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Abstract

Español

El objetivo del proyecto es caracterizar la función de distribución de velocidad de rotación
de galaxias de disco masivas mediante el uso de simulaciones cosmológicas e hidrodinámicas
de última generación de EAGLE de formación y evolución de galaxias. La función de
distribución se comparará con las observaciones y, finalmente, se correlacionará con las
propiedades de las galaxias y el entorno en el que se formaron las galaxias.
Palabras clave: ΛCDM, EAGLE, simulación, velocidad máxima de rotación, masa estelar

English

The aim of the project is to characterise the rotational velocity distribution function
of massive disc galaxies by using the state-of-the-art EAGLE cosmological, hydrodynamic
simulations of galaxy formation and evolution. The distribution function will be compared
with observations, and eventually correlated to properties of galaxies and the environment in
which galaxies formed.
Keywords: ΛCDM, EAGLE, simulation, maximum rotational velocity, stellar mass
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Chapter 1

Introduction to EAGLE

RESUMEN

Este capitulo trata la introducción trabajo de Fin de Grado. Se compone por tres secciones: La sección
1.1, se describe brevemente el modelo f́ısico en el que se encuentra enmarcado este estudio, aśı como, los
aspectos más básicos a los que se hará alusión a lo largo de la memoria. El segundo, sección 1.2, se trata
de una pequeña reflexión sobre la posible relevancia que tiene las simulaciones en el campo de investigación,
en particular en la cosmoloǵıa y astrof́ısica. Por último, la tercera sección (1.3) introduce al lector en el
proyecto EAGLE, aśı como en sus aspectos más relevantes para esta memoria.

The Evolution and Assembly of GaLaxies and their Environments (EAGLE1 hereafter) is a Virgo Con-
sortium’s2 project for cosmological supercomputer simulations, with a suite of hydrodynamical simulations
which aims to understand how galaxies, and other cosmological bodies, form and evolve in the context of
large-scale structure.

This computer calculations models are based in the standard cosmological model Λ Cold Dark Matter (ΛCDM
for short) (Condon and Matthews [2018]) in a cube with a certain periodic size and mass with a certain finite
resolution (i.e. particle number). This allows us to study the formation, assembly and evolution of cosmic
structures and the dynamics of the intergalactic medium.

1.1 A brief visit to ΛCDM

The current standard cosmological model is called Λ Cold Dark Matter (ΛCDM hereafter). It is a cos-
mological model currently accepted for being in accordance with observations (Planck Collaboration et al.
[2014]), and fitting with the current conception of how the universe evolves. It is a particular model of the
Friedmann-Lemâıtre-Robertson-Walker (FLRW hereinafter) universe paradigm. This type of universes are
subject to the General Relativity Theory of gravity proposed by Albert Einstein (Einstein [1915]) as an exact
equation for the Einstein’s field equations.

This paradigm addresses the whole physical-theoretical framework needed to develop this thesis. Therefore,
certain terms related to the model are inevitably alluded to throughout this paper and therefore worth a
definition at the beginning of this thesis.

1See also http://icc.dur.ac.uk/Eagle/
2See also http://www.virgo.dur.ac.uk/
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Scale Factor (a)

In this model, as corroborated by observations (e.g. Perlmutter et al. [1999]), the universe is assumed to
be expanding. This intrinsic property of the model is parameterised by the so-called scale factor. This is
a dimensionless variable that expresses how much the universe has scaled (or descaled) with respect to a
certain reference time (a ≡ a(t)). By convention, the present time is used as a reference point, and the scale
factor at the present time (tpresent) is taken as the unity,

a(t = tpresent) ≡ a0 = 1 . (1.1)

Redshift (z)

Redshift is the displacement of the observed (obs) electromagnetic radiation with respect to the emitted
(emit) radiation. It can be expressed as a function of frequency as the difference between emitted and
observed frequencies divided by to the observed frequency,

z =
νemit − νobs

νobs
. (1.2)

In General Relativity, the theory on which the ΛCDM model is based, it is shown that an observer can
measure a certain redshift when the emitter moves away from the observer. As the universe is in expansion,
cosmological objects move away from each other, i.e. for these objects there is an intrinsic relation between
the scale factor and the redshift,

a(z) =
1

1 + z
. (1.3)

In short, in the type of universe that concerns us, expansionist, the redsift turns out to be a measure of both
distance and type.

Comoving Units

In a isotropic and expansionly system (due to the cosmological principle3), a set of privileged observer are
the ”comoving observers”. These observers are the only ones that do not observe redshifting of light due
to the expansion of the universe. Comoving coordinates are related to the proper coordinates (xp) by the
equation

xp(t) = xc(t) a(t) . (1.4)

Note that if for the proper observer a measured distance does not vary except for the expansion of the
universe itself (xp(t) = x a(t)), for the privileged observer the measurement will not vary (xp(t) = x). Here
is where the advantages of this type of coordinates lie.

Other interesting distance-related measures to be measured in a comoving way are velocity (vc and vp

respectively)

vp(t) =
d

dt
(xp(t)) =

da(t)

dt
xc(t) + a(t)vc(t) =

= H(t)xp(t) + a(t)vc(t)
(1.5)

3The cosmological principle may be described as a hypothesis which states that in the universe there is
a homogeneous and isotropic distribution of matter at large (very large) scales.
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Equations(1.8; 1.4) are taken into account in the last equivalence. Therefore, the last equality corresponds
to two components, the first term makes reference to the velocity component due to the expansion of the
universe while the second one is the so-called ”peculiar velocity”. Comoving and peculiar densities (ρc and
ρp respectively) are related by the following equation:

ρp(t) = ρc(t) a
3(t) (1.6)

Another observation, due to the convention taken with the scale factor value at present (1.1), the present
time values of both position and density are the same for the proper observer and the comoving. More
information of the comoving concept at The EAGLE team [2017] and Schaye et al. [2015] (Appendix D)

Hubble Constant (H0)

In the homogeneous and isotropic FLRW model, the velocity measured by Earth between any two comoving
points (i.e. vc = 0) is (Mo et al. [2013], page 93)

vp(t) =
da(t)

dt
xc(t) = H(t)xp(t) (1.7)

where H(t) is the time-dependent expansion of space-time term, the Hubble parameter.

H(t) ≡ 1

a(t)

d

dt
(a(t)) (1.8)

The Hubble constant is the present-day value of the Hubble parameter (H(t) = tpresent) ≡ H0), and this pa-
rameter is the employee in the Hubble-Lemâıtre law (Hubble [1929]). This empirical law is the observational
relations between the distance (xp) and the speed (vp) of cosmological objects measured from Earth. This
relation is linear and the proportionality factor is the Hubble constant (H0).

vp = H0xp (1.9)

Name Parameter Value

Average density of matter Ωm 0.307
Average density of dark energy ΩΛ 0.693

Average density of baryonic matter Ωb 0.04825

Hubble constant h ≡ H0
sMpc
100km

0.6777

Ref-L0050N0752 Comoving box size L 50 cMpc
Ref-L0050N0752 number of DM particles4 N 7523

Ref-L0050N0752 initial baryonic particle mass mgas 1.81 · 106 M�
Ref-L0050N0752 DM particle mass mDM 9.70 · 106 M�

Table 1.1: Table with cosmological parameters and simulations properties used in this memory
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As discussed above, scale factor is related with redshift, so there is a relation between redshift and
the Hubble constant, that it is as follows,

z =
H0

c
xp , (1.10)

where c is the speed of light and xp is the module of its vector (xp).

Although the value of this parameter is currently under discussion (Di Valentino et al. [2021]), a
value the one presented at the Plank Collaboration in 2013 (Planck Collaboration et al. [2014],
Table 9)

The Hubble constant value is currently under discussion (Di Valentino et al. [2021]), in this paper
it is taken as (Planck Collaboration et al. [2014]):

H0 ' 67.77 km s−1 Mpc−1

This is the value used in the EAGLE simulations that are analysed in this work (Schaye et al.
[2015]).

Critical Density (ρcrit)

The critical density is one of the variables with more importance in this thesis. In the paradigm of
the ΛCDM model. It is a guide value of the geometry of an FLRW Universe, its value is expressed
(Mo et al. [2013], page 94) as

ρcrit =
3H2

0

8πG
' 1.88 · 10−26 h2 kgm−3 (1.11)

where G is the gravitational constant and H0 the above-mentioned Hubble constant. In addition,
another term relevant to this work is introduced, the density matter for the FLRW model, this
parameter is usually defined as the ratio between the average matter density at present time ((ρp(t =
tpresent) ≡ ρ0)) and the critical density, therefore it is a constant parameter.

Ω =
ρ0

ρcrit
(1.12)

1.2 The Importance of Numerical Simulations.

Simulations are a research tool, a fundamental source of information for certain fields of research
where it is difficult to have any way of validating or rejecting the veracity of the theoretical models.

The evolution of the large-scale distribution of matter is sensitive to a variety of fundamental
parameters that characterise dark matter (henceforth DM), dark energy, and other aspects of our
cosmological framework. The non-linearity of its process makes it impractical to describe them
in an analytical way. For this reason, numerical simulations are crucial for understanding the
behaviour of the models under research.
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snapnum z a snapnum z a snapnum z a snapnum z a

28 0.00 1.000 21 0.74 0.576 14 2.24 0.309 7 5.49 0.154
27 0.10 0.909 20 0.87 0.536 13 2.48 0.287 6 5.97 0.143
26 0.18 0.846 19 1.00 0.499 12 3.02 0.249 5 7.05 0.124
25 0.27 0.787 18 1.26 0.443 11 3.53 0.221 4 8.07 0.110
24 0.37 0.732 17 1.49 0.402 10 3.98 0.201 3 8.99 0.100
23 0.50 0.665 16 1.74 0.365 9 4.49 0.182 2 9.99 0.091
22 0.62 0.619 15 2.01 0.332 8 5.04 0.166 1 15.13 0.062

0 20 0.047

Table 1.2: Equivalence between cosmological snapshot number, redshift and scale factor in EAGLE
simulations (McAlpine et al. [2016], Table C.1)

In addition to the non-linearity of the processes, there are further reasons for simulations in the
fields of cosmology and astrophysics.

Firstly, scalability, as cosmologists, it is impossible to study the predictions of the cosmological
theories in a conventional laboratory because of the large scales of both time and space on which
the models are found.

Secondly, observations. Because of the impossibility of studying in a laboratory, the only way to
obtain data that can inform our models is through observation. On the one hand, from a particular
point of view: the observation only shows a small amount of information of the total count, because
only the current behaviour (for the observer) can be investigated. That is, if a galaxy is seen at a
certain distance, it is impossible to observe the same galaxy at an earlier time. On the other hand,
from a more general point of view, wanting to visualise the first moments of the universe means
having to observe more distant bodies, with all the technological challenges that entails.

Numerical simulations make it possible to overcome the disadvantages mentioned above. The
simulations can be replicated, which allows different physical models to be tested and those models
that behave differently of the observations are discarded.

Although simulations have also problems with awaiting technological advances because there is a
correlation between the computational time and the resolution of the simulation, several groups are
making a great effort to advance both technologically and in the efficiency of mathematical models
so that this relation (time-resolution) becomes smaller and smaller (e.g. Virgo Consortium).

This is where the EAGLE project appears as an state-of-the-art of hydrodynamic simulations in
the field of galaxy formation. (Crain et al. [2015]; Schaye et al. [2015]). For this thesis, all the data
necessary to carry out the tasks set out are extracted from this project. It is therefore essential to
understand how this information is extracted from the simulations.

1.3 Inside EAGLE

The EAGLE simulations are based at the physical level on the standard cosmology model and
at the computational level on a modified version of the public GADGET-25 code for simulations
(Springel [2005]).

5See also https://wwwmpa.mpa-garching.mpg.de/gadget/

https://wwwmpa.mpa-garching.mpg.de/gadget/
https://wwwmpa.mpa-garching.mpg.de/gadget/


CHAPTER 1. INTRODUCTION TO EAGLE 6

1.3.1 Initial Conditions and Cosmological Parameters

All simulations have certain constant parameters with a certain predefined value before starting
the simulation. Some of these parameters are common to all simulations and others are specific to
the simulation itself.

Others depend on each simulation. For this memory, the mass of each DM particle of the simulation
(the rest of the particles have variable mass), the length of the simulated universe and the number
of particles that are initially in the simulation are taken into account; Information from the last
two is given in the suffix of the simulation name itself, which has the form LXXXXNXXXX, where
instead of an X, it usually has a specific numbering. The first numbering of that suffix, the one after
the letter L but before N, specifies the length (in comoving-Mpc or cMpc) of the simulation, while
the second numbering specifies the cube root of the number of simulation particles per species, i.e.
gas and DM (Schaye et al. [2015], Table 2).

Therefore, as an example, a simulation whose name has the following suffix L0050N0752 implies
that it is a cube with a side size of 50 cMpc and 7523 particles of both gas and DM type.

The name prefix also reports variations that are not taken into account in this work but allow
calibration of the simulations available as detailed in Crain et al. [2015], page 7.

