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Preface

This PhD thesis addresses the dynamics of multipartite entanglement in the mechanical
degrees of freedom of experimentally accessible quantum systems when dissipation is un-
avoidable. It was carried out between September 2010 and March 2015 at Universidad de
La Laguna, under supervision of Prof. Daniel Alonso Ramirez, and thanks to the financial
support of the Canary Island Agency of Research (ACIISSI) through a PhD research fel-
lowship. The research programme is part of the national project FIS2010-19998, funded by
the former Spanish Ministry of Sciences. A considerable part of this thesis was done during
several academic visits (over 9 months) to the quantum theory groups led by Dr. Sigmund
Kohler at Instituto de Ciencias Materiales de Madrid (ICMM), and Dr. Florian Mintert at
Imperial College London. Additional financial support from ACIISI and Vicerectorado de
Investigacion de la Universidad de La Laguna for those visits was obtained. The printing
of this thesis was financially supported by ACIISSI (85% co-founded by European Social
Fund) through Universidad de La Laguna (”se agradece la financiacién concedida a la
ULL por la Agencia Canaria de Investigacion, Innovacién y Sociedad de la Informacién,
cofinanciada en un 85% por el Fondo Social Europeo”).

By means of the present I submit this thesis for its consideration “as thesis as a com-
pedium” at Universidad de La Laguna. The present thesis is based in the work collected
on the papers [A1]-[A4] which are listed below, and of which I am the main responsible of
the conceptual development, calculations, writing, composition and illustration.
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[A1] “Hierarchies of multipartite entanglement for continuous-variable states”, Antonio
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Abstract

A meaningful description of the low-energy dynamics of multipartite entanglement is pro-
vided for harmonic oscillator systems in general dissipative scenarios. Without doing any
central approximation, this mainly relies on a set of reasonable physical statements on the
environment and system-environment interaction consistent with a linear analysis of the
open-system dynamics.

We first investigate the inseparability properties of arbitrary entangled states, which
generally entails an optimization procedure of certain functional defined in the infinite-
dimensional Hilbert space of continuous-variable systems. Using a Gaussian-like assump-
tion analogous to that used in the derivation of Gaussian entanglement of formation, we
derive a computational-efficient form of such functional which considerable simplifies the
optimization task. This consists on a hierarchy of separability criteria that permit in a
unified way to characterize k-partite entanglement of broad classes of Gaussian and non-
Gaussian states. The strength of the criteria is proven by showing that they satisfactorily
reproduce previous results from the theory of entanglement, like PPT criterion applied to
arbitrary two-mode and pure three-mode Gaussian states.

The separability criteria allow to monitor the transient evolution of multipartite en-
tanglement under the environmental influence, this permitted to show that non-Gaussian
entanglement may be as robust against harmful dissipative effects and thermal noise as
Gaussian one. We devote special attention to the stationary properties of tripartite en-
tanglement when the system oscillators are in contact with either a common environment
or independent environments at initial different temperatures. For the former dissipative
scheme, it is shown that the environment mediates an effective many-party interaction with
a spatial long-range feature between system oscillators, which is able to generate tripartite
entanglement whereas two-mode entanglement is degraded. Regarding the second scheme,
it is illustrated that thermal non-equilibrium conditions result in a rich variety of quantum
correlations, however a temperature gradient eventually destroys the entanglement shared
by the system oscillators as a consequence of the growth of thermal noise. Finally, the
stationary entanglement and energy current across a finite harmonic chain are studied in
detail by doing an extensive numerical analysis of both phenomena for a broad range of the
parameters (i.e., temperatures, oscillator frequencies, and oscillator coupling strengths).
Our numerical findings are discussed in terms of the derived energy current expressions,
these show an explicit dependence on the two-time correlation functions (between oscillator
operators) which carry quantum correlations.
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This thesis is divided into four chapters. The first one sets the stage of the discussion
throughout the present dissertation, it includes a comprehensive introduction to the the-
ory of entanglement and the physical statements in which the open-systems dynamics
treatment grounds. Chapter 2 contains the core of the research carried out during this

thesis. That is the separability criterion proposed in Ref.:

(A1l and a summary of the main

results and conceptual developments collected in Refs. [[A2]| [A3]], and [[A4]] Chapter 3

contains the conclusions drawn from the performed investigation, and it includes a brief
discussion of future perspectives. Finally, the compedium of publications can be found in

Chapter 4.
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Chapter 1

Introduction

The best possible knowledge of a whole
does not necessarily include the best possible knowledge of all its parts.
-Erwin Schrodinger (Extracted from [215])

Schrodinger in 1935 recognized a quantum phenomenon which is considered to be the
most radical departure of quantum mechanics from the classical way of thought [215]. Such
phenomenon was originally coined as quantum entanglement, and manifests itself as non-
local correlations between observables of composite quantum systems that by no means
can be simulated classically. Shortly before, the Einsten-Podolsky-Rosen “Gedankenex-
periment” deeply shook up the Physics Community by showing that entanglement could
make the predictions of quantum mechanics incompatible with the intuitive idea of local
realism [(3]. From that moment, entanglement became a central issue on several heated
debates concerning the foundations of quantum mechanics during the subsequent century.
It was after the seminal contribution of Bell in 1964, where he translated the Einsten-
Podolsky-Rosen ideas into a set of measurable inequalities [30], that entanglement could
be experimentally tested. More than fifty years later, the profound consequences raised
form Bell’s inequalities still lack of a complete understating within the Physics Community
[214].

Only recently the way entanglement was perceived changed drastically thanks to the
birth of the quantum information theory [37; 66; 21]. The initial research in the field
rapidly revealed that entanglement is a key ingredient for the success of many potential
applications like quantum computation [176], teleportation [163], or quantum cryptogra-
phy. As a consequence, entanglement is nowadays viewed as an important resource in
the raising quantum technology [69]. Despite the conceptual difficulty associated with the
phenomenon, this vision has lead in the last few years to a formidable increase of gen-
eral knowledge about entanglement [242]. Impressive enough, the latter has come along
with a remarkable progress in the preparation and manipulation of small quantum systems
(see Nobel lectures from Haroche [119] and Wineland [254]) like radiation fields into cav-
ities [160], trapped atomic ions [I74], or more recently, cold atoms in optical lattices [38].
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A continuous and fruitful collaboration between theoreticians and experimentalists have
permitted that the creation and control of entanglement would be currently accessible to
several laboratories around the world [149; [152; [I17]. However, the lack of experimentally
friendly criteria for detecting this quantum correlation still limits the range of entanglement
assessment to systems with a relatively small number of constituents. Indeed, there are
few tools which permit us to theoretically characterize entanglement in general multipartite
systems.

Unfortunately, the presence of such valuable capital is threatened by environmental
effects, such as dissipation and noise, as soon as the number of constituents of the ex-
perimental setup starts to grow [I70]. Entanglement is microscopically conceived as a
manifestation of coherent superposition of many-particle eigenstates of composite quan-
tum systems, and thus, it is very susceptible to decoherence mechanisms arisen from the
uncontrolled interaction with the environmental degrees of freedom. These mechanisms
can play such an important role in the fate of entanglement as to cause its complete dis-
appearance on a finite time [260], unlike the populations and coherences defined in the
density operator which typically decay asymptotically. Then, before a satisfactory quan-
tum technology can be developed, it is necessary to focus the theoretical efforts on the
scaling properties of entanglement as well as its robustness against environmental coupling
with increasing system size [44% 90].

Indeed, the dynamics of entanglement has been the subject of an intensive investiga-
tion in the crossover of open quantum systems and quantum information theory, which has
considerable contributed to our current understanding of entanglement under noisy and
dissipative effects, see [25] for a comprehensive overview. For instance, it was shown that it
is possible to construct entangled states which are immune to decoherence when the whole
system suffers from the same source of noise [150], this is widely known as decoherence-free
subspaces. Furthermore, though environmental effects are generally detrimental for entan-
glement, two particles may become entangled by the interaction with the same reservoir
in certain limits [40; 198 256]. Remarkably enough, it was proved that one may pre-
cisely drive quantum systems on preferred states, like large-particle entangled states [148)],
through the dissipation produced by the interaction with engineering artificial reservoirs
[65; [147]. On the other hand, investigations on multipartite systems suggest that the larger
the system the faster the decay of entanglement due to the environmental influence over
each of its parties [49; 24; 23]. These are just a few results on the extensively amount of
work developed on this research topic, however, a complete comprehension of entangle-
ment in multicomponent systems influenced by environmental effects is still out of reach,
for instance, there is no yet an equation of motion that governs the entanglement dynamics
in general dissipative scenarios (see [146} 235]).

Yet very little is known about the dynamics of entanglement supported by the me-
chanical degrees of freedom on multi-particle or nanoscopic systems, for instance nano-
mechanical oscillators under realistic conditions of dissipation and noise [26]. The fact
that the observation of quantum behaviour in this kind of setups entails the ability of
cooling the mechanical motion to extremely low temperatures makes the analysis of en-
tanglement challenging for theoreticians as well as experimentalists. On one hand, the



potential for doing general statements of the most aforementioned theoretical investiga-
tion relies upon the assumption that the system follows a memoryless quantum evolution,
known as Markovian, which holds only approximately on mechanical systems at relatively
high temperatures (e.g. see the damped harmonic oscillator [105} 161]). In addition, as
the interest is foremost in the mechanical motion, dissipation that is generally difficult
to deal with is a non-negligible source of decoherence. Surprisingly, on the other hand,
an accurate degree of control over nano-mechanical oscillators has been recently achieved
[T08;; 179}, 42], which hopefully will open the door of the largely unexplored quantum world
in macroscopic systems (where superconducting materials remain as an exception). Novel
experimental investigation on mechanical setups, like cold atoms in optical lattices [21],
are revealing that they apparently satisfy a basic prerequisite to materialize the ideas of
quantum information theory: that the experimental efforts required to manipulate the sys-
tem scale (non-exponentially) with the number of its constituents. Thankfully, theoretical
studies also benefit from employing mechanical systems, since their quantum properties at
low temperatures may be fairly well captured by a paradigmatic model based on harmonic
oscillators.

Being aware of the importance of entanglement in quantum theory, whose reliable de-
scription needs an accurate characterization of the unavoidable environmental influence,
and motivated by the fundamental role played by harmonic oscillators in quantum me-
chanics, we aim to (theoretically) explore the creation, manipulation and detection of mul-
tipartite entanglement in harmonic oscillators subjected to dissipative quantum dynamics.
The endeavour that constitutes this investigation is far from being simple. First, a precise
characterization of multipartite entanglement in systems under general conditions (i.e. in
mixed states) is still an open problem in the quantum information theory. For instance,
there are several easy-handling estimators of entanglement in mechanical setups but whose
range of applicability is usually limited to specific forms of the system state (e.g. Gaussian
states). For this reason it is of particular interest to work out new tools which may pro-
vide insightful information about multipartite entanglement in general scenarios of (non-
Gaussian) states. Second, though there has been an important progress in the treatment
of the open-system dynamics beyond the Markovian approximation [251; 43; 245} 209],
during its analysis it is easy to meet with difficulties (e.g. the problem usually becomes
numerically intractable) which can ultimately make the characterization of entanglement
inaccessible. In an attempt to face with this circumstance it proves convenient to consider
some simple and general statements about the environment and its interaction with the
system, in order to give a practical as well as physically meaningful description of the
dissipative quantum dynamics of mechanical degrees of freedom. To be more precise, the
main objective of the present dissertation is twofold: we study and elaborate simple tools
to characterize multipartite entanglement in either Gaussian and non-Gaussian states, and
secondly, we analyze the dissipative dynamics of entanglement in harmonic oscillators for
a broad class of physical situations.

To start with, we give a brief introduction to the formalism based on the so-called
Wigner function to describe harmonic oscillator systems. Afterwards the introduction
divides into two main parts. The first deals with the definition and characterization of en-
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tanglement in harmonic oscillators, while the second part contains the formalism employed
to solve the open-system dynamics.

1.1 Continuous variable systems

Nowadays some of the most promising experimental setups to perform ideas from quan-
tum information theory include the modes of a radiation field in a set of optical or mi-
crowave cavities [41], the center-of-mass motion of nanomechanical oscillators [26] or ul-
tracold atoms arranged in optical lattices [38]. The principal characteristic that share all
these setups is that their mechanical degrees of freedom can be described in a general way
as harmonic oscillators with great degree of accuracy. For instance, the single-site poten-
tial over an atom in optical lattices is approximately harmonic with typical frequencies
wp of 27 x 100 kHz (see Ref.[21]), while nanomechanical oscillators with masses around
pico-gramme (i.e., 1071%kg) start to develop quantum properties near its ground state,
where the amplitude of their non-linear oscillations is relatively small at temperatures
around 0.1 K [I79]. Furthermore, it is a ubiquitous situation in other fields of physics, like
condensed matter [I§], that the mechanical degrees of freedom of systems which differ in
microscopic details can be described with the same language (i.e., harmonic oscillators).
Since we are mainly interested in the low-energy dynamics of the foregoing systems, where
we expect quantum effects to be dominant, such description is well justified in the present
dissertation. As a consequence, it is important to realize that the conclusions drawn from
this treatment will relate to universal aspects of quantum entanglement. With the word
universal we refer to the common properties shown by entanglement in all these systems.

Then, the aforementioned setups can be though of as a paradigmatic system composed
of n (one-dimensional) harmonic oscillators or modes. The latter is a nice example of a
continuous variable (CV) systenf] in ordinary quantum mechanics [53; [191] (because their
degrees of freedom take an infinite number of values), and it is formally described by
the n-fold tensor product of the single-mode Hilbert space H; = L*(R) (which represent
the set of square-integrable complex functions), i.e. H, = ., H1. The m-th mode is
described in terms of the canonical position §,, and momentum p,, operators. Equivalently,
they may be described by their dimensionless counterparts Qm = Gm+/M2/h and B, =
Pm/VM2h defined in terms of a characteristic frequency (2 and mass M, this shall be
employed in the dimensionless analysis of entanglement. Let us introduce the operator-
valued vector & = (G1,D1,---,Gn, Pn)’ whose elements satisfy the canonical commutation

relations [&,,, &) = —ih[J,],,, with the symplectic matrices

J,=EPJ and le(g) _01)
m=1

of the composite system and a single subsystem. Despite of the mathematical subtleties

Tn contrast to CV systems one may encounter “discrete systems” (for example spin systems), whose
degrees of freedom take d discrete values, and are formally described by the complex vectorial space C?.
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that may arise from dealing with infinite-dimensional Hilbert space [93], we can perform
a complete study of the entanglement supported by CV systems (with finite mean energy)
[77], however one may expect that such study will become rather involved as compared
with the simpler case of discrete systems.

The successful development of quantum optics based on the Wigner-function method
proved convenient to describe a continuous variable system in terms of the real symplectic
space (R?",J,), i.e. phase space [77; 8], rather than the infinite dimensional complex
Hilbert space H,. In this context, a quantum mechanical operator Ais replaced by its
Weyl symbol

o A d2"£
— i JnET A —iz' Jp€ 1.1
Wa(x) /R% e r [ e ] 2 (1.1)

which is a function of the classical phase space variables = (g1, p1, -, gn, pn) [190], and
where we have defined the so-called Weyl operator as D(&) = e~ i@ In€  The Weyl symbol
of a density matrix ¢ is typically referred to as Wigner function, and it is denoted by W (x)
[250].

Eq. |D supports the view of the Wigner function as the Fourier transform of Tr [@f)({ )} .

The latter plays a remarkable role in the phase-space methods, it is known as the char-
acteristic function of W (x), and it is usually denoted by xw(£&). The importance of this
mathematical object relies on the fact that the average of any symmetrized product between
the operators of an arbitrary set of modes can be readily obtained from the characteristic
function, e.g.

o\ [ 9\
{ar.p3})y =i*(—i) (@) (@> XW@)‘&G for 7, s €N, (1.2)

where {e, o} denotes the anti-commutator. In the following we shall refer to <{(j§”, ﬁj}> as
the (7, s)-moment of the (7, j)-modes. Conversely, the coefficients of the Taylor expansion
of the characteristic function around the origin can be, in principle, obtained from the
knowledge of the set of all moments between the position and momentum operators of all
the system constituents. From here and Eq. it follows that one may determine the
Wigner function from the full statistics of the position and momentum operators of the
system modes.

Unfortunately, the full knowledge of the Wigner function for arbitrary quantum states
can become a complex problem since the computation of all such moments is usually a
rather difficult task in practice. Nonetheless, the situation simplifies considerably if we
focus our attention on the so-called Gaussian states. By definition a quantum state ¢ is

HAn important property of CV-system Hilbert spaces is that they are separable. This means that
they admit a countable orthonormal basis, e.g. any vector |v) € H; can be written in terms of the basis
{lm)},7_, as follows |v) = > vy, [m) [1]. For harmonic oscillators, such basis can be identified with
the Fock or number basis, and H,, will correspond to the tensor product structure of infinite-dimensional
Fock spaces.
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Gaussian if its Wigner function is a Gaussian function, i.e.

6—%(m—:i)TV*1(sc—:E)

W(x) = , 1.3

(=) (2m)my/det(V) (13)

where the vector & = Tr(o&) contains the expectation values (first-moments) of the phase
space variables, and V' is the covariance matriz (CM) which is defined by

Vi = 5T (04[], — [2],,. 2], ~ [2)}) - (14)

In this case, W is completely characterized by the vector & and the real symmetric 2n x 2n
matrix V', i.e. by 2n? + n real parameters. According to the Heisenberg uncertainty
relation, the covariance matrix of any quantum state must satisfy V' > %ﬁJn [77], which
implies the positive definiteness V' > 0 . Equivalently, the uncertainty relation can be
expressed in terms of the symplectic eigenvalues, denoted by {v;};_,, of the covariance
matrix V' as v; > h/2 for i = 1,...,n. It should be noticed that the symplectic eigenvalues
of a 2n x 2n real symmetric matrix A are directly obtained as the eigenvalues {£iv;};_,
of the matrix JI A. Furthermore, it will be seen that the entanglement is invariant under
local unitary transformations [77]. Doing a translation in the phase space of each oscillator
we can conveniently cancel out the mean values & without changing the entanglement
properties of the system (i.e., we take & = 0 from now on).

Most recently, a considerable amount of research has been directed towards the study
of CV states generated from Gaussian ones by operations made with photons [I41], that is
to say, by adding or subtracting photons to the modes composing the system. As a result,
the state is no longer Gaussian but its Wigner function can be expressed in a compact
form as follows,

F(x)e 2@V e

Wi(x) = ,
(@) (2m)7\/det(V)

where F'(x) is a polynomial function whose degree is roughly determined by the number
of such manipulations that need to be applied to a Gaussian state to arrive at the state of
interest. It should be emphasized that a broad set of non-Gaussian states are described by
a Wigner function of the type since we only require F'(x) to be an analytic function
with domain in all the phase space.

Thorough the present dissertation we shall focus on Gaussian and non-Gaussian states
characterized by Eq.. The importance of Gaussian quantum states also relies on the
fact that they naturally appear in every quantum system which can be described, at least
approximately, by a quadratic bosonic Hamiltonian, for which their ground or thermal
equilibrium states are Gaussian [216]. Moreover, a great degree of accuracy has been
achieved in the experimental creation and manipulation of Gaussian states with optical
fields [149]. For these reasons a substantial part of quantum information theory for CV
systems has been developed for such states [250]. On the other hand, recent investigations
pointed out that the non-Gaussian states given in Eq. display particularly strong non-
classical properties, which make them convenient for experimentally testing puzzling ideas
from quantum physics.

(1.5)
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1.2 Quantum entanglement

The phenomenon of entanglement emerges in quantum systems composed by many parties
or subsystems. These can be photons, qubits , mechanical oscillators, or even differ-
ent degrees of freedom of the same quantum object may, in principle, be conceived as a
composite system which may support quantum entanglement [29] (for example the system
consisting of the spatial displacement and spin of an atom). The simplest case is a bi-
partite system constituted by only two parties/subsystems. A prominent example is given
by the two-qubit system, widely denoted by Alice (A) and Bob (B), within the quantum
information community. Since all the relevant information about the system is encoded in
the density operator o0 € H,,, entanglement is then a property related to the state, and we
will say that the system is entangled when ¢ would show entanglement.

In this context, entanglement physically manifests as correlations between observables
concerning different subsystems that cannot be reproduced by purely classical means. For
example, Bell’s inequalities constitute a feasible experimental test for these correlations in
spin systems. However, Schrodinger pointed out that entanglement has a more profound
implication on the nature of the system which is intimately related to the information
encrypted by the state. Information is the central object of quantum information theory,
and may be quantified by using the von Neumann entropy [34],

$(6) = ~Tré logyo. (L6)

In his work [217], Schumacher provided an operational meaning (within a communication
scheme) to the notion of information within quantum theory: Eq. determines the mean
number of qubits needed to faithfully transmit a statistical ensemble of pure quantum
states. Contrary to the classical counterpart , the entropy of a subsystem can be greater
than the entropy of the total system when the state is entangled. More precisely, it has
been proven that only entangled states violate the following entropic inequalities [128],

S(0ap) = S(0a), S(0as) = S(05), (1.7)

where g4/5 = Tra/p(04p). In ordinary words, the violation of equation means that
in an entangled system the knowledge about its whole is greater than about either of its
parts. Schrodinger noticed that this bizarre feature of entanglement leads to seemingly
paradoxical situations as Einstein, Podolsky, and Rosen tried to show [215]. Aside the
violation of Eq., other quite important feature that has none classical counterpart is
known as monogamy of entanglement [52; 121]. This property consists on a trade-off in

liRecall that the qubit replaces the role of the classical binary digit in the extension of classical informa-
tion theory to quantum systems, and thus, it represents a fundamental unit of information [66]. Physically,
it is any two-state quantum system, such as spin—% or an arbitrary superposition of two Fock states.

“The classical counterpart of the von Neumann entropy is the Shannon entropy which is generally
denoted by H(p), where p is the probability distribution that describes the state. Unlike the former, the
Shannon entropy of a bipartite state pap is never smaller than the entropy of the reduced states that
represent the two subsystems alone, i.e. H(pap) > H(pa), H(pB).
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the amount of entanglement that the different constituents of a many-party system may
share: Instead of appearing between the elementary subsystems, entanglement generally
emerges stronger between groupings of those subsystems.

Further counter-intuitive aspects of entanglement are found in the realm of statistical
physics concerning the mechanism whereby a quantum system and its environment, which
is considered to be comparatively large, become eventually entangled due to their un-
avoidable interaction. Paradoxically, such entangling interaction is though to be the main
responsible for the loss of coherence in quantum systems, and thus, it would be the reason
why the macroscopic world seems to behave not quantum mechanically [265]. Remarkable
enough, it was suggested that this entanglement is at the origin of thermalization of a small
system in contact with an environment [201].

Though entanglement is considered to be the most prominent quantum correlation, it is
not the only one that can be observed in many-party systems. Zurek, Ollivier & Zurek, and
independently, Hernderson & Vedral introduced the quantum discord as a quantity which
enables to measure the quantumness of correlations [120; [I81]. In particular, they showed
that quantum systems, even in absence of entanglement, may have non-zero discord, that
is to say, they still contain non-classical correlations. Surprisingly enough, in Ref.[82] it
was shown that almost all quantum states have non-zero discord. This result indicates that
entanglement is comparatively a quantum correlation more difficult to be experimentally
and theoretically observed.

Several equally intriguing questions about entanglement still remain open. Research
pursuing to answer these questions form a research field on its own, framed within the
quantum information theory and known as theory of entanglement [129]. For the present
dissertation the main interest is put on the following issues: Can a meaningful picture
of entanglement in a CV system be provided?, and second, Can this picture be readily
characterized by simple and experimentally friendly tools? As a starting point, one may
look only at the entanglement supported by a particular partition or decomposition in two
groups of the n-mode system. That is, we rearrange the n modes in two larger subsys-
tems, which shall be refereed to as n4 X ng-mode bipartition, and ask ourselves whether
they are entangled. Since there are 2"~! — 1 inequivalent such bipartitiond’] it takes little
imagination to anticipate that the certification of entanglement becomes cumbersome with
an increasing number of constituents, and that a complete answer to the first question
represents a great endeavour due to the huge number of distinct ways in which a system

VLet us show how the number of bipartitions is obtained from the following result of combinatorial

analysis,
n—1 n—1
=2" 1 —1.
> (")

k=1

Let us denote each partition by S; and Ss. If we consider that S; contains at least a single-mode, then
(";1) gives the number of inequivalent ways in which we can split the n-mode system in a partition S5
consisting on k modes and S;. As this is true for any value of k = 1,...,n — 1, the total number of
bipartitions is obtained by summing all of such partitions raging from the situation when S5 only contains
one mode and S; the rest (k = 1), and the converse situation (k = n — 1). Clearly, this number is given
by the mentioned result.
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can be entangled. Indeed, a complete description of multipartite entanglement stands as
one of the great challenges in the theory of entanglement. However, quantum information
theory has provided numerous complementary partial answers to both questions by intro-
ducing the concept of separable states. In the following we shall show how this concept
allows to formally define entanglement and gain a deep understanding in the quantitative
and qualitative estimation of this quantum correlation. The following section culminates
with the introduction of the separability criteria for multipartite continuous-variable states
proposed in Ref. and a comparative study with others similar results.

1.2.1 The concept of (in)separability

Roughly speaking, entanglement are correlations that cannot be created by either local
or classical means. A more rigorous definition requires a more precise description about
which operations correspond to these ‘classical means’ within quantum theory. A priori,
it does not seem a promising task to give a satisfactory answer to such issue, because the
distinction between ‘quantum’ and ‘classical’ manipulations frequently leads to a heated
debate. Nonetheless, the essential question may be thought of as follows: all those ma-
nipulations that are able to create or increase classical correlations must encompass these
classical means, otherwise the latter could induce quantum correlations (entanglement). A
step further, once one knows the explicit form of the density operators which are classically
correlated, the foregoing question reduces to ask which operations preserve this form. For-
tunately, Werner provided such form in Ref.[252], by characterizing the set of classically
correlated state as the result of individual preparations in each party that share the same
source of randomness. Nowadays, these classically-correlated states are widely refereed to
as separable states [125].

Quantum information theory has classified those local and classical means under the
name local operations and classical communications (LOCC) [170; 200]. This set com-
prises general local manipulations as well as all those which may be performed using clas-
sical communication. Intuitively, one may conveniently exchange (classical) information
between different parties of a composed system using standard telecom technologies, and
subsequently apply local operations conditioned to this information that may result in
(classical) correlations. Mathematically, whereas local operations can be easily expressed
in terms of a tensor product of unitary operators acting independently on each system
party (for instance, in the bipartite case E0(0) = (i eti})o(tactis)), LOCC are described
by a much more complex expression that involves an operator sum of tensorial product
of unitary (local) operator{| (see e.g. [68]). It is important to realize that entanglement

ViRemarkably, the introduction of the quantum discord showed later that the set of states which Werner
initially called classically correlated may possess quantum correlations, however they have no entanglement
[4].

ViAs an example, in the bipartite case it looks like Erocc(0) = Y.+ (FZF @ 1418 @ B)(Fi ©
) o (F)P @ ) ((B) @ IB)((Fy"")F @ T4) -, where 3, FIH(FJR)T = Tand 3, EGH(EFF)T =1
for any « and each sequence of indices (7,7, k,...) (and [4/B is the unit operator acting on the Hilbert
space Ha/p)-



10 1. Introduction

remains invariant under unitary local manipulations (i.e., local basis changes), whereas the
action of a LOCC can vary the quantum correlations properties of the state (e.g. a pure
state may not remain pure under LOCC).

In the bipartite case, it is immediate to see that the density matrix of any pure state
produced by only doing local operations, is necessarily given by a tensor product between
two reduced states, written as |Wap) = |¥a) ® |¥p), which describe independently the
two subsystems. Since we have argued that entanglement can not be created by local
operations, one may use this fact to define entanglement as follows: if the density operator
can not be written as a tensorial product state, the state is bipartite entangled and by
extension we say the bipartite system is entangled. One can go further by appealing to the
property that any mixed state may be expressed as a convex sum of pure states, this leads
in a natural way to the concept of separability. The state is called separable (in the sense
of Werner) if and only if it can be expressed as a convex sum of product stated"] i.e.

0AB = Zpi@fq ® 0, (1.8)
where @2/3 = |Ll7j‘/B> <WA/B|, pi > 0 (Vi) and Y ,p; = 1. The extremely important
property of this state is that only LOCC are necessary to produce it [I12]. By virtue
of the preceding discussion, we may extend the previous definition of entanglement to
mixed states as follows: the state is bipartite entangled if and only if it is not bipartite
separable [126] (in terms of the definition Eq.(1.8))). Notice that the term non-separable or
inseparable is widely used as a synonymous of entangled, and the issue of knowing whether
0ap is separable is referred to as the separability problem.

Formally, from Eq.(1.8) follows that the separability problem consists essentially on
stating whether g4p lies in the convex hull of product states. Unfortunately, this last
point is in general a rather difficult problem to discer since there may exist, in prin-
ciple, infinite ways to decompose the system in an ensemble of classical probabilities and

pure states, say {pi, 7 / B}}. It will be seen that the solution of this problem can be ob-

tained from applying optimization procedures which return a preferred decomposition that
minimizes certain functional (see convex-roof measures) or the lowest mean value of certain
observable among all separable states (see entanglement witness). More precisely, it has
been shown that the separability problem is closely related to the optimization of some lin-
ear function f(x) = ¢’ x, with z € R? being the objective variable (¢ is determined by the
specific problem), subjects to the constraint Fg—i—Zi:l x F, > 0, where Fy, Fy,---, F;are
Hermitian matrices of arbitrary dimensions [76]. These problems are called semi-definite
programs. Hyllus and Eisert provided an example of the relation between the separabil-
ity problem and semi-definite programs in the realm of continuous-variable systems [134].

ViliFrom the Caratheodory theorem [129] follows that the number of terms in the convex sum appearing in
Eq. is bounded from above by the square of the dimension of the global Hilbert space dap = dimH? .
XGurvits showed that the separability problem in discrete systems is NP-hard (Non-deterministic
Polynomial-time hard) [I15]. Roughly speaking, a NP-hard problem is at least as hard as any deci-
sion problem for which an available solution can be efficiently tested by an algorithm which needs to do a
number of operations that grows polynomially with the input size.
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First, let us note that shortly before it was proved that any n4 x ng-mode bipartite state
with CM V is separable if there exist two CMs V4, Vj such that Vi > V4@ Vp [253; 129],
1.€.

Jo..  (L9)

0ap, with CM V), separable = Vi > V4 @& Vg with V), > %JM, Vg > %
Hyllus and Eisert showed precisely that the solutions of some semi-definite optimization
problems provide exactly efficient tests to certify the inequality (1.9). Interesting enough,
Werner and Wolf realized that if the inequality is fulfilled for Gaussian states, then the
state can be obtained by LOCC from the Gaussian state with covariance matrix V, & Vg,
and therefore, the Ineq.(1.9) is also sufficient for separability on these states. Regarding
the separability criteria proposed in Ref, its advantage, compared with other relative
results, essentially relies upon the fact that it provides a readable optimization procedure
to solve the semi-definite program corresponding to an analogous separability problem in
multipartite CV systems, see Chapter 2 for further details.

In spite of the difficulty behind the separability problem, nowadays there is a consider-
able body of literature on the theory of entanglement [233; (77}, [170% 34 8 2005 129; 112 5T,
9], whose major concern is to provide qualitative as well as quantitative estimators of en-
tanglement, preferentially which would be experimentally accesible. Most of the important
progress on this research area is related to the characterization of bipartite entanglement
between a given decomposition of the many-party system onto two large subsystems. Al-
though there are many significant results and contributions on this issue, we can roughly
classified them into three fundamental approaches. Currently, the most efficient entangle-
ment estimator, for either pure and mixed bipartite states, was proposed by Peres in the
seminal work [192], and it is known as the Positive Partial Transposition criterion. Among
the most important theoretical tools in the theory of entanglement is also the so-called
Entanglement Witness, which represents a simple computational and experimentally fea-
sible criteria to detect and quantify entanglement. Finally, entropy lies at the heart of
the quantum correlations theory as it was previously emphasized, and it will be seen how
entanglement can be quantified by entropy-based measures.

In what follows, we shall focus on the most relevant results for detecting and quantifying
entanglement in a bipartite continuous-variable system, namely Alice (A) and Bob(B). We
pay special attention to those results used in the analysis of entanglement performed in

Refs. [AZ]} [A3]) and [A4]

1. Positive Partial Transposition (PPT): it is in general a necessary criterion for
separability, and is based on the observation that all density operator 045 describing
a separable state must remain positive’| under the partial transposition with respect
to one of the indices corresponding to either the A or B subsystem, i.e.

0ap separable = @ﬁg >0, (1.10)

*A Hermitian operator is called positive if only if it has a non-negative spectrum. Similarly a map
E: 90— E(p) is positive only if it preserves the Hermitian and positive properties of 9.



12 1. Introduction

where QEBB = [I4 ® Ts](04p) is the partially transposed operator [I87] defined by

(ml (ul 63 In) [v) = (m] (V] 0as |n) ).

and similarly for partial transposition on A. Any state satisfying the inequality in
Eq.(L.10)) is called PPT. Then, the criterion is equivalent to say that all states that
are not PPT must be necessarily entangled. However, the other way around is not
generally true, and there can be PPT states that are entangled. It has been shown
that PPT entangled states posses essentially bound entanglement, which means that
if we have N copies of the state then we cannot concentrate the entanglement in some
(less) copies by doing certain manipulations involving only LOCC [129]. Behind the
latter is the intuitive idea of ‘distillation’ of entanglement.

The PPT criterion can be though of as a particular case of a more general criterion
in terms of positive maps,

0ap separable = [I4 ® Eg](0ap) > 0, (1.11)

where £ may be any positive but not complete positive (CP) map . Remarkably
enough Horodecki (M.), Horodecki (P.), and Horodecki (R.) showed that bipartite
entanglement can be fully determined (it means a necessary and sufficient condition)
by applying all positive but no CP maps to any given g5 [125]. In practice, however,
the general form of all theses maps is essentially unknown and this approach becomes
unfruitful.

Shchukin and Vogel found that the PPT criterion in continuous-variable systems
may be nicely expressed in terms of an infinite series of inequalities concerning the
moments of the quadrature variables [224 [172]. As an example, they showed that
in the two-mode case these hierarchy of inequalities can be compactly expressed in
terms of the following infinite Hermitian matrix of moments,

M(0a5) = [M;;(04n)]
Mz‘j(@AB) =Tt (ELT“ at2qtisgia ® plin iz piis pia @AB) :
where i = (iy,149,13,14) € N* and j = (j1, jo, j3, j4) € N*, and a®, b° are the annihi-
lation operators acting on A and B, respectively. It turns out that o4p is PPT if
and only if all the principal minors of M(645) are non-negative. Thus, a negative
value of the latter reveals necessarily the entanglement in the state. This scheme

reduces considerably in the case of a ny X ng-mode Gaussian state, for which the
PPT criterion can be formulated as follows [§],

0ap, with CM V4 g, separable = VA|B > %Jn (1.12)

XA positive map & is completely positive (CP) if its extension £ @1 is positive too, being I the identity
map in any dimension. These kind of maps are extremely important in physics, since quantum operations
are described by completely positive maps.
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where V)5 stands for the partially transposed covariance matrix which is given by
Vaip = AxpVapAas, (1.13)

with

Ayp = diag(1,1,1,1,...,1,1,1,—1,1,—1,...,1,—-1).

~~
na np

It should be noticed that the inequality in Eq.(|1.12)) can be equivalently expressed
in terms of the symplectic eigenvalues, denoted by 7;, of V4 as follows

1

Remarkably, PPT is also sufficient for separability in quantum Gaussian states de-
scribing bipartite systems composed by either 14 X ng [227; 253], or n4 x np modes
endowed with symmetry with respect to the permutation of A and B (bisymmetric
Gaussian states) [221], being n4 and np arbitrary.

We would like to mention here that Giedke, Kraus, Lewenstein, and Cirac provided
a necessary and sufficient operational criterion for separability of bipartite Gaussian
states composed by an arbitrary number of modes. This does not rely on PPT at
all, rather, in a non-linear map that transforms V' in an appropriate CM Vy whose
entanglement can be readable assessed by using the separability condition given in
Eq.(L.9). If the original CM V is separable, then this criterion returns V4 and Vi
[99].

2. Entanglement Witness (EW): An entanglement witness is any observable W that
(i) has at least one negative eigenvalue (i.e. is not positive), and (ii) has non-negative
mean values for all product states [125]. This approach relies on the mathematical
properties of the set S4p comprising all separable states: this is compact and con-
ve The latter and property (ii) guarantee that W has always non-negative mean
values for separable states, i.e.

045 separable = Tr(W,p5) > 0. (1.15)
Therefore, a negative expectation value of W signals the presence of entanglement.
The main advantage of using EWSs is that one may, in principle, design an exper-
imental setup to assess the inequality given in Eq. by decomposing W into
a sum of locally measurable terms [I12]. As compared with entanglement criteria
based on PPT, entanglement witnesses may be more convenient in those situations
where we do not have access to the full knowledge of the state. However, some a

dilntuitively, this means that the connection line between any two points in the set Sa4p lies also into
the set. Consequently, there is always a plane separating an entangled state from the separable states.
Within the EW approach, such plane is geometrically determined by Tr(Wgag).



14

1. Introduction

priori knowledge on the state is required (before applying the measurement scheme)
in order to design successful EWs.

Remarkably enough, one may construct an entanglement witness We based on any
positive but not CP map & through the so-called Choi-Jamiotkowski isomorphis
From the Horodecki result (as given in Eq.), this implies that there exist a
complete set of entanglement witnesses, denoted by W, which are able to fully identify
the bipartite entanglement for an arbitrary pap [125]: For every entangled state there
exists an entanglement witness enable to detect it. The problem of this approach,
unfortunately, is that it does not exist yet a practicable recipe which tell us how to
construct the suited witness in accordance with the specific entanglement properties
exhibited by a given state. However, an important progress in this direction was made
by Lewesntein, Krauss, Cirac and Horodecki. Their idea basically relies on optimizing
the number of entangled states detectable by a general entanglement witness W by
subtracting a positive operator P as W/(A) = (1—X\)"1(W +AP) (where A > 0), such
that the new witness 1W/()\) is optimal in the sense that there is no other witness
which is able to identify more entangled states than 1W/(\) [I55]. The problem here is
that the determination of P involves the computation of an infimum that is hard to
calculate (at least analytically). In an analogue approach Sperling and Vogel showed
that any witness can be brought on the for

W, = O — inf {(a, b O |a, b)}]l, (1.16)

where O is some bounded Hermitian operator (which can be positive), |a) € H.,
and |b) € Hp. Unlike the Lewenstein and co-workers idea, the optimal witness here
is obtained from the (separability) eigenvalue problem of O [229] that is apparently
easier to deal with. Recently, this approach was successfully applied in the detection
of multipartite entanglement in a large system of coupled harmonic oscillators [230].

Moreover, we may establish similar separability criteria that involve the variances or
higher moments of some observables instead of their mean values, this may be fol-
lowed from the idea that entanglement witnesses are enhanced by adding non-linear
terms [I10]. These have been proved to be very successful in detecting entangle-
ment in continuous-variables systems, and some examples, among others, are Duan-
Giedke-Cirac-Zoller [70] and Simon [227] criteria, which have been extensively used
for Gaussian states, or Agarwal-Biswas [14], and Nha-Kim [I77] criteria, which are
specially useful for detecting entanglement in non-Gaussian states. Basically, these
are inequalities that involved the second and quartic moments of the quadrature

xiliRoughly speaking, the Choi-Jamiotkowski isomorphism states that we can make an one-to-one corre-
spondence between a (linear) CP map & : B(Hp) — B(Hp) and a (linear) positive operator Ag, where €
would act on the set of bounded operators B(Hp) and Ae € B(H )@ B(Hp) [125;197]. This mathematical
result is very important in ordinary quantum mechanics, since it allows one to relate physical actions (CP
maps) with physical states (trace-one positive operators).

“VWhenever W, would have a negative eigenvalue, Wy, could be an EW by construction (see [236]).
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operators, respectively. Remarkably enough, it has been shown that many of these
criteria are covered by the above mentioned infinite series of inequalities that results
from the PPT criterion [I73], though they were not firstly derived from PPT. In
particular, we shall show that the criterion proposed in Ref. reproduces exactly
the results of the PPT criterion for arbitrary two-mode and pure three-mode Gaus-
sian states. On the other hand, Hyllus and Eisert provided useful practical tools to
obtain optimal entanglement witnesses concerning only second moments by following
an alternative optimization procedure to the above [134].

Others non-linear entanglement witnesses are based on the entropic manifestation of
entanglement. On one hand, the entropic inequalities given in Eq. in terms of
the von Neumann entropy of the states 94p and 94, comprise a necessary condition
for separability, in general. These inequalities hold even for alternative definitions of
entropyf]like the Rényi-a entropy [128], or Tsallis entropy[238], which are simpler to
compute in comparison with the von Neumann entropy. On the other hand, one may
stablish analogous necessary separability criteria by deducing the entropic inequalities
evaluated now in the probability distribution of global operators (for example, the
mean position and momentum of the bipartite system), that any separable state must
satisfy [213].

3. Measures based on convex-roof extension: Both PPT criterion and EW estab-
lish general sufficient conditions for entanglement, but they are not able by themselves
to quantify the amount of entanglement contained in the state. Any meaningful quan-
tifier or measure of entanglement must be endowed with (at least) two reasonable
properties [244]: (I) non-increasing under LOCCF] and (II) vanishing on separable
states. Interesting enough, an entanglement quantifier, say E(¢ap), can be built up
on an entanglement witness W as follows [39],

E(0ap) = max {0, — inf Tr(@ABW)} , (1.17)
WeMm

where M = W N C, and C distinguishes different entanglement measures. Unfortu-

nately, this approach will suffer from the mathematical drawback resulting from the

optimization procedure discussed previously (see paragraph above Eq.(1.16)).

A prominent example of entanglement measure is represented by the entropy of
entanglement Fg(¥ap) which is nothing but the reduced von Neumann entropy for
bipartite pure states [35],

Es(Wap) = S(Tra ([¥) (W) = S(Trp () (¥1)). (1.18)

*For a > 0, the quantum Rényi-a entropy S, (9) is given by S,(8) = (1 — )~ InTrg®, whereas the
Tsallis entropy reads T, (8) = (o — 1)71(1 — Trg%). The von Neumann entropy is recovered from both
definitions in the limit o — 1.

*ViMore precisely, any proper entanglement measure E must satisfy E(9) > E(£rocc(0)). Behind this
condition is the physical intuition that entanglement cannot be created by LOCC. A quantitative estimator
of entanglement satisfying this conditions is also called entanglement monotone.
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In fact, Eq. constitutes a unique entanglement measure in the case of bipartite
pure states: proper entanglement measures coincide, as a limiting case, with the
entropy of entanglemen for pure states [68]. However, this measure fakes from
quantifying correctly the entanglement contained in mixed states. To tackle this
issue, one may constructively extend a given measure F(¥) for pure states to the
mixed case by exploiting the fact that any state can be decomposed as a convex sum
in pure states. Then, an entanglement measure may be constructed as follows,

E(0ap) = inf sz (Zhp), (1.19)

where the infimum is taken over all possible ensemble {p;, W%z} which satisfies o =

Entanglement estimators built following this recipe are generically called convex-
roof extended measures, and an important example is the entanglement of formation
Er(0) which results from the entropy of entanglement. In practice it is needed to
make some simplifying assumptions over the decomposition ensemble such that the
convex-roof measure still remains a powerful tool to detect entanglement, since the
evaluation of the infimum value in Eq. - is a difficult task for systems described
by large Hilbert spaceﬂ This idea was successfully applied in the case of Gaussian
states, Wolf et al. proposed to restrict the decomposition to pure Gaussian states
(that is a Gaussian convex-roof extension), which resulted in the Gaussian entangle-
ment of formation Fg(9) [257]. This allowed to find a closed form expression of Eg
in the case of arbitrary two-mode Gaussian states, which constitutes an upper bound
of the true entanglement of formation. More generally, Adesso and Illuminati showed
that the Gaussian convex-roof extension enables to define generic Gaussian entangle-
ment measures starting from bona fide measures of bipartite entanglement in pure
Gaussian states [6]. In this direction Adesso, Girolami, and Serafini introduced the
so-called Gaussian Renyi-2 entanglement [5], which is a convex-roof measure based
on the Renyi-2 entropy & (analogous to Eg). The latter is specially interesting be-
cause it can be used to quantify the monogamy of entanglement in n-mode Gaussian
states through the following inequality

E>(0sy|5,...5 252 0s11s:) (1.20)

where 5; denotes the ith constituent of the interesting system. Given a biparti-
tion A|B of the state, Ineq.(1.20)) physically constraints the distribution of bipartite

*Vii[t is intuitive to see the reason for which the von Neumann entropy may work as an entanglement
measure for pure states. Loosely speaking, this relies on the fact that the partial trace of a pure product
state always returns a pure state. A positive value of the entropy of the reduced states g4 or o reveals
that they are mixed, and then it entails that 904 p is necessarily entangled.
xVilily discrete systems, it was shown that the running time of any algorithm for computing Ex(9) would
grow exponentially with the dimension of the Hilbert space [132].
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entanglement among different partitions of the system: the entanglement between
the A and B parties as a whole will be greater than the entanglement that can be
established between the constituents of A and B separately. Adesso and Illumi-
nati showed that bipartite entanglement measures satisfying analogue inequalities
to @D may also provide proper quantifiers of multipartite entanglement [7] (see
Sec @D Surprisingly enough, not all entanglement measures obey an inequality

analogue to Eq.(1.20)).

