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Resumen

Una de las principales tareas de la Cosmoloǵıa moderna en los últimos años ha

sido la caracterización y el estudio de la estructura a gran escala del Universo.

Para ello, se han estudiado principalmente las fluctuaciones de densidad en el

cosmos, y obtenido aśı una imagen certera de como se agrupan las galaxias. Sin

embargo, nuevos estudios se siguen llevando a cabo en el campo. En este trabajo

se tratará de obtener la expresión relativista de un nuevo observable, las fluctua-

ciones angulares del desplazamiento al rojo (ARF por sus siglas en inglés), con el

fin de dilucidar si aporta nueva información al estudio de estructura a gran escala

en el Universo.

En primer lugar, después de un breve repaso histórico, se expondrán los prin-

cipales métodos de análisis espectral usados en cosmoloǵıa observacional tales

como funciones de correlación y espectros de potencia, con el fin de introducir

al lector no experto en la materia. Tras una breve exposición de los objetivos y

motivaciones del trabajo, se introducirá el formalismo que se seguirá a lo largo

de todo el documento, para de esta manera facilitar el seguimiento de las deriva-

ciones por parte del lector. Este formalismo es similar al adoptado por J. Yoo, A.

L. Fitzpatrick y M. Zaldarriaga en su art́ıculo New perspective on galaxy cluster-

ing as a cosmological probe: general relativistic effects (1), trabajo sobre el que

nos basaremos principalmente para la obtención de las correcciones a las ARF.

Una vez sentadas las bases sobre las que basarnos, se presentará el observable

en su versión no relativista, obtenida por Carlos Hernández-Monteagudo, Jonás

Chaves-Montero y Raúl E. Angulo en Angular Redshift Fluctuations: a New Cos-

mological Observable (2), y se definirá el redshift observado zg y la densidad de

galaxias ng como invariantes relativistas. De esta manera se podrán hallar las

correcciones a ambos observables usando teoŕıa de perturbaciones a primer or-

den para una métrica FLWR en forma general (sin particularizar a ningún gauge

en espećıfico). Este método, que se denomina método gauge-ready, representa

una ventaja en muchos casos ya que nos permite hallar expresiones generales que

pueden particularizarse al gauge más conveniente en función del problema a re-

solver.

La obtención de estas correcciones supondrá el grueso de nuestro trabajo. Las cor-

recciones al redshift observado (∆z) aparecerán simplemente con el tratamiento

relativista del mismo. Sin embargo, para la densidad de galaxias (cuyas correc-



ciones denominaremos δg) tendremos en cuenta diversos factores: correcciones

debidas al efecto de lente gravitacional (desplazamientos radiales, angulares y

efectos de convergencia) que afectarán a la distancia de luminosidad, correcciones

al volumen observado, correcciones debidas a efectos de selección (sólo se tienen

en cuenta galaxias con luminosidad mayor de una luminosidad ĺımite Lthr) y cor-

recciones debida al sesgo (en inglés bias) de las galaxias al trazar posiciones dadas

por la densidad de materia oscura. Todas estas correcciones afectan a la densidad

de galaxias, y por ende, conformarán lo que denominaremos galaxy fluctuation

field δg. Teniendo en cuenta estos factores, se darán unas expresiones finales para

∆z y δg.

Como siguiente paso, estas expresiones serán incorporadas a la definición de las

ARF y aśı hallar la expresión a primer orden en perturbaciones de las mismas.

De esta manera se obtendrá la ecuación fundamental de nuestro trabajo en forma

general. El último paso consistirá en tomar esta fórmula y particularizarla a unos

gauges dados con el fin de mostrar la utilidad del método gauge-ready. Dado

que los dos gauges más importantes en cosmoloǵıa son el synchronous gauge y el

conformal-Newtonian gauge, se tomarán estos como ejemplo.

Como conclusiones, se valorarán los resultados obtenidos y se introducirá breve-

mente el trabajo realizado en las prácticas realizadas en el Instituto de Astrof́ısica

de Canarias entre marzo y mayo de este año, en las que se realizaron simulaciones

numéricas sobre las expresiones relativistas de las ARF en algunos casos simples.

Dado que las expresiones obtenidas anaĺıticamente no nos permiten apreciar si

se aporta información de utilidad al estudio de la estructura a gran escala del

universo, sucesivos trabajos tales como el realizado en las prácticas están siendo

actualmente llevados a cabo, y esperamos puedan aportar nueva información so-

bre las ARF en un futuro próximo.
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1 Introduction

Abstract:
En este primer caṕıtulo introducimos los conceptos fundamentales
sobre los que se basa el trabajo realizado. Tras un breve repaso sobre
la historia de la cosmoloǵıa, nos centraremos en introducir el análisis
espectral y definir el nuevo observable sobre el que basaremos nuestro
trabajo: las ARF. Finalmente, se presentará el objetivo del trabajo,
hallar las correcciones relativistas a este observable.

From the early decades of the last century, the discovery of extra-galactic struc-

tures (so-called nebulae, later galaxies) has given rise to a new understanding

of the cosmos and its nature. Measurements of the NGC6822, M31 and M33

cepheids by Hubble in 1924 (3), and the later first correlation between distance

and redshift (along with the suggestion of an expanding universe, framed in the

formulation of Einstein’s general theory of relativity) by Lemâıtre in 1927 (4)

set the fundamental basis for modern cosmology. From that point, galaxies have

been used as distance estimators1 in the universe by using clustering statistics.

There are several statistical methods which can be used to study galaxy sam-

ples and obtain information about structure formation and background cosmol-

ogy. Taking into account selection effects, which limit the galaxy sample as only

galaxies with luminosity greater than a threshold apparent magnitude mthr are

considered, qualitative information about the universe structure can be inferred

by means of statistical measures having the capacity of distinguish between dif-

ferent point patterns (6).

To this end we can use 2-point correlation functions ξ(r), defined as a measure

of the excess probability dP, above what is expected for an unclustered random

Poisson distribution (with ξ(r) = 0), of finding a galaxy in a volume element dV

at a distance r from another arbitrary chosen galaxy

dP = n[1 + ξ(r)]dV. (1.1)

1Note here that the definition of distance in cosmology is ambiguous. For the luminosity
selection effects one has to use the luminosity distance DL, for the angular selection effects the
angular diameter distance DA, and in order to describe spatial clustering the comoving distance
r is commonly used. See (5) for more information.
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However, what it is usually computed is its Fourier transform, the linear power

spectrum (P(k) in k-space, which despite of being formally equivalent to ξ(r),

it is more physically intuitive as it decomposed the probability into characteris-

tic lengths (k = 2π/L), and hence it differentiates processes on different scales.

Alternatively, if we consider the angular distribution instead of the spatial distri-

bution and hence we define the excess probability as ω(n̂) with n̂ the direction

on the sky, we can also work with the angular power spectrum C`.

Using these tools, it is useful to study the density contrast

δ(r) ≡ ρ(r)− ρ̄
ρ̄

, (1.2)

with ρ̄ the universe mean density and ρ(r) the density at (comoving) position

r, as fluctuations over a smooth mean density ρ̄. From this definition we can

construct a galaxy density contrast δg for the galaxy clustering and a matter

density contrast δm describing the distribution of matter in the Universe. These

two quantities will be related by a bias function (7)

δg = F [δm] '
N∑
i=0

bi
i!
δim, (1.3)

with bi the bias parameters, which if we consider only local effects gives a linear

relation between δg and δm
2.

Hence considering this density contrast we define the (linear) matter power spec-

trum P(k) as

〈δ(k)δ?(k′)〉 = (2π)3δD (k− k′)P(k) (1.4)

for δ(k) the amplitude of the density contrast in Fourier space and δD(k) the

Fourier-space Dirac delta function ; and the angular power spectrum

C` ≡
〈
al,ma

∗
l,m

〉
(1.5)

with alm the coefficients of the expansion of δ2D(n̂)3 in spherical harmonics over

the celestial sphere (8)

δ2D(n̂) =
∑
l,m

al,mYl,m(θ, φ). (1.6)

2More information on the local bias parameter will be given later when considering the
relativistic expression of δg.

32D density contrast field at fixed comoving distance r, also called Angular Density Fluctu-
ations (ADF) and 2D clustering.
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The study of these power spectra of density fluctuations can be used to constrain

cosmology, as they provide information about both the amount and nature of

different forms of energy in the Universe, and hence about the formation of large-

scale structure (9). Moreover, it allows for a test of observables with theoretical

predictions for any cosmological setup. For example, the study the galaxy power

spectrum can be used to infer the form of the primordial matter power spectrum,

and in that way help to understand the initial conditions of the early universe (10).