It should be noted that although these are the parameters mentioned in this memory, they are not
the most important ones in the simulations, such as those parameters that define the numerical
model of galaxy formation (the rate of star formation, the cooling of the gas, etc.). Such as the initial
condition parameters of every simulation, for example: the square root of the linear variance of the
matter distribution when smoothed with a top-hat filter of radius 8h−1 cMpc named σ8 (= 0.8288),
the scalar power-law index of the spectrum of primordial adiabatic perturbations (ns = 0.9611) or
the primordial abundance of helium (Y = 0.248) (Schaye et al. [2015], page 6).

The simulation analysed here is referred to as Ref-L050N0752, it is a simulation with 2 7523 particles
in a cubic with a periodic volume of 50 cMpc The initial mass of gas per particle is 1.81 · 106 M�
and the DM mass per particle is 9.70 · 106 M� (Schaye et al. [2015], Table 2).

The set of important parameters used in this memory are listed in Table 1.1. The first four
elements are cosmological parameters and equal for every simulation (Schaye et al. [2015], Table 1).
the average densities are relevant to calculate the density of the region where a galaxy was formed
at initial moments (explained in 2), while the Hubble constant is usually used as part of the units
of the rest of properties in the .hdf5 files (e.g. the coordinates of a particles a snapshot is stored
with h−1 cMpc units; or its mass with h−1 M�). The following four correspond with parameters
of the simulation used in this memory, it is referred to as Ref-L050N0752, it is a simulation with
7523 DM particles, at snapshot 0 there are the same number of baryonic particles, in a cubic with
a periodic volume of 50 cMpc. The initial mass of gas per particle is 1.81 · 106 M� and the DM
mass per particle is 9.70 · 106 M� (Schaye et al. [2015], Table 2). This group of values are relevant
to many aspects in the final part of this thesis, the calculation of the over-density and the angular
momentum of the particles that are part of the galaxy but in the initial moments of the simulation
(explained in section 2)
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1.3.2 Snapshots

The EAGLE simulations run from a certain initial time (z = 127), up to redshift zero. Over the
course of the simulation, a total of 28 snapshots are saved of all simulation data at a certain time
(i.e., at a certain redshift); the relation between the snapshot number (henceforth snapnum) and
the redshift at which it is performed is specified in the table 1.2. All relevant information for these
practices is contained in the files containing the data of the snapshots of the simulations.

1.3.3 Friends-of-Friends Algorithm

The Friends-of-Friends (FoF) method Davis et al. [1985]) is an algorithm to identify groups of
particles in a simulation such as they form an over-dense region. FoF is usually implemented in
large-scale cosmology simulations to find structures and identifying features, in EAGLE case, it is
used to find DM halos structures in the universe simulated (see Schaye et al. [2015])

GroupNumber and SubGroupNumber

A DM particle is linked directly to all other DM particles within a certain distance (its friends)
and indirectly to all DM particles that are linked to its friends (its friends of friends). This creates
networks of linked particles called groups. Each group reflects what in cosmology would be identified
as an over-dense region of DM enclosed in a isodensity surface, a halo. Each group is assigned a
number called GroupNumber, The smaller the GroupNumber implies that the halo is larger.

Then within the halo it is possible to determinate subhaloes running the SUBFIND algorithm
(Springel et al. [2001]; Dolag et al. [2009]) using all particle species (gas, DM, stellar and black
holes type). Galaxies can be determined and classified for their gravitational potential, for this
classification a SubGroupNumber is assigned: the deepest gravitational well is the central galaxy
(i.e. SubGroupNumber = 0) while the rest of galaxies, that are in the same halo, are its satellite
galaxies (SubGroupNumber > 0).

Clarify that the GroupNumber and SubGroupNumber assigned to each formation for a certain
snapshot does not necessarily hold for another snapshot, due to the dynamic behaviour of the
universe.

1.3.4 How to Extract the Information

On the EAGLE webpage, in the Public Data section, the two ways in which the information can be
extracted are specified, both of which are used throughout this research, so they will be explained
briefly below. It should be noted that for both ways one must have a user account on the website.

EAGLE galaxy database

The first way allows us to obtain the galaxy information, determined by the FoF method, through
a SQL format, to connect this information with a Python project using the eagleSqlTools library.
All the information for extracting galaxy data is detailed in Stuart McAlpine’s article McAlpine
et al. [2016].
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EAGLE particle data

The second way is to extract the simulation’s own particle information by downloading the simu-
lation’s own .hdf5 format files compressed into a .tar format. Although both formats are used in
practice, the second one plays a greater role (see The EAGLE team [2017])

In this tesis, within the .hdf5 files, we work with two sections. On the one hand, the Header, where
all the constants and parameters (length of the universe, number of particles, h, scale factor, mass
of the dark matter particles...) are collected. On the other side are the PartType, where all the
characteristics of the particles themselves are collected (identification number, coordinates, velocity,
typology, mass...), the PartType are four sections, each one of them has a suffix that specifies the
type of particles (0 gas, 1 dark matter, 4 stellar, 5 black holes); so that if you wanted to look for
information only about gas particles you would have to search specifically in PartType0.



Chapter 2

Objectives and Methodology

RESUMEN

En este segundo caṕıtulo se nombran los objetivos de esta memoria. Además, se describe la
metodoloǵıa empleada para obtener los resultados necesarios para la discusión que se expondrán en el
siguiente caṕıtulo. En la metodoloǵıa se explica los pasos hasta obtener la función de distribución
de la velocidad de rotación de galaxias masivas de tipo disco de la simulación Ref-L0050N0752
(sección 2.2), y como se describe cómo se obtienen los datos de sobredensidad y momento angular
para comparar con la función de distribución (sección 2.3).

Objectives

The aim of this thesis is to investigate the maximum rotational velocity distribution function
of massive disc-type galaxies from a particular EAGLE simulation (Ref-L0050N0752) at z = 0
(snapshot 28) and study whether any relation between this distribution and the environment where
galaxies can be formed.

To this end, on the one hand, the field of cosmological physics is introduced from a quantitative point
of view, a vision connected to both the observational and the theoretical aspects of this field. On
the other hand, with a little more distance from the academic aspect, through the objectives of this
thesis, one can extract lessons and tools necessary for research and even for personal organisation.

Methodology

The methods employed in this work are described here. First, it is explained how to select the disc
galaxies in the EAGLE database; with the galaxies sample determined, the maximum rotational
velocity of galaxies and their stellar mass are used to derive their distribution, with a previous test
to verify their Tully Fisher Relation. Then the code used to obtain the over-density and angular
momentum introduced in the objective is described, and finally the obtained data is presented. All
the findings of this chapter will then be discussed in the next chapter, followed by a conclusion.

9
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Figure 2.1: kco versus M∗ for massive galaxies (M∗ > 109M�) in Ref-L0050N0752 at z = 0 (snapshot
28). With the data obtained and thanks to the conditions imposed, it can be affirmed that this simulation

contains 990 massive galaxies (385 of them disc) at z = 0.

2.1 Morphology of Disc Galaxies

The galaxies of interest in this work are the spiral galaxies, which are usually flat and most stats
are formed in a rotating disc. For this reason, they are usually referred to as disc galaxies.

Disc galaxies have many mutually dependencies, which are related to each other. Regarding mor-
phology (e.g. Graham et al. [2018]), with the colour (e.g. Blanton et al. [2003]; Driver et al. [2006]),
luminosity and rotation velocity (e.g. Tully and Fisher [1977]), internal kinematics, morphology
and mass (e.g. Dressler [1980]; Baldry et al. [2006]; Kelvin et al. [2014]), star formation rate (e.g.
Kennicutt [1983]) and more.

The classification of galaxies in EAGLE simulations by their morphology is a topic of current study
(e.g Avila-Reese et al. [2008]; Correa et al. [2017]; Thob et al. [2019]). Correa et al. make a detailed
study of how the morphology of the galaxies simulated in EAGLE relates to the colour and with
the cosmological observations made. They find that it is possible to differentiate between the two
basic morphology types of galaxies by the parameter defined as κ corotating (or κco)

This parameter specifies the fraction of a particle’s total kinetic energy that is invested in ordered
co-rotation (more details Correa et al. [2017]). If κco > 0.4 the galaxy can be defined as a disc-type
galaxy, otherwise it is of elliptical type. This parameter is included in the characteristics of the
galaxy provided by EAGLE. It should be noted, however, that galaxies are usually neither one type
nor the other, but a combination of both.

In this thesis, in addition to being disc galaxies (κco > 0.4) there are two more conditions, they have
to be massive and the central galaxy in their group. Therefore, it will also be taken as a condition
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(a) Image face (b) Image edge (c) Image box

Figure 2.2: Mock gri images of a galaxy at z = 0 as available in the database (McAlpine et al. [2016]).
The images are 60 pkpc on a side. Each image represent a different perspective (the perspective names are

based in the database nomenclature) of the same simulated massive galaxy (GalaxyID = 1479010 in the
Ref-L0050N0752 simulation), the galaxy is who has the higher κco(' 0.73) , so it can be considered a

disc-type galaxy. It can be seen that the galaxy is indeed a disc galaxy when viewed ”face-on”, while when
viewed ”edge-on” it is flat.

that the galaxies to be studied must have a stellar mass (M∗) higher than 109 M� (Figure 2.1) and
its SubGroupNumber must be zero. The choice of these conditions allows us to have a good set
of galaxies to study. The choice of the main halo galaxy is due to the fact that we try to study
galaxies whose behaviour is not compromised mainly by dynamical interaction with galaxies that
have a larger gravitational well, trying to obtain data with as little distortion as possible.

2.2 Rotational Velocity Distribution Function

Once the candidate galaxies are selected for study, it is time to determine the distribution function
for the rotation of this set of galaxies. This distribution function is a probability distribution
subject to a certain law not determined in this work. For this purpose, the rotation speed of the
galaxy is taken as the parameter to obtain this information.

It is well known that the rotation curve of disc galaxies is not constant over the whole radius (e.g.
Freeman [1970]; Rubin and Ford [1970]; Sofue and Rubin [2001]), indeed, the way in which the
rotation of the galaxy varies is used as an argument for the existence of DM (a current review of
this field: Freese [2009]). This implies that one has to be precise in choosing the parameter defining
the rotational velocity of a galaxy.

The property of the simulated galaxies Vmax (defined in Crain et al. [2015] and used in Schaye et al.
[2015]) is taken as the reference for this work, it is provided by the EAGLE project and defined as
the maximum of the circular velocity rotation curve.

Vmax = max
(√

GM(< r)/r
)

(2.1)

where G is the gravitational constant, r is the selected radius and M(< r) is the mass within the
radius. As this choice is arbitrary, and drawn from theoretical approaches, before studying the
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Figure 2.3: Vmax versus M∗ for massive galaxies (M∗ > 109M� ) in Ref-L0050N0752 at z = 0 (snapshot
28). Linear point fits have been calculated for all galaxies (black), for disc-type galaxies (blue) and for

ellipsoid-type galaxies (red). The slope of each of the fits is shown in the legend of the figure.

distribution function of this parameter, we make sure that it at least correlates with the other
properties (e.g. stellar mass).

2.2.1 Tully-Fisher Relation

As mentioned above, disc galaxies have global scaling relations. The well-known Tully-Fisher
relation (TFR; Tully and Fisher [1977]) is one of them. TFR is a empirical scaling relation between
the rotation velocity and luminosity of a disc Galaxy.

Because of the correlations of the properties of a disc galaxy (between colour, rotation speed,
luminosity, baryonic mass, stellar mass...), the TFR can be extrapolated to other correlations (e.g.
Pierce [2000]; Stone et al. [2021]).

In this work the maximum rotational velocity Vmax is compared versus the stellar mass (M∗), and
it is verified whether they show a power law, which can be referred to as stellar TFR (or S-TFR),
(M∗) (see Avila-Reese and Firmani [2001]), given as:

log10 (Vmax) = s log10(M∗) + c (2.2)

where s is the slope and c is the y-intercept. This fit is shown in Figure 2.3. The result (discussed
in the next chapter) of this relation may help to determine whether Vmax can be taken as a suitable
parameter for the rotation speed of galaxies.

TFRs are topical studies (e.g. Ferrero et al. [2017]; Stone et al. [2021]). It is a good field from which
to extract a lot of information about disc galaxies: the evolution of galaxies, their formation and
their dynamics. Having a larger catalogue of galaxies with more precise data on their properties
will allow us to verify the good behaviour of the model studied.
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2.2.2 Distribution Function

Given a data set of a certain parameter, the probability of obtaining a certain expected value (or
range of values) in that environment can be characterised by a probability distribution associated
with that variable.

With the sample of galaxies chosen and determined Vmax as the rotational velocity term, Vmax and
M∗ distributions are shown in the Figure 2.4, apart from some comparisons. For this purpose, four
graphs are plotted with histograms of the variables of interest.