4. (Logarithmic) Negativity: There is yet another family of entanglement measures
that is straightforward to compute, specially in continuous-variable systems. The
negativity N(oap) basically consists in quantifying the violation of the PPT criterion
for separability, much in the spirit of Eq., and may be formally defined as

N(6aB) = max{O,—Z)\k}, (1.21)

where )\, represents a negative eigenvalue of the partial transpose. Based on this
measure, Vidal and Werner proposed the logarithmic negativity En(0ap) = Log(1+
2N (0ap)) [247], which constitutes a full entanglement monotone (this means that it
satisfies the above condition (I) in the most strict sense) [195]. An important prop-
erty of the logarithmic negativity is that it is an upper bound for the entanglement
entropy, i.e. En(|¥ag) (Wap|) > Es(Wap). Adesso and Illuminaty showed that the
logarithmic negativity, in the case of a Gaussian state with CM V| is readily obtained
from [10} ],

) Do logwy for ko < 1,
Ex(V) = { 0 otherwise, (1.22)

where 7; are the symplectic spectrum of the partial transpose CM V and which
is computed from the Eq.. Recalling that PPT is a sufficient and necessary
criterion for entanglement in 14 X ng and bisymmetric ny X ng Gaussian states,
Eq. may be employed to properly quantify the bipartite entanglement of these
states. Although the logarithmic negativity does not satisfy any analogue expression
to equation exhibiting monogamy, it is easier to compute for mixed states than
the Renyi-2 entanglement, and it is used to analyse the entanglement in two-mode,
and 1 x 2-mode Gaussian states in Refs. |A2]| [[A3]| and |[A4]

In large harmonic chains and lattices maintained in the ground and thermal states and
with nearest-neighbour interactions and periodic boundary conditions, logarithmic
negativity has been successfully employed to quantify bipartite entanglement between
a distinguished group or region I, whose boundary we denote by 41, an its exterior [27;
196 20]. Remarkably enough, Audeneart and co-workers for harmonic chains, and
later, Plenio and co-workers in optical lattices showed that the logarithmic negativity
exhibits a linear dependence in the number of oscillators on the surface of the region,
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say En(07) ~ Nsr. Subsequently, this permitted to prove that entanglement of the
reduced system scales at most as the boundary area of the region, i.e. Eg(¥;) < Ns;.
This relation is referred to as an area law [75], and is of important relevance in many-
body systems because it has been found in many realistic models [51]. Intuitively,
an area law suggests that most of the quantum correlations decay rapidly in a finite
number of neighbours, that is the correlation length is small enough such that the
entanglement between the region I and its exterior are mainly established via its
boundary surface [75]. However, the converse may not be true: we may have an area
law even for an infinite correlation length.

As one may have probably appreciated the evaluation of any entanglement measure,
including logarithmic negativity, requires the full knowledge of the density operator,
which theoretically can be obtained from an ensemble of measurements on a com-
plete set of observables, for instance by quantum state tomography. However, this
ensemble grows rapidly with the Hilbert space dimension of the composite system
under study, such that the required efforts to determine 9,5 may rapidly saturate
experimental resources and then makes ultimately inaccessible the complete knowl-
edge of the state in many practical situations. In those cases, an alternative strategy
may consist in providing tight lower bounds of entanglement measures that are ex-
perimentally accessible in the spirit of entanglement witnesses [39; [74; [169]. Starting
from Eq. one may construct an entanglement witness W which reproduces
some of the above entanglement measures F(04p), such that one obtains a lower

bound E(04p) > max {O, —Tr(@ABW)}. Although there are several papers study-

ing this issue, we just like to mention two of them: in Ref.[111] Giihne, Reimpell,
and Werner provided a method to obtain entanglement witnesses as lower bounds of
generic entanglement measures (for instance convex-roof extended measures) subject
to the available measurement data on certain set of observables, while Audenaert and
Plenio pursuing essentially the same question provided lower bounds of several entan-
glement measures, for instance logarithmic negativity in discrete systems, compatible
with given values of purity and correlations in the measurement record [2§].

Finally we would like to notice here that, though, there are a number of entangle-
ment measures for mixed states, which may be distinguished from their operational
meaning and mathematical properties, this issue is not a drawback in the theory of
entanglement, because each of them may be worthwhile to quantify entanglement in
certain physical situation. Further, this issue is not characteristic from the quantum-
ness of entanglement, since, for example, the classical conception of entropy allows
analogously different quantitative measures which are axiomatically equivalent [34].

Before proceeding any further, we must mention that the definition of entangled states,
as given by Eq., does not apply to study indistinguishable particles, essentially because
their wave functions must be symmetrized if we are dealing with bosons. In particular, it
does not make sense to consider each elementary subsystem as parts of distinct partitions
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of the whole system (all the bipartitions would be also indistinguishable). Throughout
the present dissertation we always assume that each harmonic oscillator composing the
system can be experimentally discriminate, though they satisfy a bosonic statistics. The
entanglement in harmonic oscillators is termed as continuous variable entanglement in the
specialized literature in order to distinguish from the study of entanglement appearing in
indistinguishable bosonic particles, which is beyond the scope of this dissertation. Com-
prehensive overviews in this topic can be found in Refs.[19; [182].

Let now turn the attention on multipartite entanglement, which comprises bipartite
entanglement as a particular case. As a starting point one may try to generalize the
foregoing techniques to characterize entanglement in multipartite systems, however, it has
been shown that this is not straightforward to do in several cases. On the other hand,
the difficulty behind the evaluation of the previous quantities increases with the number
of constituents, so that the problem may become intractable numerically. Furthermore,
unlike the bipartite case where any state is either entangled or separable, the structure of
entanglement in multipartite systems is much more richer occurring inequivalent classes
of entanglement. These problems, among others, make difficult to obtain qualitative or
quantitative estimators of multipartite entanglement so successful as those for bipartite
entanglement. Even there is not a unique systematic characterization of multipartite en-
tanglement: Instead it will be seen that one uses a specific scheme to identify entanglement
depending on the inseparability properties exhibited by the state. This lack of a single clas-
sification is understood as there are several types and families of quantum entanglement
when more than two parties are involved. We devote the next section to discuss the relevant
results regarding this topic.

1.2.2 Multipartite entanglement

The above treatment on separability is not restricted to a specific number of constituents,
and thus, the definition of entanglement based on Eq.(L.8) can be straightforwardly gener-
alized to a multipartite system that decomposes into n elementary parties Sy, Ss,..., S,.
The notion of bipartite separability translates now into full n-partite separability [243], i.e.
the state is fully (n-partite) separable iff it can be expressed as follows

0= pills, @05 ® @0k, (1.23)

where o = [Wg ) (Vg | represents the reduced state of the S; subsystem. Then, all states
that are not separable according to Eq. are called n-partite entangled or inseparable.
The condition Eq.(1.23) of full separability can be nicely reformulated for Gaussian states,
as we showed previously for the bipartite case, in terms of their covariance matrix: a n-
mode Gaussian state with CM V is fully separable if only if there exist a set of covariance
matrices {Vsl, o, Vs, Vg, > %Jl, j=1,... ,n} such that [99)

V>V ®&Vs,®---® Vg, . (1.24)
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As before, this condition is just necessary for full separability in more general states than
Gaussian.

Looking closely to the definition of full separability based on Eq.([1.23)), it is seen that it
does not provide a description of multipartite entanglement as meaningful as for bipartite
entanglement. For instance, there may exist a partition {1, ..., I} being I; disjoint subsets
of the set of indices S' = U}, S;, i.e.

S=LULU---Ul, with ;NI =0if i # j, (1.25)

in which a n-partite pure state may split in k parties as follows [V) = [V), ® [V), @ ®
W), where |¥) s defined on the tensor product of all elementary Hilbert spaces belonging
to the set I;. This state is partially separable in some sense because it is separable with
respect to the partition {Iy, ..., I}, though it is still entangled since it violates condition
Eq.. On the other hand, another example of realistic state is that one can not be
split in any bipartition, i.e. |W) # [¥), ® |[¥), for any two disjoint subsets I;, I such
that S = I, U I, which would intuitively correspond to the physical situation when all the
bipartitions are entangled. Although these two exemplary cases are distinct manifestations
of entanglement in multipartite systems, the definition based on Eq.(1.23) is unable to
capture the difference between them. However, one may generalize this definition in order
to characterize these instances of entangled states and to provide versatile separability
criteria for them. This leads basically to two different schemes that are known under the
name k-separability and k-partite entanglement.

1.2.3 k-separability and k-partite entanglement

The direct generalization of the notion of full separability is the concept of k-separable
states, which has a clear meaning in the case of pure states: A n-partite quantum state is
called k-partite separable, if only if it can be expressed as a tensorial product of k£ substates
(with £ < n), written as [Wy_sp) = [¥1) @ [¥r) @ - - ® |¥,). Similarly as before, we say
that a mixed state is k-separable, if only if it has a decomposition into k-separable pure

states [71; 91, i.e.
@kfsep = sz W;gl_)sep> <w]§z_)sep

with p; > 0 and ), p; = 1. One may see that the above definition of full (n-partite) sep-
arable state is now equivalent to n-separability. The other limiting case is when the state
is l-separable, or in other words, it is not 2-separable (bi-separable). Such state is also
called genuine n-partite entangled [113; [133] in order to distinguish from biseparable (tri-
separable, etc) entanglement. Here, we should notice that there is not a well-established
concept of genuine multipartite entanglement [36], and sometimes it is identified, indepen-
dently of the condition Eq.(1.26]), with the fact that the state is not separable with respect
to any bipartition [159; [7]. Whenever we talk about genuine n-partite entangled states in
the following, we shall refer to states which are not biseparable (neither triseparable, etc)
according to Eq.. Since a state that is not biseparable must have a decomposition

: (1.26)
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only on pure n-partite entangled states, this definition is connected with the physical intu-
ition that genuine entanglement cannot be devised without participation of all parties. It
is important to mention that the latter is the most relevant class of entanglement from the
operational point of view, for instance genuine multipartite entanglement is the essential
resource in the success of the quantum communication and teleportation protocols.

Since the k-separable states entered in Eq. are generally separable with respect
to different partitions, pi_se, must not be necessarily separable with respect to a specific
partition. Looking first at pure states (and then employing the fact that mixed states are
the convex combination of these), one may readily see that this approach yields a scheme
of entanglement consisting on several classes that follows a hierarchical structure in the
sense that each one is embedded on the subsequent: A k-separable state is automatically
k'-separable for all & < k. This hierarchy goes from fully separability, when the state is
n-separable, to genuine n-partite entanglement. As similarly occurs in the bipartite case,
it is a highly non-trivial problem to obtain reliable estimators of k-separability because
there may exist infinite ways in which decompose the state according to Eq.(1.26). In
Refs.[39; 230] and [92] have been presented necessary criteria for k-separability. Whereas
the two former are based on the extension of entanglement witnesses according to the
definition Eq.([L.26)), the latter was derived from the following observation [91]: the tenso-
rial product |[V_sep) ® [Ph_sep) Of two copies of a pure k-separable state with respect to
the partition {I1,..., Iy} (conceived according to condition Eq.(I.25)), remains invariant
under the interchange of all elementary subsystems contained in each subset I; of such
k-partition. Interesting enough, in Ref.[230] was presented an entanglement witness based
on the Hamiltonian of interacting harmonic oscillators that can be successfully applied to
study multipartite entanglement in the ground state of large harmonic systems. Similarly
result were used to study inseparability of Gibbs states in harmonic linear lattices [20]. In
particular, it allowed to derive a threshold temperature for which the Gibbs states of the
lattices left to be n-partite entangled.

The another relevant approach to multipartite entanglement, which may be considered
as a suitable generalization of definition Eq.(1.23)), is devised from an operational point of
view: a pure state of a n-partite system | ,) is called k-partite entangled if cannot be
described without an at least k-partite entanglement contribution [228} 113 [154]. This
definition implies that a subset of at least k parties of the system must be necessarily
entangled. Going further, a mixed n-partite state is considered k-partite entangled if it
can not be expressed as a statistical mixture of at most (k — 1)-partite entangled states

[I54[A]] i.e.

wioh (wls)], (1.27)

k-1
0 N 7é d j(a)
Ok ;/ K

where |WJ(C;L)> are j-partite entangled n-partite states, and p;(a) are positive functions that
satisfy Zf;ll [ duj(a) = 1. Intuitively, this definition means that a k-partite entangled
state can be realized by mixing different states that are at most k-partite entangled, but
since the states that enter this average may carry entanglement between different groups of
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subsystems, a k-partite entangled n-partite state is not necessarily separable with respect
to a certain bipartition [I54JJA1]] Again, if the state is not at least 2-partite (bipartite)
entangled, then it is fully separable, and conversely, n-partite entanglement (in n-partite
systems) is equivalent to the previously defined genuine n-partite entanglement.

The multipartite-entanglement classification based on the k-separability and k-partite
entanglement schemes share the property that both yield an analogue hierarchical struc-
ture of entanglement that goes from fully separability to genuine n-partite entanglement.
Clearly, if a n-partite state is k-separable then it cannot be k’-partite entangled for all
k' > k. Nonetheless, there is a difference which stems from the fact that, contrary to the
former, the latter tells us how large is the largest entangled partition. This makes the idea of
k-partite entanglement easier to be intuitively understood as compared with k-separability.
Moreover, the k-partite entanglement scheme has proved to be more advantageous in the
analysis of multipartite entanglement in discrete systems [113].

Fortunately, in Ref.[154] Levi and Mintert provided a successful hierarchy of separability
criteria that establish sufficient conditions for k-partite entanglement. This is based on a
previous result from Huber & Mintert and co-workers collected in Ref.[I33], where they
showed that genuine n-partite entanglement is identified through the condition,

2n—1-1
7(0) = [(D1] 0|P2)| — D \/@U\ 0|P1j) (Paj] 0|P2j) > 0, (1.28)
1(0) 7= f;(,@)

where [@1) = @ _, |om) and |P2) = Q! _, |¢n+m) are two product vectors, and the
vectors |P1;) and |Po;) are defined in terms of the inequivalent possibilities to divide the
n-subsystems into two groups: the 27! — 1 inequivalent bipartitions can be characterized
by a vector v; whose n elements adopt the values 0 or 1, and the groups are defined by the
subsystems associated with the value 0 and 1 respectively . In terms of these vectors,
we have the definition

|¢1j> = ® |90m+n[vj]m> ) |¢2j> = ® |90m+nfn[vj}m> ) (1'29)
m=1 m=1

that is, the vectors |®;) and |®,;) are obtained from the vectors |@;) and |®,) through
a permutation of state vectors |¢,) with |¢,+m) that belong to those subsystems that
are grouped together in the j-th bipartition. Going back to Eq., if a pure state
0 = |¥) (V| is separable with respect to the j-th bipartition, then f(9) = f;(0) and 7,
must be non-positive. As this reasoning holds for any bipartition, and, in addition 7, is
convex, T, is indeed non-positive for any state ¢ that can be decomposed into bi-separable
pure states. Remarkably enough, one may introduce the function
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whose positive value unveils a mixed state to be at least bi-partite entangled according to
the above reasoning. Levi and Mintert realized that one may proceed further and introduce
certain scalar factors ag-k’”) > 0 [I54] for n > k > 2 such that

Ten(0) = £(0) = > al"™ £3(0), (1.30)

J

can be positive only if g is at least k-partite entangled. These coefficients are not unique and
must be conveniently chosen to reliably detect the entanglement featured by the quantum
states which one is concerned [I54]. Based on Eq.(1.30]), we propose in Ref[[A1] a versatile
criterion of k-partite entanglement that can be straightforwardly apply to either Gaussian
or non-Gaussian states characterized by Eq.. The obvious suggestion that we made
was to consider Gaussian states as good candidates of probe vectors {|@,,)}>",, as much
in the spirit of the derivation of the Gaussian entanglement of formation. It will be seen
that this consideration permits to simplify the optimization procedure involved in the
appropriate election of the set of probe states for an accurate characterization of k-partite
entanglement, see Sec2.1] for further details.

Apart from the above schemes based on k-separability and k-partite entanglement,
here we also discuss others strategies that have been proved to be useful to characterize
multipartite entanglement. Quite remarkable Giedke, Kraus, Lewenstein and Cirac pro-
vided a sufficient and necessary criterion for full 3-partite separability in Gaussian states
that relies on algebraic results of positive-definite (Hermitian) matrices [124]: Basically,
they conveniently expressed the condition Ineq. for three-mode Gaussian states in
a mathematical form that is computationally easy to certify. Using this criterion these
authors presented a characterization of tripartite Gaussian states based on a slightly dif-
ferent scheme to the above ones, and which consists on a complete classification into the
following five distinct separability classes [100]:

(C1). Fully inseparable or tripartite entangled states, which are not separable in any of
the three possible bipartitions.

(C2). One-mode biseparable states, which are separable in one out of those possible bipar-
titions.

(C3). Two-mode biseparable states, for which now two of the bipartitions are separable.

(C4). Three-mode biseparable or PPT entangled states, which are separable under all
bipartitions, but does not satisfy condition Ineq.(1.24)).

(C5). Fully separable or tripartite separable states, which unlike those of (C4), satisfy

condition Ineq.(|1.24)).

Since PPT criterion is a sufficient and necessary criterion for entanglement in 1 x 2-mode
Gaussian states, it can be used to distinguish between the classes (C1), (C2) and (C3).
Whereas states in class (C4) stand as non-trivial examples of bound entangled states. We
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must clarify here that PPT is not able to identify genuine multipartite entanglement ac-
cording to the definition based on the Eq. (or equivalently on Eq.), as a result,
class (C1) will compress both genuine tripartite and biseparable (three-mode) entangled
states [I33]. As opposite to the above schemes based on k-separability and k-partite entan-
glement, this classification tells us which particular parties are entangled. We shall employ
this classification to characterize the entanglement in a three-mode system subjected to

independent [[A3]| or a common reservoir ||A2]

In the more general scenario of a n-mode system, analogue separability conditions to
Inegs. and can be extended to fully separable states, respectively, by a set
of entanglement witnesses and positive but not completely positive maps [127; 138]. In
this line, PPT criterion and entanglement witnesses concerning only the second moments
of position and momentum operators were formulated as necessary criteria for full separa-
bility by extending condition Ineq.(1.10) [225] or Duan-Giedke-Cirac-Zoller criterion [159],
respectively, to assess the separability of each one of the 2"~! — 1 possible bipartitions.
Moreover, Cramer, Plenio, and Wunderlich proposed accessible entanglement witnesses in
many-body systems that work as necessary conditions for full separability, and which rely
solely on measurements in neutron scattering for spin systems and time-of-flight imaging
for cold atoms [58]. They have also proposed entanglement quantifiers of n-partite entan-
glement based on these witnesses as given by Eq.. Remarkably enough, the latter
result has been successfully applied to quantify experimentally multipartite entanglement
over large regions in optical lattices of ~ 10° sites composed by ultracold interacting bosons
[57].

Unfortunately there is not known yet any proper entanglement measure, concerning
continuous variable systems, which is able to quantify multipartite entanglement, either
following the definition based on Eq. or Eq., and at the same time it is suscepti-
ble to be computed at least numerically. The most important progress in this direction was
given by Adesso and co-workers, who proposed several bona fide measures of genuine tri-
partite Gaussian entanglement [7; ([T} 5], among which is found the Renyi-2 entanglement
&>. Their results rely on quantifying the genuine tripartite entanglement as the residual
entanglement emerging form the monogamy inequality, e.g.

E5(051155155) = E2(05118555) — E2(0s,15,) — E2(0s,155)- (1.31)

These previous schemes like k-partite entanglement or classification are not
the only ones that we can use at the time to tackle the description of multipartite en-
tanglement, nonetheless they are the most relevant from the perspective of the present
dissertation. For the sake of completeness we also include a continuation a brief survey to
other approaches that are susceptible to be used in the discussion of the concluding part.

1.2.4 SLOCC classification and others

A more illustrative example of the subtle that arises on the characterization of multipartite
entanglement was provided by Diir, Vidal, and Cirac in the seminal work [72], where they
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compared the entanglement of the classes of Greenberger-Horne-Zeilinger (GHZ) and W
states [129; [112] in a three-qubit system. Let us denote each qubit by A, B, and C. Using
the (computational) basis given by the tensorial product between the single-qubit basis
{10),,11),} (with i = A, B, C), the mentioned states read

1 1
-ﬁmw+wmxmo:ﬁmmwmm+mm.

Although, these states are formally genuine tripartite entangled according to the defini-
tion based either in Eq. or in Eq., they represent different physical situations.
Whereas the GH Z state is considered to be the maximal tripartite entangled state, in the
sense that the entanglement contained by such state is needed to prepare an arbitrary tri-
partite state [2], the entanglement in the W state is more robust in the reduced two-qubit
state. The reduced density matrix oap = Tre (|(GHZ) (GHZ|) resulting from the lost of
the C-qubit in the GH Z state is separable, while the reduced state gap = Tre (|W) (W)
is two-mode entangled.

It was shown that these two classes of entangled states are inequivalent in the sense that
one cannot transformed a GHZ into a W state, or vice versa, by doing stochastic LOCC,
namely SLOCC, which consist on applying non-trace-preserving operations and classical
communication [72]. Since these operations do not create entanglement at all, SLOCC
equivalent states must contain essentially the same entanglement (in some sense they are
‘equally’ entangled). This result naturally suggests that SLOCC grants a reasonable scheme
to classify n-partite entanglement: two pure states, say |®) and |¥), belongs to the same
SLOCC class if they can be transformed into each other with non-zero probability by
means of LOCC [72]. This assertion is equivalent to say that there exist (local) invertible
transformations U; such that [129]

IGHZ) =

W) =U @ QU, |P). (1.32)

For discrete systems represented by the n- fold tensor product of H1lbert spaces CL @ -+ ®
C? it was shown that each U belongs to the special linear grou over each elementary
subsystem, i.e. U; € SL(d;,C) ¥ i.

Similarly multipartite entanglement may be classified according to their interconvert-
ibility under other classes of transformations, provided the key observation that such trans-
formations are unable to create entanglement. For example, a classification of pure states
in terms of LOCC classes, instead of SLOCC, considers only local unitary transformations
in Eq. [129], i.e. U; € SU(d;, C) ¥ i. Further approaches are based on transformations
that permit a simpler mathematical (say coarse grained) characterization of multipartite
entanglement [231; [171].

xixThe general linear group over the complex vector space C¢ is the set of d x d invertible matrices with
entries from C and with a unitary determinant. Endowed with the matrix multiplication this set consists
on a group denoted by SL(d,C). An important subgroup is composed by the set of unitary matrices, which
is denoted by SU(d, C).
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In the realm of continuous-variable systems, Giedke and Kraus have recently derived
necessary and sufficient conditions for Gaussian states to be equivalent under either Gaus-
sian local unitaries (GLU), i.e. the operators U; can be now any local unitary operation
that preserves the set of Gaussian states [97], or a wider set of operations compressing
Gaussian LOCC (GLOCC) [98]. Remarkably, they showed that the covariance matrix
V of GLU-equivalent states can be brought into a standard form Vgsg, which is unique
and can be easier characterized than the original covariance matrix, via a local symplectic
transformationf™| S (i.e., J, = S1J,S). We can write the latter in the equivalent form,

(S1@---@8,) V(S @ &8, — Vs (1.33)
~—_——
S

In essence, the standard form is obtained after deleting the irrelevant information for the
characterization of entanglement from the original covariance matrix, then equation (|1.33])
allows one to translate the analysis of entanglement on studying the standard form irre-
spectively of the particular expression of the CM V' of the system. Remarkably enough,
Duan and co-workers, and Adesso and co-workers provided respectively such standard form
for Gaussian two-mode and three-mode states in Refs. [70] and [I1] (see also [220]). These
have been proved to be convenient to show that the separability criterion proposed in
Ref reproduces the PPT results for arbitrary two-mode and pure three mode Gaus-
sian states (see Sec[2.1)). Furthermore, Adesso and co-workers also found that there is a
unique family comprising both the extension of W (maximal reduced two-mode entan-
gled) and GHZ (maximally tripartite genuine entangled) states onto continuous-variable
states, which are denoted by GHZ/W states [11]. This set of states, though obeying the
monogamy (Ineq.), features simultaneously maximum tripartite and two-mode entan-
glement. Recently, Giedke and Krauss discovered that these states do not contain mazimal
entanglement in the sense that an arbitrary pure tripartite state cannot be achievable from
a GHZ/W state by doing GLOCC.

Compared with the previous approaches based on k-separability or k-partite entangle-
ment definitions, the characterization of multipartite entanglement in terms of SLOCC or
similar provides a more physical insightful scheme since it reveals underlying symmetries in
the entangled state [I71], and further, constitutes a more elegant mathematical approach.
Nonetheless, most of the important progress on this direction has been restricted to pure
states [231}; 184} 103}, 249] and discrete systems [104], for which it was shown that the com-
plexity behind determining the different classes grows rapidly with increasing number of
constituents. From a practical point of view, and as we are concerned with entanglement in
mixed states and large many-party systems, it is advisable to use the approach based on k-
partite entanglement. Though this scheme is not able to identify different SLOCC-classes,

**There is a one to one correspondence between a Gaussian unitary and an affine symplectic map acting
on the phase space as follows (S,d) : € — Sz + d [250]. Since entanglement remains invariant under
local unitary manipulations, then a local symplectic transformation S will left intact the entanglement
properties of the state. In this way (as it was mentioned in Sec, we can conveniently cancel out the
mean value & by means of a local displacement d = —&.
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it will see in Chapter 2 that it may provide meaningful information about the behaviour
of entanglement in dissipative scenarios.

1.3 Modelling open quantum systems

In many realistic situations the quantum properties of the interesting system is unavoid-
ably influenced by the interaction with a background or field, called reservoir, which is
constituted by a large number of particles compared to the system and, as much in the
sense of thermodynamics, only a few of its observable attributes (e.g. its temperature) are
accessibl. This situation is ubiquitous in several areas of physics such as quantum op-
tics (e.g. Lamb effect [96]), statistical physics (e.g. quantum Brownian motion [218} [12]),
or condensed matter (e.g. dissipative quantum tunneling [46]), and further, it has been
proposed as the key ingredient to understand the mechanism of decoherence as well as the
emergence of classical behaviour from an underlying quantum world [265]. The study of
such open systems, in which the physical interest on the reservoir is secondary, has lead to
a considerable amount of research during the half past century, which has culminated on
the birth of the theory of open quantum systems [160; 136} 47 251} 266; 43} 96} 208].

It is well known that quantum coherence of experimentally accessible quantum systems
is generally destroyed by the mentioned reservoir interaction, so that a meaningful descrip-
tion of their correlations properties, in particular entanglement, necessarily requires to take
account such interaction. Here, we are concerned with a many-party system composed of
harmonic oscillators that may reliably describe the modes of a radiation field into an opti-
cal or microwave cavity, or , on other hand, the center-of-mass motion of nanomechanical
oscillators or ultracold atoms arranged in optical lattices. The reservoir influence on all
these setups cannot be neglected. For instance, the mirrors of the cavity will always reflect
the photons that arrive at them only if they are ideally perfect, otherwise there will be an
irreversible loss of photons from the cavity [I60]. Further, nanomechanical oscillators are
relatively massive which makes difficult to isolate them from their solid-state substrates,
and consequently, they will suffer from losses due to thermal excitations. Analogously,
atoms in optical lattices may also experience certain damping due to spontaneous emis-
sion processes (e.g. see Doppler effect). Then the irreversible transference of energy, say
dissipation [219], from the system into the reservoir is by no means negligible in all these
systems. In the present dissertation we address the study of entanglement properties in
those quantum systems where the reservoir influence consists mainly on the dissipative ef-
fects arising from the underlying vibrational degrees of freedom such as the normal modes
(photons) of a radiation field or the low-energy modes (phonons) of a nanoscopic system.
It should be mentioned that other sources of perturbation might be present in realistic

A direct example is provided by the measurement theory, where the reservoir might represent the
measurement instrument, and certain operator (e.g. position or momentum) of the quantum system is
perturbed in order to be observed. On the other hand, if the reservoir has a well defined initial temperature
T, then the system may eventually reach a thermal equilibrium state at such temperature. We shall say
that the reservoir acts as a heat bath in those cases.
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setups, as could be the loss of particles in ultracold atoms, such that quantum correlations
can be influenced in a stronger manner by the reservoir interaction than we consider here.

A priori the standard quantum mechanics provides one with the essential tools (Schrodin
ger or Heisenberg equations) to derive the equations of motion of the reduced dynamics
for the system interacting with the reservoir. However, this generally yields a hierarchical
structure of equations [16}; 17, 246] that becomes numerically intractable with increasing
numbers of reservoir constituents and strong couplings. Unfortunately, there is no recipe
which could be successfully applied to rigorously solve this intricate problem, instead, there
are several strategies which ultimately rely upon making some approximations that per-
mit to reduce consistently such hierarchy into a manageable set of equations. Only a few
specific systems can be exactly solved, among which, we highlight the damped harmonic
oscillator [107; 206} 116; 106} 193]. The latter represents the physical process whereby an
oscillator reaches asymptotically a stationary state following a dissipative dynamics, that
may correspond eventually to a thermal equilibrium state at the initial reservoir tempera-
ture.

Though it may look somehow artificial, the most successful approach to a formal de-
scription of the damped oscillator rest on an assumption about the microscopic form of the
Hamiltonians describing the reservoir and system-reservoir interaction. This is commonly
refereed to as the Caldeira-Leggett model [46; [67], and basically consists on assuming that
the reservoir is composed by a large set of non-interacting harmonic oscillators linearly
coupled to the system [86; 87; 251]. Starting from this model, the Heisenberg equation for
the position of the damped oscillator results in a generalized Langevin equation (GLE),
which has found remarkable applications in a broad range of research topics within the
non-equilibrium statistical mechanics: in the study of the quantum Brownian motion [8§],
in the characterization of heat conduction in low dimensional systems [263} 264; [63] or
thermalization in scalar fields [22], and in problems more closely related to condensed mat-
ter physics such as the description of fluctuations and dissipation around quantum phase
transitions [166].

In a multimode scenario of damped harmonic oscillators several physical situations
can be devised in which the dissipative dynamics differs substantially. For instance, the
system oscillators can be very closed to each other such that they perceive essentially the
same reservoir, this will correspond to the case in which all the oscillators are strictly in
contact with a common environment. The opposite situation takes place when the system
oscillators are far apart between them, then one could expect that each oscillator would see
locally a different reservoir. The limiting case of independent environments occurs when
each oscillator is interacting with a separate reservoir at an initially distinct temperature,
which may give rise to thermal non-equilibrium situations contrary to the former scenario.
Regrettably, the Caldeira-Legget model itself is unable to track the underlying differences
that range between both scenarios for the simple reason that it does not contain an explicit
dependence on the position of the system oscillators.

Based on physical grounds in what follows we propose a reliable, simple extension of
the Caldeira-Leggett model enable to describe a n-mode system subjected to dissipative
quantum dynamics which accounts for the aforementioned situations. Afterwards, we
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shall see briefly that from such model one may derive a generalized Langevin equation
which governs the evolution of the position operator for the oscillator system, and whose
solution can provide the time-evolved covariance matrix of a Gaussian state with relatively
little effort in general dissipative scenarios. In particular, this equation was exploited on
the analysis of the time asymptotic properties of the multipartite Gaussian entanglement
supported by a three-mode system in Refs. , , and . For more general
states than Gaussian, as it is the case of the non-Gaussian state given in Eq., it is
convenient for our purposes to focus the study directly on the dynamics of the Wigner
function instead of the position operators. This leads us to the time-independent Fokker-
Planck equation which appears in many realistic situations [207; 266], and shall be used
as a complement of the generalized Langevin equation to address the dissipative dynamics
of continuous-variable systems. It will be shown in Chapter 2 that the general solution
of such equation allows one to discuss in general terms the behaviour of the multipartite
entanglement characterized by the separability criteria proposed in Ref.

Finally, we must mention that there are other ways to describe the quantum evolution
of the system subjected to dissipative dynamics instead of using the generalized Langevin
or Fokker-Planck equation. This basically consists on deriving an equation of motion for
the density operator gg (in the Schrédinger picture) which is refereed to as the master
equation. For the damped harmonic oscillator the exact form of this equation was derived
by Hu, Paz, and Zhang in Ref.[130] (see also Ref.[84]). Several analogue studies to the
present dissertation have exploited such equation to study entanglement. Comparing both
approaches, the GLE formalism may be more advantageous for a faithful description of the
dissipative dynamics in linear systems essentially because its exact solution can be numer-
ically obtained as we will show, while to solve the master equation one very often needs
to make certain approximations on either the system (e.g. considering equal frequencies
for all the system oscillators) or the reservoir (e.g. high temperatures and weak couplings
with the reservoir). In contrast, the master equation approach may be more convenient
when the system exhibit non-linearities since a few results are known about the solution
of non-linear generalized Langevin equations. Furthermore, the resolution of either the
generalized Langevin or Fokker-Planck equations may be drastically complicated if the
interesting system experiences external time-dependent forces, in that case one may recall
to the non-equilibrium Green-function methods (which have been extensively applied in
quantum transport problems [203]), or if such driving are periodic, the powerful Floquet
theory can be used [144} [145]. Notice that the multipartite entanglement supported by lin-
ear and time-independent harmonic systems raises enough questions as to stimulate several
works on this topic, and further investigation beyond of such systems is not the purpose
of the present dissertation.

1.3.1 Microscopic approach to dissipative harmonic oscillators

To begin with, we set down certain prescription and notation which shall be used in the
course of our treatment. Let us denote the system and reservoir by S and R, respectively.
Generically the Hamiltonian of the system-plus-reservoir complex in dissipative quantum
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mechanics can be decomposed as follows,
H = Hs+ Hp + Hy,
where Hy and H; corresponds respectively to the Hamiltonian of the reservoir and system-

reservoir interaction, whereas Hg represents the Hamiltonian of the interesting system that
can be expressed in terms of an interaction potential U, i.e.

n ﬁQ
Hg = — 4 U(2y,- -, 2p)
i=1 2m;

where m; denote the mass of the ith oscillator. Notice that the potential interaction in
realistic setups may be non-quadratic, a prominent example is provided by the optome-
chanical systems. As a consequence, the system equations of motion will be non-linear in
those cases, which leads to an unsolvable dynamics. However, one can use perturbative
methods to approach U by a quadratic interaction potential in a low-energy treatment.
This can be expressed as follows,

2,j=1

The so-called microscopic model will determine the explicit form of Hp and H 1, which
will basically consist on a (huge) set of interacting harmonic oscillators with a broad spec-
trum. Since the reservoir is unable to possess arbitrarily large amount of energyf™¥], we shall
consider that the frequency of its most energetic mode is roughly bounded (from above) by
a finite cut-off frequency w.. In the following, we shall also denote by wg a characteristic
frequency of the evolution of the system alone, which can be the frequency of the most
energetic oscillator for a non-interacting system, or the largest of normal-mode frequencies
for an interacting one. Additionally, we will consider that the system-reservoir interaction
strength is approximately characterized by a dissipative rate which shall be designated by
the parameter 7 (e.g. this parameter plays the role of the damping coefficient in the damp
harmonic oscillator). Finally, we shall also consider that the modes composing the system
are well located at positions Ry = r{ + 7y, being 7} and 7, the equilibrium position and
displacement of the Ath oscillator. Notice that if the modes experience long-range interac-
tions between them, then the interaction potential given by Eq. will appear naturally
after doing the harmonic approximation around its equilibrium positions [216].

Then we endeavour to derive a physical reasonable form for the Hamiltonians Hp and
H; in order to provide a reliable description, as general as possible, of the dissipative
quantum dynamics followed by the system, and which, at the same time, allows one to
access to the entanglement properties of the system. To do that we require the microscopic
model to fulfil a few reasonable premises mainly based on physical grounds. We list such
premises below:

*¥iThis fact stems from boundary conditions over the reservoir. For instance, in a microwave cavity,
normal modes with wavelengths much larger than the cavity length will barely contribute to the electro-
magnetic field into the cavity.
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(1). The Hamiltonian H encoding the microscopical model should be local U(1 ) gauge
invariant. That is, the change in the Hamiltonian, given by H A@Q) = Z/l H u A(r

corresponding to a gauge transformatlon of the global phase of the Wave functlon
written as [¥,0)) = en ) |y = 0y |¥), leaves invariant the equations of motion
of system-plus-reservoir observables [54]

(2). The reservoir is composed of a large number of modes, say N, compared to the n-
mode system (N > n), and the energy spectrum of the latter must be completely
embedded in the spectrum of the former. This implies that, first, the reservoir has
practically a quasi-continuous distribution of modes in energy, and second, the largest
reservoir frequency is much larger than the characteristic frequency of the system,
1.6 W, > Wg.

(3). Independently of the initial state of the system, and for a reservoir in a thermal equi-
librium state at certain temperature 7', the model eventually returns the relaxation
of the system into a thermal equilibrium state with the temperature set by the reser-
voir, i.e. g(t — oo) — e~Hs/kBT /Ty(e=Hs/kET)  More precisely, we require that the
microscopic model reduces to the Caldeira-Leggett model in the limit of a common
reservoir.

(4). We claim simplicity of the model. As a starting point we require that the reservoir
degrees of freedom can be analytically integrated out to obtain the reduced dynamics
of the system. This means that the system-reservoir interaction should be linear on
the reservoir degrees of freedom.

Several comments are in order. As it is well known, quantum theory establishes that
the global phase of the wave function has no relevance on the observable properties of
quantum systems, then one may recognize (1) as a basic condition in order to avoid
spurious predictions coming from the specific choice of the coordinate-reference system.

From the premise (3) follows that the microscopic model will be at least as successful
as the Caldeira-Leggett model in the description of dissipation, though we expect that
new phenomena may emerge from the interaction of harmonic oscillator with the same
reservoir. The condition (3) is then fundamentally a customary checkup to verify that, for
a reservoir at thermal equilibrium, the system follows indeed an evolution governed by the
dissipative quantum dynamics contained on the well-established Caldeira-Leggett model.
On the other hand, the premise (2) is needed to give consistency to condition (3): It
guarantees that there will be an effective exchange of photons/phonons at the microscopic
time scale wgl, albeit this flow of energy will be from the system to the reservoir on average
due to the great number of reservoir modes interacting with the system modes. In addition,
it will be seen that the premise (2) ensures that the system reaches a stationary state in
the asymptotic time limit, such that its initial conditions are completely washed out by
the interaction with the reservoir.

Though the premise (4) is omnipresent in any research field in physics, we prefer to
explicitly include it in the above list because a simple and accurate description of the state
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is desirable due to the complexity behind the characterization of entanglement, which we
extensively illustrated in the previous section. The degree of accuracy of our description
will clearly depend on the physical details included in the microscopic model, here we
must keep in mind that our ultimate intention is to come to a deeper understanding of
the phenomenon of entanglement in harmonic oscillator subjected to dissipative quantum
dynamics. For instance, this entails in many cases to restrict the analysis to quadratic
Hamiltonians because the application of entanglement measures for CV systems is usually
limited to the set of Gaussian states.

To elucidate valid expressions for the Hamiltonians Hp and H 1, which will be unlikely
unique, is instructive to take a simple example which is found in scalar field theories. It
is shown that a dissipative microscopic model satisfying the premises (1) and (2) may
be expressed as the Hamiltonian of a set of harmonic oscillator interacting with a free
bosonic field (e.g. the electromagnetic field in free space) by minimal couplin [143].
For this system, Hp clearly takes the form of the free Hamiltonian for the reservoir oscil-
lators, whereas the interaction Hamiltonian acquires a more complicated expression. Let
us consider for a clear exposition that all the oscillators are well confined such that they
move practically in the z-direction. Hence, the interaction Hamiltonian may be expressed
as follows [245]

f{[ = — Z JA?)\ Z (9% (dkeik.RA + &LGiik.Rk> s (135)

A=1 k

where ay, is the annihilation operator of the reservoir mode with wave vector k = (27/L)n
with n € Z¢, whereas d and L are respectively the dimension and a characteristic length of
the reservoir field. Here, g, mainly describes the coupling strength of the system oscillator
with the kth mode.

Looking at Eq., H; is not linear on the position of the system modes. Starting
from the Heisenberg equations for the system-plus-reservoir oscillators, one may realize
that, after tracing out the reservoir degrees of freedom, the Heisenberg equations governing
the reduced dynamics will exhibit a non-linear dependence on z,, which complicates the
problem in general. We may circumvent this obstacle by considering the dipole or long-
wavelength approximation, this means to restrict the study to those physical situations
in which there is not appreciable change on the reservoir field in the displacement of
the oscillator around the position equilibrium, i.e. e*™ < 1. Hence, the interaction
Hamiltonian can be approximated as follows

H, =~ — Z 2\ Z Ik <dkeik""g + dLe_ik""g>, (1.36)
A=1 k

XX oosely speaking, in field theory the interesting field that may be endowed with certain symmetries
is coupled to a gauge field flu in order to make the theory invariant under the group of transformations
generated by such symmetries [18], e.g. quantum electrodynamics is a (gauge) theory with the symmetry
group U(1). Formally this can be done for a field with U(1) symmetry by minimal coupling, which consist
on doing the replacement in the Hamiltonian p,, — p,, — qfl,“ where p,, denotes the kinematic momentum
of the field particles.
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which exhibits a bilinear coupling in position observables of both system and reservoir.
This approximation is necessary to fulfil condition (4). As an additional argument, the in-
teraction Hamiltonian in the Caldeira-Leggett model is presumably linear in the coordinate
operators of both system and reservoir. It is worth mentioning that the dipole approxi-
mation is well justified in our study because we are dealing with harmonic oscillators well
localized in space.

Yet the Hamiltonian has not an adequate form, following the Caldeira-Leggett
model a counter term must be added in order to preserve the bare frequency of the system
oscillator [251}; [46]. For instance, if we do not include such counter term then the thermal
equilibrium state returned by this model would involve a renomalization frequency instead
of the actual frequency of the modes, as occurs in the damped harmonic oscillator [206} [116].
Interesting enough, such counter term stems from a more profound physical consequence:
it arises naturally from the local U(1) gauge invariance of the microscopic model [143].
Starting from the minimal coupling model of the system oscillators interacting with the
free bosonic field, this can be shown by doing first the dipole approximation, as showed
in Eq., and second the Géppert-Mayer transformationf™] Then, the full oscillator-
reservoir Hamiltonian H B+ H I — H pr becomes |[A2]|

2
. 1 [2my, ~—
Hpr = — | p —_— iysin(k - r?
RI Zk: o (Pk + gk T ;m sin( "“A))
2
2 n
mew? [ . Ik | 2w .
+Z 2k($k,_w_l2c mZiL)&ZOS(’C-T?\)) ,
k A=1

where we have introduced the bosonic annihilation operator,

&k = (mkwkﬁck + Zﬁk>/\/ thkwk,

and its adjoint dL, with wg and my respectively the frequency and mass of the mode with
wave vector k. From Eq., it is immediate to see that the Hamiltonian Hp; reproduces
the Caldeira-Leggett model in the limit of a common environment, i.e. |[r}| — 0V \. In
appendix , it is shown in more detail the derivation of Hamiltonian Eq. starting
from the aforementioned minimal coupling model.

We have thus far established that the microscopic model described by the Hamiltonian
given in Eq. is perhaps the simplest model satisfying all the above premises. Though
it eventually describes a set of (non-relativistic and spinless) harmonic oscillators interact-
ing with an electromagnetic field through a dipole-like interaction [211], this model also
provides a general framework to investigate dissipative harmonic systems since it has been
derived from first principles as much in the spirit of the derivation of the electromagnetism
Lagrangian from requiring Lorentz invariance (covariance principle), and analogously gauge

(1.37)

xxivip electrodynamics the Goppert-Mayer transformation leads to the Hamiltonian representation in
which the Hj expresses as the dipole interaction [54]. For a single oscillator minimally coupled to a

three-dimensional gauge field, say A, such transformation reads as U = er®A
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transformation and simplicity [18]. Without need to refer to the actual microscopic details,
we shall consider the expression as an effective Hamiltonian to simulate both the
reservoir and system-reservoir interaction for our interesting setups. Consequently, our
future development will mainly provide an accurate description for the relevant or univer-
sal features of dissipation (for instance, the relaxation into a thermal equilibrium state)
exhibited on such systems. It should be noticed that this issue is in agreement with our
initial purpose of studying universal aspects of quantum entanglement. Nonetheless, the
microscopic approach based on the Hamiltonian (|1.37)) is more insightful than one could
expect, such that it may well represent the realistic physical situation for a broad range of
dissipative quantum systems. Let us discuss below this issue in some detail.

At first sight the oscillator representation of the reservoir may seem a too restrictive
condition, however Feynman and Vernon early showed that an arbitrary reservoir can be
mapped, irrespectively of its internal structure, onto a system composed of independent
oscillators when the strength of the interaction H; is weak enough compared with the
characteristic energies of the realistic reservoir [83]. This fundamental result relies upon
the classical idea that the interaction potential over any particle having small displacements
around a position equilibrium may well approximated by a quadratic series expansion in the
displacements. Alternatively, such oscillator representation arises naturally in condensed
matter physics by doing an effective low-energy description of the (bosonic) reservoirs,
i.e. the so-called second quantization, which consists basically on casting the reservoir
Hamiltonian in terms of a set of (bosonic) quasiparticles determined by its excitation
spectrum [I8]. This analysis can be sketched as follows

Reservoir Excitation spectrum
Reservoir constituents (e.g. atoms in a solid) — { Quasi-particles (e.g. phonons)
Hp(Z;, pi) Zk Wkd}:,&k:

where the index ¢ may enumerate the particle in the reservoir, or further possibilities. A
prominent example is found in the dissipative nanomechanical oscillator, where its solid-
state substrate at low temperatures can be though of as a gas of phonons, and whose
dispersion relation will give the frequencies wy.

Aside the oscillator representation of the reservoir, the other questionable aspect of this
model is related to the linear nature of the system-reservoir interaction. Even though the
microscopic coupling (at the mode level) is weak, the global effects of the reservoir upon
the system that turn into dissipation will be relevant as long as the number of reservoir
oscillators is large. Intuitively, the dissipation in the system will essentially emerge from
the fact that the Poncaré recurrence time of the system-plus-reservoir complex, which is
the time in which this returns at its initial state, becomes very large as compared with the
natural times of the system (wg'). According to the condition (2), the frequency spectrum

XXV

of the reservoir will be sufficiently dense as to produce an infinite recurrence time™] [245].

**¥The observed revival time in the dynamics of the oscillators is roughly determined by the inverse of
the minimum separation between energies [245]. In this way the interesting system, instead of dissipate,
could be effectively excited by a reservoir with short number of oscillators.
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On the other hand, the weak microscopic coupling seems to be a reasonable consideration
because the interaction between the system and reservoir modes is normally proportional
to the inverse of the reservoir volume [251].

Summarizing, the approach to dissipative dynamics based on the Hamiltonian (|1.37))
will also give a detailed microscopic description of those systems which make linear analysis
valid. Remarkable enough this has been proved to be the case for the large class of open
quantum systems for which the Caldeira-Legget model has been successfully applied™V]
More generally, such linear analysis will be well justified essentially when both system
and reservoir experience a low-energy evolution, which for mechanical systems means to
maintain the whole setup at low enough temperatures. It is precisely in this regimen where
we expect to observe most of the interesting features related to entanglement in harmonic
oscillators.

Once we have the Hamiltonians of the reservoir and system-reservoir interaction, we
may proceed further in the Heisenberg picture and derive the generalized Langevin equa-
tion. From Sec|I.1] we learnt that continuous variable states have a natural representation
in terms of the Wigner function. We devote the next section to shortly show that one
may conveniently use the generalized Langevin equation to determine the Wigner func-
tion of Gaussian (e.g. covariance matrix) or non-Gaussian states without requiring any
fundamental approximation.

