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Extended Abstract
Muchos de los fenómenos que tienen lugar en el Sol tienen un impacto directo sobre la vida en La
Tierra, por lo que es de gran importancia profundizar en su compresión. Uno de los problemas abiertos
en el estudio de la atmósfera solar es el del calentamiento cromosférico. En condiciones de equilibrio
radiativo, se espera que la temperatura decrezca con la altura. No obstante, las observaciones muestran
la situación opuesta, por lo que deben existir otros mecanismos de transporte energético que justifiquen
el incremento de temperatura. Uno de los mecanismos propuestos es el calentamiento por la disipación
de energía de ondas, en especial ondas de choque, objeto de estudio en el presente trabajo.

Las condiciones de temperatura y densidad de la cromosfera hacen que esta se comporte como
un plasma parcialmente ionizado y que la frecuencia de colisiones entre las distintas especies que lo
componen sea órdenes de magnitud inferior menor que en la fotosfera. El campo magnético domina
la dinámica del sistema, lo que se conoce como el régimen magnetohidrodinámico. Estos aspectos
motivan la descripción de plasma como un sistema formado por dos especies: cargas y neutros.
Las cargas, sujetas a la acción del campo magnético, arrastran en su movimiento a los neutros por
acoplamiento colisional, los cuales solo están sujetos a fuerzas de empuje y al campo de presiones.

Dado que el Sol y, por tanto, la cromosfera, están formados mayoritariamente por hidrógeno, nos
centraremos en la descripción de un plasma de hidrógeno puro bajo el punto de vista del modelo de
dos fluidos. Para ello, partimos de la descripción microscópica para un sistema de partículas formado
por un número arbitrario de especies, cuya evolución viene dada por la ecuación de Boltzmann. Esta
incluye los términos colisionales, que describen la interacción entre las distintas especies. Realizando
un promedio estadístico sobre la función de distribución de cada especie, derivamos las magnitudes
macroscópicas que describen al sistema, tales como la velocidad promedio, la presión o la temper-
atura. Los tres primeros momentos de la ecuación de Boltzmann nos conducen a las ecuaciones de
conservación de la masa, el momento y la energía. Este sistema de ecuaciones debe ser completado con
las ecuaciones que describen el campo magnético, las ecuaciones de Maxwell, además de la ecuación
que relaciona la densidad de corriente eléctrica con el campo electromagnético, la ley de Ohm. Las
ecuaciones obtenidas serán particularizadas para los modelos de dos fluidos y un fluido.

Si bien la descripción un fluido elimina la presencia de los términos colisionales, introduce un término
de autointeracción a través de la ley de Ohm de gran importancia en física solar: la difusividad
ambipolar. Este término no está presente en la descripción del modelo de dos fluidos, lo que nos
permite confrontar las predicciones de cada modelo y estudiar las limitaciones del modelo de un solo
fluido.

Para la realización de los experimentos numéricos, se usó el código Mancha3D-2F, que permite la
configuración de simulaciones de dos fluidos y un fluido, desarrollado en el IAC. El acoplamiento de las
ecuaciones de dos fluidos hace que tan solo sea posible obtener soluciones analíticas en muy pocos casos,
lo que dificulta la comprensión y evaluación de las soluciones numéricas obtenidas. Los experimentos
presentados se diseñaron incrementando gradualmente la complejidad de las condiciones físicas, de
forma que se puedan estudiar en profundidad los comportamientos introducidos por cada elemento
y aislar los efectos numéricos para tratarlos adecuadamente. Nos limitamos al estudio de atmósferas
1D. En primer lugar, se estudia la propagación de ondas acústicas en una atmósfera homogénea. Para
su configuración, se genera una perturbación en la base de la atmósfera y se estudia su propagación
a lo largo de ella. En este caso, se puede encontrar una solución exacta a las ecuaciones de dos
fluidos, que comparamos satisfactoriamente con la solución numérica. Se propone una atmósfera con
temperaturas iguales para neutros y cargas y se estudia la relación de dispersión, la cual presenta
dos modos y muestra tres regiones diferenciadas: una región de crecimiento del amortiguamiento,
otra región de transición y una última región de amortiguamiento saturado. Mientras que la primera



iv

región nos conduce a una solución muy similar a la de un fluido en condiciones de alto acoplamiento,
la segunda y la tercera nos muestran la primera de las limitaciones de este planteamiento: el modelo
un fluido es una aproximación para frecuencias inferiores a las de colisiones.

En el segundo experimento, incluimos la estratificación por gravedad del medio y usamos como
atmósfera de equilibrio el modelo numérico VAL-C, que describe la cromosfera solar. Para comprobar
que los resultados fuesen correctos, se estudiaron regímenes de bajas frecuencias y se comparó la
solución de dos fluidos con una solución de un fluido y una aproximación analítica que usa como base
la solución de una atmósfera isoterma. Para altas frecuencias, se observó el amortiguamiento por
colisiones entre neutros y cargas y el impacto del uso de distintas secciones eficaces de colisiones. Se
estudió la formación y propagación de ondas de choque y se estudió el peso de los términos colisionales
en la ecuación de energía interna, mostrándose mucho más relevantes en la dinámica de las cargas.

En el último bloque de experimentos, se incluyó un campo magnético constante orientado en una
dirección perpendicular a la de la atmósfera para poder estudiar la propagación de ondas magnetoacús-
ticas. El campo se ajusta de tal manera que la región de transición entre el régimen hidrodinámico y
magnetohidrodinámico su ubique a una cierta altura. En este experimento, confrontamos los efectos
colisionales del modelo de dos fluidos con el término ambipolar del modelo de un fluido. Se encuentra
que ondas de periodo 5 s se propagan hasta las últimas capas de la cromosfera mientras que las de
1 s apenas logran atravesar la región de transición. También se encuentra que el amortiguamiento
ambipolar es mucho más eficiente que el predicho por el modelo de dos fluidos, lo que lleva a que el
segundo forme ondas de choque mientras que el primero no, bajo las mismas condiciones. Finalmente,
estudiamos el calentamiento neto de la atmósfera con el tiempo para distintas condiciones, obteniendo
que las de mayor amplitud y menor frecuencia son las que conducen a un calentamiento más eficiente.
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1 Introduction

The Greeks called the Sun “Helios”; the Romans called it“Sol”. The Sun is a G-type main sequence
star, a nearly perfect sphere of hot plasma. It is our closest star, therefore, our knowledge of other
stars and theoretical models can be improved thanks to its observational accessibility. Solar activity
directly affects life on Earth and space weather. Improving our capability to predict energetic events
such as coronal mass ejections or strong flares is important due to the emission of dangerous radiation,
highly energetic particles and the effects they induce on the increasing number of artificial satellites
and geomagnetic storms.

The Sun is a large natural plasma laboratory that can be studied in detail. A plasma is a gas
composed by neutral particles (atoms or molecules), ions and free electrons, where the electromagnetic
forces play a main role in their behaviour. The stratification of the medium introduced by the solar
gravitational field and the extreme temperature and density conditions make the solar plasma a
complex system and a challenge from the point of view of theoretical modelling. Fortunately, its
observational study of the plasma behaviour is possible because we can spatially resolve its surface in
observations.

The Sun is mostly made up of hydrogen (about 92.1% of the number of atoms, 74.9% of the mass),
helium (7.8% of the number of atoms and 23.8% of the mass). The remaining 0.1% (about the 2%
of the mass) consists of heavier elements, with oxygen (1̃% of the mass), carbon (0.3%), neon (0.2%)
and iron (0.2%) being the most abundant (Hansen & Kawaler, 2012).

1.1 The layers of the Sun’s atmosphere

The atmosphere is the outer part of the Sun from where radiation escapes into space. It is composed
by three layers: the photosphere, the chromosphere and the corona (see Fig. 1.1).

The photosphere is the deepest layer below which the Sun becomes opaque to the radiation due
to the decreasing amount of H− ions (Gray, 2005). It is about 500 km thick and has approximately
a black body spectrum of 6300 K when observed at disk centre. The plasma convection produces
granular structures and the magnetic activity leads to the formation of sunspots and other structures.

The chromosphere is above the photosphere and has an extension of 2000 km. The chromospheric
spectrum show absortion lines wider than the photospheric ones when it is observed on the disc.
Outside the disk, emission lines dominate the spectrum. The chromosphere is usually observed in
Hα, one of the strongest lines. It is visible to in the Calcium-K line, a line of CaII in the violet
part of the solar spectrum. The temperature grows with height, from 4000 K to 8000 K. Many
interesting phenomena can be observed in the chromosphere, which is very complex and dynamic.
As an example, one can cite filaments, gigantic clouds of relatively cool gas (in comparison with the
surrounding million-degree corona) that rise up from the photosphere and feed coronal mass ejections.
Spicules are small jet-like ejections with the appearance of long thin fingers which rise the top of the
chromosphere and return to the base.

The temperature continues growing up above the chromosphere from 8000 K to about 500000 K in
a very narrow layer, called the transition region. At the top of the atmosphere, the corona reaches
temperatures higher than 106 K. The density of particles is extremely low, about 1012 times less dense
than the photosphere. Under these conditions, conventional spectral lines cannot be used to study
the corona. It can be better observed in iron emission lines at very high ionization states.
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Figure 1.1: From left to right: white light image of the photosphere, Hα image of the chromosphere and
X-ray image of the corona. The images were taken from https://solarscience.msfc.nasa.gov.

1.2 The problem of the chromospheric heating
If the radiation is the dominant mechanism of energy transport in the chromosphere, the tempera-
ture should decrease with the height. Observations shows the opposite situation, the highest layers
are hotter than the lowest ones. Therefore, another heating mechanism must exist to explain the
observations. Waves have been proposed in this sense, since waves with frequencies in the range of
3-5 mHz are found to dissipate energy in the chromosphere. A review of theoretical studies of wave
propagation through the atmospheric layers are shown in Khomenko & Calvo Santamaria (2013) and
Khomenko & Collados (2015). The heating by acoustic waves proposed by Biermann (1946) and
Schwarzschild (1948) is discussed by Kalkofen (2007). Damping effects become specially important
when we consider shock waves. Shocks formed in the chromosphere have been observed (Carlsson &
Stein, 2002; Centeno et al., 2009).

