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I am born into an environment – I know not whence I came nor whither I go
nor who I am. This is my situation as yours, every single one of you. The fact that
everyone always was in this same situation, and always will be, tells me nothing.
Our burning question as to the whence and whither – all we can ourselves observe
about it is the present environment. That is why we are eager to find out about
it as much as we can. That is science, learning, knowledge; it is the true source of
every spiritual endeavor of man. We try to find out as much as we can about the
spatial and temporal surroundings of the place in which we find ourselves put by
birth. And as we try, we delight in it, we find it extremely interesting (may that
not be the end for which we are there?)

Ewin Scrhödinger, ‘Science and Humanism’



Me gustaría agradecer a mi tutor por su dedicación durante todo el proyecto, así como a mi
familia, por su apoyo en todas las etapas de este viaje.



We optimize a convolutional neural network, intending to study an astrophysical process
known as ‘blue nuggets’ (BN), which consists of a compaction followed by a central quenching
that occurs in young galaxies at high redshifts. This network is evaluated with mock ‘observed’
images of galaxies at three phases of evolution (Pre-BN, BN and Post-BN), generated by the
zoom-in hydro-cosmological simulation VELA. We then use this to classify galaxies from the
TNG50 simulation in these three phases, and finally, we study their physical properties such
as the redshift, the effective radius and the star formation rate (SFR), as well as the masses
of gas, of stars, and of the central supermassive black holes. The network successfully detects
this compaction phase in the new simulation, consistent with the features observed in VELA
galaxies. We highlight the existence of a temporal sequence, together with the fact that the
BN phase forms stars while the Post-BN does not. Furthermore, the BN phase is associated
with a gas mass peak at z ∼ 2 and with a smaller radius.

Key Words: cosmology - galaxies: evolution - galaxies: fundamental parameters - galaxies:
high-redshift - galaxies: quenching
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El objetivo del trabajo es optimizar una red neuronal convolucional (CNN), para extraer
información relativa a una posible fase de la evolución de las galaxias en el Universo temprano,
denominada compactación o ‘blue nuggets’ (BN), a la que sigue una extinción (se frena la
formación de estrellas). Esta técnica de procesamiento y clasificación de imágenes ha sido par-
ticularmente exitosa en la astrofísica, una disciplina en la que no son viables los experimentos
controlados y que por ende se basa casi exclusivamente en la observación. Las nuevas genera-
ciones de telescopios (Euclid, LSST, JWST), unidas a todos los proyectos pasados y actuales,
contribuyen a una cantidad de datos sin precedentes, imposibles de procesar con métodos tradi-
cionales. Por esta razón, el empleo de nuevos algoritmos es vital para el progreso, en particular
en la rama de la evolución de las galaxias, donde este está condicionado por las escalas tempo-
rales involucradas, y por la degeneración entre los observables y los procesos físicos.

El proyecto consiste en optimizar el modelo de CNN presentado en [Huertas-Company et al.,
2018], evaluándolo con galaxias jóvenes a altos redshifts simuladas por la tercera generación de
la simulación hidrodinámica VELA, que clasificamos en tres fases: la Pre-BN (caracterizada
por una apariencia grumosa), la BN (la compactación) y la Post-BN (la extinción central).
Estas galaxias reproducen las características de CANDELS al ser procesadas con la respuesta
al impulso (PSF por sus siglas en inglés), y el error del HST. El entrenamiento y evaluación de
la CNN se realiza con 10.310 imágenes de 28 galaxias en el rango 1.0 . z . 2.2 (generadas con
diferentes orientaciones de la cámara y en los tres filtros F160W, F125W, y F105W). Una vez
se obtiene una mejora significativa al modificar los hiperparámetros de la red (como el número
de neuronas de las capas o el ‘dropout’), se procede a clasificar imágenes de TNG50. Esta sim-
ulación, aunque presenta menor resolución (70-140 pc frente a los 17-35 pc de VELA), recoge
un conjunto mucho más extenso de galaxias, incluyendo un mayor rango de masas, así como
AGN, por lo que se emplea para estudiar las limitaciones de VELA, ya que además cuenta con
modelos de sub-resolución distintos. Trabajamos con 11.047 imágenes de 10.803 galaxias en el
rango 0.5 . z . 3.0 con log (M∗/M�) > 9.0 en los mismos tres filtros.

Así, el trabajo comienza con una introducción, en la que se recoge la motivación del proyecto
y su descripción, y con una sección teórica, en la que se explican los conceptos fundamen-
tales relativos a las simulaciones, a las propiedades físicas que definen la compactación y al
funcionamiento de una CNN. A continuación, encontramos una sección de objetivos, en la
que brevemente se indica qué esperamos conseguir, en definitiva buscamos comprobar que la
simulación TNG50 presenta una fase BN con unas propiedades determinadas. También se
incluyen las especificaciones más técnicas de los datos con los que trabajamos, y en otra sec-
ción la metodología que se lleva a cabo en las dos partes bien diferenciadas del proyecto, la
optimización de la red y el estudio de las fases en la simulación TNG50. Posteriormente se
incluyen los resultados, que se exponen de forma concisa en los siguientes párrafos.

Pese a obtener una exactitud superior al 80% para las galaxias de prueba de VELA, el
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conjunto de imágenes de esta simulación está desbalanceado entre las tres categorías, pues la
clase Pre-BN es minoritaria. Esto repercute negativamente en la clasificación de TNG50. No
obstante, trabajamos con diferentes umbrales de probabilidad para las tres clases (la red nos
devuelve la probabilidad de pertenecer a cada una de ellas para cada galaxia), de forma que
podemos continuar con el estudio de este fenómeno en TNG50. Analizamos cómo se distribuye
el redshift entre estas tres fases, así como el radio efectivo, la densidad estelar proyectada (en
2D) en el kpc central (Σ1) y la formación estelar (SFR por sus siglas en inglés). Concreta-
mente, buscamos reproducir una distribución con forma de L en el plano SFR-Σ1, introducida
en trabajos previos. También estudiamos la evolución de las masas del gas, del agujero negro
supermasivo y de las estrellas con el redshift, junto con la de la SFR.

De acuerdo con lo esperado, al analizar la distribución de las fases con el redshift en ambas
simulaciones, observamos una secuencia temporal, de modo que las galaxias Pre-BN se aso-
cian con mayores redshifts, es decir, con tiempos más lejanos, mientras que las Post-BN tienen
los redshifts más bajos, correspondientes a épocas más recientes. La fase BN se localiza entre
ambas. Además de verificar que las galaxias en fase BN son las más compactas, estudiando
el radio, obtenemos que las galaxias clasificadas como BN presentan altas tasas de formación
estelar, por lo que se encuentran formando estrellas, a diferencia de las Post-BN, que tienen
SFR próximas a cero y por tanto no forman estrellas. También comprobamos que el pico de gas
molecular, cuando se estudia la evolución de su masa con el redshift, se asocia exitosamente
con la fase BN, y que la evolución de la masa del resto de componentes de las galaxias pre-
senta el comportamiento observado en trabajos anteriores. Sin embargo, no se reproducen las
distribuciones esperadas para Σ1, pues la fase BN no se asocia con sus valores máximos. Este
parámetro es difícil de medir, especialmente si se tiene en cuenta el ruido del HST con el que
han sido procesadas las imágenes, por lo que es difícil concluir algo claro al respecto.

Tras el apartado de resultados incluimos las conclusiones de forma esquematizada. Luego
discutimos los problemas planteados: las pocas galaxias clasificadas en la fase Pre-BN y la dis-
tribución obtenida para Σ1. Como continuación del proyecto se propone emplear nuevos métodos
para trabajar con conjuntos de imágenes desbalanceados (penalizando a las clases mayoritarias,
generando muestras sintéticas, etc.), así como analizar estas fases con otras simulaciones, con
modelos sub-resolutivos diferentes pero con las mismas condiciones iniciales, por ejemplo con
VELA Generation 6, para evaluar el impacto de las limitaciones de la simulación en el estudio
del fenómeno.
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1 Introduction
En esta sección se introducen los obstáculos principales del estudio de la evolución de las galax-
ias, presentando el Deep Learning como una herramienta capaz de identificar los fenómenos físi-
cos que tienen lugar. Se exponen brevemente los resultados presentados en [Huertas-Company
et al., 2018], a la hora de clasificar la fase de compactación ‘blue nuggets’ en galaxias de la
simulación hidrodinámica de alta resolución VELA. Por último se incluye la motivación del
trabajo: evaluar el impacto de las limitaciones de dicha simulación en el análisis del fenómeno,
mediante su estudio en TNG50.

