
Master’s Thesis

High Performance Computing Applications

Albert Roig Rebato

Tutors:

Clauido Dalla Vecchia,

Andrea Negri

A thesis submitted in partialy fullfilment of

the Master’s degree in Astrophysics

in the

Faculty of physics and mathematics

Universidad de La Laguna

June 2018

Contents

Resumen 3

1 Introduction 6

1.1 Parallel computing . 6

1.1.1 Overview . 6

1.1.2 Parallel Computer Architectures . 8

1.2 Libraries used for parallel communication . 10

1.2.1 OpenMP . 10

1.2.2 MPI . 11

1.3 Profilers for parallel applications . 12

2 Objectives 14

3 Methodology 15

3.1 Testing HPC methods on a gravitational N-body code 15

3.1.1 OpenMP N-body code . 16

3.1.2 MPI N-body code: Point-to-point and RMA 16

3.2 Optimisation of a serial code (F77) . 19

3.2.1 Serial code profiling: detection of bottle-necks 20

3.2.2 From Fortran 77 to Fortran 90 . 20

3.2.3 OpenMP parallelisation . 22

4 Results 23

4.1 N-body test . 23

4.2 Serial code optimisation . 26

5 Conclusions 29

References 30

2

Resumen

La ciencia computacional puede considerase ya el tercer pilar del método cient́ıfico. En los últimos

años se han puesto muchos esfuerzos en mejorar el poder de cómputo en las supercomputadoras.

Todas las computadoras se actualizan cada 3-4 años ofreciendo grandes novedades en el hardware.

Sin embargo, los códigos no se adaptan a estos cambios, de forma que no se le saca todo el rendimiento

que se podŕıa.

Una de las formas de aumentar el poder de las supercomputadoras es el paralelismo masivo.

Un ordenador, o nodo, está formado por dos partes caracteŕısticas: el procesador (CPU), que se

encarga de ejecutar las instrucciones de los programas; y la memoria, que es donde se encuentran

todos los datos. Las supercomputadoras modernas consisten en miles de nodos conectados con

múltiples procesadores cada uno.

Generalmente se usan dos libreŕıas para la computación en paralelo: OpenMP y MPI. Ambas

son implementables en C/C++ y Fortran. OpenMP es una API que permite paralelizar programas

en arquitecturas de memoria compartida (en multi-core nodes). Partes del programa se ejecutan

en un “hilo principal” (del inglés master thread), y otras en “hilos esclavos” (slave threads). Todos

los “hilos” comparten variables en la misma dirección de memoria, por tanto, pueden acceder y

modificarlas sin necesidad de comunicación entre “hilos”.

MPI significa Message Passing Interface. Se trata de una libreŕıa para pasar datos de la dirección

de memoria de un proceso a otro proceso. El propósito de MPI es la comunicación entre procesos

en arquitecturas de memoria distribuida, aunque también es implementable en memorias compar-

tidas. Hay vaŕıas formas de comunicación entre nodos, a grandes rasgos podŕıamos clasificarlas en

bidireccionales o unidireccionales.

La comunicación bidireccional requiere funciones emparejadas para pasar información de un nodo

a otro. Es decir, requiere que en el código de ambos procesos haya un mensaje acorde; de env́ıo en

una dirección, y de recibo en la otra. Esto se puede de distintas maneras. Mediante comunicación

punto a punto, o sea, dos procesos que se comunican. O mediante funciones colectivas, en la que la

comunicación involucra a más de dos procesos.

Las últimas versiones de MPI permiten usar funciones de Acceso Remoto de Memoria (Remote

Memory Access RMA) para obtener o transferir datos de otros nodos. Estas funciones permiten

crear una ventana de memoria compartida a la cuál otros procesos pueden acceder. La ventaja

de este método es que permite transferencias de datos entre procesos sin necesidad de funciones

emparejadas (como un MPI_Send necesita un MPI_Recv), ahorrando la comunicación entre ambas

partes, este método se conoce como comunicación unidireccional (one-sided communication).

3

Una de las ventajas de OpenMP es que su implementación es simple. La mayor desventaja es

que no se pude correr en arquitecturas de memoria distribuida. MPI tiene una implementación más

complicada pero permite su ejecución en cualquier arquitectura e, incluso, puede llegar a ser más

eficiente que OpenMP en memorias compartidas.

Los profilers se han convertido en una herramienta imprescindible para cualquier programador.

Un profiler se encarga de recoger información a lo largo de la ejecución de un código. Por ejemplo,

la cantidad de memoria usada por el programa o, el tiempo que pasa en cada función. En este

trabajo utilizamos Scalasca para realizar el análisis de rendimiento de software.

Este trabajo consta de dos partes claramente diferenciadas. En la primera parte, creamos un

código que resuelve el problema de N-cuerpos gravitacional mediante un método de integración

directa de la segunda ley de Newton. De manera que es un algoritmo O(N(N − 1)), donde N es el

número de part́ıculas. Calculamos la aceleración, la velocidad y la posición de cada part́ıcula en cada

paso de tiempo. Dado que los cálculos para cada part́ıcula son independientes a los cálculos realizados

para las otras, el problema es altamente paralelizable. Se distribuir el cálculo de las trayectorias de las

part́ıculas entre distintos procesador. Con el objetivo de probar los varios métodos de paralelización

comentados, paralelizaremos los cálculos con OpenMP, MPI-punto a punto y MPI-RMA. El código

está escrito en Fortran 90.

La paralelización con OpenMP es relativamente simple. Utilizamos la directriz (en inglés direc-

tive) parallel do que permite especificar al compilador la parte de código que se desea paralelizar.

