
 

 
 
 
 
 
 

TRABAJO FIN DE GRADO 

 
 
 

DEVELOPMENT OF REPRESENTATIVE DRIVING CYCLES OF 
THE TENERIFE METROPOLITAN AREA THROUGH 

CLUSTERING METHODS  

 
 
 
 
 
 

GRADO EN INGENIERÍA MECÁNICA 

 

Carlos Enrique Armas Palmero 

 
 
 
 

Tutor: Oscar García Afonso 

 
 

La Laguna, Julio 2021 
 



DEVELOPMENT OF REPRESENTATIVE DRIVING CYCLES OF THE TENERIFE METROPOLITAN AREA 
THROUGH CLUSTERING METHODS 

 

2 

 

CONTENTS 

 
 
ABSTRACT.............................................................................................................................. 6 
INTRODUCTION ..................................................................................................................... 7 
AIM AND OBJECTIVES ........................................................................................................ 9 
BACKGROUND .................................................................................................................... 10 
RELATED WORK ................................................................................................................. 13 
DEFINITIONS ........................................................................................................................ 14 

Driving features definition .................................................................................. 14 
Statistical analysis ................................................................................................. 20 

Outliers treatment .............................................................................................. 23 
Microtrips Definition ........................................................................................... 25 
Dimensionality Reduction .................................................................................. 25 

Feature scaling .................................................................................................. 26 
Principal Component Analysis ........................................................................... 27 
t-SNE ................................................................................................................. 28 

Clustering Algorithms ........................................................................................ 30 
k-Means ............................................................................................................. 31 
Hierarchical clustering ....................................................................................... 32 

Performance Metrics .......................................................................................... 33 
Silhouette Coefficient ......................................................................................... 33 
Calinski-Harabasz .............................................................................................. 34 
Davies–Bouldin index ........................................................................................ 35 

Driving Behaviour ............................................................................................... 36 
METHODOLOGY .................................................................................................................. 38 
RESULTS ............................................................................................................................... 42 

Statistical Analysis ............................................................................................. 42 
Geographical Characteristics ............................................................................. 42 
Temporal Characteristics ................................................................................... 48 
Weather Conditions ........................................................................................... 51 
Time and driving distance .................................................................................. 53 
Driving Features ................................................................................................ 56 
Microtrips Division .............................................................................................. 60 

Dimensionality Reduction .................................................................................. 65 
Feature Scaling .................................................................................................. 66 
Principal Component Analysis ........................................................................... 67 
t-Distributed Stochastic Neighbour Embedding ................................................. 70 

Driving Behaviour ............................................................................................... 77 



DEVELOPMENT OF REPRESENTATIVE DRIVING CYCLES OF THE TENERIFE METROPOLITAN AREA 
THROUGH CLUSTERING METHODS 

 

3 

 

Final Cycle Construction .................................................................................... 81 
CYCLE ANALYSIS ............................................................................................................... 86 
CONCLUSION ....................................................................................................................... 93 
REFERENCES ...................................................................................................................... 95 
APPENDICES........................................................................................................................ 97 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



DEVELOPMENT OF REPRESENTATIVE DRIVING CYCLES OF THE TENERIFE METROPOLITAN AREA 
THROUGH CLUSTERING METHODS 

 

4 

 

LIST OF FIGURES 

 
Figure 2.1: Sample histogram. Source: MathWorks ............................................................................. 21 
Figure 2.2: Sample CDF. Source: MathWorks ....................................................................................... 21 
Figure 2.3: Sample box plot. Source: MathWorks ................................................................................ 23 
Figure 2.4: Machine learning methods. Source: MathWorks ............................................................... 31 
Figure 2.5: Schematic representation of K-means algorithm.. ............................................................. 32 
Figure 2.6: Graphic representation of hierarchical dendrogram. Source: MathWorks ........................ 33 
Figure 2.7: Illustration of the elements involved in different clusters. Source: [25] ............................ 34 
Figure 2.8: Driving behaviour according to variables in CDF. Source: [31] ........................................... 37 
Figure 3.1: Diagram of the first stage of the study. Source: Own elaboration ..................................... 39 
Figure 3.2: Diagram of the second stage of the study. Source: Own elaboration ................................ 41 
Figure 4.1: routes covered by the driving cycles .................................................................................. 42 
Figure 4.2: Collected data points in motorway ..................................................................................... 43 
Figure 4.3: Driving time and geographical location of cycles. .............................................................. 44 
Figure 4.4: Starting and ending locations of driving cycles ................................................................... 45 
Figure 4.5: Intracity cycles .................................................................................................................... 45 
Figure 4.6: Start/end location heatmap. ............................................................................................... 46 
Figure 4.7: Cycles collected per day ...................................................................................................... 48 
Figure 4.8: Cycles per weekday ............................................................................................................. 49 
Figure 4.9: Weekly traffic congestion by the time of the day. Source: [33] ......................................... 49 
Figure 4.10: Starting and ending hours. Comparison with Tenerife Council study. [32] ...................... 50 
Figure 4.11: Average Idle time (%) and weather conditions ................................................................. 51 
Figure 4.12: Average RPA (m/s2) and weather conditions ................................................................... 52 
Figure 4.13: Average Driving Speed (km/h) and weather conditions ................................................... 53 
Figure 4.14: Total driving distance (km) ............................................................................................... 54 
Figure 4.15: Total driving distance CDF (km) ........................................................................................ 54 
Figure 4.16: Cycle duration (s) .............................................................................................................. 56 
Figure 4.17: Average driving distances (km) between locations. Source: Google Maps ...................... 55 
Figure 4.18: Mean speed and Mean driving speed (km/h) ................................................................... 57 
Figure 4.19: Maximum driving speed (km/h) ....................................................................................... 58 
Figure 4.20: Percentage of time idling .................................................................................................. 58 
Figure 4.21: APA and ANA (m/s2) ......................................................................................................... 59 
Figure 4.22: RPA and RNA (m/s2) ......................................................................................................... 59 
Figure 4.23:   Average driving speed before division) ........................................................................... 61 
Figure 4.24: MTs duration with outliers (s)........................................................................................... 62 
Figure 4.25: MTs duration after outlier removal .................................................................................. 63 
Figure 4.26: Distance after MTs division ............................................................................................... 63 
Figure 4.27: Features comparison before and after outliers treatment. ............................................. 64 
Figure 4.28: Box Plot of normalized features ....................................................................................... 66 
Figure 4.29: MT before and after normalization .................................................................................. 66 



DEVELOPMENT OF REPRESENTATIVE DRIVING CYCLES OF THE TENERIFE METROPOLITAN AREA 
THROUGH CLUSTERING METHODS 

 

5 

 

Figure 4.30: Number of PCs needed. .................................................................................................... 67 
Figure 4.31:  Influence of features on PCs. ........................................................................................... 68 
Figure 4.32: Data set after PCA ............................................................................................................. 68 
Figure 4.33: Silhouettes 2 and 3 clusters using k-means. ..................................................................... 69 
Figure 4.34: KL and perplexity............................................................................................................... 70 
Figure 4.35: Score and perplexity. ........................................................................................................ 71 
Figure 4.36: Data set after t-SNE .......................................................................................................... 71 
Figure 4.37: Effects of low (left) and high (right) perplexity on the data set. ...................................... 72 
Figure 4.38: Silhouettes of t-SNE and k-means for 2 and 3 clusters. .................................................... 73 
Figure 4.39: Results of clustering 2 (above) and 3 (below) clusters. .................................................... 74 
Figure 4.40: Driving features of 3 clusters: 1) medium speed; 2) low speed; 3) high speed. ............... 76 
Figure 4.41: Data set after k-means (3 clusters). .................................................................................. 76 
Figure 4.42: CDF of acceleration-related features. ............................................................................... 77 
Figure 4.43: CDF of Average score ........................................................................................................ 78 
Figure 4.44: boxplot of APA and mean driving speed by driving behaviour for urban MTs. ................ 79 
Figure 4.45: Relationship between APA, mean driving speed and driving behaviour. ......................... 80 
 Figure 4.46: Data set after clustering and driving behaviour grouping. .............................................. 81 
Figure 4.47: Merge of representative average cycle. ........................................................................... 84 
Figure 4.48: Representative mild cycle. ................................................................................................ 85 
Figure 4.49: Representative average cycle. .......................................................................................... 85 
Figure 4.50: Representative aggressive cycle. ...................................................................................... 85 
Figure 5.1: Illustrative (non-real) image of the relationship between ideal duration and 
representativeness. .............................................................................................................................. 88 
Figure 5.2: Position of representative cycles in the original data set. .................................................. 89 
Figure 5.3: Position of representative cycles in the original data set: duration ................................... 90 
Figure 5.3: Artemis rural road cycle. ..................................................................................................... 92 

 
 
 
 
 
 
 
 
 



DEVELOPMENT OF REPRESENTATIVE DRIVING CYCLES OF THE TENERIFE METROPOLITAN AREA 
THROUGH CLUSTERING METHODS 

 

6 

 

ABSTRACT 

 

 

In recent years, owing to the evolution of science and technology, more efficient 

methods of analysing high-dimensional data have been developed. Drawing on this 

progress, data science can be applied to the environmental sector, helping to 

determine more accurately the impact of vehicles emissions on the environment 

through representative driving cycles. This study aims to develop a methodology that 

helps to build representative driving cycles from a data set collected in the metropolitan 

area of Tenerife. The methodology proposed in this study consisted of the division of 

driving cycles into segments (Microtrips) and subsequently applying various clustering 

algorithms (k-means and Hierarchical clustering), following the application of a 

dimensionality reduction methodology (t-SNE and PCA). The results were split into 

groups with similar acceleration-related variables, representing the driving behaviours. 

. It was found that the highest quality clusters, assessed through silhouette 

coefficients, Calinski-harabasz and Davies Bouldin index, resulted from the utilization 

of a combination of t-SNE and k-means. The representative Microtrips were then 

merged to obtain the final cycle. This methodology seemed to be unable to satisfy the 

desired cycle duration without affecting the data's representativeness. However, when 

the final cycle was compared to the data set, the resulting discrepancies were deemed 

acceptable 
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CHAPTER 1 

 

 

 

INTRODUCTION  

 

Since decades before the beginning of the 21st century, joined by a progressively 
more intense climate change and more notorious contamination, the environment has 
played an increasingly important role in society and human behaviour. It has been 
reported that, in Spain (2013), about 23.940 people died prematurely due to air 
pollution. Additionally, 4.280 died due to the effects of NOx. Both contaminants are 
usually emitted by internal combustion engine (ICE) vehicles, which according to 
studies [1]   produce about 13% of the air contamination in the European Union. 

Many measures have been taken by different administrations around the world, some 
of which regulate the emission produced by ICE. In order to decrease such emissions, 
by law, car manufacturers have to test their new vehicle models. The most recent EU 
regulation is under the name EURO 6, which prevents light-duty vehicles from emitting 
more than 95 g 𝐶𝑂 /km (cars) and 147 g 𝐶𝑂 /km (vans) (2020-2024 objectives), 
supposing a reduction of 15% in 𝐶𝑂  emissions.  

Following the homologation procedures, vehicles are tested, in laboratories, under 
specific driving conditions while connected to an emission measurement system. 
Those vehicles with lower emissions than the limit can be driven without any specific 
restriction. 

As can be inferred, test driving conditions play an important role when it comes to the 
emissions produced by a vehicle. For that reason, it is fundamental to develop the 
most realistic controlled driving environment of a certain country or region. This can 
be achieved by developing representative driving cycles. Theoretically, this driving 
cycle needs to contain the different driving conditions of the region considering its 
statistical proportion. This driving cycle needs to illustrate the average daily cycle of 
the vehicle through its life. 
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Currently, the most used driving cycle around the world is the WLTP (New Worldwide 
Harmonized Light Vehicles Test Procedure), which represents different driving 
conditions for different types of vehicles. It is important to highlight the fact that 
previously, the homologation procedure in the EU was carried out through the 
implementation of the New European Driving Cycle (NEDC), developed at the end of 
the 20th century. According to the European Commission, from 2021 onwards, the 
emissions targets for manufacturers will be based on the WLTP. One of the main 
reasons argued in favour of withdrawing the NEDC from the homologation procedures 
is its dissimilarity to real driving conditions as it will be shown later in this study. Since 
then, many methods have been proposed to recreate the most representative driving 
conditions through the driving cycles development. 

Taking advantage of the increasingly advancing technology, it is possible to recreate 
representative driving conditions from statistical analysis applied to a large amount of 
data by using computational algorithms and data analytics tools. The driving cycles 
obtained from the statistics process must be the most representative of a large set of 
driving cycles. One of the most widely used methods to obtain driving cycles consists 
of the application of clustering algorithms to cycle subdivisions after obtaining the 
driving features. Finally, as can be inferred, driving cycles will vary depending on 
different factors, mainly influenced by road infrastructure and region.  
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AIM AND OBJECTIVES 

 

 
This study aimed to develop a new methodology to obtain representative driving cycles 
from a data set of specific driving conditions in the Tenerife metropolitan area. 

 

The following specific objectives are enumerated: 

 

1. Conduct a statistical study of 490 cycles, evaluating representativeness and 
different parameters. 

 

2. Determine the most representative driving features based on driving conditions 
representativeness and variables dispersion, obtaining relationships between 
them. 

 

3. Establish the best cluster conditions considering the proposed dimensionality 
reduction methods for the dataset by applying different clustering standards. 

 

4. Evaluate and compare the results obtained from the cluster analysis with 
current driving cycles.  
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BACKGROUND 

 

Many have been the methods employed to analyse the performance of ICE vehicles 
considering real driving conditions. The most usual methodology consists of testing 
prototypes in test benches by the manufacturers.  

As it was said, the main objective of testing vehicles through driving cycles is to 
compare different vehicles in specific driving conditions, so it is possible to calculate 
the automobile’s fuel economy, which can be defined as the amount of fuel consumed 
to travel a distance [2]. 

