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Abstract 

This final degree project is thought to be a theoretical enlargement of the degree knowledge in order 
to broaden the basic concepts of mathematics and theoretical physics applied to the formulation of 
String theory.  

In this essay, we will make an introduction to the theory of quantum bosonic strings. The ultimate 
objective of this final project will be to formulate the hypothetical gravity force carrier particle, and 
how to recover the Einstein´s equations from String theory.  

This piece of work will commence by making a classical approach to the relativistic string for the 
purpose of formulating important results that we will use to quantize it. 

We will quantize the theory in three different ways. Firstly, the Canonical Quantization will be applied, 
secondly, the Lightcone Quantization will be used and, lastly, we will utilize the one needed in order 
to formulate the general relativity which is The Path Integral approach. 
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 Introduction 

On String theory all the particles emerge as vibrations of a single string after its quantization. 
Originally, it was developed only for bosons. The integration of fermionic supersymmetric fields gave 
rise to the superstring theory where there exists a symmetry on the number of bosons and fermions on 
nature. Therefore, each type of boson particle has a corresponding fermion and vice versa.  

There are several versions of Superstring theory: type I, type IIA, type IIB and two Heterotic theories 
Type HO and Type HE (𝑆𝑂(32) and 𝐸! × 𝐸!), all of them living in a ten dimensions spacetime. These 
different theories allow different types of conditions on the strings, as an example, some of them only 
permit closed strings, while others admit closed and open strings. 

It can be proved that the five formulations are key aspects of the same theory, related to each other 
through dualities. These five theories would be features or points of view of a theory called M-theory.  

The strings of these theories can be extended to D-dimensional objects, called D-branes. It can be 
observed that D ≤ 10 because it would be senseless to speak of a fifteen dimensional object living in a 
ten dimensional spacetime.  

The string theory has many interesting properties. In the case of bosonic string theory, the number of 
space-time dimensions is twenty-six but in superstring it is ten, four of them are flat and the others are 
compactified at really small scales, thus it is difficult to detect them experimentally. This theory has 
different aspects that make it an excellent candidate as a route to the theory of everything, some of 
them are the following: 

- Every string theory must contain a massless spin two state, whose interaction reduces at low 
energy to general relativity. 

- String theories lead to gauge groups large enough to include the Standard Model. 
- String theory does not contain free adjustable parameters, all emerge from the string properties. 

These are some of the reasons that make this theory popular and interesting. Even if it is not the theory 
of everything its study gives us really important tools to understand others fields of physics and other 
theories.   
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1  THE ACTION AS A CENTRAL POINT OF A THEORY 

En este primer capítulo se hablará del principio de mínima acción en mecánica clásica y se ejemplificará 
la formulación de diferentes ecuaciones de la física mediante dicho principio, muchas de ellas serán 
fundamentales para poder estudiar la física de la cuerda. Enunciaremos la acción para una cuerda y 
estudiaremos sus propiedades y simetrías. 

String theory is built over the least action principle as its starting point. Most of the modern theories 
use a least action principle to formulate its mechanics, this principle is widely used due to the simplicity 
of the obtention of the motion equations, conserved quantities and symmetry properties. The 
Electromagnetism, the Newtonian Dynamics, General and Special Relativity are theories that can be 
obtained as a minimum of a certain action. The quantum field theory starts taking the wave functions 
as excitations of classical fields that obey least action principles.  

The action is an integral in time of a certain type of function called Lagrangian that depends on 
dynamical variables such as fields or particles coordinates.  

𝑆[𝑞"(𝑡)] = . 𝑑𝑡	𝐿(𝑞"(𝑡), �̇�"(𝑡), 𝑡).					
#!

#"
 

Taking 𝑆  as the action functional depending on a family of functions, 𝑞" , fixed at the boundary, 
𝛿𝑞"(𝑡$) = 𝛿𝑞"(𝑡%) = 0. This principle imposes the variation at first order of this quantity to be zero  
𝛿𝑆 = 0.  

𝛿𝑆 = . 𝑑𝑡	𝐿(𝑞"(𝑡) + 𝛿𝑞"(𝑡), �̇�"(𝑡) + 𝛿�̇�"(𝑡), 𝑡) = 0,
#!

#"
 

this expression is developed in terms of, 𝛿𝑞"(𝑡) , considering,  𝛿�̇�"(𝑡) =
&'(#
&#

 , we obtain the Euler-
Lagrange equations. 

𝛿𝑆 = 	𝑆[𝑞" + 𝛿𝑞"] − 𝑆[𝑞"], 

𝛿𝑆 = . 𝑑𝑡 9
𝜕𝐿
𝜕𝑞"

𝛿𝑞" +
𝜕𝐿
𝜕�̇�"

𝛿�̇�";
#!

#!
,					 

𝛿𝑆 = . 𝑑𝑡 9
𝜕𝐿
𝜕𝑞"

−
𝑑
𝑑𝑡 <

𝜕𝐿
𝜕�̇�"

=;
#!

#"
		𝛿𝑞" +	. 𝑑𝑡

𝑑
𝑑𝑡

#!

#"
<
𝜕𝐿
𝜕�̇�"

	𝛿𝑞"= 	= 0						∀𝛿𝑞" .	 

The second integral is zero as a consequence of the boundary conditions. Therefore, we obtain the 
Euler-Lagrange equations 

𝜕𝐿
𝜕𝑞"

−
𝑑
𝑑𝑡 <

𝜕𝐿
𝜕�̇�"

= = 0.		 
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As we can see in (Landau L. D. , Lifshitz E. M., 1971); (Lifshitz E. M., V. B. Berestetskii, L.P. 
Pitaevskii, 1975), we can formulate several actions for different theories, we will see some of them in 
the following pages.  

It is possible to derive the special relativity equations for a free particle from an extremal principle. 
The extremum condition 𝛿𝑆 = 0  must be an invariant under any Lorentz transformation so the 
quantity,  𝑑𝑡	𝐿(𝑞"(𝑡), �̇�"(𝑡), 𝑡),  must be a scalar in this sense. The action is defined here as,  

𝑆[𝑥(𝑡)] = . 𝑑𝑡	𝐿(𝑥(𝑡), 𝑣(𝑡)) 	= 	−𝑚𝑐%. 𝑑𝑡C1 −
𝑣%(𝑡)
𝑐% 			

#!

#"
,

#!

#"
 

with 𝑑𝑡E1 − )!(#)
,!

= 𝑑𝜏 = −𝑑𝑠, here 𝜏 is the proper time and 𝑑𝑠 is the length element of the metric 

space. The special relativity equations are those that minimize the proper time between two events.  

Considering continuous variables such as a family of fields, 𝜙" 	(𝑥-), where 𝑥- is a four-vector in a 
Minkowski space. The Lagrangian is written as, 

𝐿 = .𝑑.𝑥 ℒ <𝜙"(𝑥-), 𝜙" ,0(𝑥
-)=. 

We have denoted the derivative of the field respect to its coordinates as, 𝜙,0J𝑥"K =
12
13$

. The least 
action principle is formulated as, 

𝛿𝑆 = .𝑑4𝑥 ℒ L𝜙" + 𝛿𝜙" , 𝜙" ,0 + 𝛿𝜙
"
,0M −.𝑑

4𝑥 ℒ L𝜙" , 𝜙" ,0M = 0. 

Moreover, the integral is defined in the region bounded by the hypersurfaces with  𝑡 = 𝑡$	and 𝑡 = 𝑡%, 
setting the boundary conditions, 𝛿𝜙"(𝒙, 𝑡$) = 	𝛿𝜙"(𝒙, 𝑡%) = 0.  Plugging this on the variation we 
obtain 

𝛿𝑆 = .𝑑4𝑥	 O
𝜕ℒ
𝜕𝜙" − 𝜕0 P

𝜕ℒ
𝜕𝜕0𝜙"

QR 𝛿𝜙" +		.𝑑4𝑥	𝜕0 P
𝜕ℒ

𝜕𝜕0𝜙"
𝛿𝜙"Q = 0, 

.𝑑4𝑥	 O
𝜕ℒ
𝜕𝜙" − 𝜕0 P

𝜕ℒ
𝜕𝜕0𝜙"

QR 𝛿𝜙" = 0				∀		𝛿𝜙" , 

O
𝜕ℒ
𝜕𝜙" − 𝜕0 P

𝜕ℒ
𝜕𝜕0𝜙"

QR = 0. 

From now on, we will use natural units (𝑐 = ℏ = 1) in this essay. 

From (Lifshitz E. M., V. B. Berestetskii, L.P. Pitaevskii, 1975) and (Landau L. D. , Lifshitz E. M., 
1971) we found some wave equations obtained with a least action principle: 

1. Schrödinger equation,   𝑖 15
1#
= $

%6
𝛻%𝜓,			that comes from the Lagrangian density, 

ℒ =
1
2 9𝑖J𝜓

∗𝜓,8 − 𝜓𝜓,8∗ 	K +
1
𝑚𝜓∗,"𝜓,";. 
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This action is invariant under Galileo transformations but it is not a relativistic invariant. 

Some examples of invariant wave equations under Lorentz transformations are the Klein Gordon 
equation and the Dirac equation (both formulated on a Minkowskian space). 

2. Klein Gordon equation  J𝜕0	𝜕0 +𝑚%K𝜙 = 0			comes from the Lagrangian density,  
 

ℒ = 𝜕0𝜙∗𝜕	0𝜙 −𝑚%𝜙∗𝜙. 
 

3. Dirac field equation  J𝑖𝛾0	𝜕0 −𝑚K𝜓 = 0  comes from the Lagrangian density, 
 

ℒ = 𝜓XJ𝑖𝛾0𝜕0 −𝑚K𝜓. 

Where 𝛾0 are the Dirac gamma matrices and 𝜓 is a four components object called spinor,  𝜓X is defined 
𝜓X = 𝜓∗𝛾8. These matrices enable the Dirac equation to be a covariant equation with a first order 
derivative (thus making it different from the Klein Gordon equation and solving problems of 
normalization as we see in (Maiani L. ; Benar O., 2016)). 

There is not a unique way of quantizing a system. Different approaches can give rise to the same 
classical state, for example, the canonical quantization and the Feynman path integrals. But the main 
idea when we quantize a field is to construct the Fock space of the theory. The Fock space has a non-
defined number of field excitations. At the covariant approach the states of this space are constructed 
promoting the fields to creation and destruction operators that fill the vacuum (which has to be 
previously defined, additional information will be provided on the last chapter) with many excitations 
of the field modes. 

Other examples of the use of the least action principle come from General Relativity. We can 
generalize the special relativity action to curved spaces to describe the evolution of a free particle on 
a curved spacetime. This is the starting point of the study of string theory. We can read about this in 
(Wray, 2011).  

Firstly, we define the element of distance on a curved space as, 

𝑑𝑠% = −𝑔0-(𝑥)𝑑𝑥0𝑑𝑥- 	, 

where 𝑥- are the manifold coordinates and  𝑔0- the metric tensor. 

The action is, again, defined as the integral with respect to the element of distance times one constant, 
that has to be the mass to be consistent with the special relativity Lagrangian case. 

𝑆 = −𝑚.𝑑𝑠 = −𝑚.𝑑𝜏C−𝑔0-
𝑑𝑥0

𝑑𝜏
𝑑𝑥-

𝑑𝜏 	. 

This action is invariant under the parametrization choice on the manifold and represents the path length 
in the manifold. The equations of motion describe the geodesic on the manifold between two given 
points. 
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An equivalent action could be formulated with an additional function 𝑒(𝜏), that allows us to avoid the 
square root 

𝑆: =
1
2.𝑑𝜏 L𝑒

(𝜏);$𝑔0-�̇�0�̇�- −𝑚%𝑒(𝜏)M. 

To show its equivalence we vary the action respect to 𝑒(𝜏) and find the stationary result 

𝛿𝑆: =
1
2.𝑑𝜏 𝛿 L𝑒

(𝜏);$𝑔0-�̇�0�̇�- −𝑚%𝑒(𝜏)M 

=
1
2.𝑑𝜏 J𝑒

(𝜏);%𝑔0-�̇�0�̇�-𝛿𝑒 − 𝑚%𝛿𝑒K 

=
1
2.𝑑𝜏

𝛿𝑒
𝑒% (𝑔0-�̇�

0�̇�- −𝑚%𝑒%) 	= 0. 

 We find 𝑒 = E;<$%3̇$3̇%

6! 	, now plugging back in 𝑆: we get  

𝑆: =
1
2.𝑑𝜏[P

−𝑔0-�̇�0�̇�-

𝑚% Q
;$%
𝑔0-�̇�0�̇�- −𝑚% P

−𝑔0-�̇�0�̇�-

𝑚% Q

$
%
	\ 

=
1
2.𝑑𝜏]P

−𝑔0-�̇�0�̇�-

𝑚% Q
;$%
	P𝑔0-�̇�0�̇�- −𝑚%−𝑔0-�̇�

0�̇�-

𝑚% Q^ 

= −𝑚.𝑑𝜏 _J−𝑔0-�̇�0�̇�-K
;$%	J−𝑔0-�̇�0�̇�-K` 

= −𝑚.𝑑𝜏 PJ−𝑔0-�̇�0�̇�-K
$
%	Q = 𝑆. 

Therefore, it is shown that when the action is minimized regarding the variation of the function, 𝑒(𝜏), 
we obtain the action as the length element in the manifold. 

The Einstein equations also arise from an extremal principle see  (Lifshitz E. M., V. B. Berestetskii, 
L.P. Pitaevskii, 1975). Starting from the Einstein Hilbert action we can obtain the General relativity 
equations. This action is written as, 

𝑆 = .(
1
2𝜅 𝑅 + ℒ>)E−det	(𝑔?@		)𝑑

4𝑥. 

Where 𝑅  is the Ricci scalar, 𝜅 = 8𝜋𝐺𝑐;4,  with 𝐺  being the gravitational constant and 	ℒ>  the 
Lagrangian density of the matter fields. 

If the action is varied concerning the inverse of the metric, 𝑔0- , and we make it zero we obtain,  
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𝛿𝑆 = .𝑑4𝑥 i
1
2𝜅
𝛿j−𝑔𝑅
𝛿𝑔0- +

𝛿j−𝑔ℒ>
𝛿𝑔0- k 𝛿𝑔0- = 

.𝑑4𝑥 i
1
2𝜅 𝑅

𝛿j−𝑔
𝛿𝑔0- +

1
2𝜅j−g

𝛿𝑅
𝛿𝑔0- +

𝛿j−𝑔ℒ>
𝛿𝑔0- k 𝛿𝑔0- = 

.𝑑4𝑥j−gi
1
2𝜅 P𝑅

1
j−𝑔

𝛿j−𝑔
𝛿𝑔0- +

𝛿𝑅
𝛿𝑔0-Q +

1
j−𝑔

𝛿j−𝑔ℒ>
𝛿𝑔0- k 𝛿𝑔0- = 0. 

(it is assumed that the reader knows the foundations of the functional derivatives) 

Hence, we obtain the following equation 

1
2𝜅 P𝑅

1
j−𝑔

𝛿j−𝑔
𝛿𝑔0- +

𝛿𝑅
𝛿𝑔0-Q = −

1
j−𝑔

𝛿j−𝑔ℒ>
𝛿𝑔0- .	 

