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Abstract

Diseases are due to a malfunctioning of the physiology of the organism. In order to understand
the mechanisms of the diseases it has to be taken into account the structural complexity of the
biological organisms, not only as the set of molecular interactions but also its dynamics. Since in many
cases the disease is due to a dynamical imbalance of the system we need methods to induce the
dynamics from the interacting network to find strategies to cure them. The approach which deals with
this problem is systems biology; it makes use of mathematical modelling methodologies to deal with the
structural and dynamical complexity of the biological organisms. First, the general considerations about
mathematical modelling in biosciences are discussed, and then it is presented a review of mathematical
modelling approaches in the topic of intra-host malaria infection. Four highly prevalent diseases are
evaluated in this perspective to unravel the molecular and cellular complexity which explains their
physiology. Malaria is highly prevalent in developing countries, and it is produced by the dynamical
interaction of the parasite and the cells in the blood stream; HIV infection is firstly produced by the
invasion of the T4 lymphocytes by the virus. This process is driven by many molecular pathways
triggered by the virus inside the lymphocyte, these signaling pathways produce the opening of a small
pore through the HIV enters; Alzheimer’s disease is a neurodegenerative pathology without known
cause, the main hypothesis relates the production of the neurotoxic peptide B-amyloid with certain lipid
domains formed by differential lateral movement of the lipids in the membrane of the neurons; finally,
melanoma is a very aggressive kind of cancer. After a metastasis, a microtumor originates in the
bloodstream and it interacts with the immune system; the final outcome depends on this dynamical
interaction. Potential therapeutic targets in which can be focused on the search of new drugs against
these diseases are proposed by the models which reproduce the disease in certain conditions.

Resumen

Las enfermedades se producen por un mal funcionamiento del organismo. Con el fin de
comprender los mecanismos de las enfermedades se debe tener en cuenta la complejidad de los
organismos bioldgicos, no sélo como el conjunto de interacciones moleculares, sino también su
dinamica. Las enfermedades se producen por un desequilibrio en la dindmica del sistema, ello implica
que hacen falta métodos que permitan inducir la dindmica a partir de la red de interacciones de forma
gue sea posible encontrar nuevas estrategias para el tratamiento de las enfermedades. El enfoque que
se ocupa de este inferir la dinamica a partir de las redes de interacciones es la biologia de sistemas; esta
hace uso de metodologias de modelizacion matematica para hacer frente a la complejidad estructural y
dinamica de los organismos bioldgicos. En primer lugar se resumen y analizan las cuestiones generales
sobre modelizacién matematica en biociencias, luego se presenta una revisién de aproximaciones
mediante modelizacion matematica en el tema de infeccidon por malaria dentro del hospedador. Cuatro
enfermedades altamente prevalentes son evaluados bajo este enfoque desentrafiando la complejidad
molecular y celular que explica su fisiologia. La malaria es altamente prevalente en los paises en
desarrollo, y es producida por la interaccién dindmica del parasito y las células del sistema inmunoldgico
en el torrente sanguineo; la infeccidon por VIH es producida en primer lugar por la invasién de los
linfocitos T4 por el virus, este proceso estd promovido por muchas rutas de sefalizacion molecular
desencadenadas por el virus en el interior del linfocito, que culminan con la apertura de un poro por el
cual entra el VIH; la enfermedad de Alzheimer es una patologia neurodegenerativa sin causa conocida,
la hipétesis principal alude a la produccién de un péptido neurotdxico, el B-amiloide, en ciertos dominios
lipidicos formados por el movimiento lateral diferencial de los lipidos en la membrana de las neuronas;
por ultimo, el melanoma es un tipo de cancer de melanocitos muy agresivo. Inicialmente, un
microtumor crece en el torrente sanguineo interactuando con el sistema inmune; la evolucion de la



enfermedad depende de esta interaccion dindmica. En cada caso se proponen potenciales dianas
terapéuticas en las que puede centrarse la busqueda de nuevos farmacos contra estas enfermedades
haciendo uso de los modelos que reproducen la enfermedad en determinadas condiciones.
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1. Introduction

