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1 Introduction 

Ever since the most ancient civilizations, human beings have always sought for 
the best place to live. Nice weather, pleasant environmental conditions, wealth of 
food and water, and safeness against external harms, are some of the most im-
portant issues for choosing the best spot where a new settlement should be estab-
lished. 

Most of the papers most regarding location problems address the siting of facil-
ities such as emergency services (police/fire stations), educational centers, medical 
facilities, etc., that are considered desirable by the surrounding population. How-
ever, there are some other facilities such as garbage dump sites, landfills, chemical 
plants, nuclear reactors, military installations and polluting (noise/gas) plants that 
turn out to be undesirable (repulsive) for the surrounding population, that avoids 
them and tries to stay away from them. In this sense, Erkut and Neuman (1989) 
distinguish between noxious (hazardous) and obnoxious (nuisance) facilities, alt-
hough both can be simply regarded as undesirable.  

Despite these undesirable facilities being necessary in general to the communi-
ty, for instance, garbage dump sites, gas stations, electrical plants, etc., the loca-
tion of such facilities might cause a certain disagreement among the population. 
Such a disagreement may result in a true opposition of people to the installation of 
undesirable facilities in their neighborhood. Moreover, in the last decade, a new 
nomenclature has been developed to define these oppositions: NIMBY (Not In My 
Back Yard), NIMNBY (Not In My Neighbor’s Back Yard), NIABY (Not In Any-
one’s Back Yard), NIMTOO/NIMTOF (Not In My Term of Office), NOPE (Not 
On Planet Earth), LULU (Locally Unwanted Land Use), BANANA (Build Abso-
lutely Nothing Anywhere Near Anyone). 

Taking these concerns into account, and due to the great concern on environ-
mental issues that has arisen in the last decades, this chapter aims to analyze some 
undesirable facility location models, preferably on networks. 

On the other hand, network location models have usually dealt with single cri-
terion problems, that is, concerning one weight per node and/or one length per 
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edge. However, to properly model many real problems the decision maker re-
quires placing parameters on both the nodes such as demand, importance, number 
of customers, etc., and on the edges such as length, time, travel cost, etc. Many re-
searchers, in several excellent reviews and books, for instance, ReVelle, Cohon 
and Shobrys (1981a,b), Ross and Soland (1980), Krarup and Pruzan (1990), Cur-
rent, Min and Schilling (1990), Daskin (1995), have deeply emphasized the im-
portance of dealing with multiple objectives in Location Analysis. 

Furthermore, many authors have deeply argued in the literature that a lot of 
multicriteria/multiobjective location problems have remained unresearched even 
though this topic has become quite relevant in the last three decades. In this sense, 
Erkut and Neuman (1989) emphasized on the need for multiobjective approaches 
to the siting of undesirable facilities when they stated that (p. 289): “Current mod-
els can be used to generate a small number of candidate sites, but the final selec-
tion of a site is a complex problem and should be approached using multiobjective 
decision making tools”. Daskin (1995) and Zhang (1996) also pointed out not only 
the need to include multiple criteria in undesirable facility location problems, but 
also the fact that poor attention has been paid by researchers to these problems and 
hence, scarce  research has been done in this promising field. Therefore, section 6 
of this chapter mainly focuses on network location models concerning multiple 
criteria, in terms of considering several node weights and several edge lengths. 

In the remaining paragraphs we summarize the contents of the chapter. In Sec-
tion 2 we justify the importance of Network Location Models within the field of 
Location Theory. Section 3 allows the reader to get acquainted with the definition 
and classical literature in Location Theory. In this respect, more than 80 references 
are reviewed, from surveys and books in general location problems, to more spe-
cialized papers on multicriteria undesirable location models on networks. Section 
4 presents the basic definitions and notation used throughout the chapter for the 
standard networks and also for networks with multiple parameters on both nodes 
and edges. The problem of locating an undesirable facility on a network is ad-
dressed in Section 5. Section 6 is devoted to the location of undesirable facilities 
on multicriteria networks. In section 7 we summarize the conclusions and describe 
some open problems that may be researched with regards to the loca-
tion/transportation of hazardous materials. Finally, the last section lists all the bib-
liography referenced. 

2 Network location models within Location Theory 

In a very wide sense, location problems deal with finding the right site where one 
or more new facilities (services) should be placed, in order to optimize (minimize 
or maximize) some specified criteria, which are usually related to the distance 
(performance measure) from the facilities to the demand points (customers). 
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The mathematical field that formulates location problems, builds up appropri-
ate mathematical models and derives methods for solving them is called Location 
Theory or Location Analysis. Being a branch of the Operational Research 
framework, this subject provides decision-makers with qualitative tools to find 
good solutions for realistic location decision problems. Besides, modern Location 
Analysis has drawn the interest of practitioners such as economists, geographers, 
regional planners and architect researchers, as well as researchers in diverse fields 
like Industrial Engineering, Management Science and Computer Science. 

Regarding location theory classification, location problems mostly fall in one 
of the following three categories: 

 Continuous location: locations are allowed to be anywhere in a continuous d 
dimensional space. 

 Discrete location: a finite number of possible locations on the space are speci-
fied in advance. Sometimes it is also called location-allocation. 

 Network location: special kind of location problems which are modeled on 
networks or trees. 

In this chapter we focus on Network Location Problems. This type of problems 
can model real location problems on river networks, air transport networks (flight 
corridors), ocean transport networks (shipping lanes); highways, roads, avenues 
and street networks; and communication and computer networks. The literature on 
network location is full of inherent real applications, some of which will be briefly 
mentioned in the next literature review. 

Despite most of these location problems seeming to be close related to the con-
temporary world, they have been originally proposed centuries ago. This is de-
scribed in the next section where we present a brief historical background, as well 
as a comprehensive review of the literature on Network Location Analysis. After 
this, we introduce a general notation and basic concepts in Location Theory. These 
concepts are used to describe the models developed in the following sections. 

3 Brief historical background and review of the literature 

The origin of modern location theory is credited to A. Weber (1909), who incor-
porated the original problem proposed by Fermat into Location Analysis in his in-
fluential essay on the theory of industrial location “Über den Standort der Indus-
trien” (Theory of the location of industries), translated later by Friedrich (1929). 

Jordan (1869) obtained a characterization of the median set of a tree. With re-
gards to location problems on general networks, we must mention Hakimi (1964), 
who introduced both the median and the center on weighted networks, and thus, 
his principal paper set the foundations for the development of forthcoming net-
work location problems. 
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Literature on Location Analysis is extremely huge and fairly interlaced. One of 
the first and most extensive compilations is due to Domschke and Drexl (1985), 
who compiled a bibliography of over 1800 papers. Later on, Drezner (1995) pro-
vided more than 1200 references. Trevor Hale (1998) keeps a web page with a list 
of over 3400 location science, facility location and related references. And this 
number keeps counting! 

Next, we cite some reviews, surveys and books on classical location problems. 

3.1 Surveys, reviews and books on location problems 

For a reader not quite acquainted with Location Analysis, we now cite some inter-
esting bibliography on classical location problems and models. 