By definition the Energy-momentum tensor with regard to the variation of a metric is 𝑇?@	 ≡

− $
A;B

'A;Bℒ&
'<$%

.  

Now, we will show a couple of results before continuing. First, 

𝛿𝑅
𝛿𝑔0- =

𝛿𝑔0-𝑅0-
𝛿𝑔0- = 

𝛿(𝑔0-)𝑅0-
𝛿𝑔0- +

𝛿(𝑅0-)𝑔0-

𝛿𝑔0- . 

Looking at the second term, 

𝛿(𝑅0-)𝑔0- = (𝛻D𝛿𝛤-0
D − 𝛻-𝛿𝛤E0E 	)𝑔0- .	 

𝛻D being the covariant derivative. By employing the property 𝛻D𝑔0- = 0, we obtain the expression 

𝛿(𝑅0-)𝑔0- = 𝛻D(𝑔0-𝛿𝛤-0
D − 𝑔0D𝛿𝛤E0E 	). 

This is a total derivative that plugged into the action is multiplied by j−𝑔, that also has the property 
𝛻Dj−𝑔 = 0, so we can write this term in the integral as  

.𝑑4𝑥𝛻D{j−𝑔(𝑔0-𝛿𝛤-0
D − 𝑔0D𝛿𝛤E0E 	)}. 

Employing the Stokes theorem we reduce this expression to boundary terms that vanish because 𝛿𝑔0- 
has to be zero at the boundary. Then,  

𝛿𝑅
𝛿𝑔0- = 𝑅0- . 
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On the other hand, we have, 

𝛿j−𝑔
𝛿𝑔0- = −

1
2P

1
j−𝑔

Q
𝛿𝑔
𝛿𝑔0- = −

1
2P

1
j−𝑔

Q
𝛿𝑔0-𝑔0-𝑔	
𝛿𝑔0- = −

1
2P

1
j−𝑔

Q
−𝑔0-𝛿𝑔0-𝑔	

𝛿𝑔0-  

= −
1
2𝑔0-j−𝑔.	 

(see the page 12 to a more detailed process of the last calculation) 

Finally substituting these results we obtain the Einstein equations, 

<𝑅0- −
1
2𝑅𝑔0-= = 2𝜅𝑇?@	 

To sum up, we have seen how to express the General Relativity equations as a consequence of the least 
action principle. The string action will emerge as a direct generalization of the relativistic action of a 
particle moving through a curved spacetime, as we will see in the next section.  

 

1.1 The String  

The string theory starts by making a natural generalization for the action of a relativistic particle in a 
curved space to the action that describes the motion of a type of objects called d-branes. The d-branes 
are d-dimensional hypersurfaces embedded on the space-time background geometry. The 0-brane is a 
point particle and the 1-brane is a string, which is a surface on the background spacetime. 

If we call 𝑋0 the coordinates of the space-time. The string will be a mapping on these coordinates,  
𝑋0(𝜏, 𝜎). That conforms the worldsheet, a generalization of the worldline of the relativistic particle. 
This surface tells us the movement of the string in time as a function that depends on the parameter 𝜎, 
so we can treat the string as a field (see Fig 1.1). It is generalized to d-branes as 𝑋0(𝜏, 𝜎-) being, 𝜏 and 
𝜎- , the family of parameters of the brane surface in the space-time.  

                   

Fig 1.1 In this figure we observe the worldline which describes a particle’s motion, and the worldsheet 
that describes the string’s motion. 
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In order to generalize the worldline concept to the worldvolume of the brane, the relativistic action     
𝑆 = −𝑚∫𝑑𝑠, whose argument is the arc element in the manifold. The arc element is now promoted 
to a d-dimensional hypersurface element on the background manifold (𝑑𝜇&), thus the brane action is 
expressed as 

𝑆& = −𝑇&.𝑑𝜇& , (1.1.1) 

with 𝑇& being the tension of the d-brane and has units of  [6GHH]
[)JKL6M]

. The element 𝑑𝜇& is written in terms 
of the parameters of the brane as 

𝑑𝜇& = E−det L𝐺?@(𝑋)M 𝑑NO$𝜎	,					𝑑NO$𝜎 = 	𝑑𝜎8𝑑𝜎$…𝑑𝜎N,				𝑑𝜎8 = 𝜏, 

where 𝐺?@(𝑋) is the metric induced into the worldvolume (or worldsheet for p=1). The induced metric 
can be expressed using the background metric as,  

𝐺?@(𝑋) =
𝜕𝑋0

𝜕𝜎?
𝜕𝑋-

𝜕𝜎@	
𝑔0-(𝑋)					𝛼, 𝛽 = 0,1, … , 𝑝	. 

We express the action for a string as, 

𝑆PQ = −𝑇.𝑑𝜇$ 	,							𝑝 = 1	.		 

The string 𝑋0(𝜏, 𝜎)  is a function of two parameters, one timelike 𝜏 , and one spacelike 𝜎 . By 
introducing the notation  𝑋0: = 1R$

1E
  and  �̇�0 = 1R$

1S
 , the metric element, (on a Minkowskian 

spacetime) 𝐺?@(𝑋), is written as,  

𝐺?@ = [
1R$

1S
1R%

1S
𝜂0-(𝑋)

1R$

1S
1R%

1E
𝜂0-(𝑋)

1R$

1E
1R%

1S
𝜂0-(𝑋)

1R$

1E
1R%

1E'	
𝜂0-(𝑋)

\ = < �̇�
% 𝑋:�̇�

�̇�𝑋: 𝑋:%
= 

Then the action 𝑆PQ  is written as  

𝑆PQ = −𝑇.E(𝑋:�̇�)(�̇�𝑋:) − �̇�%𝑋:% 𝑑𝜏𝑑𝜎 (1.1.2) 

 

This is the Nambu-Goto action, it depends on the area of the worldsheet. It can be shown that the 
quantity (𝑋:�̇�)(�̇�𝑋:) − �̇�%𝑋:% is always positive defined as it is shown in (Zwiebach, 2004) just as 
the area.  

If we take a vector on the world surface 𝑣0 = 1R$

1S
+ 𝜆 1R

$

1E
	, it can be timelike or spacelike depending 

on 𝜆, so the quantity 𝑣% must suffer a change of sign on the values that make 𝑣% = 0, 
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𝑣% = 0	 → 		 𝜆%𝑋:% + 2𝜆𝑋:�̇� +	 �̇�% = 0. 

It is a polynomial in lambda so if we want this quantity to have two possible signs, this implies that 
the discriminant has to be positive, so  (𝑋:�̇�)J�̇�𝑋:K − �̇�%𝑋:% > 0. Thus, this proves that the argument 
of the square root is always positive.  

As for the point particle case, it is possible to define an equivalent action by introducing an additional 
field,		ℎ?@(𝑋),  

𝑆T = − U
% ∫j−det(	ℎGV) ℎ

?@ 1R$

1E)
1R%

1E'	
𝑔0-𝑑𝜏𝑑𝜎,						𝜎? , 𝜎@	 = 	𝜎, 𝜏.  (1.1.3) 

 

This is the Polyakov action, it presents the tangent vectors of the worldsheet out of the square root so 
this action is better suited for path integral quantization as we will see in the chapter 4.  

We make the same method as in the point particle case to see the equivalence of the 𝑆T and  𝑆PQ  
actions (see (Wray, 2011)).  

We vary 𝑆T	with respect to  ℎ?@, and impose the variation to be zero,  

𝛿𝑆T
𝛿ℎ?@

= 0, 

𝛿𝑆T = .
𝛿𝑆T
𝛿ℎ?@

	𝛿ℎ?@ . 

In order to start proving this, we remember that varying any action  with respect to a metric we obtain 
a stress-energy tensor, 

𝑇?@ = −
2
𝑇

1
√−ℎ

𝛿𝑆T
𝛿ℎ?@

	. (1.1.4) 

By setting the variation of the action equal to zero we obtain, 

𝛿𝑆T = .
𝛿𝑆T
𝛿ℎ?@

	𝛿ℎ?@ = −
𝑇
2.𝑑𝜎𝑑𝜏	𝑇?@

√−ℎ 	𝛿ℎ?@ = 0. 

This equation is only possible if  𝑇?@ = 0. We observe that the identity, ℎ = ℎGV𝐻(𝑎, 𝑏), (being 
𝐻(𝑎, 𝑏) the adjoint matrix of ℎGV) is varied with respect to ℎGV as 

𝛿ℎ = 𝛿ℎGV𝐻(𝑎, 𝑏) = 𝛿ℎGVℎGVℎ. 

Using, 

ℎGVℎGV = 1 → 𝛿ℎGVℎGV + ℎGV𝛿ℎGV = 0, 

we obtain the expressions 
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𝛿ℎ = −ℎGV𝛿ℎGVℎ, 

𝛿√−ℎ =
−1
2 <

1
√−ℎ

=ℎGV𝛿ℎGV(−ℎ) =
−1
2
√−ℎℎGV𝛿ℎGV . 

To study the form of the stress-energy tensor we vary the Polyakov action with	respect to ℎ?@, 

𝛿𝑆N = −
𝑇
2.𝛿

√−ℎ ℎ?@
𝜕𝑋0

𝜕𝜎?
𝜕𝑋-

𝜕𝜎@	
𝑔0-𝑑𝜏𝑑𝜎	 −

𝑇
2.

√−ℎ 𝛿ℎ?@
𝜕𝑋0

𝜕𝜎?
𝜕𝑋-

𝜕𝜎@	
𝑔0-𝑑𝜏𝑑𝜎, 

𝛿𝑆N = −
𝑇
2.

√−ℎ𝛿ℎ?@ <
−1
2 ℎ?@ℎ&,

𝜕𝑋0

𝜕𝜎&
𝜕𝑋-

𝜕𝜎,	 𝑔0- +
𝜕𝑋0

𝜕𝜎?
𝜕𝑋-

𝜕𝜎@	
𝑔0-=𝑑𝜏𝑑𝜎.			 

Then we finally obtain,  

𝑇?@ =
−1
2 ℎ?@ℎ&,

𝜕𝑋0

𝜕𝜎&
𝜕𝑋-

𝜕𝜎,	 𝑔0- +
𝜕𝑋0

𝜕𝜎?
𝜕𝑋-

𝜕𝜎@	
𝑔0- = 0	. (1.1.5) 

We conclude from the equation (1.1.5) that 

1
2 ℎ?@ℎ

&, 𝜕𝑋
0

𝜕𝜎&
𝜕𝑋-

𝜕𝜎,	 𝑔0- =
𝜕𝑋0

𝜕𝜎?
𝜕𝑋-

𝜕𝜎@	
𝑔0- = 𝐺?@(𝑋), 

taking the determinant of this expression, 

detJℎ?@K <
1
2 ℎ

&, 𝜕𝑋
0

𝜕𝜎&
𝜕𝑋-

𝜕𝜎,	 𝑔0-=
%

= detJ𝐺?@K, 

multiplying by a minus sign and taking the square root we obtain the final conclusion  

1
2
√−ℎℎ&,𝐺&, = √−𝐺. 

This shows that the Polyakov action is classically equivalent to the Nambu-Goto action.  

1.2 Symmetries of The String Action. 

The symmetries of a theory is a high relevance topic when we start to develop a theory. If we want 
to start on this matter we have to distinguish two types of symmetries, global and local symmetries 
(see (Tong, 2012) and (Wray, 2011)). 

The global symmetries do not depend on which space-time point are being performed and give rise to 
global conserved currents and conserved quantities via Noether theorem. One example of global 
transformation is the Poincare transformations (see on (Maiani L. ; Benar O., 2016) the specific details 
of this group). 

If the strings are embedded in a Minkowskian spacetime, this produces that our strings must respect 
the same symmetries as this space, in particular the invariance under the Lie group of Poincare 
transformations, defined as 
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𝑋0(𝜏, 𝜎) = 𝛬-
0𝑋-(𝜏, 𝜎) + 𝑏0 , 

where the 𝛬-
0 satisfies the equation   𝛬-

0𝜂0W𝛬E
W = 𝜂-E	, taking the determinant results in the identity 

that defines the Lorentz group,  

−𝛬U𝛬 = −1		 ↦ 		 det 𝛬 = ±1	. 

The value of the determinant defines the proper and improper transformations of the Lorentz group 
that are two not continuously connected parts of the group. The transformation on infinitesimal form 
is written as 

𝑋:0(𝜏, 𝜎) = 𝑋0(𝜏, 𝜎) + 𝑎-
0𝑋-(𝜏, 𝜎) + 𝜖0 , 

𝑋:0(𝜏, 𝜎)−𝑋0(𝜏, 𝜎) = 𝛿𝑋0(𝜏, 𝜎) = 𝑎-
0𝑋-(𝜏, 𝜎) + 𝜖0 ,	 

𝛿ℎ?@ = 0.	 

Where, 𝑎-
0  and 𝜖0 , are the infinitesimal generators of the group and if we lower the 𝜇	index then, 

𝑎0- = −𝑎-0. 

The Polyakov action is invariant under this transformation,  

𝛿𝑆T = −𝑇.j−det(	ℎGV) ℎ?@
𝜕𝛿𝑋0

𝜕𝜎?
𝜕𝑋-

𝜕𝜎@	
𝜂0-𝑑𝜏𝑑𝜎, 

𝛿𝑆T = −𝑇.j−det(	ℎGV) ℎ?@
𝜕J𝑎X

0𝑋X(𝜏, 𝜎) + 𝜖0K
𝜕𝜎?

𝜕𝑋-

𝜕𝜎@	
𝜂0-𝑑𝜏𝑑𝜎, 

𝛿𝑆T = −𝑇.j−det(	ℎGV) ℎ?@𝜂0-𝑎X
0 𝜕J𝑋X(𝜏, 𝜎)K

𝜕𝜎?
𝜕𝑋-

𝜕𝜎@	
𝑑𝜏𝑑𝜎, 

𝛿𝑆T = −𝑇.j−det(	ℎGV) ℎ?@𝑎X-
𝜕𝑋X

𝜕𝜎?
𝜕𝑋-

𝜕𝜎@	
𝑑𝜏𝑑𝜎. 

The term 𝑎X- is antisymmetric, so the following product vanishes,  𝑎X-
1R*

1E)
1R%

1E'	
= 0.  This makes the 

variation to be zero and proves that the Polyakov action is manifestly Poincare invariant. 

The Local symmetries are those that do not depend on the points of the manifold where they are being 
performed. Two crucial examples on our theory are reparameterization invariance and Weyl 
symmetry. 

Polyakov action is invariant under a change of parameters as 𝜎: = 𝑓(𝜎) (this transformation on the 
parameters is also called diffeomorphism). This variable change lets 𝑋0(𝜏, 𝜎)  invariant,  and 
transforms the metric as a 2-form, 

 𝑋:0(𝜏, 𝜎′) = 𝑋0(𝜏, 𝜎)	    and    ℎ?@ =
1Y+

1E)	
1Y,

1E'	
ℎ'W		. 
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Weyl transformations represent changes on the scale of a metric (they are also called conformal 
transformations and they are basically local changes of scale that keep the angles of the 
parametrization). 

