
Facultad de Ciencias
Sección de Física

TRABAJO DE FIN DE GRADO

Ab initio studies on the electronic
structure of atoms

Pablo Martínez Martínez

Project supervisors:
Dr. Javier Hernández Rojas
Dr. José Diego Bretón Peña

Departamento de Física

Date of submission: 10tℎ June 2021



I would like to thank my supervisors for the dedication, discussions and suggestions
offered throughout the entirety of the project as well as my parents, Pedro and Lourdes,
for their support at all the stages of this journey.

2



TABLE OF CONTENTS TABLE OF CONTENTS

Table of contents

List of Tables 4

List of Figures 4

1 Summary 5

2 Introduction 6

3 Theoretical Background 7
3.1 The atomic Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2 Electronic energy. Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.2.1 Hartree-Fock self-consistent method . . . . . . . . . . . . . . . . . . . 10
3.2.2 Møller-Plesset perturbation theory. Second-order corrections: MP2 . 11

3.3 Basis sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4 NWChem 17
4.1 Input file structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

5 Results and discussion 19
5.1 HF calculations for light atoms . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5.1.1 HF ground-state energies . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.1.2 Ionization energies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5.2 Extension to heavier atoms. MP2 refinement . . . . . . . . . . . . . . . . . . 25
5.2.1 Transition metals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.3 Electron affinities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

6 Conclusions 37

References 40

Appendix A Sample input file and data retrieval 41

Appendix B Additional tables 42

3



LIST OF TABLES LIST OF FIGURES

List of Tables
1 Spin-constrained ground-state energies for Z ≤ 10 atoms and 1st positive

ions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2 Study on the ground-state spin multiplicities for Sc-Zn . . . . . . . . . . . . 30
3 Comparison between the expected, computational and reference values for

the spin multiplicity of the 4tℎ-period transition elements . . . . . . . . . . . 31
4 Comparative view of ionic and atomic energies for the 6-311g* and cc-pvdz

basis sets and their diffuse expansion for Z = 9. . . . . . . . . . . . . . . . . 35
5 Comparison of the ground-state energy for alkalies using correlation and

polarization consistent basis sets . . . . . . . . . . . . . . . . . . . . . . . . . 36
6 DFT estimation for the Sc and Ti ionization energies . . . . . . . . . . . . . . 38
7 Electronic configurations and spin multiplicities for H-Kr as well as their

first cations and anions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
8 HF and MP2 ground-state energies for atoms and cations H-Kr as well as

their predicted ionization energies . . . . . . . . . . . . . . . . . . . . . . . . 42
9 HF and MP2 electron affinities for atoms H-Kr . . . . . . . . . . . . . . . . . 42

List of Figures
1 Spatial distribution of cartesian GTOs for l ∈ {0, 1, 2} . . . . . . . . . . . . . 15
2 Monoelectronic orbital diagram for the ground state of Z ≤ 10 atoms . . . . 22
3 Radial electron densities for Z ≤ 10 atomic ground states . . . . . . . . . . . 23
4 Comparative view of radial electron densities for Z ≤ 10 atomic ground

states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5 First ionization energy for atoms with Z ≤ 10 and relative error . . . . . . . 25
6 First ionization energy for atoms with 1 ≤ Z ≤ 20 and 30 ≤ Z ≤ 36 and

relative error for HF and MP2 correction . . . . . . . . . . . . . . . . . . . . . 26
7 Monoelectronic orbital diagram for the ground state of 11 ≤ Z ≤ 18 atoms . 26
8 Monoelectronic orbital diagram for the ground state of K-Ca and Ga-Kr

atoms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
9 Radial electron densities for 11 ≤ Z ≤ 18 atomic ground states . . . . . . . . 28
10 Ionization energies for 21 ≤ Z ≤ 30 atoms assuming the n + l and Hund’s

rule hold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
11 Ionization energies for 21 ≤ Z ≤ 30 atoms after the spin multiplicity

correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
12 Monoelectronic orbital diagram for the ground state of 21 ≤ Z ≤ 30 atoms . 32
13 Monoelectronic orbital binding energy dependence on the n and l quantum

numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
14 Electron affinities for s and p-valence orbitals and relative error . . . . . . . 35
15 Electron affinities for 21 ≤ Z ≤ 30 . . . . . . . . . . . . . . . . . . . . . . . . . 37

4



1 SUMMARY

1 Summary

Este trabajo constituye un estudio teórico-computacional desde primeros principios de
la estructura electrónica a un nivel atómico no relativista, a la par que introduce métodos
teóricos generales de aplicabilidad en sistemas no solo atómicos sino también
moleculares. En particular, se describen el método del campo autoconsistente de
Hartree-Fock (HF) y la teoría de perturbación de muchos cuerpos desarrollada por Chr.
Moeller y M. S. Plesset (MPN) hasta segundo orden (MP2).

El método HF define la energía del estado fundamental como un funcional de la función
de onda del sistema, que es escogida como la antisimetrización del producto de funciones
de onda monoelectrónicas. Estas funciones dependen de unos ciertos parámetros que
son optimizados. Sin embargo, el formalismo de HF no estima la correlación electrónica,
sino que recurre a un campo medio para estimar la interacción electrostática entre estas
partículas. En este contexto se han desarrollado numerosos métodos post-HF a fin de
estimar esta corrección a la energía del estado fundamental, entre los que se encuentra la
teoría MPN.

Dada la naturaleza iterativa de estos métodos teóricos, se precisa de paquetes
informáticos de química computacional para llevar a cabo los cálculos en casos prácticos.
En este proyecto se ha hecho uso del paquete NWChem, siendo esta la primera ocasión
en la Universidad de La Laguna que es empleado para cálculos atómicos. En la Sección 4
se incluye una breve introducción a su sintaxis y se adjunta un fichero ejemplo en el
Apéndice A. Además, se discute en profundidad el formalismo de las bases de funciones
de onda y sus familias principales en el contexto de la química computacional.

Siguiendo esta metodología, se ha resuelto la estructura electrónica de los átomos
correspondientes a los cuatro primeros periodos de la tabla periódica (H-Kr) y se han
contrastado las predicciones para las energías de ionización y afinidades electrónicas,
dando muy buenos resultados y confirmando las configuraciones subyacentes.

La simulación de la estructura electrónica de los metales de transición del 4to periodo
(Sc-Zn) ha presentado serias dificultades, por lo que no se ha podido confirmar con
nuestros cálculos la estructura electrónica de los aniones. Atribuimos estas
complicaciones al alto número de orbitales disponibles con energías similares. Además,
para átomos más pesados, el término de interacción de spin-órbita puede ser crucial en
la determinación de las energías de los niveles monoelectrónicos. A pesar de ello, se ha
podido resolver la estructura electrónica de los la mayoría de los átomos y de sus
primeros cationes. Los átomos de Sc y Ti son especialmente sensibles a la elección de la
base y no es posible asegurar su configuración electrónica. No obstante, un cálculo
basado en el funcional de la densidad electrónica (DFT) también realizado con
NWChem ha permitido estimar su configuración, si bien este proyecto no pretende
ahondar en esta metodología en particular.

Por otro lado, se discute la exactitud de la aproximación del campo central, que propone
una descripción complementaria de los sistemas polielectrónicos. La comparación entre
la estructura predicha por la aproximación del campo central y los resultados
computacionales permite justificar las reglas y postulados tales como las reglas de Hund
de orden energético y el establecimiento de un principio de llenado (Aufbauprinzip) con
un orden establecido. Nuestros cálculos han conducido a diferencias en el orden de
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2 INTRODUCTION

"llenado" con respecto al previsto teóricamente para los elementos de transición (Sc-Zn)
y se ha observado una alta dependencia con la base escogida. También se ha podido
constatar una preferencia por la ocupación de los orbitales en el orden 3d → 4s → 4p
para los cálculos HF. La excepción a esta norma la encontramos en el Sc, donde las
energías de los orbitales ocupados 4s y 3d son aproximadamente iguales. Precisamente
este elemento y el siguiente (Ti) son los que han presentado más dificultades en el
estudio. La diferencia de energía entre estos dos niveles se acrecienta al aumentar el
número de electrones del sistema hasta tal punto que la subcapa 4s cede un electrón a la
3d para los átomos Fe-Cu.

Los resultados también evidencian una periodicidad en los valores numéricos de las
afinidades electrónicas y energías de ionización, justificando así por métodos
computacionales la ordenación de los elementos en grupos y periodos en la tabla
periódica.

Por último, ha sido posible evaluar la densidad de probabilidad electrónica radial de estos
elementos a partir de los orbitales HF. Si bien los métodos DFT son los más indicados para
su cálculo, esta representación aproximada permite conectar la estructura energética de
niveles ocupados con la probabilidad de presencia radial dentro del marco teórico del
trabajo.

2 Introduction

The atomic hypothesis is arguably the most important discovery that science has brought
to humanity from a fundamental perspective. In the words of Richard Feynman, Physics
Nobel Prize laureate in 1965:

"If, in some cataclysm, all of scientific knowledge were to be destroyed, and
only one sentence passed on to the next generations of creatures, what
statement would contain the most information in the fewest words? I believe
it is the atomic hypothesis (or the atomic fact, or whatever you wish to call it)
that all things are made of atoms—little particles that move around in
perpetual motion, attracting each other when they are a little distance apart,
but repelling upon being squeezed into one another. In that one sentence,
you will see, there is an enormous amount of information about the world, if
just a little imagination and thinking are applied."

Richard Feynman, The Feynman Lectures on Physics, Vol. I Ch. 1

Indeed, this simple notion to our present eyes conveys an uncomplicated and yet
extremely solid foundation to better understand or to at least make an educated guess
on how matter behaves.

It has been known since the XIX century that every chemical species has a unique
fingerprint in the form of emission or absorption spectra. Nowadays, we are acquainted
with the fact that these spectral lines originate from electronic transitions between
atomic or molecular energy levels. This knowledge about the atomic structure is at the
core of many areas including fluorescence studies, laser design or material science.
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3 THEORETICAL BACKGROUND

Theoretical studies are nonetheless extremely valuable for industrial purposes as drug
design for instance. The prediction and subsequent simulation of any system of interest
allow to shed light on it as a whole rather than following an obscure trial and error
procedure. This work intends to introduce the reader to some of the most common
algorithms in computational chemistry used to simulate the electronic structure of any
chemical species from first principles.

We shall restrict ourselves to the non-relativistic atomic domain, although the theory
applies to molecular systems under the Born-Oppenheimer approximation. Section 3
will cover the fundamentals of the Hartree-Fock method as well as the second-order
many-body perturbation theory of Chr. Moller and M. S. Plesset. Brief comments on the
density functional theory will also be included in the conclusions so as to improve some
computational results.

These methods are iterative-based and cannot be computed manually if a reasonable level
of accuracy is demanded. Therefore, a computational chemistry package was needed to
carry the calculations out. Chapter 4 is devoted to briefly describe the functioning of
NWChem, a molecular-oriented software that will be adapted to atomic systems for the
first time in the Universidad de La Laguna.

Finally, these theories will be applied in an attempt to unravel the electronic structure
for atoms ranging from H to Kr. These results will be justified by direct comparison to
experimental data for the ionization energies and the electron affinities. Furthermore, the
results will be linked to qualitative predictions and principles regarding the mean-field
approximation and the existence of an orbital filling principle. The computational results
allow justifying their accuracy while also establish exceptions to these general statements.

In addition, Python programs have also been developed to produce the monoelectronic
level diagrams shown in Figures 2, 7, 8 and 12 and the radial electron density plots of
Figures 3, 4 and 9 based on the computational data.

3 Theoretical Background

En esta sección se discuten la naturaleza del problema físico planteado así como el
formalismo mecano-cuántico empleado para su estudio. Tras esta introducción general,
se describen los métodos teóricos que permiten un análisis cuantitativo de las energías
(HF y MP2) de los estados fundamentales. Además, se discuten en profundidad las
bases empleadas en cálculos ab initio en el contexto de la química computacional así
como su función en la construcción y optimización de los orbitales electrónicos.

