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Resumen

En comparación con otras disciplinas, la termodinámica surgió hace bastante poco. Fue
en el siglo XIX, con los trabajos de Carnot sobre máquinas térmicas cuando todo empezó,
aunque se tardó décadas en llegar a formalizar las primeras ideas. En este cometido
trabajaron autores como Clausius, Lord Kelvin, Planck, Boltzmann, Gibbs... Y dos de los
principales resultados de estos investigadores fueron los enunciados de la Segunda ley de
la Termodinámica y la introducción del concepto de la entroṕıa.

En concreto, la entroṕıa supuso un gran avance en cuanto al formalismo. Y de la misma
forma para la producción de entroṕıa, que es una cantidad resultante de la anterior y con la
que se puede enunciar el segundo principio de un modo muy útil y elegante. La importancia
de esta cantidad se encuentra en que puede servir para caracterizar la irreversibilidad de un
proceso, lo cual resulta de capital importancia en muchos casos. Sin embargo, la definición
de entroṕıa no es evidente, aparece por primera vez cuando Clausius enuncia su famoso
teorema y en un contexto puramente termodinámico. Tan solo unas décadas más tarde, a
finales del mismo siglo XIX, Boltzmann introduce su definición de entroṕıa, aunque esto
lo hace desde la perspectiva de la f́ısica estad́ıstica. En esos momentos apenas se pod́ıa
vislumbrar la cantidad de trabajo que quedaba por hacer en estos campos y que continúa
aún hoy.

Durante el siglo XX los avances continuaron, pero esta vez desde otras disciplinas.
Con el surgimiento de la f́ısica cuántica y la teoŕıa de la información también aparecieron
nuevas definiciones de la entroṕıa. Los autores correspondientes fueron, respectivamente,
von Neumann y Shannon. Teniendo en mente todos esos contextos en los que se manifiesta
la entroṕıa, cabe preguntarse por la relación entre ellos. Hay casos concretos en los que
las propiedades termodinámicas (macroscópicas) de un sistema emergen de un estudio
estad́ıstico (microscópico). Se aportarán ejemplos de esto cuando sea oportuno y necesario
para el asentamiento de los conceptos. No solo por su papel en el estudio de propiedades
macroscópicas conviene interesarse por la producción de entroṕıa, también en la f́ısica
cuántica es útil para el estudio de máquinas térmicas.

La termodinámica y la f́ısica estad́ıstica surgieron en décadas cercanas, de manera
que su relación ha sido siempre más o menos bien conocida. Sin embargo, aparece un
reto al intentar llevar la cuántica al terreno de la termodinámica clásica. Para atacar un
problema como ese es necesario tener una cierta conexión teórica entre todas las disciplinas.
Es por esto que en se presenta en el segundo caṕıtulo de este trabajo una base de teoŕıa
de la información, ya que no es una disciplina que aparece en el plan de estudios y solo
unos conceptos concretos son importantes aqúı. Con los conocimientos adquiridos en ese
caṕıtulo es posible dar una interpretación general de la entroṕıa, más allá de la t́ıpica
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interpretación de desorden ≡ mucha entroṕıa. De hecho, la interpretación más general
y que se emplea a lo largo de todo el trabajo es aquella por la cual la entroṕıa es una
medida de la “incertidumbre”. Como en el caso de la conexión entre la termodinámica y
la estad́ıstica, se presenta un ejemplo que conecta la termodinámica y la f́ısica estad́ıstica
con la teoŕıa de la información. En concreto, se plantea el problema del Demonio de
Maxwell y se da la idea fundamental de su resolución, también se trata de aportar una
visión particular a ese problema.

Con las herramientas desarrolladas ya es posible intentar abordar el estudio de sistemas
cuánticos con mayor garant́ıa de llegar a entender realmente lo que se está estudiando. No
obstante, aunque la forma de las relaciones es muy similar, no se puede dar un desarrollo
muy exhaustivo de la conexión entre la entroṕıa en sistemas cuánticos y la entroṕıa en
termodinámica o estad́ıstica. Esto se debe a que aún a d́ıa de hoy se discute la validez de
la entroṕıa de von Neumann y se proponen muchas alternativas más o menos fruct́ıferas.

Con todo lo anterior, se tendrá lo necesario para llegar a una de las partes fundamentales
del trabajo, que es la obtención de una relación para la producción de entroṕıa en sistemas
cuánticos. Como era de esperar, los autores originales establecieron algunas condiciones
para llegar a la relación, pero el resultado es bastante general y de utilidad, además,
las herramientas matemáticas necesarias resultan muy asequibles. Y las bases teóricas
desarrolladas al principio cobran sentido al tratar de interpretar f́ısicamente esta relación.

El objetivo, teniendo todo lo anterior, es estudiar sistemas f́ısicos reales. Se empieza
con un modelo relativamente sencillo, el modelo de Jaynes–Cummings. Se ha elegido este
con el objetivo de ilustrar los conceptos sobre la entroṕıa que hasta ese momento se han
desarrollado de forma teórica. Al tratarse de un modelo simple de interacción y debido
a sus caracteŕısticas, no es el más adecuado para estudiar la relación obtenida para la
producción de entroṕıa, por lo que se trató un caso más.

Para ilustrar las cantidades que representan la producción de entroṕıa se eligió un
modelo que en la literatura ya se utilizó para esto, de manera que se puede comprobar la
fiabilidad de los resultados obtenidos. Pero no solo se reprodujeron los resultados, se trató
de ir más allá estudiando particularidades la evolución temporal del sistema. La validez y
utilidad de la relación que se escogió para la producción de entroṕıa queda comprobada,
no solo por comparación con resultados de los autores originales, también desde un punto
de vista f́ısico y basado en las interpretaciones que se justificaron en las partes del trabajo
anteriores a esta.

Finalmente, se da una introducción a los teoremas de fluctuación. Estos son una
extensión de la segunda ley de la termodinámica y un campo de estudio muy reciente (de-
sarrollado sobre todo durante las últimas décadas). La complejidad matemática aumenta,
pero también el abanico de situaciones que se pueden estudiar. En este trabajo solo se
da una introducción al tema, lo suficiente para aplicar el formalismo a resultados teóricos
vistos en las partes anteriores. Además, se llega a un teorema de fluctuación a partir de
otros teoremas que se pueden encontrar en la bibliograf́ıa. La importancia de los teoremas
de fluctuación queda patente para entender su importante papel en la investigación actual.
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CHAPTER 1

Introduction

Resumen

Antes de hablar de la producción de entroṕıa en sistemas cuánticos es conveniente
tener claros los conceptos en contextos más básicos. En lo siguiente se presentan
varias ideas, en concreto, se presenta la entroṕıa en las principales disciplinas en
las que se trata: termodinámica, estad́ıstica, cuántica y teoŕıa de la información.
Para esta presentación se ha hecho un repaso histórico, dejando fijadas varias defini-
ciones que son imprescindibles para los desarrollos posteriores. Además, se expone
la importancia del estudio de la producción de entroṕıa con algunos ejemplos, dando
algunas claves para entender por qué hay tanto interés este concepto.

1.1 Historical remarks

If someone wanted to look for a starting point for studies in the field of thermodynamics
and, more specifically, for that magnitude that appears in the title of this work, entropy,
without a doubt there would be talk of the works on steam engines of Nicolas Léonard
Sadi Carnot, published in 1824. Briefly and assuming that the reader has basic knowledge
that is acquired in a degree in Physics, a review will begin by pointing out the influence of
this author on the works in thermodynamics and entropy that were developed in following
decades [LC74]. And basic and subsequent results will continue to be seen, with the aim
of emphasizing what is necessary to develop the following chapters.

Although Carnot did not define the concept of entropy, he laid the foundations for the
further development of this concept and, above all, of the second principle of thermody-
namics. The importance of his works was noted by Émile Clapeyron, who worked to make
the reasoning and theory developed by Carnot more understandable. On this basis, many
others began to build the rest of classical thermodynamics. For this work, the contribution
of Rudolf Clausius, who was the first to explicitly introduce the concept of entropy (1854),
is of great interest:

Clausius entropy := ∆SCl =

∮
δQ

T
. (1.1)

Where δQ is an infinitesimal amount of heat absorbed by a system and extracted from a
reservoir at temperature T, being the total process cyclical. That author introduced this
concept as a tool to state his well-known theorem, which can be expressed as: ∆SCl ≤ 0.
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1.1. Historical remarks

It is important to note that in the above, only the Clausius entropy has been defined, the
total entropy of a certain system has not been discussed.

In any basic course of thermodynamics it is shown, by means of the previous theorem,
that the entropy variation of a closed system (a system that does not exchange matter with
its surroundings) between two states B1, B2 and in a reversible process , i.e., a process in
which both the system considered and its surroundings can return to their initial state,
fulfills:

S2 − S1 =

∫ B2

B1

δQ

T
. (1.2)

It is also easy to verify that in an irreversible process this equality is not fulfilled, but that
it is obtained:

S2 − S1 >

∫ B2

B1

δQ

T
. (1.3)

Which can be rewritten by defining a quantity that will be added to the right side, this is
the entropy production term:

S2 − S1 =

∫ B2

B1

δQ

T
+ Σ Σ := entropy production. (1.4)

So far, everything needed to enunciate the second principle of thermodynamics in the
most convenient way for later developments has been presented. And of all the statements
that can be made about this principle, probably the simplest is: the entropy of the universe
tends to a maximum. Mathematically: ∆Suniv ≥ 0.

The term “universe” is used to refer to the system together with its surroundings, so
any isolated system is being considered. Therefore, the heat exchange is zero. Thus, the
previous relationship can be expressed only with the entropy production:

Σ ≥ 0 (1.5)

This is what the second principle of thermodynamics is reduced to. It will be of vital
importance to take this inequality into account, since it will be one of the main arguments
when obtaining a physically acceptable equation for the entropy production in a quantum
system.

Surely with this brief review it is not possible to glimpse the physical meaning of the
entropy production. Nor would it be surprising if with a more extensive and precise review
it is not completely clear, the definition of this quantity and that of entropy are still the
object of study and discussion in some cases nowadays. For now, it will be enough to
understand entropy production as a way of characterizing the irreversibility of a process.
Indeed, according to what has been seen above, in a reversible process: Σ = 0 is satisfied.
And in an irreversible one Σ > 0. It can even be used to find out how far a process moves
away from being reversible, specifically, this idea will be illustrated in a little more detail
later (in section, Section 1.3) using the case of a system that performs work between two
reservoirs.