According to the U.S. Department of Energy, the fuel economy of light-duty vehicles 
ranks between 10 to 140 Miles per gallon (23.52 – 1.68 l/100km) and also explains 
that the methodology followed to carry out those calculations is to test the vehicles in 
dynamometers following standardized driving cycles (Federal Test Procedures) that 
mainly consist of EPA city, EPA highway, US06, SC03 and cold temperature cycle, 
where each cycle determines different road and operating conditions.  

The FTP city cycle represents urban driving where the vehicle is driven in stop-and-
go rush hour traffic. The FTP highway cycle represents a mixture of rural and interstate 
highways in free-flowing traffic. Finally, the US06 represents a city and highway driving 
at higher speeds with more aggressive acceleration and braking.  

The aforementioned tests are defined by mean speed, top speed, acceleration, time, 
Idling, lab temperature and the possibility of having the vehicle’s air 
conditioning/heater running. It is important to highlight the fact that this methodology 
is currently taking place in nowadays testing procedures. 

As explained in [1], there are two main ways to develop a driving cycle according to 
its shape: representing the driving features in a highly stylized driving cycle (such as 
the Japanese 10.15 and NEDC) and selecting real-world fragments of driving cycles 
(according to its representativeness) for different driving conditions. The latter is used 
more often (as seen in the WLTP, US06 and LA4). 
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Figure 1.1: Standardized driving cycles. Source: U.S. Department of Energy. 
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On the other hand, the NEDC (New European Driving Cycle), last updated in 1997, 
was designed to represent light-duty vehicle usage in Europe which is highly criticized 
for not delivering real driving conditions; for this reason, the European Commission 
has introduced a new world harmonized cycle: WLTC (World Light Test Cycle) [5]. 
Another reason that boosts the NEDC withdrawal is its flexibility when it comes to 
interpreting different parameters of the cycle, such as some operating laboratory 
conditions that might affect the emissions produced. Additionally, it was proved [6] that 
the WLTP is more restrictive (better-defined boundaries) than NEDC in determinant 
factors such as the vehicle load, test mass, driving resistance forces and tire selection. 
As an example of the previously said, the electricity consumption of PHEV (Plug-in 
hybrid electric vehicles) under the WLTP is 26% higher than NEDC, which makes the 
electric range lower when the first procedure is followed.   
 
Up to this point, the above-mentioned cycles were legislative, employed in type-
approval tests whose only objective was to certify vehicles emissions. Another type of 
cycle is the non-legislative one, which is only used in research and will be the focus of 
the present thesis. As shown in figure 1.1, the non-legislative cycles are mainly 
focused on specific regions under specific driving conditions (i.e., New York cycle). 
 
It is also highlightable the existence of pseudo-steady state cycles whose only aim is 
to determine the emissions produced at a regular speed without periods of significant 
acceleration. As mentioned in [4], these types of cycles are being excluded from 
current research due to several limitations, especially relevant in the case of catalyst-
equipped modern vehicles, that can produce a large proportion of emissions in a short 
period during large accelerations.  
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RELATED WORK 
 

Many methodologies have been developed to obtain regional representative driving 
cycles. As shown in [8] Fotouhi and Montazeri-Gh (2012) developed the Tehran 
representative driving cycle through clustering methods by selecting the most 
characteristic features of real-world data collected from Tehran roads. The 
methodology proposed the division of the driving cycles into small cycles decreasing 
the dispersion between clusters and increasing the number of observations, bringing 
more illustrative statistical models. The final driving cycle was obtained by linking the 
small trips into a single cycle following some representative parameters. Additionally, 
this article defines Microtrips (MTs) as subdivisions of the main driving cycle between 
idles. 
 
Daniel Förster and Robert Inderka [9] in 2019 followed a similar methodology to the 
explained before, detailing the boundaries of the MTs and defining them as 
subdivisions of cycles between idling with a minimum duration of 60 seconds. It also 
dismisses MTs with unrealistic features (velocity, Idle and acceleration). It also 
establishes dependent driving features based on velocity and acceleration in order to 
decrease the number of variables. Finally, it determines a methodology to classify the 
driving behaviour, explaining its influence on specific features highly dependent on 
acceleration. This classification takes place assigning a final score to each MT.  
 
J. Liu and X. Wang, [10] 2016 developed a model to determine the fuel efficiency of 
alternative fuel vehicles in order to ease the vehicle selection by users according to 
their region. They applied the clustering algorithm k-means to the data after employing 
a dimensionality reduction algorithm (PCA) to find the most influential parameters 
involved. The results showed that the clustering adjusts better to a dimensional-
reduced dataset than to specifically selected features, displaying more defined 
boundaries.  
 
In 2019 J. Huertas, L. Quirama, M. Giraldo and J. Díaz conducted a comparative study 
analyzing the different methodologies to assemble regional representative driving 
cycles. Those methods are Micro-Trips, Markov chains and MWD-CP, concluding that 
the most accurate methodology to develop the cycles is the last one. The MWD-CP 
(deterministic approach) is based on the selection of parameters related to the energy 
consumption in each cycle, and consequently, the cycle closest to the average energy 
consumption of the dataset is chosen as representative. It is mentioned that the 
drawback of the MWD-CP methodology is its lack of accuracy in some cases when 
the result’s verification is needed through the employment of any other method. 
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Finally, A. Kabra at Blekinge Institute of Technology, Karlskrona, Sweden (2019), 
conducted an investigation related to clustering algorithms of driving data (from a pre-
existing dataset), comparing the different algorithms and dimensionality reductions 
methods, concluding that the best performance was given by the k-means and the t-
SNE method.  

 
 

 
 
 
CHAPTER 2 

 

DEFINITIONS 

 
 
 
Driving features definition 

 

In order to develop a statistical analysis applied to the driving cycles, it is necessary 
to determine the most representative driving features, defining the variables that can 
help the algorithm to identify the differences between driving conditions. Those 
variables can be determined from a bibliographic study.  
 
Many studies have proposed mean speed, Idle and acceleration as representative 
driving features. In this study, as it was exposed in the methodology, the driving 
features will be collected from different scientific studies [6-9]. After the collection, 
features will be studied in order to select those with more variability and less 
relationship between them. However, the statistical analysis will be performed 
considering the most prominent number of possible features to reach a more detailed 
comparison between the raw data and the final representative cycle.  
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A table with the driving features studied in this thesis is presented as follows: 

Feature Abbreviation Units 

Mean speed Vm km/h 

Mean driving speed V km/h 

1st quartile speed 
 

km/h 

2nd quartile speed 
 

km/h 

3rd quartile speed 
 

km/h 

Maximum speed Vmax km/h 

Specific kinetic energy Ek J/kg 

Mean acceleration Am m/s2 

Average positive acceleration APA m/s2 

Average negative acceleration ANA m/s2 

Relative positive acceleration RPA m/s2 

Relative negative acceleration RNA m/s2 

Maximum acceleration Amax m/s2 

Minimum acceleration Amin m/s2 

Time accelerating Tacc % 

Time decelerating Tdec % 

Time with high acceleration 
 

% 

Time with high deceleration 
 

% 

Idle time Idle % 

Time with a positive grade 
 

% 

Time with a negative grade 
 

% 

Distance 
 

km 

 

Mean speed 
 
Consists of the arithmetic mean calculated for every cycle as shown in equation 1, 
where n is the number of observations (in this case the duration of the driving cycle) 
and v the vehicle speed in the instant i: 

 

∑ 𝑣𝑖   (eq. 1) 
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Mean driving speed 
 
As it is described in the procedure followed for the WLTC construction [8], it is 
important to determine the real driving speed by isolating the instants where the 
vehicle is not moving (idle) as it lowers the mean speed giving unrealistic parameter 
values since the idle time is already being considered as a separate parameter. After 
the identification of the instants where the vehicle is not moving (v=0 km/h), the sum 
of the speed vector will be divided by the length of the vector minus the number of 
instances with idle, as expressed in equation 2: 

 

 ∑   𝑣𝑖     (eq.2) 

 

Speed quartiles 

Theoretically, in order to prove the accuracy given by the speed-related features, 
speed quartiles are calculated. As can be inferred, the first quartile (or 25th percentile) 
separates the values from the lowest 25% of the mean speed, whereas the second 
quartile represents the median of  the data set and, finally, the third quartile represents 
the 75% highest speed. As it is known, the second quartile corresponds to the median 
speed. 
 
 
Maximum speed 
 
This parameter is extracted from the speed vector. It is expected to obtain more than 
one frequency peak when it is evaluated in a histogram since different driving 
conditions are being considered. It is important to highlight its prominent influence on 
the driving profile since it is directly influenced by the road speed limit. 
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Kinetic energy 

As it is described in the bibliography [8], it is relevant to determine a variable 
associated with kinetic energy. It is proposed to calculate the kinetic energy in every 
instance, given by equation 3. 

 

𝑚 ∑ 𝑣     (eq. 3) 

 
 As it was explained before, it is not known the vehicle technical description employed 
in each cycle, so it is not possible to consider the vehicle weight which is needed in 
the previous equation. It is proposed to calculate a variable dependent on only the 
squared speed.    
 

 ∑ 𝑣     (eq. 4) 

 
From this equation, it is noticeable that the proposed feature is strongly linked with the 
vehicle speed, so it may not give relevant information to the proposed study. From this 
variable, it will be possible to determine the variance through the employment of the 
next equation.  
 

𝜎𝐸 = ∑ (𝑣 − 𝐸𝑘)   (eq.5) 

 

 

Mean acceleration 
 
As it was calculated for the driving speed, the acceleration average is determined for 
each cycle. It is expected to obtain near-zero values since acceleration and 
deceleration are considered for this calculation. 
 

∑ 𝑎     (eq.6) 
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Average positive/negative acceleration  
 
The construction of two vectors takes place isolating positive and negative values of 
the main acceleration vector, consequently, each vector average is calculated. This 
parameter is commonly used in the identification of driving behaviours and on-road 
factors. 

𝐴𝑃𝐴 = ∑ 𝑎   (𝑎 > 0)   (eq. 7) 

 

𝐴𝑃𝐴 = ∑ 𝑎   (𝑎 < 0)   (eq. 8) 

 

Relative negative/positive acceleration 
 
It was found in different studies [3] that the RPA and RNA are parameters that describe 
the dynamics of the cycle. Additionally, it is widely employed for the construction of 
representative driving cycles. As defined in [3], the RPA and RNA are the integrals of 
the acceleration multiplied by the velocity and divided by the total cycle distance when 
the vehicle is accelerating and decelerating.  

 

𝑅𝑃𝐴 =
.
∫ 𝑎 . 𝑣  𝑑𝑡 (𝑎 > 0)     (eq. 9) 

 

𝑅𝑁𝐴 =
.
∫ 𝑎 . 𝑣  𝑑𝑡 (𝑎 < 0)   (eq. 10) 

 

 

As it is inferred, the RPA and RNA associate the acceleration with the vehicle speed 
of an instant considering the distance travelled (of the analysed cycle). 
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Time accelerating/decelerating 
 
This feature can be defined as the percentage of time spent increasing and decreasing 
the vehicle velocity. The length of the vectors employed to calculate APA and ANA are 
calculated and divided by the cycle’s total duration.  
 
 
Time with high/low acceleration 
 
This parameter is calculated with the objective of determining the driving behaviour by 
calculating the percentage of time where the acceleration is higher and lower than the 
third quartile of the acceleration and deceleration vector respectively. 
 
 
Idle time percentage  
 
This feature represents the percentage of time where the vehicle’s engine is idling 
(has a velocity of zero with the engine running). This usually occurs when the vehicle 
stops at a red light, waiting while parked or when the traffic conditions force it.  
 
It is important to highlight that this is one of the most determinant parameters when 
constructing a driving cycle since the engine still produces emissions and the driven 
distance does not change. It is also strongly influenced by the road infrastructure, road 
type and traffic conditions. 
 
 
Positive and negative grade 
 
Another parameter provided by the GPS is the vehicle’s grade. The grade is calculated 
by the device calculating the tangent of the difference between the elevation in two 
instances of time divided by the distance travelled in that period. It is highlightable that 
this parameter does not depend on the driving conditions nor driver’s behaviour but 
on the road infrastructure which is strongly linked to the studied region/city. It can be 
noted that this parameter is not considered for the elaboration of the WLTC. 
 
In this study, it is calculated the time when the grade is positive and negative and then 
divided by the total duration of the cycle. Additionally, it is calculated the time when 
the grade is higher and lower than 5%, receiving the name of Large negative/positive 
grade. 
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Statistical analysis 
 
Before performing the clustering algorithm, it is important to build a statistical model in 
order to have an idea of how the different parameters behave and the distribution of 
said variables. The objective of this section is to demonstrate the representability of 
the data collected and the most influential variables. After this analysis, it will be 
possible to infer the ideal cluster results before the algorithm execution. In order to 
evaluate such representativeness, different parameters are plotted in histograms and 
bar charts. 
 
Histograms 
 
The invention of the histogram in the seventeenth century marked the beginning of 
modern statistics. Before the mentioned invention, statistical data came in form of 
large lists that made analysis and data interpretations less efficient and more arduous. 
 
According to [13,14] a histogram is one of the main visual tools employed in descriptive 
statistics, that allows the recognition of outliers, gaps, shape (identifying peaks, 
symmetry and skewness) when quantitative data is analysed. A histogram can also 
provide an estimate of the underlying probability density function. 
 
Finally, it is important to highlight that the skewness is the direction of the longer of the 
two tails of the distribution. It is also said that there is not a formal way of estimating 
the number of bins nor correct bin width, however, it is usually employed, in rough 
calculations, the Sturges’ formula (eq. 11) and Cross-Validation. 
 