A classical and state-of-the-art text on discrete location problems is due to 
Mirchandani and Francis (1990). Drezner (1995) presented a wide-ranging survey 
of location analysis. Drezner and Hamacher (2004) covered theory, methodology 
and selected applications of Location Analysis. Eiselt and  Sandblom (2004) pre-
sent a unified treatment of decision analysis, location theory and scheduling, with 
topics ranging from multicriteria decision-making to location and layout planning. 

Chan (2005) describes procedures to perform site location, land-use planning, 
location-routing, competitive allocation of products/services and spatial forecast-
ing. Nickel and Puerto (2005) address the flexible location problem called the Or-
dered Median Problem (OMP), presenting both structural properties and solution 
approaches of the OMP for continuous, network and discrete location problems. 

Some of the latest books on Location Analysis are from Farahani and Hekmat-
far (2009), who describe the four main parts (customers, facilities, space and met-
rics) for each specific location model exemplified by real-world cases; and from 
Eiselt and Marianov (2011), who compile several contributions written by eminent 
experts in the field of location analysis, surveying the original seminal papers and 
providing an up-to-date review of the latest references. 

Since the main goal of this chapter is to describe the major achievements on 
network location regarding hazardous facilities, in the subsequent sections we re-
view, in chronological order, the most outstanding references on location of unde-
sirable facilities on networks considering both one single criterion and several cri-
teria. 

3.2 Undesirable facility location problems on networks 

There are not many papers devoted to location of undesirable (sometimes called 
obnoxious) facilities on networks. This subject barely emerged in mid 70s, and 
gradually drew the interest of researchers due to environmental issues. These types 
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of problems are the opposite of the classical center (minimax) and median (mini-
sum) problems, and hence, they are usually modeled using the maximin and the 
maxisum criteria. Other authors established alternative criteria which are not cov-
ered in this chapter. Slater (1975) defined the security center and security centroid 
of a graph using the criterion that a vertex u is “more central” than vertex v if there 
are more vertices closer to u than to v. 

In the same way as Hakimi is the forerunner of Network Location Analysis, 
Church and Garfinkel (1978) are the precursors of the location of undesirable fa-
cilities on networks. They dealt with the problem of locating a point on a network 
so as to maximize the sum of its weighted distances (maxisum) to the nodes, and 
proposed an algorithm in O( log )mn n  time. The optimal point was called maxian. 

Minieka (1983) characterized the anticenter and antimedian location models. The 
former is formulated as a maxmax problem, whereas the latter is a directed ap-
proach to that of Church and Garfinkel (1978). 

Ting (1984) treated the problem of locating a single facility in a tree network 
considering the maxisum criterion, and provided a solution algorithm with compu-
tational effort O( )n . Kuby (1987) pointed out that the optimal maximin objective 

value could be used as a lower bound on the distances between selected facilities. 
Moon (1989) addressed the problem of finding a point in a tree network whose 
distance to the closest pendant vertex (incident to a single edge) is maximal. He 
presented a polynomial time algorithm in O( )n  time. 

Tamir (1988) demonstrated that for some center and (obnoxious) location prob-
lems it is possible to take advantage of dynamic data structures to achieve better 
complexity bounds. Labbé (1990) dealt with the location of an obnoxious facility 
on a network using a voting procedure. She also defined the anti-Condorcet point 
as a point such that no other point is farther from a strict majority of users. Tamir 
(1991) discussed new complexity results for several models dealing with the loca-
tion of obnoxious or undesirable facilities on graphs such as p-maximin and 
p-maxisum problems, which concern the location of p facilities under the maximin 
and maxisum objectives, respectively. 

Regarding location and routing of hazardous wastes, Stowers and Palekar 
(1993) developed a combined model that quantifies the total exposure of the popu-
lation during transportation as well as long term storage. 

Kincaid and Berger (1994) studied the problem of selecting a subset of size p 
of the distance matrix column indices such that the smallest row sum in the result-
ing n p  submatrix is as large as possible. Drezner and Wesolowsky (1995) con-

sidered the problem of locating a point that should be as far as possible from arcs 
and nodes of a network. Berman, Drezner and Wesolowsky (1996) approached the 
location of a new facility on a network so that the total number (weight) of nodes 
within a prespecified distance is minimized. 

Moreno-Pérez and Rodríguez-Martín (1999) addressed the problem of locating 
an undesirable facility on a network maximizing a convex combination of the av-
erage and minimum distance to the population. Since this is the opposite of the 
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cent-dian model, they called it the anti-cent-dian. The same problem including 
distance constraints was previously pointed out by Moon and Chaudhry (1984) as 
the anticenter-maxian model. Colebrook and Sicilia (2006) improved the anti-
cent-dian facility location problem on networks, providing an efficient O( )mn  

time algorithm. 
Although Tamir (1988, 2001) already presented a brief O( )mn  method for the 

maximin problem, Melachrinoudis and Zhang (1999) solved the location of a 
point on a network under the maximin criterion with the same computational ef-
fort. Soon after, Berman and Drezner (2000) developed the same problem from a 
linear programming viewpoint in O( )mn  time as well. Colebrook, Gutiérrez, 

Alonso and Sicilia (2002) presented a different model formulation and improved 
upper bounds for the location of an undesirable (obnoxious) center on general 
networks, which diminished the computational time required to get the solution.  

Salhi, Welch and Cuninghame-Green (2000) provided an alternative analytical 
approach to the Voronoi based method for the weighted 1-maximin location prob-
lem, which concerns the location of one facility under the maximin criterion. Their 
enhanced method was relying on two reduction tests and a suitable branch and 
bound scheme. Zhang, Hodgson and Erkut (2000) developed an algorithm to safe-
ly route hazardous materials on network, assessing the potential risks on human 
population by GIS techniques. 

Burkard, Dollani, Lin and Rote (2001) derived algorithms with linear running 
time in the cases where the network is a path or a star, and improved previous re-
sults proposed by Tamir (1988, 1991). In a quite similar approach, Burkard and 
Dollani (2003) studied the pos/neg 1-center problem on networks, which asks to 
minimize a linear combination of the maximum weighted distance of the center to 
the positive and negative weighted vertices respectively. On networks, they pro-
vided an O( log )mn n  algorithm, whereas on star graphs the problem can be 

solved in linear time. They also studied the extensions to the location of p facili-
ties on trees. 

López-de-los-Mozos and Mesa (2001) analyzed a new locational equity meas-
ure defined as the maximum absolute deviation. They investigated its properties 
and proposed an algorithm for locating a single facility on a network such that it 
minimizes this new criterion. Carrizosa and Conde (2002) addressed a p-facility 
location for semi-desirable facilities whose location was restricted to the edges of 
a planar network with rectilinear edges. 

Cappanera, Gallo and Maffioli (2003) addressed the problem of simultaneously 
locating obnoxious facilities and routing obnoxious materials between a set of 
built-up areas and the facilities, defining a discrete combined location-routing 
model referred to as the Obnoxious Facility Location and Routing model (OFLR). 

Berman and Wang (2004) considered, among others, the 1-antimedian and 
1-maximin undesirable facility location problems on undirected networks with 
node weights as independent discrete random variables. Colebrook, Gutiérrez and 
Sicilia (2005) studied the problem of locating an undesirable facility on a network 
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so as to maximize its total weighted distance to all nodes, giving a new upper 
bound and a new algorithm in O( )mn  time. 