1.3.2 Generalized Langevin equation

Historically, the generalized Langevin equation appeared to study the quantum analogue
of the classical Brownian motion [118], which corresponds to the erratic motion of large
particles suspended in fluids (which may play the role of reservoirs). In this kind of sys-
tems, dissipation comes along with certain noise which causes such irregular motion on the
particles. These observable effects were initially described in the context of the Langevin
equation by a phenomenological friction and random forces. The macroscopic characteris-
tics of such forces turn to be intimately related through the so-called fluctuation-dissipation
relation when the strength of these forces over the “Brownian particle” is sufficiently weak
[232]. Remarkable enough, this result can be straightforwardly extended to situations
where the system is weakly perturbed by a thermodynamic force (e.g. induced by tem-
perature gradients) or external fields (e.g. electric fields) (see linear response theory [1§]).
Further investigations in non-equilibrium statistical mechanics showed that the theory
around Brownian motion could be applied successfully to many other phenomena [166]
(even when the Brownian particle is not a particle at all).

In the present study, one finds that the generalized Langevin equation governs the time
evolution of the position operators of the system oscillators in the Caldeira-Leggett model.
It emerges naturally from the Heisenberg equations of motion for the position operators
after tracing out the degrees of freedom of the reservoir oscillators [86; [87]. This basically

*xViflere, it must be mentioned that there exist other successful models, among which one may find a
reservoir consisting of spins particles (see Ref.[202] for a complete overview).
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consists on substituting in the equation-of-motion system the solution of the Heisenberg
equations of the reservoir degrees of freedom. Starting from the Hamiltonian , and
defining the position-operator vector X = (#1,+-+ ,2,)T, one finds that the generalized
Langevin equation can be cast in the following compact form ,

N g ~ o~ 1 t N ~
MX + 3({ +20X + —/ Xt —71)X(r)dr = F(t), (1.38)
0X by

where ¢y denotes the instant in which reservoir and system are put in contact, M is a nxn
diagonal matrix whose elements contain the masses of the system oscillators, and {2 is a
n X n matrix which includes the aforementioned renormalization term. This is given by,

~ 1 gz
D = > Zk: w—’; cos (k- Ar3,) | (1.39)

where we have defined the spatial separation Ar?\u =) — frg. At first sight, Egs.
and reveal that the renormalization matrix and x(¢) may play the role of effective
interaction potentials between oscillators which are in contact with a common environment.
In Ref it is discussed in which conditions this environment-mediated interaction is
able to generate entanglement between system oscillators which do not experience any
direct coupling.

The matrix () that plays the role of a memory kernel in Eq. regards the dis-
sipative effects, and is usually known as the susceptibility, whereas the random force is
represented by the vector F(t) This possesses a linear dependence on the values of the
position and momentum operators of the reservoir modes at time ¢, (see appendix in
Ref][A2]). Hence, the equation shows a dependence on the initial conditions, and as
a consequence, on the system-plus-reservoir state at time ¢y, which we denote by osr(to).

If the system and reservoir are decoupled at time %y, then the initial system-plus-
reservoir density operator may be written as a product state osg(to) = 0s(to) ® 0r(to).
Typically, the reservoir will have a well-defined temperature 1" and it is initially in a thermal
equilibrium state irrespectively of the unperturbed state of the system, i.e. osgr(to) =
0s(to) ® Zgle*ﬁR/ k5T This state is commonly known as the Feynman-Vernon initial
condition, and it is broadly used in the theory of open quantum systems because it is
very convenient for computation. Unfortunately, this will match with the realistic
situation only on highly controlled experiments, in which the interesting system has been
maintained well isolated from its environment, otherwise, one must expect that the density
operator gsg(to) would be a correlated state. In the case of the damped harmonic oscillator,
Grabert, Schramm and Ingold, and independently, Karrlein and Grabert considered more
general initial states than the mentioned Feynman-Vernon, where the interesting system
is prepared after doing a set of measurements over an initial thermal equilibrium state

*>vilFor instance, a factorized initial condition is a key ingredient on the powerful Kraus Theorem [I87],
which essentially says that any physically meaningful quantum operation (CP map) can be seen as the
partial trace of a unitary evolution in a larger Hilbert space (for example, see LOCC in Secl.2.1)).
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of the system-plus-reservoir complex [106}; [140]. They showed that a particular initial
preparation mainly influences the transient dynamics, while interesting enough, the time
asymptotic dynamics features independence of such preparation when the system and
reservoir are weakly coupled [251]. This is in agreement with our intuition about dissipative
dynamics: it is expected that the interaction with the huge number of reservoir particles
effectively washes out the initial information about the system in the long-time limit. In
any case, we may consider that the system and reservoir are putting in contact in the
infinite past (tp — —o0), such that they would have barely interacted previously, and thus,
the Feynman-Vernon initial condition would be well justified.

As we are mostly interested in the asymptotic properties of the dissipative system,
we may consider the Feynman-Vernon initial condition without loss of generality. This
choice has an immediate consequence on the statistics of the fluctuating force. The latter
will be stationary and Gaussian due to, first, F(t) features a linear dependence on both
Tk (ty) and pg(ty), and second, the thermal equilibrium state of the reservoir is Gaussian.
Furthermore, the initial thermal equilibrium condition of the reservoir allows one to relate
the matrix susceptibility with the force vector via the Kubo formula |[A2]

~

voult = #) = =i ([0, Fu()]) Ot = = |47, ]/o) (1.40)

or
where ¢ denotes the sound velocity of the reservoir (or the speed of light, in a corresponding
optical setup), and the Heaviside step function © reflects causality with a retardation
stemming from the distance Argu between the oscillators A and p. This feature of causality
is in agreement with our physical intuition about that two space-time separated oscillators
cannot (indirectly) influence each other through the coupling with the reservoi, and
on the other hand, all the interaction between the system and reservoir vanishes before
they are put in contact. This leads to that the matrix elements of the susceptibility are
formally causality functions, i.e. x,(t) = 0 for t < |Arg |/c. This characteristic entails an
important mathematical propert: the Fourier transforms of these elements, which we
shall denote by x»,(w), are analytic functions in the upper-complex half plane (Im w > 0),
and as a consequence, its real Re(x,,(w)) and imaginary Im(x»,(w)) part must satisfy the
Kramers-Kronig relation,

1 > T
Rex,\#(w’) _ ;P/ wdw’ (1'41)

/
oo W— W

where P is the Cauchy principal value.

xxvili Alternatively, the Heaviside step function in the expression for the susceptibility comes
from the fact that the forces operators F' \(t) and Fu(t’ ) must commute for space-like separations, i.e.
[E\(t), E,(1)] = 0 if |r) — 70| > ¢|t — t'|. This is usually known as microscopic causality, and it is fulfilled
for a scalar field interacting with a harmonic oscillator [211].

**X(Other useful mathematical property of the susceptibility is that x(w) = xT(—w) (where MT is the
conjugate transpose matrix of M), since x(t) is a real-valued function. Moreover Ford, Lewis and O’Connell
showed in the damped-harmonic-oscillator model that the second law of thermodynamics entails that the
real part of the Fourier transform of the susceptibility is always positive []§].
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Additionally, from the fact that the reservoir is initially in a thermal equilibrium state
one finds that the power spectrum of the symmetrized forces correlation F(t)F)(t') reads

[A2]

Re (F(w)F" (') + F(w’)FT(w)>éR =47hé (w + W) I'(w), (1.42)
with the matrix I'(w) defined by its elements
1 fw \ h|w|
Iy(w)= — ﬁlmx,\u(w) coth (m) = Jyu(Jw|) coth (m) . (1.43)

Since the fluctuating force has Gaussian statistics, this can be fully determined from
Eq. 1} (its mean value, designed by <F(t)>éR, results to be zero because or is a Gaus-

sian distribution with mean value zero). Indeed, the expression (1.42) is a quantum
fluctuation-dissipation relation because it associates the fluctuations, characterized by
the anti-commutator ({Fy(t), F,,(t)}), with the dissipation, given by the commutator
([F,\(t), F#(t’)]) according to Eq.. It should be noticed that in the equation
it has been employed the following identity which directly derives from the Hamiltonian
(1.37) without making any consideration,

() = O(w) () — () a (), (1.44)

where J, ,(w) is identified with the reservoir spectral density, and is given by

Ip(w) = %Zgi cos (k- Ar,) 6 (w — wi) - (1.45)
k

The Eq. coincides in the limit of equal environments (Afr'?\u — 0) with the usual defi-
nition derived from the Caldeira-Leggett model. It will be seen that the Fourier transform
plays an important role in the resolution of the generalized Langevin equation, for that
reason Egs. , , and will be of primary importance in further develop-
ments. Interestingly an analogous fluctuation-dissipation relation to Eq. holds even
when the reservoir is initially in a squeezed thermal state, see Refs. [I86] and [[A4]]
Looking closely at expression , one may realize that the so-called spectral density
plays a major role because it compactly encodes the information about the microscopic
properties of the dissipative dynamics: the (microscopic) strength of the system-reservoir
interaction (given by g¢x), and further, the frequencies of the reservoir modes (i.e. the
reservoir spectrum energy). Indeed, once one knows the explicit form of J ,(w) the sus-
ceptibility and the statistical properties of the fluctuating force can be completely deter-
mined from Egs. , , and by virtue of the fluctuation-dissipation relation (|1.42]),
respectively. That is, the spectral density fully characterizes the open dynamics of those
dissipative systems for which the Feynman-Vernon initial condition is satisfied [I51]. Con-
sequently, most of the difficulty in solving the generalized Langevin equation will depend
on the (mathematical) properties of the spectral density. In principle, the spectral den-
sity could be measured experimentally (e.g. in nanomechanical oscillators [109]) or can



1.3 Modelling open quantum systems 39

be deduced from a microscopic model (e.g. atom interacting with an electromagnetic field
[245]). However, the coupling coefficients g are unknown in many practical situations and
an appropriate phenomenological expression is usually adopted for the spectral density
[151].

Therefore, the explicit expression of the spectral density will practically dictate the
characteristics of the quantum evolution of the system of interest subjected to a dissi-
pative quantum dynamics. In a more general context, the theory of open systems has
devoted considerable attention to an important class of evolutions for which the treatment
is considerably simplified. This is refereed to as the Markovian evolution, and equiva-
lently, Markovian dynamics is used to designate the physical process which gives rise to
such evolution [43; 06; 208]. Physically, this kind of evolution emerges when the character-
istic time scale of the reservoir correlation functions is much shorter than the natural time
scale associated with the evolution of the system, such that the memory of the system
evolution over its history disappears [245]. Intuitively, the defining feature of a Marko-
vian evolution is that only the present knowledge of X, and absolutely nothing of its past
values, will influence the future values of X. This has an immediate consequence in the
generalized Langevin equation: the susceptibility approaches at a Dirac delta function
(i.e., x(t = 7) = d(t — 7)) in the Markovian limit, and consequently, its Fourier trans-
form x(w) must be practically constant. At first glance, Eqs.(1.41)) and reveal that
a frequency-independent spectral density (i.e., J(w) o 7) is necessary to induce a strict
Markovian evolution. This is almost an idealization because it entails that the reservoir
has no particular structurd™J] however, surprisingly enough, the developed theory around
the Markovian dynamics has been used very successfully in many areas of physics, such
as quantum optics [96]. Regarding the damped harmonic oscillator, it was shown that an
approximately Markovian dynamics holds either in the limit of weak or strong damping if
the temperature is high enough in comparison with the dissipative rate, i.e. Ay < kgT
[T05]. Since we are mainly interested in the physics that occurs near the ground state, the
quantum evolution of the dissipative system will be mostly dominated by non-Markovian
effects.

Going back to the equation , one may immediately see that the generalized
Langevin equation is an integro-differential equation which is non-linear in the position
operators except for a quadrature interaction potential U. Such non-linearity makes rather
difficult to obtain an exact solution of Eq., as we have previously outlined. Depending
on the mathematical properties of the memory kernel there are a few formal results about
the existence and uniqueness of the (stationary) solution of this kind of non-linear equa-
tion. One practical way to handle these difficulties is to linearise the interaction potential
by using perturbative methods, see for example the treatment for an optomechanical setup

**>*Tn the Brownian motion, non-structured reservoirs are identified with white-noise fluctuating forces,
which is characterized by a power spectrum ({F(w), F(w')}) = 29kpTé(w — ') [II8]. The fluctuation-
dissipation relation given in Eq. shows that this consideration is opposite to the actual situation one
finds in the quantum regime [06]. However, the same consideration has been satisfactorily used to study
the damping of a radiation field into a cavity [I60]. The reason of this success likely relies on the fact that
the interaction between light and matter is very weak in Nature.
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in Refs. [248 [61]. Nonetheless, the applicability of the obtained solutions is restricted to
those physical situations in which the system interaction is weak. For the present study, we
shall focus the attention on quadratic interaction potentials given by Eq.. Then the
generalized Langevin equation becomes linear (more precisely, it corresponds to a linear
Volterra equation of second kind), and thus, can be rigorously solved by using the methods
based on the Green functions [45; [89; 84]. Doing so one obtains the following solution for
the position-operator,

X (t) = a(t — to) M X (to) + a(t — to) P(to) + / t a(t — 7)F(r)dr, (1.46)

to
NG

J/

Stationary Solution

where we have introduced the momentum-operator vector,
P(t) = MX(1). (1.47)

a(t) compactly denotes the matrix Green function of the generalized Langevin equation
(which has been assumed to be linear in the position operators). It must be mentioned that
we have used the fact that the memory kernel (or susceptibility) in Eq. is stationary
in the sense that x(t,7) = x(t — 7), and as a consequence, the Green function is also
stationary [I57]. Furthermore, this property of the memory kernel permits one to use
the Laplace transform to convert the integro-differential equation into an algebraic
expression from which the matrix Green function may be straightforwardly obtained,

L(o()(s) = (Ms? + U +22 4 TLGO)G)) (148)

where L£(f(t))(s) denotes the Laplace transform of the function f(¢). Using the inver-
sion formula of Laplace transform in Eq. we may obtain the Green function in the
time domain, and then, the time-dependent solution of the position-operator vector from
Eq. - Nonetheless, in the future the interest is foremost in the stationary solution
which by definition does not depend on the initial values of X (t,) and P(t). Later we dis-
cuss in detail when this solution is guaranteed, now let us anticipate that in its derivation
it is more convenient to use the Fourier transform of the Green function,

7zwt dw
Y , (1.49)
W2+ U+ 20+ Ly(w) 2w

where y(w) stands for the Fourier transform of the matrix susceptibility, which is straight-
forwardly obtained from the Egs. , and once one knows the spectral density.
Notice that to obtain a(w) we have previously took the limit ¢y — —oo in the generalized
Langevin equation.

At this point one may use the mathematical results related to the integral transforms
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[79]. From here follows that if the Laplace transform of the susceptibility has an al-
gebraic expression in terms of the (Laplace) variable s, then the elements of the matrix
Green function in the time domain ay,(t) will be in general a combination of complex
exponential functions whose exponents are given by the simple poles of its Laplace trans-
form (L(ay,(t))(s)). This is the case for an Ohmic spectral density with Drude cut-off
[107; 193]. Nonetheless, more complicated choices of the spectral density (for example, see
leads to complex non-polynomial expressions of the Laplace transform of the sus-
ceptibility which ultimately makes inaccessible to obtain analytically an expression for the
matrix Green function of the generalized Langevin equation. This essentially occurs be-
cause an analytic form of the inverse Laplace transform of Eq. is unknown. However
one may use numerical methods related to integration in the complex plane (for example,
see [258]) in order to compute numerically such inverse Laplace transform at any time
and for an elected set of values for the problem parameters (e.g. temperature, oscilla-
tor frequency, etc). As a consequence, the problem of tracking the time evolution of the
dissipative system may become in general computationally time-consuming.

As we have previously discussed, we expect that the interaction with the reservoir
wipes out all the information about the initial state of the system in the long-time limit.
More precisely, the reservoir will drive the system into a stationary state independent of
its initial conditions. Paying attention to Eq., it is deduced that the system reaches
a stationary state as long as the matrix Green function vanishes in the asymptotic time
limit, i.e. ay,(t = o0) = 0V A\ u. One may use the Riemann-Lebesgue lemma™*"| in
Eq. to formally show that this will be certainly the case if the Fourier transform of
the Green function ay,(w) decays as fast as 1/|w|P for p > 1 [194]. Hence, this condition is
guaranteed depending on the explicit form of the Fourier transform of the susceptibilities
Xou(w)-

Dhar and Wagh pointed out that such condition is violated in particular if the system-
plus-reservoir complex has a normal mode with a frequency (2, which is root of the denom-
inator in Eq.(L.49) (see also Ref.[I87]). In the damped harmonic oscillator this entails that
the imaginary part of the Fourier transform of the susceptibility vanishes at the value (2,
i.e. Imx(£2,) = 0, which according to Egs. and turns into that (2, lies outside
the bandwidth of the reservoir modes [64]. Here, we recall the previous premise (3), which
establishes that the reservoir spectrum is quasi-continuous and fully comprises the system

**xiOne may invert both Laplace and Fourier transform by making use of the Residue Theorem on a
contour integral in the complex plane. Then the starting point is the knowledge of its Laurent series,
which will coincide directly with the partial fraction decomposition of the Laplace transform in the case
of a polynomial expression.

*>*xiiLet f(w) be an complex-valued function that is absolutely integrable on R. Then the Riemann-
Lebesgue lemma states that [50],

lim / f(w)e™tdw — 0. (1.50)
[t] =00 J _ oo
One says f(w) is an absolutely integrable function on R if it is fulfil / |f(w)|dw < 0, or equivalently,

if it belongs to the class of L!(R)-functions. Clearly, the Riemann-Lebesgue lemma has an intuitive
interpretation: the integrand becomes so highly oscillatory that everything cancels out.
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spectrum, to ensure in our future development that there will not exist solutions of the
kind (2,. Physically, this means that the interaction potential U contains neither inverted
harmonic contributions nor infinite high potential barriers which prevent the system to
effectively dissipate energy into the reservoir. In general, the mathematical condition upon
a(w) required to satisfy the Riemann-Lebesgue lemma (this is ay,(w) decays as fast as
1/|w|P for p > 1 and V A, ) implies reasonable properties of regularity (e.g. uniform con-
tinuity and not take arbitrary large values) of the spectral densities Jy ,(w) from which is
derived the Fourier transform of the susceptibility matrix. Formally, the spectral density
is usually conceived as an analytic function except in a few isolated poles (mathematically
known as meromorphic function). This also guarantees the existence of both the Laplace
and Fourier transform of the susceptibility and of the Green function [84].

In the present dissertation, we are concerned with dissipative systems which arrive at
stationary states in the asymptotic time limit, provided that the spectral densities J) ,(w)
(and then a(w)) fulfil the previous properties. This will correspond to an equilibrium state
if the reservoir is initially in thermal equilibrium or more generally, to a (thermal)
non-equilibrium state if the system is in contact with several environments at different
temperatures . In both situations, it is preferable to use the Fourier transform to
obtain the stationary solution of the generalized Langevin equation as we have mentioned
above. The latter can be written in terms of the Fourier transform of the matrix Green
function as follows,

Xa(t) = / h et a(w)F(w);l—:,

—0o0

(1.51)

where F'(w) is the Fourier transform of the force vector, and the subscript ‘sta’ emphasizes
that Xsm is a stationary solution. One obtains the stationary solution of the momentum-
operator vector by using Eq.(1.47).

By virtue of Eq.(1.1) and the characteristic function in Sec[L.1 the Wigner function
of the system may be completely characterized from the knowledge of the moments and
correlations (cross terms) of X (t) and P(t) (e.g. just their variances in the Gaussian
case). On the other hand, from the Egs. and (1.47), one finds that such moments
will acquire a complicated expression which involves time convolution integrals between
the Green function a(t) and the moments of the system initial state and force vector
F(t). Successive symmetrized correlations of products among X (to), P(to), and F'(t) will
appear with increasing degree of the moments. If the Wigner-function representation of the
state involves an arbitrary number of these moments, then the computation of the time-
dependent Wigner function may become in general a tedious and difficult task. However, if
we consider that the initial state of the system is Gaussian, and further, thanks to the fact
that the force vector has Gaussian statistics (given by the fluctuation-dissipation relation
(1.42))), then moments of higher order can be written at any time in terms of the first
and second moments of X (t,), P(ty), and F(t), and correlations between them. That
is, the time-evolved state will inherit the Gaussian statistics of the initial Gaussian states
of both system and reservoir. This implies that the system state will remain Gaussian
during all the evolution [107; 206; 116} [106]. Furthermore, from here, also follows that the
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stationary state of the system will be Gaussian irrespectively of its initial state, since all the
dependence on the latter will disappear in the long-time limit. These results are well-known
from quantum optics [47; [06], and rely upon the fact that the Heisenberg equations of the
system-plus-reservoir complex are linear [251]. We must mention that this feature of the
solution of the generalized Langevin equation has been exploited to successfully analyse the
stationary Gaussian entanglement in the Refs. [A2]| [[A3], and [[A4]l Another interesting
property of the generalized Langevin equation with quadratic interaction potentials is that
it coincides exactly with its classical counterpar. This indicates that the quantum
mechanical properties of the dissipative system will be hidden in the initial condition of
the system and the properties of the force vector statistics.

Then the study of the time asymptotic properties of the system reduces to compute the
covariance matrix defined in Eq.. Replacing the solutions Xsm(t) and Psta(t), given
by Eq., into expression ((1.4) one finds that the elements of the covariance matrix
are obtained as closed-form expressions involving frequency-variable integrals of products
between «;;(w) and the Fourier transform of the second moments of the force vector. For
further details, see Egs. (14), (15), and (16) in Ref[[A2]] More extensively, the stationary
solution of the generalized Langevin equation provides us with more information than the
covariance matrix, that is the two-time correlations functions between the position and
momentum operators, i.e.

1

Cip(t,t) = ~(A()BT (") + B(t") AT (1)) (1.52)

0s>

[\)

with A, Be {X , 15} and where 0g symbolizes the stationary state. It should be noticed
that one obtains the covariance matrix from Eq. for correlations evaluated at equal
times. Unfortunately, an analytic expression for equation on time domain is generally
unknown. Instead it can be written as a closed-form expression of an integral in the
frequency domain. Then one will need to resort to numerical methods related to integration
in the complex plane [258] in order to evaluate the latter numerically.

So far we have dealt with the generalized Langevin equation which governs the exact
quantum evolution of the position operators of the system modes, which will be approxi-
mately Markovian only in certain special limits (e.g. weak coupling with the reservoir and
high temperatures). In what follows, we turn our attention to the treatment of the open
dynamics based on the time-independent Fokker-Planck equation. The conceptual jump
resides essentially on that the solution of this equation directly provides the time-evolved
Wigner function of the dissipative system. This has been proved to be very convenient
when the n-mode system stars from a non-Gaussian state.

*xxififor instance, it was shown in quantum optics that the classical Liouville equation of motion is identical
to the quantum mechanical equation of motion of the Wigner function for quadratic interaction potentials
[96].
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1.3.3 Time-independent Fokker-Planck equation

In classical mechanics, Fokker-Planck equations are a form of Liouville equations used to
study the dynamics of macroscopic but small systems subjected to fluctuations and dis-
sipative effects produced by the interaction with their environments [207; 266]. Then, in
the context of the statistical physics, these equations formally govern the time evolution of
the phase-space distribution function, say f(x,t), of the dissipative system. The Wigner
function, namely W (x,t), which is the central object in our treatment, is expected to ap-
proach f(a,t) in the classical limit, what makes to think that the Fokker-Planck equation
may have a quantum counterpart for W (x,t). Early investigations in the theory of open
quantum systems showed that this kind of equations arise naturally in the study of the
famous quantum Brownian motion, e.g see [I12]. Indeed, several Fokker-Planck equations
that describe the dynamics of the quantum damped harmonic oscillator have been derived
starting from the Caldeira-Leggett model [140], where they basically differ on the approxi-
mations made in the open-system dynamics. Regarding quantum information theory, these
equations have been also employed (in the interaction picture) to study the effects of losses
and thermal hopping over the entanglement in continuous-variable systems [222].

Let us express the Hamiltonian Hg of the n-mode system in terms of the phase-space
variables through a 2n x 2n real symmetrical matrix H, such that Hg = 2T H#. Further,
it should be noticed that there are few results about the solution of a Fokker-Planck equa-
tion whose coefficients are time-dependent functions (e.g., see [89]), however the situation
changes substantially when they are constants, which shall be refer to as time-independent
Fokker-Plank equations.

Rather than looking for a microscopical derivation of the system equations of motion,
we ask for a physically meaningful quantum evolution, as general as possible, of the Wigner
function consistent with a dissipative scheme. With that in mind, we shall consider that the
open dynamics of the n-mode system is well described by a quite general time-independent
Fokker-Planck equation. This leads us to the following Liouville-like equation for the
Wigner function,

ﬂ%?ﬁz_<ﬂﬂmé%+(£ﬁTpﬂq—ﬂw—(%JTD£JW%M)@%)

with (%)T =D, (a%v a%)v whereas I' and D are 2n x 2n real symmetric matrices

that encode all the interaction with the environment. For the present, no specific form for
I'. D, and H is assumed, we only require that they may provide a physically consistent
description of certain dissipative scenario. In general, the Heisenberg uncertainty relations
imply the condition V' (t) > iJ,/2 for t > 0 which is necessary for any physical non-
Gaussian state, whereas it is necessary and sufficient for any physical Gaussian state.
The only consideration made is that the matrix D is positive-definite, and second the
eigenvalues of the matrix JT H — I' all have non-zero real negative parts, i.e.

D > 0, (1.54)
HJ'H-T) < 0, (1.55)
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where H(J'H —T') = 1/2(J'H — T + (J'H — I')") [124]. Both conditions and
guarantee that Eq. has no singularities or run-away solutions [207; [48], and
consequently, we expect that the Wigner function reaches a stationary solution in the long-
time limit, in agreement with a dissipative dynamics. Physically, such conditions exclude
the possibility that the interaction potential of the system would have inverted harmonic
contributions nor infinite high potential barriers as before.

Before embarking in the derivation of the solution of the Eq., let us make a brief
comment about the relation between the open-system formalism we are dealing with now
and the previous one. In the case of the damped harmonic oscillator, it is well-known that
a time-independent Fokker-Planck equation can be associated with a memoryless Langevin
equation for a strict Markovian dynamics [266]; [150]. However, the global evolution of a
many-particle system may be non-Markovian even though each particle follows a ‘reduced’
Markovian dynamics (e.g., a combination of continuous Markov processes is often not by
itself Markovian) [I01]. This prevents us to establish a formal, as well as general, rela-
tion between the generalized Langevin equation given in Eq. and the Fokker-Planck
equation . Nonetheless, this does not exclude the possibility that both equations may
describe the same evolution of the dissipate system in certain limits (see Refs. [I01] and
[85]), though further development in this direction is beyond of the scope of the present
dissertation. We must expect in those cases that the matrix I" and D will be given in
terms of the matrix susceptibility x(¢) and force vector F(t), respectively, as occurs in
the damped harmonic oscillator. Consequently, I' regards the dissipative effects, while D
characterizes the noise influence in the dissipative dynamics.

Since the interaction potential is quadratic, the time-independent Fokker-Planck equa-
tion is linear in the phase-space variables. As before, this allows one to use the Green
function method to obtain a general solution of such equation. Starting from the knowl-
edge of the initial state of the system W (x,0), the Wigner function at later times is given
by,

Wiz, t) = W(z',0)G(z,x' t)d*"x’. (1.56)
R2n

where now the Green function is denoted by G(zx, @', t), and takes the form (see [12; [48])
1

Gz, 2/ t) = e z@=bMa) o) (z—b(t)z') (1.57)
(2m)m\/det(a(t))
where
b(t) _ 6(2J3;H—1")t’
o(t) = o(x0)— e(ZJ’?H’F)tJ(oo)e(QHJ"’F)t. (1.58)

The matrix o (oo) will determine the stationary solution of Eq.(|1.53)), and is obtained from
solving the Lyapunov equation,

(2JI'H — I')o(00) + o(0)(2HJ,, — I') = —2D. (1.59)
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It must be mentioned that the stationary solution will be unique due to the uniqueness
of the matrix o(cc0). The latter can be easily seen from Eq. by appealing to a
standard theorem of linear algebra which states that the solution X of RX — XS =T
is uniquely determined if the matrices R and S have no common eigenvalues [263]. Here,
R=2J'H -T and S = —(2J'H — I')T might only have a common eigenvalue zero,
which, however, has been excluded from our study by the requirement Eq..

Doing the integral in Eq. ED after substituting the Wigner function of an initial non-
Gaussian state given by Eq. ED, one finds that the time-evolved Wigner function can be
cast in terms of the matrices b(¢) and o (t) as follows,

o—saTo(n e
Wi(x,t) =
) = oy A VOB T o) (1.60)

{eé(%w(t)%(t)—lmf(V(o)—1+b(t)Ta(t)—1b(t))’1(%%(QTU(Q—M)F@/)]

=)

x'=0

where V'(0) is the initial covariance matrix in Eq.(1.5]), and the exponential differential
operator must be understood as a power sum. In particular, if the system starts from a

Gaussian state (i.e., F\(x) = 1), Eq.(1.60) transforms in,

e—ng(b(t)(V(O)—a(oo))b(t)T+a(oo))’1m

20" /Aet BBV (D) — a(00)b(0)] + ()

W (x, t) , (1.61)

where we have used the identity . Clearly, this Wigner function corresponds to a
Gaussian state whose covariance matrix evolves as V (t) = b(t)(V (0)— o (00))b(t)T +0(00).
It must be noticed that the Wigner function given by Eq. corresponds to a non-
Gaussian of the form we are dealing in the present dissertation (and which is defined in
Eq.(L.5)).

Paying attention to Eq. (and Eq.), one may realize that the solutions of the
Fokker-Planck and generalized Langevin equations share two important properties. The
first one follows from Eq., which is that the initial Gaussian characteristic of the state
is maintained during all the evolution. The second property is related to the stationary
state that reaches the system, this will be always Gaussian with covariance matrix o (co).
The latter follows from the fact that b(t) goes to zero in the long-time limit in agreement
with the condition . As a consequence, the covariance matrix in the exponential
appearing in Eq.(1.60)) approaches to o(c0) in the long-time limit (see Eq.(1.58)), whereas
the polynomial part reduces to evaluate the successive derivatives of F'(x) at the origin,
which reduces to the unity.

In the present study, we address the dissipative dynamics of the system through the
Fokker-Planck equation with the goal of obtaining a simple and reliable description of
the time-evolved Wigner function. Without specifying the matrices H, I' and D, the
equation provides us with a quite general quantum evolution of the Wigner function
when the n-mode system is subjected to dissipative quantum dynamics, and it starts from
an initial non-Gaussian state. Similarly reasoning applied to the Eq. instead if the
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system is initially in a Gaussian state. It will show in the Chapter 2 that these results
permit to analyse the transient evolution of multipartite entanglement characterized by
the separability criteria proposed in Ref.. In particular, both formulas have been used
in that work to analyse the dynamics of entanglement in specific dissipative scenarios.
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Chapter 2

Entanglement dynamics

Quantum mechanics is not a theory about reality,

it 1s a prescription for making the best possible predictions about the future
if we have certain information about the past.

-Gerard’t Hooft (Extracted from [122])

The evolution of entanglement under environmental influence has been proved to be
very rich at short time scales, e.g. quantum correlations exhibit death and re-birth
[197; 164, 32; 135 158 241; ©04], while at long times it commonly shows a downgrad-
ing tendency [234], which may end up in a completely loss of inseparability properties.
Most of the research concerning entanglement in open systems has mainly focused, on one
hand, on finding robust states against harmful dissipative and noisy effects, and on the
other hand, on designing strategies to actively counteract such effects. Among the latter,
one can find novel tools based on the so-called error-correction schemes [60] or quantum
Zenon effect, which both consist essentially on performing a set of measurements and uni-
tary manipulations on the system that effectively shield its quantum correlations from the
environmental influence. Other strategies rely on conveniently engineering the system and
system-reservoir interaction with the aim of either effectively decoupling collective degrees
of freedom of the system from the reservoir [I88} [189; [165], or driving precisely the sys-
tem onto preferred entangled states by dissipation [256} [139] or correlated quantum noise
[240; 123; 261}, 167). Interestingly, further investigation in harmonic oscillators has shown
that a parametric driving between two modes is able to generate robust stationary en-
tanglement at relatively high temperatures [95]. Nonetheless, the preceding methods are
generally hampered by the following issues: they may be unsuccessfully applied due to a
poor treatment of the actual environmental influence (e.g. it is usually assumed, without
clear evidences, that the system follows a Markovian evolution), or more generally, their
performance requires of an accurate degree of control over the system and reservoir.

The present chapter pursues to explore the dynamics of multipartite entanglement
which underlies when CV systems are driven at low enough temperatures, making the linear
treatment of the open-system dynamics (exposed in Sec consistent. It is our intention
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to get insight about such low-energy dynamics in general dissipative scenarios from the
perspective that the aforementioned methods are unfeasible. Unlike foregoing works, none
restrictions (e.g. we assume arbitrary frequencies) on the interesting system or reservoir
will be imposed in our analysis. With this in mind, it should be recalled from the previous
chapter that an attempt to provide a meaningful description of entanglement becomes more
complicate as either the mixedness of the system state (separability problem) or the number
of the system constituents (a family of several types of entanglement emerges) grows.
Unfortunately, the meeting of both circumstances prevents us of gaining an “universal”
picture of the multipartite entanglement dynamics in realistic dissipative scenarios, and as a
consequence, the scope of future discussions will be centred on simple, but rather insightful,
physical situations that make the inseparability properties of the system accessible to
qualitative or quantitative analysis.

At short time scales, we shall address the inseparability properties of Gaussian and non-
Gaussian states when they are subjected to purely dissipative effects (e.g., photon losses
and thermal hopping), remember that it is of particular interest how much and for how
long entanglement persists. At this respect, Gaussian entangled states themselves have
shown very robust under environmental influence [I5} [3], see also Refs. [178] and [212]. To
monitor the evolution of entanglement we will employ the inseparability criterion proposed
in Ref, which shall be introduced in more detail in what follows.

The stationary inseparability properties of the dissipative system deserve special atten-
tion since in many experimental setups the system has been unavoidably interacting with
the reservoir for a long time. We shall focus this study on two simple schemes which widely
capture most of the relevant physics behind multipartite dissipative scenarios, this can be
roughly classified on a common environment or independent environments. The former
shall consist on three uncoupled modes which are in contact with the same reservoir, and
whose open-system dynamics is determined by the Hamiltonian given in Eq.. This
will permit us to shed light on the mechanism whereby the (a priori decoherent) reservoir
interaction is able to create entanglement among non-directly interacting oscillators, and
further, which are the main characteristic of this generated entanglement. The second
scheme shall deal with an one-dimensional open (harmonic) chain composed of three oscil-
lators, each of which is in contact with an independent reservoir at a priori initial different
temperature. This second setup allows one to analyse entanglement supported by thermal
out-of-equilibrium systems, which has been recently subjected to intensive investigation
[161}; [55; B33} 31} [56; 210], and may be particularly useful to elucidate if the establishment
of stationary energy currents may come along with a buildup of the quantum correlations.

2.1 Separability criteria for CV multipartite entan-
glement

In the Sec[l.2]it was extensively illustrated that most successful entanglement estimators
in the arena of CV systems entails an optimization of an entropy-like functional like a
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convex-roof construction, the proper choice of a set of observables that witness the entan-
glement for a broad class of states, or the suitable election of a finite or infinite series of
inequalities which are mainly based on the well-known criterion of PPT. Unfortunately,
the technical difficulties involved in all these methods make the evaluation of entanglement
a hard computational task in many cases, what ultimately forces us to focus the analysis
on a set of entangled states smaller than those which are susceptible to be detected, for
instance pure or Gaussian states.

Additionally, there is no a conception of the separability problem in the realm of multi-
partite states as clear and precise as in the bipartite case, instead, there are several comple-
mentary definitions of entanglement that are chosen depending on the specific properties
exhibited by the quantum state in which we are interested in. Among the most meaningful
definitions is found the so-called k-partite entanglement which is formulated in Eq.
and results in a hierarchical classification of the quantum correlation that goes from fully
separability to genuine (n-partite) entanglement. Intuitively, this tells us how large is the
largest entangled partition of the system. Fortunately, the separability criteria recently
introduced by Levi and Mintert, which is exposed in the Eq. (see also Eq.)
and generically designated as 73, permits to perform a comparatively simple analysis of
k-partite entanglement for highly mixed states, which makes it particularly interesting for
our present purposes. Recall that in such criteria an accurate characterization of entan-
glement relies primarily on an appropriate choice of 2n probe states over which the only
constraint is that they must be pure, written as {|@m,)}o"_,. Though in certain cases one
may deduce an optimal form of the latter by looking at the particular properties of the
state of interest, these are encountered in general by doing an optimization procedure to
obtain a maximum of the function 7 ,(9), whose positive value would undoubtedly reveal
the k-partite entanglement.

Accordingly these probe states transform in complex-valued functions in the realm
of CV systems, such that the aforementioned optimization procedure will consist on the
maximization of certain functional, in which converts 7y ,,, and for which the optimization
domain corresponds now to such 2n functions. At first glance Eq.(1.30) (and Eq.(1.28))
reveals us that this functional is non-linear in these functions. Then, unless we make some
simplifying assumptions over the set of probe states, the characterization of k-partite entan-
glement through 7y ,, in large-particle systems does not seem to be a promising endeavour.
As we are dealing with general CV states whose Wigner functions exhibit certain Gaussian
structure (see Eq. and Eq.), we propose that a reasonable choice for {|pm,)}2",
is the set of Gaussian states. Indeed, there are several previous examples in the theory
of entanglement, like the Gaussian entanglement of formation or Gaussian convex-roof
measures mentioned in Sec[l.2] that proved that we can gain some understanding on the
quantitative estimation of bipartite entanglement by doing this Gaussian-like assumption.
Further investigation on this direction shows that such consideration permits one to get a
closed-form expression for 73, as a parametric function of the first and second moments of
the probe states, and which provides a reliable characterization of k-partite entanglement
for a broad class of Gaussian and non-Gaussian states given by Eq.. In what follows
we expose the main results of this investigation which can be found in further detail in
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Ref[AT]]

2.1.1 A Gaussian-like assumption

In analogy to the concept of Gaussian entanglement of formation, we require that all probe
vectors to be Gaussian. Each Gaussian probe state |¢,,) is then characterized by its first
and second moments,

Zm = (Gm,Pm), and (2.1)
(m) _(m)

2, = |7 T (2.2)
(m) _(m)
Ozp” Opp

with det(X,,) = 1/4, o{2) > 0 and op” > 0. It should be noticed that Gm, P, oon’, oom,
and a%) play the role of free parameters which form the optimization domain. Clearly,
the set of these parameters grows linearly with the number of system constituents, i.e.
it grows as 8n. From here follows that |®;/5) and |®y,/9;) can be expressed as tensorial
product states in terms of the probe states according to Eq., and thus they inherit
the Gaussian character. Then the first moments of the vectors |®;) and |®;) take the form

Xp, = T, (2.3)
m=1

X5, = PEasm. (2.4)
m=1

and the covariance matrices are given by

X = P (2.5)

X5, = P Znim. (2.6)

Let us designate the maximum of 7, over all possible probe states,

77{?,71(@) = max Tk,n(@)-

1,%2

Recall that a positive value of 7y ,,(9) reveal us that p is k-partite entangled. Notice that
one can say nothing about the converse assertion in general.

With this at hand and starting from the equation for the Wigner function of g,
one finds that the matrix elements (@1 | 0| P2), (D1 | 0] P1;) and (Pyj | 6| P2;), involved in
the evaluation of 74,(0), entail an integral with a Gaussian kernel in the domain R**. The
suitable form of W (g) as a product between a polynomial F'(x) and a Gaussian function
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with CM V permits to compute analytically such integrals. Hence, we may obtain closed-
form expressions for the mentioned elements as functions of &,, and X,,.

One can proceed further and conveniently manipulate these expressions in order to
write 7y, in the following compact form,

. e~? |fo,, | (kn) P
Ten(0) = — a; e 4 ety (2.7)
V/det (Xg, + Xg,) ; J b

with
exp (lKT (V14 x)™ K) F(z)|
fu = - 93:07 (28)
det (X, + V)

and where K = (% + Sngu) for u = @9y, P15, Poj. The quantities

a = Re (de;m nggllX@’m) + (X¢1 - X¢2)TJ5R6(Z¢21)JH(X¢1 - X452) (29)

and
/8.7 = XgUE;lledslj + XngZQ_S21de52j ? (210)

are quadratic functions of the first-moment vectors. Furthermore, Y3, ., and Xg,, are
2n x 2n (complex) matrices that are determined from the matrices X, by simple algebraic
expressions, and similarly occurs for the 2n-vectors Xg P and Xg,,, which are given in
terms of the vectors &,,.

Though equation still seems to be a complicated expression a first sight, it sup-
poses a rather convenient form of 7y ,, in order to carry out the optimization procedure. The
Heisenberg uncertainty relation over the probe states guarantees that the above matrices
(the real part in the case of Xg,,) are positive-definite. This translates into that Eq.(2.7)
has non-singular values in all the real domain corresponding to the free parameters. Fur-
thermore, Eq.(2.7) is a real continuous function thanks to the fact that F(x) is analytic in
all the phase space. These features make that the maximum of 75, would be accessible in
the majority of cases by using standard optimization procedures [25§].

The situation simplifies when ¢ is a Gaussian state, i.e. F(x) = 1. In that case, one
may try to envisage the form of the matrices X, by looking at the shape of the Gaussian
Wigner function, which is rotational invariant with respect to an axis passing through
the origin. The latter leads us to make the suggestion Y3, = Xp, = X, which entails
XYp,, = Y. Thankfully, from this observation and employing some algebraic identities, it
is analytically shown that the maximum is attained when X, = — X4, = X. With this,
we arrive at )

T = max: T,

with

1
—2XTI] et

X
~ ~ € k.n &
n(0) = I
J

13T T_1
—5X (Pj) E+VPJX

: (2.11)

det (X + V) det (X + V)
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and

P = P11, (2.12)
m=1

where I is the two-dimensional identity matrix, and v;, which is defined in the context of
Eq.7 characterizes the bipartition j.

Accordingly, the number of free parameters involved in the optimization procedure for
Gaussian states reduces to 4n parameters which consist on the entries of 3 and X. It is
important to realize that we have obtained these results by just assuming that each pair
of probe states, |¢n) and |@nim), share the same covariance matrix (X,, = X,,.,,), which
has then lead to that the maximum is recovered when they are symmetrically localized in
the phase space (&, = —&n1m)-

The expression provides us with more information about the optimal choice of
probe states. To see this, we observe that according to this equation the inequality

T 1 r_ 1
syt 2 B sy
is satisfied for any mixed Gaussian state that is biseparable with respect to the partition j.
This is deduced by just comparing the exponentials in Eq., and using the fact that
their arguments are positive-definite quadratic forms in terms of X. It is worthwhile noting
that if inequality is violated in all the bipartitions, then ¢ is genuine multipartite
entangled.

Curiously, the Ineq. resemblances to the PPT criterion (see the inequality in
Eq.), though a priori they arise from different observations: PPT is based on that
partial transposition maps separable states onto separable states, whereas 7y, identifies
entanglement by looking at certain symmetries that any k-partite separable state must
satisfy. Indeed, we find mathematically that the Ineq. reproduces the results of
PPT criterion for either arbitrary two-mode Gaussian states or pure three-mode Gaussian
states, when all the probe states |p,,) are chosen to be pure infinitely-squeezed states, with
covariance matrix with o7 — 0 (Vm) for squeezing in momentum, or o7 — 0 (Vm) for
squeezing in position. Let us briefly sketch how this comes about. First, one must realize
that the inequality can be translated into the eigenvalue problem of the product
matrix [124],

P, (2.13)

Z,=4P) (Z+V)PJ (X v Vv, (2.14)
such that, inequality is not violated as long as all of the eigenvalues of Z; are greater
than the unity.

We do not assume any particular form of V', instead this is expressed in terms of the
corresponding standard for for equivalent entangled states without any loss of generality.
In the Ineq., V' is then substituted by the standard form for the two-mode and pure

Recall from Sec that the covariance matrices of GLU-equivalent classes of entangled states can
be brought into a standard form Vsg (see Eq.). This guarantees that the characteristic polynomial
of Z; given in Eq. will be exactly the same for these equivalent classes, and irrespective of whether
we take other specific form of V.
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three-mode Gaussian states, and analogously, X' is replaced by the covariance matrix of
a n-mode single-mode squeezed state. After taking the limit of infinite-squeezed probe
states one finds that n roots of the characteristic polynomial of Z; coincide with the
unity, and more interestingly, the other n roots are given by 42 (i = 1,...,n), where
coincides with the symplectic eigenvalues of the partial transpose of V' with respect the j
bipartition and which appears in the symplectic formulation of the PPT criterion (|1.14)).
Then PPT and the Ineq. provide the same results related to entanglement in two-
mode and pure three-mode Gaussian states. Remembering that PPT is a necessary and
sufficient separability criterion for those states, this result means that 7, is able to detect
completely the Gaussian two-mode and pure three-mode entanglement.

Furthermore, we encounter that such assertion is no longer true for three-mode mixed
Gaussian states, which is in agreement with the fact that PPT basically discerns fully insep-
arability in those states whereas 733 identifies genuine tripartite entanglement. However,
exhaustive numerical studies show that 73 3 still detects entanglement on the vast majority
of bipartite three-mode entangled states. Importantly, that the results from PPT and 7y,
coincide practically for the previous studied states (recalling the coincidence is exact for
two-mode and pure three-mode Gaussian states) outlines that the strength of the latter to
detect entanglement remains almost intact after doing the Gaussian-like assumption.

In order to test the strength of the Eq. in a further extent, we have also carried out
an extensive study about the ability of 73, to reveal the entanglement encapsulated in non-
Gaussian states. In particular, we have assessed the entanglement of those non-Gaussian
states known as coherently photon-subtracted two-mode squeezed vacuum states (CPS-
TSVS). We will go back to these states later, let just anticipate that they have an important
characteristic which is: the PPT criterion based on the second-order correlations fails to
unveil the entanglement of these states when squeezing is zero [14]. This led Agarwal and
Biswas to develop a new criteria based on higher order correlations which has been proved
to be an ‘optimized’ criterion for the inseparability of certain classes of non-Gaussian states
[T77]. Remarkably enough, the expression is able to detect this purely non-Gaussian
entanglement in agreement with the Agarwal-Biswas criterion.

