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Abstract 
Diseases are due to a malfunctioning of the physiology of the organism. In order to understand the mechanisms of the diseases it has to be taken into account the structural complexity of the biological organisms, not only as the set of molecular interactions but also its dynamics. Since in many cases the disease is due to a dynamical imbalance of the system we need methods to induce the dynamics from the interacting network to find strategies to cure them. The approach which deals with this problem is systems biology; it makes use of mathematical modelling methodologies to deal with the structural and dynamical complexity of the biological organisms. First, the general considerations about mathematical modelling in biosciences are discussed, and then it is presented a review of mathematical modelling approaches in the topic of intra-host malaria infection. Four highly prevalent diseases are evaluated in this perspective to unravel the molecular and cellular complexity which explains their physiology. Malaria is highly prevalent in developing countries, and it is produced by the dynamical interaction of the parasite and the cells in the blood stream; HIV infection is firstly produced by the invasion of the T4 lymphocytes by the virus. This process is driven by many molecular pathways triggered by the virus inside the lymphocyte, these signaling pathways produce the opening of a small pore through the HIV enters; Alzheimer’s disease is a neurodegenerative pathology without known cause, the main hypothesis relates the production of the neurotoxic peptide β-amyloid with certain lipid domains formed by differential lateral movement of the lipids in the membrane of the neurons; finally, melanoma is a very aggressive kind of cancer. After a metastasis, a microtumor originates in the bloodstream and it interacts with the immune system; the final outcome depends on this dynamical interaction. Potential therapeutic targets in which can be focused on the search of new drugs against these diseases are proposed by the models which reproduce the disease in certain conditions. 

Resumen 
Las enfermedades se producen por un mal funcionamiento del organismo. Con el fin de comprender los mecanismos de las enfermedades se debe tener en cuenta la complejidad de los organismos biológicos, no sólo como el conjunto de interacciones moleculares, sino también su dinámica. Las enfermedades se producen por un desequilibrio en la dinámica del sistema, ello implica que hacen falta métodos que permitan inducir la dinámica a partir de la red de interacciones de forma que sea posible encontrar nuevas estrategias para el tratamiento de las enfermedades. El enfoque que se ocupa de este inferir la dinámica a partir de las redes de interacciones es la biología de sistemas; esta hace uso de metodologías de modelización matemática para hacer frente a la complejidad estructural y dinámica de los organismos biológicos. En primer lugar se resumen y analizan las cuestiones generales sobre modelización matemática en biociencias, luego se presenta una revisión de aproximaciones mediante modelización matemática en el tema de infección por malaria dentro del hospedador. Cuatro enfermedades altamente prevalentes son evaluados bajo este enfoque desentrañando la complejidad molecular y celular que explica su fisiología. La malaria es altamente prevalente en los países en desarrollo, y es producida por la interacción dinámica del parásito y las células del sistema inmunológico en el torrente sanguíneo; la infección por VIH es producida en primer lugar por la invasión de los linfocitos T4 por el virus, este proceso está promovido por muchas rutas de señalización molecular desencadenadas por el virus en el interior del linfocito, que culminan con la apertura de un poro por el cual entra el VIH; la enfermedad de Alzheimer es una patología neurodegenerativa sin causa conocida, la hipótesis principal alude a la producción de un péptido neurotóxico, el β-amiloide, en ciertos dominios lipídicos formados por el movimiento lateral diferencial de los lípidos en la membrana de las neuronas; por último, el melanoma es un tipo de cáncer de melanocitos muy agresivo. Inicialmente, un microtumor crece en el torrente sanguíneo interactuando con el sistema inmune; la evolución de la 



 

 

enfermedad depende de esta interacción dinámica. En cada caso se proponen potenciales dianas terapéuticas en las que puede centrarse la búsqueda de nuevos fármacos contra estas enfermedades haciendo uso de los modelos que reproducen la enfermedad en determinadas condiciones. 
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1. Introduction 
Historical introduction 

A disease is an abnormal condition of the organism physiology. Many classifications of the diseases can be made depending on the chosen criterion; we group them based on the causes. Some of the diseases are produced by external agents, as traumatisms, nutritional disorders or caused by toxins. These can be considered passive diseases as the agent is not able to reproduce. On the other hand, active external agents are microorganisms and parasites. The diseases which have an endogen origin can be caused by immune system malfunction, for example in allergic, inflammatory and autoimmune diseases; others are able to be inherited or caused congenitally and, finally, neoplastic and degenerative diseases are mostly caused during aging, although they can also be produced by acquired mutations. Some other diseases do not have any known cause, as Alzheimer’s disease. There are two main strategies to deal with the treatment of the diseases: i) removing the external agent, when there is one; ii) restoring the physiology to its normal condition. Conceptually, the first strategy is easier because the objective is to destroy the physiology of the pathogen, but the second strategy requires restoring the patient physiology to its unique functional state. In practice, many situations can make the problem more complicated, for example the acquirement of resistance to the treatment by the pathogen. When the causes of the disease are well known the intuitive strategy is trying to reverse the malfunction without affecting any other relevant process in a way that the result of the treatment is not worse than the disease. We are saying that the target of the treatment is the same as the target of the disease. However many treatments are able to restore the organism physiology without reversing the affected process. Instead of that, they act on a different place in a way that they are able to compensate the malfunction in a whole. We can say that these are counterintuitive therapies, as there is no easy way to find them by intuition, considering the high complexity of the organism. These kinds of treatments are mostly found under extensive screening of substances, or even by chance. But as it will be discussed below, it is possible to find counterintuitive treatments in a directed way. 
A biological organism is not a soup of elements, knowing its precise composition is not enough to understand its physiology. The individual functionality arises from the orchestrated interaction of all the elements in space and in time. Even knowing the complete genome of one cell it is not possible to predict its response to certain stimulus, because the genetic information has only sense in the context of the dynamic networks of molecules. This network has two main characteristics: i) all processes occur far from the thermodynamic equilibrium; ii) the interactions between elements are nonlinear (doubling the input does not duplicate the response). These two properties make the system admit very complicated dynamical behavior, as oscillations and chaos. It is frequent that for a proper functioning of the organisms this dynamics has to be conserved, in a way that losing oscillatory or even chaotic dynamics would produce a disease (Mackey and Glass, 1977). Then, it is crucial being able to infer the dynamical 
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response of the biological systems from the interaction network in order to understand the physiology of the diseases. As it was mentioned above, some counterintuitive responses under certain modifications are expected if we are not able to infer the dynamic response of the system. The approach which deals with the biological organisms in the presented way above is systems biology. As it was said it is not a methodology but an approach to study biological systems, it is the paradigm shift needed to understand the complexity of the biological organisms. 
The history of systems biology begins out of biology. As many, if not all, of the scientific disciplines we can assume that it started with the publication of Philosophiæ naturalis principia mathematica by Isaac Newton, in England. In this precise moment the humanity was able to understand that there are mathematical principles which rule the Universe, but at the same time Isaac Newton also provides to the world a new tool to analyze and predict the dynamical behavior of the nature, differential calculus. The genius said to us where and how we can discover the secrets of the universe, and the era of the great scientific discoveries began. The study of the nature was mostly descriptive until then, however the ability to uncover the mathematical principles of the observed phenomena concludes with the establishment of universal laws. Mechanics was followed by thermodynamics and electrodynamics, and the scientists began to think they were able to predict any process in the universe, as it was manifested by one of the biggest scientists of the time, William Thomson, first Baron Kelvin: “there is nothing new to be discovered in physics now. All that remains is more and more precise measurement”. However, since science cannot be stopped, Max Planck unravels another relevant mathematical principle on nature, quantum mechanics. It was the beginning of the second revolution in physics during the XX century, which ends with the two current big theories about the mathematical principles of nature, the Standard Model and the General Theory of Relativity. 
The mathematical principles which rule the biological systems are the same as in the inert matter, but it was very late in the history of science when it could be known. The explicit differences between living organisms and the rest of phenomena established the vitalism, which assumes a conceptual difference between the living and non-living entities. It was considered that the laws of physics cannot be applied to biology, and hence the lack of interest in finding the mathematical principles of the biological systems. After the famous experiment of Friedrich Wöhler synthesizing the organic compound urea in laboratory the vitalism theory was called into question, and then it was admissible applying the laws of nature to living organisms. Although the application of the natural laws on the biological systems was not so obvious, some exercises in order to unravel the mathematical nature of biological systems were made at the beginnings of XX century. Alfred J. Lotka applied the mathematical law of the kinetics of chemical reactions, as autocatalysis and mass action law, into a set of ecological models in which species interact, culminating in 1920 with a mathematical model of predator-prey interaction in an ecosystem (Lotka, 1920); and during the same time, Vito Volterra derived the same equations to explain the observed oscillations on the number of marine individual (Volterra, 1927). Also during the first years of the XX century, sir Ronald Ross, using the same ideas from the mass action law, proposed the mathematical behavior of epidemic diseases (Ross, 1915). From these ideas it arose the current epidemiological models, the concept of basic reproduction number and the vaccination control of epidemics using mathematical concepts as the herd immunity. Also very remarkable, the foundations of enzyme kinetics were established by Leonor Michaelis and Maud Menten in 1913 (Johnson and Goody, 2011), based in chemical reaction mathematical principles as well. Nevertheless it had to be developed an emerging idea which was growing in parallel to this initial application of mathematical models to biology, the principles of the Systems Theory. It was the formalization of previous approaches to the complexity, as Control Theory which deals with dynamical systems and the effect of the output on the input of systems by feedback loops; Chaos Theory which 
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had its conceptual origins at the end of XIX century, or other discoveries of interest in biology as the self-reproducing systems founded by John von Neumann in his cellular automata model. Ludwig von Bertalanffy published the General Theory of Systems in 1969 (Bertalanffy, 1969), and it provided a mathematical structure for complexity, a set of interacting elements from which they emerge some common properties and behaviors which can be analyzed, referred as the system. After this great formalization for the study of systems other key contributions for the culmination of the mathematical analysis of biological systems were the concepts of dissipative structures as a way to apply the laws of thermodynamics on living structures, being them open systems far from the equilibrium. The dissipative structures were presented by Ilya Prigogine in 1961 (Prigogine, 1968). The first great application to systems theory on biology was the mathematical model of Alan Hodgkin and Andrew Huxley in 1952 (Hodgkin and Huxley, 1952), in this work they were able to reproduce the dynamical behavior of the initiation and propagation of the action potential in axons. This model proposed the ionic mechanisms under the process which was verified later by molecular experiments.  
The next revolution on the field of systems biology was in technology, the development of personal computers gave a very potent tool to analyze mathematical models. As it was introduced before, the interactions occurring between elements in biological systems are nonlinear, which produce mathematical equations which are very difficult or even impossible to analyze by hand. The use of computational power made possible the application of mathematical tools for numerical analysis which require a lot of simple calculations. With the theories and mathematical tools available the attention was drawn to the study of metabolism during the seventies. Metabolic pathway were well known since the molecular biology and enzyme assays studies, but the knowledge were based on analyzing individual reactions in vitro, and the inference of the dynamical behavior of the whole network is not an easy task. There was no any method which took into account the nonlinear nature of those biochemical systems. Trying to deal with this lack, two mathematical approaches appeared on this decade, Metabolic Control Analysis (Fell, 1996; Heinrich and Rapoport, 1974; Kacser and Burns, 1973) and Biochemical Systems Theory (Savageau, 1969, 2010), converging both in the main ideas behind the mathematical principles of biochemical systems. The first approach tried to solve the conceptual problem of limiting reaction, as it cannot be predicted from in vitro studies. It is because the limiting reaction of a pathway is an emerging property of the whole pathway, depending on the connectivity and kinetics of the network. This approach gives some mathematical properties of the biochemical networks which are conserved, in a way that it is possible to predict from the network which reactions are able to mostly control the velocity of the whole pathway, based on control coefficients which inform about the amount of control on the system that each reaction has. On the other hand, Biochemical Systems Theory introduced a canonical mathematical formalization to analyze the dynamics of biochemical pathways; it assumes a linear relationship between reactants and reaction rate under a double log representation. This assumption has proved to deal with the main nonlinearities on biological dynamic behavior (saturability, synergy, oscillations, etc.) and also this assumption let to easily formulate and analyze biochemical pathways. From this formulation it can be derived the sensitivities of the system response under changes in biochemical parameters, which has a very close relationship with the control coefficients of Metabolic Control Analysis (Savageau et al., 1987). The application of those approaches to metabolism has provided the understanding of many responses coming from metabolic systems (Voit, 2013), and it also uncovered the design principles on metabolic pathways which explain the observed phenomena (Savageau, 2011).  
The last revolution on systems biology started after the development of methodologies to obtain high throughput data, also called omics. It began with the Human Genome Project, for the first time the whole genetic information of one human was available. At that moment it was a very 
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complicated challenge in which there was involved an international consortium of many countries during one decade. Advances in sequencing technology provide now the opportunity for almost every laboratory in the world to be able to sequence the entire genome of an organism in days. The next challenges came by increasing the amount of data, as the 1000 Genomes Project (1000 Genomes Project Consortium et al., 2010) or the ENCODE Project (ENCODE Project Consortium, 2004). It is also available high throughput data for any kind of biological information, the expression level of all genes, the amount of proteins of a cell, the metabolites concentration and the epigenetic marks are just some examples of the emerging technologies to obtain data from the whole organism. The data collected from the omics technologies need to be analyzed to obtain useful information from it, which makes bioinformatics and data analysis very useful and trending disciplines nowadays. This is the first round of analysis which can be made from this kind of data, but further steps must be done in order to really understand the biological systems from the data. If we only perform statistical analysis on data we are losing the information that the data give about the network of interactions of molecules.  
Network theory has its origins on mathematics. It was Leonhard Euler the first to solve a problem using graphs as mathematical objects, in the famous problem of the Seven Bridges of Königsberg. Out of mathematics it was mostly applied on information theory and social sciences, but with the emergence of omics and high throughput data it was possible to contrast biological networks with sufficient data measured from one organism. With this methodology it was possible to construct the whole biochemical and genetic network of biological organisms and analyzing its properties. Proposing new therapies for diseases based on biological networks inferred from high throughput data is one of the most recent methodologies which deal with the problem of finding counterintuitive therapies based on the network properties (Pérez-Nueno, 2015). 
Although network analysis is a very informative and potent methodology to uncover the complexity of biological systems it is not the last step for the comprehension of the function of them. The physiology of an organism is not static, it changes during time. The knowledge of the actual network of interactions of an organism does not give information about the dynamical response after certain stimuli, as the response varies during time. The ultimate step for a genuine understanding of the physiology of an organism comes from inferring its dynamical response from the network. To deal with this challenge it is necessary the use of mathematical tools which explicitly incorporate the time dimension. Although this methodology is the best approach to understand the biological physiology, it is yet under improvement. The reason is that for constructing dynamical networks experimental data taken during time are needed, which is not so available yet. Furthermore, dynamic mathematical models are much more computationally expensive than the static ones, so they use to be constructed in a smaller scale of detail. However, as the available data and the computing power increase exponentially it is expected that the size and resolution of dynamical models keep increasing. Even under the current situation about dynamical networks, there exist multiple applications of them to unravel the molecular complexity of the diseases and proposing new directed and counterintuitive therapies based on the dynamical response of small networks. Its utility and validation has been proven as they are able to reproduce the dynamical networks which exist at different scaling levels. 