𝑁º 𝑏𝑖𝑛𝑠 = 1 + log 𝑛   (eq. 11) 
 
In the previous equation n is the number of observations in the dataset. In MATLAB 
[15] different aspects of the histogram can be changed, by assigning a specific number 
of bins, bar width, edges, and limits. When the number of bins is not specified by the 
user, MATLAB automatically calculates the ideal number of bins to be used for the 
processed data. 
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Figure 2.1: Sample histogram. Source: MathWorks 

 

 

Cumulative distribution functions 
 
The cumulative distribution determines, for each value, the fraction of the data less 
than or equal to the said value. It calculates the probability of selecting a value lower 
than a specific point. This type of distribution will be employed to determine the driving 
behaviour of the cycles. In order to find the correct type of distribution (when the data 
is not normally distributed) is necessary to plot a histogram and perform different 
distribution tests [16].  

 

Figure 2.2: Sample CDF. Source: MathWorks 
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Scatterplots 
 
Scatterplots can be two or three-dimensional data, composed of two or three variables 
that allow the visualization of the correlation between said variables. It also gives an 
insight into the dispersion of said variables. The shape of the scatterplot can describe 
linear correlations, curved relationships, and clusters (the most common shape for this 
study). The scatter plot will be essential to execute the clustering algorithm regarding 
cluster grouping and visualization.  
 
 
Box plots 
 
Box plots allow the identification of the different quartiles, medians and outliers of a 
dataset that can be grouped into different classes. Box Plots can be defined as a 
standardized way of displaying the data based on the five-number summary: The 
sample minimum, first quartile, median (second quartile), third quartile and the sample 
maximum. It is important to highlight that the sample maximum and minimum need not 
be outliers if they are not unusually far from other observations.  
 
In a Box plot, outliers are defined as those points above and below the stated in 
equations 12 and 13 respectively, where IQR is the interquartile range described as 
the third quartile minus the first one [14].  

 

𝑄3 +  . 𝐼𝑄𝑅      (eq. 12) 

𝑄1 −  . 𝐼𝑄𝑅       (eq. 13) 

 

Finally, outliers are displayed as circles or points at the top and bottom of the boxplot. 
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Figure 2.3: Sample box plot. Source: MathWorks 

 

 

Outliers treatment 
 
As it can be inferred, there are different ways of treating outliers found in raw data. 
The simplest and most usual one is the univariate method, which consists of analysing 
each variable separately through the employment of a box plot as it was stated in the 
previous paragraph, following the definition given by equations 12 and 13. Another 
way of treating outliers [17] is through the multivariate method, similar to the first one 
exposed but considering the relationship between at least two variables. It is useful 
when it comes to analysing the impact of different variables in the dataset when the 
data follows several linear or curved relationship. 
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Finally, the increasingly used Minkowski method is proposed, especially applied to 
machine learning processes, it assigns an error based on the standard mean squared 
and does not exclude the outlier, but it preponderates it with a lower weight in the 
dataset, which allows preserving more values in the said dataset.  
 
In many cases [18], all the outliers are not supposed to be removed since the number 
of datapoints decreases and so does the representativeness, however, outliers 
identified as the result of spurious activity should be removed. Many approaches have 
been proposed in the last century, such as replacing missing data (or outliers) with the 
mean of the remaining data, nevertheless, this method will strongly reduce the data 
spread (dispersion) and increase the probability of committing a type-I error (false 
positives).  
 
Other studies propose more sophisticated methods to deal with outliers, such as the 
one explained by M.R. Elliot [19] in 2007, which proposed to replace outliers with 
possible values.  
 
As can be seen, there is not a single solution to the outliers detection and treatment. 
In this study, it is highlightable the assumption that isolated clusters will be composed 
of outliers.  
 
 
Correlations 
 
In this study, correlations are employed to determine the statistical relationship 
between two variables. The variables that show less dependence on each other will 
be selected to reduce the number of dimensions. 
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Microtrips Definition 
 
As it was mentioned in the previous chapter, many authors have defined Microtrips as 
the division of a cycle between Idling [8-12]. As expressed, the cycles can be 
compounded by different driving situations belonging to different driving profiles, for 
this reason, its evaluation must take place separately. Those authors explain that the 
linkage between two driving profiles usually takes place in Idling, due to red lights, stop 
signs and motorway exits. 
 
Despite the same definition being employed by most authors, in [9] a more restrictive 
definition is considered, where it is exposed to the requirement of a minimum MT 
duration of 60 seconds, followed by an outlier exclusion. This derives from a minor 
number of outliers, excluding the possibility of existing MT with non-representative 
driving times. 
 
Alongside the previously mentioned restrictions, a minimum mean driving speed of 5 
km/h was set. Additionally, a minimum period of 10 seconds of driving was required, 
and finally, a minimum distance of 200 m. 
 
Ultimately, as it can be seen, the selection of the restrictions considered for the MT 
construction will influence the average duration of each cluster, especially the 
urban/low speed due to the existence of an inverse correlation between time and 
number of cycles. The procedure followed to identify an appropriate number of clusters 
will be exposed in chapter 3 (methodology).  
 
 

Dimensionality Reduction 
 
As exposed in [12], many methods have been proposed to deal with the crowding 
problem existing in multivariate datasets. Reducing dimensionality is important to 
visualise the results and acquire a better understanding of the machine learning 
algorithms applied to the dataset.  
 
It is important to highlight the fact that machine learning algorithms can operate with 
large amounts of multivariate datasets without requiring the reduction of its 
dimensionality. However, as it was stated in the previous paragraph, the maximum 
recommended number of variables is three due to its ease to represent the algorithm 
results in a three-dimensional plot. 
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Crowding problem 

When the dimensionality of a dataset is being reduced, the distance between the data 
points and any other specific point needs to be preserved, and for this reason, the 
distance between the cited data points will be lessened due to their gathering. Hence, 
the points will get compressed in the lower dimensional space producing crowding. 
The treatment of this problem will depend on the reduction method employed. One of 
the solutions proposed is the t-SNE algorithm designed to deal with the crowding 
problem.  

 

Feature scaling 

It is important to normalize the features before applying any dimensionality reduction 
method, especially before PCA, since it is quite sensitive to the variances of initial 
variables, and for this reason, it could wrongly preponderate the values with higher 
variability.  

An example of the previously exposed are the APA and Driving speed, where a 
common value for the first one is around 0.1 m/s2  and the second one could easily 
fluctuate between 100 and 120 km/h. As it is possible to see, units of measurement 
play a crucial role in the variable variability and, for this reason, a scaling process is 
proposed. 

There are two main ways of scaling features in machine learning: through 
standardization and normalization. The difference between both scaling methods can 
be seen in equations 14 and 15. The results obtained from the first one 
(standardization) will not be restricted to a particular range, where the mean becomes 
zero and the standard deviation 1. On the other hand, the results from the second 
equation (normalization) will be contained in a range between 0 and 1, where its mean 
and standard deviation does not have to follow any rule. 

 

𝜒′ =       (eq.14) 

 

𝜒′′ =      (eq.15) 
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It is said that the data set should be standardized when its shape follows a Gaussian 
distribution and normalized when the distribution is unknown (methodology followed 
by most machine learning algorithms). 
 
In this case, it will be assumed that the distribution is unknown and consequently, a 
variable normalization will be applied. 
 
Principal Component Analysis 
 
Usually known as PCA, is a mathematical methodology applied to multivariate 
datasets to reduce the number of dimensions. It is commonly employed before the 
implementation of a clustering algorithm. According to [20] the purpose of this analysis 
is to transform the multivariate data set into a new set of uncorrelated variables and 
ordered in a way that the first ones retain most of the variation of the original 
variables.   
 
As it was mentioned, PCA does not ignore covariances and correlations, however, it 
prioritizes variances. In the next paragraphs, a brief explanation of the methodology 
followed by PCA is given. 
 
Initially from a high-level point of view, the covariance matrix of the dataset is 
calculated. The objective of the covariance matrix is to demonstrate how much two 
variables are correlated and how this correlation is. When the correlation is positive, it 
is assumed the increment of a variable when the other one is decreasing and vice 
versa.  

 

𝜎(𝑥, 𝑦) = ∑ (𝑥 − 𝑥)(𝑦 − 𝑦)   (eq. 16)  

 

𝐶𝑜𝑟𝑟 =

  𝑉 𝐶 𝐶
   𝐶 𝑉 𝐶
   𝐶 𝐶 𝑉

      (eq. 17) 

 

Consequently, the eigenvectors and eigenvalues of the exposed covariance matrix 
are calculated. The eigenvalues will represent the magnitudes of the eigenvectors 
which will characterize the directions in the newly obtained feature space. As it can be 
inferred, the eigenvalues will quantify the variability of each vector. 
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Finally, the eigenvalues and eigenvectors will help to select the most important initial 
features based on their variability, those features will be given priority. The 
eigenvectors are sorted in descending order based on their respective eigenvalues.  
 
According to [12], the quality and representativeness of the PCA components will be 
assessed through the variance represented by each principal component 
(eigenvector), for this, a Pareto graph is proposed to select several principal 
components that combined represents at least 80% of the total variability [21]. 
 
t-SNE 
  
As it was said, the t-distributed stochastic neighbour embedding is a methodology 
used to reduce the dimensionality of a data set.  This algorithm was introduced by Van 
der Maaten in 2009 [22] improving the known SNE (Stochastic neighbour embedding, 
Hinton and Roweis, 2002) by reducing the tendency to crowd points together, 
optimizing the visualization of the data. Mateen stated that the results obtained by the 
t-SNE algorithm were considerably better than those obtained with other 
dimensionality reduction algorithms for most distributions. 
 
One of the main differences between t-SNE (2009) and its predecessor SNE (2002), 
is the employment of a student-t distribution rather than a gaussian distribution to 
compute the similarity of two points in the low dimensional space. A brief description 
of the process followed by this algorithm is explained in the following paragraphs.  
 
According to [22], the t-SNE starts by converting the high-dimensional euclidean 
distances into conditional probabilities which are based on the probability that a point 
xi would choose a point xj as its closest neighbour (equation 18) if neighbours were 
selected under a Gaussian probability distribution, where is the variance of the data. 
 
After performing the previous step, the data points should be spread randomly on a 
new low-dimensional space, where the goal of this algorithm is to find a similar 
probability distribution in said space. In this case, the student-t distribution is employed 
(equation 19) to reduce the crowding problem that exists if a Gaussian distribution is 
followed. The t-SNE aims to find a low-dimensional representation of the data that 
minimizes the discrepancy between pij and qij. 
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One of the ways to estimate this discrepancy is through the Kullback-Leibler 
divergence (also known as relative entropy), which is a measure of how one probability 
distribution is different from the other one (equation 20). As it can be inferred, KLD 
needs to be as small as possible (reducing the disparity between p and q). 

𝑃 =
 ( )

∑    ( ‖ ‖ / )
     (eq. 18) 

 

𝑞 =
( )

∑   ( ‖ ‖ )
    (eq. 19) 

 

𝐶 = 𝐾𝐿(𝑃‖𝑄) = ∑ ∑ 𝑃 log     (eq. 20) 

Additionally, it is known that the algorithm requires more entry variables and 
supplementary features alongside the dataset. These features are called 
hyperparameters since they have a significant influence on the t-SNE result. One of 
the main hyperparameters is perplexity.   
 
According to Van der Maaten, perplexity (equation 21) is a value specified by the user 
that depends on the Shannon entropy of the dataset and ideally must be located within 
the range 5-50, a value that will be discussed consequently. 
  

𝑃𝑒𝑟𝑝(𝑃𝑖) = 2 ( )    (eq. 21) 

 
Perplexity can be defined as a measure of the number of effective neighbours of a 
data point; hence, a larger number of data points will require a higher perplexity. Y. 
Cao (2017) [23], proposed a practical approach to determine the optimal perplexity 
according to the data distribution and several data points. Said approach suggests 
calculating a score that needs to be as slow as possible and will depend on the number 
of data points and the KL resulting from the t-SNE iteration. Equation 22 describes the 
score introduced by Cao, where Perp is the perplexity used, and n is the number of 
data points evaluated. Finally, it is considered important to highlight the fact that the 
default perplexity employed by most data analysis functions is 30, which is not always 
correct. 



DEVELOPMENT OF REPRESENTATIVE DRIVING CYCLES OF THE TENERIFE METROPOLITAN AREA 
THROUGH CLUSTERING METHODS 

 

30 

 

In order to illustrate the above said, if the perplexity used for a dataset is insufficient 
(too low), the algorithm would not be able to separate the clusters found in the data 
but would instead create homogeneously distributed small groups, assigning more 
importance to local neighbourhoods than global groups. On the other hand, if the 
perplexity is excessive, the clusters would not be separated from each other, and 
clustering algorithms would not be able to differentiate them correctly.  
 
 

𝑆(𝑝𝑒𝑟𝑝) = 2𝐾𝐿(𝑃‖𝑄) + log(𝑛)    (eq. 22) 

 
Another important hyperparameter that needs to be considered is the number of 
iterations [15] that takes place when running the algorithm, where the higher is the 
number of iterations, the better the results obtained. However, this will require more 
running time, producing a delay and consuming more resources. 
 
Ultimately, the default method to measure the distance between two data points can 
be changed, however, the preferred one is the Euclidean distance. Also, at the 
beginning of the process, it is possible to exaggerate the plotting distance between 
points (in the first 5 iterations) to recreate more accurate clusters.  
 
 

Clustering Algorithms 
 
Machine learning is usually described as the study of computer algorithms that 
improve automatically through models built from large amounts of data, being part of 
what is known as artificial intelligence. This field of study can be divided into two main 
streams: supervised and unsupervised learning. 
 
Supervised learning takes place through the study of data where the input and output 
are known (training data) and are employed to develop predictive models (i.e., 
regressions). On the other hand, unsupervised learning employs datasets where only 
the input is known and aims to find groups (clusters) in data, to develop structures.  
 