Historical introduction

A disease is an abnormal condition of the organism physiology. Many classifications of the
diseases can be made depending on the chosen criterion; we group them based on the causes. Some of
the diseases are produced by external agents, as traumatisms, nutritional disorders or caused by toxins.
These can be considered passive diseases as the agent is not able to reproduce. On the other hand,
active external agents are microorganisms and parasites. The diseases which have an endogen origin can
be caused by immune system malfunction, for example in allergic, inflammatory and autoimmune
diseases; others are able to be inherited or caused congenitally and, finally, neoplastic and degenerative
diseases are mostly caused during aging, although they can also be produced by acquired mutations.
Some other diseases do not have any known cause, as Alzheimer’s disease. There are two main
strategies to deal with the treatment of the diseases: i) removing the external agent, when there is one;
ii) restoring the physiology to its normal condition. Conceptually, the first strategy is easier because the
objective is to destroy the physiology of the pathogen, but the second strategy requires restoring the
patient physiology to its unique functional state. In practice, many situations can make the problem
more complicated, for example the acquirement of resistance to the treatment by the pathogen. When
the causes of the disease are well known the intuitive strategy is trying to reverse the malfunction
without affecting any other relevant process in a way that the result of the treatment is not worse than
the disease. We are saying that the target of the treatment is the same as the target of the disease.
However many treatments are able to restore the organism physiology without reversing the affected
process. Instead of that, they act on a different place in a way that they are able to compensate the
malfunction in a whole. We can say that these are counterintuitive therapies, as there is no easy way to
find them by intuition, considering the high complexity of the organism. These kinds of treatments are
mostly found under extensive screening of substances, or even by chance. But as it will be discussed
below, it is possible to find counterintuitive treatments in a directed way.

A biological organism is not a soup of elements, knowing its precise composition is not enough
to understand its physiology. The individual functionality arises from the orchestrated interaction of all
the elements in space and in time. Even knowing the complete genome of one cell it is not possible to
predict its response to certain stimulus, because the genetic information has only sense in the context of
the dynamic networks of molecules. This network has two main characteristics: i) all processes occur far
from the thermodynamic equilibrium; ii) the interactions between elements are nonlinear (doubling the
input does not duplicate the response). These two properties make the system admit very complicated
dynamical behavior, as oscillations and chaos. It is frequent that for a proper functioning of the
organisms this dynamics has to be conserved, in a way that losing oscillatory or even chaotic dynamics
would produce a disease (Mackey and Glass, 1977). Then, it is crucial being able to infer the dynamical



response of the biological systems from the interaction network in order to understand the physiology
of the diseases. As it was mentioned above, some counterintuitive responses under certain
modifications are expected if we are not able to infer the dynamic response of the system. The approach
which deals with the biological organisms in the presented way above is systems biology. As it was said
it is not a methodology but an approach to study biological systems, it is the paradigm shift needed to
understand the complexity of the biological organisms.

The history of systems biology begins out of biology. As many, if not all, of the scientific
disciplines we can assume that it started with the publication of Philosophiae naturalis principia
mathematica by Isaac Newton, in England. In this precise moment the humanity was able to understand
that there are mathematical principles which rule the Universe, but at the same time Isaac Newton also
provides to the world a new tool to analyze and predict the dynamical behavior of the nature,
differential calculus. The genius said to us where and how we can discover the secrets of the universe,
and the era of the great scientific discoveries began. The study of the nature was mostly descriptive until
then, however the ability to uncover the mathematical principles of the observed phenomena concludes
with the establishment of universal laws. Mechanics was followed by thermodynamics and
electrodynamics, and the scientists began to think they were able to predict any process in the universe,
as it was manifested by one of the biggest scientists of the time, William Thomson, first Baron Kelvin:
“there is nothing new to be discovered in physics now. All that remains is more and more precise
measurement”. However, since science cannot be stopped, Max Planck unravels another relevant
mathematical principle on nature, quantum mechanics. It was the beginning of the second revolution in
physics during the XX century, which ends with the two current big theories about the mathematical
principles of nature, the Standard Model and the General Theory of Relativity.

The mathematical principles which rule the biological systems are the same as in the inert
matter, but it was very late in the history of science when it could be known. The explicit differences
between living organisms and the rest of phenomena established the vitalism, which assumes a
conceptual difference between the living and non-living entities. It was considered that the laws of
physics cannot be applied to biology, and hence the lack of interest in finding the mathematical
principles of the biological systems. After the famous experiment of Friedrich Wohler synthesizing the
organic compound urea in laboratory the vitalism theory was called into question, and then it was
admissible applying the laws of nature to living organisms. Although the application of the natural laws
on the biological systems was not so obvious, some exercises in order to unravel the mathematical
nature of biological systems were made at the beginnings of XX century. Alfred J. Lotka applied the
mathematical law of the kinetics of chemical reactions, as autocatalysis and mass action law, into a set
of ecological models in which species interact, culminating in 1920 with a mathematical model of
predator-prey interaction in an ecosystem (Lotka, 1920); and during the same time, Vito Volterra
derived the same equations to explain the observed oscillations on the number of marine individual
(Volterra, 1927). Also during the first years of the XX century, sir Ronald Ross, using the same ideas from
the mass action law, proposed the mathematical behavior of epidemic diseases (Ross, 1915). From these
ideas it arose the current epidemiological models, the concept of basic reproduction number and the
vaccination control of epidemics using mathematical concepts as the herd immunity. Also very
remarkable, the foundations of enzyme kinetics were established by Leonor Michaelis and Maud
Menten in 1913 (Johnson and Goody, 2011), based in chemical reaction mathematical principles as well.
Nevertheless it had to be developed an emerging idea which was growing in parallel to this initial
application of mathematical models to biology, the principles of the Systems Theory. It was the
formalization of previous approaches to the complexity, as Control Theory which deals with dynamical
systems and the effect of the output on the input of systems by feedback loops; Chaos Theory which