Examples of dynamical mathematical models in biomedicine 
The application of the principles of systems biology to biomedicine provides a new approach to uncover the molecular mechanisms of the diseases, systems biomedicine (Antony et al., 2012; Zou et al., 2013). This approach allows to propose therapies based on the dynamical structure of the organisms, opening a new field of discoveries which was hidden under the reductionist approach alone. Now, it is 
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accepted that the study of the isolated elements of the system in conjunction with the holistic vision which provides systems biomedicine is the most promising strategy to deal with the diseases. In this section it will be presented a small selection of works on the topic of systems biomedicine to illustrate the utility of the approach. It will be focused on mathematical models which explicitly include time, so the diseases are studied as dynamical networks. 
Neurodegenerative diseases are complex pathologies which ultimately affect neurons. The causes are, in the best cases, partially known. In the case of Alzheimer’s disease (AD) the cause for the most frequent kind, sporadic AD, is not known. The currently accepted hypothesis is based on the aberrant production and accumulation of β-amyloid polymers on the extracellular region of the brain, which produces the death of the neurons (Gouras et al., 2014). Based on this hypothesis, mathematical models can provide useful information for the diagnosis of the evolution of the disease. A compartmental mathematical model was used to evaluate the dynamics on the distribution of the β-amyloid peptides through brain regions, as the cerebrospinal fluid, plasma and the brain (Craft et al., 2002). It concluded that decreasing the production/elongation of peptides reduces the burden of β-amyloid in all compartments, but increasing the clearance of the polymers only decreases the β-amyloid burden in the brain, and it can even increase its amount on cerebrospinal fluid and plasma. This is a notable consideration, as it would modify the interpretation of biomarkers based on the β-amyloid burden on plasma. The intracellular accumulation of Tau protein is also considered as a key driver of AD, as this accumulation would affect the proper structure of the cytoskeleton of neurons (Giacobini and Gold, 2013). The cytoskeleton is a complex dynamic structure, and it makes very difficult to figure out what is the actual effect of Tau on its physiology. In order to understand the structural changes on microtubules in the neurons promoted by Tau, it was implemented a three-dimensional mathematical model which considered the microtubule spatial dynamics (Buxton et al., 2010). It was able to predict the changes observed by Tau accumulation, providing a dynamic mechanism which could prevent the aberrant structure observed. If during the depolymerization of microtubules a new process of polymerization occurs faster than the hydrolyzation of the terminal GTP the catastrophic depolymerization can be terminated. It points at molecular targets for drug design based in a dynamical view of the disease. The problem can also be considered in a wider scale, including the relationship between the different cells on the brain. One mathematical model includes the crosstalk between microglia, astroglia, neurons and β-amyloid (Puri and Li, 2010). Using this scale it was possible to establish that the inflammatory activation of microglia is a relevant process for the evolution of the disease, being an interesting target for drug design. Parkinson’s disease (PD) consists on a selective death of dopaminergic neurons in the substantia nigra of the brain; the main driver considered is the accumulation of ɑ-synuclein (Dehay et al., 2015). The current main therapeutic strategy consists on the increase of the accumulation of dopamine to compensate the reduction of dopaminergic neurons. But, as metabolic pathways for dopamine production are very complex, and some other undesirable effects as oxidative stress are involved, finding a proper therapy is not easy using exclusively reductionist approaches. Two mathematical models which reproduce the metabolism of dopamine were able to propose molecular therapies combined in a way that increase dopamine and decrease oxidative stress (Qi et al., 2008; Sass et al., 2009). 
Infectious diseases are driven by pathogens which colonize the organism, so we need to understand the relationship between the microorganism and the host. Most of the infectious microorganisms invade the cells to reproduce inside them. HIV infection is a relevant example.  HIV infects T4 lymphocytes and appropriates the cell machinery, then the virus becomes dormant during many years, until it eventually produces AIDS (Marsden and Zack, 2013). Knowing the dynamics of the disease is very convenient to control it, and it was analyzed using a mathematical model in 1996 
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(Perelson et al., 1996). It was predicted the average life-span of infected cells, the mean production of virus and the HIV life cycle in vivo. In another study of the same year it was predicted that the observed reduction on the viremia during the acute phase of the HIV can be produced without any increase on the rate of removal of free virions or virus-infected cells (Phillips, 1996), which pointed to the fact that the decrease in viremia of the acute phase was not produced by the HIV-specific immune response to control the virus replication. More recently, a mathematical analysis established that the liver damage previously associated to HIV/HBV coinfection can be caused by a HIV monoinfection (Nampala et al., 2013). Equally recent is another mathematical model of HIV, but concerning the virus maturation (Könnyű et al., 2013). It focuses on the Cag-Pol polyproteins processing by the viral protease, which is needed for its infectivity. This quantitative analysis allowed to identify rate limiting step on the process as well as the main points to modify which would block the maturation. This is a promising strategy to focus on for the search of potential molecular target and new antiviral drugs. Finally, it is given an example of another infectious disease, tuberculosis. A very prevalent infectious disease, affecting initially lungs but with potential to extend to other tissues (Oliwa et al., 2015). There is a very recent mathematical analysis of the latency of tuberculosis, responsible of drug and immune resistance (Magombedze and Mulder, 2013). It combined a bioinformatics approach to analyze microarray gene expression data with mathematical modelling techniques to propose certain genes responsible to entry in latency. Targeting these genes is a promising strategy to increase the effectiveness of new therapies against this pathogen. 
Colorectal cancer is one of the most prevalent neoplasms. It occurs as an abnormal growth in the crypts of the colon (Susman et al., 2012). This tissue has a very high regenerative ability; all the cells of the crypt are renewed after one week. In order to maintain the equilibrium the number of cells has to be controlled by a continuous cell death. Increasing the growth rate of the stem cells of the crypt can promote abnormal growth which can culminate in malignant tumors. A simple mathematical model which includes the basic processes for cell growth, differentiation and death was able to predict the observed evolution of the disease, from stable benign tumors to malignant uncontrolled growth (Johnston et al., 2007). It was formulated as a set of cumulative mutations which increase the growth rate of cells. A second example on colorectal cancer studied the drug resistance by KRAS mutation (Sameen et al., 2015). They were able to predict that a small initial population of KRAS mutated cells has the ability of making all the tumor refractory to the treatment. Also, it was analyzed the effectiveness of the combination of monoclonal antibody (cetuximab) and chemotherapy (irinotecan) in patients with KRAS mutations. They predicted that only in patients with high immune strengths it would be recommended as first-line therapy. 
The last examples are going to be on the topic of immune and metabolic diseases. Immune diseases are produced by the malfunction of the immune system. Chronic inflammation and autoimmune disease are examples of malfunctions in which immune system increases its activity above its physiological level. Inflammation is related with the onset of atherosclerosis, by shear stress in the epithelium (Bryan et al., 2014). A mathematical model of the signaling pathway triggered under shear stress in endothelial cells was able to predict the biochemical observations (Yin et al., 2010). It was used to propose the crucial role of the Bone Morphogenic Protein 4 and p47phox-dependent NADPH oxidases in the inflammation of the endothelium. As an example on autoimmune disease, a mathematical analysis of the multiple sclerosis was made recently (Broome and Coleman, 2011). This is a neurodegenerative disorder in which immune systems is thought to attack myelin of neurons. It was studied the role of reactive oxygen and nitrogen species, the permeability transition pore, apoptotic factors and cell death of oligodendrocytes. The most promising therapy predicted by the model was preventing the opening of the permeability transition pore. Concerning metabolic diseases, several 
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approaches have been made to elucidate the complexity of metabolism and its malfunction. The general methodology to deal with the malfunctioning of one enzyme using systemic methodologies is explained in the study Vera et al., 2007. It consists on integrating the main metabolic pathways in which this enzyme is enrolled into a model, and then some mathematical methods, as optimization, point to promising metabolic processes which would reverse the normal physiology and minimizing the effect on other processes. This methodology was applied in this work to propose therapies for hyperuricemia. The results predicted six different therapies involving dietary modifications, one of them coinciding with the conventional treatment. Finally, another study concerning metabolic abnormalities focused on purine metabolism and gout (Curto et al., 1998). Gout is a metabolic disease produced by the abnormal accumulation of uric acid on the blood stream which causes arthritis. In order to uncover the mechanisms leading gout this mathematical modelling of the metabolism of purines allows to understand that the accumulation of two substrates of the enzyme adenylosuccinate lyase is enough to predict the metabolic imbalance observed in the disease. 
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2. Methodology 
The present work is based on the principles of systems biology; specifically it is focused on the study of the diseases as dynamical networks. The main workflow consists on the following sequence: i) proposing an objective for the study; ii) integrating the information concerning a disease; iii) selecting the main elements and processes which intervene in the disease and constructing a conceptual model for the relationship between elements and processes (network); iv) formalizing the conceptual model into a mathematical framework which considers the time dimension explicitly; v) use dynamical experimental information from bibliography to calibrate the model; vi) validating the predictions of the model using new experimental information not used during the calibration; vii) using the mathematical model to make predictions and answering the objective. Each of these steps is described in detail below. 

Proposing an objective for the study 
Based on the knowledge about a biological problem it is proposed an objective which can be answered with the available knowledge and experimental measurement on the disease. It is formulated in a way that it can provide quantitative and dynamical new knowledge of the disease. The objective will be focused on understanding the molecular and cellular mechanisms which drive the disease and proposing new therapies based on dynamical and integrative knowledge. 

