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Abstract

Este Trabajo de Fin de Máster está enfocado a la implementación de métodos com-
putacionales con el fin de reducir el coste temporal al correr códigos de ajuste espectral.
Como objetivo secundario, nos proponemos implementar métodos de Machine Learn-
ing para facilitar el modelado de distribuciones espectrales de enerǵıa en espacios de
parámetros N-dimensionales.

Estudiamos un método de reducción de dimensionalidad, en particular el método
PCA, para tratar de reducir la dimensión de la base de modelos SSP que utiliza una
rutina llamada pPXF para ajustar espectros galácticos. Convolucionando los modelos
con parámetros cinemáticos, pPXF modela un espectro galáctico y lo compara con las
observaciones, tratando de minimizar los residuos variando los parámetros. Trataremos
de recuperar los parámetros cinemáticos de un grupo de galaxias utilizando un subcon-
junto de componentes principales extráıdos del análisis PCA efectuado sobre dicha
libreŕıa. Los resultados obtenidos con los componentes principales los comparamos con
resultados presentados en la literatura.

La segunda parte del trabajo se centra en la implementación de Redes Neuronales
para interpolar modelos SSP en espacios de parámetros N-dimensionales. Diseñamos
distintas arquitecturas capaces de interpolar modelos SSP, por un lado construyendo
un interpolador tradicional, y por otro lado creando una red que sea capaz de aprender
las caracteŕısticas espectrales de los SSP en función de sus parámetros f́ısicos.

El análisis PCA se basa en el estudio estad́ıstico de un grupo de datos, y trata de
crear elementos ortogonles que expliquen la máxima variabilidad de los datos. Estos
elementos forman un subespacio que conserva la capacidad explicatoria de los datos
originales. El ejercicio de reducción de dimensionalidad lo aplicamos sobre una li-
breŕıa de SSP creada combinando la libreŕıa estelar MILES con isocronas PADOVA,
y caracterizada por los parámetros edad y metalicidad. La libreŕıa posee un tercer
parámetro, la pendiente de la IMF, pero es la misma para todos los elementos de la
libreŕıa. Verificamos la utilidad del método propuesto reconstruyendo los elementos
originales de la libreŕıa utilizando los componentes principales. Como último paso de
este ejercicio, y con la idea de analizar la relación entre los componentes principales
y los parámetros espectrales, seguimos un procedimiento descrito en la literatura. En
las figuras presentadas en la sección de resultados del análisis PCA se puede ver con
claridad que un subconjunto de 6 componentes principales es suficiente para reconstruir
con precisión notable la libreŕıa original. En lo referente a la relación entre los com-
ponentes principales y los parámetros edad y metalicidad, encontramos que la edad
está codificada mayormente en el primer componente principal, apareciendo sutilmente
tanto en el segundo como en el cuarto. La metalicidad aparece más repartida entre
el primer y segundo componente, y apenas contribuye en los demás elementos de la
libreŕıa reducida.

Una vez completado el análisis PCA, pasamos a correr la rutina de ajuste espectral
pPXF con los componentes principales generados en el ejercicio anterior. Lo primero
a decidir es el número de componentes a utilizar. Para esto, ajustamos los espectros
centrales de 15 galaxias utilizando diferentes números de componentes. Realizamos un
análisis estad́ıstico de los residuos para determinar que 10 componentes principales son
suficientes para obtener ajustes satisfactorios de los espectros. Una vez hecho esto,
procedemos a calcular los mapas cinemáticos para las 15 galaxias con los componentes
principales, obteniendo resultados similares a los presentados en la literatura. El ahorro

1



temporal resultante de utilizar una libreŕıa reducida es considerable, como comentamos
en la sección de conclusiones.

Para la segunda mitad del trabajo, hemos hecho uso del paquete Keras como her-
ramienta de construcción y entrenamiento de Redes Neuronales.

Para comenzar, proponemos dos tipos de arquitecturas, pensadas para interpolar
modelos SSP en un espacio de parámetros bidimensional, definido por la edad y la
metalicidad. Estudiamos el efecto que puede tener la elección del tipo de normalización
de datos, interpolando una mitad de la libreŕıa de SSP utilizada anteriormente después
de haber entrenado la red con la otra mitad. Ambas arquitecturas resultan ser capaces
de interpolar en el plano definido por la edad y metalicidad de los SSP, como se observa
en los resultados. Una vez demostrada la validez de las redes a la hora de interpolar
SSP, pasamos a aumentar la complejidad del problema añadiendo más parámetros.
Con este ejercicio, aumentamos la dimensionalidad del espacio de parámetros en el
que trabajarán las redes. En este caso, hacemos uso de tres libreŕıas, que a diferencia
de la libreŕıa utilizada en el análisis PCA, están caracterizadas por cuatro parámetros
espectrales. Las tres libreŕıas se componen de SSP repartidos en 12 metalicidades, 53
edades y 14 pendientes de IMF, y la diferencia entre ellas radica en el cuarto parámetro,
el ratio de abundancia.

Haciendo uso de estas tres libreŕıas constrúımos una serie de 5 redes, que van au-
mentando en complejidad. Las primeras 2 redes las diseñamos para ver el efecto que
tiene sobre los resultados el entrenar con una libreŕıa, para ambas architecturas. La
tercera red la utilizamos para estudiar el efecto de incluir un tercer parámetro espec-
tra. Las redes 4 y 5 sirven para introducir la cuarta dimensión en forma de ratio de
abundancia. Del el ejercicio propuesto para las 5 redes, obtenemos resultados de in-
terpolación con una precisión notable en la mayoŕıa del espacio de parámetros en cada
caso. Sorprendentemente, encontramos que, a medida que el problema se hace más
complejo, la precisión de las interpolaciones no disminuye. Esto nos lleva a pensar que
las redes neuronales aprenden con mayor eficiencia si se entrenan con bases de datos
más extensos.

La implementación de redes neuronales para interpolar modelos SSP en parámetros
N-dimensionales resulta una mejora respecto a métodos tradicionales en cuanto a que,
una vez entrenada la red, la interpolación es instantánea independientemente de la
dimensionalidad del espacio de parámetros.

A lo largo de este trabajo desarrollamos dos métodos que pueden llevar a un ahorro
en el tiempo de computación de códigos de ajuste espectral como pPXF.
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1 Introduction

1.1 The study of galaxies

The study of galaxies is a relatively young field of research and has been subject to a huge
thrust due to the technological advance. Learning about the external galaxies help us under-
stand better the formation and evolution of the Milky Way. The study of external galaxies
also provides with the opportunity to examine the time evolution of the universe, and to
learn how the physical theories adjust to the observational data.

The information regarding external galaxies comes in the form of light. This light is de-
tected by the telescopes, and contains photometric and spectroscopic information. Apart from
describing the morphology of the objects by the distribution of light on the sky plane, the
photometric data is often used to determine stellar and galactic magnitudes, which character-
ize parameters such as temperatures and distances. Combining both of these characteristics,
more information regarding the interestellar and intergalactic dust may be obtained, for
example.