From the foregoing discussion we may draw two conclusions: first the Gaussian-like
assumption made over the set of probe states yields a simple as well as a strong criteria
for assessing the separability of either Gaussian and non-Gaussian states, and second, an
optimal choice of the probe states are the set of infinitely-squeezed Gaussian states for
which the pairs |p,,) and |pn+m) are symmetrically localized in phase space. The lat-
ter conclusion has a more profound consequence in the detection of entanglement at the
experimental level as the expression of 73, for Gaussian states admits an operational in-
terpretation in terms of Gaussian measurements. Let us briefly discuss how the hierarchies

(2.7) and (2.11)) can be implemented with experimental data.

Experimental quantification

The standard procedure would be based on the experimental reconstruction of the Wigner
function in terms of quantum state tomography [162] or a measurement scheme specially
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designed for multicomponent CV systems, followed by the analytical evaluation of Eqs.
and . However, the hierarchies for Gaussian states may be also directly ac-
cessed by performing Gaussian measurements, modelled in terms of a positive-valued op-
erators with Gaussian Weyl symbol [77; [180], which will be characterized by a covariance
matrix o), and first-moment vector X, that plays the role of the outcome of the measure-
ment. If one performs such a measurement on the whole n-mode system, the probability
of the outcome X, is given by [180],

1xT 1
e 2 XMooy v XM

(2m)"\/det (op + V) '

One may immediately identify the second term in Eq. as (2m)"p(P;X;X), this is
due to the fact that this term comes originally from matrix elements that play the role
of projective measurements. On the other hand, the first term in Eq., which results
from off-diagonal matrix elements, may be expressed in terms of the Fourier transform
p(w; X)) of the probability distribution p(X; X, i.e.

p( X om) =

1
(2m)"

Pl ) = oo [ XX X3,
R2n

such that Eq.(2.11) may be written as follows

%k,n(@) _ 6—2XTJ32J,LX / dane_2wT2J”X]5(w; 2)
R2n

— (2%)"Za§k’n)p(PjX; X). (2.15)
J
This expression relates 7y, directly to the measurement statistics of a Gaussian measure-
ment with the covariance matrix 3.

Since the projection of ¢ onto a one-mode pure infinitely-squeezed state models an
ideal homodyne measure in the mth mode of the system [162} [78; [97], the previous results
indicate that one may completely certify the inseparability of arbitrary two-mode and pure
three-mode Gaussian states by a collective of simultaneous (ideal) homodyne measures on
each mode of the system. At this respect, it was shown that it is possible to completely
reconstruct, without having a full tomographic knowledge, the covariance matrix of a two-
mode Gaussian state by locally manipulating the modes [59; 205], that is to say by means
of a measurement scheme based on single homodyne measures and passive operations.

In practice, one will need an ensemble of identically prepared quantum states of the
system in order to obtain a reliable statistics p(X; X') to perform the Fourier transform
involved in Eq.. Note that we have considered ideal Gaussian measurements, however
they may contain errors due to the implicit imperfections of the experimental scheme. In
order to avoid spurious conclusions from the experimental evaluation of expression (2.15)),
these systematic errors must be treated at the level of measurement statistics. Unfortu-
nately, this method has certain disadvantages when is compared with previously mentioned
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entanglement witnesses (see Sec, since it entails practically to perform quantum state
tomography. Nevertheless, whereas such results may return quantitative estimations of bi-
partite entanglement based on measurement data, Eq. is more general in the sense
that it can be, in principle, applied to experimentally certify the multipartite entanglement
of Gaussian states.

Finally, we would like to remark that one may address the problem of characterizing
the multipartite entanglement without requiring a Gaussian conjecture on the probe states.
This will lead to another function 7y, different from Eq.(2.7]), which would probably iden-
tify the entanglement of other class of continuous-variable states, maybe a broader class
than the one we considered here. However, the resulting hierarchy will be, as a consequence,
rather involved as compared with the expression . This reflects the underlying idea at
the base of the vast majority of existing tools designed to detect and estimate entanglement
at theoretical as well as experimental level: it is necessary to get a compromise between the
set of entangled states to be detected and the required computational and experimental
efforts.

2.2 Entanglement dynamics in dissipative scenarios

Endowed with the expression (2.7) (and also Eq.) for the separability criteria 7y,
and the results of the entanglement theory and dissipative dynamics previously exposed in
Chapter 1, we are ready to address the entanglement dynamics influenced by dissipative
effects. Now we turn the attention to the time evolution of entanglement of a generic n-
mode system in a dissipative scenario. In order to get some taste about the entanglement
dynamics we first discuss, in general terms, the inseparability properties during a general
quantum evolution of the Wigner function of the dissipative system.

Let us focus on the simple but non-trivial case of Gaussian entanglement characterized
by the 74, criterion. Here we may employ the result of Sec[I.3.3] related to the time
evolution of the covariance matrix of an initial Gaussian state (see Eq.(1.61))) when the
dissipative dynamics is simulated by a time-independent Fokker-Planck equation. This
yields the following evolution for the CM,

V(t) = eI H-DNV(0) — V(00))eTn H-IT 1+ W (o0), (2.16)

where V' (00) is the stationary covariance matrix, whereas H, and I' and D are related re-
spectively to the coherent evolution of system oscillators, and the system-reservoir coupling

and characteristic properties of the reservoir. Substituting Eq.(2.16) into the Eq.(2.11)) and
after some straightforward algebra, the time evolution of 75, can be cast into the form,

o T T 1 _ .
’f‘kﬂl(é(t)) . g(t)G 2X1J; 2—1+V—1(oo)JnX B Zagk,n)fj(t)e—%XT(Pj)T2+&(OO)PJX’ (217)

J
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where we have defined the functions,

C(t) = 2T H-T)t (V(0) — V(c0)) 6(2HJn—1")t’

1 1

2XxTgT L Jn X
g(t) = e TRV o) (57 14V () T -V (00) =V (e0) O (1) V (00) ET IV H(00)
)
1T/ p\T 1 1 1 )
X7 (Fy) Z+V (o) (Z4V (o))" l+c—1(1) E+V<oo>P7X.

fit) = e

Looking closely at these expressions, it is seen that C(t) vanishes asymptotically according
to the conditions (Egs. and (1.55)) for which the reservoir drives the system towards
the stationary state V(oco). As a result, it follows that g(t — o0) — 1 and f;(t —
o0) — 1 (V j) irrespectively of the initial condition V'(0). In this way, one recovers from
Eq.(2.17) the expression evaluated at the stationary state in the long-time limit.
Importantly, the eigenvalues of 2JT H — I' will be complex in general, and therefore the
matrix exponential in the term C(t) will have an oscillatory contribution determined by the
characteristic frequency wg of the isolated evolution of the system, but which is dominated
by an exponentially decaying evolution in the natural time scale y~! in which evolves the
open system. In whole, ¢g(¢) and f;(¢) must inherit this decaying oscillatory behaviour, and
consequently, 7y ,(0(t)) will exhibit an exponential-decaying oscillatory evolution in time.

Then Eq.(2.17) provides us with a rough description of the entanglement evolution
that one should observe in dissipative scenarios. First, entanglement may experience a
transient dynamics with a generally oscillatory behaviour (of decreasing amplitude) at
short times scales (in comparison with v7!), when the effects of the coherent evolution
are still important compared to dissipative effects. This is consistent with the observed
deaths and re-births of entanglement in the transient evolution. In addition, entanglement
presents an exponentially decay at large times, that will approach asymptotically at certain
constant value. This stationary entanglement will be distinct from zero depending on
the characteristics of the interaction between the system modes, and the system-reservoir
coupling.

Nonetheless, the above general picture does not give information about the time in
which entanglement disappears or whether the stationary state becomes entangled. As
outlined in the introduction of this chapter, we must focus the study on realistic dissipative
scenarios in order to go deeper into these questions. We will divide the future discussion into
two main parts. We devote the first part to study the transient dynamics of entanglement
when the system is initially in several important examples of Gaussian and non-Gaussian
states, whereas the stationary dynamics in the mentioned three-mode systems is addressed
in the second part.

2.2.1 Transient Entanglement

To begin with, we analyse the consequences of losses and thermal hopping effects on the
fate of entanglement at short time scales. The simplest dissipative scenario that accounts
for such reservoir influence corresponds to the case when each system oscillator is in contact
with an independent heat bath, whose temperature is determined by the average photon
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number Nt(é) and the system-reservoir coupling strength which is roughly characterized by
the dissipative rate ;. Notice that this is the case for many implementations of quantum
information tasks [223} 222]. For a clear exposition, we shall consider that all the heat baths
are at the same temperature t(,? = Ny, and have the same dissipative rate v; = v (for
i =1,...,n). Furthermore, we shall translate the analysis to the interaction picture as the
interest is mainly in the evolution of entanglement under purely dissipative effects. In the
open-system formalism based on the time-independent Fokker-Planck equation, the latter
corresponds to ignore the Hamiltonian contribution, designated as H, in Eq.. Hence,
the evolution of the Wigner function is governed by the time-independent Fokker-Plank
equation characterized by

r = %IQn, (2.18)
142N,
D = wbn. (2.19)

where I, stands for the 2n x 2n identity matrix. As an immediate consequence of this
choice, the state of the system will approach to the symmetrical separable thermal (Gaus-
sian) state in the asymptotic time limit. This is consistent with the fact that the system
modes evolve independently, and then, it is expected that the system reaches a separable
stationary state.

With expressions (2.18)) and (2.19)) at hand, we can use the results of Sec[1.3.3]to obtain
the time evolution of the Wigner function of the system. As it was shown, this can be
roughly classified into Gaussian or non-Gaussian depending whether the initial state of the
system is Gaussian or not. A continuation, we focus the attention in several important
examples of both characteristic evolutions.

Gaussian Evolution

We devote special attention to the genuine multipartite entanglement in mixed states.
Recall that the PPT criterion cannot detect such entanglement in general, in contrast to
the 73, criteria. Let us consider that the system is initially in a mixed genuine entangled
state with the following covariance matrix [99],

V(O) = VGHZ + gIgn with g > 0, (220)

where g plays the role of a mixing parameter, and Vgp, stands for the 2n x 2n covariance
matrix of a continuous-variable analogue of the GHZ states,

a 0 —c 0 —c O
0 b 0 ¢ 0 ¢
—c 0 a 0 —c O
Vouz = 1 0O ¢ 0 b 0 ¢ , (2.21)
2 —c 0 —c 0 a O
0 ¢ 0 ¢ 0 b
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Figure 2.1: It is illustrated the entanglement characterized by the hierarchy 7, as a
function of time, and for an initial Werner-type state given in Eq. with » = 0.9
and g = 0.1. Figure (a) shows the time-evolution of three-mode entanglement when the
reservoir has both a photon number occupation N;;, = 1 (black-solid and gray-dot-dashed
line) and Ny, = 2 (red-dashed and red-dot-dot-dashed line). Similarly, figures (b) and (c)
depict respectively the hierarchy for a four- and five- mode system coupled to a reservoir
with Nth =1.

with
a = % (HT_Qe% + cosh(2r)> ,
b = % (nT_Qe_QT + cosh(2r)> :
2
c = - sinh(2r),

whereas r > 0 is a squeezing parameter. Notice that a and b are always positive since n > 2.
This state has attracted special attention on quantum communication. Importantly, it was
shown in Ref. that the genuine entanglement in these states degrades with increasing
mixing g.

Figure[2.1]illustrates the decay of entanglement in systems composed by three, four, and
five modes. The dissipation degrades in a similar way the different degrees of entanglement:
k-partite entanglement vanishes after a finite period of time roughly determined by ~.
However, we appreciate that the initial genuine entanglement of the state gets more fragile
when increasing the number of modes of the system (see the black-solid line in figures
(2.1) (a), (b) and (c)). This is consistent with known results for analogous GHZ states in
discrete systems, where they exhibit an exponential decay with the number of constituents
[23] (e.g. GHZ becomes separable when one of the constituents is lost). On the contrary,
the state becomes wealthy in bi-partite multimode entanglement (e.g. see the lines with
k = 2). This feature is related to the fact that the number of (small) entangled partitions
that turn into such entanglement may be substantially large with increasing number of
constituents. This could ultimately make this class of entanglement more resilient to
dissipative effects compared with genuine entanglement. On the other hand, from figure
(a) follows that temperature effects (i.e., thermal noise) characterized by the parameter
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Ny, boost the decay of entanglement as one could expect since it induces additional mixing.

Non-Gaussian Evolution

We now investigate in parallel the inseparability properties of two important instances of
non-Gaussian states influenced by the losses and thermal hopping effects. For the seek of
simplicity, let us focus on two-mode systems. First, we consider that the latter is initially
in the previously mentioned coherent photon-subtracted two single-mode squeezed vacuum
states (CPS-TSVS). These states derive from the locally squeezed two-mode vacuum state
by applying the operator (ada; + Sag)*, where a; (I = 1,2) is the photon-annihilation
operator of the Ith mode and |a|? + |3]?> = 1 [114]. For simplicity, we shall consider the
states obtained for v = 1 and symmetrically squeezed in both modes. The covariance
matrix V' and the polynomial function F' that define the Wigner function via Eq. take

the form, V(0) = ddiag(e=™, ¥ e ), and

F@,0) = 2cosh’(r)( (o} + p})laf? + (a3 + p)IBI + 2Re((w1 — ipy) (@ + ip)a’B))
+ 2sinb?(r) (2 + p)|af + (23 + p3) B2 + 2Re((w) + ip1) (w2 — ip)a’ B)

— 4cosh(r) sinh(r) <|ap1 + Bpa|® — |z + 6x2|2> — 1. (2.22)

Notice that these states only have entanglement in the non-Gaussian degrees of freedom
(i.e. in F(x)) since the covariance matrix is completely separable. In some sense, these
states only contain non-Gaussian entanglement.

Furthermore, we shall also consider that the system starts from the the so-called photon-
added two-mode (globally) squeezed states, whose entanglement properties have been re-
cently studied for the pure [I75] and mixed [I31};, 262] cases. They are obtained by oper-
ating with (a!)*(al)” over the two-mode symmetrically squeezed state. We shall treat the
states with u = 1 and v = 0, which coincide with the two-variable Hermite polynomial
states [259]. According to the definition (1.3)), these states are determined by the following

covariance matrix,

cosh(2r) 0 sinh(2r) 0
Vi) = s +22N0) sinlr?(Qr) COS}E)(%) cosl?(27°) E Sm(?(%) ’ (2.23)
0 — sinh(2r) 0 cosh(2r)
and the polynomial function,
F(xz,0) = ((pg + 2Nopa + pa cosh(2r) + py sinh(27))?

+ (w3 + 2Nowy + 15 cosh(2r) — xp sinh(2r))?
— 2(1+2Ng)(No + COSh(T)2)>/ (2(1 + 2Np)*(cosh®(r) + Ny cosh(2r))(2.24)
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Figure 2.2: Figure (a): T32(p(t)) as a function of time when the system is initially in the
CPS-TSVS state with |a| = 0.5 and r = 0. Figure (b): Similarly, 7T22(5(t)) as a function
of time when the system is initially in a SPS-TVS state with r = 2 (and Ny = 0). In both
figures the black-solid and red-dashed lines correspond to the cases when the reservoirs
have an average photon number N;, = 2 and Ny, = 4, respectively.

Here, Ny and r play the role of mixing and squeezing parameters, respectively. For the
particular value Ny = 0, these states coincide with the single photon-subtracted two-mode
vacuum squeezed (SPS-TVS) states studied in Ref.[13]. It is important to realize that the
SPS-TVS states given by Egs. and contain entanglement in the Gaussian
degrees of freedom, contrary to the above mentioned CPS-TSVS states.

According to the results of Sec[1.3.3|(see Eq.([L.60)), one finds that the covariance matrix

evolves as follows,

V(t) = e(t) + a(t), (2.25)
with

e = SV,

o) = (- (o),

and the polynomial part F(x,t) is given by
Flz,t) = F (e%f(sfl(t)a@) + 12)%,0)
1 1 -1 O?F(ez'x, 0)
+ 52 (W +ol),, 31 0]

Il,m m

, (2.26)

=0

For t = 0, Eq.(2.26) returns the initial expression (either Eq.(2.22)) or Eq.(2.24))) for the

previous states (F(x,t — 0) — F(x,0)), whereas in the long time (F(x,t — co0) — 1) the
system evolves asymptotically into the symmetrical separable thermal (Gaussian) state.
Figure (a) and (b) show the time evolution of 725 when the system is initially
in a CPS-TSVS and SPS-TVS state, respectively. A first sight, one may appreciate that
the evolution of entanglement is different in both situations. Interestingly, the pure non-
Gaussian entanglement of the CPS-TSVS states is degraded asymptotically in time, i.e. it
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suffers an exponential decay, while the two-mode entanglement in the initial SPS-TVS state
clearly vanishes at a finite time scale, similarly to the foregoing Gaussian example. In both
situations, the decay of entanglement is faster for increasing values of the initial reservoir
temperature as a consequence of the increase of thermal noise. Though not showed here,
we find a similar behaviour for other choice of parameters for the states {|al|, Ny, r} and
the reservoirs {v, Ny, }.

Remarkable enough, the direct comparison between the previous states suggests that
the purely non-Gaussian entanglement encoded in F'(x,t) is more robust against the losses
and dissipative effects than the entanglement encapsulated in the covariance matrix V' (t).
Looking at Eqs. ([2.25]) and (2.26)), this observation must be related to the fact that the co-
variance matrix approaches exponentially to its stationary expression while the polynomial
part exhibits a more complicated decay (to the unity). Unfortunately, we cannot extract
further information from these equations, together with the expression , which could
shed light on this issue. This is a basic consequence of the fact that separability criteria
generally exhibit a non-linear dependence on g, which substantially complicates the static
and dynamic analysis of entanglement.

In summary, we have observed that multipartite entanglement under purely dissipative
effects tend irreversibly to disappear in a finite time (compared with the dissipative rates
of the reservoirs) for Gaussian states, or asymptotically for certain classes of non-Gaussian
entangled states. A priori, the latter result may be of particular interest for implementing
quantum communication protocols. A reliable conclusion on this aspect deserves further
investigation beyond the scope of the present dissertation.

To conclude this section, we would like to remark that these previous examples also
illustrate that Eq. may provide a meaningful description of multipartite CV entan-
glement in realistic dissipative scenarios. As the hierarchy deals with Gaussian and
non-Gaussian states at the same footing, it is of particular interest to study the time evo-
lution of k-partite entanglement when the state evolves from Gaussian to non-Gaussian,
or vice-versa.

2.2.2 Stationary three-mode Gaussian entanglement

In this section we present results on stationary entanglement supported by a three-mode
system in contact with a common or independent environments. The main results of this
investigation have been published in the Refs. [[A2] and [[A3]l In what follows, it can be
found a summary of the main conceptual developments and findings.

Recall that the stationary state of the system will be Gaussian thanks to the linearity of
the system-plus-reservoir Heisenberg equations. As we extensively illustrated in Sec[I.3.2]
how to obtain its covariance matrix from solving the generalized Langevin equation (see
Eq.), we will go directly to the discussion of the results. As estimators of entangle-
ment we shall use the logarithmic negativity (see Eq.) to measure two-mode entan-
glement, and the qualitative classification of tripartite entanglement proposed by Giedke,
Kraus, Lewenstein and Cirac (see classification (C1-C5))), both tools were introduced in
Sec[1.2
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Common environment

At first glance the generalized Langevin equation reveals that the system oscillators
in contact with a common environment will experience an effective interaction mediated
by the renormalization matrix (2 (given in Eq.), which shall refer to as the renor-
malization potential, and the susceptibility matrix x(¢). Interestingly, it will be seen how
this environment-mediated interaction is responsible for the generation of stationary en-
tanglement between system oscillators which do not experience any direct coupling, i.e.
Uy, = mawidy,. At this respect, previous works (e.g. see Refs.[226; 139]) have pointed
out that such appearance of entanglement may be due to the Hamiltonian of the system
of interest possesses normal modes which do not suffer from the dissipative dynamics,
instead they follow free coherence evolutions. In this way, a great part of the entangle-
ment contained in the initial state of the system can be isolated from dissipative effects
by conveniently encoding it in such degrees of freedom. This is precisely the idea behind
the methods aiming to protect entanglement based on free-decoherence subspaces. In our
study, a rapid analysis of the normal modes shows that all of them will be subjected to
dissipation and noise unless all oscillators have the same frequency and are located at the
same plac. In the future discussion we are mostly interested in arbitrary arrangements of
the system oscillator, in which the Ath mode is well localized around at an equilibrium po-
sition 7, so that the created entanglement will be indeed induced by the system-reservoir
interaction that turns into dissipative quantum effects.

As a consequence, the coupling strength with the reservoir should be strong enough
in order to observe the generation of entanglement, what entails to drive the system into
the strong dissipative regimen. This circumstance, combined with low temperatures, yields
that the evolution of the system of interest will be dominated by non-Markovian effects. As
a matter of fact, if the system would follow a Markovian evolution we should expect that
each system oscillator would eventually reach its own thermal equilibrium state and thus
the stationary state would be separable (recalling the oscillators are uncoupled). Then it
is important to realize that the non-Markovian character of the open-system dynamics is
crucial for the appearance of entanglement in the dissipative system. As we saw in Sec[1.3.2]
the characteristics of a non-Markovian evolution is determined by the explicit form of the
reservoir spectral density given in Eq.(L.45)), which contains the reservoir spectrum wy, and
system-reservoir interaction parameters written as gx. In what follows, we make reasonable
approximations over these magnitudes which provide reliable phenomenological expressions
for the spectral density. This will be the starting point of the subsequent study.

Let us denote each mode by A, B, and C. Let also focus on the cases of one-dimensional
(1D) and three-dimensional (3D) environments. We shall assume for the environmental

iThe position-operator vector of the normal modes is found to be governed by a transformed generalized
Langevin equation in which now the potential term and memory kernel are given respectively by the
transformed matrix of 2 4+ U and x(t). Formally, the aforementioned physical situation will correspond
to the case in which all the entries of both matrices (£2 + U and x(t)) separately become identical. By
arguments from linear algebra concerned with the diagonalization of matrices, one may see that this
permits the possibility that the dissipative and fluctuation terms may become identically to zero in the
transformed GLE.
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field the linear dispersion wy, = c|k|, which comprises the physical cases of acoustic phonons
in a solid-state substrate and a free electromagnetic field. Furthermore, we consider an
isotropic coupling between the oscillators and the environment, which is given by

gr = mhry(we/wd Vi (d)e /e,

where d is the dimension of the environment, Vi is the number of field modes per d-
dimensional k-space volume, v roughly determines the coupling strength with the environ-
ment, and w, is a cut-off frequency for the environmental spectrum. Replacing g and wyg
in the expression for the reservoir spectral density and taking the quasi-continuum limit
Vi — 0, one obtains

Jiﬂ(w) = TmAywe w/we cos(cu|A’r'?\M|/c)7 (2.27)
Amme f w2 .
Jfﬁ(w) = m(w—) e /“sm(w|Ar§H]/c). (2.28)

Accordingly to Eq.(1.39), the renormalization potentials become

ol - mYWe 2.29
A L+ (wel A3, |/e)? (2.29)
~ Smmyw

o3P = ¢ . 2.
e ROV WA EE (2:50)

Additionally, the susceptibility may be deduced from expressions (1.41]) and ([1.44)), and
the knowledge of the reservoir spectral density, to give

we| A3, | /e — twe
[1 4 (we| A7, |/ e — twe) 2]

Ot —[Ar3,|/c)

Xf\f(t) = 4m’th39(t—\Ar?\ul/C)

(2.31)

WeC
| ArS,|

( 1= 3(we AP, /e + twe)® 1= 3(we] A, |/c — tw.)? ) (2.32)

X3 (t) = 8tm~yh

[+ (el A}, |/ e+ twe)?]* [1+ (we| Ar3, | /e — twe)?]?

The aforementioned non-Markovian character of the quantum evolution is reflected in
the non-exponential time decay followed by the susceptibilities (memory kernels). The
dimensionless parameter |Ar9\u|wc /c, appearing in the above equations, compares two dif-
ferent time scales, on one hand |A'r?\#| /c, that is the time of flight of a phonon or photon
between two oscillators, and on the other hand w;! which roughly represents the time
scale during which memory effects disappears. Surprisingly, the spatial algebraic decay
of the environment-mediated interaction, inherent in the susceptibilities and in the renor-
malization potential, indicates that an effective coupling between oscillators that are far
apart may be established. Notice that such decay goes at least as ~ (|Ar},|w./c)® and
~ (|Ar3 ,|we/c)® for the 1D and 3D environment, respectively.
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Figure 2.3: (a) Stationary two-mode entanglement measured by the logarithmic negativities
En(Vye) (black solid line), En(Vas) (red dashed line), and En(Vpe) (blue dash-dotted
line) for the triangular geometry as function of the displacement . The inset provides an
extended picture of En(Vye), where the purple flat line marks the value in the absence of
oscillator B. (b) Phase diagram for fixed R and various values of 7 as function of coupling
strength v and temperature 7. In the shaded areas, the oscillators A and B exhibit
stationary entanglement. The outer blue line marks the limit » — oo, which is equivalent
to the absence of oscillator B. As oscillator B comes closer, the area with entanglement
shrinks.

Although this environmental-mediated interaction possesses a long-range feature, it is
found that the characteristic length of the entanglement correlation is roughly determined
by Ry = c¢/w,, in agreement with a central result of Ref. [261]. The induced two-mode
and bipartite three-mode entanglement vanish at a finite distance Ry which mainly de-
pends on temperature, being almost independent of the dissipation strength . However
a larger v supports the effective interaction required for entanglement creation, but also
increases decoherence which acts towards separability. Nevertheless, as expected, entan-
glement eventually disappears with increasing v. Furthermore, we observe that two-mode
entanglement decays faster for the 3D environment than the 1D case when the spatial
separation between oscillators increases. This is in agreement with the fact that the sus-
ceptibility x*P(t) decreases with the distance much faster than x'2(t). A simple analytical
estimation of Ry when all the correlation interaction is only through the renormalization po-
tential reveals that this is larger than the value followed from the numerical data. Though
the renormalization potential is still relevant for the transient evolution of entanglement,
this observation suggests that in the long-time limit the mechanism behind the generation
of entanglement mainly relies on memory effects (Egs. and (2.32))) rather than on
the renormalization term (Egs. and (2.30)). We may infer from the latter that the
environment-induced interaction represents a kind of feedback between oscillators which is
predominantly coherent when only low energy environmental modes are thermally excited,
i.e., for kT < hw,.

Remarkable enough, we found that the two-mode entanglement between any pair of
modes (AB, AC, or BC) is negatively affected by the presence of the remaining oscillator,
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which shall refer to as “passive” oscillator. To see this more clearly, we focus on a triangular
arrangement of the oscillators in contact with a 3D environment: the oscillators A and
C are placed at distance Ar%. = R, but the passive oscillator B is shifted by a distance
r perpendicular to the line connecting A and C. The black-solid line in figure (a)
represents the two-mode entanglement between AC oscillators measured by the logarithmic
negativity as a function of the distance r. As one may appreciate, Ey (V) is eventually
destroyed when B is close enough to the pair (r — 0), whereas in the opposite limit (r —
o0), En(Vc) approaches the value of two-mode entanglement when the oscillator pair AC
evolves independent of B. Indeed, figure (b) clearly illustrates that the parameter
space of entangled states shrinks significantly by the presence of the passive oscillator.
Furthermore, this shows that the oscillators effectively interact even at distances greater
than the correlation length of two-mode entanglement, which entails that the environment-
induced interaction has a long range in space in agreement with Egs. from (2.29)) to (2.32).

Furthermore, figure (a) shows that the oscillator B becomes entangled with A
and C almost simultaneously at small distance, in agreement with the foregoing discussion.
That is, Ex(Vag) and En(Vae) increase while En(Vac) becomes smaller. Then it is seems
that there is a trade-off between En(Vac), Enx(Vas), and Eyn(Vpe) what resemblances
the monogamy property of entanglemen Nonetheless, the competition between these
three two-mode entanglements is characteristic for our environment-induced entanglement
mechanism, mainly because the logarithmic negativity (i) is a bona fide measure that
generally does not satisfy monogamy and (ii) becomes increasingly manifested by raising
the coupling strength ~.

One must expect that this tendency towards separability might be enhanced by adding
further oscillators. However, even though Fn(V4c) may be reduced or vanish in the pres-
ence of oscillator B, we find that there is still the possibility of an emerging tripartite
entangled state analogous to a GHZ-like state. This emergence of tripartite entanglement
on the expense of smaller two-mode entanglement may be interpreted as consequence of an
effective three-body interaction whereby all three oscillators effectively interact simultane-
ously via the same bath. Further investigation on the tripartite entanglement reveals that
certain geometries of the oscillators favour the resilience of the bipartite three-mode entan-
glement (classes (C1)-(C3)) to increasing values of the initial environmental temperature.
For instance, it is seen that for identical oscillators fully inseparable states are more robust
when they are equally spaced forming a triangle. This feature relies essentially on the fact
that the oscillators with smaller frequencies will be more affected by thermal noise, such
that one may conveniently arrange the oscillator to increase the environment-mediated
interaction with the rest to counteract this effect.

In conclusion, our findings underline that non-Markovian effects are relevant for a
deeper understanding of the appearance of stationary multipartite entanglement in a com-
mon environment. It will be seen that this is in contrast to the behavior of subsystems
coupled to independent heat baths, for which thermal relaxation dominates. An interesting

iRecall that, in some sense the property monogamy of entanglement says that if two modes have a
considerable amount of entanglement, they will share substantially less entanglement with a third mode.
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consequence of our results in the realm of quantum information may be found in setups
for quantum communication and teleportation. Considering the model studied as a simpli-
fied quantum network, our result for two-mode entanglement in the presence of a passive
oscillator implies the need for sufficient microscopic control of the reservoir influence and
interaction between all constituents.

Independent environments

Now we turn the attention to the scheme of independent environments{*} In this case, the
dissipative system consists on an one-dimensional open chain composed by three harmonic
oscillator designated as L (left), C (center), and R (right). Each of them is in contact with
an independent reservoir at an initial temperature given by 7; (with i € £,C,R). Contrary
to the foregoing scheme, they are coupled through a nearest-neighbour interaction which
is contained in the potential,

1 k + mw? —k 0
U= 3 —k 2k + mw? —k :
0 —k k+ mw3

where k play the role of a springlike coupling strength. To analyse the open-system dynam-
ics we shall consider Ohmic spectral densities with Lorentz-Drude high frequency cutoff

my;w

M) = T

where ; stands for the dissipation rate of the ith heat bath (which carries the order of
magnitude of the system-bath interaction) and w. is the cutoff frequency. For seek of
simplicity, we consider each oscillator equally coupled to its reservoir (i.e., 7; = 7 for
i € L,C,R). As a consequence of the chosen spectral density, the matrix renormalization
term takes the form f)ij = 0;j7w./2, whereas the susceptibility is given by,

Xij(t) = O(t)dymhiywie™ ",

The fact that the non-diagonal elements of the susceptibility matrix and renormalization
term are zero reflects the fact that each oscillator is interacting with an independent en-
vironment. Unlike the previous example, here all the interaction is through a springlike
coupling between £ <> C and C <> R. Let denote by {2 a characteristic frequency of
oscillators in the chain.

We find that for initial thermal equilibrium conditions, that is T; = T for i € £,C, R,
the system eventually reaches a Gibbs state with the temperature 7. To be more pre-
cise, the stationary state approaches to the Gibbs state in the limit of weak dissipative
rate, which is in agreement with the result found for the damped harmonic oscillator in
Refs. [107] and [116]. This state is wealthy in fully inseparable entanglement (class (C1)

v The microscopic model of independent environments consists essentially in coupling each oscillator to
a large set of non-intercating harmonic oscillators as occurs in the Caldeira-Leggett model.
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entanglement) for high coupling strengths (e.g. k/m2? ~ 0.1) and comparatively low tem-
peratures (e.g. kgT'/h{2 ~ 0.4). However, such inseparability is damaged for increasing
dissipative rates, so that larger values of the coupling strength k are required to establish
stationary fully inseparable entanglement. Interestingly enough, we find that the chain
ground state undergoes a structural transition between different schemes of entanglement:
its inseparability properties are downgrading to a lower class of entanglement (within the
classification (C1-C5)) as the dissipation grows stronger.

In the strong dissipative regime, the stationary entanglement between the bipartition
C|(LR) exhibits more resilience to noise than in either L|(CR) or R|(LC), which relies on
the fact that the mode C is in direct interaction with the remaining two. Although all the
bipartite entanglement finally disappears for relatively high temperatures kgT/fiw; ~ 0.5,
it is seen that a stationary fully inseparable state is recovered by increasing the strength
of the springlike coupling, what seems reasonable. Moreover, we study the influence of the
oscillator frequencies on the fate of entanglement. Doing so, we consider several arrange-
ments of the frequencies, e.g. wer = 2, and we = 2+ 0. As before, the dependence
of the quantum correlations on the oscillator frequencies, at a constant temperature, it is
seen on the fact that the dynamics of the modes becomes more insensitive to thermal noise
for higher frequency values. For instance, fully inseparable entanglement is favoured by
increasing values of 9, however very large values of the central frequency may cause an ef-
fective decoupling of the central mode from the rest as k/mwe becomes smaller. In general,
a compromise between shielding the system from thermal noise and keeping the effective
interaction between chain modes provides a rich variety of stationary entanglement (classes
(C1)-(C4)).

Finally, we analyse the inseparability properties when a stationary energy transport
flows from the left (£) to the right (R) heat bath, induced by a temperature gradient
AT'. This corresponds with the initial configuration T, = T + AT, T = T, and Tr =
T — AT. Interestingly, the temperature gradient proves detrimental to the buildup of
stationary bipartite three-mode entanglement (classes (C1)-(C3)). This occurs due to the
intensification of thermal noise at the hot end of the chain rather than as a consequence
of the stationary energy currents established across the system. This observation mainly
relies on the fact that the magnitude of the stationary energy current remains comparable
when a rich dynamics of bipartite entanglement appears (by conveniently manipulating
the frequency of chain oscillators). Nonetheless, the question about the role of quantum
correlations in the energy current deserves more attention. The next section is devoted to
this question.

Stationary entanglement and energy current

Before proceeding any further it should be mentioned that the details of the forthcoming
discussion can be found in Ref.

Given the increasing interest in quantum systems subjected to thermal non-equilibrium
conditions at the quantum level, one might naturally rises the question whether and in
which way the stationary response of the system to a temperature gradient may be influ-
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enced by the presence of (genuine) multipartite entanglement. Here, we pursue to elucidate
whether the average and fluctuations of the stationary energy current across a harmonic
chain are sensitive to the appearance of two-mode and genuine tripartite entanglement in
the system. In the realm of quantum networks composed by spin systems, there have been
important progresses which indicate, on one hand, that the presence of bipartite entangle-
ment does not play an important role on the excitation transport [199], and on the other
hand, they show a strong correlation between quantum coherence and transport efficiency
[255]. We center the analysis in the same setup as before, but now the initial configura-
tion of temperatures is given as follows T, =T + 0T, Te =T + AT, and Tr =T — 6T.
Notice that there are now two temperatures gradients: 07 establishes a stationary energy
transport along the chain, whereas AT permits us to induce a rich variety of quantum
correlations between chain oscillators.

Let us denote by 5@] the energy current from the jth oscillator to the ith oscillator.
Looking at the Hamiltonian of the chain, one obtains the following expressions for the
energy currents between oscillators,

re(t) = g (({et) pelt)} — {2r(0) pr()} + ({Felt) pr()} — (#x().pe(0)}) ).

. J
~~

Correlation Terms

(2.33)
. kg R . . . . . .
Jee) = 1 ({ae(t), pe(®)} — {ae(t), pe(®)} + (L), he(t)} - {ae().pe(®)}) ).
Correlation Terms
(2.34)
whereas the total energy current through the chain is given by
J(t) = jre(t) + jec(t). (2.35)
From here it is immediate to obtain the average of the energy currents, e.g.
N k
<]ij> = % (Oﬂﬁjpj (tv t) - C$ipi<tv t) + (Cﬂﬁjpi(t’ t) - Cxipj <t7 t))) ) (2'36)

where the two-time correlations functions, e.g. C,,,(t,t), are obtained from Eq.(1.52)
which was illustrated in Sec|I.3.2] Analogously, the fluctuations of the energy current can
be expressed from the current-current correlation function,

Kyt 470 = 5 ({5t 470,50} = (st + 7)) Gin)) . 237)

Interestingly, from the linear response theory it is known that Eq. may characterize
the response of the (energy or electric) transport to an external weak field [203]. Hence,
we could expect that it may gauge a change in the average properties of the energy current
due to the appearance of entanglement. Thanks to the Gaussian statistics of the stationary
state, it is easy to show that the current-current correlation functions will be also given in
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terms of the above mentioned two-time correlations functions defined in Eq.. It is
important for the forthcoming discussion to realize that the average energy current depends
linearly in such correlation functions, while the current-current correlation exhibits a non-
linear dependence. Finally let us mention that we have performed the subsequent study
for Ohmic and super-Ohmic dissipations, which are characterized by the spectral densities
JOM (W) = amyw/2e /% and JEOM (W) = mmyw?/2w.e “/“, respectively. Here, it
should be pointed out that, as a consequence of this choice, the non-Makovian effects will
be more pronounced in the latter than in the former. Further, notice that K, ; (t +7,t)
will return the same value for an arbitrary choice of the initial time ¢ since the system is
in a stationary state.
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Figure 2.4: Figures (a) and (c) show the criterion 7y 5 as a function of the temperature
gradient for the Ohmic and super-Ohmic dissipation, respectively. Analogously, figures (b)
and (d) illustrate the current-current correlation of the energy current across the chain as
a function of time for Ohmic and super-Ohmic dissipation, and for different values of the
temperature gradient AT": the solid-black line depicts K ;;(7,0) when the system is genuine
entangled (AT/T = —0.95), and similarly, the blue-dashed line illustrates K ;;(7,0) when
the system is bipartite three-mode entangled (AT /T = 1.9). The red-dot-dashed line cor-
responds to the case when the system is likely separable in all the three-mode bipartitions
(AT/T = 4.3).

The expressions for the energy current exhibit an explicit dependence on the correlations
between position and momentum operators of chain oscillators (see Egs. (2.33) and ([2.34).
As the quantum correlations shared by the system modes are partially encoded on those
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correlations, one might expect that the energy current would also display a counterpart
feature. If this were the case, one could expect that the energy current would experience
an observable change in its average properties, determined by Egs. (2.33)-(2.37), when
entanglement is present in the chain. Hence, the performed investigation has essentially
consisted on an extensive numerical analysis of the average properties of the energy current
when a rich variety of entanglement emerges by conveniently manipulating AT'. Let just
illustrate here the results for the current-current correlations (or equivalently, fluctuations)
of the energy current across the chain.

Figures (a) and (b) illustrate the bipartite three-mode (k = 2) and genuine tri-
partite (k = 3) entanglement measured by the previously exposed criteria 7, 3 when the
temperature gradient AT changes. In the low temperature and strong coupling (between
chain oscillators) regime, the three-mode system exhibits genuine tripartite entanglement,
though this feature rapidly disappears for positive values of AT. A similar behaviour occurs
for two-mode entanglement. Interestingly enough, the system is still bipartite three-mode
entangled for relatively high temperatures gradients (AT /T & 2). Notice that we recover
practically the same results concerning entanglement for both Ohmic and super-Ohmic
dissipation.

In parallel, figures (c) and (d) illustrate the current-current correlation as a func-
tion of time when the system features genuine tripartite entanglement (see black-solid line
in figs. (2.4) (c) and (d)), and bipartite three-mode entanglement (see blue-dashed line
in figs. (2.4) (c) and (d)). Clearly, the energy current fluctuations exhibit an oscillatory
behaviour with several peaks at short times 7. This should be effectively suppressed at
times h/2mkpT < 7T according to the results of Ref.[I37], where it was shown that at
low temperatures the two-time correlations functions (given in Eq.(1.52)) for the damped
harmonic oscillator (at a temperature T) display an exponential decay in the long time
limit.

In the figures we appreciate that there is no a substantial change on the current-current
correlations when the system evolves from genuine tripartite to bipartite three-mode en-
tangled: such oscillatory behaviour is essentially the same in both situations. The only
difference is in the amplitude of the oscillations, which is attributable to thermal fluctua-
tions present when the temperature gradient increases. Moreover, one may observe that
such characteristic oscillatory behaviour of the fluctuations remains even for values of tem-
perature gradients (AT /T 2 4) when the system is expected to be separable in all the
three-mode bipartitions (see red-dashed-dot line). The comparison of the current-current
correlations in different parameters regimes, in which the system features various types
of multipartite entanglement, shows that the fluctuations of the energy current along the
harmonic chain are apparently insensitive to the existence of tripartite genuine or bipar-
tite three-mode entanglement. Importantly, we have found similar results for the average
energy current across the chain in presence of two-mode entanglement and even general
quantum correlations measured by discord, which point out that the average properties of
the energy current are insensitive to the emergence of entanglement, or equivalently, they
are unable to reveal the quantum correlations established in the harmonic chain. Further-
more, it should be mentioned that the behaviour of these average properties are determined
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by the temperature gradients, and it can be explained without resorting to the existence
of quantum correlations.

If entanglement were exclusively responsible of the behaviour of the average and fluctu-
ations of the energy current, we may expect that the latter would witness the appearance
of the former. In this way, we argue that our findings related to the mean values of the
energy current can be, at least, qualitatively understood by recalling that entanglement
estimators typically exhibit a non-linear dependence on the density operators as was exten-
sively illustrated in Sec[I.2] and thus they will express in principle as non-linear functionals
in terms of the aforementioned two-time correlations functions (e.g. see logarithmic nega-
tivity). That is to say, entanglement features a non-linear dependence in the correlations
appearing in Eq.(2.36) contrary to the energy values (j;) (with ¢,j € £, R,C), such that
the latter are unable to manifest themselves entanglement. Though we do not appreciate
the appearance of entanglement in the fluctuations (see figure (2.4))), this argument do not
close the door to the current-current correlation could manifest the appearance of quan-
tum correlations, because its expression depends non-linearly on the correlation functions
between all the system oscillators. In essence, such argument rests on the idea that the
reliable observation of entanglement relies on the ability to measure non-linear properties
of the quantum state [168; [169].

In summary, we do not observe that the presence of (non-equilibrium) entanglement
has significant consequences in the average properties of the energy current across the
chain. We also find the same scenario when the system oscillators share other quantum
correlations, such as discord, instead of entanglement. In overall, the mean value and
fluctuations of the energy current show little structure (these is mainly determined by
the temperature gradients) in comparison with the rich variety of quantum correlations
exhibited by the system oscillators: two-mode discord and entanglement, bipartite three-
mode and genuine tripartite entanglement. These observations find partial support on
the fact that the average energy currents exhibit a linear dependence on the two-time
correlation functions which carry the quantum correlations. Such dependence is more
intricate in the case of the fluctuations, which makes more complicate to elucidate their
possible relation to quantum correlations. Interesting enough, the results obtained for
quantum correlations are practically the same whether the system suffers Ohmic or super-
Ohmic dissipation, suggesting that non-Markovian effects do not induce substantial changes
in the stationary quantum correlations compared with the Markovian case.
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Chapter 3

Conclusion and prospects

Our imagination is stretched to the utmost,

not, as in fiction, to imagine things which are not really there,

but just to comprehend those things which are there.

-Richard P. Feynman (Extracted from “The Character of Physical Law”)

Let us recall that we started the present dissertation from the premise that a meaningful
(theoretical) description of entanglement demands, firstly, the elaboration of easy-handling
estimators of quantum correlations, and secondly, a reliable treatment of the open-system
dynamics which makes attainable the analysis of entanglement.

To sum up, we have reported the development of a readable (theoretical) tool which
is able to characterize multipartite entanglement in continuous-variable states, as well as
the low-energy dynamics of continuous-variable entanglement in quite general dissipative
scenarios (ranging from a common environment to independent environments). To be more
precise, we list the main results drawn from the research program of this thesis:

1. A hierarchy of separability criteria for multimode continuous-variable systems is pro-
posed. They allow to study in a unified way the k-partite entanglement of broad
classes of Gaussian and non-Gaussian states. From this criterion follows that Gaus-
sian entanglement in two-mode and pure three-mode states can be completely as-
sessed by performing local homodyne measurements.

2. Using the foregoing hierarchy, we found that quantum correlations in certain non-
Gaussian states are as resilient as in Gaussian ones under purely dissipative effects:
the entanglement encapsulated in the non-Gaussian degrees of freedom of the Wigner
function shows an exponential decay. In general, the bipartite multimode entangle-
ment gets more robust with an increasing number of constituents, though it tends to
disappear in the long time limit.

3. Nonetheless, a highly non-Markovian interaction mediated by a common environment
is able to induce stationary Gaussian two-mode and tripartite entanglement between
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uncoupled oscillators. Although such environment-induced interaction represents an
effective many-party interaction with a spatial long-range feature, the generated mul-
tipartite entanglement has a finite size in the spatial degree of freedom. Remarkably
enough, we found that the presence of a passive oscillator is detrimental for stationary
two-mode entanglement. Our findings suggest that the environment-induced entan-
glement mechanism corresponds to an uncontrolled feedback which is predominantly
coherent at low temperatures and for moderate oscillator-environment coupling as
compared to the oscillator frequency.

4. We also found that a compromise among thermal non-equilibrium conditions, oscilla-
tor frequencies, and springlike couplings yields a rich variety of stationary tripartite
entanglement supported by a harmonic chain. These results apply to regimes of low
and comparatively high temperatures, as well as weak and relatively strong dissipa-
tive rates. Interestingly, it was shown that the entanglement structure of the chain
ground state is degraded as dissipation grows: it is downgraded from fully insepa-
rable to bipartite three-mode entangled. Furthermore, we found that establishing
stationary energy currents across the harmonic chain does not favour the buildup of
stationary quantum correlations, instead, a temperature gradient eventually destroys
the entanglement shared by the system oscillators as a consequence of the growth of
thermal fluctuations.

5. More precisely, an extensive numerical analysis indicates that the stationary mean
value and fluctuations of the energy current remain insensitive to the emergence of a
rich variety of quantum correlations. Contrary to most entanglement estimators, the
average energy current depends linearly on the correlation terms (between position
and momentum operators) which carry the quantum correlations. We argue that
this observation partially supports the numerical findings. Interestingly, the results
obtained for quantum correlations are practically the same for Ohmic or super-Ohmic
dissipations.