Berman and Wang (2006) studied the 1-median and 1-antimedian problems 
with probabilistic node demands, which are assumed to be independent continuous 
random variables, whereas Berman and Wang (2007) considered the problem of 
locating semi-obnoxious facilities provided that some demand points, within a cer-
tain distance from an open facility, are expropriated. In Berman and Wang (2008), 
the problem of locating a semi-obnoxious facility was considered assuming that 
close demands nodes could be expropriated by the developer. 

Erkut and Alp (2007) considered the problem of selecting routes for hazardous 
material transportation, applying their model to the road network of Ravenna (Ita-
ly). Berman, Verter and Kara (2007) presented a novel methodology based on arc-
covering to determine the network optimal design so as to maximize the ability to 
respond to dangerous incidents. Their results assessed the emergency response ca-
pability to transport incidents in Quebec and Ontario (Canada). 

Recently, Berman and Huang (2008) compared several mathematical formula-
tions to locate undesirable facilities on a network so as to minimize the total de-
mand covered subject to the condition that no two facilities are allowed to be clos-
er than a pre-specified distance. Drezner, Drezner and Scott (2009) analyzed the 
location of a facility inside a planar network with nuisance/hazard created on its 
links, so the total nuisance should be minimized. Lately, Yamaguchi (2011) exam-
ined a line network model where individuals collectively choose the location of an 
undesirable public facility through bargaining with the unanimity rule. 

Regarding surveys and reviews on undesirable location, Moon and Chaudhry 
(1984) discussed and surveyed uncapacitated distance constrained network loca-
tion problems such as maxian, defense, anti-center, dispersion, anticenter-maxian 
and dispersion-defense models. A widely cited review on this subject was due to 
Erkut and Neuman (1989), who brilliantly surveyed over sixty papers on maximi-
zation location models and presented a synthesis of the solution methods. In the 
same sense, Erkut and Verter (1995), and later Verter and Erkut (1995), over-
viewed and treated logistics models involving hazardous materials. 

In addition to the network models, it is also worth citing some papers due to 
their contribution and direct application. One of these papers is the overview on 
(semi-) undesirable facility location by Plastria (1996). A close related paper by 
Carrizosa and Plastria (1999) presented a critical overview of the mathematical 
models used in the field of semi-obnoxious facility location. Murray, Church, Ger-
rard and Tsui (1998) reviewed several approaches for addressing equity and com-
munity impact in the location of undesirable facilities. In an excellent report, Cap-
panera (1999) surveyed mathematical models for undesirable location problems in 
the plane and particularly on networks. 

Concerning straightforward applications, we must cite Cáceres, Mesa and Or-
tega (2007), who considered the problem of locating a waste pipeline in a coastal 
region, taking into account the maximization of two criteria. 
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There is no book solely devoted to location of undesirable facilities yet. Daskin 
(1995) discussed dispersion models, outlined a maxisum problem and commented 
on some multiobjective location problems. In Puerto (1996), there is a chapter 
concerning location of undesirable centers on the plane as well as on networks. 

The two latest book chapters on undesirable facility location are by Hosseini 
and Esfahani (2009), who reviewed obnoxious facility location problems from the 
point of view of their classification, diverse models, applications, solutions and 
techniques, and case studies; and by Melachrinoudis (2011), who surveyed and as-
sessed the classical contributions on undesirable facility location from the late 
1970s till nowadays. 

In the next section we review the most relevant references on multiobjec-
tive/multicriteria undesirable facility location models on networks. 

3.3 Multicriteria undesirable facility location on networks 

Surprisingly, literature on multicriteria undesirable facility location starts in the 
late 1980s. It seems that the concern on the location of undesirable facilities has 
grown only in the last years, along with the use of multiobjective/multicriteria 
tools to model and solve such problems. 

Ratick and White (1988) proposed a multiobjective model for the location of 
undesirable facilities considering three objectives: minimizing the facility location 
costs, minimizing the opposition to the siting plan, and maximizing equity. List 
and Mirchandani (1991) presented a combined routing/siting model that can be 
used not only for making routing decisions on waste shipments, but also for siting 
decisions of waste treatment facilities. Risk, cost and risk equity were considered 
jointly in a multiobjective framework. A simplified form of their model was ap-
plied to the Capital District of the State of New York. Erkut and Neuman (1992) 
developed a multiobjective model for the location of one or more undesirable fa-
cilities to service a region which minimizes the total cost of the facilities located, 
the total opposition to such facilities, and the number of power-generating sta-
tions. 

By means of a multiobjective model, Rahman and Kuby (1995) examined the 
tradeoffs between minimizing costs (transshipment and fixed-charge problems) 
and public opposition (decreasing distance function from the facility) in the loca-
tion of a solid waste transfer station. A case study was also accomplished in the 
City of Phoenix, Arizona. 

Giannikos (1998) presented a multiobjective model for locating disposal facili-
ties and transporting hazardous waste along the links of a network considering 
four objectives, namely, minimization of total operating cost, minimization of to-
tal perceived risk, equitable distribution of risk among population centers and eq-
uitable distribution of the disutility caused by the operation of the treatment facili-
ties. 
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Zhang and Melachrinoudis (2001) considered the problem of locating an ob-
noxious facility on a general network using two objectives, maximizing the mini-
mum weighted distance from the point to the vertices (maximin) and maximizing 
the sum of weighted distances between the point and the vertices (maximsum). 
Hamacher, Labbé, Nickel and Skriver (2002) presented a polynomial time algo-
rithm for the location of a semi-obnoxious facility on networks, and generalized 
the results to include maximin and minimax objectives. 

Skriver and Andersen (2003) modeled a semi-obnoxious facility location prob-
lem as a bicriterion problem in both the plane and the network case, applying 
these models to the location of a new international airport in the Jutland mainland, 
Denmark. 

Colebrook and Sicilia (2007) analyzed several location problems of undesirable 
facilities on multicriteria networks establishing new properties to characterize the 
efficient solutions and rules to remove inefficient edges. Tuzkaya, Önüt, Tuzkaya 
and Gülsün (2008) addressed the problem of locating an undesirable facility in Is-
tanbul (Turkey) using the multi-criteria decision making technique called Analytic 
Network Process (ANP). Lately, Zhao and Shuai (2010) proposed a new multi-
objective 0-1 integer LP model for the location-allocation problem in response 
network design for hazardous materials transportation. 

Once more, the ensuing papers are commented for their real life application, 
though they might not be addressed on networks. Melachrinoudis, Min and Wu 
(1995) developed a dynamic (multiperiod) multiobjective mixed integer pro-
gramming model for locating landfills. Their objectives are: minimization of total 
cost during the planning horizon, minimization of total risk posed on population 
centers, minimization of total risk posed on ecosystem and minimization of risk 
inequity over all individuals and time periods in the planning horizon. 

Hokkanen and Salminen (1997) described an application of multicriteria deci-
sion aid to the location of a waste treatment facility in eastern Finland. The alter-
native locations for the new facility were considered based on 14 criteria by 28 
decision makers. 

