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A Juan Jesús, Antonio y Manu, por haberme descubierto la belleza de la f́ısica y las matemáticas.
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Resumen general.

La mecánica cuántica es una de las teoŕıas cient́ıficas más exitosas de la historia. Desde que se
consolidó el formalismo matemático que rige sus leyes, ni un solo experimento ha conseguido poner
en duda su capacidad predictiva y sus aplicaciones y hallazgos han sido múltiples, yendo desde
la nanotecnoloǵıa y ciencia de materiales hasta la f́ısica de part́ıculas. A pesar ello, la mecánica
cuántica es tal vez una de las teoŕıas cient́ıficas menos intuitivas que han existido y, aún habiéndose
formulado hace casi un siglo, presenta algunas peculiaridades que la hacen dif́ıcil de interpretar a
d́ıa de hoy. Aśı pues, una de las predicciones más chocantes de la mecánica cuántica es la de que
existen sistemas f́ısicos en la naturaleza que se encuentran en una superposición de estados, esto
es, la enerǵıa, posición o momento lineal de una part́ıcula podŕıan tomar varios valores distintos en
un mismo instante, contradiciendo aśı la experiencia cotidiana de la f́ısica clásica. Tal dicotomı́a
ha sido expuesta en el presente trabajo como una consecuencia directa del enunciado matemático
de los postulados de la mecánica cuántica y se han recogido algunas de las explicaciones que, a
lo largo de los años, los f́ısicos han tratado de dar a este problema a través de las llamadas inter-
pretaciones de la mecánica cuántica. Más concretamente, en el primer caṕıtulo de este proyecto
se ha estudiado cómo la interpretación de mundos paralelos de Hugh Everett permite, junto a
una descripción de la mecánica cuántica basada en operadores densidad, tratar de entender por
qué resulta imposible medir estados superpuestos como una consecuencia de la interacción entre el
sistema medido y su entorno, lo que podŕıa explicar la transformación de estos estados en mezclas
estad́ısticas de estados clásicamente interpretables (decoherencia).

Con el fin de poder justificar la emergencia de la decoherencia en los sistemas que interaccionan
con su entorno, en el segundo caṕıtulo se desarrolla el formalismo matemático de las ecuaciones
maestras, que generalizan la ecuación de Schrödinger a sistemas no aislados. En concreto, se ha
desarrollado una derivación de la ecuación de Redfield basada en las aproximaciones de Born y
Markov, con un significado f́ısico claro, al tiempo que se ha expuesto una demostración axiomática
de la ecuación de Lindblad basada en mapeos CPT en la que se ha tratado de identificar los pun-
tos en los que dichas aproximaciones cobran relevancia. A partir de estas ecuaciones se ha podido
describir la evolución temporal de dos sistemas f́ısicos en interacción con un entorno de radiación:
Un oscilador armónico y un sistema de dos niveles. En ambos casos, la decoherencia aparece de
forma natural para cualquier condición inicial del problema, quedando aśı justificada la emergencia
de estados clásicamente interpretables a partir de estados cuánticos superpuestos. También se ha
añadido una breve discusión sobre la validez de las aproximaciones de Born y Markov, aśı como
sobre su necesidad para poder evitar el problema computacional que supone resolver la evolución
exacta del estado de un sistema en interacción con su entorno. Este problema ha sido expuesto
para un caso particular en el que se estudia la interacción de un sistema de dos niveles con un
entorno de osciladores mediante acoplamientos de tipo Jaynes-Cummings. Se recoge además en
este caṕıtulo una discusión sobre el panorama actual en la determinación de la base propia del
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operador densidad una vez ha ocurrido la decoherencia (pointer basis), problema que adquiere
una gran relevancia en la modelización de medidas mediante ecuaciones maestras pero que, sin
embargo, ha sido resuelto únicamente para ciertos casos particulares.

Una vez se ha demostrado que la decoherencia es una consecuencia directa de la interacción de
los sistemas con sus entornos, queda por ver qué papel juega la medida en este contexto. Aśı pues,
el tercer caṕıtulo del proyecto abre con una definición del concepto de POVM (positive operator
valued measurement), que permite generalizar los postulados de la medida a casos en los que se
realizan medidas imperfectas (no proyectivas) sobre un sistema y que se ha justificado atendiendo
a las condiciones del llamado teorema de Choi-Kraus, que se emplea previamente en la deducción
axiomática de la ecuación de Lindblad. Mediante el uso de este formalismo es posible deducir la
forma que debeŕıa tener una ecuación maestra describiendo una medida continua de tipo POVM
y, a partir de un modelo sencillo de medida sobre un sistema de dos niveles, se deduce la forma
de una ecuación maestra de tipo Lindblad escrita en términos de observables f́ısicos describiendo
la medida. A partir de la misma se ha generalizado el resultado a una ecuación para describir
cualquier proceso de medida y se han discutido algunas de sus propiedades. Aśı, se han analizado
los efectos de calentamiento que se derivan de la aplicación de dicha ecuación, la existencia de
distintas soluciones según sea el grado de perfección de la medida POVM, el comportamiento del
tiempo de decoherencia y se ha establecido un procedimiento para la determinación de la pointer
basis en el proceso, que, de acuerdo a los postulados, debeŕıa coincidir con la base propia del
observable medido. Por último, se ha demostrado matemáticamente que dicha ecuación maestra
puede obtenerse de forma independiente al formalismo de los POVM si se emplea un modelo de
interacción adecuado para describir la medida, concretamente, se ha probado que para casos en los
que el entorno del sistema medido y este interaccionan mediante un hamiltoniano proporcional al
producto tensorial del observable medido y un observable del entorno, la aplicación de la ecuación
de Redflied dará lugar a la ecuación para modelizar medidas si este último observable toma valores
descorrelacionados estad́ısticamente en tiempos diferentes.

Con todo esto, el trabajo presentado a continuación pretende no solo ser un buen punto de
partida para adentrarse en el estudio de la decoherencia, los sistemas cuánticos abiertos y las ecua-
ciones maestras, sino mostrar también cómo los postulados de la mecánica cuántica concernientes a
la medida pueden, en cierta manera, ser entendidos como consecuencias del formalismo matemático
empleado en estas áreas.



Objectives

The objectives of this project are several and their achievement has been organized in three dif-
ferent chapters. In the first one, It has been tried to explain what the measurement problem is and
how decoherence partially solves it, explaining why we are only able to measure non-superposed
states. In the second chapter it is shown how, indeed, decoherence emerges naturally when con-
sidering the interaction between a system and its environment, thus giving a justification to Von
Neumann’s irreversible reduction process. With these first two chapters, moreover, a mathemat-
ical framework based on master equations and CPT maps is established, which is used in the
last chapter to achieve the ultimate goal of being able to describe the evolution of the accessible
states of a quantum system on which a measurement is performed without having to resort to the
measurement postulates.

Los objetivos de este proyecto son varios y su consecución se ha organizado en tres caṕıtulos
distintos. En el primero se ha tratado de explicar en qué consiste el problema de la medida y
cómo la decoherencia lo resuelve parcialmente, explicando por qué tan solo somos capaces de medir
estados no superpuestos. En el segundo caṕıtulo se demuestra cómo, en efecto, la decoherencia
emerge de forma natural cuando se considera la interacción entre un sistema y su entorno, dando
una justificación aśı al proceso de reducción irreversible de Von Neumann. Con estos dos primeros
caṕıtulos, además, se consigue establecer un marco matemático basado en las ecuaciones maestras
y los mapas CPT que, en el tercer caṕıtulo, se emplea para lograr el objetivo final de poder describir
la evolución de los estados accesibles de un sistema cuántico sobre el que se realiza una medición
sin tener que recurrir a los postulados de la medida.

VI



Contents

Summary IV

Objectives VI

1 Introduction. 1
1.1 The postulates of quantum mechanics. . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 The density operator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Decoherence and pointer basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Quantum master equations. 7
2.1 General derivation of Lindblad equation . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 A physical approach. Redfield equation. . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3 The harmonic oscillator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4 The two levels system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.5 A discussion of the approximations. The Jaynes Cummings model. . . . . . . . . . . 21
2.6 Determination of the pointer basis. . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3 The measuring process. 25
3.1 Positive operator-valued measurement. . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2 Measurement master equations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.3 Measurement master equations properties. . . . . . . . . . . . . . . . . . . . . . . . 28
3.4 An interaction model approach. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.5 Appendix. Analytical solution of (3.7) . . . . . . . . . . . . . . . . . . . . . . . . . 35

Conclusions 36

Bibliography 37

VII



Chapter 1

Introduction.

According to quantum mechanics, there are systems in nature that are in a superposition
of states that does not fit with our everyday experience. Throughout this first chapter, the six
postulates of quantum mechanics are reviewed in order to analyze this dichotomy and its different
interpretations. It is in this context that an approach to the postulates in terms of the density
matrix shows to be useful, allowing us to explain the transition between the quantum superposition
and the classical world through the Von Neumann irreversible reduction process and decoherence.

De acuerdo con la mecánica cuántica, existen sistemas en la naturaleza que se encuentran en
una superposición de estados que no termina de encajar con nuestra experiencia cotidiana. A lo
largo de este primer caṕıtulo, se revisan los seis postulados de la mecánica cuántica con tal de
analizar esta dicotomı́a y sus distintas interpretaciones. Es en este contexto que un planteamiento
de los postulados en términos de la matriz densidad muestra una mayor utilidad, permitiendo
explicar la transición entre la superposición cuántica y el mundo clásico a través del proceso de
reducción irreversible de Von Neumann y la decoherencia.

1.1 The postulates of quantum mechanics.

To be able to understand the problems which leaded to the concept of decoherence and the
concept itself, it is convenient to review the so-called quantum mechanics postulates, which consti-
tute the starting point of the quantum theory and all its interpretations. These postulates, which
are set forth in the form presented in [1], will be stated and discussed below.

1. First postulate.

Every physical system has a quantum state that evolves in time, which is mathematically
defined by a vector of a Hilbert space, |ψ(t)〉 ∈H .

One of the first things one has to notice when studying quantum mechanics is the big
difference between what is called the quantum state of a system and the classical state one is
used to handle. The last one is defined as the set of positions and linear momentums of all the
particles of the system, which is well defined in both a mathematical and physical sense. Nev-
ertheless, even when this first postulate gives a solid mathematical vision of what a quantum
state is, this cannot be directly measured or identified with any known empirical entity. It
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2 CHAPTER 1. INTRODUCTION.

is just a mathematical object which contains all the useful information about a physical sys-
tem, and, as a consequence of this first postulate, any linear combination of quantum states
will also be a possible quantum state of the system since they form a Hilbert vector space H .

2. Second postulate.

Every measurable quantity A of a system which states are vectors of a Hilbert space H is
mathematically defined by an observable A acting on it.1

This postulate gives a solid mathematical definition of what a measurable quantity is. In
quantum mechanics, the position and momentum of a particle do not define its state, they
are, as we will now see, a consequence of it.

3. Third postulate.

Once the quantity A is measured, the obtained value will always be one of the eigenvalues
of the observable that defines it.

The third postulate requires physical quantities to be represented by diagonalizable oper-
ators with real eigenvalues (no physical quantity can have a non-real value), which is insured
by the second postulate since all observables are defined hermitian. Apart of this, there is
a remarkable fact in this postulate which is related to the so-called quantum measurement
problem. Specifically, this postulate is implicitly assuming the fact that we will never be able
to measure, for example, two different positions for the same particle. Even when this may
seem obvious, the truth is that, as we anticipated with first postulate, the quantum state of a
system can be a linear combination of different states which could be associated to different
positions at the same time, so it doesn’t look so wild to consider that a superposition of
measurements would also be possible.

4. Fourth postulate.

If the quantity A is defined by an observable A of a discrete spectrum, when it is measured
over a system which state is |ψ(t)〉 ∈H , the probability of measuring the discrete

eigenvalue an at time t0 is given by :

P(an) =
∑gn

i=1 |〈ψ(t0)|ain〉|
2
,

where {|ain〉}
gn
i=1 is a basis of the eigenspace of A associated to the eigenvalue an and gn is

its degree of degeneracy.