The angular power spectrum C` is of wide use in modern cosmology. It is a

natural tool for data analysis of the CMB (when accounting for temperature fluc-

tuations). Moreover, as introduced in Eq. (1.5), it can also provide information

of Angular Density Fluctuations (ADF) in the celestial sphere on scales of order

≈ π/`. That is the reason of the importance of ADF as a cosmological probe.

As an alternative, C. Hernández Monteagudo, J. Chavez Montero & Raúl E. An-

gulo (2019) (2) propose a new observable: Angular Redshift Fluctuations (ARF)

in the galaxy redshift field as a new cosmological probe to extract cosmological

information in the Universe.

This new observable arises from considering the cosmological redshift as a field,

and expressing the angular anisotropies of the redshift field as

δz(n̂) =

∑
j(zj − z̄)Wj

〈
∑

jWj〉
, (1.7)

for a given galaxy sample under a Gaussian window function W (zobs − zg) =

exp
[
− (zobs − zg)2 /2σ2

z

]
, centered at a central redshift zobs set by the observer.

Here the summation is over all galaxies. In the same way as it was done for ADF

in Eq. (1.5), we can obtain the Cl for the ARF and hence study the anisotropies in

the redshift field of the observed galaxies at different scales, so that cosmological

information present in the galaxy field can be inferred.
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1.1 Aim of this work

As the results found by Hernández-Monteagudo et al. for the ARF do not ac-

count for general relativistic effects, in this work we will try a relativistic approach

with the aim of revealing the new information that can be extracted from this

new observable. In order to do this, we shall start from the expression for the

ARF obtained by Hernández-Monteagudo et al. and express it in term of co-

variant quantities. Working to linear order (we suppose small corrections) under

a general Friedmann-Lemâıtre-Robertson-Walker (FLWR) metric, we will derive

all the relativistic corrections affecting the angular power spectrum for the ARF

in a gauge-ready form (i.e. without imposing any gauge condition). Finally, we

will characterize the solutions for both the conformal-Newtonian gauge and the

synchronous gauge4.

With the results found, we want to set the analytical basis for future works on

this matter that will potentially reveal new information in large scale surveys, or

at least prove the ARF to be a complementary and useful observable in standard

cosmological analyses. This work will set the expressions for general relativistic

corrections, whose numerical computation are being estimated in a parallel work.

Indeed, some of the results of this project are linked to the efforts developed as

the main project of my internship at the Instituto de Astrof́ısica de Canarias

(IAC), and will be shortly discussed in Chapter 4.

4More information about gauges in Cosmology will be given in Subsection 2.2.2.5. However,
for a first contact on the matter the lectures on cosmological dynamics given by E. Bertschinger
at Les Houches in August 1993 are highly recommended, specifically the section 4.Relativistic
cosmological perturbation theory (11).
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2 Methodology

Abstract:
En este caṕıtulo introducimos la notación que seguiremos a lo largo
del documento. Tras esto, se hallarán las ecuaciones correspondientes
a las correcciones relativistas al redshift observado y al número de
galaxias, de manera que podamos obtener las ARF en su expresión
relativista. Además, se incluye un breve inciso introductorio a los
gauges en cosmoloǵıa, con el fin de justificar el método gauge-ready
adoptado en este trabajo.

2.1 Standard formalism and FLWR metric

As mentioned in Chapter 1, this work has been developed in a general case,

without imposing any gauge condition. Therefore, we choose to work under a

general perturbed FLWR metric of signature (−,+,+,+) in comoving coordi-

nates, with dx0 = dη = dt/a(η) and dxi = dxip, with subindex p denoting the

physical distance, and taking natural units (N.U.) with c ≡ 1

ds2 = a2(η)
{
−(1 + 2A)dη2 − 2Bidηdx

i + [(1 + 2D)ḡij + 2Eij] dx
idxj

}
, (2.1)

where ḡij is defined as the 3-space metric in an unperturbed universe (i.e. we

define ds2 = ḡijdx
idxj in E3). Here A(r, η) and D(r, η) are scalar metric pertur-

bations while Bi(r, η) and Eij(r, η) are vector and tensor metric perturbations

respectively, which describe departures from homogeneity and isotropy. These

can be be further decompose in other scalar, vector and tensor perturbations,

which up to linear order will evolve independently of each other (12). However,

for the purpose of this work no further decomposition is needed.

Along the paper we will use Greek indices such as µ, ν, ρ, σ running from 0 to

3, denoting spacetime variables, while Latin indices i, j, k, l will run from 1 to 3

labeling the spatial part of a four-tensor. Hence vector and tensor perturbations

Bi, Eij indices will be lowered and raised using ḡij. Moreover, we will use a semi-

colon and a vertical bar for representing the covariant derivatives with respect

to gµν (e.g. ∇µA ≡ A;µ) and ḡij (e.g. ∇iA ≡ A|i), respectively. We will also
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adopt the Einstein summation convention for repeated indices and express partial

derivatives as ∂iA ≡ ∂
∂i
A ≡ A,i.

2.2 General relativistic treatment of the ARF

As the starting point, the expression for the ARF found by Hernández Mon-

teagudo et al. (2) is

z̄ + δz(n̂) =

∫
dr r2n̄(r) (1 + δg(r, n̂)) zg(r, n̂)W (zobs − zg)∫

dr r2n̄(r) (1 + δg(r, n̂))W (zobs − zg)
, (2.2)

where z̄ refers to the redshift monopole, ng = n̄(r) (1 + δg is the number density

of galaxies at redshift zg and zg(r, n̂) = zH + zvlos(r, n̂) + zφ(r, n̂) following the

notation adopted in that paper. There they define zH as the redshift parameter

of an homogeneous, isotropic universe (1 + zH = a0
a

, with a0 ≡ a(η0) at observer

position), zvlos = (1 + zH) v(η, n̂) · n̂/c as the redshift induced by the proper

peculiar velocity v of the observed galaxy and zφ as the redshift fluctuations of

gravitational origin.

In order to take into account the relativistic effects into Eq. (2.2), we must express

it in term of covariant quantities which transform under coordinate transforma-

tion as dictated by the space-time metric. The observed redshift can be trivially

expressed as a function of the contraction of covariant 4-vectors1 following its

definition

1 + zg =
(kµuµ)g
(kµuµ)o

, (2.3)

where kµ is the photon null momentum and uµ its 4-velocity, and subscripts g

and o refer to quantities at the source’s redshift zg, and at the observer’s position

respectively. With respect to the galaxy number density ng ≡ n̄(r) (1 + δg(r, n̂)),

it can also be expressed in a covariant form using the relation2

dN(z, n̂) = np
√
−gεµνρσuµg

∂xνg
∂z

∂xρg
∂θ

∂xσg
∂φ

dzdθdφ, (2.4)

with
√
−g the metric determinant and εµνρσ is the Levi-Civita symbol (totally

antisymmetric in its indices (i.e. εµνρσ = ε[µνρσ]). This expression and the covari-

ant form of ng will be justified in Section 2.2.2.

We will follow a similar approach to the one proposed by J. Yoo, A. L. Fitz-

1As k · u is a scalar, it is independent of the frame we are working on.
2The proof for the covariant form of this expression will not be discussed here, but can be

found at (13).
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patrick and M. Zaldarriaga for the general relativistic effects on galaxy clustering

(1). For a photon moving along a geodesic xµ(λ) with an λ affine parameter along

the geodesic, we can define its null-momentum by kµ = dxµ

dλ
with{

kη = ν̄
a
(1 + δν)

ki = − ν̄
a

(ei + δei),
(2.5)

in the observer’s rest frame3 Here we define ν̄ as the photon frequency and ei

as the photon propagation direction measured by the observer in a homogeneous

universe (~e ≡ n̂); and δν, δei its respective dimensionless corrections as we expand

the null vector to 1st order in perturbations.