The spectroscopic information is encoded in the spectra of the incoming light, which,
by definition, is the spectral energy distribution of the light. This distribution contains
information of the atomic and molecular populations from where the light was originated.
Measuring the relative depth and width of absorption lines, it is possible to extract informa-
tion about element abundances, superficial gravity and rotational velocity, in the case of the
stars, and populations, in the case of galaxies. In addition to that, the measured spectral
lines are sensitive to the local dynamics, as absorption and emission lines shift towards red
or blue, depending on the relative motion between the emitter and the observer. Thus, an-
alyzing galactic spectra, we can obtain information regarding the dynamics and populations
of galaxies.

1.2 Synthetic models

The galaxies appear projected on the sky plane, but the light originates in a 3-dimensional
distribution of stars. In fact, the signal recieved on each resolution element of the detectors
is the sum of the light of the stars across the Line Of Sight (LOS).

Most of the methods available to extract information from galactic spectra consist in
combining synthetic models, in order to construct the LOS that most accurately fits the
observed data. This is done convolving single-aged stellar population (SSP) models with
kinematic parameters that describe the motion of the stars along the line of sight. The SSPs,
available on the web1, are created combining the MILES stellar library, containing around
1000 stellar spectra, with solar-scaled PADOVA isochrones, as explained by Vazdekis et al.
[2010]. The resulting library gathers 156 SSP, with ages between 0.063 and 17.7828 Gy,
and a spectral range extending from 3525 to 7500 Å. In this case, the parameter space is
two-dimensional, since all the spectra have the same unimodal IMF slope of value 1.30. The
156 SSP are distributed on 26 age and 6 metalicity values.

The SSP filenames encode the information of the spectra, regarding different parameters.
We explain the naming convention on the following table.

1ftp://miles.iac.es
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Filename IMF Age (Gy) [M/H]
Mun1.30Zm1.71T01.0000.fits 1.30 1.0000 −1.71
Mun1.30Zp0.22T17.7828.fits 1.30 17.7828 0.22

Table 1: Naming conventions of the SSP library created with PADOVA isochrones. The
filename contains the information about the age, metallicity and IMF slope value.

(a)

Figure 1: Representation of the spectroscopic data found in the files presented in table 1.
The top panel spectra corresponds to an age of 1 Gy and a solar-scaled metallicity of -1.71.
The age and metallicity of the bottom panel are 17.7828 Gy and 0.22 respectively.

The differences between the two samples presented in figure 1 are clearly visible at first
sight. The young and metal poor has a much lower spectral line density, and the Balmer series
are of the most important features of the spectra. On the contrary, the old and metal-rich
sample shows a high spectral line density, as expected from the stellar evolutionary theory,
while the Balmer series is barely noticeable.

1.3 Dimensionality reduction and Machine Learning techniques

It is often the case where the datafiles containing extragalactic observations turn out to
have large size, and the implementation of complex mathematical procedures involved in
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spectral fitting techniques results computationally expensive. Therefore, the implementation
of dimensionality reduction methods becomes a highly advisable practice.

A variety of methods have already been implemented with such purposes, proving their
utility when compressing the information contained in large datasets into a much smaller
subsets. Some of the most popular methods are Independent Component Analysis (ICA),
a slightly modified version of ICA named Ensamble-Learning ICA (EL-ICA), and Principal
Component Analysis (PCA).

The ICA method performs a statistical analysis of a multidimensional dataset and creates
independent components capable of describing such dataset. Lu et al. [2006] performed an
exercise involving EL-ICA, where they apply the method to a set of 1326 SSP, and utilize
the resulting independent components as templates to model synthetic galactic spectra. An
Ensemble-Learning algorithm is applied to the ICA, in order to avoid overfitting solutions.
After performing the EL-ICA, the authors found that the SSP library could be consistently
reduced to a set of 6 IC. As discussed in the article, the physical meaning of the obtained
independent components is closely related to the physical parameters defining the spectral
library, thus they classify the IC according to their spectral type, since they turn out to be
similar to stellar spectra. Afterwards, the authors use the calculated independent components
to model galaxies from SDSS, being able to derive their spectral parameters.

Making use of another of the dimensionality reduction methods, Chen et al. [2012] perform
the PCA over a set of 25000 star formation histories (SFH) created using SSP. After obtaining
the principal omponents (PC), they determine that 7 principal components describe accu-
rately the SFH library, and project the data on the space that define the PC. In order to
determine the physical parameters, the authors propose a method based on the similarity
between the library elements, the SFH, and the galaxies on the reduced PC space, which is
calculated comparing their weights on the PC space. As a result, the researchers show that
PCA is an efficent way to significantly reduce the model libraries used for modelling galactic
spectra, as well as the fact that it is possible to recover the information about the physical
parameters encoded in the original library from the reduced PC set.

In a similar exercise, Ronen et al. [1999] applied PCA analysis to 1850 age-dependent
galactic spectra, formed by assuming star formation history SFH, initial mass function IMF
and metallicity. The study determines the correlation between the PC and the age of the
modelled galactic spectra. In addition to that, after forming a second set of spectra by sam-
pling more metallicity values, they study the effect of metallicity on the principal components,
which results in a higher variability on the 2nd PC. By plotting the PC weights alongside
the spectral parameters, the authors reveal that the parameters of modelled galaxies may be
explained using a small set of principal components.

In addition to the techniques mentioned above, clustering algorithms prove to be effective
when determining characteristic features of a given dataset. KMeans is one of such algo-
rithms, which divides the data in k groups, centered in k corresponding centroids on the
original parameter space, instead of proyecting the data onto a different space, as PCA and
ICA do. The centroids of the groups correspond to labels, which can be used as classes in-
side the dataset. Using this method, Almeida et al. [2010] were able to automatically classify
galactic spectra from the Sloan Digital Sky Survey (SDSS).

KMeans can be considered as an unsupervised learning algorithm for which, in contrast to
more sophisticted techniques, the learning process aims to the convergence of the calculated
centroids. Since the begining of the 90’s, a branch of computing known as Machine Learning
has gained popularity among data scientists. In particular, the so called Neural Networks
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(NN) are often used with purposes such as classification of data, time-dependent model
predictions and non-linear problem solutions.

Neural Networks have been implemented to solve problems on diverse fields, starting
from image classification and pattern recognition, as proved by Rawat and Wang [2017], to
bilinear curve fitting for robotics applications, as shown by Mital and Chin [1998], to create
positioning controllers. Our work is focused on finding solutions of curve fitting problems,
similar to the work of Bishop and Roach [1992], so the complexity of task is much lower than
the ones mentioned here.

The most popular application of NN consist in pattern recognition in images with classifi-
cation purposes. In this case, Convolutional Neural Networks are trained to codify an image
through a series of convolutional and fully connected layers. The result of this codification
is then associated with a previously defined class, teaching the network to associate similar
outputs with the mentioned class. An introductory example of an implementation of NN for
digit recognition may be found on the internet2, where MNIST database is used to teach a
NN to classify images of handwritten numbers.

