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Resumen
La materia oscura es uno de los problemas más importantes y actuales de la f́ısica.
Por lo general, se considera constituida por part́ıculas clásicas moviéndose a veloci-
dades no relativistas y que solo interaccionan gravitatoriamente. Este es el que se
conoce como modelo de materia oscura fŕıa (CDM). A pesar de ser el modelo más
extendido, las simulaciones bajo su marco teórico presentan serios problemas. En
este trabajo estudiamos un modelo alternativo para la materia oscura, que consiste en
suponerla compuesta por part́ıculas cuánticas ultraligeras agregadas en condensados
de Bose–Einstein.
Al final del trabajo se comparan ambos modelos con los datos experimentales y se
dan unas nociones de hacia dónde se dirige la investigación actualmente en este
campo.
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1 Introduction

The discovery of both dark matter and dark energy is one of the most important scientific
events in recent times. Together, they constitute the 95% of the Universe. The rest, a 5%,
is the conventional matter. But dark matter and energy not only are important by their
abundance but also because they are different and we hope that with a precise description
we will be able to understand new and deeper aspects about the universe.

According to the last estimations, dark matter represents a 27% of the total content of
the universe, being therefore five or six times more abundant than ordinary matter. The
concept of dark matter was introduced as a solution to the dissonance that exits between
the observational orbits of the stars in their galaxies and the theoretical predictions. This
problem, that will be explained deeper in the first section, basically can be stated as
follows: Theoretically, the velocity of the stars far away from the centre of their galaxies,
where there are almost no stars and there are little contributions to the total mass of the
galaxies, should decrease rapidly with the distance; however, observations indicate that
this is not the case and the stars actually maintain their velocities almost constant. To
explain this fact the existence of invisible matter was proposed. This must be matter that
interacts only gravitationally with the ordinary matter and was called dark matter (DM).

Apart from the hypothesis of the existence of this new type of matter, other solutions
were also proposed. The most important consists in modified theories of gravity, which
suppose that the disagreement between theory and observations is due to a failure of
the Newtonian gravity theory at large distances (galactic scales). These are the MOND
theories (Modified Newtonian Dynamics).

The reason to put more emphasis on the dark matter hypothesis is that there are a series
of evidences that support its existence. We will also mention these evidences in the first
section.

Nowadays, the most accepted cosmological model is the ΛCDM model, where Λ denotes the
dark energy and CDM means cold dark matter. In contrast to the hot dark matter model,
the CDM model assumes that dark matter particles move at low velocities, i.e., at non-
relativistic velocities. In the cold dark matter theory, the structure grows hierarchically,
with small objects collapsing under their self-gravity first and merging in a continuous
hierarchy to form larger and more massive objects (bottom-up).

The viability of the ΛCDM conception was first evaluated using computational simulations.
The behaviour of the dark matter can be simulated in computers chunking a portion of the
universe and evolving it (N-body simulations). Since the particles interact only through
gravity, these simulations are called collisionless simulations. Predictions of the cold dark
matter paradigm agree in general with observations of cosmological large-scale structure.

On the other hand, since the 1990’s the simulations became sufficiently powerful to make
detailed predictions of the internal structure of halos in different cosmological scenarios.
These simulations highlighted the universal nature of the DM halos, formed by means of
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collisionless collapse. In addition, these simulations predicted that the matter density of
halos satisfies the Navarro–Frenk–White (NFW) profile,

ρNFW (r) =
ρs

(r/rs)(1 + r/rs)2
, (1)

where rs is a scale radius and ρs is a characteristic density.

However, these powerful simulations started to point out a certain number of deficien-
cies in the CDM scenarios. The most obvious was the overabundance, by more than an
order of magnitude, of small dark matter halos compared to the number of small dwarf
galaxies observed orbiting the Milky Way or others galaxies (“the missing satellites prob-
lem”). Worse, the simulations significantly overpredicted the density of DM at the centre
of galaxies. This can be observed in the NFW density profile, which predicts a well pro-
nounced central cusp. On the observational side, high-resolution rotation curves show that
the actual distribution of dark matter is much shallower than this and that it presents a
nearly constant density core. This discrepancy between the CDM model and observations
is called “the cusp-core problem”.

The differences between observations and simulations in the framework of the ΛCDM
model are particularly important in the case of the recent observations of the dwarf galax-
ies done by “The HI Nearby Galaxy Survey” (THINGS) [1]. Dwarf galaxies are cosmic
structures dominated by dark matter with a very small contribution of baryonic matter to
the total matter content. The observed rotation curves are better described by core-like
models instead of cusp-like models.

The CDM model is being challenged by these problems. In response to the apparent
inability of this model to solve the above problems, new models for the dark matter have
been proposed. One of them, the one we are interested in, models DM as a Bose–Einstein
condensate. Its more recent results are promising.

The aim of this work is to study the main theoretical aspects of this model. The structure of
the work consists of a first section explaining why the idea of the dark matter emerges and
the evidences of its existence, followed by two sections about Bose–Einstein condensates
—one dedicated to a conceptual introduction and the other dedicated to the derivation of
the equation describing the dynamical evolution of the condensates (the Gross–Pitaevskii
equation). Then, there are three sections dedicated to the derivation of the density profiles
of the dark matter halos considered as Bose–Einstein condensates. Finally, the last two
sections present the results of this model and the conclusions.

2 Dark matter: necessity and evidences

En esta sección se hace una revisión histórica de los motivos que llevaron a proponer la
existencia de materia oscura en el universo y se dan una serie de pruebas para defender
la hipótesis de la materia oscura frente a otras hipótesis, como las teoŕıas MOND.
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2.1 Rotation curves

To understand the original proposal of the existence of dark matter we need to first
introduce a very simple but important formula of classical dynamics. Astronomical objects
moving in circular orbits of radius r around a mass M(r) have only centripetal acceleration
and, as a consequence, their velocities satisfy

v =

√
GM(r)

r
. (2)

This equation can be used to determine the mass of astronomical objects by simply mea-
suring the velocity of the bodies orbiting them. The use of Eq. (2) allowed revealing the
existence of the dark matter for the first time.

In principle, Eq. (2) is only strictly valid for circular orbits. However, it is also satisfied
in average in the case of elliptical orbits. Thus, if we measure the velocity of many bodies
orbiting around a large mass, we can use Eq. (2) to determine the value of this mass.

Considering in a galaxy the velocity of stars with different distances to the galactic centre
we can determine the amount of mass bounded by the orbit of each star, that is the
effective mass that attracts it. In this way it is possible to know the mass distribution in
the galaxy. This was the work developed in the 1960’s by Vera Rubin and Kent Ford [2].

A reasonable expectation about the mass of the galaxies already existed. In theory, the
mass of the galaxies came mainly from stars and galaxy gases. The stellar mass could be
measured using the galaxy brightness and nowadays the mass that galactic gas contains is
known thanks to the X-ray spectrum that it emits. All this matter constitutes the major
part of the ordinary mass of the galaxy, the only one known in Rubin times. Therefore, it
existed a clear idea about the galaxy mass and its distribution.

Concretely, at a large distance from the centre there are barely any stars and gas that
contributes to the galactic mass and this would cause the velocity of stars far away from
the galactic centre to decrease rapidly with distance. However, these were not the results
that Rubin and Ford found: the star velocities remained constant even for large radii r.

The easiest explanation to this observation is that apart from visible matter, invisible
matter (dark matter) exists, which extends much further than the apparent bounds of
the galaxies and contains more mass than the visible matter. Thus, an increase in r is
compensated by other in M(r), remaining the velocity of distant stars constant.