There are several non-ideal mechanisms that can damp perturbations, such as viscosity, radiation
exchange, thermal conduction or electrical resistivity. All of them can be included in a quasi-MHD
description. The damping by ion-neutral friction needs a two-fluid approach to be studied. At the
bottom of the chromosphere, the plasma is mainly composed by neutral hydrogen. Since the ionization
fraction increases with height and the density decreases, the effects of the interaction between neutrals
and charges becomes more important, even more considering that the dynamic of the charges is
dominated by the magnetic field, driving the neutrals by the collisional coupling. These conditions
motivates the use of a two-fluid approach.

The single-fluid approach deals well with slow processes in partially ionized plasmas, but a two-fluid
description is necessary for the relatively fast ones (Zaqarashvili et al., 2011). Here “fast” or “slow”
is measured with respect to typical collisional times (see Fig.1.2). When the the time scale of the
perturbation is similar to the characteristic time scale of collisions, the momentum transfer between
neutrals and charges becomes more efficient, which causes the damping of waves.

1.3 The state of the art
Chromospheric observations generally show that neutrals and charges are coupled. The decoupling
effects should be happening at time and spatial scales below the observational resolution. There are
only a few direct observations of possible neutral-ion decoupling in solar prominences: the neutral
diffusion in prominences modelled by Gilbert et al. (2007) and the indirect evidence obtained by de
la Cruz Rodríguez & Socas-Navarro (2011) who deduced misalignment between the magnetic field
orientation and the visible direction of chromospheric fibrils.

A more direct measurement can be obtained from the Doppler shift of spectral lines formed by
neutral and charged atoms. By observing ion Fe II and neutral Fe I lines simultaneously over the
same volume of plasma, differences between ion and neutral velocities of the Evershed flow have been
found in sunspot penumbrae as deep as the photosphere by Khomenko et al. (2015). In a similar way,
Khomenko et al. (2016) measured Doppler shifts in Ca II 8542 Å and He I 10830 Å emission lines in
a solar prominence. The results suggest that the observed differences in velocities are a physical effect

https://solarscience.msfc.nasa.gov
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Figure 1.2: Collision, cyclotron and Langmuir frequencies calculated in the Sun atmosphere as a function of
height. The species which appear in the plot are: neutrals (n), ions (i), and electrons (e). Part
of Fig. 1 from Khomenko et al. (2014a).

and not an observational artifact.
Multi-fluid simulations are far from reproducing realistic situations yet. This is especially true

because of the need to consider non-ideal MHD effects, of which we are starting to glimpse their
importance and implications. Most numerical models of partially ionized solar plasma use a single-fluid
approach, introducing the partial ionization effects through a generalized Ohm’s law (Khomenko &
Collados Vera, 2012; Cheung & Cameron, 2012; Martínez-Sykora et al., 2012; Khomenko et al., 2014b;
Shelyag et al., 2016; Khomenko et al., 2017, 2018). Regarding the two-fluid modeling, Maneva et al.
(2017) modeled magneto-acoustic wave propagation in the solar stratified chromosphere including
effects of impact ionization and radiative recombination. Martínez-Gómez et al. (2017) study the
propagation of waves in a homogeneous plasma in a five-fluid model with two hydrogen components
and three helium components. Magnetic reconnection has also been studied in the two-fluid approach
(Smith & Sakai, 2008; Leake et al., 2012a; Lukin et al., 2013; Alvarez Laguna et al., 2014; Hillier et al.,
2016).

Increasing the number of fluids in the theoretical formalism is not only a computational challenge,
it is also difficult from the point of view of the analytic description of the interaction terms and
in the configuration of self-consistent equilibrium conditions. The possibility to perform multi-fluid
magnetohydrodynamic simulations is still recent and more efforts are necessary to obtain realistic
results that can be compared with observations.



2 Objectives
The purpose of this work is to study two-fluid effects in the solar chromosphere in the propagation
of monochromatic waves and shock waves. In addition, it can be considered as a validation of the
code Mancha-2f (Popescu Braileanu, 2020). Different initial conditions have been used for the test
simulations and the results checked with those obtained by Popescu Braileanu (2020). The main
objectives pursued in this project were the following:

• Get familiar with the multifluid plasma description

• Study the properties of the collisional terms in the two-fluid approach

• Test the code Mancha-2f

• Compare the two-fluid and the single-fluid solutions

• Develope intuition interpreting numerical results

• Study the propagation of waves in the linear regimen

• Study the formation and propagation of shock waves

• Look for evidence of chromospheric heating due to neutral-charge interaction
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3.1 From microscopic to macroscopic plasma description
We consider a plasma composed by different species α. From the point of view of classical mechanics,
the instantaneous dynamic state of each particle is determined by its position and velocity, so its
movement is properly characterised as a trajectory in the phase space defined by the coordinates
(r⃗, v⃗).

Let Nα(r⃗, v⃗, t) denote the number of particles of type α inside the volume d3rd3v around the phase
space coordinates (r⃗, v⃗) at the instant t. The distribution function of each specie, fα(r⃗, v⃗, t), is defined
as the density of particles inside a differential element of phase space volume:

fα(r⃗, v⃗, t) =
d6Nα(r⃗, v⃗, t)

d3rd3v
(3.1)

This is a function of main relevance in kinetic theory because it provides a complete statistical
description of the system and allows us to deduce the macroscopic physical magnitudes.

In the absence of collisions, the system fulfils the conditions of Liouville’s theorem (see Bittencourt,
2004) and the time evolution of the distribution function is given by:

Dfα
Dt

=
∂fα
∂t

+ v⃗∇fα + a⃗∇vfα = 0 (3.2)

The operator ∇ is the spatial gradient and ∇v is the velocity space gradient. In our case, acceleration
has the following form,

a⃗ = g⃗ +
qα
mα

(v⃗ × B⃗ + E⃗) (3.3)

where qα is the charge and mα the mass of the particle of kind α.

Under this consideration, the density of representative points in phase space remains constant in
time (Goldstein, 1980). In presence of collisions, particles of type α inside the volume d3rd3v at time
t may be removed from it at time t’ and particles of type α initially outside this volume may end up
inside it (Bittencourt, 2004). The net gain or loss of particles of type α as a result of collisions can be
introduced as ∂fα(r⃗,v⃗,t)

∂t

∣∣∣
coll

d3rd3vdt. This leads from Liouville’s equation to Boltzmann’s equation,

Dfα
Dt

=
∂fα
∂t

∣∣∣∣
coll

(3.4)

The description of the equation is incomplete since the form of the collisional term is not provided.
An approximation for this term will be discussed at the end of this section.

As we point previously, the distribution function allows us to deduce macroscopic magnitudes
from the microscopic variables using statistical mechanics. In this sense, the density of particles is
introduced as:

nα(r⃗, t) =

∫
v

fα(r⃗, v⃗, t)d
3v (3.5)

This definition is especially important because of its statistical meaning; the density of particles is
the norm of the marginalized distribution in space and time.
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Then, the mean velocity is introduced as:

u⃗α(r⃗, t) =
1

nα(r⃗, t)

∫
v

v⃗fα(r⃗, v⃗, t)d
3v (3.6)

Once this definition is introduced, it is convenient to write the microscopic velocity v⃗, as the sum
of its mean velocity u⃗α and a component whose mean value is null, the random velocity c⃗α,

v⃗ = u⃗α + c⃗α (3.7)

From this point, we can introduce the other macroscopic fields of interest: the stress tensor and the
heat flux1:

p̂α = mαnα⟨c⃗α ⊗ c⃗α⟩

q⃗α =
1

2
mαnα⟨c2αc⃗α⟩

(3.8)

where the symbol ⊗ stands for the external product operation and ⟨⟩ denotes the ensemble average
defined as:

⟨χα(r⃗, v⃗, t)⟩ =
1

nα(r⃗, t)

∫
v

χα(r⃗, v⃗, t)fα(r⃗, v⃗, t)d
3v (3.9)

applied to every individual component of the stress tensor and heat flux vector.
The scalar pressure is defined from the stress tensor as:

pα =
1

3
Tr(p̂α) (3.10)

Finally, the temperature is introduced as

pα =
1

3
mαnα⟨c2α⟩ = nαkBTα (3.11)

where kB is the Boltzmann constant. The velocity distribution of a gas in thermal equilibrium
follows a Maxwelian distribution, which does not depend on the direction of velocity and is completely
characterized by its temperature.

3.2 Multifluid equations
Once the main thermodynamical fields are introduced, the multi-fluid equations can be shown. Ac-
cording to Khomenko et al. (2014a) and Goedbloed et al. (2019), the zero, first and second moments
of Boltzmann equation are given by:

∂ρα
∂t

+∇(ραu⃗α) = Sα (3.12)

∂(ραu⃗α)

∂t
+∇(ραu⃗α ⊗ u⃗α + p̂α) = qαnα(E⃗ + u⃗α × B⃗) + ραg⃗ + R⃗α (3.13)

∂

∂t

(
eα +

1

2
ραu

2
α

)
+∇

[
u⃗α

(
eα +

1

2
ραu

2
α

)
+ p̂αu⃗α + q⃗α

]
= qαnαu⃗αE⃗ + ραu⃗αg⃗ +Mα (3.14)

1The notation for electrical charge qα and heat flux q⃗α may be confuse. If it is necessary to use the modulus of heat
flux, it would be denoted by |q⃗α|.
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The equations includes the internal energy

eα =
pα

γ − 1
(3.15)

with the adiabatic index γ = 5
3 for an ideal monoatomic gas.

Note that when we consider the set of equations for the photons, the conservation equations acquire
the particular form of the radiative transfer equations (Mihalas, 1978).

3.2.1 The collisional terms

Collisional terms are defined as follows:

Cα =
∂fα
∂t

∣∣∣∣
coll

Sα = mα

∫
V

Cαd
3v

R⃗α = mα

∫
V

v⃗Cαd
3v

Mα =
1

2
mα

∫
V

v2Cαd
3v

(3.16)

In order to satisfy the mass, momentum and energy conservation, collisional terms must fulfill the
conditions

∑
α Sα = 0;

∑
α R⃗α = 0⃗;

∑
α Mα = 0. They can be split as the sum of an elastic term (for

which kinetic energy is conserved) plus an inelastic term. The latter terms are related with processes
as ionizations, recombinations or charge exchange (Khomenko et al., 2014a; Braginskii, 1965) which
are out of the purposes of our study, so we will focus only on the elastic ones.