had its conceptual origins at the end of XIX century, or other discoveries of interest in biology as the self-
reproducing systems founded by John von Neumann in his cellular automata model. Ludwig von
Bertalanffy published the General Theory of Systems in 1969 (Bertalanffy, 1969), and it provided a
mathematical structure for complexity, a set of interacting elements from which they emerge some
common properties and behaviors which can be analyzed, referred as the system. After this great
formalization for the study of systems other key contributions for the culmination of the mathematical
analysis of biological systems were the concepts of dissipative structures as a way to apply the laws of
thermodynamics on living structures, being them open systems far from the equilibrium. The dissipative
structures were presented by llya Prigogine in 1961 (Prigogine, 1968). The first great application to
systems theory on biology was the mathematical model of Alan Hodgkin and Andrew Huxley in 1952
(Hodgkin and Huxley, 1952), in this work they were able to reproduce the dynamical behavior of the
initiation and propagation of the action potential in axons. This model proposed the ionic mechanisms
under the process which was verified later by molecular experiments.

The next revolution on the field of systems biology was in technology, the development of
personal computers gave a very potent tool to analyze mathematical models. As it was introduced
before, the interactions occurring between elements in biological systems are nonlinear, which produce
mathematical equations which are very difficult or even impossible to analyze by hand. The use of
computational power made possible the application of mathematical tools for numerical analysis which
require a lot of simple calculations. With the theories and mathematical tools available the attention
was drawn to the study of metabolism during the seventies. Metabolic pathway were well known since
the molecular biology and enzyme assays studies, but the knowledge were based on analyzing individual
reactions in vitro, and the inference of the dynamical behavior of the whole network is not an easy task.
There was no any method which took into account the nonlinear nature of those biochemical systems.
Trying to deal with this lack, two mathematical approaches appeared on this decade, Metabolic Control
Analysis (Fell, 1996; Heinrich and Rapoport, 1974; Kacser and Burns, 1973) and Biochemical Systems
Theory (Savageau, 1969, 2010), converging both in the main ideas behind the mathematical principles of
biochemical systems. The first approach tried to solve the conceptual problem of limiting reaction, as it
cannot be predicted from in vitro studies. It is because the limiting reaction of a pathway is an emerging
property of the whole pathway, depending on the connectivity and kinetics of the network. This
approach gives some mathematical properties of the biochemical networks which are conserved, in a
way that it is possible to predict from the network which reactions are able to mostly control the
velocity of the whole pathway, based on control coefficients which inform about the amount of control
on the system that each reaction has. On the other hand, Biochemical Systems Theory introduced a
canonical mathematical formalization to analyze the dynamics of biochemical pathways; it assumes a
linear relationship between reactants and reaction rate under a double log representation. This
assumption has proved to deal with the main nonlinearities on biological dynamic behavior (saturability,
synergy, oscillations, etc.) and also this assumption let to easily formulate and analyze biochemical
pathways. From this formulation it can be derived the sensitivities of the system response under
changes in biochemical parameters, which has a very close relationship with the control coefficients of
Metabolic Control Analysis (Savageau et al., 1987). The application of those approaches to metabolism
has provided the understanding of many responses coming from metabolic systems (Voit, 2013), and it
also uncovered the design principles on metabolic pathways which explain the observed phenomena
(Savageau, 2011).

The last revolution on systems biology started after the development of methodologies to
obtain high throughput data, also called omics. It began with the Human Genome Project, for the first
time the whole genetic information of one human was available. At that moment it was a very



complicated challenge in which there was involved an international consortium of many countries
during one decade. Advances in sequencing technology provide now the opportunity for almost every
laboratory in the world to be able to sequence the entire genome of an organism in days. The next
challenges came by increasing the amount of data, as the 1000 Genomes Project (1000 Genomes Project
Consortium et al., 2010) or the ENCODE Project (ENCODE Project Consortium, 2004). It is also available
high throughput data for any kind of biological information, the expression level of all genes, the
amount of proteins of a cell, the metabolites concentration and the epigenetic marks are just some
examples of the emerging technologies to obtain data from the whole organism. The data collected
from the omics technologies need to be analyzed to obtain useful information from it, which makes
bioinformatics and data analysis very useful and trending disciplines nowadays. This is the first round of
analysis which can be made from this kind of data, but further steps must be done in order to really
understand the biological systems from the data. If we only perform statistical analysis on data we are
losing the information that the data give about the network of interactions of molecules.