2.2.1 Corrections to the observed redshift

We can define the 4-velocity of a comoving observer as

uµ =
dxµ√
−ds2

=
dxµ

dτ
=

1

a
(1− A,v), (2.6)

for τ the proper time along the observer’s worldline and v(η, n̂) << 1 its relative

3-velocity respect to the observed galaxy (i.e. the peculiar velocity). This peculiar

velocity is taken so that vi = 0 in the rest frame of the observer. Hence, as it is

known that uµuµ = −1, in this rest frame

uµuµ = gµν
dxµ

dτ

dxν

dτ
= gηη

(
dη

dτ

)2

= −a2(1 + 2A)

(
dη

dτ

)2

= −1 ⇒

⇒ dη

dτ
=

1

a
√

1 + 2A
=

1

a
[1− A+O(2)]

(2.7)

As gµνk
µuν = kµuµ = E ≡ ν, following the statement proposed at the beginning

of this section we can find the observed redshift zg(r, n̂) as

1 + zg =
(kµuµ)g
(kµuµ)o

=
(gµνk

µuν)g
(gµνkµuν)o

. (2.8)

3All subsequent calculation will be performed in the observer’s rest frame.
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The scalar product k · u is given by

kµuµ = gµνk
µuν = −a2

{
(1 + 2A)

ν̄

a
(1 + δν)

1

a
(1− A) +Bi

ν̄

a
(1 + δν)

1

a
vi

− Bi
ν̄

a

(
ei + δei

) 1

a
(1− A)− [(1 + 2D)ḡij + 2Eij]

ν̄

a

(
ei + δei

) 1

a
vi
}

= −ν̄
[
1 + δν + A+ (vi −Bi) e

i
]

(2.9)

Given that ν̄ ∝ 1
a
, evaluated between the observer and the galaxy ν̄g/ν̄o = ao/ag.

Thus we get

1 + zg =

(
ao
ag

){
1 +

[
δν + A+ (vi −Bi) e

i
]g
o

}
. (2.10)

Here we have expressed the observed redshift in terms of null vector perturbations

as well as metric perturbations. We need a relation between the null vector

perturbations and the metric perturbations, so that the result can be expressed

only in terms of the latter. Such relations can be found both by solving the null

equation (kµk
µ = 0) and by solving the null geodesic equation for the photon

path, specifically its temporal component (k0
;µk

µ = 0).

2.2.1.1 Null equation kµk
µ = 0

The first relation between null and metric perturbations can be easily obtained

solving the null equation.

kµk
µ = gµνkνkµ = −a2(η)(1 + 2A)(1 + δν)(1 + δν)− 2a2(η)Bi(1 + δν)(−ei − δei)

+ a(η)2 [(1 + 2D)ḡij + 2Eij] (−ei − δei)(−ej − δej) = −a(η)2
[
1 + 2A+ 2δν

− 2Bie
i − ḡij(eiδej + ejδei)− (2Dḡij + 2Eij + ḡij)e

iej
]

= 0

(2.11)

As in an homogeneous and isotropic universe{
ds2 = −a2(η)dη2 + a2(η)ḡijdx

idxj

kµ = ν̄
a

(1,−ei) ,
(2.12)

the null equation in the unperturbed background give us kµk
µ = ν̄a (−1 + ḡije

iej) =

0 ⇒ ḡije
iej = 1. Hence, as ḡij(e

iδej + ejδei) = 2eiδei, we can rewrite Eq. (2.11)

as

eiδei = δν + A−Bie
i −D − Eijeiej. (2.13)
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2.2.1.2 Temporal component of the geodesic equation kη ;µk
µ = 0.

The other relation linking null and metric perturbations can be obtain by solving

the temporal component of the geodesic equation. The first step in the calculation

will be to obtain the Christoffel symbols of the perturbed metric. The Christoffel

symbols are given by

Γµνρ =
1

2
gµσ (gνσ,ρ + gρσ,ν − gνρ,σ) , (2.14)

with commas denoting partial derivatives. Following this definition, for the per-

turbed FLWR considered in this work we obtain (for general coordinates)4

Γηηη =
ȧ

a
+ Ȧ (2.15)

Γηηi = A,i −
ȧ

a
Bi (2.16)

Γηij = B(i|j) +
ȧ

a
ḡij + 2

ȧ

a
(Dḡij + Eij − 2ḡijA) + Ḋḡij + Ėij (2.17)

Γiηη = A|i − Ḃi − ȧ

a
Bi (2.18)

Γiηj =
1

2

(
B
|i
j −Bi

|j

)
+
ȧ

a
δij + Ḋδij + Ėi

j (2.19)

Γijk = Γ
i

jk +
ȧ

a
ḡjkB

i +D|kδ
i
j +D|jδ

i
k + 2Ei

(j|k) −D|iḡjk − E
|i
jk, (2.20)

where we have denoted dot variables as derivatives with respect to the conformal

time η and Γ̄ijk as the Christoffel symbols based on the 3-space metric gij. Also

the subscript (ij) refers to the symmetric part of a tensor, i.e.

E(ij) =
1

2
(Eij + Eji)⇒ E(j|k) =

1

2
(Ej|k + Ek|j). (2.21)

Once we have obtained the Christoffel symbols, we can solve the geodesic equation

for µ = 0. However, in order to simplify calculations, as null geodesics are

conformally invariant, we can apply a conformal transformation to the metric of

the form

gµν → ĝµν = f(xµ)gµν , (2.22)

for any analytic function f with non-zero first derivative everywhere in the con-

sidered manifold (14). Therefore, we can define the conformal transformation

gµν → ĝµν =
1

a(η)2
gµν , (2.23)

4The step by step calculations are included in Annex A.
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and so the geodesic equation remains invariant when described by the conformally

transformed null vectors k̂µ = dxµ

dχ
5, with χ an affine parameter defined by the

relation dλ
dχ

= Ca2 (15). Hence, we can write the conformally transformed null

vector as {
k̂η = Cν̄a(1 + δν)

k̂i = −Cν̄a (ei + δei) ,
(2.24)

If now we choose the normalization constant C so that Cν̄a = 1 at the observer’s

position xµ(χ0), we can write k̂η = (1 + δν, ei − δei) in the observer’s rest frame.

Therefore, given that the conformally transformed Christoffel symbols are6

Γ̂ηηη = Ȧ (2.25)

Γ̂ηηi = A,i (2.26)

Γ̂ηij = B(i|j) + Ḋḡij + Ėij (2.27)

Γ̂iηη = A|i − Ḃi (2.28)

Γ̂iηj =
1

2

(
B
|i
j −Bi

|j

)
+ Ḋδij + Ėi

j (2.29)

Γ̂ijk = Γ
i

jk +D|kδ
i
j +D|jδ

i
k + 2Ei

(j|k) −D|iḡjk − E
|i
jk (2.30)

we can calculate the geodesic equation for this new metric, simplifying consider-

ably the calculation.

As we have stated, the temporal part of the geodesic equation is given by

kη ;µk
µ = kη∇µk

µ =
d2η

dλ2
+ Γησρ

dxσ

dλ

dxρ

dλ
=
d2η

dχ2
+ Γ

η

σρ

dxσ

dχ

dxρ

dχ
= 0, (2.31)

so for the conformally transformed metric

d2η

dχ2
+ Γ̂ησρ

dxσ

dχ

dxρ

dχ
=

d

dχ
k̂η + Γ̂ηηηk̂

ηk̂η + 2Γ̂ηiηk̂
ik̂η + Γ̂ηij k̂

ik̂j

=
d

dχ
(1 + δν) + Ȧ(1 + δν)(1 + δv) + 2A,i

(
−ei − δei

)
(1 + δν)

+
[
B(i|j) + Ḋḡij + Ėij

] (
−ei − δei

) (
−ej − δej

)
=

d

dχ
δν + Ȧ− 2A,ie

i +
[
B(i|j) + Ḋḡij + Ėij

]
eiej = 0.

(2.32)

5All quantities Q related to the conformally transformed metric will be denoted by Q̂.
6The calculation of the conformally transformed Christoffel symbols is equivalent to the one

done in Annex A, without the terms involving a and its derivatives.
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Note we can rewrite
dA

dχ
=
dxµ

dχ

∂

∂xµ
A = Ȧ− eiA,i, (2.33)

where the minus sign appears due to our definition of k̂i in Eq. (2.24). Thus we

have
d

dχ
(δν + 2A) = Ȧ−

[
Bi|j + Ėij + ḡijḊ

]
eiej, (2.34)

where B(i|j)e
iej = Bi|je

iej, as it is totally symmetric.

Having proved ḡije
iej = 1, we can substitute in our expression giving

d

dχ
(δν + 2A) =

(
Ȧ− Ḋ

)
−
(
Bi|j + Ėij

)
eiej. (2.35)

Equations (2.13) and (2.35) gives us a relation between the null vector perturba-

tions and the metric perturbations. Therefore, we can use the latter to express

the result obtained in Eq. (2.10) in terms only of metric perturbations as

1+zg =

(
ao
ag

){
1 +

[
(vi −Bi) e

i − A
]g
o

+

∫ χg

χ0

dχ
[
(Ȧ− Ḋ)−

(
Bi|j + Ėij

)
eiej
]}

(2.36)

Furthermore, we can relate the affine parameter χ along the geodesic to the

comoving line of sight distance r since r(η) = a(η0)(η0−η) = η0−η and integrating

kη along the photon path gives∫ χ

χ0

dχ′
dη

dχ′
= η − η0 =

∫ χ

χ0

dχ′(1 + δν) = χ− χo +

∫ χ

χ0

dχ′δν (χ′) , (2.37)

we can see that d/dχ = −d/dr. Hence we get to the final expression

1+zg =

(
ao
ag

){
1 +

[
(vi −Bi) e

i − A
]g
o
−
∫ rg

0

dr
[
(Ȧ− Ḋ)−

(
Bi|j + Ėij

)
eiej
]}

,

(2.38)

where the integral is evaluated from the observer position at r0 = 0 to the galaxy

position rg.