ℎ?@(𝜏, 𝜎) ⟶	ℎ?@: (𝜏, 𝜎) = 𝑒%2(E)ℎ?@(𝜏, 𝜎) 

𝑋0(𝜏, 𝜎) ⟶ 𝑋0(𝜏, 𝜎) 

The Polyakov action depends on ℎ?@ in the form  ℎ?@E−detJ	ℎ?@K. The first term, ℎ?@ , transforms 

under a Weyl transformation as ℎ′?@ = 𝑒;%2(E)ℎ?@, and the second as  

E−detJ	ℎ:?@K = E−𝑒%Z%2(E)[detJℎ?@K = 

𝑒
%Z%2(E)[

% E−detJℎ?@K = 𝑒%2(E)E−detJℎ?@K. 

Therefore the product ℎ?@E−detJ	ℎ?@K remains symmetric  

ℎ′?@E−detJ	ℎ′?@K = ℎ?@E−detJ	ℎ?@K. 

So the Polyakov action is symmetric under this transformation. 

These local symmetries (Gauge symmetries) denote redundancies in the degrees of freedom of our 
theory, but it is possible to fix this redundancies with additional requirements. This is known as ‘gauge 
fixing’. Gauge fixing can simplify our theory equations, for example, the electromagnetic field is 
invariant under the gauge group of phase transformations U(1)  whose elements are of the form,	𝑒"2(R)	. 
We can fix these gauge by taking the restriction 𝜕0𝐴0 = 0  (where 𝐴0 is the gauge field associated to 
the gauge group U(1)). Thus, we write the Maxwell equations in the compact form 

𝜕0𝜕0𝐴- = 𝑒𝑗- . 

We will show now that we can fix a gauge to make the metric ℎGV flat, by using the local symmetries 
we have just introduced. 

The metric ℎ?@  is a symmetric tensor with three independent components, with two 
reparameterizations and a Weyl transformation we can make ℎ?@ 	Minkowskian.  At first, we make a 
reparameterization  𝜎($)0 = 𝑓($)0(𝜎?	)   to make  ℎ8$

($) = 0; after that, a second reparameterization is 
performed,  𝜎(%)0 = 𝑓(%)0(𝜎($)?	), which makes  ℎ88

(%) = −ℎ$$
(%)	 and keeps also the previous condition 

ℎ8$
(%) = 0. 

The resultant metric is  ℎ?@
(%) = P

−ℎ$$
(%) 0
0 ℎ$$

(%)Q.  If we define  𝜉?@ ≡ L−1 0
0 1M	 then ℎ?@

(%) can be written 

as ℎ?@
(%) = ℎ$$

(%)𝜉?@ .  By employing a Weyl transformation to remove the ℎ$$
(%) factor, we rewrite the 

Polyakov action as 
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𝑆T = −
𝑇
2.𝜉

?@𝜕?𝑋0𝜕@𝑋-𝜂0-𝑑𝜏𝑑𝜎 → 

																			𝑆N =
𝑇
2.J�̇�

% − 𝑋:%K𝑑𝜏𝑑𝜎.		 (1.2.1) 

 

Just assuming a flat Minkowskian background metric we have reduced the difficulty of the problem 
enormously; we will see why on the next chapter. As a conclusion of this chapter, we have explained 
the basic aspects in order to be able to understand the classical motion of the string. The next chapter 
will be focused on the details of the classical motion. 
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2  Solving Field Equations  

En el capítulo anterior enunciamos los detalles necesarios para formular la acción de la cuerda y las 
simetrías necesarias para simplificarla. Ahora nos centraremos en la resolución de las ecuaciones para dicha 
acción poniendo atención a las condiciones de contorno y en imponer las restricciones necesarias para su 
correcto tratamiento.   

In the previous section we obtained the action (1.2.1) employing the gauge symmetries of our theory 
and considering a Minkowskian space-time. The Euler-Lagrange equation of (1.2.1) is the free wave 
equation.  

(𝜕#% −	𝜕E%)	𝑋 = 0. (2.1.1) 

But to obtain this result we have to consider firstly certain boundary conditions (all this chapter makes 
reference to (Tong, 2012)  and (Wray, 2011)). We will establish these conditions varying the action 
(1.2.1) as follows 

𝛿𝑆N =
𝑇
2.J2�̇�𝛿�̇� − 2𝑋

:𝛿𝑋:K𝑑𝜏𝑑𝜎 =	 

𝑇.(−𝜕#%𝑋0 +	𝜕E%𝑋0)𝛿𝑋0𝑑𝜏𝑑𝜎 + 	𝑇.𝑑𝜎�̇�𝛿𝑋0]1S 

+ �𝑇.𝑑𝜏𝑋:𝛿𝑋0]E\%] − 𝑇.𝑑𝜏𝑋:𝛿𝑋0]E\8�. 

(2.1.2) 

The second term on the right hand side of (2.1.2) is zero because the variation at the boundary of		𝜏 is 
zero,   𝛿𝑋0]1S = 0. 

To remove the last two terms of the right hand side of (2.1.2) we have to stablish constraints at the 
strings boundaries. Firstly, we have to distinguish between open strings and closed strings. This is a 
crucial point that differs when we consider different string theories, as we had previously mentioned 
at the introduction. To make zero the boundary terms corresponding to the sigma coordinate we have 
three options, one of them is to consider the string to be closed and the other two belong to the opens 
discusion.  

From now on in this essay. The most of the following calculations do not distinguish between closed 
or open strings, if we do not specify if we are talking about closed or open strings we will refer to 
closed strings. If the discussion were different for the open strings it will be indicated and explained.  

Closed strings are characterized by periodic boundary condition, namely 𝑋0(𝜏, 𝜎) = 𝑋0(𝜏, 𝜎 + 2𝜋).  

The periodic condition implies that 𝛿𝑋0(𝜏, 𝜎) = 𝛿𝑋0(𝜏, 𝜎 + 2𝜋) therefore, the boundary terms in 
(2.1.2) disappear, i.e.  

𝑇.𝑑𝜏𝑋:𝛿𝑋0]E\%] − 𝑇.𝑑𝜏𝑋:𝛿𝑋0]E\8 	= 0. 
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Besides, there is one thing we still have to consider to use the Polyakov action.  We have to satisfy the 
condition  '^-

'_)'
= 0. The condition (1.1.5) can be rewritten, by piking our gauge choice (ℎ?@ = 𝜉?@) 

and a flat Minkowskian space-time as, 

�𝑇88 = 𝑇$$ =
1
2
J�̇�% + 𝑋:%K = 0,

𝑇$8 = 𝑇8$ = �̇� · 𝑋: = 0.
 (2.1.3) 

Recapitulating, our string must obey the three following equations: 

�

(𝜕S% −	𝜕E%)	𝑋0 = 0,
1
2
J�̇�% + 𝑋:%K = 0,

�̇� · 𝑋: = 0.

	 

The last equation of (2.1.3) tells us that the string vibrational part must be orthogonal to the strings 
time evolution. This is a necessary condition at the quantization to avoid what we will call ghosts states 
on the next section.  

Employing the static gauge,  𝑋8 ≡ 𝑡 = 𝑅𝜏 , then  𝑋8: = 0,  and we use the notation 𝑋0 = (𝑡, �⃗�	). The 
conditions (2.1.3) are rewritten as, 

i
�̇⃗� · 𝑥: = 0,

J�̇⃗�% + �⃗�:%K = 𝑅%.
 (2.1.4) 

The first condition tells us that the spatial modes of the string must be perpendicular to the string itself 
so the only allowed oscillations on the string are transverse oscillations. The second condition tells us 
that if  �̇⃗� = 0			the length of the string is:  

.𝑑𝜎CP
𝑑�⃗�
𝑑𝜎Q

%

= 2𝜋𝑅.	 

But it will not stay this way for too long, the string will contract under its own tension while the second 
equation found in (2.1.4)  relates the length of the string with its instantaneous velocity �̇� determined 
by (2.1.1) 

 

2.1 Mode Expansion and Noether Theorem  

In this section, we will solve the field equation finding also the conserved charges. To solve the field 
equation we will use the light-cone coordinates on the worldsheet defined as: 

𝜎± = 𝜏 ± 𝜎 

This transformation affects to the partial derivates in the following way 
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𝜕± =
1
2
(𝜕S ± 𝜕E). 

In this coordinate frame the motion equations are rewritten as 

(𝜕S% −	𝜕E%)	𝑋 = (𝜕S − 𝜕E)(𝜕S + 𝜕E)𝑋 = 𝜕;𝜕O𝑋 = 0. 

The (2.1.3) conditions convert to the following restrictions: 

On one hand, 

1
2
((𝜕S𝑋)% + (𝜕E𝑋)%) =

1
2 L
(𝜕;𝑋 + 𝜕O𝑋)% + J(−𝜕;𝑋 + 𝜕O𝑋)K

%M = 

1
2
((𝜕;𝑋)% + (𝜕O𝑋)% + 2𝜕;𝑋𝜕O𝑋 + (𝜕;𝑋)% + (𝜕O𝑋)% − 2𝜕;𝑋𝜕O𝑋) = 

(𝜕;𝑋)% + (𝜕O𝑋)% = 0. 

On the other hand, 

�̇� · 𝑋: = (𝜕;𝑋 + 𝜕O𝑋)(−𝜕;𝑋 + 𝜕O𝑋) = (𝜕O𝑋)%−(𝜕;𝑋)% = 0. 

This two restrictions are only matching each other if, 

�(𝜕;𝑋)
% = 0

(𝜕O𝑋)% = 0
	 

Therefore, set of conditions that our string have to obey are 

�
(𝜕;𝑋)% = 0
(𝜕O𝑋)% = 0

	

𝜕;𝜕O𝑋 = 0
 (2.1.5) 

We have enough information to introduce the general solution (2.1.5) applying Fourier series. The 
general solution of the wave equation has the form of a right moving wave plus a left moving wave, 

𝑋0(𝜏, 𝜎) = 	𝑋a
0(𝜎;) + 𝑋b

0(𝜎O). (2.1.6) 

Each of them with its corresponding expansion in Fourier modes  

⎩
⎪
⎨

⎪
⎧
𝑋a
0(𝜎;) =

1
2 𝑥

0 +
1
2𝛼

:𝑝0𝜎; + 𝑖C
𝛼:

2 	�
1
𝑛	𝛼c

0𝑒;"cE.

cd8

𝑋b
0(𝜎O) =

1
2
𝑥0 +

1
2
𝛼:𝑝0𝜎O + 𝑖C

𝛼:

2
	�

1
𝑛
	𝛼�c

0𝑒;"cE/

cd8

 (2.1.7) 

Of course, the general solution still has to obey the additional constraints and the periodicity condition,  
𝑋0(𝜏, 𝜎) = 𝑋0(𝜏, 𝜎 + 2𝜋). Using this, the general solution is written as 
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𝑋0 = 𝑥0 + 𝛼:𝑝0𝜏 + 𝑖C
𝛼:

2 �
1
𝑛 J𝛼�c

0𝑒"cE	 + 𝛼c
0𝑒;"cEK𝑒;"cS.

cd8

 (2.1.8) 

With respect to the (2.1.8) expression we have to make some comments: 

- Firstly, we can observe that 𝑋a
0 and 𝑋b

0 do not obey the periodicity conditions by their own but 
the sum of them does. The reason lay on the linear terms at 𝜎±. 

- The factors 𝛼′ and  $
c
  have been chosen for later convenience (to define the Virasoro algebra 

from the constraints of (2.1.5)) .  
- The coefficients of the Fourier modes require 𝛼c

0 = (𝛼;c
0 )∗		 and  𝛼�c

0 = (𝛼�;c
0 )∗ , because 

𝑋0(𝜏, 𝜎) are real fields. 
- Lastly, we have to mention that here 𝑥0 is the center of mases of the string and the factor 𝑝0, 

its momentum.  

We obtain the string momentum term from the Noether current of the translational invariance with 
respect to the Poincare group. From the Noether theorem we know that every global symmetry has 
associated a conserved current and a conserved charge (see (Maiani L. ; Benar O., 2016; Polchinski, 
1998) to consult Noether theorem on field theory). 

We will now explain how to obtain the conserved quantities such as the linear momentum and angular 
momentum for field representations of the Poincare group. Then we will apply this to our string 
discussion. 

If we perform an infinitesimal transformation of the Poincare group over the family of fields (that 
conforms a representation of the Lorentz group) that our theory depends on, 	𝜙e(𝑥),  such,  
𝜙e → 𝜙e + 𝛿𝜙e,  being,  𝛿𝜙e = 𝜖"f(𝑀g

"f)e	𝜙g, with 𝜖"f the infinitesimal parameter of the Lorentz 
transformation and (𝑀g

"f)e , the generators of the transformations from the 𝐵  component of the 
representation to the 𝐴 (all of them antisymmetric in the 𝑖𝑗 indices). Regarding the translational part 
the variation would be written as 𝛿𝜙e = 𝜖"(𝑀g

" )e	𝜙g. 

𝛿ℒ =
𝜕ℒ
𝜕𝜙e 𝛿𝜙

e +
𝜕ℒ

𝜕𝜕-𝜙e
𝜕-𝛿𝜙e = <	

𝜕ℒ
𝜕𝜙e + 𝜕-

𝜕ℒ
𝜕𝜕-𝜙e

= 𝛿𝜙e + 𝜕- <
𝜕ℒ

𝜕𝜕-𝜙e
𝛿𝜙e= = 0. 

The first term of the last step is zero, because it is the Euler-Lagrange equation. The second term 
defines an integral that has to be zero to make 𝛿𝑆 = 0,  

.𝑑𝑥h	𝜕- <
𝜕ℒ

𝜕𝜕-𝜙e
𝛿𝜙e= = .𝑑𝑥h	𝜕- <

𝜕ℒ
𝜕𝜕-𝜙e

𝜖"f(𝑀g
"f)e	𝜙g= 

= 𝜖"f.𝑑𝑥h	𝜕- <
𝜕ℒ

𝜕𝜕-𝜙e
(𝑀g

"f)e	𝜙g= = 𝜖"f.𝑑𝑥h 𝜕-(𝐽"f)- = 0. 