3.1 The atomic Hamiltonian

One of the basic magnitudes that ab initio methods allow estimating is the total energy of
the system. We will tackle this problem as a general set of interacting particles without
restricting it to the atomic domain yet. Both electrons and nuclei will be thought of as
point-like particles in interaction without any internal degrees of freedom associated with
their inner structure apart from the electron spin. We will consider that the total number
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3.1 The atomic Hamiltonian 3 THEORETICAL BACKGROUND

of particles is D.

This study will make use of the quantum-mechanical formalism so we will be working on
the Hilbert space �T associated with the total system. This �T space is the tensor product
of the individual Hilbert spaces of each particle:

�T = �1 ⊗ �2 ⊗ ... ⊗ �D , (3.1)

where �i denotes the Hilbert space associated to the particle i. Assuming that the total
wave function of the system is an eigenstate of the Hamiltonian operator ̂ of the total
system, the energy of that state will be given by its eigenvalue under the Hamiltonian
operation:

̂ |

|

|

Ψ(
)n
⟩

= E(
)
n

|

|

|

Ψ(
)n
⟩

. (3.2)

In this notation, it is assumed that the energy spectrum is discrete, labelling the different
eigenvalues with a subscript En. The possibility that the energy level is degenerate in the
energy En is left open, for which a superscript E(
)

n is added to distinguish those
eigenstates from each other.

The Hamiltonian ̂ must include the kinetic energy of each particle and any interactions
between them. Here, we will restrict the study to the non-relativist domain and therefore,
the only significant interaction will be the electrostatic force. With this information, we
write the most general expression for ̂ in the laboratory frame (LAB) as:

̂LAB =
D
∑

i

̂i
2

2mi
+ 1
2

D
∑

i,j
i≠j

qiqj
4�"0r̂ij

, (3.3)

where the first term is the total kinetic energy and the second term is the sum of potential
energies for each i-particle as a result of their interaction with the j-particle. The division
by 2 in (3.3) is necessary to not count the same interaction twice. The operator appearing
in the electrostatic term is the module of the difference between the position operators of
the particles1 i and j:

r̂ij = |R̂j − R̂i| . (3.4)

This Hamiltonian is non-relativistic, which should be accounted for when judging the
predicted results.

Now, we shift our attention to the atomic system in particular, where we will be dealing
with one nucleus and N electrons. Particularizing the general Hamiltonian (3.3) results
in:

1We note here that with particle i and j we are not labelling the electrons but rather the Hilbert Space Hi
or Hj on which the action of the operators is defined.
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3.2 Electronic energy. Methods 3 THEORETICAL BACKGROUND

̂at(P̂A, {P̂i}, R̂A, {R̂i}) =
̂A

2

2MA
+

N
∑

i

̂i
2

2mi
−

N
∑

i

ZAe
4�"0r̂Ai

+ 1
2

N
∑

i,j
i≠j

e2

4�"0r̂ij
, (3.5)

where the nuclear variables have been assigned the subscript “A”, e is the absolute value
of the electron charge and ZA the nucleus atomic number. It is convenient to change the
reference system from LAB to the center of mass of the system (CM) through a canonical

transformation
{

P̂A, {P̂i}, R̂A, {R̂i}
}

⟶

{

P̂CM , {p̂i}, R̂CM , {r̂i}
}

. The lower case position
vectors {r̂i} stand for the electron position in the CM reference frame system while {p̂i}
refer to their conjugate momenta. The new Hamiltonian is written as (we will remove the
subscript ̂at):

̂(P̂CM , {p̂i}, R̂CM , {r̂i}) =
̂ 2
CM

2(MA +Nme)
+

N
∑

i

p̂i
2

2me
+

N
∑

i,j

p̂i ⋅ p̂j
2MA

−
N
∑

i

ZAe
4�"0r̂Ai

+1
2

N
∑

i,j
i≠j

e2

4�"0r̂ij
.

(3.6)

This expression separates the motion of the center of mass from the relative or internal
movement. We will only study the internal part as the other is just a plane-wave solution
that can be multiplied by the internal wave function. Lastly, the nucleus will be
considered to have a mass much larger than the electrons, tending to infinity. Therefore,
R̂CM = R̂A and the mass polarization term2 can be neglected to rewrite the expression as:

̂({p̂i}, {r̂i}) =
N
∑

i

p̂i
2

2me
−

N
∑

i

ZAe2

4�"0r̂i
+ 1
2

N
∑

i,j
i≠j

e2

4�"0r̂ij
. (3.7)

Note on Eq. (3.7): the first and second terms on the right-hand side are usually called the
one-electron Hamiltonian ℎ̂1 while the last one is referred to as the two-electron
Hamiltonian ℎ̂2.

3.2 Electronic energy. Methods

Once the Hamiltonian operator (3.7) is defined, we must solve the eigenvalues equation
(3.2), for which the system’s wave function |Ψ⟩ is needed. An analytical solution cannot
be obtained for atoms with N > 1, as the electrostatic potential is not central due to the
electronic repulsion. In order to determine the wave function and the energy associated,
we will make use of the Hartree-Fock theory, which is described in the following section.

2The third term on the right-hand side of (3.6)
∑N
i,j

p̂i⋅p̂j
2MA

is the mass polarization term. Its order of
magnitude is less than the fine structure of the atom, so its omission is justified for the precision depth
of this work but should be accounted for hyperfine corrections.
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3.2 Electronic energy. Methods 3 THEORETICAL BACKGROUND

3.2.1 Hartree-Fock self-consistent method

This method attempts to obtain the ground-state energy, i.e. the lowest, of the multi-
electron system through a variational approximation. The trial wave function is written
as a Slater determinant of monoelectronic functions called spin-orbitals, which we require
to be orthonormal without loss of generality. This configuration allows the electronic
wave function to be antisymmetric according to the spin-statistics theorem:

⟨r1… rN ||Ψ⟩ =

|

|

|

|

|

|

|

|

|

�a(r1) �b(r1) … �n(r1)
�a(r2) �b(r2) … �n(r2)
⋮ ⋮ ⋱ ⋮

�a(rN ) �b(rN ) … �n(rN )

|

|

|

|

|

|

|

|

|

. (3.8)

The choice of monoelectronic wave functions implicitly assumes the existence of an
electronic mean-field3. Alternatively, we write the global wave function as:

|Ψ⟩ = 1
√

N!

∑

P
(−1)P

⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟
̂

|

|

�a�b…�n⟩ ⟹ ⟨r1… rN ||Ψ⟩ =
1

√

N

∑

P
(−1)P�a(r1)…�n(rN ) ,

(3.9)

where the sum is performed over all possible permutations of the spin-orbital order and
̂ is the antisymmetrization operator. The power preceding the product of
monoelectronic functions is +1 if the permutation is even and −1 in case it is odd4. The
other factor normalises the state.

A variational approach is followed to obtain an estimation for the ground-state energy:

⟨Ψ|̂|Ψ⟩
⟨Ψ|Ψ⟩

≤ Eg , (3.10)

with Eg the unknown ground-state energy. Inserting expressions (3.7) and (3.9), it is
possible to give an expression for ⟨Ψ|̂|Ψ⟩ in terms of the spin-orbitals. This will be
treated as a functional of the spin-orbitals to minimize the energy. The
orthonormalisation condition is guaranteed including N2 Lagrange multipliers5 �ik:

�F = �

[

⟨Ψ|̂|Ψ⟩ −
∑

i,k

[

�ik
(

⟨�i||�k⟩ − �ik
)]

]

= 0 , (3.11)

where �ik stands for the Kronecker delta. After the calculations, we arrive at the so-called

3This will be discussed in more depth at the beginning of Section 5.
4A permutation is odd if an odd number of pairs have been switched. The permutation is even if it is

not odd.
5In practical scenarios, a unitary transformation is performed over the spin-orbitals to diagonalise the

�ik matrix appearing in Eq. (3.11). Then, only N multipliers are necessary (see pp. 324-325 of [1]).
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3.2 Electronic energy. Methods 3 THEORETICAL BACKGROUND

Fock equations defining of the Fock operator ̂ as in Eq. (3.13):

̂ |

|

�k⟩ =
∑

k
�jk

|

|

|

�j
⟩ �jk∶= "k�jk
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ ̂ |

|

�k⟩ = "k ||�k⟩ (3.12)

̂ =
p̂ 2i
2me

−
D
∑

i

ZAe2

4�"0r̂i
+

N
∑

i
[̂i − ̂i] , (3.13)

with the direct and exchange operators respectively defined as:

⟨x|
|

̂i||�k⟩ = �k(x)∫ �∗i (x
′) e2

4�"0rik
�i(x′) dx′ (3.14a)

⟨x|
|

̂i
|

|

�k⟩ = �i(x)∫ �∗i (x
′) e2

4�"0rik
�k(x′) dx′ . (3.14b)

It is worth highlighting the redefinition of the N2 Lagrange multipliers �ik into N "k,
which corresponds to the previously mentioned linear transformation of the spin-orbitals.

Note: We have kept all the constants but it is customary to use atomic units (a.u.)6. This
would replace e2∕4�"0 → 1 and ℏ→ 1.

The direct or Coulomb term (3.14a) describes the electrostatic interaction of an electron
in �i over the electron in �k as a mean-field. The exchange operator is purely due to the
antisymmetrisation of the wave function and thus describes the interaction due to the
fermionic nature of electrons. The x′ integration in Eqs. (3.14a) and (3.14b) accounts for
spatial and spin coordinates.

If the Fock equations (3.12) were to be solved, one can see that the Fock operator depends
on the spin-orbitals themselves, so it is necessary to start with an initial choice for those
functions, solve the equations and introduce the new solution again in the ̂ definition
until reaching a set threshold of convergence. This opens the question of which starting
functions are optimal for the calculations. That issue will be cleared out in Section 3.3.

3.2.2 Møller-Plesset perturbation theory. Second-order corrections: MP2

The HF theory is based on a rather bold approximation for the electronic wave function.
The Slater determinant captures the fermionic nature of electrons in the exchange term
(3.14b) but it overlooks a fundamental feature of the system: the electronic correlation.

Electrons, as charged particles, interact by means of the electromagnetic force with each
other. It is therefore unrealistic to describe the system by a single product of functions
that depend only on one electron coordinates. These functions should at least consider
two-body interactions as the Hamiltonian ̂ does, but the electrostatic force is captured
as a mean-field term in Eq. (3.14a). It is in this wise that post-HF methods are employed
in order to improve the results. In this section, we present the Møller-Plesset perturbation
theory following the original formulation [2].

6Energies are measured in hartrees (1 Ha=27.2114 eV) and distances in Bohr radius units (a0=0.5292 Å).
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3.2 Electronic energy. Methods 3 THEORETICAL BACKGROUND

As a starting point, we will consider the difference between the actual HF energy and the
sum of the ̂ eigenvalues {"k}. It is proven that the following relation is fulfilled (see the
note under Eq.(3.7) for the ℎ̂2 definition):

EHF = ⟨Ψ|̂|Ψ⟩ =
N
∑

k
"k −

1
2

N
∑

i,j

[

⟨

�i�j
|

|

|

ℎ̂2
|

|

|

�i�j
⟩

−
⟨

�j�i
|

|

|

ℎ̂2
|

|

|

�i�j
⟩

]

. (3.15)

This is the result of using the definition of |Ψ⟩ in Eq. (3.9). The mean values on the right-
hand side can be checked to be the ones corresponding to ̂k and ̂k in that order7. We
can therefore state that the following eigenvalue equation is satisfied for the HF wave
function:

̂0 |Ψ⟩ =
N
∑

k

[

̂k −
1
2
⟨

̂k − ̂k
⟩

]

|Ψ⟩ = EHF |Ψ⟩ . (3.16)

It is now proposed to use this operator as the zeroth-order Hamiltonian for a perturbative
calculation. The Møller-Plesset Hamiltonian ̂MP is thus defined as:

̂MP = ̂0 + ̂ →

⎧

⎪

⎪

⎨

⎪

⎪

⎩

̂0 =
N
∑

k

[

̂k −
1
2
⟨

̂k − ̂k
⟩

]

̂ = ̂MP − ̂0 =
1
2

N
∑

i,j
i≠j

e2

4�"0r̂ij
−

N
∑

k
(̂k − ̂k) +

1
2

N
∑

k

⟨

̂k − ̂k
⟩

.