In overall, the above results underline that the behaviour of entanglement under dissipa-
tion may be very different when we pass either from two- to multi- mode systems, or from a
common to independent environments. The physics behind the entanglement phenomenon
goes non-linearly with the number of system constituents. This feature reflects itself in
the dynamics of multipartite entanglement, and ultimately may become the entanglement
evolution under dissipation somehow unexpected. As an example of the latter aspect,
we observed that, instead to enrich the entanglement shared by the oscillators, a passive
oscillator in a common environment is harmful for the appearance of two-mode quantum
correlations. On the other hand, our findings concerning independent environments indi-
cate that the stationary entanglement is barely changed by non-Markovian effects (in such
dissipative scenario) as compared with a Markovian evolution, in which thermal relaxation
dominates. In contrast, the non-Markovian character of the open dynamics is crucial for a
deeper understanding of stationary multipartite entanglement in a common environment.
At this respect, an still open question is how multipartite entangled states larger than
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tripartite would be influenced by non-Markovian effects. As a follow-up project, it is ap-
pealing to confirm the tendency to separability between uncoupled oscillators predicted by
the above results, which is that the two-mode entanglement and eventually bipartite mul-
timode entanglement will disappear, and further, how this feature influences the quantum
correlations between direct interacting oscillators. This will likely help to design better
strategies to shield entanglement from the dissipative effects since we have gained a more
accurate description of the environmental influence.

It is important to emphasize that we have performed an exact treatment on the open-
system dynamics of the harmonic oscillators, so that our results are essentially grounded
in the physical reasonable statements concerning the microscopic model which describes
the environment and system-environment interaction. In spite of the fact that we have
carried out the study for specific configurations of the environment and (linear) interac-
tion between oscillators, one must expect to see an analogous dynamics of entanglement
in other dissipative scenarios, since the emergence of quantum correlations in linear CV
systems composed by a large (and finite) number of constituents essentially stems from
the proximity of the system to the ground state.

Nonetheless, the study of non-linear CV systems deserves further attention. A promi-
nent example is given by the recent optomechanical setups, which represent a non-linear
coupling between both a light and mechanical degree of freedom. So far the lack of readable
estimators for non-Gaussian entanglement (in highly mixed states) has practically limited
the study of quantum correlations in such setups to the linear regimen for which the state
follows a Gaussian evolution. It would be of particular interest to apply the entanglement
estimator developed in this thesis to analyse the dynamics of non-Gaussian entanglement
in this kind of systems in order to see, for instance, whether they manifest resilience to dis-
sipation and thermal noise. From the above results, we may anticipate that the quantum
correlations encoded in the non-linear degrees of freedom may be as robust as the largely
explored Gaussian entanglement.

Finally, we would like to remark that all above investigation lies on the crossover of
quantum information and open quantum systems theory. Nonetheless, entanglement is a
rather general feature of quantum systems, and thus, it may be related to others fields of
physics. For instance, it has been shown that quantum entanglement may serve as an order
parameter for characterizing (quantum) ordinary [183;204], or topological phase transitions
[142; 1535 62]. These examples point out that the symmetries of the ground states of matter
are intimately related to their entanglement structure, which is in agreement with the fact
that equivalently entangled states share certain symmetries. Importantly, these recent
results also support the thinking that a deeper understanding of quantum entanglement
may come from the study of quantum correlations in the physics of many-body systems.

Remarkably, novel research on quantum simulation in cold atoms is paving the way
to study fundamental aspects of condensed matter, and in general, about Physics [237].
The success of the latter relies on the fact that (as much in the sense of the present
dissertation) the effective low-energy dynamics of atoms in optical lattices, forming a many-
body lattices systems, coincides with that of a many-body system, or equivalently, an
interacting quantum field theory. Interestingly quantum simulation with artificial gauge
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fields promises to access a new physical phenomena [102], for instance the creation of
effective magnetic fields for photons [239; [81] or the negative refraction of light in photonic
resonator lattices [80]. Then it is expected that future investigation on entanglement will
likely concern on the dynamics of quantum correlations supported by continuous variable
systems driving by artificial gauge fields. However, an attempt to do this will be stricken
by certain issues, on one hand, the lack of experimental-friendly criteria to characterize
entanglement, and on the other hand, the open-system treatment becomes involved with an
explicit time-dependence of the system-field interaction. We hope that the work presented
here may help to stimulate further research in this direction.



Chapter 4

Compendium

An expert is a man who has made all the mistakes which can be made,
in a narrow field.
-Attributed to Niels Bohr
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study in a unified way the k-partite entanglement of broad classes of Gaussian and non-Gaussian states. With
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I. INTRODUCTION

Entanglement has proven to be a central resource in
quantum information processing using either discrete or
continuous-variable (CV) systems (such as field modes of
light, nanomechanical oscillators or cold atomic gases) [1].
Any attempt to create an entangled state is limited by the
residual noise and decoherence, and proper tools to verify
entanglement are needed to evidence the success of an
experiment. In CV systems these tools can roughly be divided
into those that apply to Gaussian states [2-6] (see [7] for
a complete review), and those that apply to more general
states [8,9]. Most tools entail an optimization of an entropylike
functional like a convex roof construction [10,11], the proper
choice of a set of observables that witness the entanglement
for a broad class of states [12—18], or the suitable selection
of a finite [19-24] or infinite [25,26] series of inequalities
(concerning moments of the quadrature variables) which are
mainly based on the well-known criterion of positive partial
transposition (PPT) [1,27]. The need to optimize or accurately
choose a tool in accordance with the specific properties of a
quantum state makes the characterization of entanglement a
computationally intricate problem [28], which becomes even
more involved as the mixedness of the state or the number of
constituents of the system grows.

Entanglement shared by two subsystems has been realized
experimentally in various systems [29], but increasing the
number of entangled components is a big experimental
challenge, such that the preparation of states with more than
bipartite entanglement has been achieved in few systems
only [30-32]. The limitations due to noise and decoherence
typically get increasingly severe with the growing number
of entangled subsystems. Under given imperfect conditions it
might not be possible to create a genuinely n-partite entangled
state in an n-partite system, whereas the preparation of a
bipartite entangled state might still be feasible. Tools to verify
bipartite or genuine n-partite entanglement have been explored
in detail [33], but tools that analyze the range in between
have been established only recently [8,34—37]. Only those
tools, however, will help us to gauge experimental progress
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and eventually achieve the creation of genuine n-partite
entanglement.

We build up here on a hierarchy of separability criteria
that detect k-partite entanglement in n-partite discrete sys-
tems [36], and extend this approach to the case of contiuous-
variable systems. Based on this hierarchy, we present versatile
hierarchies of separability criteria that apply to Gaussian
and non-Gaussian states such as photon-added or -subtracted
states [38] that display particularly strong nonclassical corre-
lation properties [39-44].

The paper is organized as follows: We start with an
introduction to CV systems and hierarchies of separability
criteria in Sec. II. The formulation of these hierarchies for
CV systems is presented in Sec. III, which is accompanied
with a discussion of the similarities with the PPT criterion
(see Sec. III A). We apply these hierarchies to Gaussian and
non-Gaussian states in Sec. IV, and the possible experimental
assessment of the criterion is discussed in Sec. V.

II. BASIC DEFINITIONS

A. Phase space representation

The Hilbert space H, of a quantum system composed
by n modes results from the n-fold tensor product of the
single-mode Hilbert space H; = L*(R), and all the physical
information about the system is encoded in the density operator
p. The mth mode is described in terms of the canonical
operators, i.e., position 0,, and momentum P,,. Equivalently
it may be described by their dimensionless counterparts §,, =
OuvMSQ/T and p,, = P,/~/MSQF defined in terms of the
frequency 2 and and mass M. From now on we will use only
the dimensionless operators and define the operator-valued
vector & = (41, P1s.-sqns Pu)7 whose elements satisfy the
canonical commutation relations [%,,,%;] = —i[J, ], With
the symplectic matrices,

L=@u ad 11=<(1’ _01),

m=1

of the composite system and a single subsystem.

It is convenient to describe a continuous-variable system
in terms of the real symplectic space (R*",J],), i.e., phase
space [7,27], rather than the infinite dimensional complex
Hilbert space H,,. Quantum mechanical operators A are then

©2014 American Physical Society
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replaced by their Weyl symbol,

2n
W (x) :/ d=§ eixTJ,,ETr[Aefifc”JnE], e))
r» 2m)™

i.e., functions Wy (x) of classical phase space variables x =
(q1,p1s - - - +qn>Pn) [45]. The Weyl symbol of a density matrix
p is typically referred to as the Wigner function, and it is

denoted by W(x) [46].
The Wigner function W(x) of a Gaussian state p has the
particularly simple form [46],
e~ 1C=D VI (x-5)

Qr)y /det(V)

where the vector ¥ = Tr(/X) contains the expectation values
(first moments) of the dimensionless phase space variables,
and the covariance matrix V is defined by

Vi = 5Te(p{[R] — [£]n,[£] — [E]),

where {.,.} denotes the anticommutator. In this case, W
is completely characterized by the vector ¥ and the real
symmetric 27 x 2n matrix V, i.e., by 2n% + n real param-
eters. According to the Heisenberg uncertainty relation, the
covariance matrix of any quantum state must satisfy V >
%J » [27,46], which implies the positive definiteness V > 0.
Since the entanglement of the system is invariant under local
unitary displacements [27], we shall take the first-moment
vector equal to zero (¥ = 0) from now on.

Here, we are concerned with the class of entangled states
p whose Wigner function may be expressed as the product
of a polynomial function F(x) and the Wigner function of a
Gaussian state with the covariance matrix V, i.e.,

W(x) =

F(x)e 2V '
Qr) /det(V)

Direct examples of this kind of state are those states which
are generated by a series of photon-creation [47] or photon-
subtraction operations [44,48,49], or more general, a coherent
superposition of both [20,50]. We shall refer to the latter
as photon-manipulated states. In that case, the degree of the
polynomial corresponds to the number of such manipulations
that need to be applied to a Gaussian state to arrive at the
state in question. We should, however, stress that F(x) may be
also an analytic function with domain in all the phase space (a
function with a convergent Taylor series), such that the set of
non-Gaussian states with Wigner function (2) may comprise a
broader class of CV states than the photon-manipulated states,
as, for example, Schrodinger cat states.

W(x)= @)

B. Hierarchy of separability criteria

A pure state of an n-partite quantum system is considered
n-partite entangled if it cannot be written as a simple tensor
product of two state vectors each of which describes a part
of the subsystems only. If an n-partite quantum state cannot
be written as a simple tensor product of k;-partite entangled
k;-partite state vectors with k; < k, then the state is k-partite
entangled.

A mixed n-partite state p is considered k-partite entangled
if it cannot be represented as an average over projectors onto

PHYSICAL REVIEW A 90, 052321 (2014)

pure states that are less than k-partite entangled, i.e.,

k—1
p# Y [an@lwies)
j=1

; (3

where |\IJ;7;) are j-partite entangled n-partite states, w;(a)

are positive functions that satisfy ZI;;} f dpj(a) =1, and
the summation is restricted to values j < k. Physically, this
definition means that a k-partite entangled state can be
realized by mixing different states that are at most k-partite
entangled, but since the states that enter this average may
carry entanglement between different groups of subsystems, a
k-partite entangled n-partite state is not necessarily separable
with respect to a certain bipartition.

Our starting point to detect k-partite entanglement is
a hierarchy of separability criteria 7 ,. It is based on a
comparison between several matrix elements of the density
operator in question with respect to some product states. As
shown in [51], genuine n-partite entanglement is identified
through the condition,

1
7,(p) = [{P1lo]|P2)| — Z V(®1jlol®1;) (P20l P2))
@ J=t i@
> 0, 4)

where |(I>1> = ®:;=1 |(pm> and |¢)2) = ®Zz=l |§0n+m> are two
product vectors, and the vectors |®};) and |Dy;) are defined
in terms of the inequivalent possibilities to divide the n
subsystems into two groups: There are 2"~! — 1 inequivalent
such bipartitions, each of which that can be characterized by
a vector v; whose n elements adopt the values O or 1, and the
groups are defined by the subsystems associated with the value
0 and 1, respectively. In terms of these vectors, we have the
definition,

101) = Q) |omrnton): 1927) = Q) [@msn-nivy1). )

m=1 m=1

that is, the vectors |®,;) and |®,;) are obtained from the
vectors |®;) and |®,) through a permutation of state vectors
|@m) Wwith |@,4.,) that belong to those subsystems that are
grouped together in the jth bipartition.

If a pure state p = |W) (V| is separable with respect to the
Jjth bipartition, then f(p) = f;(p). Since the f;(0) are non-
negative, this implies that t, is nonpositive. As this reasoning
holds for any bipartition, and, in addition, t, is convex, 7, is
indeed nonpositive for any state o that can be decomposed into
biseparable pure states.

A fully separable pure state is biseparable with respect to
all bipartitions; accordingly, one may introduce the function
Tin(P) = fl0) — (2" = 17! Zf:ll_l fi(0), and a positive
value of 1, identifies a mixed state to be at least bipartite
entangled. In the same fashion, one can introduce scalar factors
a"" > 0[36] forn > k > 2 such that

wea(P) = (@)= Y_af" fi(0) 6)

J

can be positive only if p is at least k-partite entangled.

052321-2
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In order to detect entanglement properties as reliably
as possible, a suitable choice of probe vectors |g;) is in
order. In practice, it is desirable to find an optimal set of
normalized such vectors that maximize 7 ,. Advantageously,
the number of probe vectors scales only linearly with n,
but a full optimization over the infinite-dimensional vectors
without simplifying assumptions does not seem to be a fruitful
endeavor. Similarly to the concept of Gaussian entanglement of
formation [10], we therefore require that all probe vectors are
Gaussian. Each Gaussian probe state |¢,,) is then characterized
by it first and second moments,

Xy = (Qm,ﬁm)v and (7)

o _[ow o .

mn=1 " | 3)
Oxp”  Opp

with det(Z,,) = 1/4, o™ > 0 and al(,’g) > 0. In the following
we will identify choices for these parameters that yield strong
criteria. Remarkably enough, this allows us to reproduce the
PPT criterion for two-mode and pure three-mode Gaussian
states. Beyond that, even with this simplifying assumption,
Eq. (6), is able to detect non-Gaussian entanglement [20],
for which criteria only based on the second moments of the
quadrature variables fail. Both observations demonstrate that
assuming Gaussian probe states makes the present hierarchy
an easily accessible but strong tool.

III. HIERARCHIES OF INSEPARABILITY CRITERIA
FOR CV SYSTEMS

The 7, are parametrized by the first and second moments
of the Weyl symbols of the operators | D) (D[, |DP2)(D,|,
|®1;) (D1, and |Dy;)(P,;|. Let us denote their vectors of first
moments by X¢,, Xo¢,, X ®j» and X @y and their matrices of
second moments by Xo,, Xo,, Xo,;, and X, Since also the
matrix element (] p |P,) enters the definition of t ,, it is
convenient to introduce also moments,

Jdx x Wia,0,(x)
X<I>21 = n >
[ d*x Wig,,(x)

and X4, defined analogously, where the explicit normaliza-
tion is introduced because the overlap between |®;) and |D;)
is typically not unity.

As shown in Eq. (A6) in Appendix A, X4, can easily be
constructed from the covariance matrices X,, defined in Eq. (8)
via the prescription,

®

Zon =B Zmnim: (10)

m=1
with
2:m + Er1+m
2det(X,, + XZp4m)
Ed [ Bin = Znimd [ Eu
2det(X,, + Xy4m)
The first moments are then given by [52]
Xo, +Xo,
2

EWL,VH—WI =

Xo, = +iXa, Jn(Xo, — Xo,). 11

PHYSICAL REVIEW A 90, 052321 (2014)

As it is extensively illustrated in Appendix A, one may
express T, in a rather compact form,

N e ? f¢2| k) i
Ten(P) = m - ;a; )e 4 /fqn;,-f@z;,
(12)
with
_ e KT (V' +2) )Pl
o VI, + V) ’

and K = (2 + X,'X,) for u = ®;;,®;,®,;. The quanti-
ties,

13)

a =Re(X], B! Xo,) + (Xo, — Xa,) JTRe(Za,,)
x Jn(Xo, — Xa,), (14)
and
Bi = X5, To Xoy, + X5, To) Xa,,, (15)

are quadratic functions of the first-moment vectors, and Re
denotes the real part. We provide the expressions for the vectors
Xo,, Xo,, Xo,;, and Xo,;, as well as for the covariance
matrices Xg¢,, Xo,, Xo,;, and Xg,, in Egs. (B1)-(B38) in
Appendix B.

The general expression Eq. (12) holds for any state whose
Wigner function can be cast in the form of Eq. (2). If F(x) =1
inEq. (2),1i.e.,if p is Gaussian, then f, defined in Eq. (13) takes
the simpler form,

exp XD (VI +2,) ' EX,)
Jdet(Z, ¥ V) '

In order to identify general properties of the states |®;) that
yield potentially maximal values for 7 ,, we will make the
assumption,

(G) _
1O =

Yo, = 2o, = X, (16)

i.e., we assume that |¢,,) and |@,4,) (form =1, ...,n) have
the same covariance matrix. With this assumption Eqgs. (14)
and (15) reducetoa = o’ and 8; = ,8} with

/ T _
By =2 + }(Xo, — Xo,) PTEZ7'P;(Xo, — Xo,).
and
o =1/4Xo, + X)) T (X0, + Xo,).

with

n
P =Pni, (17)
m=1
where I is the two-dimensional identity matrix, and v ;, which
is defined in the context of Eq. (5), characterizes the bipartition
Jj. With the help of the following identity valid for quadratic
matrices [53],

1

=yl lv'l4+xHx !, 18
STV ( +X7) (18)
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one may easily show that the hierarchy 7; , resulting from the
assumption Eq. (16) can be expressed as

o3 KXo, +X0)) iy (Xo, +Xo,)

h ns
Jaet(z + V) .

where hy , is a function which does not depend on (X¢, +
X¢z)’ i.e., hk,n = hk,,,():,chl — Xq;z).

Since X and V are positive definite, the exponent is
nonpositive, such that r;, adopts its maximum only if
Xo, + Xo, =0. That is, assuming Gaussian probe vectors
and Eq. (16) permits one to perform an essential part of the
maximization of 1, analytically, which eases the reliable
estimation of T;, = maxrk » substantially. With this, we
arrive at

7 (P) =

ﬁ,n = max fk.m
X.x

with
2X’J,,’EI+VIJ,, . e —3XT(P) 55 PiX
Tn(P) = —F———— —
k A/ det(E + V Z det (2 + V)
(19)

which can readily be optimized numerically.

A. Resemblance to the PPT Criterion

Since Eq. (19) is the result of several restrictions that
potentially weaken the hierarchy, a critical assessment of its
strength is in order. Since most of the existing separability
criteria are concerned with separability with respect to a
given bipartition, we focus for the moment on this question.
According to Eq. (19), the inequality,
_oxT T

—3XT(P) 55 P X >e e X

is satisfied for any mixed Gaussian state that is biseparable
with respect to the bipartition j. Since this scalar inequality
is satisfied for any choice of X, it implies the matrix

inequality [54],

4gT !

nW]n /(P/)

SV —P;. (20)
In the following, we will show that this permits us to recover
the ppt criterion for mixed two-mode and pure three-mode
Gaussian states, when all the probe states |g,,) are chosen
to be pure infinitely squeezed states, with covariance matrix
with o5, — 0 (Vm) for squeezing in momentum, or o, — 0
(Vm) for squeezing in position. It is worthwhile noting that
if inequality (20) is violated in all the bipartitions, then g is
genuine multipartite entangled.

1. Two-mode case

The covariance matrix V of any two-mode Gaussian state
can be expressed in the standard form (C1), in terms of four
coefficients a,b,c,d € R [7].

According to the ppt criterion, a two-mode Gaussian state
is separable if and only if the symplectic eigenvalues {¥, ¥, } of
the partial transpose of the covariance matrix V ; with respect

PHYSICAL REVIEW A 90, 052321 (2014)

to the bipartition j satisfy [7,21]
b1,7 > 3. @n

These are directly obtained from the roots {+i Dy, £ iD,} of the
characteristic polynomial of the matrix J 2T V ;, which is given
by

M+ A+ AT =0, (22)

with A = J(a® +b* — 2cd), A3 = {(ab— *)ab —d?),
which are the symplectic invariants.

On other hand, inequality (20) in the two-mode case may
be translated into the eigenvalue problem of the product
matrix [54],

Z =4P\(Z+ V)P JIE +V Y (23)

such that inequality (20) is not violated as long as all of the
eigenvalues {A{;i =1,2,3,4} of Z; are non-negative, i..,
AD>1 Vi

Using the standard form (C1) and substituting X, by the
covariance matrix of a pure squeezed state [see Eq. (C2)], Z;
results in the matrix Z,(r) defined in Eq. (C3) whose entries are
given in terms of rational functions in the squeezing parameter
r, as discussed in more detail in Appendix C.

In the limit of infinite squeezing in momentum (» — 0), we
find that Z, [see Eq. (C4)] has 1) = 1'? = 1 as the doubly
degenerate eigenvalue, and the other two are given by the
characteristic polynomial,

A2 - A2 s +A3=0. (24)
(5) -3(5) - ae=

Since the roots of Eq. (24) are related with the roots of
Eq. (22) through the expression A = =+i\/A_ /2, the conditions
AP > land A > 1are indeed equivalent to Eq. (21). That is,
given the optimal choice of probe states with |¢,) = |@y4m)
(m =1, ...,n) and infinitely squeezed covariance matrix, we
recover exactly the necessary and sufficient PPT criterion
from the inequality (20). It is straightforwardly to show that
this assertion also holds if we consider infinite squeezing in
position (r — o0) [see Eq. (C5)].

2. Three-mode case

The foregoing discussion sets the stage of the procedure
that one has to follow in order to show the analog result for
pure three-mode Gaussian states. In this case, the comparison
between the inequalities (20) and (21) has to be in terms of
the three possible bipartitions of the system, such that the
characteristic polynomial of the matrices Z; (j = 1,2, 3) leads
to the characteristic polynomial of the matrlces JIV;. We
defer the details of the proof to Appendix C.

We may apply the same procedure to study the case
of mixed tripartite-entangled states, but one finds that this
assertion is no longer true. For mixed three-mode Gaussian
states inequality (20) cannot be expected to reproduce the
PPT criterion, since PPT basically discerns fully inseparability
in the case of mixed states [5,32], whereas 33 identifies
genuine tripartite entanglement. However, we found that 75 3
still detects entanglement of the vast majority of three-mode
bipartite entangled states.
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IV. EXAMPLES

‘We now turn the attention to illustrate how expression (12)
provides reliable estimates of k-partite entanglement in Gaus-
sian and non-Gaussian states.

A. Mixed genuine tripartite entangled states

Let us start analyzing the inseparability properties of a
mixed tripartite Gaussian entangled state, whose covariance
matrix may be expressed as follows,

V =Vguz +gl3, with g2>0, (25)
where I, = @) _, I, and
a 0 —c 0 — O
0 b 0 c 0 c
Il—c 0 a 0 — O
Veuz = 1o ¢ 0o » 0 o] (26)
- 0 — 0 a O
0O ¢ O ¢ 0 b
with
a = [e* +cosh(2r)], b= [e™ + cosh(2r)],
c= %sinh(Zr),

the covariance matrix of the continuous-variable analog of the
GHZ states [5]. Here, g plays the role of a mixing parameter,
while » > 0 is the squeezing parameter. We compare the
hierarchies 1, 3 and 73 3 with the PPT criterion applied to the
bipartition 1|23 [5].

As one can see in Fig. 1, 733 detects that this state
is genuinely tripartite entangled in a substantial part in
the parameter regime, and for sufficiently strong squeezing,
even substantially mixed states are still genuinely tripartite
entangled. States that are too strongly mixed to be genuinely
tripartite entangled can still be identified to be bipartite
entangled via 1 3, which detects nearly as many states as the
ppt criterion.

0.4

o
w

Squeezing r
o
n

o
o

Bipartite Separable

0.0
0.00 0.05 0.10 0.15 0.20 0.25 0.30

Mixing g

FIG. 1. (Color online) Density map of the inseparability proper-
ties of the Werner-type GHZ state defined in Eq. (25) in terms of the
mixing g and squeezing parameter r. The black solid line depicts the
border between bipartite entangled (blue region) and separable states
according to the PPT criterion. Within the former, the blue dashed
and orange dot-dashed lines delimit the region of the states for which
the hierarchies 7,3 and 75 3 return positive values, respectively.
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FIG. 2. (Color online) 7,,(p) as a function of the amplitude |«|
for the CPS-TSVS defined in Eq. (27) withr =0, a = Ia\e"JT?, and
B=1Ble'T.

B. Coherent photon-added or -subtracted two-mode states

To demonstrate the performance on non-Gaussian states we
investigate the inseparability properties of coherently photon-
subtracted two-mode squeezed vacuum states (CPS-TSVS).
These states derive from the locally squeezed two-mode
vacuum state by applying the operator (ad; + Ba»)", where a;
(I = 1,2) is the photon-annihilation operator of the /th mode
and || + |8]> = 1 [50]. For simplicity, we shall consider the
states obtained for # = 1 and symmetrically squeezed in both
modes. The covariance matrix V and the polynomial function
F that define the Wigner function via Eq. (2) take the form,
V = ldiag(e " ,e¥ e e%"), and

F(x) = 2cosh®(r)((x} + p})lel® + (x3 + p3) 18I
+2Re((x1 — ip1)(x2 + ip2)a*B))
+2sinh’() ((x7 + pi)lel® + (53 + p3) 1B
+2Re((x1 + ip1)(x2 — ip2)e* B))
— 4cosh(r) sinh(r)(lapy + Bpal* — laxi + Bxa|*) — 1.
@7

In [20] it is shown that the PPT criterion based on the second-
order correlations fails to unveil the entanglement of this state
for r = 0, what makes this state particularly interesting to
demonstrate the strength of the hierarchy. Remarkably enough,
Fig. 2 shows that expression (12) is able to detect this purely
non-Gaussian entanglement in agreement with [20]. Figure 2
corresponds to a specific choice of the phases of the complex
parameters « and B, but we found 7, , to perform equally well
for any other choice of phases.

C. Time evolution of an initially non-Gaussian entangled state

Finally, the tractable form of the hierarchy (12) also permits
one to study the time evolution of the k-partite entanglement
under the influence of environmental noise. Let us investigate
how the two-mode non-Gaussian entanglement of the fore-
going example is influenced when each mode is in contact
with an independent heat bath. To be specific we assume the
environmental coupling of both modes to be modeled with the
same rate y, and both baths to have the same temperature
characterized by the mean photon number Ny. The open
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system dynamics is governed by a Fokker-Plank equation in
the interaction picture [see Eq. (D1) in Appendix D], which
has been extensively employed to study the effects of losses
and thermal hopping in CV systems [55].

The time-dependent Wigner function is obtained from the
Green function of the Fokker-Plank equation (see Appendix D
for further details). In the interaction picture, one finds that the
covariance matrix evolves according to

V() =e(®)+0a(2), (28)
with
e V!
e(t) = 5 V(©0), o@)=1—-e")V i, 0.
where  V(0) = ldiag(e ¥ ¥ e e¥),  Vinyo =

l%(l @ I), and the polynomial part F(x,t) is given
y

F(x,r) = F(e*'[e "\ ()a (1) + 1] 'x)

1 -1 —1 -1 0°F(e3'x)
+§Z(e ) +o (f))lnlm x=57

(29)

For t =0, Eq. (29) returns the initial expression Eq. (27)
for the state (F(x,0) = F(x)), whereas in the long time
(F(x,t - 00) — 1) the system evolves asymptotically into
the symmetrical separable thermal (Gaussian) state.

One may appreciate from Fig. 3 that the initial non-
Gaussian entanglement is degraded asymptotically in time:
The hierarchies shows that the two-mode entanglement fea-
tures an exponential decay.

This example illustrates that Eq. (12) may provide an ac-
curate description of multipartite CV entanglement in realistic
dissipative scenarios. As the hierarchy deals with Gaussian and
non-Gaussian states at the same footing, Eq. (12) is particularly
of interest to study the time evolution of k-partite entanglement
when the state evolves from Gaussian to non-Gaussian, or vice
versa.

l,m

V. EXPERIMENTAL QUANTIFICATION

Let us now briefly discuss how the hierarchies (12)
and (19) can be assessed with experimental data. The

T2,2(p(1)

0 0.05 0.1
yt

0.15 0.2

FIG. 3. (Color online) Time evolution of 7;,(4(t)) when the
system is initially in the CPS-TSVS state plotted in Fig. 2 with
|| = 0.5, and it is in contact with independent thermal reservoirs
with Ny, = 2 (black solid line) and with Ny, = 4 (red dashed line).
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standard procedure would be based on the experimental
reconstruction of the Wigner function in terms of quantum
state tomography [56,57] or a measurement scheme especially
designed for multicomponent CV systems [58], followed by
the analytical evaluation of Egs. (12) and (19). However,
the hierarchies for Gaussian states (19) may be also directly
accessed by performing Gaussian measurements, modeled in
terms of positive-valued operators with the Gaussian Weyl
symbol [27,59], which will be characterized by a covariance
matrix o and first-moment vector X, that plays the role
of the outcome of the measurement. If one performs such a
measurement on the whole n-mode system, the probability of
the outcome Xy is given by [59]

_lyr 1
e ZXI\/IUM+V

Qr)y'/detloy + V)

One may immediately identify the terms in the sum in
Eq. (19) as 2n)"'p(P;X; X), since these terms are derived
from diagonal matrix elements [see Eqs. (A2) and (A3)]. On
the other hand, the first term in Eq. (19), which results from
off-diagonal matrix elements [see Eq. (A1)], may be expressed
in terms of the Fourier transform p(w; X) of the probability
distribution p(X; X), i.e.,

1
- Qo

Xu

P Xys0oy) =

p@: %) / 2 ¥ Xe ' X p(X; 3),
R n

such that Eq. (19) may be brought in the form,
OET / dM e N e X)
]R n

—@r)" Y al" p(P X %), (30)
J

as we extensively show in Appendix E. This expression relates
Ty, directly to the measurement statistics of a Gaussian
measurement with covariance matrix X.

Since the projection of p onto a one-mode pure infinitely
squeezed state [whose covariance matrix we illustrate in (C2)]
models an (ideal) homodyne measure in the mth mode of
the system [57,60,61], the results of Sec. III A indicate that
one may completely certify the inseparability of arbitrary two-
mode and pure three-mode Gaussian states by a collective of
simultaneous (ideal) homodyne measures on each mode of the
system.

VI. CONCLUDING REMARKS AND OUTLOOK

The strength of the hierarchy as demonstrated by the explicit
examples in Sec IV and the prospect to obtain a fine-grained
characterization of multimode entanglement properties even
for non-Gaussian states based only on Gaussian measurements
underlines the practical value of the separability criteria pre-
sented here. In particular, the recent development of optome-
chanical experiments [62,63] that permit the realization of con-
trolled interactions between massive degrees of freedom [64]
and light call for tools that permit one to verify experimental
achievements. Whereas experiments on continuous-variable
entangled systems were in the realm of Gaussian states for
a long time, this new generation of experiments permits one

052321-6



88

4. Compendium

HIERARCHIES OF MULTIPARTITE ENTANGLEMENT FOR ...

to realize sizable nonlinear interactions which result in the
generation of non-Gaussian entangled states.

This prospect to create and probe entangled states that
were out of reach until recently, highlights the demand for
theoretical tools for the analysis of entanglement properties
beyond the Gaussian theory. In particular with the capacity to
probe entanglement properties also in multimode systems, the
present separability criteria promise to be a valuable theoretical
support for a series of experiments to come.
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APPENDIX A: DERIVATION OF EQ. (12)

In this Appendix we illustrate the derivation of expres-
sion (12) starting from the formulation Eq. (6) of the hierarchy
Te.n(P) in H,. The latter involves the following three matrix
elements:

(15| P2), (AD)
(@1151P1;), (A2)
(@2101D2;), (A3)

with [®y), |D,), |Py;), and |D,;) defined in Eqs. (4) and (5).
One may compute these matrix elements by using the trace

|

No
Oy [plDs) = ——2
(D110]P2) ) Jro

N¢21

= Jae) Jre

-1xI ¥l x
n 27X Dy Hdy AP -
Qr) Nq>2[e 217 %21 e%(%)T(Vil'*'):o;l)il(%)(

- Jaet (v 4 x5 deuy)
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product rule [65],
(@1o1Y) = Tr(pl¥){(P])

= (Qn) / d"XW@X)Wigyg(X).  (A4)

Hence, we must first derive the Weyl symbol W|¢,)(0,| cor-
responding to the n-fold tensor product operator |®P;)(d;| =
®fn:1 |@ntm) {@m]|. According to the definition in Eq. (1), this
may be expressed as

n
Wion @1 (X) = [ | Wignm 01 (@ P)-

m=1

(A5)

Moreover, W, . 1, may be directly derived by using the
classical formulation of the Wigner function [65], and the
expression for the wave function of any single-mode pure
Gaussian state, i.e.,

o g=am?
142i0(p)

2000 .
7(1+4(05))

Doing so, one arrives at the Gaussian function,

+iq pm

Pm(q) =

Wi on1(4.p) = Nypge™ 200X B0 X0) - (A6

with first-moment Xt = 1720Gm, pm) + @1, p1)T +
i %1 J1(Gm»Pm) — (G, p1))T and the covariance matrix as
given in Eq. (10), where the absolute value of the normalizing
factor is given by

o T (X Tt 0T 1X0)

”VA det(zm + 2:l)

with X~ = (G, Ppm) — (G, p1)- Notice that, from Eq. (10) it is
deduced that X¢,, is a complex symmetric matrix which in
general is not Hermitian. One may follow the same recipe to
obtain the other Weyl symbols corresponding to the operators
[@1;) (1], and [ Do) (Do;].

By virtue of the trace product rule (A4), the matrix
element (A1) takes the form,

|Nm‘l| =

4y F(x)e_gx’ V"xe—%(x—Xq,ZI)TZ;;](x—Xq,Zl)

1 -1 . 1 1 B o
d'x (F(X)ei(xrzd’zl Xoy +X5,, B, ¥ =Ko, Zo, X“’Zl))eiixT(V g, )x

D D I
F(x)e @y Hg) ):lx:()7

where we made use of the symmetry property of the pseudocovariance matrix X ¢, = 25,2[. In this expression, x is a 2n-
dimensional real vector. Since the exponential of the differential operator describes a shift in phase space (see Appendix E), we

can conveniently manipulate this expression to obtain

_lyr y-l
”nN4>21e 2X®2|}:®21X®21

(®2]p|®1) =
det (V + Zo,,)

1,0 -1 T -1 =1 \—1,0 -1
[ej(ﬁ"'):(pZIX@z[)l(V +Z5,,) 1(g+2¢2,X021)F(x)]

(AT)

x=0"
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Similarly, one may derive the analog expression for the matrix
elements given in Eqs. (A2) and (A3) by substituting the pair
Xo,, o, for the corresponding pair Xo,;, Xo,;, and Xo,,,
X, in Eq. (A7) (and by taking Ne, equal to 77"). After
replacing the result for each matrix element in Eq. (6) and some
straightforward algebra, one arrives at expression Eq. (12) for
the hierarchy that is valid as long as the Wigner function of
the system can be expressed as in Eq. (2).

APPENDIX B: FIRST-MOMENT VECTORS AND
COVARIANCE MATRICES ASSOCIATED WITH THE
BIPARTITION J

In this Appendix we describe in more detail how to obtain
the vectors X¢,; and Xo,,, and the matrices Xg,;, Xo,;, and
P associated with the bipartition labeled by j. In Sec. II,
we stated that |®;;) and |®,;) are obtained from |®;) and
|®,) by interchanging the one-mode states |¢,,) with |@,4,)
corresponding to those subsystems that are grouped together
in the bipartition j [see Eq. (5)]. On the other hand, from
Eqgs. (11) and (10) one obtains that the first-moment vectors of
|®;) and |P,) are given by

n
X<I>1 = @xﬂh

(BI)

m=1
Xo, = EHB Xntm, (B2)

m=1
and the covariance matrices are given by

o, = é X, (B3)

m=1
To, = @ - (B4)

m=1

Analogously, one may deduce the covariance matrices Xq,;
and X¢,, by permuting the corresponding matrices X,, and

J

(14+2ar)(a(b+2r)—d*)—4cdr? 0
(a+2r)(b+2r)—d?
0 (a+2r)(a(142rb)—2rc*)—cd
VA (}’) _ (142ar)(14-2br)—4c?r?
W= or@rbd—ac)+d(1+cd)—abe) 0
(a+2r)(b+ar)—d?
0 2r(c(14+cd)—abd)+bc—ad

(142ar)(14-2br)—4c2r?

As one may see, the entries of the matrix Z;(r) are rational
functions in terms of the squeezing parameter r, and the limit
r — 0O reads

1 0 0 0
. 0 a>—cd 0 ac—bd
ImZi=1{g 0 1 o €4
0 bc—ad 0 b*—cd

PHYSICAL REVIEW A 90, 052321 (2014)

Y, +m in the expressions (B3) and (B4), respectively. Doing
S0, one obtains

Eq)lj = @ 2:m+n[v/]m» (BS)

m=1

T, = P Zininniv- (B6)
m=1

The same reasoning may be applied to derive the first-
moment vectors, where one interchanges the corresponding
vectors X, and ¥,.,, in Egs. (B1) and (B2). These permuta-
tions may be expressed in a compact way with the matrix P
defined in Eq. (17), such that X¢,, and X¢,, may be written
as [52]

Xo +Xo, 1

Xo, = ————+5P;(Xo, ~ Xa,), (B))
Xo +X 1
Xo, = % — Epj(xq,l - Xs,). (BY)

APPENDIX C: RESEMBLANCE TO THE PPT CRITERION

1. Two-mode Gaussian case

The standard form of the covariance matrix of any two-
mode Gaussian state reads [7]

a 0 ¢ O
1 0 a 0 d 4
V= 5le 0o » ol {a.b,c,d} € R”, (C1)
0 d 0 b

whereas the covariance matrix of a one-mode pure squeezed
state may be expressed as follows:

1
X(r) = diag| —.r ),
(r) 1ag<4r r)
where r is the squeezing parameter.
After substituting Eqgs. (C1) and (C2) in the expression for

the matrix (23), one obtains that the latter takes the following
form:

(C2)

2r(2r(ad—bc)+d(14cd)—abc) 0
(a+2r)(b+2r)—d?
0 2r(c(14+cd)—abd)+ac—bd
(142ar)(14-2br)—4c?r? (C3)
(+2br)(b(a+2r)—d*)—4cdr? 0
(a+2r)(b+2r)—d?
0 (b+2r)(b(1+2ra)—2rc*)—cd

(142ar)(142br)—4c2r?

[

Similarly, one may derive the expression for Z;(r) in the
limit r — oo, which corresponds to an infinite squeezing in
position. Doing so, one may replace » in (C3) by 1/r, and then
take the limit r — 0, i.e.,

a’> —cd 0 —bc+ad O

. 1 0 1 0 0
rh—%zl (;) " | —ac+bd O b2 —cd 0 (©5)

0 0 0 1
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Both (C4) and (C5) have A" = A{" = 1 as a doubly degenerate eigenvalue. The other two eigenvalues are given by 1Y = 477
and Af}) = 4\712, as we point out in Sec. IIT A. This illustrates that the hierarchy expressed in terms of the inequality (20) reproduces
the results of the PPT criterion when we choose infinitely squeezed probe states either in momentum or position.

2. Three-mode Gaussian case

The standard form of a pure three-mode Gaussian state reads [7]

aj 0 e?’z 0 eE 0
0 a 0 e, 0 e

1 e?’z 0 a, 0 e; O

V=
210 e, 0 a 0 ey

+ +
ey 0 e; O as 0

; (Co)

0 e3 0 ey O a3

where ap,a;,a3 € R, and eliz, eﬁ, ei _are sirpple fu~nctions of ap,a;, and as. y
The characteristic polynomial reads A° + A3A* + A3A2 + A3 = 0, and the symplectic invariants {A}} (/ = 1,2,3) are obtained
from [21]

A} = My(J3 V),

where My (J 37 ‘7?) is the principal minor of order 2/ of the matrix J 3T 17?, i.e., it is the sum of all the determinants of all the 2/ x 2/
submatrices obtained by deleting 6 — 2/ rows and the corresponding 6 — 2/ columns [21]. Since one has to follow the same
procedure for each bipartition, we illustrate here only the case for S;|S,S3, where S,, symbolizes the mth mode (m = 1,2,3).
Although the whole expression of Zg,s,s,(r) is straightforwardly derived from (23) by replacing X, = X(r) form = 1,2,3 (its
entries are again rational functions in terms of the squeezing parameter r), it is rather lengthy so that we only provide the final
expression after taking the limit » — O,

1 0 0 0 0 0
2+ - + - + - -+ + - -+
0 ay—epez—epe, 0 are, —me —epzey; 0 ajel; —aze;; —epey
lim Z - 0 0 1 0 0 0 )
m Zs,s,55\1) = + I R + -
r—0 0 aep, —aje; tejze; 0 ay —efhe, +epe 0 azey; +azey; —epep;
0 0 0 0 1 0

+ - + - + - -+ 2+ - —
0 azel; —are;+epe; 0 asey;+amey —epe; 0 a3 —efze; +epes;

This matrix has AV =12 = 1Y =1 as a three-times degenerate eigenvalue, and the other eigenvalues are the roots of the

polynomial,
N A\ i A -
<4j) ?(4Z> ;<4Z) 2 0 (€8)

As we have already seen for the two-mode case, the roots of the characteristic polynomial of J 3T V% are related to those of (C8)
through the expression A = =i /A, /2. Hence, the inequality (20) applied in the bipartition S;|S,S; reproduces the PPT criterion
for pure three-mode Gaussian states.

Analogously, one may show that this assertion holds for the other bipartitions S,|S;S3 and S3|S;S,. Now the roots of the
corresponding characteristic polynomial are {1,1,1,4ﬁ§2‘5153yl ,417%2‘5I S3'2,4T)§2|S| 5,3} and {1 ,1,1,4f)§3‘sls2'] ,417§3|S| s2,2s4‘7§3|s,52,3}’
in terms of the symplectic eigenvalues of the partially transpose covariance matrix corresponding to the bipartitions S,|S; 53 and
83|81 82, respectively.

Once again, it is important to note that the assertion also holds for infinite squeezing in position (r — 00). One gets at the
following matrix for Z,(r), which is analog to (C7),

2 + - + - - + + - - + + -
ay —ejez —epen 0 are; —mey; —efze;; 0 aje; —azef; —efhe;; 0
0 1 0 0 0 0
- + -+ 2 + - + - - + + -
. 1 mep —are +eyey; 0 ay —epen tene 0 aepntaze; —ehe; 0
lim ZSllszsz - = ) (C9)
r—0 \r 0 0 0 1 0 0
- + " - + + - 2 + - -+
ae; —ajeztepey; 0 azen+azey;—efze; 0 ay—efze;tepze; 0
0 0 0 0 0 1

from which one obtains the same characteristic polynomial as given in (C8).
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APPENDIX D: TIME EVOLUTION OF THE WIGNER
FUNCTION

We consider the time evolution of an n-mode system
governed by the Fokker-Plank equation in the interaction
picture [55,66],

oW,y ([ a\"
= (<a> I'x + <a> Da) W(x,1),
(D1)

with (%)T = @;':1(3%,3%1); I' and D are 2n x 2n real
symmetric matrices that encode the interaction with the
environment. In the case of interest here, these take the form
I'=y/20&®1I)and D = y(1 4 2Nw)/4( @ I), where Ny,
is the mean photon number of the baths.

Equation (D1) is a linear Fokker-Plank equation with time-
independent coefficients that can be straightforwardly solved
by using the Green function method [67], that permit one to
relate W(x,t) and W(x,0) via

W(x,r) = / d'x’ W(x',00G(x,x',1), (D2)
]RZn

in terms of the Green function G(x,x’,7) which takes the form
(see [67,68]),

1

det (o (1))

e 16—bOX) o (1) (x—b(1)x)
(2" ’

G(x,x't)=

(D3)
where

b)) =T,

(1) = a(00) — e Ta(co)e T,

and o (00) is the stationary solution of Eq. (D1), which is
obtained from solving

Io(c0) + o(o0)T =2D.

The integration of expression (D2) with the Wigner function
W (x,0) of the CPS-TSVS state results in the solutions depicted
in Egs. (28) and (29).

PHYSICAL REVIEW A 90, 052321 (2014)

APPENDIX E: EXPERIMENTAL QUANTIFICATION

In this section we will show the derivation of the following
identity:

(@110]D2)

=Qn)" d*"x W(x)Wia,)@,(X)

R

T T T
— 672/\’ JWE,I,,X/ d2nw 672(4) ZJ"Xﬁ(a);Z), (El)
R

which has been used to obtain Eq. (30) of Sec. V. To start
with, the probability distribution p(X;X), corresponding a
Gaussian measurement with covariance matrix ¥ and first-
moment vector X on an n-mode system with Wigner function
W(x), is given by

e 1-XZ7 @ -X)
Q) /det(®T)

Introducing a unitary transformation U, such that D = UT XU
(or D~' =UTX!U) is a diagonal matrix, permits one to
rephrase this as

p(X; %) = / d*'x W(x) (E2)
RZ"

. ) —1@-X"'D'x-X)
UX;D)= d"¥WUR)————onr—,
P ) fR U oy JaeiD)

with x = U¥ and X = UX, where we have used d*N¥ =
d*M x since the Jacobian determinant |det(U)| = 1. From here
it becomes clear that p(X; X) can be considered a multidi-
mensional convolution transform with a Gaussian kernel, and
its inverse formula is well established [69]. Using the latter for
Eq. (E2), one obtains

1/ 9\ _/ 9
W(X) = exp(—§<ﬁ> Z(ﬁ))p(){; ¥).