In the ∼ 14 billion years since the Big Bang, large molecular clouds in structures known as
galaxies have collapsed to form stars, creating a heterogeneous universe from quasi-homogeneous
initial conditions. The evolution of galaxies and their consequent morphological transforma-
tions remain actively debated, even though larger and better quality imaging and spectroscopic
datasets have become available in the past years (e.g CANDELS, SDSS, etc.) The near future
is even more promising, with big data sets becoming available such as Euclid (2022), Roman
(2025) and the LSST (2023). The volume and complexity of these future datasets challenge
traditional analysis techniques.

A major issue is the time scales involved, which do not allow to follow the evolution of each
galaxy individually, but also the degeneracy between the observable features and the physical
processes, since many processes may cause the same observable effects. These circumstances
are further aggravated if we keep in mind that many of the images we have will never be seen
by a human eye.

In this context, Deep Learning (DL) is presented as a useful tool that can help to constrain
some of these physical processes. Its algorithms have been rapidly implemented in various
scientific disciplines [Wei et al., 2017, Wei and Roberts, 2018, Heinzinger et al., 2019], but are
especially useful in astrophysics, where the experimentation margin is very limited and the
observation is so absolutely crucial. Machine Learning techniques have proven to be successful
to extract physical relevant features from images in several situations [Shallue and Vanderburg,
2018, Armstrong and Fletcher, 2019, Sarmiento et al., 2021].

In particular, [Huertas-Company et al., 2018] applied supervised DL to detect and describe
a process known as ‘blue nuggets’ (BN). It consists of a compact star-forming phase character-
istic of the central regions of young galaxies at high redshifts. As the cosmological simulations
show, it is preceded by an earlier phase characterized by a clumpy gas appearance, that we
may call Pre-BN phase, and it is followed by a central quenching, a Post-BN phase.

Specifically, they used a sequential convolutional neural network (CNN) with a set of high-
resolution hydro-cosmological simulations (VELA), which included 35 intermediate-mass galax-

http://arcoiris.ucolick.org/candels/About.html
https://www.sdss.org/
https://www.cosmos.esa.int/web/euclid
https://roman.gsfc.nasa.gov/
https://www.lsst.org/
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ies. Once the mock images were generated, they got transformed under a process we may call
CANDELization, whose purpose was to ensure that the galaxies were simulated with the same
depth as the real CANDELS data [Koekemoer et al., 2011], and correctly reproduced the char-
acteristic noise of HST (we will focus later on it). Thus, they used 3 infrared filters and 19
different camera orientations at steps of ∆a = 0.01 of the expansion factor in order to gener-
ate a dataset of approximately 10.000 images in each filter. Finally, 70% of global accuracy
in the classification was achieved and logical connections were found between these gaseous
compactions and physical parameters such as stellar mass distributions, central mass densities,
redshifts and gas fractions. Furthermore, a temporal sequence between the three phases was
also distinguished.

Despite its success, the main limitation of their work is the size of the dataset they trained
with, according to the volume of VELA simulation, too small to fully characterize all CANDELS
data. For instance, AGNs are not included, and the range of masses is limited. To further
investigate the impact of these limitations, we will use a new available simulated dataset,
TNG50, with a volume of 51.73 Mpc3. Even when VELA’s maximum resolution is ∼17 pc
while for TGN50 it is ∼70 pc, a detailed look at the structural properties of galaxies and the
gas around them will be also possible. Obviously, we must keep in mind that simulations are
still unable to capture the complexity of galaxy formation and then, the project is based on
a working hypothesis. In the present work, we will try to identify the BN phase in this new
dataset and to check if it is possible to establish the same connection with physical quantities.
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2 Theoretical Background
En esta sección se incluye una descripción teórica de los conceptos con los que trabajamos. En
primer lugar, se explica brevemente en qué consisten las simulaciones cosmológicas, los distin-
tos enfoques posibles y las limitaciones que presentan. También se añaden las características
principales de VELA y TNG50. A continuación, se introducen las magnitudes físicas que se
emplean (Re, SFR, Σ1, etc.) Para terminar, se realiza un resumen con las nociones y la ter-
minología básicas de las CNN, necesarias para una comprensión completa del proyecto.

2.1 Simulations
Most of the natural sciences are based on experimentation for the development of theories, us-
ing the process known as the scientific method. In summary, observation leads to a hypothesis,
which must be tested several times with different conditions before being validated. But what
happens when the closest laboratory is millions of light-years away? This is the day-to-day
in galaxy studies, and in astrophysics in general. There are no controlled experiments and of
course we can not go back in time to study how a single variable influences the evolution of the
universe.

In this context, the first simulations emerge. The first recorded N-body simulation was done
in 1941 by Erik Holmberg [Holmberg, 1941]. It consisted of two elliptical galaxies interacting
in a plane that were simulated using an optical analog computer. Since then, there has been
significant growth, both in size and resolution, of cosmological simulations, as well as in the
implemented algorithms.

Modern cosmological simulations reproduce galaxy formation over the last 14 billion years
from the first initial conditions after the Big Bang until today. The current cosmological model
is called Lambda-CDM (Lambda Cold Dark Matter). The model establishes that the energy
budget of the universe is dominated by dark energy (DE) and dark matter (DM). Baryons (all
ordinary matter observed as atoms, chemical elements, gas and plasma), account only for ∼5%
of the total energy budget. In this model, structures originate from primordial fluctuations
under the effect of gravity (see figure [1]).

Typically, DM evolution can be followed into the non-linear regime using collision-less N-
body simulations. However, these simulations cannot predict the distribution of galaxies made
up of baryonic matter. There are two approaches to achieve it: a post-processing procedure,
known as semi-analytic modeling, in which the output of N-body simulations is complemented
with simple physical prescriptions to estimate the distribution of galaxies; or directly accounting
for the baryonic component (gas, stars, supermassive black holes, etc.), in cosmological simula-
tions that include both hydrodynamics and gravity. This second approach is self-consistent and
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fully predictive, but the computational challenges involved have hampered its development. So,
large-scale predictions of the galaxy population have been typically obtained with semi-analytic
methods. However, hydrodynamical simulations of galaxy formation have become more promi-
nent in the last years with successful results [Springel et al., 2005, Li et al., 2021].

Figure 1: Timeline of the universe. A representation of the evolution of the universe over 13.77
billion years. The far left depicts the earliest moment we can now probe, when a period of "inflation"
produced a burst of exponential growth in the universe (size is depicted by the vertical extent of the
grid in this graphic.) For the next several billion years, the expansion of the universe gradually slowed
down as the matter in the universe pulled on itself via gravity. More recently, the expansion has begun
to speed up again as the repulsive effects of dark energy have come to dominate the expansion of the
universe. The afterglow light seen by WMAP was emitted about 375,000 years after inflation and has
traversed the universe largely unimpeded since then. The conditions of earlier times are imprinted on
this light; it also forms a backlight for later developments of the universe. [NASA / WMAP Science
Team, 2006].

Starting from initial conditions deduced from the cosmic microwave background radiation
and its power spectrum, they are performed with powerful algorithms, and refinements (P 3M ,
ART, TreePM) are used to increase the resolution. The main difficulty these simulations face
is solving at the same time the formation of large-scale structures (clusters, filaments) and
the smaller relevant scales (interstellar medium, molecular clouds, star formation, feedback,
galactic structure). For this reason, they are divided into two approaches: low resolution -
big volume simulations (OWLs, EAGLE, Horizon-AGN, Illustris, TNG) and high-resolution
zoom-in simulations (ART / VELA, FIRE, AGORA). While the first ones attempt to simulate
a certain volume (box) with multiple galaxy populations to study their interactions, the second
ones focus on a specific set of galaxies and trace their evolution from the big bang. Until the
computing capacity increases sufficiently, we must work with the two in equilibrium to learn
more about the complex problem of galaxy formation. It should be noted that even zoom-in
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Figure 2: 35 galaxies of VELA simulation. [Moody, 2013].

simulations require a subgrid of many physical processes that occur in the evolution of the
universe, based on sub-resolution models for star formation, radiative cooling processes, stel-
lar evolution and chemical enrichment procedures, stellar feedback, and feedback from active
galactic nuclei (AGN).