The time parameter has not yet been explicitly mentioned in the previous reasoning,
but it appears clearly in the concept of reversibility: when talking about the initial state
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1. Introduction

of a system (in the equation (1.2) it was denoted by B1) its state is being considered in an
instant of past time. Intuitively, a relationship between time, entropy and irreversibility
already appears, in short: when a system undergoes an irreversible process, that is, it
has led to the creation of entropy, the system cannot be returned to the state it had in a
previous instant of time. It is well known that time passes in a single “direction” (nothing
and nobody can go to the past). So, really, all processes in nature are irreversible.

It should be noted that entropy production characterizes a process experienced by a
system, it does not provide information about the state of that system. But entropy is
a state function, that is, it is a magnitude that characterizes the equilibrium state of the
system under consideration. Although the concept of “equilibrium” is intuitive, providing
a definition based on what has already been seen is convenient: the equilibrium state
of a system is one in which its entropy is maximum. In the last decades the study of
processes out of equilibrium has been a subject of study of numerous investigations, being
the entropy production a very important part to extend thermodynamics to these cases,
an introduction to the corresponding formalism will be seen in Chapter 4.

So far, entropy has been introduced as a purely thermodynamic quantity. Now, contin-
uing with this brief historical review, the Boltzmann’s entropy (1877) must be introduced:

SB = kB ln (W ) . (1.6)

In a Statistical Physics course, basic arguments are given to arrive at this relationship,
which allows calculating the entropy of a system for which has been determined: W := the
number of possible microstates corresponding to the macroscopic state of a system (these
concepts will be illustrated later with an example later). The well-known Boltzmann
constant kB also appears in the relationship. Actually, this formula is a particular case of
the following, the Gibbs entropy:

S = −kB
∑
i

pi ln (pi) , (1.7)

where pi is the probability of finding the system in the i−th microstate. If all states can
occur with the same probability (which occurs for energy, volume and number of fixed
particles, i.e., in the microcanonical ensemble): pi = p = 1/W , where W is defined same
as before. Therefore:∑
i

pi ln(pi) = −
∑
i

pi ln(W ) = − ln(W )
∑
i

pi,
∑
i

pi = 1 ⇒
∑
i

pi ln(pi) = − ln(W ).

With which it is verified that the relation (1.6) is a special case of (1.7).
Before exploring a bit the link between this definition and the thermodynamic entropy

that was discussed at the beginning, the historical review will continue. So far, entropy
has been considered as a thermodynamic quantity and as a result of statistical mechanics,
now, is the time to include quantum mechanics.

They will also be assumed by known basic concepts of quantum mechanics. For now,
only there is interest in knowing the concept of “density matrix”, through which John
von Neumann introduced the following relationship in 1932, which allows determining the
entropy of a quantum system described by certain density matrix ρ:

SvN = −kB Tr{ρ ln(ρ)}. (1.8)
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1.2. A first classical example

Where Tr{A} is the trace over the matrix A. Although the interpretation of this relation
is still controversial today [SH06, She99], in what follows it will be used as a result with
a clear and precise meaning. It is easy to see that, if the density matrix is written in its
eigenbasis, that is, obtaining the base for which ρ =

∑
i qi |ϕi〉 〈ϕi|, it will be obtained:

SvN = −kB
∑
i

qi ln(qi). (1.9)

Although the equation (1.7) and the previous one are defined in completely different con-
texts (statistical mechanics and quantum mechanics), it is clear that they are completely
analogous.

The last author to be mentioned in this review will be Claude Shannon, whose con-
tributions were in the field of information theory. In 1948 he obtained a formula for the
entropy of information of a certain random variable X with a probability distribution with
outcomes Pi [Sha48]:

SSh = −K
∑
i

Pi log2(Pi). (1.10)

For a certain constant K. It can be seen why in such a different context entropy is also
spoken of, again a relation appears in the form of (1.7). The base of the logarithm has
changed, it is now base 2, however, this formula can be written with the natural logarithm
(in base 2 each entropy unit is referred to as a “bit” and in base e as “nat”).

Although the theory behind this relationship is really interesting, it is found in a
different context, so it will not be discussed, by the moment. And, since this is not
normally learned in a physics grade, it will be reviewed in Chapter 2. For now, it is
enough to know that entropy also manifests itself in the context of information theory and
it is related with its purely physical meaning.

1.2 A first classical example

As mentioned above, there is a relationship between the equation for entropy in statistical
terms and thermodynamic entropy, in fact they can be said to be the same thing. However,
the general proof of (1.6) remains vague in most statistical mechanics textbooks. But, for
example, in [CK10] a worthy derivation can be read. Here, basic knowledge will be used
to see, in a particular case, how the thermodynamic entropy can emerge from the relation
(1.6), this particular case will be the Joule expansion.

n moles of an ideal gas are considered. For this system, an expression for the entropy
change can be determined. The following basic thermodynamic expressions are known:(
∂S

∂V

)
T,n

=

(
∂P

∂T

)
V,n

,

(
∂S

∂T

)
V,n

=
nCV
T

Ideal
gas

⇒ P =
nRT

V
⇒

(
∂S

∂V

)
T,n

=
nR

V
.

Integrating and taking into account that n = constant :

S(T, V ) =

∫ V

V0

(
∂S

∂V

)
T

dV =

∫ V

V0

nR

V
dV = nR ln

(
V

V0

)
+ c(T ) ⇒ d

dT
c(T ) =

nCV
T

⇒

4



1. Introduction

⇒ S(T, V ) = nR ln

(
V

V0

)
+ nCV ln

(
T

T0

)
. (1.11)

The ideal gas at temperature Ti is considered enclosed in an initial volume Vi, then
another empty container of equal volume is connected, so that the gas expands to 2Vi. Since
the process is adiabatic and there is no work done, the temperature remains constant and,
also, it will be obtained that the expression (1.11) will coincide with the entropy production
during the expansion. Finally:

S(T, V ) = nRT ln

(
2Vi
Vi

)
+ nCV ln

(
Ti
Ti

)
= nR ln(2). (1.12)

So far, the calculations have been purely thermodynamic, no statistical or quantum
mechanics was involved. But, now, the expression (1.6) is considered. And it is only
necessary to know W , which can be obtained by a fairly simple probabilistic reasoning.

Each gas molecule can now be found in the initial container or in the container that
has been connected, then, there are two possible containers for each molecule. In other
words, the process adds an uncertainty to the state of the system, stemming from the
ignorance of the container in which each molecule is located. In fact, this can be taken as
an interpretation of the entropy production in the system (this will be evident after Chapter
2). Thus, it is clear that the total number of possibilities, taking into account that there
are N = n · NA molecules and ignoring considerations regarding the distinguishability of
the molecules, will be 2N . With which, the entropy production in the process is:

SB = kB ln(W ) = kB ln
(
2n·NA

)
= nNAkB ln(2) = nR ln(2). (1.13)

Where it has been used that kBNA = R. As it can be seen, the two expressions for the
entropy variation coincide, (1.13) ≡ (1.12). This is a beautiful example of how thermody-
namic entropy can emerge from a purely statistical relation, and it is also a way to give an
interpretation in statistical terms to the entropy production. It has also served to illustrate
a typical calculation of microstates corresponding to a macroscopic state of a system.

1.3 One application and motivation

As mentioned at the beginning, thermodynamics arose from the need to study steam en-
gines. And now the goal is almost the same: one of the main applications of quantum
thermodynamics is the study of heat engines. As is well known, Carnot made very im-
portant contributions to the analytical study of heat engines and his developments can be
condensed into his famous theorem:

All heat engines between two heat reservoirs at temperatures TC and TH (TH > TC)

are less efficient than a Carnot heat engine operating between the same reservoirs.

Being the Carnot’s efficiency equal to ηc = 1− TC
TH

. (1.14)

Previously it was mentioned that entropy production can characterize how irreversible
a process is, with the previous statement this is clear, but first it will be necessary to
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1.3. One application and motivation

express it in a somewhat different way. The objective, first, will be to write the first
and second laws of thermodynamics in terms of rates (time derivatives). In this way,
the previous statement of Carnot’s theorem and the statement of the second principle by
Clausius and that of Kelvin-Planck can be recovered, but only the first one will be seen
here, in [LP20] all the implications of writing these principles in terms of time derivatives
can be reviewed.

From the typical expressions of the first principle and the second principle (equation
(1.4)), for a system interacting with two reservoirs (H and C with TH > TC), it is obtained:

1st Principle : ∆U = W −Q = W −QH −QC

2nd Principle: Σ = ∆S + QH

TH
+ QC

TC

}
⇒

d
dt
U = Ẇ − Q̇ = Ẇ − Q̇H − Q̇C

Σ̇ = d
dt
S + Q̇H

TH
+ Q̇C

TC

}
There it was taken Q > 0 when it leaves the system and W > 0 for work pulled from the
system (energy leaves it).

For a long enough time, all the work done will be the result of the heat exchanged,
and the entropy of the system will be constant. That is, a steady-state will be reached,
which is characterized by the temporal invariance of the variables that characterize the
system (state variables), which in this case are energy and entropy (obviously the entropy
production, heat and work are not state variables). When the cycle reaches this point, it
is called a limit cycle.

On the other hand, the efficiency of the system doing work can be defined as η =
Ẇ/Q̇H . If the system has reached a steady-state, the following can be written:

Ẇ = Q̇H + Q̇C & Σ̇ =
Q̇H

TH
+
Q̇C

TC
⇒ η = 1− TC

TH
+
TC

Q̇H

Σ̇ = ηc +
TC

Q̇H

Σ̇. (1.15)

With the previous relation it is clear that the entropy production quantifies how far a
certain engine deviates from doing work with the maximum efficiency (Carnot efficiency).
Specifically, when the process that the system undergoes is irreversible, the efficiency will
be reduced above the maximum by the amount TCΣ̇/Q̇H .

Note 1: classical entropy is defined for a state of equilibrium, so, strictly speaking, it
is being assumed that the system is in a state of equilibrium at every instant.

Note 2: the quantity TCΣ̇/Q̇H is always less than 0, as it must be to ensure that
η ≤ 1. This is because Q̇H < 0 (the hot reservoir brings heat to the system), naturally
TC > 0 and aldo Σ̇ > 0. The latter is a way of writing the second principle and is obtained
from the relation (1.5) and assuming dt > 0.