Note the image on the top right, the histogram is made about the Vmax of the disc massive galaxies
of Ref-L0050N0752 simulation, it describes the probability that a massive disc galaxy has a certain
rotational velocity in the Ref-L0050N752 simulation. However, this and the other images will be
discussed in 3.5

Apart from histograms, there are other standardised formalisms to derive the mass distribution
function of galaxies (see Weigel et al. [2016]). One popularised method is the density-corrected
maximum volume (Schmidt [1968]), which allows one to express the value of each of the objects
(in this case the stellar mass of the galaxies) weighed by the maximum volume at which they
could be detected. The results are usually expressed as the number density of galaxies, in this case

dn
d log10(M∗)

[cMpc−3] (where n is the galaxy number). This allows studies involving measurements

from different samples (e.g., Li and White [2009]; Baldry et al. [2012]; Bonfini et al. [2021]) and
from simulations (e.g., Schaye et al. [2015]; McAlpine et al. [2016]) to be compared. In addition,
expressing on the number density of galaxies allows one to study and compare with theoretical well
described fits (e.g. the Schechter functions Schechter [1976])

The EAGLE papers studied for this thesis show the functions as a function of galaxy number
density (e.g. Crain et al. [2015], Figure 2). The work of McAlpine et al. [2016] details, in Appendix
A, a code with which to replicate the GSMFs (dex = 0.2) obtained by Schaye et al. [2015] in their
Figure 4. This same code is used in this study to obtain the GSMF of the massive disc galaxy
sample of the EAGLE simulation Ref-L0050N0752 at z = 0 (Data points in Table 2.1, and plotted
in black curve of the bottom-right image in Figure 2.4 and orange curve in Figure 2.5), it is also
used for the galaxy stellar mass function of all massive stars of the same simulation and same
redshift (black curve in Figure 2.5) and replicating the curve of Ref-L100N1504 obtained by Schaye
et al. [2015] in the already mentioned Figure 4 (Figure 2.4)

2.3 Properties under Initial Conditions.

As described in the objectives section, after the distribution function of Vmax at z = 0 it is necessary
to study whether it is related to certain parameters of the initial moments of the simulation, z = 20.
The parameters chosen for the initial conditions are the over-density and the angular momentum
of the region in which the particles of each of the galaxies are found at snapshot 0.
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log10(M∗) [M�] dn/d log10(M∗) bin width number
mid point

[
10−3dex−1cMpc3

]
9.15 62 0.2 35
9.35 72 0.2 41
9.55 79 0.2 38
9.75 85 0.2 63
9.95 98 0.2 52
10.2 81 0.2 44
10.4 50 0.2 50
10.6 35 0.2 25
10.8 8 0.2 25
11.0 5 0.2 4
11.2 2 0.2 6
11.4 1 0.2 2

Table 2.1: Galaxy stellar mass function for disc massive galaxies of Ref-L0050N0752 simulations

To do so, we modify a code written by the author of this thesis in Prácticas Externas (an external
internship university subject), which was described in the memory and defended in front of the
tribunal afterwards. This code is written in the Python programming language and was designed
to obtain the over-density of a region at z = 20 delimited by the particles of a galaxy selected at
z = 0 for the simulation Ref-L0012N0188.

2.3.1 Internship Code Modifications

The code developed in the internship is an algorithm, which behaves as follows:

1. Loading snapshots 0 and 28.

2. Selecting a galaxy at snapshot 28 (z = 0).

3. Saving the ParticleIDs.

4. Looking for this particle set at snapshot 0
(z = 20).

5. Looking for its center of mass.

6. Looking for the further1 particle from the cen-
ter of mass.

7. Calculating its distance.

8. Calculating the volume and the complete mass
inside the volume.

9. Calculating the density and over-density.

The simulation Ref-L0012N0188 is the smallest simulation of the whole EAGLE project that is
usually used for testing. For the simulation used in this thesis, Ref-L0050N0752, the code is hardly
modified.

Firstly, it is decided to work remotely with the computer of the Galaxy Evolution Theory research
group2. Due to the large amount of data stored in each of the snapshots which can be found at
around 30 and 60 GB each one, it is decided to run the program on the group´s computer, a

1The one furthest from the 90% closest to the centre of mass.
2See also https://www.iac.es/en/projects/numerical-astrophysics-galaxy-formation-and-evolution

https://www.iac.es/en/projects/numerical-astrophysics-galaxy-formation-and-evolution
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Figure 2.4: The first image (top-left) shows the distribution for all the galaxies shown in Figure 1, the
total set is black, elliptical galaxies are red, and disc galaxies are blue. The second image (top-right)

focuses only on the disc group. The third image (bottom-left) is analogue to the first but for M∗, such
that the orange is for disc galaxies, the yellow represents the elliptical set and newly the black is for the

total set. The last image (bottom-right) has two representations, the histogram, that is like the second one
focused on the disc group of massive galaxies, and the galaxy stellar mass function (GSMF) .

Figure 2.5: Comparison of galaxy stellar mass functions. The first curve (silver) replicates the
Ref-L100N1504 GSMF (at z = 0.1) of Schaye et al. [2015], based in McAlpine et al. [2016] Appendix A

code. The second curve (orange) is shown in Figure 2.4 in the bottom-right image and corresponds to the
GSMF for disc massive galaxies. The third curve (black) is the analogous galaxy stellar mass function but

for the whole massive galaxies sample, refers to the grey histogram of the top-left image of Figure 2.4.
Finally, data points (red) are part of the Baldry et al. measurements (Baldry et al. [2012], Table 1) at

z < 0.06.
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computer with sufficient specifications to run the corresponding snapshots of the simulation (first
step of the algorithm).

Secondly, the code first is modified and then rewritten to be able to work remotely and to be
efficient enough for the computer to run the program. (third to eighth). This is due to group´s
computer did not be able to run completely the code and stopped it. Thanks to Dr. Dalla’s help
and for his advice, it is possible to modify the most critical parts so that, at least, the computer is
able at least to run the whole program.

One of the main changes in this aspect is to replace functions that need to duplicate arrays in
order to modify it (e.g. append or concatenate functions from the NumPy library3). To this
end, other functions are written to obtain the same result but without duplicating the selected
information, these functions are achieved because one already knows the number of elements to
be used. Then, several modifications are made with the aim of making the calculation faster,
improving the performance per galaxy by 50%, which is equivalent to saving days of waiting to
obtain the necessary information.

It should be noted that there are still some bottleneck steps (especially in the fourth step of the
algorithm with the in1d function of the NumPy library), which could be studied to improve the
code and thus allow studies with larger simulations to be carried out in a reasonable calculation
time.

Finally, the code is modified again so that it not only provides information on the over-density (the
ninth algorithm step) but also information on the angular momentum, which is of interest for this
thesis. Therefore, the relevant data to calculate these parameters is saved in a .hdf5 file, the same
format as the data of each snapshot.

2.3.2 TFG Code Algorithm.

The new code presents more than 500 lines of code condensed into one class and 3 functions
(Appendix A):

• The Data snapnum class. This class allows the user to extract the data from the .hdf5 files
of a certain Snapshot efficiently and with the correct format of the output to use in functions
afterwards. The class is mainly based on the read dataset function described in the work
developed by The EAGLE team [2017] (section 4.1) and the rest are extra functionality
around read dataset to match output to function inputs.

• The function Galaxy to past. This is a function that allows us to determine the region at the
beginning of the simulation that must be taken into account in order to study the properties
of this region selected. The output of this function corresponds to obtaining the centre of
mass and the radius of the sphere, which is equivalent to steps 5 and 6 of the algorithm
described in the previous section (2.3.1).

3See also https://numpy.org/

https://numpy.org/
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Figure 2.6: Representations of some of the phases of the modified code of the practice period. The
image on the right is a two-dimensional representation of the galaxy with ID 59467 found in snapshot 0 of

the simulation Ref-L0012N0188 of the EAGLE project, showing the position of each of the particles, as
well as the type. The image in the centre shows the same particles as in the first image but at snapshot 0,
with a red circle informing the perimeter where 90% of the particles are inside. The image on the right is

the same as the previous one but only with the particles that were inside the perimeter.

• The function Overrho. This is the function to obtain the over-density of the region determined
by the function Galaxy to past, equivalent to step 9 of section 2.3. This section will discuss
this function in more detail.

• The function AngularMoment. This is the function that allows us to obtain the angular
momentum of the region determined by the function Galaxy to past. This is a completely
new function developed from scratch. It will be discussed in more detail.

With all the modifications implemented, the code (Appendix A) used to obtain the angular mo-
mentum and over-density characteristics at the initial moments of the simulation is as follows

1. Loading snapshots 0 and 28. From the public database provided by the EAGLE project (login and
password required) it is possible to obtain the data packets of each snapshot of any simulation (see
for details The EAGLE team [2017]), these packages will be needed to load the particle data from the
snapshot of interest.

2. Selecting a galaxy at snapshot 28 (z = 0). Using the class called Data snapnum is possible to show
the galaxy catalogue of the determined snapshot, that catalogue can be obtained directly from the
website in SQL format (see for details and McAlpine et al. [2016]). From the catalogue the IDs of
the galaxies (GalaxyID) necessary is extracted this thesis, i.e. massive (M∗ > 109M�), the principle
galaxy of the whole halo (SubGroupNumber = 0) and disc (κco > 0.4) galaxies.

In addition to the GalaxyID, other parameters can also be extracted from the galaxies catalogue, such
as their mass (stellar or total), their Vmax, their Kco, their illumination, their colour, etc. In fact, it
is in this way that the information necessary to create the Figures 2.1, 2.4 and 2.3 is obtained.

3. Saving the DM ParticleIDs. From the GalaxyID the GroupNumber and SubGroupNumber of each
galaxy can be obtained. Then a mask of the particles found at snapshot 28 in the galaxy can be
created, and a list with the ID of each particle (ParticleIDs) can be obtained (Figure 2.6, first image).
Unlike the GalaxyIDs, the ParticleIDs are the same during the whole simulation.
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One of the modifications made to improve the performance of this code is to search only for DM
particles (ParticleType1). With this measure, the number of particles to be looked for in snapshot
0 is considerably reduced. In addition to the fact that the centre of mass obtained does not change
much and it is quite likely that the particles farthest away from the centre of mass are of type DM,
since the rest of the particles are understood to be closer to the halo core.

4. Looking for this particle set at snapshot 0 (z = 20). Once the ParticleIDs in snapshot 28 are known,
the Galaxy to past function is used to create a mask that can be generated indicating where they are
located within the entire list of particles in snapshot 0. As mentioned in the previous section, this
may be the worst implemented part of the code, it is the section that takes the longest to calculate
and where major modifications could be made to improve the performance of the program.

5. Looking for its center of mass (rcm,j). With the created mask the positions of all selected particles
can be obtained. As these are DM-type particles, the mass of these particles is equal and constant
for all of them during the whole simulation (Schaye et al. [2015], Table 2), so the centre of mass (Ms)
can be calculated.

rcm,j =
1

Mj

∑
k

mk rk (2.3)

where m is the particle mass and r their coordinate vector. The j index means the j-st galaxy of the
sample while the k index is about the particle set with the ParticleID determined in the third step.

6. Looking for the 90% further particle from the center of mass. Knowing the centre of mass and the
positions of the particles, a radius (Rs, s comes from the sphere) can be calculated and thus the
volume covering all particles can be calculated. In the internship, it was observed that doing this
could cause problems due to particles that behave abnormally and are strangely far from the halo,
which would cause the volume to be over-weighted and its density to be underestimated.

During the internship period, the causes of these anomalous behaviours were not explored in depth,
but some reasons were proposed. Within this set of ideas, the most widely accepted hypothesis is
to blame these anomalies on the low quality and small size of the simulation Ref-L0012N0188. This
would mean that the distribution is not ideal and that there could be particles that are far enough
away that they are not part of the same core, but in the future they will be, because these ”satellite”
particles have no gravitational well to collapse into. In any case, this is open to study.

As a possible solution, we took the 90% of the particles that are closer to the centre of mass, with the
idea of skipping these possible anomalous particles. This solution may underweight the volume, but
not enough to make the results unreliable. In any case, this could be another aspect to be modified
in case we want to make progress in this research.

As an example, in the second image of 2.6 is possible to see how there is a kernel of particles but
there are some particles that would make the sphere inappropriately larger, in contrast, the approach
at 90% may be a good measure of the volume of the kernel (third image).

7. Calculating the volume (Vs) and the complete mass (Ms) inside the volume. With the variables
calculated in the previous step as input of Overrho, the volume occupied by a sphere with a radius
equal to the distance obtained can be obtained. Moreover, since the position of the centre of mass
and that of all the particles in the snapshot are known, it is possible to make sure which particles are
inside the sphere and calculate the total mass inside it.
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Vs,j =
4

3
πR3

s,j (2.4)

Ms,j =
∑
i

∀ri<Rs,j

mi (2.5)

where r is the module of the coordinates of a particle and the i index is used for the i-st particle of
the whole set of particles in the universe.

8. Calculating the density (ρ) and over-density (∆ρ). With mass and volume, the density of the deter-
mined region can be obtained trivially.