A simple method to describe elastic collisional terms is the Krook model approach, also called the
relaxation model. It assumes the collisional effects as perturbations that take the system from a state
fα(r⃗, v⃗, t) to the equilibrium state fα,0(r⃗, v⃗) in a relaxation time ταβ (Bittencourt, 2004) that is related
to the characterisitic collisional time between particles α and particles β. The term is given by

Celastic
αβ = −fα − fα,0

ταβ
(3.17)

where Celastic
α =

∑
β C

elastic
αβ . The collisional frequency can be introduced as ναβ = τ−1

αβ .
As elastic collisions do not lead to the creation or destruction of particles, Selastic

α = 0. In the case
of the first order elastic collisional term, Braginskii (1965) showed that it can be written as

R⃗elastic
α =

∑
β

ραναβ(u⃗β − u⃗α) (3.18)

using the Landau approach, a generalization of the Krook approach.
In this latter case, the second order elastic collisional term is shown to be (Braginskii, 1965):

Melastic
α = R⃗elastic

α +
∑
β

[
u⃗α

1

2
ραναβ(u⃗β − u⃗α)

2 +
1

2
ραναβ

(
3kBTβ

mβ
− 3kBTα

mα

)]
(3.19)

The first term is the work done by the momentum collisional term, the second is the frictional
heating and the third term is known as thermal exchange.
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The collisional frequency can be expressed in terms of the temperature as follows:

ναβ = nβ
mβ

mα +mβ

√
8kBTαβ

πmαβ
σelastic
αβ (3.20)

where Tαβ =
Tα+Tβ

2 can be chosen as reference temperature, mαβ =
mαmβ

mα+mβ
and σelastic

αβ is the elastic
cross section.

It is important to note that,
ραναβ = ρβνβα (3.21)

so, generally, ναβ ̸= νβα.

3.2.2 Description of electromagnetic field
The system of momentum equations must be closed with the equations that describe the electromag-
netic behaviour of the plasma. On one side, the Maxwell equations,

∇ · E⃗ =
∑

α qαnα

ϵ0

∇× E⃗ = −∂B
∂t

∇ · B⃗ = 0

∇× B⃗ = µ0J⃗

(3.22)

where ϵ0 is the vacuum permittivity and µ0 the vacuum permeability. The displacement current term
is neglected in Ampère’s law, a reasonable assumption for non-relativistic flux. On the other side, the
Ohm’s law provides an expression to obtain the density current J⃗ , defined as:

J⃗ =
∑
α

qαnαu⃗α (3.23)

Depending on the approach of the study, the way to express the general equation of Ohm’s law may
be different, according to the particular characteristics of the problem. So, a general and a particular
form of Ohm’s law in the two-fluid and single-fluid models will be discussed in the following sections.

It is usual to introduce the charge neutrality condition in the plasma definition. In most of the
cases, a plasma with a net charge leads to unstable configurations. Mathematically, the condition is
expressed as

∑
α qαnα = 0. This condition will be present in further calculations.

In theoretical descriptions, electromagnetic equations are presented as before. In numerical imple-
mentations, the Gauss law for the electric field is not used due to the charge neutrality condition and
the electric field is obtained from the Ohm’s law. The current density J⃗ is obtained from the Am-
pere’s law and the induction equation gives an expression for the magnetic field. Nevertheless, small
perturbations and numerical oscillations allows local violations of first and third Maxwell equations
and they must be checked explicitly by the numerical scheme of the code to ensure the quality of the
result.

The set of equations presented until now lay the foundations of the theoretical formalism that
sustains our study. In the next sections of the chapter, the particular cases of two-fluid neutral-charge
and single-fluid models will be discussed.

3.3 Two fluid equations
Before beginning with the description of the equations, let us to introduce one of the main parameters
in plasma physics,

βplasma =
p

pm
= p

(
B2

2µ0

)−1

(3.24)
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where pm is the magnetic pressure.
In case of βplasma > 1, the gas pressure dominates over the magnetic pressure, which is called

the hydrodynamic regime. This is the case of the solar photosphere. If βplasma < 1, the magnetic
field dominates the dynamics of the system, which means that we are in the magnetohydrodynamic
domain. In solar physics, the region of transition between both cases indicates the beginning of
the cromosphere, in which βplasma decreases with the altitude. Under these conditions, a different
dynamical behaviour is expected between neutral and charged particles because the former are not
affected by the electromagnetic field whilst the latter are dominated by it. This fact motivates a two
fluid formalism in which both groups of species are differentiated. The two fluids neutral-charged set
of momentum equations was shown to be as follows (Khomenko et al., 2014a; Goedbloed et al., 2019):

∂ρn
∂t

+∇(ρnu⃗n) = Sn (3.25)

∂ρc
∂t

+∇(ρcu⃗c) = −Sn (3.26)

∂(ρnu⃗n)

∂t
+∇(ρnu⃗n ⊗ u⃗n + p̂n) = ρng⃗ + R⃗n (3.27)

∂(ρcu⃗c)

∂t
+∇(ρcu⃗c ⊗ u⃗c + p̂c) = J⃗ × B⃗ + ρcg⃗ − R⃗n (3.28)

∂

∂t

(
en +

1

2
ρnu

2
n

)
+∇

[
u⃗n

(
en +

1

2
ρnu

2
n

)
+ p̂nu⃗n + q⃗n

]
= ρnu⃗ng⃗ +Mn (3.29)

∂

∂t

(
ec +

1

2
ρcu

2
c

)
+∇

[
u⃗c

(
ec +

1

2
ρcu

2
c

)
+ p̂cu⃗c + q⃗c

]
= J⃗E⃗ + ρcu⃗cg⃗ −Mn (3.30)

Let us denote the group of indices for all species as A. It can be decomposed as A = Ac

⋃
An, being

each subgroup the group of indexes for charges and neutrals, respectively. The velocity of the center
of mass for neutrals and charges can be introduced as:

u⃗n =

∑
α∈An

ραu⃗α∑
α∈An

ρα
; u⃗c =

∑
α∈Ac

ραu⃗α∑
α∈Ac

ρα
(3.31)

The other thermodynamic magnitudes for neutrals and charges can be obtained simply as the
corresponding sum over the species of the respective subgroup.

We show the equations for a purely Hydrogen plasma. Regarding the collisional terms, some
simplifications must be done in order to make practical use of them (Khomenko et al., 2014a; Popescu
Braileanu et al., 2019a). In case of the first moment,

R⃗elastic
n ≈ −(ρeνen + ρiνin)w⃗ (3.32)

where w⃗ = u⃗n − u⃗c is the two fluid neutral-charge drift velocity.
Defining the collisional parameter,

α =
ρeνen + ρiνin

ρnρc
(3.33)

such as the effective collision frequencies between charges and neutrals fulfill νcn = αρn and νnc = αρc,
the collisional momentum exchange for neutral can be written as:

R⃗elastic
n = −αρnρcw⃗ (3.34)
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Melastic
n = −

[
1

2
(u2

n − u2
c) +

1

γ − 1

kB
mn

(Tn − Tc)

]
αρnρc (3.35)

The collisional parameter defined as (3.33) is only a function of the average temperature of neutrals
and charges,

α =
min

m2
n

√
8kBTcn

πmin
σelastic
in +

men

m2
n

√
8kBTcn

πmen
σelastic
en (3.36)

considering the constant values σelastic
in = σelastic

en ≈ 10−19m2 (Leake et al., 2012b; Osterbrock, 1961).

Then, let us take a look into the equation of state. For the case of a purely Hydrogen plasma,
ne = ni as a consequence of charge neutrality. From (3.11), the equations of state for neutrals and
charges are given by:

pα = nαkBTα (3.37)

In addition, nα = ρα

µαmn
, with the average particle mass2 for neutrals µn = 1 and for charges3

µc ≈ 0.5, so:
pα =

ρα
µαmu

kBTα (3.38)

Another key point of the model is the Ohm’s law. In this section, we will take as reference the
velocity of the center of mass for charges, so the drift velocity for species of kind α will be defined as:

w⃗α,c = u⃗α − u⃗c (3.39)

The general Ohm’s law can be obtained as the weighted sum of the momentum equation of each
species with the charge to mass ratio of specie (only charged particles contribute in the sum). Usually,
inertial terms of the electron momentum equation are neglected at the beginning of the approach
(Khomenko et al., 2014a; Ballester et al., 2018; Braginskii, 1965). In these terms, the equation is
shown to be:∑

α

ρα

(
qα
mα

)2

(E⃗ + u⃗α × B⃗) =
∂J⃗

∂t
+∇(J⃗ ⊗ u⃗c + u⃗c ⊗ J⃗)

+∇
∑
α

(
qα
mα

ραw⃗α,c ⊗ w⃗α,c

)
+
∑
α

qα
mα

∇p̂α −
∑ qα

mα
R⃗α

(3.40)

The contribution of gravity terms cancels by the charge neutrality. It is important to note that the
term u⃗c ⊗ J⃗ was obtained as u⃗c ⊗ J⃗ ′ but, since the charge neutrality condition,

J⃗ ′ =
∑
α

qαnαw⃗α,c = J⃗ (3.41)

If we neglect terms proportional to me

mi
, second order terms and consider stationary currents

(Khomenko et al., 2014a; Popescu Braileanu et al., 2019a), the two-fluid Ohm’s equation is:

E⃗ + u⃗c × B⃗ = η̃H J⃗ × B⃗ − η̃H∇pe + η̃J⃗ + η̃Dw⃗ (3.42)

2It is more usual to define the average mass by using the atomic mass unit mu. By simplicity, we use mn in our
calculus.

3We have that ρc =
(me+mn)

2
nc ≈ mn

2
nc.
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where

η̃H =
1

ene

η̃ =
ρe(νen + νei)

(ene)2

η̃D =
ρe(νen − νin)

ene

(3.43)

with e the electron charge. From right to left in (3.43) the terms are: Hall term, battery term, Ohmic
term and the velocity drift term. In this study, an ideal conductor plasma will be considered, so terms
on the right must be set to zero.