Network theory has its origins on mathematics. It was Leonhard Euler the first to solve a
problem using graphs as mathematical objects, in the famous problem of the Seven Bridges of
Konigsberg. Out of mathematics it was mostly applied on information theory and social sciences, but
with the emergence of omics and high throughput data it was possible to contrast biological networks
with sufficient data measured from one organism. With this methodology it was possible to construct
the whole biochemical and genetic network of biological organisms and analyzing its properties.
Proposing new therapies for diseases based on biological networks inferred from high throughput data
is one of the most recent methodologies which deal with the problem of finding counterintuitive
therapies based on the network properties (Pérez-Nueno, 2015).

Although network analysis is a very informative and potent methodology to uncover the
complexity of biological systems it is not the last step for the comprehension of the function of them.
The physiology of an organism is not static, it changes during time. The knowledge of the actual network
of interactions of an organism does not give information about the dynamical response after certain
stimuli, as the response varies during time. The ultimate step for a genuine understanding of the
physiology of an organism comes from inferring its dynamical response from the network. To deal with
this challenge it is necessary the use of mathematical tools which explicitly incorporate the time
dimension. Although this methodology is the best approach to understand the biological physiology, it is
yet under improvement. The reason is that for constructing dynamical networks experimental data
taken during time are needed, which is not so available yet. Furthermore, dynamic mathematical models
are much more computationally expensive than the static ones, so they use to be constructed in a
smaller scale of detail. However, as the available data and the computing power increase exponentially
it is expected that the size and resolution of dynamical models keep increasing. Even under the current
situation about dynamical networks, there exist multiple applications of them to unravel the molecular
complexity of the diseases and proposing new directed and counterintuitive therapies based on the
dynamical response of small networks. Its utility and validation has been proven as they are able to
reproduce the dynamical networks which exist at different scaling levels.

Examples of dynamical mathematical models in biomedicine

The application of the principles of systems biology to biomedicine provides a new approach to
uncover the molecular mechanisms of the diseases, systems biomedicine (Antony et al., 2012; Zou et al.,
2013). This approach allows to propose therapies based on the dynamical structure of the organisms,
opening a new field of discoveries which was hidden under the reductionist approach alone. Now, it is



accepted that the study of the isolated elements of the system in conjunction with the holistic vision
which provides systems biomedicine is the most promising strategy to deal with the diseases. In this
section it will be presented a small selection of works on the topic of systems biomedicine to illustrate
the utility of the approach. It will be focused on mathematical models which explicitly include time, so
the diseases are studied as dynamical networks.

Neurodegenerative diseases are complex pathologies which ultimately affect neurons. The
causes are, in the best cases, partially known. In the case of Alzheimer’s disease (AD) the cause for the
most frequent kind, sporadic AD, is not known. The currently accepted hypothesis is based on the
aberrant production and accumulation of B-amyloid polymers on the extracellular region of the brain,
which produces the death of the neurons (Gouras et al., 2014). Based on this hypothesis, mathematical
models can provide useful information for the diagnosis of the evolution of the disease. A
compartmental mathematical model was used to evaluate the dynamics on the distribution of the B-
amyloid peptides through brain regions, as the cerebrospinal fluid, plasma and the brain (Craft et al.,
2002). It concluded that decreasing the production/elongation of peptides reduces the burden of B-
amyloid in all compartments, but increasing the clearance of the polymers only decreases the B-amyloid
burden in the brain, and it can even increase its amount on cerebrospinal fluid and plasma. This is a
notable consideration, as it would modify the interpretation of biomarkers based on the B-amyloid
burden on plasma. The intracellular accumulation of Tau protein is also considered as a key driver of AD,
as this accumulation would affect the proper structure of the cytoskeleton of neurons (Giacobini and
Gold, 2013). The cytoskeleton is a complex dynamic structure, and it makes very difficult to figure out
what is the actual effect of Tau on its physiology. In order to understand the structural changes on
microtubules in the neurons promoted by Tau, it was implemented a three-dimensional mathematical
model which considered the microtubule spatial dynamics (Buxton et al., 2010). It was able to predict
the changes observed by Tau accumulation, providing a dynamic mechanism which could prevent the
aberrant structure observed. If during the depolymerization of microtubules a new process of
polymerization occurs faster than the hydrolyzation of the terminal GTP the catastrophic
depolymerization can be terminated. It points at molecular targets for drug design based in a dynamical
view of the disease. The problem can also be considered in a wider scale, including the relationship
between the different cells on the brain. One mathematical model includes the crosstalk between
microglia, astroglia, neurons and B-amyloid (Puri and Li, 2010). Using this scale it was possible to
establish that the inflammatory activation of microglia is a relevant process for the evolution of the
disease, being an interesting target for drug design. Parkinson’s disease (PD) consists on a selective
death of dopaminergic neurons in the substantia nigra of the brain; the main driver considered is the
accumulation of a-synuclein (Dehay et al., 2015). The current main therapeutic strategy consists on the
increase of the accumulation of dopamine to compensate the reduction of dopaminergic neurons. But,
as metabolic pathways for dopamine production are very complex, and some other undesirable effects
as oxidative stress are involved, finding a proper therapy is not easy using exclusively reductionist
approaches. Two mathematical models which reproduce the metabolism of dopamine were able to
propose molecular therapies combined in a way that increase dopamine and decrease oxidative stress
(Qi et al., 2008; Sass et al., 2009).