1This statement has to be understood carefully since time is a measurable quantity of any physical system but
cannot be associated with any operator acting on the Hilbert space of states of the system [2]. Anyways, this is
not a problem since any other magnitude (energy, position and momentum) can be described this way. Time will
always be treated as a parameter of the problems, not as a measurable quantity.



1.1. THE POSTULATES OF QUANTUM MECHANICS. 3

The fourth postulate can be expressed in a more general form including the cases when
an observable has a continuum spectrum or a combination of a continuum and a discrete
spectrum. The generalization is trivial since one just has to change the discrete summation
above by an integral or a combination of both. Anyway, the important fact here is that
according to this postulate, the quantum state of a system could be interpreted just like a
mathematical tool to calculate probabilities of having a specific result, so a superposition
of states wouldn’t necessary be interpreted as a physical superposition of positions, ener-
gies or momentums, depending on the measured quantity. This would apparently solve the
problematic with postulate 3, nevertheless, double slit experiment on electrons and other
observations have shown that superposition of states has indeed a physical manifestation,
so the quantum state is not just a mathematical representation of our uncertainty about
measurable outcomes, it does indeed affect physical reality. Why can’t we then measure any
superposition of energies, positions or momentums?

5. Fifth postulate.

If the quantity A is measured at time “ t” and the eigenvale a is obtained, then the
quantum state just after the measurement is given by :

|ψ(t′)〉 = P̂a|ψ(t)〉√
〈ψ(t)|P̂a|ψ(t)〉

,

where P̂a represents the projector operator over the eigenspace of the observable A
associated to the eigenvalue a.

This quantum mechanics postulate is, by far, the most controversial one. One of the main
reasons is that it is not well defined what measuring means in physical terms. Is the ground
measuring the photons arriving from the sun when they collide with its atoms? Maybe
should the measure be made by a conscience? In that case, how would this be defined? A
known example that exposes this problematic is the thought experiment of Wigner’s friend.
If some scientist makes a measurement over a system, the quantum state of such system will
become the one predicted by this postulate, but if some other scientist opens the door of the
laboratory where the first one was making a measurement, the quantum state of the global
system of the laboratory will be the one which is determined by this postulate, so which
state has been modified by postulate 5? In addition to this, we have already highlighted the
problematic of the non existence of superposed measure results, which now can be understood
because of the reduction of the quantum state once we measure over the system. Anyway,
this reduction still requires an explanation since it was historically imposed to be able to
predict experimental results, but it was not deduced. Indeed, there is no reason to believe
that this postulate is a real fundamental law of nature since it breaks with the continuum
and unitary evolution of states given by the next postulate.
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6. Sixth postulate.

The quantum state of a system evolves in time according to the Schrödinger equation:

i~d|ψ(t)〉
dt

= Ĥ |ψ(t)〉,

where Ĥ is the hamiltonian of the system.

The sixth postulate provides a mathematical equation that perfectly describes the time
evolution of the quantum state of a system. Since this equation is linear and, in consonance
with the first postulate, any linear combination of solutions to the equation will also be a
solution, we arrive to the already mentioned superposition of states that has no classical
analogy.

This set of postulates, that are amazingly useful to make calculations and predict experimental
results, show then some ambiguities concerning the concepts of measurement and superposition
that are usually englobed in the concept of what is called the measurement problem. Postulates five
and six describe the evolution of the quantum state of a system in two very different ways depend-
ing on whether a measure is carried out or not, but this, of course, needs a deeper explanation.
This situation has carried scientific community to manage what are known as the interpretations
of quantum mechanics.

According to [3], the first interpretation that tried to handle with the measurement problem is
the so-called Copenhague interpretation, which considers that the quantum theory is not universal
and there exists a boundary between the classic and quantum worlds that invalidates quantum
theory in the classical domain. This explains why we can’t see any superposition effects in our
daily classical experience and why, since our measurement machines are classical, we need to accept
fifth postulate as an ad hoc process to model measurements. This interpretation gives a definition
of a measurement as an interaction with a classical device, but it doesn’t allow us to understand
if there is any physical mechanism which causes the collapse and the ”boundary” between the
quantum and classic world is not clear at all.

Other interpretation, purposed later by Hugh Everett, is the so-called Many worlds interpre-
tation [4]. According to it, quantum theory is a general theory that could be applicable to any
physical system, including the entire universe. For this interpretation, a measurement is an inter-
action between quantum systems, so, once the interaction happens, the global system has many
possible accessible states. What many worlds interpretation stands is that every single one of this
possible states exists in superposition with the rest in different universes, according to Schrödinger
equation. This discards the need of the fifth postulate, nevertheless, such consideration still re-
quires an explanation. Why do we perceive just one of the many superposed states?

The answer to this question is not completely clear to this day, since there is not even a con-
sensus on what is the correct interpretation of quantum mechanics. The truth is, however, that
quantum mechanics itself provides some ways to understand why it would never be possible for
us to see any superposed states if we dispense with the postulates concerning measurement and
consider that the entire universe evolves according Schrödinger equation. To understand how, let’s
briefly revise an important mathematical concept: The density operator.
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1.2 The density operator.

In many circumstances, the quantum state of a system is not completely known and one has
to consider a set of possible states for the system {|ψi〉}Ni=1, every one of which has a probability
pi of being the real one. This is known as a mixture of states and it’s necessary to describe many
situations in quantum mechanics. If one wanted to solve a quantum problem with a mixed state,
the problem should be solved for each state of the set and the results should be averaged with the
probabilities pi. An illustrative example is the calculation of the expectation value of an observable
A. As we know, the expectation value in one of the states of the set is given by 〈ψi| A |ψi〉, so
taking the average over all the states of the set we get:

〈A〉 =
N∑
i=1

pi 〈ψi| A |ψi〉 . (1.1)

As this is a little complicated, it is natural to find some way to write this in a more compact form.
Indeed, this can be achieved by defining the density operator ρ as follows:

ρ =
N∑
i=1

pi |ψi〉 〈ψi| , (1.2)

so it can be checked that the result of equation (1.1) is exactly equal to:

〈A〉 = Tr [ρA] . (1.3)

This is obviously a more compact and simple way to write the result. Furthermore, if one considers
the definition (1.2) and takes into account that

∑N
i=1 pi = 1, it can be shown that the density

operator also satisfies the following relations:

ρ = ρ†, (1.4) Tr[ρ] = 1, (1.5) Tr[ρ2] ≤ 1, (1.6) 〈u| ρ |u〉 ≥ 0,∀ |u〉 ∈H . (1.7)

In (1.6), the equality stands iff ρ describes a pure state, this is, if N = 1. The density operator,
nevertheless, is not just a mathematical tool with interesting properties that simplify the notation.
In fact, this operator contains all the possible information one can have about a quantum system
since it includes all its possible states and the probabilities of those being its real ones. Quantum
mechanics can indeed be reformulated in terms of it by imposing the compliance of the postulates
of quantum mechanics, what drives to the set of equations:

dρ

dt
=

1

i~
[Ĥ, ρ], (1.8) ρ′ =

P̂ ρP̂

Tr[ρP̂ ]
, (1.9) P = Tr[ρP̂ ], (1.10)

where Ĥ is the hamiltonian of the system described by ρ, ρ′ is the density operator after a mea-
surement, P is the probability of that measurement being taken and P̂ is the projector operator
of the eigenspace of the measured observable associated to the measured eigenvalue.

A quantum mechanics approach based on this density operator will allow a study on how the
set of possible states of a system evolves in time. This will have a clear advantage over a single
state approach, not just for being more realistic, but for allowing us to know which kind of state
will a system potentially have, for example, after a measurement.



6 CHAPTER 1. INTRODUCTION.

1.3 Decoherence and pointer basis

To clarify the last consideration, let’s now consider an illustrative example. Suppose that a two
levels system is prepared in the following superposed state:

|ψ〉 =
1√
2
|0〉+

1√
2
|1〉 , (1.11)

where |0〉 and |1〉 form an orthonormal basis of the Hilbert space of the system. If the definition
of the density operator is applied, it can be calculated for this pure state that:

ρ = |ψ〉 〈ψ| = 1

2
|0〉 〈0|+ 1

2
|1〉 〈0|+ 1

2
|0〉 〈1|+ 1

2
|1〉 〈1| . (1.12)

This density operator cannot be interpreted in a probabilistic way as a representation of a mixed
state of |0〉 and |1〉 since some non-diagonal elements have appeared. Nevertheless, what would
happen if a measurement was made over the system?. As we know from postulates four and five,
the resulting state of the measurement will be |0〉 or |1〉, both of them with probability 1/2. This
corresponds to a mixed state described by the density operator:

ρ =
1

2
|0〉 〈0|+ 1

2
|1〉 〈1| , (1.13)

which, in opposition to the one in (1.12), can be easily interpreted in a probabilistic way as mixed
state of |0〉 and |1〉. In addition, this is a mixture of non-superposed states, this is, superposition
effects are absent and the density operator is what someone would classically expect. Despite this,
quantum mechanics postulates consider measurements as sudden processes and, as equation (1.9)
yields, when the measurement is done, the density operator instantly collapses to |0〉 〈0| or |1〉 〈1|
without passing through (1.13). This is why Von Neumann introduced the so-called irreversible
reduction process [3] which stands that before one gets the result of the measurement, the density
operator is reduced to an appropriate mixed state density operator constituted by non-superposed
states like the one in (1.13).

The Von Neumann irreversible reduction process explains why superposition effects vanish
when we measure over a quantum system since the only possible candidates appearing in (1.13)
are not superposed states, but it still requires an explanation since it’s just an ad hoc process.
To understand how it happens, it has to be remembered that a measurement can be interpreted
as an interaction between two quantum systems: the studied one and the environment in which
the detector/measurement apparatus is found. From this point of view, it seems clear that the
irreversible reduction process should be deduced as a consequence of a detailed study of the in-
teraction between the system and its environment, as we had already highligted. This process, as
can be seen from (1.12) and (1.13), is closely related to a fading of the non-diagonal elements of
the density operator when it is expressed in a particular vector base of the Hilbert space of the
system. As diagonal and non-diagonal elements of density operator are usually called populations
and coherences, this process is called decoherence and the vector basis in which it takes place
has been called in literature as pointer basis. Our current purpose is then to be able to infer
decoherence as a consequence of the environment-system interaction.



Chapter 2

Quantum master equations.

Once the concepts of the measurement problem and decoherence have been explained, it remains
to be shown that the interaction between a measured system and its environment really causes
this effect and that, moreover, it does so in a sufficiently small time for us not to notice it. The
key to achieve this will be the study of the time evolution of the density operator associated with
the system on which the measurement is made. However, as we are considering that this system
is not isolated, we will not be able to use the Schrödinger equation to analyze its evolution, but
we will have to use an equation that describes the time evolution of the density operator of the
required subsystem interacting with its environment, this is, a master equation. Throughout
this chapter, two ways of constructing a master equation for the system are presented, pointing
out the equivalences and differences between the two, as well as between the results they lead to.
Later, the equations are applied to describe the evolution of a harmonic oscillator and a two-level
system interacting with their environments, demonstrating how decoherence naturally emerges in
these systems. Finally, the use of master equations and the approximations involved are justified,
as well as the main current knowledge about the pointer basis concept and its calculation is exposed.

Una vez expuesto el concepto del problema de la medida y la decoherencia, queda por demostrar
que la interacción entre un sistema medido y su entorno provoca realmente este efecto y que,
además, lo hace en un tiempo lo suficientemente pequeño como para que no lo notemos. La clave
para conseguirlo será el estudio de la evolución temporal del operador densidad asociado al sistema
sobre el que se realiza la medida. Sin embargo, como estamos considerando que este sistema no
está aislado, no podremos utilizar la ecuación de Schrödinger para analizar su evolución, sino que
tendremos que emplear una ecuación que describa la evolución temporal del operador densidad del
subsistema requerido que interacciona con su entorno, es decir, una ecuación maestra. A lo
largo de este caṕıtulo se exponen dos maneras de construir una ecuación maestra para el sistema,
señalando las equivalencias y diferencias entre ambas, aśı como entre los resultados a los que con-
ducen. Más adelante, las ecuaciones se aplican para describir la evolución de un oscilador armónico
y un sistema de dos niveles que interactúan con sus entornos, demostrando cómo la decoherencia
aparece de forma natural en estos sistemas. Finalmente, se justifica el uso de las ecuaciones maes-
tras y las aproximaciones que conllevan, aśı como también se exponen los principales conocimientos
actuales sobre el concepto de pointer basis y su cálculo.
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2.1 General derivation of Lindblad equation

One of the most extended ways to derive a master equation which describes the time evolution of
the density operator of an interacting system is based in physical arguments and approximations.
Those considerations allow a rewrite of the evolution equation of the composed system (1.8) only
in terms of the desired interacting subsystem density operator. This derivation will be analyzed in
2.2, but before, a more general way to proceed usually preferred by quantum information specialists
has been developed, which will allow us to take a broader point of view of some important concepts.