Integrating the information concerning a disease 
When you are looking for all the systematic information about any disease on the bibliography, you have to deal with dispersed and contradictory information. Although some opposite results can be due to errors, most of the time the reason is that the experiments to obtain the information were displayed in very specific conditions where the interesting process was isolated. Then, incorporating knowledge into a unique conceptual framework is a hard task in which it is important to reduce the importance of the details and focusing on the main characteristics of the disease.  
From the systematic review of the knowledge about the disease it is understood what the established hypotheses and the open questions are. It is common that the understanding of the physiology of the diseases is based on static explanations of the molecular and cellular processes, which makes the quantitative and dynamical analysis appropriate to deal with very interesting open questions and for proposing new therapies. 
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Selecting the main elements and processes which intervene in the disease and constructing a 
conceptual model 

Simplifying is one of the main concepts in science, especially in biology. Biological organisms are “noisy” and very complicated, which makes essential to focus on the main elements that play a relevant role on the phenomena of interest. Simplifying is basically a problem concerning scaling. There are some processes which are mostly disconnected from others because they occur at different time scale, or because they are differentially compartmentalized. Also, it is possible that the network of interactions makes some elements being virtually independent of each other under certain circumstances, or simply that under specific conditions some processes simply do not occur. When the scaling is not useful any more to reduce the complexity of the system a second strategy is based on grouping elements or processes. Under certain circumstances, and focusing on specific phenomena, it is admissible to group elements and using a representative element of this group, or even to consider the mean value within the group. Finally, it will be obtained a simplified representation of the real system which would be able to predict the dynamics at the scale of interest for answering the proposed objective. 
Based on the collected information and after the subsequent simplification of the interaction network it is built a conceptual model. It consists on a structuration of the ideas of the relevant processes of the disease of interest focused on the proposed objective. This conceptualization, by itself, is a fundamental piece of knowledge and it is common that in this step many of the previous ideas have to be reformulated. The next step is to provide to the model a quantitative and dynamical meaning based on biological measurements, but to do this the conceptual model has to be formalized into a mathematical framework which explicitly includes the time dimension. 

Formalizing the conceptual model into a mathematical framework which considers the time 
dimension explicitly 

The selection of a proper mathematical formalism to formalize the conceptual model depends on the objective proposed, the knowledge about the disease and the experimental data available. For a description of mathematical formalisms used on biology and their main characteristics see the following review (Machado et al., 2011). 
The most extended mathematical formalism for dynamical quantification of biological systems is based on ordinary differential equations (ODE). These equations explicitly consider the time as the derivatives are with respect to time. The predictions of the models based on ODE are trajectories of the changes during time of the elements of the model. ODE models are useful when the biological system contains a lot of elements, so the random noise can be neglected. ODE equations are deterministic and they provide the same output for the same conditions, which is almost true in systems with many elements (Gustafsson and Sternad, 2013). Another important condition to be satisfied is the spatial homogeneity. This is never true, but can be assumed depending on the spatial scale considered, and sometimes it can be solved assuming discrete spatial compartments between which the mass is interchanged (Bielecki et al., 2008).  
These equations can be analyzed for finding special biological situations, for example searching for stationary solutions. This is crucial because many elements of the biological organisms remain constant, based on the principles of homeostasis. The mathematically procedure consists on doing the derivatives respecting time to zero, so we are saying that the evolution with respect to time is null for the elements of our model. In practice this methodology cannot be always applied for two reasons: i) many biological processes are dynamically active, which means that they are changing during time. For 
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example oscillations, signals, etc.  ii) Nonlinearities on the dynamics usually makes very difficult to obtain a solution for the equations. Instead of searching for stationary behaviors we can focus on the dynamics. To do that it is needed another mathematical tool to obtain the dynamics from the model. It is numerical analysis. The derivatives of the model are solved approximately using numerical calculus which provides the evolution during time of the elements of our model.  
Another interesting mathematical method which ODE models provide is sensitivity analysis (Savageau, 1971). It is used to measure the robustness on the response of the system under changes on the parameters of the model. Biological systems are robust because they are exposed to continuous environmental changes and noise and they can keep the internal homeostasis. Because of that, sensitivity analysis on the mathematical model is a quality measurement which gives information of the robustness of the model, if the model responds changing a lot after small changes it means that it is not biologically realistic. But this methodology can also be used for proposing interesting targeting points for drug design, as the most sensitive processes in the model are the ones which are the most easy to manipulate to change the output of the system. 
Different equations can be used to represent a specific dynamical process depending on the assumptions and observations on the phenomena. In this review (Voit, 2013) it is presented the most used mathematical formalisms for ODE models in biology. Here the attention will only be focused on two forms: i) mass actions; ii) power-law. 
Mass action was originally developed in chemistry (Waage and Gulberg, 1986), it considers that the velocity of the processes are proportional to the elements intervening in it raised to the corresponding kinetic order, which in a chemical reaction coincides with the stoichiometric index. Basically it assumes that the velocities are linear dependent on concentration of elements on monosubstrate processes. This assumption is a good option because of simplicity, and it is commonly used on the first modelling approaches. Even when the processes involved are non-linearly related we can assume linearity in some region around certain condition. However, this formalism cannot be able to reproduce all dynamical behavior of the biological systems, which makes necessary to change to a more complex formalism when it starts failing.  
Power-law formalism is based on the Biochemical Systems Analysis explained above (Voit, 2013). It assumes that the relationship between velocities and elements are linear in a double log representation. This is equivalent to assume that the elements intervening in one process are raised to an exponent, which can be a real number, instead of an integer as in mass action formalism. It began as a way to simulate biochemical reactions using a canonical mathematical representation, which does not depend on the enzymatic mechanism (Savageau, 2010), as it happens in Michaelis-Menten formulation. Then it has proved to be useful in many other biological systems out of metabolism (Boykin and Ogle, 2010; Liu et al., 2008; Renton et al., 2005; Smith, 1975; Vera et al., 2008). This is because even being a linearizable formalism it is able to reproduce most of the non-linear behaviors observed in biological organisms. It also provides an easy way of making stationary and sensitivity analysis of the models.  
Another mathematical formalization different from ODE models is agent based modelling (ABM) (Marchi and Page, 2014). The main difference is that instead of being based on equations, the elements are particles which can move and interact with other elements and with the environment. It is defined creating a framework in which the particles can move, assigning the number and characteristics of the particles and finally defining a set of rules to be followed by the particles. The advantages are that this formulation has a resolution of individuals and it considers the spatial dimension. However, due to the individual definition it is not appropriate to simulate biological systems with many elements. It is a good 
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option when it is needed to focus the attention on a specific mechanism produced by the interaction of few elements, in which is difficult to induce general rules at higher scale. 
Use dynamical experimental information from bibliography to calibrate the model 

Experimental data is the obliged reference of mathematical models in science, and specifically in biological systems. Calibration of a mathematical model consists on giving values to the free parameters of the equations of the model in a way that they are able to reproduce the observed phenomena.  
The first step for calibration is looking for experimental data measured during time (for dynamical models) (Voit and Chou, 2010). It is relevant to consider the quality of the data, not only concerning the lack of errors, but the fact that data is measured in the proper conditions in which the model was defined. Frequently data has to be processed and compared with data taken in similar or even in different conditions. Normalization is a common post-processing task when it is integrated data from many different works; usually experimental observations are divided by the mean value of the data set, or even expressed between 0 and 1.  
Once the data is formatted to the model, many different mathematical tools can be used to obtain the value of the free parameters from the data. It can be applied linear or non-linear regression and optimization techniques. In case we need to obtain the value of many parameters of non-linear equations it can be used optimization algorithms which can find solutions of the model which predict data by an extensive and directed way. The objective is that the model is able to predict the dynamical behavior of the data. 
Another option, usually combined with the previous one, is finding kinetic parameters from bibliography which can be used as parameters of the model. One example is taking measurements of the half-live (ݐଵ ଶൗ ) of molecules in the organisms which can be transformed into kinetic parameters (݇) 

by the following expression: 
݇ = ୪୬(଴.ହ)

௧భ మൗ
   

Other kinetic parameters like Michaelis constant or the maximum velocity can also be used in the model.  
At the end the model will be able to predict the dynamical response of the biological system of interest under certain condition. Before using it to answer the objective proposed it is necessary to test the validity of the mathematical model. 

Validating the predictions of the model using new experimental information not used during 
the calibration 

A mathematical model is basically a hypothesis of the dynamical mechanism of the biological system of interest. This hypothesis must be validated before using it to obtain new knowledge. In order to test the validity of the model is needed new experimental data taken in slightly different conditions that the data used for the calibration. The idea is evaluating the ability of the model of predict conditions out of its “comfort zone”, that is the condition in which it is able to properly predict the observed phenomena. Insofar as it is able to predict different conditions it would mean that the 
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mathematical model is a good representative of the actual system under the conditions for answering the objective. 
The classical way to verify the model is starting from a set of data which was measured in the same organism but changing some of the biological conditions. Under this optimal situation a subset of the data is used for the calibration and the rest serves for validation. But, as not always is possible to dispose these kinds of data it is necessarily to look for new experimental data from other studies taken in the same, or very similar, organisms but using different experimental conditions. Finally, a very interesting approach to verify the model is the following: first a prediction from the model by changing the conditions is obtained, and then it is designed an experiment which matches the new conditions of the model and comparing the prediction made by the model with the data from the experiment. This constitutes verification a posteriori, because the experimental measurement comes later.  

Using the mathematical model to make predictions and answering the objective 
Once the mathematical model is able to predict different conditions of our biological system it is ready to be used to answer the objective of the work. One advantage of mathematical models is that is it very easy, cheap and fast performing experiments in them. This makes mathematical modelling very attractive to test preliminary experiments before performing them in a wet laboratory.  
If we are interested in understanding the behavior of the system in a different condition we only have to simulate with the model this condition, but it is usually more interesting looking for a specific condition which would give the output of interest, for example a therapy for a disease. As it was mentioned before, sensitivity analysis can serve as a preliminary study to propose promising therapies, as it is pointing to the change in the system which makes the higher change in the response. However a systematic perturbation of the model is usually performed to find new therapies. It is interesting to evaluate combinations of few modifications which could be more effective than the sum of the perturbations alone, based on the synergy of the system. The result of this kind of analysis is a set of proposals for drug target searching which can be then tested in the laboratory. 
The strength of this methodology is that it is able to integrate the disperse information about one disease in a mathematical framework which can consider the temporal dimension of the problem. Real understanding of the biological systems comes by the fact that all the processes and their dynamics are analyzed simultaneously. Based on this approach the therapeutic strategies are proposed considering the dynamical and complex nature of the organisms. It opens the possibility of finding new targets which cannot be conceived by reductionist approach alone. 
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4. Objective 
The objective of the present work is to increase the comprehension of the physiology under some diseases with high prevalence making use of mathematical analysis which integrates all the information available about a specific process of interest in a single interaction network and incorporating the dynamical aspect of the disease. Based on the mathematical modelling concepts it will be proposed some potential therapeutic strategies on prevalent diseases which would have been difficult to find by classical reductionist approaches, because they are considered counterintuitive. The four diseases to be analyzed are malaria, HIV infection, Alzheimer’s disease and melanoma. These four works are based on the main four publications which constitutes the present thesis. But in this thesis two first articles are presented as an introduction of mathematical modelling in biosciences. The first one discuss a general approach of mathematical modelling in biosciences, and the second one presents a review of mathematical models developed in the topic of malaria infection, focused on modelling the process occurring inside the human host. 
The work about malaria is a mathematical model using ODE equations based on the power-law formalism. It is focused on the intra-host interactions between the parasite and the immune system of the patient. The objective is to propose new targets in which the antimalarial drug process to search can be focused on. 
The one about HIV simulates the first steps of the invasion of T4 lymphocytes by HIV; this is an important process to be controlled to prevent the disease. It is developed a mathematical model on ODE equations using the mass actions formalism. The objective is to understand the relative importance of all molecular pathways playing a role during the virus entry and pointing to some molecules which would be interesting to modify to impede the access of the virus inside T4 lymphocytes. 
Another one is about Alzheimer’s disease and it will be focused on the relationship between the neuron cell membrane lipids composition and dynamics and the production of β-amyloid in the brain. The objective is to understand the effect of the change in physical properties of lipid domains (lipid rafts) in the membrane on the evolution of the disease. It will also be proposed dietary therapeutic strategies to slow the evolutions of Alzheimer’s disease. 
One additional article includes the work obtained during the stay in the Laboratory of Systems Tumor Immunology at FAU Universität Nürnberg-Erlangen in Germany. The study was focused on the improvement of an immunotherapy as treatment for melanoma patients. It is based on the analysis of an ODE mathematical model and numerical analysis. It is used to propose co-adjuvant therapy in combination with the vaccine to improve the efficacy of the vaccine in patients in which this vaccine has not effect. 
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Information S1. Steady State Stability and Sensitivity Analysis. 
Any mathematical model of a biological system has to be stable and robust if it is to be considered a reliable representation of the real system. The model was thus submitted to a stability and sensitivity analysis. We determined that the healthy host steady state is stable (see Supporting Information, Section 3). At the same time, in order to check the model’s robustness, we evaluated two types of system sensitivities: the steady state sensitivities, which refer to the normal, healthy steady state, and the dynamic system sensitivities parameters, which identify the parameters with major influence on the transient dynamics (see Supporting Information, Section 4). From this analysis we concluded that the model is robust enough to represent the biological system. 
Stability Analysis 
The stability of the healthy, reference steady state can be found in the model shown in Equations S1 that corresponds to the not infected, healthy host steady state through the evaluation of eigenvalues of the corresponding jacobian matrix:  

