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Resumen

En este trabajo se presenta un modelo para describir la materia oscura basado en los

condensados de Bose-Einstein. La materia oscura es un tipo de materia aún desconocida

que no interacciona con la radiación electromagnética (como la luz) y que corresponde aprox-

imadamente al 80% de la materia del universo. El modelo más extendido para explicar la

materia oscura es el modelo de mateŕıa oscura fŕıa (CDM), y aunque presenta resultados

exitosos, este modelo se enfrenta a varios problemas que inducen a buscar otro tipo de solu-

ciones. Es aqúı donde entra el interés de este trabajo, buscar una alternativa basada en la

suposición de que la materia oscura esta compuesta por part́ıculas cuánticas agregadas en

condensados de Bose-Einstein.
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1 Introduction and Motivation

En esta primera sección se introducira que es la materia oscura y el interés en su estudio,

además razones por las cuales estudiamos el modelo basado en BEC.

In recent decades, a standard model of cosmology has emerged in which the universe

consists of 5% ordinary baryonic matter, 27% dark matter, and 68% dark energy. The na-

ture of both matter and dark energy is still unknown, but there is an overwhelming amount

of evidence from galactic to cosmological scales that supports the need for both to be part

of our universe.

The concept of dark matter arises when studying the rotation curves of galaxies. In early

studies it was evident that the amount of matter required to fit the observed plane rotation

curve did not coincide with the theoretical curve predicted by Newtonian mechanics. Due

to this discrepancy, dark matter (DM) is proposed as an additional (non-luminous) matter

that interacts only gravitationally with ordinary matter. Today more evidence of DM is

known, some of which we will study deeper in the first section.

The most accepted model for describing our universe today is the Λ-Cold Dark Matter

(Λ-CDM) model. In this model, the structure grows hierarchically, with small objects first

collapsing under their own gravity and merging into a continuous hierarchy to form objects

bigger and more massive. It can be described with only 6 parameters and it parameterizes

a large part of the history of the universe. In this theory, dark matter is described as a

(perfect) fluid with a very small pressure and speed of sound. Dark energy is parameterized

by the cosmological constant (Λ), from which an accelerating expanding universe is deduced.

N-body Simulations performed at ∼ 10kpc galactic scales predict that the bound halos

surrounding the galaxies must have very characteristic density profiles. These profiles are

known as the Navarro-Frenk-White (NFW) profile, which have a well-pronounced central

cusp
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ρNFW (r) =
ρs

(r/rs)(1 + r/rs)2
. (1)

where rs is the radius where the slope of the profile changes and ρs = 4ρNFW (rs).

Computational simulations have shown that the ΛCDM model is generally consistent

with observations of large-scale cosmological structure. However, when we go to smaller

scales, we find certain discrepancies between the predictions by the CDM model and the

observations. An example of this is the overabundance of small dark matter halos compared

to the number of small dwarf galaxies observed orbiting certain galaxies (“the missing satel-

lites problem”). The ”cusp-core problem” is also known: almost all CDM simulations show

that dark matter halos have a distribution in which the density of dark matter increases

abruptly at small radii, while the rotation curves of most of the observed dwarf galaxies

suggest they have flat central dark matter density profiles.

These discrepancies have not yet been resolved, which is why new models have been pro-

posed to solve these problems. A very interesting one, and on which this work is based, is

to consider dark matter as a Bose-Einstein condensate. Its most recent results are promising.

To learn more about this model, we will introduce the idea of dark matter and its evi-

dences, we will explain conceptually the Bose-Einstein condensates, we will derive its equa-

tions describing the dynamical evolution of the condensates (the Gross-Pitaevskii equation).

We will derive the density profiles of dark matter halos considering them as Bose-Einstein

condensates and finally we will present the results of this model.
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2 Dark Matter

En este caṕıtulo se introduciran las evidencias que se han descubierto durante el último siglo

que han llevado a introducir hipótesis basadas en materia oscura frente a otras hipótesis

(MOND). Y por último se mostraran los problemas a los que se enfrentan los modelos

actuales frente a los datos que se obtienen observacionalmente.

2.1 Evidences

The evidence that 90% of the mass of galaxies and clusters is made of dark matter (DM)

comes from rotation curves (towards tens of kpc), gravitational lensing (up to 200 kpc) and

hot gas in clusters.

2.1.1 Rotation curves

In the 1970s, Ford and Rubin [1] observed that the speeds of objects (stars or gas) orbiting

the centers of galaxies, instead of decreasing as a function of distance as expected, remained

constant over very large radii leading them to conclude that the rotation curves of galaxies

are flat. A plausible explanation for this phenomenon is that the galaxies contain much

more mass than can be accounted for by the ”visible” stellar objects that reside in the

galactic disks, this mass being the one that provides the necessary force to accelerate the

orbits. This ”non-visible” mass is explained by introducing dark matter.

Rubin and Ford studied more than 60 galaxies and found the same phenomenon. The

conclusions of this study have been subsequently confirmed by other independent observa-

tions. Normally, the ordinary mass of a galaxy is of the order of 10% of the total, with

the remaining 90% being dark matter. This can be seen in Figure 1, where the velocity

profile of the galaxy NGC 6503 is shown as a function of the radial distance from the center

of the galaxy. However, at the cosmic level the proportions are 80-85% dark matter and

15-20% ordinary matter. The main reason is that most of the ordinary matter is found in

intergalactic gas. Although the Rubin and Ford study is considered the first clear evidence

of the presence of dark matter halos, Fritz Zwicky was the first astronomer to propose the
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Figure 1: Galactic rotation curve for NGC 6503 showing disk and gas contribution plus the
dark matter halo contribution needed to match the data [2].

existence of dark matter based on observational evidence in 1933 [1]. Still, after a study

by Rubin and Ford, it was unclear whether dark matter was just ordinary hard-to-detect

matter or a new type of unknown matter. There was also the possibility that Newton’s law

would fail at great distances.