Since we are interested in the study of heating effects, we write explicitly the internal energy
equations:

∂en
∂t

+∇(u⃗nen) + pn∇u⃗n = Qn (3.44)

∂ec
∂t

+∇(u⃗cec) + pc∇u⃗c = J⃗(E⃗ + u⃗c × B⃗) +Qc (3.45)

where,
Qn =

1

2
αρnρc(u⃗n − u⃗c)

2 − 1

γ − 1

kB
mn

αρnρc(Tn − Tc) (3.46)

Qc =
1

2
αρnρc(u⃗n − u⃗c)

2 +
1

γ − 1

kB
mn

αρnρc(Tn − Tc) (3.47)

These terms can be understood as a heating flux due to the collisional exchange of energy. It is
important to note that, in contrast with the energy collisional terms Mn and Mc (see eq. 3.35), the
terms of the internal energy equation are different, the sign of the thermal exchange is positive for
neutrals and negative for charges. Generally, in configurations of thermal equilibrium for both species
(Tn = Tc), the contribution of this term is negligible, so we expect to find Qn ≈ Qc.

3.4 Single fluid equations
In regions where the coupling among the species is high, like in the solar photosphere, the effects of
their interaction are weak enough to describe the system as a single fluid, i.e., different species cannot
be distinguished. Under this approach, multifluid fluid equations are reduced to (Ballester et al., 2018;
Khomenko et al., 2014a):

∂ρ

∂t
+∇(ρu⃗) = 0 (3.48)

∂(ρu⃗)

∂t
+∇(ρu⃗⊗ u⃗+ p̂) = J⃗ × B⃗ + ρg⃗ (3.49)

∂

∂t

(
e+

1

2
ρu2

)
+∇

[
u⃗

(
e+

1

2
ρu2

)
+ p̂u⃗+ q⃗

]
= J⃗E⃗ + ρu⃗g⃗ (3.50)

Now, we rewrite the general Ohm’s equation (3.40) taking the velocity u⃗ as reference, and

∑
α

ρα

(
qα
mα

)2

(E⃗ + u⃗α × B⃗) =
∂J⃗

∂t
+∇(J⃗ ⊗ u⃗+ u⃗⊗ J⃗)

+∇
∑
α

(
qα
mα

ραw⃗α ⊗ w⃗α

)
+
∑
α

qα
mα

∇p̂α −
∑ qα

mα
R⃗α

(3.51)
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with,
w⃗α = u⃗α − u⃗ (3.52)

u⃗ =
ρn
ρ
u⃗n +

ρc
ρ
u⃗c = ξnu⃗n + ξcu⃗c (3.53)

where we have defined ξn and ξc as the density fraction of neutrals and charges. These two magni-
tudes fulfill that ξn + ξc = 1.

As in the two-fluid model, we neglect second order terms, terms proportional to me

mi
and consider

stationary currents (Khomenko et al., 2014a). This leads to the equation,

E⃗ + u⃗× B⃗ = ξn(w⃗ × B⃗) + η̃H J⃗ × B⃗ − η̃H∇pe + η̃J⃗ + η̃Dw⃗ (3.54)

where the following approximation was taken into account:

w⃗α ≈ u⃗i − u⃗ = ξn(u⃗c − u⃗n) + (u⃗i − u⃗c) ≈ −ξnw⃗ (3.55)

We need one more step to obtain the single fluid Ohm’s law, since (3.54) depends on the drift
velocity w⃗. In order to solve this issue, we sum (3.28) and (3.27) weighted with ξn and −ξc respectively,
obtaining:

ξn

(
∂(ρcu⃗c)

∂t
+∇(ρcu⃗c ⊗ u⃗c)

)
− ξc

(
∂(ρnu⃗n)

∂t
+∇(ρnu⃗n ⊗ u⃗n)

)
= ξn[J⃗ × B⃗]− G⃗+ αρnρcw⃗ (3.56)

where:
G⃗ = ξn∇p̂c − ξc∇p̂n (3.57)

Again, we can neglect terms on the left side of (3.53), and

w⃗ ≈ G⃗

αρnρc
− ξn

αρnρc
[J⃗ × B⃗] (3.58)

We can finally obtain the single-fluid Ohm’s law by substituting (3.55) in (3.51),

E⃗ + u⃗× B⃗ = η̃′H J⃗ × B⃗ − η̃H∇pe + η̃J⃗ − η̃A[(J⃗ × B⃗)× B⃗] + η̃GG⃗+ η̃GBG⃗× B⃗ (3.59)

where:

η̃′H = η̃H − ξn
αρnρc

ηD

η̃A =
ξ2n

αρnρc

η̃G =
1

αρnρc
η̃D

η̃GB =
ξ2n

αρnρc

(3.60)

The term proportional to (J⃗ × B⃗) × B⃗ is the single-fluid ambipolar term. It plays an important
role in solar atmospheric physics and cannot be ignored in our study. The ambipolar term appears as
consequence of the change of the velocity reference system and can be understood as a neutral-charge
interaction term in single-fluid modeling since it comes from w⃗ expression.

It is usual to rewrite the ambipolar coefficient as a ambipolar diffusivity ηA as follows:

η̃A = ηA
B2

µ0
(3.61)
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As conclusion of the theoretical discussion, both, two-fluid and single-fluid, approaches introduce
different terms to model the plasma components interaction. The study of the differences in be-
haviour predicted in each case motivates the development of the present work, with the aim to find a
justification for the chromospheric heating or, at least, part of it.



4 Numerical experiments

4.1 The code Mancha3D 2F
The numerical experiments that support the results of this work were simulated using the Mancha3D-2F
code (see Popescu Braileanu, 2020). The code is an extension of Mancha3D (Khomenko & Collados,
2006; Felipe et al., 2010; Khomenko & Collados, 2012; González-Morales et al., 2018), a fully 3D algo-
rithm implemented in Fortran 90 and parallelized with MPI. The variables are split into equilibrium
background and perturbation variables, a useful quality for the analysis of results. The code also al-
lows the possibility of solving the fluid equations keeping only the linear terms, so linear and non-linear
effects can be distinguished easily. The spatial discretization scheme is fourth-order accurate.

There are three main numerical issues that are critically important in the discussion of the results:

The Perfect Matching Layer (PML): One of the most sensitive factors in a simulation is
the boundary conditions. Since the domain volume is finite, one must specify what happens
when the flux of some magnitude goes out at the boundary. We will consider that our volume is
a fraction of the solar atmosphere, so the point is to emulate that the flux continues its vertical
propagation in an extension of our domain. The PML technique allows to avoid reflections at the
boundaries (Berenger, 1994; Felipe et al., 2010), which is equivalent to the situation described
before. The idea consists of introducing an absorbing layer of a certain width especially designed
to absorb without reflections a propagating disturbance that reaches it. In the PML layer, the
equations of the conserved magnitudes (the density, the momentum and total energy) are split
into three spatial components and an absorbing term proportional to each conserved magnitude
component is added. The proportional factor must be calibrated for each configuration.

Hyperdiffusivity: In situations where non-linear effects are important and the characteristic
scale of variation of the magnitudes is close to the limit of resolution (for example, in the case
of shock waves), some anomalous numerical effects can appear. To deal with the problem, some
additional terms are added to momentum equations to correct the non-resolved effects, whose
specific form is shown in Popescu Braileanu (2020). The coefficients for each of them must be
calibrated in each case.

Filtering: In order to deal with small unresolved scales, additionally to the hyperdiffusivity
terms, the solution is periodically filtered using a low pass filtering in order to atenuate the high
frequencies.

The strong coupling between neutrals and charges with height leads to large collisional frequencies.
This means that, in regions with these properties, like the solar atmosphere, the collisional terms vary
in times that are shorter than the hydrodynamic timescales, so they must be implemented carefully to
ensure the stability of the solution. To deal with this issue, Mancha3D-2F uses semi-implicit schemes
to implement the collisional terms (Popescu Braileanu, 2020).

4.2 First tests: Acoustic waves in a homogeneous plasma
The typical solutions for a single-fluid plasma (homogeneous case, stratified atmosphere, ...) are
familiar to the author since they are studied previously in master’s degree courses. This is not the
case for the two-fluid solutions. To gain intuition on the particular behaviours, we configure different
scenarios whose characteristics gradually increase in complexity. This way, the main properties of each
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element of the medium can be analyzed in detail separately. We limit our study to 1D configurations
along the vertical axis (z-axis) to simplify the expressions and the comprehension of the results.

Neutrals Charges
ρn,0 = 9.96 · 10−9 kg/m3 ρc,0 = 0.25ρn,0 = 1.99 · 10−8 kg/m3

pn,0 = 0.7 Pa pc,0 = 0.5pn,0 = 0.35 Pa

cn,0 = 7.65 · 103 m/s cc,0 =
√
2cn,0 = 1.08 · 104 m/s

Tn,0 = 4259 K Tc,0 = Tn,0 = 4259 K

Table 4.1: Values of the background atmosphere used in the tests of the wave propagation in a uniform
plasma.

In the first place, we study the propagation of acoustic waves in a homogeneous atmosphere. An
analytical solution can be found for the linearized system of equations under some considerations. Let
us begin linearizing the two-fluid equations, considering a null magnetic field, a null heat flux and
only elastic collisions. Regarding the collisional terms Mα, we initially choose Tn = Tc to reduce its
contribution, so that they can be neglected. We split a field f as f = f0 + f1, where the sub-index 0
denotes the equilibrium field and the sub-index 1 the perturbed field, which must fulfil that |f1|

f0
≪ 1.

The equilibrium state is defined by the following relations:

un,0 = uc,0 = 0;
∂ρn,0
∂z

=
∂ρc,0
∂z

= 0;
∂pn,0
∂z

=
∂pc,0
∂z

= 0 (4.1)

Since we consider a static equilibrium case, un = un,1 and uc = uc,1. From now on, we will use
the forms shown at the left hand side to denote the perturbed state to simplify the notation. This
will be the case for all the configurations proposed in this work and this criterion will be used again.
The description of the equilibrium state is completed with the relations obtained from the momentum
equations. If we consider only the equilibrium fields and substitute (4.1) in (3.25), (3.26) and then
combine the result with (3.29) and (3.30), we obtain respectively:

∂ρn,0
∂t

=
∂ρc,0
∂t

= 0;
∂pn,0
∂t

=
∂pc,0
∂t

= 0 (4.2)

Then, we can begin with the linearization of the equations, taking only the first-order terms. For
the mass conservation equations (3.25) and (3.26):

∂(ρα,0 + ρα,1)

∂t
+

∂[(ρα,0 + ρα,1)uα]

∂z
= 0 ⇒ ∂ρα,1

∂t
+ ρα,0

∂uα

∂t
= 0 (4.3)

As general rule in this chapter, we will use the sub-index alpha to show results and deductions that
are the same for neutrals and charges.