También utilizamos la cláusula private para determinar qué variables deben o no ser compartidas

entre los “hilos”.

La paralelización con MPI requiere comunicación entre procesos ya que las variables en cada uno

son privadas. Para el cálculo de fuerzas se necesita la posición de todas las part́ıculas, sin embargo,

cada proceso calcula las posiciones de una fracción de ellas. Por lo tanto, los procesos deberán

comunicarse para tener acceso a las posiciones actualizadas. La comunicación MPI-punto a punto

se hace con el método del anillo, es decir, un proceso env́ıa datos al siguiente proceso y recibe del

anterior. La comunicación entre procesos se realiza mediante las funciones: MPI_Isend y MPI_Irecv.

La particularidad de éstas es que son funciones sin bloqueo (non-blocking functions).

Para la comunicación MPI-RMA se utilizan las funciones MPI_Win_create y MPI_Get, con las

que se crea un espacio de memoria compartida y se accede a los espacios de los otros procesos,

respectivamente.

4

Medimos el tiempo de ejecución en un ordenador de memoria compartida con tal de determinar

cuál es el método con mejor rendimiento. El método MPI-RMA es el que da mejores resultados,

llegando a hacer el código 6.9 veces más rápido cuando se usan 8 procesadores que cuando se corre

el código en serie. En segundo lugar, el método MPI-punto a punto que hace el código 6.7 veces

más rápido para el mismo número de procesadores. Finalmente OpenMP, consigue acelerar 6.1

veces el código con 8 procesadores.

La segunda parte consiste en la optimización de un código en serie que sintetiza ĺıneas espectrales.

Para ello implementamos métodos de HPC. En este art́ıculo solo nos centramos en la computación,

la f́ısica no se discute. Lo primero que hacemos es un profile del código para encontrar posibles

puntos conflictivos (bottle-necks). Encontramos que un 56% del tiempo de ejecución se pasa en

una función. Aśı pues, nos centramos en la optimización de está función. Se trata de un código

en Fortran 77 que utiliza funciones que están en desuso y deben ser actualizadas. Por ejemplo,

eliminamos los COMMON blocks ya que son método de organizar las variables muy conflictivo.

Finalmente, paralelizamos la función en la que se encuentra el bottle-neck mediante OpenMP.

Obtenemos un código hasta 1.28 veces más rápido cuando se ejecuta con 6 procesadores que

con el código en serie. Usando más procesadores el aumento de velocidad del código disminuye.

Concluimos que el uso óptimo del código es ejecutarlo con 4 procesadores, alcanzando una ejecución

1.27 veces más rpida.

5

1 Introduction

1.1 Parallel computing

Computer simulations have become an essential tool for understanding processes occurring in the

Universe, as large structure formation or galaxy mergers, which due to their long time scales cannot

be observed. Hydrodynamical cosmological simulations give detailed information of the period of

large-scale formation, including galaxy formation and evolution and the formation of galaxy clusters

and superclusters. Massive parallel codes are indispensable to solve a problem of such dimension.

For example, the EAGLE simulation (one of the largest hydrodynamical cosmological simulations)

uses nearby 109 particles to study the Universe evolution. Otherwise, one would not be able to

allocate such large amounts of memory and it would take an unreasonable computational time.

High performance computing (HPC) hardware is constantly improving, currently supercomputers

consist of a multi-core computing nodes network, and software should be adapted to all changes to

reach best performance.

1.1.1 Overview

Solving a problem which involves large amounts of data requires a lot of computational time and

memory. Nowadays, one might say the only way to do it is by mean of parallel computing.

Traditionally, codes have been written for serial computation, where a problem is solved executing

a series of instructions one after another. This kind of software runs on a single CPU so only one

calculation can be done at the same time.

Parallel computing is solving a computational problem carrying out more than one calculation

simultaneously. Now the problem is broken into parts which can be solved independently. These

parts are distributed in different CPU’s so they can be executed simultaneously. Obviously, this

procedure can save wall time, but on the other hand, it allows to allocate data in different cores

(depending on the computer architecture) which means one can have larger amounts of data. The

typical parallel compute resources are either a single computer with multiple processors or more

than one of such computers connected by a network.

Given that several events in nature happen concurrently and are related to each other parallel

computing has copious applications, the following are some examples of an endless list:

- Cosmological simulations (i.e. Gadget-2)

- Plasma and solar physics, it is used to solve the magneto-hydrodynamic equations (i.e.

6

Figure 1: On top, problem solved with a serial program. The problem is borken into a series of

instructions which are executed one after another. On bottom, problem is solved with a parallel

program. The instructions are distributed among various processors where they are executed. As

it is shown each processor has less work in the parallel code than in the serial, so the execution

time shall be reduced. This looks like an embarassingly parallel program but communication may

be required.

BIFROST).

- Molecule folding and large molecules dynamics (i.e. NAMD).

- DNA and protein sequences analysis.

- Numerical weather prediction and climate change.

- Traffic modelling (i.e. TRANSIMS or AIMSUM).

Of course, parallel programming has some limitations. Amdahl’s law relates the program’s

speedup with the number of processors one may use and it depends on the fraction of code which

can be parallelized. The expression for an optimal speedup is,

speed up =
1

S + P
Nproc

(1)

where S is the serial fraction of the code, P is the parallel fraction, so S+P=1, and Nproc is the

arbitrary number of processors. The parallel fraction must be P<1 and one can notice that if P 6= 1

7

this function tends to a constant value. Hence, speedup will not increase no matter how many

processors one uses to execute the program. This limitation is inherent to the problem, one cannot

write a code with better performance.