0
84

2421

88

22

11

8

21










IS

g

gg

IS

V
ISV

IShRBCV
V

VVdt
dIS

VVdt
dhRBC




  

Equations S1 
where hRBC and IS are the same as in the original model (Equations 2 and 3 in the article), and VIS is the rate associated with the host variable IS in the absence of infection. 
Sensitivity Analysis 
Sensitivity analysis enables the identification of parameters that exert a major influence on system response. Since we depart from and aim to reach a steady state where the variable values are stable at normal, healthy values, we should evaluate the robustness of this reference steady state. But our model is a dynamic one, too; therefore, it is also necessary to identify the parameters with a major influence on the transient dynamics. 
Steady state sensitivities. Steady state sensitivities were calculated at the healthy, not infected steady state (Voit, E.O., 2000; Siljak, D.D., 1969; Frank, P.M., 1978). Steady state sensitivities measure the relative change to the value of variables with respect to an infinitesimal change in the parameters (kinetic orders and rate constants) or in the initial conditions. These sensitivities were calculated in accordance with Equation S2. 



 

  

62 

)log()ˆlog(
)log()ˆlog(),(

kk
iiki sPPs

sXXsPXSS 
       MkNi ,,2,1;,,2,1    

))0(log())0(ˆlog(
)log()ˆlog())0(,( 

 tXtX
sXXstXXSS

jj
iiji     Nji ,,2,1,   

Equations S2 
In the above expressions, SS(Xi,Pk) and SS(Xi,Xj(t=0)) are the sensitivities of the variable Xi with respect to changes in parameter Pk and initial condition Xj(t=0), respectively;  sXi is the steady state value of the variable Xi; Xj(t=0) is the initial condition value of the variable Xj and Pk is the value of the parameter k. Carets are displayed over the variables and parameters which correspond to the perturbed situation. Figure S1 shows the values of the steady state sensitivity at the healthy condition when the variables mRBC and gRBC are not present. In all cases, the maximum absolute value of sensitivities is about 1.2. 

 
Figure S1. Dynamic sensitivities 1. Dynamic sensitivities measure the relative change on the value of the area under the curve of all the variables with respect to an infinitesimal change in the parameters (kinetic orders and rate constants) or in the initial conditions (see Hormiga, J., 2010). For this purpose we used the following equations: 
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Equations S3 
In the above expressions, DS(Xi,Pk) and DS(Xi,Xj(t=0)) are  the dynamic sensitivities of the variable Xi 

with respect to changes in parameter Pk and initial condition Xj(t=0), respectively; Tm
t idtX0  represents 

the area under the curve of the variable Xi during the time between 0 and final time Tm. Carets are displayed over the variables and parameters which correspond to the perturbed situation. Figure S2 



 

  

63 

shows the values of the dynamic sensitivities. In all cases the maximum absolute value of sensitivities is about 1.2. 

 
Figure S2. Dynamic sensitivities 2. Dynamic sensitivities measure the relative change on the value of the area under the curve of all the variables with respect to an infinitesimal change in the parameters (kinetic orders and rate constants) or in the initial conditions (see Hormiga, J., 2010). For this purpose we used the following equations: 
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Model equations 
Equations S4 and S5 show the mathematical model (see also Equations S7, in the Model equation derivation section). 
Rec represents the component receptors (CD4 and CXCR4 or CCR5) while Fil, Act and Moe stand for filamin-A, F-actin and moesin, respectively. 
Since the experimental data (Barrero-Villar et al. 2009; 4) used for the parameter estimation (see the Parameter estimation section) are given as amount of each component present in the cap over the total amount of the component, the model variables are expressed also in relative values. In these cases this is denoted by the subscript r. The additional subscript AM in the case of Act and Moe indicates that these variables are the ratio of each component in the cap over the total amount of actin and moesin. Cofa and Cofi represent active and inactive cofilin, repectively. Subscript r means here that its value is the ratio of active or inactive cofilin over to the total amount of cofilin. 
The Cofilin inactivation rate depends on Cofar and is activated by the virus signaling (K12·HIV·Cofar). It is thus assumed that, during the invasion, the activation of cofilin only depends on the Cofir (K13·Cofir). 
HIV represents the signaling intensity of the virus on the lymphocyte. It is measured as the proportion of lymphocytes that triggers the signal in response of virus. The model assumes that the HIV signaling inactivates cofilin and turn the signal off. 
Process 12 in Figure 1 (K12·HIV·Cofar) represents both, the inactivation of cofilin and the decrease in the intensity of HIV. 

ܴ݀݁ܿ௥
ݐ݀ = ′ଵܭ · ௥݈݅ܨ − ′ଵܭ · ௥݈݅ܨ · ܴ݁ܿ௥ − ଶܭ · ܴ݁ܿ௥

௥݈݅ܨ݀
ݐ݀ = ′ସܭ · ܴ݁ܿ௥ · ௥஺ெݐܿܣ − ′ସܭ · ܴ݁ܿ௥ · ௥஺ெݐܿܣ · ௥݈݅ܨ + ଷܭ − ଷܭ · ௥݈݅ܨ − ହܭ · ௥݈݅ܨ

௥஺ெݐܿܣ݀
ݐ݀ = (1 − (௥ܭ · ଺ᇱܭ · ௥݈݅ܨ · ௥஺ெ݁݋ܯ − ଺ᇱܭ · ௥݈݅ܨ · ௥஺ெ݁݋ܯ · ௥஺ெݐܿܣ −

′଻ܭ− · ݋ܥ ௔݂௥ · ௥஺ெݐܿܣ − ଼ܭ · ௥஺ெ݁݋ܯ௥஺ெ݀ݐܿܣ
ݐ݀ = ௥ܭ · ଽܭ − ଽܭ · ௥஺ெ݁݋ܯ + ௥ܭ · ଵ଴ᇱܭ · ݋ܥ ௜݂௥ · ௥஺ெݐܿܣ −

′ଵ଴ܭ− · ݋ܥ ௜݂௥ · ௥஺ெݐܿܣ · ௥஺ெ݁݋ܯ − ଵଵܭ · ݋ܥ௥஺ெ݀݁݋ܯ ௔݂௥
ݐ݀ = ଵଷܭ · ݋ܥ ௜݂௥ − ଵଶܭ · ܸܫܪ · ݋ܥ ௔݂௥

ܸܫܪ݀
ݐ݀ = ଵଶܭ− · ܸܫܪ · ݋ܥ ௔݂௥

 

Equations S4 



 

  

82 

ܺ௡௖ = ܺ௧ − ܺ௖݀ܺ௥
ݐ݀ = 1

ܺ௧
· ݀ܺ௖

ݐ݀
௥஺ெݐܿܣ݀

ݐ݀ = ௧ݐܿܣ
௧ݐܿܣ + ௧ݎ݋ܯ

· ௥ݐܿܣ݀
ݐ݀

௥஺ெ݁݋ܯ݀
ݐ݀ = ௧݁݋ܯ

௧ݐܿܣ + ௧ݎ݋ܯ
· ௥݁݋ܯ݀

ݐ݀
௥ܭ = ௧݁݋ܯ

௧݁݋ܯ + ݋ܥ௧݀ݐܿܣ ௜݂௥
ݐ݀ = ݋ܥ݀− ௔݂௥

′ଵܭݐ݀ = ଵܭ · ௧݈݅ܨ
′ସܭ = ସܭ · 1

1 − ௥ܭ
· ܴ݁ܿ௧ · ௧ݐܿܣ

′଺ܭ = ଺ܭ · 1
௥ܭ

· ௧݈݅ܨ · ௧݁݋ܯ
′଻ܭ = ଻ܭ · ݋ܥ ௧݂

′ଵ଴ܭ = ଵ଴ܭ · 1
1 − ௥ܭ

· ݋ܥ ௧݂ · ௧ݐܿܣ

 

Equations S5 
Parameter estimation 

The model parameters (K1 to K13 and Kr; Kr being the model parameter used to predict the ratio between total actin and total moesin) were with data from Barrero-Villar et al. 2009 (4). Data were presented as co-localization ratio of the components over the total amount in the cell (ERM proteins with actin, ERM proteins with CD4, REM proteins with CXCR4 and CD4 with CXCR4) during HIV invasion, measured at 0, 15, 30, 45 and 60 minutes after inoculation of the virus. Recr aggregates both CD4 and CXCR4 receptors. In this case the measurement of the co-localization of CD4 and CXCR4 was compared with the prediction of the variable Recr in the model. Moesin was used as a the representative component of the ERM proteins (Barrero-Villar et al. 2009; 4); thus co-localization data of actin and ERM proteins were used for comparison purposes with the prediction of the sum of the variables MoerAM and ActrAM (see Figure 1). 
Equation S6 shows the objective function used. 

௢௕௝ܨ = ඨ∑((ܦ௜,௝ − (௜,௝)ଶܯ
ܰ  

Equation S6 
In this equation Di,j represents the experimental data for time(i)=[0, 15, 30, 45, 60] (minutes), being j=1 the co-localization measure of CD4 and CXCR4 and j=2 the co-localization measure of actin and ERM proteins. Mi,j represents the model prediction of the variable Rec for j=1 and the sum of MoerAM and ActrAM for j=2. N is the number of elements of the matrix Di,j. 
In the process, the first stage was to find a model solution close enough in order to define the 
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maximum value of the objective function. Then, one hundred solutions with objective function values lower than the previous solution were chosen. Only those solutions that best predict the experimental value of the ratio of total actin and moesin (taken from confocal imaging in Barrero-Villar et al. 2009, 4) were selected. 
In order to select the solutions best predicting the ratio between total actin and total moesin we randomly sampled 10 solutions from the total and determined if the confidence interval of Kr  for the sample includes the experimental measure of the ratio of moesin over the total actin and moesin. Those solutions whose Kr confidence interval includes the experimental measure was primed and after 1000 samplings the solutions with the best scoring were selected. Only 12 solutions of the total of 100 were selected by this procedure that were used for the subsequent analysis (see Figure 2). 

Sensitivity analysis 
Figures S1 and S2 show the dynamic sensitivity values for the initial conditions and parameters, respectively. 

Introducing an inactivation of cofilin process 
To make the model able to simulate a resting lymphocyte we changed the model in order to represent that condition present of the resting lymphocyte which is relevant for the scope of the model, namely the mostly inactivated state of the cofilin (10). The model is initially in a steady situation, where cofilin is activated (see Figure 2), but when the HIV triggers the signaling, cofilin begins to decrease. To change the initial steady value of active cofilin, process 13, which denotes the rate of activation of cofilin, has to be decreased since this change will cause the initial steady value of active cofilin decrease. We set up the value of 55% of activated cofilin at the beginning; a value that can be obtained by decreasing the rate of process 13 down to 2% of the initial value. 

Model derivation 
Equations S7 show the first mathematical model presentation that results from the direct translation of the mechanistic model represented in Figure 1 to the Generalized Mass Action formalism (18). 
In this representation variables not belonging to the cap are represented as the difference between total minus the amount in the cap (see Equations S8). 

