59 1a
a58,60 1b
a59,60 1a
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Appendix: the contact matrix of the AUM-60

Note: the positions ai,j of the non-zero elements as well as the type of interaction
between aus depend on the numbers allocated to each of them, which is an arbitrary
choice. The numeration used for this particular matrix is the shown below.

1 4 7 10 13

2 5 8 11 143 6 9 12 15

31 34 37 40 43

32 35 38 41 4433 36 39 42 45

58 55 52 49 46

59 56 53 50 4760 57 54 51 48

28 25 22 19 16

29 26 23 20 1730 27 24 21 18

Figure 11: [Original work from Dr. José Maŕıa Gómez Llorente]

28


