
A fast but ill-conditioned formal inverse to Radon
transforms in 2D and 3D

Ricardo Oliva-Garćıaa, b, José G. Marichal-Hernándeza,*, Óscar
Gómez-Cárdenesa, Nelson Suárez-Mart́ına, and José M. Rodŕıguez-Ramosa,b

aUniversidad de La Laguna, Industrial Engineering Department, ETSI, La
Laguna, Spain, 38200

bWooptix S.L., Av. Trinidad, 61, La Laguna, Spain, 38204

ABSTRACT

We present a formal inversion of the multiscale discrete Radon trasform, valid both for 2D and
3D. With the transformed data from just one of the four quadrants of the direct 2D Radon
transform, or one of the twelve dodecants, in case of 3D Radon transform, we can invert ex-
actly and directly, with no iterations, the whole domain. The computational complexity of the
proposed algorithms will be O(N log N). With N the total size of the problem, either square or
cubic. But this inverse transforms are extremely ill conditioned, so the presence of noise in the
transformed domain turns them useless. Still we present both algorithms, and characterize its
weakness against noise.

Keywords: Radon transform, DRT, Numerical transforms, Invertibility

© Copyright 2022 Society of Photo-Optical Instrumentation Engineers (SPIE). One print
or electronic copy may be made for personal use only. Systematic reproduction and distribution,
duplication of any material in this paper for a fee or for commercial purposes, or modification
of the content of the paper are prohibited.
https://doi.org/10.1117/12.2617409

Ricardo Oliva-Garćıa, José G. Marichal-Hernandez, Óscar Gómez-Cárdenes, Nelson Suarez-
Martin, and José M. Rodŕıguez-Ramos “A fast but ill-conditioned formal inverse to Radon
transforms in 2D and 3D”, Proc. SPIE 12102, Real-Time Image Processing and Deep Learning
2022, 1210209 (27 May 2022) *Contact author, jmariher@ull.edu.es

1. INTRODUCTION

Radon transform1 is an integral transform useful to deal with problems where instead of sensing
directly a magnitude, it is possible to sense its interaction with a physical medium in a straight
line within a two-dimensional domain, a plane. That is the reason why this mathematical tool
is the foundation for medical imaging: it can undo the integrals of the rays attenuation as they
travel through body tissues. When used in this way, it is called inverse transform. The direct
transform, which is not of interest in medical imaging, since it is taken care of by the scanner in
that context, calculates the integrals of any line that traverses a plane. It is assumed that the
direct problem is much simpler than the inverse problem, which, depending on sampling and

https://doi.org/10.1117/12.2617409

measurement noise, may not have a solution; and even when it is invertible, the inverse solution
is achieved by slower methods than the direct one.

In 3D, Radon transform extends to plane integrals within a cube.2 Radon transform also
has been extended to reduce the 4D plenoptic space of rays by mimicking lens focusing –an
integration– to generate a 3D focal stack.3

In the field of medical imaging the two-dimensional inverse transform is achieved thanks to
the slice-projection theorem, which allows to express Radon in terms of the Fourier transform.4

Thus, Radon’s computation benefits from the existence of an optimal algorithm for computing
the Fourier transform: the FFT algorithm.5

To accelerate the computation of the two-dimensional direct Radon transform beyond what
Fourier-based methods achieve, a divide-and-conquer algorithm was proposed in the 1990s,6–8

but on integer mathematics, which is called the discrete Radon transform, DRT. Fourier-based
methods sometimes also receive that name, but by DRT we are referring specifically to the multi-
scale method in integer mathematics, which has advantages over any other method implemented
on computers.9

In 2006, it was proven that DRT could be computed for the reverse path, but with a higher
computational cost. The solution, despite being iterative, was accurate and fast.10 More recently,
in 2021, a hybrid formulation was found to solve the inverse transform with only two iterations.11

Although Fourier deconvolution was used to filter the result, the method was not related to the
slice-projection theorem.

By the same time, a method was found to exactly invert the DRT with the same number of
operations as that of the forward DRT.12,13 Moreover, it did not need projections covering the
whole semicircumference, 180 angles, but only one quadrant: 45 degrees of projection.