Clustering can be defined as the machine learning (unsupervised learning) task of 
grouping data points according to specific variables. Different clustering techniques 
can be used depending on the type of data and data distribution. Most of them 
calculate the distance between data points to find the closest ones. Clustering is the 
main task for exploratory data analysis that brings a visual comprehension of how the 
data is being grouped. Two main methods are exposed: K-means and Hierarchical 
clustering since those are commonly used for this type of data. 
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Figure 2.4: Machine learning methods. Source: MathWorks 

 

k-Means 
 
K-means is a clustering method that divides the data set into k clusters (specified by 
the user) based on the distance between each data point and a randomly selected 
data point (cluster centre). 
 
Before the employment of this or any other clustering algorithm, the user must identify 
the most appropriate number of clusters, which will be explained later in this chapter 
(clustering coefficients). The ideal number of clusters will be an entry parameter of the 
clustering function. 
 
After the k number of clusters is specified, the algorithm randomly selects k data points 
from the data set to start the clustering iteration (X1, X2,.. Xk), (figure 2.5 b).  
 
Consequently, the euclidean distances between each point and the randomly selected 
points are calculated. The closest Xn to each data point will be selected and 
afterwards, said data point will be assigned to the Xn group (figure 2.5 c). After 
finishing the first assignment, it will be found in the space k groups. The next step is 
to calculate the centroid of the cluster (figure 2.5 d) and identify the closest data point 
to the said centroid. This data point would be the new Xn and the process would be 
repeated until there are no changes in the position of the centroid.  
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Figure 2.5: Schematic representation of K-means algorithm. Source: Y. Chen, Y Lai, “Universal 
structural estimator and dynamics approximation for complex networks”, 2016. 

 

 

Hierarchical clustering 

Like the K-means, hierarchical clustering is a methodology followed to divide the 
dataset into different groups (clusters), but this time based on a hierarchy among data 
points. The Euclidean distance between each data point is calculated and, 
consequently, it is linked to the closest point. This process will be repeated until the 
desired number of clusters is reached. 

There are two main ways of grouping data following hierarchical clustering methods: 
agglomerative hierarchical and divisive hierarchical [24]. The divisive method is 
selected for this study, where each observation starts with its cluster and pairs of 
clusters are merged when the hierarchy moves forward. The distance between two 
subsets is called linkage distance. 
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Figure 2.6: Graphic representation of hierarchical dendrogram. Source: MathWorks 

 

Performance Metrics 

In this study, cluster coefficients are employed to evaluate the quality of the cluster, 
find the ideal number of clusters and select the clustering algorithm that best fits the 
data set. The implemented coefficients will be the Silhouette coefficient, Calinski-
Harabasz criterion and Davies-Bouldin Index. Those coefficients are usually employed 
to measure the cohesion of the data points. 

 

Silhouette Coefficient 

The silhouette coefficient represents graphically how well the data has been classified 
and how similar are the points of a cluster compared to other clusters. As it is explained 
in [25] the objective of calculating the clusters silhouette is to measure the 
dissimilarities between the components of a cluster and other clusters. Initially, a point 
i in cluster A is selected. As seen in figure 2.7, it is possible to calculate the Euclidean 
distances between the data points that belong to the cluster. Consequently, after 
calculating the mean distance between those data points, the average distance 
between the point i and points from the cluster (B) is computed (since it is the closest 
cluster).  
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Figure 2.7: Illustration of the elements involved in different clusters. Source: [25] 

 

The result of the above explained is stated in equation 23, where the distances 
between a(i) and b(i) are compared. It is possible to see that -1S(i)1. 

 

𝑆(𝑖) =
( ) ( )

{ ( ), ( )}
     (eq. 23) 

 

After performing the evaluation of the dataset, it is possible to organize the data points 
by silhouette coefficient and, consequently, plot silhouettes for each cluster. The aim 
is to find the most similar silhouettes among clusters with the highest coefficient, 
indicating a high similarity among the points of a cluster, measured through the 
Euclidean distance.  

 

Calinski-Harabasz 

Also called the variance ratio criterion (VRC), was introduced in 1974 by Calinski 
Harabasz with the aim of finding the most accurate number of clusters for a dataset.  

 

The Calinski Harabasz Index is given by equation 24 where k is the number of clusters, 
N is the number of data points, SSw is the overall variance of a cluster (within-cluster 
variance) and SSDB is the overall variance between clusters (between cluster 
variance) [26]. 

𝑉𝑅𝐶 =     (eq. 24) 
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SSB measures the variance of the centroids of the clusters compared to the dataset 
centroid, whereas SSW will measure the variance of the data points that belong to the 
same cluster.  

When VRC is applied, the objective is to obtain the highest index, indicating the 
number of clusters is accurate. From equation 24, it is observed that a lower variance 
of the data points in a cluster, in comparison to the variance of the dataset, will result 
in a lower index. 

 

𝑆𝑆 = ∑ ∑ 𝑂 − 𝑂 (𝑂 − 𝑂 ) (eq. 25) 

 

𝑆𝑆 = ∑ 𝑛  𝑂 − 𝑂 (𝑂 − 𝑂 ) (eq. 26) 

 

In order to determine the variance of a dataset [26], SSw and SSB are calculated as 
shown in equation 25 and 26 respectively, where Ōj denotes the n-dimensional vector 
of means within the jth cluster (cluster centroid), and Ō denotes the n-dimensional 
vector of overall means (dataset centroid). K-1 is the degree of freedom of the cluster 
variations. According to said reference, a more separated dataset will tend to have a 
lower SSw and a large value of SSB. The ratio (n-k)/(k-1) prevents the VRC from 
increasing with the number of clusters. 

 

Davies–Bouldin index 

The Davies- Bouldin index (DBI) is a metric that seeks to evaluate the quality of the 
clusters; Was developed by David Davies in 1979.  

A similarity measure Rij between clusters Ci and Cj is established based on the 
dispersion of the cluster Ci and the similarity between the two clusters named dij. [27] 
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𝐷𝐵 = ∑ 𝑅  (eq.27) 

 

𝑅 =  (eq. 28) 

 

The DBI is defined [28] in equations 27 and 28, where Ri is the maximum of Rij and sj 
and si are the dispersion of clusters i and j. Mij is defined as the distance between 
vectors that follow several are chosen as characteristic of clusters i and j.  

As it can be seen from the previous expression, a higher distance Mij and a lower 
dispersion (Si+Sj) will result in a lower value of R, consequently, it is possible to state 
that according to the DBI definition, the most accurate number of clusters is given by 
the lowest DBI. 

 

Driving Behaviour 

In this study, the driver's aggressiveness will play an important role when it comes to 
developing representative driving cycles since it has an important influence on the 
changes of speed, acceleration and maximum speed reached during the cycle. Many 
studies have presented methodologies to determine the driving behaviour of a cycle 
based on data collected from the main cycle. 

As it was demonstrated in [29] the driving behaviour and aggressiveness are strongly 
related to fuel consumption and, hence, to the emissions produced by an ICE. An 
aggressive driving style will always result in a higher CO2 emission, whereas a mild 
driving style will lead to higher energy efficiency. According to said reference, adopting 
an efficient driving style would have an impact of 15-20% on fuel consumption. 

For the previous reason, despite it is not usually considered in the precursory studies, 
the driving behaviour will be considered in this thesis, alongside the fact that the 
purpose of this investigation framework is to determine the emissions produced in the 
metropolitan area of Tenerife (research purposes), introducing the possibility of 
studying the percentage of the drivers (in the said area) considered aggressive, 
average and mild improving the model results. 
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As can be inferred, measuring the behaviour of a driver based on the driving 
parameters previously mentioned is not easy. Due to this, in [30] it is demonstrated 
the existence of a high correlation between the driving style, the acceleration and 
velocity of a cycle. Liessner proposed the construction of a parameter dependent on 
the positive acceleration reached and the third quartile of the velocity during the driving 
cycle. As it can be inferred, more aggressive drivers will tend to reach higher 
accelerations and speeds. 

Förster in [31] develops a system used to classify driving behaviours through the 
designation of variables that depend on acceleration and velocity. Said variables are 
arranged in cumulative distributions, defining three ranges for each distribution: 0 to 
25th quantile, 25th to 75th quantile, and over 75th quantile. After said assignment, it 
is possible to rearrange the data points into a score, calculated from the average 
position in the previous cumulative distributions. As shown in figure 2.8, the cycles can 
be categorized as mild, average, and aggressive according to their position in the 
calculated score. 

 

 

Figure 2.8: Driving behaviour according to variables in CDF. Source: [31] 
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Due to the previously stated, in this thesis, the driving behaviour will be studied through 
the analysis of behaviour-related features: APA, ANA, RPA and RNA. This analysis 
will begin with the calculation of the data point position in a CDF of the mentioned 
parameters and, consequently, arranged in an average score CDF according to their 
average position in the previous diagrams (behaviour-related features). Those cycles 
above the 75th percentile will be considered aggressive, whereas those under the 25th 
will be taken as mild. 

 

 

 

CHAPTER 3 

 

METHODOLOGY 

This chapter aims to illustrate the methodology and process followed to develop the 
representative driving cycles, achieving the objectives proposed earlier in this thesis. 
Consequently, a brief explanation of the process is given. 

As can be seen in the diagram exposed in figure 3.1 the totality of the data employed 
to develop the driving cycles was extracted from real driving conditions, geographically 
located in the metropolitan area of Tenerife: municipalities of La Laguna, Santa Cruz, 
El Rosario, and Tegueste. 

The data extraction took place through the employment of a mobile application as GPS 
(GPS SpeedView, available in Google Play), being able to estimate the vehicle 
velocity, acceleration, distance, grade and geographical position each second (1 Hz). 
The data were taken by at least 10 different subjects after receiving instructions 
regarding its usage. 

After collecting the data, it is necessary to apply a filter in order to reduce noise and 
delete outliers due to the application inaccuracy. The filter Savitzky-Golay was applied 
to perform this task.  
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It is important to highlight that up to this point, the first two steps of the first stage were 
performed and controlled by the Industrial Engineering department (ULL) in the 
investigation framework. 

After receiving the clean driving cycles, two different paths are taken: statistical 
analysis of clean driving cycles and their division into micro trips (explained in detail 
later). As mentioned in the previous chapter, the driving features are defined to provide 
more statistically accurate results, facilitating the comparison of more 

metrics between cycles. 

The importance of the statistical analysis in this study can be described in two main 
points: 

 Evaluating the representativeness of the data collected, making possible the 
designation of the scope and applicability of this study. 

 Describing the data distribution, providing a brief insight of how the data points 
are issued and how the different parameters are correlated.  

After this analysis, it will be possible to infer how the representative driving cycles 
should look like.   

                    

 

Figure 3.1: Diagram of the first stage of the study. Source: Own elaboration 
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The second stage of this thesis starts with the division of the driving cycles into micro 
trips (MT) as defined in the previous chapter. As can be inferred, the number of data 
points will increase, providing more accurate results [8]. As it was stated before, a 
driving cycle can be composed of different driving conditions (corresponding to 
different driving profiles), from here, it is crucial to separate said profiles. 

After defining the MT and describing the driving features, the data needs to be 
standardized before performing any dimensionality reduction algorithm.  

One of the questions that need to be addressed is why the dimensionality of the 
dataset needs to be reduced. As exposed in [20], it is possible to lose information if a 
group of representative variables is selected. Additionally, it needs to be considered 
the possibility of committing errors when choosing said variables. On the other hand, 
if a clustering algorithm is applied to all the variables, it will be necessary to analyse 
the behaviour of groups of variables separately and achieve a general understanding 
of how said variables behave in a multidimensional space. 

As shown in figure 3.2, in order to compare the results, two dimensionality reduction 
methods will be used: PCA and t-SNE. 

After performing the dimensionality reduction, two clustering algorithms are used: k-
Means and Hierarchical clustering, attending the exposed in [12], where both methods 
were compared. 

To perform said comparison, the quality evaluation of the clusters takes place through 
the employment of performance metrics. For this study, as argued in the previously 
referenced thesis, the Silhouette coefficient, Calinski-Harabasz and Davies–Bouldin 
index are used. 

Finally, after selecting the most appropriate dimensionality reduction/clustering 
methodology combination, it is necessary to separate the clusters according to their 
driving behaviour (through the average score explained before). Consequently, the 
final number of groups will depend on two factors: the driving behaviour category and 
the driving profile. The expected final result is obtained from the merge of the different 
driving profiles within the same driving behaviour, resulting in three representative 
driving cycles. 
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Figure 3.2: Diagram of the second stage of the study. Source: Own elaboration 
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CHAPTER 4 

 

RESULTS 

Statistical Analysis 

The results of the statistical analysis are presented in this chapter. As explained 
before, in the methodology, it is possible to divide the statistical analysis into two main 
sections: evaluating the representativeness of the dataset intending to address the 
possible influences from external factors and, representing the distributions of the 
driving features previously exposed. Initially, to evaluate the representativeness of the 
data set it will be studied the location characteristics, collection dates-hours and 
weather conditions. 

Geographical Characteristics 

As it is possible to see in figure 4.1, the cycles are plotted on a geographical map, 
where it can be concluded that most of the cycles belong to the metropolitan area, 
previously defined as municipalities of La Laguna, Santa Cruz, El Rosario and 
Tegueste. 

 

 

Figure 4.1: routes covered by the driving cycles 
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However, some cycles took place outside the metropolitan area, such as those 
beginning or finishing in the municipalities of Candelaria, Arafo and Tacoronte. It will 
be important to address those cycles carefully since they may modify the final results 
by increasing the driving distances and mean driving speed. 

In order to illustrate how the data is acquired, figure 4.2 shows an area limited by 
specific coordinates that belong to a highway and a roundabout. Each data point is 
represented by a single point in a scatter plot, where the geographical position is also 
taken into consideration. Each point collected by the application (1 Hz) contains 
information about velocity, grade, acceleration, time, distance, and latitude/longitude, 
hence, the importance of treating the data through machine learning algorithms 
instead of basic spreadsheets. 