ܴ݀݁ܿ௖
ݐ݀ = ଵܭ · ௖݈݅ܨ · ܴ݁ܿ௡௖ − ଶܭ · ܴ݁ܿ௖

௖݈݅ܨ݀
ݐ݀ = ସܭ · ܴ݁ܿ௖ · ௖ݐܿܣ · ௡௖݈݅ܨ + ଷܭ · ௡௖݈݅ܨ − ହܭ · ௖݈݅ܨ

௖ݐܿܣ݀
ݐ݀ = ଺ܭ · ௖݈݅ܨ · ௖݁݋ܯ · ௡௖ݐܿܣ − ଻ܭ · ݋ܥ ௔ · ௖ݐܿܣ − ଼ܭ · ௖ݐܿܣ

௖݁݋ܯ݀
ݐ݀ = ଽܭ · ௡௖݁݋ܯ + ଵ଴ܭ · ݋ܥ ௜݂ · ௖ݐܿܣ · ௡௖݁݋ܯ − ଵଵܭ · ௖݁݋ܯ

݋ܥ݀ ௔݂
ݐ݀ = ଵଷܭ · ݋ܥ ௜݂ − ଵଶܭ · ܸܫܪ · ݋ܥ ௔݂

ܸܫܪ݀
ݐ݀ = ଵଶܭ− · ܸܫܪ · ݋ܥ ௔݂

 

Equations S7 
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ܴ݀݁ܿ௖
ݐ݀ = ଵܭ · ௖݈݅ܨ · (ܴ݁ܿ௧ − ܴ݁ܿ௖) − ଶܭ · ܴ݁ܿ௖

௖݈݅ܨ݀
ݐ݀ = ସܭ · ܴ݁ܿ௖ · ௖ݐܿܣ · ௧݈݅ܨ) − (௖݈݅ܨ + ଷܭ · ௧݈݅ܨ) − (௖݈݅ܨ − ହܭ · ௖݈݅ܨ

௖ݐܿܣ݀
ݐ݀ = ଺ܭ · ௖݈݅ܨ · ௖݁݋ܯ · ௧ݐܿܣ) − (௖ݐܿܣ − ଻ܭ · ݋ܥ ௔݂ · ௖ݐܿܣ − ଼ܭ · ௖ݐܿܣ

௖݁݋ܯ݀
ݐ݀ = ଽܭ · ௧݁݋ܯ) − (௖݁݋ܯ + ଵ଴ܭ · ݋ܥ ௜݂ · ௖ݐܿܣ · ௧݁݋ܯ) − (௖݁݋ܯ − ଵଵܭ · ௖݁݋ܯ

݋ܥ݀ ௔݂
ݐ݀ = ଵଷܭ · ݋ܥ ௜݂ − ଵଶܭ · ܸܫܪ · ݋ܥ ௔݂

ܸܫܪ݀
ݐ݀ = ଵଶܭ− · ܸܫܪ · ݋ܥ ௔݂

 

Equations S8 
In order to represents the variables in relative values each variable is divided by the total amount of each component (Equations S9). 

ܴ݀݁ܿ௥
ݐ݀ = ଵܭ · ௧݈݅ܨ

௧݈݅ܨ
· ௖݈݅ܨ − ଵܭ · ௧݈݅ܨ

௧݈݅ܨ
· ௖݈݅ܨ · ܴ݁ܿ௥ − ଶܭ · ܴ݁ܿ௥

௥݈݅ܨ݀
ݐ݀ = ସܭ · ܴ݁ܿ௧

ܴ݁ܿ௧
· ܴ݁ܿ௖ · ௧ݐܿܣ

௧ݐܿܣ
· ௖ݐܿܣ − ସܭ · ܴ݁ܿ௧

ܴ݁ ௧
· ܴ݁ܿ௖ · ௧ݐܿܣ

௧ݐܿܣ
· ௖ݐܿܣ · ௥݈݅ܨ +

ଷܭ+ − ଷܭ · ௥݈݅ܨ − ହܭ · ௥ݐܿܣ௥݈݀݅ܨ
ݐ݀ = ଺ܭ · ௧݈݅ܨ

௧݈݅ܨ
· ௖݈݅ܨ · ௧݁݋ܯ

௧݁݋ܯ
· ௖݁݋ܯ − ଺ܭ · ௧݈݅ܨ

௧݈݅ܨ
· ௖݈݅ܨ · ௧݁݋ܯ

௧݁݋ܯ
· ௖݁݋ܯ · ௥ݐܿܣ −

଻ܭ− · ݋ܥ ௧݂
݋ܥ ௧݂ · ݋ܥ ௔݂ · ௥ݐܿܣ − ଼ܭ · ௥ݐܿܣ

௥݁݋ܯ݀
ݐ݀ = ଽܭ · ଽܭ− · ௥݁݋ܯ + ଵ଴ܭ · ݋ܥ ௧݂

݋ܥ ௧݂
· ݋ܥ ௜݂ · ௧ݐܿܣ

௧ݐܿܣ
· ௖ݐܿܣ −

ଵ଴ܭ− · ݋ܥ ௧݂
݋ܥ ௧݂

· ݋ܥ ௜݂ · ௧ݐܿܣ
௧ݐܿܣ

· ௖ݐܿܣ · ௥݁݋ܯ − ଵଵܭ · ௥݁݋ܯ
݋ܥ݀ ௔݂௥

ݐ݀ = ଵଷܭ · ݋ܥ ௜݂௥ − ଵଶܭ · ܸܫܪ · ݋ܥ ௔݂௥
ܸܫܪ݀

ݐ݀ = ଵଶܭ− · ܸܫܪ · ݋ܥ ௔݂௥

 

Equations S9 
By substitution of the variables as indicated in the Model equations paragraph we obtain Equations S10. 
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ܴ݀݁ܿ௥
ݐ݀ = ଵܭ · ௧݈݅ܨ · ௥݈݅ܨ − ଵܭ · ௧݈݅ܨ · ௥݈݅ܨ · ܴ݁ܿ௥ − ଶܭ · ܴ݁ܿ௥

௥݈݅ܨ݀
ݐ݀ = ସܭ · ܴ݁ܿ௧ · ௧ݐܿܣ · ܴ݁ܿ௥ · ௥ݐܿܣ − ସܭ · ܴ݁ܿ௧ · ௧ݐܿܣ · ܴ݁ܿ௥ · ௥ݐܿܣ · ௥݈݅ܨ +

ଷܭ+ − ଷܭ · ௥݈݅ܨ − ହܭ · ௥ݐܿܣ௥݈݀݅ܨ
ݐ݀ = ଺ܭ · ௧݈݅ܨ · ݋ܯ ௧݁ · ௥݈݅ܨ · ௥݁݋ܯ − ଺ܭ · ௧݈݅ܨ · ௧݁݋ܯ · ௥݈݅ܨ · ௥݁݋ܯ · ௥ݐܿܣ −

଻ܭ− · ݋ܥ ௧݂ · ݋ܥ ௔݂௥ · ௥ݐܿܣ − ଼ܭ · ௥݁݋ܯ௥݀ݐܿܣ
ݐ݀ = ଽܭ − ଽܭ · ௥݁݋ܯ + ଵ଴ܭ · ݋ܥ ௧݂ · ௧ݐܿܣ · ݋ܥ ௜݂௥ · ௥ݐܿܣ −

ଵ଴ܭ− · ݋ܥ ௧݂ · ௧ݐܿܣ · ݋ܥ ௜݂௥ · ௥ݐܿܣ · ௥݁݋ܯ − ଵଵܭ · ݋ܥ௥݀݁݋ܯ ௔݂௥
ݐ݀ = ଵଷܭ · ݋ܥ ௜݂௥ − ଵଶܭ · ܸܫܪ · ݋ܥ ௔݂௥

ܸܫܪ݀
ݐ݀ = ଵଶܭ− · ܸܫܪ · ݋ܥ ௔݂௥

 

Equations S10 
Due to the nature of the experimental data used (4) variables Moe and Act are normalized by dividing by the summation of Moe and Act. Equation S11, S12 and S13 show the procedure followed. 

ܴ݀݁ܿ௥
ݐ݀ = ଵܭ · ௧݈݅ܨ · ௥݈݅ܨ − ଵܭ · ௧݈݅ܨ · ௥݈݅ܨ · ܴ݁ܿ௥ − ଶܭ · ܴ݁ܿ௥

௥݈݅ܨ݀
ݐ݀ = ସܭ · ܴ݁ܿ௧ · ௧ݐܿܣ · ܴ݁ܿ௥ · ௥ݐܿܣ − ସܭ · ܴ݁ܿ௧ · ௧ݐܿܣ · ܴ݁ܿ௥ · ௥ݐܿܣ · ௥݈݅ܨ +

ଷܭ+ − ଷܭ · ௥݈݅ܨ − ହܭ · ௧ݐܿܣ௥݈݅ܨ
௧ݐܿܣ + ௧ݎ݋ܯ

· ௥ݐܿܣ݀
ݐ݀ = ௧ݐܿܣ

௧ݐܿܣ + ௧ݎ݋ܯ
· ଺ܭ) · ௧݈݅ܨ · ௧݁݋ܯ · ௥݈݅ܨ · ௥݁݋ܯ −

଺ܭ− · ௧݈݅ܨ · ௧݁݋ܯ · ௥݈݅ܨ · ௥݁݋ܯ · ௥ݐܿܣ −
଻ܭ− · ݋ܥ ௧݂ · ݋ܥ ௔݂௥ · ௥ݐܿܣ − ଼ܭ · (௥ݐܿܣ

௧݁݋ܯ
௧ݐܿܣ + ௧ݎ݋ܯ

· ௥݁݋ܯ݀
ݐ݀ = ௧݁݋ܯ

௧ݐܿܣ + ௧ݎ݋ܯ
· ଽܭ) − ଽܭ · ௥݁݋ܯ + ଵ଴ܭ · ݋ܥ ௧݂ · ௧ݐܿܣ · ݋ܥ ௜݂௥ · ௥ݐܿܣ −

ଵ଴ܭ− · ݋ܥ ௧݂ · ௧ݐܿܣ · ݋ܥ ௜݂௥ · ௥ݐܿܣ · ௥݁݋ܯ − ଵଵܭ · (௥݁݋ܯ
݋ܥ݀ ௔݂௥

ݐ݀ = ଵଷܭ · ݋ܥ ௜݂௥ − ଵଶܭ · ܸܫܪ · ݋ܥ ௔݂௥
ܸܫܪ݀

ݐ݀ = ଵଶܭ− · ܸܫܪ · ݋ܥ ௔݂௥
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ܴ݀݁ܿ௥
ݐ݀ = ଵܭ · ௧݈݅ܨ · ௥݈݅ܨ − ଵܭ · ௧݈݅ܨ · ௥݈݅ܨ · ܴ݁ܿ௥ − ଶܭ · ܴ݁ܿ௥
௥݈݅ܨ݀

ݐ݀ = ସܭ · ܴ݁ܿ௧ · ௧ݐܿܣ · ܴ݁ܿ௥ · ௧ݐܿܣ + ௧ݎ݋ܯ
௧ݐܿܣ

· ௥஺ெݐܿܣ −
ସܭ− · ܴ݁ܿ௧ · ௧ݐܿܣ · ܴ݁ܿ௥ · ௧ݐܿܣ + ௧ݎ݋ܯ

௧ݐܿܣ
· ௥஺ெݐܿܣ · ௥݈݅ܨ + ଷܭ − ଷܭ · ௥݈݅ܨ − ହܭ · ௥݈݅ܨ

௥஺ெݐܿܣ݀
ݐ݀ = ௧ݐܿܣ

௧ݐܿܣ + ௧ݎ݋ܯ
· ଺ܭ) · ௧݈݅ܨ · ௧݁݋ܯ · ௥݈݅ܨ · ௧݁݋ܯ + ௧ݎ݋ܯ

௧ݐܿܣ
· ௥஺ெ݁݋ܯ −

଺ܭ− · ௧݈݅ܨ · ௧݁݋ܯ · ௥݈݅ܨ · ௧݁݋ܯ + ௧ݎ݋ܯ
௧ݐܿܣ

· ௥஺ெ݁݋ܯ · ௧ݐܿܣ + ௧ݎ݋ܯ
௧ݐܿܣ

· ௥஺ெݐܿܣ −
଻ܭ− · ݋ܥ ௧݂ · ݋ܥ ௔݂௥ · ௧ݐܿܣ + ௧ݎ݋ܯ

௧ݐܿܣ
· ௥஺ெݐܿܣ − ଼ܭ · ௧ݐܿܣ + ௧ݎ݋ܯ

௧ݐܿܣ
· (௥஺ெݐܿܣ

௥஺ெ݁݋ܯ݀
ݐ݀ = ௧݁݋ܯ

௧ݐܿܣ + ௧ݎ݋ܯ
· ଽܭ) − ଽܭ · ௧݁݋ܯ + ௧ݎ݋ܯ

௧ݐܿܣ
· ௥஺ெ݁݋ܯ +

ଵ଴ܭ+ · ݋ܥ ௧݂ · ௧ݐܿܣ · ݋ܥ ௜݂௥ · ௧ݐܿܣ + ௧ݎ݋ܯ
௧ݐܿܣ

· ௥஺ெݐܿܣ −
ଵ଴ܭ− · ݋ܥ ௧݂ · ௧ݐܿܣ · ݋ܥ ௜݂௥ · ௧ݐܿܣ + ௧ݎ݋ܯ

௧ݐܿܣ
· ௥஺ெݐܿܣ · ௧݁݋ܯ + ௧ݎ݋ܯ

௧ݐܿܣ
· ௥஺ெ݁݋ܯ −

ଵଵܭ− · ௧݁݋ܯ + ௧ݎ݋ܯ
௧ݐܿܣ · (௥஺ெ݁݋ܯ

݋ܥ݀ ௔݂௥
ݐ݀ = ଵଷܭ · ݋ܥ ௜݂௥ − ଵଶܭ · ܸܫܪ · ݋ܥ ௔݂௥

ܸܫܪ݀
ݐ݀ = ଵଶܭ− · ܸܫܪ · ݋ܥ ௔݂௥

 