Rubin and Ford studied more than 60 galaxies, finding the same phenomenon. The conclu-
sions of this study have being confirmed later by other independent observations. Typically
the ordinary mass of a galaxy is in the order of the 10% of the total, being the remaining
90% dark matter. However, at cosmic level the proportions are 80–85% of dark matter
and 15–20% of ordinary matter. The reason is that the majority of the ordinary matter
is in the intergalactic gas.

In general, the study of Rubin and Ford is considered as the first clear evidence of the
presence of dark matter. Nevertheless, Fritz Zwicky was the first astronomer who proposed
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the existence of dark matter based on an observational evidence in 1933 [2]. Zwicky
studied the Coma Cluster, that contains over 1000 identified galaxies, and observed that
the velocities of the galaxies were much higher than expected. Zwicky attributed this to
a “dark matter” in the cluster, although he overestimated its amount because he did not
consider the intergalactic gas due to the fact that he did not have the needed instruments.

Anyway, it was not clear, even after the Rubin–Ford study, whether the dark matter was
only ordinary matter difficult to detect or a new unknown type of matter. The possibility
that the Newton law failed at large distances also existed, in which case one could not use
Eq. (2) to infer the matter content of the galaxies.

2.2 Cosmic experiments

The question that immediately arises is whether on galactic scales the Newton’s law re-
mains valid. In the previous subsection we used repeatedly Eq. (2). In that relation we
assume that G is a constant but it is possible that, for example, at large distances G
were proportional to r. Thus, an increase in the denominator would be compensated by
an increase of G in the numerator. In this way, it would not be necessary to impose the
existence of dark matter to explain anomalous velocities at large distances. This type of
theories constitute the MOND theories.

One can think that the problem we are dealing with could be resolved using the theory of
general relativity since it is a modification of the gravitation laws. We will develop this
idea a little in what follows.

For the case of a large central mass M we can deduce, using general relativity theory, a
very similar equation to the Newton’s law of universal gravitation with little modifications:

F = G
Mm

r2
+ f, (3)

where f is an addition of terms that depend only on the distance r and the velocity of the
two masses that attract each other. The most important term is

f = − 4

c2

G2M2m

r3
+ ... (4)

In general f is a very small quantity but it is always there. It is the cause of the apsidal
precession, which is notable in Mercury for example. Since this term is inversely pro-
portional to r3, the value of f is relatively more important when the distance is smaller.
Hence, due to the fact that we are dealing with huge star orbits, relativistic effects are
absolutely negligible.

Another important effect of general relativity is the light deflection. This effect is so known
that we can use it as an alternative method to determine the mass of an astronomical object
by measuring how the light rays are curved. The experiments with gravitational lenses
have confirmed that dark matter is five or six times more abundant than the ordinary
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one, in perfect accordance with the estimations of the orbits method. But they have also
provided an impressive evidence that dark matter is really there...

The hierarchy of mass in a cluster is given by a major part of dark matter and a rest of ordi-
nary mass, mainly intergalactic gas and, in much lower amount, individual galaxies. This
gas can be observed by means of X-ray emission, which allows us know its temperature,
abundance and mass.

MOND theories claim that dark matter does not exist. If this were correct the major
part of the cluster mass would be in the intergalactic gas and then it would be the main
responsible of the gravitational lensing effect that the cluster has.

Figure 1: As can be appreciated in the picture, the gas clouds (pink) have been separated
from the individual galaxies and the dark matter (blue). Source: NASA / Chandra X-Ray
Observatory (https://chandra.harvard.edu/photo/2006/1e0657/more.html).

Figure 1 shows the Bullet Cluster, where actually there are two clusters that have being
colliding for hundreds of millions of years. In this collision the intergalactic gas (which
appears in the centre of the picture in pink colour) has been separated from the individual
galaxies residing within the dark matter halos (represented in blue colour). The explana-
tion is that while both gas clouds interact and slow down, the galaxies and dark matter
cross with almost no interaction since they are only subject to gravitational forces.

We then have to consider the gravitational lensing effect produced by the cluster. The
clear bluish spots in Fig. 1 represent the places where the effect of gravitational lensing
is higher and, therefore, where the major part of matter is. Hence, we see that the major
part of matter is not in the gas clouds, so MOND hypothesis does not sustain itself because
if there were no dark matter, the clear spots would be on the gas clouds.

The Bullet Cluster is considered to be the most direct and impressive evidence of the
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existence of the dark matter. Moreover, it offers us new data. Concretely, it indicates
that aside its little interaction with ordinary matter it also interacts weakly with itself.
Otherwise, the dark matter clouds would also have rubbed each other across and lagged
behind. After these observations, other clusters collisions have been analysed.

Another interesting fact against MOND theories is that the percentage of dark matter
varies from one galaxy to another despite that the amount of conventional mass is similar.
This is something that MOND theories do not expect.

2.3 Nucleosynthesis

According to the Big Bang theory, when the universe was about 100 seconds old its tem-
perature was a thousand of millions of kelvin. With this temperature, protons, neutrons
and electrons were free. But just at that moment, the conditions provoked the nucle-
osynthesis, and protons and neutrons blended to form simple nuclei such as deuterium or
helium. The theoretical amounts of deuterium, helium-3 and lithium are given by calcu-
lations that use relativity equations and knowledge about nuclear processes. The crucial
point is that to do these calculations the ordinary matter density of the universe is also
necessary, which is extracted from the observations of the galaxies and the intergalactic
gas. The obtained amounts are in good agreement with the abundances that we measure
currently. This tells us that dark matter, which is six times more abundant, cannot be
baryonic matter we have not detected.

2.4 Anisotropies of the CMB

After nucleosynthesis, we had a universe with simple nuclei and other charged particles,
that is, a plasma. These particles interacted widely with photons, which is the reason
they were trapped. However, when the universe grew cooler and the photons decreased
their energy, nuclei and electrons could combine to form neutral atoms (recombination)
that interacted to a lesser degree with photons. The atoms could not scatter the thermal
radiation and photons started to travel freely through the space. Due to the universe
expansion, the wavelength of these photons grew, decreasing in turn their energy and
converting into microwaves. Thus, we have a Cosmic Microwave Background (CMB)
radiation that is detected in all directions.
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Figure 2: Map that highlights the anisotropies of the temperature of the CMB radia-
tion. The colour of each point represents the energy of each photon: the hottest are
represented in red and the coldest in dark blue. Source: NASA / WMAP Science Team
(https://wmap.gsfc.nasa.gov/media/101080 ).

The CMB, that in principle is homogeneous, actually presents small fluctuations detected
for the first time by the satellite COBE. These anisotropies are on the order of one part
per million and point small differences in the temperatures of photons that come from
different places of the sky. In a plasma, hotter zones are denser zones too. In this way, we
can interpret Fig. 2 as a map of densities of the primordial universe.

The origin of the oscillations of density are the pressure waves that crossed the space. As
can be inferred from the irregularity of Fig. 2, the universe was populated by pressure
waves of different wavelengths: the dominant or fundamental tone and the harmonics.
Using a mathematical analysis of the map one can find the acoustic spectrum of the
universe. This is what Fig. 3 represents. It shows several peaks corresponding to the
dominant pressure waves at the moment of the recombination.