All of the above is useful as a review of the most basic knowledge about entropy in
different contexts of physics. In addition, the importance of the study of processes through
the entropy production formalism has become clear, which justifies the interest in related
research and is the motivation for this work.

So, the next goal will be to try to understand entropy in a broad sense, so that it is
possible to address the complexity involved in the study of quantum systems, which will be
seen in Chapter 3. For this, as mentioned above, the knowledge presented in Chapter 2 is
needed. Finally, as noted in the historical remarks, fluctuation theorems will be reviewed
in Chapter 4, as they are an important part of current research.

All in all, that’s the scope of this work.
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CHAPTER 2

Information Theory and

Thermodynamics

Resumen

La conexión entre la teoŕıa de la información y la termodinámica es algo que no surgió
hace demasiado, hasta hace solo unas cuantas décadas hab́ıa importantes problemas
abiertos, uno de ellos se comenta en la última sección de este caṕıtulo. Por esto, aqúı
se dará una base de conocimientos de teoŕıa de la información, haciendo hincapié en
definiciones importantes para desarrollos posteriores. También se trata de dar una
intuición de la conexión que hay entre la teoŕıa de la información y la termodinámica,
ilustrando las ideas con ejemplos. Como resultado, se tendrán las herramientas para
dar una interpretación básica de la entroṕıa en cualquier contexto.

2.1 Basics about information theory

At the moment, entropy is known with total clarity as a purely thermodynamic quantity,
but very little has been said about its interpretation in the context of information theory.
In order to clarify this, it will be tried to give meaning to the Shannon entropy relation,
(1.10). And having this base will be necessary to establish the link between the two
contexts and to be able to understand the results of the next chapters.

It has not yet been precisely defined what information is in the context of information
theory, that is, the one mentioned before writing (1.10) in Section 1.1. To do this, a
certain random variable X with a probability distribution with outcomes Pi is considered.
Then, the information associated with the event n (an event can be understood as a
measurement), with the result xn and whose probability is Pn, is usually defined as:

I(xn) = − log2(Pn). (2.1)

It is common to find this definition in the literature, like in [Wil11]. The previous formula
can be interpreted as a measure of the “surprise” of having obtained the value xn after
the event n or, what is the same, the “uncertainty” before the value xn is obtained.

For example, 100 balls are kept in a box. First, it will be assumed that they are all
the same color, it is evident that the probability of finding a black ball when taking one
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2.1. Basics about information theory

out of the box (this would be the event or measurement) will be Pblack = 1, therefore,
I(black) = − log2(1) = 0. That is, the surprise is zero, which coincides with what was
expected because it was already known that the ball that had been taken would be black.
And what would happen for a ball of another color? For any other color, for example
white, the probability is 0, with which I(white) = − log2(0)→∞. Knowing that all balls
are black, the surprise of finding a white one would be immeasurable. Both the numerical
result and the assumption itself are absurd and, again, the relationship is true.

Similarly, now it is considered that there are 99 black balls and one white, the infor-
mation for each result will be I(black) ' 0.014 and I(white) ' 6.644. Again, results are
consistent with expectations, great surprise for the least probable result and little for the
most probable result. This, together with the previous example, shows the intention of
defining the information as in (2.1).

This quantity only gives information about one outcome of the random variable X. It
is natural to aim to get an overview of the surprise that is contained in the entire random
variable X. And one way to get that insight can be to calculate the information for any
possible outcome and average each one, using the probabilities of each outcome as weights.
In [Wil11] this average is called “expected information content” and takes the form:

H(X) =
∑
n

PnI(xn) = −
∑
n

Pn log2(Pn). (2.2)

In fact, this is the definition of entropy in information theory and except for a constant
factor, it is the same expression as (1.10). It should be noted that in this definition and
in the other occasions in which something of the form a logb(a) appears, for the case in
which a = 0 it is taken 0 logb(0) = 0, this not only makes sense mathematically (it is clear
that lima→0 a logb(a) = 0), it is also clear that it would be absurd to consider a result that
is not possible, as in the example of the 100 black balls.

As with the equation for information, an example can be developed in order to settle
the specific meaning of the above relationship. A certain 4-letter alphabet is assumed:
A,B,C and D. Each can be found in a text made with that alphabet with probabilities
1/2, 1/4, 1/8 and 1/8, respectively. These probabilities form a probability distribution
with a random variable that will be denoted as Z. It is possible to calculate its entropy:

H(Z) = −1

2
log2

(
1

2

)
− 1

4
log2

(
1

4

)
− 1

8
log2

(
1

8

)
− 1

8
log2

(
1

8

)
=

7

4
= 1.75.

On a computer each letter can be encoded as a number, for example A ≡ 00, B ≡ 01, C ≡
10 and D ≡ 11. Thus, each one is said to have 2 bits. A question arises: taking into
account the probability of finding each letter, what is the best way to encode them? And
the best way is considered to be the one for which fewer bits are used, on average.

In [Sha48] Shannon showed that: it is not possible to encode the outcomes of a ran-
dom variable X with fewer than H(X) bits, on average. This is called “the source
coding theorem”. Also, the appropriate number of bits to encode each result xi with
probability Pi will be log2(1/Pi). Going back to the example, this would correspond to:
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Bits Code
A 1 0
B 2 10
C 3 100
D 3 010

The choice of the code for each letter in this table is arbitrary,
only the necessary number of bits is respected. And, in effect, it
is obtained that the average number of bits needed is, weighting
with each probability, 1/2 · 1 + 1/4 · 2 + 1/8 · 3 + 1/8 · 3 = 1.75,
which is the entropy calculated above.

It should be taken into account that the fact of being able to use more or less bits, on
average, is a consequence of the fact that it is possible to take advantage of the fact that
it is known that each letter will appear with a certain probability.

In short, it can be said that the definition of Shannon’s entropy, (2.2) or (1.10), takes
on a very intuitive and justified meaning through the source coding theorem.

2.2 The link between Shannon entropy and ther-

modynamic entropy

Once the foundations of entropy have been laid in the context of information theory and
statistics, it is possible to establish a relationship between them. There are many ways to
start the argument, but the reasoning detailed in [Sch19] will be followed here.

Actually, everything that is necessary to establish the link is already there, which was
to be expected considering that the relation (2.2) and the (1.7) are completely analogous.
It is enough to interpret that the microstates, with probabilities pi, correspond to the data
in the context of Shannon entropy. In the example of the alphabet with A,B,C and D,
each of these letters would be a possible microstate of a physical system.

Note: entropy is usually interpreted in statistics as disorder, but now a more general
interpretation can be given. The interpretation given in the previous section, in short,
is that of measure of uncertainty that the system has or, what is the same, the lack of
information that someone has about the system. And this will be the interpretation that
will be given to it in the rest of the areas.

It would be of great interest to have a relation that connects information theory with
classical thermodynamics. And a typical example is Landauer’s principle. Before stating
this important principle, the idea behind it will be illustrated with a common case in
computer physics.

A system like the one shown in Figure 2.1a is considered, i.e., a particle (considered
classical) in a bistable potential well. Each well corresponds to a digit, a 0 or a 1, this
is a simple system to model how information is stored in a computer, in this way the
information of a letter in the example of the alphabet could be stored. That is, this is a
system capable of store a bit of information. It has been chosen that the two wells are
equally deep since in this way there is no a privileged one, so 0 and 1 can be assigned
arbitrarily, just like when coding a letter in the previous examples.

Now it can be considered a typical operation on the system, for example: “restore to
0”. That is, if the particle is in state 0, after the operation it will remain in that state
and, if the particle is in state 1, after the operation it will be in state 0. An important
question can be raised: what is the minimum energy required to perform the operation?
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1 0

(a)

1 0
(b)

Figure 2.1: (a): bistable potential well. (b): bistable potential well with possible a system
so as not to need energy during the operation.

The system in Figure 2.1b shows how a potential opposite to the given one can be used
to avoid having to invest energy in the operation. It is prepared so that, when the particle
is at a minimum, the other is at a maximum, that other is linked to the first by a string, so
that changing the particle from state 1 to 0 does not require energy. Thus, at first sight it
seems possible to perform the operation without any expenditure of energy. But, in that
way, two different routines are used, depending on the initial state of the device (0 or 1).
But this is not how computers work, so, is it possible to construct a single time-varying
force, F (t), to perform the operation without energy loss? Here, “single” means that a
process with two different routines is avoided.

In [Lan00] this question is solved in a very elegant way: the force F (t) is not a bijective
function (specifically, it is not injective) by construction, so it is not a physically possible
force. And this is because the laws of mechanics are time-reversible, then, all related
functions must be reversible, i.e., bijective. But F (t) applied in state 0 or state 1 gives the
same result, so it is not injective, that is, it cannot be time-reversible.

But if it is assumed that there is loss of energy, it is possible to construct a single
time-varying force, for example, if some kind of “friction” is added to the potential. If a
force (given by F (t) and regulated correctly) is applied at the position of 1 but the particle
is at 0, the operation is carried out correctly, the particle ends up at 0. And if the force is
applied at 1 when the particle is there, it will go over the hill, reach 0 and due to friction
it will lose energy until it is static at 0, also in this case the operation is carried out. Here,
that friction is absolutely essential, since without it the particle would go up the potential
“wall” and, after that, would have enough energy to return to 1, so the operation would
not be executed.

Now it is important to observe the following: after the operation, whatever the way to
carry it out, one bit of information has been erased, because after that it is not possible
to know in what state the particle was initially. On the other hand, it should be noted
that with the previous development it has finally been possible to talk about concepts of
information theory (the information bit) together with thermodynamic concepts (dissipa-
tion of energy). And it turns out that the above statement about erasing information is a
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well known physical principle, that is Landauer’s Principle:

Erasing information requires energy be dissipated as heat, so the entropy in the

environment to which the information storing system is connected must increase

The link with entropy can be seen through, for example, the equation (1.4), in which
heat and entropy appear related. Specifically, it can be obtained by a more or less simple
procedure, such as the one detailed in [Jac05], that the minimum possible amount of energy
and the corresponding increase in entropy required to erase one bit of information are:

E = TkB ln(2) (2.3a) S = kB ln(2). (2.3b)

Where T is the temperature of the sink where heat is entering after bit erasing.
In conclusion and returning to the main topic of this work, it can be stated that the

erasure of a bit of information entails a minimum entropy production, given by the previous
relation. In addition, an interpretation about entropy production, in the information
theory framework, can already be given: the entropy production is a way to know how
much information about a system is erased (is no longer accessible) during a process.