Equations S12 



 

  

87 

ܴ݀݁ܿ௥
ݐ݀ = ଵܭ · ௧݈݅ܨ · ௥݈݅ܨ − ଵܭ · ௧݈݅ܨ · ௥݈݅ܨ · ܴ݁ܿ௥ − ଶܭ · ܴ݁ܿ௥

௥݈݅ܨ݀
ݐ݀ = ସܭ · ܴ݁ܿ௧ · ௧ݐܿܣ · ܴ݁ܿ௥ · ௧ݐܿܣ + ௧݁݋ܯ

௧ݐܿܣ
· ௥஺ெݐܿܣ −

ସܭ− · ܴ݁ܿ௧ · ௧ݐܿܣ · ܴ݁ܿ௥ · ௧ݐܿܣ + ௧݁݋ܯ
௧ݐܿܣ

· ௥஺ெݐܿܣ · ௥݈݅ܨ + ଷܭ − ଷܭ · ௥݈݅ܨ − ହܭ · ௥݈݅ܨ
௥஺ெݐܿܣ݀

ݐ݀ = ௧ݐܿܣ
௧ݐܿܣ + ௧݁݋ܯ

· ଺ܭ · ௧݈݅ܨ · ௧݁݋ܯ · ௥݈݅ܨ · ௧݁݋ܯ + ௧ݐܿܣ
௧݁݋ܯ

· ௥஺ெ݁݋ܯ −
଺ܭ− · ௧݈݅ܨ · ௧݁݋ܯ · ௥݈݅ܨ · ௧݁݋ܯ + ௧ݐܿܣ

௧݁݋ܯ
· ௥஺ெ݁݋ܯ · ௥஺ெݐܿܣ −

଻ܭ− · ݋ܥ ௧݂ · ݋ܥ ௔݂௥ · ௥஺ெݐܿܣ − ଼ܭ · ௥஺ெ݁݋ܯ௥஺ெ݀ݐܿܣ
ݐ݀ = ௧݁݋ܯ

௧ݐܿܣ + ௧݁݋ܯ
· ଽܭ − ଽܭ · ௥஺ெ݁݋ܯ +

ଵ଴ܭ+ · ݋ܥ ௧݂ · ௧ݐܿܣ · ݋ܥ ௜݂௥ · ௧݁݋ܯ
௧ݐܿܣ + ௧݁݋ܯ

· ௧ݐܿܣ + ௧݁݋ܯ
௧ݐܿܣ

· ௥஺ெݐܿܣ −
ଵ଴ܭ− · ݋ܥ ௧݂ · ௧ݐܿܣ · ௜௥݂݋ܥ · ௧ݐܿܣ + ௧݁݋ܯ

௧ݐܿܣ
· ௥஺ெݐܿܣ · ௥஺ெ݁݋ܯ − ଵଵܭ · ௥஺ெ݁݋ܯ

݋ܥ݀ ௔݂௥
ݐ݀ = ଵଷܭ · ݋ܥ ௜݂௥ − ଵଶܭ · ܸܫܪ · ݋ܥ ௔݂௥

ܸܫܪ݀
ݐ݀ = ଵଶܭ− · ܸܫܪ · ݋ܥ ௔݂௥

 

Equations S13 
Kr is a model constant representing the constant ratio value of total moesin over the summation of total moesin and actin. 

ܴ݀݁ܿ௥
ݐ݀ = ଵܭ · ௧݈݅ܨ · ௥݈݅ܨ − ଵܭ · ௧݈݅ܨ · ௥݈݅ܨ · ܴ݁ܿ௥ − ଶܭ · ܴ݁ܿ௥

௥݈݅ܨ݀
ݐ݀ = ସܭ · 1

1 − ௥ܭ
· ܴ݁ܿ௧ · ௧ݐܿܣ · ܴ݁ܿ௥ · ௥஺ெݐܿܣ − ସܭ · 1

1 − ௥ܭ
· ܴ݁ܿ௧ · ௧ݐܿܣ · ܴ݁ܿ௥ · ௥஺ெݐܿܣ · ௥݈݅ܨ +

ଷܭ+ − ଷܭ · ௥݈݅ܨ − ହܭ · ௥஺ெݐܿܣ௥݈݀݅ܨ
ݐ݀ = (1 − (௥ܭ

௥ܭ
· ଺ܭ · ௧݈݅ܨ · ௧݁݋ܯ · ௥݈݅ܨ · ௥஺ெ݁݋ܯ −

଺ܭ− · 1
௥ܭ

· ௧݈݅ܨ · ݋ܯ ௧݁ · ௥݈݅ܨ · ௥஺ெ݁݋ܯ · ௥஺ெݐܿܣ − ଻ܭ · ݋ܥ ௧݂ · ݋ܥ ௔݂௥ · ௥஺ெݐܿܣ − ଼ܭ · ௥஺ெݐܿܣ
௥஺ெ݁݋ܯ݀

ݐ݀ = ௥ܭ · ଽܭ − ଽܭ · ௥஺ெ݁݋ܯ + ௥ܭ
1 − ௥ܭ

· ଵ଴ܭ · ݋ܥ ௧݂ · ௧ݐܿܣ · ݋ܥ ௜݂௥ · ௥஺ெݐܿܣ −
ଵ଴ܭ− · 1

1 − ௥ܭ
· ݋ܥ ௧݂ · ௧ݐܿܣ · ݋ܥ ௜݂௥ · ௥஺ெݐܿܣ · ௥஺ெ݁݋ܯ − ଵଵܭ · ௥஺ெ݁݋ܯ
݋ܥ݀ ௔݂௥

ݐ݀ = ଵଷܭ · ݋ܥ ௜݂௥ − ଵଶܭ · ܸܫܪ · ݋ܥ ௔݂௥
ܸܫܪ݀

ݐ݀ = ଵଶܭ− · ܸܫܪ · ݋ܥ ௔݂௥

 

Equations S14 
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The total amount of each variable, that also remains constant are grouped all together in the constant (Kn). 
ܴ݀݁ܿ௥

ݐ݀ = ′ଵܭ · ௥݈݅ܨ − ′ଵܭ · ௥݈݅ܨ · ܴ݁ܿ௥ − ଶܭ · ܴ݁ܿ௥
௥݈݅ܨ݀

ݐ݀ = ସᇱܭ · ܴ݁ܿ௥ · ௥஺ெݐܿܣ − ସᇱܭ · ܴ݁ܿ௥ · ௥஺ெݐܿܣ · ௥݈݅ܨ +
ଷܭ+ − ଷܭ · ௥݈݅ܨ − ହܭ · ௥஺ெݐܿܣ௥݈݀݅ܨ

ݐ݀ = (1 − (௥ܭ · ଺ᇱܭ · ௥݈݅ܨ · ௥஺ெ݁݋ܯ − ଺ᇱܭ · ௥݈݅ܨ · ௥஺ெ݁݋ܯ · ௥஺ெݐܿܣ −
′଻ܭ− · ݋ܥ ௔݂௥ · ௥஺ெݐܿܣ − ଼ܭ · ௥஺ெ݁݋ܯ௥஺ெ݀ݐܿܣ

ݐ݀ = ௥ܭ · ଽܭ − ଽܭ · ௥஺ெ݁݋ܯ + ௥ܭ · ଵ଴ᇱܭ · ݋ܥ ௜݂௥ · ௥஺ெݐܿܣ −
′ଵ଴ܭ− · ݋ܥ ௜݂௥ · ௥஺ெݐܿܣ · ௥஺ெ݁݋ܯ − ଵଵܭ · ݋ܥ௥஺ெ݀݁݋ܯ ௔݂௥

ݐ݀ = ଵଷܭ · ݋ܥ ௜݂௥ − ଵଶܭ · ܸܫܪ · ݋ܥ ௔݂௥
ܸܫܪ݀

ݐ݀ = ଵଶܭ− · ܸܫܪ · ݋ܥ ௔݂௥

 

Equations S15 
ܺ௡௖ = ܺ௧ − ܺ௖݀ܺ௥
ݐ݀ = 1

ܺ௧
· ݀ܺ௖

ݐ݀
௥஺ெݐܿܣ݀

ݐ݀ = ௧ݐܿܣ
௧ݐܿܣ + ௧ݎ݋ܯ

· ௥ݐܿܣ݀
ݐ݀

௥஺ெ݁݋ܯ݀
ݐ݀ = ௧݁݋ܯ

௧ݐܿܣ + ௧ݎ݋ܯ
· ௥݁݋ܯ݀

ݐ݀
௥ܭ = ௧݁݋ܯ

௧݁݋ܯ + ݋ܥ௧݀ݐܿܣ ௜݂௥
ݐ݀ = ݋ܥ݀− ௔݂௥

′ଵܭݐ݀ = ଵܭ · ௧݈݅ܨ
′ସܭ = ସܭ · 1

1 − ௥ܭ
· ܴ݁ܿ௧ · ௧ݐܿܣ

′଺ܭ = ଺ܭ · 1
௥ܭ

· ௧݈݅ܨ · ௧݁݋ܯ
′଻ܭ = ଻ܭ · ݋ܥ ௧݂

′ଵ଴ܭ = ଵ଴ܭ · 1
1 − ௥ܭ

· ݋ܥ ௧݂ · ௧ݐܿܣ

 

Equations S16 
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Figure S1. Dynamic sensitivities respecting the initial conditions of the variables. 

 
Figure S2. Dynamic sensitivities respecting the parameters of the model. 
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Table S1. Data of Figure 2A. 

Membrane proportion data W3 W6 W9 W14 A3 A6 A9 A14 
Sterols 0.44 0.46 0.45 0.41 0.5 0.49 0.41 0.41 
DHA 0.07 0.07 0.08 0.08 0.07 0.07 0.08 0.08 
n-6 LCPUFA 0.07 0.06 0.07 0.07 0.06 0.06 0.07 0.07 
Monoenes 0.18 0.18 0.18 0.2 0.16 0.17 0.19 0.2 
Saturates 0.16 0.14 0.14 0.14 0.14 0.14 0.14 0.13 
Sphingolipids 0.08 0.09 0.09 0.11 0.07 0.07 0.11 0.11 

 
Table S2. Data of Figure 2B. 
Raft proportion data W3 W6 W9 W14 A3 A6 A9 A14 
Sterols 0.32 0.33 0.33 0.27 0.33 0.32 0.28 0.24 
DHA 0.04 0.05 0.06 0.04 0.05 0.04 0.05 0.03 
n-6 LCPUFA 0.05 0.06 0.05 0.04 0.06 0.05 0.05 0.03 
Monoenes 0.18 0.2 0.18 0.18 0.18 0.17 0.18 0.19 
Saturates 0.24 0.19 0.21 0.25 0.21 0.23 0.25 0.29 
Sphingolipids 0.17 0.17 0.17 0.21 0.16 0.19 0.2 0.22 

 
Table S3. Data of Figure 2C. 

Predicted proportion data W3 W6 W9 W14 A3 A6 A9 A14 
Sterols 0.3272 0.3444 0.3515 0.3057 0.3691 0.3660 0.3059 0.3070 
DHA 0.0480 0.0516 0.0570 0.0571 0.0547 0.0533 0.0555 0.0534 
n-6 LCPUFA 0.0431 0.0371 0.0392 0.0421 0.0381 0.0383 0.0382 0.0432 
Monoenes 0.1788 0.1797 0.1917 0.2002 0.1646 0.1815 0.1946 0.2099 
Saturates 0.2669 0.2333 0.2275 0.2282 0.2433 0.2341 0.2214 0.2036 
Sphingolipids 0.1360 0.1539 0.1331 0.1667 0.1302 0.1268 0.1843 0.1829 

 
Table S4. Data of Figure 2D. 