Although the gravitational action of baryons makes them tend to collapse in dense halos,
the photon pressure tends to eliminate the created anisotropies. These two effects compete
and with this confrontation the pressure waves appear.
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Figure 3: Acoustic spectrum of the universe in the recombination epoch. The points
represent the observations with its errorbars and the solid curve represents the theoretical
prediction. Source: ESA and the Planck Collaboration (https://sci.esa.int/s/wRVmdjw).

One can extract important information from the peak structure about the proportions of
matter in the universe. The height of the first peak (the fundamental) is related with the
density of the total matter. What is obtained is a 32% of the critical density, fact that
is also found from current observations of the density of the dark and ordinary matter.
The second peak is related to the radiation pressure of the plasma and, therefore, only
with ordinary matter. From this peak what is obtained is a density of 5% of the critical
density, which reinforces our data again.

3 Bose–Einstein condensates

En esta sección se hace una introducción tanto histórica como conceptual de los conden-
sados de Bose–Einstein.

All particles can be classified into two types based on their spin: bosons, with integer
spin, and fermions, with half-odd-integer spin. According to the symmetrization postulate
of quantum mechanics, the wave functions that describe a system of bosons must be
symmetric under interchange of any two particles, in contrast to fermions wave functions,
which must be antisymmetric under this interchange. But the aspect of bosons that
interests us the most is that, unlike fermions, they do not have to fulfill the Pauli exclusion
principle. In this way, bosons may occupy the same single-particle state forming a so-called
Bose–Einstein condensate, which can be interpreted as a new state of matter.
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We can estimate the order of magnitude of the transition temperature to the Bose–Einstein
condensed state from dimensional arguments. For a uniform gas of particles, the relevant
quantities are the particle mass m, the particle density n and the Planck constant h = 2π~.
The only magnitude with energy dimensions that we can construct with them is ~2n2/3/m.
On the other hand, the thermal energy is proportional to kBTc, where kB is the Boltzmann
constant and Tc is the condensation temperature. Dividing both energies we obtain an
adimensional numerical factor C. Isolating Tc:

Tc = C
~2n2/3

mkB
. (5)

C is approximately equal to 3.3 [3]. Substituting in (5) as an example the mass and density
of liquid 4He at saturated vapour pressure one obtains a condensation temperature of
approximately 3.13 K.

Another equivalent way of obtaining the transition temperature is by means of the com-
parison between the thermal de Broglie wavelength λT and the average distances among
particles. In a non-relativistic context the wavelength of a particle of mass m is related to
the magnitude of the lineal momentum p by

λT =
h

p
. (6)

Substituting p in terms of the kinetic energy EK = p2/2m:

λT =
h√

2mEK
. (7)

Since in the quantum case the average kinetic energy of free particles is EK = πkBT , we
arrive at

λT =

√
h2

2πmkBT
=

√
2π~2

mkBT
. (8)

On the other hand, we can obtain the average distance among particles inside a volume V
as (V/N)1/3 = n−1/3. Statistical Physics considers that quantum effects are relevant when
the de Broglie wavelengths of the particles are equal or greater than the average distances
among them, i.e. when

λT =

√
2π~2

mkBT
≥ n−1/3. (9)

In the opposite case, the physics of the system can be described in classical terms. Bose–
Einstein condensation (BEC) sets in when the temperature is so low that λT becomes
comparable to n−1/3.

11



3.1 Bose–Einstein condensates in experiments

Bose–Einstein condensates (BECs) were obtained for the first time in a series of experi-
ments with rubidium and sodium vapours, in which the atoms were trapped with magnetic
fields and cooled down to temperatures on the order of fractions of microkelvins. Once
the atoms were left free switching off the confinement trap, pictures were taken with optic
methods. A sharp peak in the velocity distribution of the atoms, that is a clear signature
of BEC, was observed below a certain critical temperature. In the same year, signatures
of BEC were also found in lithium vapours [4].

Figure 4: “Images of the velocity distribution of rubidium atoms in the experiment by
Anderson et al. (1995), taken by means of the expansion method. The left frame corre-
sponds to a gas at a temperature just above condensation; the center frame, just after the
appearance of the condensate; the right frame, after further evaporation leaves a sample
of nearly pure condensate. The field of view is 200µm × 270µm, and corresponds to the
distance the atoms have moved in about 1/20 s. The color corresponds to the number of
atoms at each velocity, with red being the fewest and white being the most. From Cornell
(1996)” Source: Ref. [4].

These experiments on the alkalis carried out in 1995 constituted a milestone in the history
of the BEC. Nevertheless, they were not the first attempts to condense atomic gases.
More than 15 years ago there was a series of experiments with hydrogen atoms, which
were cooled in a dilution refrigerator, then inserted in a magnetic trap and finally cooled
by evaporation. Although these experiments were close to obtaining the BEC they were
still limited by recombination of atoms in molecules.

In the 1980’s cooling and trapping techniques based on laser were developed, such as laser
cooling and magneto-optical trapping. Alkali atoms adapt well to these methods because
their optical transitions can be excited by available lasers and because their internal di-
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agram of energy levels is favorable for cooling at very low temperatures. Once they are
trapped, their temperature can be reduced even further by evaporation. Combining laser
and evaporative cooling for alkali atoms, researchers finally reached the temperatures and
densities required to observe condensates.

It is important to highlight that, in these conditions, the equilibrium configuration of the
system would be the solid phase. Therefore, to observe a BEC we have to maintain the
system in a metaestable gas phase for a relatively long time. As collisions among three
bodies are rare events in cold and dilute gases, their useful lifetimes are sufficiently long
for the experiments.

4 Derivation of the Gross–Pitaevskii equation

La ecuación de Gross–Pitaevskii es la ecuación que describe la dinámica de los condensa-
dos de Bose–Einstein. En esta sección la derivamos detalladamente a partir de la mini-
mización del funcional de la enerǵıa.

The Gross–Pitaevskii equation (GPE) is the equation that describes the dynamics of
Bose–Einstein condensates. In the two following subsections we make use of the quantum
variational principle to derive in detail both the stationary and the time-dependent GPE.

We consider N identical bosons at a temperature T = 0 K under the action of a certain
external potential Vext(~r). Taking into account that bosons also interact among them, the
hamiltonian H of the system can be written as follows:

H =
N∑
i=1

(
~pi

2

2m
+ Vext(~ri)

)
+

1

2

N∑
i=1

∑
j 6=i

V (|~ri − ~rj |) ≡ H1 +Hint . (10)

H1 corresponds to the hamiltonian of the N particles in the external potential, with no
interactions among them, while Hint accounts for two-body inter-particle interactions. In
dilute BECs, three-body and higher-order interactions are negligible.

While at room temperature bosons occupy different levels of energy, at very low temper-
atures a large ratio of them condense at the same time in the lowest level of energy. In
a pure BEC all the bosons concentrate in the same single-particle state (the fundamental
state |φ〉). Therefore, we can use the ansatz that the total wave function |ψ〉 of a BEC of N
bosons can be written as the following symmetric product of single-particle fundamental
states:

|ψ〉 = |φ(1)〉|φ(2)〉...|φ(N)〉. (11)

In coordinate representation we have

ψ(~r1, ~r2, ..., ~rN ) =

N∏
i=1

φ(~ri). (12)
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4.1 Stationary equation

Within the subspace formed by all the product states |ψ〉 of the form (11), the state that
gives the best approximation to the fundamental state of the global system is the one that
minimises the quantity

E[ψ] =
〈ψ|H|ψ〉
〈ψ|ψ〉

, (13)

where E[ψ] is a functional of ψ, and therefore also of φ. In other words, a number E[φ] is
associated with each function φ by the functional.