In the present work, we attempt to transfer some results obtained for a zoom-in simulation
(VELA) to a much more extensive one (TNG50). In the following, we will briefly expose the
characteristics that each one presents:

• The VELA simulation [Moody, 2013] spans the cosmic time evolution of 35 galaxies (with
a typical mass at z∼1 of 1011 − 1012M�) over 10-50 timesteps (1 . z . 4). Each sim-
ulation represents the time evolution of an individual galaxy forming, which are labeled
from VELA01 through VELA35. They were performed in a WMAP5 cosmology with
the gas dynamics and N-body ART code. In addition to gas dynamics and gravity, the
simulations implement sub-grid physical models such as cooling, background photoioniza-
tion, star formation, metal enrichment, thermal feedback from supernovae, and feedback
from radiation pressure and heating from young stars. In particular, its high resolution
(between 17-35 pc at all times), allows to study the streams of high redshift galaxies that
determine the disk and bulge evolution, and therefore crucial to identify the BN phase.
Among its main limitations, we find not only its small size, which entails a limited range
of masses, but also the assumption of an SFR without taking into account the effects of
the formation of molecules and metallicity. AGNs are not included either. For a more
detailed description, the following works are proposed [Ceverino et al., 2014, Tomassetti
et al., 2016].

• The IllustrisTNG project [Vogelsberger et al., 2014] is a suite of state-of-the-art cosmolog-
ical galaxy formation simulations. It consists of three box simulations with cubic volumes
of roughly 50, 100, and 300 Mpc side length, which we refer to as TNG50, TNG100, and
TNG300, respectively. Even when TNG50 simulation [Pillepich et al., 2019] has a com-
paratively limited sampling of rare objects, we will work with it for a detailed look at the
structural properties of galaxies and the gas around them. It contains AGNs and reaches
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Figure 3: Redshift evolution of a whole box slice from z=4 to z=0, showing four projections: dark
matter density, gas density, gas temperature, and gas metallicity. [Vogelsberger et al., 2014].

(almost) a numerical resolution typical of zoom-in simulations, with an average resolu-
tion of 70 − 140 pc in the star-forming regions of galaxies. TNG50 samples galaxies with
stellar masses above 108M� at z ∼ 1 across cosmic time 0 . z . 6. TNG50, as with the
other IllustrisTNG simulations, has been evolved with AREPO, a massively-parallel sim-
ulation code used to solve the coupled equations of ideal magnetohydrodynamics (MHD)
and self-gravity. A TreePM algorithm was also needed. As we can see, although it has
several limitations, it seems that TNG50 has an adequate tradeoff between volume and
resolution, so it is convenient to choose it as the next step to study the compaction of the
BN phase.

2.2 The Compaction Phase
2.2.1 Definition of Compaction

Several previous works [Barro et al., 2017, Tacchella et al., 2016, Zolotov et al., 2015] have found
that stream-fed, highly perturbed, gas-rich discs undergo phases of dissipative contraction into
compact, star-forming systems (‘blue nuggets’) at z ∼ 4 − 2. Such galaxies have a high density
in their cores, both in stellar and gas mass. The compaction is triggered by an intense inflow
episode, involving mergers and counter-rotating streams [Dekel and Burkert, 2013], and it can
be associated with violent disc instability (VDI) [Gammie, 2001, Cacciato et al., 2012]. The
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BN phase is also responsible for transitions in the galaxy structural, kinematic and composi-
tional properties, for example from central dark-matter dominance to baryon dominance, which
induces a transition of global shape from a prolate to an oblate stellar system [Dekel et al., 2019].

So, these numerical simulations predict a generic pattern of evolution for high-redshift galax-
ies through several characteristic phases, which can be observed in figure [4]. First, the early
formation of a gas-rich, star-forming, highly perturbed and prolate disc, then, the dissipative,
quick compaction of the gas disc into a compact, star-forming ‘blue nugget’, and immediately
following, the rather fast quenching of star formation into a compact ‘red nugget’. Thus, the
peak of gas compaction marks the onset of central gas depletion and inside-out quenching. As
the labels we work within VELA simulation have been obtained by detecting these cold gas
peaks, it is interesting to analyze how gas mass, dark matter mass and stellar mass evolve with
time in TNG50. As shown on the left in figure [5], we expect a drastic peak of gas mass, that
defines the BN phase. The compaction should correspond to the moment when the central parts
of the galaxy become dark matter dominated, and it should also lead to a strong increment of
stellar mass.

2.2.2 Observational Properties of Compaction

• Re: The effective radius or half-light radius of a galaxy is the radius in which half of the
total light of the system is emitted assuming some spherical symmetry.

• Σ1: The central stellar mass density is the projected mass per unit of area at the central
kpc. For this reason, it can be calculated as the projected stellar mass divided by π, in
the adequate units.

• SFR: The star formation rate is the total mass of stars formed per unit of time. It is
usually studied in a certain radius such as the central kpc.

• sSFR: The specific star formation rate is calculated by dividing the SFR between the
total mass of stars. This quantity allows exploring the relation between stellar mass and
SFR directly.

According to the compaction features studied in VELA, we expect the BN phase to present
a smaller effective radius and a larger density Σ1 than the Pre-BN and Post-BN phase. Fur-
thermore, the SFR of the BN galaxies must be high, since these are forming stars, in contrast
to the Post-BNs, which we expect to have SFRs close to zero.

This produces a characteristic L-shaped track in the sSFR − Σ1 plane when plotting the
compaction and quenching sequence. This is an evolutionary path from star-forming galaxies
(SFG) to quiescent. On it, Pre-BN galaxies tend to be in the main sequence (MS), then the
compaction occurs at a roughly constant sSFR and at higher Σ1 (BN phase), and the quenching
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Figure 4: Compaction and quenching in VELA07. Shown are images of face-on projected density of
the cold component made of gas and stars younger than 100 Myr (top) and of the stellar component
(bottom), in a cubic box of side 40 kpc. The snapshots from left to right correspond to (a) prior to
or during the compaction phase, (b) the ‘blue nugget’ (BN) phase near maximum gas compaction,
(c) the ‘green nugget’ (GN) phase during the quenching process, and (d) the ‘red nugget’ (RN) phase
after quenching. A BN with a dense core of gas and stars develops via dissipative compaction. It leads
to gas depletion in the core while an extended ring develops. The dense stellar core remains intact
from the BN to the RN phase, while in this case an extended stellar envelope develops around the RN
core. [Zolotov et al., 2015].

at a constant Σ1 but lower sSFR (Post-BN phase). This distribution is shown on the right in
figure [5].

On the other hand, the redshift also provides information about the compaction phase. We
expect to find the time sequence analyzed in [Huertas-Company et al., 2018], so the Pre-BN
phase should correspond to higher redshifts (younger galaxies), while the Post-BN to lower
redshifts (older galaxies). The BN phase should show intermediate redshifts.