1.1.2 Parallel Computer Architectures

Nowadays, the two approches to increase supercomputers power are: massive parallelism, i.e. large

matrices of connected nodes, and accelerators (e.g. GPU’s) that are not considered here, but will

be briefly described later.

The von Neumann architecture consists in a central processing unit (CPU), a memory and

input/output mechanisms. The CPU consists of an arithmetic/logic unit and a control unit. The

first carries out the operations, and the latter interprets and executes the instructions stored in

the main memory and generates the control signals needed to execute them. All together they

constitute a node. Modern computers do not have this specific architecture but the pattern is the

same: CPU+memory. All the following architectures follow this pattern.

Figure 2: Simple representation of a node/computer, comprised of one CPU and one memory.

• Shared Memory: Parallel computers with shared memory architecture have multiple pro-

cessors that can operate independently and have full access to a common memory. Given the

closeness between processors and memory the main advantage of this configuration is that

data sharing between tasks is both fast and uniform. The access to memory is of the order of

nanoseconds. Nevertheless, adding more CPU’s leads to a lack of scalability between CPU’s

data transfer and the shared memory.

• Distributed Memory: Distributed memory consist of multiple nodes, which contain one

memory and one CPU, connected by a network. This configuration avoids the scalability

8

problem, both the number of CPU’s and memory increase proportionally. However, data

transfer is done through the network (usually optic fibre) so memory access is non-uniform

and data traffic between distant nodes takes longer. The delay between sending data from one

process and receiving it from another is known as latency.

• Hybrid Shared-Distributed Memory: Nowadays, modern supercomputers have an hybrid

Shared-Distributed memory architecture which consist of multiple shared memory nodes con-

nected by a network. The advantages and disadvantages are those from each configuration,

yet the scalability problem is fixed.

Figure 3: On top, shared memory architecture, one node of multiple CPU’s and one memory. In

the center, distributed memory, multiple nodes of one CPU and one memory. On bottom, the

hybrid Shared-Distributed memory, a network of nodes, where each node has multiple cores and one

memory. The hybrid Shared-Distributed architecture is used in all current supercomputers.

• Graphics processing unit (GPU): A Graphics processing unit (GPU) is a coprocessor

outfitted with a highly parallel microprocessor and a private memory with very high bandwidth.

GPU’s are specifically disigned to data processing rather than data caching and flow control,

making them more efficient for the calculation of graphic information than CPU’s. The GPU

can lighten the load of information that must be processed by the central unit, and so, the

latter can do its job more efficiently.

9

1.2 Libraries used for parallel communication

There are two main approaches to parallel programming: loop-level or parellel regions. It can also

be referred as level of parallelism or granularity. The grain-size stands for a measure of the amount

of work performed by each task.

The first refers to individual loop which can be parallelized. This procedure is called fine-grained

parallelism, where each processor/thread is responsible to execute a low number of tasks. It is useful

in architectures with low communication overhead. Thus, fine-grained parallelism should be used

in shared memory applications. The grain-size is below ∼ 5 · 102 instructions and short time for

communication, ∼ µs.

The latter is focused on parts of codes which can be parallelized. It is known as coarse-grained

parallelism and it is better suited for distributed memory architectures. The program is broken

down to large tasks, the grain-size is above ∼ 104 instructions and long time for communication,

∼ 10s.

General-purpose parallel computers offer a compromise between fine and coarse-grained paral-

lelism, also known as medium-grained parallelism.

1.2.1 OpenMP

OpenMP is an Application Program Interface (API) used for multi-threaded parallel processing on

shared memory multi-processors nodes. OpenMP is supported by C/C++ and Fortran programs.

Consists in a FORK-JOIN model, i.e. part of the program is executed by one thread (or master

thread) and part by multiple threads (slaves threads).

The loop-level parallelism is done as it follows. The execution starts on the master thread, the

loop index is divided among the number of threads (defined by the user, named OMP_NUM_THREADS),

each thread executes a specific range of that index and when the loop finishes, execution continues

as serial.

The main advantage of OpenMP is its rather simple implementation. Moreover, OpenMP con-

structs are written as comments. Therefore, codes can be compiled without modifications whether

OpenMP shall be used or not.

A relevant feature of OpenMP are the two different types of variables: Shared and Private.

Shared variables have the same address space and private do not. Every thread can access and

modify their variables (except the loop index) so if the variable is shared, when one thread modifies

it, it changes it for all threads. This can lead into erroneous results. The developer is responsible of

declaring which variables are shared and which are private.

The main disadvantage of OpenMP is that code cannot be executed on distributed memory

10

architectures, thus, it is limited by the number of processors of one node. A purely OpenMP core

may not run efficiently in more than ∼100 cores, while other libraries (e.g. MPI) can run efficently

so in thousands of cores.

An open issue is a significant overhead in thread creation [6], sometimes MPI programs have

better performance.

1.2.2 MPI

MPI stands for Message Passing Interface. It is a standard library that allows message passing for

parallel programming in C and Fortran –where message means data–. MPI is used by almost all

HPC parallel applications. Its purpose is to move data from the address space of one process to

another process. MPI is not a language, but a standard clearly defined set of operations expressed

as functions, subroutines, or methods. As a standard, a significant advantage is its wide portability.

MPI is meant for inter-node communication, so to be run on distributed memory multiprocessors

and/or networks of workstations, thus, it must be highly scalable. In addition, it is also possible to

run it on shared memory architectures.

In computing, latency is known as the delay from the beginning to the end of a communication.