Using a similar principle, Ramos et al. [2017] made use of Deep Learning techniques
to determine horizontal velicity fields in the solar chromosphere. Making use of a mix of
convolutional and dense layers, they are able to determine the horizontal velocity field of the
cromosphere of the Sun, which would otherwise be impossible, since horizontal velocity is
not subject to spectroscopic doppler effects.

Mimmicking the image classification problem, Hála [2014] showed that convolutional neu-
ral networks are capable of classifying 1-dimensional data corresponding to spectral energy
distributions of astrophysical objects. Following the same procedure as when classifying 2D
images, they designed a network capable of discerning among spectra of stars, galaxies and
quasars.

Neural networks also have proved to be able to solve regression type problems, like para-
metrical curve fitting. Making use of a configuration of fully connected layers, also known
as Multi-layered Perceptron (MLP), Bishop and Roach [1992] designed a network capable of
determining in real time the parameters of the spectral lines generated on a nuclear fusion
reactor.

1.4 Objectives of this work

With the aim of decreasing the computational cost when studying dynamics and populations
of galaxies using spectral fitting methods, the objective this work consists on the implemen-
tation of both dimensionality reduction and Machine Learning techniques. The first half will
focus on the application of the PCA on the SSP library mentioned earlier, and using the
resulting PC to recover kinematic parameters of galaxies presented in the work of Emsellem
et al. [2004] using a spectral fitting code. The aim of this exercise is to prove that a di-
mensionality reduction technique maintains the information encoded on the original library
unaltered, but speeds up computation.

The second half of the work, grounded on the context of Machine Learning, will consist
on building an interpolator of SSP. This interpolator will be designed to return a SSP model
corresponding to a pair of parameters (age,metallicity) on the 2D space described on subsec-
tion 1.2. The task will be approached from two different points of view. First, we will design

2https://machinelearningmastery.com/handwritten-digit-recognition-using-convolutional-neural-networks-python-keras/
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and train a traditional interpolator, which will return the weights of the desired new element
on the base formed by the SSP. The second approach will consist on training a network to
return the entire SSP matching the target (age,metallicity) pair, learning the pixel-to-pixel or
wavelength variations as a function of the input parameters. Afterwards, we will attempt to
extend the method to higher dimensions, including parameters like IMF slope and abundance
ratio [α/Fe].

The advantage of the NN compared to the traditional interpolators resides that, once
trained, the prediction of any SSP belonging to the parameter space in which the NN was
trained is instantaneous independently of the dimensionality of the parameter space, in con-
trast to the time need by conventional interpolation algorithms.

The following sections will focus on the theoretical background and methods applied to
achieve the goals mentioned above, as well as the results obtained from the implementation
of the described time-cost reduction techniques.
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2 Principal Component Analysis

This chapter is focused on the methods and tools used to perform the dimensionality reduc-
tion by implementing PCA, as well as the results obtained from the analysis. The procedure
was implemented upon the library described in section 1.2, which contains the SSP models.
After PCA was performed, the reduced library was tested by running a spectral fitting code
named pPXF and analizing the accuracy of the set of PC when comparing the results ob-
tained with the ones presented in the work of Emsellem et al. [2004]. For that, we picked
a group of galaxies from SAURON survey of early-type galaxies, as subjects for the pPXF
routine.

2.1 Dimensionality reduction

Principal Component Analysis (PCA) is a method that provides means of reducing large
datasets into more manipulable objects, while maintaining the explanatory capability of the
original set. Once performed, the result of the analysis comes in form of vectors, the Principal
Components (PC), that have the same structure of the dataset items, but different meaning.

A simple and descriptive approach of the Principal Component Analysis may be found in
the web3 in the form of a tutorial. This tutorial proves to be an excelent introduction to the
problem, explaining with detail the basic concepts of the implementation of PCA on a set
of data, and provides the reader with a guided step-by-step practical example. As pointed
further in this section, there are fully-functional codes available that perform the analysis,
however the tutorial found online is a worthwhile lecture to rapidly understand the purpose
and mechanics of PCA.

2.1.1 Methods

The PCA projects the original n-dimensional dataset into the feature space, which is a d-
dimensional subspace with d < n, originated by the PC. The dimensions, or axis, of the
feature space represent the highest variability of the dataset, being the main axis, or the
first PC, the vector that maximizes the variance of the dataset. Apart from dimensionality
reduction, PCA is a tool often used to extract characteristic features of the dataset. The
case of interest on this work consists in a dimensionality reduction of a spectral library, so
the principal components are expected to be similar to spectral energy distributions, despite
not beeing strictly so.

The analysis is performed by calculating the eigenvalues and eigenvectors of the scatter
matrix generated from the dataset. Let us name xk the dataset. The scatter matrix S can
be calculated as follows:

m =
1

n

n∑
k=1

xk (1)

S =
n∑
k=1

(xk −m)(xk −m)T (2)

3http://sebastianraschka.com/Articles/2014_pca_step_by_step.html
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The eigenvectors and eigenvalues are calculated by solving the equation

Sν = λν (3)

Here ν refers to the eigenvectors, the principal components, and λ are the eigenvalues.
This eigenvalues represent the amount of variance explained by each principal component ν.
The PC with a highest λ contributes the most describing the variance of the dataset.

There are several packages that provide tools to perform the PCA. As the algebra needed
for the method is not too complicated, it is relatively straightfowrard to create an original
code to perform the analysis. However, for the sake of efficency, we decided to use the
already existing SKlearn package from SciKit4. This tool returns the principal components,
the original data reconstructed using PC, and the explained variance ratio of each PC, among
many other features. This ratio is returned in form of a vector, and it turns out to be a useful
parameter in order to determine the reduced dimension d. Principal components that present
a low explained variance ratio may be discarded when forming the reduced subspace.

As the physical meaning of the principal components may not be clear at first sight,
[Chen et al., 2012] propose a method to study the relation each PC has with the parameters
that describe the library. The procedure consists in defining a quantity conformed by the
projections of the original spectra in the PC space and the spectral parameters of the library,
and minimizing that quantity.

∆ =
n∑
i=1

[∑
α

XαCi,α + Z − Pi

]2
(4)

On equation (4) Xα and Z are the parameters that minimize ∆, which reflect the com-
bination of PC and the zeropoint that effectively describe the parameter P of the library.
The matrix Ci,α is the amplitude of the αth PC for the ith template, and is calculated in the
following way:

Ci,α =
∑
λ

(Xi,λ −mλ)Eα,λ (5)

Once ∆ is minimized, the contribution of the αth PC estimating the parameter P is:

Ppc(α) =

∑n
i=1 |XαCi,α|∑

α

∑n
i=1 |XαCi,α|

(6)

After the PCA analysis is performed, we will feed the pPXF code with the resulting
principal components, with the aim of reproducing some of the results obtained using the
original library.