2.3 Convolutional Neural Networks for Supervised Machine Learn-
ing

A convolutional neural network (CNN) is a type of Artificial Neural Network (ANN). It pro-
cesses its layers by mimicking the visual cortex of the human eye to identify different character-
istics in the inputs, that ultimately make possible to identify objects. They play a fundamental
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Figure 5: Compaction and quenching in cosmological simulations. Left: A cartoon describing the
typical wet-compaction event, showing the evolution of masses (left axis in log(M/M�)) within the
inner 1 kpc. The compaction is the steep rise of gas mass (in blue), reaching a peak as a BN, and soon
after declining as the central gas is depleted by star formation and outflows with no replenishment.
The SFR (in purple, right axis in log(M�yr

−1)) follows closely, demonstrating a compaction-triggered
central quenching. The central stellar mass (in red) is rising accordingly during the compaction, and it
flattens off later. The inner 1 kpc is dominated by dark matter (in black) during pre-compaction and
by baryons (stars, in red) during post-compaction. Dekel private communication, based on [Zolotov
et al., 2015]. Right: The universal L-shape evolution track of eight galaxies from the VELA simulation
in the plane of sSFR and stellar surface density within 1 kpc, Σ1, which serves as a measure of
compactness. The compactness is growing at a roughly constant sSFR (horizontally) before and
during the compaction event, turning over at the BN phase (the ‘knee’, marked by a square symbol)
to quenching at a constant Σ1 (vertically). [Dekel et al., 2019].

role in DL algorithms, the bleeding edge of artificial intelligence. One of its most important
applications is image classification, as we do in the present work. We will roughly introduce its
operation and structure to ensure a better understanding of the project.

CNN are an extension of ANN by adding two new types of layers at the beginning of
the network, the convolution layers and the pooling layers (see figure [6]). These are used to
manipulate the pixels of the input images as we expose below:

• Convolution layer: extracts the characteristic features of an image by applying filters
(kernels). These are generated by initializers which seek not to have elements (weights)
that are too small or large (worse for learning). The set of matrices resulting from
multiplying the images by the kernels are the feature maps. Once a feature map is
created, we can pass each of its values through a nonlinearity, such as ReLU. This is a
very simple activation function: f(x) = max(0, x), commonly used in DL. It helps to
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prevent vanishing/exploding gradients (training unstable, very slow, or no convergent).

• Pooling Layer: extracts the most representative pixels from a delimited strip of an image.
It is an operation of downsampling used to reduce the overall size of tensors.

Figure 6: Structure of a CNN. The convolution and pooling layers extract the most important features
of the images, while the FCC (in this diagram we have three of them), carry out the classification.

A subsequent dropout is also common once the layers of convolution and pooling have been
applied. As relatively small datasets can overfit the training data, which results in poor per-
formance when the model is evaluated on new data, some layer outputs are randomly ignored
or ‘dropped out.’

To continue, this last layer is flattened (the feature maps are combined) to obtain a layer
of ‘traditional’ neurons called fully connected layer (FCC). The neurons on it have connections
to all activations in the previous layer. In these connections, the output value of the previous
neuron is multiplied by a weight value. These bond weights can increase or inhibit the activa-
tion state of adjacent neurons. To obtain the ideal ones, an attempt is made to minimize a loss
function that evaluates the network as a whole. The values of the weights of the neurons are
updated seeking to reduce the value of the loss function using an optimizer with a particular
learning rate. This process is called ‘backpropagation’.

At this point it is important to distinguish between three different datasets: the training
dataset, the sample of data used to fit the model, the validation dataset, used to provide an
unbiased evaluation of a model fit on the training dataset while tuning model hyperparameters
(helps during the development stage of the model), and the test dataset, used to provide an
unbiased evaluation of a final model. So, once we have a model, we can evaluate its accuracy
with test data, not used in training, and confusion matrices.
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3 Aim
En esta sección se señala de forma concisa el objetivo del proyecto: estudiar si tiene lugar el
fenómeno de compactación en la simulación TNG50 con las mismas propiedades físicas. Para
ello el trabajo se divide en dos partes, la optimización de la CNN y el estudio de la distribución
de las magnitudes físicas en TNG50 entre las tres fases (Pre-BN, BN, Post-BN).

As previously introduced, the aim of this project is to study if the compaction phase (BN)
takes also place in other simulations, since it has only been observed in VELA before. We will
try to find logical connections between BN phases and physical observables in the galaxies of
the TNG50 simulation. In particular, we will focus on the effective radius (Re), the stellar-mass
surface density (Σ1), the star formation rate (SFR), the redshift and the gas profiles. The latter
turned out to be very relevant in VELA, so we will pay special attention to them. Finally, we
will compare the conclusions obtained for both simulations.

In order to achieve this goal, we will start optimizing the model of CNN proposed in
[Huertas-Company et al., 2018], using the same dataset (28 galaxies of VELA simulation).
To get started, we will modify manually different hyperparameters that determine the model
such as the initializer, the dropout rate or the learning rate of the optimizer algorithm. In
all this process, confusion matrices will be studied to evaluate its performance. This not only
allows us to gain greater sensitivity and understanding of how CNN works in relation to these
parameters, but it will also guide us when using Keras Tuner [O’Malley et al., 2019], our next
step. This library is used to search the optimal set of hyperparameters (hypertuning). Specifi-
cally, we will seek to verify the conclusions we reach manually to generate the definitive model
we are looking for.

Later, we will use the model weights to classify the ∼ 11.000 galaxies from TNG50 simulation
according to the phase they are in: Pre-BN, BN, Post-BN. Once we have it, we will study
how these phases are distributed around the previously mentioned features for both VELA
and TNG50 simulations. Basically, we will reproduce the distributions obtained in [Huertas-
Company et al., 2018] for the first one with an improved model, so we hope that the conclusions
will be confirmed; while we will study these distributions for the first time for TNG50, to check
if the BN compaction phase exists with the assumed properties.
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4 Data
Se incluyen las especificaciones técnicas de las imágenes de VELA Y TNG50 con las que tra-
bajamos, en especial se describe el proceso de CANDELización (convolución con la PSF del
HST, y adición del ruido característico). También se señala el número total de imágenes y de
galaxias de cada simulación.

4.1 VELA Simulation
We will work with the same dataset used in [Huertas-Company et al., 2018] from VELA Gener-
ation 3. The full output of the simulation was saved at many time steps and analyzed at steps
of ∆a = 0.01 of the expansion factor, which roughly correspond to ∼ 100 Myr at z ∼ 2. For
every snapshot, mock 2D images were generated as they would be observed by the HST. It was
possible by using the radiative transfer code SUNRISE [Jonsson, 2006, Jonsson and Primack,
2010] which propagates the light of stars through the dust. We refer to [Snyder et al., 2015] for
details on the procedure followed.

Very briefly, a spectral energy distribution (SED) is assigned to every star particle in the
simulation based on its mass, age, and metallicity. The dust density is assumed to be directly
proportional to the metal density predicted by the simulations. It was fixed a dust-to-metals
mass ratio of 0.4 [Dwek and Arendt, 1998, James et al., 2002] and the dust grain size distri-
bution that was updated by [Draine and Li, 2007]. SUNRISE then performed dust radiative
transfer using a Monte Carlo ray-tracing technique. As each multiwavelength ray emitted by
every star particle and H II region (according to its SED) propagates through the ISM and
encounters dust mass, its energy is probabilistically absorbed or scattered until it exits the grid
or enters one of the viewing apertures (cameras).

The output of this process was then the SED at each pixel in all cameras. For this run,
19 cameras were set, of which five were fixed with respect to the angular momentum vector of
each galaxy, seven were fixed in the simulation coordinates, and the remaining seven were fully
random at each time step.

Eventually, from these data cubes, raw mock images were created by integrating the SED in
each pixel over the spectral response functions of the CANDELS WFC3 filters (F160W, F125W,
and F105W) in the observer frame. Images were then convolved with the corresponding HST
point spread function (PSF) at a given wavelength, and it was added a random real-noise stamp
taken from the CANDELS data. This ensures that the galaxies were simulated at the same
depth as the real CANDELS data and the correlated noise from the HST pipeline was well
reproduced. We refer to this process as CANDELization.
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Finally, we work with 10.310 images of 28 galaxies in the range 1 . z . 2.2 with log (M∗/M�) >
9.0 at z ∼ 2. The VELA simulations 16, 18, 23, 24, 31 and 35 have been discarded because
some of them are low-mass galaxies that have a quenching attempt that brings them consider-
ably below the MS in the plane of SFR vs stellar mass, and the others have not been simulated
down to z = 2.2.

4.2 TNG50 Simulation
We work with 6 different snapshots at z = 0.5, 1.0, 1.5, 2.0, 2.4 and 3.0, and galaxies with
log (M∗/M�) > 9.0. This results in a sample of 11.047 images, that were generated in three
different HST filters (F160W,F125W,F105W ), the same ones used for VELA.