Infectious diseases are driven by pathogens which colonize the organism, so we need to
understand the relationship between the microorganism and the host. Most of the infectious
microorganisms invade the cells to reproduce inside them. HIV infection is a relevant example. HIV
infects T4 lymphocytes and appropriates the cell machinery, then the virus becomes dormant during
many years, until it eventually produces AIDS (Marsden and Zack, 2013). Knowing the dynamics of the
disease is very convenient to control it, and it was analyzed using a mathematical model in 1996



(Perelson et al., 1996). It was predicted the average life-span of infected cells, the mean production of
virus and the HIV life cycle in vivo. In another study of the same year it was predicted that the observed
reduction on the viremia during the acute phase of the HIV can be produced without any increase on the
rate of removal of free virions or virus-infected cells (Phillips, 1996), which pointed to the fact that the
decrease in viremia of the acute phase was not produced by the HIV-specific immune response to
control the virus replication. More recently, a mathematical analysis established that the liver damage
previously associated to HIV/HBV coinfection can be caused by a HIV monoinfection (Nampala et al.,
2013). Equally recent is another mathematical model of HIV, but concerning the virus maturation
(Konnyd et al., 2013). It focuses on the Cag-Pol polyproteins processing by the viral protease, which is
needed for its infectivity. This quantitative analysis allowed to identify rate limiting step on the process
as well as the main points to modify which would block the maturation. This is a promising strategy to
focus on for the search of potential molecular target and new antiviral drugs. Finally, it is given an
example of another infectious disease, tuberculosis. A very prevalent infectious disease, affecting
initially lungs but with potential to extend to other tissues (Oliwa et al., 2015). There is a very recent
mathematical analysis of the latency of tuberculosis, responsible of drug and immune resistance
(Magombedze and Mulder, 2013). It combined a bioinformatics approach to analyze microarray gene
expression data with mathematical modelling techniques to propose certain genes responsible to entry
in latency. Targeting these genes is a promising strategy to increase the effectiveness of new therapies
against this pathogen.

Colorectal cancer is one of the most prevalent neoplasms. It occurs as an abnormal growth in
the crypts of the colon (Susman et al., 2012). This tissue has a very high regenerative ability; all the cells
of the crypt are renewed after one week. In order to maintain the equilibrium the number of cells has to
be controlled by a continuous cell death. Increasing the growth rate of the stem cells of the crypt can
promote abnormal growth which can culminate in malignant tumors. A simple mathematical model
which includes the basic processes for cell growth, differentiation and death was able to predict the
observed evolution of the disease, from stable benign tumors to malignant uncontrolled growth
(Johnston et al., 2007). It was formulated as a set of cumulative mutations which increase the growth
rate of cells. A second example on colorectal cancer studied the drug resistance by KRAS mutation
(Sameen et al., 2015). They were able to predict that a small initial population of KRAS mutated cells has
the ability of making all the tumor refractory to the treatment. Also, it was analyzed the effectiveness of
the combination of monoclonal antibody (cetuximab) and chemotherapy (irinotecan) in patients with
KRAS mutations. They predicted that only in patients with high immune strengths it would be
recommended as first-line therapy.