So if we want this to be satisfied for every, 𝜖"f , this requires that, 

.𝑑𝑥h 𝜕8(𝐽"f)8 + 𝜕)(𝐽"f)) =
𝑑𝑄"f

𝑑𝜏 + .𝑑𝑥h;$ 𝜕)(𝐽"f)) = 0 (2.1.9) 
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For the Lorentz transformations of the Poincare group for our string coordinates, 𝛿𝜙e =
𝜖"f(𝑀g

"f)e	𝜙g → 𝛿𝑋0 = 𝑎-
0𝑋-(𝜏, 𝜎)	,  

.𝑑𝜎%	𝜕- <
𝜕ℒ

𝜕𝜕?𝑋0
𝛿𝑋0= = .𝑑𝜎%	𝜕? _

𝜕ℒ
𝜕𝜕?𝑋0

𝑎-
0𝑋-(𝜏, 𝜎)` 

= 𝑎0-.𝑑𝜎%	𝜕? _𝜂0D
𝜕ℒ

𝜕𝜕?𝑋D
𝑋-(𝜏, 𝜎)`, 

as 𝑎0- is antisymmetric the associated current must be also antisymmetric so 	 

𝐽?
0- =

1
2 9𝜂

0D 𝜕ℒ
𝜕𝜕?𝑋D

𝑋-(𝜏, 𝜎) − 𝜂0D
𝜕ℒ

𝜕𝜕?𝑋D
𝑋-(𝜏, 𝜎);,	 (2.1.10) 

 

for the for the Lorentz transformations the generators of the transformation are the 𝑄"f , 

𝐿0- = .𝑑𝜎 𝐽8
0- = .𝑑𝜎

1
2 9𝜂

0D 𝜕ℒ
𝜕𝜕8𝑋D

𝑋-(𝜏, 𝜎) − 𝜂0D
𝜕ℒ

𝜕𝜕8𝑋D
𝑋-(𝜏, 𝜎);. (2.1.11) 

 

As we have gauge fixed the action to be  

𝑆T = −
𝑇
2.𝜉

?@𝜕?𝑋0𝜕@𝑋-𝜂0-𝑑𝜏𝑑𝜎. 

Then,   ℒ = − U
%
𝜉?@𝜕?𝑋0𝜕@𝑋-𝜂0-,  and we obtain, 

𝜕ℒ
𝜕𝜕?𝑋0

= −
𝑇
2 𝜉

?@𝜕?𝑋0𝜕@𝑋-𝜂0- = −
𝑇
2 𝜉

?@𝜕@𝑋-𝜂0- −
𝑇
2 𝜉

@?𝜕@𝑋0𝜂0- = −𝑇𝜕?𝑋0 , 

𝐿0- = .𝑑𝜎
𝑇
2 �𝜂

0D𝜕8𝑋D𝑋-(𝜏, 𝜎) − 𝜂-D𝜕8𝑋D𝑋0(𝜏, 𝜎)�, 

Therefore, we obtain the expression we were looking for the angular momentum 

														𝐿0- = .𝑑𝜎
𝑇
2
[𝜕8(𝑋0)𝑋- − 𝜕8(𝑋-)𝑋0]	. (2.1.12) 

 

For the translational part of the Poincare group we obtain  𝑋0(𝜏, 𝜎) → 𝑋0(𝜏, 𝜎) + 𝑏0 	so 

.𝑑𝜎%	𝜕- <
𝜕ℒ

𝜕𝜕?𝑋0
𝛿𝑋0= = .𝑑𝜎%	𝜕? <

𝜕ℒ
𝜕𝜕?𝑋0

𝑏0= = 𝑏0.𝑑𝜎%	𝜕? <
𝜕ℒ

𝜕𝜕?𝑋0
=. 



 22 

	 

The conserved current of the 𝜇 component on the 𝛼 coordinate corresponds to the energy-momentum 
tensor and is written as  

(	𝑗0)? = −𝑇𝜕?𝑋0 (2.1.13) 

Then, the conserved charge of this tensor is the linear momentum 

𝑃- = . 𝑑𝜎	𝜂-0(	𝑗0)8
%]

8
= . 𝑑𝜎	𝑇𝜕8𝑋0

%]

8
 (2.1.14) 

This integral eliminates the 𝑒±"cE	factor of the modes so the result is  

𝑃- = 2𝜋𝑇𝛼:𝑝- 

So here making 𝛼: = $
%]U

 we obtain that the 𝑝-  factor in the mode expansion is in fact the total 
momentum of the string. 

 

2.2 Constraints Applied to The String  

In the light con gauge, the constraints from (2.1.5) are (we will denote 𝛼c
0 just as 𝛼c and the scalar 

product in the Minkowski space as 𝛼6 ∙ 𝛼c) 

(𝜕!𝑋)" = (𝜕!𝑋#)" = &
𝛼$

2
𝑝% ++

𝛼$

2
, 	𝛼𝑛

𝜇𝑒−𝑖𝑛𝜎−

𝑛≠0
-

"

= 0. 

If we define 	𝛼8
0 ≡ E?1

%
𝑝0 we can write it in a compact form  

𝛼$

2
0, 	𝛼𝑚 ∙ 𝛼𝑛𝑒−𝑖(𝑛+𝑚)𝜎

− 	
𝑛,𝑚

1 =
𝛼$

2 &
,𝛼𝑚 ∙ 𝛼𝑝−𝑚𝑒−𝑖(𝑝)𝜎

− 	
𝑚,𝑝

- = 0. 

By defining  the Virasoro generators  𝐿N =
$
%
∑ 	𝛼6 ∙ 𝛼N;6		6 and  𝐿£N =

$
%
∑ 	𝛼�6 ∙ 𝛼�N;6	6 , 

we write (𝜕;𝑋)% = 0 as  

𝛼:[�	𝐿N𝑒;"(N)E
. 	

N

\ = 0. 

And by using a similar develop (𝜕O𝑋)% = 0 as  
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𝛼: [�	𝐿£N𝑒;"(N)E
/ 	

N

\ = 0 

This is only possible if  	𝐿N = 𝐿£N = 0 for all 𝑝 in Z.  

One of this constraints has a special property. The 𝐿8 and 𝐿£8 contain a term proportional to 𝑝0𝑝𝜇 that 
is the square of the mass at rest of the particle,  𝑝0𝑝𝜇 = −𝑀2. Then the mass of the particle can be 
written as  

𝑀" =
4
𝛼′
, 	𝛼𝑛 ∙ 	𝛼−𝑛 =

4
𝛼′
, 	𝛼6𝑛 ∙ 	𝛼6−𝑛.			
𝑛>0

		
𝑛>0

 

These two terms must be equal to each other. This necessary condition is known as level matching and 
it is the only constraint between the left and right modes for the closed strings. 

Here, changing the discussion to the open strings, the parameter sigma goes from zero to 𝜋, 𝜎 ∈ [0, 𝜋],  
then the boundary term that has to vanish is 

𝑇.𝑑𝜏𝑋:𝛿𝑋0]E\] − 𝑇.𝑑𝜏𝑋:𝛿𝑋0]E\8 	= 0 

For the open strings, this requires that 𝑋:𝛿𝑋0 = 0 on the endpoints of the string. We can impose two 
types of boundary conditions to achieve this.  

- Newman boundary conditions:  

�𝑋
0:(𝜏, 𝜎 = 0) = 0

𝑋0:(𝜏, 𝜎 = 𝜋) = 0
 (2.2.2) 

  

These conditions impose 𝛼c
0 = 𝛼�c

0 which makes zero the momentum at the boundaries. The 
string endpoints are not fixed but their derivatives vanish at the boundary. The endpoints can 
move freely but they still have to obey the eq. (2.1.3). If we set again the static gauge we obtain 
the equations (2.1.4) with the condition 𝑋8: = 0 → �⃗�: = 0  so we are left with  J�̇⃗�%K = 𝑅% →
¥&3⃗
&S
¥ = 1, so the endpoints move at the speed of light.  

 
- Dirichlet boundary conditions: 

 

�𝛿𝑋
0(𝜏, 𝜎 = 0) = 0

𝛿𝑋0(𝜏, 𝜎 = 𝜋) = 0 

 
Then 

i
𝑋0(𝜏, 𝜎 = 0) = 𝑋8

0

𝑋0(𝜏, 𝜎 = 2𝜋) = 𝑋]
0 (2.2.3) 
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This condition imposes the constraint that in the mode expansion 𝛼c
0 = −𝛼�c

0. This boundary 
conditions are a little bit odd. This condition makes the reader to ask himself how to do physics 
with them, if their boundaries do not move. Which is the mining of a fixed boundary at 𝑋8 and 
if the string is fixed to an instant which is the meaning of 𝜏.  

To solve this let us imagine we had mixed conditions,   

     𝑋0: = 0   for   𝜇 = 0,… , 𝑝 

          𝛿𝑋0 = 0   for   𝜇 = 𝑝 + 1,… , 𝐷 − 1 

This force the endpoints to lie in a 𝑝 + 1 dimensional hypersurface so the Lorentz group 
SO(1,	𝐷 − 1) is now broken into SO(1,	𝑝)×SO(𝐷 − 𝑝 − 1). This object is called D𝑝-brane 
where the D comes from Dirichlet and 𝑝 is the number of spatial dimentions. This surface has 
to be introduced as a new dynamical object on the theoretical frame, but this is not the topic of 
this essay.  

 

Concerning the mode expansion of open strings, 

⎩
⎪⎪
⎨

⎪⎪
⎧
𝑋𝑅
𝜇(𝜎−) =

1

2
𝑥𝜇 + 𝛼′𝑝𝜇𝜎− + 𝑖(

𝛼′

2
	)

1

𝑛
	𝛼𝑛

𝜇𝑒−𝑖𝑛𝜎
−

𝑛≠0

𝑋𝐿
𝜇(𝜎+) =

1

2
𝑥𝜇 + 𝛼′𝑝𝜇𝜎+ + 𝑖(

𝛼′

2
	)

1

𝑛
	𝛼*𝑛𝜇𝑒−𝑖𝑛𝜎

+

𝑛≠0

 (2.2.4) 

 

We notice that we have 𝛼:𝑝0 instead of  $
%
𝛼:𝑝0. This occurs due to the fact that the conserved charge 

𝑃- must remain the same for open and closed strings; then as we have to integrate over 𝜎 from 0 to 𝜋, 
instead of 0 to 2𝜋, we put this factor of two in the linear term  

𝑃- = . 𝑑𝜎	𝜂-0(	𝑗0)8
]

8
= . 𝑑𝜎

1
2𝜋𝛼′ 𝜕

8𝑋0 ,
]

8
 

𝑃- =
1

2𝜋𝛼′. 𝑑𝜎2𝛼′
]

8
𝑝- . 

So as the string momentum must remain unchanged the linear term must change by this factor 2	(The 
tension remains the same for open and closed strings  $

%]?:
= 𝑇 ). This has consequences in the mass 

formula. Let us see closely the gauge constraints, 
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(𝜕!𝑋)" = (𝜕!𝑋#)" = &𝛼$𝑝% ++
𝛼$

2
, 	𝛼𝑛

𝜇𝑒−𝑖𝑛𝜎−

𝑛≠0
-

"

= 0. 

If we define 	E?1

%
𝛼8
0 ≡ 𝛼:𝑝0 the condition 𝐿8=0 can be written as  

𝐿8 =
1
2�	𝛼6 ∙ 𝛼;6 	=

1
2𝛼8

% + � 	𝛼6 ∙ 𝛼;6 =
1
22𝛼

:𝑝0𝑝0 + � 	𝛼6 ∙ 𝛼;6 =
6x86x8

0		
6

 

Then we finally obtain the mass formula for open strings  

𝑀" =
1
𝛼$
, 	𝛼𝑚 ∙ 𝛼−𝑚
𝑚>0

 (2.2.5) 

We observe a difference of a 4 factor with the closed string mass. The previous constraints on the 
modes of the Dirichlet and Newman conditions make that if we start with 	(𝜕*𝑋)" = 0 we obtain the 
same result. 
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3 The Quantum String 

En este capítulo nos centraremos en la cuantización de la cuerda mostrando las dificultades que 
esta conlleva, así como su resolución tomando diferentes caminos y como esto conlleva restricciones 
sobre el número de dimensiones en los que vive la teoría.  

We have observed in the previous chapters that the bosonic string theory is a gauge theory. If we are 
working with the canonical formalism that we will use to quantize the string, there are different ways 
to proceed. We have here two choices. 

We could firstly impose the canonical quantization rules and, starting from them, to impose the gauge 
constraints as operator equations. As a equivalent way, we could first impose the gauge conditions to 
simplify the classical equations and then quantize the system. These two methods should agree if we 
do them correctly. 

On this chapter we will follow  (Green, Schwatrz, & Witten, 1987) and (Tong, 2012). 

 

3.1  Canonical Quantization 

The canonical quantization procedure changes the canonical variables of the theory by operators in a 
Hilbert space and the Poisson brackets by commutation relations between them. 

If we want to first quantize a single string we have to quantize the field that defines the worldsheet.  

We impose equal-time commutator relations on the field (taking into account that the conjugated 
momentum  𝛱-(𝜏, 𝜎:) =

$
%]?:

�̇�- )  

[𝑋0(𝜏, 𝜎), 𝛱-(𝜏, 𝜎:)] = 𝑖𝛿(𝜎 − 𝜎:)𝛿-
0, 

[𝑋0(𝜏, 𝜎), 𝑋-(𝜏, 𝜎)] = 0,   �𝛱0(𝜏, 𝜎:), 𝛱-(𝜏, 𝜎:)� = 0.	
(3.1.1) 

This is traduced to commutator relations in terms of the mode expansion operators  �̈�0 , �̂�0 , �̈�c
0 ,

𝛼�ªc
0as 

[�̈�0 , �̂�-] = 𝑖𝛿-
0 ,			[�̈�c

0 , �̈�6
-] = 𝑛𝜂0-𝛿cO6,8	,			�𝛼�ªc

0 , 𝛼�ª6
-� = 𝑛𝜂0-𝛿cO6,8,	 (3.1.2) 

with all others zero (the hat on the operators represents that we are talking about operators, not 
variables but, later on, in some cases, we will leave this notation without giving rise to confusion). If 
we define �̈�c

0 = √𝑛�̈�c
0, the �̈�c

0 operator relations are those of the harmonic oscillator except for the 
0th component where we have a negative sign due to the signature of the metric. 

As in quantum field theory we must construct the Fock space of our field theory, starting from the 
vacuum state, that here, is not a space-time vacuum as its analog in field theory, but a vacuum on the 
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worldsheet. This vacuum (the ground state) is a state which goes to zero under the action of all the 
mode operators of the string except �̈�0 	and 	�̂�0. It is defined as |0, 𝑝⟩ where �̂�0|0, 𝑝⟩ =𝑝0|0, 𝑝⟩,  

�̈�c
0|0, 𝑝⟩ = 𝛼�ªc

0|0, 𝑝⟩ = 0, 

for  𝑛 > 0.  

The physical states are built with the rising operators �̈�c
0y such as, 

|𝜙⟩ = �̈�c"
0"y�̈�c!

0!y�̈�c3
03y… �̈�c#

0#y|0, 𝑝⟩. 

The problem comes from the negative norm states built with the 0th component of the modes as we 
have already mentioned, 

90:𝑎;𝑛0𝑎;𝑛0
†
:0< = 90:𝑎;𝑛0

†
𝑎;𝑛0:0< + (−1)⟨0|0⟩ = (−1)⟨0|0⟩. 

These negative norm states are called ‘ghosts’ and we have to fix our theory to eliminate them. We 
will see that this constricts our bosonic string theory to live in a 26-dimensional space-time, one 
temporal and 25 spatial others.  

As we have said at the beginning of this chapter there are two ways of quantizing a gauge theory with 
the canonical formalism, we can gauge fix before quantizing or impose the gauge fixing as operator 
equations after that. Following the second path, we will impose the gauge restrictions as operator 
equations over the physical states |𝜙⟩.  