For that purpose, the radiative transfer code SKIRT [Baes et al., 2011] was implemented.
Briefly, each simulated galaxy was viewed in a unique XY - plane, with the size of the images
being equivalent to 15 times the 3D stellar half-mass radius. The stellar populations were mod-
eled with the [Bruzual and Charlot, 2003] stellar population models for stars older than 10 Myrs.
Younger stars are considered starbursting regions and were modeled with the MAPPINGS-III
photoionization code [Allen et al., 2008]. All details of how parameters are set can be found
in [Rodriguez-Gomez et al., 2018]. For computational reasons, dust was considered only if the
fraction of star-forming gas was above 1% of the total baryonic mass. It was assumed for these
objects that the dust content is traced by the star-forming gas. A constant dust-to-metal ratio
of 0.3 was also assumed.

The final output was a 3D data cube for each galaxy, consisting of a full rest-frame SED for
each pixel. In order to make the mock images a more accurate representation of the observed
CANDELS ones, as it was done with VELA dataset, each mock image was convolved by the
PSF, and real CANDELS background noise was added.

In the end, we work with 11.047 images of 10.803 different galaxies.
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Figure 7: Architecture of the CNN.

5 Methodology
Se explica la metodología a seguir en las dos partes bien diferenciadas del trabajo. Primero
optimizamos la CNN mediante la modificación de los hiperparámetros del modelo y del algo-
ritmo, tanto manualmente como empleando la librería Keras Tuner. También se señala cómo
se realiza la evaluación de los modelos, a partir de las matrices de confusión. A continuación,
se introducen las distribuciones a reproducir una vez se clasifican las galaxias de TNG50 con el
modelo optimizado.

In this section we will specify the methodology followed throughout the work, dividing the
process into the optimization of CNN and the prediction of BN phases for TNG50, in order to
study their characteristic physical properties.

5.1 Optimization of the Network
As we have seen, a CNN depends on many hyperparameters. These can be divided into two
types: model hyperparameters, which influence the model selection, such as the number and
width of hidden layers; and algorithm hyperparameters, which influence the speed and quality
of the learning algorithm, such as the learning rate.

Variation of both can significantly alter the results of the training, so it is important to
choose the most appropriate ones based on the dataset that we have to classify.

5.1.1 Architecture

We are going to use the network structure used in [Huertas-Company et al., 2018]. It is a
very simple sequential CNN architecture with four convolutional layers and two fully connected
layers implemented in Keras [Chollet et al., 2015] (see figure [7]). The architecture was inspired
by previous configurations that were successful in detecting strong lenses in space-based images
[Metcalf et al., 2019], and in classical morphological classification [Domínguez Sánchez et al.,
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2018]. For the first fully connected layer ReLu activation function is used, and for the last layer
Softmax activation function (make the outputs behave like probabilities). On the other hand,
Categorical Crossentropy and Adam are respectively the loss function and the optimizer used.

To prevent overfitting, a dropout is applied before and after the last convolutional layer, as
well as in between the fully connected layers. Moreover, a Gaussian noise layer at the entrance
of the network is included to avoid the model learning from the noise pattern. Finally, we use
data augmentation: images are randomly rotated (within 45°), flipped, and slightly off-centered
by 5 pixels maximum at every iteration. That ensures the network never sees exactly the same
image.

This is a crucial point since the main limitation of the training is that we only work with 28
galaxies, even though the different orientations of the cameras generate a considerably longer
dataset of images.

Of the 28 galaxies, 24 are used for training, 2 for validation, and 2 for testing (∼ 400 images
per galaxy). We train the model for 250 epochs, and every 50 epochs we change the validation
galaxies (exchanging them for two from training). We repeat the process 5 times changing the
test galaxies at each time. The final test dataset thus contains 10 galaxies, classified with 5
slightly different models.

5.1.2 Modifying Model Hyperparameters

The first parameter that we modify is the batchsize, that is, the number of samples that will
be propagated through the network at each time. In general terms, small batches require less
computational memory and speed up training. However, the smaller the batch the less accurate
the estimate of the gradient will be. We will train in addition to the original batchsize, 32, with
64, 128, and 512. Another option would be not to divide the sample, but the computational
time would be significantly longer.

Next, we try to vary the number of neurons (units) of the first fully connected layer. Ini-
tially, they were 64 and we will try with the values 32, 128 and 512. Modifying the number
of neurons can have a considerable effect on the model, since too many connections can also
contribute to overfitting. A model with more parameters has more "memorization capacity"
and therefore it can easily learn a perfect mapping of the training samples, but without any ca-
pacity of generalization. It should be noted that the number of units of the last layer cannot be
changed, since it must coincide with the number of categories in the classification, in our case 3.

On the other hand, we will work with different dropouts: 0.2, 0.5, and 0.8. At every training
step, each neuron will have these probabilities of being dropped out of the collated contribution
from connected neurons. We will use the same value for the three dropouts that are performed
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on the network.

To evaluate the performance of the model when varying these hyperparameters, we will
resort to confusion matrices, which compute the number of images classified in a certain category
(the prediction of the model), and the number of images that actually belong to that category.
The performances are calculated from the sums of the traces of these matrices (which collect
the images classified in the correct category). These traces are averaged over 10-15 trainings
with the same model and then compared with the means of the other models.

5.1.3 Modifying Algorithm Hyperparameters

The learning rate is a measure of how often the model weights are updated during training.
This controls how quickly the model is adapted to the problem. Smaller learning rates require
more training epochs (more computational time), whereas larger learning rates result in rapid
changes and require fewer training epochs. However, learning rates too large may cause a quick
convergence to a suboptimal solution. While [Huertas-Company et al., 2018] worked with the
default learning rate for the Adam optimizer, 0.001, we will also try with 0.01 and 0.0001.

Moreover, we will train with different initializers for the kernels of the convolutional layers.
These define the way to set the initial random weights. It is initially set Orthogonal, this
initializer is very convenient since orthogonal matrices eigenvalues have absolute value 1 and no
matter how many times we perform matrix multiplication, the resulting matrix doesn’t explode
or vanish. However, we will also try Kaiming initialization, which has shown very good results
together with ReLu activation function as detailed in [He et al., 2015].

5.1.4 Using Keras Tuner Library

As we have introduced, a CNN depends on many parameters, and its behavior is not linear.
Among other consequences, this implies that by varying the hyperparameters separately, we
may not achieve the maximum performance of the model. In order to overcome this limitation,
we will work with Keras Tuner [O’Malley et al., 2019], which improves the hypertuning.

First, we select the hyperparameters we want to tune and the range in which they can vary.
We will tune the units in the first densely connected layer (between 32 and 512 units with steps
of 32), the dropout (between 0 and 0.8 with steps of 0.05), and the learning rate (between the
three values 0.01, 0.001, and 0.0001).

Then, we specify the objectives to be optimized, in our case, we will seek to maximize the
accuracy when classifying the validation set. We also create a callback to stop training early
after reaching the same value for the validation loss after 10 epochs.
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Finally, we repeat the search for the optimal hyperparameters 10 times and then we select
the most repeated set of values, that will make up the final model.

5.2 TNG50 Galaxy Classification and Study of Physical Properties
Once we obtain a better precision for the model, we proceed to predict a classification for the
∼ 11.000 images from the TNG50 dataset.

To continue, we load physical information about the images from the catalog: the galaxy
ID, the redshift, the effective radius, the SFR, and Σ1. We also require information about the
stellar, gas, and supermassive black hole masses.

We load both TNG50 and VELA data. We seek to check whether with the new model for
VELA the distributions of the phases as a function of the different physical quantities remain
the same, including the L-shaped track (see section 2.2). On the other hand, when studying
these relations in the TNG50 phases we try to generalize the conclusions obtained for VELA
to more extensive simulations.

To refine the results, we restrict the study to images that were classified with a high prob-
ability (greater than 0.4-0.9) in any of the three categories. We also establish mass and SFR
ranges, among others.