Rakas, Teodorović and Kim (2004) developed a multiobjective model to de-
termine the location of undesirable facilities using real-world data. Alumur and 
Kara (2007) proposed a new multiobjective hazardous waste location-routing 
model that minimizes the total cost and the transportation risk, and it was imple-
mented in the Central Anatolian region of Turkey. 

To the best of our knowledge, there is no published book on multicriteria unde-
sirable facility location problems on networks. However, Daskin (1995) devoted a 
complete section of a chapter to emphasize the need of more multicriteria models 
on undesirable facility location. 

Lastly, before presenting some basic definitions and the notation, we briefly 
comment four doctoral dissertations on multicriteria undesirable location. 
Saameño (1992) studied the problem of locating obnoxious facilities on a polygo-
nal region with multiple objectives. Zhang (1996) mainly developed algorithms to 
solve the 1-maximin problem on a network, and the maximin-maxisum network 
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location problem. Skriver (2001) investigated, among other models, the bicriterion 
semi-obnoxious location problem, the multicriteria semi-obnoxious network loca-
tion problem with sum and center objectives and the bicriteria network location 
problem with criteria dependent lengths and minisum objectives. Finally, Cole-
brook (2003) devoted several chapters to analyze and develop some undesirable 
location models on networks. 

4. Basic definitions and notation 

In this section we introduce the concepts and basic definitions that are essential for 
the remaining sections. We begin with the notation on classical network models, 
followed by the definitions related to networks with multiple criteria. 

4.1 Standard networks 

Mathematical networks can model innumerable real world problems such as 
aisle/road networks, river/air/ocean transport networks or communica-
tion/computer networks. All of these networks are barring exceptions, simple (no 
loops or multiple edges), connected and undirected. 

Thus, let ( , )N V E  be a network with such features, where 1 2{ , , , }nV v v v   

denotes the set of vertices or nodes, and {( , ) : , }s t s tE v v v v V   the set of edges, 

with | |n V  and | |m E . The nodes represent demand, supply or junction points 

on which existing facilities or clients are already placed, whereas edges corre-
spond to transportation lines, roadways, railways or communication channels. 

Each node iv V  is set with a positive weight iw  as follows: 

:

( ) 0i i i

w V

v V w v w


   
�

 

This weight iw  stands for demand rates, time/cost/loss per unit distance, num-

ber of clients, probability that a demand occurs at node iv , or even the importance 

of a potential damage. Obviously, the weights are positive because a weight 
0iw   means null demand, time, etc, and hence it makes no sense. 

On the other hand, each edge ( , )s te v v  is labeled with a positive number el  in 

terms of the following length function: 
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:

( , ) ( ) 0s t e

l E

e v v E l e l


    
�

 

Thus, a point x inside edge e ranges in the interval [0, ]el . This length repre-

sents travel time/cost, reliability or any other travel attribute. The lengths are posi-
tive since any 0el   implies a null distance between sv  and tv , and hence, it can 

be discarded. Fig. 1 shows a network with 5n   nodes and 7m   edges. Weights 

iw  are in bold, whereas lengths el  are in italic. 

Besides, each edge is assumed to be rectifiable, in the sense that there is a one-
to-one correspondence between each edge and the interval [0,1] . Hence, given 

any edge ( , )s te v v E   of length el  and an inner point x e , then there is a 

unique number ( ) [0,1]et x   such that ( )e et x l  and (1 ( ))e et x l  are the lengths 

along edge e between sv  and x, and x and tv , respectively. 

 

Fig. 1. Network with five nodes (weights in bold) and seven edges (lengths in italic). 

A path is a sequence of adjacent edges, with each of the adjacent edges sharing 
a common node. Then, for each pair of nodes ,a bv v V  we define a distance 

( , )a bd v v  between these two nodes as the length of any shortest path in N joining 

av  and bv . Moreover, given any two points ,x y N , the distance ( , )d x y  is the 

length of the shortest path between x and y. Given a certain edge ( , )s te v v , it is 

sometimes possible that ( , )s t ed v v l  since the edge may not provide the shortest 

path between the nodes sv  and tv . This distance function ( , )d    satisfies the fol-

lowing metric properties for any ,x y N : 

1. Nonnegativity: ( , ) 0d x y  , with ( , ) 0d x y   if x y . 

2. Symmetry: ( , ) ( , )d x y d y x . 

3. Triangle inequality: ( , ) ( , ) ( , )d x y d x z d z y  , for any z N . 

4 
4

v1

v2

v5 v4

v3

5

10 8

5

1

2 1

1 7
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At this point, the principal issue to be emphasized is that network location 
models are usually based on the assumption that travel distances are lengths of 
shortest paths. In this sense, given any edge ( , )s te v v E  , a node iv V  and an 

inner point x e , we define the distance between point x and node iv  as: 

( , ) min{ ( , ), ( , )}i s i e t id x v x d v v l x d v v     

The point on e where ( , )id x v  attains its equilibrium, i.e. 

( , ) ( , )s i e t ix d v v l x d v v    , is called a bottleneck point ib , with 

( , ) ( , )

2
t i e s i

i

d v v l d v v
b

 
  

A fundamental property of network distances is the following piecewise linear-
ity and concavity property. This property states that the function in ( , )s tx e v v   

defined by ( , )id x v : 

1. Is continuous on e. 
2. As x varies from node sv  to tv  in edge e, either 

– increases linearly with slope iw  (see Fig. 2a), or 

– decreases linearly with slope iw (see Fig. 2b), or 

– first increases linearly and then decreases linearly, with a breakpoint at ib  

(see Fig. 2c). 

3. Is concave, in the sense that a line segment joining any two points on the graph 
of the function lies on or below such graph. 

 

Fig. 2. The three possible plots of ( , )id x v . 

These are the basic concepts on standard networks. In the next section we in-
troduce the basic notions on networks with multiple criteria, namely, considering 
several weights on each node as well as several lengths on each edge. 

bi bi
bi (a) (c)

wi

–wi wi

(b)

–wi

vs vt vs vt vs vt 
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4.2 Networks with multiple parameters on nodes and edges 

Most of the huge literature on network location problems deals with the optimiza-
tion of one single criterion. This criterion is usually associated with the weighted 
distance from a certain point to the rest of the nodes, for example, the minimiza-
tion of the total weighted distance from a facility to the customers. 

However, there are many applications in which several parameters need to be 
considered on each node and on each edge. Thus, several weights on each node 
may represent different criteria to be considered by the decision-maker(s), namely, 
demand rate, importance, number of potential clients, etc. On the other hand, sev-
eral lengths (travel costs) on each edge might deal with distance, travel time, traf-
fic congestion, toll rate, travel cost, etc. 

In this sense, on each node iv V , the previous weight function is now re-

placed by the following: 

1

:

( ) ( , , )

p

p
i i i i i

w V

v V w v w w w


   

�


 

where p is the number of weights per node. For any vector of weights iw , each 
r
iw  is a nonnegative value  for 1, ,r p  , and we assume that not all are equal to 

zero. 
Likewise, each edge is set with a vector of lengths (costs), as follows: 

1

:

( , ) ( ) ( , , )

q

q
s t e e e

l E

e v v E l e l l l


    

�


 

in which q is the number of lengths. Again, we assume that each component r
el  is 

nonnegative for any vector el , and not all 0r
el  , for 1, ,r q  . 