In this contribution we will deepen in the expression as an algorithm of that method.12 Then
we will extend it to three dimensions. We will make some considerations about its application
with noise.

1.1 Discrete Radon transform

Figure 1: Two discrete lines of parameters (s, d) in a 16× 16 grid. In black, the line (3, 10); in
gray the line (11, 2).

The code that actually computes the forward DRT of a quadrant is shown in the listing
1. The algorithm computes the line integrals of the quadrant formed by the angles between 0
and 45 degrees, which are those that can be expressed in the form y = s · x+ d, where d is the

displacement on the vertical axis and s represents the slope. Actually, the s variable is expressed
in ascents between 0 and N-1, while x runs along the side of an image of size N. So to interpret
it as slope, instead of ascent, s/(N − 1) should be used, which is in the range 0 to 1.

Listing 1: Matlab code to compute the forward DRT of a quadrant
1 %% Forward Radon transform of a quadrant

2 function Rf = qDRTforward(f)

3 [N, N] = size(f);

4 % we will go from coordinates (y, x)

5 % to coordinates (d, s): d displacement , s slope

6 % output size: double of displacements than slopes

7 fm = zeros (2*N, N);

8 fmp1 = fm;

9
10 n = log2(N);

11
12 % We start with f on the upper half of the data

13 fm(N +1:2*N,:) = f;

14
15 for m = 0:n-1 % % stages , log2(N)

16 for d = 0:2*N-1 % for every displacement

17 % slope variable , comprise 3 elements: {v: n-m-1 bits; sigma: m-1 bits; s0: 1 bit}

18 for v = 0:(pow2(n - m - 1) -1) % for every band not transformed yet

19 for sigma = 0:(pow2(m) -1) % within a band , already transformed

20 for s0 = 0:1 % last bit of slope , the one being transformed

21 if ((d+s0+sigma) <= (2*N -1))

22 aux = fm(d+s0+sigma +1, sigma +(1* pow2(m))+(v*pow2(m+1)) +1);

23 else

24 aux = 0;

25 end

26 fmp1(d +1, s0+(sigma *2)+(v*pow2(m+1)) +1) = ...

27 fm(d +1, sigma +0+(v*pow2(m+1)) +1) + aux;

28 end

29 end

30 end

31 end

32 fm = fmp1;

33 end

34
35 Rf = fm;

36 end

The projections sweeping the whole semicircumference are obtained by repeating this com-
putation for another 3 quadrants, corresponding to the lines formulated as: y = −s · x + d,
x = s · y+ d y x = −s · y+ d; again with the slope, s/(N − 1) ∈ [0..1]. This is achieved, without
modifications to the algorithm, but by applying it to suitably rotated versions of the image.

The algorithm has complexity O(N2logN) because the lines are approximated by stripes
of width 1 pixel, which traverse the image in integer positions ascending without interpolation
from the cartesian coordinate (0, d) to (N-1, d+s). And the line integrals are approximated by
the summations of the intensity of the values over those stripes. These stripes can be formulated
recursively so that the computation of the summation over any line of arbitrary length is achieved
by adding the summation on two line segments of half that length. No intermediate adds are
calculated more than once. Two of those loose discrete lines are shown in figure 1.

The core of the DRT formulation is constituted by the following 3 equations.

The recursive definition of a discrete line, which ascends s ∈ [0..2n − 1] over a domain u
ranging between 0 and 2n − 1, expressed in binary, u = {u0, u1, . . . , un−1}:

lns (u0, . . . , un−1) = ln−1
⌊s/2⌋(u0, . . . , un−2) + un−1

⌊
s+ 1

2

⌋
=

n−1∑
i=0

un−1−i ·
⌊ s

2i
+ 1

2

⌋
(1)

The definition of partial transform,
∼

f m, of an input f up to stage m, that contains the
summations on all the lines that ascend s ∈ [0..2m−1], in all horizontal bands v ∈ [0..2n−m − 1],
each of width 2m, starting from any displacement d. Note that λ(·) function returns the decimal
value from a set of binary indices.