Although they are great evidence, the rotation curves have certain limitations, and that

is that you can only look as far as there is light or neutral hydrogen (21 cm), i.e., at distances

of tens of kpc. So you can see the beginnings of dark matter halos, but you cannot trace

where most of the DM is.

2.1.2 Galaxy clusters

They are clusters of galaxies that contain many galaxies, the mass of the most massive

clusters varies between 1014 − 1015M� and the size is around 3 million light years. The

composition of these clusters is 10% gas, 1% galaxies, and 90% dark matter. One way to see

the halo of dark matter in clusters is through the fact that galaxies and clusters are moving

much faster than they would if there were no dark matter, and secondly, the gas is moving

so fast that it emits radiation at very high temperature.

Figure 2 illustrates the Coma group. As can be seen, the X-ray image indicates the

presence of hot gas, the existence of which in the cluster can only be explained by a large
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component of dark matter that provides the potential well to retain the gas.

Figure 2: COMA Cluster: without dark matter, the hot gas would evaporate. Left panel :
optical image. Right panel : X-ray image from ROSAT satellite [2].

2.1.3 Gravitacional lensing

Einstein’s theory of general relativity predicts that in the presence of gravity, mass and even

light bend. Therefore, this effect can be used to determine the existence of mass even when

it does not emit light. In the observations of gravitational lensing the sources would be

galaxies or quasers and the lenses would be massive objects such as galaxy clusters. The

Sloan Digital Sky Survey used faint lenses to conclude that galaxies are even larger and

more massive than previously thought, requiring even more dark matter at great distances.

This confirms the existence of enormous amounts of dark matter both in galaxies and in

galaxy clusters.

2.1.4 CMB Anisotropies

One of the most powerful evidences for the existence of dark matter is found by mak-

ing cosmological-scale measurements of anisotropies in the cosmic microwave background

(CMB). The CMB is a form of electromagnetic radiation discovered in 1965 that fills the

entire universe. This is the remnant radiation from the first hot stages of the universe.

During these early days at the origin of the universe, photons underwent oscillations that

froze just before decoupling from baryonic matter. With a mathematical analysis of these
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oscillations, cosmological parameters can be extracted. This is depicted in figure(3). From

the analysis of the angular scale of the first peak it is deduced that the geometry is flat (light

travels in a straight line), which corresponds to a density of the universe of ∼ 10−29g/cm3.

From the height of the second peak it is deduced that 5% of the total is ordinary matter,

while from the contribution of all the peaks it is found that 26% of the total is dark matter.

This reinforces the evidence for dark matter.

Figure 3: Planck’s power spectrum of temperature fluctuations in the cosmic microwave
background. Data shown are from WMAP (2006), Acbar (2004) Boomerang (2005), CBI
(2004) and VSA (2004).

2.2 Other hypotheses: MOND

In 1983, Milgrom proposed a different idea than the ones now proposed for the explanation

of the challenges that had been encountered on a small scale for the explanation of galactic

evolution. This proposal, known as modified Newtonian dynamics (MOND), defends the

idea of a universe without DM that has a modified force law for small accelerations. MOND

says that in the limit of very low accelerations (a� a0 ∼ 1.2×10−10m/s2), instead of obey-

ing Newton’s second law F = ma, the force due to gravity is explained by F = ma2/a0.

With this modification in Newton’s second law the observed movements of stars and gas

within galaxies could be explained without the need to introduce dark matter.
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This line of research has continued to develop and evolve over recent years, with suc-

cesses and failures in the observations that have been made. At present, the biggest problems

MOND faces are CMB anisotropies and gravitational lenses, as they cannot be explained

without introducing dark matter.

Figure 4: The bullet cluster. The blue color represents dark matter and the red and yellow
color is the baryonic matter. The green contours denote the reconstructed gravitational
lensing signal, proportional to the projected mass in the system [1].

Figure 4 shows a bullet-shaped galaxy cluster (formed by the collision of two smaller

clusters). In the merger of the clusters, the dark matter crossed the collision point without

interacting, while the baryonic matter slowed down due to the gravitational interaction that

it felt. Theories like MOND cannot predict such a differentiation of these two components

of matter.

2.3 Small scale controversies

This section will show how some of the theoretical predictions of the small-scale simulations

considering the ΛCDM model are compared with respect to the observations made. The

result of this comparison is a series of discrepancies that question the results of the sim-

ulations and, in some cases, limitations in the observations. I will present some of these

challenges in this section.
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2.3.1 Cusp-Core Problem

In the observations made by “The Hi Nearby Galaxy Survey” (THINGS) of dwarf galaxies,

quite significant discrepancies have been found between the observations and the simula-

tions carried out using the ΛCDM model. Dwarf galaxies, as well as low surface brightness

(LSB) galaxies, are very interesting to study the properties of dark matter because they are

cosmic structures where the contribution of dark matter is dominant compared to baryonic

matter. When the rotation curves derived from the cusp-shaped distribution of dark matter

in CDM halos are compared, it is observed that they increase very slowly. However, using

core-like models, dominated by a central core of constant density, these curves are more

precisely described. It has also been seen that in dwarf galaxies, the mean value of the

logarithmic internal slopes of the mass density profiles is α = −0.29 ± 0.07, while the value

of α = 0.2 ± 0.2 is taken for a significantly large sample of LSB galaxies. Knowing that

for dark-matter-only simulations the slope is α = −1.0, it is observed that the difference in

these values is quite relevant.