2.1.2 Results

First, the first 3 principal components, resulting from the PCA performed on the PADOVA
library, are shown in Figure 2. As discussed before, the PC are formally equal to spectral
energy distributions; however, some of the components present negative flux. This is not, by
any means, possible if the object is expected to be a real spectra.

4http://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html
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Figure 2: First 3 principal components extracted from the SSP library, alongside the mean
spectra.

In principle, the PC represented in figure 2 hold relation with the spectral parameters
age and metallicity, despite not being clear at first sight. For example, it is reasonable to
say that the 1st PC is related to the age, since the Balmer series is a prominent feature of
the eigenspectra, and Balmer lines may be considered as age markers in stellar and galactic
spectra. The relations in regards to metallicity seem even more difficult to determine, unless
a detailed scrutiny of spectral lines is performed. However, as the section progresses, an
alternative method will be tested in order to further determine the relations between the
spectral parameters and the principal components.

The next step consisted in reconstructing the original library using the PC found on Figure
2. On Figure 3 we show an example of a reconstructed SSP alongside its original counterpart,
followed by the reconstruction accuracy on the whole age/metalicity plane.

Analyzing both images shown in Figure 3 it is safe to say that the dimensionality reduction
was succesful. The residual of the plot on top is negligible compared to the spectra itself.
Moreover, on the bottom plot it can be seen that the overall standard deviation of the residual
does not exceed the 2%, having its maximun on one of the boundaries of the parameter space.
As an additional feature, it is possible to infer the effect of the sampling of the library on the
bottom panel of Figure 3. The metalicity axis presents a smoother variation, in comparison
with the axis representing age. This is so because the age grid has a higher resolution than
the metalicity grid.

On an attempt to deduce how the principal components are related to the parameters of
the library, we followed the steps shown by Chen et al. [2012], using equation (6).
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Figure 3: Reconstruction of the SSP library using 6 PC. On the top panel we show recon-
struction of a sample SSP on arbitrary flux units, corresponding to the top-right cross on the
bottom panel. On the bottom panel we plot the reconstruction accuracy on the 2D parameter
space. The crosses show the points corresponoding to the SSP on the age-metallicity plane.
The values encoded in the colorbar correspond to the standard deviation of the normalized
residual of the reconstruction.
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Figure 4: Relative contribution of the first 9 PC to the explanation of age and metalicity.
The values were calculated using equation (6).

In figure 4, the plot represents the relation of each PC in regards to the spectral parameters
age and metallicity. The results obtained from equation (4) show that age is mainly encoded
on the 1st PC, while being slightly present in PCs 2 and 4. The metallicity appears to be less
related to PC1 than age, while its significantly present on the 2nd component. This comes
to agreement with what we deduced from looking at Figure 2.

2.2 pPXF

After succesfully completing the principal component analysis for the SSP library, the fol-
lowing step consisted in the analysis of the results obtained from the pPXF routine when
feeding it with the PC, instead of the SSP. Our study covered kinematics analysis, and at-
tempted to reproduce the results obtained with SSP models, which may be found in the work
of Emsellem et al. [2004].

2.2.1 Methods

pPXF is a spectral fitting code, created by Cappellari and Emsellem [2004] which provides
means to extract information of the kinematic and population properties of a galaxy, starting
from a set of single stellar population models.

The spectral data of the galaxy of study comes in the form of a datacube, a typical output
of a Integral Field Unit. This device divides the field of view in sections, and generates a
dataset containing the spatial data in 2D, while keeping the 3rd dimension for the spectral
information. The spatial part contains the distribution of light projected on the sky plane,
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and the spectral part contains the spectral energy distribution of each resolution element on
the 2D plane.

The spectra stored over the 3rd dimension of the datacube is generated in the galaxy by
adding the light of all the stars along the Line Of Sight (LOS) that crosses the galaxy in
a 3D volume. Therefore, it is the addition of light coming from a large number of stars.
pPXF convolves a set of templates with a theorethical Line Of Sight Velocity Distribution
(LOSVD), builds a model spectra and compares it to the observations. The lines of sight
are generated using gauss-hermite polynomials, characterized by the mean velocity µ and the
velocity dispersion σ. The possible asymetries are added by integrating two parameters, h3
(skewness) and h4 (kurtosis). Thus, the line of sight is characterized by 4 parameters: µ, σ,
h3 and h4.

As the galaxy of study is a relatively faint object, a threshold for the signal-to-noise ratio
is set to obtain reliable and consistent results. In order to achieve this, the sky-plane is
redistributed by the method called Voronoi Binning5. The binning sums the photometric
fluxes around a coordinate on the sky-plane that corresponds to a measured spectra, covering
the area needed to obtained the threshold S/N.

The kinematic parameters, namely µ, σ, h3 and h4, characterize the LOSVD corresponding
to each of the bins created by the Voronoi Binning, and are directly estimated by pPXF.
Thus, kinematic maps may be generated portraying the parameters that provide the best fit
for the galactic spectra of each of the bins.

As an example, we present the results of the execution of the pPXF routine in Figure 5,
with data from of the galaxy NGC 3608, and using the SSP library presented in section 1.

(a) (b) (c) (d)

Figure 5: Kinematic maps of NGC 3608 obtained with pPXF, using the SSP library. The
subplots represent (a) the mean velocity µ in (km/s), (b) the velocity dispersion σ in (km/s),
(c) h3 and (d) h4.

2.2.2 Results

Making use of the principal components obtained from the dimensionality reduction exercise,
we carried a kinematic analysis for galaxy NGC 3608, in order to test the valitidy of the PC
when fitting real galactic spectra.

The next figure shows a comparison of the fitting for the spectra corresponding to the
galactic center, where the signal-to-noise ratio is highest.

5http://www-astro.physics.ox.ac.uk/~mxc/software/
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(a)

(b)

Figure 6: Central spectra of NGC 3608 fit using (a) the SSP library and (b) 10 principal
components extracted from the models.

Figure 6 shows that the spectral fitting is slightly improved feeding the code with 10 of
the principal components extracted from the SSP library, instead of the 156 elements com-
forming the library. As mentioned in section 2, the PC represent the axis holding the highest
variability regarding the data. Taking into account the fact that the library was created
combining stellar spectra and isochrones, it is plausible that some elements of the library
repeat spectral features. The fact that the spectral fitting gets improved using principal
components, which maximize the explanation variability of the data, is somehow a result
that could be anticipated.

However, a crucial factor for the dimensionality reduction to be practical is the number
of PC that will form the reduced subspace. Should the number of elements needed be of
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the same order of magnitude, the implementation of the PCA with means to optimize time
costs would be pointless. The minimum number of PC capable of reproducing the kinematic
properties has been determined on the following way.

We performed a fit for the central spectra of 15 different galaxies feeding pPXF with 2 to
20 PC, in steps of 2 and compared the results to the fits obtained using SSP. The statistical
parameters µ and σ of the residuals, which are representative the accuracy of the fitting, are
shown in figure 7.

(a)

(b)

Figure 7: Statistical parameters of the residuals of the central spectra fitting for 15 galaxies
with different numbers of PC. The top panel shows the mean value µ, and bottom panel
shows standard deviation σ.