∼

f m(

s︷ ︸︸ ︷
sn−m,

σ︷ ︸︸ ︷
sn−m+1, . . . , sn−1 |

v︷ ︸︸ ︷
vm, . . . , vn−1 | d) =

∑
u∈Zm

2

f(λ(u,v)|lmλ(s)(u) + d) (2)

And the mapping equation between partial transforms in two consecutive stages. Thanks to
the recursive definition of lines, eq. (1), and due to the definition of partial transforms in eq.
(2), the computation of the solution up to any stage, m+1, for any horizontal band v, and any
ascent s, can be expressed as the sum of the summations of two segments of half the length that
ascend σ = ⌊ s

2
⌋; both of which must be already computed in the partial transform up to stage

m.

∼

f m+1(

s︷ ︸︸ ︷
sn−m−1,

σ︷ ︸︸ ︷
sn−m, . . . , sn−1 |

v︷ ︸︸ ︷
vm+1, . . . , vn−1 | d) =

∼

f m(σ| 0,v| d) +
∼

f m(σ| 1,v| d+ sn−m−1 + λ(σ)) (3)

So in order to arrive to the final solution:

∼
f (s|d) =

∼

f n(s0, . . . , sn−1 | d) =
N−1∑
u=0

f(u | lnλ(s)(u) + d)

from an input
∼

f 0(s| − |d) = f(s, d), the aforementioned mapping equation must be enclosed in
a series of for loops on the variables m, s, v and d. Note that the parameters in the functions
are separated by vertical bars (|), while commas (,) are reserved for separating binary indices
within a parameter.

Algorithm 1 is the translation of equation (3) into code, –adding the necessary loops and
zero padding the input to take into account those lines starting below displacement 0 that reach
the input due to their ascent.

The mapping equation is depicted in figure 2 without the mathematical apparatus. It relates
–for a fixed m, d, σ and v but unrolled for sn−m−1 ∈ [0, 1], the last bit of ascent up to that stage–,
two elements of the partial transform at stage m+1 with three elements from the previous stage
of solution, m. In the figure we have designated as α a segment participating in stage m + 1,
with ascent s that starts at d in the vertical band v. It is calculated by joining the segments
designated as A and C on the previous stage.

Segment A, of half the length than α, ascends σ = ⌊ s
2
⌋ from d in vertical band 2v; and

segment C, ascends σ = ⌊ s
2
⌋ in vertical band 2v+1 but starting from d+ σ+1. Meanwhile the

Figure 2: Scheme of computation of forward Radon transform.

computation of β, that ascends s − 1 from d + 1, shares C with α, but additionally needs B,
which is the segment that shares band, and slope with A but starts on d+ 1.

Figure 3: Left to right: an image, its forward DRT constituted by 4 quadrants, its backprojec-
tion.

The effect of applying forward discrete Radon transform on an image can be seen in figure
3. The explained algorithm accounts for the third quadrant from left to right in the complete
DRT.

1.2 Inversion methods

There are two published methods that deal with the inverse or backward discrete Radon trans-
form.10,11 Both use as intermediate step the adjoint transform, also called backprojection. While
in other transforms it is possible to return from the transformed domain to the initial domain
with an algorithm of the same complexity as the one used for the direct path; in the discrete
Radon transform, where summations of the initial data have to be undone, this is not the case.
If we try to revert the steps of the forward transform algorithm, we do not arrive to the backward

algorithm, but to the adjoint operator, or backprojection. A backprojection is illustrated on
the right of the figure 3, and coincides with the ‘unfiltered’ backprojection in Fourier methods,
where there is an imbalance between low and high frequencies unless a ramp filter is applied.

Figure 4: Scheme of the inversion method based on multigrid reduction of error.

The two existing inverse DRT algorithms start by applying backprojection, which will be
covered in subsection 1.3, and then use different strategies to clean that blurred intermediate
result, to arrive to the solution.

Press10 proposes a multigrid method to accelerate an iterative error cleanup in a loop of
successive applications of the direct+adjoint operator. It is illlustrated on figure 4. Starting
from the backprojected image, an iterative error substraction is applied, taking advantage that
the adjoint operator approximates to the inverse operator. The method is further accelerated
solving, for each iteration, at all possible subscales of the problem (illustrated in the figure only
for the first pass).