The space of all physical states is a subspace of the total Fock space. In the classical model the physical 
states are those that obey the gauge fixing conditions. 

													𝐿N =
$
%
∑ 	𝛼6 ∙ 𝛼N;66 = 𝐿£c = 𝐿£N =

$
%
∑ 	𝛼�6 ∙ 𝛼�N;6 =6 0  for all n in Z . 

As it has been already mentioned the 𝛼6 variables are promoted to operators, so we have operator 
order ambiguities when we try to write the gauge conditions. For 𝑝 different from zero 𝛼6 commutes 
with 𝛼N;6 so the only ambiguity we are left with, appears in the case 𝑝 = 0. 

We set the correct order to be the normal ordering  

𝐿ª8 =
1
2 �̈�8

% + � :	�̈�;6 ∙ �̈�6:
6x8

 

The normal ordering, just like it is done to exclude infinites on field theories, obeys the following rule  

:	�̈�;6 ∙ �̈�6 :	= �̈�;6 ∙ �̈�6 	,											 ∶ 	 �̈�6 ∙ �̈�;6 :	= 	 �̈�;6 ∙ �̈�6 

We define  
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:	�̈�6 ∙ �̈�c :		= ��̈�6 ∙ �̈�c	,			𝑛 > 𝑚
�̈�c ∙ �̈�6	,			𝑚 > 𝑛 

The condition of the vanishing 𝐿8 that defines the allowed movements of the classical string traduces 
in the quantum theory as the requirement that any physical state must be zero under the action of the 
𝐿ª8  operator. The normal order condition we have imposed makes us introduce a constant in this 
condition to correct possible wrong physical states. So, 𝐿8 = 0, is now: 

(𝐿ª8 − 𝑎)	|𝜙⟩ = (𝐿£ª8 − 𝑎)	|𝜙⟩ = 0 (3.1.3) 

This equation will give us the mass operator 𝑀 of the string states, 

(𝐿ª8 − 𝑎)	|𝜙⟩ = (
1
2 �̈�8

% + � :	�̈�;6 ∙ �̈�6:
6x8

− 𝑎)|𝜙⟩ = 0, 

(
𝛼:

4 𝑝
% + � :	�̈�;6 ∙ �̈�6:

6x8

− 𝑎)|𝜙⟩ = 0, 

𝑀% =
4
𝛼: _� :	�̈�;6 ∙ �̈�6:

6x8

− 𝑎` =
4
𝛼:
(𝑁 − 𝑎) =

4
𝛼: J𝑁

± − 𝑎K. (3.1.4) 

We define ∑ :	�̈�;6 ∙ �̈�6:6x8  as the number operator.  

The number operator, 𝑁, is written as  𝑁 = ∑ 𝑚:	�̈�;6 ∙ �̈�6:6x8 . We notice that from (3.1.4) we obtain 
𝑁=𝑁±; this is the level matching condition for the oscillator excitation states. The eigenvalues of the 
number operator give the values of the permitted masses, 𝑀%= 4

?1
(𝑛 − 𝑎) for closed strings and 

𝑀%= $
?1
(𝑛 − 𝑎), for the open ones. We will only discuss closed ones, but it is interesting to mention 

that the photon arises as an open string state. 

1. The ground state mass obeys the following formula; 𝑀%= 4
?1
(−𝑎) , this corresponds to a 

tachyon, a particle with imaginary mass. This is a problem of the bosonic string theory that is 
solved in superstring theory using the GSO conditions, see (Green, Schwatrz, & Witten, 1987). 

2. The first excited state is a massless state 𝑀%= 4
?1
(1 − 𝑎) = 0 ( 𝑎 = 1 as we will soon see) this 

corresponds with the graviton on the closed string discussion. We will see it later, on the last 
chapter. 

If we want to have a spectrum free of ghosts we need to impose restrictions over the variables 𝑎 and 
𝐷 (the number of dimensions of the space-time). But before introducing this topic, firstly the study of 
the Virasoro algebra will be developed. 

3.2 Virasoro Algebra 

The classical Virasoro algebra comes defined by the Poisson brackets of the generators {𝐿c}  
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{𝐿c, 𝐿6} = (𝑛 − 𝑚)𝐿cO6. (3.2.1) 

When we introduce the canonical quantization and the normal ordering these commutation relations 
change a little bit. If   𝑛 +𝑚 ≠ 0 these commutator relations remain unchanged because the mode 
operators commute, but if   𝑛 +𝑚 = 0 the commutation relations change. As the order ambiguities on 
these relations introduced by the normal ordering will only involve a number, we are guaranteed to 
have 

[𝐿ª6, 𝐿ªc] = (𝑚 − 𝑛)𝐿ª6Oc + 𝐴(𝑚)𝛿6Oc,8. (3.2.2) 

This is known as the central extension of the Virasoro Algebra and the additional term is called the 
anomaly term in that algebra. We have some trivial relations of this factor as 𝐴(𝑚) = −𝐴(−𝑚)	and 
𝐴(0) = 0, hence it is enough to find 𝐴(𝑚) for positive 𝑚. 

To find the form of 𝐴(𝑚) we will use the Jacobi identity that is satisfied by the generators of any Lie 
algebra,  

�𝐿ª{ , [𝐿ª6, 𝐿ªc]� + �𝐿ª6, [𝐿ªc, 𝐿ª{]� + �𝐿ªc, [𝐿ª{ , 𝐿ª6]� = 0. 

For the choice:  𝑘 + 𝑛 +𝑚 = 0, we have  

(𝑚 − 𝑛)𝐴(𝑘) + (𝑛 − 𝑘)𝐴(𝑚) + (𝑘 − 𝑚)𝐴(𝑛) = 0. 

Setting 𝑘 = 1 and 𝑚 = 𝑛 + 1	it gives  

𝐴(𝑛 + 1) =
𝑛𝐴(𝑛) − 𝐴(1)

𝑛 − 1  

This enables us to obtain all the 𝐴(𝑚)  in terms of 𝐴(1)  and 𝐴(2) , that here are two unknown 
coefficients. The general solution that obey these relations is  

𝐴(𝑚) = 𝑐.𝑚. + 𝑐$𝑚 (3.2.3) 

With 𝑐., 𝑐$	as constants. To obtain these constants we have to be careful with the choice of  the state 
and the 𝑚 selection. We will use the commutator of  𝐿ª% =

$
%
∑ 𝛼%;c𝛼cc  and  𝐿ª;% =

$
%
∑ 𝛼c𝛼c;%c , 

𝐴(2) = ⟨0,0|[𝐿ª%, 𝐿ª;%]|0,0⟩ = ⟨0,0|𝐿ª%𝐿ª;%|0,0⟩ =
1
4
⟨0,0|𝛼$ · 𝛼$𝛼;$ · 𝛼;$|0,0⟩ 

using [�̈�c
0 , �̈�6

-] = 𝑛𝜂0-𝛿cO6,8 → 𝛼$-𝛼;$
0 = 𝜂-0 + 𝛼;$

0 𝛼$-,  

⟨0,0|𝐿ª%𝐿ª;%|0,0⟩ =
1
4
⟨0,0|𝛼$ · 𝛼;$𝛼$ · 𝛼;$|0,0⟩ +

1
4 µ0,0¶𝜂

-101𝜂01-𝛼$-𝜂0-1𝛼;$
0 ¶0,0· = 

1
4 µ0,0¶𝜂0-𝛼$

-𝛼;$-: 𝜂0:-:𝛼$
0𝛼;$

0: ¶0,0· +
1
4 µ0,0¶𝜂0-𝛼$

-𝛼;$
0 ¶0,0· = 

1
4 µ0,0¶𝜂0-𝜂

--:𝜂0:-:𝛼$
0𝛼;$

0: ¶0,0· +
1
4 µ0,0¶𝜂0-𝛼$

-𝛼;$
0 ¶0,0· = 
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1
4 µ0,0¶𝜂0-𝛼$

0𝛼;$- ¶0,0· +
1
4 µ0,0¶𝜂0-𝛼$

-𝛼;$
0 ¶0,0· = 

1
2 𝜂0-𝜂

-0µ0,0¶𝛼$
0𝛼;$- ¶0,0· =

1
2 𝜂0-𝜂

-0 =
1
2𝐷. 

𝐷
2 = 𝐴(2) = 𝑐.8 + 𝑐$2. 

As we also know that ⟨0,0|[𝐿ª$, 𝐿ª;$]|0,0⟩ = 0 , because for the 𝑚 = 1   𝑝0  annihilates the zero-
momentum ground state  0 = 𝐴(1) = 𝑐. + 𝑐$ → 𝑐$ = −𝑐.. We finally have 

𝐴(𝑚) =
𝐷
12
(𝑚. −𝑚). 

Eventually we obtain the searched term, 

[𝐿ª6, 𝐿ªc] = (𝑚 − 𝑛)𝐿ª6Oc +
𝐷
12
(𝑚. −𝑚)𝛿6Oc,8. (3.2.4) 

This condition will allow us to impose the correct gauge restrictions as operator equations. Let us 
consider a physical state |𝜙⟩. If we promote just the gauge restrictions to operators as 𝐿ª6|𝜙⟩ = 0 for 
all 𝑚 ≠ 0 then  

⟨𝜙|[𝐿ª6, 𝐿ªc]|𝜙⟩ = ¸𝜙¥(𝑚 − 𝑛)𝐿ª6Oc +
𝐷
12 (𝑚

. −𝑚)𝛿6Oc,8¥𝜙¹. 

If 𝑚 + 𝑛 ≠ 0  then ⟨𝜙|𝐿ª6Oc|𝜙⟩ = 0 so we only can consider 𝑚 = 0,1, −1 . In fact {𝐿ª$, 𝐿ª8, 𝐿ª;$} 
constitute a closed subalgebra of the Virasoro algebra.  

Instead of doing this, we will only impose, 𝐿ª6|𝜙⟩ = 0, for all 𝑚 > 0. 

This way, the set of physical states are then characterized by the conditions     

(𝐿ª6 − 𝑎𝛿6,8)	|𝜙⟩   for all 𝑚 ≥ 0. (3.2.5) 

We notice that 𝐿6 ≈ 𝑝 · 𝛼6 plus additional terms; so if the rest of the terms were absent, as 𝑝 has to 
be timelike, 𝛼6 is necessarily spacelike. So we are making something good in the construction on our 
physical states, we are eliminating the timelike components. In the next section, we will see how the 
ghost states are eliminated from the theory. 

 

3.3 Eliminating Ghosts  

The negative norm states vary when we change the values of the variables 𝑎 and 𝐷. The proof of the 
no-ghosts theorem sets that for the values of the undetermined constants 𝑎 and 𝐷, we have to impose  
𝑎 = 1	and 𝐷 = 26. This way the string has only transverse oscillator excitations. In this section, we 
will not prove this result but we will give some clues about how that happens. 
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At first, we will make some definitions: 

1. A state, |𝜙⟩, is called physical if it satisfies the following conditions 

J𝐿ª8 − 𝑎K|𝜙⟩ = 0,									𝐿ª6x8|𝜙⟩ = 0 .     (3.3.1) 

2. A state, |𝜓⟩, is called spurious if it is orthogonal to all physical states and if it satisfy the mass 
shell condition.  

A state |𝜓⟩ orthogonal to all physical states by definition can be written as 

|𝜓⟩ = ∑𝐿ª;6|𝜒6⟩,				(𝑚 > 0).  (3.3.2) 

⟨𝜙|𝜓⟩ =�µ𝜙¶𝐿ª;6¶𝜒6· =�µ𝜒6¶𝐿ª6¶𝜙·
∗
= 0,						(𝑚 > 0). 

if |𝜓⟩ satisfies the mass shell condition then |𝜒6⟩ states satisfy a modified mass shell condition 

J𝐿ª8 − 𝑎K|𝜓⟩ = 0, 

J𝐿ª8 − 𝑎K�𝐿ª;6|𝜒6⟩ = 0, 

�J𝐿ª8 − 𝑎K𝐿ª;6|𝜒6⟩ = 0, 

�{𝐿ª;6J𝐿ª8 − 𝑎K +𝑚𝐿ª;6}|𝜒6⟩ = 0, 

�𝐿ª;6J𝐿ª8 − 𝑎 +𝑚K|𝜒6⟩ = 0. 

In other words, if J𝐿ª8 − 𝑎K|𝜓⟩ = 0  this implies J𝐿ª8 − 𝑎 +𝑚K|𝜒6⟩ = 0  for all 𝑚 > 0 . These are 
modified mass shell conditions that define the |𝜒6⟩ states 

													J𝐿ª8 − 𝑎 +𝑚K|𝜒6⟩ = 0 for all 𝑚 > 0. (3.3.3) 

By a similar argument we can say that |𝜒6⟩ are eigenstates of the 𝐿ª8 operator with eigenvalues 𝑚 − 𝑎 
and since 𝐿ª8𝐿ª;c|𝜒6⟩ = (𝑚 − 𝑎 + 𝑛)𝐿ª;c|𝜒6⟩ we can say that 𝐿ª;c|𝜒6⟩ = |𝜒6Oc⟩.  

Any operator 𝐿ªc  for 𝑛 > 2 can be written using [𝐿ª$, 𝐿ªc;$] = (𝑛 − 2)𝐿ªc  in a iterative way starting 
from 𝐿ª% . Thus, we can construct any 𝐿ª6  from 𝐿ª$  and 𝐿ª% , then the conditions 𝐿ª6x8|𝜙⟩ = 0  are 
simplified to 𝐿ª6\$,%|𝜙⟩ = 0 and the spurious state can be truncated to orther two,  

|𝜓⟩ =�𝐿ª;6|𝜒6⟩ ,				(𝑚 = 1,2). (3.3.4) 

The spurious physical states are states orthogonal to themselves, therefore, they have zero norm 
⟨𝜓|𝜓⟩ = 0.  
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The zero norm states have crucial conditions on their construction that will allow us to figure out how 
the parameters 𝑎 and 𝐷 give rise to a theory free of ghosts.  

The first condition we will impose to build the zero normed state is,  𝐿ª$𝐿ª;$|𝜒$⟩ = 0, in other words 
𝐿ª$ eliminates the first order spurious state, 

𝐿ª$𝐿ª;$|𝜒$⟩ = 0 → 𝐿ª$𝐿ª;$|𝜒$⟩ = 2𝐿ª8|𝜒$⟩ = 2(1 − 𝑎)|𝜒$⟩ = 0 → 𝑎 = 1. 

After obtaining the first condition to construct these states the second arises logically as  

𝐿ª$(𝐿ª;% + 𝛾𝐿ª;$𝐿ª;$)|𝜒%⟩ = 0, 

𝐿ª%(𝐿ª;% + 𝛾𝐿ª;$𝐿ª;$)|𝜒%⟩ = 0, 

where the constant 𝛾 has been introduced to ensure that (𝐿ª;% + 𝛾𝐿ª;$𝐿ª;$)|𝜒%⟩ has zero norm. From, 
𝐿ª$(𝐿ª;% + 𝛾𝐿ª;$𝐿ª;$)|𝜒%⟩ = 0, we obtain 𝛾 = .