We continue with the momentum conservation equations, from (3.27) and (3.28):

∂[(ρα,0 + ρα,1)uα]

∂t
+
∂[(ρα,0 + ρα,1)u

2
α]

∂z
+

∂(pα,0 + pα,1)

∂z
= −εα(α0 + α1)(ρn,0 + ρn,1)(ρc,0 + ρc,1)w

⇒ ρα,0
∂uα

∂t
+

∂pα,1
∂z

= −εαα0ρn,0ρc,0w

(4.4)

where we introduce εn = 1 and εc = −1 to write the equations for neutrals and charges in one
expression.
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And finally, we linearize the energy conservation equations from (3.29) and (3.30):

∂

∂t

[
1

γ − 1
(pα,0 + pα,1) +

1

2
(ρα,0 + ρα,1)u

2
α

]
+

∂

∂z

[
γ

γ − 1
(pα,0 + pα,1)uα +

1

2
(ρα,0 + ρα,1)u

3
α

]
= 0

⇒ ∂pα,1
∂t

+ γpα,0
∂uα

∂z
= 0 ⇒ ∂pα,1

∂t
− γpα,0

ρα,0

∂ρα,1
∂t

= 0 ⇒ ∂pα,1
∂t

− c2α,0
∂ρα,1
∂t

= 0

(4.5)

where in the second step we make use of (4.3). We introduce cα,0 =
√

γpα,0

ρα,0 as the sound velocity of
each specie.

As a summary, we show the linearized set of equations:

∂ρn,1
∂t

+ ρn,0
∂un

∂t
= 0 (4.6)

∂ρc,1
∂t

+ ρc,0
∂uc

∂t
= 0 (4.7)

ρn,0
∂un

∂t
+

∂pn,1
∂z

= −α0ρn,0ρc,0(un − uc) (4.8)

ρc,0
∂uc

∂t
+

∂pc,1
∂z

= α0ρn,0ρc,0(un − uc) (4.9)

∂pn,1
∂t

− c2n,0
∂ρn,1
∂t

= 0 (4.10)

∂pc,1
∂t

− c2c,0
∂ρc,1
∂t

= 0 (4.11)

where we explicitly write the expression of the drift velocity for future proposes.
Now, we are interested in obtaining a set of two equations that only depends on one of the perturbed

fields. The process is analogue to single-fluid calculations but, in this case, collisional terms couple
the perturbed fields of the species and we have to deal with a set of wave equations instead of one
wave equation.

We choose the velocity field for the following steps. We take partial time derivatives on (4.8) and
(4.9):

ρα,0
∂2uα

∂t2
+

∂

∂z

(
∂pα,1
∂t

)
= −εαα0ρn0ρc,0

(
∂un

∂t
− ∂uc

∂t

)
(4.12)

The set of equations is obtained from (4.12) by substituting (4.10) and (4.11):
ρn,0

∂2un

∂t2 − c2n,0ρn,0
∂2un

∂z2 = −α0ρn,0ρc,0
(
∂un

∂t − ∂uc

∂t

)
ρc,0

∂2uc

∂t2 − c2c,0ρc,0
∂2uc

∂z2 = α0ρn,0ρc,0
(
∂un

∂t − ∂uc

∂t

) (4.13)

The coefficients of the equations above are constant so, as in the case of single-fluid, a monocromatic
wave solution can be proposed. In a medium with high collisions, such as the solar photosphere, the
transmission of momentum and energy between neutrals and charges is very efficient. Under these
considerations, it is reasonable to assume that the wavenumbers of both species are the same. This
assumption will be discussed late. Then, we can propose the following solutions to (4.13):

{un, uc, ρn,1, ρc,1, pn,1, pc,1} = {Un, Uc, Rn, Rc, Pn, Pc}ei(kz−ωt) (4.14)
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Figure 4.1: Positive solutions of the dispersion equation (4.18). The real and imaginary part of each one are
represented. The collisional frequencies and their associated wavenumbers represented by dashed
lines (cyan for neutrals and magenta for charges) show the transition region from the ’growing
up’ dispersion region to the saturated dispersion region.

The applicability of this approach will be discussed later.

After substituting (4.14) in (4.13), we obtain the following set of equations:{
(−ρn,0ω

2 + c2n,0ρn,0k
2 − iωα0ρn,0ρc,0)Un + iωα0ρn,0ρc,0Uc = 0

iωα0ρn,0ρc,0Un + (−ρc,0ω
2 + c2c,0ρc,0k

2 − iωα0ρn,0ρc,0)Uc = 0
(4.15)

This is a homogeneous system of equations. Since we are not interested in the trivial solution,
the system must fulfil that its associated determinant is null. This condition leads to the following
dispersion relation:

iω4 − α0(ρn,0 + ρc,0)ω
3 − ik2(c2n,0 + c2c)ω

2 + k2α0(ρn,0c
2
n,0 + ρc,0c

2
c,0)ω + ik4c2n,0c

2
c,0 = 0 (4.16)

which is similar to the expression 4.5 obtained in Popescu Braileanu (2020). In our study, we will
rewrite it as

k4 −

[(
1

c2n,0
+

1

c2c,0

)
ω2 + iα0

(
ρc,0
c2n,0

+
ρn,0
c2c,0

)
ω

]
k2 +

ω3

c2n,0c
2
c,0

[ω + iα0(ρn,0 + ρc,0)] = 0 (4.17)

a biquadratic equation in k, whose solutions are:

k±,± = ±

√
−B

2
±
√

B2

4
− C (4.18)

with A = 1, B, C the coefficients of (4.17).
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Figure 4.2: Comparison between numerical (solid lines) and analytic solutions (dashed lines) for the homo-
geneous atmosphere 4.1 with ω = 0.1 s−1. The perturbation is generated at the bottom.

The expressions for the amplitude coefficients of (4.14) are:

Un =
ωRn

kρn,0
; Uc =

ωRc

kρc,0

Pn = c2n,0Rn; Pc = c2c,0Rc

Rn

Rc
=

α0ρn,0ω

ik2c2n,0 − iω2 + α0ρc,0ω

(4.19)

which are obtained by substituting (4.14), in the linearized set of equations.
One of the coefficients must be known to determine the rest. In our configuration, we define

Rc = Acρc,0, with Ac = 10−3. At this point, it is interesting to raise the following discussion. Let us
consider too that Rn = Anρn,0. Then,

An =
α0

−i
ω2−k2c2n,0

ωρc,0
+ α0

Ac (4.20)

If the collisional parameter is large enough, An ≈ Ac and the result is in concordance with the
perturbative scheme. It is important to note that we are in conditions to apply the single-fluid model,
so cn,0 ≈ cs,0 and ω2 − k2c2n,0 ≈ 0 since this expression corresponds to the single-fluid dispersion
relation. Otherwise, the modulus of the denominator is greater than the numerator, so there are no
restrictions in the applicability of the solution. Note that, if we had chosen An as a free parameter, the
small perturbative approach would not be satisfied in some situations since |Ac| ≥ |An|. Therefore,
choosing Ac as a free parameter makes our configuration robust.

To close the discussion, let us review the assumption of kn = kc = k. Let as denote ∆k = kn − kc
and k = kc, so kn = k + ∆k. In this approach, we must consider that ωn ̸= ωc. We will apply the
same construction to temporal frequencies as spatial ones. This way, we obtain from (4.13):{

(−ρn,0ω
2 + c2n,0ρn,0k

2 − iωα0ρn,0ρc,0)Un + iωα0ρn,0ρc,0e
−i(∆kz−∆wt)Uc = 0

iωα0ρn,0ρc,0e
i(∆kz−∆wt)Un + (−ρc,0ω

2 + c2c,0ρc,0k
2 − iωα0ρn,0ρc,0)Uc = 0

(4.21)
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It is easy to prove that we obtain the same dispersion relation. Since (4.21) must be satisfied at
any time and altitude, there is only one possibility: ∆k = ∆ω = 0, i.e., the solution proposed as
solution before. Otherwise, ∆k = ∆k(z, t) and ∆ω = ∆ω(z, t), and (4.21) is not valid. As conclusion,
if kn ̸= kc, they cannot be constants. As our equilibrium state is homogeneous and stationary, this
solution can only be obtained from special boundary conditions, which are not of interest to the study.

Let us propose the configuration described in 4.1. We start studying the solutions of the dispersion
equation (4.17). We are interested in solutions where the wave propagates from the bottom to the
top, i.e., Re(k±,±) > 0, since this is the criterion that we will follow to generate the perturbations.
This is the case of k+,± solutions (see Fig. 4.1). We distinguish three regions: the ’growing up’
dispersion region, the transition region and the saturated dispersion region. When the frequency of
the perturbation is much smaller than the collisional frequencies, we are in the first case. For k+

1,
Re(k+) ≫ Im(k+), and the damping of this mode is extremely weak in distances of the order of
the wavelength or even more orders for very low frequencies. This mode is commonly denoted as
the propagating mode. In the case of k−, Re(k−) ≈ Im(k−), the damping scale is approximately
the wavelength of the perturbation and it vanishes in short distances. This is known as the non-
propagating mode. As shown in Fig. 4.1, propagating and non-propagating modes have very different
scales, being the former the ones with the largest wavelength. For frequencies of the order of the
collisional frequency, we find the transition region. The real part of the spatial frequency increases
its growth and the imaginary part changes significantly its behaviour to enter to a quasi-null growth
region for both modes. For frequencies much larger than the collisional frequency, the real part of k
continues its growth while the imaginary part seems to tend to a constant value. In this situation,
the mean free path of neutrals and charges is larger than the wavelength of the perturbation and the
single-fluid approximation is not appropriate, so the solution obtained might not be physically correct.

Now, we present the result of the numerical experiment. At the beginning of the work, the author
compiled the code Mancha3D-2F and ran the most basic simulations from the sample tests: the
evolution of a monochromatic wave in a homogeneous atmosphere. In this case, the wave is defined
analytically in all the points of the domain at the initial time. The first simulation that we configured
was the propagation of a monochromatic wave in a homogeneous atmosphere (see Fig. 4.1). In contrast
with the previous case, the atmosphere is in equilibrium at the initial time and then a perturbation
starts its propagation along the medium. The perturbation is generated via a driver: in the additional
cells outside of the physical domain (the ghost cells), at the bottom of the atmosphere, the perturbation
is evaluated continuously from the analytical model. In most cases, the number of ghost shells used
is three. When this perturbation gets inside the physical domain, the numerical scheme of the code
evaluates the numerical solution.