On the other hand, the method proposed by Marichal et al.11 expands the sinogram to
backproject to an image size that is 3 times bigger than the original. This expanded back-
projection can then be cleaned by deconvolving with the point spread functions, PSFs, of the
direct+adjoint combined operator. It is not exactly a time invariant operator, but the diversity
and distribution of the different PSFs is known before-hand so that it can be cleaned with just
two deconvolution stages, instead of the several ones required by Press’ method, as shown in
figure 5.

1.3 Adjoint operator

The adjoint operator aim is to revert what the forward DRT accomplishes, but as there are data
that has been added together, there is no way to tell them apart. What it does is illustrated in
figure 6, and the corresponding code is supplied in listing 2. The algorithm advances from stage
m to stage m− 1. Three segments of the m-th stage and how they backproject their energy to
segments of half their length in the m− 1 stage, are depicted.

Figure 5: Scheme of the inversion method based on expanded backprojection and PSFs decon-
volution.

In the forward stage, as shown in figure 2, C was half the contribution used to compute α
and β. Now C will be computed as the average of both, α and β. Similarly B can now be
estimated as half β and half γ. Since it is not possible to know what B contributed and what
C contributed in the forward algorithm, we can now only backproject them equally. This data
averaging is responsible for the blurring that needs to be cleaned up for the input image to be
fully recovered.

In the algorithm there is not an explicit division by 2 at each stage, because it is performed
at the end as a unique division by N.

Listing 2: Matlab code to compute the backprojection DRT of a quadrant
1 %% Radon backprojection or adjoint transform of a quadrant

2 function f = qDRTbackproject_FOR(Rf)

3 [N, N] = size(Rf);

4 Rfm = Rf; clear Rf;

5 Rfmm1 = zeros (2*N, N, ’like’, Rfm);

6
7 n = log2(N);

8
9 for m = n-1: -1:0 % stages , log2(N), now in reverse order

10 for d = 0:2*N-1 % for every displacement

11 % slope variable , comprise 3 elements: {v: n-m-1 bits; sigma: m-1 bits; s0: 1 bit}

12 for v = 0:(pow2(n - m - 1) -1); % for every band not transformed yet

13 for sigma = 0:(pow2(m) -1) % within a band , already transformed

14 for s0 = 0:1 % last bit of slope , the one being transformed

15 Rfmm1(d +1, sigma +0+(v.*pow2(m+1)) +1) = ...

16 Rfmm1(d +1, sigma +0+(v.*pow2(m+1)) +1) + ...

17 Rfm(d +1, s0+2* sigma+(v.*pow2(m+1)) +1);

18
19 if ((d+s0+sigma) <= (2*N -1))

20 Rfmm1(d+s0+sigma +1, sigma +(1* pow2(m))+(v.*pow2(m+1)) +1) = ...

21 Rfmm1(d+s0+sigma +1, sigma +(1* pow2(m))+(v.*pow2(m+1)) +1) + ...

22 Rfm(d +1, s0+2* sigma+(v.*pow2(m+1)) +1);

23 end

24 end

Figure 6: Scheme of computation of adjoint Radon transform.

25 end

26 end

27 end

28 Rfm = Rfmm1; % last stage output is next stage input

29 Rfmm1 = zeros (2*N, N);

30 end

31
32 % The output f ends in the upper half of the data

33 f = Rfm(N +1:2*N,:);

34 end

2. FORMAL INVERSE IN TWO-DIMENSIONS

Figure 7: Scheme of computation of direct backward Radon transform.

The first novel contribution of this work is to express as an algorithm the direct reversal of
forward DRT. The derivation of the same has been already published.12 What we present here
is an explicit implementation as code of the ideas set forth therein, as listing 3.

The key idea to arrive to that code is to reconsider the statement given to support the
backprojection internal mechanism: “Since it is not possible to know what B contributed and
what C contributed in the forward algorithm, we can now only backproject them equally.” The
figure 7 suggests us a way to remove that impediment.