(3.17)

Now, according to perturbation theory [4], the zeroth-order energy and wave function
will be EHF and |Ψ⟩ respectively. The first-order energy correction is the mean value of
the perturbation ̂ for the zeroth-order wave function.

By definition ⟨Ψ|̂MP |Ψ⟩ = ⟨Ψ|̂0|Ψ⟩ so the first-order perturbation is null:

E1 = ⟨Ψ|̂|Ψ⟩ = 0 . (3.18)

This means it is necessary to go up to at least second order to obtain a correction to the
HF energy. Depending on the truncation order N, the method is named MPN. In this
work, the second order or MP2 will be studied. We must highlight that the convergence
is not assured for high order terms. We shall call |Ψ⟩ = |

|

Ψ0⟩ for the rest of the
calculations to indicate it is the zeroth-order wave function. In general, the second-order
energy correction is given by:

E2 =
∑

i

|

|

|

⟨Ψi
|

|

̂|
|

Ψ0⟩
|

|

|

2

E0 − Ei
, (3.19)

7This result is also captured in the Slater-Condon rules [3].
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where the states |

|

Ψi⟩ are ̂0 eigenstates. This would mean excited states for the atomic
wave function for our study. The Slater-Condon rules state that for a two-body operator
such as ̂ and a wave function built as (3.9), |

|

Ψi⟩ and |

|

Ψ0⟩ can differ in two spin-orbitals
�i at most for the matrix elements not to be zero. Furthermore, according to Brillouin’s
theorem, those matrix elements involving single excited electronic functions are null8.

This leaves us only with double excitations. We shall call |

|

|

Ψkl
ij

⟩

the wave function
corresponding to the excitation of the electrons in spin-orbitals �i and �j to �k and �l.
The matrix elements are proven to be:

⟨

Ψkl
ij
|

|

|

̂||
|

Ψ0
⟩

=
⟨

�k�l
|

|

|

̂||
|

�i�j
⟩

−
⟨

�l�k
|

|

|

̂||
|

�i�j
⟩

, (3.20)

so the energy correction can be obtained from the HF spin-orbitals and energies as:

E2 =
1
4
∑

i,j
i≠j

∑

k,l
k≠l

|

|

|

⟨

�k�l
|

|

|

̂||
|

�i�j
⟩

−
⟨

�l�k
|

|

|

̂||
|

�i�j
⟩

|

|

|

2

"i + "j − "l − "k
, (3.21)

where the sum on i, j is performed over the ground-state occupied spin-orbitals and the
k, l sum over the unoccupied ones. The latter are often referred to as “virtual"
spin-orbitals. The difference in (3.19) denominator is the difference of the occupied
monoelectronic orbital energies in each configuration.

For a two-body operator as V̂ , these matrix elements denote the following integral:

⟨

�k�l
|

|

|

̂||
|

�i�j
⟩

= ∬ �k(x)�l(x′)V (x, x′)�i(x)�j(x′)dxdx′ , (3.22)

where V (x, x′) is the result of substituting the position operators (3.17) of ̂(x, x′) by the
corresponding position vectors x or x′ when projecting onto the position basis |x, x′⟩ as
indicated in Eq. (3.4).

3.3 Basis sets

In order to start the self-consistent calculation, it is necessary to establish the initial
guesses for the monoelectronic functions or spin-orbitals.

The monoelectronic atom is the closest system to ours whose time-independent
Schrödinger equation has been solved analytically. It is customary to give these
solutions as eigenfunctions of the operators {̂, ̂2, ̂z, ̂2, ̂z}, which constitute a
C.S.C.O. 9 for the system [5]. The orbital part of these solutions may be written as:

8This is only valid for the HF ground state |

|

Ψ0⟩. Slater-Condon rules on the other hand apply to any
two-body operator and functions built by means of a Slater determinant.

9A Complete Set of Commuting Observables is a set of quantum observables such that their common
eigenvectors form a unique basis of the total Hilbert space [5].
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⟨r|
|

nlml⟩ =  n,l,ml(r, �, ') = Ne
− r
na0

[

n
∑

q=l
Cqr

q

]

Y ml
l (�, ') = NRn,l(r)Y

ml
l (�, ') . (3.23)

The total wave function would comprise the tensor product of (3.23) and the spin
eigenstate |

|

S, Sz⟩.

There is a big difference though with the multi-electron counterpart. The presence of
many electrons involves that the potential is no longer central as it depends on the
position of individual electrons. Nevertheless, the HF method approximates the
electrostatic interaction as a mean field (3.14a). It could then be reasonable to consider
trial functions that decay similarly to (3.23) since the field would indeed be central far
from the nucleus. Each trial function would have a set of quantum numbers {n, l, ml, ms}
associated that stem from the assumption of a central potential.

This first class is known as STO or Slater-type orbital. They differ from (3.23) in the
angular part, as the complex spherical harmonic basis is changed to real spherical
harmonics, much more common in computational chemistry calculations. As an
example, the set {Y −11 , Y 01 , Y

1
1 } can be expressed in terms of real functions as it follows:

Y1,1(�, ') =
1
√

2
(Y −11 (�, ') − Y 11 (�, ')) =

√

3
16�

sin �(e−i' + ei') =
√

3
4�
x
r

(3.24a)

Y1,−1(�, ') =
i

√

2
(Y −11 (�, ') + Y 11 (�, ')) = i

√

3
16�

sin �(e−i' − ei') =
√

3
4�
y
r

(3.24b)

Y1,0(�, ') = Y 01 (�, ') =
√

3
4�
cos � =

√

3
4�
z
r
. (3.24c)

This comes at the cost of losing the quantum number ml as it is no longer well-defined in
these angular components. On the other hand, STOs may be defined in two
representations: cartesian or spherical. These are respectively defined as:

 STO(r, �, '; l, m; �) = Krle−�rYlm(�, ');  STO(x, y, z; a, b, c; �) = Kxaybzce−�r , (3.25)

with K a normalisation constant. Nevertheless, this study will not make use of STOs but
of their gaussian version GTOs:

 GTO(x, y, z; a, b, c; �) = Kxaybzce−�r
2; K =

(

2�
�

)3∕4( 8�(a+b+c)a!b!c!
(2a)!(2b)!(2c)!

)1∕2

. (3.26)

They can also be defined in spherical form similarly to STOs. The reason behind this
change is the computational advantage of using Gaussian functions to calculate double-
orbital integrals, such as (3.15). There is no analytical solution for those integrals for STOs
trial functions. The sum of exponents a + b + c = l is the total orbital momentum of the
monoelectronic orbital. These functions are plotted below to give a spatial sense to them,
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3.3 Basis sets 3 THEORETICAL BACKGROUND

which is one of the reasons why the original basis was changed10. The following scatter
plots in Figure 1 show the spatial distribution for a + b + c = {0, 1, 2} evaluated for a
random ensemble of points in the [−2, 2]⊗ [−2, 2]⊗ [−2, 2] ∈ ℝ3 domain for K = � = 1.

Figure 1: Spatial distribution of cartesian GTOs with a+ b+ c = {0, 1, 2}. In this order from left to right, the
parameters (a,b,c) of (3.26) were set to (0,0,0), (1,0,0), (2,0,0) and (1,0,1). The plots in the second row show
the cut of the GTOs with the plane y=0. Figure produced by the author.

There are several problems still if these were the trial monoelectronic functions for a HF
calculation. First of all, we must consider the fact that the H atom analytical solution
decays as an STO, not as a GTO. Secondly, from the knowledge we have of this atom in
particular, the eigenfunctions of the foregoing C.S.C.O. take more exotic shapes than a
mere gaussian. Thirdly, considering these calculations are mainly performed over
molecules that may have hundreds of electrons with their corresponding molecular
orbitals both occupied and virtual, the search of the minimizing exponents � should be
performed as efficiently as possible.

For this reason, GTOs are not used on their own but rather a linear combination of them.
Each one of these linear combinations is called primitive. A primitive has a well-defined
angular momentum l so a + b + c is constant for a contraction. A set of primitives is
called a basis set. To cover the third problem, each atom has several predetermined basis
sets where the contracting coefficients have already been determined based on previous
results for different molecules and atoms. This constitutes an important step because it
sets an initial guess for the calculation through a linear combination of atomic orbitals
(LCAO) that are already tabulated.

As the specific orbital shape for a given system is conditioned by the atomic
neighbourhood, the HF method optimizes a second set of coefficients that combine the
primitives of the system under study.

There are no restrictions on how to build a basis set and its primitives. Therefore, basis

10This should come without surprise as important structural information of a given molecule can be
extracted from the charge density. Retrieving this information from a complex-valued function would
certainly be a more difficult task.
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3.3 Basis sets 3 THEORETICAL BACKGROUND

sets are gathered in families according to their structure, some of which will be briefly
discussed.

Minimal basis sets. STO-NG A minimal basis set only has one primitive per occupied
orbital. Therefore, for the C atom for instance, 3 primitives (1s, 2s and 2p) are defined. A
common family of minimal basis sets is the STO-NG [6], named this way because they
intend to reproduce an STO orbital with the linear combination of N GTOs:

 n,l
STO∗ =

N
∑

i
di GTO(x, y, z; l; �i) . (3.27)

In order to accelerate the convergence, the exponents �i of  n,l
STO∗ associated with the same

principal quantum number n are kept equal. The star "∗" means that the contraction is an
approximation to a true STO. The coefficients di and �i were determined by minimizing
the difference between a given STO, which were more common before the development
of this basis sets, and the linear combination of GTOs.

Finally, the HF method is implemented by means of the Roothaan equations:

̂C = SC" , (3.28)

which are none other than the Fock equations (3.12) in matrix form. ̂ is the Fock operator,
C is a coefficient matrix that will be minimized by the HF method and " is the diagonal
matrix of the Fock eigenvalues "k. S is the overlap matrix composed by terms Sij

⟨

�i
|

|

|

�j
⟩

as the primitives are not orthonormal generally speaking. In this hypothetical case, S
would be the identity. To conclude, Eq. (3.28) constitutes the altered version of the Fock
equations to include the basis set formalism.

The final monoelectronic wave functions are then the linear combination of the primitives
according to the coefficient matrix C when the HF converges.

Split-valence basis sets. Pople bases The split-valence basis sets are the natural
continuation of the STO-NG but allowing for more flexibility. They were developed by
the research group of J. A. Pople [7] [8]. The split-valence basis sets make a distinction
between core and valence electrons, giving more flexibility to the latter by allowing
multiple primitives per orbital. These sets are noted as X-IJKg. X is the number of
contracted GTOs for the core primitives, while the numbers after the hyphen convey the
number of contracted GTOs for each valence orbital primitive. For instance, a 4-31g set
for the C atom means a contraction of 4 GTOs for the 1s-orbitals and two primitives for
the 2s and 2p-orbitals, the first consisting of a 3-GTO contraction and the second of a
single GTO. for a total of 5 primitives. We can note this as (8s,4p)→[3s,2p], that is, the
contraction of 8 s-GTOs and 4 p-GTOs in 3 s-primitives and 2 p-primitives.

The exponents �i are also shared for subshells of equal n, and the parameters are
minimized in terms of the total atomic energy11.

11This work studies atomic systems, so the parameters are, in fact, the best possible set. This is not true
for molecular applications but constitutes a good starting point.
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It is usual to see these sets augmented with some type of additional GTOs. Doubled
symbols always refer to H atoms.

• If a "*" is present as in 6-311g*, an extra set of higher angular momentum functions
are included to improve the accuracy of the correlation energy at the MP2 stage.
Two "**" include 1 p-GTO for H atoms.