Physical states are stationary solutions of the energy functional, δE[ψ] = 0, satisfying
the normalisation condition 〈ψ|ψ〉 = 1, which using Eq. (11) can trivially be stated in
function of |φ〉 as 〈φ|φ〉 = 1. Hence, the energy functional becomes E = 〈ψ|H|ψ〉 and the
fundamental state we are searching for must obey simultaneously the following conditions:

δ〈ψ|H|ψ〉 = 0, (14)

〈φ|φ〉 = 1. (15)

For convenience, we will divide the calculation of the energy functional E[φ] in two parts:
E1 ≡ 〈ψ|H1|ψ〉 and E2 ≡ 〈ψ|Hint|ψ〉.

E1 = 〈ψ|H1|ψ〉 =

∫
d~r1d~r2...d~rN

∑
i

[
ψ∗(~r1, ..., ~rN )

(
− ~2

2m
∇2

i + Vext(~ri)

)
ψ(~r1, ..., ~rN )

]

=
∑
i

∫
d~r1...d~rN

[
φ∗(~r1)...φ∗(~rN )

(
− ~2

2m
∇2

i + Vext(~ri)

)
φ(~r1)...φ(~rN )

]
. (16)

Due to the fact that the operators only act on the ith coordinates, the above equation
reduces to

E1 =
∑
i

[∫
d~r1|φ(~r1)|2...

∫
d~riφ

∗(~ri)

(
− ~2

2m
∇2

i + Vext(~ri)

)
φ(~ri)...

∫
d~rN |φ(~rN )|2

]

=
∑
i

∫
d~riφ

∗(~ri)

(
− ~2

2m
∇2

i + Vext(~ri)

)
φ(~ri) , (17)

where we have used the normalisation condition in the last step, 〈φ|φ〉 =
∫
d~rk|φ(~rk)|2 = 1.

Taking into account that all the terms in the sum are identical, we finally obtain

E1 = 〈ψ|H1|ψ〉 = N

∫
d~rφ∗(~r)

(
− ~2

2m
∇2 + Vext(~r)

)
φ(~r). (18)

As for the second contribution:
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E2 = 〈ψ|Hint|ψ〉 =
1

2

∑
i

∑
j 6=i

∫
d~r1...d~rNφ

∗(~r1)...φ∗(~rN )V (|~ri − ~rj |)φ(~r1)...φ(~rN )

=
1

2

∑
i

∑
j 6=i

∫
d~rid~rjφ

∗(~ri)φ
∗(~rj)V (|~ri − ~rj |)φ(~ri)φ(~rj) . (19)

In a dilute and cold gas only binary collisions at low energy are relevant. These collisions
are characterised by a single parameter, independently of the details of the two-body
potential. This allows us to replace V (|~ri − ~rj |) in Eq. (19) by an effective contact
interaction

V (|~ri − ~rj |) = ηδ(~ri − ~rj), (20)

where the coupling constant η is related with the s-wave scattering length as by means of

η =
4π~2as
m

. (21)

This enables us to carry out one of the two integrals in a trivial manner

E2 =
1

2

∑
i

∑
j 6=i

∫
d~riφ

∗(~ri)φ
∗(~ri)ηφ(~ri)φ(~ri) =

1

2
η
∑
i

∑
j 6=i

∫
d~ri|φ(~ri)|4. (22)

The sum over j can be readily performed taking into account that nothing depends on j
and that, as j may not be equal to i, there will be N − 1 equal terms. The sum over i is
also trivial, as all the terms entering the summation are identical. Therefore we arrive at

E2 =
N(N − 1)

2
η

∫
d~r|φ(~r)|4. (23)

If we consider a large number of particles N � 1, then we can approach N − 1 ' N . In
this case, the energy functional E = E1 + E2 becomes

E[φ, φ∗] = N

∫
d~rφ∗(~r)

(
− ~2

2m
∇2 + Vext(~r)

)
φ(~r) +

N2

2
η

∫
d~r|φ(~r)|4. (24)

Since the above energy functional depends on the single particle state φ, it is more conve-
nient to introduce the energy per particle EP ≡ E/N . Moreover, we can account for the
normalisation condition by means of a Lagrange multiplier λ

δ[E/N − λ(〈φ|φ〉 − 1)] = 0. (25)

Thus, the functional we finally have to minimise is

E′P [φ, φ∗] =

∫
d~rφ∗(~r)

(
− ~2

2m
∇2 + Vext(~r)

)
φ(~r)+

N

2
η

∫
d~r|φ(~r)|4−λ

∫
d~r|φ(~r)|2. (26)

Calculating δE′P , one obtains
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δE′P =

∫
d~rδφ∗(~r)

[
− ~2

2m
∇2 + Vext(~r)

]
φ(~r) +Nη

∫
d~rδφ∗(~r)|φ(~r)|2φ(~r)

−λ
∫
d~rδφ∗(~r)φ(~r) + C.C. (27)

where the factor 1/2 has disappeared in the third term because there are two equal factors
φ∗(~r) that can vary in the integral.

As can be seen, δφ and δφ∗ enter the above expression of δE′P as two independent varia-
tions. Thus, we can vary only φ∗(~r), keeping φ(~r) unaltered (δφ(~r) = 0). In doing so, we
obtain ∫

d~rδφ∗(~r)

[
− ~2

2m
∇2 + Vext(~r) +Nη|φ(~r)|2 − λ

]
φ(~r) = 0. (28)

This last equation must be satisfied for any arbitrary variation δφ∗(~r). Using the funda-
mental lemma of the calculus of variations, the solution of Eq. (28) is given by[

− ~2

2m
∇2 + Vext(~r) +Nη|φ(~r)|2

]
φ(~r) = λφ(~r). (29)

Interpretation of the Lagrange multiplier λ

Multiplying Eq. (29) from the left by φ∗(~r) and integrating over d~r, one obtains

λ =

∫
d~r

[
− ~2

2m
φ∗(~r)∇2φ(~r) + φ∗(~r)Vext(~r)φ(~r) +Nη|φ(~r)|4

]
. (30)

Next, we calculate ∂E/∂N to compare with the previous result. From Eq. (24) we
have

∂E

∂N
=

∫
d~rφ∗(~r)

(
− ~2

2m
∇2 + Vext(~r)

)
φ(~r) +Nη

∫
d~r|φ(~r)|4. (31)

Hence, comparing Eqs. (30) and (31), one finds that λ = ∂E/∂N . In words, λ is
the variation of the total average energy when we add a particle to the system. This
process is done at constant entropy S (keeping T = 0), so that ∂E/∂N becomes
the chemical potential µ. Substituting λ = µ in Eq. (29), we finally arrive at the
stationary Gross–Pitaevskii equation[

− ~2

2m
∇2 + Vext(~r) +Nη|φ(~r)|2

]
φ(~r) = µφ(~r). (32)
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4.2 Time dependent Gross–Pitaevskii equation

In what follows, we derive the time-dependent Gross-Pitaevskii equation by making
use of the variational principle of Dirac–Frenkel

δ〈ψ|
(
H − i~ ∂

∂t

)
|ψ〉 = 0. (33)

Dividing the above equation by the number of particles N , we have

δ(E/N)− δ
[
i~
N
〈ψ| ∂

∂t
|ψ〉
]

= 0, (34)

where the first term has been calculated in the previous subsection. We will therefore
focus on the calculation of the second term:

〈ψ| ∂
∂t
|ψ〉 =

∫
d~r1...d~rNψ

∗(~r1, ..., ~rN)
∂

∂t
ψ(~r1, ..., ~rN)

=

∫
d~r1...d~rNφ

∗(~r1)...φ∗(~rN)
∂

∂t
[φ(~r1)...φ(~rN)]

=

∫
d~r1...d~rNφ

∗(~r1)
∂φ(~r1)

∂t
|φ(~r2)|2...|φ(~rN)|2+

+

∫
d~r1...d~rN |φ(~r1)|2φ∗(~r2)

∂φ(~r2)

∂t
|φ(~r3)|2...|φ(~rN)|2 + ...