Note 1: the previous results are valid for systems of an arbitrary dimension, since the
Landauer’s Principle does not place restrictions on the size of the systems. So, despite not
having explicitly talked about quantum systems, the previous results could be applied to
microscopic systems.

Note 2: actually, the laws of physics are still reversible in the case of the double
well with friction, in principle anyone could know where the particle was initially. But
this would require information about all the particles that have carried heat, which is not
accessible. It is really in this ignorance of the rest of the particles involved where the bit
of information has been erased.

2.3 Maxwell's Demon

Figure 2.2: Maxwell’s demon let-
ting a cold particle go to the left.

An application of all the above formalism is found
in the resolution of the paradox of the Maxwell’s
Demon. In 1867, James Clerk Maxwell proposed a
thought experiment like the one shown in Figure 2.2
(will be explained below) and about which too much
has been written since then, as the involved paradox
caused problems during about 100 years. In [Hil14]
can be found a detailed discussion and many details
about it, although in [Fey96, Sch19] there are more
concise developments (those that will be given here).

A certain element gas is considered confined in a
box, which is divided into two vessels. This gas has
its molecules in motion and, according to a certain
criterion, these are classified as “slow” and as “fast”, in Figure 2.2 the slow ones are shown
in light blue and the fast ones in blue. One possibility would be to consider that all those

11



2.3. Maxwell’s Demon

that go with a lower speed than a certain speed v will be slow and those that have a higher
speed will be fast. Now, somehow, the fast molecules are separated by putting the fast
ones in one vessel and the slow ones in the other. For example, a small demon can be put
in the box. And this demon opens a door or closes it if a molecule approaches, so that if
it is slow it goes to the left or, if it was already on that side, it stays there. After carrying
out this operation, the demon observes another molecule. And analogously for the fast
molecules.

It should be noted that there are other ways of setting up the experiment, for example
in [Sch19] two mixed (different) gases are considered and they are divided in the vessels
according to each gas.

After enough time, that activity will have separated the hot (fast molecules) from the
cold (slow molecules), creating a temperature difference between the two sides of the box.
This goes against the Kelvin-Planck statement of the second principle of thermodynamics,
since work could be extracted from the temperature difference between the two sides with
no other effect (it is clear that moving the door can be done without energy cost).

This is equivalent to saying that the entropy of the system (the gas inside the box)
decreases, which goes against (1.5), since this is also an isolated system. The important
thing is that there is a contradiction to the second principle, hence the paradox. The
resolution of this problem took more than 100 years, so here only an intuitive idea will be
given, presented in [Ben81], but also a somewhat different perspective is posed.

It turns out that the process carried out by the demon entails an erasure of information.
Initially, the demon will be in a state of uncertainty S, and it must observe whether a
molecule (one that it decides to look at) is moving to the left or to the right and its
velocity. If it moves to the left, the state of the demon will become L and, if it moves to
the right, the state will become R. But for the next measure, it will be necessary to put
the demon back in its uncertain state S, so it is necessary to erase the information of the
previous state. And this carries an energy cost, which at least will be given by (2.3a). In
the end it will be obtained that, by erasing information, the energy required to put all
the slow molecules on one side will be equal to the work that can be extracted from the
system due to the temperature difference. So the second principle is not being broken.

With the same objective, a new approach to resolution will now be proposed, but it
is really something equivalent. The number 0 can be assigned to the left side of the box
and 1 to the right, as described in the previous section. The action of setting the slow
molecules to 0 is equivalent to doing the restore to 0 operation. That is, if the initial state
of the slow molecule is 0 (it is on the left side), let it continue like this, and if the initial
state is 1 (it is on the right side), let it go to 0. In either case, the information on the
side the molecule was initially on is being lost (erased). Hence the cost of energy that
compensates for the work that can be extracted.

In conclusion and, connecting with the main topic, it has turned out that the erasure
of information and the corresponding entropy production are the key to the resolution of
the paradox, obtaining that Σ = 0 for the total system (the gas, the demon and the
environment), in good agreement with (1.5). Actually, if the information deletion is not
optimal, then Σ > 0, it entails greater entropy production. This problem prompted the
aforementioned authors Charles Bennett and Rolf Landauer to their results on information
and entropy, hence its importance.
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CHAPTER 3

Studies in Quantum Systems

Resumen

La relevancia del estudio de la entroṕıa y, más concretamente, de la producción
de entroṕıa en sistemas cuánticos está clara. Por lo que es de interés buscar una
relación que permita hacer cálculos de esta cantidad. Se han hecho muchos trabajos
al respecto, pero en este caṕıtulo se demuestra una relación concreta para determinar
la producción de entroṕıa en un sistema que se pone en contacto con un entorno,
lo cual es una situación muy t́ıpica, de ah́ı el interés por esa fórmula. Además, se
aplica esta a dos modelos concretos, con lo que se comprueba su utilidad y eficacia.

3.1 Quantum entropy

In all of the above, a classical statistical and thermodynamic interpretation of entropy
has been given. However, as already mentioned in Section 1.1, the entropy of a quantum
system given by the relation (1.9) is in perfect agreement with the definition of Gibbs
entropy (statistics). It was also initially mentioned that this equation, whose general form
is the von Neumann equation, (1.8), is still controversial. So its obtaining will not be
detailed.

However, it can be seen that it makes sense to define the entropy of a quantum system in
this way. A system that is in a pure state |ψ〉 is assumed, therefore, its density matrix will
be ρ = |ψ〉 〈ψ|. So, according to (1.8), the entropy of the system is S = −kB · 1 ln(1) = 0.
But if the system is in a mixed state like ρ = 1

2
|ψ1〉 〈ψ1| + 1

4
|ψ2〉 〈ψ2| + 1

4
|ψ3〉 〈ψ3|, the

entropy will be S = −kB
(

1
2

ln
(

1
2

)
+ 1

4
ln
(

1
4

)
+ 1

4
ln
(

1
4

))
= kB ln(8)/2 6= 0.

In the first case, by hypothesis, the quantum state of the system is certain, there is no
uncertainty. But in the second there is a lack of knowledge of the state in which it can be
found. Indeed, for the case with uncertainty, an entropy different from 0 appears, in good
agreement with the accepted interpretation for entropy, given previously. Ultimately, the
quantum states in which the system can be found are equivalent to the A, B, C and D
from the alphabet example in Section 2.1.

It should be noted that, as is evident, for the calculation of entropy only the probabil-
ities corresponding to the components of the statistical mixture appear. The probabilities
obtained from the measurement of an observable do not come into play, that is, the purely
quantum probabilities. However, an entropy based on quantum probabilities can also be
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defined, which is different from 0 also for pure states. One example is called “operator
entropy” and it quantifies the amount of information about some property (given by an
certain operator) that is missing in the quantum state. The von Neumann entropy can
be seen as a special case of quantum operator entropy when the operator is the density
matrix, [Len19]. However, only the von Neumann entropy will be considered, at least now.

In words of O. Shenker, who has criticized the validity of von Neumann entropy: “von
Neumann entropy characterizes the quantum probabilistic properties of a system. This
characterization is useful, leading to successful and important predictions”, [She99]. Ulti-
mately, the expression (1.8) will be accepted as the expression for the entropy of a quantum
system without further discussion or more developments.

3.2 Entropy production

This is a fundamental part of this work and, unfortunately, the first thing to say is
that there is no general formulation for entropy production in quantum systems [LP20,
ELVdB10]. In the following, where is the problem will be seen.

A system with Hamiltonian Hs It is considered and is assumed to be described at time
t = 0 by a density matrix ρs(0). Therefore, according to the well-known Liouville-von
Neumann equation and assuming time-independent hamiltonians, the state of the system
at time t can be determined by the following:

i~
∂ρs
∂t

= [Hs, ρs] (3.1a) ⇒ ρs(t) = Uρs(0)U † with U = exp{−iHst/~} (3.1b)

The above is a unitary transformation, that is: UU † = 1, where 1 is the identity
operator. And it is well known that von Neumann entropy is constant under unitary
evolution, i.e., SvN(ρ(0)) = SvN(ρ(t)). If this system is considered to be the entire universe,
the entropy production between the instants 0 and t will be ∆S = SvN(ρ(t))−SvN(ρ(0)) =
0, or what is the same, Σ = 0. But in this case, where does irreversibility emerge in any
physical process? This is not a trivial problem. It turns out that, in most cases in the
study of a quantum system, it is necessary to introduce irreversibility particularizing for
each case and using the corresponding approximations.

3.2.1 Obtaining a useful and typical formula

In [ELVdB10] a relation for the entropy production that is useful in many situations is
proposed. The idea given there is to consider that the total system is a concrete system S
in contact with a set of environments E1, E2, E3 . . . that are heat reservoirs. The evolution
of the total system is considered to be given by (3.1b), but the objective is to determine
the entropy production in S, which will not be constant.

It is also considered that each environment is in a canonical equilibrium state at temper-
ature Ti (with i = 1, 2, 3 . . . , n) at time t = 0, i.e., if the hamiltonian of the corresponding
environment is Hi, the density matrix that characterizes this part of the total system will
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be given by:

ρi =
exp{−Hiβi}

Zi
with βi =

1

kBTi
, (3.2)

where Zi (the partition function) is necessary to ensure Tr{ρ} = 1. It is also assumed
that, initially, the total system can be written as the following tensor product:

ρ(0) = ρS(0)⊗ ρ1(0)⊗ · · · ⊗ ρn(0). (3.3)

When the density matrix of a system that has two parts can be written in this way, it is
said that there are no correlations between the corresponding subsystems.

Finally, the hamiltonian of the total system is considered to be:

sum of subsystems hamiltonians and the interaction: H = Hs +
n∑
i=1

Hi + V. (3.4)

As it was noted above, the goal now is to determine the entropy production of the
system S. But, for that, it is necessary to know the state of the system at any instant of
time, this can be obtained from the density matrix of the total system at any time, ρ(t),
and that is:

ρS(t) = TrEs{ρ(t)}. (3.5)

Where TrEs{A} denotes the partial trace of the A operator over the degrees of freedom of
the environments. And ρ(t) is obtained analogously to (3.1b) but with (3.4).