ρj =
Ms,j

Vs,j
(2.6)

In addition, the average material density (ρ0) of the universe can be calculated. First obtaining the
critical density, which can be calculated from the hubble constant (a constant parameter within the
simulation, see Table 1.1) 1.11. Then, the material density is another constant within the simulation,
(see Table 1.1), thus it is possible to use 1.12 and substitute the average density. It shall read as
follows

ρ0 ' 1.88 · 10−26 Ωh2kgm−3 (2.7)

The over-density is given as

∆ρj =
ρj − ρ0
ρ0

(2.8)

9. Saving over-density information. With the help of the Python h5py library4, an .hdf5 file with a
data table is created with the following data: the position of the centre of mass, the distance to the
furthest particle (from the 90% of the nearest particles), the density of that region, the over-density
of the region.

10. Calculating and saving the angular momentum (L). The other, and new for the code, property of the
original formation region of the galaxies sample to compare with Vmax is the total angular momentum.
This physical magnitude is a vector measurement that characterises the inertial properties of a body,
which is rotating relative to a certain point, the angular momentum is given as

Lj =
∑
i

∀ri<Rs,j

mi ri × vi (2.9)

where m is the mass, r the coordinate vector and v the velocity vector. The i index indicates the
i-st particle of the set of particles that are inside in the volume defined in the seventh step of this
algorithm and the j index represents the j-st galaxy of the sample. The vector product in the code is
developed as follows:

ri × vi = [(r1,i v2,i − r2,i v1,i) , (r2,i v0,i − r0,i v2,i) , (r0,i v1,i − r1,i v0,i)] (2.10)

4see also https://www.h5py.org/

https://www.h5py.org/
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Where the first subindex indicates the position within the vector. Since we are dealing with three
dimensions and we are working with the Python programming language, the subindex can be (0,
1, 2). As the code had already obtained both the centre of mass and the radius of the volume of
the region to be studied for each galaxy (in the seventh step of this algorithm), in this part it only
remains to identify the particles that are in that region, extract their properties necessary to perform
this calculation (i.e. their coordinate vector, their velocity velocity and their mass) and calculate the
angular momentum vector. This vector is also stored within the same dataset, in the file .hdf5, with
the rest of the data, in order to fulfil the third part of this work.

As the purpose of obtaining these values is to compare with Vmax, the modulus of the angular mo-
mentum vector is used for this purpose. The modulus is calculated as follows:

Lj =
(

(L0,j)
2

+ (L1,j)
2

+ (L2,j)
2
) 1

2

(2.11)

2.3.3 Over-density and Angular Momentum

With the code explained in the previous section the over-density and angular momentum data
are obtained for the region where the galaxies in our sample formed at z = 20 (snapshot 0). To
conclude this chapter, data obtained for these properties are shown, as a histogram, in Figures 2.7
and 2.8 respectively, and their comparisons with the Vmax of the same sample of galaxies in Figures
2.9 and 2.10. The following chapter discusses the results obtained.
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Figure 2.7: Over-density histogram for massive disc galaxies of the Ref-L0050N0752 EAGLE simulation
at z = 20.

Figure 2.8: Angular momentum module histogram for massive disc galaxies of the Ref-L0050N0752
EAGLE simulation at z = 20.



CHAPTER 2. OBJECTIVES AND METHODOLOGY 22

Figure 2.9: Over-density versus rotational maximum velocity. Comparison between the over-density in
the region where galaxies form at z = 20 and the Vmax property of massive disc galaxies at z = 0

(EAGLE´s Ref-L0050N0752 simulation).

Figure 2.10: Angular momentum versus rotational maximum velocity. Comparison between the total
angular momentum in the region where galaxies form at z = 20 and the Vmax property of massive disc

galaxies at z = 0 (EAGLE´s Ref-L0050N0752 simulation).



Chapter 3

Discussion of the Results and
Conclusion

RESUMEN

El tercer caṕıtulo cierra la memoria de este trabajo de fin de grado. Se trata de la discusión de los
resultados obtenidos a lo largo del estudio siguiendo el orden establecido en la metodoloǵıa (2). Se
comienza (sección 3.1) valorando si la simulación seleccionada resulta ser lo suficientemente buena
como para usarla para el estudio probabiĺıstico. Luego se valora la propiedad Vmax de las galaxias
en la sección 3.2 a través de los resultados obtenidos en la TFR. En la sección 3.3 Se describe las
funciones de distribución obtenidas (sección 2.2), aśı como la comparación entre ellas. La última
discusión de resultados (sección 3.4) se divide en dos partes, primero sobre el código reescrito en
este trabajo y luego con los resultados obtenidos por dicho código. Se finaliza el caṕıtulo con una
conclusión de todo lo mostrado en este trabajo.

3.1 Ref-L0050N0752 Simulation

The EAGLE simulation Ref-L0050N752 has been used for this final degree project to carry out
statistical studies. The Ref-L0050N0752 presents a high resolution simulation, due to the number
of particles. It also presents an intermediate size (50 cMpc), there are 100, 50, 25 and one case of
12.5 cMpc, (for further information, see Crain et al. [2015] ).

There are several reasons for the choice of this simulation, all due to the fact that for this work it
is not possible to choose superior simulations, e.g. Ref-L0100N1504 (see other possible simulations
in Crain et al. [2015]). The reasons include the number of galaxies that can be used as samples and
the computational demands required to obtain all the necessary data. it presents a sufficiently large
sample of galaxies to be able to perform a decent study of the aspects addressed in this work, i.e.
385 disc galaxies (Table 3.1). Comparing the number of galaxies used in this study with the rest of
the simulations shown in the table, it can be seen that, although not ideal, it is an appropriate set
to investigate. Although it is left as a precedent for a possible study for a higher simulation. This
simulation turns out to be a good balance large enough for the statistical data to be relevant but
large enough for the quality of the data to be adequate. This synergy allows to have good results
for this research.

23
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It must be understood that with the increase in both properties (the size and resolution of the
universe), it is not just that there are more galaxies that match the ones we are looking for, but
they also have a higher resolution, i.e. a higher number of particles per galaxy. Therefore, the
scale of computational demand when switching from one simulation to other higher is not linear to
the number of galaxies, but also scalates with the resolution of each galaxy. Added to this are the
bottlenecks in the code, such as possible inefficiencies that have not yet been detected.

Simulation Number of galaxies Number of massive galaxies Number massive disc galaxies

Ref-L0012N0188 47 21 5
RecalL0025N0376 349 135 52
Ref-L0025N0752 900 166 78
Ref-L0050N0752 2838 900 385
Ref-L0100N1504 21445 7482 2830

Table 3.1: Comparison of the number of galaxies in each simulation. This shows the number of total
galaxies. Then which of them are massive (M > 109M� and SubGroupNumber = 0). And finally, within

the second group which are of disc type ( κco > 0.4).

3.2 Tully-Fisher Relation

The stellar TFR is predicted, with the rest of the scaling relations of disc galaxies in the current
theory of galaxy formation and evolution based on the ΛCDM theory (see e.g. Mo et al. [1998];
Gnedin et al. [2007]; Courteau et al. [2007]). Not only that, it has also been studied observationally
(e.g. Stone et al. [2021]), and compared with the theoretical models (e.g. Bell et al. [2003]; Trujillo-
Gomez et al. [2011]) , obtaining positive results. Therefore, since both theory and observation
replicate this behaviour, it is not surprising that EAGLE´s simulations replicate it as well (e.g
Schaye et al. [2015]; Ferrero et al. [2017]).

As it can be seen in Figure 2.3, our own stellar TFR could be well approximated by a power law
between the stellar mass of the galaxy and our chosen term Vmax.

Total : log10 (Vmax) ' 0.257 · log10(M∗)− 0.405 (3.1)

Disc : log10 (Vmax) ' 0.260 · log10(M∗)− 0.444 (3.2)

The slope, for the total number of stars, (s ' 0.257) is found to be in agreement with measurements
collected in Avila-Reese’s paper (Avila-Reese et al. [2008], Figure 1), because it presents reasonable
values compared to the rest of the current studies (Stone et al. [2021]).

Besides, this result supports the statement made in Schaye’s paper (Schaye et al. [2015]) about
this close relative of the Tully-Fisher relation (Schaye et al. [2015], Figure 12). It can therefore
be concluded that the approximate value Vmax can be used as an appropriate reference value to
describe the maximum rotational velocity of the galaxies simulated in Ref-L0050N0752. In addition,
the results obtained in this work are trustworthy, and could be taken as representatives.
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3.3 Distribution Functions

Distribution functions give probabilistic information about the property that is being studied. In
this case, two studies have been performed, concerning the Vmax (Figure 2.4 first row) and the M∗
of the galaxy (second row). Both properties are carried out in two parts. The first one (Figure
2.4 left column) consists of three superimposed histograms that compare the function distribution
between different groups of massive galaxies according to their morphology: disc-type galaxies (our
sample of interest), elliptical-type galaxies, and all of the above two. In this second part (right
column), the histogram of disc-type galaxies is isolated, nonetheless the graph corresponding to the
magnitude M∗ has a curve associated with its GSMF.

This distribution of the images (Figure 2.4) allows an easy comparison between all of them.

• Top-left image of Figure 2.4: In this plot it is possible to examine the histograms of the Vmax

of massive galaxies. There are three histograms in which both axes present a logarithmic
scale. This distribution is typical in studies like this one, that have a large number of values,
(e.g. the dataset based to display the values vary up to two orders of magnitude on each
axis).

Firstly, it is possible to observe the distribution uniformity of the three galaxy set samples,
the distribution is centred at a certain maximum and is followed by a decrease in the number
of galaxies on either side. These descriptions added to the fact that all distributions do not
have a forest of bars shape, suggest that the method used to obtain the distribution and data
is effective and correct.

Secondly, one thing that can be verified in this graphic, The total galaxy distribution should
be the sum of the other two distributions. In addition to verifying it numerically, it can be
intuited because of two reasons: first, the total distribution is always greater than or equal
to both distributions, and second, where the distribution of disc-type galaxies increases the
total distribution differs more from the elliptical-type distribution.

It can also be seen that there are more elliptical galaxies than disc galaxies, that can be
deduced because, although the galaxies are more or less equally distributed in terms of
rotational velocity, almost all the bars of the elliptical galaxies are higher than those of the
disc galaxies. Moreover, the fact that this is true, even though the dispersion of values of
elliptical-type galaxies is larger than disc-type galaxies, reinforces the argument.

The distribution of elliptical-type galaxies has a larger range [1.73, 2.90] than the disc-type
distribution [1.79, 2.58]. Furthermore, their maximum are not aligned, while most elliptical
galaxies have a Vmax around 102km/s, the disc galaxies are at 102.15km/s. Roughly speaking,
they have similar values, but with respect to the range of distribution (it is a logarithm scale)
there are considerable differences.

• bottom-left image of 2.4: Analogous to the previous discussion, but in this plot, the his-
tograms refers to the study of the M∗ for massive galaxies. These three bar graph also have
logarithmic scales due to, again, the large range of data values.

The first thing that stands out is the lower limit presented by the image, this limit is due
to the condition imposed in this thesis, stating that the sample studies of galaxies must be
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massive. Therefore, the lower limit on the distribution of the M∗ property is, in effect, at
109M�.

Taking into account the above limitation and, comparing this image with the previous one, it
can be seen that a description analogous to the previous set of histograms can be made: the
bar graph of total galaxies is the sum of both histograms (the visual arguments expressed in
the previous analysis are maintained), it is still observed that there is a greater amount of
elliptical galaxies than disc galaxies, despite the fact that for this study there is a lower limit
and the elliptical type galaxies present a greater range of distribution; Finally, the maximum
of the distributions are not aligned, while the elliptical-type takes the maximum at the lower
limit (109Modot, the disc galaxies are around 109.6M�.

• Bottom-right image of 2.4: in addition to the histogram of M∗ property of disc massive
galaxies, the galaxy start function is drawn as an curve versus the density of galaxy number
(∆ log10(M∗) = 0.2). It can be seen that, although it is a noisy curve, the behaviour of the
curve can be intuited and when comparing it with the histogram it can be seen that it is a
representative curve. Although at first it might seem that the noise of the curve is due to the
lack of data from a larger number of galaxies, Table 2.1 shows, except at the upper limit of
M∗, the great amount of data observed per bin. Schaye et al. [2015] find a worse case with
the Ref − L0025N0752 simulation (Figure 4) and find arguments that it is due to the size
of the simulation.

• right row of Figure 2.4: Apart from everything described with the set of rotation velocity
histograms, the distribution obtained in Vmax for disc galaxies is related to theM∗ distribution
of the same galaxies. This statement can be intuited by visually comparing the two images,
but strong arguments can also be given. Moreover, this similarity is well described by the
TFR described and discussed above.

On the one hand, it can be observed that, although the stellar mass of the galaxies presents a
lower boundary condition, no such boundary condition is observed in the maximum rotational
velocity; nevertheless, it can be observed that the Vmax distribution decays rapidly when it
is on the order of 101.9km/s, which is roughly equivalent to the stellar mass limit after using
the fit for disc galaxies (3.2). The fact that even lower values of Vmax than this limit are
present may be due to the fact that the power law does not behave well at lower limits, so a
more restrictive condition for massive galaxies could be considered for future work.