%
.  

From the 𝐿ª%(𝐿ª;% + 𝛾𝐿ª;$𝐿ª;$)|𝜒%⟩ = 0, condition we will obtain the anomalous term of the Virasoro 
algebra due to the commutator [𝐿ª%, 𝐿ª;%]; then we will establish the dimension, 𝐷 = 26.  

This increment of zero norm spurious terms for the values 𝐷 = 26 and 𝑎 = 1 , is the clue we were 
looking for. The boundary between the negative norm and positive norm are the zero norm physical 
states. The critical dimension that sets the limit to the emergence of negative norm states is 𝐷 = 26 
where we finally obtain a theory free of ghosts. In the super string theory the number of dimensions is 
10.  

3.4 Lightcone Gauge 

We have already introduced the lightcone coordinates on the worldsheet. The use of these coordinates 
on the background Minkowskian spacetime will allow us to quantize only the transverse oscillators, 
which will give us the positive normed Hilbert space we were looking for. But in the process, we will 
lose the Lorentz invariance, that we will recover setting, again, 𝐷 = 26 and 𝑎 = 1. 

We implement the lightcone coordinates as  

𝑋± = C1
2
(𝑋8 ± 𝑋h;$),				𝑋$, … , 𝑋h;% =	𝑋$, … , 𝑋h;% 

Here we lose the Lorentz invariance manifestly because we pick a preferential direction on the 
coordinates to make the transformation. 

Some properties of the lightcone coordinates are; 𝐴O = −𝐴;, 𝐴; = −𝐴O,			𝐴" = 𝐴"  ( 𝑖  refers to the 
	𝑋$, … , 𝑋h;% coordinates). This way the scalar product is written as  

𝐴 · 𝐵 = −𝐴O𝐵; − 𝐵O𝐴; +�𝐵"𝐴"
h;%

"\$

. 
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On the solutions we have a remaining diffeomorphism symmetry that permits us to make the change 
𝜎± → 𝜎′± = 𝜁±(𝜎±). 

We can, therefore, define 𝜏: = $
%
J𝜁O(𝜎O) + 𝜁;(𝜎;)K, but we will use it to relate 𝜏:  to one of the 

coordinates, in this case we choose 𝑋O. 

𝜏: =
1
2 J𝜁

O(𝜎O) + 𝜁;(𝜎;)K =
𝑋aO(𝜎;)+𝑋bO(𝜎O)

𝛼:𝑝O + 𝑥O → 

𝑋O = 𝑥O + 𝛼:𝑝O
1
2 J𝜎

:O + 𝜎:;K. 
(3.4.1)  

The form of the 𝑋;  coordinate comes from the restrictions (2.1.5), each of them will give us the 
𝑋a;(𝜎;) and the 𝑋b;(𝜎O) respectively. 

From the first condition we obtain that, 

(𝜕;𝑋)% = (𝜕;𝑋a)% = −2𝜕;𝑋aO𝜕;𝑋a; +�𝜕;𝑋a" 𝜕;𝑋a"
h;%

"\$

= 0 → 𝜕;𝑋a; =
1

𝛼:𝑝O �𝜕;𝑋a" 𝜕;𝑋a"
h;%

"\$

. 

The same happens to the other equation, 

𝜕O𝑋b; =
1

𝛼:𝑝O �𝜕O𝑋b"𝜕O𝑋b"
h;%

"\$

. 

Using these two results the usual mode expansion for the string is written as 

⎩
⎪⎪
⎨

⎪⎪
⎧
𝑋𝑅
−(𝜎−) =

1

2
𝑥− +

1

2
𝛼
′

𝑝−𝜎− + 𝑖(
𝛼′

2
	)

1

𝑛
	𝛼𝑛

−𝑒−𝑖𝑛𝜎
−
,

𝑛≠0

𝑋𝐿
−(𝜎+) =

1

2
𝑥− +

1

2
𝛼′𝑝−𝜎+ + 𝑖(

𝛼′

2
	)

1

𝑛
	𝛼*𝑛−𝑒−𝑖𝑛𝜎

+
.

𝑛≠0

 (3.4.2) 

But now, the modes 𝛼c; have the form 

𝛼c; = C 1
2𝛼:

1
𝑝O � �𝛼c;6" 𝛼6"

h;%

"\$

O|

6\;|

		,						𝛼�c; = C 1
2𝛼:

1
𝑝O � �𝛼�c;6; 𝛼�6;

h;%

"\$

O|

6\;|

, (3.4.3) 

where 
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𝑝; = C2
𝛼: 𝛼8

; =
1

𝛼:𝑝O � �𝛼c;6" 𝛼6"
h;%

"\$

O|

6\;|

 

𝑝; =
1

𝛼:𝑝O�(
1
2𝛼

:𝑝"𝑝" + 2 � 𝛼;6" 𝛼6"
O|

6\$

)
h;%

"\$

 (3.4.4) 

The mass shell condition is then written as 

𝑀% = −𝑝% = 2𝑝O𝑝; −�𝑝"𝑝" =
4
𝛼:

h;%

"\$

� � 𝛼;6" 𝛼6"
O|

6\$

h;%

"\$

 (3.4.5) 

We sum up over the transverse oscillators, this removes the problematic modes. The quantum 
excitations of the string will be those of the transverse oscillators.  The 𝑥O can be absorbed on a shift 
on 𝜏 and the 𝑝; comes determined by other variables. 𝑝; can be thought as the light cone Hamiltonian, 
which generates translations on 𝑥O  , {𝑥O, 𝑝;} = 1,		 so as 𝑥O shifts time this is equivalent to 𝜏 
translations. In the next section, we will see how this coordinate choice permits the quantization of the 
string. 

 

3.5 Lightcone Gauge Quantization 

The quantization consists on promoting the physical degrees of freedom to operators of the Fock space, 
in a similar way as we have already done. The non-zero equal time commutation relations are: 

�𝑥" , 𝑝f� = 𝑖𝛿"f ,			[𝑥;, 𝑝O] = −𝑖, 

�𝛼c" , 𝛼6
f � = �𝛼�c" , 𝛼�6

f � = 𝑛𝛿"f𝛿6Oc,8,					𝑖, 𝑗 = 1,2…𝐷 − 2. 
(3.5.1) 

To promote 𝛼c; to an operator we impose normal ordering, 

𝛼c; = C 1
2𝛼:

1
𝑝O � �:𝛼c;6" 𝛼6"

h;%

"\$

O|

6\;|

: −𝑎𝛿c,8.	 (3.5.2) 

In the last section, we discussed the relation between 𝑥O and 𝑝;. When we promote these variables to 
operators we obtain [𝑥O, 𝑝;] = −𝑖. This result is similar to [𝑡, 𝐻] = −𝑖 which is correct in a formal 
level. 

It could be said that, as this is a gauge choice of a Lorentz invariant theory, it is also implicitly Lorentz 
invariant, but when we change to the quantum frame we usually lose classical symmetries.  

In order to restore the Lorentz invariance, we will study the Lorentz generators of the Worldsheet that 
we have already obtained in (2.1.12) and (2.1.14).   
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When we proceed to do these calculations substituting 𝑋0 , we observe how the generators are now 
expressed as 

𝐽0- = 𝑙0- + 𝐸0- , 

𝑙0- = 𝑥0𝑝- − 𝑥-𝑝0 , 

𝐸0- = −𝑖�
1
𝑛 J𝛼;c

0 𝛼c- − 𝛼;c- 𝛼c
0K.

|

c\$

 

(3.5.3) 

These operators must generate the Lorentz algebra. Most of the commutators of these quantities give 
the correct result for any number of dimensions, but the commutation relations of 𝐽"; must be treated 
carefully, in particular [𝐽";, 𝐽f;] , which must be zero to obtain the Lorentz invariance. [𝐽";, 𝐽f;] have 
terms quartic or quadratic in oscillators, the quartic terms cancel, just like in the classical case. So 
[𝐽";, 𝐽f;] must have the following form: 

�𝐽";, 𝐽f;� = −
1

(𝑝O)%�𝛥(𝑛)J𝛼;c
0 𝛼c- − 𝛼;c- 𝛼c

0K
|

c\$

. 

From a long calculation we obtain the result expressed below:  

𝛥(𝑛) = 𝑛 <
26 − 𝐷
12 = +

1
𝑛 <
𝐷 − 26
12 + 2(1 − 𝑎)= 

If we require Lorentz invariance then 𝛥(𝑛) = 0	for any 𝑛, this is only possible if  𝐷 = 26	and 𝑎 = 1 
as expected.  

In the next section, we will see the path integral quantization. This quantization method is the one 
which will make possible the treatment of interactions between strings and it will carry us to general 
relativity.  
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4. Path Integral approach 

En este capítulo hablaremos de la formulación de la mecánica cuántica empleando integrales de caminos, 
dado que esta es la única manera de introducir interacciones en el modelo cuántico de la cuerda. 

4.1 Path Integral 

In this chapter we will mainly follow (Polchinski, 1998). The path integral arises from the next idea 
about the propagators, µ𝑞Y , 𝑇¶𝑞" , 0· (this represents the probability amplitude of transition between two 
position states, one at time 0 and another one at time 𝑇), of a space of states corresponding to a 
dynamical variable 𝑞. The propagator is defined as: 

𝜓(𝑇, 𝑞) = .𝑑𝑞′⟨𝑞, 𝑇|𝑞′, 0⟩ 𝜓(0, 𝑞′).

 

The idea is to create 
intermediate divisions in  
time, from the initial to the 
final instants, 𝑡6 = 𝑚𝜖, 𝜖 =
U
P

, and then, to introduce the 
complete set of states on 
each division, and then make 
the number of divisions  
𝑁 → ∞. 

 

          

Fig 4.1  

The propagator will take the form of a sum over paths, summing up phase factors for each path. We 
proceed with a finite number of time intervals and after the calculation we go to the continuum.

µ𝑞Y , 𝑇¶𝑞" , 0· = .𝑑𝑞P;$…𝑑𝑞$Â⟨𝑞6O$, 𝑡6O$|𝑞6, 𝑡6⟩
P;$

6\8

= 

The generator of the temporal evolution is the Hamiltonian operator that has the form  𝐻Ã(�̂�, �̈�) =
𝑇(�̂�) + 𝑉(�̈�).  

.𝑑𝑞P;$…𝑑𝑞$Â¸𝑞6O$Å exp <−
𝑖𝐻Ã𝜖
ℏ = Å𝑞6, 𝑡6¹

P;$

6\8

= 

.𝑑𝑞P;$…𝑑𝑞$𝑑𝑝P;$…𝑑𝑝$Â⟨𝑞6O$|𝑝6⟩
P;$

6\8

¸𝑝6Å exp <−
𝑖𝐻Ã𝜖
ℏ = Å𝑞6, 𝑡6¹ = 
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.𝑑𝑞P;$…𝑑𝑞$
𝑑𝑝P;$
2𝜋 …

𝑑𝑝$
2𝜋 exp È−

𝑖
ℏ � 𝜖 O𝐻(𝑝6, 𝑞6) −

𝑝6(𝑞6O$ − 𝑞6)
𝜖 R

P;$

6\8

É = 

(As 𝑁  goes to infinity we go into the continuum, we introduce the notation  
∫𝑑𝑞P;$…𝑑𝑞$

&N4."
%]

… &N"
%]

= ∫[𝑑𝑞𝑑𝑝] = ∫𝐷𝑞𝐷𝑝	) 

.[𝑑𝑞𝑑𝑝] exp i
𝑖
ℏ. 𝑑𝑡(𝑝�̇� − 𝐻(𝑝, 𝑞))

U

8
k = .[𝑑𝑞] exp i

𝑖
ℏ. 𝑑𝑡𝐿(𝑞, �̇�)

U

8
k =.𝐷𝑞	𝑒

"^
ℏ , 

µ𝑞Y , 𝑇¶𝑞" , 0· = .𝐷𝑞	𝑒
"^
ℏ . (4.1.1) 

The propagator is the sum over all possible paths of the variable 𝑞 weighted by a factor, 	𝑒
#5
ℏ .  

When we go to high scales where ℏ is close to zero compared with 𝑆 the integral is dominated by the 
stationary phase conditions,  '^

'(
= 0, that corresponds to the classical solution.  The rest of the terms 

are cancelled by their close variations, but near the classical path the sum is constructive, thus, only 
the trajectories close to the classicals have a considerable apportion to the propagator.  

By a similar procedure we obtain that the expected value of q at time 𝑡 is expressed as 〈𝑞(𝑡)〉 =

∫𝐷𝑞	𝑞(𝑡)𝑒
#5
ℏ   and similarly  〈𝑇[𝑞(𝑡′)𝑞(𝑡)]〉 = ∫𝐷𝑞𝑞(𝑡′)	𝑞(𝑡)𝑒

#5
ℏ   where 𝑇 means we are considering 

a time ordered product (see (Polchinski, 1998))  (the order of the time-dependent operators set the 
sooner at the right side,   𝑇[𝑞(𝑡:)𝑞(𝑡)] = 𝑞(𝑡:)𝑞(𝑡),			𝑖𝑓, 𝑡: > 𝑡 , and the other case if ,  𝑡 > 𝑡′).  

 

4.2 Functional Quantization on Field Theory 

In this section we will present in a condensed way some important results of the path integral formalism 
in quantum field theory. The objective is to formulate the generating functional, that is the object that 
contains all the information about any process or expected value of the field. It will permit also to 
introduce the interactions in the field formalism giving us the Feynman diagrams and probabilities of 
transitions between field excitations (see (Peskin & Schroeder, 1995), (Weimberg, 1995)).  

Now, we are working in the second quantization context, where we have that the action we are 
considering depends on a generic field, 𝑓, not on a variable, 𝑞, so the action functional will take the 
form 𝑆[𝑓]. Instead of considering all possible paths we study all possible field configurations.  

In general, to solve the path integral over a function 𝑓(𝑋) we take the argument we used to introduce 
the formula (4.1.1) in reverse, we discretize the continuum, not only in time but using all the field 
coordinates. When we compute ∫[𝑑𝑓(𝑋)]	𝑒"^[Y], we are making an integration over  𝑓J𝑋(")K for every 
point on a lattice of spacetime points 𝑋("). The expression [𝑑𝑓(𝑋)] will take the form 	[𝑑𝑓(𝑋)] =
𝑑𝑓J𝑋($)K𝑑𝑓J𝑋(%)K𝑑𝑓J𝑋(.)K…  

We are now enouncing the integral for a certain type of actions corresponding to fields that obey a 
generic field equation 𝛥𝑓(𝑋) = 0, where 𝛥 is a differential operator (with similar operator properties 
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as the Klein-Gordon operator [𝜕0	𝜕0 +𝑚%]). The field action and corresponding path integral are 
written as 

𝑆[𝑓] =
1
2.𝑑𝑋	

{𝑓(𝑋)𝛥𝑓(𝑋) + 𝑓(𝑋)𝐽(𝑋)}, 

.[𝑑𝑓(𝑋)]	𝑒"^[Y,~] = .[𝑑𝑓(𝑋)]𝑒"
$
% ∫&R	{Y(R)�Y(R)OY(R)~(R)}	. 