Note that we have represented α and β segments in the m-th stage, displaced to d = −s, this
is, they are the first segments on their stage, band and slope that touch the image from below.
In that case, we can be sure that A, half the contribution to α in the forward path, comes from
the zero-padded zone, and therefore C = α. This creates a starting point –a thread to pull on
to unravel the tangle– for calculating the values in stage m − 1 from not only the segments of
stage m, but also from the newly calculated values of this stage: once C has been calculated we
can take out B by subtracting C from β, etc

The concreteness of the algorithm, and its inner workings, which may be too obscured in
Rim’s elucidation of the method are clearly exposed with this figure and the accompanying code.

Listing 3: Matlab code to compute the direct reversal of DRT from a single quadrant
1 %% Radon direct inversion from a quadrant

2 function f = qDRTdirectReverse2D(Rf)

3 [Nd , N] = size(Rf);

4
5 fmp1 = Rf;

6 fm = zeros (2*N, N);

7
8 n = log2(N);

9
10 for m = n-1: -1:0 % stages , log2(N), now in reverse order

11 for v = 0:(pow2(n - m - 1) -1) % for every vertical band

12 for sigma = 0:(pow2(m) -1) % slopes within a band

13 for d = N-2*sigma -1:2*N-2 % for every displacement

14 aux = fmp1(d +1, 1+(sigma *2)+(v*pow2(m+1)) +1)- fm(d +1, sigma +0+(v*pow2(m+1)) +1);

15 if d+1+ sigma <= 2*N-1

16 fm(d+1+ sigma +1, sigma +(1* pow2(m))+(v*pow2(m+1)) +1) = aux;

17 end

18 fm(d+1 +1, sigma +(0* pow2(m))+(v*pow2(m+1)) +1) = ...

19 fmp1(d+1 +1, 0+(sigma *2)+(v*pow2(m+1)) +1) - aux;

20 end

21 end

22 end

23 fmp1 = fm; % last stage output is next stage input

24 fm = zeros (2*N, N);

25 end

26 % The output f ends in the upper half of the data

27 f = fmp1(N+1:2*N,:);

28 end

3. FORMAL INVERSE IN THREE-DIMENSIONS

In a similar way than for two dimensions, the 3D Radon transform can be reversed with an
algorithm of the same complexity than the forward path and attending to just a single portion
of projection angles.

In the case of 3D Radon transform,2 which computes the complete set of plane integrals
of a volume, the solution is composed of 12 dodecants, instead of 4 quadrants. The 3D Radon
transform have been found to be invertible with an adaptation of the multigrid method proposed
by Press. This means that a backprojection algorithm had to be defined, and the necessary
functions to feedback from the DRT domain to the initial domain, in a multigrid form.2

The second novel contribution on this work is that we now establish that this inverse 3D
DRT can be computed much more efficiently with the same intuition that guided the 2D direct
inversion.

In the unrotated dodecant the formulation of a plane has an expression of the form: z −
x · slopex − y · slopey − d = 0, or in discrete, using the same definition of discrete loose line,
that considers ascents instead of slopes: z = lnsx(x) + lnsy(y) + d. There are 2 ascents, but only
one displacement, through z. Let’s take σx = ⌊ sx

2
⌋ = 0, and similarly σy = 0, that is, we

nullify sigmas for a simpler explanation and depiction. Even then, as there are ascents in both
directions, the total ascent can reach height 2, due just to the last bit of ascent per dimension.

Figure 8: Planes of two consecutive stages touching the volume from below.

The equivalent to line α –the first one to touch the initial data, at height z = 0, from below–,
depicted in figure 7 is the plane that ascends from d = −2 in figure 8: z = lm1 (y) + lm1 (x) − 2.
There are another two planes, –for the same σx, σy, band vx, and vy, and m–, that reach height 0
from d = −1. One plane being z = lm0 (y)+ lm1 (x)−1 and the other being z = lm1 (y)+ lm0 (x)−1.
Finally there is a plane, of null ascents, that starts and ends at height 0: z = lm0 (y)+ lm0 (y)+ 0.
Let’s designate those planes as α, β, γ and δ.