These problems could be solved by different DM physics, by mechanisms that suppress

small-scale subhalo formations, and reduce the central densities of massive subhalos. Later

we will see how the Bose-Einstein condensing model can address some of these problems.

2.3.2 Dwarf galaxy problem and too big to fail

The dwarf galaxy problem, also known as the missing satellites problem, basically refers to

the discrepancy between the abundance of subhalos predicted by CDM versus the number

of satellite galaxies that are known in the Local Group, where the abundance predicted by

CDM is greater. Given these problems, the most widely accepted interpretation is that the

smallest dark matter halos in the universe are quite inefficient in the formation of stars and

other astronomical objects. With the discoveries of new galaxies in the Local Group and

the inclusion of the data from the Dark Energy Survey (DES), these discrepancies have

been reduced, and it is expected that DES and possible future observations will discover

more ultra-faint galaxies, which would reduce even more these discrepancies, although it is

still debated whether this would solve the problem. In fact, various studies indicate that

satellite galaxies are really lacking in the Local Group, even taking into account our ability
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to detect new galaxies.

The study of the missing satellites problem also leads to another challenge, the one too

big to fail. When to fit the CDM simulation the visible subhalos of the galaxies are said

to be just a set symbolizing the most massive subhalos in the total subhalo distribution,

these subhalos must be the most massive ones that the simulation predicts. However, in the

simulations we find that the most massive subhalos have central masses significantly large

to host observed satellite galaxies. So it is clear that the most massive subhalos must be

too large to fail to form galaxies.

Although this has been a problem that has challenged scientists for many years, recent

studies ensure that too big to fail is not a problem in the CDM scenario [3].

2.3.3 Regularity in the Face of Diversity

Of the most puzzling aspects of galaxy phenomenology in the context of CDM are the close

scale relationships between dynamic and baryonic properties, which hold even for systems

dominated by dark matter. The Tully-Fisher baryon relationship (BTFR) is one of the best

known examples of this. This relationship presents a close connection between the total

baryonic mass of a galaxy and its asymptotic circular velocity:

V 4
f = a0GNMb (2)

where a0 is the critical acceleration. BTFR is represented in Figure 5, and as can be

seen, its slope is different from that predicted by the ΛCDM model, V 3
f ∝ Mb , which is

represented in dashed lines.
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Figure 5: The figure represents BTFR, which shows the relationship between the asymptotic

circular velocity of certain galaxies and the baryonic mass. The dark blue points represent

star dominated galaxies, and the light blue points gas-dominated ones. The dashed line has

slope 3, as expected by the ΛCDM; while the dotted line has slope 4 [4].

The challenge is to understand how there is so much diversity in the shapes of the

rotation curves of galaxies compared to those expected by the ΛCDM model, seeing that

there are close correlations with the baryonic content.
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3 Bose-Einstein Condensates

Se introduce historicamente los condensados de Bose-Einstein

The Bose-Einstein condensate (BEC) is the state of a low-density boson gas at temper-

atures close to 0K. Normally, in a macroscopic system, composed of numerous particles,

there are a large number of quantum states per particle, available for occupation. However,

in a BEC an appreciable number of the particles that compose it are in the same quantum

state, which is the one with the lowest energy. Therefore, the state of the complete system

can be described exactly by the same magnitudes as the quantum state of a single of its

component particles, and therefore it is possible to observe coherent quantum properties on

a macroscopic scale.

This state of matter was predicted in 1924 by Satyendra Nath Bose and Albert Einstein.

In this year, Bose sent a paper to Einstein in which he derived the Planck distribution for

blackbody radiation, by statistical means, treating photons as a gas of identical particles.

Einstein generalized Bose’s work to ideal gases of identical particles with a fixed number of

particles. Einstein predicted that from a certain temperature most of the particles would

be forced to remain in the lowest energy state. The particles that can condense in the same

quantum state are bosons, or what is the same, particles with an integer spin quantum

number; since fermions, which have half-integer spin, cannot share the same microstates

due to the Pauli exclusion principle (although by forming Cooper pairs, as occurs in super-

conductivity, fermions can also condense).

In 1995, Bose-Einstein condensation (BEC) was observed for the first time in a series of

experiments with rubidium and sodium vapors in which the atoms were confined in magnetic

traps, and then cooled to very low temperatures, until the order of fractions of microkelvins.

Later, when the confinement trap was turned off, the atoms expanded and images could

be obtained with optical methods. The BEC could be observed since a sharp peak was

obtained in the velocity distribution below a certain critical temperature (Figure 6). BEC

signatures were also found on lithium vapors in that same year [5].
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Figure 6: Images of the velocity distribution of rubidium atoms in the experiment by An-
derson , taken by means of the expansion method. The left frame corresponds to a gas
at a temperature just above condensation; the center frame, just after the appearance of
the condensate; the right frame, after further evaporation leaves a sample of nearly pure
condensate. The field of view is 200µm×270µm, and corresponds to the distance the atoms
have moved in about 1/20s. The color corresponds to the number of atoms at each velocity,
with red being the fewest and white being the most. From Cornell (1996) [5].

The experiments on the alkalis carried out in 1995 are a milestone in BEC’s history,

however they were not the first to be carried out in this field. 15 years earlier, attempts

were made to condense atomic gases in a series of experiments, where hydrogen atoms were

first cooled in a dilution refrigerator, to later be trapped in a magnetic field and then cooled

further by evaporation. These experiments came close to obtaining BEC, but were still

limited by the recombination of individual atoms to form molecules.