Figure 2.1: General scheme of the
subsystem-environment interaction. Since
the subsystem interacts with its environ-
ment, it evolves according to a master equa-
tion.

With this in mind, we can start by posing the
problem of finding the density operator ρ(t) of a sys-
tem once the initial condition ρ(t0) is given. A natu-
ral way of establishing a relation between this two ob-
jects is to define an application from the set of all pos-
sible density operators of the system on itself, which
would be defined by conditions (1.4,1.5,1.6,1.7). This
sets can’t define a vector space since some linear com-
binations of density matrices won’t give a density ma-
trix (for example, trace could result to be different
from one). Nevertheless, this set belongs to a Ba-
nach space usually called Fock-Liouville space we
will denote as B(H ) which is defined by a set of
bounded linear operators and an internal product.
Operators in B(H ) will be denoted as |φ〉〉 and the
internal product between them is defined by:

〈〈φ|ϕ〉〉 = Tr[φ†ϕ].

Inequation (1.5) can then be written as 〈〈ρ|ρ〉〉 ≤ 1.
As we are not interested in carrying out an exhaus-
tive analysis on Fock-Liouville spaces, we won’t get
into details about the conditions of Banach spaces
but just accept the preceding and apply it as a useful
mathematical tool. Once this is clear, we can try to find a linear map Ωt to relate the initial
condition ρ(t0) to the density matrix at time t as follows:

Ωt : B(H ) −→ B(H )
Ωt(ρ(t0)) = ρ(t)

As the map Ωt is expected to transform density operators into density operators, we will force
it to be completely positive and to satisfy the trace preservation condition:

Tr[Ωt(ρ)] = Tr[ρ]. (2.1)

It is important to highlight that it is said that a map Ω is positive iff:

∀ρ ∈ B(H )/ρ ≥ 0 =⇒ Ω(ρ) ≥ 0, (2.2)

and completely positive iff ∀n ∈ N, Ω(ρ) ⊗ 1n is positive. (The notation ρ,Ω(ρ) ≥ 0 is used
to denote positive-defined matrices, which can be defined for our interests as those of positive
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eigenvalues). With (2.1) we are forcing the trace of the density operator to be preserved by the
map, so if (1.5) is initially satisfied, it will be satisfied at any time. If this condition is not satisfied,
then it is no longer possible to talk about a density operator. In the other hand, the completely
positive condition ensures that the eigenvalues of the density operator will never be negative
according to (1.7), furthermore, ensuring that Ωt is not just a positive map but a completely
positive one allows us to affirm that this will be satisfied not just by ρ, but by any other density
matrix representing a composed system containing the system which state is represented by ρ.
This, however, is only true if there is a weak correlation between the studied subsystem
and the environment, which is the so-called Born approximation. To understand this a little
better, let’s imagine we are treating a subsystem-environment composed system which density
operator is ρtotal. In the most general possible case, this density operator will be written in terms
of the density operator of the subsystem and its environment as follows:

ρtotal = ρs ⊗ ρe + ρcorrelation,

where s and e stand for subsystem and environment respectively. This operator is defined over a
Hilbert space H = Hs⊗He, so if we call d the dimension of the Hilbert space of the environment
states He and Ωt is the map that describes the evolution of ρs, then we can apply the operator
Ωt ⊗ 1d over ρtotal to obtain:

(Ωt ⊗ 1d) ρtotal = Ωtρs ⊗ ρe + [(Ωt ⊗ 1d) ρcorrelation] .

When the interaction between the subsystem and its environment is not negligible, the density
operator of the environment and the one which describes the correlation will evolve in time, so
the right side of the equation would not have to correspond to the evolved state, which implies
that (Ωt ⊗ 1d) doesn’t describe the evolution of ρtotal. This implies that in the case of strong
interaction, ensuring that Ωt is a complete positive map won’t imply that ρtotal preserves positivity.
Nevertheless, if the environment is not affected by the subsystem and there is no correlation, the
last equation makes sense since:

(Ωt ⊗ 1d) ρtotal = Ωtρs ⊗ ρe,

and the right hand side of the equation corresponds to what we would expect to be the evolution of
the system under this assumptions. The conclusion is that under Born approximation, (1d ⊗ Ωt)
is the time evolution map of the composed system, so ensuring that Ωt is completely positive
will ensure that the density operator of the composed system will preserve positivity. This set of
conditions over Ωt define what is called a CPT map (completely positive trace preserving map),
which will be the key to find the time evolution of the density operator. This will be given by:(

dρ

dt

)
t0

= lim
t→t0

ρ(t)− ρ(t0)

t− t0
. (2.3)

Now, using the map Ωt and defining ∆t = t− t0 we arrive to:(
dρ

dt

)
t0

= lim
∆t→0

Ωt0+∆tρ(t0)− ρ(t0)

∆t
. (2.4)

To develop the right hand side of (2.4) the Choi-Krauss theorem below this paragraph will be
used (the proof of this theorem can be found in [5], in which I have based the following reasoning).
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Theorem: A linear map Ω : B(H ) −→ B(H ) is completely positive and trace

preserving ⇐⇒
(
∃{Vi}d

2−1
i=0 ⊂ B(H )/Ω(ρ) =

∑d2−1
i=0 V †i ρVi ∧

∑d2−1
l=0 VlV

†
l = 1H

)
.

With d = dim(H )

According to Choi-Kraus theorem, the map Ωt admits the mentioned decomposition, which
will be assumed in the following. Nevertheless, since the map has been considered to depend on
the initial condition ρ(t0), the so-called Kraus operators, Vi, will also depend on it. This com-
plicates the developing of (2.4) since some time integral operators appear, so here the Markov
approximation is considered. This consists of assuming that Ωt does not depend on the previous
state of the system that has to be evolved, so it does not take into account the history of the state
from t0 to t. The approximation owes its name to the russian mathematician Andréi Markov, who
studied stochastic processes in which future values of a random variables do not depend on its
past history. This is very important to consider since some real situations cannot be described
by Markovian processes, which indeed has a lot to do with decoherence (It has been proven that
in certain circumstances non-Markovianity can produce sudden creations of coherences, this is,
the contrary effect to decoherence [6][7]). Nevertheless, Markovian processes describe a very wide
range of physical systems and will allow us to study decoherence in a first approximation (for a
detailed discussion of the concept of Markovianity, the reader is referred to [8]).

There is only one remaining step we have to make to be able to find the master equation we are
looking for, specifically, we will use the Fock-Liouville space to develop the following calculations
and we need to choose an adequate basis of the space, which will be used to expand the Kraus
operators. Let’s then take {Fi}d

2

i=1 basis of B(H ). In the Fock-Liouville space, this operators will
satisfy the orthonormality condition and close relation, which are written:

〈〈Fi|Fj〉〉 = Tr[F †i Fj] = δij,
d2∑
i=1

|Fi〉〉〈〈Fi| = 1d2 .

In particular, let’s take Fd2 = 1√
d
1H . One can see that, by construction, 〈〈Fd2|Fd2〉〉 = 1 and, for

the orthonormality condition to be satisfied, it will be necessary that Tr[Fi] = 0, ∀i 6= d2. As the
map Ωt we are looking for depends on time, the Krauss operators Vl will also do, so we can expand
them in the previous basis using closure realtion as follows:

|Vl(t)〉〉 =
d2∑
i=1

〈〈Fi|Vl(t)〉〉|Fi〉〉 =⇒ 〈〈Vl(t)| =
d2∑
i=1

〈〈Vl(t)|Fi〉〉〈〈Fi|.

As we are considering our map Ωt to be completely positive and trace preserving, by Choi-Krauss
theorem we have:

Ωt(ρ) =
d2−1∑
l=0

V †l (t)ρVl(t) =
d2−1∑
l=0

(
d2∑
i=1

〈〈Vl(t)|Fi〉〉F †i

)
ρ

(
d2∑
j=1

〈〈Fj|Vl(t)〉〉Fj

)
=

d2∑
i=1

d2∑
j=1

Cij(t)F
†
i ρFj,

where we have defined Cij(t) =
∑d2−1

l=0 〈〈Fj|Vl(t)〉〉〈〈Vl(t)|Fi〉〉. Going back to equation (2.4) we
find: (

dρ

dt

)
t0

= lim
∆t→0

1

∆t

(
d2∑
i=1

d2∑
j=1

Cij(t0 + ∆t)F †i ρ(t0)Fj − ρ(t0)

)
.
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Separating the terms with i, j = d2 we get:

(
dρ

dt

)
t0

= lim
∆t→0

1

∆t

( d2−1∑
i=1

d2−1∑
j=1

Cij(t0 + ∆t)F †i ρ(t0)Fj +
d2−1∑
j=1

Cd2j(t0 + ∆t)F †d2ρ(t0)Fj+

+
d2−1∑
i=1

Cid2(t0 + ∆t)F †j ρ(t0)Fd2 + Cd2d2(t0 + ∆t)F †d2ρ(t0)Fd2 − ρ(t0)
)
,

so, as we have chosen Fd2 to be proportional to identity, this trivially reduces to:

(
dρ

dt

)
t0

= lim
∆t→0

1

∆t

( d2−1∑
i=2

d2−1∑
j=2

Cij(t0 + ∆t)F †i ρ(t0)Fj +
1√
d

d2−1∑
j=1

Cd2j(t0 + ∆t)ρ(t0)Fj+

+
1√
d

d2−1∑
i=1

Cid2(t0 + ∆t)F †i ρ(t0) +
Cd2d2(t0 + ∆t)

d
ρ(t0)− ρ(t0)

)
.

If we now define the following:

gij = lim
∆t→0

Cij(t0 + ∆t)

∆t
,∀(i, j) 6= (d2, d2), (2.5) gd2d2 = lim

∆t→0

Cd2d2(t0 + ∆t)− d
∆t

, (2.6)

it can be seen from the definition of Cij(t) that gij = g∗ji, this is, gij are the elements of a hermitian
matrix. Applying this to the last equation we get:

(
dρ

dt

)
t0

=
d2−1∑
i=1

d2−1∑
j=1

gijF
†
i ρ(t0)Fj +

1√
d

d2−1∑
j=1

gd2jρ(t0)Fj +
1√
d

d2−1∑
i=1

gid2F †i ρ(t0) +
gd2d2

d
ρ(t0).

To write this in a more compact form, we define F = 1√
d

∑d2−1
i=1 gid2F †i , so applying that g is an

hermitian matrix, we can easily see that F † = 1√
d

∑d2−1
j=1 gd2jFj and, substituting, we get:

(
dρ

dt

)
t0

=
d2−1∑
i=1

d2−1∑
j=1

gijF
†
i ρ(t0)Fj + ρ(t0)F † + Fρ(t0) +

gd2d2

d
ρ(t0).

A step further can be made to separate F in two parts G and H. Specifically, we can define:

G =
F + F †

2
, H =

F † − F
2i

,

so H and G are trivially hermitian and: F = G − iH ⇐⇒ F † = G + iH. This drives us to the
following equation:

(
dρ

dt

)
t0

=
d2−1∑
i=1

d2−1∑
j=1

gijF
†
i ρ(t0)Fj + {G, ρ(t0)} − i[H, ρ(t0)] +

gd2d2

d
ρ(t0),

so if one defines J = G+
gd2d2

2d
then:
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(
dρ

dt

)
t0

=
d2−1∑
i=1

d2−1∑
j=1

gijF
†
i ρ(t0)Fj + {J, ρ(t0)} − i[H, ρ(t0)]. (2.7)

The last step will be to impose that d
dt
Tr[ρ] = 0 ⇐⇒ Tr[dρ

dt
] = 0. By doing so, one gets:

Tr[

(
dρ

dt

)
t0

] = Tr

[
d2−1∑
i=1

d2−1∑
j=1

gijF
†
i ρ(t0)Fj + {J, ρ(t0)} − i[H, ρ(t0)]

]
=

= Tr

[
d2−1∑
i=1

d2−1∑
j=1

gijF
†
i ρ(t0)Fj + Jρ(t0) + ρ(t0)J − iHρ(t0) + iρ(t0)H

]
.