=

∫
d~r1φ

∗(~r1)
∂φ(~r1)

∂t
+ ...+

∫
d~rNφ

∗(~rN)
∂φ(~rN)

∂t
, (35)

where use has been made of the normalisation condition. Due to the fact that all
the integrals in the last equality are identical, we finally obtain

〈ψ| ∂
∂t
|ψ〉 = N

∫
d~rφ∗(~r)

∂φ(~r)

∂t
. (36)

Substituting Eqs. (27) (with λ ≡ 0) and (36) into Eq. (34), one arrives at

∫
d~rδφ∗(~r)

[
− ~2

2m
∇2 + Vext(~r) +Nη|φ(~r)|2

]
φ(~r)− i~

∫
d~rδφ∗(~r)

∂φ(~r)

∂t
+C.C. = 0

(37)
From the above equation, taking into account the linear independence of the δφ and
δφ∗ variations, it readily follows the time-dependent Gross–Pitaevskii equation(

− ~2

2m
∇2 + Vext(~r) +Nη|φ(~r, t)|2

)
φ(~r, t) = i~

∂φ(~r, t)

∂t
. (38)
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5 Madelung equations

Las ecuaciones de Madelung se obtienen generalmente a partir de la ecuación de
Schrödinger y son una formulación equivalente de ésta, escritas en términos de
variables hidrodinámicas. En esta sección se utiliza el mismo procedimiento pero
se parte de la ecuación de Gross–Pitaevskii, extrayendo aśı unas ecuaciones muy
similares para los condensados de Bose–Einstein.

The Madelung equations, or quantum hydrodynamic equations, are an alternative
and equivalent formulation of the Schrödinger equation written in terms of hydro-
dynamic variables. In what follows, we will derive the Madelung equations for the
Gross–Pitaevskii equation, which only differs from the Schrödinger equation by the
presence of the nonlinear term Nη|φ(~r, t)|2φ(~r, t).

For our purposes, it is most convenient to introduce a new wave function ϕ, defined
as

ϕ(~r, t) =
√
Nφ(~r, t). (39)

This wave function is normalised to the number of particles N∫
d~r|ϕ(~r, t)|2 = N, (40)

and its probability density coincides with the particle density

ρ(~r, t) = |ϕ(~r, t)|2. (41)

In terms of ϕ(~r, t), the GPE (38) takes the form

−~2

2m
∇2ϕ(~r, t) + Vext(~r)ϕ(~r, t) + η|ϕ(~r, t)|2ϕ(~r, t) = i~

∂ϕ(~r, t)

∂t
. (42)

To derive the Madelung equations, we rewrite the wave function ϕ in the so-called
Madelung form (“de Broglie ansatz”)

ϕ(~r, t) =
√
ρ(~r, t) eiS(~r,t)/~, (43)

where S has units of action and ρ is the particle density given by Eq. (41). Since,
both ρ(~r, t) and S(~r, t) are real-valued functions, the above expression can be con-
sidered as the polar form of the wave function.

Substituting Eq. (43) in Eq. (42) and taking into account that

∂

∂t
(
√
ρeiS/~) =

1

2
√
ρ

∂ρ

∂t
eiS/~ +

√
ρ
i

~
eiS/~

∂S

∂t
, (44)

∇(
√
ρeiS/~) = (∇√ρ)eiS/~ +

√
ρ
i

~
eiS/~∇S, (45)
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∇2(
√
ρeiS/~) =

[
∇2√ρ+ 2

i

~
∇√ρ∇S −

√
ρ

~2
(∇S)2 +

i

~
√
ρ∇2S

]
eiS/~, (46)

we obtain

[
−~2

2m
∇2√ρ− i~

m
∇√ρ∇S +

√
ρ

2m
(∇S)2 − i~

2m

√
ρ∇2S

]
eiS/~ + [Vext + ηρ]

√
ρeiS/~ =

=
i~

2
√
ρ

∂ρ

∂t
eiS/~ −√ρ ∂S

∂t
eiS/~. (47)

Dividing Eq. (47) by ϕ =
√
ρeiS/~, we arrive at

−~2

2m

∇2√ρ
√
ρ
− i~
m

∇√ρ∇S
√
ρ

+
(∇S)2

2m
− i~

2m
∇2S + Vext + ηρ =

i~
2ρ

∂ρ

∂t
− ∂S

∂t
. (48)

To extract the two Madelung equations, we separate the real and imaginary parts
from the above expression

Imaginary part:

~
m

∇√ρ
√
ρ
∇S +

~
2m
∇2S +

~
2ρ

∂ρ

∂t
= 0. (49)

We define the flux velocity as

~v(~r, t) =
∇S(~r, t)

m
. (50)

Hence, ~v(~r, t) is irrotational

∇× ~v = ~0. (51)

Taking into account that

∇2S = ∇(∇S) = m∇~v, (52)

∇√ρ =
1

2
√
ρ
∇ρ, (53)

Eq. (49) can be rewritten as

1

2ρ
(∇ρ)~v +

1

2
∇~v +

1

2ρ

∂ρ

∂t
= 0. (54)

Multiplying by 2ρ
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(∇ρ)~v + ρ∇~v +
∂ρ

∂t
= 0. (55)

By using the properties of the nabla operator to group the first two terms, we reach
the first Madelung equation (continuity equation)

∂ρ

∂t
+∇(ρ~v) = 0. (56)

This equation is analogous to the continuity equations of Fluid Dynamics or Elec-
tromagnetism, which express the mass and charge conservation, respectively. In
this case, the equation (56) informs us that the probability of finding a particle in a
certain volume V is conserved. The quantity ρ~v is the so-called flux density.

Real part:

−~2

2m

∇2√ρ
√
ρ

+
(∇S)2

2m
+ Vext + ηρ = −∂S

∂t
. (57)

The first term

Q =
−~2

2m

∇2√ρ
√
ρ
, (58)

is known by the name of Quantum potential or Quantum pressure. In this way, the
equation (57) can be written as follows:

(∇S)2

2m
+ Vext +Q+ ηρ = −∂S

∂t
. (59)

The term ηρ comes from the nonlinear term η|ϕ|2ϕ of the GPE (42). If this term
were not present, that is if we started from the Schrödinger equation instead of the
GPE, then Eq. (59) would be the Quantum Hamilton–Jacobi equation. This is
a very important equation since it represents a bridge between quantum and clas-
sical mechanics. To go from the former to the latter, one would take the limit
~ → 0, eliminating thereby the quantum potential and obtaining directly the clas-
sical Hamilton–Jacobi equation, which is an alternative formulation of Classical
Mechanics.