The authors of [ELVdB10] already show the developments until reaching the final
formula, but a little more detail will be given here. It is important to say that all the
properties that will be mentioned can be found in [NC11].

First, the fact that the entropy of the total system remains constant will be used. And,
taking into account the property for which SvN(ρ1 ⊗ ρ2) = SvN(ρ1) + SvN(ρ2) (Property
1), the following will be reached:

−Tr{ρ(t) ln(ρ(t))} = −Tr{ρ(0) ln(ρ(0))} = −Tr{ρS(0) ln(ρS(0))} −
n∑
i=1

Tr{ρi(0) ln(ρi(0))} ⇒

⇒ Tr{ρS(0) ln(ρS(0))} = Tr{ρ(t) ln(ρ(t))} −
n∑
i=1

Tr{ρi(0) ln(ρi(0))}.

The entropy change in the system will then be:

∆SvN(ρS) = SvN(ρS(t))− SvN(ρS(0)) =

= Tr{ρS(t) ln(ρS(t))}+ Tr{ρ(t) ln(ρ(t))} −
n∑
i=1

Tr{ρi(0) ln(ρi(0))}.

On the other hand, there is an important property by which, for a system with two
parts A and B with a density matrix ρAB (there may be correlations) it is true that
Tr{ρAB ln(1A ⊗ ρB)} = Tr{ρB ln(ρB)} (Property 2), where 1A is the unity operator
in Hilbert space of subsystem A. Thus, eliminating the identity operator from the no-
tation, is obtained: Tr{ρS(t) ln(ρS(t))} = Tr{ρ(t) ln(ρS(t))}. Combining that property
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with another one for which Tr{ρ(t) ln(ρ(t))} = Tr{ρ(t) ln(ρS(t)⊗ ρ1(0)⊗ · · · ⊗ ρn(0))} +∑
i Tr{ρi(t) ln(ρi(0))} (Property 3), after a straightforward manipulation, the next rela-

tion is obtained:

∆SvN(ρS) = −Tr{ρ(t) ln (ρs(t)⊗ ρ1(0))⊗ · · · ⊗ ρn(0))}+ Tr{ρ(t) ln(ρ(t))}+

+
n∑
i=1

Tr{(ρi(t)− ρi(0)) ln(ρi(0))}. (3.6)

The last term of the previous relation can be developed a little more considering that it is
of the form (3.2):

n∑
i=1

Tr{(ρi(t)− ρi(0)) ln(ρi(0))} =
n∑
i=1

βi Tr {Hi (ρi(0)− ρi(t))} .

By the very definition of the density operator, the mean value of Hi will be Tr{Hiρi},
which is the energy of the system i. Therefore, Tr {Hi (ρi(0)− ρi(t))} gives the energy
variation in the environments, but with a changed sign, so it could be interpreted as the
heat entering the system S which will be denoted as Qi = Tr {Hi (ρi(0)− ρi(t))}.

On the other hand, for the other term, it is convenient to introduce the definition of
relative entropy. The relative entropy of the density matrix σ1 with σ2 is defined as:

S(σ1||σ2) = Tr{σ1 ln(σ1)} − Tr{σ1 ln(σ2)}. (3.7)

Therefore, for the remaining terms of the relation (3.6):

−Tr{ρ(t) ln (ρs(t)⊗ ρ1(0))⊗ · · · ⊗ ρn(0))}+ Tr{ρ(t) ln(ρ(t))} =

= S(ρ(t)||ρs(t)⊗ ρ1(0)⊗ · · · ⊗ ρn(0)).

By definition, it is true that S(σ1||σ2) ≥ 0, so it is a quantity that in any case entails an
increase in entropy. This was a necessary requirement to have a consistent definition of
entropy production, as shown in equation (1.5). It will be justified more rigorously later,
but it turns out that from the above is obtained the definition that was tried to be found
for the entropy production in a quantum system under the conditions described above.
Hence, for the system S the entropy production is:

Σ = S (ρ(t)||ρs(t)⊗ ρ1(0)⊗ · · · ⊗ ρn(0)) (3.8)

And, therefore, for the entropy variation of the system it remains:

∆SvN(ρS) =
n∑
i=1

βiQi + Σ (3.9)

With the definitions that have been made previously, this has resulted, which is in perfect
agreement with (1.4). Of course, that the previous result has an analog in the context of
classical thermodynamics is a very good sign and gives a physical basis to the previous
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result. However, a clearer interpretation of the expression for Σ above will be given in the
next section.

Note: Normally, master equations are used to know the evolution of a system in
contact with an environment, the Liouville-von Neumann equation is not usually used.
But for a calculation of entropy production, as has just been seen for this procedure, it is
necessary to know the density matrix of the environment, which cannot be achieved with
master equations, that are obtained from approximations that are not suitable here.

3.2.2 Interpreting formula (3.8)

There are many ways to see that (3.8) makes sense as a proposal for calculating entropy
production in a quantum system. Many authors have contributed with their vision of
this relationship, for example in [LP20, ELVdB10] is justified from various points of view.
Some of these most basic ideas will be condensed here, specifically, two interpretations are
given:

Interpretation with relative entropy

Relative entropy was defined in (3.7) and, intuitively, it is always defined as a “distance” (it
is not a proper distance) between the density matrices σ1 and σ2. For example, if σ1 = σ2

the value of the relative entropy is 0, the distance between those two matrices is 0 because
they are the same. In a classical context it is also defined in a similar way, specifically, for
two probability distributions P and Q on the same index set, x, the relative entropy of P
to Q is defined as the following:

H(P ||Q) =
∑
i

pi ln

(
pi
qi

)
.

This is a measure of how similar the P and Q distributions are. P is considered a reference
distribution, while Q usually occupies the role of a distribution obtained by some model
that is to be compared with the real data.

Therefore, in (3.8) the matrix ρ(t) is being compared with ρs(t)⊗ ρ1(0)⊗ · · · ⊗ ρn(0),
which has a very specific physical meaning that is explained below.

At time t the state of the system S is known because it has been traced on the degrees of
freedom of the environments, but in this way information is being lost, since when making
the partial trace (relation (3.5)) elements of the ρ(t) matrix are being discarded. But how
much information has been lost? It would be necessary to compare with the total matrix
ρ(t), and to make a quantitative calculation the relative entropy can be used, with which
the relation for Σ is justified. In short, (3.8) gives a measure of how much information is
lost when tracing to obtain the state S, which is equivalent to giving a measure of how
much the uncertainty has increased, in good agreement with the physical definition of the
entropy production.

Connecting with the example of Section 2.2 of the particle in the bistable well with
“friction”, the system S would be the particle that is in 1 or in 0 and the environments
would be modeling particles from the walls of the well, in which the energy of the particle
is dissipated by friction.
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3.3. Application to particular systems

Interpretation with relative entropy and mutual information

First, it is necessary to define mutual information. Let X and Y be two random variables
with probability distributions Px, Py and with joint distribution Pxy, then, the mutual
information between X and Y is:

H(X;Y ) = H(X) +H(Y )−H(XY ).

Where H(X) and H(Y ) are the entropies of each variable (relation (2.2)) and H(XY ) the
joint entropy obtained from Pxy. This amount measures how much information X and Y
have in common. So, only if X and Y are completely independent the mutual information
is 0. And an important property of mutual information is that H(X;Y ) ≥ 0.

Previously, the joint distribution of two variables has not been discussed, so that def-
inition can be confusing, but with the quantum equivalent it can be easily understood.
The mutual information between the density matrices ρAB, ρA and ρB, corresponding to
the total system AB and with ρA = TrB{ρAB}, ρB = TrA{ρAB} those of the A and B
systems, is given by:

IρAB
(A : B) = SvN(ρA) + SvN(ρB)− SvN(ρAB).

Manipulating the relation (3.8) to include the mutual information and using properties
that have already been mentioned, is obtained:

Σ = Iρ(t)(S : E1 : · · · : En) +
n∑
i=1

S(ρEi
(t)||ρEi

(0)). (3.10)

Where Iρ(t)(S : E1 : · · · : En) = SvN(ρS(0)) +
∑n

i=1 SvN(ρEi
(0)) − SvN(ρ(t)). This can be

understood as two separate contributions.
The first term of the above relation gives a measure of how similar the matrix of

the total system ρ(t) and the reduced matrices of all systems are, with the environments
separately. To physically interpret this term, it must be taken into account that the system
and the environments have “shared” information during evolution, since the matrix of the
total system is no longer the tensor product od system and environment density matrices
because correlations have appeared. Therefore, the mutual information gives a measure
of the information that has been lost (erased) by discarding the degrees of freedom of the
environments and obtaining the reduced state ρS(t).

The second term shows how much the state of each environment has changed with
respect to the initial one, for each Ei. That is, the information that is lost if the state of
each system Ei cannot be known at time t. This together with the first one gives a good
physical interpretation for the entropy production.

3.3 Application to particular systems

This section is of great interest, since here the results of having applied the previous
formalism to real physical systems are presented. The results of the previous sections are
very general and can be applied to arbitrary systems, but models with physical sense will
be chosen to illustrate the concepts.
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3. Studies in Quantum Systems

3.3.1 Jaynes{Cummings model

This model was proposed in 1963 in [JC63] and describes a two-level system interacting
with a quantized mode, which is modeled as a harmonic oscillator. The hamiltonian of
the total system in this model is written as:

H =
~
2
ωaσz + ~ωbN + ~

ωc
2

(aσ+ + a†σ−). (3.11)

Here σz, σ+ and σ− are the typical spin operators, defined as usual, N is the number
operator, a the annihilation operator and a† the creation operator. The factors ωa, ωb and
ωc are frequencies.

The details about how the above is obtained will not be discussed, it will be enough
to know that the first term corresponds to the hamiltonian of the two-level system, the
second is the hamiltonian of the quantized mode and the last two terms correspond to the
interaction between the two systems.

What was done with this model was, first, numerically solve the Liouville-von Neumann
equation, (3.1). But to do that it is necessary to set the initial state for the total system.
First, a non correlated state was chosen, a tensor product of the state of the system with
that of the quantized mode:

ρS(0) =

(
1 0
0 0

)
ρqm(0) =

(
1
3
−i
5

i
5

2
3

)
⇒ ρ1(0) = ρqm(0)⊗ ρS(0) =


1
3

0 −i
5

0
0 0 0 0
i
5

0 2
3

0
0 0 0 0


The bases with which these matrices have been written are the typical ones: {|+〉 , |−〉},
eigenvectors of σz, for the two-level system and {|n〉}∞n=0 for quantized mode. In addi-
tion, it should be noted that here the order indicated above for the tensor product has
been reversed, however, it has only been done because it is convenient for the numerical
resolution, the physical results will not be altered.