We may derive a more suitable form for this expression by
using the Fourier transform of the Dirac delta function, that is,

10\ _/d -
Wx) = exp<—§(£> E<£)> /Rzn d™'u p(u; £)s(x — u)
= ; / / d'ud” w p(u; E)exp(—l (3)TE (i>)exp(in(x —u))
(27T)2" R JR2 ’ 2\ 0x ox

! 20, 120 | - o
= e Joo Jee d”'ud™ @ p(u; X)exp 79 Y Jexplio! (x — u)). (E3)

On the other hand, the phase-space counterpart of | ;) (P, | is given by

Wie,) (@, (X) =

1
2m)r/det(X)

—2XTJ,T):JnXe—%(x—Zi):JnX)TZ"(x—Zi):JnX)’ (E4)
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according to Egs. (A5) and (A6) in Appendix A. By replacing Egs. (E3) and (E4) in the expression for the matrix
element (E1), one obtains

(D1|p|D2) = 2m)" /Rzn d*"x W) Wiay)@,((X)

- (21) ./ / d?od™u p(u; X)e i@ M er@ 0 —2X I T X
7)Y JR2 JR20
1 T 1 . Ty—1 .
X 4(2]1)” det(z) /Rz d2nx P xefi(x721):J,,X) T (x=2i2J,X) (ES)
1 il LT 1 1, Ty—1 ; T
— d2nwd2nu u,x iU 0 o [ d2nx e 2% T x+i(w+2J,X) x E6
Qmy /]R{Z" /;w P X) Qm)r/det(T) Jron (E6)
— (21) f / ' od™u p(u;Z)e—iw”'ue%w”'):w(e—%(m+2J"X)”):(w+2JnX)) (E7)
7)) JrR2 JR2
= eiszJ”T):J”XV/A d'w efsz):J”X 71 / d*u eiinuP(u; %)), (E8)
R Qr)" Jro

as we wanted to show. To derive Eq. (E8), one can separate the x-dependent function from functions that depend on @ and u
only. Using ¥ = X7, one then arrives at Eq. (E6). Performing the integration of x results in Eq. (E7); rearranging terms yields

to the desired form Eq. (E8). Substituting the explicit expression p(u; X) =

integrals, we recover

R e
(P11 P2)| =

JAdetE +V)

which is the first term in Eq. (19).

CXP(*%MT<V+E)7IM)

oy ARV in Eq. (E8), and performing the

22X JI = Ju X

nyTyyT
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We study stationary entanglement between three harmonic oscillators which are dipole coupled to a one-
dimensional or a three-dimensional bosonic environment. The analysis of the open-system dynamics is performed
with generalized quantum Langevin equations which we solve exactly in a Fourier representation. The focus
lies on Gaussian bipartite and tripartite entanglement induced by the highly non-Markovian interaction mediated
by the environment. This environment-induced interaction represents an effective many-party interaction with
a spatial long-range feature: A main finding is that the presence of a passive oscillator is detrimental for
stationary two-mode entanglement. Furthermore, our results indicate that the environment-induced entanglement
mechanism corresponds to uncontrolled feedback which is predominantly coherent at low temperatures and for
moderate oscillator-environment coupling as compared to the oscillator frequency.

DOI: 10.1103/PhysRevA.88.042303

I. INTRODUCTION

Entanglement is a subtle feature of composite quantum
systems, which is invariant under local operations, i.e.,
operations that act solely upon one constituent. Not consid-
ering protocols for entanglement swapping, entangling two
subsystems requires an interaction between them [1]. Such
an interaction need not be direct, but may be mediated by a
further quantum system or even a heat bath, despite the fact that
environmental degrees of freedom generally cause decoher-
ence [2], which is detrimental to entanglement. For example,
the interaction with a common heat bath can entangle two
otherwise uncoupled systems even in the weakly dissipative
Markovian regime [3-6] by making use of decoherence-free
subspaces that include entangled states [7—11] or by correlated
quantum noise that provides non-Markovian effects [12-16].
Also more involved system-environment interactions such as
an exponential-like coupling [17,18], as well as dissipative
engineering techniques [19], have been proposed for this
issue. Given these multifaceted behaviors, it is intriguing to
investigate entanglement between quantum systems in a more
general dissipative scenario.

In the present paper, we investigate the setup sketched in
Fig. 1and explore the influence of thermal relaxation on the
creation of stationary entanglement between three independent
oscillators whose equilibrium positions are spatially separated,
such that the indirect interaction mediated by the bath is
retarded. In particular we address two issues. The first one
is the bath-induced entanglement formation between two
oscillators in the presence of a further oscillator. The second
one is the characterization of the resulting stationary tripartite
entanglement. We investigate both one-dimensional (1D) and
three-dimensional (3D) environments, where the former is
restricted to a linear arrangement of the three oscillators. Our
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model does not possess decoherence-free subspaces and thus
any emerging entanglement must stem from the environment-
mediated interaction which at the same time induces decoher-
ence and quantum dissipation. A most important feature of an
extended environment is its dispersion relation which implies a
finite signal transmission velocity and thus causes retardation
effects. They may lead to an entanglement decay in several
stages [7,11] or to a limiting distance for bath-induced two-
mode entanglement [13]. Moreover, the dissipative quantum
dynamics acquires an additional non-Markovian influence,
which in our case is rather crucial because otherwise each
oscillator would eventually reach its own Gibbs state and thus
the total state would be separable.

Our paper is organized as follows. In Sec. II we define our
model and derive within a quantum Langevin approach the
main expressions and concepts used later for the numerical
computations, which are presented and discussed in Sec. II1.
There two-mode and three-mode entanglement is studied as a
function of the main parameters of the model. Conclusions are
drawn in Sec. IV. Some rather lengthy derivations have been
deferred to the Appendixes.

II. THE MODEL SYSTEM AND EQUILIBRIUM STATE

We employ a generalized Caldeira-Leggett model [20-22]
to capture thermal relaxation of the oscillators, which can
be derived from first principles [23,24]. We focus on the
resulting stationary Gaussian entanglement that stems from
the quadratic form of the Hamiltonian. The microscopic model
will be approximately quadratic if the oscillators remain in
their equilibrium positions (which is compatible with the
presence of the environment-interaction effects), such that we
can take the long-wave approximation at lowest order. The
choice of a Gaussian initial state for the reservoir guarantees
the Gaussian nature of the final stationary state. We assume a
sudden switch-on of the interaction between the oscillators and
the bath, such that the initial state of the full system (oscillator
modes plus environment) is a product state pp = p ® pp.

©2013 American Physical Society
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!, l I m

FIG. 1. (Color online) Oscillator-environment configuration con-
sidered in this paper. Three oscillators are confined to the direction
indicated by the arrow; in the 1D arrangement (a) the oscillators
move only in the x direction, while in the 3D configuration (b), the
oscillators move only along the z direction. The interaction between
the oscillators is mediated by a bosonic field, which also causes
decoherence and quantum dissipation.

In the case of a system composed by N harmonic modes,
a Gaussian state is determined up to irrelevant local displace-
ments by the four N x N correlation matrices

Cap(t —1') = 5(AMB" () + B(tHAT (1)),

with A,B € {X, P} and where X and P denote column vectors
with the position and momentum operators of the oscillators.
Thus, the stationary state is characterized by the 2N x 2N
covariance matrix
G = |:Cxx(0) CXP(O)] 0
Cpx(0) Cpp(0)

which contains the full information about the system fluctu-
ations. To compute C4p, we employ the quantum Langevin
equation formalism widely used in the study of Brownian
motion [22,25], which we adapt to our case of an ex-
tended environment. Regarding the study of entanglement,
remarkable achievements have been reported concerning its
classification and quantification for Gaussian states [26,27].
Recently a similar analysis has been carried out for three
identical harmonic oscillators in an equilateral triangular
arrangement that are directly coupled and in contact with
a common bosonic field at zero temperature [28]. In the
opposite scenario of infinitely separated oscillators, each is
surrounded by independent environments, possibly at different
temperatures, which affects the entanglement [29].

PHYSICAL REVIEW A 88, 042303 (2013)

A. Generalized Langevin equation

We consider three harmonic oscillators located at R; =
rg + r;, where A = 1,2,3, while rg and r; denote equilibrium
positions and displacements, respectively. We attribute to each
displacement a conjugate momentum p,, and employ the
notations r; := (xi,yx,2x) and py := (Px. Py, Pz0)- The
oscillators are assumed to be independent of each other with
anisotropic confinement. This situation can be modeled by
coupling the oscillators to a free bosonic field. Following the
above considerations, we model our setup by the system-bath
Hamiltonian Hy = Hs + Hp + H;, with the system and the
bath contributions

3 2
1
Hi= Y|4 gmt it + ot +otid)| @

Hp =) howajay. 3)

k
respectively, where a,t and ay, are the usual bosonic creation and
annihilation operators for the bath mode with wave vector k =
(2m/L)ZP. We assume that only one degree of freedom per
oscillator is coupled to the bosonic field and thus experiences
decoherence. While in 1D, this assumption appears natural, it
can be realized in the 3D case by a strong anisotropy, wy , <K
y 3,®;,3, such that the motion in the y and z directions is
frozen and can be ignored. The interaction between the central
oscillators and the environment then takes the form

3
=Yy e L ape R, @)

with the coupling constants gz [7]. A technically important
simplification is provided by the assumption that '™ « 1,
which physically corresponds to the long-wave limit or the
dipole approximation for which we find

H = - ZXA Vs a6

When coupling the bosonic field to the oscillators a countert-
erm must be added if one desires to preserve the bare oscillator
potential of Eq. (3). Finally, the full oscillator-environment
Hamiltonian Hp + H; — Hp; becomes

2
1 l
Hg = Z o |:pk Zxk sm k rA :|
k
mka),% 2wk ’
+Z > xk——i - Zx;‘cos k "x) .
k

6

We have introduced the usual bosonic annihilation operator
ax = (mgwwx + i pr)//Timgwy and its adjoint a). The
coupling together with the counterterms in our Hamiltonian
(6) can be interpreted as minimal coupling theory with U(1)
gauge symmetry [24]. Moreover, in field theoretical terms, the
oscillators are coupled to the velocity of the bosonic field [23],
which guarantees that the energy remains positive definite and
prevents “runaway” solutions [30].
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Associated with Hamiltonian (6) are equations of motion
for the degrees of freedoms of both the oscillators and
the environment. The dynamics of those of the oscillators,
conditioned to the environmental state, is given by a quantum
Langevin equation which follows from the exact Heisenberg
equation of motion for X := (xy,x;,x3) and which, after
tracing out the environmental degrees of freedoms, reads [22]
(for details see Appendix A)

t
MX +¢X + %/ drx(t — )X (r) = F(1), (7
—00

where here the mass matrix M is proportional to the unit
matrix, M, = md,,, while the counterterm QML is part of the
potential matrix ¢;,, = m?28;,, + 2€2;,,. The memory-friction
kernel y (z) has the form of a 3 x 3 matrix, and F is the column
vector with the fluctuating forces F(rg,t) := F,(¢) that act
upon each oscillator. These forces depend on the position of
the oscillators and the environment. Owing to their quantum
nature, the forces are operators and commute with each
other only for timelike separations, i.e., [Fy(t'), F,,(t)] = 0 if
|r2 - rg| > c|t —t'|, where ¢ is the sound velocity of the
environment (or the speed of light, in a corresponding optical
setup) which enters via the dispersion relation wy = c|k|. It
relates to the memory-friction kernel via the Kubo formula

Kot = 1) = =i ([Fu(0), Fu(t]), Ot — ' = |Ar), | fc),
@®)

where the Heaviside step function ® reflects causality with
a retardation stemming from the distance Ar?u =r) — "2
between the oscillators A and p. The average has been
taken with respect to the Gibbs state pg with temperature
T, which ensures the Gaussian property exploited below. In
the frequency domain, the real part of the symmetrized forces

correlation F; (t)F,(t") reads

Re(F(0)F" (') + F()FT (w)),, = 47hé(w + o )[(w),

©))
with the matrix I" defined by its elements
Ly () = — - Tm y 0(@) coth( ho )
n 2kgT
= Jy,u(Jw|) coth <M> . (10)
' 2kgT

This expression relates the real part of ([F,(t),F,(t)])
(commutator) to ({Fy(¢), F,(¢')}) (anticommutator), and thus
implies a quantum fluctuation-dissipation relation for the force
operators. Moreover, we have introduced the bath spectral
density

T
(@) =~ > grcos (k- Arf,)8(@— ), (11)
k

which allows us to write the renormalization terms in the
convenient form

. 1 P B
Bp= 2y Sk = 7/ L@y,
0

h o Ok T w

1 1 [ J (o) (12)
5 8k 0\ _ A
QM}. %;chos (k~ArML) = ;/(; Tda)

PHYSICAL REVIEW A 88, 042303 (2013)

With these relations, we can express the impact of the bath
on the oscillators and their effective interaction, as well as
non-Markovian memory effects in terms of the spectral density
(11).

The nondiagonal potential renormalization (12) couples the
oscillator coordinates x; which thus are no longer the normal
modes of our problem. Therefore, we introduce the transforma-
tion matrix O which maps to the normal modes of the coupled
oscillators, @ = O X. Together with the according transforma-
tion for our matrices, we obtain for Q the Langevin equation

.. 1 r!
MQ+¢DQ+£/ dtB(t —1)Q(t) = D(t), (13)

with the invariant mass matrix M = OMOT, the potential
matrix ¢p = 00T, the susceptibility E(t) = Ox(1)O7,
and the fluctuation forces D(t) = OF(t), while the
fluctuation-dissipation relation becomes

Re(D(w) D" (') + D(@) D" (w)),, = 47hd(w + )Y (w),

with Y(w) = —(1/h)Im E(w) = OTT'(w)O. While the con-
servative part of the transformed Langevin equation (13) is
now diagonal, the modes may still couple via the dissipation
kernel E(¢), unless the latter is diagonal as well. This can be
achieved if ¢ and x (#) commute at all times, which is the case if
all oscillators have the same fundamental frequencies and are
equally spaced, i.e., ¢ and x (r) commute when the equilibrium
positions of the oscillators form a equilateral triangle (Ar) W=
R forall & # w)because they are symmetric matrices and their
product is also symmetric [28]. A further particular geometry
is given when the oscillators are placed in an isosceles triangle.
Then the normal mode corresponding to the relative motion
of the oscillators placed at the ends of the unequal side of the
triangle and the center-of-mass dynamics are independent of
each other. We consider these distinct geometries in Sec. III.
Furthermore, it follows from the rank-nullity theorem [31] that
the evolution of all normal modes will be subject to dissipation
and noise unless all oscillators have the same frequency and
are at the same place. Then their relative coordinate forms a
decoherence-free subspace [8,10]. In general, however, i.e.,
for any other geometry, the oscillator-bath Hamiltonian does
not possess a decoherence-free subspace.

One may also compute the normal modes of the total Hamil-
tonian Hy, e.g., by the Fano diagonalization technique [32].
Since, owing to the counterterm, the oscillator-environment
Hamiltonian (6) is positive definite, its eigenvalues are positive
as well. This implies that the Hamiltonian does not have any
localized mode that may induce a non-Markovian dynamics,
as is the case for atomic cavities [32-34]. Indeed, our
environmental noise is characterized by the bath spectral
density, so that non-Markovian effects stem from a non-Ohmic
frequency dependence.

Having developed the formal solution of the quantum
Langevin equation (7), we are able to evaluate the covariance
matrix (1) whose entries read

dw T
Cxx(0) =71/Ed(w)l"(w)ot(—w) ; (14)

dw T
Cxp(0) = Cpx(0) = mfl/glwd(w)l"(w)a(—w) . (15)
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dw
Cpp(0) = m*h / by 2 a(0)(w)a(—w)T, (16)

where o(w) corresponds to the Fourier transformed of
the left-hand side of the quantum Langevin equation (7).
All the covariances contain the integration kernel K(w) =
a(w)I'(@)a(—w)T, while from the quantum fluctuation-
dissipation relation (9) it follows that K(w) is completely
characterized by the generalized spectral density Jj, ,(w).

B. Generalized spectral density and integration kernel K (»)

We assume for the bosonic field the linear dispersion
wy = c|k|, which comprises the physical cases of acoustic
phonons and a free electromagnetic field. Then it is possible to
construct the spectral densities J;, , (@) as a necessary step for
computing the full covariance matrix (1). A detailed derivation
for the expressions introduced in this section can be found in
Appendix B.

We shall focus on 1D and 3D environments with isotropic
coupling between the oscillators and the bosonic field. For
the coupling we choose gf = mhy (w/w?™ e Vi(d)e™/,
where d is the dimension of the environment, V}, is the number
of field modes per d-dimensional k-space volume, y is the
coupling strength coupling, and w, is the cutoff frequency of
the environmental spectrum. Eventually, the continuum limit
Vi — 0 will be taken. Hence, we obtain the spectral densities

J;Y]?L(w) = wmywe % cos (a)|Ar2M|/c), (17)
4m’me

2
@ -0/ o3 0
|Ar | ( > e sm(a)|Arm|/c).(18)

Accordingly, the potential renormalizations become
D _ my we

J3D (C())

= : 19)
T (o] Ard, | /o)
8mmy w,
12: Mty w, (20)

[+ (wc|ar,| /e
The imaginary part of the susceptibilities follows by inserting
the spectral densities into Eq. (10), while their real parts are
conveniently obtained via the Kramers-Kronig relations, so
that we obtain

D(t) —4m)/hw ® l— ‘ArM’/c
wc|ArM|/c— We

[1+ (wC|Ar2M’/c — th)Z]T

(t_ ‘Ar2u|/6)

21

D w.C
Xon(t)=8mmyh———0
" arf,|

1—3(w|Ar),|/c+ ta)c.)2
([1 + (@c|ar,| /e + 1) T
teldlel) g,
[1+ (w]Ar),|/c —to) 2]3 .

The nonexponential decay in time obeyed by the suscep-
tibilities (memory kernels) describes non-Markovian dissi-
pation [35], which will turn out as an essential ingredient
for stationary entanglement in our system. Moreover, the
dimensionless parameter |Ar2u|wc /c is also involved in the

PHYSICAL REVIEW A 88, 042303 (2013)

renormalization terms and the generalized spectral densities. It
compares two different time scales, on the one hand, | Arg " |/c,
which is the time of flight of a phonon or photon between two
oscillators, and on the other hand, a)gl, which represents the
time scale during which memory effects decay. Surprisingly,
the environment-mediated interaction, inherent in the suscepti-
bilities and in the renormalization term, establishes an effective
coupling between all oscillators irrespective of their distance.
At fixed time, they decay polynomially in space at least as
~(|Ar),|we/c)* and ~(|Ar) | /c)® for the 1D and the 3D
reservoir, respectively. Although this interaction possesses
long-range features, we shall see that the characteristic length
of the entanglement correlation is determined by |Ar&) uloc/c,
in agreement with Ref. [13].

With the susceptibilities and the renormalization terms at
hand, we find that the matrices «(w) read

W (@) = m(@} — 0°)8,, — mywRe[g(@) — g(~w)]

+7mmy wlm [@(w)e’(]/“’"’ilA’gu‘/C)‘”
_ @(_w)e(l/w(.—i\Ar'A'#I/c)w]

—imTmyw cos (’Ar?u‘w/c)e_‘w‘/“’“, (23)
2

otw(a)) = m(w% — a)z)Bw - i4n2m)/(c/|Ar2H|) (g)
C

X sin (w{Ar2H|/c)e_““|/“’"

drmy cw?

A0 Im [g(w) + g(—w)]

Ar’my c w?
-
¢ |A Tiu

+ Theta(—w)e(l/“’f_im’g“V")w], (24)

Re [@(w)e—(l/w(.—ilArQMVc)w

where
g(w) — e—(l—iwc\Argu\/C)w/wcl—w[O’ _ (] _ iwC’Argu‘/C)w/wp],

and I'(0,x) is the incomplete gamma function. With these
expressions, we readily obtain the elements of the stationary
correlation matrix. Moreover, the dimension-dependent inte-
gration kernels K (w) become

h
K,5%(w) = mmy w coth (ﬁ) eIl

X Zcos (wlArgﬂl/c)

At
{adjla'° (@)} fadjla'P (=) T} 44

aDw)la® o] )
2
3D (Y — A2 o ho oo,
Kn,ﬂ(a)) =4n°my <w(> coth (ZkBT) e
x Y (c/lar],])sin(w]Ar),[/c)
Ak
{adjlo”P ()]} fadjla®P () 1} 4 26)

P ()] [P (—w)T |
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where adj[«] and |«| are the adjoint and the determinant of
«. With these expressions, we have achieved a closed, albeit
quite complicated, form for the susceptibilities. Nevertheless,
the analytic expressions certainly facilitate the numerical
evaluation of the covariance matrices (14)—(16).

III. THERMAL ENTANGLEMENT INDUCED BY
ISOTROPIC SUBSTRATES

Having derived the solution of the quantum Langevin
equations, we turn to the entanglement among the oscillators
induced by the non-Markovian dissipative dynamics. We focus
on the quantum regime which requires low temperatures,
kpT < hw;. In order to have the environment playing a
constructive role, it must couple strongly to the oscillators,
such that the quality factors O, = w,/y ~ 1-10 are rather
small. In this regime, the dissipative oscillator dynamics is
strongly non-Markovian. In the numerical evaluations of our
analytical expressions, we use the typical units for nano-
oscillators, i.e., for masses m = 10710 kg, for frequencies
Q = 1 GHz, and for distances R = 10 nm. Realistic values
for an environment realized by a solid-state substrate are a
cutoff frequency (Debye frequency) corresponding to hw, =
6.58 x 1072 meV and ¢ = 3000 m/s for the speed of sound.

We characterize the Gaussian entanglement between two
generic modes X" and ) by the logarithmic negativity [36]

Ey (pxy) = max{0, —In(2v_)}, €2))

where X and ) represent one of the three oscillators,
henceforth labeled by A, B, and C. Here, v_ is the lowest
symplectic eigenvalue of the partial transpose covariance
matrix G™ corresponding to the reduced density matrix pyy of
the two modes. Regarding the analysis of three-mode Gaussian
entanglement, there is no generally accepted measure of
tripartite entanglement for arbitrary mixed states. Nonetheless
it is possible to characterize it by a classification scheme that
assigns each state to one of five separability classes [26], which
range from fully inseparable states (class 1) to mixed tripartite
product states (class 5). For details, see Appendix D.

Even though our focus lies on entanglement, we investigate
for completeness also the quantum fidelity F(p,0¢) of the
thermal state pC oc e=/s/%3T a5 a function of the spatial
degrees of freedom and temperature. In Ref. [37] an analytical
expression for F(p,p’) was found for arbitrary n-mode
Gaussian states. In our case, it becomes

. 2 1
Fo.o) =[] ——= |:ViV,'C + -
E (vi +v0)* 4

(-3 (eer-3)] e

where v; and v¢ are the symplectic eigenvalues of the
covariance matrix of p and p€, respectively. Notice that here
the symplectic eigenvalues are different from those used for
the logarithmic negativity, because they are derived without
partial transposition.

In previous works [17,18] on environment-induced entan-
glement, it was found that when the oscillators are very close
each other, the most significant influence of the environment
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is to mediate an effective interaction between the oscillators,
while decoherence becomes relevant mainly at higher temper-
atures. Moreover, it has been pointed out that for identical os-
cillators, entanglement creation may stem from a decoherence-
free subspace [8,10]. Here, by contrast, we consider oscillators
with different frequencies. Additionally, the Hamiltonian has
no symmetries that would support decoherence-free subspaces
unless the distance between the oscillators vanishes. This
implies that the stationary entanglement has its roots in an
environment-mediated interaction. From the Langevin equa-
tion (7), we see that this interaction enters as a renormalization
potential or via dissipative effects, which we interpret as
stochastic feedback between the oscillators.

A. Two-mode entanglement

We start by addressing the two-mode entanglement between
the oscillators A and C, placed at a distance Ar';, = R, in the
absence of oscillator B. This is equivalent to putting oscillator
B at infinite distance, Ar?w = Ar%c — oo. Figure 2 depicts
En(p4c) for this case as a function of the distance R and the
temperature 7 for a 1D and a 3D environment, respectively.
Although the environment induces a long-range interaction
[cf. the susceptibilities (23) and (24)] with a polynomial
decay in both space and time, we recover a central result of

0.3
1.5
o B
1.0 0.2
3
o
0.5
0.1
0 \‘\ \ i
0.01 0.02 0.03 0.04 0.05 0.06
2kgT/hw 0
0.3
0.2
0.1
0.01 0.02 0.03 0.04 0.05 0.06 0.07
2kBT/h W 0

FIG. 2. (Color online) Stationary two-mode entanglement mea-
sured by the logarithmic negativity (27) as a function of oscillator
distance R and temperature 7 for a (a) 1D and a (b) 3D environment.
The oscillator frequencies are wy = 7.2 2, and wp = 13.2 Q, while
the dissipationis y =5 Q.
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Ref. [13]: The correlation length is given by R ~ w,/c, while
the entanglement vanishes at a finite distance Ry, which mainly
depends on the temperature while being almost independent of
the dissipation strength y . Still a larger y supports the effective
interaction required for entanglement creation [12,17], but
also increases decoherence which acts towards separability.
Nevertheless, as expected, entanglement eventually disappears
with increasing y.

In 3D, entanglement generally appears to be more robust
against thermal fluctuations, which is consistent with previous
findings for qubits [7,11]. A qualitative explanation for this
is the super-Ohmic character of the 3D spectral density of the
bath which leads to stronger memory effects [38]. In turn, in the
1D case, entanglement is less affected by increasing the spatial
separation R, which relates to the decay of the susceptibility
as a function of the distance as we mentioned above: As a
function of R, the susceptibility x> (¢) decreases, at least, five
orders stronger than x 'P(¢). Thus, the effective interaction at
large distance in 3D is weaker than in 1D. In both cases, the
well-defined finite distance between the entangled oscillators
indicates that our mechanism for two-mode entanglement
relies on memory effects. Otherwise, we would expect a
polynomial or exponential decay of the two-mode correlations
with increasing distance. This supports the idea that the
environment-induced interaction represents a kind of feedback
between oscillators which is predominantly coherent when
only low-energy environmental modes are thermally excited,
i.e., for kT < hw.. Moreover, depending on the separation,
the coupling strength with the environment is not too large to
cause strong decoherence.

As discussed above, the effective interaction potential
provided by the renormalization term 2 is crucial, but cannot
explain fully the amount of entanglement observed. In order
to underline this statement, let us assume that dissipation
and noise are negligible, so that the problem reduces to two
harmonic oscillators at thermal equilibrium with interaction
potential ¢. Then identical oscillators with equal frequencies
wya = we = 2, coupled at an equal position to a substrate
(R — 0), will be entangled under a condition [39] that in our
case can be written as

1D 1D . S
QN+ DN+ 1) (1 Q21 + (ch/C)2]> "
(29)
@N° + DN + 1) (1 - %) <!
3 - Q2[1 + (w:R/c)*]? ’
(30)

1D,3D .
where N{P3P = [/ /ksT _ 1]~ denotes the bosonic ther-

mal occupation of normal modes with the frequencies

Qb —q |14 20y 2re 31
7 Q2 T Q1+ (weR/0)?]
16wy w, 167y w,
QP =01 . (32
\/+ o @+ ko

Notice that the conditions (29) and (30) result from an expan-
sion of the symplectic eigenvalues to first order in yw./ Q2,
implying yw. < Q?, for which the left-hand side of these
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expressions is strictly positive when neglecting dissipation
and quantum noise [40]. These conditions demonstrate that R
plays an important role for the entanglement creation, as can
be appreciated in Fig. 2. Still, these analytic considerations
overestimate the influence of Ry, as a quantitative comparison
with the numerically evaluated expressions demonstrates (not
shown). Although we find that the available entanglement
generated by the effective potential € does not display
most of the characteristics of the stationary entanglement
discussed above, it is still relevant in the transient dynamics
[6]. In the long-time limit, both the numerical data and the
analytical results for the susceptibilities indicate that the
mechanism behind entanglement creation may be interpreted
as uncontrolled feedback (encoded in the susceptibility) which
relies on the non-Markovian dissipation.

B. Two-mode entanglement in the presence of a third oscillator

We have already seen that the coupling to a common
environment induces an effective interaction between oscil-
lators and may create two-mode entanglement. In the case
where three or more oscillators are in contact with the bath,
we expect that additional effective interactions between any
pair of oscillators emerge, provided that the oscillators are
sufficiently close to each other, i.e., for distances R < ¢/w,.
It has been shown [41,42] that for three qubits in contact with a
common environment, the two-qubit entanglement for certain
initial states persists in the long-time limit when coupling a
further qubit to the substrate. Hence, the question arises as
to how two-mode entanglement is affected by the presence
of a third oscillators. We study two different configurations:
The first one is a linear arrangement in which the three
oscillators are coupled to a 1D environment with separations
Argw =R, ArOAB = R/2+r, and Ar%c = R/2 —r, where
0 < r < R/2,assketched in Fig. 3. We fix R such that the outer
oscillators A and C may be entangled or separable, depending
on the other parameters. In the second configuration, the
oscillators are in contact with a 3D reservoir. The oscillators
A and C are again at distance Ar&c = R, but oscillator
B is shifted by r perpendicular to the line connecting .4
and C (see the sketch in Fig. 4). Thus, ArOBC = Ar?‘lB
= [r? + (R/2)]'2.

For the linear arrangement, we start by placing the oscilla-
tors A and C at a distance R, and choose the other parameters
such that both are separable in the absence of oscillator B,
while for r =0, B is entangled with 4 in the absence of
C (and vice versa). Then one might expect that the “passive”
oscillator in the middle would give rise to an enhanced effective
interaction between A and C, similar to what is found in
harmonic chains with nearest-neighbor interactions at thermal
equilibrium [43]. However, we find the opposite (not shown),
namely, that in the presence of oscillator 3, one has to reduce
the distance R even below the limit found above for the
two-oscillator setup. Thus, the presence of oscillator B is even
harmful for entanglement between the other two oscillators.
Therefore, we chose for R in the data shown in Fig. 3 a smaller
value such that 0 < En(p4c) < 1. As expected, oscillator B
is stronger entangled with the oscillator that is closer, which
is in accordance with our findings in the last section. The
entanglement between the outer oscillators stays rather small
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FIG. 3. (Color online) Stationary two-mode entanglement in
the linear arrangement quantified by the logarithmic negativities
En(pac) (black solid line), Ey(pas) (red dashed), and Ey(psc)
(blue dashed-dotted) for Rw,./c = 0.933. Temperature and damping
are kpT /how. = 0.026, y = 5Q, respectively, while the frequencies
are wy = 7.2, wg = 10.12, and we = 13.282, where 2 = 1 GHz.
The asymmetry between Ey(p45) and Ey(psc) is a consequence of
choosing different oscillator frequencies. The entanglement between
A and B is less sensitive to a moderate increase of temperature
(not shown), because it involves the oscillators with the highest
frequencies. The inset is a zoom that demonstrates the small quadratic
increase of Ey (pac)-

and remains almost unaffected by the position of the third
oscillator. The small change can be appreciated in the inset of
Fig. 3, which shows that Ex(p.4¢) assumes its minimum when
B is roughly in the middle.

Our results for the triangular arrangement go into the same
direction: We also encounter that the third oscillator reduces
the two-mode entanglement between A and C. This generic
behavior is in contrast to the one found for setups that allow
for decoherence-free subspaces [41,42]. The corresponding
logarithmic negativity is plotted in Fig. 4(a) as a function of
the position of B. In fact, the parameter space with entangled
states shrinks significantly by the presence of oscillator 5:
Figure 4(b) demonstrates that Ey (p_4¢) is eventually destroyed
when B is close enough to the pair. Then the oscillator B
becomes entangled with A and C almost simultaneously.
That is, Ey(pap) and En(ppc) increase while Ey(p.ac)
becomes smaller. There is a trade-off between Ey(p4c),
En(pap), and Ey(ppc) resembling the monogamy property of
correlations [1]. The competition between these three bipartite
entanglements is characteristic for our environment-induced
entanglement mechanism, mainly because the logarithmic
negativity (i) is a bona fide measure that generally does not
satisfy monogamy and (ii) becomes increasingly manifest by
raising the coupling strength y, as can be seen in Fig. 4(b). This
feature is independent of whether the three oscillators have
equal or different frequencies. Furthermore, in the limit r —
00, En(p.ac) approaches the value of two-mode entanglement
when the oscillator pair AC evolves independent of B. This
shows that the oscillators effectively interact even at distances
greater than the correlation length of two-mode entanglement,
which implies that the environment-induced interaction has
long-range features.

Gathering the results for the two settings studied, they
apparently show that the environment-mediated interaction
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FIG. 4. (Color online) (a) Stationary two-mode entanglement
measured by the logarithmic negativities Ey(pc¢) (black solid line),
En(pap) (red dashed line), and Ey(ppc) (blue dashed-dotted line)
for the triangular geometry with Rw./c = 0.167 as a function of
the displacement r. All other parameters are as in Fig. 3. The inset
provides an extended picture of E y(p.4¢), where the dotted line marks
the value in the absence of oscillator B. (b) Phase diagram for fixed
R and various values of r as a function of coupling strength y and
temperature 7. In the shaded areas, the oscillators A and B exhibit
stationary entanglement. The outer blue line marks the limit r — oo,
which is equivalent to the absence of oscillator B. As oscillator B
comes closer, the area with entanglement shrinks.

induces a trade-off between the three two-mode entangle-
ments. This feature is highly emphasized in the triangular
setting, where B is brought closer to both A and C. For
identical oscillators, we observe that all possible two-mode
entanglements take the same values when they form an
equilateral triangle, i.e., for r = v/3R/2. At smaller values
for r, the entanglements Ey(p45) and E y(ppgc) are larger than
En(pac), because A and C are further separated from each
other than from B. One of our main findings is that the presence
of oscillator 55 reduces the entanglement between .4 and C. This
tendency towards separability might be enhanced by adding
further oscillators. However, even though Ey(p4c) may be
reduced or may vanish in the presence of oscillator B, there
is still the possibility of an emerging multipartite entangled
such as the formation of Greenberger-Horne-Zeilinger (GHZ)-
like states. This emergence of tripartite entanglement at the
expense of smaller bipartite entanglement may be interpreted
as a consequence of an effective three-body interaction by
which all three oscillators act simultaneously via the same
bath.
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C. Three-mode entanglement

For the characterization of multipartite entanglement, we
employ the classification scheme for tripartite Gaussian entan-
glement developed by Giedke et al. [26] and summarized in
Appendix D. According to this scheme, each state falls in one
of the following five classes: C1, fully inseparable states; C2,
one-mode biseparable states; C3, two-mode biseparable states;
C4, bound tripartite-entangled states; and C5, fully separable
states. Notice that class C1 is not a strict classification but
rather subsumes all so-called genuinely tripartite-entangled
states [44].

Concerning tripartite entanglement, a most important ques-
tion is whether an optimal arrangement for genuine tripartite
entanglement exists. The results of the previous section suggest
that equally spaced oscillators might be rather unfavorable
for two-mode entanglement (see the inset in Fig. 3). An
expectation inferred from those results (see Fig. 2) is that
tripartite entanglement decreases with distance as bipartite
entanglement does, i.e., it should vanish at large distances.
Still it is interesting to now investigate whether three-mode
entanglement is more robust against a variation of r than
two-mode entanglement. Moreover, the limiting distance may
be different from Rw,./c.

1. Linear arrangement

Figure 5 shows the phase diagram of the separability classes
for the case in which all oscillators are coupled to a one-
dimensional environment. Most importantly, it demonstrates
the relative robustness of the fully inseparable states (class
C1) against shifting the position of oscillator 5 and against a
moderate temperature increase. Fully inseparable states are
found for small temperatures and when oscillator B is a
bit closer to A than to C. This asymmetry stems from the
fact that oscillator C is less affected by thermal fluctuations
than the other two oscillators, owing to its larger frequency.
In general, we expect the genuine tripartite entanglement
to be rather insensitive to variations of the geometry as
long as all oscillators interact strongly in the same manner
through the reservoir, i.e., when oscillator 13 is roughly in the
middle. Otherwise, the geometry could enhance the interaction
between two particular oscillators, which may lead to a
situation in which the third oscillator becomes separable. In
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FIG. 5. (Color online) Phase diagram of the separability classes
for the linear configuration as a function of temperature and position
r of oscillator 5. All other parameters are as in Fig. 3.
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FIG. 6. (Color online) (a) Separability phase diagram for the
equilateral triangular for the oscillator frequencies and coupling
strengths used in Fig. 4. (b) Quantum fidelity between the stationary
state and the thermal canonical state as a function of the temperature
for the distances Rw./c = 0.066 (blue dashed line) and Rw,./c =
2.367 (pink dashed-dotted line).

the phase diagram (Fig. 5), this is visible in the emergence
of regions with separability class C2 when r tends towards
+R/2. Thus, in contrast to the two-mode case, the equidistant
placement of oscillator B at r = 0 is the optimal setting for
genuine tripartite entanglement, at least in the case of equal
oscillators.

2. Arrangement in an equilateral triangle

Having noticed that in the 1D case optimal tripartite
entanglement is achieved in the most symmetric situation,
we restrict ourselves in the 3D case to the configuration
in an equilateral triangle with lateral length R = ArOAC =
Ar%c = ArOAB. Figure 6(a) depicts the corresponding sep-
arability phase diagram. Again we find for small R and low
temperatures that the stationary state is fully inseparable (class
C1). With increasing temperature, we notice a transition via
the one-, two-, and three-mode biseparable classes C2, C3, and
C4 to the fully separable class C5 at high temperatures T 2>
hw,/ kg (the latter is beyond the plotted range). The appearance
of classes C2 and C3 obviously requires some asymmetry
in the setup, which stems from choosing different oscillator
frequencies. In comparison to the two-mode entanglement
studied in Sec. III A, however, tripartite bound entanglement
(class C4) is more robust against separation and temperature
effects than for two modes. Indeed, we find that it may survive
up to values of Rw./c that clearly exceed unity. This can
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be explained by the fact that the susceptibilities reflect an
effective coupling of all oscillators independent of their spatial
separation (cf. the discussion in Sec. IIB), which enables
large-distance entanglement. The latter is also in agreement
with the two-mode entanglement E y(p.4¢) discussed above: It
asymptotically approaches the value found for the oscillator
pair AC in the absence of a third oscillator (see the inset of
Fig. 4) and underlines that the environment induces long-range
interaction. On the other hand, the quantum fidelity (28), which
shows the “sophistication” of the stationary state, reveals that
the (fully separable) thermal state is reached for kg7 = hw,
[see Fig. 6(b)], irrespective of the distances between the
oscillators. Hence, only at high temperatures, decoherence
dominates so that here the full separability turns out to be
a decoherence phenomenon.

IV. SUMMARY AND CONCLUSIONS

We have studied the stationary entanglement of three
harmonic oscillators as a generic tripartite system that becomes
entangled through the interaction with a common extended
environment. The oscillators are embedded in a thermal
bosonic heat bath which we eliminated to obtain generalized
quantum Langevin equations. Although the oscillators are not
directly coupled, the contact via the heat bath provides an
environment-mediated interaction which can induce bipartite
and tripartite entanglement between the oscillators. The
equations of motion for a 1D and 3D isotropic environment
contain this interaction as a long-range coupling entering
via a renormalization term and through the susceptibility,
which takes the backaction into account. For both two-mode
entangled and fully inseparable oscillators, the characteristic
correlation length is roughly given by the ratio Rw, /c. Fora3D
environment it is smaller than in the 1D case. Nevertheless, the
entanglement generated by a 3D environment is more robust
against thermal fluctuations.

Interestingly enough, there is a trade-off in the attainable
two-mode entanglement between the different oscillator pairs,
because the presence of a passive oscillator is detrimental
for two-mode entanglement. This provides strong evidence
that the environment-induced interaction also produces an
effective many-party interaction that tends to favor multipartite
correlations (here tripartite instead of bipartite), such that
GHZ-like states emerge. Our numerical data suggest that
the mechanism is mainly based on uncontrolled feedback
which is mostly coherent at low temperatures and for
moderate oscillator-environment coupling (in comparison to
the fundamental frequencies). This feedback corresponds to
non-Markovian memory effects and relies on the structure
of the generalized spectral density, which is an oscillating
decaying function of frequency for both the 1D and the 3D
environment.

Our findings underline that non-Markovian effects are
relevant for a deeper understanding of multipartite-entangled
stationary states. This is in contrast to the behavior of
subsystems coupled to independent heat baths, for which
non-Markovian effects are not essential and where thermal
relaxation dominates. An interesting consequence of our
results in the realm of quantum information may be found
in setups for quantum communication and teleportation. Con-
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sidering the studied model as a simplified quantum network,
our results for two-mode entanglement in the presence of a
passive oscillator imply the need for sufficient microscopic
control of the interaction between all constituents. Thus, an
interesting task would be the prediction of the stability of such
protocols under weak interaction with a common extended
environment.
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APPENDIX: THE SYSTEM-ENVIRONMENT MODEL

In this Appendix we derive the Langevin equation and
different quantities used in the main text. We start with the
Hamiltonians Hs, Hp, and H;, Egs. (3) and (5). We shall first
neglect the counterterm (renormalization) whose contribution
will be included at the end. Hence, the Hamiltonian equations
of motion for p; and ay are given by

B = —malx, + ng(akeikm‘.j +alefik-r2)’ (AD
k

; . i —ikerO
dy = —za)kak+ﬁ nge ’k’uxﬂ, (A2)
n
where the latter possesses the formal solution

ax(t) = ag(ty)e "~

. t
l —ik-r® s e
+ Eﬂ gre™’ ’M/ dsx,(s)e =),

o

We insert it into Eq. (Al) to obtain for the oscillators
conditioned to the state of the environment the effective
dynamical equation

Pr = —mwix, + Fi(t)

. t

! 2 ik-(r?—r")/ —iwn(t—s)
+ - E E e T dsx, (s)e "

7 = 8k ., 1(8)

. t
— ;Tz Z Z g,zce”'k'(’g*’ﬁ) / dsx,(s)e' ™). (A3)
ok

fo

This equation can be expressed in a more convenient form
by introducing the fluctuating force F;(t) and susceptibility
X (1) to read

. 1
Palt) + mawix, + fz/

fo

ATy Xt — Dxu(1) = F(0),
"
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where
F(t) = Zgk[ak(to)ei[k,rg—wk(z—to)] + a}t(to)e—i[k-rg—wk(t—to)]],
k
Xou(t) =20(t — [Ar9, | /c) Y ggsin (k- Ar), — wxt).

k

The susceptibility can be written in terms of an average over
the environmental state pp of the commutator of the fluctuating
force, so that it becomes

Xt = 1) = =i®(t =t — |AF), | /) [Fa(0), Fu(t)]) s
(A4)

where |Ar2u| = |r2 — r2|.

The environment is initially in an equilibrium state at tem-
perature T for which (a;ak) = Sy N(wy), with the bosonic
thermal occupation N(wy) = [exp(—wi/kgT) — 1]7! so that
the anticommutator of the fluctuating force obeys

{0, Fut ) py =2y giI2N(@p) + 11
k

xcos [k-Ar}, —w(t —1)]. (A5)

In the frequency domain, this relation reads

({Fu(@), Fu(@)}) p, = 47%8(0' + w) coth (ZZZ)/T>

x 3 g3le 480 — wy)
k

—e (0 + wy)], (A6)

where we have inserted 2N (wy) + 1 = coth (hw/2K g T). For
a more compact notation, we introduce the spectral densities

Top(@) = % 3 ghcos (k- AFY) 8 (@ — ), (A7)
k

with which we obtain from Eq. (A6) the quantum fluctuation-
dissipation relation

Re § ({Fi(@), Fu(@)}) = 27h8(0' 4+ 0)Tsu(@), (A8)
with the imaginary part of the susceptibility
[ (@) = —m g p(@)eoth | 2
=——Im co
A 2K,T
Jy p(weoth el (A9)
= co ,
rontl® 2K5T

derived in Appendix B.

So far we have not taken into account the counterterm. In
doing so, the spectral densities lead to harmonic renormaliza-
tion potentials with frequencies

. 1 g I/OOJM(a))
Qu=-) == L dw,
o th:a)k T Jo w @

. 1 2 1 [>®J
Qku=*Z%COS(’C'A"O )=;/0 M‘7(60)0@

w

(A10)
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Owing to the linearity of the dynamical equations for x; and
P, itis straightforward to show that including the counterterm
provides the Langevin equation (7).

APPENDIX B: SPECTRAL DENSITIES AND
SUSCEPTIBILITIES

Irrespective of the dimension of the environment, we
assume that it is isotropic and possesses the linear dispersion
relation wy, = c|k| with cutoff frequency w,.. We model this by
introducing coupling constants g that obey

gt = mhy (o /!~ c! Vi(d)e ™/, (BI)

where d is the dimension of the environment, Vi is the
d-dimensional k-space volume per field mode, and y is the
effective coupling strength. We start from Eq. (A7) and take
the continuum limit V; — 0. We provide explicit expressions
for the dimensions d = 1 and d = 3, while d = 2 is addressed
mainly for highlighting the difficulties that arise in that
dimension.

1. One-dimensional environment

Inserting Eq. (B1) for d =1 into (A7) and (A10) yields
in the continuum limit V4(1) — O for the spectral density the
closed-form form

Jiu(w) = Tmywe '/ cos (a)‘ArgH |/c). (B2)

and the potential renormalization frequencies
£, = myw.,
~ my o,

Q= ——
T+ (e ard, /o)

respectively. The real part of the susceptibility x;, (") is
obtained from Eq. (A9) via the Kramers-Kronig relations.
Mathematically this corresponds to the Hilbert transformation
[45] that can formally be expressed as

Re (@) = H[Im ). (w)](@)
1 P/OO Im X)”“(w)d

b4 o ©—o

w, (B3)

where P is the Cauchy principal value and H|[ f(w)](w') the
Hilbert transform of f(w). Hence,

o0
Re jyu(w) = —mh)/P/ we™ ' cos (w|Ar2M|/c)
0

1 1
x( + )dw,
w—0 o+

which consists of two terms that differ by the sign of «" and
thus it is sufficient to compute

» /°° we™/? cos (w|Ar), | /c) o
0

(B4)

w—w

dw

Lo [ s
h 0 w— o
W

+ 5
1+ (oc|ard,|fe)
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where we have used Hlwf (w)] = oH(f (w)) + % ffooo f(w)dw to arrive at

00 (g —ilAr,|/c)w
P/ —do =
0

’ (L _j1ar0 9
w—w e~ Goc AT, /0w F[O,

eﬁ*ilmﬁhl/ﬂw’{r[o,—(i—i|Ar3M\/c)w']+in} if o €(0,00),
= (@ —ilanl/o)e]

if o €(—00,0),

where I'(a,z) = fo‘o t*~le~'dt denotes the incomplete gamma function. Inserting this expression into Eq. (B4), we finally obtain

Re jou (@) = —mhywRe [g(w) — g(—w)] + wmh y  Im [@(w)e_(i_”m?ﬂl/c)‘” - @(—a))e(ﬁ_imrgﬂ‘/c)w]

2mhy w,
1+ (o ar), | /o)

with g(w) = e~ (iedlarl/oo/oapig (1 —
iwclArgﬂl/c)w/wp]‘ From this expression we find the
well-known relation between the frequency shift Aw,, and
the real part of susceptibility [40],

Q 1
L lim Re 5, ().