Applying the nabla operator on both sides of Eq. (59) and taking into account Eq.
(50), one obtains

−1

2
m∇~v2 −∇Vext −∇Q−∇(ηρ) = m

∂~v

∂t
. (60)

Using the following property of the nabla operator for irrotational vector fields:

∇(~v~v) = 2(~v∇)~v, (61)
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Eq. (60) finally takes the form

m

[
∂~v

∂t
+ (~v∇)~v

]
= −∇Vext −∇Q−∇(ηρ). (62)

This is the second Madelung equation we were looking for. It can be shown that the
pressure of a BEC is given by P = 1

2
ηρ2. As a result, ∇P = ρ∇(ηρ) and the last

term of Eq. (62) becomes ∇(ηρ) = (∇P )/ρ. With this, neglecting the contribution
from the quantum pressure, Eq. (62) coincides with the Euler equation of Fluid
Dynamics.

6 Stationary self-graviting Bose–Einstein condensates

Una vez extráıdas las ecuaciones de Madelung imponemos en éstas que el condensado
se encuentre en estado estacionario y únicamente sometido a la interacción gravita-
toria. De esta manera derivaremos una ecuación de Helmholtz para la densidad de
masa que se puede resolver de la misma forma que la ecuación de Schrödinger para
una part́ıcula libre. Al final de esta sección se obtiene una ecuación que describe la
densidad de un condensado en las circunstancias impuestas.

Since our aim is to model dark matter as a BEC, in what follows we consider a
stationary (~v = ~0) self-graviting Bose–Einstein condensate. In this case, the external
potential reads

Vext(~r) = Vg(~r) = mΦ(~r), (63)

where the gravitational potential Φ satisfies the Poisson equation

∇2Φ = 4πGρm. (64)

G is the gravitational constant and ρm ≡ mρ = m|ϕ(~r, t)|2 is the mass density of
the condensate.

An approximation commonly used in the study of Bose–Einstein condensates is the
so-called Thomas–Fermi approximation. It essentially consists in taking the classical
limit of the theory, considering negligible all the terms in higher powers of ~. The
larger the number N of particles in the condensate, the better the Thomas–Fermi
approximation. In particular, in the N → ∞ limit this approximation becomes
exact.

As is evident from Eq. (58), in our case the Thomas–Fermi approximation amounts
to neglecting the contribution from the quantum pressure Q in Eq. (62)

0 = ∇Vg +∇(ηρ). (65)
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Applying the nabla operator to the above equation, using Eqs. (63) and (64) and
substituting ρ = ρm/m, we get

0 = m(4πGρm) + (η/m)∇2ρm. (66)

On the other hand, making use of the stationary condition ~v = ~0 in the first
Madelung equation (56), we obtain

∂ρ(~r, t)

∂t
= 0, (67)

which, taking into account that ρm = mρ, implies

ρm(~r, t) = ρm(~r). (68)

Using this result in Eq. (66), one finds that the mass density ρm(~r) satisfies a
Helmholtz equation

[∇2 + k2]ρm(~r) = 0, (69)

with

k2 =
4πGm2

η
. (70)

Expressing the Laplace operator ∇2 in spherical coordinates, Eq. (69) reads

[
1

r2

∂

∂r

(
r2 ∂

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

r2 sin2 θ

∂2

∂φ2
+ k2

]
ρm(~r) = 0. (71)

In quantum mechanics, the square of the angular momentum operator ~L in spherical
coordinates is given by

~L2 = −~2

[
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2 θ

∂2

∂φ2

]
. (72)

Then, we can rewrite Eq. (71) as[
1

r2

∂

∂r

(
r2 ∂

∂r

)
−

~L2

~2r2
+ k2

]
ρm(~r) = 0. (73)

Multiplying by the factor −~2/2m, we obtain an eigenvalue equation that is formally
analogous to the Schrödinger equation for a free particle (or, in other words, a
particle in a zero central potential V (r) = 0)[

−~2

2m

1

r2

∂

∂r

(
r2 ∂

∂r

)
+

~L2

2mr2

]
ρm(~r) =

~2k2

2m
ρm(~r). (74)
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However, despite the formal analogy it is important to bear in mind that Eq. (74)
involves the mass density ρm(~r) ≡ m|ϕ(~r)|2 instead of the particle wave function.

For the sake of simplifying the notation, in what follows we drop the sub-index m
in the expression of the mass density, ρm(~r) ≡ ρ(~r).

As the operators Lx, Ly, Lz and ~L2 do not act on the radial variable, if we name J
the operator in brackets of the above equation, we have

[J, ~L] = [J, ~L2] = 0. (75)

Since also [~L2, ~L] = 0, we can take as usual the set of commuting operators {J, ~L2, Lz}
in order to find solutions of Eq. (74) that are simultaneous eigenfunctions of ~L2 and
Lz.

As is well known, the eigenfunctions of the orbital angular momentum are the spher-
ical harmonics Ylm(θ, φ)

~L2Ylm(θ, φ) = l(l + 1)~2Ylm(θ, φ), (76)

LzYlm(θ, φ) = m~Ylm(θ, φ). (77)

Taking into account Eqs. (76) and (77), we search for solutions of Eq. (74) using
separation of variables

ρklm(~r) = Rklm(r)Ylm(θ, φ). (78)

Substituting in Eq. (74), one finds that the unknown radial part must satisfy[
−~2

2m

1

r2

d

dr

(
r2 d

dr

)
+
l(l + 1)~2

2mr2

]
Rkl(r) =

~2k2

2m
Rkl(r), (79)

where we have dropped the sub-index m from the radial function because Eq. (79)
does not depend on this quantum number.

Recalling that |m| ≤ l, we have 2l+ 1 eigenfunctions ρklm(~r) for a certain pair (k, l).

Equation (79) can be rewritten as[
−~2

2m

d2

dr2
− ~2

mr

d

dr
+
l(l + 1)~2

2mr2

]
Rkl(r) =

~2k2

2m
Rkl(r). (80)

Multiplying both sides by r and denoting the centrifugal term l(l + 1)~2/2mr2 by
Veff(r), the above equation becomes

−~2

2m
[rR′′kl(r) + 2R′kl(r)] + Veff(r) rRkl(r) =

~2k2

2m
rRkl(r). (81)
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Making the change of variable u = rR, Eq. (81) can be rewritten as

−~2

2m
u′′kl(r) + Veff(r)ukl(r) =

~2k2

2m
ukl(r). (82)

The solutions ukl(r) are only defined for r ≥ 0. Since the radial functions Rkl(r) =
ukl(r)/r must remain finite at the origin, ukl(r) has to satisfy the boundary condition.

ukl(0) = 0. (83)

The centrifugal term Veff(r) has its origin in the Laplacian operator and, thus, it
also contributes to the system Hamiltonian (10) through the kinetic energy. Since
this term is always positive, the greater the angular momentum, the greater the
energy of the system. Although higher energy solutions with any l > 0 are possible,
in this work we will focus in the lowest energy (l = 0) solutions (with no angular
momentum). In this case, Eq. (82), reduces to[

d2

dr2
+ k2

]
uk0(r) = 0. (84)

This is a second-order linear homogeneous differential equation whose particular
solution satisfying the boundary condition (83) is

uk0(r) = A sin(kr). (85)

Taking into account that Y00(θ, φ) = 1/
√

4π, after substituting Rk0(r) = uk0(r)/r in
the expression (78) for the mass density ρk00(~r) ≡ ρ(r), one obtains

ρ(r) = ρc
sin(kr)

kr
, (86)

where ρc = limr→0 ρ(r) is the central mass density of the self-graviting condensate.