 

 

Figure 4.2: Collected data points in motorway 

 

In order to provide a general overview about the driving time and geographical 
location, the heatmap of figure 4.3 is shown, where the entire metropolitan area can 
be seen. The coordinates are divided into a rectangular matrix, where the yellow points 
represent a higher driving time. As can be inferred, this does not mean that the number 
of cycles in the area is higher, but the time spent is. This can be related to different 
factors such as a lower driving speed due to traffic conditions and/or roads 
infrastructure.  
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Figure 4.3: Driving time and geographical location of cycles. 

 

Attending the starting/ending locations, the bar graph shown in figure 4.4 indicates the 
predominance of Guajara, La Laguna, Tabaiba and Salud-La Salle as starting/ending 
points. This plot was constructed by comparing the starting coordinates provided by 
the application and the closest designated point from a 50 location (cities/towns) list.  

The reader could easily notice that many starting and ending locations do not belong 
to the municipalities of La Laguna, Santa Cruz, El Rosario and Tegueste, however, 
due to many factors, such as their proximity to said municipalities and their road 
infrastructure (type of road, changes of altitude, etc.), they could be also included in 
this analysis as long as they do not produce substantial changes in the distribution. 
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Figure 4.4: Starting and ending locations of driving cycles 

 

 

Figure 4.5: Intracity cycles 
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An intracity cycle is defined as a cycle that has the same starting and ending point. 
From the 490 analysed cycles, only approximately 30 are intracity cycles, 
characterized by short distances and shorter time durations (figure 4.5). 

To illustrate the representativeness of the different locations covered, the next 
comparative heatmap with the 20 most frequent locations is shown. As can be seen, 
most of the cycles have a start/end location in Laguna Centro/Guajara which could 
imply a non-uniform distribution of the cycles recorded. Additionally, it can be noticed 
a lack of cycles with start/end location in Santa Cruz. A resume table (with data 
extracted from the heatmap) is shown to ease the understanding of the relationship 
between the different locations. 

 

Figure 4.6: Start/end location heatmap. 

 

 Laguna Santa Cruz Cen Santa Cruz Sth 

Laguna 52% 24% 24% 

Santa Cruz Cen 80% 3% 17% 

Santa Cruz Sth 74% 16% 10% 

Table 4.1: Start/end location. Data set resume table (horizontal) 
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In order to understand the level of representativeness of the locations involved, the 
information presented needs to be compared with a mobility study of Tenerife. Hence, 
table 4.2 exposes the percentage of trips with starting and ending locations in different 
zones of the Tenerife metropolitan area according to a study conducted by the Council 
of Tenerife.  

 

 Laguna Santa Cruz Cen Santa Cruz Sth Other 

Laguna 57.4% 24.2% 9.7% 9% 

Santa Cruz Cen 24.0% 50.4% 13.3% 13% 

Santa Cruz Sth 31.0% 32.0% 24.0% 13% 

Table 4.2: Percentage of trips (horizontal) in different zones of Tenerife. Source: Cabildo de Tenerife 
[32]. 

 

If the information presented in table 4.1 and 4.2 are compared, it can be seen that the 
ending location of the cycles that started in La Laguna are correctly distributed, where 
about half of the cycles stayed in La Laguna, and the other half was equally distributed 
to Santa Cruz centre and Santa Cruz South. On the other hand, when it comes to 
Santa Cruz Centre, there is visible a clear difference in the distribution, where most 
cycles (74%) had La Laguna as destiny point whereas the trips within Santa Cruz only 
represented 3% of the data set. As can be deduced, the mentioned lack of 
representation may compromise the final cycles, specifically the urban, where more 
information would be required. 

Residence zone Population Location Vehicles per 1000 people 

SC Centro - Anaga 162.263 Santa Cruz de Tenerife 537 

SC Sur - El Rosario 57.240 
El Rosario 

612 
Santa Cruz de Tenerife 

Laguna Centro 108.223 
San Cristóbal de La Laguna 

535 
Tegueste 

Laguna Norte - Tegueste 37.276 San Cristóbal de La Laguna 595 

Tab 4.3: Population and number of vehicles per 1000 people in different zones of Tenerife. Source: 
Cabildo de Tenerife [32]. 



DEVELOPMENT OF REPRESENTATIVE DRIVING CYCLES OF THE TENERIFE METROPOLITAN AREA 
THROUGH CLUSTERING METHODS 

 

48 

 

Towards the evaluation of the data representativeness, it needs to be considered, 
alongside the percentage of trips previously exposed, the population and the number 
of vehicles in each zone. It is shown a higher population in SC Centro and Laguna 
Centro (doubling the other zones) with an almost constant number of vehicles. 
Consequently, it can be assumed that the highest representativeness is reached when 
the starting/ending location takes place in one of the mentioned zones.   

Temporal Characteristics 

As may be understood, temporal characteristics play an important role in data 
collection (especially by producing traffic changes). For example, collecting data in 
peak hours, holidays or when specific incidents happened on the road could produce 
a variation in the driving features. To study this impact, the following study is 
performed.  

In figure 4.7 a histogram of the cycles collection dates is presented. It can be seen 
that the data collection took place in a relatively long period of time, on different days. 
This helps to decrease the impact of specific road situations, weather conditions and 
holidays. The last two will be studied later more deeply. However, it is remarkable the 
predominance of December as the most frequent month which could influence the 
features, especially due to the number of holidays in this month.  

 

Figure 4.7: Cycles collected per day 

In the next bar graph, it can be seen that the number of cycles measured on weekends 
is lower than those collected on weekdays. On the other hand, the frequency of the 
number of cycles regarding the weekdays, is uniform, without any relatively 
predominant day. 
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Figure 4.8: Cycles per weekday 

To emphasize the impact of weekends, figure 4.9 shows a heatmap comparing the 
traffic congestion by weekday in Santa Cruz de Tenerife in 2019 [33]. It can be seen 
that the day with more traffic congestion was Friday, whereas weekends experienced 
a lower congestion level. However, figure 4.8 shows that only 18% of the cycles were 
recorded on weekends (Saturdays and Sundays), more than 10 points under an 
equally distributed data collection (assuming every day contributed a 14.3% to the 
weekly data collection). It can be said that congestion is not necessarily related to the 
number of cycles but with their distribution within a specific day, affecting driving 
features. 

 

Figure 4.9: Weekly traffic congestion by the time of the day. Source: [33] 
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Regarding the driving hours, it is possible to highlight three peak hours:  between 7:00 
and 8:00, at 14:00 and finally, at 19:00-20:00. This could be explained by the working 
/ school shifts, where the school period takes place between 9 and 14:00 and the 
working period usually finishes at 19:00. It is highlightable that the last peak hour 
(19:00) has a lower influence on the traffic conditions. 

 

 

Figure 4.10: Starting and ending hours. Comparison with Tenerife Council study. [32] 
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To corroborate this, in figure 4.10 is also reflected the distribution of the peak hour in 
Tenerife, according to a study performed by the Tenerife Council [32], being similar to 
the one calculated through the driving cycles: higher traffic flow at 8:00 and 14:00. 

Finally, after the previously mentioned, it can be said that most of the 
representativeness of the data set may be compromised due to a non-uniform data 
collection regarding the days of the week. 

 

Weather Conditions 

To evaluate the impact of the weather conditions on the traffic, a group of days is 
selected (from the weather database AccuWeather) and categorized as rainy days 
within the period exposed in figure 4.7. Those days are employed to compare some 
features distributions that could be affected by the rain.  

 

 

Figure 4.11: Average Idle time (%) and weather conditions 
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As shown in figure 4.11, in comparison to regular days, the distribution of the idle time 
(%) during rainy days, in La Laguna, is slightly lower, where it is not possible to get to  
a clear conclusion due to such a small difference. However, when it comes to RPA, it 
is possible to highlight lower values on rainy days in the distribution exposed in figure 
4.12. This is probably due to cautious drivers trying to generate less aggressive 
accelerations in wet road conditions.  

 

 

 

Figure 4.12: Average RPA (m/s2) and weather conditions 
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Figure 4.13: Average Driving Speed (km/h) and weather conditions 

 

Finally, as shown in figure 4.13, the average driving speed histogram shows a less 
uniform distribution on rainy days, reaching the first peak at 28 km/h and a smaller 
second one at 52 km/h.  

After exposing these histograms, it is possible to argue that the weather conditions do 
not play a significant role in the driving environment in La Laguna, a conclusion that 
will be extrapolated to other locations in the metropolitan area for this study. However, 
it would be necessary to conduct a deeper analysis, with more observation points and 
locations to achieve a general conclusion of the impact of weather conditions on the 
driving conditions and traffic in Tenerife. 

 

Time and driving distance 

When it comes to driving distances, it is shown (figure 4.14 - 4.15) that the average 
distance is around 8.84 km, with the highest frequency in the range of 3 - 6 km. As it 
is displayed in the cumulative diagram function, about 80% of the cycles travelled a 
distance under 10 km. It is highlightable the existence of unusually long cycles (>20 
km) that, following the definition given in the second chapter, these cycles may be 
addressed as outliers.   
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Figure 4.14: Total driving distance (km) 

 

It is shown the presence of two main clusters, since, regarding frequency, the data is 
grouped forming two peaks: 3-6 km and 15-18 km, this could be due to the existence 
of at least two different driving profiles derived from different driving environments. 

 

Figure 4.15: Total driving distance CDF (km) 
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After previously exposed, it is arguable that the driven distance of a representative 
driving cycle shall be found in a range between 5 km and 15 km. 

In order to establish a relationship between the starting/ending locations and the 
distances travelled, the next heatmap is presented (figure 4.16). Seven locations with 
the highest frequency are selected to measure the driving distance between them. The 
most frequent locations (figure 4.5) were San Cristóbal de La Laguna, Guajara and 
Tabaiba. It can be seen that those cycles associated with Tabaiba have a higher 
driving distance than the rest of the locations, demonstrating that the said cycles may 
be treated as outliers. Hence, regarding driving distances, the most representative 
locations are La Laguna-Guajara, La Laguna-Las Chumberas, La Laguna-El 
Sobradillo, Finca España- Salud La Salle and El Sobradillo-Finca España. 

 

 

Figure 4.16: Average driving distances (km) between locations. Source: Google Maps 

 

It is important to mention that the heatmap only shows an approximate distance that 
could vary depending on the direction (designation of starting and ending points) and 
route taken, thus, it should not be used as an exact reference.  

Regarding the cycle duration measured in seconds, it is displayed, in the following 
histogram, that cycles with a duration of about 500 seconds (8.3 minutes) have the 
highest frequency (about 25% of recorded cycles). As it can be inferred, the 
representative driving cycle needs to be close to the said measure.  
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Figure 4.17: Cycles duration (s) 

 

Driving Features 

As it was explained in chapter 2, the driving features are defined as the variables that 
will play a decisive role through the clustering process, allowing the characterization 
of the groups. Consequently, studying the attributes of the data set features will help 
to address the final cycle analysis. S 

Regarding some of the driving features mentioned in the first chapter of this thesis, it 
is possible to demonstrate the increment of the average speed once the idle time is 
removed from the speed vector (from 36.01 to 40.75 km/h). In figure, 4.18 such 
increment in the distribution is displayed. The importance of calculating the driving 
speed without considering the instants where the vehicle is not moving (idling) relies 
on the influence of idle time on this variable. In other words, the average vehicle speed 
would rest on the percentage of time idling, influencing the independence of the 
variables. 
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Figure 4.18: Mean speed and Mean driving speed (km/h) 

 

As can be seen in figure 4.18, the mean driving speed histogram indicates the 
presence of at least two groups, since the shape of the distribution is separated into 
two main peaks. The first one faces a higher frequency at 31-35 km/h whereas the 
second one, with a smaller dispersion, takes place at 50-55 km/h. It is important to 
highlight that the separation of said groups is more notorious once the idle time is 
removed from the speed vector.  

At a first glance, the two main groups could be described as high speed (motorway) 
and low speed (urban) cycles. However, as explained before, there exist cycles with 
mixed driving profiles that could affect the clustering.  

When it comes to the maximum speed reached in each cycle, contrary to the displayed 
in the mean driving speed histogram, there is a distribution that follows a chi-square 
shape with only one peak at the range of 100-110 km/h. This also could be explained 
by the previous argument, where it was stated that one single driving cycle may be 
composed of different environments, leading to only representing the maximum speed 
reached in motorways. Finally, the cycles with a maximum speed under 10 km/h might 
be treated as outliers.  
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Figure 4.19: Maximum driving speed (km/h) 

Regarding the percentage of time idling during the cycles, the histogram presented in 
figure 4.20 follows a Weibull distribution, reaching a peak at 3-9%. Once again, the 
distribution is uniform, showing that the cycle might be a compound of different driving 
profiles, losing representativeness. The mean percentage of time idling is 12.8%. 

 

Figure 4.20: Percentage of time idling 
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Finally, attending acceleration-related features, the distribution found for APA, ANA, 
RPA and RNA is uniform, without demonstrating the presence of different groups in 
the histograms. 

 

 

Figure 4.21: APA and ANA (m/s2) 

 

 

Figure 4.22: RPA and RNA (m/s2) 

 

In relation to acceleration features, it is expected to obtain the highest APA/ANA in 
urban (low-speed cycles), where the frequency is highest, whereas in motorways it is 
the lowest since the variations of speed take place less abruptly, resulting in a more 
uniform driving speed.  

On the other hand, RPA and RNA associate the acceleration and driving speed, thus, 
the highest values will be obtained on extra-urban/rural roads (medium 
speed/acceleration), and not on urban (high acceleration and low speed) nor 
motorways (low acceleration and high speed) cycles. 
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Microtrips Division 

 

After performing the MTs division, it is expected a less uniform distribution in most 
features, since each MT will fully belong to a specific driving condition, unlike the 
complete cycles, which can be composed by different conditions.  