4.2.1 Acoustic waves in the solar atmosphere

The homogeneous plasma model gives us an idea about the behaviour of the system in a very small
area. If we want to study the propagation of waves along the vertical axis of the atmosphere, we need
to introduce the solar gravity, g⊙, which leads to a stratification of the equilibrium fields.

As in the previous case, we configure analytically the driver and then we study its evolution along
the atmosphere. We use a numerical model from Vernazza et al. (1981), the C model, as the back-
ground configuration (see Fig. 4.3), so some approximations must be done in the analytic derivation
of the driver expressions. At the bottom of the atmosphere, the conditions are similar to the solar
photosphere and the single-fluid model can be applied. Then, we will have to obtain the expres-
sions for neutrals and charges from the single-fluid solution. Another simplification is to consider an
isothermal atmosphere. This approach is reasonable since, in the region where the driver is applied,
the temperature is practically constant. Considering the same simplifications as in the homogeneous

1From now, we take the more compact notation k+,± = k±.
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Figure 4.3: Characterization of the VAL-C model for single-fluid and two-fluid configurations. The bottom of
the atmosphere is set to 500 km to have a rich background of free electrons so that the electrons
come from Hydrogen instead of other elements, such as in deeper layers

case, we derive from (3.45), (3.46) and (3.47) the background conditions:

∂ρ0
∂t

= 0;
∂p0
∂t

= 0;
dp0
dz

= −ρ0g⊙ (4.22)

where we use the total derivative in the last equation since the partial time derivative of the pressure
and density are null.

From the ideal gas law, we can write the density as a function of the pressure. Therefore, the
equilibrium pressure is,

p0(z) = p0(0)e
− z

H ; H =
kBT

µmng⊙
=

p0
ρ0g

=
c2s
γg

(4.23)

where H is the pressure scale.

Now, we obtain the linearized momentum equations. For the mass conservation,

∂(ρ0 + ρ1)

∂t
+

∂[(ρ0 + ρ1)u]

∂z
= 0 ⇒ ∂ρ1

∂t
+ ρ0

∂u

∂z
− ρ0

H
u = 0 (4.24)



4.2. First tests: Acoustic waves in a homogeneous plasma 21

For the momentum conservation,

∂[(ρ0 + ρ1)u]

∂t
+

∂[(ρ0 + ρ1)u
2 + (p0 + p1)]

∂z
= −(ρ0 + ρ1)g⊙

⇒ ρ0
∂u

∂t
+

∂p1
∂z

+
∂p0
∂z

= −ρ0g⊙ − ρ1g⊙ ⇒ ρ0
∂u

∂t
+

∂p1
∂z

= −ρ1g⊙

(4.25)

And the energy conservation,

∂

∂t

[
1

γ − 1
(p0 + p1) +

1

2
(ρ0 + ρ1)u

2

]
+

∂

∂z

[
γ

γ − 1
(p0 + p1)u+

1

2
(ρ0 + ρ1)u

3

]
= −(ρ0 + ρ1)ug⊙

⇒ 1

γ − 1

∂p1
∂t

+
γ

γ − 1

∂(p0u)

∂z
= −ρ0gu ⇒ ∂p1

∂t
+ γp0

∂u

∂z
= ρ0g⊙u ⇒ ∂p1

∂t
− c2s,0

∂ρ1
∂t

= −(γ − 1)ρ0g⊙u

(4.26)

where we made use of (4.23) and (4.24).

As summary, we show the set of momentum equations:

∂ρ1
∂t

+ ρ0
∂u

∂z
− ρ0

H
u = 0 (4.27)

ρ0
∂u

∂t
+

∂p1
∂z

= −ρ1g⊙ (4.28)

∂p1
∂t

− c2s,0
∂ρ1
∂t

= −(γ − 1)ρ0g⊙u (4.29)

We take partial time derivatives over (4.28):

ρ0
∂2u

∂t2
+

∂

∂z

(
∂p1
∂t

)
= −∂ρ1

∂t
g⊙ (4.30)

Then, we make use of (4.29):

ρ0
∂2u

∂t2
+

∂

∂z

(
c2s,0

∂ρ1
∂t

− (γ − 1)ρ0g⊙u

)
= −∂ρ1

∂t
g⊙ (4.31)

If we introduce (4.27) in (4.31) and develop the results, we finally obtain the wave equation for a
stratified isothermal atmosphere:

∂2u

∂t2
= c2s,0

∂2u

∂z2
− γg⊙

∂u

∂z
(4.32)

The coefficients of the equation above are constant, and a monocromatic wave solution can be
proposed. In contrast with the homogeneous case, we have to choose carefully the definition of the
coefficients as follows: {

u

cs
,
ρ1
ρ0

,
p1
p0

}
= {Ṽ , R̃, P̃}ei(kz−ωt) (4.33)

this way, we ensure that the coefficients are constants and that the development is consistent.

The dispersion relation is obtained applying this solution to (4.32):

ω2 = c2s,0k
2 + iγg⊙k (4.34)
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If we fix the temporal frequency, the spatial frequency is given by:

k± =
ωcut

cs

−i±

√(
ω

ωcut

)2

− 1

 ; ωcut =
γg⊙
2cs

(4.35)

with ωcut the cutoff frequency of the stratified isothermal atmosphere.

We impose in our solution that un = uc = u and fix Ṽ = 10−3. From the continuity equation
(4.27):

−iωρ0R̃+ ikρ0csṼ − ρ0
H

csṼ = 0 ⇒ R̃ = (i+Hk)
cs
ωH

Ṽ (4.36)

The coefficient of the pressure is obtained from the momentum conservation equation (4.28):

i
ωp0cs
Hg

Ṽ = ikp0P̃ − p0
H

P̃ +
p0
H

R̃ ⇒ P̃ =
R̃− iωcs

g Ṽ

1− iHk
⇒ P̃ =

kcs
ω + i

(
cs
ωH − ωcs

g

)
1− iHk

Ṽ (4.37)

At this point, we can configure the amplitude of the perturbations for both species as follows:

Vn = Vc = csṼ

Rn =
ρn
ρ
R̃; Rc =

ρc
ρ
R̃

Pn =
pn
p
P̃ ; Pc =

pc
p
P̃

(4.38)

The dispersion equation solution (4.35) and the set of coefficients (4.38) provide the expressions to
configure the initial perturbation in the stratified atmosphere in absence of magnetic field.

4.2.2 An analytical approximation to the single-fluid solution

The first step in the study of the two-fluid acoustic waves in a stratified atmosphere is to check that
the solution obtained in single-fluid conditions (low frequencies) agrees with the single-fluid solution.
In addition, the single-fluid numerical solution must also be checked with an analytical solution to
enhance the confidence in the comparison. As indicated above, the use of a numerical model for the
background atmosphere introduces a limitation in the analytical results that can be obtained. We
propose the following analytical description: let us divide the whole atmosphere in small layers of
constant temperature, each one with the same thickness ∆z. In each layer, the isothermal solution is
valid, so that we can make a local description of the perturbation applying (4.35), (4.36) and (4.37).
Unlike the amplitude coefficients, the phase of the perturbation depends on the layers that has gone
through. At the end of the first layer, the phase will be ϕ0 = k0∆z; at the end of the second one, we
will find ϕ1 = (k0 + k1)∆z. Then, on the M-th layer ϕm =

∑M−1
m=0 km∆z. The limit ∆z → 0 leads to

the integral expression:
ϕ(z) =

∫ z

0

k(z′)dz′ (4.39)

It is important to note that this is a zero-th order approximation, i.e., we are considering that the
gradients between layers are negligible. According to Fig. 4.3, this simplification seems reasonable.
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Figure 4.4: Comparison between the single-fluid solution (green line) with the two-fluid solution (red line)
calculated using (4.40) for a perturbation with ω = 0.5 s−1. Black dashed line shows the
analytical solution.

The earliest test results are shown in Fig. 4.4. The two-fluid solutions represented are:

v2f =
ρnun + ρcuc

ρn + ρc

p2f =pn + pc

T2f =
ρnTn + ρcTc

ρn + ρc

ρ2f =ρn + ρc

(4.40)

which are the thermodynamical fields measured in the center of mass of both species. When we
consider the case of low frequencies, the three solutions are practically the same. Some differences
appear in the highest layers of the atmosphere. On one side, the amplitude of the analytic solution
(black dashed line) is larger than the single-fluid numerical solution (green line), which suggests that
our theoretical approach is not accurate enough in this region. This is due to the fact that the
temperature gradient is very strong in the upper part of our atmosphere. On the other, we observe
that the phases of the single-fluid and two-fluid solutions are slightly different due to the different
sound velocity of both species. Since we include electrons in the state equation of the charges, the
same temperature for both species does not mean that their sound velocity are equal.

The representation of the two-fluid solutions in a space-time diagram allows us a deeper under-
standing in the particular behaviour of neutrals and charges (see Fig. 4.5) Velocity and temperature
perturbations are quite similar. This is evident from the fact that pairs of images at the first and the
third row of panels are indistinguishable by eye. Perturbations in pressure and density for neutrals
show a strong attenuation (left panels in the second and firth row). This behaviour is as predicted by
the single-fluid solution. Such an attenuation with height cannot be appreciated for the charges. At
first sight, the result is shocking because the perturbation in temperature is the same for both species.
However, one must keep in mind the following aspects: the perturbation in temperature is not related
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Figure 4.5: Space-time diagram for the thermodynamic fields for neutrals (left) and charges (right).



4.2. First tests: Acoustic waves in a homogeneous plasma 25

Figure 4.6: On the left, the time-space diagram of a perturbation whose PML condition is bad adjusted. On
the right, the pml condition is adjusted properly. In the first case, the profile of the bands show
oscillations after the perturbation reaches the top of the atmosphere. This effect indicates the
presence of reflections produced by the boundary conditions.

with the ratio of pressure and density perturbations, but it is computed as:

Tα,1 =
µαmn

kB

(
pα
ρα

− pα,0
ρα,0

)
(4.41)

This explains why oscillations of temperature in both species are so similar. It has to be noted that
the pressure scale for charges is a factor 2 greater than for the neutrals. Therefore, the decrease of
the density with height is much less pronounced for charges than for neutrals. Neutrals have larger
density in all the layers. If the variations of pressure and density of both species are shown normalized
to their corresponding background values, the relative oscillations of all the quantities increase with
height, similar to those of the velocity.