During that time, in the 1980s, techniques such as laser cooling and magneto-optical

trapping could be developed in order to cool and trap neutral atoms. These methods are

suitable for alkali atoms since their optical transitions can be excited by lasers and also

because they have a favorable internal energy level structure for cooling to very low temper-

atures. Once trapped, their temperature can be further lowered by evaporative cooling. By

combining these two methods to cool the alkaline atoms, it has been possible to achieve the
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temperatures and densities necessary to observe BEC. It is important to note that under

the conditions described, the equilibrium configuration of the system would be the solid

phase. So if you want to observe BEC, the system has to be preserved in a metastable gas

phase for a long enough time, which is possible because three-body collisions are rare events

in cold, dilute gases, so that his life is long enough to carry out the experiments.
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4 Derivation of the Gross-Pitaevskii equation

En este caṕıtulo se deriva detalladamente la ecuación de Gross-Pitaevskii en presencia de

un potencial externo gravitatorio.

As is well known, there is no analytical solution to the problem of multi-particle systems.

In the case of BECs, the number of particles is usually greater than one hundred, so it is

necessary to simplify the Hamiltonian that governs the condensate. To achieve this goal, we

can estimate the contribution of interactions between particles. Since we work at T = 0K,

that is, we have the lowest energy, the dispersion of the two particles can be considered as

corresponding to the scattering process of the s-wave. In this situation, the scattering is

completely characterized by a single parameter, the scattering length as. In the cases that

we are interested in, this takes a positive value (repulsive interaction between particles).

Therefore, any interaction potential can be chosen as long as it leads to the same scattering

length of the s-wave that can be measured experimentally, in particular, one of the form

V (~ri − ~rj) = U0δ(~ri − ~rj).We know that in the Born approximation the scattering length of

the s-wave is

as =
µ̃

2π~2

∫
d~rijV (~rij) ~rij = ~ri − ~rj (3)

where µ̃ is the reduced mass of the two particles in the scattering. Substituting the

reduced mass of two bosons µ̃ = m/2 and the expression chosen above for the potencial

V (~ri − ~rj), we find

U0 =
4π~2as
m

(4)

The following is a brief derivation of the stationary Gross-Pitaevskii equation using a

variational method in the context of first quantization [6].
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4.1 Stationary Gross-Pitaevskii equation from a variational prin-

ciple

To derive the Gross-Pitaevskii equation, we use the fact that in a BEC all bosons are

concentrated in the same quantum state, so we can approximate the total wave function as

the symmetric product of identical single-particle wave functions, which leads to a Hartree

-Fock ansatz:

ψ(~r1, ~r2, ..., ~rN) =
N∏
i=1

φ(~ri) (5)

As discussed previously, a Bose-Einstein condensate is obtained from a collection of

bosons in the ground state at very low temperatures. Therefore, we can ask about the

ground state energy and use it to provide us with information about the system. The

general Hamiltonian that describes the system is given by

Ĥ =
N∑
i=1

[
P̂ 2
i

2m
+ V (~ri)

]
+

1

2
U0

N∑
i=1

∑
i 6=j

δ(~ri − ~rj) (6)

where the first term on the right hand side is the kinetic energy of the ith particle, the

next term represents the external effects introduced by the trapping potential V and the

last term represents the interactions between the N particles.

Given a Hamiltonian Ĥ and a wave function ψ, we can obtain the energy as follows:

E[ψ] =
〈ψ|Ĥ|ψ〉
〈ψ|ψ〉

(7)

To calculate the energy functional of the system, we can divide it into two contributions,

one corresponding to the sum of the energies of a single particle and the other corresponding

to the interaction between particles.

The first contribution is given by
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E1 =

∫
d~r1d~r2 · · · d~rN

N∏
i=1

φ∗(~ri)
N∑
i=1

[
P 2
i

2m
+ V (~ri)

] N∏
i=1

φ(~ri) =
N∑
i=1

∫
d~riφ

∗(~ri)

(
− ~2

2m
∇2
i + V (~ri)

)
φ(~ri)

= N

∫
d~rφ∗(~r)

(
− ~

2m
∇2 + V (~r)

)
φ(~r) (8)

where we have taken into account that all the terms in the sum are identical.

The second contribution is

E2 =

∫
d~r1d~r2 · · · d~rN

N∏
i=1

φ∗(~ri)
1

2
U0

N∑
i=1

∑
i 6=j

δ(~ri − ~rj)
N∏
i=1

φ(~ri) =

1

2
U0

N∑
i=1

∑
i 6=j

∫
d~rid~rjφ

∗(~ri)φ
∗(~rj)δ(~ri − ~rj)φ(~ri)φ(~rj) =

1

2
U0

N∑
i=1

∑
i 6=j

∫
d~ri|φ(~ri)|4. (9)

Taking into account the form of the sums, this expression can be simplified to

E2 =
N(N − 1)

2
U0

∫
d~r|φ(~r)|4. (10)

Since N � 1 we can approximate N(N−1) ≈ N2. So we have that the energy functional

EN = E1 + E2 is

EN [φ, φ∗] = N

∫
d~rφ∗(~r)

(
− ~2

2m
∇2 + V (~r)

)
φ(~r) +

N2

2
U0

∫
d~r|φ(~r)|4. (11)

We can introduce the energy functional per particle E = EN/N . The functional we

have to minimise taking into account the normalisation condition by means of a Lagrange

multiplier λ is

E ′[φ, φ∗] =

∫
d~rφ∗(~r)