As can be seen in Figure 7, the spectral fitting improvement stops between 6 and 8 PC,
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therefore it makes no sense to utse 20 principal components. This is noticeable as µ starts
fluctuating after 8 PC. However, by visual inspection of the kinematic maps resulting from
using such a low number of PC indicated that, even if the central spectra fit stops improving
after 8 PC, more principal components where needed to successfully recover the kinematic
parameters.

On the bottom panel we see that the dispersion of the residuals continues decreasing, but
this might be a signal of reaching overfitting of the central spectra. Therefore, we use the
mean of the distribution of the residuals, plotted on the top panel of Figure 7 in order to
choose the number of PC to use.

Once the number of PC to use was determined, a complete kinematic analysis for galaxy
NGC 3608 was performed using 10 principal components. In figure 8 we show a comparison
depicting the results obtained using both PC and SSP.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 8: Kinematic maps obtained for galaxy NGC 3608 by running pPXF. The images on
the top row result from using the SSP, and the bottom row corresponds to the maps obtained
with a subset of 10 PC. The magnitudes correspond to (a,e) mean velocity µ in km/s, (b,f)
velocity dispersion σ in km/s, (c,g) h3 and (d,h) h4.

Simultaneously, with the aim of supporting the choice of PC number, the residuals of the
comparison between the kinematic maps found in the literature and the ones obtained with
5, 10, 15 and 20 PC were calculated. In thiscase, these residuals are a direct representation
of the similarity between the maps obtained with PC and with SSP.
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(a)

(b)

Figure 9: On the top panel, we show dispersion plots of the differences between the kinematic
maps obtained after feeding pPXF with 5, 10, 15 and 20 PC. The 15 galaxies for which the
exercise was performed are divided by vertical lines. On the bottom panel we present the
same magnitudes in form of histograms.

The results shown in Figure 9 reassure the choice made for the number of PC to be used,
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as no significant improvement is achieved with more PC. The major improvement shows
transitioning from 5 to 10 PC. Even if single galaxies may show slightly smaller residuals
with a higher number of components, 10 components show to be capable of obtaining results
comparable to the ones obtained using SSP.

On table 2 it is clearly visible that the time cost is drastically reduced when running pPXF
with principal components. Thus, we confirm that the Principal Component Analysis proves
to be an effective method when reducing the time cost of spectral fitting routine pPXF.

Library Total time
PC 31 m 45 s
SSP 542 m 37 s

Table 2: Time performance of pPXF code with SSP and with PC for 15 galaxies.

As an ending of the chapter, we conclude that principal component analysis turns out to
be a satisfying tool in regards with time optimization of spectral fitting codes like pPXF,
since the information concerning kinematics can be recovered with a much smaller time cost.
PCA proves to be able to reduce the dimensionality of a SSP library from 156 elements to a
subset of 10 principal components maintaining the explanatory power of the original dataset.
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3 Neural Networks

As discussed in the introduction, Neural Networks are often used to build predictive models
and perform tasks like image classification and pattern recognition. The ability to perform
such jobs depends on two main features: the architecture of the network and the training
set. The former feature defines the task for which the NN is built. For example, an image
classifier needs to have multiple layers for operations like convolution and pooling, whereas
a logical NN that represents XOR operation only needs two layers, one receiving the input
and one returning the result.

The base component of a neural network is the layer. A layer is a unit that performs an
operation upon the input which has been feed with. A simple neural network is composed of
an input layer, an output layer and one or more optional hidden layers.

Figure 10: Scheme of a basic neural network containing an input layer, a hidden layer and
an output layer. The network recieves a three-dimensional input and returns a vector of 2
components. Each neuron of the hidden layer is conected to all the neurons from the previous
and next layers, forming a configuration known as fully connected network.

In figure 10 the circles represent the neurons. Each neuron processes the inputs coming
from the previous layer, before transmittimg the output to the next one, on the following
way:

Y = R

(∑
i

Xiwi + b

)
(7)

Performing the operations described above, a neuron returns the output Y from the input
X, multiplying with weights wi and adding a bias b. The R refers to the activation function,
which has to be chosen according to the task of the NN. The most used activation functions
are the softmax and ReLU, which are implemented when teaching a network to solve non-
linear problems. However, the use of these functions requires a preprocessing of the training
set, since both activations restrict the value range of the outputs of the neurons to a range
between 0 and 1. An example of the effects of using different activation functions on the
training of a digit classifier may be found on this website6.

While the architecture of the network is constrained by the problem to solve, the accuracy
of the solution is determined by the training set. This set contains both the inputs and their

6https://towardsdatascience.com/exploring-activation-functions-for-neural-networks-73498da59b02
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corresponding outputs of real examples regarding to the task. The training set of an image
classifier, for example, is arranged on the following way: the inputs, which are 2D arrays,
are stored on a n-dimensional array, X on equation (7), where n is the number of images
contained on the training set. The set contains another n-dimensional array, Y on equation
(7), containing the classes of the images. The training of the network consists on looping the
inputs through the network, calculating the residuals for the elements on the training set,
and making small adjustments on the NN parameters, namely the weights and the biases, in
order to get a smaller residual.

For this work, the chosen framework has been Keras7, which is compatible with Python,
and runs alongside the algebraic package Tensorflow. This framework is intuitive to work
with, and several guidelines may be found as introduction on its website, as well as a complete
installation guide. Keras supports GPU based tensorflow package, meaning that the networks
can be trained in GPU instead of in CPU. In this way, the calculation speed is multiplied
by at least 2 orders of magnitude, giving us the chance to explore deeper and more complex
architectures for the networks. On our work, 2 GPU units have been tested and compared
to a common CPU unit, in terms of the time cost when training deep complex networks.
The CPU and one of the GPU units belong to a personal computer, and the second GPU is
currently installed on one of the computing units in the Instituto de Astrof́ısica de Canarias.

3.1 Methods

Neural networks provide infinite possibilities regarding the customization of the system, in
order to build a system that best satisfies our needs. In terms of learning ability, neural
networks are characterized by their parameters, the weights and bias on equation (7). Simul-
taneously, these parameters are controlled by the hyperparameters of the NN, which include
the number of hidden layers and the number of units on each layer. The parameters are
usually determined following a process of trial and error. However, the choice of hyperpa-
rameters is a determining factor when defining the type of problem a network can solve. Such
is the case of the activation functions, features that give chance to include non-linearity.

On this section we introduce a discussion regarding the possible choices for hyperparam-
eters and architectures, as well as normalization choices for the dataset.

3.1.1 Architectures

We propose two different architectures to build a network capable of interpolating SSP mod-
els inside a 2-dimensional space. One of the approaches will be designed to learn the weights
of the target spectra on the parameter space composed of the library parameters (e.g. age,
metallicity). We will refer to this approach as A1, which is essentially a traditional interpo-
lator. The second approach will perform a direct fitting of the spectral range. The aim here
will be for the network to learn the spectral features and how they vary in the parameter
space. This approach will be called A2. The tasks of both designs are represented in Figure
11.