Despite the simplicity of the simulation, it shows that the analysis of numerical solutions is not
easy. Even when we can make use of an analytical estimation of the solution, the deviations from
the numerical solution are not only due to the limitations of the approach. The effects caused by the
numerical implementation of the problem must be studied carefully to reduce their contribution and
improve the confidence on the solution. In the previous case, it is important to calibrate appropriately
the PML layer (see Fig. 4.6) to avoid numerical reflections that propagate along the domain.

Once the code is tested, we configure simulations in a range of frequencies large enough to observe
the effects of the collisional terms (see Fig. 4.7). We show the solutions obtained for the perturbation
with the highest frequency studied2 (see Figs. 4.8 and 4.9). These figures compare the numerical
two-fluid solution (red lines) with the single fluid solution in the adiabatic approximation (green line)
at the upper panels. The bottom panels show a close-up of the solution at a reduced range of heights,
one of them at the bottom chromosphere and another one at the upper chromosphere. The difference
between these figures is in different collisional cross-sections used, as we explain below. For both two-
fluid simulations we observe a damping in the amplitude of the perturbed fields in the highest layers,
which the single-fluid model cannot reproduce. This behaviour is caused by the interaction between
neutrals and charges, which is not present in the single-fluid description. It is important to remark
that the simulations are performed only with linear terms, so we observe a linear damping. Another
interesting result is the decoupling of velocities of neutrals and charges in the highest layers of the

2An empirical criterion stablishes that a perturbation is well resolved if the density of points per period is larger than
8. Since k grows with ω, higher frequencies impose higher spatial resolution. Then, the computational time grows
with ω, introducing a limitation in the range of frequencies that can be studied.
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Figure 4.7: Main collisional frequencies of the VAL-C atmosphere considering a plasma composed only by
hydrogen. The region of frequencies studied are delimited by the dashed line. The computational
time imposes the barrier of or study.

atmosphere. This decoupling can be seen as s difference in the amplitude or phase of the velocities
of neutrals and charges at the close-up panels at the bottom of Figs. 4.8 and 4.9. Fig. 4.10 shows
the decoupling velocities as a function of height for both simulations. The decoupling increases with
height in the atmosphere. This suggests that the relative amplitude and phase between the velocity
of the two species is a function of the altitude and that is higher for high frequencies.

Figs. 4.8 and 4.9 shows qualitatively similar results, but the magnitude of the decoupling and wave
damping is significantly different. This difference is caused by the use of different cross-sections for
the collisions, taken from the works of Leake et al. (2012b) (Fig. 4.9) and Leake et al. (2013) (Fig.
4.8). The change of the one order of magnitude in the effective ion-neutral cross sections involved
in the collisional parameter introduced significant differences in the solutions obtained. Since several
values for the cross section are discussed in the literature, our result motivates an improvement in
the calculus. Nowadays, it is not possible to observe waves of this frequency because they cannot be
resolved yet, but in the future they may be used to polish the value.

4.3 Acoustic shock waves
When the amplitude of the perturbations is large enough, the non-linear terms cannot be ignored.
Consider, as an example, the propagation of a monochromatic wave in a homogeneous atmosphere.
The apex of the positive wing of the perturbation moves with the local velocity c+v and the negative
moves with c − v. Eventually, the apex of the positive wing will catch up the negative one. This
leads to a discontinuity in the physical fields called a shock wave. If the wave amplitude becomes
larger than the local sound speed, such waves are called ‘strong’ shock waves. The discontinuities can
also appear when we propagate waves with initially small amplitudes in mediums large enough, by
the same reasoning. These are called the ‘weak’ shock waves and are especially important when we
propagate high frequency waves. Under these physical conditions, the system tends to increase its
internal energy and, as consequence, its temperature. For this reason, shock waves are an interesting
mechanism to explain of the chromospheric heating.

The formation of shock waves introduces several difficulties in the numerical solution. In some steps
of the solution calculation, the code makes use of the Fourier space. It is known that discontinuities
cannot be well reproduced by the Fourier transform, introducing numerical oscillations in the process.
This effect is called the Gibbs phenomenon. To smooth these oscillations, the code introduces hyper-
diffusivity coefficients, whose values must be adjusted at each simulation. Another problem appears
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Figure 4.8: Comparison between the two-fluid solution and the single fluid solution for a perturbation with
ω = 100s−1 and the effective collisional sections σin = 1.16 · 10−18 m2 and σen = 1.0 · 10−19 m2,
according to Leake et al. (2013). The figure on the top shows a general view of the profile of each
solution. At the bottom, figure on the left zooms a region of the bottom of the atmosphere where
both solutions match and the figure on the right zooms a region of the top where differences in
phase and amplitude are observed.

when the perturbation enters into the physical domain by the first time. If the initial amplitude is
large enough, it can be considered as a discontinuity by the code scheme. To avoid this situation, we
introduce a smoothing factor in the analytic perturbation (see Fig. 4.11), such as:

fs(t) = 1− e−t/τs (4.42)

We perform a simulation of a shock wave with ω = 10 s−1, the highest frequency we explored.
Unfortunately, this frequency was not large enough to observe differences between single-fluid and
two-fluid solutions, but it is possible to measure the influence of the collisional terms. We show
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Figure 4.9: Comparison between the two-fluid solution and the single fluid solution for a perturbation with
ω = 100s−1 and the effective collisional sections σin = σen = 1.0 · 10−19 m2, according to Leake
et al. (2012b). The figure on the top shows a general view of the profile of each solution. At the
bottom, figure on the left zooms a region of the bottom of the atmosphere where both solutions
match and the figure on the right zooms a region of the top where differences in phase and
amplitude are observed.

the contribution of the terms of the internal energy equation in Fig. 4.12. This figure compares the
magnitudes of the energy flux, ∂uαeα/∂z (green lines), of the work of the pressure force, −Pα∂uα/∂z
(magenta lines), the thermal exchange (blue lines) and the frictional heating (red lines) contributions
to the total internal energy variations in time (yellow lines). For a better visualization we normalized
all the contribution to the corresponding background densities. This way, the variations in the upper
layers can be appreciated. One can observe that the energy flux is mostly ballanced by the work of
the pressure force. In the case of neutrals (left panel) neither thermal exchange nor frictional heating
are relevant. On the contrary, for the charges, the thermal exchange contributes most to the time
derivative of the internal energy from the half to the top of the atmosphere. This fact indicates that
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Figure 4.10: Drift velocities, i.e. the difference in the velocities of charges and neutrals for the simulation
with ω = 100 s−1 shown in Figures 4.8 and Fig. 4.9. The difference between the panels are the
different collisional cross-sections used.

we are close to the regime where we expect to find differences between the two models.
If we pay attention to the dominant terms, the flux of internal energy and the work of pressure forces,

we observe that they reach a maximum (in absolute value) when the shock waves reach its maximum
amplitude. At this point, the wave begins to dissipate the energy and the amplitude in velocity and
temperature tends to a constant. The density and pressure of the equilibrium atmosphere decrease
with altitude, so the amplitudes of the two dominant terms will decrease too. In this representation,
the difference in the pressure scale of the species is clear.

As the physical properties of neutrals and charges are the same when we consider only elastic
collisions, only small differences between single-fluid and two-fluid predictions are observed. More
effects that distinguish the species must be introduced to observe significant differences in the low
frequencies regime.

4.4 Magnetoacoustic waves

Our study is focused in the solar chromosphere, where βplasma < 1, i.e., the magnetic field dominates
the dynamic of the plasma. In the last group of simulations, we introduce a magnetic field oriented
along the x-axis. This way, the magnetic field perturbations will be coupled with the acoustic pertur-
bations, giving as result the propagation of magnetoacoustic waves. If we had chosen the direction of
the magnetic field along the z-axis, it can be demonstrated that only acoustic waves will propagate
along the same direction, which is not an interesting case for our proposes, because these will be ex-
actly the same acoustic waves as the case considered above. When the magnetic field is included, the
comparison between single-fluid and two-fluid solutions becomes especially important: the single-fluid
model introduces the interaction between neutrals and charges using the ambipolar term. We are
introducing an element that distinguishes the species since only charges are affected directly by the
electromagnetic field, so we expect more relevant changes in the behaviour of both components.

As in the previous case, some simplifications are made to configure in an easy way the initial
perturbation. We generate the perturbation in a region with βplasma > 1 and high collisions, so both
species are fully coupled and a single-fluid solution can be applied. Additionally, the gas pressure
dominates the dynamic of the system and the ambipolar term can be neglected.



30 Numerical experiments

Figure 4.11: Top panel: solution without smoothing factor. Bottom panel: solution with smoothing factor
avoids the big pick produced by the introduction of a perturbation of high amplitude.

Figure 4.12: Representation of the terms of the internal energy equation for neutrals (left) and charges (right)
in a shock wave with ω = 10 s−1.

Firstly, we configure the equilibrium state. From (3.27) and (3.28), the equilibrium is defined by:

∂pn,0
∂z

=− ρn,0g⊙

∂

∂z

(
pc,0 +

B2
x,0

2µ0

)
=− ρc,0g⊙

(4.43)

which admit a solution with a constant magnetic field. Its value is adjusted by the condition
βplasma(zchr) = 1, where zchr is the altitude where the chromosphere starts.