• If the set has a "+" as in 6-311+g one diffuse i. e. with a low exponent �, a sp-GTO12,
is added to the set of primitives. Two "++" involve the addition of a diffuse s-GTO
for the H atom.

The determination of these functions is made by "using well established rules of thumb or
by explicit optimization" [9].

Correlation consistent basis sets. Dunning bases Correlation consistent basis sets
were developed by Thom. H. Dunning Jr. [9] by optimization of configuration
interaction (CI) calculations for atoms. They always have higher angular momentum
GTOs to improve the correlation calculations in their initial formulation. Again, they can
include two functions per valence orbital (cc-pvdz), three (cc-pvtz), four (cc-pvqz) and
so on. The addition of diffuse functions is labelled with the prefix "aug" as in
(aug-cc-pvdz). Their name (correlation consistent) note that the contracted primitives of
a given angular momentum are built from the same set of GTOs instead of defining one
set per contraction as in STO-NG or split-valence basis sets.

Polarization consistent basis sets. Jensen bases These sets were developed by
Frank Jensen [10] to adapt correlation consistent basis sets, which were thought for
post-HF methods, to DFT calculations. While this project is not focused on this
formulation, they constitute a more complex and larger basis set that was found useful
for the electron affinity calculation. The notation is pc-n, with n the difference between
the highest angular-momentum GTO in the basis and the highest angular-momentum
atomic ground-state orbital. For Ne, for instance, pc-1 contains one d-GTO, pc-2 contains
one f-GTO, etc. The augmented diffuse expansion uses again the prefix aug-pc-n.

The notation we will use to identify calculations will be "method(basis)" as in
HF(6-311g*). All the bases used were in cartesian representation.

4 NWChem

En esta sección se presenta NWChem, el programa empleado para los cálculos
computacionales y se describe la estructura del fichero de entrada básico para los
cálculos HF y MP2.

NWCHEM is a free distribution computational ab initio chemistry package developed by
the Experimental Molecular Science Laboratory (EMSL) at the Pacific Northwest National

12The importance of diffuse functions in the reproduction of low bounded electrons is described in
Section 5.3
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Laboratory (PNNL) [11]. It allows for quantum mechanical calculations ranging from HF
and post-HF methods to DFT, both relativistic and non-relativistic as well as quantum
and classical molecular dynamics. The package was developed to perform molecular
calculations in the context of biomolecules or nanostructures, but we have adapted it
to the atomic domain. All calculations in this work were run in node 41 of the cluster
Molec3 in the Department of Physics of the University of La Laguna. In order to start the
calculations, the user must provide the program with an input file where the system is
defined and constraints are settled. We devote the following section to detail its structure.

4.1 Input file structure

NWCHEM retrieves the specifications for the desired calculations from an input file.
This file is divided into directives, each of which is devoted to a specific aspect of the
calculation. Some examples of these are:

• ECHO. Prints the input file at the beginning of the output file. It is not needed for
the calculations but advisable to identify the file.

• START. It will name all the files associated with that calculation as the word written
next to the directive plus their extensions. It not mandatory.

• TITLE. The title for the output file.

• GEOMETRY. Specifies the geometry of the system. Each atom must be identified
with its symbol and the (x, y, z) coordinates where the nucleus will be fixed.

• BASIS. Must be specified whether the cartesian or spherical projection is used. If the
calculation involves different classes of orbitals, the type must be specified. Default
is "ao basis" (atomic orbital). A basis must be chosen for each atom specified in the
GEOMETRY directive. The available bases for each atom can be checked in [12].

• PRINT. Controls the level of detail offered by the output file. It is often unnecessary
but sometimes a greater level of depth could be desired. For instance, the details for
the inner level of atoms are not displayed unless the "debug" level is selected.

• TASK. It specifies the type of calculation to be performed. Both the method and
aim of the calculation must be specified. The ones that will be employed in this
work are the "SCF energy"13 and the "MP2 energy"14. The first word sets the
method to obtain the result specified by the second, "energy" in this case. Other
possibilities are the minimization of the atomic positions in the context of
molecular calculations with "optimize" or the normal modes with "frequencies".
Coupled cluster (CC) calculations are also available for closed-shell systems.

• SCF/MP2/DFT... These are directives related to the chosen method. They must
be specified before the TASK directive. The subdirectives depend on the method.
As this work is focused on the HF and MP2 method, we will mention the most
important ones for the HF method:

13Stands for "self-consistent field".
14A brief mention about the density functional theory (DFT) will be made in the conclusions.
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– MAXITER. Sets the maximum number of iterations. Default is 30.

– RHF/ROHF/UHF. Restricted Hartree-Fock, restricted open-shell
Hartree-Fock and unrestricted Hartree-Fock respectively. The first one
constrains the configuration to orbitals filled with paired electrons, the second
does the same for the core electrons, keeping free orbitals for unpaired
electrons; and the third calculates ∕ ↑ and ↓ orbitals15 separately. RHF is the
default option.
The MP2 calculation is only available for RHF and UHF.

– DOUBLET/TRIPLET/QUARTET... Sets the spin multiplicity (2S + 1) of the
system. This is a mandatory constraint for ROHF and UHF calculations. The
occupation of orbitals for the ground state will always satisfy this spin
multiplicity. SINGLET is the default option.

– THRESH Sets the threshold for the convergence of the energy calculation. The
default is 10−6 for the HF method and 10−8 for the MP2 in atomic units.

• SET TOLGUESS X. X is the accuracy threshold in Ha for the initial guess for the
atomic orbitals. Default is 1e-7 Ha. This guess may be of great importance as the
occupation numbers are assigned at this stage.

Additional information on the program and its capabilities can be found in the Users
Manual posted on GitHub [13].

5 Results and discussion

En esta sección se presentan los resultados principales obtenidos con NWChem. Se
realiza un estudio de los niveles monoelectrónicos ocupados para los átomos H-Kr así
como predicciones de las energías de ionización y afinidades electrónicas para justificar
la exactitud del método. También se discute la importancia de las funciones difusas en la
simulación de sistemas con electrones débilmente ligados.

First of all, we must discuss a couple of well-known results in the study of atomic
physics. The notion of orbital stems from the solutions of the time-independent
Schrödinger equation. These accessible states for the electron allow introducing the
somewhat misleading idea of the electron occupying a predetermined orbital, when in
fact, the probability distribution of the electron is just a consequence of the system’s
Hamiltonian (3.5), that is, there are no prefixed orbitals where the electrons are located.

This conception could be used without much problem in a hydrogen-like atom, where
only one electron is interacting with the nucleus. Nevertheless, when we are dealing
with a trial wave function as the one in Eq. (3.9), this notion of an electron occupying
a single spin-orbital is proven false. The projection of this wave function in the position
basis in Eq. (3.9) shows that electrons are simultaneously "occupying" all the spin-orbitals.
Therefore, this notion of a monoelectronic level is not correct from the very beginning.

15The notation � and � electrons is also common instead of ↑ and ↓
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An attempt to conciliate this idea and to solve the multi-electron problem is the
mean-field approximation. This approximation takes the electronic repulsion and
roughly approximates it as a central potential, which is in general not the Coulomb
potential, as it depends on the mean electronic distribution16. The difference between the
actual potential and the mean-field approximation could then be included as a small
perturbation. In this regard, we would find orbitals "ready to allocate" each electron just
as in a hydrogen-like atom, each with its well-defined quantum numbers {n, l, ml, ms}.
These are not true but just an approximation given the fact that the potential is not
actually central17.

There are two important results concerning the mean-field approximation. The first of
them is the Aufbau principle:

Aufbau principle

For the ground state of an atom or ion the electrons will fill the lowest energy levels,
without violating Pauli’s exclusion principle.

Secondly, the filling order will take place in a specific order according to the electron
quantum numbers:

The n + l rule

The electronic orbitals will be filled in increasing order of n + l. If there is more than
one possible set of orbitals, the electron will occupy the orbitals with the highest l.

The name of this filling rule is rather unclear and attributed to several authors. Therefore,
we will refer to it as the "n + l rule"18.

Combining these two rules, it is possible to build a filling sequence to predict the order in
which the monoelectronic orbitals will be filled:

1s 2s 2p 3s 3p (4s 3d) 4p (5s 4d) 5p...

The order of terms between parenthesis depends on the central potential that is
considered. We shall prove this result is partially correct in the following discussion as it
describes very accurately light atoms but fails to capture the complexity that some
species present in their electronic configuration.

Lastly, given one electronic configuration, the n+ l rule does not provide any information
on whether there is a preference for a certain ms quantum number19. In this context, we
introduce the first Hund’s rule:

16This idea is somehow captured in the Coulomb term (3.14a) in the HF theory.
17Except for closed-shell systems. This will be demonstrated in the diagrams for energy levels in Figures

2, 7, 8 and 12.
18Other usual denominations are Madelung’s rule or the diagonal rule.
19The ml quantum number is lost when the real orbitals are built from the original basis as shown in Eqs.

(3.24a-c)
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Hund’s maximum multiplicity rule

Given an electronic configuration, the electrons will occupy the orbitals that allow the
maximum spin projection MS =

∑N
i msi .

This means that there will be a tendency for electrons to be located with their spin parallel
to one another. This spin interaction is captured in the exchange term (3.14b) in the HF
theory

5.1 HF calculations for light atoms

5.1.1 HF ground-state energies

The ground-state energies for each atom with Z ∈ [1, 10] were calculated using a HF
method. Different spin multiplicities20 have been tested in order to check their effect on
the results. The lower the energy, the more stable the configuration will be and it will
thus be preferred by the system.

Table 1: ground-state energies in Ha for atoms and their respective first positive ions for Z ∈ [1, 10]
with spin multiplicity constraint for a HF(6-311g*) calculation. The lowest-energy configuration will be
considered the ground state. Those energies are highlighted in bold. Calculations that failed to converge
are marked with "?".

Neutral atoms Positive ions
Singlet Doublet Triplet Quartet Quintet Singlet Doublet Triplet Quartet Quintet

H - -0.4998 - - - H+ - - - - -
He -2.8599 - ? - - He+ - -1.9981 - - -
Li - -7.4321 - ? - Li+ -7.2358 - ? - -
Be -14.5719 - -14.5120 - ? Be+ - -14.2764 - ? -
B - -24.5302 - -24.4499 - B+ -24.2353 - -24.1197 - ?
C -37.5988 - -37.6892 - -37.5951 C+ - -37.2920 - -37.1583 -
N - -54.2589 - -54.3981 - N+ -53.7611 - -53.8863 - -53.7396
O -74.6780 - -74.8053 - -73.9375 O+ - -74.1801 - -74.3648 -
F - -99.3969 - - F+ -98.6595 - -98.8206 - -97.5414
Ne -128.5227 - -127.0425 - -125.54321 Ne+ - -127.7968 - -126.1722 -

This is not the true ground-state energy since the HF is variational based, but the lowest
energy for each chemical species shall be considered the true ground-state electron
configuration. According to their number of electrons, it is possible to pose triplet and
quartet states for He and Li respectively, but the HF calculation yields an error and fails
to converge. The differences in energy between those configurations and the ones
appearing in Table 1 are so high that the initial guess is not enough to attain the
convergence. Nevertheless, the basis set 6-31g∗ does provide values for both. For
instance, the He singlet has an energy of -2.855 Ha while the triplet is a less bounded
configuration with -1.399 Ha.

Analytical and exact results for H and He+ yield 0.5 Ha and 2 Ha. Results in Table 1 show
the degree of accuracy of the method. It can be seen that the approximation is reasonably

20The spin multiplicity is defined as g=(2S+1) with S the total spin angular momentum of the system. A
state with g=1 is named a singlet, g=2 a doublet, etc.
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accurate. The comparison with experimental data will always entail the energy difference
of two computational states. As a result, we expect that these minor differences will cancel
out for similar systems to provide good predictions.