7https://keras.io/
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Figure 11: Representation of the propposed architectures. For a given set of input parameters,
A1 returns the weights of the corresponding model on the space defined by the SSP, while
A2 synthesizes the model.

In both cases, the input is an array containing all the parameter combinations correspond-
ing to the templates. The output, however, will be different depending on the task.

Figure 12: Scheme of a neural network suitable for both A1 and A2 architectures. L refers
to the number of layers, and M to the number of neurons in the output layer. For both
architectures, the input layer has 2 neurons for a 2D interpolation.

On Figure 12 we show a scheme of a generic architecture applicable for both A1 and A2

networks. The most important parameters on which the two cases differ are L, the number
of total layers, and M , the number of neurons of the output layer. The first is a tunable
parameter, but the last is restricted by the problem to solve. A1 needs n neurons in the last
layer, as pointed in Figure 11. On the other hand, A2 requires a number of neurons equal to
the λ channels that conform the SSP model.
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3.1.2 Activation functions

Neural networks are often used to study non-linear phenomena, but the operations performed
among the neurons of the hidden layers consist mainly on linear algebraic calculations. The
hyperparameters that gives the option to introduce non-linearity are the activation functions
of the layers. Different types of functions are required to solve different kinds of problems.
On Figure 13 we show a selection of the most used ones.

Figure 13: Selection of available activation functions. The functions sigmoid, tanh and ReLU
are mainly used to introduce non-linearity, in contrast to the linear function. ReLU function
is often used after convolution layers when classifying images, since no negative values are
allowed for the pixel counts. Functions like sigmoid are often applied on the last layer of
data classifying networks. The activation functions take an input X and produce an output
Y whose range is restricted depending on the function.

All of the activation functions shown in Figure 13 are appliable on the hidden layers,
but for both the interpolator and the spectral fitter, the last layer must have either a linear
activation function, or no function at all. This is so because in regression problems the aim
is to find an exact solution, not probabilities describing the similarity of an element with a
given class, as it is in the case of classification problems.

The goodness of the solution is defined as how similar the predicted spectra is to the
expected one along all the λ channels. Therefore, the parameter directly related to the pre-
cission of the network is the loss parameter, which turns out to be equal to the mean squared
error. We consider that the network stops learning when the loss presents an asymptoti-
cal behaviour. In contrast with regression type problems, the performance of the networks
designed for classification is represented by the parameter accuracy. Indpendently of the
problem to solve, these parameters present an opposite trend as the training progresses: as
the loss decreases the accuracy increases, given that the network is properly designed.
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3.1.3 Normalization of the training set

When working with neural networks, the training set is ussually normalized according to
the activation function of the output layer. For example, in classification networks, after a
convolution layer comes a ReLU activation function. In this case, the normalization needs to
rescale the training set so that no negative values are expected by the network. Afterwards, if
necessary, the result of the NN may be transformed back to the original range of the dataset.

A possible option, applied on this work, is to perform an element-wise normalization, with
the idea of creating a set of equally scaled elements. The SSP used for the training are scaled
to 1 M�, so the fluxes of young and metal poor SSP are much higher than the ones of old and
metallic populations. Therefore, features of the latter group might be lost if the complete
dataset is normalized at once. Dividing each SSP with its median we ensure a minimum
feature loss caused by a global normalization.

Figure 14: Examples of opposite elements of the training set after the normalization. On the
left panel we show SPP after a global normalization between [0,1]. On the right panel we
show the effect of the chosen normalization, element by element, applied to both SSP.

It is reasonable to assume that learning spectral features will be easier for the network if
trained with elements shown on the bottom panel of figure 14. The details of the old metallic
SSP are far better defined when an element-wise normalization is applied. Therefore, in the
case of the global normalization, it is possible to suffer from loss of information.

3.1.4 Expanding to 3D and 4D

Making use of the architectures propposed above, it is possible to create networks that
interpolate in an N-dimensional parameter space. The changes needed for this are minimal,
since the task for both architectures remains the same. The difference lies on the fact that
as input, the network will recieve N parameter values, instead on 2.

In order to achieve this, we make use of SSP models characterized by 4 physical parameters:
age, metallicity, IMF slope value and abundance ratio [α/Fe]. From the libraries available
on the MILES webpage, we chose 3 that were created combining BasTI isochrones with the
MILES stellar library: one with solar scaled abundance ratio, a second with α enhanced
abundance ratio, and a third whose models follow the abundance pattern of the Milky Way.
Subsequently, we will name these libraries solar-scaled, α-enhanced and base libraries.
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These 3 libraries contain more models than the one used on the PCA chapter, sorted in
53 ages, 12 metallicities and 14 IMF values, gathering a total of 8904 SSP each.

The transition from 2D to higher dimensions was studied by building and testing 5 different
networks, each of them created to perform a different, more complex task.

Network1

This network incorporates the interpolator architecture, A1, and will be trained with SSP
of all ages and metallicities, for a single value of IMF slope. The SSP models belong to the
base library.

Network2

The second one performs a 2D interpolation with an A2 type network with SSP of all ages
and metalicities, but again only one IMF slope value. The training set was the same as for
Network1.

Network3

The third performs a full 3D interpolation on the parameter space defined by all the ages,
metallicities and IMF slope values contained on the library containing the base models. This
network incorporates architecture type A2.

Network4

The fourth network performs interpolation in 3D, again with A2, for a single value of IMF
and 2 values of abundance ratio, alongside all the ages and metallicities. In this case, the
training set combines SSP from the α-enhanced and solar scaled libraries, covering all the
age-metallicity plane for a IMF slope value of 1.30.

Network5

The last one performs a full interpolation in the 4-dimensional parameter space, using A2

type architecture. This case presents the largest training set, englobing a total of 8904 single
stellar population models.

These five designs will help us to study how the inclusion of more parameters affects the
learning of A2 architecture. For example, Network1 and Network2 may be used to compare
the performance of both arhitectures when trained with a more extense library. Network3 and
Network4 extend the problem to 3 dimensions, and will help us understand the performance
of the proposed architectures when facing more complex problems. Finally, Network5 will be
the ultimate test for the architecture, increasing the complexity of the problem to a higher
degree.

3.2 Results

In this section we present the results obtained regarding the tasks presented above. To begin
with, we will discuss the performances of the training process for a given network in terms
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of time cost, comparing the GPU devices and the CPU unit. Afterwards, we will present on
the results regarding design choices and interpolation accuracies for all the cases formulated
in the chapter.

3.2.1 Training times: CPU versus GPU

Focusing on architecture A2, which requires the most complex architecture, a series of train-
ings have been performed using a CPU unit and 2 GPU units. This architecture results
of most interest, since is the one that is actually trained to learn the features along the
wavelength range in function of the spectral parameters.

Taking advantage of the computational power of the GPU units, in particular the P100,
we performed a test designing a deep and complex layout for A2. We trained the design with
78 SSP models, for a total of 1000 iterations.