Given its implementation on distributed memory, latency is [6] an important issue of MPI .

Therefore, the best implementation of MPI is coarse-grained parallelism reducing communication

as much as possible.

There are different ways for processors to obtain data form other processors, here we discuss some

of them. First versions of MPI involved “two-sided communication”, so communication between a

process which needs data from another process and the process holding these data. Latest versions

allow the so-called one-sided communication which does not require synchronisation between nodes.

The “two-sided communication” can be done Point-to-point, where there is communication be-

tween two processors only. It requires matching operations by sender and receiver, so a message

from the process holding the data (e.g. MPI_Send()) and one from the process receiving it (e.g.

MPI_Recv()). In order to reduce latency, the messages should contain the maximum information

as possible so, the number of times nodes communicate between them is reduced the necessary

minimum. It can also be done through collective functions. Collective functions consist in message

passing involving more than two processors, for instance, one process sharing data with all others

(e.g. MPI_Bcast()), or one process collecting data from all others (e.g. MPI_Gather()). Collective

communication –when usable– is much more effective than Point-to-point communication because

there are no deadlocks, and the fibers in clusters organized in a way that minimize latency in collec-

11

tive communication. Obviously, this mode of communication requires high synchronization between

processes.

MPI-3.0 and later versions allow one-sided communication, or in other words, Remote Memory

Access (RMA) [5]. Here one process can access an address space of another process without com-

municating if and only if this process shares it. This mode of message passing is meant for programs

where the data distribution is constant or slowly changing. A simple way to understand how it works

is putting it in terms of public and private windows. One process can make a region of its memory

addressable for all processes (as it would be in shared memory implementations), so it shall become

a public window. Thus, other processes can obtain or modify the data without any participation

of the remote side. The main advantage of RMA communications allows fast and/or asynchronous

communication.

Some open issues of MPI are latency, when processes communicate; and high memory overheads,

the program needs to be replicated for every process.

1.3 Profilers for parallel applications

Profilers are an essential tool for performance analysis, it helps making the optimisation of any

program both more effective and more efficient. They are indispensable to understand the software

behaviours in order to improve its performance. Profilers collect information, such as the time

or memory used by a program, through a dynamic analysis. As said above, supercomputers are

increasing the number of cores/nodes to improve their performance, thus, demanding higher degrees

of parallelism to maximise resource utilisation. Profilers help the developer find out where the

program spends most of the executing time, known as hot-function or bottle-neck, so it can be

optimised.

The execution of a program could be defined as a sequence of ”actions”. For instance, the

execution of a line of code or the communication between processes (if it is parallel). One can

measure visual attributes of these actions by recording them as events [11]. The profiler interrupts

the program, collects the statistics or attributes of an action, creating an event, and resumes the

program. The typical output of a profiler is:

• Profile: A profile is a summary of the statistics of performance metrics of the events, for

example the time spent in a function or the number of times a function is called. The size of

a profile is linear to the size of the code so requires a small amount of storage.

• Trace: A trace is a detailed scan of the events. It shows when and where the events occurred.

For example, a trace not only shows how many times a routine is executed, but also the times

12

at when it is called and the processor/thread which executes it. The size of a trace is linear

to the program’s instruction path so it requires a large amount of storage.

Performance analysis is done following the following steps: firstly, modifying the program to

generate the events (performance data), this is known as instrumentation. Secondly, measuring of

performance metrics of the events (creation of a profile or trace). Finally, analysing the performance

data.

For serial programs a profile is sufficient. On the other hand, for parallel programs, profiles only

offer a vague idea of what is happening. Given its strong dependence on time relation of events

(communication between/within nodes) it requires a full trace to understand the software behaviour.

Figure 4: Profile of Gadget-2, a massive parallel code. At left, we can see various performance

properties, such as, the total number of calls to any function (Visits) or the execution time (Time).

In the middle, the functions and subroutines which are called are shown. In percentage, we see

the time spent in each one. Thus, one can notice that, for instance, force_treeevaluate is a hot-

function so to enhance performance one should focus on that function. At right, the distribution of

work among the different processors is shown.

In the following work performance analysis is done with Scalalsca[10]. Scalalsca is a free

and open-source profiling software, focused on MPI, OpenMP, POSIX threads, and/or hybrids:

13

MPI+OpenMP/Pthreads. It provides a wide tool-set to measure and analyse the runtime behaviour

of parallel programs.

As the Scalalsca User Guide suggests, instrumentation and measurement of user routines,

OpenMP constructs and MPI functions are handled by the Score-P instrumenter.

Figure 4 shows the trace obtained through Scalasca of an execution of the hydrodynamical

cosmological code Gadget-2. For instace, some performance properties measured in our profiles –

among others– are: Time, which stands for the total time spent for a program execution. Executions

in time-shared environment, such as OpenMP, will also include time slices used by other processors.

Visits, showing the number of times a call path is visited. And Wait at Explicit OpenMP

Barrier Time which is the time spent in an explicit OpenMP barrier synchronisation waiting for

the last thread.

2 Objectives

As discussed in §1.2, libraries for communication in parallel environments, like the Message Passing

Interface (MPI), now include functions for Remote Memory Access (RMA) that should reduce the

inter-node data transfer costs. Also, OpenMP multithreading should speed up computation within

a node, allowing also less memory consumption. The aim of this work is to test and implement these

HPC methods. It has two distinguished parts explained below: the test and the implementation.