On the other hand, the rest of the distribution resembles the two plots quite well, both
maxima are equivalent in terms of fit, and also show the same decreasing behaviour at the
upper limits of both properties.With all this, we can again observe the clear relationship
between both properties for the conditions imposed in this work.

Once these distributions have been compared, as well as the GSMF of massive disc galaxies, we also
study the results of the GSMFs in 2.5. On the one hand, the code from Appendix A of McAlpine
et al. [2016] is applied to obtain the two curves concerning the simulation chosen for this work,
both for disc galaxies and for all massive galaxies (in Figure 2.5 are represented as orange and
silver respectively). It can be seen how both correspond to their distributions presented in the
bottom-right image of 2.4, that is why the GSMF of all galaxies decays later than that of the disc
galaxies, because it takes into account the rest of the galaxies.
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On the other hand, use is made of the literature to compare with two other GSMFs. First, the
remaining curve also comes as GSMF from the EAGLE simulation Ref-L0100N1504 at z = 0.1
(Schaye et al. [2015] Figure 4), it is the GSMF of all massive galaxies with a three-dimensional
aperture of 30 kiloparsec proper (more details in section 3 of Schaye et al. [2015] and subsection
5.1.1)). Second, we show in Figure 2.5 some data points that come from Galaxy And Mass Assembly
(GAMA) observations made by Baldry et al. [2012] (The set of data points are extracted as part
of the results shown in Table 1). It can be seen how these last two illustrations present a similar
compartmentalisation, which evidences the ability of EAGLE’s simulations to adequately represent
GSMFs at low-z.

It can be seen that the noise in the curves corresponding to the RefL0050N0752 simulation is
similar, even though the curve representing the total set of massive galaxies has more galaxies per
bin than the disc-only curves. In contrast, the Ref-L0100N1504 simulation has a much smoother
curve.

3.4 Initial Conditions

As a last part of the work, it is proposed to find correlations between the galaxy rotation velocity
distribution and the properties of the environments where the galaxies formed, in this case the
over-density and the angular momentum of the region where the particles are located at redshift
20. This information is obtained from the code developed in this work, which is based on the code
written during the internship.

3.4.1 The New Code

The modifications to the code allow: firstly, to use it for larger simulations than those tested in
practice; secondly, to also extract angular momentum information; and thirdly, to have a more
efficient program with a considerable increase in speed (up to 12 times faster). The latest version
of the code is the one used to extract the simulation data Ref-L0050N0752.

The results provided in the subsection 2.3 (Figures 2.7, 2.8, 2.9, 2.10) prove that the code does
indeed meet the objectives of the modifications specified in the methodology section (2). The
improvements in the code can be seen in the time taken to obtain the overdensity of a galaxy. In
the simulation Ref-L0012N0188, we went from 72 seconds per galaxy to just over 5 seconds per
galaxy, 50 seconds for the whole sample. In the simulation that concerns this work it was not even
possible to run with the initial code, with the current code it takes about 4 min per galaxy, which
means that obtaining the over-density of all the galaxies concerned takes a little more than a day.

3.4.2 Over-density

With the code implemented, the properties obtained with this code can be studied. Firstly, iden-
tify the over-density (∆ρ) of the regions where massive disc galaxies formed. The over-density
distribution obtained for the EAGLE simulation Ref-L0050N0752 can be seen in Figure 2.7.
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Looking at the histogram (Figure 2.7) it can be seen that it is a practically uniform distribution
and does not have negative over-densities, i.e. regions with less matter density than the mean of
the universe. Furthermore, it has a small distribution range, although it is on a logarithmic scale,
a peak at 0.07 can be clearly seen. All this indicates that the study of the over-density can be
held in good esteem, that in the first instance it does not present anomalies to question the result
obtained.

The mean histogram is in 0.076, this equivalent to a mean over-density of 19% (∆ρ ' 0.192) with
respect the mean density of the universe (ρ0), i.e. the mean density in the formation regions of
massive disc galaxies is 1.19 times the mean density of the universe (ρdisc = 1.19ρ0).

With the over-density in the simulation verified, the next step, and the aim of this part, is research-
ing whether there is a relationship between this property and the maximum rotational velocity. For
this reason it is compared the Vmax versus the ∆ρ of the galaxies sample (Figure 2.9). it is possible
to observe that there is a point cloud.

This result goes against the premise and could be taken as a first step to discard the idea that
there is a correlation between the maximum rotation velocity and the over-density of the formation
region of massive disc galaxies. Or at least, that their relationship is not so relevant and that there
are other factors that have a greater impact on the dynamics of the galaxy.

Although our result does not shed much light, the right side of the figure is worth noting. If one
maintains the idea that over-density and maximum rotational velocity are correlated, one would
expect this relationship to be directly proportional, i.e. a region with a higher over-density would
imply that the resulting galaxy would have a higher maximum rotational velocity. Looking at the
right-hand side of the histogram, it can be seen that, although it is a point cloud, the regions
with the highest ∆ρ are those with the lowest Vmax. This behaviour could be an argument for
questioning the veracity of the data presented as over-density. This would allow us to maintain the
idea that there is a correlation.

For this reason, two other density-related (Equation 2.6) cases are studied in order to present
evidence that may reveal something of interest about the veracity of the data obtained that cor-
responds to over-density. These two properties are also properties of the region from which the
massive disc galaxies formed: the radius of the selected volume as a region (Rs) and the total mass
inside the selected volume (Ms). Both comparisons can be seen in 3.1.

As can be seen in the figure, both comparisons present a linear correlation, emphasising that the
graphs compare log 10 − log 10. In other words, they show some potential relationship of the
following style:

log10 (Rs) ' 1.78 · log10 (Vmax)− 5.93 (3.3)

log10 (Ms) ' 2.62 · log10 (Vmax)− 3.53 (3.4)
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Figure 3.1: Rs (left image) and Ms (right image) versus Vmax. A study of two properties that compose
the density, and hence the over-density, of the formation region of disc-type galaxies at z = 20 with the

maximum rotational velocity of these galaxies at z = 0. The relation of these results is proposed in order
to shed some light on the veracity of the over-density.

On the one hand, the ratio of the maximum rotational velocity to the mass of the formation region
has a simple explanation. The particles inside the region are practically the same as those that
make up the galaxy. The mass of the stars in galaxies has a well-defined correlation with the mass
of the halos that contain them. In addition, the maximum rotation velocity has a well-defined
correlation with the mass in stars (the stellar TFR, Figure 2.3). So, the rotation speed has a
correlation with the mass of the halo. This is quite logical, since the rotation speed depends on the
distribution of all mass in the halo.

On the other hand, in the initial conditions of the simulated universe, the density of the entire
universe is required to be in accordance with the mean density of the universe (ρ0), in order to
replicate the Cosmological Principle on which cosmological models such as ΛCDM are based. This
correlation would explain why Rs and Vmax also correlate.

Understanding how these properties correlate with each other (Figure 3.2), with the Vmax (Equation
3.3 and Figure 3.1) and with ρ (Equation 2.6) explains why over-density as defined does not correlate
in use (since it is given by a non-linear combination of both properties). Surely with a larger number,
for example with a larger simulation and with a larger sample of galaxies, the relationship between
over-density and maximum galaxy rotation velocity can be more easily discerned.

From this point on, one could consider using a different definition of density than the one proposed
in this thesis. One way to take is to change the already questioned definition that has been used
as the radius of the volume of the galaxy formation region. One could study the density inside
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Figure 3.2: Ms versus Rs of massive disc galaxies in EAGLE´s Ref-L0050N0752 simulation at z = 20.
The density distribution must not be exactly uniform throughout the universe in order to give rise to

cosmological structures, due to the gravitational interaction originating from over-density regions such as
those studied in this work. At z = 20, the mass of a region is strongly correlated with the volume of that
region, which implies that the over-densities of the regions will not be very far from the average density of

the universe (as tested in this section).

a sphere with a centre equal to the centre of mass but with a certain radius that is the same for
all galaxies (Rs,j = Rs ∀j); with this new definition of density, and therefore of over-density, one
can study galaxy size indifferently, since smaller galaxies have a faster formation cycle than larger
galaxies.

3.4.3 Angular Momentum

The discussion of the angular momentum data is similar to the first part of the discussion of the
over-density data. Again the data histogram shows a uniform distribution of angular momentum,
although there is a disk galaxy in the sample set that has an angular momentum whose modulus
is less than unity (with unity being M�Mpc km s−1 (left limit of Figure 2.8).

The aim of this part of the work is to examine whether there is any relationship between the angular
momentum and the maximum rotational velocity , The Figure 2.10 visually presents the behaviour
of one versus the other. It can be seen that the result obtained is a point cloud, which implies that
there is apparently no correlation between the two magnitudes.

Unlike the over-density, the fact that the angular momentum has no clear relationship (at least
not visible in this thesis) comes as a surprise. This is because it is assumed that the total angular
momentum of a galaxy is conserved, so if the mass of the galaxy tends not to vary much and
the radius of the galaxy decreases due to gravitational interaction, the rotational velocity should
increase. The most interesting answer that can be drawn from this study is that, as with the
over-density, the definition of angular momentum in the region of galaxy formation is not ideal for
finding this relation.

Another cause may be that the angular momentum term is being considered too early to correctly
express the expected behaviour, remembering that it is studied from the region where the galaxy will
form.The tidal torque of the total set of particles that will later form the galaxy is a property from
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which it is theorised that the angular momentum of galaxies can emerge (see for more details Barnes
and Efstathiou [1987]; and for observational testing Porciani et al. [2002]), which would provide
information on the formation of disc galaxies (see Fall and Efstathiou [1980]), thus explaining
why the angular momentum obtained is not conserved in the proto-galaxy regions (see White
[1984]). The disadvantage of this property lies in its complexity: it is a tensor from which each of
the components would have to be obtained, which increases the computational time required per
number of galaxies, which would make the computational problem when wanting to use a larger
and higher quality simulation a real challenge to work on.

3.5 Conclusions

This work has enabled an elaborate and comprehensive study of the rotational velocity of massive
disc galaxies. It has allowed us to understand the importance of simulations in the field of research
and how they complement both theory and observation. The following conclusions can be drawn
from this work:

The use of the Ref-L0050N0752 simulation seems to be a good balance between a large enough
sample size for its results to show some relevance but without excessive computational complexity
that would make it impossible to obtain the necessary data. 385 galaxies is a significant sample
to carry out the statistical studies shown in this publication, A smaller simulation and the number
of optimal galaxies would have been too low, a larger simulation and the computational demands
would not have allowed the data to be obtained. Furthermore, it is a sample that is under the
conditions necessary to carry out this investigation. They are all massive and are the central galaxy
of their own halo, which means that the study does not have to survey the order of perturbation
associated with gravitational interaction with other bodies in the same halo.

The TFR obtained in this work is satisfactory, it is a relationship that is measured observationally
and the fact that it is reproduced in the simulations is a good step forward. With this section it is
possible to affirm that the Vmax represents in a good way the maximum rotation velocity of galaxies
even if it is obtained from a theoretical approximation, which allows us to continue with the study.

The distribution functions of the different properties proposed in this study show a good perfor-
mance. All the histograms studied in this section are free of anomalies and strange data that make
us question the reliability of the distributions obtained. The relation for the set of disc galaxies
between the distribution of their stellar mass and their maximum rotation velocity reconfirms what
was said about their TFR. The fact that this relation can be based on the relation obtained in the
TFR reinforces the first part of this study as well as the reliability of the results.

The GSMFs used in this thesis show the potential of their use. These functions allow to relate and
compare between studies of different modalities (analytical, numerical, observational) for the same
field. The results obtained in our sample of galaxies show a good performance against observational
data and other simulations. This good result reinforces the good view we already have on the
distribution function obtained for the stellar mass of massive disc galaxies.
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With all of the above, we conclude that the distribution of the Vmax function for massive disc
galaxies obtained in this work is sufficiently well supported to claim that it is a good representation
of what we were looking for in this work.

The code is the most extensive section of the work, from its creation until the moment of the
delivery of the memory it is in constant change and improvement. It can be stated that it is a
functional code and that it can be used optimally for the work employed in this thesis, but it may
need more changes and improvements if it is to be used for larger simulations or for tests with
greater stress. The class Data snapnum is the epicentre of the improvements, it is the main class of
the whole program, this is due to the fact that all the calculations involve extracting the data from
the files, a function that this class performs. It is where most relevant modifications are made with
respect to the original code (changes mentioned in 2.3). The rest of the functions (Galaxy to past,
Overrho and AngularMoment) present a non-optimised behaviour with possible bottlenecks that
affect the performance of the code.

The improvement and optimisation of the code becomes crucial because it is not a linear computa-
tional problem, as the increase in complexity from one dimension to another not only has to take
into account the increase in the number of galaxies, but also the quality of each one of them, i.e. the
number of particles in each galaxy. A possible future advance in this line of research could consist
of improving these functions, with special mention to the in1d function of the Numpy library, with
the aim of eliminating the possible bottlenecks that arise in the code and thus being able to carry
out simulations of a larger size and with a better quality.