The last examples are going to be on the topic of immune and metabolic diseases. Immune
diseases are produced by the malfunction of the immune system. Chronic inflammation and
autoimmune disease are examples of malfunctions in which immune system increases its activity above
its physiological level. Inflammation is related with the onset of atherosclerosis, by shear stress in the
epithelium (Bryan et al., 2014). A mathematical model of the signaling pathway triggered under shear
stress in endothelial cells was able to predict the biochemical observations (Yin et al., 2010). It was used
to propose the crucial role of the Bone Morphogenic Protein 4 and p47"h°x-dependent NADPH oxidases
in the inflammation of the endothelium. As an example on autoimmune disease, a mathematical
analysis of the multiple sclerosis was made recently (Broome and Coleman, 2011). This is a
neurodegenerative disorder in which immune systems is thought to attack myelin of neurons. It was
studied the role of reactive oxygen and nitrogen species, the permeability transition pore, apoptotic
factors and cell death of oligodendrocytes. The most promising therapy predicted by the model was
preventing the opening of the permeability transition pore. Concerning metabolic diseases, several



approaches have been made to elucidate the complexity of metabolism and its malfunction. The general
methodology to deal with the malfunctioning of one enzyme using systemic methodologies is explained
in the study Vera et al., 2007. It consists on integrating the main metabolic pathways in which this
enzyme is enrolled into a model, and then some mathematical methods, as optimization, point to
promising metabolic processes which would reverse the normal physiology and minimizing the effect on
other processes. This methodology was applied in this work to propose therapies for hyperuricemia. The
results predicted six different therapies involving dietary modifications, one of them coinciding with the
conventional treatment. Finally, another study concerning metabolic abnormalities focused on purine
metabolism and gout (Curto et al., 1998). Gout is a metabolic disease produced by the abnormal
accumulation of uric acid on the blood stream which causes arthritis. In order to uncover the
mechanisms leading gout this mathematical modelling of the metabolism of purines allows to
understand that the accumulation of two substrates of the enzyme adenylosuccinate lyase is enough to
predict the metabolic imbalance observed in the disease.






2. Methodology

The present work is based on the principles of systems biology; specifically it is focused on the
study of the diseases as dynamical networks. The main workflow consists on the following sequence: i)
proposing an objective for the study; ii) integrating the information concerning a disease; iii) selecting
the main elements and processes which intervene in the disease and constructing a conceptual model
for the relationship between elements and processes (network); iv) formalizing the conceptual model
into a mathematical framework which considers the time dimension explicitly; v) use dynamical
experimental information from bibliography to calibrate the model; vi) validating the predictions of the
model using new experimental information not used during the calibration; vii) using the mathematical
model to make predictions and answering the objective. Each of these steps is described in detail below.

Proposing an objective for the study

Based on the knowledge about a biological problem it is proposed an objective which can be
answered with the available knowledge and experimental measurement on the disease. It is formulated
in a way that it can provide quantitative and dynamical new knowledge of the disease. The objective will
be focused on understanding the molecular and cellular mechanisms which drive the disease and
proposing new therapies based on dynamical and integrative knowledge.

Integrating the information concerning a disease

When you are looking for all the systematic information about any disease on the bibliography,
you have to deal with dispersed and contradictory information. Although some opposite results can be
due to errors, most of the time the reason is that the experiments to obtain the information were
displayed in very specific conditions where the interesting process was isolated. Then, incorporating
knowledge into a unique conceptual framework is a hard task in which it is important to reduce the
importance of the details and focusing on the main characteristics of the disease.

From the systematic review of the knowledge about the disease it is understood what the
established hypotheses and the open questions are. It is common that the understanding of the
physiology of the diseases is based on static explanations of the molecular and cellular processes, which
makes the quantitative and dynamical analysis appropriate to deal with very interesting open questions
and for proposing new therapies.



Selecting the main elements and processes which intervene in the disease and constructing a
conceptual model

Simplifying is one of the main concepts in science, especially in biology. Biological organisms are
“noisy” and very complicated, which makes essential to focus on the main elements that play a relevant
role on the phenomena of interest. Simplifying is basically a problem concerning scaling. There are some
processes which are mostly disconnected from others because they occur at different time scale, or
because they are differentially compartmentalized. Also, it is possible that the network of interactions
makes some elements being virtually independent of each other under certain circumstances, or simply
that under specific conditions some processes simply do not occur. When the scaling is not useful any
more to reduce the complexity of the system a second strategy is based on grouping elements or
processes. Under certain circumstances, and focusing on specific phenomena, it is admissible to group
elements and using a representative element of this group, or even to consider the mean value within
the group. Finally, it will be obtained a simplified representation of the real system which would be able
to predict the dynamics at the scale of interest for answering the proposed objective.