  Microviscosity outside data 
Mobility outside model 

Mobility outside model (s.d.) 
W6 8.5250 0.4821 0.0004 
W14 7.3740 0.4855 0.0004 
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A6 7.1570 0.4848 0.0004 
A14 6.9620 0.4858 0.0003 

 
Table S5. Data of Figure 2E. 

  Number of lipd rafts 
Number of lipd rafts (s.d.) 

Radius of the lipid rafts 
Radius of the lipid rafts (s.d.) 

W3 1,859.0311 11.1610 1.3727 0.0065 
W6 1,888.3124 13.6461 1.3841 0.0051 
W9 1,847.2337 15.3095 1.2984 0.0062 
W14 1,812.7992 15.8212 1.4885 0.0091 
A3 1,863.4189 14.1870 1.2182 0.0058 
A6 1,871.0945 12.0621 1.2309 0.0057 
A9 1,790.2199 11.7272 1.5437 0.0076 
A14 1,793.1793 11.3204 1.5215 0.0082 

 
Table S6. Data of Figure 2F. 

  Raft proportion  
Raft proportion (s.d.) 

W3 0.2751 0.0021 
W6 0.2841 0.0018 
W9 0.2445 0.0022 
W14 0.3153 0.0023 
A3 0.2172 0.0015 
A6 0.2226 0.0015 
A9 0.3350 0.0018 
A14 0.3260 0.0023 

 
Table S7. Data of Figure 4. 

Lipid raft size Sterols DHA n-6 LCPUFA Monoenes Saturates Sphingolipids 
W3 1.3860 1.3763 1.3746 1.3736 1.3890 1.3921 
A9 1.5197 1.5376 1.5526 1.5527 1.5466 1.5776 
A9 increase 1.2649 1.4564 1.4649 1.5563 1.6963 1.8425 
A9 decrease 2.0282 1.6409 1.6078 1.4991 1.3824 1.2015 
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Derivation of analytic gene signature 
For a persistent tumor, the existence of a stable non-zero solution of melanoma cell number (M) 
and instability on its zero solution are prerequisites. First we test the stability of the zero solution. 
As the steady state for both variables cannot be analytically obtained because of the high non-
linearity of the T cell equation (T), we will analyze the dynamic behavior of melanoma cells 
while maintaining T constant (Ts). Under this assumption, the stability of the zero solution of 
melanoma cells (S.1.1) can be analyzed as the partial derivative of the zero steady state 
respecting changes on melanoma cells, under the restrictions (S1.2), i.e. 

       nknk

nk

gg
nkc

g
iap

iev
atg

iapTpmc HLAk
HLAMkMk

MkTkMMMkdt
dM

1
1...1

..... 


   (S1.1) 

1TM , atgs kHLATT  ,      (S1.2) 

 
satgiapg

atg
g
nkc

g
atgiap

pmc
M

Tkkkk
kkkM

dtdM
nknk

nk ...
0








   (S1.3) 

 
According to (35), the steady state at 0M  is unstable if equation (S1.3) is greater than zero. In 
(S1.4) and (S1.5) are given these conditions for the instability of the zero solution, i.e. 

,0...  


satgiapg
atg

g
nkc

g
atgiap

pmc Tkkkk
kkk nknk

nk      (S1.4) 

... 



  


satgg

atg
g
nkc

g
atg

iappmc Tkkk
kkk nknk

nk      (S1.5) 

 
Now we will consider the conditions for the existence of stable solutions for M different from 
zero. First, as values of M are bounded between 0 and Mt, the solutions for M have to be either 
oscillating or steady for all initial values between these magnitudes. On the other hand, under the 
assumption that T remains constant, M cannot oscillate, as the restriction reduces the model to 
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only one variable, so the only possibility for M under these conditions is to reach a stable steady 
state. We are going to consider the solutions which satisfy equation (S1.5), so there is no stable 
zero solution and, under our reasoning, there must be at least one steady positive solution for M. 
This will be proven now. We solve equation S1.1 under the restrictions (S1.2) and (S2.1) 

0dt
dM .      (S2.1) 

Thus, we obtain equation (S2.2), i.e. 

  .0...1
...1..  


nknk

nk

g
atg

g
nkc

g
atg

iap
iev

atg
siappmc kk

kMkMk
MkTkMMk    (S2.2) 

 
This equation can be solved analytically, and we obtain three different solutions, one of them is 
the zero solution, which is going to be instable under assumption (S1.5). Of solutions 3,2M ,at 
least one must be positive for all values of the parameters satisfying S2.2. 

,01 M           (S3.1) 

   
ievpmc

satgiapievpmcpmcievpmcpmcievpmc
kk

TkkAkkAkkkAkkkM ..2
...4.. 2

3,2
  (S3.2) 

where nknk

nk

g
atg

g
nkc

g
atgieviap

kk
kkkA 


 .. . 

 
Applying condition (S1.5) for (S3.2) makes the right term inside the root positive. Because the 
left term in the root is equal to the one in front of the root before squaring, the root itself will 
have a higher value than the term in front of it. That means that the sign of the solutions will be 
the sign of the root term. In this condition, there is going to be one positive and one negative 
solution, so there is at least one positive solution that will always exist when the zero steady 
solution is instable. 
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Summing up, when equation (S1.5) is satisfied, at least one positive solution for M exists and the 
zero steady solution will be instable. 
 
Figure S1. Biphasic depletion of active cytotoxic T cells 

 
Figure S1. Biphasic depletion of active cytotoxic T cells. Upon the introduction of a slower, time-delayed T 
cell depletion term, our model can account for a small fraction of activated cytotoxic T cells (approx. 10 %) 
that have a longer lifespan and act as a phenomenological representation of memory T cells [19]. (T(0)=1;  
M(0)= 0; nominal values for the model parameters ).  
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Table S1. Model parameter definition and values 
Parameter Description of associated process  Nominal 

Value  
Reference and 

Comments 
kapc APC-mediated initiation of cytotoxic T cell response 0.04 day-1 PMID:9182685  
kgir Vaccine mediated global immune response 1 a.u. Normalized 
katg Expression of melanoma specific antigen 1 a.u.  Normalized 
ktapc Threshold APC-mediated initiation of cytotoxic T cell response 0.2605 a.u. Fitted to normalization† 
g1 Hill-coefficient DC-mediated initiation of cytotoxic T cell response 2.784 Fitted to normalization† 
katc Expansion of active cytotoxic T cells 2.0791 day-1 PMID:14530309 
ktatc Threshold expansion of active cytotoxic T cells 0.2605 a.u. Fitted to normalization£ 
g2 Hill-coefficient expansion of active cytotoxic T cells 2.784 Fitted to normalization£ 
kdtc Main (linear) depletion of effector cytotoxic T cells  0.3466 day-1 PMID:14530309 
kx Fraction of memory T cells  0.1 a.u PMID:14530309 
dtc Half-life of memory T cells 500 days PMID:14530309 
kpmc Proliferation of melanoma cells  0.5545 day-1 PMID:20406486 
kiap Cytotoxic T cell-mediated melanoma cell apoptosis 5.4931 day-1 PMID: 15725959 
MT Maximum size of micrometastasis 1 a.u. Normalized¥ 
kiev Melanoma-elicited immune evasion mechanism 1 Normalized 
M0 Initial condition melanoma micrometastasis 0.00081 a.u. Normalized¥ 
gnk Hill exponent for NKC interaction 3.9913 Fitted to normalization† 
knkc Kinetic parameter for NKC interaction 3.1623 Fitted to normalization† 

 
Notes to the table:  † .The values of Hill equation coefficients were calculated such that the APC-mediated initiation of cytotoxic 
T cell response reaches 95 % of the saturation value for a tumor population size of 75 %  of the maximum micrometastasis size 
and normal expression level of melanoma specific antigens. A similar assumption was used to calculate£. ¥. PMID:12794026, 
PMID:16968875, PMC:2922988 
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Figure S2. In silico signatures for immune-sensitive subpopulations from the model. A. 
Hierarchical clustering of the solutions in each population, with dendrograms. B. Original overall 
phenotypic signature for the each population of solutions. 
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Figure S3. Grouping of patient data into clusters of clinical benefit vs. no clinical benefit.  

 
Original patient clustering  

 
Clustering after gene and patient 

aggregation 
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Figure S4. Sensitivity analysis for the four groups of solutions: tumor, immune-sensitive, 
vaccine-sensitive and vaccine-resistant. The sensitivities are calculated dynamically, they 
measure the ratio of the log change in the integral of the simulation of the variables over the log 
change in the parameters. The panels show histograms for the mean value of parameter 
sensitivities of each solution. The vast majority of the solutions have a mean value of sensitivity 
less than one, which means that changes in parameters affects very little to the dynamical 
behavior of the solutions. 
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Table S2. Numerical data of the Figure 7 in the text. Data are normalized between 0 and 1. 
Resistant a b Nbn d c Bn 

kiap -0.97 -1.00 -0.50 -0.89 -0.91 0.30 
katg 0.05 0.11 0.20 0.17 0.17 1.00 
kiev -0.71 -0.54 -0.30 0.63 0.61 0.50 
kgir 0.60 -0.42 -1.00 -0.59 0.53 0.50 