Figure 9: Planes from which the patches computation can be started at the m stage.

The right of that picture illustrates that those planes are constituted each internally by 4
plane patches of half the length per dimension. Many of those plane patches are shared among

α, β, γ and δ. If we had not cancelled the sigmas, then all the subplanes on the right would
themselves be tilted. The next figure, 9, illustrates that again we have “a thread to pull on
to unravel the tangle”. α is constituted by the four subplanes: A,F,G and L. But all those
contributions, except for A, when we reach the volume from below for the first time are zero.
With A = α, we can extract C and B, from planes β and γ, and so on. The actual code to
perform direct inversion of 3D Radon transform, starting from a transformed dodecant is given
in listing 4.

Listing 4: Matlab code to compute the direct reversal of 3D DRT from a single dodecant
1 %% Radon direct inversion from a dodecant

2 function f = qDRTdirectReverse3D(Rf)

3 [Nx , N, Nd] = size(Rf);

4
5 fmp1 = Rf; % f at stage m plus 1

6 fm = zeros(N, N, 3*N); % f at stage m

7
8 n = log2(N);

9
10 for m = n-1: -1:0 % stages , log(N), in reverse order

11 for v0 = 0:(pow2(n - m - 1) -1) % not transformed yet

12 for v1 = 0:(pow2(n - m - 1) -1) % not transformed yet

13 for sigma0 = 0:(pow2(m) -1) % already transformed

14 for sigma1 = 0:(pow2(m) -1) % already transformed

15 for d = 2*N-2*sigma0 -1-2*sigma1 -1:3*N-2 %displacements

16 alpha = fmp1 (1+(sigma0 *2)+(v0*pow2(m+1)) +1, ...

17 1+(sigma1 *2)+(v1*pow2(m+1)) +1, ...

18 d +1);

19 if d+1<3*N

20 beta = fmp1 (1+(sigma0 *2)+(v0*pow2(m+1)) +1, ...

21 0+(sigma1 *2)+(v1*pow2(m+1)) +1, ...

22 d+1 +1);

23 gamma = fmp1 (0+(sigma0 *2)+(v0*pow2(m+1)) +1, ...

24 1+(sigma1 *2)+(v1*pow2(m+1)) +1, ...

25 d+1 +1);

26 else beta =0; gamma =0; end;

27 if d+2 < 3*N

28 delta = fmp1 (0+(sigma0 *2)+(v0*pow2(m+1)) +1, ...

29 0+(sigma1 *2)+(v1*pow2(m+1)) +1, ...

30 d+2 +1);

31 else delta = 0; end;

32
33
34 if (d+1+ sigma0 < 3*N)

35 G = fm(sigma0 +(1* pow2(m))+(v0*pow2(m+1)) +1, ...

36 sigma1 +(0* pow2(m))+(v1*pow2(m+1)) +1, ...

37 d+1+ sigma0 +1);

38 else G = 0; end;

39 if (d+1+ sigma1 < 3*N)

40 F = fm(sigma0 +(0* pow2(m))+(v0*pow2(m+1)) +1, ...

41 sigma1 +(1* pow2(m))+(v1*pow2(m+1)) +1, ...

42 d+1+ sigma1 +1);

43 else F = 0; end;

44 L = fm(sigma0 +(0* pow2(m))+(v0*pow2(m+1)) +1, ...

45 sigma1 +(0* pow2(m))+(v1*pow2(m+1)) +1, ...

46 d +1);

47 A = alpha -F-G-L;

48 if (d+2+ sigma0+sigma1 < 3*N)

49 fm(sigma0 +(1* pow2(m))+(v0*pow2(m+1)) +1, ...

50 sigma1 +(1* pow2(m))+(v1*pow2(m+1)) +1, ...

51 d+2+ sigma0+sigma1 +1) = A;

52 end;

53
54 H = fm(sigma0 +(0* pow2(m))+(v0*pow2(m+1)) +1, ...

55 sigma1 +(0* pow2(m))+(v1*pow2(m+1)) +1, ...