It is also necessary to choose the values of the frequencies and, for this case, the values
ωa = 2, ωb = 5/2 and ωc = 6 have been chosen.

It is important to note that for the initial state of the quantized mode, only the subspace
given by {|0〉 , |1〉} is being considered. It is necessary to work with subspaces because the
base is infinite and in a numerical solution that is immeasurable. However, the fact that
the base is infinite is something that must be taken into account when using the Liouville-
von Neumann equation, since by making the operators a and a† act, new terms can appear.
For example, when making a† act on the ket |1〉, results a† |1〉 =

√
2 |2〉. So, in general,

new populations and coherence will appear.
And in fact, that is what happens for the initial condition above, as can be seen in

Figure 3.1.
This figure shows the matrix elements in the order that is usually used and with the

corresponding notation, so that ρ00 = 〈+, 0|ρ(t)|+, 0〉 and ρ02 = 〈+, 0|ρ(t)|+, 1〉 and so on.
But, for simplicity, only non-null matrix elements have been rendered for some instant of
time.
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Figure 3.1: Time evolution of matrix elements of the total density matrix with the initial
condition ρ1(0) and taken frequencies ωa = 2, ωb = 5/2 and ωc = 6 in (3.11). Are shown
the ones different from 0 at some instant. The imaginary part of each element is shown in
red and the real part in blue. The abscissa axis is time in units corresponding to ~ = 1.

In this representation it can be seen that the imaginary part of the diagonal elements
is 0 for all t, as it must be true for a density matrix. And the trace remains constant
and equal to one. Furthermore, it can be seen that it is hermitic, for example for ρ03 and
ρ30 it can be easily seen that the imaginary parts have the opposite signs. Definitely, the
numerical solution appears reliable.

With these results, calculations of total entropy, in each subsystem, entropy production
and others can already be made. And in Figures 3.2a and 3.2b all these calculations are
shown as a function of time. As for the previous graph, time is in units for which ~ = 1,
for the rest of the simulations that are made, this will remain the same. kB = 1 has also
been made for these representations and will remain for the rest.

Something remarkable about the Figure 3.2a is that, as might be expected, the total
entropy of the system, ST (t), remains constant. Specifically, for t = 0 is obtained ST (0) '
0.550686 and for the last instant that was taken ST (4) ' 0.550688. The small difference is
the result of having solved the equation of time evolution numerically. That the entropy
remains practically constant in time has also been used in the next representations to get
an idea of how good the numerical solution is. One more interesting thing in Figure 3.2a
is that the total entropy does not coincide with the sum of the entropies of each system
separately and, specifically, it is greater than this for every instant of time greater than 0.
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3. Studies in Quantum Systems

Only for t = 0 the sum and entropy of the total system coincide. This may sound strange,
but it is a general result that will be checked below.
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(a) Total entropy, that of each subsystem and the sum of these two.
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(b) Entropy production and its two contributions, by the relation (3.10).

Figure 3.2: Entropy of the total system, the subsystems and entropy production of the
two-level system, S, with its two contributions. Everything calculated with the data shown
in 3.1.
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First, it was clear that for t = 0 the total entropy is the sum of the entropies of each
subsystem, since initially the state of the total system was a tensor product. But from
that moment on, correlations appear, so Property 1 is not applicable. This explains why
the total entropy does not match the sum for t 6= 0.

Second, is defined the “entropy correlation”, Sc(t), such that SS(t) + SE(t) + Sc(t) =
ST (t), for a total system T composed of a system S and an environment E. In [ELVdB10]
it is shown that Sc(t) is an always negative quantity. A demonstration with an alternative
and somewhat more detailed procedure will be given here.

To begin with, it is convenient to explicitly write the expressions for entropy:

SS(t) + SE(t) + Sc(t) = ST (t) ⇒ Sc(t) = −Tr{ρT (t) ln(ρT (t))}+
+ Tr{ρS(t) ln(ρS(t))}+ Tr{ρE(t) ln(ρE(t))}.

Now, according to Property 2: Tr{ρS(t) ln(ρS(t))} = Tr{ρT (t) ln(ρS(t)⊗ 1E)} and
Tr{ρE(t) ln(ρE(t))} = Tr{ρT (t) ln(1S ⊗ ρE(t))}. Therefore, using the properties of the
logarithm:

Tr{ρT (t) ln(ρS(t)⊗ 1E)}+ Tr{ρT (t) ln(1S ⊗ ρE(t))} = Tr{ρT (t) ln(ρS(t)⊗ ρE(t))}.

With this and comparing this with the definition (3.7), it turns out that it can be written:

Sc(t) = −Tr{ρT (t) ln(ρT (t))}+ Tr{ρT (t) ln(ρS(t)⊗ ρE(t))} & (3.7) ⇒
⇒ Sc(t) = −S(ρT (t)||ρS(t)⊗ ρE(t)).

Therefore, the correlation entropy can be written as the relative entropy and this quantity
had the important property of always being greater than or equal to 0, so Sc(t) ≤ 0,
according to the previous result. And this shows that, necessarily, SS(t) + SE(t) ≥ ST (t),
which is what was necessary to demonstrate.

Finally, something about Figure 3.2b can also be commented. It is quite clear that
entropy production has an almost sinusoidal behavior. And the observed minima can be
interpreted as instants in which the system S and the quantized mode return to a state
similar to the initial one, in which the entropy production was 0. For example, for t ' 2.2
there is a minimum of Σ and precisely at that moment it can be seen in Figure 3.1 that,
in effect, both the populations and the coherence return to a value close to the one they
had at t = 0. Doing a more exhaustive analysis would not be very useful, since the initial
conditions and the chosen frequencies were arbitrary. For example, the initial state of the
quantized mode is not a canonical equilibrium state like (3.2), so the relation (3.9), which
has a very evident and important classical analogue, would not be applicable. In Section
3.3.2 a more interesting system to analyze Σ can be seen.

The previous system will be analyzed again by introducing different initial conditions
and other values of the frequencies, the objective will be to study behaviors of the system
that are very interesting.

Specifically, it is considered that ωa = ωb, this results in a resonant behavior. In this
case, the quantized mode and the system exchange equal energy quantum, so a totally
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3. Studies in Quantum Systems

periodic behavior of the matrix elements of the system and the quantized mode must be
observed.

Moreover, it is interesting to see how many new matrix elements appear based on the
initial conditions. Solving the differential equation gives:

ρS(0) =

(
0 0
0 1

)
ρqm(0) =

(
1 0
0 0

)
(both in the fund. state) → new matrix elements

do not appear

ρS(0) =

(
1 0
0 0

)
ρqm(0) =

(
1 0
0 0

)
(1st excited and fund.) → matrix elements

with |1〉 appear

ρS(0) =

(
0 0
0 1

)
ρqm(0) =

(
0 0
0 1

)
(fund. and 1st excited)→ new matrix elements

do not appear

ρS(0) =

(
1 0
0 0

)
ρqm(0) =

(
0 0
0 1

)
(both in the 1st excited state)→ matrix elements

with |2〉 appear

Taking into account what was mentioned before about the exchange of quanta, with a
simple qualitative analysis it is possible to explain this behavior: only when the system
is in the excited state do new matrix elements appear, since in that case the system can
deliver a quantum to quantized mode and make it go up to another level. Furthermore,
since the system can only deliver one energy quanta (it only has one excited level), the
quantized mode will only be able to go up one level with respect to the one it had initially,
as has been observed.

In any case, whether or not the system is resonant, the two-level will only be able
to drive a finite number of levels of the oscillator, but making the system resonant can
be more easily understood. Figure 3.3 shows the evolution of the matrix elements with
frequencies ωa = ωb = 2 (resonant system) and ωc = 6 and for the initial condition with:

ρS(0) =

(
1 0
0 0

)
ρqm(0) =

(
0 0
0 1

)
⇒ ρ2(0) =


0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

 .

Indeed, the periodic behavior of the matrix elements is evident, and the same happens
with entropy and entropy production, as can be seen in Figure 3.4. For that case, it turns
out that the entropies of the two subsystems are equal and appear superimposed in the
figure. It should be noted that it has not been taken into account how the entropy may
be “flowing” from one system to another, since it has been considered positive for the two
subsystems.

Finally, and to finish the analysis of this model, it is interesting to observe that, since
the quantized mode is only excited up to a specific level, the total system is equivalent to
the interaction of a two-level system (the S system) and a three-level system (the quantized
mode up to the second level excited).

3.3.2 The random matrix model

This model was proposed in [ELVdB10] in order to illustrate the effectiveness of (3.10) as
a proposal for the calculation of entropy production. This model describes the interaction
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Figure 3.3: Time evolution of matrix elements of the total density matrix with the initial
condition ρ2(0) and taken frequencies ωa = 2, ωb = 2 and ωc = 6 in (3.11). Are shown the
ones different from 0 at some instant. The imaginary part of each element is shown in red
and the real part in blue.
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(a) Total entropy, that of each subsystem and the sum of these two.
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(b) Entropy production and its two contributions, by the relation (3.10).

Figure 3.4: Entropy of the total system, the subsystems and entropy production of the
two-level system, S, with its two contributions. Everything calculated with the data
showed in 3.3.
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between a 2-level system and a bath of dimension N that is in a canonical equilibrium
state, (3.2). Actually, the model is a simple version of the one proposed in [EG03]. But the
two cases are characterized by using a Gaussian orthogonal random matrix that describes
a environment that has a complex dynamics. These quantum systems are characterized
by containing many states interacting with each other and they are common, for example,
in quantum chaos.

The hamiltonian with which the total system is described will be:

HG =
∆

2
σz +Hr + λσxR, (3.12)

where σz, again, is the spin operator on the Z axis (analogously for σx), Hr is a diagonal
matrix with N equally spaced eigenvalues between −0.5 and 0.5. And R = X/

√
8N ,

with X a Gaussian orthogonal random matrix with probability density proportional to
exp{−Tr{X2}/4}.