We can relate the expression found in Eq. (2.38) in terms of the notation followed

11



in the original results of the ARF

1 + zg =
ao
ag

+
ao
ag

[
vie

i
]g
o
− ao
ag

{[
Bie

i + A
]g
o

+

∫ r

0

dr
[
(Ȧ− Ḋ)−

(
Bi|j + Ėij

)
eiej
]}

≡ (1 + zH) + (1 + zH)~v · n̂ + zφ = 1 + zH + zvlos + zφ,

(2.39)

with zφ referring to the terms of gravitational origin which were not calculated

in the original paper for the ARF. Hence we have recall the expression zg(r, n̂) =

zH + zvlos(r, n̂) + zφ(r, n̂) identifying


zH = ao

ag
− 1

zvlos = ao
ag

[vie
i]
g
o

zφ = −
(
ao
ag

){
[Bie

i + A]
g
o +

∫ r
0
dr
[
(Ȧ− Ḋ)−

(
Bi|j + Ėij

)
eiej
]} (2.40)

Furthermore, in a homogeneous ad isotropic universe, a(η0) = 1 = a0. How-

ever, taking into account perturbations in the conformal time at the observer’s

position due to local gravitational potential effects

a0 = a(η0 + δη0) ≈ 1 + ȧ0δη0 = 1 +H0δη0, (2.41)

with H0 = ȧ(η0)
a(η0)

the conformal hubble parameter. Including this perturbations to

the former treatment we can express Eq. (2.36) to linear order as

1 + zg =
1

ag
(1 + ∆z) (2.42)

with

∆z =
[
(vi −Bi) e

i − A
]g
o
−
∫ rg

0

dr
[
(Ȧ− Ḋ)−

(
Bi|j + Ėij

)
eiej
]

+H0δη0 (2.43)

These are the relativistic corrections to zg(r, n̂), which must be applied to Eq.

(2.2), and which will also affect the window function W (zobs − zg).
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2.2.2 Corrections to the galaxy fluctuation field δg

The other term in Eq. (2.2) affected by the relativistic corrections is the galaxy

number density ng. This corrections will be gathered in what we called the

galaxy fluctuation field δg. These corrections will be given by the convergence

and angular and radial displacements caused by the gravitational lensing effect

(16), which perturbs the observed luminosity distance DL, the corrections to

the observed physical volume and the corrections due to the underlying matter

distribution, given by the bias function.

2.2.2.1 Spatial components of the geodesic equation ki;µk
µ = 0.

In Subsection 2.2.1.2 we have solved the geodesic equation for the photon path

(kν;µk
µ = 0) for ν = 0 (temporal component). As a result, we obtained a relation

between null vector and metric perturbations which was used to express ∆z in

terms only of the latter. If we solve it now for the spatial components ν = i, it

will give us the spatial displacements due to relativistic effects. Moreover, picking

a set of coordinates such as the spherical coordinates {r, θ, φ}, we can account

in this way for the angular displacements δθ, δφ and the radial displacement δr.

This spatial perturbations are responsible of the gravitational lensing effect.

As advanced knowledge on differential geometry is required at the finals steps

of these calculations, in this subsection we will just derive the relations from the

spatial component of the geodesic equation needed to express the spatial displace-

ments in terms of the metric perturbations. The final expressions shown in Eqs.

(2.49), (2.50), (2.51) are directly taken from the results obtain by Yoo et al. in

(1), as well as Eqs. (2.56) and (2.60).

Again considering the geodesic equation for the conformally transformed metric

ĝµν , we can calculate the geodesic equation for the spatial (general) components

d2xi

dχ2
+ Γ̂iσρ

dxσ

dχ

dxρ

dχ
=

d

dχ
k̂i + Γ̂iηηk̂

ηk̂η + 2Γ̂ijηk̂
j k̂η + Γ̂ijkk̂

j k̂k

=
d

dχ

(
−ei − δei

)
+
(
A|i − Ḃi

)
(1 + δν)(1 + δν) + 2

[
1

2

(
B
|i
j −Bi

|j

)
+Ḋδij + Ėi

j

] (
−ej − δej

)
(1 + δν) +

(
Γjk +D|kδ

i
j +D|jδ

i
k̇

+ 2Ei
(j|k)

−D|iḡjk − E |ijk
) (
−ej − δej

) (
−ek − δek

)
=

d

dχ

(
−ei − δei

)
+ A|i

− Ḃi −
(
B
|i
j −Bi

|j

)
ej − 2Ḋei − 2Ėi

je
j +D|ke

iek +D|je
iej

+
(

2Ei
(j|k) − E

|i
jk

)
ejek −D|i + Γ

i

jk

(
ejek + ekδej + ejδek

)
= 0.

(2.44)
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As in the observer’s rest frame the photon propagation direction ei is constant,

and recalling Eq. (2.33)

d

dχ

(
δei +Bi + 2Dei + 2Ei

je
j
)

= A|i −B|ij ej − E
|i
jke

jek −D|i

+ Γ
i

jk

(
Bkej + ejek + 2ejδek

)
+ 2

(
Γ
i

klE
l
j − Γ

l

jkE
i
l

)
ejek.

(2.45)

In order to simplify this expression, we can assume we define the photon geodesic

under the coordinate chart (U, xµ) for an open subset U . Commonly, in general

relativity (and differential geometry in general) we used what is called standard

formalism, i.e. we express the vector and tensor components in terms of a coor-

dinate basis {∂µ}. However, we can choose another less restrictive basis on which

to define tensors. Thus if we consider the set of vectors e1, e2, e3 which form a

local tetrad basis (ea = eia∂i)
7 at χ = χ0; for e1, e2, e3 mutually orthogonal at χ0,

if they are parallelly propagated along the geodesic, they will remain orthogonal

to each other along the geodesic, and so

g(ea, eb) = gab = ḡije
i
ae
j
b = δije

i
ae
j
b. (2.46)

Hence the components of the connection (i.e. the Chrystoffel symbols) for the

spatial part of the unperturbed metric along the geodesic are Γ
i

jkX
j = 0 for any

vector field Xj under this choice of local basis8. Therefore we get a final tensorial

equation for the spatial perturbations

d

dχ

(
δei +Bi + 2Dei + 2Ei

je
j
)

= A|i −B|ij ej − E
|i
jke

jek −D|i, (2.47)

valid only for our choice of local basis.

Using this relations, as δei = − d
dχ
δxi = d

dr
δxi, the spatial perturbations can

be obtained as

δxi = −
∫ χ

χ0

dχ′δei =

∫ rg

0

drδei, (2.48)

which if we consider spherical coordinates {r, θ, φ} and recall the relations given

7The a index referring to a tetrad index, not indicative of the vector components. Notice
that here we are only considering 3 of the 4 vectors which form the tetrad, as it is sufficient to
characterize the 3-space metric ḡij .