The maximum speed is selected as an example to illustrate the idea. Suppose an 
entire driving cycle, exposed to different driving situations, where several types of 
roads are taken. The maximum driving speed reached will always belong to 
motorways and principal avenues, underestimating the maximum speed reached in 
the minor roads and urban sections of the cycle, turning the mentioned variable into a 
non-useful feature. This is displayed in figure 4.23.e (after the division), where can be 
highlighted the separation of two main groups after the division in comparison to 4.23.b 
(before the division). 

This change is also remarkable when it comes to the mean driving speed and distance. 
Regarding the latter, as expected, it can be seen an increment in the frequency of 
short cycles (under 2 km) since MTs are considered the driving period between idle. 
Finally, despite the mentioned, there still are MTs with a driving distance over 20 km 
that may be identified as outliers. 
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                       BEFORE DIVISION           AFTER DIVISION 

 

a      d 

b        e 

c      f 

Figure 4.23:  a) Average driving speed before division (km/h) b) Maximum speed before division 
(km/h) c) Distance before division (km) d) Average driving speed after division (km/h) e) Maximum 

speed after division (km/h) f) Distance after division (km) 
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In order to address the outliers previously mentioned, it is important to understand 
where they come from. It can be assumed that, since the outliers are found in the 
distance, it is possible to also find MTs unusually long.  

 

  

Figure 4.24: MTs duration with outliers (s) 

 

For this case, it will be contemplated the definition of outlier given in chapter 4: Median 
+ 3xMAD (mean absolute deviation). For this case, the median duration is 293 
seconds, and the MAD is 220.90. Hence, any MT with a duration over 956 seconds 
will be considered an outlier and will be removed from the MTs set. 

After the outlier removal, it is obtained a more uniform distribution, with the highest 
frequency between 1.67 and 3.33 minutes of MT duration. 
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Figure 4.25: MTs duration after outlier removal 

As mentioned, the histogram of the duration also changed, supporting the idea of the 
relationship between unusually long cycles and long distances. 

 

Figure 4.26: Distance after MTs division 

It is important to identify the characteristics of the outliers removed, since their 
elimination may compromise the data set representativeness. Hence, the features of 
the outliers removed will be studied.  
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Initially, it can be thought that said outliers belong to long highway cycles, 
characterized by large distances, long periods of driving time, high velocity, and 
smaller acceleration. To support this idea and evaluate the impact of the removal of 
the outliers, figure 4.28 represents the data before and after the removal. 

 

        

Figure 4.27: Features comparison before and after outliers treatment. 

 

As is illustrated in the previous boxplots, it is noted a decline in maximum speed and 
mean driving speed. In order to exemplify the impact of the removal of outliers from 
the data set, the next table is presented. It shows the median of five features before 
and after the outlier removal while highlighting the median of the outliers.   

It can be seen an important reduction in the median MT distance (>17%) since the 
median distance of the outliers removed was high (16.05 km) in comparison to the 
data set (2 km).  

On the other hand, other features also got altered (i.e., Max speed and mean driving 
speed), which could mean that removing those outliers could affect the 
representativeness of the final driving cycle. It is important to recognize that the driving 
features of the mentioned MTs (outliers) besides distance are within the expected 
range (no unusual values). 
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Median Mean 

driving speed (km /h) 

Median Max 

speed (km /h) 

Median 

APA (m/s2) 

Median 

RPA (m/s2) 

Median 

distance (km) 

Before 29.91 56.88 0.405 0.195 2.35 

Outliers 53.19 108.34 0.324 0.157 16.05 

After 27.60 52.95 0.415 0.198 2.00 

Change -8.37% -7.42% 2.41% 1.72% -17.50% 

 

Table 4.4: Impact of the outlier removal on the data set. Source: own elaboration 

 

As a consequence of the foregoing, the MTs categorized as outliers were not removed 
from the data set to ensure that the sample representativeness was not affected. 
However, the aforementioned MTs were not included in the distance-related 
calculations since it is an independent variable that does not directly affect other 
features. Nevertheless, it was observed that these outliers belonged to the motorway 
profile due to their low APA and RPA and high maximum speed and distance. 
Therefore, these MTs were included in the clustering analysis, despite the possibility 
of influencing the cluster compactness. 

 

Dimensionality Reduction 

As it was mentioned in the second chapter of this study, due to the number of 
variables, to avoid losing information through the selection of specific features, it will 
be necessary to perform a dimensionality reduction methodology. The most common 
algorithms for this task are t-SNE and PCA. Consequently, both algorithms will be 
studied to select the one that best fits the data set.  
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Feature Scaling 
 
In chapter 2 it was explained the importance of the feature scaling before performing 
any dimensionality reduction. In figure 4.28 a boxplot intends to exemplify the effect of 
normalization on features. In order to illustrate this impact, figure 4.29 is presented, 
where a MT is shown before and after the normalization. As it is inferred, the 
relationships between the magnitudes within the MT are the same. 
 

 

Figure 4.28: Box Plot of normalized features 

 

 

Figure 4.29: MT before and after normalization 
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Principal Component Analysis 
 
After normalization, following the methodology described in chapter 3, the PCA is 
executed. The Pareto graph indicates that the employment of 3 principal components 
(PC) may be correct since they represent about 80% of the data set variability [21]. 
This is favourable as the result can be plotted in a 3-dimensional graph. The mentioned 
number of PCs must be determined before executing the algorithm since it is an input 
parameter.  
 

 

Figure 4.30: Number of PCs needed. 

 

The biplot presented in figure 4.31 intends to represent the influence of the driving 
features on PCs. As it can be seen, the first component is mainly composed of 
distance, idle, and speed-related features, such as the speed quartiles and mean 
driving speed. On the other hand, the second component is mainly influenced by 
acceleration-related features, such as APA and RPA. Hence, the highest variability 
will be found on speed-related features, idle, and distance. Finally, the third component 
(not visible in this plot) will be mainly affected by idle and time 
accelerating/decelerating. 
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Figure 4.31:  Influence of features on PCs. 

 

 

 

 

Figure 4.32: Data set after PCA 
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According to the methodology, after performing the dimensionality reduction algorithm, 
the reduced data set (Figure 4.32) can be clustered. The algorithms executed are k-
means and hierarchical clustering. 
 
Consequently, the performance metrics are employed to evaluate the quality of the 
clusters obtained which will be addressed through silhouette, Calinski Harabasz and 
Davies Bouldin coefficients for a different number of clusters (2, 3, and 4). 
 
 

PCA Kmeans HC 

nº clusters 2 3 4 2 3 4 

Silhouette 0.529 0.413 0.414 0.476 0.333 0.333 

Calinski Harabasz 579.90 427.30 388.80 473.20 368.90 332.72 

Davies Bouldin 1.134 1.353 1.211 1.119 1.303 1.429 

 

Table 4.5: Cluster coefficients by clustering algorithm and number of clusters. PCA. 

 
In this case, on average, the values are higher in 2 clusters using k-means, whereas 
the worst combination is found in 4 clusters/HC. Hence, the preferred clustering 
algorithm is k-means. By this, it is remarkable a more uniform distribution where the 
number of clusters is 2 in comparison to 3.  
 
Figure 4.33 illustrates the silhouette coefficients for the data set when two and three 
clusters are studied. The aim is to obtain the most uniform distribution (similar widths) 
and higher silhouettes values. As Expected, the best results are obtained when two 
clusters are studied. 

 

Figure 4.33: Silhouettes 2 and 3 clusters using k-means. 
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t-Distributed Stochastic Neighbour Embedding 
 
 
Before executing this algorithm, several input variables need to be known, such as 
perplexity (mentioned in chapter 2). As it was argued, those variables will vary 
depending on the data set, hence, it is not possible to know them beforehand. 
 
The Kullback-Leibler divergence (KL), described as the relative entropy earlier, 
calculates the similarity between the original and reduced data set. As expected, a 
higher perplexity will derive in a lower KL, which denotes a lower amount of data lost. 
However, a lower KL will not indicate an optimum perplexity, therefore, the 
methodology proposed by [23], where a score is designated, takes place. 
 
 

 

Figure 4.34: KL and perplexity. 
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Following equation 22, the perplexity will be found by plotting the mentioned score. 
The best perplexity possible will result in a minimum score, hence, the lowest point in 
the graph will be selected as ideal perplexity for this data set (figure 4.35). 

 
 

   

Figure 4.35: Score and perplexity. 

 

As can be seen, the ideal perplexity is found at 165, although the maximum 
recommended is 50, however, it is considered insufficient due to a high number of 
local neighbours. In figure 4.36 the data set is shown after the application of t-SNE. 

 

 

Figure 4.36: Data set after t-SNE 
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The result after t-SNE is satisfactory since it is visible the existence of at least two well-
differentiated clusters. To illustrate the effect of perplexity on the final result, figure 
4.37 is shown, where the left represents an insufficient perplexity (30) and the right an 
excessive one (300). As anticipated, local neighbours will prevail with a lower 
perplexity and small groups will be formed. On the other hand, if the perplexity is 
excessive, it is remarkable a lower distinction between groups, decreasing the quality 
of the clusters. 

 

  

Figure 4.37: Effects of low (left) and high (right) perplexity on the data set. 

 

Finally, as it was done with the PCA, the quality of the clusters is studied through 
different coefficients (Table 4.6). It can be seen that the optimal number of clusters is 
2 obtained through the k-means algorithm.  

 

t-SNE Kmeans HC 

nº clusters 2 3 4 2 3 4 

Silhouette 0.766 0.617 0.541 0.760 0.593 0.506 

Calinski Harabasz 1933.00 1444.40 1389.19 1906.00 1380.41 1280.20 

Davies Bouldin 0.644 0.865 1.031 0.649 0.905 1.073 

 

Table 4.6: Cluster coefficients by clustering algorithm and number of clusters. t-SNE. 
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After both dimensionality reduction methodologies were studied, it is necessary to 
select the optimal combination. Based on table 4.5 and 4.6 it is clear that t-SNE offers 
more accurate clusters in comparison to PCA and, additionally, the k-means algorithm 
provides a better quality of the groups. Hence, the result of this combination (t-SNE + 
k-means) will be employed for the next stages of this study. 
 
Regarding the number of clusters, it is clear that the optimal number is 2 for all cases 
and coefficients. However, as it is known, each cluster represents a driving profile, 
meaning that, in the case of selecting only two clusters, the final cycle will be 
composed of only two driving conditions which may be inaccurate.  
 

 

   

Figure 4.38: Silhouettes of t-SNE and k-means for 2 and 3 clusters. 

 

It can be inferred that the mentioned extra-urban/rural MTs may have features that 
could be related to high-speed (HS) and low-speed (LS) MTs and, consequently, are 
separated into those 2 clusters. This may produce a decrease in the maximum speed 
reached in HS MTs and increase it in LS MTs. Hence, the dispersion of the clusters 
might be higher. 
 
To address this argument, it would be necessary to compare the results obtained from 
the clustering algorithm with 2 and 3 clusters (figure 4.39). As expected, when 2 
clusters were calculated, it is remarkable the presence of two well-differentiated 
groups: high speed/low APA and low speed/high APA MTs. 
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Initially, the data set was almost equally distributed in both profiles: 432 HS MTs and 
483 LS MTs for 915 data points (MTs). It is also highlightable the presence of 19 
unacceptable outliers in LS, where the maximum speed reached was 107 km/h, which 
is inappropriate for this driving profile (urban). It is also noteworthy to mention that the 
outliers addressed before (unusually long MTs) were placed in the HS MTs, which is 
acceptable.  

On the other hand, when three clusters are studied, it is possible to see three profiles: 
low speed/High APA, medium speed/high APA and high speed/low APA that may 
represent urban, extra-urban/rural and high speed cycles respectively.  

 

 

 

Figure 4.39: Results of clustering 2 (above) and 3 (below) clusters. 
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The median absolute deviation (MAD) is measured to evaluate the impact of a third 
cluster addition. If the explanation above is correct, this measure must decrease after 
the addition of a third cluster.  

 2 clusters 3 clusters 

High speed 219.35 187.21 

Low speed 233.15 236.12 

Table 4.8: Median absolute deviation (MAD). 

As shown, the MAD decreased by 17% in the HS cluster after adding a third cluster. 
On the other hand, the MAD of the LS MTs slightly increased. From here, it could be 
concluded that a third cluster may have a higher impact on the HS cluster. This can 
be explained by the new data distribution: 210 data points in the HS cluster, 252 in 
medium speed (MS), and 453 in LS.  

When it comes to the driving features, table 4.9 summarizes the changes of some 
representative variables after the third cluster addition. The HS cluster increased its 
maximum speed by 4% and reduced the acceleration-related features by 8 and 10% 
which is favourable. 

The impact on the LS cluster is less noticeable, where the maximum speed decreased 
by 2% (favourable), however, the acceleration-related features slightly decreased by 
almost 2% (unfavourable).   

High speed 

Max speed 109.07 km/h 4.00% 

APA 0.352 m/s2 -7.85% 

RPA 0.165 m/s2 -10.33% 

Medium speed 

Max speed 86.5 km/h -% 

APA 0.428 m/s2 - % 

RPA 0.218 m/s2 -% 

Low speed 

Max speed 36.6 km/h -2.14% 

APA 0.435 m/s2 -1.81% 

RPA 0.202 m/s2 -1.94% 

Table 4.9 Impact of third clusters on features. 
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After this argument, 3 clusters are selected to characterize the driving profiles, despite 
reaching the highest cluster quality when 2 groups are considered. Hence, figure 4.40 
is plotted, where different features are represented. As expected, the high-speed 
cluster possesses a low RPA, APA, and time idling but the longest distances. The 
medium-speed cluster is represented by a medium APA and high RPA with medium 
distances and medium idle time. Finally, the low-speed cluster shows a high APA, 
medium RPA, high idling time, and shorter distances. Consequently, the latter can be 
named urban MTs whereas the medium-speed and high-speed MTs may be classified 
as extra-urban and motorway cycles respectively. 