As an example of a network holding several parameters, Fig. 3 shows the same 
network as Fig. 1, but with two weights per node (in bold) and three lengths per 
edge (in italic). 
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Fig. 3. Five-node and seven-edge network with several parameters. 

Let r be a length index, with 1 r q  , and let ( , )s tx e v v   be a point inside 

edge e. Then, ( , )r
e sc x v  is defined as the piece of line segment between x and sv  

considering length r. Obviously, we have that 0 ( , )r r
e s ec x v l  , with 

( , ) ( , )r r r
e t e e sc x v l c x v  . 

For each pair of nodes ,a bv v V  we can define the distance ( , )r
a bd v v  be-

tween these two nodes as the length of any shortest path in N joining av  and bv  

considering length r. Likewise, given any two points ,x y N , the distance 

( , )rd x y  is the length of the shortest path between x and y. These q distance func-

tions also comply with the metric properties stated in the preceding section. 
Given any node iv V , we have that 

( , ) min{ ( , ) ( , ), ( , ) ( , )}r r r r r
i e s s i e t t id x v c x v d v v c x v d v v    

denotes the distance between a point and a node considering length r, with 
( ( , ) ( , )) / 2r r r r

i t i e s ib d v v l d v v    being the bottleneck point concerned with node 

iv . These q network distance functions fulfill the piecewise linearity and concavi-

ty property as well. 
Finally, we introduce some basic theory on multicriteria/multiobjective optimi-

zation. Usually, multicriteria models are those which perform a simultaneous op-
timization of several incommensurable objectives, for instance, minimizing the 
maximal travel distance and minimizing the total travel cost. On the other hand, a 
closely related concept is that of vector optimization, which determines the 
non-dominated solutions to a multicriteria problem. 

In this sense, let 1 2( , , , )kf f f f   and 1 2( , , , )kg g g g   be two vectors be-

longing to k� . Vector f is said to dominate vector g, and it is denoted by f g , 

if and only if: 

v1

v2

v5 v4

v3

(3,5)

(3,1,4)

(1,3) (8,2)

(7,3,2)

(4,1,6)

(1,1,7)

(4,7,1)

(2,5,3)

(5,2,3)

(4,4) (1,2)
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, 1, ,i if g i k       and   {1, , }: j jj k f g    

Then, given the subset of vectors kU  � , a vector f U  is called 

non-dominated, efficient or Pareto optimal (Pareto, 1896) with respect to subset U 
if there is no other vector g U  such that g f . The set of all non-dominated 

vectors with respect to U is denoted by NDU . For a further knowledge in mul-

ticriteria optimization, the reader is referred to Steuer (1986). 
Having described the basic concepts and the notation used to model the loca-

tion problems developed in this chapter, in the following sections we present the 
location models for undesirable facilities on networks. 

5 Locating undesirable facilities on simple networks 

In the following subsections we develop several models that can be used to locate 
hazardous facilities on networks considering one single criterion. These models 
comprise the undesirable center problem, the maxian problem, and the an-
ti-cent-dian problem. 

5.1 The undesirable center problem 

As we remarked in the literature review, there are not many papers devoted to un-
desirable location on networks. One of them is by Melachrinoudis and Zhang 
(1999), who proposed a O( )mn  time algorithm based on three upper bounds and 

on a modified procedure of Dyer (1984). However, their upper bounds can be 
tightened, and the procedure can be improved by means of a more convenient 
formulation of the solution. The other paper by Berman and Drezner (2000) ap-
proaches the problem in a linear programming way. Though it has the same theo-
retical complexity, its running time is extremely high, since the algorithm has to 
process every single edge. 

Now, we formulate the undesirable 1-center (maximin) problem on networks. 
Given any point x N  we define ( ) min ( , )

i
i iv V

f x w d x v


 . 

Then, the problem consists of calculating 

max min ( , ) max ( )
i

i iv Vx N x N
w d x v f x

 


 

and a point Nx N  is an undesirable 1-center point iff ( ) max ( )N
x N

f x f x


 . 
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This problem is the opposite of the 1-center problem (minimax), so it could be 
called the anti-center. Unfortunately, this term was already coined by Minieka 
(1983) to define the maxmax problem. We instead propose the term 1-uncenter 
(undesirable center) to define the optimal location point. 

If there is at least one vertex iv  such that 0iw  , then ( ) 0,f x x N    and 

obviously any point on network N would be a 1-uncenter. Therefore, we consider 
only 0iw  , iv V  .  

When all the node weights are equal, ,i iv V w w   , the local 1-uncenter ex  

is sited at the central point of edge e. Therefore, the unweighted 1-uncenter Nx  is 

located in the middle of the longest edge(s) (see Melachrinoudis and Zhang, 1999; 
Berman and Drezner, 2000). This is done in O( )m  time. 

However, when all node weights are not equal, we can reformulate the 
1-uncenter problem over each edge ( , )s te v v E   as follows: Nx N  is a 

1-uncenter point iff ( ) max ( )N e
e E

f x f x


 . 

 

Fig. 4. Objective function ( )f x , which is actually the lower envelope of all distance functions. 

Since the local 1-uncenter point is the maximum value of the concave objective 
function ( )f x , as shown in Fig. 4, it should be located at the intersection of two 

distance functions lines with opposite sign slopes. Our goal is to find in the lower 
envelope of function ( )f x  these two lines and the intersection point between 

them. 
By introducing new tighter bounds that can significantly reduce the number of 

edges and the number of distance function lines over each edge, and by means of a 
more convenient problem formulation, we developed a new O( )mn  time algo-

rithm, which is briefly outlined in Algorithm 1. 
This method has been applied to the following network depicted in Fig. 5, 

which has 8n   nodes and 18m   edges. The weights (in bold) on the nodes 
range randomly from 1 to 9, whereas the lengths (in italics) randomly vary from 1 
to 49. 

le

vs vt

xe



17 

 

Fig. 5. Planar network with 8n   and 18m  . 

The solution to this example is 50NF  , which is the 1-uncenter value at 

36{(26, )}S e . Note that the algorithm processes only 6 out of 18 potential edges. 

Even though these numbers may not seem important, they will be quite relevant 
when the network size gets bigger, both in nodes and edges. 

To test the computational effort of the new algorithm, several experiments were 
run for different sets of graph densities as well as for planar networks. These tests 
showed that the running times of the new algorithm are faster than both the ap-
proaches by Berman and Drezner (2000) and Melachrinoudis and Zhang (1999), 
since the number of edges processed are less, gaining in some instances a reduc-
tion of over 50%. As a consequence, the computing times of the new algorithm are 
better, achieving in some cases a reduction of 80%. Besides, the reduction aug-
ments as the number of nodes n increases. 