7 Dark matter as Bose–Einstein condensates

Teniendo el perfil de densidad para un condensado estacionario atrapado gravita-
cionalmente, podemos utilizarlo para modelar los halos de materia oscura de las
galaxias. Aqúı se extraen las caracteŕısticas más importantes de estos halos, como
la masa o la curva de velocidades de rotación, con el objetivo de poder comparar este
modelo con el modelo estándar (CDM).

Once we have obtained the mass density ρ(r), we can derive other properties of
the dark matter halo such as its radius, mass as a function of r, total mass, or the
velocity profile of the rotation curves.
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The halo radius R (radius of the condensate) follows from the condition that the
mass density vanishes at R, ρ(R) = 0, which from Eq. (86) leads to kR = nπ
with n ∈ N. However, since ρ(r) may not take negative values, only the first zero
(kR = π) is meaningful and ρ(r) must vanish for r ≥ R. Recalling the expressions
of k and η given, respectively, by Eqs. (70) and (21), we obtain

R =
π

k
= π

√
~2as
Gm3

. (87)

Next, we look for a function m(r) that for each r returns the mass inside a sphere
of radius r. Assuming spherical symmetry, the element of mass in an element of
volume, dm = ρdV , can be expressed as

dm = 4πρ(r)r2dr, (88)

and integrating

m(r) = 4π

∫ r

0

ρ(r)r2dr =
4πρc
k

∫ r

0

sin(kr)rdr. (89)

Denoting the last integral by I and integrating by parts, we get

I=

[
−r cos(kr)

k

]r
0

+

∫ r

0

cos(kr)

k
dr = −r cos(kr)

k
+

sin(kr)

k2
=

sin(kr)

k2
[1−kr cot(kr)].

(90)
Using this result in Eq. (89) and taking into account Eq. (86), we get the following
expression for the mass bounded by a sphere of radius r:

m(r) =
4π

k2
rρ(r)[1− kr cot(kr)]. (91)

The halo mass M is readily obtained from the above equation

M = m(R) =
4π

k3
ρc sin(kR)[1− kR cot(kR)] =

4πR3ρc
π3

[sin π − π cos(π)], (92)

where we have used Eq. (86) in the second equality and the relation kR = π in the
third one. Substituting Eq. (87), we finally arrive at

M =
4R3ρc
π

= 4π2ρc

(
~2as
Gm3

)3/2

. (93)

Supposing a spherical volume of radius R one can extract the average density of the
condensate
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〈ρ〉 =
M

V
=

4R3ρc/π

(4/3)πR3
=

3ρc
π2
. (94)

However, the most important aspect of a dark matter model is the velocity profile
it generates. Equation (2) in Sec. 2 models the tangential velocity of a test particle
moving inside the dark halo. Introducing in this equation the expression (91) for
m(r) obtained in the context of the above BEC dark matter model, we get

v2(r) =
Gm(r)

r
=

4πGρ(r)

k2
[1− kr cot(kr)] =

4GρcR
2

π

[
sin(πr/R)

πr/R
− cos

(πr
R

)]
.

(95)
As a function of the total mass, we can rewrite Eq. (95) in the form

v2(r) =
GM

R

[
sin(πr/R)

πr/R
− cos

(πr
R

)]
. (96)

For r > R the rotation curves follow the standard Keplerian law.

8 Numerical results

En esta sección se estudian los resultados para la curva de densidad y el perfil de
velocidades de rotación dentro del marco de este modelo, y se comparan con los
resultados del modelo CDM y con los resultados observacionales para siete galaxias
de la base de datos SPARC.

The main purpose of this work is to compare the cold dark matter model with our
model based on Bose–Einstein condensates, as done previously in Refs. [5] and [6].
To this end, using the results of Ref. [7], we have chosen a number of galaxies of
the SPARC survey [8] which are principally composed of dark matter and have high
resolution experimental rotation curves.

As already said in the introduction, in the CDM model the mass density is described
by the Navarro–Frenk–White (NFW) profile

ρNFW (r) =
ρs

(r/rs)(1 + r/rs)2
. (97)

For this density profile the rotational velocity is given by

vNFW (r) =
√

4πGρsr3
s

√
1

r

[
ln

(
1 +

r

rs

)
− (r/rs)

1 + r/rs

]
. (98)

To compare the rotation curves of both models we have fitted their velocity profiles
[Eqs. (95) and (98)] to observational data, obtaining the optimal parameters ρs and

26



rs for the NFW model and ρc and R for the BEC model (see Appendix A). The
SPARC galaxy database provides the observational velocities (V ) at different radii,
the contribution of the gas to this velocity (Vgas) and the contributions of the bulge
(Vbul) and the disk (Vdisk). According to the instructions of Ref. [8], the dark matter
contribution is given by

VDM =
√
V 2 − |Vgas|Vgas −Υdisk|Vdisk|Vdisk , (99)

where we have taken into account that Vbul = 0 in all the galaxies that we have
used. Υdisk is the stellar mass-to-light ratio of the disk component, since the velocity
Vdisk of the stars was calculated from their luminosity. We have used Υdisk = 0.47
according to the results of Ref. [9].

In Eq. (99) the absolute values are needed because sometimes the gas contribution
to the velocity is negative. This is due to the fact that in the innermost regions of the
halo it is possible to have a gas distribution which produces a stronger gravitational
force from the outer regions of the gas than from the inner ones (a relative mass
defect) [8].

Figure 5 shows the dark matter contribution to the velocities obtained from Eq.
(99) (observational data) along with the fits of the BEC and the NFW models for
a number of galaxies of the SPARC database. As can be seen, for the majority of
these galaxies the BEC model fits better to the observational rotation curves.

From the fitting parameters of both models we can also infer the density profiles of
the corresponding halos.

An aspect one can observe from Eq. (97) is that the NFW profile, based on numerical
simulations of the CDM model, presents a singularity or cusp at the centre of the
galaxies (r → 0). As a result, the NFW mass distribution decreases abruptly around
the cusp. This problem (cusp-core problem) is avoided by the BEC model, which
produces a finite central density ρc. This difference is reflected in the fact that the
mass distribution of the gravitationally bounded condensate decreases slowly as a
function of r with a major part of the matter concentrated in a core-like region.
The predictions of both models for the dark matter density profiles of the different
galaxies are shown in Figs. 6 and 7.

Another difference between these models is that, even though for large r the NFW
profile tends more rapidly to zero, its behaviour is asymptotic and therefore the DM
halo described by this model has not physical limits. In contrast, the BEC density
curve tends rigorously to zero on a surface well defined by the radius R. In this way,
Bose–Einstein condensates predict a flatter central dark matter distribution than
cosmological simulations, resulting in dark matter halos more similar to those found
observationally.

We can use the obtained value of R as an additional guarantee that we have achieved
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a good fit, because the radius R is interpreted as the point where the rotation curve
starts to decline and it can be extracted from observations. Comparing these two
values for the different galaxies we have a reinforcement of the viability of the BEC
dark matter model.
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Figure 5: Fits to the dark matter contribution to rotational velocities for the BEC model
(green line) and the NFW profile (red line) for seven galaxies. Data extracted from SPARC
[8].
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Figure 6: NFW dark matter density profiles for the galaxies considered in Fig. 5.

Figure 7: BEC dark matter density profiles for the galaxies considered in Fig. 5.
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9 Conclusions

En esta sección final se evalúan los problemas de este modelo simplificado y se con-
templan modelos de condensados más complejos.