On Table 3 we present the times taken on the training of the network shown in Figure 15
for all 3 devices.

Figure 15: Architecture used for the training time comparison between CPU and GPUs. The
network has a total of 8 layers, with varying number of neurons n on each.

Device Time/step Time
Intel i5-4200 (CPU) 1.01 s 578 m 16.86 s
GTX 765M (GPU) 3 ms 47 m 26.49 s

P100 (GPU) 200− 300 µ s 137.455 s

Table 3: Times of the training for the spectral fitter: CPU versus GPUs. In all 3 cases
the training was performed for 1000 iterations. The architecture of the network for these
trainings is shown in Figure 15.

It is clear at first sight that the P100 GPU turns out to be the best choice when training
deep complex networks. Compared to a normal i5 Intel CPU, the time cost is decreased for
almost 3 orders of magnitude, which reduces the total time cost significantly.

We must point out that the accessibility to the P100 GPU unit has been of paramount
importance when completing this work, since it provided opportunity of planning fast and
long training sessions. However, the resources of the GPU unit were not exploited to the
maximum, since the priority was to extend the dimensionality to 3 and 4 dimensions. For
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further completion, the next step would consist in running extremely long trainings, in order
to det the minimum residuals possible for the interpolations.

3.2.2 Architectures

Next, a 2D interpolation was performed on the plane defined by the parameters age and
metallicity with both A1 and A2 architectures. As both are designed to produce the same
outcome, the results are directly comparable. The training set used for this exercise contained
156 SSP, split in 26 ages and 6 metallicities.

(a) (b)

Figure 16: Comparison between the accuracies of architectures A1 and A2, when trained with
78 SSP. The interpolated SSP are represented with an X. The color code shows the standard
deviation of the normalized residuals between the interpolated and their corresponding true
SSP.

Looking at Figure 16 we can say that both architectures show to be capable of interpo-
lating half of the training library with acceptable accuracy. The standard deviation of the
normalized residuals is lower than 4 % in the case of the A2 architecture, while for A1 it
peaks around 3,2 %. A1 appears to interpolate better than A2 on the central part of the
domain. However, taking into account that the task of the latter architecture is much more
complex to begin with, the results obtained are far from being negative.

The cases presented on Figure 16 correspond to networks designed to perform the same
task. In order to prove the validity of the approaches, we requested both architectures to
create a new SSP, corresponding to a pair of age and metallicity not contained either on the
training nor the test sets. The results are plotted in Figure 17.
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(a)

Figure 17: Comparison of the results of an interpolation for architectures A1 and A2. The
pair of parameters corresponding to these SSP is (logAge,metallicity) = (0.23,−0.80).

Figure 17 shows that very similar results are obtained with both A1 and A2 architectures.
This is expected, since the same training set was used to train both models. Regarding the
spectral distribution for the target pair of age-metallicity show prominent Balmer series and
a medium spectral line density, as expected in an young and intermediate metallicity SSP.

3.2.3 Activation functions

The problems to solve by both of the proposed architectures are regression type problems.
Thus, the final layer of the networks needed to have a linear activation function, or no function
at all. We chose not to implement any activation function on the last layer for both A1 and
A2. For the hidden layers, we selected the activation function ReLU, since we needed to have
only positive values for the final result of the network.

On Figure 18 we present the the accuracy and loss of a training process of 1200 iterations,
involving architecture A1 and a training set containing 78 SSP. In this case, we included only
one hidden layer with 100 neurons.
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(a)

Figure 18: Parameters describing the training of the A1 architecture. The red curve represents
the loss, and the blue plots the accuracy. The training was performed for 1200 iterations.

3.2.4 Normalization of the training set

As pointed on the previous section, the normalization of the data might be a crucial decission
when preparing the training set for a neural network. On Figure 19 we compare the efects
that 2 different normalizations have on the output of the same architecture designed for the
A2 type network of Figure 12.

Looking at Figure 19 it appears that the element-wise normalization produces better
results than a global normalization. As suspected, scaling all the SSP to the same range
altogether leads to a loss of precission in certain areas of the 2-dimensional domain.

3.2.5 Expanding to 3D and 4D

Until this point, the study of neural networks was focused on finding architectures capable
of interpolating on a 2-dimensional plane. Once tested the validity of such architectures, the
next step consisted in the expansion into higher parameter dimensions. Network1, Network2
and Network3 were trained using the library with no considerations about the abundance
ratio, holding the base models. On the other hand, Network4 and Network5 were trained
combining the solar scaled and α enhanced libraries.

Network1

In Figure 20 we present the results obtained from Network1. We compare the goodness of
the 2-dimensional interpolation after training A2 architecture with 78 SSP, shown on the left
panel,with the same exercise but trained with a larger set containing 318 models.
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(a) (b)

(c) (d)

Figure 19: Comparison between the results obtained by 2 different data normalizations. The
top left panel shows the performance of A2 after normalizing the whole dataset between [0,1].
In the case of the top right panel, an element-wise normalization was applied, dividing each
SSP with its median. On the bottom raw we present the corresponding interpolation for the
same SSP: on the left panel applying a global normalization, and on the right panel with the
more adecuate element-wise normalization. The upper limits on the colorbars show that for
all the plane, the element-wise normalization is the best choice.
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(a) (b)

(c) (d)

Figure 20: Comparison of the accuracy of architecture A1 after increasing the size of the
training set. On the top left panel we plot the results after training the network with 78
SSP, and on the bottom left panel we plot an example of the resulting interpolation. The
top right panel shows the accuracy of the same network, after training it with 318 models,
and the bottom left panel shows a sample corresponding the top right one.

For almost all the domain the standard deviation of the normalized residuals is comparable
to when trained with a larger training set. For both cases presented in Figure 20 the training
was performed for 2000 iterations.

Network2

When including al the IMF slope values of the library, the size of the training set increases
significantly. Similar to the cases presented before, on figure ?? we plot the standard deviation
of the residual of the interpolations on the plane defined by age and metallicity.
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(a) (b)

(c) (d)

Figure 21: Comparison of the accuracy of architecture A2 after increasing the size of the
training set. On the top left panel we plot the results after training the network with 78
SSP, and on the bottom left panel we plot an example of the resulting interpolation. The
top right panel shows the accuracy of the same network, after training it with 318 models,
and the bottom left panel shows a sample for each case.

Network3

The third network included all the values for the IMF slope, constructing a complete 3-
dimensional space. At this point, the complexity of the problem increased considerably,
since tha training set got from having 636 elements, to a total of 8904 SSP models. We show
the accuracy of 3-dimensional interpolation in Figure 22, representing the age-metallicity
plane.
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(a) (b)

(c) (d)

Figure 22: Comparison of the accuracy of architecture A2 after including all 14 values of IMF.
On the top left panel we plot the accuracy of the interpolation for the plane corresponding to
a IMF value of 1.00. The top right panel shows mean of the accuracy across the IMF value
axis. On the bottom panels we show 2 examples of interpolation in 3 dimensions.