 
Sensitive a Bn ais b c Nbn bis 

kiap -0.65 0.30 0.41 -0.74 -0.83 -0.50 0.53 
katg 0.60 1.00 0.54 0.55 0.66 0.20 0.66 
kiev -0.33 0.50 0.67 0.93 1.00 -0.30 -0.70 
kgir 0.93 0.50 0.48 0.53 -0.76 -1.00 -0.47 
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15. General results and discussion 
 Mathematical modelling has been applied to biomedical problems during the last and present century, but it has increased the interest in the last two decades. The main procedures in the formalization and analysis of mathematical models in biosciences are discussed in the first article of the present collection. Any mathematical approach in biosciences can be categorized into three different stages: i) conceptualization of the biological system, ii) mathematical formalization and iii) optimization and system management from the analysis. 
As an example of the application of systems biology to biomedical problems it is reviewed in the next section a collection of articles in which it has been used mathematical models in the topic of malaria-host interactions. Malaria research has a strong connection with mathematical models in biology because epidemiological models were proposed by Sir Ronald Ross for the study of the life cycle of this disease. It also was one of the first mathematical modelling exercises in biosciences. Following the history of modelling approaches in malaria is a representative way to analyze the evolution of mathematical modelling in biosciences.  
Four mathematical modelling approaches in biosciences have been developed for this present work. These models previously presented focused on different diseases and the methodology and characteristics of the models are different, but they have in common the systemic approach and the quantitative and dynamical analysis of the diseases. The first work about malaria used an ODE mathematical model on the power-law formalism; this gives many parameters to be calibrated in the model but more power to predict non-linear dynamics of the relationship between the parasite and the host. To deal with many parameters it was needed to use many data from bibliography and also a lot of verification with new data to be sure that the prediction of the model is biologically accurate. The model of HIV infection was also based on ODE equations, but the formalism used was mass action. In this case it was more appropriate assuming linear relationship between velocities and the concentration of the molecules. Since the linear assumption cannot be realistic in many biological situations, it is a key point providing a very good verification of the model, so we can be sure about the linear assumption in the interesting conditions for the objective proposed. For the model of Alzheimer’s disease it was used a different mathematical framework, instead of being formulated by an equation based model it was used an agent based model. The reason to have chosen that is because the main hypothesis for the cause of the disease is focused on the cell membrane of the neurons. It is assumed that there is a relationship between the lipid dynamics in the membrane and the production of β-amyloid, but it is not an easy way to formalize what the specific mechanism behind is. By contrast, they are known the interactions between lipids in the membrane which explain the mobility and fluidity. This kind of situation is optimal for applying agents based models; in this case the agents are the lipids interacting in the membrane. Finally, a simple mathematical model was made using ODE equations; it was used a mix of formalism between mass action and Hill equation. In this case it was a starting exercise to find promising improvements of immunotherapy against melanoma using mathematical analysis.  
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The objective of the malaria work was to propose new targets on which to focus the antimalarial drug search. The advantage of using mathematical modelling is that the therapeutic strategies are based on a model which integrates a lot of information coming from different studies and also because it considers the dynamical relationship between the parasite and the host. It was included the amount of red blood cells of the patient, the parasitemia as the amount of erythrocytes infected by two different phases of the parasite (asexual and sexual phase) and also it was considered an element which represents the state of activation of the immune system. The model was calibrated using data from bibliography, specifically measures of parasitemia, the red blood cells count and the concentration of immunoglobulin IgG1 in mice infected with malaria during time. In order to verify the model it was used new experimental data taken in different condition. First, to validate the use of the model in humans it was compared the long term dynamics (more than 200 days) of the model with the long term evolution of patients with malaria without any treatment. The model reproduces the damped oscillations in parasitemia and the delay in the peaks between both species of the parasite in the bloodstream. Then new data taken in different conditions was collected, it was measured the first peak of parasitemia in monkeys with malaria with and without vaccination. The vaccination was simulated in the model increasing the initial condition of the immune variable of the model. The model was able to reproduce the decrease and the delay of the first peak of parasitemia when the vaccine was given. Finally, to analyze the validity of the model after applying a treatment, experimental data taken from mice with malaria was used, two different formats of treatment were applied: i) an injection and ii) a slow releasing drug vesicle. The parasitemia observed on mice was different depending on the way the drug was applied. The model was modified to consider these treatments and the predictions of the model were very accurate comparing them with the experimental data. Based on the model it was proposed a set of four single targets for drug searching and one additional combination of two simultaneously modifications which could serve as a strategy to give two drugs instead of only one. The best strategy was decreasing the invasion of erythrocytes by the parasites. Another strategy consist on killing the asexual phase of the parasite which is also a current treatment used in malaria. Other proposals were killing the sexual phase of the parasites, increasing the transformation of the asexual phase into the sexual one and decreasing the activation of the immune system promoted only by the sexual phase. The combined strategy was decreasing the activation of the immune system promoted only by the sexual phase and increasing the clearance of erythrocytes from the bloodstream simultaneously. 
The work on HIV infection was focused on the invasion of T4 lymphocytes by HIV, which is a key part of the process, as the virus reproduce inside them. The objective was to understand the relative importance of the molecular pathways activated during the viral entry and pointing to interesting molecular targets for designing drugs which can prevent the invasion of T4 lymphocytes by the virus. The model considered many pathways of interacting molecules which are known to play a role during the invasion: i) the activation of moesin, which joins the actin filaments to the invasion point of the membrane; ii) the activation of filamin, joining actin filaments to the CD4 receptor in which the virus triggers the signal; iii) action of gelsolin, which cuts actin filaments into smaller pieces; iv) cofilin inactivation, so stopping its actin severing activity. The final result of the modification of these pathways by the HIV is producing an accumulation of actin filaments and other molecules at the point of viral contact in the membrane, called cap. This structure facilitates the opening of a pore through which the virus can enter in the cell. The cap is a dynamic structure built by changes in a complex network of molecule interactions. Because of that it is necessary to integrate the information in a quantitative model which considers the time dimension to understand the relative importance of each pathway in the process. For the calibration of the model it was used experimental data in vitro of HIV invading lymphocytes. This data contains dynamical quantification of the clustering of CD4 receptors, moesin and actin in the point of invasion. The model was able to reproduce the clustering dynamics observed in 
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vitro. Due to the lack of data the model was subjected to many verification exercises. First, the response of the model after changing (increasing and decreasing) the total amount of moesin was compared with experimental modifications of this protein in vitro. The model prediction of the behavior of the experiment was accurate. Then data from another experiment was used, the amount of gelsolin was increased and decreased in the lymphocytes and it was simulated in the model. The prediction of the model fitted the data when it was assumed that gelsolin had a positive effect on the construction of the cap, this is interesting because it points to a potential benefit on inhibiting gelsolin to prevent the invasion of HIV. It was also experimentally analyzed the decrease in filamin and compared with the model prediction of this reduction, and the model was able to reproduce the effect of that on the infectivity. Finally, increasing the severing of the actin filaments introducing the effector Lat-A on the cells affects the infectivity of the virus. The change in infectivity after different doses of Lat-A was verified by the model simulating these different doses. Based on the model it was established that the main factors to reduce the invasion of the lymphocytes by HIV is decreasing the cap structure and extending the time to release the cap after the pore is formed. As it was mentioned, the cap is a dynamical structure and its physiology can only be understood in a dynamical way. Long before the first contact of the virus with the immune cell the cap has to be formed with a minimal amount of actin filaments to facilitate the tensional forces to open the pore. But, as the virus has to enter inside, the cap structure has to be cleared just before the pore is open. Increasing the amount of the actin severing molecule cofilin has been observed to affect the production of the cap, so our model proposes that even inhibiting its actin severing activity it can decrease the invasion ability of the virus because it could extend the time to clear the cap structure allowing the entry through the pore.  
The study of Alzheimer’s disease was focused on the lateral movements of the lipids in the cell membrane of neurons. In the cell membrane there exist lipid domains with differential physical characteristics and composition from the rest of the membrane, they are called lipid rafts. Inside lipid rafts the lateral movement is lower than outside. The relationship of lipid rafts with the disease is that inside these domains it is produced the aberrant peptide β-amyloid. The objective of the work is finding a correlation between the changes of the physical properties of the lipid rafts and the evolution of the disease. The model of Alzheimer’s disease was built using agent based modelling; this mathematical framework defines a set of elements which interact in a defined landscape following a set of rules. All lipids were aggregated into six groups attending to the common molecular structure: i) sterols; ii) docosahexaenoic acid (DHA); iii) n-6 long chain polyunsaturated fatty acids; iv) monoenes; v) saturates fatty acids; vi) sphingolipids. The landscape of interaction is a lattice organized by rows and columns; the elements (lipid groups) were located in the lattice and they could interact with their four neighbours. The probability of one lipid interchanging its position with one neighbour is inversely proportional to the force by which it is detained in its position. This force comes from the sum of the forces of pairwise interactions with the other three neighbours, and each pair force depends on the molecular structure of the groups. This molecular structure was initially given by averaging the width and the length of the lipids inside each group using a molecular visualization program (Jmol), so each group was fitted to a cylinder with a width and a length similar to the elements of the corresponding group. As this characterization of the molecular structure using cylinders is a gross approximation it was made a refinement of the structural parameters for the cylinders using experimental measurements of the lipid compositions of the cell membrane and of the isolated lipid rafts. These experimental measurements of the lipid composition were made in mice of 3, 6, 9 and 14 months of two groups: i) wild type (WT); ii) Alzheimer’s disease induced mice model (AD). The initial assigned width and length was slightly changed in order to predict the lipid composition of lipid rafts after giving to the model the lipid composition of the whole cell membrane. The model reproduced the experimental lipid composition in all conditions. Then, the model was verified using experimental data taken a posteriori, first the lateral mobility of the 
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lipids outside lipid rafts was predicted on four different conditions: i) 6 months WT; ii) 14 months WT; iii) 6 months AD; iv) 14 months AD. The experimental microviscosity (as an experimental measurement of lateral movement) was measured in these four conditions. The changes in microviscosity observed in the experiments through the different conditions were the same than the ones predicted by the model. The model predicted that the increase in the lipid rafts size and in the lateral mobility outside these domains are the main factors which correlate with the disease evolution. In order to find dietary treatment strategies, the condition of 3 months WT in the model was assumed to be the healthy situation of the membrane and the 9 months AD condition is considered as a pathological but reversible condition. The proportion of each lipid group on the membrane was systematically increased and decreased to follow the effect on the lipid raft composition of the 9 months AD condition respecting the lipid rafts composition of the 3 months condition. Increasing the proportion of sterols or DHA was promising dietary strategies to revert the physical modification on the lipid rafts during the Alzheimer’s disease evolution.  
Finally, a mathematical model using ODE equations was proposed to simulate the interaction between melanoma cells and the immune response of the patients. Immunotherapy is a very recent strategy to treat cancer, and specifically in melanoma. Additional improvements on the therapy are needed to make it effective in patients in whom it is not working. Mathematical analysis on the proposed model was made to unravel the hidden mechanisms of tumor cells resistance to immunotherapy. First, based in the known mechanisms of interaction between tumor cells and the immune system, it is proposed a simple mathematical model. It considers the T cell activation and proliferation in response to tumor cells, the response promoted by the immunotherapy, the T cell inactivation and memory cell long term action, the tumor cell growth, the tumor cell death by T cells and NK cells and the immune evasion mechanisms of the tumor. The results of the mathematical analysis of the model give a gene signature for the tumor resistance. This gene signature is a relationship between the parameters of the models that explains the tumor cell resistance to the therapy. This gene signature proposes that intermediate levels of antigen presentation machinery and low amounts of T cells in the patients are hallmarks that can explain the melanoma tumor resistance. Numerical analysis based on this signature points to potential improvements on the immunotherapy against melanoma in resistant patients. Increasing T cell amount and T cell activity against melanoma cells using IL-2 and increasing the presentation of tumor cell antigens by INF-α is the best strategy to combine with vaccine immunotherapy. These co-adjuvant therapies have been individually proved in previously studies, but the combined strategy is, under our knowledge, to be proven.  
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16. Conclusions 
 

 
Mathematical modelling in biosciences 
i) The theoretical principles of mathematical modelling are available since the XVII century, but only in the last century it was possible to apply them to actual problems in biology. ii) The new paradigm of systems biology proposes a new way to analyse the biological systems, integrating many elements in a single framework and considering the dynamics of the processes. 
Review of mathematical models in malaria 
iii) Mathematical modelling of malaria-host interactions has increased the knowledge of the disease and it has been used to propose potential molecular targets for the design of new therapies. iv) The interaction between the malaria parasite and the immune system elements of the host has been clarified using mathematical approaches, it is highlighted the non-linear, dynamical and complex nature of these interactions. 
Malaria 
v) The best therapeutic strategy predicted by the mathematical model of malaria is impeding the invasion of erythrocytes by the parasite; this option is being evaluated in current antimalarial drug searching protocols. vi) Another interesting target to reduce the infectivity of the disease is focusing on killing the sexual phase of the parasite. This strategy is currently used in the effective antimalarial drugs. vii) One new target never evaluated to find new efficient drugs, which could replace the current ones when they lose efficacy, is increasing the transformation of the asexual phase into its sexual phase. viii) One last unique target on which to focus the search of drugs is decreasing the activation of the immune system by the sexual phase of the parasite. This strategy is not only a never evaluated target, but it is also interesting to potentially decrease the emergence of resistance by the parasite, as it does not affect directly the parasite. ix) One combination of two targets which would increase the efficacy of the therapy is decreasing the activation of the immune system by the sexual phase of the parasite and increasing the clearance of red blood cells by the organism. 
VIH 
x) The virulence factors which increase the invasion of lymphocytes by HIV are a strong actin structure at the invasion point and a fast clearance of this structure just after the pore is formed. 
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xi) Gelsolin is a molecule which increases the infectivity by favouring the formation of the actin structure; even though it is a severing factor. It is an interesting target in which focus on the search of drugs to cure HIV. xii) Although cofilin is a severing factor which completely destroys actin filaments and it has been proved that increasing cofilin the actin structure is destabilized, cofilin inactivation can also be an interesting target against HIV as doing it would delay the clearance of the actin structure which impedes the entry of the virus. 
Alzheimer’s disease 
xiii) A lipid grouping into six categories: sterols, DHA, n-6 long chain polyunsaturated fatty acids, monoenes, saturates and sphingolipids; is able to predict the observed lipid domains in the membrane. xiv) Increasing the lateral mobility outside the lipid domains and increasing the size of the lipid domains are the main membrane factors which explain the evolution of Alzheimer’s disease. xv) These membrane factors are observed in healthy individuals during aging, and Alzheimer’s disease makes these factors occurring before in time. xvi) Increasing the amount of sterols and DHA composition in the cell membrane of neurons are the best dietary strategies to delay the evolution of the Alzheimer’s disease. 
Immunotherapy against melanoma 
xvii) Intermediate level of antigen presentation on dendritic cells is a hallmark of melanoma patients presenting resistance against immunotherapy. xviii) Cytokine co-adjuvation therapies for patients resistant to immunotherapy could improve the outcome of the therapy; based on the model it is proposed increasing the antigen presentation together with increasing the proliferation of lymphocytes combined with immunotherapy and cytostatic chemotherapy. 
Common conclusions 
xix) Mathematical modelling is an approach which let us integrate spread information about relevant diseases improving the knowledge about the physiology of these diseases. xx) Looking for new targets for drug development can be accelerated by proposing targets based on the entire system physiology of the disease by mathematical modelling approaches.            



 

  

  



 

  

 