2
(Awku) - m o 2mh o—

2. Two-dimensional environment

Again, we use (B1), perform the continuum limit, and
readily obtain

2
Jiuw) = 2my Ze o do(w] Ar, [ [e). (B6)

where Jj is the zeroth-order Bessel function of the first kind.
The renormalization frequencies now become

Q= 2rmy .,
3. — 2rmy w,
Tl a0

Accordingly, the Fourier transform of the real part of the
susceptibility reads

2nmyh o0
Re (@) = — " Y P/ wzef‘”/“’"Jo(w|ArgM|/c)
c 0
L S B (B7)
X w.
w—0 o+

Using the same relation of Hilbert transforms as in the previous
section we can write

H[O@)w e /o (w|Ar), | /c)](@")
= o H[O(@)e™ " Jy(w|Ar), | [c)](@)

o' w, 10}

+ +
[+ (] Ar, [ /)]

2
-

(B8)

Here a major difficulty arises. The Hilbert transform
H[@(w)e‘“’/"’LJo(wlArgu|/c)](a)’) exists only for R/c =1,

293/2°
[1+ (0| arf,[/e)]

(BS)

despite the convergence condition 0 < w,. Thus, we cannot
derive any closed expression for Re y () for all R and c. Still
we obtain by using a series representation for Jo(w| Ar;) ul/6)
the relation

2rmyh

w? [@(w)ei’-’ Ei (3>
W We

— ®(—w)e Ei (;—iu)] J0(|Ar2M|a)/c)

< 1y (1ar0 |, 2
_2nmyha)cz(2211) ("'z;;“”)

=0

Re x(w) =

1+1

_ 2k—1)
y Z[Q(l k) +3]! <2) . (B9)

1 _
= ! [OF

This series, however, it is not of practical use, because of its
slow convergence.

3. Three-dimensional environment

Following once more the same line, we obtain the spectral
densities

2
c 1)
J; =47’my——— — ) sin(w|Ar? —w/oe
e = drtmy e () sinolarl, o)
(B10)
and the renormalization frequencies

Q)\.A’ = 87Tm)/(UL

8 8rmy w,
= .
T+ (A, | for]

Now the real part of the susceptibility is given by

dmhy c o 0
= —=—r A
2 (|Argu|> /0 s1n(a)| rM|/c)

_ 1
xwle @/ —
-

Re Xku(w/) = -

>dw, (B11)

o+ o

042303-11



107

ANTONIO A. VALIDO, DANIEL ALONSO, AND SIGMUND KOHLER

where the integral can be written as

lP /OO ? sin (w’ArgM‘/c)ef i
T 0 w— o

= o H[O@)sin (0] Ard, | /e)e™ |(@)

o @|Ar)[/c
7 [+ (@Al /)]
20} |AF)
p L 2eddnie (B12)

7 [+ (c|art, |/)T

After some algebra, we finally obtain for the real part of the
3D susceptibility the expression

4w mhy cw?

Re y (@) = — Im [g(w) + g(—w)]

2 0
wC|Arw
A mhy cow?

1 : 0 .
— Re [O(w)e (o HIAmI/A0
0
wf|Arw|

+O(—w)elar AT

16mmhy w,
- (B13)

[+ (] A, | /o) T

with g(w) = e~ (Imiedar,/)ofocprg . _ (] —
iwclArgﬂl/c)w/wc] and the incomplete gamma function
I'ao,x).

APPENDIX C: FOURIER REPRESENTATION OF EQ. (A6)

Here we give a simple proof of Eq. (A9) starting from the
Fourier transform of the susceptibility

o0
X)»p,(w) :/ elwlxku(t)dt
—00
o .
= 2/ e”‘”Zg,% sin (k- Ar), — ayt) dt
|ard,l/c X

- Z glzc |:ei[k»ArQH—(wfw,,ﬂArgNVc‘)
k

o0
x/ el@=o0t gy efi[k~Ar2u7(w+wk)|Ar2“\/c]
0

[}
x / ei(w+wk)t dti|
0

where we have made the substitution t — ¢ + |Ar2ul /c.
Inserting

/ ei(w—a)k)t dt = (w —wi) +iH (1) (wg)
0
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into Eq. (C1) yields

; 0 0 (/0
XA;/,(C‘)) = —irx Z gi{ezlk-Armf(wfwk)\ArM|/c]
k

X 8( — ay) — e AT —@renlan |/l

x 6(w + wg)}
3 e Ao AL I (1) )
k

_ e*i[k-Arguf(w+a)k)|Arg“\/L‘]H(l)(wk)},

where the second sum vanishes owing to H(1)(wg) = 0 [45].
By taking the imaginary part and performing the continuum
limit, we obtain Eq. (A9).

APPENDIX D: PPT CRITERION AND CLASSIFICATION
OF TRIPARTITE ENTANGLEMENT

Let us consider a system composed of two parties A
and B. Then a necessary and sufficient condition for the
separability between 14 x 1p (two modes), 14 x Np, and
N4 x Np bisymmetric bipartite states is the partial positive
transpose (PPT) criterion [27,46]. The N4 x Np class of
systems relates to Gaussian states that are locally invariant
under all permutations of modes in each of the two subsystems.
Then the PPT criterion can be formulated in terms of a
bisymmetric covariance matrix G as follows: A state is
separable if and only if G™# > (il/2)o (i.e., G'* is a positive-
definite matrix), where G'# is the covariance matrix of the
partial transpose of G with respect to the system B, given by
GT =: AGA, with

Iy 0
A=1 ! ,
NackNi ® |:0 _]INBi|

the N-dimensional unit matrix Iy, and the symplectic matrix

[0 Iny+np ]
o = .
“Iyiing. 0

The PPT criterion can be readily evaluated from the symplectic
eigenvalues of G', given by the positive square roots of the
eigenvalues of (—i /i) G [36].

For a system composed of three modes, Giedke et al. [26]
have considered the PPT criterion to provide a complete
classification of the three-mode states, according their separa-
bility properties. This classification is based on the partially
transposed covariance matrices GT = A, GA,, which is
related to the three possible bipartitions of a three-component
system, namely, A|BC, AB|C, and AC|B. Then each three-
mode Gaussian state can be assigned to one of the following
classes [26]:

C1: Fully inseparable states that are not separable under
any of the three possible bipartitions. This class contains the
genuine tripartite-entangled states [41].

C2: One-mode biseparable states that are separable if two
of the parties are grouped together, but inseparable with respect
to the other groupings.
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C3: Two-mode biseparable states for which two of the
bipartitions are separable.

C4: Three-mode biseparable states for which all the three
bipartitions are separable, but which cannot be written as a

PHYSICAL REVIEW A 88, 042303 (2013)

mixture of tripartite product states. These states are also known
as tripartite bound-entangled states.

C5: Fully separable states that can be written as a mixture
of tripartite product states.
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The stationary multipartite entanglement between three interacting harmonic oscillators subjected to
decoherence is analyzed in the largely unexplored nonequilibrium strong dissipation regime. We compute the
exact asymptotic Gaussian state of the system and elucidate its separability properties, qualitatively assessing
the regions of the space of parameters in which fully inseparable states are generated. Interestingly, the sharing
structure of bipartite entanglement is seen to degrade as dissipation increases even for very low temperatures, at
which the system approaches its ground state. We also find that establishing stationary energy currents across the
harmonic chain does not correspond with the buildup of biseparable steady states, which relates instead just to

the relative intensity of thermal fluctuations.

DOI: 10.1103/PhysRevA.88.012309

I. INTRODUCTION

Entangled states of continuous-variable (CV) systems have
come to occupy a prominent position in quantum technologies
[1] for both experimental and theoretical convenience. On the
experimental side, the high degree of control in the preparation,
manipulation, and measurement of Gaussian CV states [2] in a
range of quantum physical supports including optical cavities,
trapped ions [3], or nanomechanical devices [4], makes them
ideal for the efficient implementation of quantum information
protocols. In particular, entangled CV multipartite Gaussian
states are a valuable resource for communication schemes
involving many parties [5—7], whose quantum-enhanced per-
formance has been already demonstrated in experiments [8,9].

This outperformance over classical protocols crucially
relies on the amount and distribution of the entanglement
shared by the multiple “modes,” which makes the precise quan-
tification of multipartite entanglement a matter of paramount
importance. The general assessment of entanglement even in
low-dimensional quantum systems remains an open and chal-
lenging problem to date [10,11] and yet tremendous progress
has been made towards its characterization in the CV Gaussian
multipartite scenario [12—14]. This fact, combined with the
simple mathematical description that CV multimode Gaussian
states enjoy, further highlights their practical convenience.

Unfortunately, entanglement is very fragile to the un-
avoidable decorrelating external environments and therefore,
the successful implementation of quantum technologies with
CVs should start with a complete understanding of noise
and dissipation, so that they may be avoided or eventually
engineered to protect quantum coherences. In this line,
a number of recent works have extensively analyzed the
dynamics and asymptotic properties of bimodal entanglement
in CV Gaussian states under realistic models of noise and
dissipation [15-25]. Concretely, the stationary two-mode
entanglement under weak correlated and uncorrelated local
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noise was addressed in [17,19,20] for identical oscillators, and
in [18,21] for the nonresonant case. Moreover, the problem
may be solved exactly once one abandons the assumption
of weak interaction between system and environment, thus
making it possible to probe into the strongly non-Markovian
and nonequilibrium regimes [24,25]. In contrast, much less
is known about noise and dissipation in the CV Gaussian
multipartite scenario [26-32] where, to our knowledge, all
available results are limited by either the weak dissipation or
equilibration assumptions.

The present paper aims to study multipartite stationary
entanglement in the little-studied nonequilibrium strongly dis-
sipative regime, through the extension of the exact techniques
of [25]. We focus on the stationary Gaussian states that result
from the contact of an interacting three-mode CV system with
three local structured heat baths. A rich physical picture is
gained by preparing the baths at generally different equilibrium
temperatures, thus inducing steady-state energy transport.
Endowed with all the versatility of an exact unconstrained
stationary solution, we address the question whether robust
tripartite entangled states may be generated out of equilibrium.
As we shall see below, we can answer in the positive.

More precisely, we take three (generally nonresonant)
modes arranged in an open chain with linear nearest-neighbor
interactions and locally dissipating into uncorrelated Ohmic
baths. We are then able to compute the exact Gaussian
steady state of the system, under the sole assumption of
an initially uncorrelated system and environmental degrees
of freedom [33]. Our model is particularly suited for the
theoretical description of tripartite CV systems in which
thermal relaxation is the main source of decoherence, as it
may occur, for instance, to trapped ions in a Paul trap [34] or
clamped interacting nanomechanical oscillators [35,36].

Taking the exact steady state as starting point, we issue a
comprehensive study of the tripartite entanglement distribution
according to the classification introduced in [12]. When the
three equilibrium temperatures of the reservoirs are set to
the same value and identical oscillators are considered, we
observe the expected competition between decoherence and
interoscillator coupling in the buildup of stationary tripartite
entanglement. Most interestingly, we find limiting dissipation

©2013 American Physical Society
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rates above which the ground state of the interacting oscillators
switches from the “weak dissipation” fully inseparable phase
into a “strong dissipation” bound entangled phase, passing
through an intermediate two-mode biseparable stage. As we
shall see, these changes in the entanglement-sharing structure
occur as a consequence of the non-negligible renormalization
effects introduced by the system-bath interaction, in spite of
the vanishing thermal fluctuations.

Imposing a temperature gradient across the chain proves
detrimental to the formation of robust fully inseparable states
unless the system is set up in an asymmetrical configuration.
Nevertheless, the resulting separability structure does not seem
to depend on the stationary energy currents induced across
the system, but rather, with the relative intensity of thermal
fluctuations on each of the modes.

Finally, we discuss how the asymptotic tripartite entangle-
ment may be enhanced with a suitable choice of parameters
leading to well-separated time scales for the thermal fluctua-
tions and the free dynamics of the interacting modes.

This paper is organized as follows: We start by introducing
the microscopic model for the system, the baths, and their
dissipative interaction in Sec. II. The reduced dynamics of the
oscillators is tackled via the generalized quantum Langevin
equation, introduced in Sec. III A, and solved in the stationary
regime in Secs. III B and IIIC. For a detailed derivation of
the closed formula of the exact steady state, the interested
reader is directed to the Appendix. We then briefly review
the classification criteria for tripartite entanglement in CV
Gaussian states in Sec. IV, and apply them to the steady
states of our system in Sec. V: The separability properties
in the case of identical equilibrium temperatures are discussed
in Sec. V A, and the results on the steady-state entanglement
under a temperature gradient are presented in Sec. V B. Finally,
in Sec. VI, we summarize and draw our conclusions.

II. THE SYSTEM

As already mentioned, our system consists of three quantum
harmonic oscillators, labeled by « € {£,C,R} after “left,”
“center,” and “right,” respectively. They have bare oscillation
frequencies w, and equal mass m is assumed:

Pa L,
HS():Zﬁ—i—Ema)axa. 1)
T + ar
2
k

INNNNLNRD %

AVAVAVAVAVAVAVAVAVAY. WAL

A'AVAY
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Here x, and p, stand for the corresponding position and
momentum operators. We connect the oscillators through a
generic quadratic interaction term of the form

1
Hgp = 5 me VapXp, ()

ap

where V4 are the entries of an Hermitian interaction matrix V.
In particular, we shall arrange the oscillators in an open chain
with nearest-neighbor interactions of strength k connecting
L < Cand C < R, that is (see Fig. 1 below),

k —k 0
v=| -k 2k —k A3)
0 —k k

We address the local dissipation mechanism with the paradig-
matic Caldeira-Legget model [33,37]. Therefore, three in-
dependent bosonic reservoirs are introduced, also labeled
a € {£,C, R}, comprised of noninteracting modes {, pu;.}
linearly coupled to their local oscillator {xy, p,} With strength

8ap:
2
: (qap._ xa) . (4)

1
HSB = Z + Ema/"wall
ap
Apart from the free Hamiltonian of the reservoirs and their
linear interaction with the system (i.e., the terms of the form
8anXa o) BQ. (4) also explicitly includes the renormalization
term

2
Pan

2mg,,

8apn

2
wg,,

Moy

2
gau

2
2mypwy,

2

o’

HR=Z

e

(&)

which is necessary in order to compensate the distortion
exerted by the system-bath coupling on Hg [33]. The effects
of this term only start to become relevant as the system-bath
interaction grows stronger [25]. The coupling constants gy,
define the spectral densities

Ju@) =7
"

which receive a phenomenological functional form suitable for
a correct description of dissipation. In particular, in Sec. III C,
we shall consider Ohmic spectral densities with Lorentz-Drude

2
goz/L

2M g Wap

(6)

8(0) - wotu)s

M A A A
(TAVAY

AVAVL AVAVAAVAVAVAVAVAY,

5 N

FIG. 1. (Color online) Schematic representation of our tripartite CV system comprised of nonresonant modes mechanically coupled via
nearest-neighbor linear interactions of strength k. Each oscillator dissipates at a rate p into its local bath, at temperatures 7 = T and
T r =T+ AT/2, where AT € [0,27T) so that a temperature gradient may be established across the system.

012309-2



112

4. Compendium

GAUSSIAN TRIPARTITE ENTANGLEMENT OUT OF ...

high-frequency cutoff
MYq®

Ja(w) = 1 +w2/w2‘,

(7N
where y, stands for the dissipation rate, and carries the order of
magnitude of the system-bath interaction, and w, is the cutoff
frequency, which places a lower bound in the characteristic
time scale of the thermal fluctuations of the baths [38].

We initialize system and environment as ¢ = pp @
(®Q, 7). where py is any state of the three oscillators,
1, = Z; e H/ksTe i5 3 (Gaussian) thermal equilibrium state
of reservoir « at temperature T,, and where kp denotes
the Boltzmann constant. The normalization factors are Z, =
tr{e~Hs/ksTu} and Hp, stands for the free Hamiltonian of the
corresponding reservoir. The linearity of the system’s effective
dynamics, guaranteed by the overall linear Hamiltonian and
the “Gaussianity” of the baths, leads to Gaussian reduced
stationary states poo = trp{0so} [39].

Any Gaussian three-mode state is fully determined (up to
local displacements) by its second-order moments, arranged
in the 6 x 6 covariance matrix

_ ( Cxx(0)|Cxp(0)
o= (cpxm) cpp<0>> : ®
The 3 x 3 blocks C45(0) are defined as

Cap(t —1") = J{A@B" (1) + B1HAT (1)) p, ©))

where A,Be{X,P} and X = {xg,xc.xg}7, P=
{pc.pc,pr)T are column vectors collecting position
and momentum operators of the modes.

III. EXACT STATIONARY STATES

A. Generalized quantum Langevin equation

We shall now calculate the stationary matrices Cp(0)
and thus, the steady state of the system, by making use of
the generalized quantum Langevin equation (QLE) formalism
[33], which is widespreadly used in the study of quantum
Brownian motion [40]. The QLE follows from the elimination
of the environment in the Heisenberg equations of motion for
Xxq() and p,(t), and may be compactly written as

t
MX+¢X=27(1‘)+%/ dt x(t — )X(). (10)
—0o0
Note that this equation does not rely on any approximations
and therefore, it remains valid in all regimes of parameters.
We remark as well that we took the initial condition gy at
to — —oo so that for any finite 7, it already describes the
asymptotic properties of the system.

The 3 x 3 matrix M is diagonal and carries the masses of
the oscillators Mg = md.g, Where 8,4 stands for Kronecker
delta. The effective potential is encoded in ¢us = Mmw?28up +
Vup + 2mAQq 844, where the frequency shift

L= Ju()

mAQ, = — dw
T Jo w

an

directly follows from the renormalization term of Eq. (5).

In addition to the free dynamics of the interacting oscilla-
tors, Eq. (10) also accounts for decoherence: On the one hand,
the oscillators are locally driven by the stochastic quantum
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forces n,(t) that enclose the effects of the thermal noise. These
form the column vector n(¢). On the other hand, the last term
on the right-hand side stands for a “friction memory kernel”
or “generalized susceptibility” and describes dissipation. Since
the three baths are uncorrelated, the 3 x 3 susceptibility matrix
x has elements

Xap(t) = 8aﬂ®(t)% /00 dw Jy(w)sin wt, (12)
0

where ©(t) stands for the Heaviside step function. Thermal
noise and friction are connected via the Kubo relation

x(t —1t)=—i®¢ — Yt ) — 9 m ), (13)

where (A)p =tr{A®), 1o} denotes an average over the
environmental degrees of freedom.

B. Formal stationary solution

uite generically, the matrices C4p(f) may be extracte
Quite generically, th ices C4p(7) may be exti d
from Eq. (10) by taking its Fourier transform f(w)=
[ dt " f(z). One thus arrives at the linear expression

X()=a()ij(), (14)

where the complex matrix a(w) is defined as

-1
a(w) = _(sz —¢+ %X(@) , (15)

and the Fourier transform j% (w) of the generalized susceptibil-
ity matrix has elements such that

ImFu ()
h
The causality argument that renders .o () = 0 V¢ < 0 also
ensures that jJ,o(w) is analytic in the upper-half plane of
complex frequencies [33]. By virtue of the Kramers-Kronig
relations we then have

Re Xaa(w) = P/

0 T

= Ju(@) O(@) — Jo(—0) O(-w). 16)

® dw' Tm fue(e'
do’ ),am( )’ a7

o —w

where P stands for the principal value of the integral. Let us

now introduce the notation

Im ¥oo (@) liw
— th , 18
n O 2yt 1%
for the symmetrized power spectrum of the quantum
stochastic force n,(¢) [24,25], and the vector ['(w)=
(T2 (@), Ce(w), Tr(w)}T. Then, the matrix Cxx(¢) is written
as

[y(w) =

d .
Cxx()=h / ;e_'”’a(w)l“(w)ot(—w)T, 19)
b4
while the remaining correlations are

Cpp(t) = hm? / ‘;—:w%—f””a(w)r(w)a(—w)T, (20)

and Cxp(t) = Cpx(1),
. do —iwt T
Cxp(t) =ihm Z—a)e a(w)Nw)a(—w)" . 21
T
Equations (15)—(21) thus formally provide the desired exact

stationary states of the system for arbitrary spectral densities
Jo(®).
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C. Stationary solution for Ohmic baths

As already anticipated, in order to compute the steady state
from Eqs. (15)—(21), we will restrict ourselves to the Ohmic
spectral densities of Eq. (7) and further assume symmetric
dissipation rates y,, = y. In this case, ¥ (w) reduces to

i mhy
Xap(@) = Sap——, (22)
iw— w.
which gives a(w) and ', (w) by immediate substitution into
Egs. (15) and (18). Note that the frequency shift of Eq. (11) is
now AQ, = yw./2.

It is indeed possible to carry out the integration in
Egs. (19)—(21) and get closed formulas for the exact correla-
tions by means of contour integration in the plane of complex
frequencies, as in [41]. Unfortunately, little can be gained
from the cumbersome expressions that result, neither from the
physical, nor from the practical point of view. Their discussion
is hence postponed until the Appendix, and in what follows,
we shall evaluate Egs. (19)—(21) numerically.

In the next section, we briefly review the basic tools
to be employed in the characterization of the entanglement
distribution in the stationary states of our system.

IV. GAUSSIAN TRIPARTITE ENTANGLEMENT

As already mentioned, the precise quantification of genuine
multipartite entanglement in general mixed states still proves
challenging [10,11], even in the simplest case of tripartite
systems. For instance, when dealing with qubits, quantities
that prove to be bona fide measures in the bipartite scenario,
such as the concurrence [42] or the negativity [43], have
to be replaced with a suitable entanglement monotone that
additionally satisfies the Coffman-Kundu-Wootters (CKW)
monogamy inequality, like the residual rangle, computed from
the convex roof of the squared concurrence [44].

In complete analogy, a continuous-variable residual tangle,
or (Gaussian) cotangle, was introduced in [28] that satisfies the
CKW inequality for all three-mode Gaussian states. It follows
from the infimum of the squared logarithmic negativity [43]
taken over all possible (Gaussian) pure-state decompositions
of p. Alternatively, a monogamous Gaussian entanglement
measure may also be defined in terms of the Rényi-2
entropy [14].

As a bipartite entanglement measure, the (logarithmic) neg-
ativity exploits the positivity-of-the-partial-transpose (PPT)
separability criterion [45,46] which turns out to be not only
necessary, but also sufficient for all 1 x n multimode Gaussian
states [47]. Therefore, even if the (logarithmic) negativity fails
to faithfully account for genuine multipartite correlations, the
PPT criterion does allow for a qualitative description of the
distribution of Gaussian entanglement in a three-mode CV
system, according to the number of nonseparable bipartitions
out of the three possible. We shall denote them as L|(CR),
C|(LR), and R|(LC). This entails the following classification
for tripartite Gaussian states, as introduced in [12]:

(C1) Fully inseparable states, which are not separable in
any of the bipartitions.

(C2) One-mode biseparable states, which are separable
only in one out of the three possible bipartitions.
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(C3) Tivo-mode biseparable states, for which now two of
the bipartitions are separable.

(C4) Three-mode biseparable or bound entangled states,
which are separable under all bipartitions, but cannot be written
as a mixture of product states only.

(CS5) Fully separable states, which unlike those of (C4),
can be written as a mixture of product states.

In order to distinguish between the PPT-equivalent classes
C4 and C5, we make use of the criterion for full separability
of [12]. In what follows, rather than attempting to quantify
genuine tripartite entanglement, we resort to the previous
qualitative characterization and apply it to the exact stationary
states of our system.

V. RESULTS AND DISCUSSION

Finally, we are in a position to analyze the distribution
of the stationary tripartite entanglement classes in the space
of parameters of the system. Even if Eqgs. (15)—(21) are not
underpinned by any restrictive assumptions, we shall focus on
the low-temperature regime, which is optimal for the buildup
of entanglement, and exploit our steady-state solution to probe
into the strongly dissipative regime.

We shall also restrict to low effective interoscillator cou-
pling strengths k, as strong couplings are rather unrealistic in
experiments. This translates into k/mQ? < 1, where Q ~ w,.
Indeed, by noting that ty ~ m2/k is a characteristic time for
energy transport across the system when isolated from the
environment, it becomes clear that the condition &/ mQ? « 1
amounts to a separation of time scales 7; > Q™! that renders
transport inefficient. Consequently, the typical time scale
governing the closed evolution of the whole interacting system
may be approximated as tg ~ Q7.

In the study of quantum Brownian motion, one usually as-
sumes fast thermal fluctuations (tp ~ h/kpT K T5,7T3 <K Tp)
as compared with the free evolution and the dissipation time
Tp ~ ¥~ [38]. On the contrary, we shall work with relatively
low temperatures and strong dissipation rates (kpT/h < €,
kgT /h ~ y) so that the system is much more insensitive
to noise. In this regime, picking a cutoff frequency w. of
the order of Q gives rise to nonperturbative renormalization
frequency shifts AQ = yw./2 that should be expected to
become relevant. It is also important to note that under strong
dissipation, the stationary states of the system are generally not
of thermal equilibrium (Gibbs states) [39,41,48], even when
the temperatures of the local baths coincide and no steady-state
energy transport is established.

Under these conditions, the stationary tripartite entangle-
ment is studied in absence of energy currents through the
system (Sec. V A), and when the equilibrium temperatures of
the baths are arranged in a gradient (Sec. V B).

A. Identical equilibrium temperatures

We shall start by taking resonant frequencies w, = 2 and
AT = 0 (see caption of Fig. 1). The tripartite entanglement
class of the resulting stationary states is plotted in Fig. 2
as a function of the coupling strength £ and the equilibrium
temperatures 7' of the baths. Not surprisingly, the higher the
temperatures, the higher the corresponding coupling k that is
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FIG. 2. (Color online) Phase diagram with Gaussian tripartite
entanglement classes as a function of the interoscillator coupling
strength k and the temperature of the baths 7, = T for w, = 2. The
dissipation rate was fixed to y = 10722, while the cutoff frequency
is w. = 50€2. For sufficiently weak coupling, the stationary state lies
within the fully separable class (C5), which is almost imperceptible
at the bottom of the plot. In the inset, the tripartite entanglement
classes are shown as a function of the interaction strength & and the
dissipation rate y, at a very low temperature of just 2kz 7T /A2 = 0.05.
We observe that for any k& above a temperature-dependent threshold,
the ground state undergoes a transition from the fully inseparable
phase, characteristic of low dissipation, to a bound entangled phase
(C4), passing through an intermediate two-mode biseparable stage
(C3) as the dissipation rate is increased.

required to keep the system in a fully inseparable state (CI).
Note as well that one-mode biseparable states (C2) do not
build up asymptotically in this configuration.

In fact, the stationary entanglement in the bipartition
C|(LR) proves more resilient to noise than in either L|(CR)
or R|(LC). This is obviously due to our choice of potential V
in Eq. (3), which only puts mode C in direct interaction with
the remaining two. Now, given that in this configuration the
system is invariant under the exchange £ <> R, its stationary
states must be bisymmetric and, therefore, as the temperatures
increase, steady-state entanglement in bipartitions £|(CR) and
R|(LC) must disappear jointly, which entails a direct transition
from C1 to C3. Increasing the temperatures further, the system
also becomes separable with respect to C|(LR), thus giving
rise to stationary bound entangled states (C4). Even though
class C5 only appears for extremely low coupling in Fig. 2,
at any given k there exists a temperature 7 above which the
steady states become fully separable [49].

Most interestingly, in the inset of Fig. 2 we can see how the
separability properties of the ground state (GS) of the chain
depend on k and y: For any k above a temperature-dependent
threshold k7, (in the figure kI, ~ 2.5 x 1073k/m$?), there
exist dissipation rates at which the GS undergoes transitions
C1—C3 and C3— C4. On the contrary, fork < kT  itremains

min?®

PHYSICAL REVIEW A 88, 012309 (2013)

in the fully inseparable phase C5 regardless of the dissipation
strength. The sharing structure of bipartite entanglement in the
GS of a harmonic chain thus depends on y when decohering
far from the Born-Markov regime.

This can be, at least, qualitatively understood by recalling
that the system Hamiltonian Hgo + Hg includes the renor-
malization term of Eq. (4), which amounts to a shift on the
frequencies Q2 — Q? = Q2 +2AQ. Hence, one may argue
that the effective coupling strength k/mQ? decreases as the
dissipation rate grows, thus potentially downgrading the GS to
an entanglement class of higher separability.

B. Temperature gradient across the system

We now arrange the baths in a temperature gradient by
allowing for AT # 0 (see Fig. 1) so that stationary energy
transport may be established across the harmonic chain. Let us
first consider 2k T /A2 = 0.35, w,r = R, and we = Q + 6.
This configuration is invariant with respect to the combined ex-
change of £ <+ R and AT <> —AT and thus, the distribution
of entanglement phases must be symmetric about AT = 0, as
seen in Figs. 3(a) and 3(b).

In Fig. 3(a) we fix k/mQ? = 0.05 and plot the entanglement
classes as a function of § and AT. First, notice that one-
mode biseparable stationary states (C2) do build up, now
that the symmetry argument invoked in Sec. VA is not
applicable.

One sees as well that in general, whenever w¢ increases, the
free dynamics of the central mode becomes more insensitive
to noise since kT /hwe decreases. This helps to reduce the
stationary biseparability and eventually yields fully insepa-
rable states (CI). However, as illustrated in the inset, very
large values of w¢ may also cause an effective decoupling of
the central mode from the rest as k/ ma)é becomes smaller.
In other words, given a fixed interaction k, fully inseparable
stationary states may be generated by tuning the frequencies
to a compromise between shielding the system from thermal
noise and keeping the effective interaction between its modes
sufficiently strong.

Finally, note that arranging the baths in a temperature
gradient proves detrimental to the asymptotic formation of
states in any of the bipartite entangled classes (CI-C3). This
seems to occur due to the intensification of thermal noise at
the hot end of the chain rather than as a consequence of the
stationary energy currents established across the system. We
illustrate this point further in Figs. 3(b) and 3(c), where k and
AT are taken as the free parameters.

In Fig. 3(b) we consider resonant modes (6 = 0), while
in Fig. 3(c) the oscillators are set up in the asymmetrical
configuration: wy = Q, we = 222, and wr = 3Q. In the first
case, keeping the steady state within the fully inseparable
class requires stronger couplings as the temperature gradient
increases in either direction. On the contrary, the asymmetric
setting of Fig. 3(c) favors the formation of class CI steady
states at moderate negative temperature gradients, as these
provide the low-frequency mode £ with the lowest temperature
(T — |AT]) and the high-frequency mode R with the highest
one (T + |AT|), which optimally shields the system from
thermal noise.
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FIG. 3. (Color online) Stationary Gaussian tripartite entanglement classes versus (a) § and AT for coupling strength k/m$? = 0.05 and
wr.r =R, wc =R+ 8;(b) kand AT for w, = 2; and (c) k and AT for w; = Q, we = 2R, and wr = 3R (see discussion in Sec. V B). All
three figures share the same average temperature 2kz 7 /A2 = 0.35 and the same dissipation rate y and cutoff w. as in Fig. 2. In the inset of
Fig. 3(a), we zoom in around AT = O for large detuning 8, and observe how the fully inseparable phase (CI) is a connected region in the §-AT

space.

It is also noticeable how the one-mode biseparable class
(C2) takes over bound entangled steady states (C4) in Fig. 3(c)
as contrasted with Fig. 3(b), even though it may be seen
that the magnitude of the stationary energy currents [50] is
comparable in either case. This observation further suggests
that the buildup of steady-state quantum correlations indeed
might not share a causal relation with the efficient transport
of energy at microscopic scale, as already pointed out in
different contexts such as excitation transfer in biological
systems [51], thermal conduction in spin chains [52] or the
optimized performance of quantum refrigerators [53].

VI. CONCLUSIONS

We have addressed the qualitative classification of the bi-
partite entanglement distribution across three linearly coupled
harmonic oscillators dissipating into independent structured
baths. By making use of the quantum Langevin equation
formalism, we were able to compute their exact stationary
Gaussian states and then, issue a comprehensive analysis of
the different entanglement classes that build up asymptotically
in terms of the parameters of the system. It is important
to note that this approach is not limited by the customary
assumptions of equilibrium and/or weak-memoryless system-
bath interactions, so that it allows one to probe into the largely
unexplored nonequilibrium strong dissipation regime.

Interestingly, we saw how the ground state of the har-
monic chain undergoes structural transitions between different
schemes of entanglement sharing, increasing its bipartite
separability as the dissipation grows stronger. This is a direct
consequence of the non-negligible back action of the system-
bath coupling on the system itself.

It was also noted that inducing stationary energy transport
by means of a temperature gradient is generally detrimental to
the formation of fully inseparable steady states due to the more
intense thermal fluctuations at the hot end of the system. The
resulting stationary energy currents do not seem to correlate
to the asymptotic formation of biseparable states.

We finally discussed how a suitable choice of frequencies
may shield the system from thermal noise while keeping
the effective interoscillator coupling strong enough, so that
potentially useful fully inseparable states may build up
asymptotically in spite of the strong decoherence.

As was already pointed out, our model is appropriate for
the theoretical description of a range of systems of interest
in quantum technologies, especially arrays of interacting
nanomechanical resonators. Indeed, considering typical fre-
quencies 2 in the range of 1 MHz and masses m around
10~1 kg, the region of the space of parameters probed in our
numerics may be achieved in present-day experiments.

One could also think of applying the powerful exact tech-
niques illustrated here to the study of steady-state multipartite
entanglement under the action of correlated thermal noise in
a more realistic structured bath of spatial dimension greater
than one. This problem is worthy of detailed study and will be
considered elsewhere.
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APPENDIX: ANALYTICAL EXPRESSION
FOR THE COVARIANCE MATRIX

As already mentioned in Sec. IIIC, in order to get an
analytical expression for, e.g., Eq. (19), one can use the
customary toolbox of complex analysis to explicitly carry out
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the integration. Therefore, complete knowledge about the roots
z; of the denominator of the integrand is required. Let us start
by alternatively writing Cxx(0) as

mhy w?
_ Z/ dw adj [F(@)]ep adj [F(@)*]gs o coth
|F(0)||F(w)*| 2kpTy’

(AD)

where the matrix F(w) is defined as [F(®)]yp = (0, — iw)
[@~!(@)]ap- The notation adj[F(w)] = | F(w)|F(w)~! stands
for the adjugate matrix of F(w), and the asterisk represents
conjugate transposition. Note that from Eq. (22) it follows that
a(—o)T = a(w)*.
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The denominator of Eq. (A1) is a real polynomial of degree
18 comprised of the determinants |F(w)| and | F(w)*|, which
are complex polynomials of degree nine. Provided that F(w)
is diagonalizable, |F(w)| may be written as the product of
three polynomials of degree three, and therefore, its roots can
be analytically worked out, even if the resulting expressions
are rather involved. When it comes to the multiplicity of those
complex roots, it can be checked that they are all simple
for our choice of interaction potential in Eq. (3). We shall
label them so that {zj,...,z9} lie in the lower half plane
of complex frequencies (and {z9, .. .,z18} = {Z1, ...,29} are
their corresponding complex conjugates).

We may now decompose the integrand of Eq. (Al) into
partial fractions as

adJ[F(a))]aﬁadJ[F(w)*]ﬁéa) coth 5% szTﬂ 1 29: ad_][F(w)]aﬁad_][F(w) Ipsw coth 5% ZkRT 1
| F ()| F(w)*| -~ m® = ZZIij Hk¢j(zj_zk)nk¢/(zj Zk)w_zj
9 *
1 adj[F(w)]apadj[F(w)*]gsw coth 57— 1
- Z 1 2k T . (A2)
me ATy sz [Ter; @ — 20 [ @ — 20 0 — 75
with k € {1, ...,9}. We shall also make use of the identity
1 1 j j
cothx:f—{—,f[l/f(l—f—g)—l//(l—g)], (A3)
x im b4 b4
where 1 (z) stands for the digamma or psi function, i.e., the logarithmic derivative of Euler’s gamma function ¥ (z) = d In I'(z)/

dz [54].

Combining Eq. (A3) with Eq. (A2), Eq. (A1) may be evaluated by making the analytical continuation of the integrand into the
plane of complex frequencies and calculating residues. Notice that the extended function (1 £ iz/7) has simple poles along
the entire positive (negative) imaginary axis. We shall choose integration contours either in the lower or upper plane for each of
the resulting terms in Eq. (A1), such that those nonanalyticities are avoided. The elements of the correlation Cx x(0) thus result

in

iy s~~—[ ksTy  2Rez; . hz adj[ F (z))lupadil F (z;)*]
[CXX(O)]a,s:—”SfZZ[Zh’;” ~ 5 m w<1+12 T )]R = L L ISR 0 ¥)
m 5 =l mz; mwlmz; TTkplp Hk;ﬁj(zj Zk)l_[k#(z_/ )
Similarly, Cp p(0) may be computed from Eq. (20) to yield
kpTgRez; 2Rez; hz; dil F(z))lupadi[ F(z;)*
(Crp(O)ls = "2 [B ’ ’Imw(1+i 4 )]R AR lapadlF @ s
2nImz; nImzj 2rkpTg [Tiz; @ — 20 Tligj (25 — 200
and finally, Eq. (21) translates into
h kgTsR 2Rez hz; dj[F apadj[F(z;)*
[CXP(O)]as—— yw ZZ[ plgRez; ]Imw<l+l Zj >:|I adj[F(z;)]apadj[F (z;)"]1ps . (A6)
2nImz;  wlm 2k Ty [Tiz; @ — 20 [lig (25 — Z0)

which provides us with the desired explicit formulas for the exact stationary Gaussian state of the system.
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I. INTRODUCTION

Entanglement is one of the most striking phenomena in Quantum Physics. Composite systems
exhibiting genuine quantum correlations defies our intuition, in the sense that they are not inter-
preted by classical or semiclassical means [1, 2]. Quantum correlations are at the heart of many
quantum information tasks, such as quantum teleportation and quantum communication, as well
as at the core of a variety of many-body physics phenomena [3]. Quantum Thermodynamics seeks
the understanding of the emergence of thermodynamics laws from those of quantum dynamics
[4, 5]. In this sense, one may wonder about the role of quantum correlations and coherence in
different phenomena of interest in Quantum Thermodynamics, for instance in the thermodynamics

of quantum thermal machines [4-13] or, more generally, in thermal non-equilibrium systems [14].

Quantum correlations have different fates depending on the environmental influence [15, 16].
Although entanglement is fragile with respect to thermal fluctuations and decoherence, stationary
entanglement still could remain in a system subjected to dissipation [17-20]. Quantum discord
[21-23] on the other hand seems more stable to environmental noise [24]. Recently, efforts have
been made to study how dissipation may precisely drive the system onto preferred states, e.g. onto

a genuine entangled state [25, 26], by engineering the interaction with environments [18, 27-29].

According to the non-equilibrium theory, the analysis of the (linear) response of many-body
systems to macroscopic thermodynamic forces, such as those induced by temperature or chemical
potential gradients, and to (weak) external fields provides an opportunity to test some predictions
from condensed matter theory and statistical physics. As an illustration, multipartite entanglement
in spin chains has been explored through precise measurements of the magnetic susceptibility
[30, 31] and the heat capacity [32]. Also theoretical studies of these two magnitudes seem to provide
observable signatures of entanglement in spin chains at thermal equilibrium [33, 34]. Nowadays, the
energy transport through systems involving spatial continuous variables, such as chains of trapped
ions, can be experimentally measured [35].

Given the increasing interest in systems under non-equilibrium thermal conditions in the quan-
tum regime [24, 36—43], one may naturally ask whether the stationary response of a system to
a temperature gradient may be influenced by the presence of pure quantum correlations, and in
particular by genuine multipartite entanglement. The present work tries to elucidate whether the
average properties of the stationary energy current across a harmonic chain, such the mean values
and fluctuations, are sensitive to the presence of two-mode and genuine tripartite entanglement

in the system, and more generically to quantum correlations as measured by discord. Significant
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advances in the context of quantum spin networks indicate that the presence of bipartite entan-
glement does not play an important role on excitation transport [44], whereas a strong correlation
between quantum coherence and transport efficiency can be present [45]. Although quantum cor-
relations tend to disappear in systems subjected to a temperature gradient, it has been shown that
entanglement and discord can still survive in systems under such conditions [24, 42]. Much less is
known about the influence of genuine multipartite entanglement and the structure of discord on the
stationary energy current in strongly dissipated harmonic chains at low temperatures. This work
focuses on stationary quantum correlations in a continuous-variable system within such domain,
and analyzes their possible relation to non-equilibrium conditions.

We consider an open system model composed of a linear arrange of three harmonic oscillators,
each of them interacting with its own independent heat bath. We assume that the heat baths
are in an initial squeezed thermal state [46]. This set-up is particularly interesting in the study
of the generation of entanglement between distant modes of a quantum network [47], and also a
convenient model to analyze many issues concerning the Quantum Thermodynamics of continuous
variable systems [4]. We employ the open-system formalism based on the generalized Langevin
equation (GLE) [48-50] to carry out an extensive numerical study of the stationary properties. We
focus on the two- and three-mode entanglement and the discord in the presence of an energy current
through the harmonic chain, for a large range of system parameters. We will analyze whether the
average and the fluctuations of the energy current exhibit any evidence of the quantum correlations
emerging under non-equilibrium thermal conditions.

The paper is organized as follows. In Section II we describe the model of the system and intro-
duce the covariance matrix, which fully characterizes the stationary state of the system. Section III
reviews the generalized Langevin equation approach considered to obtain this state. In Section IV
we derive the expressions giving the average and the fluctuations of the energy current in terms of
two-time correlation functions, and introduce the quatum correlations, characterized by means of
the two- and three-mode entanglement and the (right) discord. The numerical results are presented
in Section V, the corresponding discussion is given in Section VI, and the main conclusions are put

together in Section VII.

II. MICROSCOPIC MODEL

We consider an open one-dimensional chain composed of three harmonic oscillators, see Figure

1, labeled as £ (left), C (center), and R (right), with identical mass m, natural frequencies w; (i =
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L, C, R), and position and momentum operators (&;, p;). We assume bilinear interactions between
first-neighbor oscillators, £ <> C and C +» R, with strength given by a single parameter k. Each
ith oscillator is coupled with an independent heat bath composed of N independent harmonic
oscillators, with masses m;, (1 = 1,..., N), frequencies wj, and position and momentum operators
(Ziu, Pip)- Eventually we will consider the quasi-continuum limit N — co. The Hamiltonian of the

global system can be written as

H= <g5i+HBi) ; (1)
i=L,C,R
where
p? 242
Hg; = 27% + o5 Mw; & + | Z Uijzit; , (2)
j=L.CR
Hy
with
k -k O
U= 1 k 2k —k
=5 - _ ,
0 -k k

corresponds to the isolated chain, and

N 2 2
o pzu ]- 2 ~ gl/}, A
Bi MZ::l sz’u 2 (2 0ag Y7 qlﬂ mi#wgu 7 ( )

describes the three independent baths and their interactions with the oscillators, which are assumed
bilinear with coupling constants g;,. The interaction term in the microscopic model given by Hpg;

includes the renormalization terms

N g2
mAS; = e, (4)
1 ; mwwf#

which ensures that the frequency w; is maintained as the bare frequency of the ith oscillator [49],
and the complete positivity of the total Hamiltonian (1).

In general, a system under the influence of dissipative effects will evolve in the long time limit
toward a stationary state in which any trace of its initial state has been wiped out. The initial
condition is only relevant in determining the transient dynamics previous to this asymptotic state.
We fix the initial state at tg — —oo, and assume a barely chance of interaction between the
system and the environment at to this point. Then it is reasonable to consider that the system

and the environment are initially uncorrelated. As our analysis is based on quantum properties
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FIG. 1. (Color online) Schematic representation of the chain composed of the three oscillators coupled to
independent heat baths, with temperatures T, T¢ and Tk. jl g (i = L, C, R) indicates the energy current
from the heat bath to the ith oscillator, and jl] the energy current from the jth to the ith oscillator, in the
case of Ty > Te > Tr. k is the coupling constant between first-neighbor oscillators, and g;, the coupling

constant between the ith chain oscillator and the uth (u = 1,..., N) oscillator of the bath.

in the asymptotic stationary state, without loss of generality we will assume an initial product
state given by po = ps ® (Ppr @ ppec @ ppr) [42, 49], where pg is the initial state of the isolated
chain and pp; (i = £,C,R) initial Gaussian quantum states corresponding to the baths, which are
not necessarily at thermal equilibrium states. Assuming that initially the baths are in squeezed

thermal states with zero first-moments [51], the following averages over the initial state po are

satisfied
% <{‘jiu(t0)v‘jiu(t0)}>ﬁ0 = Oup 2m‘hw‘ [1+2N (wip) + 2Re[M (win)]],
uip
5 (B t0), Pis0)}) g, = e 22 [1 4 9 N ) — 2Re[ M ()]
5 (i (t0), B(t0)}) 5, = b BT [M ()], (5)

where Re[e] and Im[e] denotes the real and imaginary part of e, and
M;(wjy,) = — coshr;sinhr; i (2N, (wip) + 1),
Ni(wip) = Nep (wip) (cosh2 r; 4+ sinh? ri) + sinh?r;,

which satisfy the relation |M;(wi,)|? < Nj(wiy)(Ni(win) +1). We have considered the same squeeze
r; for all the oscillators of the ith bath. 6; (—m < 0; < 7) is a global arbitrary rotation of the bath
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state ppi, and Ny (wiy) is the average occupation number of the pth oscillator in the ith bath in
a thermal equilibrium state.

To induce an energy current across the chain, see Figure 1, we fix the left and right heat baths at
different temperatures, Ty = T+0T and TR = T—0T respectively, with T low enough to ensure that
the system remains within the quantum regime. Then we modify the temperature of the central
bath, Te = T 4+ AT, by considering different values of AT. This setup is particularly interesting
as it makes possible to establish a quasiclassical regime in the central oscillator while maintaining
the lateral oscillators in the quantum regime. Below we will show that the asymptotic stationary
state derived from this manipulation of the central oscillator can exhibit a rich variety of quantum
correlations, such as two-mode and bipartite three-mode and genuine tripartite entanglement.

Since the total Hamiltonian (1) is quadratic in both positions and momenta, and we have
considered Gaussian initial bath states, the asymptotic stationary state, denoted by prer, will be
Gaussian for any initial state of the oscillators [52, 53]. Then, the stationary quantum properties
will be determined by just the first and second moments of the positions Z; and the momenta p;.
The former can be made arbitrarily close to zero by unitary local transformations that do not affect
the non-local properties such as entanglement. Whereas the second moments determining all the

correlation properties required in our analysis are given in terms of the covariance matrix

V= Ca:m(t,t) pr(f,t) 7 (6)
pr(tﬂf) Cpp(t,t),

with & = (2¢, &¢,Zr) and p = (P, Pe, Pr), and the two-point (symmetrical) correlation functions
1 ~
Coplt, ) = §Tr(ﬁo{d(t),b(t’)}) . (7)

The second moments of the energy currents also involve the imaginary part of the two-point

correlation Tr [ﬁo a(t) l;(t’)}, given by

Yalt, ) = 5T (o [a0),60)] ) (3)

The covariance matrix of the state p;; corresponding to the subsystem defined by the ith and
jth oscillators can be obtained from (6) by just taking the elements associated with these two
oscillators.