Based on the collected information and after the subsequent simplification of the interaction
network it is built a conceptual model. It consists on a structuration of the ideas of the relevant
processes of the disease of interest focused on the proposed objective. This conceptualization, by itself,
is a fundamental piece of knowledge and it is common that in this step many of the previous ideas have
to be reformulated. The next step is to provide to the model a quantitative and dynamical meaning
based on biological measurements, but to do this the conceptual model has to be formalized into a
mathematical framework which explicitly includes the time dimension.

Formalizing the conceptual model into a mathematical framework which considers the time
dimension explicitly

The selection of a proper mathematical formalism to formalize the conceptual model depends
on the objective proposed, the knowledge about the disease and the experimental data available. For a
description of mathematical formalisms used on biology and their main characteristics see the following
review (Machado et al., 2011).

The most extended mathematical formalism for dynamical quantification of biological systems is
based on ordinary differential equations (ODE). These equations explicitly consider the time as the
derivatives are with respect to time. The predictions of the models based on ODE are trajectories of the
changes during time of the elements of the model. ODE models are useful when the biological system
contains a lot of elements, so the random noise can be neglected. ODE equations are deterministic and
they provide the same output for the same conditions, which is almost true in systems with many
elements (Gustafsson and Sternad, 2013). Another important condition to be satisfied is the spatial
homogeneity. This is never true, but can be assumed depending on the spatial scale considered, and
sometimes it can be solved assuming discrete spatial compartments between which the mass is
interchanged (Bielecki et al., 2008).

These equations can be analyzed for finding special biological situations, for example searching
for stationary solutions. This is crucial because many elements of the biological organisms remain
constant, based on the principles of homeostasis. The mathematically procedure consists on doing the
derivatives respecting time to zero, so we are saying that the evolution with respect to time is null for
the elements of our model. In practice this methodology cannot be always applied for two reasons: i)
many biological processes are dynamically active, which means that they are changing during time. For
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example oscillations, signals, etc. ii) Nonlinearities on the dynamics usually makes very difficult to
obtain a solution for the equations. Instead of searching for stationary behaviors we can focus on the
dynamics. To do that it is needed another mathematical tool to obtain the dynamics from the model. It
is numerical analysis. The derivatives of the model are solved approximately using numerical calculus
which provides the evolution during time of the elements of our model.

Another interesting mathematical method which ODE models provide is sensitivity analysis
(Savageau, 1971). It is used to measure the robustness on the response of the system under changes on
the parameters of the model. Biological systems are robust because they are exposed to continuous
environmental changes and noise and they can keep the internal homeostasis. Because of that,
sensitivity analysis on the mathematical model is a quality measurement which gives information of the
robustness of the model, if the model responds changing a lot after small changes it means that it is not
biologically realistic. But this methodology can also be used for proposing interesting targeting points for
drug design, as the most sensitive processes in the model are the ones which are the most easy to
manipulate to change the output of the system.

Different equations can be used to represent a specific dynamical process depending on the
assumptions and observations on the phenomena. In this review (Voit, 2013) it is presented the most
used mathematical formalisms for ODE models in biology. Here the attention will only be focused on
two forms: i) mass actions; ii) power-law.

Mass action was originally developed in chemistry (Waage and Gulberg, 1986), it considers that
the velocity of the processes are proportional to the elements intervening in it raised to the
corresponding kinetic order, which in a chemical reaction coincides with the stoichiometric index.
Basically it assumes that the velocities are linear dependent on concentration of elements on
monosubstrate processes. This assumption is a good option because of simplicity, and it is commonly
used on the first modelling approaches. Even when the processes involved are non-linearly related we
can assume linearity in some region around certain condition. However, this formalism cannot be able
to reproduce all dynamical behavior of the biological systems, which makes necessary to change to a
more complex formalism when it starts failing.

Power-law formalism is based on the Biochemical Systems Analysis explained above (Voit,
2013). It assumes that the relationship between velocities and elements are linear in a double log
representation. This is equivalent to assume that the elements intervening in one process are raised to
an exponent, which can be a real number, instead of an integer as in mass action formalism. It began as
a way to simulate biochemical reactions using a canonical mathematical representation, which does not
depend on the enzymatic mechanism (Savageau, 2010), as it happens in Michaelis-Menten formulation.
Then it has proved to be useful in many other biological systems out of metabolism (Boykin and Ogle,
2010; Liu et al., 2008; Renton et al., 2005; Smith, 1975; Vera et al., 2008). This is because even being a
linearizable formalism it is able to reproduce most of the non-linear behaviors observed in biological
organisms. It also provides an easy way of making stationary and sensitivity analysis of the models.