(
− ~2

2m
∇2 + V (~r)

)
φ(~r)+

N

2
U0

∫
d~r|φ(~r)|4−λ

∫
d~r|φ(~r)|2 ≡

∫
E ′(φ∗(~r), φ(~r))d~r

(12)

We will use φ∗(~r) as the “trajectory variable” in phase space for simplicity, which means

that the Euler-Lagrange equations reduce to
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∂E ′

∂φ∗
= 0

∂

∂φ∗

[(
− ~2

2m
φ∗(~r)∇2φ(~r) + φ∗(~r)V (~r)φ(~r)

)
+
N

2
U0|φ(~r)|4 − λ|φ(~r)|2

]
= 0 (13)

Performing the partial derivative we obtain the following equation

[
− ~2

2m
∇2 + V (~r) + U0N |φ(~r)|2 − λ

]
φ(~r) = 0 (14)

From this equation we have that the Lagrange multiplier takes the following form

λ = 〈φ|Ĥ|φ〉 =

∫
d~rφ∗(~r)

(
− ~2

2m
∇2 + V (~r) + U0N |φ(~r)|2

)
φ(~r) (15)

Deriving Eq.(11) with respect to N, we obtain

∂EN
∂N

=

∫
d~rφ∗(~r)

(
− ~2

2m
∇2 + V (~r) + U0N |φ(~r)|2

)
φ(~r) (16)

which is the same expression as that obtained above for λ, and knowing that the chemical

potential µ satisfies the relationship ∂EN

∂N
= µ, we can identify the Lagrange multiplier λ

with the chemical potential µ of the condensate. This chemical potential is the amount of

energy needed to remove or add one particle to the condensate. With this, we find

[
− ~2

2m
∇2 + V (~r) + U0N |φ(~r)|2

]
φ(~r) = µφ(~r) (17)

which is the stationary Gross-Pitaevskii equation, where it is observed that the stationary

states correspond to well-defined values of the chemical potential due to the non-linearity

of the Hamiltonian.

4.2 Time-dependent Gross-Pitaevskii equation

Now we are going to derive the time-dependent Gross-Pitaevskii equation using the Dirac-

Frenkel variational principle

δ 〈ψ|
(
H − i~ ∂

∂t

)
|ψ〉 = 0. (18)
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Dividing Eq.(18) by the number of particles,

δ(EN/N)− δ
[
i~
N
〈ψ| ∂

∂t
|ψ〉
]

= 0, (19)

where the first term is

δ(EN/N) =

∫
d~rδφ∗(~r)

[
− ~2

2m
∇2 + V (~r)

]
φ(~r) +NU0

∫
d~rδφ∗(~r)|φ(~r)|2φ(~r) + C.C. (20)

And the procedure for calculating the second term is

〈ψ| ∂
∂t
|ψ〉 =

∫
d~r1 · · · d~rN

N∏
i=1

φ∗(~ri)
∂

∂t

N∏
i=1

φ(~ri)

=

∫
d~r1 · · · d~rNφ∗(~r1) · · · φ∗(~rN)

∂

∂t
[φ(~r1) · · · φ(~rN)]

=

∫
d~r1φ

∗(~r1)
∂φ(~r1)

∂t
+ · · ·+

∫
d~rNφ

∗(~rN)
∂φ(~rN)

∂t
, (21)

where we have used the normalization condition. In the last equality all the integrals

are identical, so we obtain that

〈ψ| ∂
∂t
|ψ〉 = N

∫
d~rφ∗(~r)

∂φ(~r)

∂t
(22)

Finally from Eq. (19) we obtain

∫
d~rδφ∗(~r)

[
− ~2

2m
∇2 + V (~r) +NU0|φ(~r)|2

]
φ(~r)− i~

∫
d~rδφ∗(~r)

∂φ(~r)

∂t
+ C.C. = 0 (23)

Taking into account the linear independence of the δφ and δφ∗ variations we have that,

(
− ~2

2m
∇2 + V (~r) +NU0|φ(~r, t)|2

)
φ(~r, t) = i~

∂φ(~r, t)

∂t
(24)

which is the time-dependent Gross-Pitaevskii equation.
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5 Physical properties of a Bose–Einstein condensate

A partir de la ecuación de Gross-Pitaevskii se expresará la función de onda en forma polar a

través de la representación de Madelung, y con ello reescribir la ecuación de Gross-Pitaevskii

de forma equivalente en formulación hidrodinámica.

The physical properties of a Bose-Einstein condensate described by the Gross-Pitaevskii

equation can be understood more easily using the Madelung transformation [7], rewriting

(24) under the form of hydrodynamic equations. For convenience we introduce a new wave

function in the form

ϕ(~r, t) =
√
Nφ(~r, t). (25)

Then the GPE in terms of ϕ is

(
− ~2

2m
∇2 + V (~r) + U0|ϕ(~r, t)|2

)
ϕ(~r, t) = i~

∂ϕ(~r, t)

∂t
(26)

To derive the Madelung equations, we rewrite the wave function ϕ in the so-called

Madelung form

ϕ(~r, t) =
√
ρ(~r, t)eiS(~r,t)/~, (27)

where ρ(~r, t) is the particle density, normalized according to
∫
d3~rρ = N , and S(~r, t) has

the dimensions of an action .We have

ρ(~r, t) = |ϕ(~r, t)|2. (28)

Taking into account the following expressions

∂

∂t

(√
ρeiS/~

)
=

1

2
√
ρ

∂ρ

∂t
eiS/~ +

√
ρ
i

~
eiS/~

∂S

∂t
, (29)