For more details in the mathematical results, algorithm description, the exam-
ple trace and the computational time experiment, the reader is referred to Cole-
brook et al. (2002). 
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function UnCenter(Network N, Distance Matrix d) 
{ // Current best value on network N 
 : 0NF   

 // Solution set 
 :S    
 for all edges : ( , )s te v v E   do 

 { // Compute the upper bounds 
  Compute upper bound UB1 
  if 1N UBF F  then continue to next edge 

  Compute upper bound UB2 
  if 2N UBF F  then continue to next edge 

  Compute upper bound UB3 
  if 3N UBF F  then continue to next edge 

  // Set ( , )e ex F  to the best value found so far 

  if 2 3UB UBF F  then 2 2( , ) : ( , )e e UB UBx F x F  

  else     3 3( , ) : ( , )e e UB UBx F x F  

  Create sets L and R. All lines must be below 2UBF . 

  // Continue till the new value eF  cannot improve the current NF , 

  // or until one of the node sets becomes empty 
  while e NF F  and ( L    or R   ) do 

  { Pair all nodes in L against R, using a max{| |, | |}L R  matching 

   ( , )e ex F := Intersection point with minimal function value 

   Project the value ex  on the lower envelope to get av  and bv  

   : Intersection point of distance lines  and e a bx v v  

   : Distance value of point e eF x  

   Remove from L and R all lines above the new value eF  

  } 
  if e NF F  then 

  { :N eF F  

   Store the pair ( , )ex e  in S 

  } 
 } 
 return ( , )NF S  

} 

Algorithm 1. The uncenter function. 
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5.2 The maxian problem 

As stated in the review section, the literature on undesirable network location be-
gan in the mid 70s with Church and Garfinkel (1978), who defined and solved the 
1-maxisum (maxian) problem in O( log )mn n  time, being n the number of nodes 

and m the number of edges. 
Later on, Tamir (1991) briefly suggested that the 1-maxisum problem could be 

solved in O( )mn  time using an algorithm given by Zemel (1984). However, to the 

best of our knowledge, there is no reference in the literature directly describing 
such an algorithm for the network 1-maxisum problem thus far. Hence, in this sec-
tion we provide an algorithm which solves this problem in O( )mn  time. 

Given any point x on network N, we define 

( ) ( , )
i

i i
v V

f x w d x v


   

as the sum of weighted distances from point x to all the nodes of the network. 
The undesirable one-facility maximum (maxian) problem is expressed as 

max ( )
x N

f x


 

and a point Nx N  is a maxian point iff ( ) max ( )N
x N

f x f x


 . Several interesting 

properties arise for this problem. 
From Church and Garfinkel (1978), an initial upper bound ( )UB e  is derived, 

which is improved with a new upper bound. Likewise, this bound can be dynami-
cally updated without increasing the total computational time. Hence, we have de-
veloped a new algorithm in O( )mn  to solve this problem. The procedure makes 

use of the new upper bound, and thus, allows skipping out from the search process 
as soon as the upper bound is less than the global optimum. The outline of the new 
procedure is showed in Algorithm 2. 

To illustrate the method, consider the network in Fig. 6 with 7n   nodes and 
15m   edges. The node weights (in bold) are integers randomly generated be-

tween 1 and 9, whereas the edge lengths range between 1 and 25.  
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Fig. 6. Weighted network with seven nodes and fifteen edges. 

The optimum value of ( )f x  in this example is 500Nf  , which is attained in 

the interval [8.5,10.5]  at edge 3 4( , )v v . We finally remark that, due to the new up-

per bound, we have only processed 8 of the 15 total edges. Using the old upper 
bound the algorithm would have run over 13 edges. This fact is very important, 
since it speeds up the search for the optimal points once we are sure that the new 
upper bound is worse thant the current best solution. 

This new algorithm has been compared with the procedure proposed by Church 
and Garfinkel (1978), including the initial bound, on low and high dense net-
works, as well as on planar networks. In all cases, the new algorithm accomplishes 
a better performance in terms of processing times. The computational experiment 
was tested on complete networks with, respectively, a half, a quarter and an eighth 
of the total number of edges. In the three cases, the new algorithm is almost 50% 
faster than Church and Garfinkel’s. The same happens for planar networks. Be-
sides, the reduction percentage in the number of edges to be processed is almost 
25% less. 

Again, we refer the reader to Colebrook, M., Gutiérrez, J. and Sicilia, J. (2005) 
for the details of this algorithm and the new upper bound. 

5.3 The anti-cent-dian problem 

In previous sections we have addressed the 1-uncenter (maximin) problem and the 
1-maxian (maxisum) problem on networks. Now we are going to combine these 
two objectives to obtain a location criterion called the anti-cent-dian. 
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function MaxianAlgorithm(Network N, Distance Matrix d) 
{ : 0Nf   // Current best value on network N 

 :S   // Solution set 
 for all edges : ( , )s te v v E   do 

 { Compute sW  and tW  

  :eX    

  // Let eX  represent either a single point x or an interval 1 2[ , ]x x . 

  if ( sW  and tW  yield a simple solution) then Store solution in eX  

  else 
  { : ( )j sF f v , :j sW W  

   : ( )k tF f v , :k tW W  

   // Compute initial value of the new upper bound ( )NUB e  

   if ( ) NNUB e f  then continue to next edge 

   : 1l  , :r n  
   while eX    and ( ) NNUB e f  do 

   { :qd Median value of all id  with l i r   

    : ( ) / 2q q eb d l   

    Compute LW  and RW  

    if ( LW , RW  and qw  yield a solution) then Store it in eX  

    else 
    { // Search for the optimum to the left or right 
     if L q RW w W   then 

       : 1l q  , update jF , jW , LW , ( )qf b  

     else : 1r q  , update kF , kW  

     Update the upper bound ( )NUB e  at point qb  

    } 
   } 
  } 
  if eX    and ( )e Nf X f  then 

  { : ( )N ef f X  

   Store the pair ( , )eX e  in S 

  } 
 } 
 return ( , )Nf S  

} 

Algorithm 2. The new algorithm for the maxisum problem. 
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The network anti-cent-dian model considers the convex combination of the 
maximin and the maxisum criteria. Moreno-Pérez and Rodríguez-Martín (1999) 
developed two algorithms that provide, respectively, the optimal location for a 
fixed  that determines the convex combination, and the set of optimal locations 

for all convex combinations. Both of them run in O( log )mn n  time. In this sec-
tion we show that the complexity of the first algorithm can be reduced to O( )mn . 

We now define the unweighted uncenter (maximin) function and the maxian 
(maxisum) function. Given any point x on network N, we define 


min ( ) min ( , )

i
iv V

f x d x v  

as the minimum unweighted distance from point x to all nodes of the network. Re-
call that a point Ny N  is an uncenter point iff min min( ) max ( )N

x N
f y f x


 . When all 

node weights iw  are equal, the point Ny  is located in the middle of the longest 

edge. Then, the uncenter point for any edge  ( , )s te v v  is / 2e ey l , and hence 

min ( ) /2e ef y l . Thus, the local optimum can be obtained in O(1) . 

On the other hand, given 


 
i

i
v V

W w  and a point x N , we now define 



 sum

1
( ) ( , )

i

i i
v V

f x w d x v
W

 

as the average sum of weighted distances from point x to all the nodes of the net-
work. A point Nz N  is a maxian point iff ( ) max ( )sum N sum

x N
f z f x


 . The local 

maxian point on edge e is denoted by ez . 