8For more information in tetrad formalism and local basis, see (17).
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in Eqs. (2.13) and (2.47) gives rise to9

δθ = −
∫ rg

0

dr

{
[(Bi −Bi

o) + 2 (Eij − Eij
o ) ej] e

θ
i

rg

+

(
rg − r
rrg

)
∂θ
(
A−D −Bie

i − Eijeiej
)} (2.49)

δφ = −
∫ rg

0

dr

{
b(Bi −Bi

o) + 2 (Eij − Eij
o ) ej] e

φ
i

rg sin θ

+

(
rg − r
rrg sin2 θ

)
∂φ
(
A−D −Bie

i − Eijeiej
)} (2.50)

δr = χo − χs + eiδx
i − r̄ = δηo +

∫ rg

0

dr
(
A−D −Bie

i + Eije
iej
)
, (2.51)

with eφi e
θ
i unit directional vectors defined as

eφi = ∂θe

eθi = ∂φe.
(2.52)

2.2.2.2 Convergence κ and corrections to the luminosity distance δDL

Having the angular displacements δθ and δφ, we can express the galaxy angular

position as ŝ = [θ+δθ, (φ+δφ) sin(θ+δθ)] (note that trivially n̂ ≡ e = (θ, φ sin(θ))

in spherical coordinates). Due to gravitational lensing, a source at high redshift

can become magnified or de-magnified (18). The degree of magnification is related

to the convergence κ, which describes the change in the solid angle as part of the

distortion in a physical volume (not directly observable), and hence is given by

the determinant of the deformation matrix

(
∂ŝ

∂e

)
=

(
1 + ∂θδθ

(1+∂θδθ)
φ cos(θ)

(φ+ δφ)(1 + ∂θδθ) cos(θ + δθ)
(sin(θ+δθ)(1+∂φδφ)

sin(θ)
+ (φ+δφ)(1+∂θδθ) cos(θ+δθ)

φ cos(θ)

)
(2.53)

which up to first order leads to∣∣∣∣∂ŝ

∂e

∣∣∣∣ =
sin(θ + δθ)

sin(θ)
[1 + ∂θδθ + ∂φδφ] = 1 + (cot(θ) + ∂θ) δθ + ∂φδφ ≡ 1− 2κ,

(2.54)

9The following results have been taken directly from the work by Yoo et al., as stated at the
beginning of this section.
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where we have used the fact that up to first order sin(θ+ δθ) = sin(θ) + cos(θ)δθ.

Related to these perturbations, we will also have a perturbation in the luminosity

distance. In cosmology, there are different ways of describing distances, as it was

stated in Chapter (1). The luminosity distance DL defines it for a given source

with known luminosity in the rest frame of the observer. As the flux of source

galaxies is affected by the defined angular displacements, for DL(z) = (1 + z)r(z)

the luminosity distance in an homogeneous universe (19) we can express DL tak-

ing into account perturbations as

DL = DL(z) (1 + δDL) , (2.55)

with the expression for δDL taken directly from the results obtained by Yoo et

al. (1)

δDL =
[
(vi −Bi) e

i − A
]
g
− 1 + zg

Hrg
∆z

+ 2

∫ rg

0

dr
A

rg
−
∫ rg

0

dr
r

rg

[
(Ȧ− Ḋ)−

(
Bi|j + Ėij

)
eiej
]

−
∫ rg

0

dr
(rg − r) r

2rg
δ
(
R̂µν k̂

µk̂ν
)

+

(
H0 +

1

rg

)
δη0,

(2.56)

with

δ
(
R̂µν k̂

µk̂ν
)

= −k2

[
A−

(
D +

E

3

)
+

(
Ḃ

k
− Ë

k2

)]
− 2

(
D̈ +

Ë

3

)

+ 4

(
Ḋ +

Ė

3

)
|i

ei −

[
A+

(
D +

E

3

)
+

(
Ḃ

k
− Ë

k2

)]
|ij

eiej

+
(
ËT
ij + k2ET

ij

)
eiej

(2.57)

where E and B are the scalar parts of Eij and Bi respectively; and ET
ij is the

transverse part of Eij
10.

2.2.2.3 Corrections to the physical volume occupied by the observed

source galaxies.

If we consider now the volume occupied by the observed galaxy at xµ(χg) ≡ xµg
as dV , we can express it in a covarinat way for a small interval of the observed

10More information on vector (and similarly for tensors) decomposition into transverse and
longitudinal parts can be found at (20).
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redshift dz and a solid angle dΩ as

dV =
√
−gεµνρσuµg

∂xνg
∂z

∂xρg
∂θ

∂xσg
∂φ

dzdθdφ ≡ dV̄ (1 + δV ), (2.58)

where
√
−g = a4(1 +A+ 3D) is the metric determinant, dV̄ refers to the volume

in an homogeneous, isotropic universe and δV accounts for the perturbations to

the physical volume due to the already defined redshift perturbation in Eq. (2.36)

and the spatial corrections in Eqs. (2.49, 2.50, 2.51). As dV̄ can be written in

terms of dz and dΩ as

dV̄ =
r2dzdΩ

H(1 + z)3
, (2.59)

the expression for δV can be found after some tedious calculus and so we can

express11

dV =
r2dzdΩ

H(1 + z)3

(
1 + A+ 2D +

(
vi −Bi

)
ei + Eije

iej − (1 + z)∂z∆z

−2
1 + z

Hr
∆z −∆z − 2κ+

1 + z

H

dH

dz
∆z + 2

δr

r

)
≡ dV̄ (1 + δV ).

(2.60)

Therefore, we can express the number of galaxies within the already define volume

as

dN(z, n̂) = npdV̄ = ngdV ⇒ ng = np(1 + δV ), (2.61)

where np is the physical number density and ng the observed galaxy number

density of the source galaxies. Here we have justified the expression introduced

in Eq. (2.4) and hence demonstrate the covariant form of the galaxy number

density. However, further corrections to ng have to be considered.

2.2.2.4 Corrections due to selection effects.

As it was mentioned in Chapter (1), we must take into account selection effects

which limit the galaxy sample up to a threshold apparent magnitude or, equiv-

alently, a threshold flux Fthr. Therefore the physical number density must be

modified to take into account only galaxies with observed flux greater than Fthr

np →
∫ ∞
Fthr

np
dF

dF . (2.62)

Recalling the definition of the luminosity distance, we can define a luminosity

threshold for the background as Lthr = 4πD2
L(z)Fthr, and assuming that the

11Again, as advanced knowledge on differential geometry was needed for this derivation, the
result was directly taken following the work by Yoo et al. (1).

17



galaxy luminosity function follows a power law of the type dnp/dL ∝ L−s with

s ≥ 1, we can rewrite Eq. (2.62) as∫ ∞
Fthr

dF dL
dF

dnp
dL

= 4πD2
L(z)Fthr

∫ ∞
Fthr

dF dnp
dL

= 4πD2
L(z)Fthr

∫ ∞
Lthr

dL

4πD2
L(z)
CL−s

= C 1

s− 1
L1−s
thr ≡ np(Lthr),

(2.63)

where C is a constant. Here np(Lthr) defines the cumulative number density for

galaxies with luminosity greater than Lthr without taking into account relativistic

effects.

Incorporating the perturbations to the luminosity distance we get the corrected

DL defined in Eq. (2.55), so Lthr = 4πD2
L(1 + δDL)2Fthr. Hence np(Lthr) has to

be modified as

np(Lthr)→
C

s− 1

[
4πD2

L(1 + δDL)2Fthr

]1−s
=
C

s− 1
[Lthr(1 + 2δDL)]1−s (2.64)

to linear order in perturbations. Expanding now the final expression

C
s− 1

[Lthr(1 + 2δDL)]1−s =
C

s− 1
L1−s
thr

[
1 + (1− s)2δDL

]
≡ np(Lthr) [1 + 2(1− s)δDL] .

(2.65)

Defining the slope of the luminosity function in magnitude as p = d log10 np(M)

dM
, if

we can express M = constant −2.5 log10 (L/L0) (21), thus we have p = 0.4(s−1)

and so we can express the correction to the number density due to selection effects

as np (Lthr) (1− 5pδDL), and so

ng = np(1 + δV ) (1− 5pδDL) (2.66)

2.2.2.5 Corrections due to bias function.

We can also express corrections to the physical number density due to fluctu-

ations in the matter number density. Galaxies tend to be formed on overdense

regions of space, so for a mean number density n̄p, we can express np = n̄p(1+δn),

with δn the galaxy density contrast field. As it was presented in Chapter 1, the

bias function relates the galaxy density contrast with the matter density contrast

δm. In (1), Yoo et al. define the bias on the linear bias approximation so that

the physical number density of the observed galaxy is some function of the local

matter density np = f(ρm).

18



However, as stated by Challinor and Lewis (22), they define a linear bias re-

lation considering the definition of the matter density parameter Ωm = ρ̄m,0/ρc

with ρc = 8πG
3H2

0
and ρm ∝ a−1 ∝ (1 + z) for non-relativistic matter. Hence,

they consider the linear relation ρ̄m(z) = (3H2
0/8πG) Ωm(1 + z) at the observed

redshift z. This is a background quantity but defined at the observed redshift

z = 1/a(1 + ∆z) rather than at its background value z̃H = 1/a, so defining the

bias over this quantity singles out the observational gauge known as equal red-

shift gauge or zero-redshift perturbation gauge (∆z = 0) (23). Therefore, as the

bias is related to the structure formation itself and not to the way we observe it,

it seems incorrect to define it for an observational gauge, so this choice may not

be the ideal.