By linearity and cyclic property of trace, this reduces to:

Tr[

(
dρ

dt

)
t0

] = Tr

[
d2−1∑
i=1

d2−1∑
j=1

gijF
†
i ρ(t0)Fj + 2Jρ(t0)

]
= 0,

so, as this stands for any possible density matrix, we conclude:

J = −1

2

d2−1∑
i=1

d2−1∑
j=1

gijFjF
†
i ,

what we can insert in (2.7) to get:(
dρ

dt

)
t0

= −i[H, ρ(t0)] +
d2−1∑
i=1

d2−1∑
j=1

gij

(
F †i ρ(t0)Fj −

1

2
{FjF †i , ρ(t0)}

)
.

Finally, as g is hermitian and therefore diagonalizable, we can find a new basis of operators Fi −→ L†i
such that:

dρ

dt
= −i[H, ρ] +

d2−1∑
k=1

Γk

(
LkρL

†
k −

1

2
{L†kLk, ρ}

)
, (2.8)

where, for simplicity, we have called gkk = Γk and supressed the specification that ρ and its deriva-
tive are evaluated in a certain same time t0.

Equation (2.8) is known as Gorini–Kossakowski–Sudarshan–Lindblad equation in honor
to their ideators. This equation, as has been exposed, constitutes a very general description of
a markovian time-evolving process of a system which is not correlated to its environment. As
we have proved, H represents a hermitian operator, Γk are real coefficients (which can also be
proven to be positive) and Lk are some operators acting on the Hilbert space of the states of the
interacting subsystem, which mixed state is mathematically defined by ρ. The operators Lk are
usually called the Lindblad jump operators and describe the interaction between the subsystem
and the environment. Indeed, if we make them zero, we will get back an equation with the form
of (1.8), what makes us think that the H appearing in (2.8) is clearly related to the hamiltonian
of the subsystem. As we will see, Lindblad equation is not the only possible master equation for
a system that interacts with its environment, but according to the previous derivation, whenever
an interaction can be described through (2.8), the trace and positiveness of ρ will be preserved.



2.2. A PHYSICAL APPROACH. REDFIELD EQUATION. 13

2.2 A physical approach. Redfield equation.

As we had anticipated, a master equation can be derived from a physical microscopic study of
the dynamics of the composed subsystem-environment quantum system, which is what we are going
to do now. With this purpose, let’s take s and e to denote the subsystem and the environment,
respectively, and let’s consider the total hamiltonian:

H = Hs +He +Hint. (2.9)

As we know, the Hilbert space of the complete system will be H = Hs ⊗He and the density
operator describing its state will be ρ = ρs ⊗ ρe + ρcorr. As we are considering that the entire
system is isolated, we can now apply (1.8) to describe the evolution of its density operator:

dρ

dt
=

1

i~
[H, ρ(t)]. (2.10)

If we now write this in terms of the interaction picture, this is, if we define in the total system:

Ã = e
i
~ (He+Hs)tAe−

i
~ (Hs+He)t, (2.11)

it can be shown through some algebra that:

dρ̃

dt
=

1

i~
[H̃int, ˜ρ(t)]. (2.12)

Integrating this equation and assuming t0 = 0 for simplicity:

ρ̃(t) = ρ̃(0) +
1

i~

∫ t

0

[
H̃int(τ), ρ̃(τ)

]
dτ. (2.13)

By iterating this equation, one arrives to:

ρ̃(t) = ρ̃(0) +
1

i~

∫ t

0

[
H̃int(τ), ρ̃(0) +

1

i~

∫ τ

0

[
H̃int(τ

′), ρ̃(τ ′)
]
dτ ′
]
dτ. (2.14)

Derivating again with respect to time we will get, by applying Leibniz rule:

dρ̃

dt
=

1

i~

[
H̃int(t), ρ̃(0)

]
+

1

(i~)2

[
H̃int(t),

∫ t

0

[
H̃int(τ), ρ̃(τ)

]
dτ

]
. (2.15)

Taking now the trace over the environment:

Tre

[
dρ̃

dt

]
=

1

i~
Tre

[
H̃int(t), ρ̃(0)

]
+

1

(i~)2
Tre

[
H̃int(t),

∫ t

0

[
H̃int(τ), ρ̃(τ)

]
dτ

]
,

which can be simplified if we now assume that there is no correlation at t = 0. This makes sense,
for example, if the subsystem and the environment were not interacting before that instant. That
implies that ρ(0) = ρs(0)⊗ρe(0). It can be shown that this also implies ρ̃(0) = ρ̃s(0)⊗ ρ̃e(0), where
the tilde notation is related to the interaction picture of each of the systems s and e, defined by
relation (2.11) by cancelling He and Hs respectively. We can write then:[

H̃int(t), ρ̃(0)
]

=
[
H̃int(t), ρ̃s(0)⊗ ρ̃e(0)

]
,
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so if we now expand the interaction hamiltonian as follows:

H̃int(t) = ~
∑
i

S̃i ⊗ Ẽi, (2.16)

where the possible number of terms in the sum is not fixed, then we get:[
H̃int(t), ρ̃(0)

]
= ~

∑
i

(
S̃iρ̃S(0)⊗ Ẽiρ̃e(0)− ρ̃S(0)S̃i ⊗ ρ̃e(0)Ẽi

)
.

Now, if the trace over the environment is calculated, by the cyclic property of the trace one gets:

Tre

[
H̃int(t), ρ̃(0)

]
= ~

∑
i

(
S̃iρ̃S(0)− ρ̃S(0)S̃i

)
Tre

[
Ẽiρ̃e(0)

]
.

Without generality loss, it can be considered that Tre

[
Ẽiρ̃e(0)

]
= 0. This is due to the fact

that this only affects the origin of energies of the system, but not its time evolution. It is then
concluded:

Tre

[
dρ̃

dt

]
=

1

(i~)2
Tre

[
H̃int(t),

∫ t

0

[
H̃int(τ), ρ̃(τ)

]
dτ

]
.

One can now assume that the initial state of the environment is preserved and that correlation is
zero for any time t > 0, so it can be written:

ρ̃(t) = ρ̃s(t)⊗ ρ̃e(0).

This assumption is the Born approximation we had already commented in the previous section.
Under this consideration, it is trivial to see that:

Tre [ρ̃(t)] = ρ̃s(t)Tre [ρ̃e(0)] = ρ̃s(t),

so, as trace and time derivative commute, we can finally write:

dρ̃s
dt

=
1

(i~)2
Tre

[
H̃int(t),

∫ t

0

[
H̃int(τ), ρ̃s(τ)⊗ ρ̃e(0)

]
dτ

]
.

We can also introduce here the Markov approximation by imposing that ρ̃s(τ) ' ρ̃s(t), this is,
we assume that the final state does not depend on its history, which should be integrated from
t = 0 to t (This is also known as the first Markov approximation [8]). Substituting the expansion
of the interaction hamiltonian, the equation takes the form:

dρ̃s
dt

= − 1

(~)2
Tre

[
~
∑
i

S̃i(t)⊗ Ẽi(t),
∫ t

0

[
~
∑
j

S̃j(τ)⊗ Ẽj(τ), ρ̃s(t)⊗ ρ̃e(0)

]
dτ

]
,

this is:

dρ̃s
dt

= −
∑
i

∑
j

∫ t

0

Tre

[
S̃i(t)Ẽi(t),

[
S̃j(τ)Ẽj(τ), ρ̃s(t)ρ̃e(0)

]]
dτ,

where the tensor product symbol has been suppressed by simplicity. If the commutators are
expanded and it is taken into account that:
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〈Ẽi(t)Ẽj(τ)〉e = Tre

[
ρ̃eẼi(t)Ẽj(τ)

]
, (2.17)

〈Ẽj(τ)Ẽi(t)〉e = Tre

[
ρ̃eẼj(τ)Ẽi(t)

]
, (2.18)

then we finally conclude:

dρ̃s
dt

= −
∑
i

∑
j

∫ t

0

{
(
S̃i(t)S̃j(τ)ρ̃s(t)− S̃j(τ)ρ̃s(t)S̃i(t)

)
〈Ẽi(t)Ẽj(τ)〉e+

+
(
ρ̃s(t)S̃j(τ)S̃i(t)− S̃i(t)ρ̃s(t)S̃j(τ)

)
〈Ẽj(τ)Ẽi(t)〉e}dτ. (2.19)

This equation tells us how the density operator of the subsystem we are studying evolves in time
under the Born and Markov approximations. Nevertheless, this equation does not fit, at least
written like this, with the form of the general Lindblad equation (2.8). This apparent contra-
diction is due to the fact that we still haven’t forced all the conditions we assumed to deduce
Lindblad equation. Indeed, (2.19) is what’s known as the Redfield equation1, which, as it’s
known, doesn’t guarantee that the evolution of the density operator preserves its positivity [9].
To arrive to a Lindblad equation form, we will need to force this condition, which can be done
through the imposition of the secular approximation. This is also known as the rotating wave
approximation and it consists in only considering resonant terms in the integrals in (2.19) when
a certain decomposition of the coupling operators in (2.16) in terms of the eigenoperators of Hint

is taken [10]. If one does so, equation (2.8) would be recovered.

Even when this equation doesn’t insure the positivity of the evolution of the density operator,
it can perfectly describe some extensively studied systems we will now see and, of course, will
give account of the effects of decoherence we are interested in. In addition, this approach has the
advantage of allowing us to construct master equations from accessible physical information such
as the Hamiltonians of the systems, which is not the case with the approach used to prove the
Lindblad equation.

2.3 The harmonic oscillator.

One of the systems that Redflied equation describes really well is the case of a harmonic oscilla-
tor immersed in an optical cavity in interaction with a thermal bath of radiation. In this section,
we will develop (2.19) to arrive to a master equation for the subsystem of the cavity and, after
giving a numerical solution to the equation, we will try to analyze the effect of decoherence. Some
mathematical steps have been outlined to arrive to the master equation, but the reader can find a
more detailed developing of the calculations in [11].

1Depending on the bibliographic reference, the Redfield equation is written in one way or another. According
to [5], equation (2.19) is a Redfield equation when the upper limit of the integral is extended to infinity (second
Markov approximation [8]).
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Figure 2.2: Scheme of the interaction be-
tween the harmonic oscillator and its radia-
tion environment. Both systems experiment
different transitions represented by colored
arrows.

The mathematical description of the system is
based on the quantization of the electromagnetic
field, which leads to the following photonic hamil-
tonians:

Hs = ~ωsa†a, He =
∑
j

~ωjr†jrj.

A way to model the interaction hamiltonian from
these expressions is to consider a set of complex co-
efficients kj such that:

Hint =
∑
j

~
(
k∗jar

†
j + kja

†rj

)
.

If one defines:

S1 = a, E1 =
∑
j

k∗j r
†
j ,

S2 = a†, E2 =
∑
j

kjrj,

then the definition of the interaction picture can be used to see that H̃int has the form of (2.16).
Developing the calculations according to (2.11) one gets, for S1(t):

S̃1(t) = e
i
~Hstae−

i
~Hst = eiωsa

†atae−iωsa
†at =⇒

S̃1(t) |n〉 = eiωsa
†atae−iωsnt |n〉 = eiωsa

†at
√
ne−iωsnt |n− 1〉 =

= eiωs(n−1)t
√
ne−iωsnt |n− 1〉 = e−iωst

√
n |n− 1〉 = e−iωsta |n〉 ,

where {|n〉}∞n=0 is the eigenbasis of Hs. By comparing the first and last terms it is deduced that
S̃1(t) = e−iωsta. If one proceeds analogously for the rest of the operators it is concluded that:

S̃1(t) = ae−iωst, Ẽ1(t) =
∑
j

k∗j r
†
je
iωjt,

S̃2(t) = a†eiωst, Ẽ2(t) =
∑
j

kjrje
−iωjt.