Finally, the anti-cent-dian function is defined as 

acd min sum( , ) ( ) (1 ) ( )f x f x f x      

and any point Nx N  maximizing acd ( , )f x  for a particular value of , 

 0 1 , is called a -anti-cent-dian point. In particular, if 0  , the an-
ti-cent-dian is equal to the maxian; whereas for 1  , we obtain the uncenter. Fig. 
7 shows a typical plot of function acd ( , )f x  over edge e. For 0   the an-

ti-cent-dian function is sum ( )f x . As parameter  grows, the anti-cent-dian function 

makes a morphing to the min ( )f x  function. 

Taking into account some properties and given a value of , 0 1  , the lat-
ter problem can be formulated over each edge e as follows: 
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acd acd( , ) max ( , )e
x e

f x f x 


  

and a point Nx N  is a -anti-cent-dian point iff acd acd( , ) max ( , )N e
e E

f x f x 


 . 

 

Fig. 7. Plots of acd ( , )f x  for different values of . 

A method to determine all -anti-cent-dian points for any value of [0,1]   in 

O( log )mn n  time was proposed by Moreno-Pérez and Rodríguez-Martín (1999). 

It has derived from an O( log )mn n  algorithm by Hansen, Labbé and Thisse 

(1991). This complexity cannot be reduced since the algorithm is based on the 
computation of a convex hull of O( )mn  points, which is done in O( log )mn n  

time (see Hershberger, 1989). 
On the other hand, Moreno-Pérez and Rodríguez-Martín (1999) also presented 

an O( log )mn n  procedure to obtain the anti-cent-dian point when  is fixed to a 

particular value. Nevertheless, an O( )mn  time algorithm can be achieved, as 

shown in Colebrook and Sicilia (2006). 
Since the following multicriteria location model generalizes the 

-anti-cent-dian problem described above, the algorithm scheme and the example 
for this model are shown in the next section. 

ye ba

le

vs vt
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6 Undesirable facility location on multicriteria networks 

As we have stated in the preceding sections, the classical location criteria minimax 
(center) and minisum (median) are useless to locate an obnoxious/noxious (unde-
sirable) facility. Thus, the maximin/maxmax and the maxisum criteria arose to 
model, respectively, the undesirable center problem and the undesirable median 
problem. By placing the new facility away from existing facilities, the maximin 
criterion reduces the effect on the worst impacted existing facility, whereas the 
maxisum criterion diminishes the collective effect (average) on the existing facili-
ties. 

Nevertheless, some facilities might be considered semi-desirable since they 
provide a main service to the community but they can also cause inconveniences 
to the neighboring areas, for instance, an airport, a train station, or any other noisy 
facility. These problems can be perfectly modeled combining the mini-
max/minisum criteria and the maximin/maxisum criteria. 

In this sense, most of the undesirable facility location models analyzed in pre-
vious works  are basically single-criterion. However, Erkut and Neuman (1989) 
emphasized on the need for multiobjective approaches to the siting of undesirable 
facilities. Daskin (1995) and Zhang (1996) also pointed out not only the need to 
include multiple criteria in undesirable facility location problems, but also the fact 
that poor attention has been paid by researchers to these problems and hence, little 
research has been done in this promising field. 

Accordingly, in this section we present a multicriteria undesirable facility loca-
tion model on networks with several weights on the nodes and several lengths on 
the edges, combining the maximin and maxisum criteria by a parameter . Such a 
model can be considered as the opposite to the multicriteria network -cent-dian 
problem presented in the last section and hence, it can be described as the mul-
ticriteria -anti-cent-dian problem on networks. 

Given any point x N , any weight s (1 s p  ) and any length r (1 r q  ), 

let min ( ) min ( , )
i

sr s r
i iv V

f x w d x v


  be the minimum weighted distance from x to the set 

of nodes. Besides, given any point x N , we define the function 

sum ( ) ( , )
i

sr s r
i i

v V

f x w d x v


   as the sum of weighted distances from point x to the set 

of nodes, with 1 s p   and 1 r q  . 

Through a parameter , the convex combination of these two latter problems 
was addressed as the multicriteria -anti-cent-dian problem. Thus, given [0,1]   

and x N , the -anti-cent-dian function is defined as follows 

acd min sum( , ) ( ) (1 ) ( )sr sr srf x f x f x      
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being min ( ) min ( , )
i

sr s r
i iv V

f x w d x v


  and sum ( ) ( , )
i

sr s r
i i

v V

f x w d x v


  , with 1, ,s p   

and 1, ,r q  . This model was introduced in a previous section, though function 

min ( )f x  was unweighted and sum ( )f x  was divided by the total sum of weights. 

Provided that both min ( )srf x  and sum ( )srf x  are continuous, concave and piecewise 

linear functions on x, the -anti-cent-dian function acd ( , )srf x , being a convex 

combination of the two latter functions, fulfills these characteristics as well. 
As shown in Algorithm 3, we proposed a rule to delete inefficient edges and a 

polynomial algorithm in 3 2 2O( )k m n  time to solve this problem, being k the num-

ber of criteria. Besides, for 0   we can solve the multicriteria maxian problem, 
whereas for 1   we can obtain the solution for the multicriteria uncenter prob-
lem. Furthermore, when 1p q   this procedure can even solve the single crite-

rion uncenter, maxian or anti-cent-dian problem. The computational experience 
strengthens the polynomial complexity of the algorithm as well as the effective-
ness of the rule to eliminate the inefficient edges. 

To illustrate the method, Fig. 8 shows a random planar network with 7n   
nodes, 15m   edges, 2p   weights per node and 2q   lengths per edge. Thus, 

we have 4k   criteria. Beside each node iv V  we placed (in bold) two integer 

weights 1 2( , )i iw w  randomly generated in the interval [1,5] . Likewise, each edge 

( , )s te v v E   is labeled (in italics) with two integer lengths 1 2( , )e el l  randomly 

ranging in the interval [1, 25] . We set the parameter  to 0.5. 

The algorithm begins by removing all edges that contain no efficient point. For 
the example shown in Fig. 8, only 8 out of the 15 initial edges remain after the de-
letion, namely: 1 3( , )v v , 1 4( , )v v , 2 5( , )v v , 2 6( , )v v , 3 4( , )v v , 3 5( , )v v , 4 5( , )v v  and 

5 6( , )v v . On this set of remaining edges we now proceed to compute, for each 

combination of weights and lengths, the functions min ( )srf x  and sum ( )srf x . Subse-

quently, given the parameter 0.5   we calculate the -anti-cent-dian functions 

acd ( , )srf x . 