Figure 4.40: Driving features of 3 clusters: 1) medium speed; 2) low speed; 3) high speed. 

 

 

Figure 4.41: Data set after k-means (3 clusters). 
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Driving Behaviour 

 

In chapter 2 it was expressed the importance of distinguishing between different 
driving behaviours since it could affect speed and acceleration-related features. For 
this reason, following the mentioned in [31], the next methodology is followed.  

Initially, starting from the stated in the previous reference, it is possible to relate 
acceleration features to driving behaviour. The main reason to rely on this affirmation 
is that driving speed is limited and strongly influenced by traffic conditions, road 
infrastructure, and speed limits. However, the acceleration is not directly influenced by 
these variables but by driving behaviour and driving profile. Hence, the different 
behaviours are defined through APA, ANA, RPA and RNA. 

As explained in chapter 2, the first step is to calculate cumulative diagram functions 
(CDF) of the mentioned acceleration-related variables. Hence, 4 different CDFs will 
be obtained (figure 4.42). 

 

Figure 4.42: CDF of acceleration-related features. 
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Consequently, it is possible to calculate the average position (score) of every MT on 
each CDF. This score can be plotted on a final CDF (Figure 4.43) where the driving 
behaviours will be identified by dividing this graph on 0-1st quartile, 1st-3rd quartile, 
and 3rd-4th quartile.  

 

 

Figure 4.43: CDF of Average score 

 

The MTs under the first quartile (<25%) will be identified as mild drivers, the ones 
between the 1st and 3rd quartile (>25% -75%>) will be average drivers, and the MTs 
over the 3rd quartile (>75%) will be addressed as aggressive. As a consequence, half 
of the MTs are considered average drivers. It is important to highlight that this study 
does not intend to evaluate the representativeness of the driving behaviour since this 
would require an exhaustive analysis. 

Finally, the result of this division will be 9 groups of MTs that will represent 3 driving 
behaviours (from the driving behaviour splitting) and 3 different driving profiles (from 
the clustering algorithm). To illustrate this idea, table 4.10 is shown. 
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 Drv. Behaviour 

Drv. Profile Mild Average Aggressive 

Urban 113 227 113 

Extra-Urban 52 106 52 

Motorway 63 126 63 

 

Table 4.10: Distribution of MTs by driving behaviour and driving profile. 

It can be thought that by splitting the clusters (previously obtained) following 
acceleration-related features, the driving speed may be affected, which might result in 
a loss of representativeness. To address this, table 4.11 and figure 4.44 are shown.  

 

    

Figure 4.44: boxplot of APA and mean driving speed by driving behaviour for urban MTs. 

 

In this boxplot, it is possible to see how the mean driving speed behaves in comparison 
to APA after the behaviour division for the urban (LS) cluster. As can be seen, the 
speed difference (between mild and aggressive) is considerably lower than in APA.  

Additionally, table 4.11 illustrates the existing difference between mild and aggressive 
behaviour for APA and mean driving speed in order to have a general view of their 
impact. 

 



DEVELOPMENT OF REPRESENTATIVE DRIVING CYCLES OF THE TENERIFE METROPOLITAN AREA 
THROUGH CLUSTERING METHODS 

 

80 

 

It is highlightable anew, that the variation of APA is remarkably higher than the one 
that occurred in the mean driving speed. Also, this variation is lower for urban MTs 
and higher for motorway MTs. Hence, it can be stated that the higher the speed the 
lower the distance between the 1st and 3rd quartile for APA. In order to represent this, 
figure 4.45 is presented. 

 APA (m/s2) Mean driving speed (km/h) 

Drv. Profile Mild Aggressive Variation Mild Aggressive Variation 

Urban 0.309 0.602 94.82% 17.68 22.04 24.66% 

Extra-urban 0.32 0.546 70.63% 38.52 43.35 12.54% 

Motorway 0.296 0.44 48.65% 55.66 57.36 3.05% 

Table 4.11: Impact of the driving behaviour division on mean driving speed (median). 

In Mild drivers, the variation of the APA is lower for different driving profiles (-4.2% 
when the driving speed is increased). On the other hand, this variation is higher for 
aggressive drivers (-26.9%). Hence the changes of APA will be more notorious in 
aggressive drivers.   

 

Figure 4.45: Relationship between APA, mean driving speed and driving behaviour. 

 

Finally, according to figure 4.45 (Illustrative/non-real division), it is possible to state 
that the driving behaviour splitting will have a higher influence on urban cycles due to 
a higher dispersion of acceleration-related features. 
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Final Cycle Construction 

After the division into groups by driving behaviour, the MTs are ready to be merged 
into a representative driving cycle. To illustrate the 9 groups, figure 4.46 is shown, 
where it is possible to observe the 3 different clusters (by colour) and 3 different driving 
behaviours (by shape). 

 

 

Figure 4.46: Data set after clustering and driving behaviour grouping. 

 

At least one representative MT per group will be selected, hence, 9 MTs will be 
extracted. As can be inferred, those MTs will be the closest to the group centroid, as 
it was explained in [8]. It is important to mention that selecting only one MT per group 
may not be sufficient to satisfy the time distribution. To address this problem, the time 
of each driving profile in the data set needs to be calculated. To exemplify this, it is 
possible to have a data set where most MTs have been identified as LS and only a 
small fraction as HS. It would be inaccurate to only select one MT per cluster. 
Consequently, the next calculations are performed. 

As argued in the previous reference, the share of time of a specific profile in the final 
cycle will be given by the next expression 

 



DEVELOPMENT OF REPRESENTATIVE DRIVING CYCLES OF THE TENERIFE METROPOLITAN AREA 
THROUGH CLUSTERING METHODS 

 

82 

 

𝑡 =
𝑡

𝑡
𝑡 ,  

Where ti is the time of the profile i in the final representative cycle, tdriv is the estimated 
duration (time) of the final cycle, toverall is the sum of the total duration of the MTs in 
the data set, and ti,j is the total duration of the MTs that belong to the profile i. 

The total duration of the representative cycle may be determined by the statistical 
analysis performed (figure 4.17) where, on average, the cycle duration was about 811 
seconds (13 min), with the highest frequency at around 500 seconds (8.3 min). The 
3rd quartile was located at 1107 seconds (18 min).  Hence, according to this analysis, 
the final cycle duration should be close to the mentioned values. 

On the other hand, it was found that the average duration of the HS MTs was 765 
seconds (table 4.13). Consequently, if an average HS MT is added to the final cycle, 
(considering a total duration of 1107 seconds given by the statistical analysis) it would 
represent about 70% of the final share of time, which is inaccurate. 

Driving profile Time recorded (s) Percentage 

Low speed (LS) 38,022 22.18% 

Medium speed (MS) 52,278 30.49% 

High speed (HS) 81,161 47.33% 

Total 171,461 100.00% 

Table 4.12: Share of time of recorded MTs by driving profile (average behaviour). 

 

Driving profile Average Duration (s)  Percentage 

Low speed (LS) 167.50 12.43% 

Medium speed (MS) 414.90 30.78% 

High speed (HS) 765.67 56.80% 

Total 1,348.07 100.00% 

Table 4.13: Share of time of average duration by profile (average behaviour). 
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From this, it can be said that the final cycle must keep the proportions exposed in table 
4.12. Consequently, it may be stated that, for this data set, through this methodology, 
it will not be possible to satisfy both requirements keeping acceptable driving features: 
proportions of profiles and final duration 

In order to keep the proportion of the profiles in the final cycle, according to the 
exposed in table 4.13, a second LS MT needs to be added (table 4.14) to increase the 
final duration to over 1500 seconds (25 minutes). This arrangement shows satisfactory 
results regarding proportion (similar to the ones shown in table 4.12) but undesirable 
duration.  

 

Driving profile Average duration (s)  Percentage 

Low speed (LS) 335 (167.5 x 2) 22.10% 

Medium speed (MS) 414.90 27.37% 

High speed (HS) 765.67 50.52% 

Total 1,515.57 100.00% 

Table 4.14: Share of time of average duration by profile with two LS MTs (average behaviour). 

 

After this, for this study, the duration of the selected MTs was limited to obtain a final 
cycle of 1200 seconds, which is higher than the desired duration (approximately 811 
seconds). As discussed, the representative MTs are the closest ones to the group 
centroid. However, when the duration is restricted (imposed as a requirement in the 
selection), the chose MT will no longer be the closest one to the group centroid, 
therefore decreasing the representativeness of the driving cycles. 
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Figure 4.47: Merge of representative average cycle. 
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Finally, the representative cycles for each driving behaviour are presented (Fig 4.48-
50). Following the standardised driving cycles structure, the cycles proposed are 
arranged from LS to HS (ascending). 

 

Figure 4.48: Representative mild cycle. 

 

Figure 4.49: Representative average cycle. 

 

Figure 4.50: Representative aggressive cycle. 
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CHAPTER 5 

 

 

CYCLE ANALYSIS 

To evaluate the quality of the final cycles it is necessary to compare them with the 
original data set and with other existing driving cycles (mentioned in the introduction 
of this study).  To illustrate the results obtained, tables 5.1-5.3 shows a comparison of 
these cycles with the data set.  The full tables are in the appendices in case the lector 
needs further clarification. 
 
In table 5.1 the features of the average representative driving cycle are presented. It 
can be easily distinguished a motorway profile with high speed and low acceleration, 
an extra urban segment with high accelerations and medium speeds and, an urban 
profile with high accelerations and lower speeds. 
 
 

Average  

Mean drv.  
speed (km/h) 

APA 
(m/s2) Duration (s) 

LS 
Rep. cycle 19.355 0.47715 274 

Difference 3.80% 4.43% 38.87% 

MS 
Rep. cycle 42.78 0.449 366 

Difference 3.18% 4.45% -13.36% 

HS 
Rep. cycle 57.00 0.336 559 

Difference -1.91% -5.36% -36.97% 

 TOTAL 44.06 0.40 1199.00 

 
Table 5.1: Features of the average representative cycle and its difference with the group average. 
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Initially, as expected, the acceleration-related features (APA, ANA, RPA, and RNA) of 
the cycles reached the highest values in aggressive cycles (Table 5.2) and the lowest 
in mild cycles (Table 5.3). When it comes to speed-related features (mean driving 
speed and maximum speed), it is also possible to see a similar increase. Additionally, 
the LS MTs presented a lower idle percentage (appendices 1-3) in comparison to other 
clusters (for all the behaviours).  

Regarding the driving features of the aggressive and mild cycles, it is possible to state 
that these final cycles also fulfil the requirements (low acceleration/high speed, and 
high acceleration/low speed). 

 

Aggressive  

Mean drv. 
 speed (km/h) 

APA 
(m/s2) Duration (s) 

LS 
Rep. cycle 23.63 0.6255 263 

Difference 3.34% 1.84% 39.77% 

MS 
Rep. cycle 44.43 0.552 370 

Difference 5.04% -3.99% 3.41% 

HS 
Rep. cycle 58.25 0.444 573 

Difference 1.69% 3.69% -6.80% 

 TOTAL 46.59 0.53 1,206.00 

 
Table 5.2: Features of the aggressive representative cycle and its difference with the group average. 

 

Mild  

Mean drv.  
speed (km/h) 

APA 
(m/s2) Duration (s) 

LS 
Rep. cycle 16.35 0.3399 257 

Difference -5.14% 5.56% 26.68% 

MS 
Rep. cycle 37.24 0.3734 373 

Difference -5.21% 13.50% -15.74% 

HS 
Rep. cycle 66.77 0.314 554 

Difference 12.90% 7.01% -50.00% 

 TOTAL 46.23 0.34 1,184.00 

 
Table 5.3: Features of the mild representative cycle and its difference with the group average. 
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However, the highest discrepancies are reached in the duration of the profiles, where 
the LS MTs were higher than the group average, whereas the MS and HS MTs were 
considerably lower. It can be assumed that this is due to the proportions of the different 
profiles in the final cycle.  

As explained in the previous chapter, to reach the highest representativeness, the final 
cycle should have a similar duration to the original cycles found in the data set (811 
s). However, these cycles (initial data set) are, on average, composed of only two 
driving profiles, where the HS MTs represent the highest share of driving time. As a 
result, the sum of the representative MTs duration (1200 s) will be well over the third 
quartile of the initial cycles (1107 s). Additionally, if the duration is restricted (imposed 
as a requirement when selecting the representative MTs), the characteristic MT will 
lose representativeness, since it would not be the closest one to the centroid.  

To address this problem, it would be necessary to perform an analysis with the 
objective of determining the ideal duration of the final cycle, reaching a balance 
between features and distance/duration representativeness as described in figure 
5.1.  Additionally, a higher number of MTs would be favourable since it may be 
possible to select a MT closer to the group centroid.   

 

  

Figure 5.1: Illustrative (non-real) image of the relationship between ideal duration and 
representativeness. 
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Figure 5.2: Position of representative cycles in the original data set. 

As can be seen (figure 5.2), the representative cycles positions (regarding mean 
driving speed) are close to the data set mean. Concerning APA, the cycles are well 
over the data set average. This may be due to the duration restrictions since the total 
driving time (especially idle and cruising) are reduced, increasing the share of time 
accelerating/decelerating resulting in a higher APA.    
 
The next table describes the final cycles when the duration is not restricted. It is 
highlightable a higher duration (approximately twice the ideal duration, 1,547 s). 
However, it can be seen that the results concerning driving features are closer to the 
group average (better results in comparison to the previous cycles). 