In order to test the different methods we will write a simple brute-force N-body problem

code. The program will be equivalent using the previously discussed methods of parallelisa-

tion (§1.2): MPI point-to-point communication, the MPI-RMA, OpenMP multithreading and

the hybrids MPI point-to-point+OpenMP and MPI-RMA+OpenMP. We shall try to find out

which method has the best performance and study open issues of MPI and OpenMP libraries.

First versions of MPI have a significant problem with latency and implementing the MPI-RMA

performance shoud be enhanced. OpenMP should perform better than MPI for shared memory

architectures but can have a thread creation overhead issue and ending up having worse performance.

In the second part, we will try to parallelise a serial code which calculates galaxy spectra depend-

ing on different initial conditions, such as temperature or metallicity. Physics will not be discussed

here, only the programming methods used.

The code is written in Fortran 77 and uses some old fashioned methods. We will update the code

to a more recent version of Fortran (F90) enhancing the program performance. Using Scalasca a

profile of the code shall be made so we can analyse its weaknesses, such as, possible bottle-necks,

14

reducing the computing time and increasing scalability using the best suited parallelisation method.

3 Methodology

3.1 Testing HPC methods on a gravitational N-body code

A gravitational N-body simulation approximates the motion of celestial bodies (stars, planets, etc.)

which interact gravitationally with one another, by approximating them as massive point-like objects.

This is a perfect example of a physical problem which requires computation to be solved. Otherwise,

one could not test models of astrodynamics, given that experimentation is not an option. It is

also a perfect example of a highly parallelisable problem. Calculations of acceleration, velocity

and position for one particle, which are the only time-consuming operations, do not depend on

calculations carried out for the others. Here, each process/thread is responsible for calculating

these physical paramenters for a fraction of the number of particles. Once one process finishes

its calculation, it has to communicate with the other processes to update the positions it did not

calculate. Regarding Amdahl’s Law (equation 1) one should obtain a linear decrease of computing

time: Tparallel = Tserial/Nproc, where Tparallel is the physical time spent for the execution, Tserial is

the time it would take to run the code on one process/thread, and Nproc is the number of processors.

We solve the N-body problem through direct sumation method, i.e. we directly integrate the

Newtonian gravitational force equation.

~Fn =

N∑
i 6=n

Gmnmi

r2ni + ε
r̂ni (2)

We also add a smoothing parameter, ε, to avoid having particles in the same position. Another

approximation we make is the discretized time step, dt, when solving Newton’s second law. In

other words, we calculate the interaction between one particle and each of the others and do it for

every particle. Hence, usually this kind of algorithms are O(N(N − 1)). To simplify the code, the

gravitational constat and the masses are set to one. Thus, calculations only depend on the distance

between particles.

The code is written in Fortran 90 and calculations will be parallelised using OpenMP, MPI

point-to-point and MPI Remote Memory Access functions. The code using OpenMP can only be

executed on an individual computer, i.e. one single node with multiple cores. In order to compare

the three codes we run them in the same computer and measure the physical execution time. As

said in §1.2.1, is not sure wether OpenMP or MPI will perform better.

15

3.1.1 OpenMP N-body code

To parallelise the code we use the OpenMP directive Parallel Do. It tells the compiler which region

has to parallelise, specifying a parallel region that contains a do loop.

Note that the distance between particles is going to have different values in each thread. This

is only doable if and only if each thread has its own copy of the variable. To accomplish that we

use the clause private. The rest of variables are shared and that is how OpenMP treats them by

default.

Figure 5: Parallelisation of the calculation of the accelerations for all particles with OpenMP. Vari-

ables i,j and dist are private, all others are shared. Here the loop is splited among threads, in a

way that, each thread is responsible for calculating the forces applied to the particles of a range of

the index i, i.e. a range between 1 and Npart. For instance, if one run it with 2 OpenMP threads,

one thread would go from 1 through Npart/2 and the other, from Npart/2+1 through Npart.

3.1.2 MPI N-body code: Point-to-point and RMA

When MPI is initialised the code is replicated for every process, and so do all variables which

were already declared. In other words, each process has its own variables in its address space. If

one variable is modified by one process, same variable in the other processes will not. In terms

of OpenMP variables, one could say all MPI variables are private. Moreover, this replication can

lead to a high memory overhead. The developer must know whether is essential to allocate a given

variable in a specific process or in all of them.

In our code every particle consists in a structure of three vectors: acceleration, velocity and posi-

tion. We only allocate the particles which will be calculated for each process, i.e. N = Npart/Nproc.

To guarantee synchronization, in case the number of particles is not divisible among the number

of processes, the remainder will be distributed to the maximum number of processes as possible,

16

Figure 6: Representation of a 1-D ring communication. Each process sends its data to the next, and

receives it from the previous.

so that none process will carry out more than one calculation than the others. The distribution of

particles among processes is done through the collective function MPI_Scatterv().

If each process has a fraction of particles, they will only be able to calculate the forces imparted

by the particles within that process. To calculate the contribution of the others, communication of

the particle positions between processes will be necessary. Notice that actually there is only need

to receive data. This can be done point-to-point or through RMA.

Point-to-point:

In order to get the positions from other processes we implement a ring method to communicate.

Firstly, each process sends its data to the next process and receives them from the previous (see

Figure 6). Secondly, they send to the second next and receive from the next. Then, send to the

third next and receive from the second next and so on.

To accomplish this work one can call MPI_Send() and MPI_Recv() which are blocking functions,

meaning they wait to complete the communication before continuing its execution. In other words,

MPI_Send() has to find a matching MPI_Recv() to resume. To avoid a deadlock, one process must

initiate the communication and post its MPI_Recv() after the MPI_Send(), contrary to the other

processes.