The last ingredient we need to evaluate (2.19) is the initial condition for the density operator of
the environment ρ̃e, which we need to calculate the correlation functions (2.17) and (2.18). As
we are considering the environment to be in thermal equilibrium, we can apply the Boltzmann
expression for the canonical ensemble to conclude:

ρ̃e =
e−βHe

Tre [e−βHe ]
=

∏
j e
−β~ωjr†jrj

Tre [e−βHe ]
,

where β = 1
kBT

. To compute the denominator, we proceed as follows:
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Tre
[
e−βHe

]
= Tre

[∏
j

e−β~ωjr
†
jrj

]
=

∑
n1,n2,...

〈n1| ⊗ 〈n2| ⊗ ...
∏
j

e−β~ωjr
†
jrj ... |n2〉 ⊗ |n1〉 =

=
∑

n1,n2,...

〈n1| e−β~ω1r
†
1r1 |n1〉 〈n2| e−β~ω2r

†
2r2 |n2〉 ... =

(∑
n1

〈n1| e−β~ω1r
†
1r1 |n1〉

)(∑
n2

〈n2| e−β~ω2r
†
2r2 |n2〉

)
... =

=
∏
j

∑
nj

〈nj| e−β~ωjr
†
jrj |nj〉

 =
∏
j

∑
nj

e−β~ωjnj =
∏
j

1

1− e−β~ωj
.

Substituting this into the expression of ρ̃e we get:

ρ̃e =
∏
j

(
1− e−β~ωj

)
e−β~ωjr

†
jrj ,

so if we finally substitute this results in (2.17), (2.18) and (2.19), we can, after a lot of algebra and
some estimations, arrive to:

dρs
dt

= −iω′c
[
a†a, ρs

]
+ κ

(
2aρsa

† − a†aρ− ρa†a
)

+ 2κñ(aρsa
† + a†ρsa− a†aρs − ρsaa†), (2.20)

where ω′c, κ and ñ are some constants which are defined in terms of integrals through the calcu-
lations. To be precise, ω′c is related to the frequency of the harmonic oscillator inside the cavity,
ñ is the average number of photons of the environment, which follow a bosonic distribution at its
temperature, and κ parameterizes the strength of the interaction. If we rearrange the terms in
(2.20) we get:

dρs
dt

= −iω′c
[
a†a, ρs

]
+ 2κ

(
aρsa

† − 1

2
{a†a, ρs}

)
+ 2κñ

[
a†, [ρs, a]

]
. (2.21)

This equation doesn’t have the form of the Lindblad equation since a double-commutator term
has appeared, what is a typical thing when working with Redfield equation. It can be noticed
that this dissipative term is the only one associated to the number of photons of the bath ñ, so
it will be related to stimulated transitions and absorptions by the harmonic oscillator. In the
other hand, the first term will give account of spontaneous transitions and decays (this can be
qualitatively seen by projecting the equation onto the eigenbasis of Hs). To see how the density
operator evolves in time, this equation must be solved, what has been done for the particular case
of initial condition:

ρs(0) =

(
2/3 −1/2
−1/2 1/3

)
, (2.22)

with ω′c = 20 rad/s, ñ = 3 and κ = 2 rad/s (This values have been taken for numerical purposes,
but they obviously do not reproduce any real physical situation). It must be specified that equation
(2.22) is referred to the eigenbasis of Hs, {|n〉}∞n=0. As this defines an infinite-dimensional Hilbert
space, the problem can’t be analytically solved as a system of differential equations, so a program
has been developed to solve it numerically. The results for the time evolution of the elements of
the density operator are shown below 2.3:
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Figure 2.3: Temporal evolution of the harmonic oscillator state. Only a few representative popu-
lations and coherences have been represented for clarity.

This solutions confirm our initial intuition about decoherence emerging from subsystem-environment
interaction, which we have modeled through the use of a master equation, in this case, a Redflied
equation that has shown to preserve positivity. Emergence of decoherence is clear since both real
and imaginary parts of coherences vanish for τ ' 50, what additionally indicates that we have used
the pointer basis of the system (eigenstates of Hs) to represent the density matrix. Another fact
that has to be explained is that decoherence takes a really big time to be completed since it depends
on the value of κ, which has been chosen very low for numerical purposes but is not a realistic
value. In general, decoherence time is, in this system, of the order of t ' 1/κ, so it is obvious that a
real situation should be described by a very high value of κ and decoherence would rapidly emerge.

It may also be interesting to notice that after decoherence has taken place, the system reaches
an equilibrium state in which, as can be deduced from the graphs,

dρij
dt

= 0,∀i, j. This is something
one would expect for a system which is interacting with a thermal bath, and it can be used to try
to find an analytical solution for the density operator in such equilibrium state, what would help
to verify the validity of the numerical solution. With this purpose, we can rearrange the terms in
(2.20) to arrive to:

dρs
dt

= −(iω′c + κ+ 2κñ)Nρs + (iω′c − κ)ρsN + 2κ(ñ+ 1)aρsa
† + 2κña†ρsa− 2κñρsaa

†

=⇒ dρmm
dt

= −ρmm(C1m+ C2) + ρ(m+1)(m+1)C3(m+ 1) + ρ(m−1)(m−1)C2m,

where C1 = (4ñ + 2)κ, C2 = 2ñκ and C3 = 2κ(ñ + 1), so forcing the condition of equilibrium
dρs
dt

= 0 we arrive to a set of equations that, by iteration, yield the solution:

ρ11 = C2

C3
ρ00 = γ1ρ00.

ρ22 = 1
2C3

[γ1(C1 + C2)− C2] ρ00 = γ2ρ00.

ρ33 = 1
3C3

[γ2(2C1 + C2)− 2C2γ1] ρ00 = γ3ρ00.
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ρ44 = 1
4C3

[γ3(3C1 + C2)− 3C2γ2] ρ00 = γ4ρ00.

ρ55 = 1
5C3

[γ4(4C1 + C2)− 4C2γ3] ρ00 = γ5ρ00.

If we take into account that Tr [ρ] = 1 and define γ0 = 1, then trivially ρkk = γk/(
∑

k γk) in the

equilibrium state. In fact, it can be shown by induction that in the general case γk =
(

ñ
ñ+1

)k
and

since ñ is the number of photons in thermal equilibrium, then they will be distributed according
to bosonic statistics as ñ = 1/(eβ~ω

′
c − 1), so γk = e−kβ~ω

′
c and ρkk(t) is asymptotically described

by Boltzmann’s distribution, independently of the initial state. Since one can find a solution
for dρ

dt
= 0 in many master equations, the initial state independence of the asymptotic behavior is

very common in these systems. In fact, although this is not the case of the harmonic oscillator just
studied, it has been proven that all systems evolving according to the Lindblad equation (2.8) are
transformed under a contractive mapping [10]. If we make the exact calculations for this problem
we will arrive to a set of values for the gamma coefficients we can compare with the numerical
values obtained by programming to check the validity of the developed code. The results are more
than satisfactory:

Exact value Numerical value Relative error
γ1 = 3/4 γ1 = 0.75 0%
γ2 = 9/16 γ2 = 0.5625 0%
γ3 = 27/64 γ3 = 0.4218750 0%
γ4 = 81/256 γ4 = 0.31640625 0%
γ5 = 81/320 γ5 = 0.23730469 6.25%

2.4 The two levels system.

Figure 2.4: Scheme of the interaction be-
tween the two levels system and its harmonic
oscillators environment. Both systems ex-
periment different transitions represented by
colored arrows.

Other interesting system we can study is the case of
a two levels one interacting with the radiation field of
its environment, which will be treated as a thermal
bath. To derive the master equation describing this
process, the same steps of the last example have to
be followed, but now taking the hamiltonians:

Hs =
1

2
~ωAσz, He =

∑
~k,λ

~ω~kr
†
~kλ
r~kλ,

Hint =
∑

~k,λ ~(κ∗~k,λr
†
~kλ
σ− + κ~k,λr~k,λσ+).

The entire derivation of the master equation from
(2.19) can also be found in [11], so it’s proved that
the density operator evolves in time according to:

dρs
dt

= −i1
2
ω′A [σz, ρs]+

γ

2
(ñ+1)(2σ−ρsσ+−σ+σ−ρs−ρsσ+σ−)+

γ

2
ñ(2σ+ρsσ−−σ−σ+ρs−ρsσ−σ+),

where ω′A is related to the frequency of the system ωA, ñ is the number of photons of the radiation
environment and γ is a positive constant of the system. This equation, even when derived from
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(2.19), can be written in the form (2.8) as follows:

dρs
dt

= −i1
2
ω′A [σz, ρs]+γ(ñ+1)

(
σ−ρsσ+ −

1

2
{σ+σ−, ρs}

)
+γñ

(
σ+ρsσ− −

1

2
{σ−σ+, ρs}

)
, (2.23)

where the Lindblad jump operators are then σ− and σ+. This equation, in opposition of that of
the harmonic oscillator, can be exactly solved since we are not dealing with an infinite dimensional
Hilbert space. If the equation is projected onto the eigenbasis of σz, one gets:

dρ00

dt
= γ(ñ+ 1)ρ11 − γñρ00,

dρ11

dt
= −γ(ñ+ 1)ρ11 + γñρ00, (2.24)

dρ10

dt
= ρ10(−iω′A − ñγ −

γ

2
),

dρ01

dt
= ρ01(iω′A − ñγ −

γ

2
). (2.25)

By observing this equations, it can be noticed that the first parenthesis in (2.23), the one associated
with the jump operator σ−, is related to a decay from |1〉 −→ |0〉, which is not only stimulated by
the photons of the bath but also spontaneous since for ñ = 0 it still plays an important role. In
the other hand, the second parenthesis describes stimulated transitions from |0〉 −→ |1〉. To solve
the system of differential equations, one has to notice that equations (2.24) are related by the
condition of the trace, ρ00 + ρ11 = 1, so once one of the diagonal elements is calculated, the other
one will be given by this relation. In addition, as we know the density matrix is hermitian, once we
know one of the coherences we will know the other by calculating its complex conjugate. Solution
to (2.25) is trivial and we have, in terms of the initial condition:

ρ01(t) = ρ10(0)e−(γ(ñ+ 1
2

))teiω
′
At ρ01(t), = ρ10(0)e−(γ(ñ+ 1

2
))te−iω

′
At. (2.26)

Now, applying the Laplace transform method on (2.24) drives to the solutions:

ρ00(t) =
ñ+ 1

2ñ+ 1
+

(
ρ00(0)− ñ+ 1

2ñ+ 1

)
e−(1+2ñ)γt,

ρ11(t) =
γñ

γ(2ñ+ 1)
+

(
ρ11(0)− γñ

γ(2ñ+ 1)

)
e−(1+2ñ)γt. (2.27)

Since γ and ñ are positive, it is clear from (2.26) that coherences vanish with time, so decoherence
is also reproduced by this model. In this case, it takes place in the chosen eigenbasis of σz, which
means that the kets |0〉, |1〉 constitute the pointer basis of the interaction. It can also be noticed
that the asymptotic values of populations, as we expected according to the discussion in 2.3, are
independent of the initial condition of the problem. If we give numerical values to the problem,
we can find a particular solution for ω′A = 10 rad/s, γ = 3 rad/s, ñ = 2 and the initial condition:

ρ0 =

(
2/3 −1/2
−1/2 1/3

)
.

The results are represented in figure 2.5:
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Figure 2.5: Temporal evolution of the two levels system state.

Similar to what happened in the harmonic oscillator example, decoherence is reached for a very
late instant τ ' 10, what is explained by the low value given to γ, which, as can be seen from the
analytical solutions, is the decay rate of the system. This implies the decoherence time is of the
order of t ' 1/γ so, again, a realistic interaction should be modelled by a greater value of said
parameter. Both in this case and the one of the harmonic oscillator (figures 2.7, 2.5) the imaginary
part of coherences is initially induced by the interaction, which is very typical of this interacting
systems, nevertheless, as can be seen, this does not affect the final emergence of decoherence.

2.5 A discussion of the approximations. The Jaynes Cum-

mings model.