Finally, the solution is the set of non-dominated segments, which are located on 
5 edges only. The set of efficient points is shown in Table 1 and it is also drawn in 
bold on the partial network of Fig. 9. 
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function MACD(Network ( , )N V E , DistanceMatrix d, Parameters p, q, ) 

{ Let :P   be the set of candidate points to be non-dominated 
 Let :S    be the set of possible non-dominated segments 
 Remove all edges containing no efficient points 
 for all remaining edges : ( , )s te v v E   do 

 { for s := 1 to p do 
   for r := 1 to q do 
   { if 0   then Compute min ( )srf x  

    if 1   then Compute sum ( )srf x  

   } 
  for s := 1 to p do 
   for r := 1 to q do 
    Compute acd min sum( , ) ( ) (1 ) ( )sr sr srf x f x f x      

  Get the set of efficient points eX  

  Let 1, , jx x  be the sorted sequence of j  breakpoints for the  

   k p q   -anti-cent-dian functions inside eX  

  if 1j   then 1: { }P P x   

  else 
   for i := 1 to 1j   do 

   { Let 1[ , ]i ix x   be a segment of edge e within eX  

    1: {[ , ]}i iS S x x    

   } 
 } 
 // Let NDP  the set of non-dominated points and NDS  the  

  set of non-dominated segments. 
 NDP  := PointComparison(P) 

 NDS  := SegmentComparison(S) 

 ( NDP , NDS ) := PointAgainstSegmentComparison( NDP , NDS ) 

 return NDP  and NDS  

} 

Algorithm 3. The multicriteria -anti-cent-dian function (MACD). 
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Fig. 8. A network with two lengths per edge and two weights per node. 

 

Edge Efficient points 

1 3( , )v v  [3.8,8.5]  

2 5( , )v v  [1.00923,1.64]  

2 6( , )v v  [9.61111,12.5]  

3 5( , )v v  [5.28571,8.25]  

4 5( , )v v  [7.9418,15.381]  

Table 1. Set of efficient points of the network shown in Fig. 8. 
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Fig. 9. Efficient points are drawn in bold on the partial network. 

Algorithm 3 was programmed in C++ programming language using the class 
library LEDA 4.2.1, on a two 1.2 Ghz processor Pentium III with 1 Gb of RAM 
under Red Hat Linux. 

Two kinds of experiments were performed. In both of them, random planar 
networks were generated with 3 6m n   edges using the generators developed 
by LEDA. Likewise, parameter  varies from 0   (maxian problem) to 1   
(uncenter problem) with a step of 0.5. Both the number of weights per node p and 
the number of lengths per edge q range between 1 and 3. Ten instances were gen-
erated for each combination of the latter parameters. The weight values are ran-
dom integers uniformly distributed in the interval [1,10] , whereas the edge lengths 

are random integers in the range [1,50] . We remark that calculation of the dis-

tance matrix was not included in the total computing time. 
In the first experiment, random planar networks were generated with 10n   up 

to 100 in steps of 10 nodes. Table 2 shows the average times. Regardless of the 
number of nodes n, the computing time grows as both p and q increase. The aver-
age percentage of edges deleted is shown in Table 3. In most cases the number of 
removed edges is very high, achieving in some instances 99% of deletion. This is-
sue becomes quite remarkable when 1p q   (single criterion). In this particular 

case, the bounds seem to be very tight, and thus, the removal rule becomes very 
effective since over 95% of the edges are deleted, leaving only those edges that 
contain the final optimal points. 

Moreover, the performance of the new algorithm was also tested on bigger ran-
dom planar networks with 50n   to 500 nodes, with a step of 50 nodes. In the 
case of 1p q  , the percentage of deletion in all cases is over 99%. However, 
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when 3p q  , the average edge removal percentage is greater for 0   than 

for 1  , and hence, the average times in the latter are higher. 
This model can be slightly modified to generalize other models studied in the 

literature. For instance, if we define a set of k parameters 1{ , , }k    , then we 

can deal with each function acd ( , )i if x  independently. Thus, the problem pro-

posed by Zhang and Melachrinoudis (2001) might be denoted as 
1 1 2 2

acd acdmax( ( , ), ( , ))
x N

f x f x 


, with 2p  , 1q  , 2k p q    and 

1 2{ 1, 0}     . On the other hand, the multicriteria semi-obnoxious median 

problem presented by Hamacher, Labbé, Nickel, and Skriver (2002) can be formu-
lated as acd acdmax( ( , ), ( , ))i i j j

x N
f x f x 


 , with 1p  , 1q  , 0i j    and 1i Q , 

2j Q , 1 2| |Q Q p  , 1 2Q Q  , being 1Q  the set of obnoxious objective 

functions, and 2Q  the set of desirable objective functions. Obviously, if 2Q    

then we get the multicriteria maxian problem discussed in this chapter. 
Finally, we remark that if 1p   and 1q   then the number of criteria matches 

the number of weights per node, i.e., k p . Besides, if 0   then the number of 

breakpoints for all the k objective functions of a given edge is O( )n , since all the 
1

sum ( )sf x  functions share the same breakpoints. Hence, the total number of seg-

ments to compare is O( )mn . Therefore, the overall complexity of the algorithm is 

reduced to 2 2O( )km n , which is the same complexity achieved by Hamacher, Lab-

bé, Nickel, and Skriver (2002) for the location of a semi-obnoxious facility on 
networks with sum objectives. 

For more details, the reader is referred to Colebrook and Sicilia (2007). 

Conclusions and directions for further research 

This chapter aimed to be a comprehensive compilation of references and methods 
dealing with undesirable facility location on networks. In this sense, more than 80 
papers have been briefly commented, along with several models on undesirable 
single facility location on networks with multiple criteria that have been analyzed 
and described. 

We first addressed the undesirable 1-center (uncenter) location problem on 
networks. By means of a more suitable problem formulation, a new O( )mn  algo-

rithm can be developed, which is more straightforward and computationally faster 
than the ones already reported in the literature. Besides, we have also analyzed the 
problem of locating an undesirable median (maxian) on a network, obtaining a 
new and better upper bound. We have briefly presented the idea of a new algo-
rithm in O( )mn  time to solve this problem. 



30  

Finally, we studied the uncenter and maxian problems on multicriteria net-
works, establishing new properties and rules to remove inefficient edges. We have 
also presented the multicriteria -anti-cent-dian model as a convex combination of 
the two latter problems through a parameter . An effective rule to remove edges 
containing inefficient points, as well as a polynomial algorithm in 2 2 3O( )m n k  

time, being k the number of criteria. Besides, this procedure can solve both the 
multicriteria uncenter problem and the multicriteria maxian problem. Moreover, 
when the network holds a single weight per node and a single length per edge, this 
algorithm can efficiently solve the single criterion uncenter, maxian and 
-anti-cent-dian problems. Lastly, this model might be slightly modified to gener-
alize other models presented in the literature. 

Some directions for future research could be: 

 Try to apply the undesirable location problems to real world applications, or re-
design them to acquire the real details that are not covered in the models. A di-
rect use could be any application involving GIS (Geographic Information Sys-
tem) technologies. 

 Compile in a single software application all the models described in this chap-
ter, along with the classical algorithms for desirable facility location problems. 
A first attempt of this project was presented in Colebrook, Alonso and Sicilia 
(2005). 

 Expose all the algorithms developed so far as Web Services in the Internet, so 
they could be easily used from any computing device (PC, smartphone, tablet, 
etc). This is a nice project that we keep in mind a long time ago, and we hope 
to develop it shortly. 

Acknowledgments   This work has been partially supported by Ministerio de Ciencia e Inno-
vación, Spanish Government, research projects MTM2010-18591 and MTM2009-08830. 
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