It is also possible to retrieve data concerning each monoelectronic orbital, both occupied
and virtual. The energy diagrams in Figure 2 indicate the spin projection ms, angular
momentum l and energy for all the occupied spin-orbitals as well as for the lowest energy
virtual ones. It resembles the typical molecular orbital diagrams but adapted to the atomic
system.
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Figure 2: orbital filling for the ground states of atoms with Z ∈ [1, 10] according to a HF(6-311g*)
calculation. The monoelectronic orbitals are sorted into 3 columns according to their angular momentum
l ∈ {0, 1, 2}. Each group is then divided in two, ↑ on the left and ↓ on the right to analyse the effect of the
spin in the energetic structure. The filled orbitals (E<0) are marked with an arrow that also indicates the
spin projection. The orbitals marked in grey are unoccupied or virtual (E>0).

First of all, Figure 2 shows the occupied orbitals resulting from the convergence of
Fock’s equation (3.12). The electronic configuration for an atom with atomic number Z
approximately preserves the energetic structure and electronic distribution of atoms
with Z ′ < Z. In other words, the presence of one extra electron does not have a huge
impact on the preceding level structure but it is added to the following level
energetically speaking. Figure 2 justifies the Aufbau principle for these atoms.

Secondly, a more detailed analysis confirms that the n+ l rule holds for these light atoms.
Even though NWChem does not provide the principal quantum number n, Figure 2
shows the filling of a first s-orbital for H and He, a second s-orbital for Li and Be and
finally 3 p-orbitals for B through Ne. These three groups may be identified with the 1s, 2s
and 2p orbitals stemming from the mean-field theory. This analogy asserts the validity of
the central field approximation.

Thirdly, we notice that the filling of the, at least in theory, 3 degenerate 2p orbitals follows
a characteristic pattern. After the filling of one p-orbital for the B atom, a second electron
with equalms occupies a second 2p orbital for C, followed by a third for a triple degenerate
level in N. At this point, and if we follow the n + l rule, Pauli’s exclusion principle forces
the next electron to have opposite projection. This breaks the degeneracy of the N atom
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electron triad and one of them is slightly more energetic than the remaining two. The
addition of a second ↓ electron shifts the degeneration of the three ↑ and two of them are
placed on a slightly more energetic orbital. Finally, Ne completes the subshell.

This discussion lacks some physical sense as it is formulated in the context of the central
field approximation. All the electrons belong to all the orbitals at the same time, but these
remarks help to justify and discuss the validity of the main hypothesis and results of the
model. Remarkably, the assumption of a central field involves n and l-dependent energy
levels, but Figure 2 shows a dependence on the spin projection ms. This is an effect is
due to the exchange term ̂ (3.14b). This allows justifying Hund’s rule of the maximum
multiplicity in terms of the orbital energy. As the orbitals are consistently lower in energy
than the ↓, there will be a preference to occupy the first, systematically increasing the
multiplicity of the system until Pauli’s exclusion principle forces the electrons to have
a ms = −1∕2 projection. This dependence on the spin disappears when the atom has a
closed subshell as in He, Be and Ne. In this case, the orbital energy is n and l dependent,
recovering the structure due to a true central potential.

Lastly, the diagram allows us to see two different energy bands where the electrons are
placed; the 1s orbital is far more bounded in comparison to the 2s and the 2p orbitals.
From a purely electrostatic point of view, this effect must mean that either those orbitals
entail a higher presence probability further from the nucleus or that the effective charge of
the latter is smaller. In this last scenario, the lower energy electrons must also be closer to
the nucleus in order to screen some of its charge. An angular integration of the occupied
orbitals yields a radial density plot for each of the atoms previously discussed. The radial
density is defined as:

�(r) = ∫Ω
r2|Ψ(r, �, ')|2dΩ =

N
∑

i
∫Ω
r2|�i(r, �, ')|2dΩ (5.1)

where Ω refers to the solid angle and �i to an occupied spin-orbital.
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Figure 3: radial electron density for the neutral atoms with Z ∈ [1, 10]. The area under the curves
corresponds to the number of electrons N of the system. The scale has been adjusted to easily compare
the plots for different elements.
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Figure 3 shows the progression of the radial electronic density when Z increases. The
plots confirm that the energy gaps can be partly explained due to the radial distance that
separates the electrons from the nucleus21. In addition, the displacement of the density
peaks in Figure 3 shows the effect of the increasing nuclear charge on the electrons. This
tendency is better seen in the following graphic:
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Figure 4: superimposed radial electron density plots of Figure 3 for the ground state of neutral atoms with
Z ∈ [1, 10]. 1st and 2nd period atoms have been plotted in different graphs.

The plot on the right shows how even though the only difference in the electronic
structure of Ne and F is an extra electron in an orbital 2p, with low presence probability
when r → 0 (p orbital), this extra particle affects the density near the nucleus. This
happens because the extra electron is located in all the orbitals simultaneously.

5.1.2 Ionization energies

Up to this point, all the discussion has been centered around the understanding of the
theoretical electronic arrangement. However, the atomic energies contained in Table 1
lack any physical meaning since the 0 is arbitrarily set at the energy in which the atoms
would dissociate22. In order to connect this study to the experimental data, the ionization
energies of these atoms are compared to the expected values according to the results in
Table 1. The difference between the ionic and atomic ground-state energies account for
the minimum energy supply needed to extract one electron from the atom.

X + energy⟶ X+ + e− . (5.2)

Results for both the HF(6-311g*) and HF(STO-3G) basis sets are shown in Figure 5 to
visualise the impact of the basis set choice.

This magnitude is also compared with the highest energy for an occupied monoelectronic
orbital of the atomic configurations. Koopmans’ theorem [14] for closed-shell systems
states that the energy of the last occupied orbital can be regarded as a good approximation
for the first ionization energy.

The values obtained by the STO-3G basis are generally worse than the ones that the split-
valence basis 6-311g* yields. The absolute error, which is due to the electronic correlation

21The angular momentum of the monoelectronic orbital is also a factor to take into account.
22This means a situation in which all particles (nucleus and electrons) are separated at an infinite distance.
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Figure 5: First ionization energy for atoms with Z ∈ [1, 10] according to HF calculations for the basis sets
6-311g* and STO-3G as well as the prediction drawn by Koopmans’ theorem. The lower graph shows the
relative error between the three methods and the experimental values [15].

energy and relativistic and hyperfine corrections, lies within a 2 eV gap according to the
NIST database [15], from where the reference data have been retrieved.

Koopmans’ theorem becomes quite accurate for closed-shell systems (He, Be and Ne) but
fails to predict accurately the rest of the ionization energies. This result is commonly used
for molecular applications given the closed-shell nature of the majority of molecules.

According to the experimental values, closed-subshell atoms as well as the N, whose
electrons fill half of the valence p orbital, show higher stability than their respective
neighbours in terms of the atomic number Z. This behaviour is replicated in both of the
HF calculations. One could wonder about how accurately this magnitude may be
predicted. This is discussed in the next section, where an MP2 calculation is performed
over the HF solutions.

5.2 Extension to heavier atoms. MP2 refinement

After the introduction developed in the previous section for light atoms, a similar
procedure is followed for the subsequent atoms in the periodic table up until Z=36 or
krypton atom (Kr).

It is assumed that the n + l rule is fulfilled in order to obtain the ground state. A HF(6-
311g*) and MP2(6-311g*) calculations are carried out to estimate the electronic correlation
energy and obtain better results for the ionization energies.

Figure 6 contains the ionization energies for the ground state of atoms ranging from H to
Kr, excepting the so-called transition metals (Sc-Zn). Those are discussed afterwards in
a separate section. The exact numeric values for atomic and ionic ground states can be
checked in Appendix B, Table 9.

The HF electronic configurations that led to the previous results for the neutral atoms are
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shown in Figures 7 and 8.
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Figure 6: First ionization energy for atoms with Z ∈ [1, 20]U [30, 36] according to HF(6-311g*) and MP2(6-
311g*) calculations. The lower graph displays the relative error between both predictions and the reference
values [15]. A vertical black line marks where the transition elements would be located.
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Figure 7: orbital filling for the ground states of atoms with Z ∈ [11, 18]. The monoelectronic orbitals are
sorted into 3 columns according to their angular momentum l ∈ {0, 1, 2}. The filled orbitals are marked
with an arrow that also indicates the spin projection. The orbitals marked in grey are unbounded (E>0).
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Figure 8: orbital filling for the ground states of atoms K-Ca and Ga-Kr according to a HF(6-311g*)c
calculation. The monoelectronic orbitals are sorted into 3 columns according to their angular momentum
l ∈ {0, 1, 2}. The orbitals marked in grey are unoccupied or virtual (E>0).

The MP2 calculation always improves the predicted values for the ionization energies.
The expected periodicity of the results is reproduced, and some conclusions may be
drawn at this point when comparing the energy level diagrams and the reproduced
ionization energies:

• The highest ionization energies correspond to atoms with a filled valence subshell
with p orbitals (He, Ne, Ar, Kr).

• The slight crest found for the 15tℎ-group elements (N, P and As) correspond to atoms
whose electronic structure features a half-filled valence subshell with p type orbitals.

• The MP2 calculation allows reducing the absolute error within a 1 eV margin.

27



5.2 Extension to heavier atoms. MP2 refinement 5 RESULTS AND DISCUSSION

• Both the Hartree-Fock and the MP2 calculations consistently underestimate the
ionization energy (excepting the As atom, where the MP2 yields a slightly higher
energy).

• Interestingly, the highest values for the ionization energies (15tℎ and 18tℎ group) are
among the best predictions regarding the relative error even though their
experimental values are higher in comparison to nearby groups.

This first diagram shows an electronic configuration quite similar to the previous in
Figure 2. It can be seen that the electronic configuration showed in that diagram is
maintained in Figure 7 and the same order is followed as the filling continues, that is, the
electrons are arranged with the maximum spin multiplicity within the same subshell
and ↑ levels are more bounded than ↓. As there is a big energy gap between the 2p and
3s subshells, we expect that the electron density displays a third peak as the 3s and 3p
subshells are being completed.
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Figure 9: electron densities for neutral atoms with Z ∈ [11, 18]. The area under the curves corresponds to
the number of electrons N of the system.

As expected, a third region further from the nucleus appears for the third-period elements
in Figure 9.

On the other hand, Figure 8 reveals the ground-state electronic configuration of some
fourth-period neutral atoms. Bearing in mind the big skip of 10 elements that lie between
Ca and Ga, we see that the preceding electronic structure of Ar is still maintained. The
most relevant change and unexpected at the same time is the exchange in energy between
the 4s and 3d orbitals. The electronic configuration of calcium is Ca: 1s2 2p6 3s2 3p6 4s2

but from Ga to Kr, and assuming that the building principle holds, the unoccupied 3d
orbitals fall below the 4s in energy, giving a configuration of X: 1s2 2p6 3s2 3p6 3d10 4s2

4pn. This trend not only differs from the n + l rule but also reveals a swap between the
energy content of these orbitals as E(4s) < E(3d) for Ca but E(3d) < E(4s) from Ga on.

We shift our attention now towards the elements left unattended, Fe through Zn, to better
understand this phenomenon.
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5.2.1 Transition metals

We have studied so far atomic systems that have either s or p-valence electrons. The range
covering Z ∈ [21, 31] or Sc-Zn is interesting since as long as the n + l rule is fulfilled, it
is expected that these elements will manifest d-valence orbitals. Furthermore, we would
also like to explain the energy swap between the 4s and 3d orbitals.

Assuming the n + l rule holds, the foregoing elements and their ions should have a [Ar]
4s2 3dn electronic with n = N − 20 and N the number of electrons in the system. It will
also be assumed that the general rules that we have found for the multiplicities are held
and that the maximum spin multiplicity available corresponds to the ground state. The
results obtained for the ionization energies do not become as satisfactory as the previous
ones in Figures 5 and 6.
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Figure 10: first ionization energies forZ ∈ [21, 31] for HF(aug-cc-pvdz) and MP2(aug-cc-pvdz) calculations.
The results are compared with the experimental data [15] and the relative error is plotted.