No evidence is found for a robust connection between the two properties of the galaxy-forming
regions of the samples selected for study, density and angular momentum, and the maximum
rotational velocity of the galaxies.

In one hand, the over-density case. Despite the poor results, the background to why over-density
did not correlate is probably understood. The correlations between Ms and Rs with Vmax show
the non-trivial way in which the latter is linked to Vmax. In addition, new ways of defining the
over-density, such as an Rs equal to all galaxies, are proposed for future work.

On the other hand, the angular momentum background has not been so easy to discern. And
it is from here that it is proposed to continue future work. Despite the possible computational
challenges, the study of the tidal torque of the formation region may shed light on this issue.

Despite the negative results, the formal response of this work is to keep the hypothesis open
that both over-density and angular momentum in the formation regions, especially the latter, are
correlated with the maximum rotational velocity. Alternative definitions and properties relative to
those of this work will be investigated in order to continue this part of the work.
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Appendix A

Code to Obtain the Dataset

Introduction

# −∗− cod ing : u t f −8 −∗−
””” TFG code . py −− v e r s i o n 4 . 1 4 . 0 −− ”””

# L i b r e r i e s
import os
import h5py
import gc
import numpy as np
import eag l eSq lToo l s as eag l e

# L i s t o f EAGLE’ s s imu l a t i o n s .
l i s t s i m = [ ”RefL0012N0188” , ”RefL0025N0376” ,

”RefL0050N0752” , ”RecalL0025N0752” ]

sim = l i s t s im [ 0 ] # Simu la t i on s e l e c t e d

Data snapnum Class

””” # Clas s Data snapnum ”””

# Clas s to g e t t h e data from a snapsho t o f a s imu l a t i o n .
class Data snapnum ( ) :

def i n i t ( s e l f , s imulat ion , snapnum , path ,
user name=”<user name>” , password=”<password>” ) :

”””
To load th e c l a s s i s r e q u e s t e d :

s imu l a t i o n : The EAGLE’ s s imu l a t i o n
snapnum : The number r e l a t e d to t h e snapsho t o f t h i s s imu l a t i o n .
Path : Path where t h e . hd f5 f i l e w i th t h e snapsho t i n f o rma t i on .
user name , password : The username and password o f an EAGLE account .

”””

# The inpu t data i s s t o r e d in t h e o b j e c t .
s e l f . user = { ’ username ’ : user name , ’ password ’ : password}
s e l f . sim = s imulat i on
s e l f . snapnum = snapnum
s e l f . path = path
s e l f . subpath = ” snap ”+s e l f . path [ len ( ”/%s/ snapshot ”%( s e l f . sim ) ) : ]
s e l f . n f i l e s = len ( os . l i s t d i r ( ’%s / ’%(path ) ) )

# Cer ta in i n t e r e s t i n g c on s t an t s are l oaded .
with h5py . F i l e ( ’%s/%s .% i . hdf5 ’%( s e l f . path , s e l f . subpath , 0) , ’ r ’ ) as f :

”””
# Sca l e f a c t o r
# Hubb le cons tan : 0 .667
# DarkMatter mass (M ∗)
”””
s e l f . a = f [ ’ Header ’ ] . a t t r s . get ( ’Time ’ )
s e l f . h = f [ ’ Header ’ ] . a t t r s . get ( ’HubbleParam ’ )

36
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s e l f .mDM = f [ ’ Header ’ ] . a t t r s . get ( ’MassTable ’ ) [ 1 ] ∗ s e l f . h∗∗ [ −1]

# Other Cer ta in i n t e r e s t i n g c on s t an t s are l oaded ( rho c )
”””
# c r i t i c a l d e n s i t y ( g/cmˆ3)
# matter d e n s i t y ( g/cmˆ3)
# average mat ter d e n s i t y a t t h i s snapsho t .
”””
s e l f . rho c = 30000/((3 .086 e+19)∗∗2∗6.6743 e−8∗8∗np . p i )∗ ( s e l f . h )∗∗2
Omega matter = f [ ’ Header ’ ] . a t t r s . get ( ’Omega0 ’ )
s e l f . rho matter = s e l f . rho c ∗Omega matter∗ s e l f . a∗∗(−3)

aexp = f [ ’ PartType%i/%s ’%(0 , ’ Coordinates ’ ) ] . a t t r s . get ( ’ aexp−s ca l e−exponent ’ )
hexp = f [ ’ PartType%i/%s ’%(0 , ’ Coordinates ’ ) ] . a t t r s . get ( ’h−s ca l e−exponent ’ )

# Si z e o f t h e un i v e r s e (Mpc)
s e l f . boxs i z e = f [ ’ Header ’ ] . a t t r s . get ( ’ BoxSize ’ )∗ s e l f . a ∗∗( aexp )∗ s e l f . h∗∗( hexp )

del ( aexp , hexp , Omega matter )
gc . c o l l e c t ( )

# load the Ga l a x i e s c a t a l o g u e . ( Snapshot 0 hasn ’ t )
i f s e l f . snapnum != 0 :

s e l f . l o ad ca ta l ogue ( )

# Funct ion to l oad c e r t a i n g a l a x y data .
def l o ad ca ta l ogue ( s e l f ) :

”””
Funct ion t h a t a l l ow s to l oad th e d i f f e r e n t g a l a x i e s w i th c e r t a i n
p r o p e r t i e s such as t h e i r GroupNumber and SubGroupNumber .

This i s v a l i d f o r a l l t h a t i s d i f f e r e n t from snapnum 0 , because i t i s
from t h a t snapnum t h a t t h e GroupNumber and SubGroupNumber t h a t t h e
GroupNumber and SubGroupNumber are r e g i s t e r e d .

Query in f o rma t i on :
Snapnum : Snapshot ’ s number
Galaxy ID : Number f o r each g a l a x y a t snapnum number
GroupNumber : Halo ’ s number
SubGroupNumber : Galaxy ’ s number
KappaCoRot : Disc parameter ( i f KappaCoRot > 0 .4 −> Galaxy Disc− l i k e )

”””

# Connect ion wi th t h e da t a ba s e
con = eag l e . connect ( user = s e l f . user [ ’ username ’ ] ,

password = s e l f . user [ ’ password ’ ] )
# Query wi th t h e c on d i t i o n s f o r mass ive d i s c g a l a x i e s
query = ”SELECT \

MK. GalaxyID , \
SH.GroupNumber ,\
SH. SubGroupNumber , \
SH.Vmax, \
SH. MassType Star , \
SH.Mass , \
SH. GasSpin z , \
MK.KappaCoRot \

FROM \
%s SubHalo AS SH, \
%s MorphoKinem AS MK \

WHERE \
SH. GalaxyID = MK. GalaxyID AND \
SH. MassType Star >= 1E09 AND \
MK.KappaCoRot >= 0.4 AND \
SH. SubGroupNumber = 0 AND \
SH.SnapNum = %i \

ORDER BY \
SH. GalaxyID”%( s e l f . sim , s e l f . sim , s e l f . snapnum)

# Our Cata logue
s e l f . ca ta logue = eag l e . execute query ( con , query )

del ( con , query )
gc . c o l l e c t ( )

# Funct ion to read th e data
def r ead data s e t ( s e l f , i type , a t t ) :

”””
i t y p e i s t h e t ype o f t h e p a r t i c l e :

PartType0 −−> Gas p a r t i c l e data
PartType1 −−> Dark mat ter p a r t i c l e da ta
PartType4 −−> Star p a r t i c l e data
PartType5 −−> Black ho l e p a r t i c l e data

a t t i s t h e a t t r i b u t e which i s l o o k i n g f o r .
”””

# F i l e up load to know the number p a r t i c l e s .
with h5py . F i l e ( ’%s/%s .% i . hdf5 ’%( s e l f . path , s e l f . subpath , 0) , ’ r ’ ) as f :

# Pa r t i c l e s ’ number .
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n p a r t i c l e s = f [ ’ Header ’ ] . a t t r s . get ( ’ NumPart Total ’ ) [ i t ype ]

# Output array f o r Coord ina te s and Ve l o c i t y ca s e s .
i f at t == ’ Coordinates ’ or at t == ’ Ve loc i ty ’ :

data = np . ones ( ( n pa r t i c l e s , 3 ) )

# Output array r e s t o f c a s e s
else :

data = np . ones ( n p a r t i c l e s )

del ( n p a r t i c l e s )
gc . c o l l e c t

# DarkMatter Mass case
i f i t ype==1 and at t==’Mass ’ :

data ∗= s e l f .mDM
data . dtype = [ ( ’Mass ’ , data . dtype ) ]
return data

# The r e s t
else :

”””
# There are f a i l u r e s when the s p e c i f i e d i t y p e i s not p r e s en t t h e a t t r i b u t e ,
so a i t i s used a try−e x c e p t e s t r u c t u r e

”””
try :

count = 0
# Loop over each f i l e and e x t r a c t t h e data .
for i in range ( s e l f . n f i l e s ) :

f = h5py . F i l e ( ’%s/%s .% i . hdf5 ’%( s e l f . path , s e l f . subpath , i ) , ’ r ’ )
tmp = f [ ’ PartType%i/%s ’%(itype , a t t ) ] [ . . . ]
data [ count : count+len (tmp ) ] = tmp
count += len (tmp)

”””
In the paper ( arXiv : 1706 .09899 , pa r t 4 . 1 ) r e p ea t t h e s e c a l c s f o r each
n f i l e ( i . e . i v a l u e ) bu t t h ey didn ’ t save in any v a r i a b l e , t h ey o v e rw r i t e a l l
t h e s e v a r i a b l e s , so i t ’ s f a s t i f we do on l y in t h e l a s t one , or f i r s t or whatever .

I choose t h e l a s t one .
”””
aexp = f [ ’ PartType%i/%s ’%(itype , a t t ) ] . a t t r s . get ( ’ aexp−s ca l e−exponent ’ )
hexp = f [ ’ PartType%i/%s ’%(itype , a t t ) ] . a t t r s . get ( ’h−s ca l e−exponent ’ )

f . c l o s e ( )
del ( f , tmp , count , i )
gc . c o l l e c t ( )

# conve r t comov i l t o p h y s i c a l u n i t s and e l im i n a t e h m u l t i p l i c a t i o n s
i f at t != ’ Pa r t i c l e IDs ’ and data . dtype != np . int32 and data . dtype != np . int64 :

data = np . mult ip ly ( data , s e l f . a∗∗aexp ∗ s e l f . h∗∗hexp , dtype=’ f8 ’ )

del ( aexp , hexp , tmp)
gc . c o l l e c t ( )

# In case t h e r e are no p a r t i c l e s o f t h a t i t y p e in t h i s snapsho t
except KeyError :

i f at t == ’ Coordinates ’ or at t == ’ Ve loc i ty ’ :
data = np . ones (3)∗np . nan

else :
data = np . array ( [ np . nan ] )

f ina l ly :
i f at t == ’ Coordinates ’ or at t == ’ Ve loc i ty ’ :

data . dtype = [ ( at t+’ %i ’%( i ) , data . dtype ) for i in [ 0 , 1 , 2 ] ]

e l i f at t == ’ Par t i c l e IDs ’ :
data . dtype = [ ( ’ Pa r t i c l e IDs ’ , ’<u8 ’ ) ]

else :
data . dtype = [ ( att , data . dtype ) ]

return data

def p e r i o d i c i t y ( s e l f , array , point , c ente r=False ) :
”””
A f un c t i o n t h a t a l l ow s p a r t i c l e s to be c en t r ed around the c o o r d i n a t e s
o f a po i n t or a p a r t i c l e , based on the p e r i o d i c i t y p r op e r t y o f t h e un i v e r s e .
”””

# Pa r t i c l e as a po i n t o f r e f e r e n c e :
i f point . dtype == np . dtype ( [ ( ’ Pa r t i c l e IDs ’ , ’<u8 ’ ) , ( ’ Coord inates 0 ’ , ’<f 8 ’ ) ,

( ’ Coord inates 1 ’ , ’<f 8 ’ ) , ( ’ Coord inates 2 ’ , ’<f 8 ’ ) ,
( ’Mass ’ , ’<f 8 ’ ) , ( ’ i t ype ’ , ’ i 1 ’ ) ] ) :

for i in [ 0 , 1 , 2 ] :
i p o i n t = point [ ’ Coord inates %i ’%( i ) ]
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# Pa r t i c l e as a r e f e r e n c e po i n t
array [ ’ Coord inates %i ’%( i ) ] −= i p o i n t

# For a l l p a r t i c l e beyond L / 2 . . .
mask = array [ ’ Coord inates %i ’%( i ) ] > s e l f . boxs i z e /2
# . . . i s p l a c ed on the o t h e r s i d e
array [ ’ Coord inates %i ’%( i ) ] −= mask . astype (np . int )∗ s e l f . boxs i z e
del (mask )
gc . c o l l e c t ( )
# Fot a l l p a r t i c l e beyond −L / 2 . . .
mask = array [ ’ Coord inates %i ’%( i ) ] < − s e l f . boxs i z e /2
# . . . i s p l a c ed on the o t h e r s i d e
mask = mask . astype (np . int )∗ s e l f . boxs i z e
array [ ’ Coord inates %i ’%( i ) ] += mask