Another mathematical formalization different from ODE models is agent based modelling (ABM)
(Marchi and Page, 2014). The main difference is that instead of being based on equations, the elements
are particles which can move and interact with other elements and with the environment. It is defined
creating a framework in which the particles can move, assigning the number and characteristics of the
particles and finally defining a set of rules to be followed by the particles. The advantages are that this
formulation has a resolution of individuals and it considers the spatial dimension. However, due to the
individual definition it is not appropriate to simulate biological systems with many elements. It is a good
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option when it is needed to focus the attention on a specific mechanism produced by the interaction of
few elements, in which is difficult to induce general rules at higher scale.

Use dynamical experimental information from bibliography to calibrate the model

Experimental data is the obliged reference of mathematical models in science, and specifically in
biological systems. Calibration of a mathematical model consists on giving values to the free parameters
of the equations of the model in a way that they are able to reproduce the observed phenomena.

The first step for calibration is looking for experimental data measured during time (for
dynamical models) (Voit and Chou, 2010). It is relevant to consider the quality of the data, not only
concerning the lack of errors, but the fact that data is measured in the proper conditions in which the
model was defined. Frequently data has to be processed and compared with data taken in similar or
even in different conditions. Normalization is a common post-processing task when it is integrated data
from many different works; usually experimental observations are divided by the mean value of the data
set, or even expressed between 0 and 1.

Once the data is formatted to the model, many different mathematical tools can be used to
obtain the value of the free parameters from the data. It can be applied linear or non-linear regression
and optimization techniques. In case we need to obtain the value of many parameters of non-linear
equations it can be used optimization algorithms which can find solutions of the model which predict
data by an extensive and directed way. The objective is that the model is able to predict the dynamical
behavior of the data.

Another option, usually combined with the previous one, is finding kinetic parameters from
bibliography which can be used as parameters of the model. One example is taking measurements of
the half-live (t1/2) of molecules in the organisms which can be transformed into kinetic parameters (k)

by the following expression:
__In(0.5)
ty,

Other kinetic parameters like Michaelis constant or the maximum velocity can also be used in
the model.

k

At the end the model will be able to predict the dynamical response of the biological system of
interest under certain condition. Before using it to answer the objective proposed it is necessary to test
the validity of the mathematical model.

Validating the predictions of the model using new experimental information not used during
the calibration

A mathematical model is basically a hypothesis of the dynamical mechanism of the biological
system of interest. This hypothesis must be validated before using it to obtain new knowledge. In order
to test the validity of the model is needed new experimental data taken in slightly different conditions
that the data used for the calibration. The idea is evaluating the ability of the model of predict
conditions out of its “comfort zone”, that is the condition in which it is able to properly predict the
observed phenomena. Insofar as it is able to predict different conditions it would mean that the
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mathematical model is a good representative of the actual system under the conditions for answering
the objective.

The classical way to verify the model is starting from a set of data which was measured in the
same organism but changing some of the biological conditions. Under this optimal situation a subset of
the data is used for the calibration and the rest serves for validation. But, as not always is possible to
dispose these kinds of data it is necessarily to look for new experimental data from other studies taken
in the same, or very similar, organisms but using different experimental conditions. Finally, a very
interesting approach to verify the model is the following: first a prediction from the model by changing
the conditions is obtained, and then it is designed an experiment which matches the new conditions of
the model and comparing the prediction made by the model with the data from the experiment. This
constitutes verification a posteriori, because the experimental measurement comes later.

Using the mathematical model to make predictions and answering the objective

Once the mathematical model is able to predict different conditions of our biological system it is
ready to be used to answer the objective of the work. One advantage of mathematical models is that is
it very easy, cheap and fast performing experiments in them. This makes mathematical modelling very
attractive to test preliminary experiments before performing them in a wet laboratory.

If we are interested in understanding the behavior of the system in a different condition we only
have to simulate with the model this condition, but it is usually more interesting looking for a specific
condition which would give the output of interest, for example a therapy for a disease. As it was
mentioned before, sensitivity analysis can serve as a preliminary study to propose promising therapies,
as it is pointing to the change in the system which makes the higher change in the response. However a
systematic perturbation of the model is usually performed to find new therapies. It is interesting to
evaluate combinations of few modifications which could be more effective than the sum of the
perturbations alone, based on the synergy of the system. The result of this kind of analysis is a set of
proposals for drug target searching which can be then tested in the laboratory.

The strength of this methodology is that it is able to integrate the disperse information about
one disease in a mathematical framework which can consider the temporal dimension of the problem.
Real understanding of the biological systems comes by the fact that all the processes and their dynamics
are analyzed simultaneously. Based on this approach the therapeutic strategies are proposed
considering the dynamical and complex nature of the organisms. It opens the possibility of finding new
targets which cannot be conceived by reductionist approach alone.
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