The most disturbing fact lies in the worse predictions for the MP2 method in comparison
to the plain HF for some atoms. Furthermore, the predictions were usually lower than
the experimental values, which raises even more doubts about the validity of the results.
Finally, predictions for the Ti, Sc and Cu atoms in particular are clearly deficient. We
must question then one of the previous assumptions, which, although have been able to
reproduce the energies for alkalies, alkaline-earths and p-valence atoms, cannot explain
the transition metals’ ionization energies.

This instance is presented purposefully to highlight the importance of the first step
followed back in Table 1. The approach followed to solve this problem consists of
relaxing the fulfillment of the first Hund’s rule to question the ground-state multiplicity.

The study is now restarted in order to try all possible configurations for the d electrons.
We will also consider that the 4s orbitals do not have to be filled as they are relatively close
to the d orbitals energy-wise. Let’s take Z=23, vanadium, V, for instance. According to
the n + l rule, which is yet to be confirmed for these elements, its electronic configuration
would be V: [Ar] 4s23d3. The total number of electrons that have complete freedom to
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locate themselves in the 1+5 orbitals available with spin |↑⟩ or |↓⟩ is 5. Given the spin
multiplicity g = (2S + 1), there are 3 possibilities: doublets for S = 1∕2, quartets for
S = 3∕2 or sextets for S = 5∕2.

A HF calculation is performed using an inexpensive basis set 6-31g so as to evaluate the
true ground state of each atom and ion. Again, as the HF calculation is a variational
based method, the lowest energy configuration will be considered the atomic/ionic
ground state. In those cases where the difference between them is relatively small (≤
0.025 Ha), a second calculation will be carried out using a larger basis set (aug-cc-pvtz)
to verify the first result. This is done because fluctuations could stem from the basis set
choice. The results for both neutral atoms and first ions are given in Table 2. We use
different colours to differentiate them23.

Table 2: ground-state energies for atoms and first cations for 4tℎ-period transition metals for a HF(6-31g).
The spin multiplicity was constrained to find the most stable configuration. In those cases where the first
calculation does not provide a difference of at least 0.02 Ha=0.544 eV, a HF(aug-cc-pvdz) is performed
whose results are noted right under the first in the same cell.

Neutral atom: ■ First ion: ■

Singlet Doublet Triplet Quartet Quintet Sextet Septet

Sc -759.4105 -759.6143 -759.4336 -759.5195 - - -
-759.4728 -759.5147

Ti -848.0010 -848.0853 -848.0989 -848.0872 -847.7153 - -
-848.1921 -848.1924 - -

V -942.4085 -942.7286 -942.5533 -942.7856 -942.5476 -942.7415 -
-942.6555 -942.6750 -

Cr -1043.0255 -1042.8736 -1043.1100 -1042.9477 -1043.1919 -1042.9915 -1043.1922
-1043.3169 -1043.3561

Mn -1149.1700 -1149.5444 -1149.3478 -1149.5947 -1149.4673 -1149.7221 -1149.5045
Fe -1262.0762 -1261.9224 -1262.1738 -1262.0082 -1262.2670 -1262.0372 -

Co -1380.7395 -1381.0233 -1380.8598 -1381.1978 -1380.9568 -1381.1303 -1380.7066

Ni -1506.1353 -1506.2711 -1506.6096 -1506.3579 -1506.5331 -1506.0670 -

Cu -1638.3528 -1638.5670 -1638.3774 -1638.5585 -1638.0542 - -
-1638.7266 -1638.9626 -1638.6859 -1638.8770

Zn -1777.4828 -1777.2109 -1777.3874 -1776.8058 - - -

The special case of Ti+ is worth highlighting. The energies for both the doublet and
quartet are almost equal and therefore, naming any of those as the true ionic ground
state only with these results would be a rather bold statement. This fact has been
checked with other basis sets and the quartet is proven to be the lowest energy
configuration24 consistently. Table 2 shows the differences between the predicted
multiplicities according to the n + l and Hund’s rules and those of the lowest-energy
computational states.

23As all atoms differ on one electron to their respective first cation, the spin multiplicity cannot be the
same for both as shown in Figure 1. Table 2 is analogous but both ion and neutral atom share the same
multiplicity axis.

24Using the aug-cc-pvdz basis we find energies of E=-848.1688 Ha and E=-848.1906 Ha for the doublet
and quartet respectively.
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Table 3: a comparison between the expected, obtained and reference [15] values for the spin multiplicity
for the atomic and ionic ground state of the 4tℎ-period transition elements.

Sc Ti V Cr Mn Fe Co Ni Cu Zn

2S+1
n + l and Hund’s rules 2 3 4 5 6 5 4 3 2 1
Computational 2 3 4 7 6 5 4 3 2 1
Reference 2 3 4 7 6 5 4 3 2 1

Sc+ Ti+ V+ Cr+ Mn+ Fe+ Co+ Ni+ Cu+ Zn+

2S+1 n + l and Hund’s rules 1 2 3 4 5 6 5 4 3 2
Computational 3 4 5 6 7 6 5 4 1 2
Reference 3 4 5 6 7 6 3 2 1 2

Calculations HF(aug-cc-pvdz) and MP2(aug-cc-pvdz) are repeated over the minimum
energy configurations employing the same basis set. The results greatly improved the
first set of predictions for the ionization energy:
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Figure 11: first ionization energies for Z ∈ [21, 31] for a HF(aug-cc-pvdz) and MP2(aug-cc-pvdz). The
results are compared with the experimental data [15]. The relative error is also analysed.

There are still some inaccuracies for the Sc and Ti atoms but the improvement is quite
apparent. It is critical to notice that the multiplicities that are not in agreement in Table
3 correspond to the worse predictions for the ionization energies in Figure 10 and now
fixed in Figure 11. Despite this, Sc and Ti results fail to be completely satisfactory. In
addition, Co+ and Ni+ multiplicities are not in agreement with the reference in Table 3
but the predictions in Figure 11 are quite accurate. In order to shed some light on the
causes, the occupation diagrams for these elements are shown in Figure 12.
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Figure 12: orbital filling for the ground states of the 4tℎ period transition metals for a HF(aug-cc-pvdz)c
calculation. The monoelectronic orbitals are sorted into 3 columns according to their angular momentum
l ∈ {0, 1, 2}. The orbitals marked in grey are unoccupied or virtual (E>0). Orbitals marked in blue do not
have their orbital angular momentum l well-defined.

First of all, we will shift our attention to the Sc and Ti atoms. The potential is not close to
being central or at least, the basis set employed fails to capture it. This is shown by the
orbitals marked in blue in the diagram. These do not have a well-defined angular
momentum l; those in the columns l=0 or l=2 are a linear combination between s and
d-type primitives while those in the l=2 column stem from p and f -type primitive
combinations. Changes in the basis set choice eliminate the mixing but the predictions
shown in Figure 11 worsen. In addition, the configurations for these atoms show the
filling of 4p orbitals, which is not followed by any other transition metal, opposite to the
behaviour we have repeated throughout the study: the preceding electronic
configuration is maintained as new electrons fill the unoccupied orbitals.

A different approach was tested by increasing the accuracy of the initial guess for the
orbitals until 1e-15 Ha. This allowed the configuration to readjust to give an Sc: [Ar] 3d2
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4s and Ti: [Ar] 3d3 4s, but the ionization energy values again worsen from 5.182 eV to
3.931 eV for Sc, being the experimental value 6.561 eV; and from 4.684 eV to 2.410 eV for
Ti, being 6.828 eV the reference. Finally, if the reader focuses on the Sc level diagram, they
will see that the ↑ electrons fill more energetic orbitals than their ↓ counterparts. All these
facts make the configurations unreliable.

Following the analysis, the V atom has the expected configuration, but the 3d orbitals
lie below the 4s as far as the energy is concerned. Cr is another representative of the
preference that the electrons have to share the same ms. This makes one electron in the 4s
subshell occupy the last spot with ms = 1∕2 in the 3d subshell. After Mn, which also has
the expected configuration, the 4s ↓ electron falls to the 3d subshell until it is completed
at Zn.

However, after several calculations, we must conclude that the exact electronic
configuration cannot be solved with this methodology. Due to the energetic proximity
between the 4s, 4p and 3d subshells, the underlying configuration is strongly
basis-dependent. For instance, the 6-31g* basis sometimes yields a filled 4s subshell
followed by the filling of the 3d subshell while keeping good predictions for the
ionization energies. Different basis sets from different families have been tried in
addition to the tuning of the accuracy without consistent results. Sc and Ti keep being
predicted to allocate electrons in 4p subshells although the quantum number l is
well-defined in many calculations. The best correlations with experiments showed in
Figure 6 are the ones presented in the foregoing Figure 12. The fact that E(3d) ≈ E(4s)
also explains why good results are obtained for Co and Ni ionization energies even
though the Co+ and Ni+ multiplicities were not predicted correctly.

The ionized electron varies depending on the atom, sometimes leaving the atom with an
unpaired 4s electron and others leaving the 4s subshell empty. Ions for which all electrons
are located in the 3d subshell are V+, Cr+ and Cu+. All configurations can be found in
Table 7 in the next section.

A general result that can be extracted from the trials is the following: if two subshells
(4s, 4p or 3d) are filled simultaneously, the energy order for a HF calculation is always
E(3d) < E(4s) < E(4p). This is independent of the chosen basis set. Figure 13 shows
the monoelectronic energies plotted in Figures 2, 7, 12 and 8 as a function of the atomic
number Z.

We highlight that for transition metals, the 4s subshell is filled or half-filled while the
3d subshell is incomplete. The results show that the unoccupied 3d levels are higher in
energy than the 4s occupied levels. This comes to show that when the valence electrons
have multiple free orbitals of similar energy content, the n + l rule is no longer reliable.
What is more, the ionic configurations are consistently showing unpaired electrons in the
4s subshell at best. If the ordering 4s→ 3d held, the 4s subshell should be kept intact.
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Figure 13: comparison of the monoelectronic binding energies for neutral atoms of the first four periods.
Given the fact that these energies are not constant as seen in Figures 2, 7 and 8, the mean value of occupied
orbitals for each class is plotted. This graphic was inspired in [16], p. 55.

5.3 Electron affinities

The last atomic property we tried to predict is the electron affinity. This magnitude is
defined as the amount of energy released in the reaction:

X + e−⟶ X− + energy , (5.3)

where X is the chemical symbol of the element with atomic number Z. A positive
electronic affinity will be understood as an exothermic reaction, while a negative value
will mean that some energy is required in order to bound the electron.

It will again be necessary to split the study and discuss the d-valence electrons separately.
The procedure will be the same as for the ionization energies, that is computing the HF
and a subsequent MP2 in an attempt to obtain better quantitative results.

The basis set choice is something especially important for negatively charged chemical
species because of the loose bounded electrons. The absolute values for the electronic
affinities of a given atom are lower than their ionization energies according to
experiments [17]. Again, a higher energy associated with a monoelectronic orbital is
related to a distant presence probability from the nucleus and sometimes diffuse
primitives are mandatory to obtain reasonable results. Let’s take the F atom for instance
and compare the effect of including a diffuse function in the already familiar 6-311g*
basis, that is the 6-311+g* basis set, in the ground-state energy.

The double valence correlation-consistent basis sets have also been added in Table 4 in
order to justify the final choice.
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Table 4: a comparative view of ionic and atomic energies with 6-311g* and cc-pvdz basis sets and their
diffuse expansion for F. The computational and experimental values for the ionization energy and electron
affinity are also noted.