56 d+1 +1);

57 C = beta -A-F-H;

58 if (d+2+ sigma0 < 3*N)

59 fm(sigma0 +(1* pow2(m))+(v0*pow2(m+1)) +1, ...

60 sigma1 +(0* pow2(m))+(v1*pow2(m+1)) +1, ...

61 d+2+ sigma0 +1) = C;

62 end;

63
64 B = gamma -A-G-H;

65 if (d+2+ sigma1 < 3*N)

66 fm(sigma0 +(0* pow2(m))+(v0*pow2(m+1)) +1, ...

67 sigma1 +(1* pow2(m))+(v1*pow2(m+1)) +1, ...

68 d+2+ sigma1 +1) = B;

69 end;

70
71 D = delta -A-C-B;

72 fm(sigma0 +(0* pow2(m))+(v0*pow2(m+1)) +1, ...

73 sigma1 +(0* pow2(m))+(v1*pow2(m+1)) +1, ...

74 d+2 +1) = D;

75 end % for d

76 end % for sigma1

77 end % for sigma0

78 end % for v1

79 end % for v0

80 fmp1 = fm;

81 fm = zeros(N, N, 3*N);

82 end % for m

83
84 % The output is in the upper side of the data

85 f = fmp1(:, :, 2*N+1:3*N);

86 end

4. CHARACTERIZATION OF DIRECT REVERSAL AGAINST NOISE

The algorithms proposed for direct 2D and 3D inversion of the DRT do recover perfectly those
images, or 3D volumes, that gave rise to the transforms presented to them as input. But only
if the inputs to revert came exactly from an unmodified output of the direct DRT algorithm.

In 2D, any image, of size N ×N , has a discrete Radon transform where each quadrant has
size N × (N(N − 1)/2) = 3N2/2−N/2 and considering the 4 quadrants: 6N2 − 2N . The size
and shape of a 2D DRT was illustrated by the intermediate image in figure 3. Since the domain
and codomain of the direct DRT operator are not the same size, the mapping between elements
among them cannot be bijective: the DRT is an injective non-surjective operator. There will be
codomain elements to which do not map any element of the domain.

The elements of the codomain IR4×N×N(N−1)/2 have to fulfill a number of constraints if they
came from the application of direct DRT to an image. In particular, note that the minimum
alteration of an image: modifying the value of a single pixel by a minimum amount, generates
changes in its DRT in 4N positions: the coordinates of all those lines to which the point belongs.
See figure 10 (a).

Also note that
∑

∀d

∼
f (s, d) =

∑
∀x,y f(x, y), i.e. the sum of columns of a given slope, s, of

a quadrant, must be equal to each other and equal to the total cumulative value of the input

image. In that sense, modifying an isolated value of
∼
f (s, d) will cause this rule not to be fulfilled.

(a) (b)

Figure 10: (a) DRT of a delta. (b) Inverse DRT of a delta.

Figure 10 illustrates the direct and inverse transform of a delta, for N = 16. The addition of
an unity in a point in an, otherwise, null image causes an increment by an unity of N elements,
per quadrant, in the DRT codomain: marking the displacements where this activated point is
seen from each slope. In the reversal DRT path, the addition of an unity in a transformed
quadrant, causes an absolute increment of over 300 unities, when instructed to determine which
image generated that ‘imposible’ DRT. The already known inversion methods, which act by
refinement of the backprojection, would have returned an almost null image, with a very faint
line at the slope and offset coordinates of the ‘incorrectly’ activated delta.

One of the future lines of this contribution is to establish whether the inverse computation
algorithm itself can be modified so that while it computes, it verifies the fulfillment of the con-
straints that the DRTs must meet, and if divergences are found, whether they can be corrected
on the fly.

5. CONCLUSIONS

We have introduced, in some detail, the two-dimensional direct and adjoint Radon transforms
by multiscale method: the 2D DRT. We have also analyzed the two already known methods
of inversion in the 2D case. We also discussed the existing methods in 3D, for the direct and
inverse path.

We have unified the notations with simple ideas that explain how an inversion method is
possible with exactly the same computational burden as in the direct path. Which was not the
case with the already known methods. We have given such inversion algorithms for 2D and 3D
DRT.