Until now, we have solved some master equations which can be obtained under the Born and
Markov approximations, nevertheless, it remains to be explained why such approximations allow us
to describe those systems. The key to understand this question lays on two important parameters:
The correlation time of the system (τc) and its characteristic evolution time (∆T ). The first one,
τc, can be defined as the time the composed system takes to loss the possible initial correlation
of the interacting subsystems, that, as we have already said, will always be zero if those were not
interacting before the initial time. If it is small enough in comparison to the time interval we are
studying, the Born approximation will not be too coarse. The second one, ∆T , is defined as the
time it takes to the reduced density matrix ρs appearing in (2.19) to experiment a notorious change
that would modify the corresponding integral value. Of course, if the time interval in which we
are studying such evolution is much smaller than ∆T , the Markov approximation will be justified.
It has been shown [12] that this two time scales have orders of magnitude related by:

∆T ' ~2

τc〈Hint〉2 ,

so the calculation of one of them will give us the order of magnitude of the other. In fact, the
evaluation of τc can be done calculating the value of τ which would convert equations (2.17) and
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(2.18) into Dirac deltas, what would drive to a Markovian equation without necessarily imposing
ρ̃s(τ) ' ρ̃s(t) previously (this fact reveals that Markovianity is also related to the neglecting of
short time correlations between the interacting subsystems, which is the reason why sometimes
Born approximation is also called Born-Markov approximation). In [11], it has been shown that
for the system treated in 2.3, this approximation allows an estimation of the correlation time given
by τc ' ~/kBT (where T stands for temperature). Therefore ∆T ' ~kBT/〈Hint〉2. Now, if we
estimate 〈Hint〉 ' ~

√
ñκ, we will get, for the numerical resolution that has been carried: T ' 1011s,

so the condition τc << ∆t << T is fulfilled (here ∆t is the length of the interval in which we have
studied the evolution of the system, in our case, of the order of seconds).

Even when this estimation seems to be imprecise, the truth is that there does not exist any
other way to check the validity of the approximations. Indeed, even for the most simple cases of
subsystems that interact with their environments, a numerical solution of the exact dynamics of
the composed system cannot be achieved to be compared with the solution of the master equation
in which the approximations have been considered. This is due to the fact that if one tried to solve
the Von Neumann equation (1.8) and, by applying the trace over the environment states, obtain
the density operator ρs, the basis of the Hilbert space of the composed system would be so large
that no numerical calculation would be feasible (Master equations, beyond being a way to obtain
an analytical expression for ρs evolution, are precisely a way to solve this computational problem).
To show this, a simplified version of the problem treated in 2.4 has been considered. In particular, a
two levels system has been supposed to be interacting with a set of harmonic oscillators according
to the Jaynes-Cummings model. The last one is a simplified mathematical model that was
originally developed to describe the interaction between a two levels atom and the electromagnetic
field. In particular, if one imposes some considerations just like the rotating-wave approximation,
it can be shown that such interaction is defined by the hamiltonians:

Hs =
1

2
~ωAσz, He = ~ωca†a, Hint = ~Ω(aσ+ + a†σ−).

If we wanted to use this model to verify the validity of the approximations made in 2.4, an
environment of N >> 1 harmonic oscillators should be simulated, so we would have to take:

Hs =
1

2
~ωAσz, He =

N∑
j=1

~ω(j)
c a†jaj, Hint =

N∑
j=1

~Ωj(ajσ+ + a†jσ−).

Since the Hilbert space basis of the composed system is equal to the set:

{|+, n1, n2, ..., nN〉 , |−, n1, n2, ..., nN〉}n1,n2,...,nN ,

then it is easy to see that if n1, n2, ..., nN ≤ s, then the dimension of the Hilbert space is d '
2(s + 1)N . The problem for N = 1 has been numerically solved to get an approximation of the
upper limit s. It has been considered that ωA = 2rad/s, ωc = 3rad/s, Ω = 4rad/s, and the initial
condition is:

ρ0 =


1/9 0 0 0
0 0 0 0
0 0 5/9 i/3
0 0 −i/3 1/3

 .
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The obtained solutions are represented below:

Figure 2.6: Time evolution of the composed system state

Figure 2.7: Time evolution of the two levels atom state

This set of solutions show many interesting behaviours we had not seen before. The populations
of the composed system appearing in figure 2.6 don’t go to an equilibrium state but periodically
oscillate forever and no new populations are generated, but initially null coherences start growing
and oscillating. This kind of behaviour is a consequence of the unitary character of Von Neumann
equation, which is also related to some problems concerning entropy conservation [13]. In the
other hand, once the trace over environment states has been calculated, the populations and
coherences of the two levels system do not reach an equilibrium state, which proves the obvious
fact that including just one harmonic oscillator is not enough to simulate an environment (condition
N >> 1 must be satisfied). To calculate this results, 12 dimension matrices were used, which,
according to how the basis has been ordered, implies that s = 5. If we consider a bigger amount
of harmonic oscillators, for example N = 50, what is still very low, and consider that s ' 5, then
the dimensions of the matrices would blow up to d ' 1039, which is obviously not computable.
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2.6 Determination of the pointer basis.

So far, we have seen how the Redfield equation can be used to describe the interaction between
some microscopic systems and their environments under the Born-Markov approximation, reducing
the corresponding equations to a Lindblad form in some circumstances. According to the previous
section, these approximations are in fact the only way to deal with this type of problems, which
can be solved analytically, at least, when the corresponding Hilbert spaces have finite dimension.
The latter is of great relevance as far as the determination of the aforementioned pointer basis is
concerned. Indeed, if the analytical solution of a master equation is found, the determination of
the pointer basis of the system, i.e., the set of its possible states after interaction, can be computed
by simply diagonalizing the corresponding result ρs(t), which will be constant for large times. But
what happens when there’s no analytical solution?

Many authors have worked to give an answer to this question, obtaining some interesting
results for specific mathematical models. According to [14], for the cases in which the subsystem
hamiltonian Hs is neglected or co-diagonal with the interaction one Hint, it has been shown that
the pointer basis will emerge as the eigenbasis of what’s called as the pointer observable, Λ, such
that:

[Hs +Hint,Λ] = 0.

In the other hand, as it is pointed out in [15], some models involving harmonic oscillators have
shown the pointer basis to be constituted by coherent states. For weak interactions, the eigenstates
of Hs have also shown to be the ones which constitute the pointer basis, but there’s not a final
answer yet, so much so that it’s not even completely clear how the pointer basis depends on the
initial state ρs(0) of the problem.

A very interesting case which illustrates how surprising can the calculation of the pointer basis
be, is the interaction between a moving particle and a harmonic oscillators environment, described
by a Caldeira-Leggett hamiltonian which has the form:

H =
p2

2m
+

N∑
j=1

P 2
j

2Mj

+
M2

j Ω2
j

2

(
Xj −

Sjx

MjΩ2
j

)2

. (2.28)

It has been shown in [16] that the corresponding master equation results in the pointer basis being
that of linear momenta. This is kinda suprising since the interaction term couples the environmen-
tal freedom degrees with the position of the moving particle and, in many situations, the coupling
observables are precisely the pointer ones (see 3.4).

The problem of determining the pointer basis not only depends on the kind of master equation
one is trying to solve, but it’s also related to the specific problem and even to the corresponding
initial condition. This makes it a very hard problem that, as we have exposed, has only been solved
for reduced cases and concrete conditions. Nevertheless, it is important to highlight that a general
solution of this problem would be very interesting in order to achieve a better understanding of the
measurement problem. Indeed, if given a master equation and an initial condition one was able
to predict the pointer basis, it would be very easy to check if a mathematical model to describe a
measurement would diagonalize or not into the orthonormal eigensatetes of the measured quantity.



Chapter 3

The measuring process.

Until now, the general formalism of master equations has been exposed and discussed, allowing us
to show that when a system interacts with a macroscopic environment, decoherence emerges. This
decoherence, which converts the quantum superposition of states into a classically interpretable
statistical mixture of the same, allows us to understand the frontier between classic and quantum
worlds, but it has just been applied to some particular systems in which measurement has not
been modelled. Throughout this chapter we will therefore focus on the mathematical description
of the measurement processes in quantum mechanics, looking at how they relate to decoherence
and the measurement problem. The formalism of POVM’s has been exposed and applied to find
a master equation describing a measurement over a two levels system, which is generalized to find
a master equation describing any measurement over an observable. The same equation is derived
independently of the measure postulates from a physical approach and its main properties are
discussed.

Hasta ahora se ha expuesto y discutido el formalismo general de las ecuaciones maestras, que
nos ha permitido demostrar cómo la decoherencia emerge de forma natural en un sistema cuando
este interactúa con su entorno macroscópico. Esta decoherencia, que convierte la superposición
cuántica de estados en una mezcla estad́ıstica clásicamente interpretable de los mismos, nos permite
entender la frontera entre los mundos clásico y cuántico, pero sólo se ha aplicado a algunos sistemas
particulares en los que no se ha modelizado ninguna medida. Por este motivo, a lo largo de este
caṕıtulo nos centraremos en la descripción matemática de los procesos de medición en la mecánica
cuántica, viendo cómo se relacionan con la decoherencia y el problema de la medida. El formalismo
de los POVM se ha expuesto y aplicado para encontrar una ecuación maestra que describa una
medida sobre un sistema de dos niveles, que se generaliza para encontrar una ecuación maestra que
describa cualquier medición sobre un observable. La misma ecuación se deriva independientemente
de los postulados de medida desde un enfoque f́ısico y se discuten sus principales propiedades.

3.1 Positive operator-valued measurement.

According to the fifth postulate of quantum mechanics, once a measurement is done, the state
of the system collapses under a transformation of the form (1.9). This corresponds to an ideal
measurement, usually called in literature as Von Neumann measurement, in which all the possible
information of an observable is obtained. The truth is, however, that in many practical cases this is
not what happens and a mathematical model to describe some kind of imperfect measurements has

25
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to be applied. A very extended way to generalize equation (1.9) to more complex measurements
is by considering the transformation:

ρ′i =
ÂiρÂ

†
i

Tr[ÂiρÂ
†
i ]
, (3.1)

where Âi is an operator which accounts for a certain measurement. It is trivial to see that (1.9)
can be deduced as a particular case of this equation when Âi is a projector operator, but does
(3.1) match the form of a CPT map, according to Choi-Kraus theorem? It is in this context
that the positive operator-valued measurement (POVM) appears. In mathematical terms,
a POVM is defined as a set of hermitian and positive-defined operators {π̂m} such that the
completness relation

∑
m π̂m = 1 is satisfied. Since any positive-defined hermitian matrix admits a

decomposition of square matrices as π̂m = Â†mÂm, we can impose the operators in (3.1) to factorize
a POVM this way, so

∑
i Â
†
i Âi = 1 and the conditions of Choi-Kraus theorem would be satisfied.

This ensures that (3.1) is a valid equation to model a generalized measurement, but it’s not all.
As in (1.10), (1.9), the denominator of (3.1) can be interpreted as the probability of obtaining the
outcome associated to the index i, so it turns out that, by applying the cyclic property of trace:

P (i) = Tr[ÂiρÂ
†
i ] = Tr[Â†i Âiρ] = Tr[π̂iρ], (3.2)

so π̂i is indeed a relevant operator for the calculation of probabilities. This can be applied for the
general case in which the outcome of the measurement is not known and an average over all the
POVM elements has to be carried, so (3.1) is transformed into:

ρ′ =
∑
i

P (i)
ÂiρÂ

†
i

Tr[ÂiρÂ
†
i ]

=
∑
i

ÂiρÂ
†
i , (3.3)

which, of course, still defines a CPT map. The formalism of POVM is thus a very intuitive gener-
alization of the measurement postulates that will allows us to make some interesting calculations.

3.2 Measurement master equations.

The formalism of POVM can be used to deduce the form of a master equation modelling a
measurement process. In particular, we can consider a very simple model to find this kind of
equation through the concept of continuous measurement. In general, a continuous measurement
can be defined as any measurement that takes place in a finite period of time, so the mathematical
modelling of the process can be very different from one source to another. According to [17], this
can be defined by a set of random instantaneous measurements which are taken over the system
with an average rate we can call R, so the probability of a measurement taking place in a time
interval ∆t can be calculated as P = R∆t (Obviously, this is only valid if ∆t ' 0 so that 0 ≤ P ≤ 1,
so the following reasoning is based in such consideration). According to the previous section, a
density matrix ρ(t) will be, after a time interval ∆t, the one predicted by (3.3) with probability
R∆t, while, in the opposite case, it will evolve according to (1.9). In mathematical terms:

ρ(t+ ∆t) =
∑

i Âiρ(t)Â†i , with probability P = R∆t.