The most appropriate functions to do this work are MPI_Isend() and MPI_Irecv(). These are

non-blocking functions, i.e. the function call returns before the transfer is finished. To be sure that

data has arrived before starting to calculate an MPI_Wait() will be placed after each send/receive.

Remote Memory Access:

With the MPI Remote Memory Access one can create a shared memory window for each process.

Processes will now be able to access the allocated data in that window without communicating with

the remote process. As said above, we only need to get the positions. Hence, data in the shared

window is not modified by other processes. Since we only need to get data from other processes

memory, it is not necessary to have synchronization between the tasks.

To create the shared memory window we call MPI_Win_create(), which is a collective call. Each

17

Figure 7: Parallelisation of the calculation of the accelerations with MPI Point-to-point method.

Here we only show the forces imparted by the particles that not belong to the process. We use the

non-blocking functions MPI_Isend() and MPI_Irecv() for communication between processes. This

communication is done with every process.

process allocates memory size in bytes, returns a pointer to it, and returns a window object that

can be used by all processes to perform RMA operations. To get data from a memory window on

a remote process we call MPI_Get(). Given that we origanise the data in arrays or derived types,

data are not atomic (i.e. not a single number). In order to call a MPI_Get() function correctly it is

important to know the memory layout in Fortran.

18

Figure 8: Parallelisation of the calculation of the accelerations with MPI Remote Memory Acces

method. On top, we create the shared window with the function MPI_Win_create(). In the first

nested loop (DO j=1, Npart_per_proc(k+1)) we get the positions of the particles from other pro-

cesses. In the second loop, we calculate the imparted forces by these particles.

3.2 Optimisation of a serial code (F77)

In this section we profile and parallelise a Fortran 77 serial code that synthesises stellar populations

spectra. The code computes the spectral energy distribution of a stellar population, in the spectral

range 3540.5 − 7409.6Å, for a given set of atmospheric parameters. It measures line-strengths for

different, such as the metallicity or temperature. To predict the stellar population models it uses

either one or all the following stellar libraries: MILES[1], MIUSC[9], NGSL[2], IRTF[8]. In this

section we explain the modifications done to the code and thier motivation.

19

We focus on the functions that use the MIUSC library. First of all, we ran a profiler to find out

which functions are the most time consuming. Then, we optimised the serial code updating it to

Fortran 90. There are several practices in Fortran 77 which are deprecated in Fortran 90 and ought

to be avoided (e.g. COMMON BLOCK’s). Finally, we tried to speed up the code parallelising some

parts of it.

3.2.1 Serial code profiling: detection of bottle-necks

Running a profiler is essential to analyse the performance of a software. In order to speed up any

program, the coder must know where execution spends most of the time. Thus, one can focus on

the optimisation of a few functions instead of the whole code. This makes the optimisation much

more effictive and efficent.

Figure 9 shows the profile obtained with Scalasca of the original code. It was run using the

MIUSC stellar library, and it measured line-strengths for a total of 20 combinations of µ, α, metal-

licities, and temperatures. We found out that sigmam_MIUSC is the bottle-neck and is responsible

for spending a 62.10% of the execution time. Therefore, we focused on this function to do the

optimisation and parallelisation.

Notice that a ∼ 96% of runtime is spent in functions comprised in hrsl_MIUSC. The operations

executed before the call of hrsl_MIUSC are dedicated to read the libraries or to write the results,

after are all the calculations which are who take most of time. If posible this is what ought to be

parallelised to obtain best performance.

We divided the subroutine in smaller functions to detect which is the conflictive operation. As

shown in figure 10, we find out that a 56.40% of time is spent in a STAR_CUBE, which is part of

sigmam_MIUSC. This function consists in a big loop with three small loops nested within it. This

part of the code is the one we parallelised.

3.2.2 From Fortran 77 to Fortran 90

The code has very old features of Fortran which nowadays are deprecated. Here we discuss two

modifications we made to the code in order to update it and to find out possible underlying errors.

The first one was replacing all the IMPLICIT DOUBLE PRECISION (A-H,O-Z) statements for

IMPLICIT NONE statments. The IMPLICIT NONE forces the declaration of all variables instead of

letting Fortran assume that all variables that start with the letters i, j, k, l, m and n are integers

and all other variables are double precision arguments. This avoids possible confusion in the types

of variables and facilitates the detection of typographical errors.

Another feature that should never be used is the COMMON statement. COMMON blocks are a

20

Figure 9: Profile of the original serial code. At left, we see the tree of calls of functions and

number how many times each function is called. At right, we see the same but in terms of the

percentage of the total execution time spent in each function. Notice that a 62.10% of time is spent

in sigmam_MIUSC. Thus, efforts to optimise and parallelise the code should focus on speeding up this

function.

very useful feature of Fortran 77 to build modular programs. They allow having variables of other

routines without having to pass them by procedure arguments. Nevertheless, the global nature of

the COMMON blocks variables means memory area of the block is shared, therefore if one routine

alters a variable it affects all of the other routines with that COMMON statement (a so-called side

effect). Placing a variable in a COMMON block inhibits some optimisations that compilers perform,

such as code movement or registers optimisations, since the compiler cannot assume that a variable

is not modified in a subroutine not having that particular variable in its interface. Furthermore, if

one modified the COMMON block statement (e.g. change the name of a variable, or add one) the

code would still be compilable. This practice, in addition to inducing to errors, makes the debugging

process much harder.