They are faster than previously known backward algorithms, and can invert from only a
quadrant or dodecant. But they incur in major error when applied to elements of the forward
DRT codomain to which no element maps. It remains to be seen whether it is possible that such
non-bijective codomain elements can be mapped backward to a nearest neighbor image, without
a computational cost that impacts on the acceleration they exhibit compared to conventional
methods.

Disclosures

The authors declare that there is no conflict of interest.

Acknowledgements

This work has been partially supported by the project ProID2020010066 of ‘Estrategia de Es-
pecialización inteligente de Canarias RIS-3’, cofunded by Government of the Canary Islands
and European Regional Development Fund (ERDF). J.G.M.-H. has been partially supported
by ‘Convenio de investigación Wooptix-ULL: Asesoramiento técnico sobre consumer electronic
con tecnoloǵıa lightfield, 2022’. R.O.-G. attendance has been supported by University of La La-
guna’s research personnel training program, funded by ‘Universidad de La Laguna’ and ‘Banco
de Santander’.

REFERENCES

[1] J. Radon, “Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Man-
nigfaltigkeiten,” Akad. Wiss. 69, pp. 262–277, 1917.

[2] J. G. Marichal-Hernandez, Óscar Gómez-Cárdenes, F. L. R. González, D. H. Kim, and J. M.
Rodŕıguez-Ramos, “Three-dimensional multiscale discrete Radon and John transforms,” Optical
Engineering 59(9), pp. 1 – 23, 2020.

[3] J. G. Marichal-Hernández, J. P. Lüke, F. L. R. González, and J. M. Rodŕıguez-Ramos, “Fast
approximate 4-d/3-d discrete radon transform for lightfield refocusing,” Journal of Electronic
Imaging 21(2), p. 023026, 2012.

[4] A. Averbuch, R. R. Coifman, D. L. Donoho, M. Israeli, and Y. Shkolnisky, “A Framework for
Discrete Integral Transformations I-The Pseudopolar Fourier Transform,” SIAM J. Scientific
Computing 30(2), pp. 764–784, 2008.

[5] C. F. Van Loan, Computational Frameworks for the Fast Fourier Transform, SIAM, Society for
Industrial and Applied Mathematics, 1992.

[6] W. Götz and H. Druckmüller, “A fast digital Radon transform—An efficient means for evaluating
the Hough transform,” Pattern Recognition 29(4), pp. 711–718, 1996.

[7] M. L. Brady, “A fast discrete approximation algorithm for the Radon transform,” SIAM Journal
on Computing 27(1), pp. 107–119, 1998.

[8] A. Brandt and J. Dym, “Fast calculation of multiple line integrals,” SIAM Journal on Scientific
Computing 20(4), pp. 1417–1429, 1999.

[9] A. Kingston, I. Svalbe, and J.-P. Guédon, “The discrete Radon transform: a more efficient ap-
proach to image reconstruction?,” in Proc.SPIE, 7078, pp. 7078 – 7078 – 10, 2008.

[10] W. H. Press, “Discrete Radon transform has an exact, fast inverse and generalizes to operations
other than sums along lines,” Proceedings of the National Academy of Sciences 103(51), pp. 19249–
19254, 2006.

[11] J. G. Marichal-Hernández, R. Oliva-Garćıa, Ó. Gómez-Cárdenes, I. Rodŕıguez-Méndez, and J. M.
Rodŕıguez-Ramos, “Inverse multiscale discrete radon transform by filtered backprojection,” Ap-
plied Sciences 11(1), 2021.

[12] D. Rim, “Exact and fast inversion of the approximate discrete radon transform,” Appl. Math.
Lett. 102, p. 106159, 2020.

[13] W. Li, K. Ren, and D. Rim, “A range characterization of the single-quadrant ADRT,”
ArXiv abs/2010.05360, 2020.

	Introduction
	Discrete Radon transform
	Inversion methods
	Adjoint operator

	Formal inverse in Two-dimensions
	Formal inverse in Three-dimensions
	Characterization of direct reversal against noise
	Conclusions