 

Avg. Non-restricted  

Mean drv  
speed (km/h) 

APA 
(m/s2) Duration (s) 

LS 
Rep. cycle 19.16 0.4699 336 

Difference 2.82% 2.96% 0.30% 

MS 
Rep. cycle 37.62 0.398 423 

Difference -10.10% -7.79% 1.91% 

HS 
Rep. cycle 58.42 0.351 788 

Difference 0.56% -0.85% 2.83% 

 TOTAL 43.10 0.39 1,547.00 

 
Table 5.4: Features of the average representative cycle when the duration is not limited. 
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To illustrate the results when the final duration is restricted in order to obtain a similar 
duration to the one presented in the statistical analysis, table 5.5 is shown. The final 
duration is acceptable (786 s), however, it is also remarkable higher differences with 
the data average features (according to the described in figure 5.1). 
 

Avg. Restricted  

Mean drv 
speed (km/h) 

APA 
(m/s2) Duration (s) 

LS 
Rep. cycle 18.29 0.336 174 

Difference -1.80% -35.71% 3.74% 

MS 
Rep. cycle 43.51 0.334 258 

Difference 4.80% -28.44% -60.81% 

HS 
Rep. cycle 67.65 0.361 354 

Difference 14.13% 1.94% -116.29% 

 TOTAL 49.00 0.35 786.00 

 
Table 5.5: Features of the average representative cycle when the duration is limited. 

 
As can be seen (figure 5.3) the durations of the representative cycles are not accurate 
(when the distance is not limited). The restricted cycle (table 5.5) is represented by a 
purple line, found close to the data set average. However, the representative cycle 
and the non-restricted cycles (tables 5.1 and 5.4 respectively) are overly long (red and 
yellow). 

 

 
Figure 5.3: Position of representative cycles in the original data set: Duration 
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Finally, after the cycles presented, it can be inferred that the driving behaviour may be 
influenced by the distance/duration since longer distances usually relate to longer 
cruising times, reducing the speed variations. Hence, mild MTs will result in longer 
cycles whereas aggressive MTs may be related to shorter distances. 
 
 
 
COMPARISON WITH STANDARDIZED CYCLES 
 
It is possible to see that the variables exposed in the next table are similar to the ones 
found on the WLTC and NEDC. It is important to note that this cycle cannot be directly 
compared to any of the mentioned regulated cycles since they have different 
structures.  
 
The WLTC class 3 is composed of four driving conditions: low, medium, high, and 
extra high, whereas class 2 is composed of a low, medium, and high where motorway 
speeds are not considered.  

 

 NEDC WLTC Avg. Rep. Cycle 

Duration (s) 1,180 1,800 1,184 

Distance (km) 10.97 23.27 13.58 

Idle (%) 0.25 0.13 0.0941 

Max speed (km/h) 120 131.3 108.11 

Mean driving speed (km/h) 34 47 44.06 

APA (m/s2) 0.5 0.39 0.4 
 

Table 5.6: Comparison between NEDC WLTP and the average representative cycle. 

 
 

It can be seen that the distances and accelerations are similar to the standardized 
cycles, which could denote that, in the case of limiting the cycle duration (to ~811 s), 
the final cycle may be significantly shorter than the other cycles. 
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After a thorough research, the final cycle can be compared to the Artemis rural cycle 
(table 5.7), where the maximum speed and duration are lower and the mean speed 
higher than the referenced cycles.  
 

 

Figure 5.3: Artemis rural road cycle. 

 

Duration (s) 1082 

Mean driving speed (km/h) 58.34 

Max speed (km/h) 111.09 

APA (m/s2) 0.359 

RPA (m/s2) 0.153 

 
Table 5.7: Driving features of Artemis Rural road cycle  

 
From this, it can be said that road infrastructure plays an important role in the speeds 
and distances reached. This can be explained by the sizes of the zones compared 
(Tenerife metropolitan area and other European cities).  
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CONCLUSION 

 

This study was aimed to aid in the development of a methodology for obtaining 
representative driving cycles from a group measured in the Tenerife metropolitan area 
through machine learning algorithms. It was also examined the impact of various 
external variables in the driving features, such as location, weather and congestion. 
Additionally, through statistical analysis, it was possible to address the 
representativeness of the data set and the most characteristic variables.  
 
The methodology proposed consisted of a selection of representative segments of 
cycles (Microtrips) through clustering algorithms, followed by the reduction of their 
dimensionality. This research clearly illustrates that this methodology results in cycles 
with a high degree of representativeness for the data set, but also raises questions 
related to appropriate cycle durations. Due to the morphology of the initial cycles, it 
was not possible to obtain an appropriate cycle duration without reducing the feature 
representativeness of the data set since the average cycle duration was shorter than 
the sum of the duration of characteristic Microtrips.  
 
Through the statistical analysis, it was found that the average duration of the cycles 
was shorter than the standardized international and European cycles. This was mainly 
attributed to the restricted area that was studied, resulting in shorter distances and 
cycle durations. The data set obtained also does not represent a realistic 
transportation situation, where more local cycles in Santa Cruz centre are required.  
 
Regarding driving behaviours, the data set was categorized into groups with similar 
acceleration-related variables. However, it was observed certain undesired 
relationships between the acceleration and distance variables that may have affected 
the aforementioned categorization. 
 
To better understand the implications of these results, future studies should address 
the selection of an appropriate driving duration. Moreover, it is recommended to collect 
a higher number of cycles to improve the quality of the final cycle. Finally, in order to 
obtain a higher degree of representativeness for the studied zone, it is recommended 
to address the data set according to previous statistical studies to obtain a realistic 
proportion of locations and driving profiles.  
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In conclusion, based on the results of this study, a new methodology can be introduced 
with the aim of reducing the driving distance and cycle duration, maintaining the 
proportions of the different profiles within it.  
 
This research has also proved the viability of the t-SNE over the PCA as a 
dimensionality reduction algorithm for the studied data set. Additionally, in accordance 
with the referenced studies, for these cycles, k-means was the algorithm that 
presented a higher quality of clusters, assessed through performance metrics. 
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APPENDICES 

  AVERAGE CYCLE 
  LS 

  
Mean drv 

speed Max speed APA ANA RPA RNA Duration Distance Idle 
Cluster 18.62 35.56 0.456 -0.429 0.2013 -0.1666 167.49 0.7546 26.19 

Rep. cycle 19,355 40 0.47715 -0.4295 0.212 -0.1815 274 1,077 28.81 
Difference 3.80% 11.10% 4.43% 0.12% 5.05% 8.21% 38.87% 29.94% 2.62% 

                    
  MS 

  
Mean drv 

speed Max speed APA ANA RPA RNA Duration Distance Idle 
Cluster 41.42 90.51 0.429 -0.4606 0.218 -0.1998 414.9 4.39 6.44 

Rep. cycle 42.78 89.26 0.449 -0.4962 0.2388 -0.222 366 4.31 1.36 
Difference 3.18% -1.40% 4.45% 7.17% 8.71% 10.00% -13.36% -1.86% -5.08% 

                    
  HS 

  
Mean drv 

speed Max speed APA ANA RPA RNA Duration Distance Idle 
Cluster 58.09 108.84 0.354 -0.3924 0.1678 -0.1581 765.67 11.82 2.84 

Rep. cycle 57 108.11 0.336 -0.441 0.1711 -0.16 559 8.19 5.18 
Difference -1.91% -0.68% -5.36% 11.02% 1.93% 1.19% -36.97% -44.32% 2.34% 

                    
TOTAL 44.06 108.11 0.403 -0.455 0.201 -0.184 1199 13.58 9.41 

Appendix 1: Average Cycle. Partially restricted. 

 

  MILD CYCLE 
  LS 

  
Mean drv 

speed Max speed APA ANA RPA RNA Duration Distance Idle 
Cluster 17.19 30.54 0.321 -0.326 0.127 -0.106 188.43 1.06 24.98 

Rep. cycle 16.35 32.23 0.3399 -0.33135 0.148 -0.1215 257 0.97 22,575 
Difference -5.14% 5.24% 5.56% 1.61% 14.19% 12.76% 26.68% -9.28% -2.41% 

                    
  MS 

  
Mean drv 

speed Max speed APA ANA RPA RNA Duration Distance Idle 
Cluster 39.18 74.89 0.323 -0.348 0.155 -0.144 431.7 4.37 6.84 

Rep. cycle 37.24 73.31 0.3734 -0.363 0.167 -0.154 373 3.78 3.75 
Difference -5.21% -2.16% 13.50% 4.13% 7.19% 6.49% -15.74% -15.61% -3.09% 

                    
  HS 

  
Mean drv 

speed Max speed APA ANA RPA   Duration Distance Idle 
Cluster 58.16 105.54 0.292 -0.318 0.133 -0.127 831 13.11 2.94 

Rep. cycle 66.77 111.32 0.314 -0.3376 0.14 -0.134 554 9.78 5.5 
Difference 12.90% 5.19% 7.01% 5.81% 5.00% 5.22% -50.00% -34.05% 2.56% 

                    
TOTAL 46.23 111.32 0.338 -0.344 0.15 -0.137 1184 14.53 8.87 

Appendix 2: Mild Cycle. Partially restricted. 
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  AGGRESSIVE CYCLE 

  LS 

  
Mean drv 

speed Max speed APA ANA RPA RNA Duration Distance Idle 

Cluster 22.84 44.72 0.614 -0.6235 0.321 -0.264 158.41 0.788 26.68 

Rep. cycle 23.63 47.37 0.6255 -0.7005 0.3465 -0.2955 263 12,883 26.65 

Difference 3.34% 5.59% 1.84% 10.99% 7.36% 10.66% 39.77% 38.83% -0.03% 

                    

  MS 

  
Mean drv 

speed Max speed APA ANA RPA RNA Duration Distance Idle 

Cluster 42.19 100.11 0.574 -0.564 0.288 -0.257 357.4 4.08 5.37 

Rep. cycle 44.43 89.32 0.552 -0.57 0.279 -0.255 370 4.03 10.27 

Difference 5.04% -12.08% -3.99% 1.05% -3.23% -0.78% 3.41% -1.24% 4.90% 

                    

  HS 

  
Mean drv 

speed Max speed APA ANA RPA RNA Duration Distance Idle 

Cluster 58.25 116.58 0.444 -0.492 0.211 -0.195 611.96 9.1 4.12 

Rep. cycle 59.25 118.45 0.461 -0.489 0.211 -0.197 573 8.87 4.19 

Difference 1.69% 1.58% 3.69% -0.61% 0.00% 1.02% -6.80% -2.59% 0.07% 

                    

TOTAL 46.59 118.45 0.526 -0.562 0.263 -0.237 1206 14.19 11.18 

Appendix 3: Aggressive Cycle. Partially restricted. 

    AVG WITH NO DURATION/DISTANCE RESTRICTIONS     
  LS 

  
Mean drv 

speed Max speed APA ANA RPA RNA Duration Distance Idle 
Cluster 18.62 35.56 0.456 -0.429 0.2013 -0.1666 335 1.5 26.19 

Rep. cycle 19.16 37.22 0.4699 -0.43005 0.213555 -0.1755 336 1,337 30.85 
Difference 2.82% 4.46% 2.96% 0.24% 5.74% 5.07% 0.30% -12.19% 4.66% 

                    
  MS 

  
Mean drv 

speed Max speed APA ANA RPA RNA Duration Distance Idle 
Cluster 41.42 90.51 0.429 -0.4606 0.218 -0.1998 414.9 4.39 6.44 

Rep. cycle 37.62 89.92 0.398 -0.514 0.221 -0.204 423 4.38 1.18 
Difference -10.10% -0.66% -7.79% 10.39% 1.36% 2.06% 1.91% -0.23% -5.26% 

                    
  HS 

  
Mean drv 

speed Max speed APA ANA RPA RNA Duration Distance Idle 
Cluster 58.09 108.84 0.354 -0.3924 0.1678 -0.1581 765.67 11.82 2.84 

Rep. cycle 58.42 112.7 0.351 -0.371 0.145 -0.137 788 12.46 3.3 
Difference 0.56% 3.43% -0.85% -5.77% -15.72% -15.40% 2.83% 5.14% 0.46% 

                    
TOTAL 43.1 112.7 0.393 -0.428 0.184 -0.166 1547 18.18 8.95 

Appendix 4: Average Cycle. No restricted. 
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Appendix 5: Average Cycle. Restricted. 

 

 

 

 

 

 

 

 

 

 

 

    AVG WITH LIMITED DURATION/DISTANCE     

  LS 

  
Mean drv 

speed Max speed APA ANA RPA RNA Duration Distance Idle 

Cluster 18.62 35.56 0.456 -0.429 0.2013 -0.1666 167.5 0.75 26.19 

Rep. cycle 18.29 37.4 0.336 -0.401 0.2198 -0.1889 174 0.627 17.24 

Difference -1.80% 4.92% -35.71% -6.98% 8.42% 11.81% 3.74% -19.62% -8.95% 

                    

  MS 

  
Mean drv 

speed Max speed APA ANA RPA RNA Duration Distance Idle 

Cluster 41.42 90.51 0.429 -0.4606 0.218 -0.1998 414.9 4.39 6.44 

Rep. cycle 43.51 87.36 0.334 -0.471 0.17 -0.158 258 2.96 5.42 

Difference 4.80% -3.61% -28.44% 2.21% -28.24% -26.46% -60.81% -48.31% -1.02% 

                    

  HS 

  
Mean drv 

speed Max speed APA ANA RPA RNA Duration Distance Idle 

Cluster 58.09 108.84 0.354 -0.3924 0.1678 -0.1581 765.67 11.82 2.84 

Rep. cycle 67.65 103.84 0.361 -0.398 0.156 -0.148 354 6.2 6.78 

Difference 14.13% -4.82% 1.94% 1.41% -7.56% -6.82% -116.29% -90.65% 3.94% 

                    

TOTAL 49 103.84 0.347 -0.421 0.175 -0.16 786 9.79 8.76 
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