Later, we plot the evolution of the mass for stars, gas, and the black hole in the galaxies, as
a function of redshift. We look for a drastic peak of gas mass corresponding to the BN phase,
a sudden increase of Σ1, the measure of stellar mass in the central kpc, and a mild increment
for the black hole mass.
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6 Results
Se exponen los resultados de las dos partes del proyecto. Mediante la modificación del ‘initial-
izer’ del modelo se obtiene una exactitud superior al 80%. Además, se incluyen las distribu-
ciones del redshift, del radio y de Σ1 para VELA y TNG50. También se representan las galaxias
en el plano sSFR - Σ1 y la evolución de las masas del agujero negro supermasivo, del gas, de
las estrellas, y de la SFR, con el redshift.

6.1 Optimization of the Network
In this section, we analyze the classification accuracy with the test dataset (10 galaxies that
were not used in the training), using the different hyperparameters mentioned in 5.1.2 and 5.1.3.

We evaluated the mean traces (computed with 10-15 trainings with each particular model)
of the confusion matrices of the classification done with different hyperparameters. First, we
obtained that increasing batchsize did not have a significant effect on accuracy (mean traces
did not improve), but it did have higher computational costs. Likewise, when evaluating the
performance for different numbers of neurons in the first fully connected layer, it was obtained
that while using 32 neurons did not significantly modify the accuracy, increasing to 128 and
512 had a negative impact on it (lower traces). On the other hand, both increasing the dropout
to 0.8 and reducing it to 0.2 impaired the performance of the model.

Modifying the optimizer learning rate had a very significant effect on the traces, it was found
that 0.001 was preferable to 0.01 and 0.0001. It is interesting to note that for 0.01 the model
tended to classify everything in the intermediate category (BN). As we expected, it causes a
quick convergence to this suboptimal classification. Alternatively, when training when 0.0001
the computational time was considerably higher, and even the traces of the matrices were lower.

Eventually, we try to change the initializers of the kernels of the convolutional layers. It
was fixed as Orthogonal but by using Kaiming initialization (normal-distributed) we achieved
a significant improvement in the performance of the model (a mean trace 15% higher).

The hyperparameters obtained with Keras Tuner are consistent with these results. In the
10 searches, highly variable values were obtained for the number of neurons in the first fully
connected layer. The absence of a clear tendency confirms that the accuracy in the test set is
practically independent of this parameter (in the range in which we worked, between 32 and 512
units with steps of 32.) In addition, the selected dropouts were mostly in the 0.4-0.6 interval,
which corresponds to the value 0.5 that we obtained manually. Finally, Keras Tuner selected
the learning rates 0.001 (6 times) and 0.0001 (4 times), of the 10 trainings that were carried
out. Therefore, the choice of a learning rate of 0.001 seems consistent, which also implies a
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computational saving.

So, we have finally set a model with batchsize 32, 64 units in the first fully connected
layer, three dropouts of 0.5, a learning rate of 0.001 for Adam optimizer, and Kaiming normal-
distributed initialization for the kernels of the convolutional layers. We compare the final
accuracy for the test data in figure [8]. For a probability threshold equal to 0.5 we achieve an
81% of accuracy 1 , versus the 63% of the original model. We also get a higher accuracy when
the threshold is 0.8, an 83% versus an 80%. It is important to note that the accuracy for the
Pre-BN category does not improve with the threshold. In fact, it is lower than expected. It
could be explained if the fraction of the total training galaxies is taken into account. We have
a smaller number of Pre-BNs in all the simulations, so it is not surprising that the model tends
to classify some of them in the other two categories. In total we worked with 10.310 images
(distributed between the training set, the validation set, and the test set) of which 13% were
Pre-BNs (1.349 images), 34% were BNs (3.458 images), and 53% were Post-BNs (5.503 images).
It is understandable if we take into account that the Pre-BN galaxies correspond theoretically
to higher redshifts, that is, to more distant times.

6.2 TNG50 Galaxy Classification and Study of Physical Properties
When classifying the 11.047 images of TNG50 simulation using the model trained with VELA,
we get 66 galaxies classified as Pre-BN, 4.875 as BN, and 6.106 as Post-BN (some examples
are shown in figure [9]). Clearly, the imbalance of VELA images has had a magnified effect in
the TNG50 classification, even if it should be noted that our sample is limited to galaxies more
massive than 109M�, and most of the Pre-BN galaxies are expected to be less massive.

There are numerous techniques to avoid these biases related to unbalanced training sets,
for example by applying weights to the loss function when training with VELA [Buda et al.,
2018]. However, seeking to simplify the process, we will adapt the probabilities threshold of the
prediction of the TNG50 classification. Note that the Softmax function returns the probability
for each image to be in each category, for example, 40% of being Pre-BN, 50% of being BN,
and 10% of being Post-BN. With these results, technically we should say that it is a galaxy in a
BN phase, but according to what has been previously commented, it is probably a galaxy in a
Pre-BN phase. So, when getting the distributions of the phases for different physical quantities,
we will require at least a probability greater than 90 % to classify a galaxy as Post-BN and 80 %
as BN. However, 40 % will be enough for a Pre-BN classification. A more detailed explanation
is included in the appendix 8.

1Accuracy is computed by dividing the trace of the confusion matrix between the number of classes (3),
equivalent to divide the sum of the galaxies correctly classified between the number of total galaxies.
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Figure 8: Normalized confusion matrices of the three-label classification of test data (not used for
training or validation). The y-axis shows the true class from the simulation metadata, and the x-axis
shows the predicted class. The two matrices on blue correspond to the classification predicted used
the original model, while the two on green with the classification predicted with the new model. With
the two rows, we show the effect of increasing the probability threshold (from 0.5 to 0.8) to select the
galaxies belonging to a given class.
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Figure 9: The three columns include, from left to right, examples of TNG50 galaxies classified as
Pre-BN (with a Pth = 0.4), as BN (with a Pth = 0.8), and as Post-BN (with a Pth = 0.9). The features
associated with each of the phases are visually verified: Pre-BN galaxies usually have a clumpy gas
appearance, BN galaxies are the most compact, and Post-BN galaxies are extensive and diffuse.
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Figure 10: The histograms show the redshift distribution of the three different classes for both VELA
and TNG50 simulations. The red, green, and blue histograms show the Post-BN, BN, and Pre-BN
phases respectively. The vertical lines indicate the median for each class with the same color code.
Despite some overlap, especially in the TNG50 simulation, the classifier is able to establish a temporal
sequence on the three phases. Note that the range of redshift is different for each simulation, working
from 1.0 to 2.5 in VELA and from 0.5 to 3.0 in TNG50.

As we introduced in section 2.2, we expect the Pre-BN phase to correspond to an earlier
step in the evolutionary sequence, and therefore to be assigned high redshifts. On the contrary,
the Post-BN phase must correspond to a later step and have low redshifts. We can see in figure
[10] how there is indeed a time sequence involved in the three phases. It is remarkable that
the BN phase is situated at higher redshifts for TNG50, overlapped with the Pre-BN phase.
In figure [11], the mean probability of a galaxy to be classified as BN or as Post-BN for the
TNG50 dataset is plotted as a function of redshift.

On the other hand, in figure [12] we can see the distribution of the radius for the three
phases. It is important to notice that even when we work with the disc radius for VELA and
with the effective radius for TNG50, some conclusions can be drawn anyway. The BN phase
has the smallest radii, closely followed by the Pre-BN phase, while the Post-BN phase has the
largest radii, as expected from theory.

Additionally, we can plot the distribution of Σ1 as shown in figure [13]. As explained in
[Zolotov et al., 2015], we expected that in early times the galaxies presented a more diffuse
stellar light distribution (Pre-BN), where it would form stars at a low surface density. Then,
a rather quick compaction event that would increase the surface density Σ1 (BN). Finally, a
quenching would start, but Σ1 would remain high (Post-BN). However, we see how in both
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Figure 11: The plot represents the evolution of the mean probabilities (Softmax output) of the BN
phase in green and of the Post-BN phase in red, as a function of the redshift for TNG50 simulation. It
is observed how after a compaction phase for redshifts greater than 3.0 the probability of the Post-BN
phase increases drastically, while the one of the BN phase decreases.