∇2
(√

ρeiS/~
)

=

[
∇2√ρ+ 2

i

~
∇√ρ∇S −

√
ρ

~2
(∇S)2 +

i

~
√
ρ∇2S

]
eiS/~, (30)
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substituting the equation (27) in (26), expanding and then dividing by (27) we obtain

Q− i~
m
√
ρ
∇√ρ∇S +

1

2m
(∇S)2 − i~

2m
∇2S + V + U0ρ =

i~
2ρ

∂ρ

∂t
− ∂S

∂t
, (31)

where

Q = − ~2

2m

∇2√ρ
√
ρ

= − ~2

4m

[
∇2ρ

ρ
− 1

2

(∇ρ)2

ρ2

]
(32)

is the quantum potential which takes into account the Heisenberg uncertainty principle.

Now we can separate the real and imaginary parts to extract the two Madelung equations.

We will start with the imaginary part, but first we introduce the velocity field as

~u =
∇S
m

. (33)

Since the velocity is potential, the flow is irrotational: ∇× ~u = ~0. Taking into account

that

∇2S = ∇(∇S) = m∇~u, (34)

∇√ρ =
1

2
√
ρ
∇ρ, (35)

the imaginary part of the equation (31) is

1

2ρ
(∇ρ)~u+

1

2
∇~u+

1

2ρ

∂ρ

∂t
= 0

−→ (∇ρ)~u+ ρ∇~u+
∂ρ

∂t
= 0. (36)

Using the properties of the nabla operator,

∂ρ

∂t
+∇(ρ~u) = 0, (37)

which is the first Madelung equation (continuity equation).

The real part of (31) is
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∂S

∂t
+

(∇S)2

2m
+ V +Q+ U0ρ = 0. (38)

Applying the nabla operator and taking into account the expression of the velocity field,

we obtain

m
∂~u

∂t
+

1

2
m∇~u2 +∇V +∇Q+∇(U0ρ) = 0, (39)

and knowing that ~u is irrotational we can use the property ∇(~u~u) = 2(~u∇)~u, so we

finally have the second Madelung equation

m

[
∂~u

∂t
+ (~u∇)~u

]
+∇V +∇Q+∇(U0ρ) = 0. (40)
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6 Static Bose-Einstein condensate

En esta sección se partira de las ecuaciónes de Madelung y se considerará que el conden-

sado es un condensado estático ideal y únicamente sometido a la interacción gravitatoria.

Posteriormente se resolvera la ecuación de Helmholtz obtenida para obtener la densidad de

masa del condensado.

In the present case we are going to consider an ideal static condensate, ~u ≡ ~0. Taking

this into account, from Eq. (40) we obtain

Q+ V + U0ρ = cte (41)

and applying the nabla operator two times on both sides of the equation we have

∇2(Q+ U0ρ) +∇2(V ) = 0. (42)

In our case, the system is in the presence of a gravitational field V (~r) = Vg(~r) = mΦ(~r).

The gravitational potential satisfies the Poisson equation.

∇2Φ = 4πGρm, (43)

where G is the gravitational constant and ρm is the mass density of the condensate.

In the Thomas-Fermi regime, when the number of particles in the gravitationally bound

Bose-Einstein condensate is large enough, the quantum pressure term Q has a negligible

contribution. When the number of particles becomes infinite, the Thomas-Fermi approxi-

mation is exact. Taking this into account, Eq.(42) becomes

∇2(U0ρ) +∇2Vg = 0, (44)

Using the Poisson equation and knowing that ρm = mρ,
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∇2
(
U0
ρm
m

)
+m4πGρm = 0

U0

m
∇2ρm +m4πGρm = 0. (45)

We can see that the mass density can be described by a Helmholtz equation,

∇2ρm +
4πGm2

U0

ρm = 0. (46)

Taking into account the stationary condition in the first Madelung equation (37), it

can be seen that the mass density has no temporal dependence, only radial dependence,

ρm(~r, t) = ρm(~r). Defining k2 = 4πGm2

U0
, we have

∇2ρm + k2ρm = 0. (47)

To solve this equation, we will start by expressing the Laplacian in spherical coordinates

[
1

r2
∂

∂r

(
r2
∂

∂r

)
+

1

r2sinθ

∂

∂θ

(
sinθ

∂

∂θ

)
+

1

r2sin2θ

∂2

∂φ2

]
ρm(~r) + k2ρm(~r) = 0, (48)

that can be rewritten as

[
1

r2
∂

∂r

(
r2
∂

∂r

)
−

~L2

~2r2

]
ρm(~r) + k2ρm(~r) = 0 (49)

taking into account that the square of the angular momentum operator is given by

~L2 = −~2
[

1

sinθ

∂

∂θ

(
sinθ

∂

∂θ

)
+

1

sin2θ

∂2

∂φ2

]
. (50)

To obtain an equation formally analogous to Schrödinger’s equation of a free particle

[8], we multiply by the factor −~2/2m,

[
− ~2

2m

1

r2
∂

∂r

(
r2
∂

∂r

)
+

~L2

2mr2

]
ρm(~r) =

~2k2

2m
ρm(~r). (51)

In the interest of simplification of the notation and avoid confusion we will use, for the
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time being, the expression of the mass density as ρm(~r) ≡ ρ(~r).