21

Figure 10: Profile of the serial code. Left panel, we see the tree of calls of functions and number

how many times each function is called. Right panel, we see the same in terms of the percentage

of the total execution time spent in each function. Here we broke sigmam_MIUSC down into smaller

parts and found out that the function STAR_CUBE is responsible for the 56.40% of runtime.

3.2.3 OpenMP parallelisation

In order to speed up the program we tried to parallelise some parts of it. The idea is to run the

program on the shared memory Severo Ochoa Cluster diva@iac, consisting in 192 cores having 4,5TB

of shared RAM. Therefore, the parallelisation can be done both with OpenMP and with MPI. From

the tests we did with the N-body problem 3.1, we learnt that it is much easier to adapt a code to

OpenMP than to MPI. For ease, we implement OpenMP for parallelising the code.

At first we tried to parallelise the outermost loop in the subroutine hrsl_MIUSC (see Figure 10),

but we had several problems with which variables had to be shared or private. Instead, we parallelised

some nested loops located in STAR_CUBE. As in 3.1, we use the OpenMP directive Parallel Do for

the parallelisation, and the clauses share and private for the variables.

22

4 Results

4.1 N-body test

In this section we discuss the results obtained when running an equivalent N-body problem paral-

lelised using three different methods. As explained above, they are: OpenMP, MPI point-to-point

and MPI-RMA. To test the different methods we measured the runtime of the three codes for the

same set of initial conditions. We only measured the time spent in the parallel parts, so that we did

not count the serial parts, such as, the ones responsible for reading and writing files.

The tests were done for 210, 211, 212 and 213 particles, so the amount of memory used and

transferred is different. On the other hand, we ran each set of initial conditions on 1, 2, 4 and 8

threads/processes. All the tests were done in the same computer and we only ran the code in a

shared memory architecture, this limits the significance of the results. In table 1 we show the results

for 214 particles. We observe that the time decreases almost linearly. This agrees with what we

expected from Amdahl’s Law (equation 1). However, we notice that the more threads/processes we

use, the less linear is decay in the measured time.

The uncertainties in runtime were measured running the code 20 times for each combination of

number of particles and number of processes.

Number OMP MPI RMA

proc/threads time (s) time (s) time (s)

1 194.1± 5.0 197.6± 3.6 197.2± 1.5

2 108.9± 1.8 102.3± 0.8 101.5± 1.8

4 58.5± 1.1 55.8± 0.4 53.2± 0.9

8 31.8± 2.5 29.7± 0.3 28.8± 0.4

Table 1: Time spent to calculate 10 timesteps of a 213 particles N-body problem. It shows how

the runtime is reduced almost linearly adding threads/processes to the execution. Notice that the

MPI-RMA is the method with best performance.

In Figures 11,12 and 13 we show the speed up achieved using OpenMP, MPI point-to-point and

MPI-RMA, respectively. We observed that when the number of threads/processes increases, the

linearity decays. This behaviour is due to the time spent in data transfer. Obviously, if one uses

more processes, the code will require more communication between nodes.

We notice that the MPI codes speed up is more linear for larger amounts of particles, conversely,

OpenMP parallelisation is less effective. In addition, despite in theory OpenMP should perform

better than MPI in shared memory applications, we obtained best results for MPI. We relate this

23

Number OMP MPI RMA

proc/threads speed up speed up speed up

1 - - -

2 1.78 1.93 1.94

4 3.32 3.54 3.71

8 6.10 6.65 6.87

Table 2: Speed up achieved with the three different methods dicussed, (OpenMP, MPI Point-to-

point and MPI-RMA). It shows how MPI performs better than OpenMP and MPI-RMA reaches

the highest speed up.

Figure 11: Speed up of an N-body code parallelised with OpenMP. We ran the simulation for a

different number of particles. It was executed using 1, 2, 4 and 8 OpenMP theads. Note that the

speed up is not entirely linear and that the more particles, the less linear.

to the OpenMP creation of threads overhead issue commented in section 1.2.

Regarding the MPI codes, the Remote Memory Access performs better than the point-to-point

no matter how many particles we put in the simulation or how many processes we use. However, the

mean runtimes measured are very similar and it might be precipitated to affirm MPI-RMA is the

best method. In order to do so, we ought to run the two codes on a distributed memory architecture.

24

Figure 12: Speed up of an N-body code parallelised with MPI Point-to-point. We ran the simulation

for a different number of particles. It was executed using 1, 2, 4 and 8 processes. Note that the

speed up is not entirely linear, but now the more particles, the more linear.

Figure 13: Same as figure 9 but parallelised with MPI-Remote Memory Access.

25

4.2 Serial code optimisation

In order to speed up the code we parallelised the most time consuming functions. We did the

parallelisation with OpenMP. As said in §3.2, we found out that STAR_CUBE was the part of the code

where it spent a 56.40% of the total time. If we parallelise this part of the code, the serial part will

be S∼0.5 and the parallel part P∼0.5. Therefore, regarding Amdahl’s Law (equation 1), we will at

maximum obtain the following speed up,

speed up ∼ 2
N

1 + N
(3)

where N is the number of threads. Nevertheless, achieving perfect parallelisation it is not possible.

As we saw in the results of N-body test, time consuming functions emerge due to threads creation

or communication between them.

In table 3 we show the time spent for the synthesis of one spectrum with the parallelised code.

We do not measure the time spent reading the stellar libraries because it is only done once. We

Figure 14: Profile of the code run on 1 thread. Left panel, we can see various performance properties,

such as, the total number of calls to any function (Visits), the computational time (Time) or the

physical time (Maximum Inclusive Time). In the middle, the functions and subroutines which are

called are shown. In percentage, we see the time spent in each one.