ρ(t+ ∆t) = ρ(t)− i
~ [H, ρ(t)] ∆t, with probability P = 1−R∆t.
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It is interesting to highlight that the second equation constitutes a Markovian form since the path
of evolution of ρ(t) has been removed and the final state only depends on the preceding instant.
Averaging both results and applying the definition of the derivative of an operator, it is easy to
arrive to the equation presented in [17]:

dρ

dt
= − i

~
[H, ρ] +R

[∑
i

ÂiρÂ
†
i − ρ

]
. (3.4)

It can be shown that, since Kraus operators Âi satisfy the completeness relation, equation (3.4) is
a Linblad-like one in which Kraus operators are the Lindblad jump operators of the system. Since
we are not worrying about the interaction between the system and the measuring environment but
only applying the POVM model, the dissipative term in the right hand side of the equation is not
related, in principle, to any physical observable of the system. A first step to find that relation
can be made by considering the particular case of a two levels system exposed in [17], where it is
assumed one is dealing with a POVM constituted by the generalized measurement operators:

π̂0 = p |+〉 〈+|+ (1− p) |−〉 〈−| , π̂1 = p |−〉 〈−|+ (1− p) |+〉 〈+| , (3.5)

where 0 < p < 1/2 is a parameter which models the imprecision degree of the measurement, so if
it was null, a Von Neumann measurement would be reproduced, and, if it was equal to one half,
no information would be obtained of such measurement. As the factorization of the elements of a
POVM in Kraus operators is not unique, we can take:

Â0 = Â†0 =
√
p |+〉 〈+|+

√
(1− p) |−〉 〈−| , Â1 = Â†1 =

√
p |−〉 〈−|+

√
(1− p) |+〉 〈+| . (3.6)

For simplicity, we can take the hamiltonian of the measured system to be H = ~
2
Ωσz and we can

then consider we are measuring the value of the observable σx, so |−〉 , |+〉 would be its eigenvectors.
By applying some algebra it can be shown that equation (3.4) yields:

dρ

dt
= −iΩ

2
[σz, ρ]− γ

2
[σx, [σx, ρ]] , (3.7)

with γ = R
2

(
√
p−
√

1− p)2 > 0, the characteristic decay rate of the system. This equation, contrary
to (3.4), is written in terms of quantum observables of the system, but the connection between
the equations is not clear in principle. Nevertheless, there’s a very interesting thing to notice here,
in particular, equation (3.7) has the form of a Lindblad equation with just one hermitian jump
operator. In fact, if one imposes Lk = L†k in (2.8) and considers just one term into the summation,
the resulting equation is:

dρ

dt
= − i

~
[H, ρ]− Γ

2
[L, [L, ρ]] , (3.8)

where the factor ~ has been introduced. The similarity of (3.7) and (3.8) is now obvious. Fur-
thermore, the POVM that carried us to equation (3.7) models a measurement over σx, which is
precisely the operator that appeared in the dissipative term of (3.7), and since (3.8) is just a
particular case of the Lindblad equation for hermitian operator, it seems like, somehow, choosing
the jump operators in Lindblad equation to be physical observables of the system would derive
into an equation describing the monitoring of the system via continuous measurements over such
observables. Such idea has led equation (3.8) to become one of the master equations for describing
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continuous measurements par excellence, what has been reinforced by other examinations, like the
one concerning stochastic processes that can be found in [18]. For now, let’s assume this intuition
and discuss some interesting properties of the equation.

3.3 Measurement master equations properties.

Measurement heating effects.

The fact that (3.8) is much simpler than Lindblad equation will allow us to find a mathemat-
ical equation to describe the variation of energy in the measured system. Let’s consider a time
independent hamiltonian, such that:

〈H〉 = Tr [Hρ] =⇒ d〈H〉
dt

= Tr

[
H
dρ

dt

]
.

If we now consider a measurement of L over the system and we assume equation (3.8) to model
it, we can write, as it is done in [19]:

d〈H〉
dt

= − i
~
Tr [H[H, ρ]]− Γ

2
Tr [H [L, [L, ρ]]] , (3.9)

and, since Tr[A[B,C]] = Tr[[A,B], C], the last equation is reduced to:

d〈H〉
dt

= −Γ

2
Tr [[H,L][L, ρ]] . (3.10)

If equation (3.8) truly describes a measurement over a system, the last equation gives the exact
value of power that the measurement develops over it. The equation implies that, in general, when
the measured quantity does not commute with the hamiltonian of the system, an energy variation
is produced, what is due to the fact that the measured system is not isolated. We can now consider
the particular case of a measurement of the x position of a free particle by imposing H = P 2

2m
and

L = X, what gives, since [X,P ] = i~:

d〈H〉
dt

=
~2

2m
Γ. (3.11)

This equation shows that when the measurement is done, the energy of the particle is increased
at a constant rate in time, which is kinda interesting since this result is totally independent of the
measuring device one applies to make the measurement. Nevertheless, this can be understood in
terms of Heisenberg’s uncertainty principle since a measurement over the position of a particle will
be directly related to a decrease in the value of ∆x, so ∆p and, therefore, the mean value of its
energy, will increase. In a very similar way, it can be shown for equation (3.7) that heating effects
are given by:

d〈H〉
dt

= 4Ωγ~Re{ρ+−(t)}, (3.12)

and since equation (3.7) has been analytically solved for a general initial condition (see appendix
3.5), the explicit form of (3.12) can be given as follows:

d〈H〉
dt

= 4Ωγ~e−2γtRe{ρ+−(0)}, (3.13)
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so we see that, in this case, the system is losing or gaining energy depending, exclusively, on the
sign of the real part of coherences at initial time, effect that vanishes in a time t ' 1

γ
.

Weak and strong measurements

Another interesting fact that yields from the analytical solution of (3.7) is that we can distin-
guish three different situations which will allow us to talk about different kind of measurements.
As we have anticipated, when p = 0, we will have a perfect Von Neumann measurement, so we
would expect decoherence to happen faster in processes of lower values of p. In the other hand,
for p = 1/2 it is trivial to see that γ = 0 and hence the evolution of the system is unitary, so
no decoherence effects appear. This would intuitively carry us to think that two regimes of weak
and strong measurement would result from solving (3.7) depending on how close or far away we
are from these values, nevertheless this differential equations system has three possible solutions
depending on the relation between γ and Ω, showing some very interesting behaviours that go
against the above intuition. To see how this happens, the solution has been represented for the
particular case of Ω = 10 rad/s, R = 50 rad/s and initial condition:

ρ0 =

(
2/3 −1/2
−1/2 1/3

)
.

The values of Ω and R have been selected so that the three regimes are visible. The results are
the following:

1. γ > Ω (Strong measurement regime): The situation of strong measurement is the one in
which the measurement is closer to a Von Neumann one. Mathematically, this corresponds to
the situation in which γ > Ω, this is, the dissipative term in (3.7) dominates over the unitary
one. For the values we have given to the problem, this situation is achieved for 0 ≤ p < 0.1.
Particularizing for p = 0, one obtains the following result:

Figure 3.1: Evolution of the state of the system for a perfect measurement

The profile of these curves is trigonometric-hyperbolic in nature, faded by a decreasing ex-
ponential function. As it can be seen, decoherence has been completed as expected for times
such that τ ' 20, which is due to the fact that we have not chosen realistic values for the
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parameters of the problem by numerical reasons.

2. γ = Ω (Resonant situation): This situation has been called as the resonant one since a
very shocking result emerges from it. The situation is only obtained for the value p = 0.1,
so equation (3.7) yields the solutions of figure 3.2. The profile of these curves is linear in
nature, faded by a decreasing exponential function. As it can be seen, the profile of coher-
ences is much more bulged in this regime, but decoherence has been completed for τ ' 10
and populations have reached the equilibrium state in the half of the time it took in the
strong measurement regime, which is a very outstanding fact since we are modelling a more
imperfect measure. In a mathematical sense, the fact that the interaction parameter γ is
smaller allows the system’s own oscillations to develop more freely, but these tend, initially,
to reduce the populations. This, when properly coordinated with the decay effect, produces
this surprising effect whereby an imperfect measurement can bring the system more quickly
to equilibrium.

Figure 3.2: Evolution of the state of the system in the resonant situation.

3. γ < Ω (Weak measurement regime): The weak measurement regime is the most sim-
ilar one to a Von Neumann unitary evolution. For the particular case we are studying,
this is obtained for 0.1 < p ≤ 0.5, so if we take p = 0.3, the equation yields the solutions
of figure 3.3. The profile of these curves is trigonometric in nature, again, faded by a de-
creasing exponential function. Both decoherence and equilibrium state are now reached for
larger times. Indeed, if one takes p very close to 1/2, decoherence time can become arbi-
trary large, being infinity for p = 1/2. As it can be seen, the oscillations of the system tend,
initially, to decrease populations, as it was highlighted for the discussion of the resonant case.

It is also interesting to highlight that, as anticipated, Lindblad form master equations are
contractive mappings, so it is not surprising that the asymptotic behaviour in all three
regimes is the same regardless of the initial state of the system. In particular, the master
equation (3.7) leads the system to an equiprobable statistical mixture of the eigenstates of
σx.
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Figure 3.3: Evolution of the state of the system for a weak measurement modeled by p = 0.3.

Figure 3.4: Representation of τ values of de-
coherence and equilibrium with respect to p.

For the sake of completeness, the problem has
been solved for a whole set of values of the parame-
ter p and, in each case, the time taken for the pop-
ulations to reach the equilibrium state as well as
the decoherence time have been calculated applying
the criterion that the difference between the popula-
tion/coherence value and its asymptotic one has to
be less than 10−6. The results are shown in figure
3.4. For p > 0.35, time starts to increase and goes
to infinity for p = 0.5, but this has not been com-
puted for numerical reasons. As it can be seen, even
for the weak measurement situation (0.1 < p ≤ 0.5)
there are many values of p for which decoherence
and equilibrium times are lower than for the perfect
measurement situation p = 0. This is a very strange
result that, as we highlighted in the previous discus-
sion, can be intuitively understood as if the environ-
ment took advantage of the strongest oscillations of
the system to bring it to decoherence faster, nevertheless, a more rigurous discussion can be made
if we look at the analytical solution to the master equation (see 3.5). More specifically, it can be
seen that if ρ00(0) = 1/2 and Im{ρ01} = 0, populations will remain constant and coherences will
decay, following a very typical behaviour. Nevertheless, in any other circumstance it can be seen
that the terms that take the longest to decay, both in the expression of the coherences and in that

of the populations, go as e−γt for γ < Ω (weak measurement) and as e−(γ−
√
γ2−Ω2)t for γ > Ω

(strong measurement). This implies that, indeed, the decay rate can be bigger in the situation of
weak measurements that in the strong measurements one.
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Figure 3.5: Possible values of the decay pa-
rameters γ1 and γ2.

To understand this a little better, let’s consider
the values γ1 < Ω and γ2 > Ω and force the condition
γ1 > γ2 −

√
γ2

2 − Ω2. By doing so, one can finally
conclude that this condition will be satisfied if:

γ1 ∈
(
γ2 −

√
γ2

2 − Ω2, γ2 +
√
γ2

2 − Ω2

)
,

and since γ1 < γ2:

γ1 ∈
(
γ2 −

√
γ2

2 − Ω2, γ2

)
.

For the particular case we have solved, Ω = 10rad/s,
γ1 ∈ (0, 10) and γ2 ∈ (10, 25), so we can make a
graphic representation of the values γ1, γ2 and iden-
tify the region of values for which this condition of
anomaly is fulfilled, what has been done in figure 3.5.
This representation shows that, indeed, for most of
the pairs (γ1, γ2) the decay rate in the weak measure-
ment region is higher than in the strong measurement one, what explains the fact that decoherence
and equilibrium values of τ can be lower for weak measurements. Nevertheless, this does not ex-
plain why those values show a decreasing behaviour in the strong measurement regime, but this
is an immediate consequence of the behaviour of the decay rate γ −

√
γ2 − Ω2. If we derive this

expression with respect to γ, we obtain the result 1− γ√
γ2−Ω2

, but since γ > Ω > 0, this quantity

is trivially negative and, therefore, the decay rate decreases in the strong measurement
regime when γ increases, or, equivalently, when p decreases.