Basis set Method Ion. energy (eV) Elec. aff. (eV) Cation (Ha) Atom (Ha) Anion (Ha)

6-311g* HF 15.6829 0.1693 -98.82056 -99.39689 -99.40312
MP2 16.9200 1.6180 -98.95933 -99.58113 -99.64059

6-311+g* HF 15.7022 1.2466 -98.82289 -99.39994 -99.44575
MP2 17.0030 3.2470 -98.96142 -99.58627 -99.70559

cc-pvdz HF 15.6388 -0.2395 -98.80061 -99.37533 -99.36653
MP2 16.7900 1.0757 -98.90450 -99.52152 -99.56105

aug-cc-pvdz HF 15.7249 1.2712 -98.80393 -99.38181 -99.42852
MP2 17.1404 3.5488 -98.91463 -99.54453 -99.67494

Experimental values 17.42282 3.401 - - -

The first result drawn from Table 4 is the fact that the atomic and positive-ion HF energies,
which always constitute a high bound for the real energy, do not show great sensitivity
to the addition of diffuse functions. The energies of anions on the other hand present
variations of ∼ 5 ⋅10−2 Ha ≈ 1.4 eV, improving this boundary limit. This has a direct effect
on the electron affinity predictions, which, as expected, yield very poor results unless
diffuse functions are included. What is more, given the relatively low values for this
magnitude, the MP2 perturbation is almost mandatory to approach the reference [17].

The electron affinities for atoms H-Kr were calculated using a HF(aug-cc-pvdz) and
MP2(aug-cc-pvdz) assuming that anions followed the n + l and Hund’s rules and
compared to the reference values in Figure 14.
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Figure 14: electron affinities according to HF(aug-cc-pvdz)c and MP2(aug-cc-pvdz) calculations for atoms
H-Kr excluding the transition elements. The alkalies and Ca are exceptions as the aug-pc-3 basis sets was
used instead. Those atoms whose electronic affinity cannot be measured experimentally since reaction 5.3
is not favourable energetically speaking have their reference values [17] [18] crossed.
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Firstly, it becomes apparent that the HF method is generally insufficient to predict
exothermic reactions for most atoms. The MP2 calculations on the other hand yield good
approximations for the experimental values, especially for halogens and 14tℎ-group
atoms (C, Si and Ge). Moreover, electron affinities for these atoms are higher compared
to their immediate neighbourhood, which comes to support the statement on how filled
and half-filled subshells constitute remarkably stable configurations.

As noted in the Figure 15 caption, the aug-cc-pvdz basis was not enough to accurately
describe the electron affinities for some specific systems, the Na and Li. For that reason,
the aug-pc-3 basis set was selected to tackle the calculations. These elements have low
electron affinities that can become difficult to simulate without employing larger basis
sets. Finally, the aug-cc-pvdz basis is not available for K and Ca, so the same alternative
was tried given the good results it showed for the other two alkalies.

Table 5: variation of the MP2(aug-cc-pvdz) and MP2(aug-pc-3) energy for Li and Na atoms and their first
anions in Ha. The predicted electron affinities and reference values [17] are also noted in eV.

Li Li− Elec. aff. (eV) Ref. (eV)

aug-cc-pvdz -7.43356 -7.35539 -2.1271 0.618aug-pc-3 -7.45083 -7.46350 0.3448

Na Na− Elec. aff. (eV) Ref. (eV)

aug-cc-pvdz -161.85597 -161.77710 -2.1460 0.434aug-pc-3 -161.96951 -161.98175 0.3331

Unusual configurations are predicted for some anions. For instance, the ion Ca− is
predicted to be Ca−: [Ar] 4s2 5s while Kr− has a configuration Kr−: [Kr] 5p, instead of the
expected Ca−: [Ar] 4s2 3d and Kr−: [Kr] 5s.

The transition metals entitled to serious complications. All the basis sets discussed in this
work fail to provide satisfactory results for the electron affinities. Figure 15 shows a great
mismatch between the experimental and computational results. The anion configuration
is assumed to fulfill the n + l and Hund’s rules. The aug-pc-3 basis set was used for the
Cu− as it fitted better the experimental values.

Only the Zn− and Cu− ions seem to yield reliable results. A closer look at the electronic
configuration regarding Mn− reveals a [Ar] 3d4 4s 4p3. We consider the electronic affinity
of ≈ 20 eV too big to think that this configuration is correct. The Cu− on the other hand
gives a [Ar] 3d4 4s2 4p6. Again, the preference to occupy the 4p orbitals appears for
transition metals. Only Zn− has a reasonably expected configuration [Ar] 3d10 4s2 4p.

The availability of a high number of energy levels (10d+2s+6p) with similar energies
makes the calculations extremely sensitive to the initial guesses and the basis set choice.
However, in practical scenarios, it would be unlikely to find negative ions of these atoms
in particular. We consider this as the reason why all the basis sets fail to describe them.
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Figure 15: electron affinities for HF (aug-cc-pvdz) and MP2 (aug-cc-pvdz) calculations for the fourth period
transition metals Sc-Zn, excepting Cu, for which the aug-pc-3 basis set was used instead.

6 Conclusions

Se concluye con una recopilación de los resultados más relevantes del estudio y una
crítica a la precisión del método empleado. Se intentan corregir algunos resultados en
desacuerdo con la referencia mediante un cálculo DFT y por último se indican posibles
continuaciones al trabajo desarrollado.

This study has shown the strong capabilities of computational algorithms in order to
simulate the electronic structure of atoms. These methods are nonetheless applicable to
molecules under the Born-Oppenheimer approximation. In fact, the molecular initial
guess for the orbital occupation is a linear combination of atomic orbitals (LCAO), so
this study constitutes a good starting point for an extension to molecular calculations.
This work has made use of the free-distribution software package NWCHEM.

Through the entirety of the analysis, the MP2 calculations have provided as expected
better estimations for the ionization energies than the HF method. The accuracy of the
predictions (< 1 eV even for the worst results) constitutes a great preliminary
description of the system’s properties at a low computational cost without even
considering relativistic effects. In this study, we have employed this comparison in order
to verify the electronic structure of the first 4 rows of the periodic table.

The Aufbau Principle has also been verified for the s and p-valence atoms but some
remarks must be made for the d-valence atoms. This study has shown that the 4s orbital
is consistently higher in energy than the 3d orbital for HF calculations. Therefore, when
the d-subshell is not completely filled, the unoccupied d-orbitals lie above in energy than
the 4s. In other words, the complete set of 5 d-type orbitals do not work as a whole, but
the differences in energy are high enough to let another set of orbitals, the 4s in this case,
to be allocated between them energetically speaking.
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In this regard, the existence of multiple levels with similar energies makes the resolution
of the electronic structure much more challenging. The electronic configuration becomes
extremely basis-dependent if most of those levels are unoccupied. This is why the electron
configuration for Sc and Ti in Figure 12 is not reliable for valence electrons even though
they give the best result among the basis sets discussed in this project for the ionization
energies. We have demonstrated the importance of the diffuse functions in low-bounded
electron systems for energy predictions.

As we have said, the fidelity range that we conclude the MP2 calculations have for the
atomic systems is at least ∼ 0.8 eV in the worst cases if usual split-valence or
correlation-consistent basis are used, although the accuracy is generally higher.
Therefore, the prediction of energetic processes below this threshold should be treated
with special care. However, we have obtained even better results for the electron
affinities of s and p-valence atoms.

On the other hand, this approach has failed to describe the electron affinities for Sc-Zn,
which were already extremely sensitive without adding an extra electron to the system,
excepting the Zn, that has filled 3d and 4s subshells. This leaves no choice for new
electrons but to occupy 4d orbitals.

In an attempt to solve the problems that Sc and Ti posed, a DFT calculation was explored
keeping the multiplicities given in Table 2. We shall not explain the full principle behind
the DFT theory and Kohn-Sham equations, but in short, the energy is treated as a
functional of the electron density instead of the wave function as in the HF method. The
LSDA25 and Vosko-Wilk-Nusair (VWN) correlation potential were used for the
calculations26. The results predict the correct configurations Sc: [Ar] 4s2 3d and Ti: [Ar]
3d2 4s2. Again, the ionization leaves the 4s subshell half-filled. The degree of accuracy
for the ionization energy predictions matches the one obtained with the HF/MP2
theories:

Table 6: comparison of the results obtained for the MP2(aug-cc-pvdz)c and DFT-LSDA methods with the
same basis.

ΔIMP2 (eV) ΔIDFT (eV) ΔIexp (eV)

Sc 5.182 6.482 6.561
Ti 4.684 6.475 6.828

Regarding the 3d → 4s filling order, the DFT confirms the results obtained with the HF
method for Ti but not for Sc. However, as the d-subshell is being filled by electrons, the
gap between the levels increases just as Figure 13 indicates so the 3d orbitals are preferred
in the long term.

The final electronic structure of the studied atoms and ions as well as the spin
multiplicities are noted in Table 7.

Natural continuations of this study would be the extension to DFT or Coupled Cluster27

methods (see Tensor Contraction Engine in the manual [13]). It would be extremely

25Local spin-density approximation.
26These are the default options in NWCHEM for DFT calculations.
27This is another post-HF method to estimate the correlation energy.
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interesting to include relativistic corrections since the spin-orbit coupling term becomes
more important as the number of electrons grows. In fact, for larger atoms, the basis sets
used in the study are replaced by their relativistic versions. The accountancy of these
terms is expected to correct the odd configurations for Ca− and Kr−. Another possible
path would involve the extension to diatomic molecules to study the effect of close
nuclei on the orbital shape and energy.

Table 7: spin multiplicities and ground-state electron configurations for the atoms, cation and anions from
H to Kr. The results correspond to a HF(6-311g*) for s and p-valence atoms their cations and a HF(aug-
cc-pvdz) for Fe-Zn, their cations and for all anions (excepting alkalies and Ca− for which a HF(aug-pc-3)
was chosen). Those configurations in bright red correspond to the estimations extracted from the DFT. The
low bounded electrons for the negative ions of Sc-Cu were not able to be reproduced satisfactorily. The
results are compared with the NIST Database [15] reference. In case of a mismatch, the reference is written
explicitly and the wrong configuration highlighted in blue.The inversion 4s3d → 3d4s is not considered a
mismatch. Unexpected terms for anions are marked in blue as well.

Atom 2S+1 Elec. Conf. Reference Cation 2S+1 Elec. Conf. Reference Anion 2S+1 Elec. Conf.

H 2 1s ✓ H+ - - - H− 1 1s2

He 1 1s2 ✓ He+ 2 1s ✓ He− 2 [He]2s
Li 2 [He]2s ✓ Li+ 1 1s2 ✓ Li− 1 [He]2s2

Be 0 [He]2s2 ✓ Be+ 2 [He]2s ✓ Be− 2 [He]2s2p
B 2 [He]2s2p ✓ B+ 1 [He]2s2 ✓ B− 3 [He]2s2p2

C 3 [He]2s2p2 ✓ C+ 2 [He]2s22p ✓ C− 4 [He]2s2p3

N 4 [He]2s2p3 ✓ N+ 3 [He]2s22p2 ✓ N− 3 [He]2s22p4

O 3 [He]2s2p4 ✓ O+ 4 [He]2s22p3 ✓ O− 2 [He]2s22p5

F 2 [He]2s2p5 ✓ F+ 3 [He]2s22p4 ✓ F− 1 [He]2s22p6

Ne 1 [He]2s2p6 ✓ Ne+ 2 [He]2s22p5 ✓ Ne− 2 [Ne]3s
Na 2 [Ne]3s ✓ Na+ 1 [He]2s22p6 ✓ Na− 1 [Ne]3s2

Mg 1 [Ne]3s2 ✓ Mg+ 2 [Ne]3s ✓ Mg− 2 [Ne]3s23p
Al 2 [Ne]3s23p ✓ Al+ 1 [Ne]3s2 ✓ Al− 3 [Ne]3s23p2

Si 3 [Ne]3s23p2 ✓ Si+ 2 [Ne]3s23p ✓ Si− 4 [Ne]3s23p3

P 4 [Ne]3s23p3 ✓ P+ 3 [Ne]3s23p2 ✓ P− 3 [Ne]3s23p4

S 3 [Ne]3s23p4 ✓ S+ 4 [Ne]3s23p3 ✓ S− 2 [Ne]3s23p5

Cl 2 [Ne]3s23p5 ✓ Cl+ 3 [Ne]3s23p4 ✓ Cl− 1 [Ne]3s23p6

Ar 1 [Ne]3s23p6 ✓ Ar+ 2 [Ne]3s23p5 ✓ Ar− 2 [Ar]4s
K 2 [Ar]4s ✓ K+ 1 [Ne]3s23p6 ✓ K− 1 [Ar]4s2