# IF cen t e r = Fa l s e −> t h e c o o r d i n a t e s are r e t r i e v e d
i f not ( c ente r ) :

array [ ’ Coord inates %i ’%( i ) ] += i p o i n t

del (mask , i p o i n t )
gc . c o l l e c t ( )

del ( i , po int )
gc . c o l l e c t ( )
return array

# Point as r e f e r e n c e po i n t case (The r e s t i s t h e same )
else :

for i in [ 0 , 1 , 2 ] :
array [ ’ Coord inates %i ’%( i ) ] −= point [ i ]

mask = array [ ’ Coord inates %i ’%( i ) ] > s e l f . boxs i z e /2
array [ ’ Coord inates %i ’%( i ) ] −= mask . astype (np . int )∗ s e l f . boxs i z e

del (mask )
gc . c o l l e c t ( )

mask = array [ ’ Coord inates %i ’%( i ) ] < − s e l f . boxs i z e /2
mask = mask . astype (np . int )∗ s e l f . boxs i z e
array [ ’ Coord inates %i ’%( i ) ] += mask

i f not ( c ente r ) :
array [ ’ Coord inates %i ’%( i ) ] += point [ i ]

del (mask , i )
gc . c o l l e c t ( )

return array

# Funct ion to o b t a i n t h e p a r t i c l e data o f a c e r t a i n s e c t o r
def pa r t i c l e s p r o p ( s e l f , a t t=None , i type=None , gn=None , sgn=None ) :

”””
P o s s i b i l i t y to up load a q u an t i t y o f da ta d i r e c t l y . Depends on the need .
a t t −−> s p e c i f i c a t t r i b u t e
i t y p e −−> s p e c i f i c p a r t i c l e −t ype
gn −−> s p e c i f i c GroupNumber
sgn −−> s p e c i f i c SubGroupNumber

”””

i f i t ype == None and at t == None :
”””

For a l l p a r t i c l e s : ID , coo rd ina t e s , mass and i t y p e a t t r i b u t e
”””
with h5py . F i l e ( ’%s/%s .% i . hdf5 ’%(snap 0 . path , snap 0 . subpath , 0) , ’ r ’ ) as f :

n p a r t i c l e s = f [ ’ Header ’ ] . a t t r s . get ( ’ NumPart Total ’ )
DF = np . ones (np .sum( n p a r t i c l e s ) ,

dtype=np . dtype ( [ ( ’ Pa r t i c l e IDs ’ , ’ u8 ’ ) , ( ’ Coord inates 0 ’ , ’<f 8 ’ ) , \
( ’ Coord inates 1 ’ , ’<f 8 ’ ) , ( ’ Coord inates 2 ’ , ’<f 8 ’ ) , \
( ’Mass ’ , ’<f 8 ’ ) , ( ’ i t ype ’ , ’ i 1 ’ ) ] ) )

count = 0
for i type , i in zip ( [ 0 , 1 , 4 , 5 ] , [ 0 , 1 , 2 , 3 ] ) :

i f n p a r t i c l e s [ i ] == 0 :
continue

for at t in [ ’ Pa r t i c l e IDs ’ , ’ Coordinates ’ , ’Mass ’ , ’ i t ype ’ ] :
i f at t == ’ Coordinates ’ :

data = snap 0 . r ead data s e t ( i type , a t t )
DF[ ’ Coord inates 0 ’ ] [ count : count+n p a r t i c l e s [ i ] ] = data [ ’ Coord inates 0 ’ ] [ . . . , 0 ]
DF[ ’ Coord inates 1 ’ ] [ count : count+n p a r t i c l e s [ i ] ] = data [ ’ Coord inates 1 ’ ] [ . . . , 0 ]
DF[ ’ Coord inates 2 ’ ] [ count : count+n p a r t i c l e s [ i ] ] = data [ ’ Coord inates 2 ’ ] [ . . . , 0 ]
del ( data )
gc . c o l l e c t ( )

e l i f at t == ’ i type ’ :
DF[ ’ i type ’ ] [ count : count+n p a r t i c l e s [ i ] ] ∗= itype
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else :
DF[ at t ] [ count : count+n p a r t i c l e s [ i ] ] = snap 0 . r ead data s e t ( i type= itype , a t t= att )

count += n p a r t i c l e s [ i ]

del ( count , n p a r t i c l e s , att , i type , i )
gc . c o l l e c t ( )

e l i f i t ype == None :
”””

For a l l p a r t i c l e s : t h e a t t r i b u t e s e l e c t e d
”””
d icc dtype = { ’ Pa r t i c l e IDs ’ : [ ( ’ Pa r t i c l e IDs ’ , ’ u8 ’ ) ] ,

’ Coordinates ’ : [ ( ’ Coord inates 0 ’ , ’<f 8 ’ ) ,
( ’ Coord inates 1 ’ , ’<f 8 ’ ) ,
( ’ Coord inates 2 ’ , ’<f 8 ’ ) ] ,

’Mass ’ : [ ( ’Mass ’ , ’<f 8 ’ ) ] ,
’ i t ype ’ : [ ( ’ i t ype ’ , ’ i 1 ’ ) ]}

with h5py . F i l e ( ’%s/%s .% i . hdf5 ’%(snap 0 . path , snap 0 . subpath , 0) , ’ r ’ ) as f :
n p a r t i c l e s = f [ ’ Header ’ ] . a t t r s . get ( ’ NumPart Total ’ )
DF = np . ones (np .sum( n p a r t i c l e s ) , dtype=np . dtype ( d i c c dtype [ a t t ] ) )

count = 0
for i type , i in zip ( [ 0 , 1 , 4 , 5 ] , [ 0 , 1 , 2 , 3 ] ) :

i f n p a r t i c l e s [ i ] == 0 :
continue

i f at t == ’ Coordinates ’ :
data = snap 0 . r ead data s e t ( i type , a t t )
DF[ ’ Coord inates 0 ’ ] [ count : count+n p a r t i c l e s [ i ] ] = data [ ’ Coord inates 0 ’ ] [ . . . , 0 ]
DF[ ’ Coord inates 1 ’ ] [ count : count+n p a r t i c l e s [ i ] ] = data [ ’ Coord inates 1 ’ ] [ . . . , 0 ]
DF[ ’ Coord inates 2 ’ ] [ count : count+n p a r t i c l e s [ i ] ] = data [ ’ Coord inates 2 ’ ] [ . . . , 0 ]
del ( data )
gc . c o l l e c t ( )

e l i f at t == ’ i type ’ :
DF[ ’ i type ’ ] [ count : count+n p a r t i c l e s [ i ] ] ∗= itype

else :
DF[ at t ] [ count : count+n p a r t i c l e s [ i ] ] = snap 0 . r ead data s e t ( i type= itype , a t t= att )

count += n p a r t i c l e s [ i ]

del ( count , n p a r t i c l e s , i type , i )
gc . c o l l e c t ( )

else :
”””

For t h e i t y p e p a r t i c l e s s e l e c t e d : t h e s e l e c t e d a t t r i b u t e
”””
with h5py . F i l e ( ’%s/%s .% i . hdf5 ’%(snap 0 . path , snap 0 . subpath , 0) , ’ r ’ ) as f :

n p a r t i c l e s = f [ ’ Header ’ ] . a t t r s . get ( ’ NumPart Total ’ ) [ i t ype ]
DF = np . ones ( n pa r t i c l e s , dtype=np . dtype ( [ ( ’ Pa r t i c l e IDs ’ , ’ u8 ’ ) , ( ’ Coord inates 0 ’ , ’<f 8 ’ ) , \

( ’ Coord inates 1 ’ , ’<f 8 ’ ) , ( ’ Coord inates 2 ’ , ’<f 8 ’ ) , \
( ’Mass ’ , ’<f 8 ’ ) , ( ’ i t ype ’ , ’ i 1 ’ ) ] ) )

count = 0
i f n p a r t i c l e s [ i ] == 0 :

pass
else :

for at t in [ ’ Pa r t i c l e IDs ’ , ’ Coordinates ’ , ’Mass ’ , ’ i t ype ’ ] :
i f at t == ’ Coordinates ’ :

data = snap 0 . r ead data s e t ( i type , a t t )
DF[ ’ Coord inates 0 ’ ] [ count : count+n p a r t i c l e s [ i ] ] = data [ ’ Coord inates 0 ’ ] [ . . . , 0 ]
DF[ ’ Coord inates 1 ’ ] [ count : count+n p a r t i c l e s [ i ] ] = data [ ’ Coord inates 1 ’ ] [ . . . , 0 ]
DF[ ’ Coord inates 2 ’ ] [ count : count+n p a r t i c l e s [ i ] ] = data [ ’ Coord inates 2 ’ ] [ . . . , 0 ]
del ( data )
gc . c o l l e c t ( )

e l i f at t == ’ i type ’ :
DF[ ’ i type ’ ] [ count : count+n p a r t i c l e s [ i ] ] ∗= itype

else :
DF[ at t ] [ count : count+n p a r t i c l e s [ i ] ] = snap 0 . r ead data s e t ( i type= itype , a t t= att )

count += n p a r t i c l e s [ i ]

del ( count , n p a r t i c l e s , a t t )
gc . c o l l e c t ( )
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i f gn != None and sgn != None and s e l f . snapnum != 0 :
”””

the data o b t a i n ed i s s p e c i f i e d f o r a gn and sgn s e l e c t e d .
NOTE: The z e r o t h snapsho t does not GroupNumber nor SubGroupNumber

”””
gns = s e l f . r ead data s e t ( i type , ’GroupNumber ’ ) [ ’GroupNumber ’ ]
sgns = s e l f . r e ad data s e t ( i type , ’ SubGroupNumber ’ ) [ ’ SubGroupNumber ’ ]
mask = np . l o g i c a l a nd ( gns == gn , sgns == sgn ) # Mask
del ( gns , sgns )
gc . c o l l e c t ( )

DF = DF[mask ]
del (mask )
gc . c o l l e c t ( )

DF. dtype=np . dtype ( [ ( ’ Pa r t i c l e IDs ’ , ’ u8 ’ ) , ( ’ Coord inates 0 ’ , ’<f 8 ’ ) , \
( ’ Coord inates 1 ’ , ’<f 8 ’ ) , ( ’ Coord inates 2 ’ , ’<f 8 ’ ) , \
( ’Mass ’ , ’<f 8 ’ ) , ( ’ i t ype ’ , ’ i 1 ’ ) ] )

return DF

Galaxy to past Function

””” # Ga l a x y t o p a s t ”””

def Galaxy to past (GalaxyID , snap 1 , snap 2 ) :
”””

# Funct ion to o b t a i n c en t e r and the rad i o o f t h e sphe re w i th a l l
t h e p a r t i c l e s a t snap 2 o f t h e g a l a x y a t snap 1

snap 1 −−> Galaxy snapsho t
snap 2 −−> Past snapsho t
GalaxyID −−> ID o f t h e g a l a x y a t snap 1

We on ly c on s i d e r to use t h e darkmat t e r
”””

# GroupNumber and SubGroupNumber o f t h e Galaxy
mask gn sgn = snap 1 . cata logue [ ’ GalaxyID ’ ] == GalaxyID
gn , sgn = snap 1 . cata logue [ [ ’GroupNumber ’ ,

’ SubGroupNumber ’ ] ] [ mask gn sgn ] [ 0 ]

del ( mask gn sgn )
gc . c o l l e c t ( )

gns = snap 1 . r ead data s e t ( i type= 1 , a t t=’GroupNumber ’ ) [ ’GroupNumber ’ ]
sgns = snap 1 . r ead data s e t ( i type= 1 , a t t=’SubGroupNumber ’ ) [ ’ SubGroupNumber ’ ]
mask 1 = np . l o g i c a l a nd ( gns == gn , sgns == sgn )

# Array wi th t h e IDs o f t h e g a l a x y a t snap 1
n p a r t i c l e s = np .sum(mask 1 )
Pa r t i c l e IDs 1 = snap 1 . r ead data s e t ( i type= 1 , a t t=’ Pa r t i c l e IDs ’ ) [ ’ Pa r t i c l e IDs ’ ] [ mask 1 ]

del ( gns , sgns , mask 1 )
gc . c o l l e c t ( )

# Al l IDs P a r t i c l e s a t snap 2
Par t i c l e IDs 2 = snap 2 . r ead data s e t ( i type = 1 , a t t=’ Pa r t i c l e IDs ’ ) [ ’ Pa r t i c l e IDs ’ ]
# Mask to l o o k i n g where are t h e g a l a x y ’ s p a r t i c l e s on snapsho t 2 .
mask 2 = np . in1d ( ar1 = Par t i c l e IDs 2 , ar2 = Par t i c l e IDs 1 )

del ( Par t i c l e IDs 1 , Pa r t i c l e IDs 2 )
gc . c o l l e c t ( )