Gauges in cosmology

Before continuing with our proposal for the bias, we will introduce a brief expla-

nation of gauges in cosmology. From considering a perturbation approach, some

gauge degrees of freedom arises in the Lagrangian of a relativistic theory of grav-

ity, as relativistic gravity is a constrained system and thus there exist constrained

equations relating variables only algebraically (24). These degrees of freedom can

be eliminated by working under a specific gauge imposing some gauge conditions.

In this way, we could consider e.g. the synchronous gauge taking A = 0 in the

general FLWR metric considered in Eq. 2.1 or the uniform-density gauge for

δ = 0.

However, different gauges could be preferred depending on the problem at hand,

so fixing a gauge condition could make us lose some advantages of other gauges

in a particular problem. Following that approach, Bardeen in 1980 (25) propose

a gauge ready method, which allow us to work without imposing any gauge con-

dition at early stages of the calculation, and therefore the use of various gauge

conditions in different situations.

As was introduced in Chapter 1, we have been following this gauge-ready method

and working without imposing any gauge condition yet. According to Bardeen

“Since the background 3-space is homogeneous and isotropic, the perturbation in

all physical quantities must in fact be gauge invariant under purely spatial gauge

transformations” (26). Following this approach, we can express scalar-type per-

turbations in a spatially gauge-invariant form but without fixing the temporal

gauge condition, and so we can implement this temporal gauge condition later

depending on the situation.
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For our proposal for the bias, we can write the gauge-invariant combination12

δv ≡ δ −
˙̄np
n̄p

v

k
, (2.67)

where k refers to the wavenumber of the observed photons and v is the scalar part

of the peculiar velocity vi = vis + viv , as vis = v,i and ∇ · vv = 0 (28). Moreover,

n̄p represents the average physical number density of observed galaxies. For a rel-

ativistic treatment of the bias, we will expect relativistic corrections arising from

the Newtonian definition. However, if we consider an orthogonal, comoving and

synchronous gauge, the relativistic Poisson equation coincides with the classical

description, and hence no relativistic corrections are needed (29). Therefore, the

bias (as it is classically defined) is only meaningful on an orthogonal, synchronous

(A = 0) and comoving (v/k = 0) gauge. In such a gauge, if we consider Eq. (2.67)

for the galaxy density contrast δn

δv = δsynn = bδsyn
m (2.68)

with the linear bias parameter b and δsyn
m the matter density contrast in this gauge.

As δv is gauge-invariant , for any other gauge (e.g. the Newtonian-longitudinal

gauge) we have

δv = δn −
˙̄np
n̄p

v

k
= δsynn = bδsyn

m , (2.69)

and so as our ansatz for the bias we propose

δn = bδsyn
m +

˙̄np
n̄p

v

k
. (2.70)

After considering all these correction, we can finally write the galaxy number

density as

ng = n̄p(1 + δV )(1− 5pδDL)(1 + δn) ≡ n̄p(1 + δg), (2.71)

so up to linear order we get

δg = bδsynm +
˙̄np
n̄p

v

k
−
(

2
1 + zH
Hr

− 1 + zH
H

dH

dz

∣∣∣∣
z=z′

+ 1 + (1 + zH)∂z

)
∆z

+ A+ 2D + 2
δr

r
− 5pδDL − 2κ+

(
vi −Bi

)
ei + Eije

iej.

(2.72)

12Gauge-invariant implies it remains unchanged after a gauge transformation, i.e. after a
coordinate transformation of the form xµ → x̃µ = xµ + ξµ. More information on gauge trans-
formations can be found at (27).
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3 Results

Abstract:
Tomando las expresiones obtenidas en el caṕıtulo anterior, se escribe
la expresión final para las ARF teniendo en cuenta las correcciones
relativistas, resultado fundamental de nuestro trabajo. Teniendo esta
ecuación en su expresión final, se procede a expresar también en los
gauges synchronous y Newtoniano, con el fin de mostrar la utilidad
del método gauge-ready.

Having applied the relativistic corrections to both zg and δg, we can rewrite Eq.

(2.2) in a general form for as

z̄ + δz(n̂) =

∫
dr r2n̄p(r) (1 + δg)

1
ag

(1 + ∆z − ag)W (zobs − 1
ag

(1 + ∆z − ag))∫
dr r2n̄p(r) (1 + δg))W (zobs − 1

ag
(1 + ∆z − ag))

.

(3.1)

Given that 1+ z̃H = 1
ag
⇒ z̃H = 1

ag
(1−ag), with z̃H the gauge-dependent redshift

parameter in a homogeneous and isotropic universe, we can substitute it in the

expression.1 Furthermore, if we define the normalised functional

F [Y ] =

∫
drr2n̄p(r)W (zobs − z̃H)Y (r)∫
drr2n̄p(r)W (zobs − z̃H)

=
1

N

∫
drr2n̄p(r)W (zobs − z̃H)Y (r)

(3.2)

with the normalisation constant N referring to the average number of galaxies

under the considered Gaussian shell W , we can express Eq. (3.1) in an easier

way, and expand it to first order in perturbation theory2

z̄ + δz(n̂) = F [z̃H ] + F [δg (z̃H −F [z̃H ])]

+ F
[

∆z

ag

(
1− d lnW

dz

∣∣∣∣
z=z′

(z̃H −F [z̃H ])

)]
+O

(
2nd
)
,

(3.3)

where d lnW
dz

is evaluated at z′ = zobs − z̃H . This is a general expression for the

ARF without having fixed a gauge condition yet, and hence in gauge-ready form.

1The tilde in z̃H is used to differentiate it from the already defined zH = a0/a, as we have
seen a0 = a(η0 + δη0) (see Eq. (2.41)).

2Calculations are included in Annex B.
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This is the main result of our work, and will be discussed and particularized for

some common gauges in the next section.

3.1 Particularization for specific gauges

As was stated at the end of the last section, we have found an expression for the

ARF in a gauge-ready form. If we identify F [z̃H ] as the redshift monopole z̄ in

Eq. (3.3), we get that we can write the ARF to linear order in perturbations as

δz(n̂) = F [δg (z̃H −F [z̃H ])] + F
[

∆z

ag

(
1− d lnW

dz

∣∣∣∣
z=z′

(z̃H −F [z̃H ])

)]
. (3.4)

Being the principal advantage of expressing Eq. (3.4) in a gauge-ready form,

we can characterize it for different gauges. Two of the most common gauges in

cosmology when working on linear perturbation theory are the synchronous gauge

and the conformal Newtonian (or longitudinal) gauge. Here we will present our

solutions for these two gauges. As F [z̃H ] and the window function W (zobs − z̃H)

are gauge-invariant, when particularizing for the two gauges we will only account

for modifications in the defintions of ∆z and δg.

3.1.1 Synchronous gauge

First introduced by Lifshitz in 1946 (30) is defined by the conditions A = 0 and

Bi = 03. Hence, the general FLWR metric in Eq. (2.1) is modified so that

ds2 = a2(η)
{
−dη2 + (ḡij + hij) dx

idxj
}
, (3.5)

with hij = 2(Dḡij + Eij). Therefore, the corrections to the observed redshift are

modified too as

∆z =

∫ rg

0

dr
(
Ḋ + Ėije

iej
)

+H0δη0. (3.6)

Following the classical notation adopted in Eq. (3.5)

hije
iej = 2(Dḡije

iej + Eije
iej) = 2(D + Eije

iej), (3.7)

where we used again ḡije
iej = 1. As ei is constant along the geodesic we get

∆z =
1

2

∫ rg

0

dr ḣije
iej +H0δη0. (3.8)

3This, in fact, implies it is also a comoving gauge, so we also have v/k = 0. See (28) for
more information.
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With respect to δg, it will result in

δg = bδm −
(

2
1 + zH
Hr

− 1 + zH
H

dH

dz

∣∣∣∣
z=z′

+ 1 + (1 + zH)∂z

)
(

1

2

∫ rg

0

dr ḣije
iej +H0δη0

)
+ 2D + 2

δr

r
− 5pδDL − 2κ+ Eije

iej.

(3.9)

Without loss of generality, we can take Eij to be traceless, and hence identify

D ≡ h ≡ hii, i.e. with the trace part of the synchronous perturbation hij, which

characterizes the scalar mode of the metric perturbations in this gauge (31).

Hence we can rewrite Eq. (3.9) in this notation as

δg = bδm −
1

2

(
2

1 + zH
Hr

− 1 + zH
H

dH

dz

∣∣∣∣
z=z′

+ 1 + (1 + zH)∂z

)
(

1

2

∫ rg

0

dr ḣije
iej +H0δη0

)
+ h+

1

2
hije

iej + 2
δr

r
− 5pδDL − 2κ.