The pointer basis in a measurement.

As it has been highlighted many times along this work, a master equation modelling a mea-
surement should result in a decoherence process in the eigenbasis of the measured observable. If
one takes equation (3.8) and projects it on the eigenbasis of the observable L for a situation in
which a discrete spectrum hamiltonian is considered, the resulting equations are written:

dρij
dt

= −Γ

2
(li − lj)2ρij +

∑
k

Cikρkj −
∑
k

ρikCkj, (3.14)

where li represents the eigenvalue of L associated to the eigenstate |li〉 and Cik = − i
~
∑

αEαλ
(k)
α λ

(i)∗
α ,

being Eα the eigenvalue of the hamiltonian associated to its eigenstate |Eα〉 and being the lambda

coefficients defined by |lk〉 =
∑

α λ
(k)
α |Eα〉. It is now trivial to see that the term associated to Γ is

a dissipative one, which, when i 6= j, produces a decay we can identify with decoherence. In fact,
if one divides both sides of (3.14) by ρij and integrates, it will be shown that:

ρij ∝ e−
Γ
2

(li−lj)2te
∑
k Cik

∫ ρkj
ρij

dt−Ckj
∫ ρik
ρij

dt
, (3.15)

as Γ > 0, the first exponential tends to decrease the value of matrix elements when i 6= j, effect
that disappears for diagonal terms, when the following equation holds:
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ρii(t) ∝ e
2Re{

∑
k Cik

∫ ρki
ρii

dt}
. (3.16)

Nevertheless, the fact that decoherence finally takes place will also depend on the value of the
second exponential in (3.15), so it could happen that for certain hamiltonians and values of Γ,
decoherence didn’t take place. This, of course, wouldn’t be consistent for real measurements with
the Von Neumann’s irreversible reduction process, nevertheless, it is precisely by this reason that
we can intuit that real measurements will always be modelled by high values of Γ, such that the
first exponential in (3.15) will win the battle to the second one. It has also been studied how to
be able to discern if decoherence will or not emerge from equation (3.8), in fact, as this is a linear
equation, the solution ρ(t) = V eλt can be tested, what drives to the characteristic equation:

det

(
i

~
[H,V ] +

Γ

2
[L, [L, V ]] + λV

)
= 0. (3.17)

Once this equation is solved for λ, the “eigenmatrices” V will be potentially calculated, so the
final solution could be expressed as:

ρ(t) =
∑
j

cjVje
λjt, (3.18)

so, even when this family of functions should not necessarily be the general solution to the problem,
the truth is that by the solution structure theorem we know that the asymptotic behaviour of the
general solution would be governed by this exponentials, so decoherence should be identified in
this particular solution. However, particularizing (3.17) for the simplest case of a two levels system
yields the following fourth degree equation:

λ4+(Γ(l1−l2)2)λ3+

(
Γ2(l1 − l2)4

4
+
[
(H11 −H22)2 + 4|H12|2

] 1

~2

)
λ2+

(
2Γ(l1 − l2)2|H12|2

~2

)
λ = 0,

(3.19)
where Hij are the hamiltonian matrix elements when written in the eigenbasis of L. This can easily
be simplified to a third-degree equation after identifying λ = 0 as a trivial solution, which is asso-

ciated to the “eigenmatrix” V =

(
1 0
0 1

)
. This is consistent with decoherence since λ = 0 implies

that the respective term in (3.18) will remain constant in time. In addition, since all the coefficients
appearing in (3.19) are strictly positive, then there’s another real solution to the remaining third
degree equation which would be associated to a decay since it must be negative. For example, if
equation (3.19) is particularized for the problem (3.7) when γ > Ω, the remaining eigenvalues are
λ1 = −2γ, λ2 = −

√
γ2 − Ω2 − γ, λ3 =

√
γ2 − Ω2 − γ, so all of them are negative and reproduce

the results in 3.5 (the same happens for the resonant and weak measurement regimes). According
to the previous reasoning, the asymptotic form of ρ would be proportional to the identity matrix,
what is confirmed by the general solution it has been found. Nevertheless, even when we have seen
that this equation will always have at least two real solutions (λ0 = 0 and λ1 < 0), it is still needed
to show that the two remaining solutions will be consisten with decoherence, which requires the
general solution to (3.19) to be found. Since it is very impractical to handle, this approach has
not been found to be conclusive for the general problem of showing that the eigenbasis of L will
be the pointer basis of the process.
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3.4 An interaction model approach.

As was pointed out in the first pages of this project, one of our main interests, as far as the
problem of measurement is concerned, is precisely the capability of modelling measurements from
a physical approach based on physical interactions. In fact, since the POVM’s formalism can
be understood as a generalization of postulate 4, equation (3.4) cannot be used to try to prove
that measurement postulates are prescindible to show the emergence of classicality, described by
decoherence. It is thus our goal to find an interaction model to arrive to an equation of the form of
(3.8) from the approach presented in 2.2. With this in mind, we can consider the time derivative
of the density operator under the interaction picture, so it can be seen that:

dρ

dt
= − i

~
[Hs, ρ] + e−

i
~Hst

dρ̃

dt
e
i
~Hst, (3.20)

so, by forcing equation (3.8) to be satisfied, one gets:

− i

~
[Hs, ρ] + e−

i
~Hst

dρ̃

dt
e
i
~Hst = − i

~
[H, ρ]− Γ

2
[L, [L, ρ]] , (3.21)

where H is an hermitian operator, not necessary equal to the hamiltonian of the system Hs since
equation (3.8) has been obtained by particularizing Lindblad’s equation (2.8) (In particular, here
H has been modified by a factor ~, but this is legit because it is a real value). Nevertheless, since
H is not fixed and we are free to impose our model to yield H = Hs, we can write, under this
assumption:

e−
i
~Ht

dρ̃

dt
e
i
~Ht = −Γ

2
[L, [L, ρ]] = −Γ

2

(
L2ρ+ ρL2 − 2LρL

)
. (3.22)

This equation constitutes a first relation between the measured observable L, the measurement
strength Γ and the interaction model we are looking for. By using Redfield equation (2.18) for
the particular case in which the interaction hamiltonian can be written as Hint = ~ (S(t)⊗ E(t)),
equation (3.22) can be written as:

S(t)Λ1(t)ρ(t) + ρ(t)Λ2(t)S(t)− Λ1(t)ρ(t)S(t)− S(t)ρ(t)Λ2(t) =
Γ

2

(
L2ρ+ ρL2 − 2LρL

)
, (3.23)

where:

Λk(t) =

∫ t

0

(
e
i
~Hs(τ−t)S(τ)e

i
~Hs(t−τ)

) [
〈Ẽ(t)Ẽ(τ)〉eδk1 + 〈Ẽ(τ)Ẽ(t)〉eδk2

]
dτ, (3.24)

The left side of (3.23) starts to get a very similar form to that of the right hand side. In fact, it
is easy to see that if one imposes the condition 〈Ẽ(τ)Ẽ(t)〉e = Cδ(τ − t), then trivially Λ1(t) =
Λ2(t) = CS(t) and therefore:

C
(
S(t)2ρ+ ρS(t)2 − 2S(t)ρS(t)

)
=

Γ

2

(
L2ρ+ ρL2 − 2LρL

)
, (3.25)

so it is now easy to identify that we can take S(t) = L and C = Γ/2 so the equation holds
and a first approximation to an interaction description of the measurement has been achieved.
Indeed, we have demonstrated that if equation (3.8) certainly models a measurement, then it
can be affirmed that a measurement over the observable L of a system can be described by an
interaction hamiltonian Hint = ~L ⊗ E, if the coupling observable of the environment E satisfies
〈Ẽ(τ)Ẽ(t)〉e ' Γ

2
δ(τ−t), with Γ > 0. It is also easy to prove in an analogous manner that the same

measurement can be described by a more general interaction hamiltonian Hint = ~L⊗
∑N

i=1Ei if∑N
i,j=1〈Ẽi(τ)Ẽj(t)〉e ' Γ

2
δ(τ − t), with Γ > 0.
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3.5 Appendix. Analytical solution of (3.7)

In general:

Re{ρ01(t)} = Re{ρ01(0)}e−2γt (3.26)

If γ > Ω:

ρ00(t) = ρ00(0) +
ΩIm{ρ01(0)}
γ +

√
γ2 − Ω2

(
e
−
(
γ+
√
γ2−Ω2

)
t − 1

)
+

+
2C

Ω
e−γt

[
γsinh

(√
γ2 − Ω2t

)
+
√
γ2 − Ω2

(
cosh

(√
γ2 − Ω2t

)
− eγt

)]
(3.27)

Im{ρ01(t)} = 2Ce−γtsinh
(√

γ2 − Ω2t
)

+ Im{ρ01(0)}e−
(
γ+
√
γ2−Ω2

)
t

(3.28)

where C = Ω(ρ00(0)−1/2)

2
√
γ2−Ω2

+ 1
2

(
1− γ√

γ2−Ω2

)
Im{ρ01(0)}

If γ = Ω:

ρ00(t) = ρ00(0) + Im{ρ01(0)}
(
e−γt − 1

)
+

+

[
ρ00(0)− 1

2
− Im{ρ01(0)}

] (
e−γt(1 + γt)− 1

)
(3.29)

Im{ρ01(t)} = Im{ρ01(0)}e−γt + Ω

[
ρ00(0)− 1

2
− Im{ρ01(0)}

]
te−γt (3.30)

If γ < Ω:

ρ00(t) = ρ00(0)− γ

Ω
Im{ρ01(0)}−

− C
√

Ω2 − γ2

Ω
+
C

Ω
e−γt

[
γsin

(√
Ω2 − γ2t

)
+
√

Ω2 − γ2cos
(√

Ω2 − γ2t
)]
−

− Im{ρ00(0)}
Ω

e−γt
[√

Ω2 − γ2sin
(√

Ω2 − γ2t
)
− γcos

(√
Ω2 − γ2t

)]
(3.31)

Im{ρ01(t)} = Im{ρ01(0)}e−γtcos
(√

Ω2 − γ2t
)

+ Ce−γtsin
(√

Ω2 − γ2t
)

(3.32)

where C = 1√
Ω2−γ2

(Ω(ρ00(0)− 1/2)− γIm{ρ01(0)})



Conclusions

We saw in the first pages of this work how the postulates of quantum mechanics, and more
particularly those related to the measurement process, gave rise to certain interpretation problems
concerning it that needed to be explained. With this work, we have been able to achieve a better
understanding of the measurement problem, concluding some very interesting results we can now
compile as follows:

1. An approach to quantum mechanics in terms of density operators allows to understand
the transition between quantum superposition and the classical world as a consequence of
Von Neumann’s irreversible reduction process, which converts pure superposed states into
classically interpretable mixed states.

2. Von Neumann’s irreversible reduction process, beyond being an ad hoc process, is a conse-
quence of decoherence, which has been proved to emerge when the interaction between a
system and its environment is modeled by a master equation.

3. Redfield equation allows an adequate description of many physical systems in spite of not as-
suring the preservation of the positivity of the density operators, accounting also for different
types of transitions and properties in the studied systems.

4. Master equations, beyond being a way to obtain an analytical expression for the time evolu-
tion of the state of a system that interacts with its environment, are precisely a way to solve
the computational problem of simulating a macroscopic environment.

5. Measurement processes can be modeled by master equations according to the POVM formal-
ism, but this equations can be derived, independently of any kind of generalized measurement
formalism, from interaction models with certain properties, showing that the emergence of
classicality can be explained avoiding postulate five.

In addition to this, we could also mention some other interesting results we have found like, for
example, the fact that decoherence time does not necessarily increase for weaker measurements or
the associated heating effects. Nevertheless, the previous conclusions constitute the most important
results of this work, with which, I hope, the reader has built a broader point of view of the mea-
surement problem and how it can be, as far as the emergence of classicality is concerned, partially
solved by decoherence. However, some other questions such as the interpretation of the quantum
state of a system or the final collapse of the wavefunction/splitting of the parallel universes have
not been studied. These questions, of a notoriously greater complexity than the one discussed here,
will have to be addressed in future projects in order to achieve a deeper understanding of the most
fundamental concepts governing the functioning of the universe, of course, if this is possible at all...
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