Information about the formalism on Gaussian orthogonal random matrix can be found
in [LNV18]. The procedure to generate the random matrix has been obtained from there
and it is quite simple. First, a list is generated of a total of N2 random numbers obtained
from a Gaussian distribution with mean µ = 0 and variance σ2 = 2, which comes from
set exp{−Tr{X2}/4}. So each number is mapped to each component of a A matrix of
dimensions N×N , but this will not result in a hermitic matrix, so finally X = (A+AT )/2
is imposed, with which a physically correct R matrix results.

To reproduce the results of [ELVdB10] the same constants and the same initial con-
ditions have been chosen. Specifically, it has been used for the system and the bath,
respectively:

ρS(0) =

(
1 0
0 0

)
(fundamental state) ρr(0) =

e−Hrβ

Tr{e−Hrβ}
(canonical equilibrium state).

And with ∆ = 0.1, λ = 0.1 and β = 10 the result is what is shown in Figure 3.5. In
the original article, the system is allowed to evolve for a longer time and for the bath
N = 3, 8, 200 levels are taken, but to save computational time here it has been allowed
to evolve half the time and has reached N = 100. However, the results are practically
identical. Anyway, the hamiltonian depends on a random matrix, so the original results
cannot be exactly reproduced either.

The most curious thing about this result is that it can be perfectly seen how the number
of levels of bath affects the production of entropy in the system. For N = 3 and N = 8
a more or less periodical behavior is obtained for this range of time, but for N = 100 the
entropy production quickly stabilizes. This was to be expected, it is evident that a smaller
bath will not have as much effect on the system.

When a specific system comes into contact with a large bath, as in the previous case,
eventually the system will reach a state of thermal equilibrium. It is easy to know what
the final state of the system, ρS(f), after the contact with the bath has occurred will be
[RGWE15]:

Weak thermal contact: ρS(f) =
e−HSβ

Tr{e−HSβ}
. (3.13a)
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Figure 3.5: Reproduction of the results of [ELVdB10].

Beyond weak interaction: ρS(f) = TrB

{
e−Hβ

Tr{e−Hβ}

}
. (3.13b)

Where β is the inverse temperature of the bath, HS the hamiltonian of the system, H the
total Hamiltonian and TrB denotes the trace over the degrees of freedom of the bath.

Although the authors do not show it in the original article, it can be seen what happened
to the state of the two-level system for the case with N = 100. This is shown in the next
figure, after solving for 100 different random matrices R and carrying out an ensemble
average (arithmetic mean of the 100 results) to obtain the final state of the system:
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Figure 3.6: Matrix elements of the system after the contact with the bath, with the
conditions presented in [ELVdB10] and averaging over 100 contact realizations. Time is
shown on the abscissa axis. The imaginary part is shown in red and the real part in blue.
In dashed lines can be seen the thermal state to which the system should reach.

To calculate the equilibrium state, the (3.13b) equation was used, although with (3.13a)
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the result is something very similar. In any case, there is a considerable discrepancy
between this state (with populations ρ00 ' 0.2 and ρ11 ' 0.8) and the thermal state (with
populations ρ00 ' 0.27 and ρ11 ' 0.73). And the truth is that the thermal state is not
always reached for any type of system and its interaction. According to [RGWE15]:

For a system to thermalise, we further require:

- Subsystem state independence. if the subsystem is small compared to the
bath, the equilibrium state of the subsystem should be independent of its initial
state.

- Gibbs form of the equilibrium state.

Indeed, this does not occur for this model, since by choosing a new initial condition for
the system, the matrix elements arrive at a different equilibrium state and it is not yet the
thermal state. Specifically, this will be verified by choosing a mixed state for the system:

ρ′S(0) =

(
1
3

0
0 2

3

)
. This leads to what is shown in the following figure:
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Figure 3.7: Matrix elements of the system after the contact with the bath, with the initial
condition ρ′S(0) and averaging over 100 contact realizations. Time is shown on the abscissa
axis. The imaginary part is shown in red and the real part in blue.

In Figure 3.6 it is clear that, for example, the populations stabilize at ρ00 ' 0.2 and
ρ11 ' 0.8. But here they stabilize at ρ00 ' 0.3 and ρ11 ' 0.7. Therefore, in effect, the
equilibrium state depends on the initial state. Obviously, it is possible to know to what
state a system that has been in contact with a bath is balanced, but this will not be
developed further here. In [RGWE15] the subject is investigated in depth and there are
examples of interactions in which something like the above occurs.

Returning to the main topic of this work, it is worth doing an entropy production
calculation for the case with ρ′S(0). In Figure 3.8 the result is shown, together with the
curve for entropy production with N = 100 from Figure 3.5. It is clear that in the case
with the initial condition given by ρ′S(0) the entropy production stabilizes at a much lower
value.
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Figure 3.8: Entropy production for N = 100 with different initial conditions for the
system: the pure and fundamental state and the mixed state ρ′S(0).

And it is beautiful to see that this agrees with what can be seen in Figures 3.6 and 3.7.
In the case of ρ′S(0) the state in which the system has stabilized is practically the same as
the initial state, there is only a difference of hundredths, it goes from 0.33 to 0.3 for ρ00

and 0.66 to 0.7 for ρ11, approximately. That is, the initial and final states are very similar.
On the other hand, for that case the entropy production is very small and this implies

that the uncertainty about the state of the system has not grown too much, so supposing
that at time t the state of the system is ρS(t) ' ρ′S(t) doesn’t go to much of an error. Or
what is the same, the state for an instant of time far from the initial instant is not very
different from the initial state. The two analyzes have reached the same conclusion, which
is another sign of the validity of (3.8) as a definition of entropy production in a quantum
system.
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CHAPTER 4

Fluctuation Theorems

Resumen

La teoŕıa sobre teoremas de fluctuación apareció hace solo 3 décadas, aproximada-
mente, y desde su comienzo han sido un tema de investigación muy común. Y no
es para menos, ya que el contexto en el que se desarrollan es de lo más general, lo
cual los hace útiles para situaciones mucho más allá de la termodinámica básica. En
este caṕıtulo solo se dará una breve introducción al tema, empezando por plantear
las bases del formalismo y , a continuación, se obtendrán dos teoremas, uno para un
caso bien conocido y otro que aparece en un contexto muy concreto, aunque ambos
de cierto interés.

4.1 Basic approach

In the introduction it was mentioned that entropy production appears when studying out-
of-equilibrium systems. In all of the above this has not been applied, in fact, there are not
many analytical relationships that are valid in those situations. It is in the context where
fluctuation theorems that study systems that are arbitrarily out of equilibrium are found
[JW04].

The fluctuation theorems can be considered a generalization of the second law of ther-
modynamics. Normally developments are made with averaged quantities, as is the case
with entropy production, but in the formalism of fluctuation theorems this is not the case.
The framework will now be more detailed.

A certain system undergoes a process, as is well known, the irreversibility of that
process can be quantified by entropy production. That is, after the process: Σ ≥ 0. But
this is an averaged value that can fluctuate, so it can be defined: ς ≡ value that can be
obtained by observing the entropy production rate and that occurs with probability p(ς).
Normally, each stochastic realization of the process is called trajectory. If the trajectory
has elapsed for a time t, the fluctuation theorem states the following [Cro99]:

p(ς)

p(−ς)
= eςt. (4.1)

And this relationship is valid for systems out of equilibrium.
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4.2. Fluctuation theorem for (3.8)

It is clear that this formula is in perfect agreement with the second law of thermo-
dynamics: if the time t is long or the size of the system makes ς very large, the value
of p(−ς) gets smaller and smaller, that is, the probability of seeing the entropy decrease
(ς < 0 implies a decreasing entropy production) vanishes.

The relation (4.1) is not the only way to write a fluctuation theorem. An anti-trajectory
can be associated with a certain trajectory, which will correspond to carrying out the same
process on the system but in reverse. And instead of using the entropy production rate, it is
possible to use the entropy production of the trajectory: σ. The corresponding probability
distribution can be written as p(σ). And it is also possible to associate a distribution to
the trajectory reversed: p†(σ). With this, the known Crooks fluctuation theorem takes the
form [Cro99, LP20]:

p(σ)

p†(−σ)
= eσ. (4.2)

It is useful to work with the σ instead of ς, for example, its average can be identified with
the typical entropy production: Σ = 〈σ〉 =

∑
σp(σ).

Crooks’ result can be interpreted somewhat more. That relationship implies σ =
ln(p(σ))− ln

(
p†(−σ)

)
: each term is like (2.1), that is, the definition given in information

theory of the uncertainty associated with an event that occurs with a certain probability
(there in units of “bits” and here in “nats”). So the difference is something like a variation
of the uncertainty, which is close to the interpretations that had been given previously.

For later studies it will be useful to note that there is one more form of the fluctuation
theorem: it is said that the probability distribution p(σ) satisfies an integral fluctuation
theorem if:

〈e−σ〉 =
∑
σ

p(σ)e−σ = 1. (4.3)

Although this relation is a consequence of (4.2), since it implies that p(σ)e−σ = p†(−σ)e−σeσ =
p†(−σ) ⇒ 〈e−σ〉 =

∑
p†(−σ) = 1.

For all the above, the interest in fluctuation theorems is justified, since the framework
for the treatment of entropy production that characterizes them is very general and, as
already mentioned in Section 3.2 , finding a general formulation is a problem.

4.2 Fluctuation theorem for (3.8)

With the theory that has been developed, it would be interesting to try to find a fluctuation
theorem for the important relation (3.8) that was presented and discussed in the previous
chapter. Obviously, this development has already been done. In this work, the procedure
presented in [SW21] will be followed.

First, it should be noted that the objective will be to arrive at a relation like (4.1). To
do this, it is necessary to know for the case of (3.8) what σ corresponds to and the same
for its probability p(σ). Furthermore, these values will correspond to a certain initial state
and a final state of the system. Thus, the state of the system is denoted at time t and the
hamiltonian of the bath as:

ρS(t) =
∑
α

pα(t) |αt〉 〈αt|S & HB =
∑
k

εk |εk〉 〈εk|B .
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4. Fluctuation Theorems

And the initial and final states will be given by the measurements in the system and in
the bath: {|α0, εk〉} = {|α0〉 ⊗ |εk〉} and {|αtε′k〉}.