The path integrals that can be expressed in a similar way are called ‘gaussians’. We solve them 
performing a change of variables, 𝑓:(𝑋) = 𝑓(𝑋) − 𝑖 ∫ 𝑑𝑌𝛥;$(𝑋, 𝑌)𝐽(𝑌). The element 𝛥;$(𝑋, 𝑌) is 
the green function of the 𝛥 operator: 

1
2.𝑑𝑋	

{𝑓(𝑋)𝛥𝑓(𝑋) + 𝑓(𝑋)𝐽(𝑋)}	 =
1
2.𝑑𝑋	𝑓′

(𝑋)𝛥𝑓′(𝑋)	−
1
2.𝑑𝑋𝑑𝑌𝐽(𝑋)𝛥

;$(𝑋, 𝑌)𝐽(𝑌). 

The Jacobian factor of this change of variables is one because the transformation is a translation. 

.[𝑑𝑓(𝑋)]𝑒"
$
% ∫&R	{Y(R)�Y(R)OY(R)~(R)}	 = 𝑁𝑒;

$
% ∫&R&�~(R)�

."(R,�)~(�), (4.1.2) 

with, 𝑁 = ∫[𝑑𝑓(𝑋)]𝑒"
"
!∫ &R	{Y(R)�Y(R)}	 . The right hand side of the equation (4.1.2) shows that the 

sources are independent of the field integral over 𝑓:(𝑋);	then the source term goes out of the path 
integral.  

We pass again to the 𝐷𝑓(𝑋) notation. The generating functional will permit us to generate green 
functions 𝛥;$(𝑋, 𝑌). It is written as 𝒵[𝐽(𝑋)], for a field source 𝐽(𝑋) introduced for later convenience. 

𝒵[𝐽(𝑋)] ≡
∫𝐷[𝜙(𝑋)]𝑒;"

$
%∫2�2O" ∫2~(R)

∫𝐷[𝜙(𝑋)]	𝑒;"
$
%∫2�2

= 𝑒;
$
%∫&R&�~(R)�

."(R,�)~(�). (4.1.3) 

This expression will remove the 𝑁 factor, giving us the Green functions or correlation function for the 
field at n points as it follows 

𝐺8
(c)(𝑋$, … , 𝑋c) = 〈𝑇{𝜙(𝑋$)…𝜙(𝑋c)}〉 =

1
𝑖c

1
𝒵[0]

𝛿𝒵[𝐽(𝑋)]
𝛿𝐽(𝑋$) …𝛿𝐽(𝑋c)

	R
~\8

 (4.1.4) 

The two points correlation function is the propagator  

〈𝜙(𝑥$)𝜙(𝑥%)〉 = 𝛥;$(𝑥$, 𝑥%) =
∫𝐷[𝜙]𝜙(𝑋)𝜙(𝑌)𝑒;

$
%∫2�2

∫𝐷[𝜙] 𝑒;
$
%∫2�2

 
 

 

The equation (4.1.4) is the base of the Wicks theorem on path formulation of quantum field theory. By 
using (4.1.4), we obtain the correlation function as a sum over configurations of propagators between 
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four points as shown in Fig: 4.2. Let us see an example by computing the four-point correlation 
function 

               〈𝜙(𝑥$)𝜙(𝑥%)𝜙(𝑥.)𝜙(𝑥4)〉 = 𝛥;$(𝑥$, 𝑥%)𝛥;$(𝑥., 𝑥4) + 		𝛥;$(𝑥$, 𝑥.)𝛥;$(𝑥4, 𝑥4) + 

𝛥;$(𝑥$, 𝑥4)𝛥;$(𝑥%, 𝑥.). 

We say that we develop this expression over what is called contractions and its expressed in terms of 
Feynman diagrams will be the one that is shown in Fig: 4.2. 

              
Fig: 4.2 

 

We can plug the interactions on the theory by using ℒ[𝜙] = ℒY�MM[𝜙] + ℒ"c#M�G,#")M[𝜙]  , (see 
(Weimberg, 1995)). Then we write,  𝑆 = 𝑆8 + 𝑆";  this way, we can expand the exponential of 𝑆"[𝜙] 
as,  𝑒"^ = 𝑒"^7 ∑ "4

P!
|
P\8 (𝑆")P.  

This result, plugged into the path integral, is commonly used at a perturbative level giving the 
interaction corrections to the free theory. The terms of the sum  ∑ "4

P!
|
P\8 (𝑆")P are the successive vertex 

operators that plug the corrections to the propagator of the free theory as follows  

𝛥"c#M�G,#")M;$ (𝑋, 𝑌) =
∑ ∫𝐷[𝜙] 𝑖

P

𝑁!
|
P\8 (𝑆")P𝜙(𝑋)𝜙(𝑌)𝑒

;$%∫2�2

∑ ∫𝐷[𝜙] 𝑖
P

𝑁!
|
P\8 (𝑆")P𝑒

;$%∫2�2
. (4.1.5) 

From the numerator of (4.1.5) we obtain the corresponding Feynman diagrams as the successive vertex 
corrections. The vertex operators are formulated in terms of the fields, (an example could be 𝑆" =
− �
4! ∫𝜙

4) in such a way that when we perform the contraction we observe the apparition of terms such 
as 𝛥;$(𝑧, 𝑧)𝛥;$(𝑧, 𝑧)𝛥;$(𝑋, 𝑌). Here the propagators 𝛥;$(𝑧, 𝑧) on the expansion do not give any 
information and correspond to what is called vacuum diagrams. The denominator of (4.1.5) removes 
the contribution of the vacuum diagrams, so we are only left with the connected contributions part that 
is the one we see in the right hand side of Fig: 4.3 

Fig: 4.3  (Feynman diagrams of the self interactive field, 𝑆" = − �
4!∫𝜙

4. If other fields are involved 
we have to plug other field interactions and give a different type of diagrams) 

The resulting propagator is a sum over loops for this type of vertex. 
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4.3 Path Integral on String Theory 

In this sub-chapter, one key frame will be introduced, the path integral formalism applied to string 
theory (See (Polchinski, 1998)) (we have to mention that the discussion is not a completely analog to 
the field theory, it is more complicated). As we have seen, the string is a field of the worldsheet 
coordinates, we can use this to introduce the interaction terms on the theory. 

The natural approach for the Polyakov path integral could be formulated as ∫[𝑑ℎ𝑑𝑋]exp	(−𝑆) ≡ 𝑍 
(It is written in the Euclidean formalism, where we make a Wick rotation replacing 𝑡 with – 𝑖𝑢 and 
changing the metric by the Euclidean metric) but this is not truthful. The diffeomorphism-conformal 
invariance makes many of the configurations equivalent between them, and we would make an 
overcounting on the number of configurations. The problem is equivalent to the quantization of the 
electromagnetic fields in the Yang-Mills theory (see (Peskin & Schroeder, 1995)). The right way 
would be to count each physical configuration only once, or to divide the expression by the resulting 
contribution of this overcounting, that we will express as the ‘volume’ of the diffeomorphism-Weyl 
transformation local group 𝑉𝑜𝑙h"YY;�M�K,  

𝑍 ≡ .
[𝑑ℎ𝑑𝑋]

𝑉𝑜𝑙h"YY;�M�K
exp(−𝑆). 

We will fix this counting on each gauge equivalence class using the Faddeev-Popov method (see 

(Polchinski, 1998)). The metric has to obey  ℎ?@
� (𝜏, 𝜎) = 𝑒%2(E) 1Y

+

1E)	
1Y,

1E'	
ℎ'W. We use this to define 

the Faddeev-Popov determinant, 𝛥�T(ℎ). 

1 = 𝛥�T(ℎ).[𝑑𝜁]𝛿(ℎ − ℎ£�). (4.1.6) 

We will call, ℎ£, the fiducial metric. The generating functional will depend on this metric as it will be 
observed. The 𝛥�T(𝑔) will remove the volume of configurations due to the diff-Weyl symmetry. 
Essentially this will permit us to integrate over the equivalent classes of diff-Weyl connected metrics, 
instead of all the configurations of the metric, the Faddeev-Popov determinant is a Jacobian in this 
sense, then, 

𝑍�ℎ£� ≡ .
[𝑑ℎ𝑑𝑋𝑑𝜁]
𝑉𝑜𝑙h"YY;�M�K

𝛿Jℎ − ℎ£�K𝛥�TJℎ£K exp(−𝑆) = 

.
[𝑑𝑋𝑑𝜁]

𝑉𝑜𝑙h"YY;�M�K
𝛥�TJℎ£K exp(−𝑆). 

We still have to integrate all over the equivalence class of the metrics connected to the fiducial metric 
by a diff-Weyl transformation, corresponding in the integral by [𝑑𝜁], but none of the terms on the 
integral changes with these transformations, it is a symmetry on the action so the integral on [𝑑𝜁] just 
produce the ‘volume’ of the diffeomorphism-Weyl transformation local group and cancels it, letting 
the generating functional as, 
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𝑍�ℎ£� = .[𝑑𝑋]𝛥�TJℎ£K expJ−𝑆[ℎ£, 𝑋]K (4.1.7) 

The reader can consult (Polchinski, 1998) to see how to obtain the form of 𝛥�TJℎ£K as a path integral 
over Grassmann or anticommuting fields, 

𝛥�TJℎ£K = .[𝑑𝑏𝑑𝑐]exp	(−𝑆<). 

Where 𝑆<  is the ghost action and 𝑏, 𝑐  are the Grassmann fields, also called ghosts fields. This 
procedure removes the ghosts states from the counting. For the open strings we also need a term for 
the string boundaries in the action but as our discussion takes only closed ones we will not mention it.  

The reason behind the popularity of this procedure is that it allows us to introduce the interactions on 
the string worldsheet. We want to build the vertex operators for the string. As the string theory is a 
field theory, the vertex operators are worldsheet operators that represent an emission or absorption of 
a physical string mode. 

When we talk about open strings, the vertex operators must act on the boundary of the worldsheet, 
when we refer to closed strings the operator must act on the interior of the worldsheet. In the case of 
closed strings that we are dealing with, we have to sum up over all possible particle emission points 
on the worldsheet (just like it is done in quantum field theory in the spacetime), so we must integrate 
the operators over the worldsheet coordinates as, 𝑔H ∫𝑉2 𝑑𝜎%, (𝑔H is the string coupling constant) the 
label 𝜙 specify the state that is being absorbed or emitted. If the emitted particle has momentum 𝑘 the 
vertex operator should contain a factor 𝑒"{·3, working on a string this factor has to be generalized to 
𝑒"{·R .  

We have defined the state of the string as |𝜙⟩ = ∏ �̈�c#
0#y

" ∏ 𝛼�ª68

-8y
f |0, 𝑘⟩ . To build the vertex 

operators corresponding to a given state we have to know how to produce it (see (Polchinski, 1998)). 
The Conformal field theory (CFT) is the work frame that enables us to achieve this. Through the use 
of CFT we obtain the correspondence 𝛼;c0 → 𝜕c𝑋0 .	If a state is built by acting �̈�c#

0#y n times on the 
ground state, we will have to plug the 𝑛#_ power of  𝜕c𝑋0 into the vertex operator (see (Polchinski, 
1998)). This gives us an intuition of how to construct the vertex operator of the Graviton state 
𝑠0-𝛼;$

0 𝛼�;$- |0, 𝑘⟩ (𝑠0- is a symmetric factor that contain its polarization) as 

𝑉 = −4𝜋𝑔,𝑠0-.ℎ
$
%	 : 𝜕?𝑋0𝜕?𝑋-𝑒"{R: 𝑑𝜏𝑑𝜎 (4.1.8) 

The most we can do by introducing vertex operators on the string discussion is to compute the S-matrix 
(matrix of transition amplitudes between asymptotically free states) for strings. By taking the sources 
as initial string states the resulting discussion is equivalent to find the topology of a compact form with 
as many holes on the surface as external legs on the S-matrix (See Fig 4.4) . Therefore, the discussion 
about the interactions can be focused on finding the different topologies of this compact forms (Fig 
4.5) that would correspond to the right part terms in (Fig 4.3) as Feynman diagrams. If we compute a 
loop in the closed string it will be a torus. 

 



 1 

             

 

     

      Fig: 4.5  

Fig: 4.4 

The topologies of (Fig: 4.5) are Riemann surfaces of n handles, we call them Riemann surfaces of 
genus n.  

Summing up over topologies we generalize the sum over loops of the Feynman diagrams, with the 
difference that at each loop we have all the possible types particles. Eventually, we can write the S-
matrix elements for 𝑛 external legs on 𝑗 state as  

𝑆~"~!…~9(𝑘$, … , 𝑘c) = � .[𝑑𝑋𝑑ℎ] exp	(−𝑆R − 𝑆<)Â.𝑑%𝜎" ℎ
$
%(𝜎")𝑉f#(𝑘" , 𝜎")

c

"\$GKK	,J6NG,#
	#JNJKJ<"MH

 (4.1.9) 

Notice that in the expression (4.1.9) we do not divide by 〈1〉 to cancel divergencies as we did in (4.1.5). 
In string theory, this is a much more delicate issue, see (Polchinski, 1998). 

In the next section, we will see a mechanism to formulate the general relativity starting from the string 
theory. 
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5 The Graviton and General Relativity  

En este capítulo se expondrán los argumentos que dan lugar a las ecuaciones de la relatividad general a 
partir de la teoría de cuerdas. Para ello emplearemos la integral de camino que hemos previamente 
introducido.  

The first excited state of a closed string is obtained by acting with the creation operator 𝛼;$"  on the 
ground state. The level matching condition imposes that we also have to use 𝛼�;$"  so the first excited 
state is written as, 

𝛼;$" 𝛼�;$
f |0, 𝜙⟩. 

Each of this 𝛼;$"  operator transform as a 𝑆𝑂(𝐷 − 2) representation but we want our final states to 
transform as a full Poincare group, 𝑆𝑂(1, 𝐷 − 1), representation. It is not possible to fit a vector with 
(𝐷 − 2)% states, as the graviton, in a representation of the 𝑆𝑂(𝐷 − 1) group, but it is not all lost here. 
If the state is massless the Poincare group is not expressed in the same way, let us see why. 

If we consult the Wigner’s classification of the Poincare group representations we observe that 
massless particles have different representations of their little group (the group that lets the temporal 
momentum magnitude (𝑝8) invariant, identified with the spatial rotations) (see (Maiani L. ; Benar O., 
2016)). The massive particles little group is 𝑆𝑂(𝐷 − 1), but when we consider massless particles the 
little group is 𝑆𝑂(𝐷 − 2), this is due to the fact that  𝑝8 must come from the momentum on a defined 
direction on space so this one must be unchanged too under the little group. In other words, massless 
particles must have fewer states than massive ones, the massless particles are representations of 
𝑆𝑂(𝐷 − 2) while massive ones are representations of 𝑆𝑂(𝐷 − 1). 

If we consider that the first excited state is massless, then it fits in a representation of  𝑆𝑂(𝐷 − 2)	(It 
is interesting to mention that this is only possible if  𝐷 = 26  and the state corresponds to a  24 × 24 
representation). 