# Their Coord ina te s
Coordinates = snap 2 . r ead data s e t ( i type = 1 , a t t=’ Coordinates ’ ) [ mask 2 ] [ : , 0 ]
del (mask 2 )
gc . c o l l e c t ( )
Coordinates = snap 2 . p e r i o d i c i t y ( Coordinates , Coordinates [ 0 ] . copy ( ) )

# Their mass
Mass T = snap 2 .mDM∗ n p a r t i c l e s
del ( n p a r t i c l e s )
gc . c o l l e c t ( )

# Center o f mass
Mass center = np . array ( [ np .sum( Coordinates [ ’ Coord inates %i ’%( i ) ] ∗ snap 2 .mDM) for i in [ 0 , 1 , 2 ] ] ) / Mass T
del (Mass T )
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gc . c o l l e c t ( )

# the r a d i o s o f t h e g a l a x y ’ s p a r t i c l e s w i th t h e new mass c en t e r
Radios = np .sum ( [ ( Coordinates [ ’ Coord inates %i ’%( i )]−Mass center [ i ] )∗∗2 for i in [ 0 , 1 , 2 ] ] , ax i s=0)
del ( Coordinates )
gc . c o l l e c t ( )

# Maximum rad i o o f t h e 90$ nea r e s t p a r t i c l e s .
Radio = max(np . s o r t ( Radios ) [ : int ( len ( Radios ) ∗ 0 . 9 ) ] )
del ( Radios )
gc . c o l l e c t ( )

return Radio , Mass center

Overrho Function

””” # Overrho ”””

def Overrho ( snap , Radio , c ente r ) :
”””

Funct ion to o b t a i n t h e over−d e n s i t y o f t h e sphe re g i v en as inpu t
( rad i o and c en t e r ) a t t h e snapsho t a l s o s e l e c t e d ( snap )

”””

with h5py . F i l e ( ’%s/%s .% i . hdf5 ’%(snap 0 . path , snap 0 . subpath , 0) , ’ r ’ ) as f :
n p a r t i c l e s = f [ ’ Header ’ ] . a t t r s . get ( ’ NumPart Total ’ )
Radios 2 = np . ones (np .sum( n p a r t i c l e s ) , dtype=np . dtype ( ’<f 8 ’ ) )

# rad i u s o f gas and DM p a r t i c l e s w i th r e s p e c t t h e c en t e r o f mass .
count = 0
for i in [ 0 , 1 ] :

Coordinates = snap . r ead data s e t ( i type= i , a t t=’ Coordinates ’ )
Coordinates = snap . p e r i o d i c i t y ( Coordinates , c ente r )
Radios 2 [ count : count+n p a r t i c l e s [ i ] ] = np .sum ( [ ( Coordinates [ ’ Coord inates %i ’%( i ) ] \

−cente r [ i ] )∗∗2 for i in [ 0 , 1 , 2 ] ] , ax i s =0 ) [ : , 0 ]

del ( Coordinates )
gc . c o l l e c t ( )

count += n p a r t i c l e s [ i ]

del ( i )
gc . c o l l e c t ( )

# Tota l mass , d e n s i t y and o v e r d e n s i t y i n s i d e o f t h e sphe re
Mass = np .sum( snap . p a r t i c l e s p r o p ( at t=’Mass ’ ) [ ’Mass ’ ] [ Radios 2 <= Radio ] )
rho = Mass ∗1.989 e43 /((4/3)∗np . p i ∗ ( ( Radio )∗∗ (1/2)∗3 .08 e24 )∗∗3)
overrho = ( rho − snap . rho matter )/ snap . rho matter
return overrho , rho , Mass
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AngularMoment Function

””” # AngularMoment ”””

def AngularMoment ( snap , Radio , c ente r ) :
”””

Funct ion to o b t a i n t h e t o t a l v e c t o r angu l a r momentum o f t h e sphe re
g i v en as inpu t ( rad i o and c en t e r ) a t t h e snapsho t a l s o s e l e c t e d ( snap )

”””
with h5py . F i l e ( ’%s/%s .% i . hdf5 ’%(snap 0 . path , snap 0 . subpath , 0) , ’ r ’ ) as f :

n p a r t i c l e s = f [ ’ Header ’ ] . a t t r s . get ( ’ NumPart Total ’ )
Radios 2 = np . ones (np .sum( n p a r t i c l e s ) , dtype=np . dtype ( ’<f 8 ’ ) )

count = 0
# rad i u s o f gas and DM p a r t i c l e s w i th r e s p e c t t h e c en t e r o f mass .
for i in [ 0 , 1 ] :

Coordinates = snap . r ead data s e t ( i type= i , a t t=’ Coordinates ’ )
Coordinates = snap . p e r i o d i c i t y ( Coordinates , c ente r )
Radios 2 [ count : count+n p a r t i c l e s [ i ] ] = np .sum ( [ ( Coordinates [ ’ Coord inates %i ’%( i ) ] \

−cente r [ i ] )∗∗2 for i in [ 0 , 1 , 2 ] ] , ax i s =0 ) [ : , 0 ]

del ( Coordinates )
gc . c o l l e c t ( )

count += n p a r t i c l e s [ i ]

del ( i )
gc . c o l l e c t ( )

count = 0
count angular = 0
angu lars = np . ones ( ( np .sum( Radios 2 <= Radio ) , 3) , dtype=np . dtype ( ’<f 8 ’ ) )
# Ca l cu l u s t h e v e c t o r i a l p roduc t be tween the c o o r d i n a t e s and the v e l o c i t y o f t h e p a r t i c l e s i n s i d e t h e r e g i on
for i in [ 0 , 1 ] :

mask = [ Radios 2 [ count : count+n p a r t i c l e s [ i ] ] <= Radio ] [ 0 ]
Coordinates = snap . r ead data s e t ( i type= i , a t t=’ Coordinates ’ ) [ . . . , 0 ] [ mask ]
Coordinates = snap . p e r i o d i c i t y ( Coordinates , c ente r )
Ve loc i ty = snap . r ead data s e t ( i type= i , a t t=’ Ve loc i ty ’ ) [ . . . , 0 ] [ mask ]

angu lar s [ count angular : count angular + np .sum(mask ) ] [ . . . , 0 ] = Coordinates [ ’ Coord inates 1 ’ ]∗ Veloc i ty [ ’ Ve l o c i t y 2 ’ ] \
− Coordinates [ ’ Coord inates 2 ’ ]∗ Veloc i ty [ ’ Ve l o c i t y 1 ’ ]

angu lar s [ count angular : count angular + np .sum(mask ) ] [ . . . , 1 ] = Coordinates [ ’ Coord inates 2 ’ ]∗ Veloc i ty [ ’ Ve l o c i t y 0 ’ ] \
− Coordinates [ ’ Coord inates 0 ’ ]∗ Veloc i ty [ ’ Ve l o c i t y 2 ’ ]

angu lar s [ count angular : count angular + np .sum(mask ) ] [ . . . , 2 ] = Coordinates [ ’ Coord inates 0 ’ ]∗ Veloc i ty [ ’ Ve l o c i t y 1 ’ ] \
− Coordinates [ ’ Coord inates 1 ’ ]∗ Veloc i ty [ ’ Ve l o c i t y 0 ’ ]

del ( Coordinates , Ve loc i ty )
gc . c o l l e c t ( )

count += n p a r t i c l e s [ i ]
count angular += np .sum(mask )

# times DM mass f o r DM p a r t i c l e s
i f i == 1 :

angu lar s [ count angular : count angular + np .sum(mask ) ] ∗= snap .mDM

# times gas mass f o r gas p a r t i c l e s
e l i f i == 0 :

mass = snap . r ead data s e t ( i type= i , a t t=’Mass ’ ) [ ’Mass ’ ] [ mask ] [ 0 ]
angu lar s [ count angular : count angular + np .sum(mask ) ] ∗= mass
del (mass )

del (mask)

del ( i , Radios 2 )
gc . c o l l e c t ( )

# Tota l Angular Momentum
angular = np . array ( [ np .sum( angu lar s [ i ] ) for i in [ 0 , 1 , 2 ] ] )
return angular
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An example: How to use them

”””# Example s t o r i n g t h e data

Example o f how to use a l l t h e f u n c t i o n s to o b t a i n t h e d a t a s e t used in t h i s
t h e s i s . I t c o n s i s t s o f t h r e e p a r t s :

The f i r s t pa r t s t o r e s t h e p r o p e r t i e s o f t h e g a l a x i e s a t snapsho t 28 ( z= 0 ) .

The second pa r t s t o r e s t h e p r o p e r t i e s o f bo th t h e format ion r e g i on a t
snapsho t 0 ( z=20) and the o v e r d e n s i t y found in t h i s r e g i on .

The t h i r d pa r t s t o r e s t h e t o t a l angu l a r momentum o f t h i s r e g i on . For t h i s l a s t
part , we a l s o want to show how i t would be done in t h e case where t h e c en t r e o f
mass and rad i u s data o f t h e r e g i on to be s t u d i e d are a l r e a d y s t o r e d in t h e f i l e .

”””

# Load Snapsho t s
snap 0 = Data snapnum ( s imula t i on=sim , snapnum=0,

path=’%s/ snapshot 000 z020p000 ’%(sim ) )
snap 28 = Data snapnum ( s imula t i on=sim , snapnum=28,

path=’%s/ snapshot 028 z000p000 ’%(sim ) )

n ga l a x i e s = len ( snap 28 . cata logue )
print ( ”%s : %s d i s c massive g a l a x i e s : ”%(sim , n ga l a x i e s ) )

# Creat ion o f t h e h5 f i l e f o r a l l t h e in f o rma t i on needed
h5f = h5py . F i l e ( ’TFG %s . h5 ’%(sim ) , ’ a ’ )
# Creat ion / use o f t h e s imu l a t i o n pa r t o f t h e . h5py d a t a s e t

try :
IDf = h5f . c r e a t e da t a s e t ( sim , data=snap 28 . cata logue [ ’ GalaxyID ’ ] )

except :
IDf = h5f [ ’%s ’%(sim ) ]

# F i r s t Part
IDf . a t t r s [ ’Mass ’ ] = snap 28 . cata logue [ ’Mass ’ ]
IDf . a t t r s [ ’ MassStar ’ ] = snap 28 . cata logue [ ’ MassType Star ’ ]
IDf . a t t r s [ ’Vmax ’ ] = snap 28 . cata logue [ ’Vmax ’ ]
IDf . a t t r s [ ’ GasSpin z ’ ] = snap 28 . cata logue [ ’ GasSpin z ’ ]
IDf . a t t r s [ ’KappaCoRot ’ ] = snap 28 . cata logue [ ’KappaCoRot ’ ]

print ( ”Save 1 s t In f o −−> Done” )

# Second par t
rad io = np . z e ro s ( n ga l ax i e s , dtype= np . dtype ( ’<f 8 ’ ) )
mass center = np . z e ro s ( ( n ga l ax i e s , 3 ) , dtype= np . dtype ( ’<f 8 ’ ) )
Mass = np . z e ro s ( n ga l ax i e s , dtype= np . dtype ( ’<f 8 ’ ) )
rho = np . z e ro s ( n ga l ax i e s , dtype= np . dtype ( ’<f 8 ’ ) )
overrho = np . z e ro s ( n ga l ax i e s , dtype= np . dtype ( ’<f 8 ’ ) )

for i in range ( n g a l a x i e s ) :
rad io [ i ] , mass center [ i ] = Galaxy to past (GalaxyID = snap 28 . cata logue [ ’ GalaxyID ’ ] [ i ] ,

snap 1 = snap 28 , snap 2 = snap 0 )
overrho [ i ] , rho [ i ] , Mass [ i ] = Overrho ( snap = snap 0 ,

Radio = rad io [ i ] ,
c ente r = mass center [ i ] )

IDf . a t t r s [ ’ r ad i o sphe r e ’ ] = rad io
IDf . a t t r s [ ’ center mass ’ ] = mass center
IDf . a t t r s [ ’ Snap 0 mass ’ ] = Mass
IDf . a t t r s [ ’ Snap 0 rho ’ ] = rho
IDf . a t t r s [ ’ Snap 0 overrho ’ ] = overrho

print ( ”Save 2nd In fo −−> Done\n” )

# Third pa r t
a t r i b = lambda at t : IDf . a t t r s . get ( a t t )
angular = np . z e ro s ( ( n ga l ax i e s , 3 ) , dtype= np . dtype ( ’<f 8 ’ ) )

for i in range ( n g a l a x i e s ) :
angular [ i ] = AngularMoment ( snap = snap 0 ,

Radio = a t r i b ( ’ r ad i o sphe r e ’ ) [ i ] ,
c ente r = a t r i b ( ’ center mass ’ ) [ i ] )

IDf . a t t r s [ ’ Snap 0 angular ’ ] = angular
print ( ”\nSave 3 rd In fo −−> Done” )

h5f . c l o s e ( )

print ( input ( ’\n Exist : ’ ) )
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