It should be emphasized that at stationary conditions the correlation functions (7) and (8) only
depend on the time difference 7 = t — ¢/, and a particular initial time ¢ is irrelevant to obtain them.
This will be important in what follows, when computing these stationary correlations by using the

generalized Langevin equation approach.
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III. LANGEVIN APPROACH

Within the Langevin approach, the equations of motion that govern the evolution of the station-
ary correlations are derived from the microscopic model (1) by writing the Heisenberg equations
for the oscillator positions and tracing out the degrees of freedom of the heat baths. This leads to
the so-called generalized Langevin equation,

. 1 [t
m£i+mrz§:ei+Uij@j—h/to dr xi(t — 1) 2:(1) = Ei(t), (9)

where we have introduced the potential

27 = Wl + A = w? +—/ dw (10)
the susceptibilities
2h o .
xi(t) = —O(t) dwJ;(w) sin (wt) (11)
n 0
and the fluctuating forces
S Din(to)
; . inlto) .
Ei(t) = gin(@into) cos (win(t — to)) + 20 sin (wiu(t — t0)) ). (12)
pn=1 MipWip
with O(t) the Heaviside step function, and the spectral density of the environment given by
T 9;
. = — T S — wi) . 1
i) = 520 ol 0w (13)
pn=1

As long as the stationary solution of the generalized Langevin equation is guaranteed one may
take the limit ¢y — —oo in Eq. (9), and then, use the Fourier transform Z;(w) = [ dte™!#;(t) to
obtain the stationary solution of the position and momentum operators [19, 42, 54]. By replacing

these solutions into the correlation elements (7) and averaging over the initial state gy, it follows

Cu,z; (L 1
Cra, t,t’ =3[ 2 [ i | Gy, (14)
Cpip, (t, 1) m2ww’
with
.. N — - n n ! 5 (!
Gm<w,w>—lm_ZLC’Rauw)({ﬂ(w),Fm( W)}) () (15)
and
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where FZ‘]‘ = 5@]( — mw? + leQ — %)Zz(w))
The two-points correlation functions Ygp(¢,t') (8) satisfy an expression identical to (14), but

replacing in G;j(w,w’) the anticommutator of the fluctuating force by the commutator.

Expression (16) is nothing but the Fourier transform of the (matrix) Green function [51, 55]
for the generalized Langevin equation (9). The real and imaginary parts of the Fourier transform

Xi(w) of the susceptibility (11) are given by (see Appendix A for further details)

Im [xi(w)] = h[OWw) Ji(w) — O(-w) Ji(-w)], (17)
Re([fi(w)] = iP/de’, (1)

where P denotes the Cauchy principal value. The second expression is the well-known Kramers-

Kronig relation [49] arising from the causal nature of the susceptibility.

In order the three-mode system can reach a stationary state, the function «;;(t) must approach
a combination of decaying exponentials in the long time limit [56]. According to a previous study
of the equations of motion of the system-plus-environment complex in terms of normal modes [55],
the existence of a well defined stationary solution entails that (c; (w))™" has no any real root {2
corresponding to the frequency of a bound normal mode, which implies that Im[x;(£2)] # 0.
From Eq. (17), the latter condition means that (2, must be contained within the domain of
the bath spectral density J;(w) [55]. In general, the heat baths can be considered as composed
of a large number of degrees of freedom with finite broad band spectrum, in which the most
energetic environmental-degree is roughly determined by a cut-off frequency w.. This ensures
that the natural frequencies of the system are well embedded in the environmental spectrum, and
consequently it makes possible an irreversible energy transfer from the system to the environment,
at least in a finite time much larger than the natural time scale of the system. We shall impose
we >> y/w? + k/m (i = L£,C,R) in order to ensure an irreversible evolution of the three-oscillator

chain toward a well defined asymptotic stationary state.

The covariance matrix of this stationary state is completely determined by the correlation
functions (14) evaluated at equal time, once the correlation functions of the fluctuating forces (12)
have been obtained. These correlations depend only on the initial environmental state. Below we
show the relation between the fluctuating forces and the initial covariance matrix (5) of the heat

baths.
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A. Fluctuation-Dissipation Relation

Our choice of the initial environmental state implies the statistical independence of the fluc-
tuating forces corresponding to different heat baths, i.e. <{Fl(t),13‘m(t’)}> = 0 for all | # m.
Whereas, according to Egs. (5), the symmetrical two-time correlation function of the fluctuating
forces associated with a given [th bath is given by (see Appendix B for further details)

L({ao.ae}) -3

pn=1 My Wiy

(5 + M) cos (¢~ 1)

+Re [ My(wyy,) ] cos (wyu(t + ¢ — 2t)) 4 Im [ My(wiyy,) ] sin (wy,(t + ¢ — 2tg)) 1 . (19)

The average of the corresponding commutator can be expressed as

%<[E(t),ﬁm(t’)] ) =i g i G g (' — 1)) . (20)

=1 mluwlu

The dependence of the symmetrical two-time correlation functions on the initial time £ is elimi-
nated in the case of an initial thermal equilibrium state of the [th bath, in which M;(w;,) = 0 and
Ni(wiy) = Nyn(wyy) for all p values. Although in the previous section we have already fixed the
time limit {9 — —oo in order to obtain the stationary solution, we shall maintain the notation ¢
for convenience in order to make more clear the following discussion.

As shown in Appendix B, the non-stationary terms in Eq.(19) come from the average of factors

Iuaiy and a;,ai,, with a;, (a;ru) the annihilation (creation) operator of the uth mode in

involving a
the ith reservoir. These terms describe non-conservative energy processes that take place in the heat
bath at the initial time ty, and therefore, they may influence the transient dynamics of the three-
oscillator chain. However, they become highly oscillatory in the long time limit ( (¢ +¢ —tg) — 00)
and their contribution to the stationary properties may be disregarded [46]. When taking the
quasi-continuum limit > s J dw in the environment spectral density, only the stationary term
in Eq.(19) remains. This assertion holds for an environment with a broad spectrum limited by w,,
and a finite interaction between the reservoir modes and the system oscillators. Mathematically,
the latter translates into that the spectral densities J;(w) are finite continuous functions, and the
corresponding coupling strengths should decay at least as 1/w? at high frequencies. Under these

conditions, the long time limit of the symmetrical two-time correlation function (19) reduces to

the following expression in the frequency domain (see Appendix B for details)

;<{anrﬂww}%%:2waw+w0hnuﬂwﬂcmh(

w
h (2r;) . 21
seop ). (2
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The average of the corresponding commutator reduces to
L /1= o /
5 ([Bitw) Aw)]) = 2w oo+ o) m ()] (22)
0

Similar results have been previously obtained within the path integral formalism [46, 57], see
also [58].

We point out that an initially squeezed state of the environment makes the reduced system
to notice an effective temperature above the temperature T; (i € {£,C,R}) of the heat bath at
thermal equilibrium. This effect has interesting consequences in the efficiency of thermal machines
within the quantum regimen [11].

Now we can replace the autocorrelations (21) into the expressions (15), and perform the inte-
gral in the frequency w’ to obtain a closed-form expression for the two-time correlation functions
Cup(t,t"). Notice that Cup(t, ") = Cop(T = t—1',0) due to the stationary condition of the fluctuating
force correlation. A similar procedure is followed for the functions Yy (¢,t") (8).

In general, there are not analytic expressions giving the integrals involved in the correlation
functions in terms of the system parameters, such as the bath temperatures, the oscillator frequen-

cies and the coupling strengths. We will compute them by means of numerical methods.

IV. ENERGY CURRENT AND QUANTUM CORRELATIONS

The non equilibrium conditions imposed by the different bath temperatures drive an energy
current through the system, see Figure 1. A discrete definition of the energy currents associated

with each chain oscillator can be derived from its local energy [41, 59, 60]

p; 1 1o 9i i
hi = = 4+ —mw?i? + 0;(&) + = E miw? & — Gy , 23
i om 9 it z( ) 4 =~ inWiy, mwwi‘ i — Qip ( )

with 4;(2) = (&; — 2¢)?/4 for i = (L,R), and 1c(2) = [(Zc — 22)® + (#¢ — 2r)?]/4. The time

derivative of h; leads to the discrete continuity equations

=50+ st (2)

with j'z-(t) = j’ic(t) for i = (L, R), and j'c(t) = jcg(t) +jcn(t). The term

) = —5() = [ {050} — @050} + ({&0.5:0) - 05,0} ] @)

:4m

Correlation terms
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can be identified as the energy current from the jth oscillator to the ith oscillator, whereas
1 N gi m
o ~ A K] A~ ~ A~ A~
Js(t) = 70> (gw({qm),pi(t)} ~ e (80560} = = {0:(0) 50} )
p=1 gz
+ mwzz,u {(jlu (t)7ﬁiu(t)} ) (26)

corresponds to the energy current from the ith heat bath into the ith oscillator. At stationary
conditions the total current coming from the baths into the system becomes zero. Here we will

focus on the analysis of the total current flowing from the £- to the R-oscillator, defined as

J(t) = jec(t) + jre(t) . (27)
Our study is based on the stationary properties of the total energy current, which are basically
determined by its first- and second-moments, or equivalently, by its average and fluctuations. The

steady state average of the total energy current

(7) = (ne) + (lee) @)

can be obtained by tracing (25) over the the stationary state and using the stationary solutions of

the two-time correlation functions (14), which leads to

<§Z]> = % [Cﬂﬁjpj (t7 t) - mez‘ (tv t) + (Cfrjpi(tvt) - Céripj (tvt) ) ] (29)

for the local currents j’cg and j’RC.

Since the quantum correlations shared by the oscillators, in particular entanglement, are par-
tially encoded on the correlation terms indicated in (25), one might expect that the energy current
could be sensitive to these correlations. Notice that the total current involves the correlations
between the central and the side oscillators, while it does not depend on the crossed correlation

function between the two side oscillators. We shall further analyze this issue in Section (VI).

A. Fluctuations of the energy current

To have a better understanding of the system behavior under non-equilibrium conditions we
also study the two-time correlation functions of the energy currents (25). The fluctuations can be

obtained from the symmetrical version of the classical two-time correlations, and expressed as

Kiyin(7.0) = 5 { {G5) iun}) = (Gs0)) (Gim(0)) (30)
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Theoretically, the response of a system under external perturbations can be studied in terms of
these correlations functions [14, 49]. Notice that we evaluate the fluctuations in the non-equilibrium
stationary state, so that we might expect that Eq.(30) can elucidate some properties of stationary
non-equilibrium, rather than the equilibrium quantum correlations [30]. Furthermore, it has been
shown that Eq.(30) is related to the fluctuations of the stationary energy current across the chain
[61].

As the stationary state obeys a Gaussian distribution, the four-time correlation terms implicit
in Kj,.j.. (t,t') can be decomposed into terms involving the product of two-time correlations, in

the form

({H{&i(r), 55 (1)} {21(0), pm(0)}}) = 2 ({2:(7), D (7) 1) ({21(0), pm(0)})
+ 2 [({2i(7), 2(0)}) ({05 (7), pm(0)}) + ([2:(7), 21(0)]) ([ (7), Pm (0)]) ]

+2 [({2i(7), pm (0)}) ({22(0), 5 (7)}) — ([£i(7), Dm (0)]) ([22(0), 5 (T)])] - (31)
Then the current-current response function (30) can be expressed as
2
K0 = g 32 [ S [Caues(1.0) Gy (7:0) 4 Vs (1,0) Yoy (7,0)] (32)
555

S0 | Coaps (7,0) C s (<7,0) = Y (7,0) Y, (<7, 0)] |

where S, 5 is the sign of the cofactor of the element (a,b) in the 4 x 4 array defined by the indexes
{i,4,1,m}. Finally, according to Eq.(27), the autocorrelation function of the total current flowing

from the £- to the R-oscillator is given by

KJJ(T’O):KjCLjCE(T’O)+Kj T,O)+Kj T,O)-I—Kj 7',0). (33)

Cll'jRC( RCjClZ( RCjRC(

In contrast to the average energy current, the correlation function K j;(7,0) involves crossed
terms between the R- and the L£- oscillators. In addition, while <j > (28) is given by a linear
combination of two-time correlation terms, K ;;(7,0) has a nonlinear dependence on such terms.
These two aspects will be useful in the subsequent discussion. Alternatively, the behavior of <j >
and Kjj(r,0) will help us to gauge whether the average properties of the energy current are

sensitive to quantum correlations, such as genuine tripartite entanglement.

B. Quantum Correlations: Discord and Entanglement

We shall analyze the two-mode quantum correlations between the ith and jth oscillators by

means of the discord measure on the right [62, 63], denoted by D (p;;). The entanglement be-
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tween both modes can be quantified by the well-known logarithmic negativity En(p;;) [64-66]. In
particular we devote special attention to the entanglement En(jrr) and the discord D (prr)
between the side oscillators.

We use a recent criterion in the realm of continuous-variable systems [67] to study tripartite
entanglement, which is a good estimator for x-partite entanglement [68] in n-mode Gaussian as well
as non-Gaussian states. A tripartite harmonic system may develop bipartite three-mode entangle-
ment, which means that there is at least a bipartition of the three-mode system that is entangled,
or genuine tripartite entanglement, which corresponds to the case in which all the bipartitions are
entangled and the state pser cannot be written as a convex combination of bipartite separable
states. Here, the criterion reduces to evaluate a figure of merit 7, ,, such as a positive value of
T33(prer) (T2,3(pcer)) indicates that the state prer is genuine tripartite entangled (bipartite
three-mode entangled) [67, 68].

As we are dealing with stationary Gaussian states, all the previously mentioned indicators of
quantum correlations can be directly computed from the covariance matrix V' given by Eq.(6).

The logarithmic negativity can be expressed as [66],
En (pij) = max{0, —In (2v_)}, (34)

where v_ stands for the lowest symplectic eigenvalue of the partial transpose covariance matrix

AL

e corresponding to the reduced density matrix p;;. The (right) discord is given by [22, 23],

D% (pij) = I(pij) — T (pis), (35)
with the total correlations
I(pij) = S(pi) + S(ps) — S(hiz) (36)
and the classical correlations

I (pij) = max {S(ﬁz’j) - szs(ﬁf-l))} : (37)
l

(4)
my’

which are given in terms of the von Newman entropy S(p). Closed form expressions for the quantum
discord as a function of the covariance matrix V;; have been derived in [62, 63]. It is important
to realize that these indicators of quantum correlations involve a non-linear dependence on the
density operator and the two-time correlation functions. See Appendix C for further details of the

logarithmic negativity, the quantum discord and the separability criteria 7y ;.
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We now investigate the average properties of the total current J when the three oscillators
share two-mode and tripartite entanglement. In many realistic situations, e.g. quantum Brownian
motion, the interaction with the environment leads to an Ohmic dissipation. In a first approach,
for a nanomechanical setup, one may think that the thermal relaxation is mainly due to the
coupling with the acoustic phonons of the substrate, which may lead to linear spectral density
at low oscillator frequencies. However, in some cases, the dimensionality of the environment may
induce super-Ohmic dissipation. Here we analyze both the Ohmic and super-Ohmic dissipations,

which are characterized by the spectral densities

HO(w) = T w e, (38)
and
2
Ji(SOh) (w) _ 777’;'71 % efw/wc7 (39)

respectively, with 7; the dissipative rate for the ith oscillator and w. the frequency cut-off of the
environmental spectrum. As argued in Section III, the stationary state is reached in a time scale
larger than any of the natural time scales implicit in the dynamics of the open chain; namely
{wet, v h/2nKpT}.

From now on we set the environmental parameters 71 = 73 = 107442, 75 = 0.0542, w, = 2042,
and the typical values for nanomechanical oscillators 2 = 1GHz and m = 10716 kg. With this
configuration the system begins to exhibit quantumness at temperatures in the range of mili-Kelvin.
We also assume off resonance oscillators with frequencies, wy = 2 + 0.4 dw, we = 2+ 0.9 0w, and

wr = {2 — 0.7 0w, given in terms of a detuning parameter Jw.

A. Two-mode entanglement and average energy current

We start by analyzing the behavior of two-mode entanglements and the total energy current
with the temperature gradient AT. As figure 2) shows, the three oscillators become two-mode
entangled at low temperature gradients, with this entanglement exhibiting a plateau for negative
gradients. Interestingly the total current flowing through the oscillator chain presents a similar
plateau. This can be related to the proximity of the central oscillator to its ground state at
very low temperatures Tp, which is effectively reached for AT/T ~ —1. A similar result for

entanglement has been obtained in the study of the influence of heat transport on the two-mode
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FIG. 2. (color online). Left: The two-mode £|R — entanglement (labels on the left), and the C|R —, L|C —
entanglements (labels on the right) as a function of the temperature gradient AT. Right: The average
of the total energy current across the chain as function of the temperature gradient. On both panels the
orange solid line corresponds to Ohmic dissipation, and the blue dashed line to super-Ohmic dissipation.
The temperature gradient must satisfy AT/T > —1 to prevent the temperature of the central oscillator

becomes negative. We have fixed dw/2 = 0.5, k/m2? = 1.8, 6T/T = 0.95 and kT /h{2 ~ 0.27.

entanglement between oscillators that are embedded in a disordered harmonic chain connected to
heat baths at both ends [69]. It has been shown that a plateau emerges when the energy spectrum
is bounded from below since each site of the chain suffers an harmonic potential. As the central
oscillator gets closer to the ground state for negative values of AT, the energy flowing across this
oscillator becomes bounded as the temperature gradient decreases. In the absence of the harmonic
confinement the logarithmic negativity would continue growing up to a maximum value, as the
heat transport decreases [69]. Moreover, the plateau in the entanglement remains even when the
average energy current across the chain becomes zero, though the temperature gradient AT is not
zero. This occurs when 07T = 0 and the left and right oscillators are identical {2, = {2z, and
therefore <j'c[;> = — <§RC> This last point also underlines that the appearance of entanglement
is mainly attributed to proximity of the system to its ground state, rather than to the presence of
an energy flow induced by non-equilibrium conditions.

The two-mode entanglement rapidly decreases for positive AT, while the energy current grows
monotonically. This is expected as the temperature of the whole three-mode system is increased
on average, which is generally harmful for entanglement. Previous results have suggested this
behavior, in fact it has been shown that in a harmonic chain an increasing 7 is detrimental to
build up bipartite or tripartite entanglement due to the rise in the thermal noise [42]. In addition,

it can be shown from (21) that an initially squeezed environmental state effectively increases the
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temperature. Hence, in the present setting an initial squeezed bath state does not favor the
appearance of stationary entanglement.

Moreover, one may expect that non-Markovian effects, which are more relevant for super-Ohmic
dissipation, would substantially degrade the entanglement with respect to the Ohmic situation.
According to figure (2), the two-mode entanglement is essentially the same for the chain suffering
Ohmic or super-Ohmic dissipation; namely, Ex(pcr), En(prc) and En(pcr) practically coincide
for both situations. This result is in contrast with the observed transient evolution of the two-
mode entanglements under different environmental spectral densities, in which the super-Ohmic
dissipation induces stronger disentanglement effects [70]. The coincidence of the stationary two-
mode entanglements also differs from the emergence of entanglement in a situation in which the

oscillators are affected by the same bath [20]. In the case of the energy current, we observe that it

is strongly affected by the interaction with the heat baths, determined by the fixed spectral density.
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FIG. 3. (color online). The two-mode entanglement En(prc) (left panel) and the stationary energy current
<3Rc> /h$2? (right panel) in terms of the temperature gradient AT and the coupling strength k under Ohmic

dissipation. The system parameters are the same as figure (2).

We have performed an extensive analysis of the two-mode entanglements and the energy currents
involving the central oscillator, in terms of both the temperature gradient AT and the coupling
strength k. As figure (3) shows, a similar behavior to that illustrated in the figure (2) is reproduced
for different values of k. The entanglements En(prc) and En(pzc) increase for lower temperature
gradients and stronger couplings. Whereas the energy currents <3’RC> and <5CL> exhibit a rela-
tively weak dependence on the coupling strength, and the expected increase with the temperature
gradient. Also the plateau of small energy currents arising in the proximity of the ground state of

the central oscillator can be clearly observed.
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Hence, our results indicate that the energy currents across the system are insensitive to the
emerge of two-mode entanglements between the oscillators, both under Ohmic and super-Ohmic
dissipation, and irrespective of the coupling strength with the heat baths. The two-mode entangle-
ment En(prr) and total energy current <j > remain nearly unchanged provided that the central
oscillator is close enough to the ground state, at temperatures between T and T'/2. An increase

in the temperature of this oscillator results in a deterioration of the entanglement, and an increase

in the energy current.

B. Energy current correlations and three-mode entanglement
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FIG. 4. (color online). Left: The criteria T23 and 733 as a function of the temperature gradient for Ohmic
dissipation. Right: The time evolution of the fluctuations of the total current under Ohmic dissipation,
in a system that is genuine entangled (AT/T = —0.95) (black solid line), bipartite three-mode entangled
(AT/T = 1.9) (blue dashed line), and likely separable in the three possible bipartitions (AT/T = 4.3) (red
dot-dashed line). The remaining parameters are k/m{? = 2, dw/§2 = 0.5, 6T/T = 0.95, and kT /hf2 ~
0.27.

In this section we analyze the three-mode entanglement and the energy current correlations
between the left and right oscillators, which includes correlation terms involving the three oscil-
lators, see Eq.(33). Figure (4) shows the bipartite three-mode (k = 2) and the genuine tripartite
(k = 3) entanglements measured by the corresponding criteria 7 3 [67, 68]. The results for both
the Ohmic and super-Ohmic dissipations are quite similar. In the low temperature and strong
coupling regime, the three-mode system exhibits genuine tripartite entanglement, though this fea-
ture rapidly disappears for positive values of AT, such as occurs with the two-mode entanglement.

Strikingly, the system still remains bipartite three-mode entangled at relatively high temperature
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gradients (AT/T = 2). Hence the tripartite entanglement is more robust to temperature changes
than the two-mode entanglement between the side oscillators.

Figure (4) also shows the initial time evolution of the energy current correlations for three
different three-mode entanglement configurations. As expected, the fluctuations of the energy
current exhibit an oscillatory behavior, which should be progressively attenuated at larger time
intervals. According to a previously reported exponential time decay of the two-time correlation
functions (14) in a damped harmonic oscillator at low temperature 7', such oscillations should be

effectively suppressed at time 7 > h/27kpT [56].

As evidenced by figure (4), the energy current correlations exhibit similar oscillations as the
system evolves from genuine tripartite to bipartite three-mode entanglement. The most significant
discrepancy between these two configurations is an increase in the oscillation amplitude, which
can be attributed to the thermal fluctuations that arise with increasing the temperature gradient.
Indeed, a similar oscillating behavior in the fluctuations is still observed at relatively large tem-
perature gradients (AT /T 2 4), when the system is expected to be separable in the three possible
bipartitions.

The results we have obtained from an analysis considering an extensive set of parameters
{T, k, dw, 6T} corresponding to different multipartite entanglement configurations, for both Ohmic
and super-Ohmic dissipations, also indicate that the energy currents correlations across the har-
monic chain are insensitive to the emerge of tripartite genuine or bipartite three-mode entangle-

ment.
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FIG. 5. (color online). Density plot of the energy current correlations K y;(t,t)/(h{2?)? as a function of the
temperature gradient AT and the coupling strength k for Ohmic dissipation. A similar result is obtained
for super-Ohmic dissipation. The black dashed line delimits the states in which the hierarchy 73 3 changes

from positive to negative. The parameters are the same as in figure (4).
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To conclude this section we focus on the energy current correlations evaluated at equal time, see
figure (5), which will be useful in the subsequent discussion. Both the stationary fluctuations and
the average of the energy current, see figure (3), grow with increasing the temperature gradient.
But, in contrast to the average energy current, the plateau at small values of the fluctuations
is observed above a given value of the coupling strength, which is larger in the case of Ohmic
dissipation.

Once again, the fluctuations of the energy current are insensitive to whether the system expe-
riences bipartite three-mode or genuine tripartite entanglement. Similar results are obtained for

the current-current response involving the central and the side oscillators.

C. Quantum Discord

One might expect that a scenario similar to the one previously described for the two- and three-
mode entanglement would be repeated in the presence of other non-classical correlations, such
as discord. In this section we analyze a possible connection between the energy current and the
quantum correlations measured by the right-discord D (pr). Although not shown in this work,
similar results are obtained from the analysis of the discord D7 (pr) measured from the left . We
also point out that the two-mode discord contains the contribution of the two-mode entanglement

studied in previous sections.
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FIG. 6. (color online). Left: The right-discord as a function of the detuning dw, for the temperature
gradients AT/T = 3.8 and 0.95 (black dot-dashed line). Center: The averaged interaction energy Hj, see
Egs. (2) and (40), in terms of dw. Right: The right-discord at resonance (dw = 0), as a function of the
temperature gradient. The black dot-dashed line gives both the Ohmic and super-Ohmic dissipative discord
for an initially squeezed central reservoir, with r¢ = 1(rg = rz = 0). In the three panels the orange-solid
and blue-dashed lines correspond to Ohmic and super-Ohmic dissipations respectively, and the parameters

are k/m2? = 1.8, §T/T = 0.95, and kpT/hf2 ~ 0.53.

We have found that discord exhibits a strong dependence on both the temperature gradient and
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the frequencies of the oscillators. As shown in figure (6), its presents a sharp peak centered at the
resonance condition (dw = 0), and with an amplitude that grows with increasing the temperature
gradient. Interestingly, the discord appears strongly correlated with the mean interaction energy

between the oscillators,

(1) = 5[ Cocre () + 2 Cocaet,0) + Cugar (1:0) =2 (Cogac (60) + Conac (1)) ], (40)

Correlation terms

which has maximum strength also at resonance, see figure (6). This resonant interaction becomes
stronger for higher temperature gradients, which also increase the discord. As all the negative con-
tribution to <I:I 1> comes from the crossed correlation terms, it becomes evident that the maximum
interaction strength occurs when these correlations take the highest values, which also turns into
the optimal conditions for discord. This result evidences an underlying connection between the
interaction energy and the discord, as could be anticipated considering that the discord would be
zero in the absence of interaction.

Figure (6) also shows that the discord in the resonant system begins to grow almost linearly
with the temperature gradient, and then approaches a constant value at higher gradients. An
initially squeezed central reservoir enhances the creation of discord, both for Ohmic and super-
Ohmic dissipation. This is in agreement with the foregoing results, as the squeeze of the initial
bath state effectively increases the temperature perceived by the oscillators, see Eq.(21). Then an
increase of the stationary discord between the side oscillators may be induced either by initially
squeezing the central reservoir or increasing its temperature. It has been shown that discord may
be additionally created by local noisy operations, such as dissipation [24, 71]. Hence, it may happen
that discord would be generated by an energy current induced by a temperature gradient, as this
current would make each oscillator to dissipate.

Considering that the discord contains all the quantum correlations, it would be interesting
to analyze whether the entanglement available in the system contributes to its increase with the
temperature gradient. At this respect, since entanglement can be only created by non-local manip-
ulations and it becomes zero at high temperature gradients, see Section (V A), we may conclude
that such increase of the discord must be mainly due to local operations. The paramount role of the
local manipulations in the creation of quantum correlations at resonance conditions is correlated
with a maximum average interaction strength between oscillators of similar frequencies, see figure
(6) and Eq. (40). Notice that the discord grows with AT even in the absence of an energy current
between the side oscillators (67 = 0).

The plateau of maximum discord at high temperature gradients can be attributed to the very low
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temperatures of the side oscillators Tz r < hf2/kp, which guarantees the “coherence” of the local
manipulations. Indeed, the increase in the discord gradually disappear as the mean temperature
T increases, and therefore the three-mode system approaches to a classic state. We have observed
that the discord D (pr) has almost disappeared at temperature T ~ 50 h$2/kp.

As expected, the two-mode discord between the central and the side oscillators is enhanced
by increasing the interaction strength, see figure (7). Whereas, the trend of the central oscillator
towards a classical state, by increasing its temperature through higher values of AT, causes a
progressive deterioration of the discord. In the case of the energy currents between the central and
the side oscillators, they exhibit an almost linear increase with the temperature gradient, which is
barely modified by the strength of the coupling interaction. Once again, the energy currents do

not seem to be related to the significant non-classical correlations shared by the oscillators.
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FIG. 7. (color online). The discord D* (prc) (left panel) and the energy current <3RC> /h$2? (right panel)
between the central and right oscillators in the resonant system under Ohmic dissipation. Similar results
are obtained for the discord and the energy current between the C- and L£- oscillators, both under Ohmic

and super-Ohmic dissipations. The parameters are the same as figure (6).

VI. DISCUSSION

Considering that the energy current between two oscillators has an explicit dependence on
crossed correlations between them, one could expect that the emerge of entanglement in the system
should have detectable effects on such current. Therefore, it would be interesting to determine
whether a formal connection between entanglement and the average properties of the energy current
can be formally established.

The results presented in Section V A indicate that the behavior of the energy current is not
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modified by the presence of two-mode entanglement. A direct comparison between the two-mode
entanglement between the side oscillators En(pr.) and the total energy current <j > suggests an
elusive correlation between them, see figure 2).

Although the most important contribution to the local currents <5”> (29) comes from crossed
correlation terms that encode part of the quantum correlations shared by the oscillators, the total
current <j > (28) does not have an explicit dependence on the correlation terms involving the £-
and R- oscillators. Then the two-mode entanglement En(pr,) should not necessarily affect the
total current. This reasoning does not exclude, however, the possibility that the total current could
be sensitive to the two-mode entanglement shared by the central and the side oscillators.

The conjecture that entanglement and energy current are intimately related would lead to the
natural question whether the current j’,-j could serve as an useful witness of the entanglement
between the ith and jth oscillators. According to the theory of entanglement, an entanglement
witness VVO based on a (bounded) Hermitian operator O may be constructed as WO =0 -
inf{(@ﬂ Z1 O |w) |W]>} I, where the last term is the infimum value of O among all the product
states |7;) [&;) [72]. For O = ji; (25) it follows

T o k : rod rod rod rod T
W =i - %mf{c{;m (t,8) — CLrod(t, ) + o1, 1) — CEro (t7t)} I (41)

where CLTod(¢,t) is obtained from (14) by considering the average over product states. Wj'ij is
a good candidate to unveil the two-mode entanglement En(p;;) provide that Tr(ﬁijwjij) takes
a negative value for at least one entangled state. Unfortunately such a rigorous proof requires
a closed form expression for C’fb“’d(t,t), which is currently out of scope as we are dealing with
a system under the non-equilibrium conditions induced by two different temperature gradients.
Though we cannot guarantee whether Eq.(41) constitutes a good estimator of entanglement, the
results of Section V A evidence the difficulty of assessing entanglement through W}‘ij’ mainly due
to the apparent insensitivity of the energy current <§u> to the two-mode entanglement En(p;;),
see figure (3).

In addition, though the correlation terms in Eq. (25) partially carry the quantum correlations

shared by the chain oscillators, they themselves do not necessarily manifest entanglement. Indeed,

the so-called Peres-Hodorecki-Simon inequality [73]
pij entangled == Cy,q, (t,1)Cp,p, (t,1) — Cuyp; (t,1)Cpa; (8, 1) <0, (42)

which provides a criterion to detect the two-mode entanglement between the ith and jth oscillators,
already displays a non-linear relation between entanglement and the elements of the covariance

matrix.
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A common feature of the entanglement measures (or entanglement monotones) is their non-
linear functional dependence on the density operator [2], as occurs in the case of the logarithmic
negativity [64]. In some sense, the reliable observation of entanglement relies on the ability to
measure non-linear properties of the quantum state [74]. According to the expressions for the total
energy current <j > (29) and the criterion for entanglement (42), the first-moment of the energy
current depends linearly on the crossed correlation terms, whereas the entanglement exhibits a
non-linear dependence on such terms. Hence, the energy current between the ith and jth is not
expected to manifest the emergence of two-mode entanglement.

Following the previous argument, the fluctuations of the total current (33) could manifest the
emergence of entanglement, as it involves correlation terms between all the oscillators. In Section
V B we focused on the tripartite entanglement, and showed that K (¢,t) seems to be insensitive
to the inseparability properties of the three-mode chain. A similar conclusion was drawn from the
comparison of the time evolution of the fluctuations K j;(7,0) at different entanglement configu-
rations of the stationary state, see figure (4). We remark that this result is not in contradiction
with the previous argument based on criterion (42), as it provides a necessary, but not sufficient,
condition for the existence of entanglement.

Considering that, in contrast to entanglement, almost any quantum state has a non-negative
discord [75], a distinct behavior of these two quantum correlations might be expected [1]. The
results of Section (V C) indicate that in the proximity of a resonance condition, a finite energy
current induced by the temperature gradient AT may generate non-classical correlations between
the left and right oscillators, even when the total energy current between them becomes zero.
This behavior has been correlated with a maximum strength of the average interaction between
the harmonic oscillators, see figure (6). The same results also show that the energy current is
not modified by the emerge of discord, see figure (7). The average properties (mean value and
fluctuations) of the energy current as a whole exhibit a ‘linear’ behavior ruled by the temperature
gradients, irrespective of the significant two-mode quantum correlations that may be present in
the system. As a measure of such correlations we have analyzed the logarithmic negativity, the
tripartite entanglement, characterized by the criteria 753 and 73 3, and the quantum discord.

Finally, although we have focused on a specific system configuration in which each chain os-
cillator is connected to an independent heat bath, similar results might be expected for other
arrangements, since the emergence of quantum correlations in linear harmonic chains or lattices
essentially stems from the proximity of the system to the ground state. The study of the energy

current and quantum correlations in systems exhibiting non-linearities deserves further attention.



143

24

VII. SUMMARY AND CONCLUDING REMARKS

We have performed an extensive analysis of the quantum correlations, and the mean value and
fluctuations of the energy current across a three-oscillator linear chain at the stationary state,
both under Ohmic and super-Ohmic dissipation. We have considered initially squeezed reservoir
thermal states, and applied the GLE formalism to determine the correlation functions between
the position and momentum operators of the chain oscillators, which completely characterize the
stationary properties.

Interestingly, the results obtained for the quantum correlations are quite similar for both Ohmic
and super-Ohmic dissipation. This suggests that the non-Markovian effects do not significantly
modify the Markovian results for the stationary properties of the quantum correlations in a system
of oscillators in contact with independent heat baths. Moreover, the initial squeezing of a heat
bath effectively increases the temperature that the oscillator chain perceives from this bath, and

eventually becomes detrimental for the build-up of stationary entanglement.

A different behavior is observed in the case of discord, which can be created by local noisy
operations. These quantum correlations highly depend on both the interaction strength between
the oscillators and the detuning of their natural frequencies. In particular, the two-mode discord
between the side oscillators in the presence of temperature gradients is enhanced at resonance,

which indicates that quantum coherence may be favored by thermal non-equilibrium conditions.

According to our results, both the average and the fluctuations of the stationary energy current
across the oscillator chain are mainly determined by the two imposed temperature gradients, and
do not seem to be related to the appearance of a rich variety of quantum correlations in the sys-
tem, comprising two-mode discord and entanglement, bipartite three-mode and genuine tripartite
entanglement. The absence of quantum correlation effects in the average energy current can be
partially understood in terms of its linear dependence on the correlation terms between the oscil-
lators. In the case of the fluctuations, the more intricate dependence on such terms makes more
complex to elucidate their possible connection with quantum correlations.

Nowadays the quantum correlations under thermal non-equilibrium conditions have become a
topic of great interest in the fields of quantum information, quantum thermodynamics and the
theory of open quantum system. Generally the non-classical correlations, such as entanglement,
exhibit a non-linear dependence on the density operator that make difficult to establish any formal
connection between them and the response of the system to non-equilibrium constrains. We hope

that this work may contribute to stimulate further research in this direction.
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Appendix A: Susceptibility

In this Appendix we derive the real and imaginary parts of the Fourier transform of the sus-
ceptibility x;(¢) (11). Considering the spectral density (13), the imaginary part of the Fourier

transform y;(w) can be expressed as

N 2
. wh 9;
i [ %i()] = 5 D7 2 5 (0 — i) = 8 (0 i) ] = B[O () s (0) — © (~) Js ()]
=1 pip
(A1)
Then the real part can be obtained from the causality of x;(t), according to
N Im [ x;
Re [Xi(w)] = H [Im (xi(w') P/ Dxi dw’, (A2)
w —w
where H[e](w) denotes the Hilbert transform of . Using Eq. (A1) it follows that
Re[xi(w)] =H [OW)Ji(w')] (W) +H [OW) ()] (—w). (A3)

Below are given the expressions of the susceptibility for Ohmic and super-Ohmic spectral densities.

1. Ohmic case

Assuming the Ohmic spectral density (38), and considering the well-known properties of the

Hilbert transform, the expression (A3) leads to

Re )] = 5 oy | # | @) w'e 5 | @) 4 3 | 00 e | (- |

= gﬂ'm’yiw {H [@(w/) 6_56] (W) —H [Q(W') 6_5”} (—w)] + hmy; we

h W W
=5 MW [e we ['(0, —w/w,) — ewe F(O,w/wc)] + hmy; we (A4)

where I'(0,z) = [>°t~'e~'dt denotes the incomplete gamma function.
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2. Super-Ohmic case

Following the same procedure as in the previous section for the super-Ohmic spectral density

(39), one obtains

’

Ro[xi(w)] = o mms | # ] €)@ 5 | )+ 2| 00 )25 | ()|
— s ] 0 5 | )+ # [ 0) | (c)| + pnni
= oy ? [€TE (0, —wfe) + e IO, wfe) | + me. (A5)

Appendix B: Fluctuating Force

In this appendix we derivate the correlation function of the fluctuation forces associated with

the heat baths given in Eq.(21). Considering the time dependence of these forces, it follows

% <{FZ( ), Fy(t }> Z 9w91u< {@a(to), #ju(to)}) cos(win (t — to)) cos(wju(t' — to))

l/;,L].

+ (i (t0) 5 t0)}) cos(un (¢ — ) 220l —10))

(i), ayulto)}) cos(t! — to) T2 Z10)
 Upnlto). o)) Tl =t Sl to>)> ' .

Replacing the identities (5) in Eq.(B1), and applying the Fourier transform, one obtains

%// dt dt' et e <{Fi(t),E(t’)}> =

N 2
ha?
= Z%(( +N wz,u >/ dtdtl iwt zwt Cos(wm(t’ *t))
- 1mwwm 2

+ Re [M (wiy,) / dt dt' €™t e cos(wiy (t + t' — 2tp))
+ Im [M (wiy,) // dt dt'e™t e sin(w;, (t + ' — 2t0))) :
To compute the previous integrals we express the trigonometric functions as complex exponentials,

introduce the change of variable t — 7 + t' in the first integral, and ¢t — 7 — #' in the second and

third ones. Secondly, we use the definition of the delta function 276(w) = [ dte™! and the identity
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1+ 2Nth(ww) = coth (Zkh;;T

[

)7 which lead to

1 <{Fl(w), Fl(w')}> = 276 (w + w')Im [x;(w)] coth (2::1}) cosh(2r;)

2

_ 7 hw . i0; > - T A\ 2ty > - T =\ ,—2iWtg
27hd(w — w') coth sinh(2r;)Re |e doJi(w—w)e dwJi(w+w)e
2kBT) 0 0

+ 2imhd(w — w') coth (ﬁw) sinh(2r;)Im {eigl} / doJy(w — @)e?@ho 4 / doJy(w + @)e 20 |
2kpT) 0 0

(B2)

with Jy(w) = [dJj(w — @). Before to continue, we pay attention to the four integrals having an
explicit dependence on the initial time ¢y. For both the Ohmic and super-Ohmic spectral densities,
(38) and (39), the corresponding J decays more rapidly than 1/w? at high frequencies. This allows

us to use the Riemann-Lebesgue Lemma which states [76]
o0 .
/ fw)e“'dw —0 as t— +oo,
—00

for f(w) an absolutely integrable function in the interval (—oo,00). As a consequence, only the
first term in Eq.(B2) survives after taking the long-time limit t) — —oo. The Riemann-Lebesgue
Lemma has been successfully employed in the study of the properties of the stationary state for

the damped harmonic oscillator [55, 58].

Appendix C: Quantum correlations

In the following we briefly describe the computation of the logarithmic negativity, quantum

discord, and the separability criteria 7y .

1. Logarithmic negativity and quantum discord

The evaluation of the logarithmic negativity (34) requires the symplectic eigenvalues of the par-
tial transpose Vi, These are given by the positive square roots of the eigenvalues of (—i/ h)o'ViJTj

[64], which are given in terms of the so-called symplectic matrix

0 I
—I,. 0
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where I, is the n-dimensional unit matrix. The corresponding partial transpose matrix is obtained

from V,; = AVj; A, with

I 0
0 —-I,

A=1L¢&

The evaluation of the quantum discord (35) on the state p;; involves an optimization procedure
over all positive operator-valued measurements (POVMs) on the j-mode, denoted by Hl(j ) In
Eq. (37), pr = Tri;(pij 11, l(j )) is the probability associated with the Ith measurement outcome, and
/31(-1) = Trj(ﬁijnl(j)) /p; is the corresponding post-measurement reduced state of the i-mode. An
explicit formula providing D* (p;;) for any input Gaussian state p;; is given in [66]. D7 (p;;) can
be obtained from a similar optimization procedure on the POVMSs in the subsystem ¢. In general,

both evaluations of discord may return different values (1.e. D # D).

2. Separability criteria 7, .

Now we describe a hierarchy of separability criteria recently proposed to characterize from
genuine multipartite to bipartite entanglement [68]. According to this proposal, the state p of a
n-partite system is k-partite entangled, i.e. there is at least a entangled subsystem composed of k
parties, provide that a given function 7, ,,(p) takes a positive value.

The evaluation of the function 7, , involves the selection of a set of 2n pure states that allows
to assess multipartite entanglement. The important point is that a reliable characterization of
entanglement requires an appropriate choice of such probe states. However, a priori there is no
information about the ‘optimal’ probe states enable to unveil the entanglement encapsulated by an
arbitrary density operator p. One may circumvent this difficulty by carrying out an optimization
procedure over all possible selections in order to obtain the maximum of 7 ,, whose positive value
would reveal the entanglement in the system. We denote 7, such maximum.

In continuous-variable states a Gaussian selection of the probe states provides a readable ex-
pression of 7, ,, [67], which can be optimized with standard procedures, and which is strong enough
to detect entanglement for a broad class of Gaussian and non-Gaussian states. In the Gaussian

case this expression reads [67],

¢ X ST I X (e e PXTE) Sy PX
Ten(p) = - ai® : (C1)
det (X +V) i det (X +V)
where az(-'i’n) are constant values [68], X is a real 2n-vector, J,, is the standard form of the so-called

symplectic matrix, and P; and X are 2n x 2n real matrices. The objects X and X denote a
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compact form of the first and second moments of the probe states [67]. Hence, the detection of

entanglement consists basically in optimizing Eq.(C1) over the variables X and X, i.e.
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Appendix A

Microscopic model

In this appendix is extensively illustrated the derivation of the Hamiltonian given in
Eq.(L.37) starting from the Hamiltonian that describes the minimal coupling of the system
oscillators with a free bosonic field. In the subsequent derivation, we have followed a pre-
vious work of Kohler and Sols, where the authors analyse the damped harmonic oscillator
model [143].

We are considering that the system oscillators are well localized around certain positions
of equilibrium, and whose motion are practically confined in one direction. Then all the
relevant dynamics of the Ath oscillator resides on the spatial displacement, given by 1z},
from the position equilibrium 7{. In this way, an a priori three-dimensional oscillator
consists mechanically on one mode. Under these considerations, the minimal-coupling
Hamiltonian of a n-mode system in contact with a free bosonic field can be cast in the

form,
2 mw?
— Z < <p,\ + A(’r/\)> ’\ 2) Z huwral ag, (A.1)
where A(rg) is refereed to as the gauge field and it is given by,

ArS) =i 30 2 (et — ek, (A.2)

w
L k

Notice that in Eq.(A.1) we have already assumed the dipole approximation. Accordingly,
the Goppert-Mayer transformation is defined as

U = eap (% 3 A(@)@) | (A.3)

Thanks to the dipole approximation the exponential in Eq.(A.3)) is linear in the reservoir
operators (i.e., dL and ag) as well as in the coordinate operators z,. This feature sim-
plifies considerably the algebraic manipulation of the Goppert-Mayer transformation of
the system-plus-reservoir operators. Using the canonical commutation rules for the latter
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[160], one obtains the following transformation rules,

Uiy U iy, :
Upy U = pr—A@Y), (A.5)
Ui = ax— ; hi—:eik'rism. (A.6)

Applied to the Hamiltonian (A.1)), the above transformation rules (Egs.(A.4)-(A.6)

return the following expression for the system—plus—reservoir Hamiltonian,

F[R [:[I
+ m,\:puzﬂ (k- ArS,) (A7)
=1 k
Renormalization Term
where we have defined the spatial separation ArA =r) — 'r Notice that to derive the
renormalization term we have used the fact that [x,\, z,] =0 for A =1,...,n. Clearly,

after doing the Goppert-Mayer transformation in the Hamiltonian given in Eq.7 one
obtains the expressions for the reservoir and system-reservoir interaction illustrated in
Sec[1.3.1] (see Eq.(1.36)), whereas the last term in Eq.(A.7) corresponds to the mentioned
renormalization term. Notice that this term turns into the expression in the gener-
alized Langevin equation.

One may proceed further in order to recover the Hamiltonian Hp; given in Eq.
by doing the following substitution,

dk = (mkwkﬁck + iﬁk)/\/ 2hmkwk,

and its adjoint in Eq.(A.7)). Doing so, it is immediate to obtain the following expressions
for the reservoir and system-reservoir interaction Hamiltonia, respectively,

N 1 1
Hr = 22 kpk+2mkwkwkv (A.8)

n

o MEWr Tk & 0 Dk A 0
H = - E k- + — E k- (A9
T gk( o 2 Ty cos(k - Ty) S PTnn 2 Ty sin( "D\)) (A.9)

Using trigonometric identities, the renormalization term can be written as follows,

Z x,\muz == cos (k- Ar?\u) =

Ap=1

Z hi)_kk < (Z zy cos(k - 7'3)) + (Z Zysin(k - T?\)) ) : (A.10)
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Summing Eqgs. (A.8), (A.9), and (A.10), and after some convenient manipulation, one
obtains the Hamiltonian given in Eq.(1.37) which characterizes both the reservoir and

system-reservoir interaction.
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