(3.10)

Note here that we should also characterize the expressions for the spatial displace-

ments δr, δθ, δφ, the corrections to the luminosity distance δDL and the conver-

gence κ, which appear implicitly in the definition of δg. However, as these results

are presented only as examples of the advantages of the gauge-ready method in

particularizing for different gauges, we will avoid to show them as it will not add

any more information.

3.1.2 Conformal-Newtonian gauge

Also known as longitudinal gauge, it was advocated by Mukhanov, Feldman and

Brandenberger in 1992 (32). It is a particularily simple metric since tensor and

vector perturbation modes are not considered (i.e. we impose the gauge condi-

tions Bi = 0 and Eij=0). Hence we get a metric applicable only for the scalar

mode of the metric perturbations and characterized by two scalar fields ψ ≡ A

(which corresponds to the gravitational potential in the Newtonian limit, and

thus the name) and φ ≡ −D

ds2 = a2(η)
{
−(1 + 2ψ)dη2 + (1− 2φ)ḡijdx

idxj
}
. (3.11)

In this way we get a diagonal metric tensor gµν which describes the structure of

the Universe (inferred by the scalar perturbations only). It is easier to express

the results for ∆z and δg in this gauge

∆z = ψo − ψg −
∫ rg

0

dr(ψ̇ + φ̇) +H0δη0. (3.12)
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δg = bδsynm +
˙̄np
n̄p

vN
k
−
(

2
1 + zH
Hr

− 1 + zH
H

dH

dz

∣∣∣∣
z=z′

+ 1 + (1 + zH) ∂z

)
(
ψo − ψg −

∫ rg

0

dr(ψ̇ + φ̇) +H0δη0

)
+ ψ − 2φ+ 2

δr

r

− 5pδDL − 2κ+ viei.

(3.13)

with vN the Newtonian velocity. Again for this gauge we should also characterize

the expressions for δr, δθ, δφ, δDL and κ. Note here we can identify some terms,

like the usual Sachs Wolfe effect (ψ0 − ψg) accounting for the difference in the

gravitational potential at photon emission and reception, or the integrated Sachs-

Wolfe effect (
∫ rg

0
dr(ψ̇+ φ̇)), which traces the net photon energy gain/loss as light

crosses time evolving gravitational potentials (33).
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4 Conclusions

Starting from a Newtonian definition of the ARF, we have taken into account the

relativistic effects under a gauge-ready approach. Up to linear order in pertur-

bations, we have derived the corrected expressions for the observed redshift and

number density of galaxies in a generic form, thus yielding a expression for the

ARF in terms of quantities that are invariant under coordinate transformations.

Once these expressions have been obtained, we could express the ARF to linear

order in Eq. (3.4), with a fairly similar form to the one obtained originally by

Hernández-Monteagudo et al. but accounting for the new effects arising from the

relativistic treatment. Finally, in order to obtain a more physically intuitive form

of the expressions and show the advantages of the gauge-ready method, the final

Eq. (3.4) have been formulated in the synchronous and Newtonian gauges.

As a purely analytical work, no conclusions about the amount of information

ARF can reveal can be obviously extracted from our results. Further numerical

work must be performed in order to estimate the amount of cosmological infor-

mation encoded in the ARF in comparison with the ADF in regard of the general

relativistic corrections. However, here we have succeeded in writing the ARF in

a fully relativistic way, which can be (and has been) particularized for different

gauges.

Some of that work have already been performed in the internship which took place

between March and May of this year at IAC, supervised by Carlos Hernández-

Monteagudo. Under a different perspective, working directly in the Newtonian-

gauge following a similar approach from Lewis and Challinor (22), we were able

to obtain the C` for the ARF in some simple cases, equivalent to the ones ob-

tained by Hernández-Monteagudo et al.. In this way, we were able to check the

validity of our results (see Figures 4.1 and 4.2). Further work on the matter is

being developed to obtain the C` including all corrections, and hence reveal all

information ARF has to offer as a cosmological probe. We expect this work to

be submitted to a Q1 refereed journal in the upcoming months.
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Figure 4.1: Angular power spectra from ARF in real and redshift space for zobs =
1, σz = 0.01 and b = 1, obtained modifying the cosmological code CAMB sources

integrated in CAMB (34). This was the main result of our work at the IAC, showing
the correspondence with the classical results displayed in Figure 4.2.
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Figure 4.2: Comparison of the angular power spectra from ADF (left panels) and
from ARF (middle panels) obtained in (2) by Hernández-Monteagudo et al.. For
the purpose of showing the correspondance with our results, we should focus on
the top middle panel, which displays the angular power spectra from ARF in real
(solid black) and redshift (solid red) space for zobs = 1, σz = 0.01 and b = 1.
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Annex A: Christoffel symbols for the per-

turbed FLWR metric

The Christoffel symbols are given by

Γµρσ =
1

2
gρν (gνp,σ + gσν,ρ − gρσ,ν) . (4.1)

First of all, we can obtain the inverse metric tensor components using gµνgνρ = δµρ
to first order

gηη = −a−2(1 + 2A), gηi = −a−2Bi, gij = a−2
(
ḡij(1− 2D)− 2Eij

)
. (4.2)

Hence, for the FLWR metric defined in (2.1) we can obtain the general expression

for Γµρσ to linear order in a covariant form (in terms only of tensors):

• µ = η, ρ = η, σ = η

Γηηη =
1

2
gηη (gηη,η) +

1

2
gηi (giη,η + gηi.η,−gηη,i) =

1

2

{
− 1

a2
(1 + 2A)(

−2aȧ(1 + 2A)− 2a2Ȧ
)
− 1

a2
Bi
(
−4aȧBi − 2a2Ḃi + a22A,i

)}
=
ȧ

a
+

Ȧ

(1 + 2A)
+ 2

ȧ

a
BiBi + ḂiBi −BiA,i =

ȧ

a
+ Ȧ(1− 2A)⇒

⇒ Γηηη =
ȧ

a
+ Ȧ.

(4.3)
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• µ = η, ρ = η, σ = i

Γηηi =
1

2
gηη (gηη,i) +

1

2
gηj (gij,η + gηj,i,−gηi,j) =

1

2

{
− 1

a2
(1 + 2A)

(−a22A,i)−
1

a2
Bj

[
2aȧ[(1 + 2D)ḡij + 2Eij] + a2(2Ḋḡij + 2Ėij)

− a2(Bj,i −Bi,j)

]}
= A,i(1− 2A)− ȧ

a
Bj ḡij ⇒

⇒ Γηηi = A,i −
ȧ

a
Bi.

(4.4)

• µ = η, ρ = i, σ = j

Γηij =
1

2
gηη (giη,j + gηj,i − gij,η) +

1

2
gηk (gkj,i + gik,j,−gij,k) =

1

2

{
− 1

a2
(1 + 2A)

[
−a2(Bj,i +Bi,j)− 2aȧ [(1 + 2D)ḡij + 2Eij]

− a2
(

2Ḋḡij + 2Ėij

)]
− 1

a2
Bka2

[
2D,iḡkj + (1 + 2D)ḡkj,i

+2Ekj,i + 2D,j ḡik + (1 + 2D)ḡik,j + 2Eik,j − 2D,kḡij

− (1 + 2D)ḡij,k − 2Eij,k

]}
= B(i,j) +

ȧ

a
ḡij + 2

ȧ

a

(
Dḡjj + Eij

)
− 2

ȧ

a
ḡijA+ Ḋḡij + Ėij −

1

2
Bk (ḡkj,i + ḡik,j − ḡij,k) .

(4.5)

As we can rewrite

1

2
Bk (ḡkj,i + ḡik,j − ḡij,k) =

1

2
ḡlkBl (ḡkj,i + ḡik,j − ḡij,k) = Γ

l

ijBl (4.6)

and Bi|j = Bi,j − Γ
l

ijBl, then

B(i,j) =
1

2
(Bi,j+Bj,i) =

1

2
(Bi|j+Γ

l

ijBl+Bj|i+Γ
l

jiBl) = B(i|j) +Γ
l

ijBl, (4.7)

as the Christoffel symbols are symmetric in their lower indices (Γ
l

ijBl =

Γ
l

jiBl). Hence we have

Γηij = B(i|j) +
ȧ

a
ḡij + 2

ȧ

a
(Dḡij + Eij − ḡijA) + Ḋḡij + Ėij. (4.8)
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• µ = i, ρ = η, σ = η