We have derived in detail the Gross–Pitaevskii equation describing a Bose–Einstein
condensate and have used this equation to model dark matter halos as self-graviting
Bose–Einstein condensates. Using the Thomas–Fermi approximation we have an-
alytically solved the relevant equations and have obtained the physical properties
of the halos: radii, masses, density profiles and circular rotation curves. Then, we
have developed a numerical code (Appendix A) and have compared the predictions
from this BEC model with those from the standard ΛCDM model for a number of
galaxies extracted from the SPARC database [8]. The obtained results indicate that
the BEC model can fit the observational data very well and at the same time it
could solve the core-cusp problem. However, there are some caveats we will discuss
in what follows.

From the results of Sec. 7, it can be seen that all the halo properties (mass, density,
rotation velocity) depend only on two independent parameters: the central density
ρc and the radius R. In turn, R depends on the individual particle mass m and the
s-wave scattering length as through Eq. (87). The point is that as characterises the
intensity of the particle-particle interaction and thus, it is an intrinsic property of
each particle type. Changing as or m is equivalent to changing the particle type.
Therefore, the values for the mass m and for the s-wave scattering length as should
be the same for every halo. This would imply that all the halos would have the same
radius R. In the previous section, however, we used different values of R to fit the
different galaxies. In fact, the model presented in this work should be considered as
a first approximation to the problem. Recent publications based on a more complete
description involving numerical simulations highlight the fact that galaxy halos are
actually made up of subhalos. In this scenario, the theoretical equations derived in
the present work would only be valid for the central subhalo and a more elaborate
treatment would require intensive numerical calculations.

As a natural continuation of this work, we propose to incorporate the contributions
of ordinary matter and to recalculate the density profiles and the rotation curves
for this general case. On the other hand, it would also be interesting to analyze
the regime in which the interactions between particles are negligible. Under these
circumstances, the Gross–Pitaevskii–Poisson equation reduces to a Schrödinger–
Poisson equation. In this regime, which like the Thomas–Fermi regime is analytically
solvable, the gravitational interaction is fully compensated by the quantum pressure.

Although the BEC model presented in this work is only a first approximation, it
already reflects the potential of this kind of approaches based on Bose–Einstein
condensates in the solution of the dark matter problem.
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Appendix A Numerical code

import pylab as py

import numpy as np

from scipy.optimize import curve_fit

G = 6.674e-11 #SI

fc_R = 3.086e16 #Conversion factor from kpc to km

fc_rho = 1e12 #Conversion factor from g/cm^3 to kg/km^3

fc_G = 1e-9 #Conversion factor from m^3/kg.s^2 to km^3/kg.s^2

gamma=0.47

g1 = np.genfromtxt(’DDO154_rotmod.txt’, delimiter=’\t’, dtype=float)

radios_1 = np.array([])

vel_obs_1 = np.array([])

vel_gas_1 = np.array([])

vel_disk_1 = np.array([])

errV_1 = np.array([])

for line in np.arange(0, len(g1)):

rad = g1[line][0]

v_obs = g1[line][1]

errv_obs = g1[line][2]

v_gas = g1[line][3]

v_disk = g1[line][4]

radios_1 = np.append(radios_1, rad)

vel_obs_1 = np.append(vel_obs_1, v_obs)

vel_gas_1 = np.append(vel_gas_1, v_gas)

vel_disk_1 = np.append(vel_disk_1, v_disk)

errV_1 = np.append(errV_1, errv_obs)

vel_DM_1 = np.sqrt(vel_obs_1**2 - abs(vel_gas_1)*vel_gas_1 - gamma*

abs(vel_disk_1)*vel_disk_1)

err_VDM_1 = (vel_obs_1/vel_DM_1)*errV_1
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def model_NFW(r, a, b):

return np.sqrt(4*np.pi*G*fc_G*a*(b*fc_R)**3)*np.sqrt((1/(r*fc_R))*

(np.log(1+r/b)-(r/b)/(1+r/b)) )

popt_1, pcov_1 = curve_fit(model_NFW, radios_1, vel_DM_1)

def model_BEC(r, p, R):

return np.piecewise( r, [r<R, r>=R], [lambda r: R*fc_R*

np.sqrt((4*p*G*fc_G)/np.pi)*np.sqrt( np.sin(np.pi*r/R)/(np.pi*r/R)

- np.cos(np.pi*r/R) ), lambda r: np.sqrt(4*G*fc_G*R*(R*fc_R)**2*p/

(r*np.pi))] )

popt2_1, pcov2_1 = curve_fit(model_BEC, radios_1, vel_DM_1)

x_model = np.linspace(0, 7, 100)

py.figure()

py.plot(radios_1, vel_DM_1, ’bo’)

py.plot(x_model, model_NFW(x_model, *popt_1), ’r-’)

py.plot(x_model, model_BEC(x_model, *popt2_1), ’g-’)

py.errorbar(radios_1, vel_DM_1, yerr = err_VDM_1, fmt = ’bo’)

py.title(’DDO154’)

py.legend((’Observational data’, ’NFW fit’, ’BEC fit’))

py.xlabel(’Radius (kpc)’)

py.ylabel(’$V_{DM}$ (km/s)’)

py.savefig(’DDO154.png’)

k_1 = np.pi/popt2_1[1]

def densityBEC_1(r):

return np.piecewise(r, [r<popt2_1[1], r>=popt2_1[1]], [lambda r:

popt2_1[0]*np.sin(k_1*r)/(k_1*r), lambda r: 0])
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def densityNFW_1(r):

return popt_1[0]/((r/popt_1[1])*(1+r/popt_1[1]))

#We repeated the same procedure for each of the galaxies

rt = np.linspace(0, 15, 200)

py.figure()

py.plot(rt, densityBEC_1(rt), ’b-’)

py.plot(rt, densityBEC_2(rt), ’g-’)

py.plot(rt, densityBEC_3(rt), ’r-’)

py.plot(rt, densityBEC_4(rt), ’c-’)

py.plot(rt, densityBEC_5(rt), ’m-’)

py.plot(rt, densityBEC_6(rt), ’y-’)

py.plot(rt, densityBEC_7(rt), ’k-’)

py.title(’BEC density profiles’)

py.xlim(0, 9)

py.ylabel(r’$\rho_{DM} (kg/m^3)$’)

py.xlabel(’Radius (kpc)’)

py.legend((’DDO154’, ’UGC01281’, ’UGC04278’, ’UGC07524’, ’UGC07608’,

’UGC12632’, ’F583-4’))

py.savefig(’densities_BEC.png’)

rt2 = np.linspace(0, 10, 200)

py.figure()

py.plot(rt2, densityNFW_1(rt2), ’b-’)

py.plot(rt2, densityNFW_2(rt2), ’g-’)

py.plot(rt2, densityNFW_3(rt2), ’r-’)

py.plot(rt2, densityNFW_4(rt2), ’c-’)

py.plot(rt2, densityNFW_5(rt2), ’m-’)

py.plot(rt2, densityNFW_6(rt2), ’y-’)

py.plot(rt2, densityNFW_7(rt2), ’k-’)

py.title(’NFW density profiles’)

py.ylim(0, 2e-11)

py.xlim(0, 4)
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py.ylabel(r’$\rho_{DM} (kg/m^3)$’)

py.xlabel(’Radius (kpc)’)

py.legend((’DDO154’, ’UGC01281’, ’UGC04278’, ’UGC07524’, ’UGC07608’,

’UGC12632’, ’F583-4’))

py.savefig(’densities_NFW.png’)
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