Figure 12: The histograms show the distribution of the decimal logarithm of the disc radius [kpc]
for VELA and the effective radius for TNG50 [kpc]. The blue, green, and red histograms correspond
to the Pre-BN, BN, and Post-BN phases respectively. The vertical lines indicate the median for each
class with the same color code. There is a higher level of overlap for the three phases in the TNG50
simulation, but even so, it is observed how the BN phase is associated with a compaction, presenting
the smallest radii.
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Figure 13: The plot shows the distribution of the decimal logarithm of Σ1 (in [M�/kpc
2]) for VELA

and TNG50 simulations. The blue, green, and red lines correspond to the Pre-BN, BN, and Post-BN
phase respectively. The vertical lines indicate the median for each class with the same color code.
There is a high level of overlap for the three phases in both simulations.

simulations Σ1 for the BN phase is not maximum. While in VELA a more typical behavior is
observed, with a Pre-BN phase corresponding to a minimum of Σ1, in TNG50 we observe how
the Pre-BN phase and the Post-BN phase present maximum central surface densities, while
the BN phase presents minimum ones. In general terms, this quantity is difficult to measure,
especially if we take into account that the noise from the HST has been added, so we will
continue studying these phases in TNG50 to better understand this behavior.

We also try to reproduce the L-shaped track in the sSFR - Σ1 plane in figures [14] and [15].
We achieve the expected behavior for VELA, but in TNG50 simulation, the Pre-BN and BN
phases are interchanged compared with previous results [Zolotov et al., 2015, Tacchella et al.,
2016]. It should be noted that galaxies in the Pre-BN phase are very scattered, and since they
are also few, the position of the median in the plane is non-representative. In this plane for the
TNG50 simulation we see how the BN phase is located in a very specific region (8.0 < log Σ1
< 8.5 and -0.25 < log sSFR < 0.25). This can be related to the plot [13], overall, the galaxies
of TNG50 in the BN phase have a lower central surface density than expected. For this reason,
we also study the stellar mass distribution for the BN phase in TNG50 in a 30 kpc radius:
these galaxies have a characteristic stellar mass of 109.5M�.

Finally, we represent in figure [16] the evolution of the masses of gas, of the supermassive
black hole, and of those of stars (from Σ1) with the redshift for the TNG50 simulation. We also
trace the evolution of the SFR and the sSFR in the central kpc. This information is crucial
because the classifications that were used to train the CNN model were made for VELA from
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this analysis (specifically of the gas peaks). Thus, the essential condition for the phase to be
well defined in TNG50 is that there is an associated peak of gas. As we can see, the mass of
the black hole increases smoothly as the redshift decreases. In turn, there is a gas peak for
z = 2.0, which is effectively associated with the BN phase. Stellar-mass increases, while SFR
peaks at z = 2.0 too, until it goes down to zero (i.e. quenching). On the other hand, the sSFR
progressively decreases. These last two quantities indicate that galaxies in the BN phase are
forming stars, while those in the Post-BN phase are not. It is worth stressing that the BN
phase is longer than expected, so probably the predominant phase at z = 3.0 should be the
Pre-BN, and this result is due to the limitations of the classification.

Figure 14: Track of evolution in the sSFR-Σ1 plane for VELA simulation. Units are [Gyr−1] and
[M�/kpc

2] respectively. Blue, green, and red dots are galaxies in phase Pre-BN, BN, and Post-BN,
and the stars with the same color code indicate the median for each class. The plot on the left contains
all the classifications regardless of redshift, while the three on the right include only the galaxies with
a given redshift. The median for the Pre-BN phase in z = 1.0 is not included because there are very
few galaxies classified in this category.
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Figure 15: Track of evolution in the sSFR-Σ1 plane for TNG50 simulation. Units are [Gyr−1] and
[M�/kpc

2] respectively. Blue, green, and red dots are galaxies in phase Pre-BN, BN, and Post-BN,
and the stars with the same color code indicate the median for each class. The first plot contains
all the classifications regardless of redshift, while the next five include only the galaxies with a given
redshift. In the range 0.5 ≤ z ≤ 1.5 the median for the Pre-BN phase is not included because there
are very few galaxies classified in this category.
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Figure 16: TNG50 redshift evolution of the average (between all the galaxies) of the supermassive
black hole mass in red, of the gas mass in the central kpc in yellow, of Σ1 in blue (as a measure
of the stellar mass in the central kpc), and of the SFR in the central kpc in green. All the masses
are in [M�], while the SFR units are [M�Gyr

−1]. Arrows indicate the direction of evolution, and
the shaded regions the deviation between galaxies. It is also plotted the averaged sSFR for the five
redshifts analyzed, as shown in the colorbar, in [Gyr−1]. Finally, the averaged class associated with
each redshift is plotted, with a star for the BN phase and a triangle for the Post-BN phase. The
Pre-BN class is not predominant for any redshift in the range 0.5 ≤ z ≤ 3.0.
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7 Conclusions and Discussion
Se incluyen de forma esquematizada las principales conclusiones del trabajo. Más adelante
se discuten las limitaciones y problemas: el desequilibrio entre las tres categorías en las que
clasificamos las imágenes y la distribución obtenida para Σ1. A continuación, se proponen al-
ternativas para continuar con el proyecto, como técnicas para balancear las categorías u otras
simulaciones en las que estudiar el fenómeno. Finalmente, se insiste en la necesidad de una
simbiosis entre la astrofísica, la estadística, la informática y el DL, aludiendo a proyectos in-
minentes como Euclid y el JWST.

We have optimized a CNN trained with CANDELized galaxy images from VELA simulation
to classify TNG50 galaxies according to evolution patterns. Specifically, we seeked to detect
a BN phase characteristic of high-redshift galaxies: a compaction preceded by a diffuse phase
and proceeded by a quenching.

DL Conclusions

• Model performance doesn’t improve by modifying the batchsize, the number of neurons
in the first fully connected layer, or the dropout in the ranges described in section 5.1.2.
Neither by changing the learning rate of the optimizer. We verify it both manually and
by using the Keras Tuner library.

• Kaiming initialization (normal-distributed) is more efficient than Orthogonal initializer
when using ReLu activation function. Initial random weights for the kernels of the con-
volutional layers provide better accuracy when the Kaiming initializer is fixed, getting
mean traces for the confusion matrices a 15% higher.

• The optimized model gets high accuracy when it is evaluated in VELA test data. For a
probability threshold of 0.5, it achieves an 81% of accuracy (versus the 63% of the original
model), while it achieves an 83% of accuracy (versus the 81 % of the original model), for
a probability threshold of 0.8.

• Accuracy for the Pre-BN class doesn’t improve with the probability threshold, getting a
relatively low accuracy as a consequence of the imbalance of the dataset among the three
classes.

• This imbalance is magnified when using the model on the galaxies of the TNG50 sim-
ulation, since only 0.6 % of the images are classified as Pre-BN. However, by working
with different probability thresholds for the classes we can study their physical properties
anyway.
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Physical Conclusions

• The three phases predicted for TNG50 galaxies are in time sequence, as it is the case for
VELA galaxies. While the galaxies in the Pre-BN phase correspond to larger redshifts,
that is, to more distant times, the Post-BN have smaller redshifts, so they are from closer
times. BNs are in the middle in both simulations, although they are associated with
larger redshifts in TNG50.

• When evaluating the radii (of the disc for VELA and effective for TNG50), we observe
that effectively the BN phase is the most compact of the three, followed by the Pre-BN
and finally by the Post-BN.

• For none of the simulations, the BN phase corresponds to a maximum of Σ1. We get a
particularly strange distribution for TNG50 galaxies. On it, the BN phase corresponds
to a minimum of Σ1, while the other two phases have similar and higher densities. This
issue will be investigated in future work.

• This problem is also observed when studying the sSFR - Σ1 plane. While for VELA the
L-shaped track is reproduced for all redshifts, in the TNG50 simulation it is not found.
Although it is verified that the sSFR is approximately constant for the Pre-BN and BN
phases, and decreases for the Post-BN phase, the BN phase has a lower central density
than expected, and as consequence, the Pre-BN and BN phases are swapped in the plane.
Even so, it is verified that Pre-BN and BN galaxies are forming stars, while Post-BN ones
are not.