To simplify the solution of this equation, it is important to remember that the operators

Lx, Ly, Lz and ~L2 do not operate on the radial variable r. Naming the operator in the

square brackets of Eq.(51) as F, we have

[
F , ~L

]
=
[
F , ~L2

]
= 0. (52)

Taking into account that the operators Lx, Ly and Lz do not commute among themselves,

it is easy to see that one can take as a set of operators that commute F , ~L2 and any one of

Lx, Ly and Lz. If F , ~L2 and Lz are taken as a set, it follows that one can find simultaneous

eigenfunctions of these three operators, or in other words, obtain solutions of Eq.(51) that

are also eigenfunctions of ~L2 and Lz. Knowing that the spherical harmonics Ylm(θ, φ) are

eigenfunctions of ~L2 and Lz we will look for solutions of the equation that have the separable

form

ρklm(~r) = Rklm(~r)Ylm(θ, φ). (53)

Inserting this into the Eq.(51) and knowing that ~L2Ylm(θ, φ) = l(l + 1)~2Ylm(θ, φ), we

obtain for the radial function the differential equation

[
− ~2

2m

(
d2

dr2
+

2

r

d

dr

)
+
l(l + 1)~2

2mr2

]
Rkl(r) =

~2k2

2m
Rkl(r). (54)

It can be observed that the magnetic quantum number m does not appear in this equa-

tion, so the radial function is independent of this quantum number. Introducing a new

radial function ukl(r) = rRkl(r), we have that

− ~2

2m

d2

dr2
ukl(r) + Veff (r)ukl(r) =

~2k2

2m
= ukl(r), (55)

where

Veff (r) =
l(l + 1)~2

2mr2
(56)

Eq.(55) is only meaningful for positive values of r, and must be complemented with a
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boundary condition at r = 0. We will impose that the radial function Rkl(r) is finite at the

origin, and since Rkl(r) = ukl(r)/r, it implies that

ukl(0) = 0. (57)

In this paper we will focus on solutions for l = 0, so Veff (r) = 0. The Eq.(55) reduces

to

[
d2

dr2
+ k2

]
uk0(r) = 0. (58)

Knowing the boundary condition (57), the solution to this equation has the following

form,

uk0(r) = Asin(kr). (59)

Knowing Y00(θ, φ) = 1/
√

4π and Eq.(59), substituting both expressions in (53), we

obtain for the condensate mass density ρk00(~r) ≡ ρDM(r),

ρDM(r) = ρ
(c)
DM

sin kr

kr
(60)

where ρ
(c)
DM is the central density of the condensate, ρ

(c)
DM = ρDM(0).
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7 Dark Matter as Bose-Einstein condensate

Una vez caracterizado el perfil de densidad de masa con las condiciones impuestas, se ex-

traerá las caracteŕısticas más significativas de los halos de materia oscura de las galaxias.

Having characterized the density distribution of the Bose-Einstein condensate of dark

matter ρDM(r), we can now deduce other properties. Let’s start with the mass profile of the

dark condensed galactic halo. To do this, starting from dm = ρdV and assuming spherical

symmetry we have that

dm = 4πρ(r)r2dr, (61)

So in our case the mass will be

mDM(r) = 4π

∫ r

0

ρDM(r′)r2′dr′ =
4πρ

(c)
DM

k

∫ r

0

sin(kr′)r′dr′. (62)

To solve the integral we use the method of integration by parts

∫ r

0

sin(kr′)r′dr′ =

[
−r
′cos(kr′)

k

]r
0

+

∫ r

0

cos(kr′)

k
dr′ = −rcos(kr)

k
+
sin(kr)

k2
(63)

So we finally get that

mDM(r) =
4πρ

(c)
DM

k2
r

[
sin(kr)

kr
− cos(kr)

]
(64)

To calculate the radius of the condensate R we start from the condition of ρDM(R) = 0,

so from the equation (60) we deduce that kR = π. Knowing the shape of k and U0 we arrive

at

RDM =
π

k
= π

√
~2as
Gm3

. (65)

We know that the velocity of astronomical objects moving in circular orbits of radius r

around a mass M satisfies the following equation
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v =

√
GM(r)

r
, (66)

in our case

v2tg(r) =
GmDM(r)

r
(67)

substituting the equation (64)

v2tg(r) =
4πGρ

(c)
DM

k2

[
sin(kr)

kr
− cos(kr)

]
. (68)

When r −→ 0 we have that v2tg(r) −→ 0. The total mass of the condensate using Eq.(64)

and the relation kR = π is

MDM = mDM(RDM) =
4πρ

(c)
DM

k2
RDM

[
sin(kRDM)

kRDM

− cos(kRDM)

]
=

4R3
DMρ

(c)
DM

π

[
sin(π)

π
− cos(π)

]
=

4R3
DMρ

(c)
DM

π
. (69)

So the mean value of the density of the condensate will be

〈ρ〉 =
MDM

V
=

4R3
DMρ

(c)
DM/π

(4/3)πR3
DM

=
3ρ

(c)
DM

π2
. (70)

We can represent the tangential velocity as

v2tg(r) =
GMDM

RDM

[
sin(πr/RDM)

πr/RDM

− cos
(

πr

RDM

)]
. (71)

When r > RDM the standard Keplerian law is recovered, The mass of the particle in the

condensate can be obtained from the radius of the dark matter halo as

m =

(
π2~2a
GR2

DM

)1/3

≈ 6.73× 10−2[a(fm)]1/3[RDM(kpc)]−2/3 eV (72)
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Using a ≈ 1 fm and RDM ≈ 10 kpc, the mass will be on the order of m ≈ 14 eV . For

values of a ≈ 106 fm, corresponding to the values of a observed in terrestrial laboratory

experiments, m ≈ 1.44 eV . The limit obtained for the mass of the condensate particle from

cosmological considerations is m < 1.87 eV , so the values observed are consistent with this

limit.
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8 Properties of galaxies in the BEC model

En esta sección se comprobará el modelo descrito con los datos observacionales de siete

galaxias extraidas de la basa de datos SPARC. Se comparará los perfiles de velocidad de

rotación del modelo propuesto con el modelo CDM, aśı como los perfiles de densidad de los

halos de materia oscura.