In the region where the perturbation is generated, the single-fluid equilibrium equations are (4.22),
as in the case of the pure acoustic waves. The expressions (4.23) are valid too. From (3.48), (3.49)
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Figure 4.13: Ambipolar diffusivity functions for all the magnetic field configurations tested. The coefficients
are obtained using (3.57).

and (3.50), we obtain the linearized set of momentum equations (4.27), (4.29) and for the momentum
conservation:

∂u

∂t
+

1

ρ0

∂p1
∂z

= −ρ1
ρ0

g⊙ − 1

µ0ρ0

(
∂Bx,1

∂z
Bx,0

)
(4.44)

where we used the Ampère’s law (3.22).
Let us obtain the wave equation. We apply a time partial derivative over (4.44) and combine the

Ohm’s law (3.56) and the induction equation (3.22) to find:

∂2u

∂t2
+

1

ρ0

∂

∂z

(
∂p1
∂t

)
= −g⊙

ρ0

∂ρ1
∂t

+ v2A
∂2u

∂z2
(4.45)

with v2A =
B2

x,0

µ0ρ0
the square of the Alfvén velocity. The result is the same as (4.30) plus an additional

term, so we directly can write:

∂2u

∂t2
= (c2s + v2A)

∂2u

∂z2
− γg⊙

∂u

∂z
(4.46)

Except for the Alfvén velocity, the rest of the coefficients of the wave equation are constant in the
isothermal case. The perturbation is generated in a small region and we can safely assume that the
Alfvén velocity is uniform and a solution of monochromatic waves to (4.46):{

u

cs
,
ρ1
ρ0

,
p1
p0

,
Bx,1

Bx,0

}
= {Ṽ , R̃, P̃ , B̃} exp(i(kz − ωt)) (4.47)

obtaining the dispersion relation:

ω2 = k2(c2s + v2A) + iγg⊙ (4.48)

From the continuity equation, the expression for the density amplitude is given by (4.36). From the
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Figure 4.14: Comparison between the two-fluid and single-fluid solutions for a magnetoacoustic wave with
T = 5s. The transition region (β = 1) is set at the middle of the atmosphere, shown in vertical
black dashed line.

induction equation, we obtain for the magnetic field amplitude:

B̃ =
k

ω
csṼ (4.49)

In the case of the pressure amplitude, from (4.44):

i
ωp0cs
Hg

Ṽ = ikp0P̃ − p0
H

P̃ +
p0
H

R̃+ kv2A
p0

Hg⊙
B̃ ⇒ i

ωcs
g⊙

Ṽ = iHkP̃ − P̃ + R̃+ iv2A
k2

g⊙ω
csṼ

⇒ P̃ =

kcs
ω + i

(
cs
ωH + v2A

k2

g⊙ω cs −
ωcs
g⊙

)
1− iHk

Ṽ

(4.50)

Finally, we use (4.38) to configure the amplitudes for neutrals and charges and the implementation
is closed.

We show the numerical results for the cases of 5 s period (see Fig. 4.14) and 1 s period (see
Fig. 4.15). The magnetohydrodynamic equations were solved by using all the non-linear terms. These
figures compare the single-fluid solution for magneto-acoustic waves with ambipolar term in black line
with the two-fluid solution in red dashed line. The solution is shown for the velocity, thermodynamic
fields and the horizontal magnetic field component, as a function of height in the chromosphere for a
given time moment. This moment is chosen in the stationary regime of the simulations, after the waves
reached the upper boundary and several wave trains have passed. In both single-fluid and two-fluid
cases we observe an initial wave amplitude increase in velocity and in magnetic field, and a posterior
damping. The waves vanish for layers above the middle of the chromosphere. The damping is much
more pronounced in the 1 s period case in Fig. 4.15. In the case of the waves of 5 s period, Fig. 4.14,
both solutions are quite similar, with small differences in the upper layers of the atmosphere. In the
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Figure 4.15: Comparison between the two-fluid and single-fluid solutions for a magnetoacoustic wave with
T = 1s. The transition region (β = 1) is set at the middle of the atmosphere, shown in
vertical black dashed line. Only the low atmosphere is represented because the amplitude of
the perturbation is practically null in the highest layers.

second case, Fig. 4.15, the differences are more clear. We observe a different growth in amplitude
between two-fluid and single-fluid solutions in the low layers of the chromosphere or the 1 s period
case. The amplitude of the two-fluid solution is large enough to show non-linear effects that cannot
be seen for the single-fluid solution. Once the perturbation reaches the layer where the damping
becomes stronger, the two-fluid solution returns to the linear regime and both solutions tend to the
same amplitude. The discussion leads to an important conclusion: for the same physical conditions,
the two-fluid solution leads to the formation of shock waves but the single-fluid one does not. The
damping introduced by the ambipolar term is more efficient than the explicit neutral-ion collision
friction term in the two-fluid description, even in regions dominated by the gas pressure.

The behaviour of the solutions changes significantly in both cases in a small range of periods (1 to 5
s). The possibility of obtaining an analytic solution should give us the keys to understand the nature
of the transition. Even in the single-fluid approach, when we do not consider the ambipolar term,
obtaining an analytic solution with this configuration is not easy. Following the results presented in
the literature, we tried to deduce a solution in terms of hypergeometric functions for the case with
ambipolar term, but, unfortunately, the comparison with numerical results was not satisfactory.

The main motivation for the present TFM was the study of a mechanism capable of justifying the
chromospheric heating. Attending to the energy collisional terms (3.46) and (3.46), when we introduce
an element that distinguishes between neutrals and charges like the magnetic field, the contribution of
the Qc and Qc terms becomes more relevant, introducing an increment in the internal energy. If the
coupling between neutrals and charges is strong enough, the contribution of the thermal exchange term
will be negligible and the heating will be the same for both species. We show in Fig. 4.16 the average
of the temperature perturbation for several wave periods. The result obtained is clear: the single
fluid model predicts a weak heating in regions dominated by the magnetic field, whilst the two-fluid
heating is stronger. Both increments in temperature seem to grow with time, being more apparent in
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Figure 4.16: Left panel: representation of the time-average temperature perturbation for a two-fluid model
(dashed lines) and single-fluid model (solid lines) or the wave period of 5 s. Blue curves are from
early times and the green ones for the latest. Right panel: the time evolution of the average
temperature perturbation at a fixed height with an maximum heating effect (1700 km).

Figure 4.17: Representation of the time-average temperature perturbation for a two-fluid model for different
amplitudes of the initial perturbation and wave periods. In magenta, we show the results for a
weak field and in cyan, for the strong field.

the two-fluid case. Regarding the additional small peaks observed in the spatial representation of the
two-fluid solution at low heights around 800 km, they are most likely the results of numerical effects.
Adjusting the boundary conditions when more elements are introduced in the equations becomes more
difficult, especially in the two-fluid case.

We summarise the heating results for different configurations in Fig. 4.17. The most efficient heating
case is shown to be the case with a weak magnetic field, 1 s period and higher amplitude. We observe
that increasing the magnetic field also increases the damping effect, especially for high frequencies.
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This limits the growth of the perturbation and reduces the non-linear effects, leading to a low efficient
heating. A stronger perturbation also favours an efficient heating. Tests with large periods and large
amplitude introduce several numerical effects and are still under study but, attending to the results,
a stronger heating effect is expected in this case. Magnetoacoustic waves of larger periods are able to
reach higher layers of the chomosphere, where the decoupling effects are more important, contributing
to a larger increase in temperature.



5 Conclusions and future prospects
At the end of this work, we have learned about the difficulties of the study of two-fluid solutions from
the analytic and numerical point of view. The possibility to obtain 1D analytic solutions in the case
of single-fluid is even complicated when we introduce the magnetic field. The possibility to use the
Mancha3D-2F code, which allows us to solve two-fluid and single-fluid equations was key for a deep
comprehension of the results. We could test solutions in realistic environments, like the VAL-C model,
an empirical model that describes the chromosphere, but we are still far from a realistic representation
of the complexity of chromospheric processes.

The analysis of the homogeneous atmosphere shows that the two-fluid solution introduces two
modes, a difference with the single-fluid one. In conditions of strong coupling, one of them (physical
conditions can exchange the behaviour of modes) is quite similar to the expected for a single-fluid mode.
In the two-fluid case, the mode has a spatial damping, with a damping scale that is large in comparison
with the wavelength and the effect is not relevant in short distances. The length scale of the second
mode is different in order of magnitude and the wave damps in a distance similar to the wavelength,
and we can consider that the mode does not propagate. If the frequency of the perturbations is similar
to the collisional frequency, the behaviour of both modes changes significantly: both wavelengths tend
to be similar and the damping reaches a limit in growth. This can be understood as a first indication
that the single-fluid solution is only valid to describe perturbations whose frequencies are much smaller
than the collisional frequency.

The stratified atmosphere introduces a damping due to the solar gravity. We obtained a single-fluid
approach to the analytic solution based on the local application of the isothermal solution. Since
the gradients of temperature are small enough, the approximation allows us to check the numerical
solution. For perturbations whose frequencies were similar to the collisional frequencies, we observed
the two-fluid effects in the linear regime. We tested configurations with two values for the collisional
cross-sections that can be found in the literature and observe important differences in the solutions,
so a more detailed discussion must be done about the determination of this parameter.

It was not possible to reach frequencies large enough to observe reliable collisional effects in the
study of acoustic shock waves. In the case of a perturbation with ω = 10s−1, we observe that the
frictional heating becomes important for charges at high layers, so we believe that we are close to the
region of interest.

The magnetic field introduces more relevant effects that allows us to detect differences between the
two-fluid and single-fluid solutions at low frequencies. It also introduces a limitation on the period
of the perturbation due to a strong increase of the damping. This effect vanishes the wave in the
βplasma = 1 region for a period of 1 s. This fact motivates us to obtain an analytic solution that
explains the efficiency of the damping. The perturbation with 5 s period shows small differences
between the two-fluid and single-fluid solutions whilst the perturbation with T = 1s shows that
the single-fluid solution grows in amplitude more than the single-fluid one and then both solutions
vanish with the same amplitude. We conclude that the ambipolar damping is more efficient than the
collisional damping. The ambipolar damping is strong enough to prevent non-linear effects and the
formation of shock waves in conditions where two-fluid predicts them. More studies must be done to
understand the limits of the ambipolar approach.

We were able to reproduce the results of Popescu Braileanu (2020) related with the collisional
heating in presence of magnetic field. This justifies the motivation of the two-fluid approach: an
explanation for the chomospheric heating. We also observe that perturbations that reach the upper
layers of the chromosphere heat more efficiently due to the decrease of the collisional coupling.

The understanding of two-fluid solutions is not an easy task. Since the study of its equations leads
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to systems of coupled equations, it is only possible to obtain analytic solutions in a few cases. This
makes it difficult to distinguish between physical and numerical effects in the solutions. In future
works, we will perform simulations for acoustic waves with non-linear effects and small amplitude
to obtain a complete view of the collisional effects, for example, in the case with ω = 100s−1. For
magnetoacoustic waves, we will study configurations with a constant magnetic field with B⃗0 ∦ êz to
observe effects of the magnetic tension. The case of a stratified magnetic field will be studied too.
Ionizations and recombinations are frequent in the chromosphere, so the effects of the non-elastic
collisional terms must be included and studied to pursue more realistic simulations.
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