• The BN phase in TNG50 has a characteristic stellar mass of 109.5M� in the inner 30 kpc,
and corresponds to both a gas peak and a SFR peak. After this phase, the mass of gas
in the galaxy decreases considerably, as does the sSFR, while the SFR also decreases,
stabilizing around zero for the Post-BN phase (which does not form stars). On the
other hand, the stellar mass in the central kpc increases sharply, and the mass of the
supermassive black hole increases subtly until it stabilizes around 108M�.

The fact of having an unbalanced training dataset, together with the mass threshold (109M�),
has caused that very few galaxies were classified with certainty as Pre-BN in TNG50 simula-
tion. In the appendix 8, we focus on this fact by studying other metrics from the confusion
matrix. We had two majority classes in the training, BN and Post-BN, and a minority, Pre-
BN. We used a simple technique to be able to extract physical information from the galaxies
classified in these classes, working with different threshold probabilities. However, there are
other more complex but more efficient techniques to balance the dataset before training [Buda
et al., 2018, Ali et al., 2015].

For example, it would be better to evaluate the performance with the validation dataset
during training by analyzing other different metrics (the accuracy does not veraciously reflect
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the quality of the model if the data is unbalanced). The most suitable metric would be the
F1-score, whose definition is provided in the appendix 8. Another frequently used option is
to penalize the majority classes. Although the process itself is laborious, it can be applied in
Keras by adding the argument class_weight = ‘balanced’ to the model fitting. It is also possible
to reshape the dataset by undersampling, which consists of sampling from the majority class in
order to keep only a part of these points, by oversampling, which consists of replicating some
points from the minority class in order to increase its cardinality (using data augmentation),
and by generating synthetic data, creating new synthetic points from the minority class to
increase its cardinality (for example with SMOTE method [Chawla et al., 2002]). These alter-
natives are proposed as a continuation of the project. It is important to emphasize that each
set of images behaves differently, and just as the network architecture and hyperparameters
must be adjusted, the method that works best for each specific dataset must also be searched.

When plotting the Σ1 distribution for the TNG50 simulation, we obtained that the BN
phase was associated with a minimum, while the Pre-BN and Post-BN phases had higher den-
sities and were similar to each other. However, we expected the opposite: that the BN phase
would correspond to a maximum. In general, it is a difficult parameter to measure, since 1 kpc
is a relatively small measure compared to the simulated dimensions. The difference between
the resolution of TNG50 (70 - 140 pc) and that of VELA (17-35 pc) may explain this error. On
the other hand, we must take into account that the noise of the HST, with which the images
have been processed, has a negative effect on the accuracy of this quantity.

Despite the issue with Σ1, we have studied the impact of the main limitations of the VELA
simulation when studying compaction and quenching in galaxies at high redshift. Neither the
absence of AGN nor the small number of galaxies have been a real problem, because in TNG50,
where these two are solved, the same distributions are reproduced for the redshift, the radius,
the SFR, the sSFR, and for the masses of gas and the supermassive black hole. The assump-
tions of the subgrid astrophysics have also been subtly assessed since TNG50 employs other
physical prescriptions such as dust density or ISM metal enrichment. However, these sub-
resolution models remain the weak point of the study of physical phenomena from cosmological
simulations. There is still considerable room for improvement, but while advancing with compu-
tational capacity, it is proposed to study the BN phase with other simulations, preferably with
the same initial conditions, but with different subgrid astrophysics, such as VELA Generation 6.

Finally, it should be noted that the success of this project is not only based on the physical
results but also on the methodology followed. DL can be used to study other complex processes,
in astrophysics and science in general. These algorithms allow the user to classify images
without any dimension reduction or extra preprocessing, but above all, they do not require a
priory assumption of the optimal observables for a given physical process. They are particularly
promising for comparing future imaging surveys such as Euclid or the JWST with forthcoming

https://www.cosmos.esa.int/web/euclid
https://www.jwst.nasa.gov/
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simulations. This last survey [Gardner et al., 2006] will be launched on October 2021, and it
will allow resolving less massive galaxies (up to 108M�), thus sorting out the mass limitations
of our project, and opening a future line for research. In accordance with this idea, further steps
should be taken to apply new data management methods to astronomy, since significant progress
in the face of these new challenges can be achieved only via a true symbiosis of astrophysics,
statistics, computing, and DL, among other disciplines.
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8 Appendix
En este apéndice se realiza un análisis de las matrices de confusión con distintas Pumbral para el
modelo optimizado. Para ello se recurre a otras métricas como la precisión o la exhaustividad,
y finalmente se concluye que el desequilibrio de las imágenes con las que entrenamos entre las
fases Pre-BN y BN provoca que parte de las imágenes de la primera categoría se clasifiquen en
la segunda.

Analyzing the Phases in VELA Test Data from Confusion Matrices
We analyze other classification parameters such as the precision and the recall for the classes
from the confusion matrices (Pth = 0.4, 0.8, 0.9) included in figure [17]. This can help to better
understand the issues when classifying the Pre-BN phase, and in general the limitations of the
model. First of all, we give a brief definition of the parameters we work with:

• Precision: for a given class, the precision can be determined as the ratio between the
number of images well classified in this class and the number of all the images classified
in it.

• Recall: for a given class, it is calculated by dividing the number of images well classified
in this class by the number of images that actually belong to it.

• F1-score: the F1 score of a class is given by the harmonic mean of precision and recall,
combining the two of them in one single metric.

According to this, we can conclude that if a class has high recall and high precision, then it
is perfectly handled by the model, while if both are low, then it is poorly handled. However,
the most interesting cases occur when one of these has a high value and the other a low one. In
particular, when we get low precision but high recall the class is well detected but the model
also includes features from other classes, while, when there is high precision but low recall,
the model cannot detect the class well but is highly trustable when it does. These last two
situations usually take place when the data we train with is unbalanced (the class is a majority
in the first case and a minority in the second one).

As it is collected in table [1], the Post-BN class typically has both high precision and
high recall. Nevertheless, for the Pre-BN class the precision is high and the recall low, which
evidences the fact that there are few galaxies classified as Pre-BN for training. In contrast,
the BN class has low precision and high recall, effectively it is a majority, and for this reason,
the network tends to classify galaxies in the Pre-BN phase in this class. We can see how from
these metrics we are able to extract information not contained in the accuracy, a particularly
misleading parameter when working with unbalanced classes. As explained in section 6.2, we
selected different probability thresholds for the three categories: Pth = 0.4 for the Pre-BN
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class, Pth = 0.8 for the BN class, and Pth = 0.9 for the Post-BN class. This is justified because
we are looking for a high F1-score for each class, but also seeking to have enough galaxies
classified into them (the number of galaxies is included in figure [17]), so the analysis of the
physical properties is representative. It is important to highlight how increasing the probability
considerably reduces the number of classified galaxies, especially for the Pre-BN and BN classes.

Figure 17: Confusion matrices for VELA test data, with a probability threshold equal to 0.4, 0.8,
and 0.9 from left to right. The first row uses the real number of galaxies classified in each class,
while the second corresponds to the normalized matrices. The y-axis shows the true class from the
simulation metadata, and the x-axis shows the predicted class.

Pth = 0.4 Pth = 0.8 Pth = 0.9

Pre-BN BN Post-BN Pre-BN BN Post-BN Pre-BN BN Post-BN

Precision 0.65
0.65+0.05+0.01 = 0.92 0.64 0.97 1.00 0.67 0.98 1.00 0.74 0.98

Recall 0.65
0.65+0.35+0.00 = 0.65 0.92 0.83 0.54 0.98 0.98 0.65 0.98 1.00

F1 2·0.92·0.65
0.92+0.65 = 0.76 0.75 0.89 0.70 0.80 0.98 0.79 0.84 0.99

Table 1: Precision, recall and F1-score for the three classes in VELA test data with a fixed probability
threshold of 0.4, 0.8, and 0.9 from left to right. Calculations for the first probability in the Pre-BN
class are included.
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