Ca 1 [Ar]4s2 ✓ Ca+ 2 [Ar]4s ✓ Ca− 2 [Ar]4s25s
Sc 2 [Ar]4s23d ✓ Sc+ 3 [Ar]4s3d ✓ Sc− ? ?
Ti 3 [Ar]3d24s2 ✓ Ti+ 4 [Ar]3d24s ✓ Ti− ? ?
V 4 [Ar]3d34s2 ✓ V+ 5 [Ar]3d4 ✓ V− ? ?
Cr 7 [Ar]3d54s ✓ Cr+ 6 [Ar]3d5 ✓ Cr− ? ?
Mn 6 [Ar]3d54s2 ✓ Mn+ 7 [Ar]3d54s ✓ Mn− ? ?
Fe 5 [Ar]3d74s [Ar]3d64s2 Fe+ 6 [Ar]3d64s ✓ Fe− ? ?
Co 4 [Ar]3d84s [Ar]3d74s2 Co+ 5 [Ar]3d74s [Ar]3d8 Co− ? ?
Ni 3 [Ar]3d94s [Ar]3d84s2 Ni+ 4 [Ar]3d84s [Ar]3d9 Ni− ? ?
Cu 2 [Ar]3d14s ✓ Cu+ 1 [Ar]3d10 ✓ Cu− 1 ?
Zn 1 [Ar]3d104s2 ✓ Zn+ 2 [Ar]3d104s ✓ Zn− 2 [Ar]3d104s24p
Ga 2 [Ar]3d104s24p ✓ Ga+ 1 [Ar]3d104s2 ✓ Ga− 3 [Ar]3d104s24p2

Ge 3 [Ar]3d104s24p2 ✓ Ge+ 2 [Ar]3d104s24p ✓ Ge− 4 [Ar]3d104s24p3

As 4 [Ar]3d104s24p3 ✓ As+ 3 [Ar]3d104s24p2 ✓ As− 3 [Ar]3d104s24p4

Se 3 [Ar]3d104s24p4 ✓ Se+ 4 [Ar]3d104s24p3 ✓ Se− 2 [Ar]3d104s24p5

Br 2 [Ar]3d104s24p5 ✓ Br+ 3 [Ar]3d104s24p4 ✓ Br− 1 [Ar]3d104s24p6

Kr 1 [Ar]3d104s24p6 ✓ Kr+ 2 [Ar]3d104s24p5 ✓ Kr− 2 [Ar]3d104s24p65p
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Appendices

A Sample input file and data retrieval

In case the reader is interested in replicating the calculations discussed in this work or in
starting any HF/MP2 calculation with NWChem, we attach an input file sample.

echo
s t a r t c_mp2
t i t l e " Carbon MP2"
charge 0
geometry
C 0 . 0 0 . 0 0 . 0

end
s c f

uhf
t r i p l e t
maxiter 2000

end
p r i n t debug
b a s i s c a r t e s i a n
C l i b r a r y 6−311g *

end
task mp2

This is a 2000-iteration28 MP2(6-311g*)c calculation for neutral carbon with all the
information about the initial guesses, explicit intermediate values... thanks to the debug
printing option. This data volume is likely to be unnecessary, so just by leaving print
or deleting the whole line. The needed HF is also performed prior to the MP2 stage
using the same basis set.

Assuming the debug option is not required, the output file will consist of a preamble
where the primitives are explicitly written as well as the number of contracted resulting
functions. The coefficients and exponents are not normalized. This fact is not indicated
in the manual [13] and must be taken into account for any external operation such as
the retrieval of the radial densities. The HF calculation is then performed, showing the
energy evolution throughout the iterative process. Right below, the final HF energy is
displayed alongside the monoelectronic energies and the coefficients obtained for each of
the orbitals. The final MP2 energy is attached at the end of the text file.

28This is the maximum number of iterations but the procedure may converge before.
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B Additional tables

Table 8: ground-state energies for atoms and their respective first positive ions ranging from H to Ca and
Ga to Kr yielded by a HF(6-311g*)c and MP2(6-311g*)c calculation and from Sc to Zn by a HF(aug-cc-pvdz)c
and MP2(aug-cc-pvdz)c . The estimation for the correlation energy, the predicted first ionization energies
for each method (ΔIHF and ΔIMP2) and their experimental values (ΔIexp) [15] are also noted explicitly.

EHF (a.u.) EMP2 (a.u.) Ecorr (a.u.) EHF (a.u.) EMP2 (a.u.) Ecorr (a.u.) ΔIHF (eV) ΔIMP2 (eV) ΔIexp (eV)

H -0.49981 -0.49981 0.00000 H+ 0.00000 0.00000 0.00000 13.6005 13.6005 13.5984
He -2.85990 -2.87280 -0.01291 He+ -1.99814 -1.99814 0.00000 23.4496 23.8008 24.5874
Li -7.43212 -7.44509 -0.01297 Li+ -7.23584 -7.24841 -0.01257 5.3412 5.3520 5.3917
Be -14.57189 -14.61405 -0.04216 Be+ -14.27635 -14.29089 -0.01454 8.0420 8.7937 9.3227
B -24.53015 -24.58715 -0.05700 B+ -24.23528 -24.28708 -0.05180 8.0240 8.1654 8.2980
C -37.68915 -37.76495 -0.07580 C+ -37.29199 -37.35630 -0.06431 10.8074 11.1199 11.2603
N -54.39814 -54.49704 -0.09890 N+ -53.88626 -53.96730 -0.08104 13.9290 14.4149 14.5341
O -74.80526 -74.94257 -0.13731 O+ -74.36484 -74.46680 -0.10196 11.9846 12.9463 13.6181
F -99.39689 -99.58113 -0.18424 F+ -98.82056 -98.95933 -0.13877 15.6829 169200 17.4228
Ne -128.52267 -128.76113 -0.23847 Ne+ -127.79679 -127.97983 -0.18304 19.7522 21.2604 21.5645
Na -161.84605 -161.97775 -0.13170 Na+ -161.66430 -161.79410 -0.12980 4.9458 4.9975 5.1391
Mg -199.60699 -199.75886 -0.15187 Mg+ -199.36425 -199.49257 -0.12832 6.6052 7.2461 7.6462
Al -241.87225 -242.02909 -0.15684 Al+ -241.66786 -241.82147 -0.15361 5.5619 5.6497 5.9858
Si -288.85044 -289.01812 -0.16768 Si+ -288.56980 -288.73156 -0.16176 7.6365 7.7978 8.1517
P -340.70784 -340.89310 -0.18526 P+ -340.34259 -340.51823 -0.17564 9.9389 10.2005 10.4867
S -397.49847 -397.70304 -0.20456 S+ -397.16246 -397.35339 -0.19093 9.1434 9.5144 10.3600
Cl -459.47356 -459.63555 -0.16199 Cl+ -459.03979 -459.18168 -0.14189 11.8036 12.3504 12.9676
Ar -526.80683 -527.00923 -0.20240 Ar+ -526.26831 -526.44523 -0.17692 14.6539 15.3473 15.7596
K -599.14932 -599.42504 -0.27573 K + -599.00213 -599.26927 -0.26714 4.0051 4.2388 4.3407
Ca -676.74067 -677.05213 -0.31146 Ca+ -676.55259 -676.83959 -0.28700 5.1180 5.7835 6.1132
Sc -759.68153 -759.84703 -0.16550 Sc+ -759.51226 -759.65659 -0.14433 4.60607 5.18209 6.56149
Ti -848.33654 -848.57264 -0.23610 Ti+ -848.16879 -848.40050 -0.23172 4.56485 4.68413 6.82812
V -942.89032 -943.21129 -0.32097 V+ -942.67408 -942.98451 -0.31042 5.88418 6.17111 6.74619
Cr -1043.35577 -1043.73938 -0.38362 Cr+ -1043.13900 -1043.49646 -0.35745 5.89838 6.61035 6.76651
Mn -1149.86823 -1150.26921 -0.40098 Mn+ -1149.64866 -1150.01072 -0.36207 5.97477 7.03380 7.43404
Fe -1262.38433 -1262.90067 -0.51634 Fe+ -1262.21793 -1262.63824 -0.42031 4.52786 7.14094 7.90247
Co -1381.36370 -1381.96089 -0.59719 Co+ -1381.13525 -1381.69640 -0.56114 6.21626 7.19720 7.88101
Ni -1506.82711 -1507.50883 -0.68172 Ni+ -1506.59453 -1507.23803 -0.64350 6.32888 7.36877 7.63988
Cu -1638.96235 -1639.76725 -0.80490 Cu + -1638.72606 -1639.49135 -0.76529 6.42977 7.50756 7.72638
Zn -1777.84675 -1778.65294 -0.80619 Zn+ -1777.56651 -1778.32172 -0.75521 7.62574 9.01290 9.39420
Ga -1923.18223 -1923.62564 -0.44341 Ga+ -1922.97788 -1923.41299 -0.43511 5.5605 5.7863 5.9993
Ge -2075.27982 -2075.71910 -0.43928 Ge+ -2075.00665 -2075.43402 -0.42738 7.4333 7.7574 7.8994
As -2234.15408 -2234.60007 -0.44599 As+ -2233.80662 -2234.23723 -0.43061 9.4547 9.8733 9.7886
Se -2399.78581 -2400.24480 -0.45900 Se+ -2399.47232 -2399.91279 -0.44047 8.5305 9.0346 9.7524
Br -2572.35545 -2572.85334 -0.49789 Br+ -2571.95974 -2572.43659 -0.47685 10.7678 11.3403 11.8138
Kr -2751.96296 -2752.46125 -0.49830 Kr+ -2751.47975 -2751.94894 -0.46919 13.1488 13.9409 13.9996

Table 9: electron affinities (ΔA) for HF(aug-cc-pvdz)c and MP2(aug-cc-pvdz)c according to the
multiplicities shown in Table 7 and reference values (ΔAexp) [17] [18]. Li, Na, K and Ca data were obtained
with an aug-pc-3 basis set instead. The electronic configurations tested for negatively charged transition
metals obey Hund’s maximum multiplicity rule.

ΔAHF (eV) ΔAMP2 (eV) ΔAexp (eV) ΔAHF (eV) ΔAMP2 (eV) ΔAexp (eV) ΔAHF (eV) ΔAMP2 (eV) ΔAexp (eV)

H -0.3416 0.3435 0.754 Al 0.0211 0.3120 0.434 Mn -14.3850 -15.5903 0.000
He -4.7325 -4.6834 0.000 Si 0.8664 1.3126 1.390 Fe -0.9948 -2.6280 0.153
Li -0.1234 0.3448 0.618 P -0.3705 0.2678 0.747 Co 1.0615 -2.7030 0.662
Be -0.4413 -0.3642 0.000 S 0.9170 1.7980 2.077 Ni -61.5652 -62.1103 1.157
B -0.3028 0.1447 0.280 Cl 2.4688 3.5558 3.613 Cu -0.0057 0.7636 1.236
C 0.4624 1.1876 1.262 Ar -4.0641 -3.9331 0.000 Zn -0.6684 -0.6113 0.000
N -1.8660 -0.7209 0.000 K -0.0805 0.3317 0.501 Ga -0.0349 0.2513 0.430
O -0.5344 1.2737 1.462 Ca -0.2800 -0.2379 0.024 Ge 0.8818 1.2945 1.233
F 1.2712 3.5488 3.401 Sc 1.2759 1.1630 0.189 As -0.2943 0.3077 0.814
Ne -7.9441 -7.8670 0.000 Ti 0.2316 0.3861 0.087 Se 1.0070 1.7814 2.021
Na -0.1057 0.3331 0.548 V -2.4207 -4.7335 0.528 Br 2.4928 3.3978 3.364
Mg -0.4180 -0.3291 0.000 Cr -4.0782 -5.3915 0.676 Kr -3.6817 -3.5393 0.000
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