The following galaxies have been chosen for our study, DDO154, F563-V2, F583-4,

UGC01281, UGC04278, UGC07524, UGC07608. Its properties will be analyzed within

the framework of the Bose-Einstein condensate model that we have introduced in the previ-

ous sections, and we will compare it with the CDM model. This study has been previously

performed in references [9] and [10]. The selected galaxies have been extracted from SPARC

survey [11] and their interest is because they have high resolution rotation curves and be-

cause they are composed mostly of dark matter. To compare the BEC and CDM models,

we will first analyze the behavior of the rotation curves, using the predictions of Eq.(68) and

Eq.(1) with the observed rotation curves. With this we can determine the free parameters

of the equations. Finally, we will obtain the dark matter density profiles of the galaxies for

both models.

8.1 Rotational velocity profiles of the galaxies

In this study, we start by comparing the BEC dark matter halo model with the observational

data from the rotation curves of galaxies, and also with the rotation speed given by the NFW

profile. From Eq. (1) We obtain that

VNFW (r) =
√

4πGρsr3s

√
1

r

[
ln

(
1 +

r

rs

)
− (r/rs)

1 + r/rs

]
. (73)

We can obtain the observable velocities at different radii of the galaxies from the SPARC

database. In this database we also find the contributions to the observable velocity of gas,

bulge, and disk. So, knowing that the speeds are not additive, but the masses and V 2 ∝M ,

we can obtain the contribution of dark matter as follows,
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VDM =
√
V 2 − |Vgas|Vgas −Υdisk|Vdisk|Vdisk −Υbul|Vbul|Vbul, (74)

but taking into account that in all the galaxies that have been selected for this study Vbul = 0,

we have that

VDM =
√
V 2 − |Vgas|Vgas −Υdisk|Vdisk|Vdisk (75)

As explained in [11], it is necessary to use absolute values because the gas velocity can be

negative in more internal regions. This happens when the gas distribution has a considerable

central depression and the material in the inner regions exerts a lower gravitational force

than in the outer regions. The value of Υdisk used is 0.5, which is a fair value according to

[11].

Figure 7 shows the rotation curves predicted by the BEC model (solid curve) and the

NFW profile (dashed curve), together with the observational data of the eight galaxies.

The values of the free parameters obtained by fitting the Bose-Einstein condensate (ra-

dius and central density) with the observational results are presented in table 1.

Galaxy R (kpc) ρ
(c)
DM (10−24 gm/cm3)

DDO 154 5.1 0.93
F 563-V2 6.34 4.9
F 583-4 6.91 0.85

UGC 01281 4.87 1.34
UGC 04278 8.12 1.14
UGC 07524 8.16 0.91
UGC 07608 4.9 1.89

Table 1: Radii and central densities of the galaxies obtained by fitting the BEC model.
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Figure 7: Comparison of the velocity of the rotation curves obtain with the BEC dark

matter model (solid curve), of the velocity fits obtained with the NFW density profile

(dashed curve), and of the observed rotational curves of eight galaxies
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8.2 Density profile

The corresponding density profiles of the dark matter halos for the BEC and NFW model

can be seen in Figures 8 and 9, respectively. As can be seen, in the density profile of the

BEC model there is no singularity, there is a finite central density, which does not occur in

the density profile of NFW, where there is a singularity or cusp in the center of the galaxy,

for r → 0. This is the cusp-core problem that has been introduced in previous sections,

and we see that with the BEC model this challenge is solved. The mass distribution of

the gravitationally bounded condensate decreases slowly as a function of r, with most of

the matter concentrated in a core-like region. Another relevant difference is that, although

the NFW profile tends faster to zero than the BEC profile, the latter does not have a well-

defined radius, whereas the BEC profile predicts a finite and well-defined radius for the dark

matter distribution, whose density is zero on a surface defined by radius R. Thus the BEC

model predicts that the dark matter distribution may be affected so that the central cusps

predicted by the cosmological simulations are flattened, resulting in dark matter halos more

similar to those found observationally.
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Figure 8: BEC dark matter density profiles for the galaxies used in this study.

Figure 9: NFW dark matter density profiles for the galaxies used in this study.
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9 Conclusion

En esta última sección se comentará lo prometedor que es el modélo usado, pero también se

remarcará los problemas que este presenta

As can be seen in section 8, the results obtained with the model based on Bose-Einstein

condensates fit very well to the observational data extracted from the SPARC database.

This model can even solve the famous cusp-core problem as previously discussed, however,

this model is far from being a good model. In this work we have obtained different values

for the central density of the condensate ρ
(c)
DMand the radius R for each galaxy. This shows

us that the model, although a very good first approximation, cannot be right. R, as shown

in Eq.(65), depends on the ratio as/m
3, where as is the s-wave scattering length and m is

the individual particle mass, so that different R and ρ
(c)
DM for each galaxy implies that the

dark matter halo condensates are different for each galaxy. This indicates that the model

cannot be entirely correct.

Regardless of the fact that the model presented is only a first approximation, this work

shows that this type of approximation is one of the best ways to find solutions to the

problems presented by dark matter.
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