The quantum state  𝛼;$" 𝛼�;$
f |0, 𝜙⟩ could be identified with the quanta of a spin two field corresponding 

with a 2-form with the three irreducible representations of 24 × 24, symmetric, antisymmetric and 
trace:  𝐺0-(𝑋) (The graviton, corresponding with the symmetric part), 𝐵0-(𝑋)(The antisymmetric 
part) and 𝛷(𝑋) (The Dilaton, that corresponds with the trace). 

5.1 Non-linear sigma model, the string in a curved spacetime 

As we have already discussed, if we want to generalize the string motion in a curved spacetime, the 
Polyakov action takes the form, 

𝑆E = −
𝑇
2.ℎ

$
%	 ℎ?@𝑔0-(𝑋)

𝜕𝑋0

𝜕𝜎?
𝜕𝑋-

𝜕𝜎@	
𝑑𝜏𝑑𝜎. (5.1.1) 

We can expand 𝑔0-(𝑋) over the flat metric with a perturbation as 𝑔0-(𝑋) = 𝜂0- + 𝜒0-(𝑋) (we call 
the action 𝑆E instead 𝑆N because of historical reasons the actions of this form are called as non-linear 
sigma models).  
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If we expand the metric perturbation inside the exponential of the path integral we obtain, 

exp(−𝑆E) = expJ−𝑆NK exp <−
𝑇
2.ℎ

$
%	 ℎ?@𝜒0-(𝑋)

𝜕𝑋0

𝜕𝜎?
𝜕𝑋-

𝜕𝜎@	
𝑑𝜏𝑑𝜎= 

= expJ−𝑆NK �1 −
𝑇
2.ℎ

$
%	 ℎ?@𝜒0-(𝑋)

𝜕𝑋0

𝜕𝜎?
𝜕𝑋-

𝜕𝜎@	
𝑑𝜏𝑑𝜎 +⋯� . 

(5.1.2) 

The successive terms on the brackets of the last part of (5.1.2) are similar to the vertex operators on 
the path integral of the graviton state with, 𝜒0-(𝑋) = −4𝜋𝑔,𝑠0-𝑒"{R.  

Using that argument in reverse, we consider that the string interacts with a undefined number of 
gravitons in a macroscopic scale, in such a way that they conform a coherent state. Then the vertex 
operators can be exponentiated again.  

�1 −
𝑇
2.ℎ

$
%	 ℎ?@J−4𝜋𝑔,𝑠0-𝑒"{RK

𝜕𝑋0

𝜕𝜎?
𝜕𝑋-

𝜕𝜎@	
𝑑𝜏𝑑𝜎 +⋯� = 

exp <−
𝑇
2.ℎ

$
%	 ℎ?@(−4𝜋𝑔,𝑠0-𝑒"{R)

𝜕𝑋0

𝜕𝜎?
𝜕𝑋-

𝜕𝜎@	
𝑑𝜏𝑑𝜎=. 

Looking at the form of the generating functional we obtain 

𝑍 = .[𝑑𝑋𝑑ℎ] expJ−𝑆NK exp <−
𝑇
2.ℎ

$
%	 ℎ?@𝜒0-(𝑋)

𝜕𝑋0

𝜕𝜎?
𝜕𝑋-

𝜕𝜎@	
𝑑𝜏𝑑𝜎=, 

𝑍 = .[𝑑𝑋𝑑ℎ] exp <−
𝑇
2.ℎ

$
%	 ℎ?@(𝜂0- + 𝜒0-(𝑋))

𝜕𝑋0

𝜕𝜎?
𝜕𝑋-

𝜕𝜎@	
𝑑𝜏𝑑𝜎=. 

This is completely analog to the string in a curved spacetime but now the curved metric is a 
consequence of the continuous interchange of graviton states in the string motion.  

At this point we introduce the concept of effective action; if it is possible to change the action to add 
quantum mechanical corrections to the classical part we say we construct an effective action. In this 
case the interaction of any string with a coherent background of graviton states introduces a quantum 
correction. This suggest to define an effective action of the form 

𝑆E =
𝑇
2.ℎ

$
%	 ℎ?@𝐺0-(𝑋)

𝜕𝑋0

𝜕𝜎?
𝜕𝑋-

𝜕𝜎@	
𝑑𝜏𝑑𝜎. 

We have summed up, L𝜂0- + 𝜒0-(𝑋)M = 𝐺0-(𝑋). Here, 𝐺0-(𝑋)	is not a variable of the path integral 
but the gravitons background contribution to the action, it is not affected by, [𝑑𝑋𝑑ℎ], then it can be 
considered as a metric. If we consider a coherent background of gravitons we have to include the rest 
of irreducible representations of the first excited state of the string, so we conclude that our effective 
action must have the following form: 

𝑆E = −
1

4𝜋𝛼:.ℎ
$
% 	9ℎ?@𝐺0-(𝑋)

𝜕𝑋0

𝜕𝜎?
𝜕𝑋-

𝜕𝜎@	
+ 𝑖𝜖?@𝐵0-(𝑋)

𝜕𝑋0

𝜕𝜎?
𝜕𝑋-

𝜕𝜎@	
+ 𝛼:𝑅𝛷(𝑋); 𝑑𝜏𝑑𝜎. (5.1.3) 
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The constants 𝑖𝜖?@  and 𝑅  are obtained from the vertex operator terms of the corresponding 
representations, this terms obey ℎ$/%	𝑖𝜖?@ = 1 and 𝑅 is the Ricci scalar on the worldsheet.  

Now,  this effective action must respect the previous local symmetries that are essential to build the 
string states consistently. We notice that these terms in the action break the Weyl invariance. To keep 
Weyl invariance we have to impose constraints over (5.1.3). 

Through the change of variables, 𝑋0(𝜎) = 𝑥0 + √𝛼′𝑌0(𝜎),  the 𝑥0  is the classical solution that 
corresponds with the vacuum expectation value of our field 〈𝑋0〉 = 𝑥0 	(there exists a fundamental 
difference on the vacuum state of our theory and those of the standard model fields, one is a field of 
the worldsheet coordinates and the others are fields over the spacetime). In field theory, the vacuum 
expectation value is the one that minimizes the effective potential, so the quantization is performed 
over the, 𝑌0, variables that obey, 〈𝑌0〉 = 0	,so, 𝑌0(𝜎), is a dimensionless function that will give us the 
fluctuations over the classical solution (in quantum field theory the Higgs mechanism is an example 
of this process, where the form of the potential is changed by giving a non-null vacuum expectation 
value for the Higgs boson that recovers the masses of the particles in the model). The graviton 
contribution is expanded over the classical solution on the worldsheet as follows:  
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This way, each of the 𝐺 derivatives in (5.1.4) are coupling constants of the interacting 𝑌 fields. We 
have written the quantum string motion on a curved spacetime as an interactive quantum two-
dimensional field theory. It can be shown (see on (Polchinski, 1998) or (Green, Schwatrz, & Witten, 
1987)) that to make the effective action Weyl invariant we require the energy-momentum tensor to be 
traceless 𝑇GG = 0. This condition implies that the Couplings beta functions must go to zero: 𝛽0-(𝐺) =
𝛽0-(𝐵) = 𝛽(𝛷) = 0. (the beta function regularization is a method in field theory to avoid divergencies 
by reformulating the field magnitudes to cancel this divergences in the integral, we add counterterms. 
The difference with respect to other quantum gravity theories is that we only need a finite number of 
them, this makes this field theory a renormalizable theory. The objects that study how the field 
magnitudes as coupling constants change with the energy scale 𝜇 are called 𝛽-functions). We will not 
specify how we obtain the specific form of the beta functions so the reader can consult the 
bibliography. The beta functions are 
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where 𝐻0�{ =	𝜕0𝐵�{ + 𝜕�𝐵{0 + 𝜕{𝐵0� and 𝑅0- the corresponding Ricci tensor of the 𝐺0- metric.  

If the radius of curvature 𝑅, is small compared to the string scale then we can develop the theory 
perturbatively ignoring the internal degrees of freedom of the string and cutting the energy scale at the 
𝛼:% term.  In (5.1.4) the addition of the successive terms will add the corrections of high energy to the 
general relativity. The equations (5.1.5) have to be taken as the motion equations over 𝐺, 𝐵 and 𝛷 that 
now acquire a dynamical character in the classical way. Therefore, the (5.1.5) equations can be 
considered as coming from the following low energy effective action, 
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The first term in the bracket is very familiar to the Einstein-Hilbert action except for the 𝑒;%� factor. 
It is possible to make a change of variables to go to what is called as Einstein frame. 

The change starts by redefining 𝛷 =	𝛷± + 𝛷8 , where 𝛷±  has a vanishing expectation value, 𝐺£0- =

𝑒;
:(	<=)
?.!𝐺0- . This way we have to redefine 𝑅  as 𝑅£ = 𝑒

:(	<=)
?.! [𝑅 − 2(𝐷 − 1)𝛻%𝑒;

!@	<= A
?.! − (𝐷 − 2)(𝐷 −

1)𝜕0𝑒
;!@	<

= A
?.! 𝜕0𝑒;

!(	<=/<7)
?.! ].  Hence, the action becomes  

𝑆 =
1
2𝜅8%

.𝑑%�𝑥J−𝐺£K$/% 9𝑅£ +
4

𝐷 − 2 J𝜕𝛷
±K% −

1
12 𝑒

;!(	�
�O�7)
h;% 𝐻0�{𝐻0�{ + 𝑜(𝛼:%);. (5.1.7) 

The action (5.1.7) recovers the Einstein-Hilbert action except for the lack of mater fields. In the context 
of Superstring theory massive fields are introduced in the equations completing the analogy. The other 
aspect that is unsatisfactory of (5.1.7) is the possibility of defining different metrics, this is achievable 
because we have a scalar massless field 𝛷. The presence of this field would change the way we rule 
distances and would break the equivalence principle. Superstring theory gives also a way to make the 
Dilaton massive, making the Dilaton forces short range, and letting only two long range interactions 
to rule the space at long distances, the Graviton, and the antisymmetric part. This way the equivalence 
principle would be recovered at large scales, and with it, the general relativity. 

As a summary of this chapter, we will go through all the different aspects that have been treated to 
clarify the process. Firstly, the Polyakov path integral in a curved background can be reconstructed by 
introducing the interaction of the string with a coherent state of gravitons in the path integral. This 
way, we can introduce an effective theory that incorporates this corrections to the string motion. We 
have to include also the rest of the representations of the string first excited state, the antisymmetric 
and the Dilaton. From this point we develop the new effective action as an interactive field theory. 
Also, new action breaks the Weyl invariance so we have to observe under which circumstances it is 
recovered at quantum level. The conclusion is that it is required the coupling constants beta functions 
to be zero to keep this symmetry. Taking only low energy apportions to the beta components we obtain 
three equations that can be taken as coming from a low energy effective action. Using a change of 
parameters we can obtain the Einstein Hilbert action with massless extra fields. 
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Conclusions  

The string theory is, perhaps, the most ambitious theory of the history of physics. High relevance 
results have been explained with this theory such as the loss of information on the blackholes. Maybe 
the most attractive fact about this theory is that everything in universe is explained with vibrating 
segments on the spacetime, every interaction and every particle arise from a vibrating string.  

Firstly, It has been enounced the least action principle applied to general relativity, field theory, special 
relativity, and strings moving through the spacetime in different ways. We have studied the string’s 
global and local symmetries to simplify the equations of motion, studying its specific treatment as a 
gauge theory.  

After that, we obtained the different solution of the motion equations discerning between different 
boundary conditions and we have used the Noether Theorem to obtain the conserved currents and 
charges of a field theory applied to the string. We also formulated the conditions of the equivalence 
among the Nambu-Goto action and the Polyakov action in form of the Virasoro conditions and 
obtained the mass formula for closed and open strings.  

Later, we talked about the different ways of quantizing a gauge theory to remove the string’s ghosts 
states. We studied in the process the covariant quantization and imposing the gauge restrictions in two 
different ways: the covariant approach and the lightcone quantization, mentioning their advantages 
and disadvantages, we found in both cases that the number of dimensions have to be twenty-six. We 
obtained in the process the form of the states of the quantized string, as the graviton, by using the 
central extension of the Virasoro Algebra.  

Lastly, we studied the path integral approach applied to String Theory. Permitting us to introduce the 
interactions in the formalism. We employed this tool to formulate the general relativity as a low energy 
approach of an effective theory, built by considering the interaction of the string with a coherent state 
of gravitons.  

 

 

 

 

 

 

 

 

 

 



 48 

Bibliography 

Green, M. B., Schwatrz, J. H., & Witten, E. (1987). Superstring Theory. Cambridge: Cambridge University 

Press. 

Landau L. D. , Lifshitz E. M. (1971). Classical theory of fields. Oxford: Pergamon Press. 

Lifshitz E. M., V. B. Berestetskii, L.P. Pitaevskii. (1975). Teoría cuántica relativista. Barcelona: Reverté. 

Maiani L. ; Benar O. (2016). Relativistic Quantum Mechanics, An Introduction to Relativistic Quantum 

Fields. CRC Press. 

Peskin, M., & Schroeder, D. (1995). Quantum Field Theory. Addison-Wesley Pub. Co. 

Polchinski, J. (1998). String Theory. Cambridge: Cambridge University Press. 

Tong, D. (2012, February). University of Cambridge . Retrieved from David Tong: Lectures on String Theory: 

http://www.damtp.cam.ac.uk/user/tong/string.html  

Weimberg, S. (1995). The Quantum Theory of Fields. Cambridge: Cambridge University Press. 

Wray, K. (2011, May 6). Retrieved from An Introduction to String Theory: 

https://math.berkeley.edu/~kwray/papers/string_theory.pdf  

Zwiebach, B. (2004). A First Course in String Theory. Cambridge: Cambridge University Press. 

Images taken from: 

- Fig 4.2, Fig 4.3 at pages 11 and 15 at:   
https://www.physics.umd.edu/courses/Phys851/Luty/notes/diagrams.pdf  
 

- Fig 1.1, 4.1, 4.4, Fig 4.5  at:  String Theory by Joseph Polchinski at pages 10, 330,  98  and 100  

 

 

 



 49 

 

Agradecimientos 

En primer lugar, gracias a mi tutor y al resto de docentes del grado en Física de la Universidad de La 

Laguna. Gracias a mis amigos, pero en especial a Juanjo y a Adrián porque sin nuestras charlas y discusiones 

no disfrutaría tanto de la física. Gracias a mi prima Rebeca por ayudarme con el inglés y no echarme de su 

casa. Gracias a mis tías por haberme ayudado durante este periodo universitario, gracias a mi hermano, mis 

padres y abuelos, en especial a Abuela Dolores por poner fundamento y a Abuela Pepita por sus incansables 

“la cabeza sobre la mesa y los codos sobre los hombros” o algo así, no lo recuerdo muy bien. Y finalmente 

gracias a Claudia, gracias por darme este año tan especial y bonito y gracias a tu familia por acogerme como 

uno más. 

 Muchísimas gracias a todos. 