Network4

Network4 was designed to include a 4th parameter, the abundance ratio, and see how the
accuracy of the network behaves when inserting IMF slope and abundance ratio separately.

The training set was created taking SSP of all ages and metallicities for a single IMF
value from the libraries with α enhanced and solar scaled abundance ratios. In Figure 23
we present the results of the interpolation on the age-metallicity plane for both cases of the
abundance ratio, with a IMF slope value of 1.30.

The results plotted in figure 23, show that, for a single value of IMF, the results obtained
after introducing a 4th parameter are comparable to the previous cases. Therefore, we can
assume that the architecture of the spectral fitter is appropriate for interpolating spectra in
a multidimensional parameter space.
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(a) (b)

(c) (d)

Figure 23: Accuracy of the interpolations after including abundance rationas parameter. A
single IMF value of 1.30 was chosen, while maintaining the age-metallicity grid. The top
panel left corresponds to a solar scaled abundance ratio, and the top right panel to the α
enhanced library. On the bottom panels we show the interpolation of a SSP of the same
age, metallicity and IMF slope value, with a solar scaled abundance ratio on the left, and α
enhanced abundance on the right.

Network5

After adding the remaining IMF values, the training set for the fourth network increased to
a total number of 17808 SSP. Again, half of them were used for training, keeping the other
half for testing. Having such a large training set increases considerably the time taken on
the training. An iteration of the whole set along the network takes about 11s when training
on the P100 GPU. Compared to the times presented on table 3, the effects of the size of the
training set are noticeable. However, the time cost increase is compensated by the accuracy
of the 4-dimensional spectral fitter, as it can be seen in figure 24.
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(a) (b)

(c) (d)

Figure 24: Accuracy of the learning process after including abundance ratio as parameter
and all of the 14 IMF values. The top left panel shows the mean across the IMF axis for the
solar scaled abundance ratio; the top right panel shows the equivalent for the α enhanced
case. On the bottom panels we plot the results of two interpolations: on the left panel we
show a young metal poor SSP, and on the right panel an old metal rich SSP, performed with
the case trained with α-enhanced library.

Looking at the progression of the residuals, ilustrated along this subsection, we note that
the behaviour of the spectral fitter improves as the size of the training set increases. The
idea results quite intuitive, since for a traditional interpolation better results are obtained in
a dense populated parameter space. The improvement of the accuracy on the age-metallicity
plane as we moved from 2, to 3 and finally to 4 dimensions also corroborates the idea that
large training sets result in better trained neural networks.

However, this comes with its cost, since the trainings of the 3 and 4-dimensional A2

networks take far much more time than the 2-dimensional case. For the latter, a single
iteration around 78 SSP took between 200 − 300µ s, training on the P100. The largest of
the training sets, the one corresponding to the full 4D spectral fitter, and whose results are
presented in figure 24, took 11 seconds iterating once along 8904 SSP. Nonetheless, as the
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training needs to be carried out only once, the time considerations are negligible when using
the network.
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4 Conclusions

On this last section we present the conclusions to which we arrived after completing the tasks
proposed through this work. To begin with, we will discuss the implementation of the PCA
technique as dimensionality reduction method, focusing on how the information of the subject
dataset is preserved when performing the principal component analysis. Afterwards, we will
focus on the implementation of Machine Learning techniques with the objective of training
neural networks capable of interpolating SSP models in an multidimensional parameter space.

PCA resulted to be an effective method when reducing the dimensionality of libraries com-
formed by SSP models. The accuracy of the reconstruction of the PADOVA library, shown in
figure 3 indicates that the principal components hold the essential information encoded in the
original library. Each of the SSP models was reconstructed as a lineal combination of prin-
cipal components, and the standard deviation of the residuals obtained after the comparison
are below 2% on all the parameter space defined by the library. The principal components
resulting from the PCA were used afterwards to recover the kinematics and populations of
several galaxies, by means of the pPXF routine. For this exercise, we calculated these pa-
rameters using both the SSP library and subset containing 10 PC. The results obtained for
the kinematic parameters v, σ, h3 and h4, though not exactly the same, showed to converge
on similar values as the expected results from the SSP library, as it can be noted by looking
at figure 8. The time cost has been drastically reduced, since the pPXF code run using 10
principal components instead of 156 SSP. On the table below we present a summary of the
time performances regarding the study of the 15 galaxies chosen for the kinematic analysis.

For the second part of the work, we developed a method of interpolating the single stellar
population models used by pPXF on a multidimensional parameter space. In order to achieve
that, we studied the basics of neural network design, approaching the problem from two
different ponts of view. On one hand, we designed and tested an architecture we called A1

whose task was to perform a traditional interpolation, calculating the projection of a target
SSP on among the preexisting ones. The second architecture was designed to return the
target SSP directly. This last case results of most interest, since the network, if trained
properly, learns the spectral features corresponding to a combination of physical parameters,
and we named it A2.

As shown in section 3.2, both of the proposed architectures proved to be capable of inter-
polating SSP in a 2-dimensional parameter space formed by the age and metallicity of the
models. The networks were trained with half of the library used for the PCA analysis of
section 2, and tested with the remaining half, so that exact models were available to com-
pare with the output of the networks. Both architectures showed to be able to replicate the
test group with an uncertainity below 4%. During the development of the networks, several
aspects regarding the design were considered, as not all networks are suitable to perform a
given task. In particular, we found that the data normalization has a significant impact on
the output of a network. This was tested with architecture A1, since the other case already
had a normalized training set.

Heading to the final goal, we extended the architecture A2 into 3 and 4 parameter dimen-
sions, making use of libraries created using BasTI isochrones, instead of PADOVA isochrones.
These libraries, characterized by 4 spectral parameters each, gave us chance of creating train-
ing sets that covered a higher dimensionality. In this case, similar results were found in
comparison with the netwoks trained with the smaller library. The performance of the A2

design improved for almost all the 2-dimensional plane as the training set increased in size.
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This is noticeable in figure 22, but more so in figure 24, where the maximum uncertainity is
below 5.4% while the complexity of the problem had increased considerably. This seems to be
caused by the increase in size of the training sets, when interpolating in 3 and 4 dimensions.

Looking at the results presented along the third section, we are able to confirm that it is
possible to design artificial neural networks capable of synthesize SSP models parametrized by
spectral parameters. Using relatively simple architectures, we have created designs capable
of interpolating SSP instantly in a 4-dimensional parameter space, which, as methods like
PCA, might result in a decrease of computational time cost.

As an extension, for a future work, it would be feasable to design architectures that,
alongside with population parameters, would be able to convolve SSP models with kine-
matic parameters, such as v and σ, thus creating neural networks that would be capable of
generating models based on populations and kinematics.
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Pavel Hála. Spectral classification using convolutional neural networks. arXiv preprint
arXiv:1412.8341, 2014.

Eric Emsellem, Michele Cappellari, Reynier F Peletier, Richard M McDermid, R Bacon,
M Bureau, Y Copin, Roger L Davies, Davor Krajnović, Harald Kuntschner, et al. The
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