26

obtain best performance when running the code on 6 threads. Conversely to what one might think,

if we run it on 8 threads runtime increases. On the other hand, when we run the code on 4 threads

the speed up is almost the same than running it on 6. Therefore, we consider 4 threads is the optimal

implementation for the code.

Number threads 1 2 4 6 8

Time (s) 7.54± 0.65 7.38± 0.65 5.91± 0.24 5.88± 0.38 5.96± 0.40

Speed up - 1.02 1.27 1.28 1.26

Theoretical speed up - 1.3 1.6 1.7 1.8

Table 3: Time spent for the synthesis of one spectrum, the speed up achieved and the theoretical

speed up. We have best performance when running the code on 6 threads but the best ratio

speed up/Nthreads is for 4 threads.

In figure 15 we show the profiles we obtained running the code on 4 and 8 threads, respectively.

Although we observe that the time spent in each loop is fewer with 8 threads, the code runs faster

on 4 threads. If one looks at the OpenMP barrier times, will note that the time spent in the barrier

running the code on 4 threads it is worse distributed than running it on 8. Nevertheless, the time

each thread waits is higher with 8.

In figure 10 we can see STAR_CUBE is called several times. For each call the program creates

threads and, as explained above, OpenMP has a high time cost issue when creating threads. That

is why a higher number of threads does not mean less runtime. Thus, 4 threads perform better than

8.

In relation to the thread creation issue, we tried to parallelise some small loops and the runtime

increased instead of decreasing. So it is not evident that if one parallelises a loop the code becomes

faster.

The latter problem leads to try other parallelisation approaches. We also tried to parallelise the

outermost loop, in other words the function: hrsl_MIUSC. If we had achieved this we would have

had ∼ 100% of parallelisation, so the run time would have been t = tserial/Nthreads. We could not

do it because some variables that had be private to parallelise the loop, had to be shared in the way

the serial code had been written. In order to do so we needed to change most of the code. It is

important that the developer thinks in the possible parallel regions before writing the code, avoiding

avoidable relationships between variables (e.g. index counting).

27

Figure 15: From top to bottom, profiles of the code run on 4 and 8 threads, respectively. Note, at

left, that the computational time (Time) has increased but the physical time (Maximum Inclusive

Time) has decreased. We also observe that the OpenMP barrier is less compensated when running

the code on 4 threads, but the time spent in the barrier is fewer too.

28

5 Conclusions

• Although OpenMP is designed to be implemented in shared memory architectures, both the

classic MPI (point-to-point) and the new Remote Memory Access MPI-3 features have better

perfomance. For instance, for 8 threads/processes we obtaind the following speed up’s: 6.10

with OpenMP, 6.65 with MPI point-to-point and 6.87 with MPI-RMA.

• The comparison between MPI point-to-point and MPI-RMA is not totally reliable, since they

were tested on a shared memory machine. To obtain definitive results, both methods should

be tested on a distributed memory architecture, where latency is more noticeable.

• We optimised a Fortran 77 serial code that calculates the SED of a stellar population, up-

datinng it to Fortran 90, and parallelising it with OpenMP. We obtained a speed up of 1.27

when running it on 4 threads, which is the best ratio performance/Nthreads.

• Every code should be analysed with a profiler. Otherwise, possible bottle-necks can go unno-

ticed. Furthermore, it makes the optimisation of a software both more efficient and effective.

• OpenMP does not perform well in fine-grained parallelism. It is due to an overhead in creation

of threads. How ever, it has similar performance to MPI when it is implemented in coarse-

grained parallelism (of course, only in shared memory architectures).

• There is an actual sofware crisis. On the one hand, the hardware is renewed every 4-5 years.

But on the other hand we still write codes in deprecated lenguages (e.g. Fortran 77), and use

methods that should be avoided and replaced for new features (e.g. COMMON blocks).

29

References

[1] Falcón-Barroso, J. et al. 2011, A&A, 532, A95

[2] Heap & Lindler, 2007, ASPC, 374, 409

[3] Hoefler, T. et al., 2013. Remote Memory Access Programming in MPI-3. ACM Trans. Parallel Comput.

1, 1, Article 1 (March 2013), 29 pages.

[4] Message Passing Interface Forum, 2015, MPI: A Message-Passing Interface Standard, Version 3.1

[5] Mikhail B. (Intel), 2017, An Introduction to MPI-3 Shared Memory Programming

[6] Lawrence Livermore National Laboratory, Livermore Computing Center HPC Tutorials

https://hpc.llnl.gov/training/tutorials

[7] OpenMP, 2015, OpenMP Application Programming Interface, Version 4.5

[8] Rayner, Cushing, Vacca, 2009, ApJS, 185, 289

[9] Ricciardelli, E. et al. 2012, MNRAS, 424,172189

[10] Scalasca Development Team, 2018, Scalasca 2.4 User Guide

[11] Shende, S. 1999, Profiling and Tracing in Linux

30

https://hpc.llnl.gov/training/tutorials

	Resumen
	Introduction
	Parallel computing
	Overview
	Parallel Computer Architectures

	Libraries used for parallel communication
	OpenMP
	MPI

	Profilers for parallel applications

	Objectives
	Methodology
	Testing HPC methods on a gravitational N-body code
	OpenMP N-body code
	MPI N-body code: Point-to-point and RMA

	Optimisation of a serial code (F77)
	Serial code profiling: detection of bottle-necks
	From Fortran 77 to Fortran 90
	OpenMP parallelisation

	Results
	N-body test
	Serial code optimisation

	Conclusions
	References