First, the probability distribution associated to the process is:

p[αt, ε
′
k;α0, εk] = 〈α0, εk|ρSB(0)|α0, εk〉 · |〈αt, ε′k|USB(t, 0)|α0, εk〉|2 =

=
e−βεk

Z
pα(0) · |〈αt, ε′k|USB(t, 0)|α0, εk〉|2,

where Z = Tr{e−βHB} is the partition function. Sometimes that probability is called
“path probability” [LP20] and it can be viewed as the product of two probabilities: the
one associated to the initial state of the whole system and other that takes into account
the process until the final state after the unitary USB(t, 0).

And the expression of the outcome σ corresponding to that probability is not really
discussed by the original authors of the article, but with previous results it can be justified.
Specifically, with the expression (3.9) for a single bath, where a useful expression for the
entropy production can be obtained. Knowing that the expression must have the form
Σ =

∑
σp(σ), it is possible to identify the terms for σ:

Σ = ∆SvN(ρS)− βQ → σ︸︷︷︸∑ = −[ln(pα(t))− ln(pα(0))]︸ ︷︷ ︸
∆SvN (ρS)

− β(εk − ε′k)︸ ︷︷ ︸
βQ

.

This gives an expression for e−σ. And, finally, after carrying out the calculations the
integral fluctuation theorem for (3.8) is obtained:

e−σ =
pα(t)

pα(0)
· eβ(εk−ε′k) ⇒ 〈e−σ〉 =

∑
αt,ε′k;α0,εk

p[αt, ε
′
k;α0, εk] · e−σ =

=
∑

αt,ε′k;α0,εk

|〈αt, ε′k|USB(t, 0)|α0, εk〉|2
���e−βεk

Z ���pα(0)
pα(t)

���pα(0)
· eβ(��εk−ε

′
k) =

=
∑

αt,ε′k;α0,εk

|〈αt, ε′k|USB(t, 0)|α0, εk〉|2
e−βε

′
k

Z
pα(t) =

∑
αt,ε′k

e−βε
′
k

Z
pα(t) = 1. �

4.3 Obtaining a fluctuation theorem

In the Section 3.1 it was mentioned that some authors define a generalized form of von
Neumann entropy, the operator entropy. This is not the only quantity of this type that is
defined in order to give an alternative to the von Neumann entropy, in [SW21] the “obser-
vational entropy” is defined and discussed, trying to identify it with the thermodynamic
entropy. And, also there, the authors obtain the corresponding fluctuation theorem.

Given the similarity between the definitions that the authors provide for these entropies,
a fluctuation theorem for the operator entropy is proposed here. That is, the results
of [SW21, Len19] will be used to arrive at a fluctuation theorem, which will be of the
particular form of (4.2). And, since there is only interest in obtaining a fluctuation theorem
for operator entropy, the advantage of accepting one or the other definition of entropy will
not be disputed.
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4.3. Obtaining a fluctuation theorem

The operator entropy of a system with a density matrix ρ is defined according to a
certain operator Q with outcomes qk and corresponding projectors |qk〉〈qk| as:

SQ(ρ) = −
∑
k

Tr{ρ|qk〉〈qk|} ln (Tr{ρ|qk〉〈qk|}) = −
∑
k

pk ln(pk), (4.4)

where pk = Tr{ρ|qk〉〈qk|} and in the following it will be denoted: Πk = |qk〉〈qk|. And
the corresponding if qk is degenerate. In this definition it can be clearly seen that the
probabilities appear at an intrinsically quantum level as well. Therefore, SQ reflects an
uncertainty arising from the lack of knowledge of the physical world itself, not only the lack
of knowledge of the observer, as is the case of von Neumann entropy. The observational
entropy is similar, it has two terms, one is equal to SQ(ρ) and the other is

∑
k pk ln(Vk),

where Vk = Tr{Πk} ≡ dimension of Πk.
As in the previous section, it is necessary to have a probability distribution (two dis-

tributions in this case, because the final result has the form (4.2)) and the corresponding
expression of the entropy production in a trajectory. And, since ρ corresponds to a system
that is considered isolated, it is easy to define:

∆sQ = sQ(t)− sQ(0) = −(ln(pkt)− ln(pk0)) = ln

(
pk0

pkt

)
.

Regarding the probability distribution, it is more complicated. First, it is neces-
sary to define the probability of observing the outcomes qk0 and qkt (at 0 and t re-
spectively) in the “forward process”. And it turns out that that probability is: p0t =
Tr{ΠktU(t)Πk0ρ(0)Πk0U

†(t)}, where U(t) is the unitary that has brought the system to
its state in t.Now it is possible to find the probability of obtaining a ∆s value from the
variation of the entropy operator by the expression:

p(∆s) =
∑
k0,kt

p0t · δ (∆s−∆sQ) .

The Dirac delta function is introduced to account for any possible value of the variation
of sQ equal to ∆s, taking into account that this can be for any pair of outcomes of k0 and
kt. To continue with the development it is necessary to make a first assumption, which is
quite restrictive, it will be assumed that at the initial instant: ρ(0) =

∑
k0
pk0Πk0/Vk0 . So:

p(∆s) =
∑
kt,k0

Tr{ΠktU(t)Πk0ρ(0)Πk0U
†(t)} · δ (∆s−∆sQ) =

=
∑
kt,k0

Tr{ΠktU(t)Πk0U
†(t)}pk0

Vk0

· δ (∆s−∆sQ) =

=
∑
kt,k0

Tr{Πk0U
†(t)ΠktU(t)} pkt

Vk0

exp

[
ln

(
pk0

pk1

)
︸ ︷︷ ︸

∆sQ

]
· δ (∆s−∆sQ) =

= e∆s
∑
kt,k0

Tr{ΠktU(t)Πk0U
†(t)} pkt

Vk0

· δ (∆s−∆sQ) .
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4. Fluctuation Theorems

For the second equality it has been used that Πk0ρ(0)Πk0 = Πk0pk0/Vk0 , for the third
pk0/Vk0 = pkt and Tr{AB} = Tr{BA}. And for the last equality the delta function was
used to put e∆sQ out of the sum.

Now the second assumption will be made, which will be Vk0 = Vkt (this is not k0 = kt,
it is only the equality of the dimensions). The Tr{ΘAΘ−1} = Tr{A}∗ property will also be
used, where Θ is the time-reversal operator, which describes the process that the system
undergoes, but in the opposite “direction”. And the operators in this case should be
denoted as AΘ = ΘAΘ. With that, and putting the factor pkt/Vkt inside the trace:

p(∆s) = e∆s

pΘ(−∆s)︷ ︸︸ ︷∑
kt,k0

Tr

ΠΘ
k0
UΘ(t)ΠΘ

kt

∑
k′t

pk′tΠ
Θ
k′t

Vk′t
ΠΘ
ktU

†
Θ(t)

 δ (∆s−∆sQ) ⇒

⇒ p(∆s)

pΘ(−∆s)
= e∆s (4.5)

Finally, it should be pointed out what pΘ(−∆s) is, it is the probability of obtaining an
operator entropy production of ∆s in the process given by: a initial state in

∑
kt
pktΠ

Θ
kt
/Vkt,

the measure of QΘ
t , the evolution in time reversed direction and the measure of QΘ

0 . The
subscript in the operators indicates that they may not be the same in 0 and in t.

It should be noted that a more general fluctuation theorem than this can possibly be
obtained, since it has been developed by setting somewhat severe constraints. However, it
is shown that the definition of entropy (4.4) also admits a fluctuation theorem, as would be
expected from a consistent definition of entropy. With all, the importance of fluctuation
theorems is proven, although the mathematical tools are somewhat more complex than in
other formalisms, they provide powerful tools for studies of systems in many situations.
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CHAPTER 5

Conclusions

Since the beginning, it had been clear that entropy production is a quantity of capital
importance when one wants to study any process that a system undergoes. With this in
mind, it is clear that a correct and detailed understanding of what entropy and entropy
production are is necessary.

Although the Chapter 2 only gives a not very broad basis of what it is necessary to
know about information theory, it has turned out that the knowledge of that discipline
that is exposed there, together with the examples and reasoning that arise, have been
enough to give an interpretation (both to the results of obtaining expressions and also
numerical solutions) of the entropy that appear in the rest of the chapters.

One of the fundamental parts of this work has been the work until reaching the relation
(3.8). But the truth is that this is not such a complex relationship and obtaining it becomes
trivial if basic properties are available on traces, density matrices, tensor products... This
simplicity may be a sign that the starting hypotheses were too restrictive. For example, to
arrive at a formula for entropy production it would have been possible at first to suppose
that irreversibility arises from the information that is lost on the state of baths when
tracing on their degrees of freedom. But this leaves a term out of the game, mutual
information, which does appear in (3.8). So, could a term that contributed to entropy
production have been lost?

The truth is that the reasoning followed by the original authors seems solid within their
hypotheses. Not only that, the numerical calculation of solutions for specific systems gave
the expected results. The Jaynes–Cummings model allowed to show that the behavior
of the entropy is the one that could be expected within the proposed situation to arrive
at (3.8). However, it is perhaps a slightly more complex model than necessary for that
purpose, since computationally it was not very easy to include in the program the fact
that the dimension of the Hilbert space of the harmonic oscillator is infinite.

Another interesting model was that of the Section 3.3.2, where it was possible to verify
that the numerical solutions that had been made were correct, since the results of the
authors who originally proposed the model could be reproduced. Specifically, the study
of the two-level system alone led to very interesting conclusions. In particular, the one
whereby the entropy production was, as might be expected, lower when the state of the
system in t did not change much with respect to the initial state.

However, a problem arose: the final state of the system could not be determined after
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5. Conclusions

the contact occurred. Although it was possible to find how to solve this in the literature,
it was preferred not to investigate so much in such a specific detail. But it would be
interesting to see if it is possible to find, by means of the appropriate formalism, an
initial state for which the entropy production is almost zero, so that during some time the
dynamics would be close to being reversible even if the bath was very large.

Finally, although the subject was not investigated too much, it was possible to reveal
the framework in which the fluctuation theorems appear. It was even possible to obtain
two theorems, one well known (for the relation 3.8) and the other quite specific that,
in principle, could be useful in a very concrete situation. In general, fluctuation theo-
rems appear with relatively complex mathematical tools, which makes their manipulation
difficult. However, considering the problem of giving a general formulation for entropy
production, it is worth investigating further. And, indeed, it seems that this is one of the
most promising directions for important future results.
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