Γiηη =
1

2
giη (gηη,η) +

1

2
gij (gηj,η + gjη,η,−gηη,j) =

1

2

{
− 1

a2
Bi

[
−2aȧ(1 + 2A)− 2a2Ȧ

]
+

1

a2

[
ḡij(1− 2D)− 2Eij

][
−4aȧBj

− 2a2Ḃj + 2a2A,j

]}
=

1

2

(
2
ȧ

a
Bi − 4

ȧ

a
Bi − 2Ḃi + 2A,i

)
,

(4.9)

which as A is a scalar, A,i = A|i and so it results in

Γiηη = A|i − Ḃi − ȧ

a
Bi. (4.10)

• µ = i, ρ = η, σ = j

Γiηj =
1

2
giη (gηη,j) +

1

2
gik (gηk,j + gjk,η − gηj,k) =

1

2

{
− 1

a2
Bi(−a22A,j)

+

[
1

a2
ḡik(1− 2D)− 2Eik

] [
−a2Bk,j + 2aȧ [(1 + 2D)ḡjk + 2Ejk]

+ a2
(

2Ḋḡjk + 2Ėjk

)
+ a2Bj,k

]}
=

1

2

{
−Bi

,j + 2
ȧ

a

[
(1 + 2D)δij + 2E i

j

]
+2
(
Ḋδij + 2Ė i

j

)
+B ,i

j + 2
ȧ

a

(
−2Dδij − 2Ei

j

)}
=

1

2

(
B,i
j −Bi

,j

)
+
ȧ

a
δij

+
(
Ḋδij + Ėi

j

)
.

(4.11)

As

B,i
j −Bi

,j = ḡil (Bj,l −Bl,j) = ḡil
(
Bj|l + Γ

m

jlBm −Bl|j − Γ
m

ljBm

)
= B

|i
j −Bi

|j

(4.12)

we finally can write Γiηj as

Γiηj =
1

2

(
B
|i
j −Bi

|j

)
+
ȧ

a
δij + Ḋδij + Ėi

j. (4.13)

• µ = i, ρ = j, σ = k

Γijk =
1

2
giη (gjη,k + gηk,j − gjk,η) +

1

2
gil (gjl,k + glk,j,−gjk,l) . (4.14)
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At this step, in order to simplify calculations, we can define Cij = Dḡij+Eij,

and thus

Γijk =
1

2

{
− 1

a2
Bi
[
−a2 (Bj,k +Bk,j)− 2aȧ (ḡjk + 2Cjk)− a22Ċjk

]
+

1

a2

(
gil − 2Cil

)
a2 [2Cjl,k + ḡjl,k + 2Clk,j + ḡlk,j − 2Cjk,l − ḡjk,l]

}

=
1

2

[
2
ȧ

a
Biḡjk + 2

(
C i
j,k + Ci

k,j − C
,i
jk

)
+ ḡil (ḡjl,k + ḡlk,j − ḡjk,l)

− 2Cil (ḡjl,k + ḡlk,j − ḡjk,l) =
ȧ

a
Biḡjk + C i

j,k + Ci
k,j − C

,i
jk + Γ

i

jk

− Ci
mḡ

ml (ḡjl,k + ḡjl,k − ḡjl,k)

]
.

(4.15)

As we can express

C i
j,k + Ci

k,j − C
,i
jk = gil (Cjl,k + Clk,j − Cjk,l) =

ḡil
(
Cjl|k + Γ

m

kjCml + Γ
m

klCjm + Clk|j + Γ
m

jkCml + Γ
m

jlCkm − Cjk|l
−Γ

m

ljCkm − Γ
m

lkCjm
)

= Ci
j|k + Ci

k|j + 2Γ
m

jkC
i
m − C

|i
jk

= 2Ci
(j|k) + 2Γ

m

jkC
i
m − C

|i
jk

(4.16)

and also taking into account that Cij is symmetric and

Ci
mḡ

ml (ḡjl,k + ḡlk,j − ḡjk,l) = 2Ci
mΓ

m

jk, (4.17)

we can finally express Γijk to first order as

Γ
i

jk =
ȧ

a
Biḡjk + Γ

i

jk + 2Ci
(j|k) − Cjk |i, (4.18)

which if we further decompose Cij into Eij and D we recover the expression

Γijk = Γ
i

jk +
ȧ

a
ḡjkB

i +D|kδ
i
j +D|jδ

i
k + 2Ei

(j|k) −D|iḡjk − E
|i
jk. (4.19)
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Annex B: Expansion of the relativistic

expression for the ARF

As was introduced in Eq.(2.2), the expression for the ARF given by Hernández-

Monteagudo et al. (2) is

z̄ + δz(n̂) =

∫
dr r2n̄p(r) (1 + δg(r, n̂)) zg(r, n̂)W (zobs − zg)∫

dr r2n̄p(r) (1 + δg(r, n̂))W (zobs − zg)
. (4.20)

Now this can be expanded to first order in perturbations accounting for the

definition of zg as

1 + zg =
1

ag
(1 + ∆z)⇒ zg =

1

ag
(1 + ∆z − ag), (4.21)

and so

z̄ + δz(n̂) =

∫
dr r2n̄p(r) (1 + δg)

1
ag

(1 + ∆z − ag)W (zobs − 1
ag

(1 + ∆z − ag))∫
dr r2n̄p(r) (1 + δg)W (zobs − 1

ag
(1 + ∆z − ag))

.

(4.22)

Now we can expand the window function to first order as

W (zobs −
1

ag
(1 + ∆z − ag)) = W

(
zobs −

1

ag
(1− ag)

)
− dW

dz

∣∣∣∣
z=z′

∆z

ag

+O(2nd) = W (zobs − z̃H)

(
1− d lnW

dz

∣∣∣∣
z=z′

∆z

ag

)
,

(4.23)

where we have use the definition of z̃H as the background Hubble parameter

(1 + z̃H = 1
ag

) and d lnW
dz

evaluated at z′ = zobs − z̃H . Now for the numerator of

Eq.(4.22)∫
dr r2n̄p(r) (1 + δg)

(
z̃H +

∆z

ag

)
W (zobs − z̃H)

(
1− d lnW

dz

∣∣∣∣
z=z′

∆z

ag

)
=

∫
dr r2n̄pz̃HW (zobs − z̃H) +

∫
dr r2n̄pδgz̃HW (zobs − z̃H)

+

∫
dr r2n̄p

∆z

ag
W (zobs − z̃H)

−
∫
dr r2n̄pz̃HW (zobs − z̃H)

(
1− d lnW

dz

∣∣∣∣
z′

∆z

ag

)
(4.24)
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and for the denominator∫
dr r2n̄p(r) (1 + δg)W (zobs − z̃H)

(
1− d lnW

dz

∣∣∣∣
z′

∆z

ag

)
=

∫
dr r2n̄pW (zobs − z̃H) +

∫
dr r2n̄pδgW (zobs − z̃H)

−
∫
dr r2n̄pW (zobs − z̃H)

d lnW

dz

∣∣∣∣
z′

∆z

ag
.

(4.25)

Now in terms of the normalised functionals F [Y ] defined in Eq. (3.2), as we can

rewrite Eq. (4.26) identifying N =
∫
dr r2n̄pW (zobs − z̃H),∫

dr r2n̄p(r) (1 + δg)W (zobs − z̃H)

(
1− d lnW

dz

∣∣∣∣
z′

∆z

ag

)
= N

[
1 +

1

N

(∫
dr r2n̄pδgW (zobs − z̃H)

−
∫
dr r2n̄pW (zobs − z̃H)

d lnW

dz

∣∣∣∣
z′

∆z

ag

)]
,

(4.26)

we then have

z̄ + δz =
F(z̃H) + F(z̃Hδg) + F

(
∆z
ag

)
−F

(
z̃H

d lnW
dz

∣∣
z′

∆z
ag

)
1 + F(δg)−F

(
d lnW
dz

∣∣
z=z′

∆z
ag

)
=

{
F(z̃H) + F(z̃Hδg) + F

[
∆z

ag

(
1− d lnW

dz

∣∣∣∣
z′

)]}[
1−F(δg)

+ F
(
d lnW

dz

∣∣∣∣
z=z′

∆z

ag

)]
= F(z̃H) + F(z̃Hδg)−F(z̃H)F(δg)

+ F(z̃H)F
(
d lnW

dz

∣∣∣∣
z=z′

∆z

ag

)
+ F

[
∆z

ag

(
1− d lnW

dz

∣∣∣∣
z′

)
z̃H

]
= F(z̃H) + F [δg(z̃H −F(z̃H))] + F

{
∆z

ag

[
1− d lnW

dz

∣∣∣∣
z′

(z̃H −F(z̃H)

]}
.

(4.27)

Hence we have obtained the expression of Eq. (3.4) expanding Eq. (2.2) to first

order in perturbations.
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